
Programmer's Library
Reference Manual

SR-0113 D

Copyright © 1986, 1989 Cray Research, Inc. Portions of the TCP/IP documentation
Copyright © 1986 The Wollongong Group, Inc. A11 Rights Reserved. This manual or
parts thereof may not be reproduced in any form unless permitted by contract or by
written permission of Cray Research, Inc.

CRAY0. CRAY-lft , CRAYY·MPi&, HSXQl, SSD0, and UNICOSI8 are federally registered
trademarks and .4\.utotasking"', CFT"'. CFT77'"'. CFT2"', CRAY X-Mp ... , COS ... ,
Cray Ada"', CRAY-,'" , CSIM"" , Delivering the power ... ". • lOS'" • OLNET"', RQS"',
SEGLDR 1M. SUPERLlNK'" • and X-MP EA" are trademarks of Cray Research, Inc.

DEC, PDP, VAX, and VT100 are trademarks of Digital Equipment Corporation.
HYPERchannel and NSC are trademarks of Network Systems Corporation. IBM is a
trademark of International Business Machines Corporation. NFS and Sun
Workstation are trademarks and RPC and XDR are products of SUD Microsystems,
Inc. OSx and Pyramid are trademarks of Pyramid Technology Corporation.
Tektronix is a trademark of Tektronix Corporation. UNIX is a trademark of AT&T.
X Window System is a trademark of Massachusetts Institute of Technology.

The UNICOS operating system is derived from the AT&T UNIX System V operating
system. UNICOS is also based in part on the Fourth Berkeley Software Distribution
under license from The Regents of the University of California.

Requests for copies of Cray Research, Inc. publications should be sent to the
following address:

Cray Research, Inc.
Distribution Center
2360 Pilot Knob Road
Mendota Heights. MN 55120

Order desk (612) 681-5907
Fax number (612) 681-5920

RECORD OF REVlSION RESEARCH, INC. PUBUCATION NUMBER SR-0113

Requests for copies of Cray Research. Inc. publications should be directed to the Distribution Center.
Comments about these publications should be directed to the following address:

CRA Y RESEARCH. INC.
Technical Publications
1345 Northland Drive
Mendota Heights. Minnesota 55120

Revision

March 1986

October 1986

June 1987

July 1988

SR-01l3

Description

Original printing. This manual and the System Library Reference Manual, CRI publi
cation SM·01l4, obsolete the Library Reference Manual, CRI publication SR·OO14. This
manual supports the Cray operating system COS release 1.15 and the UNICOS release
1.0 running on CRAY X·MP and CRAY-l computer systems.

This manual supports COS release 1.16 and UNICOS release 2.0 running on the CRAY
X-MP and CRAY-l computer systems. Several routines are now available under
UNlCOS as well as COS. Thesc include the table management routines, Fortran I/O
routines, word-addressable I/O routines, multitasking routines, fiowtrace routines, and
the machine characteristics routines. The manual style has changed to reflect UNICOS
on-line style. Miscellaneous technical and editorial changes are also included. All
trademarks are now documented in the record of revision.

This reprint with revision includes docwnentation to support the UNICOS release 3.0
and COS release 1.16 running on the CRAY X-MP and CRAY-l computer systems. The
following routines are now available under UNICOS: V AX conversion routines. mM
conversion routines, miscellaneous conversion routines, logical record I/O routines.
and additional miscellaneous routines. The multitasking barrier routines have been
added for UNICOS. A miscellaneous UNICOS libraries and routines section has been
added. TCPJIP routines have been removed and are now in the TCP/IP Network Library
Reference Manual, publication SR-2057. Specific changes made to the routines are
documented in the New Features section following the table of contents. Miscellane
ous technical and editorial changes are also included.

This reprint with revision includes docwnentation to support the UNICOS 4.0 release
and the COS 1.17 release running on the CRAY Y-MP. CRAY X-MP, and CRAY·l com
puter systems. The Boolean arithmetic routines are now documented with their own
pages, as are three Fortran interfaces to C routines: GETENV, GETOPT. and UNAME.
A new set of routines (STARTSP, SETSP, CLOSEV and ENDSP) to handle tape volume
switching under cos replace the obsolete set (CONTPIO, CHECKTP, PROCBOV.
PROCEOV, SWITCHV. and SVOLPRC). The base set of Asynchronous Queued I/O
(AQIO) routines has been ported to UNICOS. and new routines have been added to the
base set on COS. Eleven new level 2 Basic Linear Algebra Subprograms (BLAS2)
have been added to the scientific library routines. The SYMDUMP and TSECND rou
tines have been added to UNICOS. and the TRIMLEN and CALLCSP routines to cos.
Miscellaneous technical changes to existing routines and editorial changes to this
manual are also included.

iii D

November 1989 This reprint with revision supports COS release 1.17.1 (while still supporting UNICOS
4.0) running on CRAY Y-MP. CRAY X-MP EA. CRAY X-MP, and CRAY-l computer
systems. Several routines have been added to the 1/0 section: AQOPENDV,
GETW AU, PUTW AU, WCHECK, WCLOSEU, and WOPENU. 12 new level 2 Basic
Linear Algebra Subprograms (BLAS 2) for unpacked data of type complex have been
added to the Linear Algebra section, as have 17 level 3 Basic Linear Algebra Subpro
grams (BLAS 3). OSRCHM has been added to the Search routine section.

SR-0113

The new routines are available only to users of COS 1.17.1.

Manual pages for GETNAMEQ, IGETSEC, and SETPLIMQ, also documented in the
System Library Reference Manual. publication SM-Ol14, have been added to the Pro
gramming Aid section of this manual for user convenience. Numerous technical
changes and additions have been made to existing man pages - mainly in the Math,
Linear Algebra, and Search routine sections.

iv D

PREFACE

The Programmer's Library Reference Manual describes Fortran subprograms and functions available to
users of the Cray operating systems cos 1.17.1 and UNICOS 4.0 executing on CRAY Y-MP,
CRAY X-MP EA. CRAY X-MP. and CRAY-I computer systems. It supplements the information con
tained in the other manuals in the COS and UNICOS documentation sets.

The System Library Reference Manual, publication SM-0114, describes internal system subprograms,
Cray Assembly Language (CAL) subprograms, and Cray Pascal subprograms used by the Pascal com
piler. For COS 1.17.1 users, the Cray C Library Reference Manual, publication SR.OI36 5.0, describes
the C libraries available under COS (and UNICOS 5.0) on CRAY Y·MP, CRAY X-MP EA, CRAY X.MP,
and CRAY-l computer systems. For UNICOS 4.0 users, the CRAY Y-MP, CRAY X-MP, and CRAY-l
C Library Reference Manual. publication SR-0136 C, describes the appropriate C library routines.

The following Cray Research, Inc. (CRI) manuals provide additional information about COS, UNICOS,
and related SUbjects. Unless otherwise noted, all publications referenced in this manual are CRI publi
cations.

cos Manuals:

• Fortran (CFf) Reference Manual, publication SR-0009

• COS Reference Manual, publication SR-OOll

• Macros and Opdefs Reference Manual for CRAY Y-MP, CRAY X-MP EA. CRAY X-MP. and
CRAY-l Computer Systems, publication SR-OOI2

• Fortran (CFf) Internal Reference Manual, publication SM-OOI7

• Crn7 Reference Manual, publication SM·OOI8

• APML Assembler Reference Manual, publication SM-0036

• COS Message Manual, publication SR-0039

• Front-end Protocol Internal Reference Manual, publication SM-0042

• cos Operational Procedures Reference Manual, publication SM-0043

• Operational Aids Reference Manual, publication SM-0044

• COS Table Descriptions Internal Reference Manual, publication SM-0045

• lOS Software Internal Reference Manual, publication SM-0046

• I/O Subsystem (lOS) Operator's Guide for COS, publication SG.Q051

• Pascal Reference Manual, publication SR-0060

• Pascal Internal Reference Manual, publication SD-0061

• Segment Loader (SEGLDR) and Id Reference Manual, publication SR-0066

• Cray Simulator (CSIM) Internal Reference Manual, publication SM-oon
• Cray Simulator (CSIM) Internal Reference Manual, publication SM·OO73

• CRAY Y-MP, CRAY X·MP EA. CRAY X-MP, and CRAY-l CAL Assembler Version 2 Ready
Reference, publication SQ·OO83

• Symbolic Machine Instructions Reference Manual, publication SR-0085

• COS Dwnp Analysis Ready Reference, publication SQ-0096

• System Library Reference Manual, publication SM-0114

• Cray C Library Reference Manua), publication SR-0136

SR-Ol13 v D

SR-OlI3

• CAL Assembler Version 2 Reference Manual, publication SR-2003

• Cray C Reference Manual, publication SR-2024

• The Guest Operating System (GaS), publication SMN-7013

• Directory of Supercomputer Applications Software, publication ASD-86P

UNlCOS manuals:

Introductory manuals:

• UNICOS Overview for Users, publication SO-2052

• UNICOS Primer, publication SO-2010

• TCP/IP Network: User Guide, publication 50-Z009

• UNICOS Text Editors Primer, publication SG-2050

• UNICOS Tape Subsystem User's Guide, publication SO-2051

• UNICOS Source Code Control System (SeeS) User's Guide, publication SO-2017

• UNICOS Index for CRAY Y-MP, CRAY X-MP HA, CRAY X-MP, and CRAY-l Computer
Systems, publication SR-2049

UNlCOS rererence manuals:

• UNICOS User Commands Reference Manual. publication SR-2011

• UNICOS User Commands Ready Reference, publication SQ-2056

• UNICOS System Calls Reference Manual, publication SR-2012

• UNICOS File Formats and Special Files Reference Manual, publication SR-2014

• Fortran (CFf) Reference Manual, publication SR-0009

• CF177 Reference Manual, publication SR-001S

• CAL Assembler Version 2 Reference Manual, publication SR-2003

• Cray C Reference Manual, publication SR-Z024

• UNICOS vi Reference Card, publication SQ-2054

• UNICOS ed Reference Card, publication SQ-2055

• Network: Library Reference Manual. publication SR-2057

CONVENTIONS

The following conventions are used throughout UNICOS documentation:

command(l) Refers to an entry in the UNICOS User Commands Reference Manual, publication
SR·20ll.

command(lBSD) Refers 10 an entry in the UNICOS User Commands Reference Manual, publication
SR·2011.

command(lM) Refers to an entry in the UNICOS Administrator Commands Reference Manual, publi
cation SR-20n.

system call(2) Refers to an entry in Volume 4: UNICOS System Calls Reference Manual, publication
SR-2012.

vi D

SR-01l3

routine(3X)

enlry(4X)

entry(info)

Refers to an entry in the appropriate CRI library reference manual. The letter or
letters following the number 3 indicate that the routine is either COS-only or that the
routine belongs to a specific UNICOS library, as follows:

(3M) UNICOS math library

(3SCI)

(3F)

(310)

(3U)

(30B)

UNICOS scientific library

UNICOS Fortran library

UNICOS I/O library

UNICOS utility library

UNICOS debugging library

Refers to an entry in the UNICOS File Fonnats and Special Files Reference Manual,
publication SR-2014. The letter following the number 4 indicates the section refer
ence.

Refers to an entry in the info section, which contains topical information that is not
available in the UNICOS on-line manuals. The info man pages are not published in
hard-copy form.

All sections begin with an entry called intro, and the entries that follow the intro page are alphabet
ized Some entries may describe several routines. In such cases, the entry is usually alphabetized
under its major name.

In this manual, bold indicates all literal strings, including command names, directory names, file names,
path names, library routine names. man page entry names, options, shell or system variable code names,
system call names, C structures. and C reserved words.

Italic indicates variable information usually supplied by you and words or concepts being defined.

All entries are based on the following common fonnat; however, most entries contain only some of
these parts:

NAME shows the name of the entry and briefly slates its function.

SYNOPSIS presents the syntax of the routine. The following conventions are used in this sec
tion:

Brackets [] around an argument indicate that the argument is optional.

DESCRIPTION discusses the entry in detail.

IMPLEMENT A nON provides details for using the command or routine with specific machines
or operating systems; normally this will tell you under which operating system the routine is
implemented

NOTES points out items of particular importance.

CAUTIONS describes actions that can destroy data or produce undesired results.

WARNINGS describes actions that can harm people. damage equipment, or damage system
software.

vii D

SR-0113

EXAMPLES shows examples of usage.

FILES lists files that are either part of dle entry or related to it.

RETURN VALUE describes possible error returns.

MESSAGES describes dle infonnational, diagnostic, and error messages that may appear.

BUGS indicates known bugs and deficiencies.

SEE ALSO lists ennies that contain related information and specifies the manual title for each
entry.

All entries in this manual that are applicable to your Cray computer system are available on-line
through the man(1) command. To retrieve an entry. type the following, substittlting the desired entry
name for entry:

man entry

If there is more than one entry with the same name, all entries with that name will be printed. To
retrieve the entry for a particular section, type the following, substituting the desired section name for
section and the desired entry name for entry:

man section entry

For further infonnation on the man command. see man(l).

viii D

SR-01l3

READER COMMENTS

If you have comments about the technical accuracy, content, or organization of this manual, please tell
us. You can contact us in any of the following ways:

• Call our Technical Publications department at (612) 681-5729.

• Send us electronic mail from a UNICOS or UN1X system, using one of the following UUCP mail
addresses:

uunet! eray ! pubncations

sun! tundra! hall! publications

• Send us electronic mail from a UNICOS or UNIX system, using the following ARPAnet address:

pub lieations@ cray.com

• Send a facsimile of your comments to the attention of "Publications" at fax number (612) 681-5602.

• Use the postage-paid Reader's Comment form at the back of this manual.

• Write to us at the following address:

Cray Research, Inc.
Technical Publications Department
1345 Northland Drive
Mendota Heights. MN 55120

We value your comments and will respond to them promptly.

ix D

CONTENTS

P.REFACE .. , ,., .•..•.........• , .. v

1. INTRODUCTION

IN'fR.O 1·1

2. COMMON MATHEMATICAL SUBPROGRAMS

IN1'RO ... 2·1
ABS, lABS, DABS, CABS Computes absolute value .. 2-7
ACOS, DACOS, acos Computes arccosine .. 2-9
AlMAG .. Computes itnaginary portion of a complex number 2-11
AINT, DINT Computes real and double-precision truncation .. 2-12
ALoo, DLOG, CLOO, log Computes natural logarithm ... 2-13
ALOGI0, DLOGI0, log 10 Computes common logarithm ... 2-15
AND ... Computes logical product .. 2-17
ANINT. DNINT Finds nearest whole nlUBber .. 2-19
ASIN, DASIN, asin Computes arcsine .. 2-20
ATAN. DATAN, atan Computes arctangent for single argument ... 2-22
ATAN2, DATAN2, atan2 Computes arctangent for two argurnents ... 2-24
CHAR .. Converts integer to character and vice versa .. 2-26
CMPLX ... Converts to type cODlplex ... 2-27
COftdPL ... Computes logical complement ... 2-29
CONJG .. Computes conjugate of a complex number ... 2-31
COS. DCOS, CCOS, cos Computes cosine ... 2-32
COSH. neOSH, cosh Computes hyperbolic cosine ... 2-34
COT, neOT Computes cotangent .. 2-36
dbtprec - DASS, DASV, DAVS,

DA VV, DDSS, DOSY,
DDVS, DDVV, DMSS.
DMSV,ONrVS,D~Y.

DSSS, DSSV. DSYS, DSVV Performs double-precision arithmetic .. 2-37
DBLE, DFLOAT Converts to type double precision .. 2-39
DIM, IDIM. DDIM Computes positive difference of two numbers .. 2-41
DPROD .. Computes double-precision product of two real numbers 2-43
EQV ... Computes logical equivalence. 2-44
EXP. DEXP, CEXP. exp Computes exponential function .. 2-46
INDEX ... Detennines index location ... 2-48
INT, IFIX, IDIN'T Converts to type integer .. 2-49
IN1'24. LINT Converts 64-bit integer to 24-bit integer ... 2-50
ldiv - LDSS, LDSV.

LDVS, LDVV Perfonns 64-bit integer divide ... 2-51
LEADZ .. Counts number of leading 0 bits .. 2-52
LEN ... I>etennines length of character string ... 2-53
LGE ... Compares strings lexically ... 2-54
MASK .. Returns a bit mask .. 2-55
MOD, AMOD. DMOD Computes remainder of x1/x2 .. 2-56

SR-01l3 xi D

NEQV, XOR Computes logical difference .. 2-58
NINT, IDNINT Finds nearest integer ... 2-60
OR .. Computes logical sum .. 2-61
roPCNT .. Counts number of bits set to I .. 2-63
roPPAR .. Computes bit population parity ... 2-64
power - CTOC, CTOI, CTOR,

DTOD. DTOI, DTOR,
ITOI, RTOI. RTOR, pow Raises base value to a power ... 2-65

ran - RANF, RANGET. RANSET. Computes pseudo-random numbers ... 2-66
REAL, FI..OAT, SNGL Converts to type real ... 2-68
SHIFf .. Performs a left circular shift .. 2-10
SIIIFfL .. Performs a left shift with zero :fill ... 2-72
SmFI'R. ... Perfonns a right shift with zero fill ... 2-74
SIGN, ISIGN, DSIGN Transfers sign of numbers .. 2-76
SIN, DSIN. CSIN, sin Computes the sine ... 2-17
SINH, DSINH. sinh Computes hyperbolic sine ... 2-79
SNGLR .. Returns closest real approximation to double precision 2-81
SQRT, DSQRT, CSQRT, sqrt Computes square root ... 2-82
TADD. TASS. TDIV, ross,

TIvILT. lMSS, TSUB. TSSS Perfonns triple-precision arithmetic .. 2-84
TAN, DTAN", tan Computes tangent .. 2-85
TANH, DT AND. tanh Computes hyperbolic tangent ... 2-87

3. COS DATASET MANAGEMENT SUBPROGRAMS

IN1'R.O ... 3-1
ADDLFf ... Adds a name to the Logical File Table (LFT) ... 3-4
CALLCSP .. Executes a COS control statement .. 3-5
GETDSP .. Searches for a Dataset Parameter Table (DSP) address 3-6
IFDNT ... Detennines if a dataset has been accessed or created 3-7
SDACCESS Allows a program to access damsets in the System Directory 3-8

4. LINEAR ALGEGRA SUBPROGRAMS

IN1'R.O .. "' , " 1 •• 1 •• 1 " ••••••••••••••••••••••••••••••••••• , •••••••••••••••••••••••••••••••••••• 4-1
CGBMV ... Multiplies a complex vector by a complex general band matrix 4-10
CGEMM .. Multiplies a complex general matrix by a complex general matrix 4-13
CGEMMS .. Multiplies a complex general matrix by a

complex general matrix using Strassen's algorithm 4-15
CGEMV ... Multiplies a complex vector by a complex general matrix 4-18
CGERC .. Perfonns conjugated rank 1 update of a complex general matrix 4-20
CGERU. ... Performs unconjugated rank I update of a complex general matrix 4-22
CHBMV ... Multiplies a complex vector by a complex Hermitian band matrix 4~24
CHEMM .. Multiplies a complex general matrix by a complex Hermitian matrix 4-26
CHEMV ... Multiplies a complex vector by a complex Hennitian matrix 4-29
CHER .. Perfonns Hennitian rank 1 update of a complex Hermitian matrix 4-31
CHER2 .. Perfonns Hennitian rnnk 2 update of a complex Hennitian matrix 4-33
CHER2K .. Perfonns Hermitian rank 2k update of a complex Hermitian matrix 4-35
CHERK .. Performs Hennitian rank k update of a complex Hermitian matrix 4-38
CROT .. Applies the complex plane rotation computed by CROTG 4-40
CROm .. Constructs a Givens plane rotation .. 4-41
CSYMM .. Multiplies a complex general matrix by a complex symmetric matrix 4-42

SR-OI13 xii D

CSYR2K .. Performs symmetric rank 2k update of a complex symmetric matrix 4-45
CSYRK .. Performs symmetric rank k update of a complex symmetric matrix 4-48
CTBMV ... Multiplies a complex vector by a complex triangular band matrix 4-50
CTBSV .. Solves a complex biangular banded system of equations 4-53
CTRMM .. Multiplies a complex general matrix by a complex triangular matrix 4-56
CIRMV ... Multiplies a complex vector by a complex triangular matrix 4-58
ClRSM .. Solves a complex triangular system

of equations with multiple right-hand sides ... 4-60
CTRSV .. Solves a complex triangular system of equations ... 4-62
dot - SOOT, COOTC, CDOTIJ Computes a dot product (inner product)

of two real or complex vectors ... 4-64
EISP ACK. .. Single-precision EISPACK routines .. 4-65
FIL TERG ... Computes a correlation of two vectors ... 4-69
FILTERS ... Computes a correlation of two vectors (symmetric coefficient) 4-70
FOLR, FOLRP Solves first-order linear recurrences .. 4-71
FOLR2, FOLR2P Solves first-order linear recurrences and writes new vector 4-73
FOLRC .. Solves fust-order linear recurrence with constant coefficient 4-75
FOLRN .. Solves for last term of first-order linear recurrence (Homer's method) 4-76
FOLRNP .. Solves for last term of a first-order linear recurrence 4-77
GATlffiR ... Gathers a vector from a source vector .. 4-78
UNPACK .. Single-precision real and complex UNPACK routines 4-79
MINV ... Solves systems of linear equations by inverting a square matrix 4-82
MXM ... Computes matrix-times-matrix product (unit increments) 4-86
MXMA .. Computes matrix times matrix product (arbittary increments) 4-88
MXV .. Computes matrix-times-vector product (unit increments) , 4-92
MXV A ... Computes matrix-times-vector product (arbitrary increments) 4-94
OPF'll... T .. Solves Weiner-Levinson linear equations ... 4-98
RECPP ... Solves a partial products problem .. 4-99
RECPS ... Solves a partial summation problem .. 4-100
SASUM. SCASUM Sums the absolute value of elements in a vector .. 4-101
SAXPY. CAXPY Adds a scalar multiple of

a real or complex vector to another vector. ... 4-102
seal ~ SSCAL, CSSCAL. CSeAL .. Scales a real or complex vector ... 4-103
SCA TI"ER Scatters a vector into another vector ... 4-104
SCOPY, CCOpy Copies a real or complex vector into another vector 4-105
SGBMV ... Multiplies a real vector by a real general band matrix 4-106
SGEMM ... Multiplies a real general matrix by a real general matrix 4-108
SGEMMS .. Multiplies a real general matrix by a

real general matrix using Strassen' s algorithm 4-110
SGEMV ... Multiplies a real vector by a real general matrix ... 4-113
SGER ... Perfonns rank 1 update of a real general matrix .. 4-114
SMXPY ... Multiplies a column vector by a matrix

and adds the result to another column vector .. 4-115
SNRM2. SCNRM2 Computes the Euclidean norm of a vector .. 4-116
SOLR, SOLRN. SOLR3 Solves second-order linear recurrences ... 4-117
SPDOT, SPAXPY Performs sparse vector operations ... 4-120
SROT ... Applies an orthogonal plane rotation .. 4-121
SROTG .. Constructs a Givens plane rotation .. 4-122
SR01M ... Applies a modified Givens plane rotation ... 4-124
SROlMG ... Constructs a modified Givens plane rotation .. 4-126
SSBMV .. Multiplies a real vector by a real symmetric band matrix 4-131
SSUM. CSUM Sums the elements of a real or complex vector ... 4-133
SSW AP, CSW AP Swaps two real or complex arrays .. 4-134
SSYMM ... Multiplies a real general matrix by a real symmetric matrix 4-135

SR-0l13 xiii D

SSYMV ... Multiplies a real vector by a real symmetric matrix 4-138
SSYR ... Performs symmetric rank I update of a real symmetric matrix 4-139
SSYR2 ... Performs symmetric rank 2 update of a real symmetric matrix 4-140
SSYR2K .. Performs symmetric rank 2k update of a real symmetric matrix 4-141
SSYRK .. Performs symmetric rank k update of a real symmetric matrix 4-144
STBMV ... Multiplies a real vector by a real triangular band matrix 4-146
STBSV ... Solves a real triangular banded system of linear equations 4-148
SlRMM ... Multiplies a real general matrix by a real triangular matrix 4-150
STRMV ... Multiplies a real vector by a real triangular matrix 4·152
SlRSM .. Solves a real triangular system of equations

with multiple right-hand sides .. 4-153
SlRSV ... Solves a real triangular system of linear equations 4-155
SXMPY ... Multiplies a matrix by a row vector

and adds the result to another row vector .. 4-156

5. FAST FOURIER TRANSFORM ROUTINES

IN'fR.O 5-1
CFFf2 .. Applies a complex Fast Fourier Transfonn (FFT) .. 5-3
CFFfMLT Applies complex-to-complex Fast Fourier

Transforms (FFf) on multiple input vectors ... 5-4
CRfFI'2 ... Applies a complex-to-real Fast Fourier Transform (FFT) 5-6
RCFFT2 ... Applies a real-to-complex Fast Fowier Transform (FFI) 5-7
RFFTMLT Applies complex-to-real and real-to-complex

Fast Fourier Transfonns on multiple input vectors 5-8

6. SEARCH ROUTINES

IN1"RO ... 6-1
CLUSEQ, CLUSNE Finds index of clusters within a vector ... 6-5
CLUSFLT, CLUSFLE,

CLUSFGT, CLUSFGE Finds real clusters in a vector. ... 6-6
CLUSIL T. CLUSILE,

a...USIGT, c.LUSIGE Finds integer clusters in a vector ... 6-7
IIIZ, ILLZ, ILSUM Returns number of occurrences of object in a vector 6-8
INFLMAX, INFLMIN Searches for the maximum or minimum value in a table 6-9
INTMAX. INTMIN Searches for the maximum or minimum value in an integer vector 6-10
ISAMAX. ICAMAX Finds first index of largest absolute value in vectors 6-11
ISMAX, ISMIN, ISAMIN Finds maximum, minimum, or minimwn absolute value 6-12
ISRCHEQ, ISRCHNE Finds array element equal or not equal to larget.. .. 6-13
ISRCHFLT,ISRCHFLE,

ISRCHFGT, ISRCHFGE Finds first real array element in relation to a real target 6-14
ISRCHIL T, ISRCHILE,

ISRCIllGT, ISRCHIGE Finds first integer array element in relation to an integer larget.. 6-15
ISRCHMEQ, ISRCHMNE Finds index of 1st occurrence equal or not equal to scalar in vector field. 6-16
ISRCHMLT, ISRCHMLE,

ISRCHMGT, ISRCHMGE Searches vector for logical match ... 6-17
MAXO, AMAXl, DMAX1,

AMAXO, MAXI Returns the largest of all arguments .. 6-18
MINO, AMINI, DMINl,

AMINO, MIN"1 Returns the smallest of all arguments ... 6-19

SR-0113 xiv D

OSRcm, OSRCHF Searches an ordered array and returns index
of the firstlocalion that contains the target .. 6-20

OSRCHM .. Searches an ordered integer array and returns index of
the first location that is equal to the integer target.. 6-21

WHENEQ. WHENNE Finds all array elements equal to or not equal to the target 6-22
WHENFL T, WHENFLE,

WHENFGT. WHENFGE. Finds all real array elements in relation to the real target 6-23
WRENn.. T. WHENILE,

WHENIGT. WHENIGE Finds all integer array elements in relation to the integer target.. 6-24
WHENMEQ, WHENMNE Finds the index of occurrences equal or not equal

to a scalar within a field in a vector .. 6-25
WHENMLT, WHENMLE.

WHENMGT, WHENMGE Finds the index of occurrences in relation to a scalar in a vector field 6-26

7. SORTING ROUTINES

IN"l'R.O ...•..... ~ "" , ... , .•..••••.•• I ••• II ~ 7-1
ORDERS ... Sorts using internal, fixed-length record sort .. 7-2

8. CONVERSION SUBPROGRAMS

INmO ... ~ II.III1 II ... 8-1
B20CT ... Places an octal ASCII representation .. 8-5
BlCONV, BICONZ Converts a specified integer to a decimal ... 8-6
CHCONV .. Converts decimal ASCII numerals .. 8-10
DSASC. ASCDC Converts COC display code ... 8-11
FP6064. FP646O Converts COC 6O-bit single-precision numbers .. 8-12
INT6064 .. Converts CDC 6O-bit integers to Cray 64-bit integers 8-13
INT6460 .. Converts Cray 64-bit integers to CDC 6O-bit integers 8-14
RBN. RNB Converts trailing blanks to nulls and vice versa ... 8-15
TR. .. Translates a string from one code to another ... 8-16
TRRl .. Translates characters stored one character per word 8-17
USCCTC, USCCTI Converts IBM EBCDIC data to ASCI!. .. 8-18
USDCTC ... Converts IBM 64-bit floating-point numbers .. 8-19
USDCTI ... Converts Cray 64-bit single-precision, floating-point numbers 8-20
USICTC, USICfI.. Converts mM INTEGER*2 and INTEGER*4 numbers 8-21
USICTP ... Converts a Cray 64-bit integer to IBM paCked-decimal field 8-22
USLCTC. USLCll Converts IBM LOGICAL"'} and LOGICAL*4 values 8-23
USPCTC .. Converts a specified number of bytes of an IBM

packed-decimal field to a 64-bit integer field ... 8-24
USSCTC .. Converts IBM 32-bit floating-point numbers .. 8-25
USSCTI ... Converts Cray 64-bil single-precision, floating-point nwnbers 8-26
VXOCTC ... Converts V AX. 64·bit D format numbers .. 8-27
VXOCTI .. Converts eray 64-bit single-precision, floating~point numbers 8-28
VXGCTC ... Converts V AX 64-bil G format numbers .. 8-29
VXGCTI .. Converts Cmy 64-bit single-precision, floating-point numbers 8-30
VXICTC .. Converts V AX. INTEGER.·2 or 1N'lEGER·4 ... 8-31
VXICTI .. Converts Cray 64-bit integers .. 8-32
VXLcrC ... Converts V AX. logical values to Cray 64-bil logical values 8-33
VXSCTC ... Converts V AX. 32-bit floating-point numbers ... 8-34
VXSCTI.. ... Converts Cray 64-bit single-precision, floating-point 8-35
VXZCTC ... Converts VAX 64-bit complex numbers to Cray complex nwnbers 8-36

SR-OU3 xv D

VXZCTI .. Converts Cray complex numbers to VAX. complex numbers 8-37

9. PACKING ROUTINES

IN1RO ... 9-1
PACK ... Compresses stored data .. 9-2
P32. U32 .. Packs/unpacks 32-bit words into or from Cray 64-bil words 9-3
P6460. U6064 Packs/unpacks 6O-bit words into or from Cray 64-bil words 9-4
UNPACK ... Expands srored data .. 9-5

10. BYTE AND BIT MANIPULATION ROUTINES

IN1RO ... 10-1
PUTBYT, IGTBYT Replaces a byte in a variable or an array ... 10-2
FINOCH .. Searches a variable or an array for an occurrence of a character string 10-3
KOMSTR ... Compares specified bytes between variables or arrays 10-4
STRMOV, MOVBIT Moves bytes or bits from one variable or array to another 10-5
MVC .. Moves characters from one memory area to another 10-6
TRIMLEN Returns the number of characters in a string .. 10-7

11. HEAP MANAGEMENT AND TABLE MANAGEMENT

IN1'R.O ... 11-1
lIP ALLOC Allocates a block: of memory froIn the neap .. 11-4
IIPC:IlECK Checks the integrity of the heap .. 11-5
HPCLMOVE Extends a block or copies block contents into a larger block 11-6
HPDEALLC Returns a block of memory to the list of available space 11-7
lIPD~ ... Dumps the address and size of each heap block .. 1 1-8
lIPNEWLEN Changes the size of an allocated heap block.. .. 11-9
HPSHRINK Returns an unused portion of heap to the operating system 11-10
IHPLEN ... Returns the length of a heap block ... II-II
IHPSTAT ... Returns statistics about the heap ... 11-12
TMADW .. Adds a word to a table ... 11-13
TMAMU .. Reports table management operation statistics ... 11-14
TMA1'S .. Allocates table space .. 11-15
TMMEM. ... Requests additional memory .. 11-16
TMMSC ... Searches the table with a mask to locate a specific field Il-17
Tm1VE .. Moves memory (words) ... 11-18
TMP'fS .. Presets table space .. 11-19
TMSRC .. Searches the table wilh an optional mask to locate a specific field 11-20
TMVSC ... Searches a vector table for the search argument .. 11-21

12. VO ROUTINES

IN1RO ... 12-1
ACPTBAD Makes bad data available... 12·9
AQCLOSE Closes an asynchronous queued I/O dataset or file 12-11
AQOPEN ... Opens a dataset or file for asynchronous queued I/O 12-12
AQOPENDV Opens a dataset or file for asynchronous queued I/O (size. location) 12-13

SR-01l3 xvi D

AQREAD, AQREADC,
AQREADI, AQREADCI Queues a simple or compound asynchronous I/O read request.. 12-15

AQRECALL, AQRIR Delays program execution during a queued I/O sequence 12-17
AQSTAT ... Checks the status of asynchronous queued I/O requests 12-19
AQSTOP .. Stops the processing of asynchronous queued I/O requests 12-20
AQW AlT ... Waits on a completion of asynchronous queued I/O requests 12-21
AQWRITE, AQWRITEC,

AQWRI1EI, AQWRTECI.. Queues a simple or compound asynchronous I/O write request.. 12-22
ASYNCMS, ASYNCDR. Sets I/O mode for random access routines to asynchronous 12-24
CHECKMS, CHECKDR Checks status of asynchronous random access I/O operation 12-25
CfIECKTP Checks tape I/O status .. 12-26
CLOSEV .. Begins user EOV and BOV processing ... 12-27
CLOSMS, CLOSDR Writes master index and closes random access dataset.. 12-28
CON1'PIO .. Continues normal I/O operations ... 12-30
ENDSP ... Requests notification at the end of a tape volume .. 12-31
FINDMS .. Reads record into data buffers ... 12-32
FSUP, ISUP, FSUPC, ISUPC Output a value in an argument as blank or return to ordinary I/O 12-33
GETPOS. SETPOS Returns the current position of interchange tape .. 12-34
GETIP ... Receives position information about an opened tape dataset or file 12-36
GETW A, SEEK Synchronously and asynchronously reads data ... 12-38
GETW AU .. Asynchronously reads a number of words from the disk, directly to user .. 1240
OPENMS, OPENDR Opens a local dataset as a random access dataset .. 12-42
PROCBOV Allows special processing at beginning-of-volume (obsolete) 12-44
PROCEOV Begins special processing at end-of-volume (EOV) (obsolete) 12-45
PUTW A, APUTW A Writes to a word-addressable. random-access dataset.. 1246
PUTW AU .. Writes to a word-addressable. random-access dataset. unbuffered 1247
READ. READP Reads words, full or partial record modes .. 1249
READC. REAOCP Reads characters, full or partial record mode ... 12-50
READIBM Reads two IBM 32-bit floating-point words ... 12-51
READMS, READDR Reads a record from a random-access dataset .. 12-52
RNLFLAG, RNLDELM, RNLSEP,

RNLREP. RNLCOMM Adds or deletes characters recognized by NAMELIST 12-54
RNLECHO Specifies output unit for NAMELIST error messages 12·55
RNLSKlP ... Takes appropriate action with an undesired NAMELIST group 12-56
RNLTYPE Determines action if a type mismatch occurs on an input record 12·57
SETSP .. Requests notification at the end of a tape volume .. 12·58
SETTP ... Positions a tape dataset or file ... 12-59
SKIPBAD .. Skips bad data ... 12-61
ST ARTSP .. Begins user EOV and BOV processing ... 12·62
STlNDX, STINDR. Allows an index to be used as the current index ... 12-63
SVOLPRC Initializes/tenninates special BOV/EOV processing (obSOlete) 12-65
SWITCHV Switches tape volume ... 12-66
SYNCH .. Synchronizes the program and an opened tape datasel 12-67
SYNCMS. SYNCDR Sets I/O mode for random access routines to synchronous 12-68
WAITMS, WAlTDR Waits for completion of an asynchronous I/O operation 12-69
WCHECK .. Checks word-addressable tHe status .. 12-70
WCLOSE ... Closes a word-addressable, random-access dataset 12-71
WCLOSEU Closes a word-addressable, unbuffered random-access dataset.. 12-72
WNLFLAG, WNLDELM,

WNLSEP, WNLREP Provides user control of output. ... 12-73
WNLLINE Allows each NAMELIST variable to begin on a new line 12-74
WNLLONG Indicates output line length .. 12-75
WOPEN ... Opens a word·addressable, random-access dataset 12-76
WOPENU .. Opens a word-addressable, random-access dataset, unbuffered 12-78

SR-01l3 xvii D

WRITE. WRIlEP Writes words. full or partial record mode ... 12-80
WRITEC. WRITECP Writes characters. full or partial record mode .. 12-81
WRITIBM Writes two IBM 32-bit floating-point words .. 12-82
WRITMS. WRITDR Writes to a random-access dataset on disk ... 12-83

13. DATASET UTILITY ROUTINES

INTRO ... 13-1
BACKFII...E Positions a dataset after the previous EOF ... 13-3
COPYR. COPYF. COPYD Copies records. files. or a dataset. ... 13-4
COPYU .. Copies either specified sectors or all data to EOD 13-5
EODW ... Terminates a dataset by writing EOD, EOF, and EORL 13-6
EOF. IEOF Returns real or integer value EOF status .. 13-7
IOSTAT ... Returns EOF and EOD status .. 13-8
NUMBLKS Returns the current size of a dataset in 512-word blocks 13-9
SKIPD .. Positions a blocked dataset at EOD .. 13-10
SKIPR, SKIPF Skip records or files ... 13-11
SKIPU .. Skips a specified number of sectors in a dataseL .. 13-13

14. MULTITASKING ROUTINES

IN1RO ... 14-1
BARASGN Identifies an integer variable to use as a barrier ... 14-5
BARREL ... Releases the identifier assigned to a barrier .. 14-6
BARSYNC Registers the arrival of a task at a barrier ... 14-7
BUFDUMP Unformatted dump of multitasking history trace buffer 14-8
BUFPRINT Formatted dump of multitasking history trace buffer 14-9
BUFIUNE Tune parameters controlling multitasking history trace buffer 14-10
BUFUSER Adds entries to the multitasking history trace buffer 14-13
EVASGN ... Identifies an integer variable to be used as an event 14-14
EVa.EAR Clears an event and returns control to the calling task 14-15
EVPOST .. Posts an event and returns control to the calling task 14-16
EVREL .. Releases the identifier assigned to the task ... 14-17
EVTEST .. Tests an event to determine its posted state ... 14-18
EVWAIT ... Delays the calling task until the specified event is posted 14-19
JCCYCL .. Returns machine cycle time ... 14-20
LOCKASGN Identifies an integer variable intended for use as a lock 14-21
LOCKOFF Clears a lock and returns control to the Calling task 14-22
LOCKON ... Sets a lock and returns control to the calling task 14-23
LOCKREL Releases the identifier assigned to a lock ... 14-24
LOCKTEST Tests a lock to detennine its state (locked or unlocked) 14-25
MAXLCPUS Returns the maximum number of logical CPUs ... 14-26
TSECND .. Returns elapsed CPU time for a calling task .. 14-27
TSKST ART Initiates a task ... 14-28
TSKlEST .. Returns a value indicating whether the indicated task exists 14-29
TSKWNE Modifies tuning parameters within the library scheduler 14-30
TSKVALUE Retrieves user identifier specified in task control array 14-31
TSKW AIT Waits for the indicated task to complete execution 14-32

SR·OI13 xviii D

15. TIMING ROUTINES

INTRO ... 15-1
CLOCK .. Returns the current system-clock tinte .. 15-3
DATE, JDAlE Returns the current date and the current Julian date 15-4
DTIS ... Converts ASCII date and time to time-stamp ... 15-5
RTC, IRTC Returns real-time clock values ... 15-6
SECOND ... Returns elapsed CPU time .. 15-7
TlMEF ... Returns elapsed wall-clock time since the call to TIMEF 15-8
"JREMAIN Returns the CPU time (in floating-point seconds) 15-9
TSDT ... Converts time-stamps to ASCII date and time strings 15-10
TSMf, MITS Converts time-stamp to a corresponding real-time value, and vice versa ... 15-11
UNITTS ... Returns time-stamp units in specified standard time units 15-12

16. PROGRAMMING AID ROUTINES

INl'R.O ... 16·1
CRA yDUMP Prints a memory dump to a specified dataset ... 16-3
DUt.1P, PD~ Dumps memory to $OUT .. 16-4
DUMPJOB Creates an unblocked dataset containing the user job area image 16-5
FXP .. Fonnats and writes the contents of the Exchange Package 16·6
GETN"AMEQ Returns name of the caller ... 16-7
IGETSEC ... Returns the cycles charged to a job .. 16-8
PERF .. Provides an interface to che hardware perfonnance monitor 16-9
SETPLIMQ Initiates detailed tracing of every call and return ... 16-12
SNAP ... Copies current register contents to $Om ... 16-13
Sy?vlDEBUG Produces a symbolic dump ... 16-14
SY1vIDUMP Produces a snapshot dump of a running program 16-16
TRBK ... Lists all subroutines active in the current calling sequence 16-20
lRBKL VL Returns information on current level of calling sequence 16-21
XPFMT .. Produces a printable image of an Exchange Package 16-22

17. SYSTEM INTERFACE ROUTINES

IN1RO ... 17-1
ABORT .. Requests abort with traceback ... 17-5
ACTIABLE Returns the Job Accounting Table (JAT) .. 17-6
CCS .. Cracks a control statement. .. 17·7
CEXPR .. Cracks an expression .. 17-8
CLEARBT, SETBT Temporarily disables/enables bidirectional memory transfers 17-9
CLEARBTS, SETBTS Permanently disables/enables bidirectional memory transfers 17-10
CLEARFI, SEm Temporarily prohibits!permits floating-point interrupts 17-11
CLEARFIS, SE1FIS Temporarily prohibits!pennits floating-point interrupts 17-12
CRACK ... Cracks a directive ... 17-13
DELAy .. Do nothing for a fixed period of time ... 17-14
DRIVER .. Programs a Cray channel on an I/O Subsystem (lOS) 17-15
ECHO .. Turns on and off the classes of messages to the user logfile 17-16
END, ENDRPV TeIDlinates a job step ... 17·17
ERECALL Allows a job to suspend itself until selected events occur 17-18
ERREXIT .. Requests aOO11. .. 17-20
EXIT .. Exits from a Fortran program .. 17-21
GETARG ... Returns Fortran command-line argument .. 17-22

SR-0113 xix D

GE1LPP .. Returns lines per page .. 17-23
GETPARAM Gets parameters .. 17-24
IAR.GC ... Returns number of command line arguments .. 17-26
ICEIL ... Returns integer ceiling of a rational number ... 17-27
DCOM ... Allows a job to communicate with another job .. 17-28
ISIIELL ... Executes a lJNICOS shell command ... 17-30
JN~ .. Returns the job name .. 17-31
JSYMSET, JSYMGET Ch3l)ges a value for a JCL symbol .. 17-32
LGO ... Loads an absolute program from a dataset .. 17-33
LOC ... Returns memory address of variable or array ... 17-34
JI..1EMORY Manipulates a job's memory allocation ... 17-35
NACSED ... Returns the edition of a previously-accessed pennanent dataset.. 17-37
OVERLAy Loads an overlay ... 17-38
PPL .. Processes keywords of a directive ... 17-39
REMARK2, REMARK Enters a message in the user and system Jog files 1740
REMARKF Enters a formatted message in the user and system logfiles 17-41
RERUN, NORERUN Declares a job rerunnable/not rerunnable .. 17-42
SENSEBT .. Detennines whether bidirectional memory transfer is enabled 1743
SENSEFI .. Detennines if floating-point interrupts are permitted 1744
SETRPV .. Conditionally transfers conuol to a specified routine 1745
SMACH, CMACH Returns machine epsilon, smalJJlarge normalized numbers 1746
SSWITCH .. Tests the sense switch.... 17-47
SYSTEM ... Makes reqne.'lL'! of the opernting system... 17-48

18. INTERFACE TO C LIBRARY ROUTINES

IN1RO ... 18-1
getenv ... Returns value for environment name .. 18-4
GETOPT .. Gets an option letter from an argument vector ... 18-5
unarne .. Gets name of current operating system.... 18-8

19. MISCELLANEOUS UNICOS ROUTINES

OORO .. 19-1
curses ... Updates CRT screens ... 19-2
xio .. Text interface to the X Window System ... 19-8
Xlib .. C Language X Window System Interface Library 19-10

SR-0113 xx D

INTRO(3X) INTRO(3X)

1. INTRODUCTION

SR-0113

This manual describes Fortran programming subprograms provided in the standard COS libraries
$ARLIB. SFfLIB, SIOLIB. $SCILIB. $SYSLIB, and $UfLIB, and those subprograms supported by UNICOS
on the CRAY Y.MP, CRAY X-MP. and CRAY-l computer systems. The Cray Assembly Language (CAL)
subprograms and subprograms called by code generated by the Cray Fortran compiler or the Cray Pas
cal compiler are described in Volume 6: UNICOS Internal Library Reference Manual, publication
SM-2083. Routines generated in the form of in-line code are generally not included in this manual, but
they are described in the Fortran (CFT) Reference Manual, publication SR-0009, and the CFf77 Refer
ence Manual, publication SR-0018.

The routines are divided into functional sections. A brief description of each section follows:

Section

1

2

3

4

5

Description

Introduction

Common Mathematical Subprograms - General arithmetic, exponentiation, loga
rithmic, trigonometric, character, type conversion, and Boolean functions

COS Dataset Management Subprograms - cos Job Control Language (JeL) routines

Linear Algebra Subprograms - Basic linear algebra, linear recurrence, matrix inverse
and multiplication, filter, gather/scatter, and UNPACK/EISPACK routines

Fast Fourier Transform Routines - Computing Fourier analysis and Fourier synthesis
routines

6 Search Routines - Maximum and minimum search and vector search routines

7 Sorting Routines - ORDERS optimized sort routine

8 Conversion Subprograms - Foreign dataset conversion (IBM, CDC, and V AX),
numeric conversion. and miscellaneous conversion routines

9 Packing Routines - Packing and unpacking data routines

IO Byte and Bit Manipulation Routines - Routines for comparing, moving. and search
ing at the element level

II Heap Management and Table Management Routines - Routines for manipulating and
managing memory within heaps and tables

12 I/O Routines - Dataset positioning. auxiliary NAMELIST, logical record. random
access dataset, and output suppression routines

13 Dataset Utility Routines - Routines for positioning. copying. and skipping datasets

14 Multitasking Routines - Task, lock, event, and history trace buffer routines

15 Timing routines - Time-stamp and time/date routines

16 Programming Aids Routines - Flowtrace. traceback. dump, Exchange Package pro
cessing, and hardware perfonnance routines

17 System Interface Routines - JCL symbol, control statement processing. job control,
floating-point interrupt. bidirectional memory transfer, and special purpose interface
routines

1-1 D

INfRO(3X) INTRO(3X)

Section

18

19

Description

Interfaces to C Library Routines - C library interface routines available under
UNICOS and documented in the CRAY Y-MP. CRAY X-MP. and CRAY-l C Library
Reference Manual, publication SR-0136 C, and the UNICOS System Calls Reference
Manual, publication SR-2012.

Miscellaneous UNICOS Routines - X Window System routines and libraries.

SUBPROGRAM CLASSIFICATION

Unless otherwise noted. all routines in this manual are described as Fortran subroutines or functions. In
some cases (e.g., SECOND), the routine may be called as either a subroutine or a function. The Fortran
compilers will, however, enforce consistency in anyone compilation unit.

Programs written in C can call library functions intended for use by Fortran programs. The C program
mer is responsible for passing argwnents by address and not by value, as is the normal case in C.

C programs can also be written to accommodate Fortran users. Such programs must be written to
accept arguments passed by address rather than passed by value, as in the normal case in C.

Pascal programs can call library functions intended for use by Fortran programs. Similarly, Fortran
codes can invoke subroutines and functions written in Pascal. Unlike C, the Pascal compiler passes all
arguments by address, and supports several predefined conversion functions to facilitate communication
with Fortran routines. See the Pascal Reference Manual. publication SR-0060. for information regarding
parameter passing. data formats, and restrictions.

LINKAGE METHODS

SR-01l3

The externally-callable library routines are accessed by one of two methods: call-by-address or call-by
value. Subroutines are always called by address. Fortran accesses intrinsic library functions or user
functions named in a VFUNCTION directive in either call-by-address or call-by-value mode, depending
on context

In call-by-address mode, addresses of arguments are stored sequentially in memory. Functions return
their results in registers. Subroutines return results through their argument lists (for infonnation on the
calling sequence, see the Macros and Opdefs Reference Manual for CRAY Y-MP. CRAY X-MP EA,
CRAY X-MP, and CRAY-l Computer Systems. CRI publication SR-0012).

In call-by-value mode, arguments are loaded into either scalar (S) or vector (V) registers, and the func
tion returns its result in SI or VI. S2 or V2 is used for complex or double-precision functions. Vector
functions must also have the vector length present in the vector length (VL) register.

Linkage macros generate code to handle subprogram linkage between compiled routines and CAL
assembled routines. These linkage macros and their uses follow.

Macro

CALL
CALL V
ENTER

EXIT

Description

Provides linkage to call-by-address routines

Provides linkage to call-by-value routines

Reserves space for parameter addresses, saves
Band T registers, and sets up traceback linkage

Initiates a return from a routine to its caller and
restores any B or T registers not considered scratch

1-2 D

INTRO(3X) INTRO(3X)

SR-0113

Linkage macros should be used whenever possible to maintain compatibility with future CRI software.
See the Macros and Opdefs Reference Manual for CRAY Y.MP, CRAY X-MP EA. CRAY X-MP. and
CRAY-l Computer Systems, CRI publication SR-0012). for detailed descriptions of linkage macros and
linkage conventions.

All Cray library subroutines can use any of the A, S, V. VL, VM, B70 through B77, and 170 through
T77 registers as scratch registers; therefore. the calling routine should not depend on any of these regis
ters being preserved. These routines, however, preserve the contents of registers BOI through B65 and
TOO through T67 (all registers are numbered in octal).

NOTE

CRI reserves the right to make future use of any of the
A, S, V. VL. VM, B66-B77. and T7O-TI7 registers in any
library subroutine. You cannot depend on the contents
of these registers being preserved in any library
routine.

CRI also reserves subroutine names beginning with the characters
100 for internal use only.

1-3 D

INTRO(3X) INTRO(3X)

2. COMMON MATHEMATICAL SUBPROGRAMS

SR-0113

The math library contains routines that are accessible to Cray Fortran (CFT and CFT77), Cray C, and
Cray Assembly Language (CAL),

This introductory section is divided into the following categories of mathematical routines:

• General arithmetic functions

• Exponential and logarithmic functions

• Trigonometric functions

• Character functions

• Type conversion functions

• Boolean functions

In this section, each category of routines is given a general introduction. The routines are then listed in
tabular fonn, displaying purpose, name, and manual entry (the name of the manual page containing
documentation for the routine).

Following this introductory section, the manual pages for the routines appear in alphabetical order, usu
ally by generic function name.

Generic function names are function calls that cause the Fortran compiler to automatically compile the
appropriate data type version of a routine, based on the type of the input data. For example, a call to
the generic function LOG with type complex input data will compile as CLOG.

In general. real functions have no prefix, integer functions are prefixed with I, double-precision func
tions are prefixed with D, and complex functions are prefixed with C (for example ABS, lABS, DABS,
and CABS). Arguments are given in their type: real, integer, complex, logical, Boolean, and double
(double precision): results are given as r, i. z, I, b, and d for real, integer, complex, logical. Boolean,
and double precision, respectively. Functions with a type different from their arguments are noted.
Real functions are usually the same as the generic function name.

The math routines available through the nonnal C calling sequence, identified by lowercase names,
have the appropriate declarations listed in the Synopsis section of their manual pages. To assure a clear
distinction between Fortran and C information, headings of "Fortran:" and "C:" are used in the Synopsis
and Notes sections of relevant manual pages - even when only one language is mentioned on a page.

The documentation for some of the most often used math Jibrary routines also contains information on
Cray Assembly Language (CAL) register usage.

For more information on calling library routines from various programming languages, see the Notes on
Calling Functions from Fortran, C, or Cray Assembly Language (CAL), in the Preface of this manual.

2-1 D

INTRO{3X) lNTRO(3X)

SR-01l3

General Arithmetic Functions

The general arithmetic functions are b~ed upon ANSI standards for Fortran and C, with the exception
of the pseudo-random number routines (RANF, RANGET, and RANSET), which are CRI extensions.

In the routine descriptions, complex arguments are represented such that

X=Xr+i*Xi

where x r is the real portion and i * x i is the imaginary portion of the complex number. Arguments
and results are of the same type unless otherwise indicated.

Base values raised to a power and 64-bit integer division are implicitly called from Fortran.

The following table contains the purpose, name, and manual entry of each general arithmetic function.

The "manual entry" is the name of the manual page containing documentation for the routine(s) listed.

General Arithmetic Functions
Purpose Name Manual Entrv

Compute absolute value for real. ABS ADS
integer. double-precision, and lABS
complex numbers DABS

CABS

Compute the imaginary portion of a AIMAG AIMAG
complex number

Compute real and double-precision AINT AINT
truncation - DINT

Compute the conjugate of a complex CONJG CONJG
number

Find the positive difference of DIM DIM
real, integer, or double-precision IDIM
numbers DDIM

Compute the double-precision product DPROD DPROD
of two real numbers

Remainder of Xl/x2 MOD MOO
for integer, real, and double- AMOD
precision numbers DMOD

Find the nearest whole number for ANINT ANINT
real and double-precision numbers DNINT
Find the nearest integer for real NINT NINT
and double-precision numbers IDNINT
Obtain and establish a pseudo- RANGET
random number seed RANSET

RAN
Obtain the first or next number in RANF
a series of pseudo-random numbers

Transfer the sign of a real. integer. SIGN SIGN
or double-precision number ISIGN

DSIGN

2-2 D

INTRO(3X) INTRO(3X)

SR-0113

Exponential and Logarithmic Functions

The CRI exponential and logarithmic functions are similar to the ANSI standard functions. Each func
tion has variations for real, double-precision, and complex values except the common logarithm func
tion, which only addresses real and double-precision values. Complex arguments are represented such
that

where xr is the real portion and i • Xi is the imaginary portion of the complex number.

The following table contains the purpose, name, and manual entry of each exponential and logarithmic
function.

The "manual entry" is the name of the manual page containing documentation for the routine(s) listed.

Exponential and Logarithmic Functions
Purpose Name Manual Entry

Compute the natural logarithm for ALOG LOG
real, double-precision. and DLOG
complex numbers CLOG
Compute the common logarithm for real ALOGIO LOGIO
and double-precision numbers DLOGIO
Compute exponents for real, double- EXP EXP
precision, and complex numbers DEXP

CEXP

Compute the square root for real, SQRT SQRT
double-precision, and complex numbers DSQRT

CSQRT

2-3 D

INTRO(3X) INTRO(3X)

SR-0113

Trigonometric Functions

The trigonometric functions are based on the ANSI standard for Fortran and C. except for the cotangent
function, which is a CRI extension.

The following table contains the purpose. name, and manual entry of each trigonometric function.

The "manual entry" is the name of the manual page containing documentation for the routine(s) listed.

Trigonomettic Functions
Purpose Name Manual Entrv

Compute the arcsine for real and ASIN ASIN
double-precision numbers DASIN
Compute the arccosine for real and ACOS ACOS
double-precision numbers DACOS
Compute the arctangent with one ATAN ATAN
real or double-precision argument DATAN
Compute the arctangent with two ATAN2 ATAN2
real or double-precision arguments DATAN2
Compute the cosine for real, double- COS COS
precision, and complex numbers DCOS

CCOS
Compute the hyperbolic cosine for real COSH COSH
and double-precision numbers DCOSH
Compute the sine for real. double- SIN SIN
precision. and complex numbers DSIN

CSIN
Compute the hyperbolic sine for real SINH SINH
and double-precision numbers DSINH
CompUIe the tangent for real and TAN TAN
double-precision numbers DTAN
Compute the cotangent for real and COT COT
double-precision numbers DCOT
Compute the hyperbolic tangent for real TANH TANH
and double-precision numbers DTANH

2-4 D

INTRO(3X) INTRO(3X)

SR-Ol13

Character Functions

Character functions compare strings. detennine the lengths of strings. and return the index of a sub
string within a string. The character functions are ANSI standard functions.

The comparison functions return a logical value of true or false when two character arguments are com
pared according to the ANSI colJating sequence. These four functions are found under the entry
LGE(3F).

The routines for detennining the length of a string and the index of a substring are found under the
entries LEN(3F) and INDEX(3F), respectively.

Type Conversion Functions

Type conversion functions change the type of an argument. The following table contains the purpose,
name, and manual entry of each type conversion routine.

The "manual entry" is the name of the manual page containing documentation for the rouline(s) listed.

In the routine description. complex arguments are represented such that x = xr + i • Xi. Arguments
and results are of the same type, unless indicated otherwise.

Type Conversion Routines
Purpose Name Manual Entry

Convert type character to integer ICHAR
CHAR

Convert type integer to character CHAR
Convert to type complex CMPLX CMPLX
Convert to type double precision DDLE

DBLE
Convert integer to double precision DFLOAT
Convert to type integer INT INT

JFIX
JOINT

Convert a 64-bil integer to a INT24
24-bit integer

INT24
Convert a 24-bit integer to a LINT
64-bit integer
Convert to type real REAL REAL

FLOAT
SNGL

2-5 D

INTRO(3X) INTRO(3X)

Boolean Functions

The Boolean functions perform logical operations and bit manipulations.

The scalar subprograms in the following table are external versions of Fortran in-line functions. These
functions can be passed as arguments to user-defined functions. They are all called by address; results
are returned in register S 1. All Boolean functions are CRI extensions.

The "manual entry" is the name of the manual page containing documentation for the routine(s) listed.

Boolean Arithmetic Routines
Purpose Name Manual Entry

Compute the logical product AND AND
Compute the logical complement COMPL COMPL

Compute the logical equivalence EQV EQV
Count the nwnber of leading 0 bits LEADZ LEADZ
Return a bit mask MASK MASK
Compute the logical difference (same as XOR) NEQV NEQV
Compote the logical sum OR OR
Count the number of bits set to 1 POPCNT POPCNT
Compute the bit population parity POPPAR POPPAR
Perform a left circular shift SIDFT SHIFf
Perform a left shift with zero fill SIDFfL SHIFfL

Perform a right shift with zero fill SIfiFTR SHIFfR
Compute the logical difference (same as NEQV) XOR NEQV

SEE ALSO

SR-OI13

Fortran {CFIj Reference Manual, publication SR..Q009
CFI'77 Reference Manual, publication SR-0018
Cray C Reference Manual, publication SR·2024

2-6 D

ABS(3M)

NAME

ABS, lABS, DABS, CABS - Computes absolute value

SYNOPSIS

Fortran:

r = ABS(real)

i = IABS(integer)

d ~ DABS(double)

r = CABS(complex)

CAL register usage:

Scalar lABS:

lABS % (call by register)
on entry (SI) :::: argument
on exit (S 1) = result

Scalar DABS;

DABS~ (call by register)
on entry (S 1) and (S2) = argument
on exit (S 1) and (S2) = result

Scalar CABS:

CABS% (call by register)

Vector CABS:

%CABS% (call by register)

ABS(3M)

on entry (SI) and (S2) = argument on entry (VI) = argument vector 1 (real portion)
on exit (SI) = result (V2) = argument vector 2 (imaginary portion)

on exit (VI) = result vector

DESCRIPTION

SR-Ol13

These functions evaluate y = I x I . except for CABS. which evaluates

ABS returns the real absolute value of its real argument.
lABS returns the integer absolute value of its integer argument
DABS returns the double-precision absolute value of its double-precision argument.
CABS returns the real absolute value of its complex argument

ABS is the generic function name.

ABS, lABS, DABS, and CABS are intrinsic for eFT and CFf77.

2-7 o

ABS(3M)

ARGUMENT RANGE

ABS, lABS, DABS:

I X I < 00 (- == lQ2466)

CABS:

IMPLEMENTATION

NOTES

These routines are available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: ABS, lABS, DABS: In-line
CABS: External

RETURN VALUE

When the correct value would overflow, CABS aborts with a floating-point error.

SR-OU3 2-8

ABS(3M)

D

ACOS(3M) ACOS(3M)

NAME

ACOS, DACOS, acos - Computes arccosine

SYNOPSIS

Fortran:

r = ACOS(real)

d = DACOS(double)

CAL register usage:

Scalar ACOS:

ACOS% (call by register)
on entry (S 1) = argument
on exit (51) = result

Scalar DACOS:

DACOS% (call by register)
on entry (SI) and (S2) = argument
on exit (SI) and (S2) = result

C;

'include <math.h>

double acos(x)

double X;

Vector ACOS:

%ACOS% (call by register)
on entry (VI) = argument vector
on exit (VI) = result vector

Vector DACOS:

%DACOS% (call by register)
on entry (VI) and (V2) = argument vector
on exit (VI) and (V2) = result vector

DESCRIPTION

These functions evaluate y = arccos(x).

ACOS and acos (callable only from C programs) return the real arccosine of their real argument.
DACOS returns the double-precision arccosine of its double-precision argument

ACOS is the generic function name.

ACOS and DACOS are intrinsic for CFT and CFf17.

ARGUMENT RANGE

I x I ~ 1.0

IMPLEMENTATION

NOTES

SR-0113

These routines are available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: External

2-9 D

ACOS(3M)

c:

SR-Ol13

ANSI C standard or Cray ex.tension to standard: ANSI standard

Level of vectorization: None

Code generation: External

2-10

ACOS(3M)

D

AIMAG(3M)

NAME

AIMAG - Computes imaginary portion of a complex number

SYNOPSIS

Fortran:

r ;:;; AIMAG(complex)

DESCRIPTION

This function evaluates

A1MAG returns the imaginary portion of its complex argument.

AIMAG is intrinsic for CFf and CFf77.

ARGUMENT RANGE

I Xr I, I Xi 1<00 (00 = 1()2466)

EXAMPLE

PROGRAM AIMTEST
REAL RESULT
RESULT=AIMAG((1.0.2.0»)
PRINT * , RESULT
STOP
END

AlMAG(3M)

The preceding program gives the imaginary portion of the complex number (1.0,2.0). Mter running the pro
gram, RESULT=2.0.

IMPLEMENTATION

NOTES

SR-01l3

This routine is available to users of both the COS and UNICOS operating systems.

Forttan:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: In-line

2-11 D

AJNT(3M)

NAME

AlNT, DINT - Computes real and double-precision truncation

SYNOPSIS

Fortran:

r = AINT(real)

d = DINT(double)

DESCRIPTION

These functions evaluate y = lxJ without rounding.

AINT(3M)

AINT truncates the fractional part of its real argument. 1be fractional part is lost (not rounded).
DINT truncates the fractional part of its double-precision argument. The fractional part is lost (not
rounded).

AINT is the generic function name.

AINT and DINT are intrinsic for CFf and CFI'77.

ARGUMENT RANGE

AINT:

DINT:

IMPLEMENTATION

NOTES

SR-0113

These routines are available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: AINT: In-line
DINT: External

2-12 D

ALOG(3M) ALOG(3M)

NAME

ALOG, DLOG, CLOG, log - Computes natural logarithm

SYNOPSIS

Fortran:

r = ALOG(real)

d = DLOG(double)

z = CLOG(complex)

CAL register usage:

Scalar ALOG:

ALOG% (call by register)
on entry (S 1) = argument
on exit (SI) = result

Scalar DLOG:

DLOG% (caU by register)
on entry (S 1) and (S2) = argument
on exit (SI) and (S2) I: result

Scalar CLOG:

CLOG% (can by register)
on entry (S 1) and (S2) = argument
on exit (SI) and (S2) = result

DESCRIPTION

These functions evaluate y = In(x).

C:

'include <math.b>

double Iog(x)

double x;

Vector ALOG:

%ALOG% (call by register)
on entry (VI) = argument vector
on exit (VI) = result vector

Vector DLOG:

%DLOG% (call by register)
on entry (VI) and (V2) = argument vector
on exit (VI) and (V2) = result vector

Vector CLOG:

%CLOG% (call by register)
on entry (VI) and (V2) = argument vector
on exit (V 1) and (V2) = result vector

ALOG and log (callable only from C programs) return the real natural logarithm of their real argument
DLOG returns the double-precision natural logarithm of its double-precision argument.
CLOG returns the complex natural logarithm of its complex argument.

LOG is the generic function name.

ALOG, DLOG, and CLOG are intrinsic for CFT and CFf77.

ARGUMENT RANGE

o < x < 00 (- == l~

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-OI13 2-13 D

ALOG(3M)

NOTES

Fortran:

c:

SR-Ol13

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: External

ANSI C standard or Cray extension to standard: ANSI standard

Level of vectorization: None

Code generation: External

ALOG(3M)

D

ALOGIO(3M) ALOGIO(3M)

NAME

ALOGIO, DLOGIO, loglO - Computes common logarithm

SYNOPSIS

Fortran:

r = ALOG lO(real)

d = DLOGIO(double)

CAL register usage:

Scalar ALOGIO:

ALOGIO% (call by register)
on entry (SI) = argument
on exit (S I) = result

Scalar DLOGIO:

DLOGIO% (call by register)
on entry (S 1) and (S2) = argument
on exit (51) and (S2) = result

DESCRIPTION

These functions evaluate y = log(x).

c:
'include <matb.b>

double loglO(x)

double x;

Vector ALOGIO:

%ALOGIO% (call by register)
on entry (VI) "" argument vector
on exit (VI) "" result vector

Vector DLOGIO:

%DLOGIO% (call by register)
on entry (VI) and (V2) = argument vector
on exit (VI) and (V2) = result vector

ALOGIO and 1og10 (callable only from C programs) return the real common logarithm of their real
argument.
DLOGIO returns the double-precision common logarithm of its double-precision argument

LOG 10 is the generic function name.

ALOGIO and DLOGIO are intrinsic for CFT and CFf77.

ARGUMENT RANGE

o < x < 00 (00 ::: lQ'A66)

IMPLEMENTATION

NOTES

SR-Ol13

These routines are available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: External

2-15 D

ALOOIO(3M)

c:

SR-0113

ANSI C standard or emy extension to standard: ANSI standard

Level of vectorization: None

Code generation: External

ALOOIO(3M)

D

AND (3M) AND(3M)

NAME

AND - Computes logical product

SYNOPSIS

Fortran:

I = AND(logical,logicai)

b = AND(arg,arg)

DESCRIPTION

arg = CFf77: type Boolean, integer, real. or pointer
CFT: type Boolean. integer. or real

When given two arguments of type logical, AND computes a logical product and returns a logical result.
When given two arguments of type Boolean. integer, real. or pointer. AND computes a bit-wise logical
product and returns a Boolean result

AND is intrinsic for CFf and CFTI7.

The following tables show both the logical product and bit-wise logical product:

Logical Variable 1 Logical Variable 2 (Logical Variable 1) AND (Logical Variable 2)
T T T
T F F
F T F

F F F

Bit of Variable I Bit of Variable 2 (Bit of Variable I) AND (Bit of Variable 2)
1 1 1
1 0 0
0 1 0
0 0 0

IMPLEMENTATION

NOTES

SR-0113

This routine is available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: Cray extension

Level of vectorization: Full

Code generation: In-line

2-17 D

AND (3M) AND (3M)

CAUTIONS

Unexpected results can occur when Boolean functions are declared external and then used with logical
arguments. The external Boolean functions always treat their arguments as type Boolean and return a
Boolean result.

EXAMPLES

SR-0113

The following section of Fortran code shows the AND function used with two arguments of type
logical:

LOGICAL LI. L2, L3

L3 = AND(Ll,L2)

The following section of Fortran code shows the AND function used with two arguments of type
integer. The bit patterns of the arguments and result are also given. For clarity. an 8·bit word is used
instead of the actual 64-bit word.

INTEGER 11, 12, 13

13 = AND(Il ,12)

1 0 I 0 I 0 I 0 I 1 1 I 0 I 0 I
11

10 I 0 0 0 1 0 1 I 0 t

I2

1 0 I 0 I 0 I 0 1 0 0 1 0 I
I3

2-18 D

ANINT(3M) ANINT(3M)

NAME

ANINT, DNINT - Finds nearest whole number

SYNOPS[S

Fortran:

r = ANINT(real)

d = DNINT(double)

DESCRIPTION

These functions find the nearest whole number for real and double-precision numbers by using the fol
lowing equations:

y = l x+.5 J if x ~ 0

y = Lx-.5J if x <0

ANINT returns the real nearest whole number for its real argument.
DNINT returns the double-precision nearest whole number for its double-precision argument.

ANINT is the generic function name.

ANINT and DNINT are intrinsic for CFf and CFr77.

ARGUMENT RANGE

ANINT:

DNINT:

IMPLEMENTATION

NOTES

SR-0113

These routines are available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: ANINT: In-line
DNINT: External

2-19 D

ASIN(3M)

NAME

ASIN~ DASIN, 8Sm - Computes arcsine

SYNOPSIS

Fortran:

r = ASIN(real)

d = DASIN(double)

CAL register usage:

Scalar ASIN:

ASIN% (call by register)
on entty (S 1) = argument
on exit (S 1) ~ result

Scalar DASIN:

DASIN% (call by register)

c:

'include <m8th.h>

double asin(x)

double X;

Vector ASIN:

%ASIN% (call by register)
on entry (V 1) = argument vector
on exit (VI) = result vector

Vector DASIN:

%DASIN% (call by register)

ASIN(3M)

on entty (SI) and (S2) = argument on entry (VI) and (V2) = argument vector
on exit (SI) and (S2) = result on exit (V 1) and (V2) = result vector

DESCRIPTION

These functions evaluate y = arcsin(x).

ASIN and 8sm (callable only from C programs) return the real arcsine of their real argument.
DASIN returns the double-precision arcsine of its double-precision argument.

ASIN is the generic function name.

ASIN and DASIN are intrinsic for CFT and CFf77.

ARGUMENT RANGB

I x I ~ 1.0

IMPLEMENTATION

NOTES

SR-Ol13

These routines are available to users of both the COS and UNICOS operating systems.

Forttan:

ANSI Fortran 77 standard or Clay extension to standard: ANSI standard

Level of vectorization: Full

Code generation: External

2-20 D

ASIN(3M)

c:

SR-Ol13

ANSI C standard or Cray extension to standard: ANSI standard

Level of vectorization: None

Code generation: External

2-21

ASIN(3M)

D

ATAN(3M) ATAN(3M)

NAME

ATAN, DATAN, atan - Computes arctangent for single argument

SYNOPSIS

Fortran:

r = ATAN(real)

d = DATAN(doubJe)

CAL register usage:

Scalar ATAN:

ATAN% (call by register)
on entry (SI) = argument
on exit (5 1) = result

Scalar DATAN:

DATAN% (call by register)
on entry (SI) and (S2) = argument
on exit (51) and (S2) = result

c:
linclude <math.h>

double atan(x)

double X;

Vector ATAN:

%ATAN% (call by register)
on entry (VI) = argument vector
on ex.it (VI) = result vector

Vector DATAN:

%DATAN% (call by register)
on entry (VI) and (V2) = argument vector
on ex.it (VI) and (V2) = result vector

DESCRIPTION

1bese functions evaluate y = arctan(x).

ATAN and atan (callable only from C programs) return the real arctangent of their real argument.
DAT AN returns the double~precision arctangent of its double~precision argument.

AT AN is the generic function name.

ATAN and DATAN are inttinsic for CfT and crn7.

ARGUMENT RANGE

I x 1<00 (00 ::: 1()2466)

IMPLEMENTATION

NOTES

SR-Ol13

These routines are available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: External

2-22 D

ATAN(3M)

c:

SR-Ol13

ANSI C standard or Cray extension to standard: ANSI standard

Level of vectorization: None

Code generation: External

2-23

ATAN(3M)

D

ATAN2(3M) ATAN2(3M)

NAME

ATAN2, DATAN2, atan2 - Computes arctangent for two arguments

SYNOPSIS

Fortran:

r = ATAN2(real,reaf)

d = DAT AN2(double,double)

CAL register usage:

Scalar AT AN1:

ATAN1% (call by register)
on entry (81) = argument 1

(S2) = argument 2
on exit (51) = result

Scalar DAT AN2:

DATAN1% (call by register)
on entry (SI) and (S2) = argument 1

(S3) and (S4) = argument 2
on exit (SI) and (S2) = result

DESCRIPTION

These functions evaluate

y = arctan (x I/X~.

C:

'include <math.h>

double atan2(xl,x2)

double xl,x2;

Vector AT AN1:

'liIATAN1% (call by register)
on entry (VI) = argument vector 1

(V2) = argument vector 2
on exit (VI) = result vector

Vector DATAN2:

%DATAN2% (call by register)
on entry (VI) and (V2) = argument vector 1

(V3) and (V4) = argument vector 2
on exit (VI) and (V2) = result vector

ATAN2 and atan2 (callable only from C programs) return the real arctangent of the quotient of their
real arguments.
DATANl returns the double-precision arctangent of the quotient of its double-precision arguments.

AT ANl is the generic function name.

ATAN2 and DATANl are intrinsic for CFf and CFf17.

ARGUMENT RANGE

I xli, 1 x 21 < 00. I x 11 and I x 21 are not both zero. (00::: lO~

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-Ol13 2-24 D

ATAN2(3M)

NOTES

SR-0113

Fortran:

C:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: External

ANSI C standard or Cray extension to standard: ANSI standard

Level of vectorization: None

Code generation: External

2-25

ATAN2(3M)

D

CHAR(3F) CHAR(3P)

NAME

CHAR, ICHAR - Converts integer to character and vice versa (Cray Fortran intrinsic function)

SYNOPSIS

ch=CHAR(inreger)
ch=CHAR(booJean)

i=ICHAR(char)

DESCRIYfION

CHAR (inline Fortran code) and ICHAR are inverse functions. CHAR (type character) converts an
integer or Boolean argument to a charaCter specified by the Ascn collating sequence. Type conversion
routines assign the appropriate type to Boolean argumenrs without shifting or manipulating the bit pat
terns they represent For example, CHAR(,) returns the ith character in the collating sequence. integer
must be in the range 0 to 255.

ICHAR (type integer) converts a character to an integer based on the character position in the collating
sequence.

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-OU3 2-26 D

CMPLX(3M)

NAME

CMPLX - Converts to type complex

SYNOPSIS

Fortran:

C :: CMPLX(arg l[.arg:z])

DESCRIPTION

This function converts one or two arguments into type complex.

Complex and 24-bil integer arguments use a single argument.

CMPLX(3M)

Integer. Boolean, real. and double-precision arguments can use either one or two arguments.

Type conversion routines assign the appropriate type to Boolean arguments without shifting or manipu
lating the bit patterns they represent.

If two arguments are used. they must be of the same type.

The following cases represent the evaluation of CMPLX when using two arguments:

CMPLX(I,J) gives the value FLOAT(I)+i"'FLOAT(J)
CMPLX(x,y) gives the complex value x+i"'y

The following cases represent the evaluation of CMPLX when using one argument:

CMPLX(X) gives the value X+I*O
CMPLX(I) gives the value FLOAT(I)+i*O
CMPLX(C) where C is a complex number, gives the complex value x+i"'y; that is,
CMPLX(C)::C.

CMPLX is intrinsic for CFT and CfT77.

ARGUMENT RANGE

Complex, real, double precision:

Integer:

Ix 1< 246

Integer (24-bil) (CFT only):

Ix 1<22'3

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-Ol13 2-27 D

CMPLX(3M)

NOTES

SR-01l3

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: In-line

2-28

CMPLX(3M)

D

COMPL(3M) COMPL(3M)

NAME

COMPL - Computes logical complement

SYNOPSIS

Fortran:

I = COMPL(logical)

b :: COMPL(arg)

DESCRIPTION

arg = CFT; type Boolean, integer, or real
CFf77: type Boolean, integer, real, or pointer

When given an argument of type logical, COMPL computes a logical complement and returns a logical
result
When given an argument of type integer, real, Boolean, or pointer, COMPL computes a bit-wise logical
complement and returns a Boolean result.

COMPL is intrinsic for CIT and CFf77.

The following tables show both the logical complement and bit-wise logical complement:

Logical Variable COMPL (Logical Variable)

T F
F T

Bit of Variable COMPL (Bit of Variable)

1 0
0 I

IMPLEMENTATION

NOTES

This routine is available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: Crayextension

Level of vectorization: Full

Code generation: In-line

CAUTIONS

SR-Ol13

Unexpected results can occur when Boolean functions are declared external and then used with logical
argument£. The external Boolean functions always treat their arguments as type Boolean and return a
Boolean result.

2-29 D

COMPL(3M) COMPL(3M)

EXAMPLES

SR-0113

The following section of Fortran code shows the COMPL function used with an argument of type
logical:

LOGICAL Ll. L2

L2 = COMPL(LI)

The following section of Fortran code shows the COMPL function used with an argument of type
integer. The bit patterns of the argument and result are also given. For clarity. an 8-bit word is used
instead of the actual 64-bit word.

IN'IEGER 11, I2

12 = COMPL(I1)

11111111101010101
II

10101010111111111
. 12

2-30 D

CONJG(3M}

NAME

CONJG - Computes conjugate of a complex number

SYNOPSIS

Fortran:

z = CONJG(complex)

DESCRIPTION

This function evaluates

CONJG returns the complex conjugate of a complex number.

CONJG is intrinsic for CFT and CFT77.

ARGUMENT RANGE

IXrl,lxil<oo (oo;:::l~

IMPLEMENTATION

NOTES

This routine is available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: In-line

EXAMPLE

SR-0113

PROGRAM CONlEST
COMPLEX ARG, RESULT
J\1tCT.=(3.0,4.0)
RESUL T=CONJG(ARG)
PRINT *,RESULT
STOP
END

The preceding program gives RESULT = (3 •• -4.).

2-31

CONJG{3M)

o

COS(3M) COS (3M)

NAME

COS, DCOS, CCOS, cos - Computes cosine

SYNOPSIS

Fortran:

r = COS(real)

d = DCOS(double)

z = CCOS(complex)

CAL register usage:

Scalar COS:

COS% (call by register)
on entry (S 1) = argument
on exit (S 1) = result

Scalar DCOS:

DCOS% (call by register)
on entry (SI) and (S2) = argument
on exit (S 1) and (S2) = result

Scalar CCOS:

CCOS% (call by register)
on entry (SI) and (S2) = argument
on exit (SI) and (S2) = result

c;

'include <math.h>

double cos(x)

double X;

Vector cos:
~COS% (call by register)
on entry (V 1) ;;;;:; argument vector
on exit (V 1) = result vector

Vector DeOS:

%DCOS% (call by register)
on entry (VI) and (V2) = argument vector
on exit (V 1) and (V2) = result vector

Vector CCOS:

%CCOS% (call by register)
on entry (Vi) and (V2) = argument vector
on exit (Vi) and (V2) = result vector

DESCRIPTION

SR-01l3

These functions evaluate y = cos(x).

COS and cos (callable only from C programs) return the real cosine of their real argument
DCOS returns the doubJe-precision cosine of its double-precision argument.
ccos returns the complex cosine of its complex argument

COS is the generic function name.

COS, DCOS, and CCOS are intrinsic for CFT and CfT77.

2-32 D

COS(3M)

AR.GUMENT RANGE

cos:

1.%1<224

DCOS:

Ix 1<2"

ccos:

1 xr 1 < 224. 1 Xi 1<213 * 102

IMPLEMENTATION

NOTES

SR-Ol13

1bese routines are available to users of hodl the cos and UNICOS operating systems.

Fortran:

C:

ANSI Fortran 77 standard or Cmy extension to standard: ANSI standard

Level of vectorization: Full

Code generation: External

ANSI C standard or Cray extension to standard: ANSI standard

Level of vectorization: None

Code generation: External

2-33

COS (3M)

D

COSH(3M)

NAME

COSH, DeOSH, cosh - Computes hyperbolic cosine

SYNOPSIS

Fortran:

r = COSH(real)

d = DCOSH(double)

CAL register usage:

Scalar COSH:

COSH% (call by register)
on entry (SI) = argument
on exit (SI) = result

Scalar DCOSH:

DeOSH% (call by register)

c;

'include <math.h>

double cosh(x)

double X;

Vector COSH:

%COSH% (call by register)
on entry (VI) = argument vector
on exit (V 1) = result vector

Vector DCOSH:

%DCOSH% (call by register)

COSH(3M)

on entry (SI) and (S2) = argument on entry (VI) and (V2) = argument vector
on exit (51) and (S2) = result on exit (VI) and (V2) = result vector

DESCRIPTION

These functions evaluate y = cosh(x).

COSH and cosh (callable only from C programs) return the real hyperbolic cosine of their real argu
ment.
DCOSH returns the double-precision hyperbolic cosine of its double-precision argument.

COSH is the generic function name.

COSH and DCOSH are intrinsic for CFT and CFT71.

ARGUMENT RANGE

Ixl<213 *ln2

IMPLEMENTATION

NOTES

5R-01l3

These routines are available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: External

2-34 D

COSH(3M)

c:

SR-Ol13

ANSI C standard or Cmy extension to standard: ANSI standard

Level of vectorization: None

Code generation: External

2-35

COSH(3M)

D

eOT(3M)

NAME

eOT, DeOT - Computes cotangent

SYNOPSIS

Fortran:

r = COT(real)

d = DCOT(double)

CAL register usage:

Sca1ar eOT:

COTCfl (call by register)
on entry (S 1) = argument
on exit (SI) = result

Scalar DCOT:

DCOT% (call by register)

COT (3M)

Vector COT:

,.COT" (call by register)
on entry (VI) = argument vector
on exit (VI) = result vector

Vector DCOT:

.,DCOT% (call by register)
on entry (S1) and (52) = argument on entry (VI) and (V2) = argument vector
on exit (51) and (52) = result on exit (VI) and (V2) = result vector

DESCRImON

These functions evaluate y = cot(x).

COT returns the real cotangent of its real argument.
DeOT returns the double·precision cotangent of its double.precision argumenL

COT is the generic function name.

COT and DCOT are intrinsic for eFr and CFr77.

ARGUMENT RANGE

Ixl<224

IMPLEMENTATION

NOTES

SR'()l13

These routines are available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: Cray extension

Level of vectorization: Full

Code generation: External

2-36 D

NAME

DASS, DASV, DAVS, DAVV, DDSS, DDSV, DDVS, DDVV, DMSS, DMSV, DMVS, DMVV, DSSS, DSSV,
DSVS, DSVV - Performs double-precision arithmetic

DESCRIPTION

Double-precision arithmetic routines include addition (D+D), division (DID), multiplication (D*D), and
subtraction (D-D) functions. These routines are implicitly called by CPr and CF1'77 programs to per
form double-precision arithmetic.

The function of each routine follows:

DASS - Double-precision addition: Scalar + Scalar
DASV - Double-precision addition: Scalar + Vector
DA VS - Double-precision addition: Vector + Scalar
DAVV - Double-precision addition: Vector + Vector
DOSS - Double-precision division: Scalar I Scalar
DOSV - Double-precision division: Scalar I Vector
DOVS - Double-precision division: Vector I Scalar
DDVV - Double-precision division: Vector I Vector
DMSS - Double-precision multiplication: Scalar * Scalar
OMSV - Double-precision multiplication: Scalar * Vector
DMVS - Double-precision multiplication: Vector'" Scalar
DMVV - Double-precision multiplication: Vector ... Vector
DSSS - Double-precision subtraction: ScaJar - Scalar
DSSV - Double-precision subtraction: Scalar - Vector
DSVS - Double-precision subtraction: Vector - Scalar
DSVV - Double-precision subtraction: Vector - Vector

CAL REGISTER USAGE

SR-Ol13

Double-precision addition: Scalar + Scalar

DASS% (call by register)
entry (SI) and (S2) = arg 1 words 1 and 2

(S3) and (S4) = atg 2 words 1 and 2
exit (S 1) and (S2) = result words 1 and 2

Double-precision addition: Vector + Scalar

DAVS~ (call by register)
entry (VI) and (V2) = arg 1 (augend)

(S3) and (S4) = arg 2 (addend)
exit (VI) and (V2) = result vector (sum)

Double-precision division: Scalar I Scalar

DDSS" (call by register)
entry (SI) and (S2) = numerator words 1 and 2

(S3) and (S4) = divisor words 1 and 2
exit (SI) and (52) = quotient words I and 2

2-37

Double-precision addition: Scalar + Vector

DASV% (call by register)
entry (SI) and (52) = arg 1 (augend)

(V3) and (V 4) = arg 2 (addend)
exit (VI) and (V2) = result vector (sum)

Double-precision addition: Vector + Vector

DAVV% (call by register)
entry (VI) and (V2) = arg 1 (augend)

(V3) and (V4) = arg 2 (addend)
exit (VI) and (V2) = result vector (sum)

Double-precision division: Scalar I Vector

DDSV" (call by register)
entty (SI) and (S2) = numerator words 1 and 2

(V3) and (V4) == divisor words 1 and 2
exit (VI) and (V2) ::: quotient words 1 and 2

D

Double-precision division: Vector I Scalar

DDVS% (call by register)
entry (VI) and (V2) = numerator words 1 and 2

(53) and (S4) = divisor words 1 and 2
exit (VI) and (V2) = quotient words I and 2

Double-precision multiplication: Scalar * Scalar

DMSS% (call by register)
entry (51) and (S2) = arg 1 words 1 and 2

(S3) and (S4) = arg 2 words 1 and 2
exit (51) and (52) = result words 1 and 2

Double-precision multiplication: Vector * Scalar

DMVS% (call by register)
entry (V 1) and (V2) = arg I words 1 and 2

(53) and (S4) = arg 2 words 1 and 2
exit (VI) and (V2) = product words 1 and 2

Double-precision subtraction: Scalar - Scalar

DSSS% (call by register)
entry (51) and (52) = arg I words 1 and 2

(53) and (S4) = arg 2 words 1 and 2
exit (S 1) and (52) = result words 1 and 2

Double-precisionsubtrnction: Vector - Scalar

DSVS % (call by register)
entry (VI) and (V2) = arg I (minuend)

(53) and (S4) = arg 2 (subtrahend)
exit (VI) and (V2) = result vector (swn)

IMPLEMENTATION

Double-precision division: Vector / Vector

DDVV% (call by register)
entry (VI) and (V2) = numerator words I and 2

(V3) and (V4) = divisor words I and 2
exit (VI) and (V2) = quotient words I and 2

Double-precision multiplication: Scalar * Vector

DMSV% (call by register)
entry (SI) and (52) = arg 1 words 1 and 2

(V3) and (V4) = arg 2 words 1 and 2
exit (VI) and (V2) = product words I and 2

Double-precision multiplication: Vector * Vector

DMVV% (call by register)
entry (VI) and (V2) = arg I words 1 and 2

(V3) and (V 4) = arg 2 words 1 and 2
exit (VI) and (V2) = product words 1 and 2

Double-precision subtraction: Scalar - Vector

DSSV% (call by register)
entry (SI) and (52) = arg 1 (minuend)

(V3) and (V4) = arg 2 (subtrahend)
exit (VI) and (V2) = result vector (sum)

Double-precision subtraction: Vector - Vector

DSVV% (call by register)
entry (VI) and (V2) = arg 1 (minuend)

(V3) and (V4) = arg 2 (subtrahend)
exit (VI) and (V2) = result vector (sum)

These routines are available to users of both the COS and UNlCOS operating systems.

SR-Ol13 2-38 D

DBLE(3M)

NAME

DBLE, DFLOAT - Converts to type double precision

SYNOPSIS

Fortran:

d = DBLE(arg)

d = DFLOAT(integer)

DESCRIPTION

arg = type complex, integer, Boolean, real, or double precision

These functions convert specified types to type double precision.

DBLE(3M)

DBLE returns the double-precision equivalent of its complex, integer, Boolean, real, or double-precision
argument.
DFLOAT returns the double-precision floating-point equivalent of its integer argument.

Type conversion routines assign the appropriate type to Boolean arguments without shifting or manipu
lating the bit patterns they represent.

ARGUMENT R.ANGE

DBLE:

Real. double precision, Boolean:

Complex:

(for complex arguments x = x I + i ... Xi)

Integer:

Integer (24-bit) (CFT only):

I x 1<223

DFLOAT:

IMPLEMENTATION

These routines are available to users of both the COS and UNICQS operating systems.

SR-Ol13 2-39 D

DBLE(3M)

NOTES

Fortran:

SR-0113

DBLE:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: In-line

DFLOAT:

ANSI Fortran 77 srandard or eray extension 10 standard: Cray extension

Level of vectorization: Full

Code generation: In-line

2-40

DBLE(3M)

D

DIM(3M)

NAME

DIM, IDIM, DDIM - Computes positive difference of two numbers

SYNOPSIS

Fortran:

r = DIM(real,real)

i = IDIM(integer,integer)

d = DDIM(double,double)

DESCRIYI10N

These functions solve for:

Y""XI-X2 if X1>X2

Y = 0 if xl ~ X2

DIM evaluates two real numbers and subtracts them. The result is a real positive difference.
IDIM evaluates two integers and subtracts them. The result is an integer positive difference.

DIM(3M)

DDIM evaluates two double-precision numbers and subtracts them. The result is a double-precision
positive difference.

DIM is the generic function name.

DIM, 101M, and DDIM are intrinsic for CFf and CFf77.

ARGUMENT RANGE

I Xl 1.1 x21 < 00 (00::: 10~ Exception: IDIM for 64-bit integers: I Xl I, I x21 < 263

IMPLEMENTATION

NOTES

SR-0113

These routines are available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: DIM:, rolM: In-line
DDIM: External

2-41 D

DIM(3M)

EXAMPLE

PROGRAM DIMTEST
INTEGER A,B,C,D,E
A=77
B==lO
C::;IDIM(A,B)
WRITE 1.A,B.C

1 FORMA T(I2, 'POSITIVE DIFFERENCE' ,12,' EQUALS' ,12)
D=IDIM(B,A)
WRITE 2.B,A,D

2 FORMAT(l2:POSITIVE DIFFERENCE • ,12: EQUALS' ,12)
STOP
END

The preceding program gives the following output:

SR-Ol13

77 POSITIVE DIFFERENCE 10 EQUALS 67
10 POSITIVE DIFFERENCE 77 EQUALS 0

2-42

DIM (3M)

D

DPROD(3M)

NAME

DPROD - Computes double~precision product of two real numbers

SYNOPSIS

Fortran:

d = DPROD(real,reai)

CAL register usage:

Scalar DPROD:

DPROD% (call by register)

Vector DPROD:

%DPROD% (call by register)

DPROD(3M)

entty (S 1) = 1st argument (single precision)
(S2) ;;; 2nd argument (single precision)

entry (VI) = 1st argument (single precision)
(V2) = 2nd argument (single precision)

exit (S 1) and (S2) = result words 1 and 2 exit (VI) and (V2) = product words I and 2

DESCRIPTION

This function evaluates y = Xl * X 2 •

DPROD returns the double·precision product of its two real arguments.

DPROD is intrinsic for CFT and CFT71.

ARGUMENT RANGE

IXII.lxzl<oo (00= 102466)

IMPLEMENTATION

NOTES

This routine is available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: External

EXAMPLE

SR-0113

PROGRAM DOUBT
REALX.Y
DOUBLE PRECISION Z
X",,5.0
Y=6.0
Z=DPROD(X,Y)
PRINT*,Z
STOP
END

The preceding program gives Z to be the double-precision number 30.0 (or in Fortran, 30.00).

2-43 D

EQV(3M) EQV(3M)

NAME

EQV - Computes logical equivalence

SYNOPSIS

Fortran:

I = EQV(logical.logical)

b "" EQV(arg,arg)

DESCRIPTION

arg = eFT: type Boolean or integer
CFI77: type Boolean, integer, real, or pointer

When given two arguments of type logical, EQV computes a logical equivalence and returns a logical
result.
When given two arguments of type Boolean. real, integer. or pointer. EQV computes a bit-wise logical
equivalence and returns a Boolean result

EQV is intrinsic for CFf and ern7.

The following tables show both the logical equivalence and bit-wise logical equivalence:

Logical Variable 1 Logical Variable 2 (Lo~cal Variable 1) EQV (Logical Variable 2)

T T T

T F F

F T F

F F T

Bit of Variable 1 Bit of Variable 2 (Bit of Variable 1) EQV (Bit of Variable 2)

1 1 1

1 0 0
0 1 0
0 0 1

IMPLEMENTATION

NOTES

SR-0113

This routine is available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cmy extension to standard: eray extension

Level of vectorization: Full

Code generation: In-line

2-44 D

EQV(3M) EQV(3M)

CAUTIONS

Unexpected results can occur when Boolean functions are declared external and then used with logical
arguments. The external Boolean functions always treat their arguments as type Boolean and retwn a
Boolean result.

EXAMPLES

SR-OU3

The following section of Fortran code shows the EQV function used with two arguments of type
logical:

LOGICAL LI, L2, L3

L3 = EQV(LI,L2)

The fonowing section of Fortran code shows the EQV function used with two arguments of type
integer. The bit patterns of the arguments and result are also given. For clarity, an g·bit word is used
instead of the actual 64-bit word.

INTEGER 11, 12, 13

13 = EQV(Il,I2)

10 1 0 0 ! 0 I I I 1 I 0 I 0 I
11

10 I 0 0 0 I I 0 I 1 0 1
12

II I I I I 1 I I 0 0 I 1 I
13

245 D

EXP(3M) EXP(3M)

NAME

EXP, DEXP, CEXP, exp - Computes exponential function

SYNOPSIS

Fortran:

r = EXp(real)

d = DEXP(double)

z = CEXP(complex)

CAL register usage:

Scalar EXP:

EXP% (call by register)
on entry (SI) = argument
on exit (S1) = result

Scalar DEXP:

DEXP% (call by register)
on entry (SI) and (S2) = argument
on exit (SI) and (S2) = result

Scalar CEXP:

CEXP% (call by register)
on entry (SI) and (S2) = argument
on exit (SI) and (S2) = result

DES~RIPTION

These functions evaluate y = eX.

c:

'include <matb.h>

double exp(x)

double X;

Vector EXP:

%EXP% (call by register)
on entry (VI) = argument vector
on exit (VI) = result vector

Vector DEXP:

%DEXP% (call by register)
on entry (VI) and (V2) "" argument vector
on exit (VI) and (V2) = result vector

Vector CEXP:

%CEXP% (call by register)
on entry (VI) and (V2) = argument vector
on exit (VI) and (V2) = result vector

EXP and exp (callable only from C programs) return the real exponential function eX of their real argu
ment.
DEXP returns the double-precision exponential function eX of its double-precision argument.
CEXP returns the complex exponential function eX of its complex argument.

EXP is the generic function name.

EXP, DEXP, and CEXP are intrinsic for CFT and CFf77.

ARGUMENT RANGE

EXP, DEXP: I x I < 2 13 * In 2

CEXP: I Xr I < 213 .. In 2, I Xi I < 224

IMPLEMENTATION

These routines are available 10 users of both the cos and UNICOS operating systems.

SR-Ol13 2-46 D

EXP(3M)

NOTES

Fortran:

C:

SR-0113

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: External

ANSI C standard or Cray extension to standard: ANSI standard

Level of vectorization: None

Code generation: External

2-47

EXP(3M)

D

INDEX (3F) INDEX(3F)

NAME

INDEX - Detennines index location of a character substring within a string (Cray Fortran intrinsic func
tion)

SYNOPSIS

i::;::INDEX(string .substring)

DESCRIPTION

The integer function INDEX takes Fortran character string arguments and returns an integer index into
that string. If substring is not located within string, a value of 0 is returned. If there is more than one
occurrence of substring, only the first index is returned. string and substring can be any legal Fortran
character string.

EXAMPLE

PROORAM INDEX 1
CHARACTER·23,A
CHARACIER"'13,B
A='CRAY X-MP SUPERCOMPUIER'
B='SUPERCOMPUTER'
I=INDEX(A,B)
PRINT·, I
STOP
END

The preceding program returns the index number of the substring SUPERCOMPUTER as 1= 11.

PROGRAM INDEX2
CHARACIER·20,A
CHARACTER*6,B
A='CRAY-I SUPERCOMPlITER'
B='CRAY-l t

I=INDEX(A.B)
PRINT"',I
STOP
END

The preceding program returns the index number of the substring eRA Y·l as 1= 1.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR-01l3 2-48 D

INT(3M) INT(3M)

NAME

INT, rnx, IDINT - Converts to type integer

SYNOPSIS

Forttan:

i = JNT(arg)

i = IFIX(real)
i = IFIX(booJean)

i = IDINT(double)

DESCRIPTION

arg = type integer, complex, real. or Boolean

These functions conven specified types to type integer by truncating toward 0 (the fraction is lost).

INT returns an integer value for its integer, real, complex, or Boolean argument.
IFIX returns an integer value for its feal or Boolean argument.
IDINT returns an integer value for its double-precision argument.

!NT is the generic function name.

INT, rnx, and IDINT are intrinsic for CFT and CFf77.

Type conversion routines assign the appropriate type to Boolean arguments without shifting or manipu
lating the bit patterns they represent.

ARGUMENT RANGE

INT:
Real: I x 1< 00 (00 = l(2466)

Complex: I x r I < 246

Integer (24·bit) (CFf only): I x I < 223

Integer, Boolean: I x 1<263

IFIX: I x I < 246

IDINT: I x I < 263

IMPLEMENTATION

NOTES

SR·Ol13

These routines are available to users of both the COS and UNlCOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: In-line

2-49 D

INT24(3M)

NAME

INT24, LINT - Converts 64-bit integer to 24-bit integer and vice versa (CFT only)

SYNOPSIS

Fortran:

i24 = INT24(integer)
i24 = lNT24(boolean)

i = LINT(24-bil integer)

DESCRIPTION

i24 = 24-bit integer result.

INT24 converts a 64-bit integer or Boolean argument into a 24-bit integer.
LINT converts a 24-bit integer into a 64-bit integer.

ARGUMENT RANGE

Ixl<223

IMPLEMENTATION

NOTES

SR-0113

These routines are available to users of both the COS and UNlCOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: Cray extension

Level of vectorization: Full

Code generation: In-line

2-50

INT24(3M)

D

LDIV(3M) LDIV(3M)

NAME

LDSS, LDSV, LDVS, LDVV - Perfonns 64~bit integer divide

DESCRIPTION

The LDSS. LDSV. LDVS. and LDVV functions are called implicitly by CPr, CFf17. and C programs to
divide long integers.

These routines return a 64-bit integer quotient from two 64-bit arguments.

The function of each routine follows:

LDSS - Scalar I Scalar

LDSV - Scalar I Vector

LDVS - Vector I Scalar

LDVV - Vector I Vector

CAL REGISTER USAGE

NOTE

SR-0113

Scalar I Scalar:

LDSS9fI (call by register)
on entry (51) = numerator

(S2) = denominator
on exit (SI) = quotient

(S2) = remainder

Vector I Scalar:

LDVS9fI (call by register)
on entry (VI) = numerator

(S2) = denominator
on exit (VI) = quotient

(V2) = remainder

Scalar I Vector:

LDSV% (call by register)
on entry (SI) = numerator

(V2) = denominator
on exit (VI) = quotient

(V2) = remainder

Vector I Vector:

LDVV9fI (call by register)
on entry (VI) = numerator

(V2) = denominator
on exit (VI) = quotient

(V2) = remainder

LDSV, LDVS. and LDVV are pseudo-vector routines. They call the scalar version, LDSS. to perform the
divide.

2-51 o

LEADZ(3M) LEADZ(3M)

NAME

LEADZ - Counts number of leading 0 bits

SYNOPSIS

Fortran:

i = LEADZ(arg)

DESCRIPTION

arg = CFf: type Boolean, integer, real, or logical
CFf77: type Boolean. integer, real. or pointer

When given an argument of type integer, real, logical, Boolean, or pointer, LEADZ counts the number
of leading 0 bits in the 64-bit representation of the argument

LEADZ is intrinsic for CPr and CFf77.

EXAMPLES

The following section of Fortran code shows the LEADZ function used with an argument of type
integer. The bit pattern of the argument and the value of the result are also given. For clarity, a 16-bit
word is used instead of the actnal64-bit word.

INTEGER 11, 12

12 = LEADZ(ll)

10101010101111010111111101011101
J1

The LEADZ function returns the value 5 to the integer variable 12.

IMPLEMENTATION

NOTES

SR-0113

This routine is available to users of both the cos and UNICOS operating systems.

The bit representation of the logical data type is not consistent among Cray machines. For further
details, see the Fortran (CFf) Reference Manual, publication SR-0009. and the CFI77 Reference Manual.
publication SR·OO18.

LEADZ(O) is equal to 64.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: Cray extension

Level of vectorization: Full

Code generation: In-line

2-52 D

LEN(3F) LEN(3F)

NAME

LEN - Determines the length of a character string (Cray Forttan intrinsic function)

SYNOPSIS

i = LEN(string)

DESCRIPTION

The integer function LEN takes Fortran character siring arguments and returns an integer length. string
can be any valid Fortran character string. LEN is an in-line code function.

EXAMPLE

PROORAMLENTEST
I=LEN(·I. .. + I + 2 + 3 + ...)
PRINT I
STOP
END

The preceding program returns the length of the character string; 1=37.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 2-53 D

LGE(3F) LGE(3F)

NAME

LGE, LGT, LLE, LLT - Compares strings lexically (Cray Fortran intrinsic function)

SYNOPSIS

J = LGE(stringl.string2)

I = LGT(stringl.string2)

I = LLE(stringl.string2)

I = LL T(stringl.string2)

DESCRIYfION

Each of the these type logical functions takes two character string arguments and return a logical value.
string 1 and slring2 are compared according to the ASCII collating sequence, and the resulting uue or
false value is returned. Arguments can be any valid character string. If the strings are of different
lengths, the function treats the shorter string as though it were blank-filled on the right to the length of
the longer string.

The defining equation for each function is as follows:

For LGE. logic = a 1 ~ a 2.

For LGT. logic = a 1 > a 2'

For LLE. logic = a 1 S a 2'

For LLT, logic = a1 < a2.

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-Ol13 2-54 D

MASK(3M} MASK(3M)

NAME

MASK - Returns a bit mask

SYNOPSIS

Fortran:

b = MASK(integer)

DESCRIPTION

MASK returns a bit mask of 1 'so

The integer argument must be in the range 0 ~ x :5: 128.

If the argument is in the range 0:5: x :5: 63. a left-justified mask of x bits is returned.
If the argument is in the range 64 :5: x ~ 128, a right-justified mask of (128 - x) bits is returned.

MASK is intrinsic for CFT and CFf77.

IMPLEMENTATION

NOTES

This routine is available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI standard or Cray extension to standard: Cray extension

Level of vectorization: Full

Code generation: In-line

EXAMPLES

SR-0113

The following section of Fortran code shows the MASK function used with several different arguments.
The bit patterns of the results are given. The 64-bit word has been shortened to improve clarity.

INfEGER II, 12, 13

11 = MASK(3)
12 = MASK(64)
I3 = MASK(127)

11 I 1 1 0 0

11 I 1 1 I 1 I

10 I 0 ! 0 I 0 I

2-55

0 I 0 I 0 I 0 I 0 I
II

I 1 I 1 I 1 I 1 I
12

I 0 I 0 I 0 I 1 I
13

D

MOD(3M)

NAME

MOD, AMOD, DMOD - Computes remainder of x l /x2

SYNOPSIS

Fortran:

i = MOD(integer.integer)

r = AMOD(rea/,reaf)

d = DMOD(double,double)

DESCRIPTION

These functions evaluate y = xl-xzL xl/x:d .

MOD returns the integer remainder of its integer arguments.
AMOD returns the real remainder of its real arguments.
DMOD returns the double-precision remainder of its double-precision arguments.

MOD is the generic function name.

MOD, AMOD, and DMOD are intrinsic for CFT and CFf77.

ARGUMENT RANGE

MOD:

IX11<263

0< I x21 < 263

2-63 < I x/x21 < 263

AMOD:

I Xl 1<247

0< I x21 < 247

2-47 < I x/x21 < 241

DMOD:

I Xl 1<295

0< I x21 < 295

2-95 < I xl/xli < 295

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OI13 2-56

MOD(3M)

D

MOD(3M)

NOTES

Fortran:

SR-0113

ANSI Fortran 77 standard or Cray extension 10 standard: ANSI standard

Level of vectorization: Full

Code generation: MOD, AMOD: In~line

DMOD, MOD (long integer - eFT only): External

2-51

MOD(3M)

D

NEQV(3M) NEQV(3M)

NAME

NEQV, XOR - Computes logical difference

SYNOPSIS

Fortran:

I = NEQV(logical,logicaf)
I = XOR(logical.logical)

b = NEQV(arg.arg)
b = XOR(arg,arg)

DESCRImON

arg = CFf: type Boolean. integer, or real
CFI'77: type Boolean, integer, real, or pointer

NEQV and XOR are two names for the same routine.

When given two arguments of type logical, NEQV and XOR compute a logical difference and return a
logical result.
When given two arguments of type Boolean, integer, real, or pointer, NEQV and XOR compute a bit
wise logical difference and return a Boolean result.

NEQV and XOR are intrinsic for CFI' and CFI'71.

The following tables show both the logical difference and bit-wise logical difference.

NEQV is shown in the tables, but XOR produces identical results.

Lo~cal Variable 1 Logical Variable 2 (Logical Variable 1) NEQV (Logical Variable 2)
T T F
T F T
F T T
F F F

Bit of Variable 1 Bit of Variable 2 (Bit of Variable 1) NEQV (Bit of Variable 2)
I 1 0
1 0 1

0 1 1
0 0 0

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-Ol13 2-58 D

NEQV(3M) NEQV(3M)

NOTES

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: Cray extension

Level of vectorization: Full

Code generation: In-line

CAUTIONS

Unexpected results can occur when Boolean functions are declared external and then used with logical
arguments. The external Boolean functions always treat their arguments as type Boolean and return a
Boolean result.

EXAMPLES

SR-0113

The following section of Fortran code shows the NEQV function used with two arguments of type
logical. XOR is used in the same manner and produces the same results.

LOGICAL L1, L2, L3

L3 '" NEQV(LI,L2)

The following section of Fortran code shows the NEQV function used with two arguments of type
integer. XOR is used in the same manner and produces the same results.

The bit patterns of the arguments and result are also given. For clarity, an 8-bit word is used instead of
the actual 64-bit word.

INI'EGER II, I2, 13

I3 '" NEQV(I1,12)

10101010111110101
11

101010101101101
12

lo!olololo! 111101
13

2-59 D

NINT(3M)

NAME

NINT, IDNINT - Finds nearest integer

SYNOPSIS

Fortran:

i = NINT(real)

i = IDNINT(double)

DESCRIPTION

NlNT(3M)

These functions find the nearest integer for real and double-precision numbers. using the following
equations:

Y = Lx+.sJ if x ~ 0

Y"" Lx-.5J if x <0

NlNT returns the nearest integer for its real argument
IDNINT returns the nearest integer for its double-precision argument.

NINT is the generic function name.

NINT and IDNINT are intrinsic for CFI' and em7.

ARGUMENT RANGE

Ixl<246

IMPLEMENTATION

NOTES

SR-0113

These routines are available to users of both the COS and UNICOS operating systems.

FOl'lran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: NlNT: In-line
IDNJNT: External

2-60 D

OR(3M) OR(3M)

NAME

OR - Computes logical sum

SYNOPSIS

Fortran:

1 = OR(logical,logical)

b = OR(arg,arg)

DESCRIPTION

arg = CFT: type Boolean, integer, or real
CFf77: type Boolean, integer, real, or pointer

When given two arguments of type logical, OR computes a logical sum and returns a logical result
When given two arguments of type integer, real, Boolean, or pointer, OR computes a bit-wise logical
sum and ret\D1lS a Boolean result

OR is intrinsic for CFf and CFf77.

The following tables show both the logical sum and bit-wise logical sum:

Logical Variable 1 Logical Variable 2 (Logical Variable 1) OR (Logical Variable 2)

T T T
T F T
F T T
F F F

Bit of Variable 1 Bit of Variable 2 (Bit of Variable 1) OR (Bit of Variable 2)

1 I 1
1 0 1

0 1 1

0 0 0

IMPLEMENTATION

NOTES

SR-0113

This routine is available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or eray extension to standard: Cray extension

Level of vectorization: Full

Code generation: In-line

2-61 D

OR(3M) OR(3M)

CAUTIONS

Unexpected results can occur when Boolean functions are declared external and then used with logical
arguments. The external Boolean functions always treat their arguments as type Boolean and return a
Boolean result.

EXAMPLES

SR-0113

The following section of Fortran code shows the OR function used with two arguments of type logical:

LOGICAL Ll. L2, L3

L3 = OR(Ll,L2)

The following section of Fortran code shows the OR function used with two arguments of type integer.
The bit patterns of the arguments and result are also shown below. For clarity, an 8-bit word is used
instead of the actual 64-bit word.

INTEGER I1, 12, 13

I3 ;;: OR(I1,I2)

1010101011110101
11

10101010111011101
12

1010 001 1 11 !11 01

13

2-62 D

POPCNT(3M) POPCNT(3M)

NAME

POPCNT - Counts number of bits set to 1

SYNOPSIS

Fortran:

i = POPCNT(arg)

DESCRIPTION

arg = CFf: type Boolean, integer, real, or logica]
CFr77: type Boolean, integer, real, or pointer

When given an argument of type integer, real, logical, Boolean, or pointer, POPCNT counts the number
of bits set to 1 in the 64-bil representation of the argument.

POPCNT is intrinsic for CFf and CFTTI.

IMPLEMENTATION

NOTES

This routine is available to users of both the COS and UNICOS operating systems.

The bit representation of the logical data type is not consistent among Cray machines. For further
details. see the Fortran (CFT) Reference Manual, publication SR-0009, and the CFf77 Reference Manual,
publication SR-OOIS.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: Cray extension

Level of vectorization: Full

Code generation: In-line

EXAMPLES

The following section of Fortran code shows the POPCNT function used with an argument of type
integer. The bit pattern of the argument and the vaJue of the result are also given. For clarity, a 16-bit
word is used instead of the actual 64-bil word.

IN1EGER 11, 12

12 = POPCNT(Il)

10 I 0 10 I 0 1 0 II 11 10 1 0 111111 10 1011 1 0 1
11

The POPCNT function returns the value 6 to the integer variable 12.

D

POPPAR(3M) POPPAR(3M)

NAME

POPPAR - Computes bit population parity

SYNOPSIS

Fortran:

i = POPPAR(arg)

DESCRIPTION

arg = CFT: type Boolean, integer, real. or logical
CFf77: type Boolean, integer, real. or pointer

When given an argument of type integer. real, logical, Boolean, or pointer, POPPAR returns the value 0
if an even number of bits are set to 1 in the 64-bit representation of the argument or the value 1 if an
odd number of bits are set to 1 in the 64-bit representation of the argument

POPPAR is intrinsic for CFT and CFf77.

IMPLEMENTATION

NOTES

This routine is available to users of both the COS and UNICOS operating systems.

The bit representation of the logical data type is not consistent among Cmy machines. For further
details, see the Fortran (CFr) Reference Manual, publication SR-0009, and the CFf77 Reference Manual,
publication SR-0018.

Fortran:

ANSI Fortran 77 standard or Cmy extension to standard: Cray extension

Level of vectorization: FuU

Code generation: In-line

EXAMPLES

SR-Ol13

The foUowing section of Fortran code shows the POPPAR function used with an argument of type
integer. The bit pattern of the argument and the value of the result are also given. For clarity, a 16-bit
word is used instead of the actual 64-bit word.

IN'IEGER 11, 12

12 = POPPAR(Il)

10101010101111100111111101011101
11

The POPPAR function returns the value 0 to the integer variable 12.

2-64 D

POWER(3M) POWER (3M)

NAME

crOC, CTOI, CTOR, DTOD, DTO~ DTOR, ITOI, RTOI, RTOR, pow - Raises base value to a power

SYNOPSIS

c:
#include <math.h>

double pow(x, y)
double x, y;

DESCRIPTION

SR-01l3

These routines rebJrn the appropriate real or integer power function X Y of their arguments.

CPr and CFf77 routines implicitly can these routines to raise a value to a power.

CTOC. CTOI, and CTOR raise a complex base to a complex power (Cc). an integer power (C/). or a
real power (CR). respectively.
The complex base cannot be (0.0, 0.0).

DTOD, DTo!. and DTOR raise a doub1e-precision base to a double-precision power (DD). an integer
power (D'), or a real power (DR). respectively.

ITOI raises an integer base to an integer power (II).

RTOI and RTOR raise a real base to an integer power (Rl) or a real power (RR), respectively.

Routine pow raises a real base to a real power (R R).

Base values in DTOD, DTOR, and RTOR must be positive.

2-65 D

RAN(3M) RAN(3M)

NAME

RANF, RANGET, RANSET - Computes pseudo-random numbers

SYNOPSIS

Fortran:

r = RANF()

b = RANGET(inleger) (CFf)
b = RANGET([integer]) (CFf77)

r = RANSET(integer) (CFf)
r = RANSET(arg) (CFf77)

DESCRIPTION

arg = type integer. real, or Boolean

These functions compute pseudo-random numbers and either set or retrieve a seed.

RANF:

• Obtains the first or next in a series of pseudo-random numbers. such that 0 < y < 1. in the form of
a normalized floating-point number.

• Uses a null argument. If an argument is supplied. it will be ignored. Parentheses are required in
the call. however.

RANGET:

• Obtains a seed.

• Can be called as a function or a subroutine in CFf.

• Has an optional integer argument for CFf77.

• Requires an integer argument for CFf.

If an argument is present. the result is also returned at the address of the argument.

RANSET:

• Establishes a seed such that y = x.

• Requires an integer argument in CFf.

• Requires an argument of type integer. real, or Boolean in CFf77.

The return value of the function is not meaningful (it returns the input value),

If no argument or a zero argument is supplied, the seed is reset to an initial default value.

If an argument is supplied, the lower 48 bits are used as the random-number seed. The right-most bit
is always set to 1.

When the seed of the random number generator is reset, RANSET does not store the supplied argu
ment as the first value in the buffer of the random number seeds.

RANF, RANGET, and RANSET are intrinsic for CFT and CFI77.

ARGUMENT RANGE

I x I < 00 (00 ::: 102466)

SR-Ol13 2-66 D

RAN(3M) RAN(3M)

IMPLEMENTATION

NOTES

These routines ace available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension 10 standard: Cray extension

Level of vectorization: RANF: Full
RANGET, RANSET: None

Code generation: External

The CRI random number generator uses static memory storage for the random number seed table.
Therefore, the functions RANF, RANSET, and RANGET must be protected (locked) when called from a
multitasked program.

EXAMPLES

DO 101=1,10
10 RANDOM(I)=RANF()

CALL RANGET(iseedl)
C or

iseed=RANGET(ivalue)

CALL RANSET(ivaJue)
C or

dummy=RANSET(ivalue)

SR-0113 2-67 D

REAL(3M)

NAME

REAL, FLOAT, SNGL - Converts to type real

SYNOPSIS

Fortran:

r = REAL(arg)

r = FLOA T(inleger)

r = SNGL(double)
r = SNGL(boolean)

DESCRIPTION

arg = type complex, integer. or real

KEAL(lM)

These functions convert specified types to type real, such that y a X (or y = X r for complex arguments).

REAL returns the real equivalent of its complex. integer. or real argument.
FLOAT returns the real equivalent of its integer argument.
SNGL returns the real equivalent of its double-precision or Boolean argument.

Type conversion routines assign the appropriate type to Boolean arguments without shifting or manipu·
lating the bit patterns they represent.

REAL is the generic function name.

REAL, FLOAT, and SNGL are inttinsic for CFI' and CFI'77.

AR.GUMENT RANGE

REAL:

FLOAT:

SNGL:

IMPLEMENTATION

Real: I X I < - (00 ::: 1()Z466)

Integer: I x I < ~

Complex: I Xr 1<00)

Integer: I x I < 1f>3

24·bit integer (CFf only): I x I < 223

Double precision: I x 1< 00 (in CFf77. I x 1< 264)

Boolean: I x·1 < 246

These routines are available to users of both the cos and UNICOS operating systems.

SR-Ol13 2-68 D

REAL(3M)

NOTES

Fortran:

SR-0113

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: In-line

2-69

REAL(3M)

D

SHIFf (3M) SHIFf(3M)

NAME

smFT - Performs a left circular shift

SYNOPSIS

Fortran:

b = SHIFT(arg 1 ,arg2)

DESCRIPTION

arg1 = The value to be shifted

CFf77: type Boolean, integer, real, or pointer
CFf: type Boolean. integer, or real

arg2 = The number of bits to shift the value

- type integer

For arg2 in the range 0 ~ arg2 ~ 64, SHIFT performs a left circular shift of the 64-bit representation of
arg] by arg2 bits.

For arg2 ~ 65, a left circular shift is not performed. Instead, SHIFT is defined as follows when
arg2 ~ 65:

For arg2 in the range 65 ~ arg2 ~ 128, SHIFT(argl.arg2) is defined as SHIFfL(argJ ,arg2-64).
See SmFfL(3M).

For arg2 in the range 129 ~ arg2 ~ 224-1, SHIFf returns a value with all bits set to O.

For arg2 in the range 224 ~ arg2 < 264-1, SHIFf returns an undefined result.

SHIff is intrinsic for CFT and CFT77.

IMPLEMENTATION

NOTES

SR-Ol13

This routine is available to users of both the cos and UNlCOS operating systems.

The bit representation of the logical data type is not consistent among Cray machines. For further
details, see the Fortran (CFT) Reference Manual, publication SR-0009, and the CFT77 Reference Manual.
publication SR-0018.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard; Crayextension

Levclofvecro~tion:Fu11

Code generation: In-line

2-70 D

SIDFT(3M} SHlFI'(3M)

EXAMPLES

SR-0113

The following section of Fortran code shows the SIDFT function used in the case where arg! is of type
integer. For purposes of clarity, a 16-bit word is used instead of the actual 64-bit word. The bit pattern
of arg1 and the bit pattern of the result are also given.

INTEGER 11, 12, I3

12 = 5
I3 = SHIFT(II,I2)

1111111111111111 10 10 I 0 I 0 I 0 I 0 I 0 1 01
11 (arg!)

11111110101010101010101 1111!II
13 (result)

2-71 D

SHIFI'L(3M) SHIFTL(3M)

"NAME

SIDFfL - Performs a left shift with zero fill

SYNOPSIS

Fortran:

b = SHIFTL(argJ ,arg2)

DESCRIPTION

argJ = The value to be shifted

CFI77: type Boolean, integer, real, or pointer
CFI': type Boolean, integer, or real

arg2 = The number of bits to shift the value

- type integer

For arg2 in me range 0 ~ arg2 S 224-1, SHIFI'L perfonns a left shift with zero fill of the 64-bit
representation of argJ by arg2 bits. Note that when arg2 is in the range 64 S arg2 S 224-1, SHIFrL
returns a value with all bits set to O.

For arg2 in the range 224 S arg2 < 264-1, SHIFrL returns an undefined resulL

SIDFTL is intrinsic for CFf and CFf71.

IMPLEMENTATION

NOTES

SR-OU3

This routine is available to users of both the COS and UNICOS operating systems.

The bit representation of the logical data type is not consistent among Cray machines. For further
details, see the Fortran (eFT) Reference Manual, publication SR-0009, and the CFI'77 Reference Manual.
publication SR-0018.

Fortran:

ANSI Forttan 71 standard or Cray extension to standard: Oay extension

Levclofvecto~tion:Fun

Code generation: In-line

2-72 D

SHIFI'L(3M) SIllFfL(3M)

EXAMPLES

SR-Ol13

The following section of Fortran code shows the SH1FfL function used in the case where argJ is of
type integer. The bit pattern of argJ and the bit pattern of the result are also given. For clarity. a 16-
bit value is used instead of a 64-bit value.

INTEGER II, 12, 13

12 = 5
I3 = SHJFTI..(II.I2)

1111111111111111 10 I 0 1 0 10 I 0 10 I 0 I 01
11 (argJ)

11 I 1 I 1 1 0 1 0 10 I 0 lojo I 0 10 10 I 0 I 0 I 0 loj

I3 (result)

2-73 D

SIUFI'R(3M) SHIFrR(3M)

NAME

SHIFfR - Performs a right shift with zero fill

SYNOPSIS

Fortran:

b = SHIFTR(argl,arg2)

DESCRIFl'ION

arg] = The value to be shifted

CfT77: type Boolean, integer, real, or pointer
CFr: type Boolean, integer, or real

arg2 = The number of bits to shift the value

- type integer

For arg2 in the range 0 ~ arg2 ~ 224_1, SHInR performs a right shift with zero fill of the 64-bit
representation of argl by arg2 bits. Note that when arg2 is in the range 64 ~ arg2 ~ 224_1. SmFTR
returns a value with all bits set to O.

For arg2 in the range 224 ~ aTg2 < 264-1, SHIFfR returns an undefined result.

SmFTH is intrinsic for CFf and CFf77.

IMPLEMENTATION

NOTES

SR-OI13

This routine is available to users of both the COS and UNICOS operating systems.

The bit representation of the logical data type is not consistent among Cray machines. For further
details. see the Fortran (CPr) Reference Manual, publication SR-0009, and the CFr77 Reference Manual.
publication SR-0018.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: eray extension

Level of vectorization: Full

Code generation: In-line

2-74 D

SllFI'R(3M) SHIFI'R (3M)

EXAMPLES

SR-OI13

The following section of Fortran code shows the SHIFTR function used in the case where argJ is of
type integer. The bit pattern of argJ and che bit pattern of che result are also given. For purposes of
clarity, a I6-bit value is used instead of a 64-bit value.

IN1EGER II, 12, 13

12 = 5
13 = SHIFTR(Il,I2)

1111111111111111 10 I 0 1 0 10 1 0 I 0 10! 01
II (argJ)

10 10 1 0 I 0 1 0 1111111111 ! 11111 10 I 0 10 1
13 (result)

2-75 D

SIGN(3M)

NAME

SIGN, ISIGN, DSIGN - Transfers sign of numbers

SYNOPSIS

Fortran:

r = SIGN(real.real)

i = ISIGN(integer,integer)

d = DSIGN(double,double)

DESCR.IPTlON

This function evaluates one of the following equations. depending on the sign of the number:

y::::: Ixd if X2~O
or

y =-lx11 if %2<0

SIGN ttansfers the sign from one real number to another.
ISIGN transfelS the sign from one integer to another.
DSIGN transfers the sign from one double-precision number to another.

SIGN is the generic function name.

SIGN, ISIGN, and DSIGN are intrinsic for CFf and CFT77.

ARGUMENT RANGE

1 % 1 I ' I x21 < 00 (- :: l~

IMPLEMENTATION

NOTES

SR-OI13

These routines are available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: In~line

2-76

SIGN(3M)

o

SIN(3M) SIN(3M}

NAME

SIN, DSIN, CSIN, sin - Computes the sine

SYNOPSIS

Fortran:

r = SIN(real)

d = DSIN(double)

z = CSIN(complex)

CAL register usage:

Scalar SIN:

SIN % (call by register)
on entry (S I) = argument
on exit (S I) = result

Scalar DSIN:

DSlN% (call by register)
on entry (Sl) and (S2) = argument
on exit (S I) and (S2) = result

Scalar CSIN:

CSIN~ (call by register)
on entry (S 1) and (S2) = argument
on exit (S 1) and (S2) = result

DESCRIPTION

These functions evaluate y = sin(x).

C:

'include <math.h>

double sin(x)

double X;

Vector SIN:

%SIN% (call by register)
on entry (VI) = argument vector
on exit (VI) = result vector

Vector DSIN:

%DSIN% (call by register)
on entry (VI) and (V2) = argument vector
on exit (VI) and (V2) = result vector

Vector CSIN:

%CSIN% (call by register)
on entry (VI) and (V2) = argument vector
on exit (VI) and (V2) = result vector

SIN and sin (callable only from C programs) return the real sine of their real arguments.
DSIN returns the double-precision sine of its double-precision argument.
CSIN returns the complex sine of its complex argument.

SIN is the generic function name.

SIN, DSIN, and CSlN are intrinsic for eFT and CFrn.

ARGUMENT RANGE

SIN: I x 1<224

DSIN: I x 1 < 248

CSIN: IXrl<224, IXil<213* 102

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OI13 2-77 D

SIN(3M)

NOTES

Fortran:

c:

SR-0113

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: Extemal

ANSI C standard or Cray extension to standard: ANSI standard

Level of vectorization: None

Code generation: Extemal

2-78

SIN(3M)

D

SINH (3M) SINH(3M)

NAME

SINH, DSINH, sinh - Computes hyperbolic sine

SYNOPSIS

Fortran:

r "" SINH (real)

d ::: DSINH(double)

CAL register usage:

Scalar SINH:

SlNH% (call by register)
on entry (SI) = argument
on exit (SI) = result

Scalar DSINH:

DSINH% (call by register)
on entry (SI) and (52) = argument
on exit (51) and (S2) = result

c:

'include <math.h>

double sinh(x)

double Xj

Vector SINH:

%SlNH% (call by register)
on entry (VI) = argument vector
on exit (VI) = result vector

Vector DSINH:

%DSINH% (call by register)
on entry (VI) and (V2) = argument vector
on exit (Vi) and (V2) = result vector

DESCRIPTION

These functions evaluate y = sinh(x).

SINH and sinh (callable only from C programs) return the real hyperbolic sine of their real argument
DSINH returns the double-precision hyperbolic sine of its double-precision argument.

SINH is the generic function name.

SINH and DSINH are intrinsic for CFf and CFI77.

ARGUMENT RANGE

I x 1< 213 * In 2

IMPLEMENTATION

NOTES

SR-0113

These routines are available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: External

2-79 D

SINH (3M)

c:

SR-Ol13

ANSI C standard or Cray extension to standard: ANSI standard

Level of vectorization: None

Code generation: External

2-80

SINH(3M)

D

SNGLR(3M)

NAME

SNGLR - Returns closest real approximation to double precision

SYNOPSIS

Fortran:

, = SNGLR(double)

DESCRIPTION

SNGLR returns the closest real awroximation to its double-precision argument.

SNGLR(3M)

The double-precision argument is rounded to a single word. using the high-order bit of the second word.

SR-0l13 2-81 D

SQRT(3M) SQRT(3M)

NAME

SQRT, DSQRT, CSQRT, sqrt - Computes square root

SYNOPSIS

Fortran:

T = SQRT(real)

d = DSQRT(double)

z = CSQRT(complex)

CAL register usage:

Scalar SQRT:

SQRT% (call by register)
on entry (S 1) = argument
on exit (S 1) = result

Scalar DSQRT:

DSQRT% (call by register)
on entry (S 1) and (52) = argument
on exit (S 1) and (52) = result

Scalar CSQRT:

CSQRT% (call by register)
on entry (S 1) and (S2) = argument
on exit (51) and (52) = result

c:

'include <mHth.h>

double sqrt(x)

double X;

Vector SQRT:

%SQRT% (call by register)
on entry (VI) = argument vector
on exit (VI) ;;:; result vector

Vector DSQRT:

%DSQRT% (call by register)
on entry (VI) and (V2) = argument vector
on exit (VI) and (V2) = result vector

Vector CSQRT:

CJ5ICSQRT% (call by register)
on entry (VI) and (V2) = argument vector
on exit (VI) and (V2) = result vector

DESCRIPTION

These functions evaluate y ;;:; x 112,

SQRT and sqrt (caIlable only from C programs) return the real square root of their real argument.
DSQRT returns the double-precision square root of its double-precision argument
CSQRT returns the complex square root of its complex argument

SQRT is the generic function name.

SQRT, DSQRT, and CSQRT are intrinsic for CPr and CFT77.

ARGUMENT RANGE

SQRT, DSQRT: 0 S x < 00 (00:::: I~

CSQRT: I x r I. I x i I < 00

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 2-82 D

SQRT(3M)

NOTES

Forttan:

c;

SR·Ol13

ANSI Forttan 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: External

ANSI C standard or Cray extension to standard; ANSI standard

Level of vectorization: None

Code generation: External

2-83

SQRT(3M)

D

TADD(3M) TADD(3M)

NAME

TADD, TASS, TDIV, TDSS, TMLT, TMSS, TSUB, TSSS - Performs triple-precision arithmetic

DESCRIPTION

T ADD, TASS - Triple-precision addition
TDlV, TDSS - Triple-precision division
TMLT, TMSS - Triple-precision multiplication
TSUB, TSSS - Triple-precision subtraction

Triple-precision arithmetic results are stored in three contiguous 64-bit computer words. In the first
word, the high-order 16 bits contain the exponent, and the low-order 48 bits contain the first part of the
value. The rest of the value is contained in the low-order 48 bilS of the second and third words. The
high-order 16 bits of the second and third words must be O. If these routines are called from Fortran,
the arguments must be passed in 3-word arrays.

EXAMPLES

SR-OI13

Fortran:

REAL C(3),D(3),RSLT(3)
C(l) = 0 53210 45670 12345670123B
C(2) = 0 00000 0123456701234567B
C(3) = 0 00000 7654321076454321B
D(1) = 1 53266 7245435774406773B
D(2) "'" 0 00000 0227373374570723B
D(3) = 000000 0326757726541757B
CAlL TADD(C»,RSLT)

CAL: (Cal1 by address)

CALL T ASS,(Cl,C2,C3,D 1 ,D2,D3)

CAL: (Call by value)

51
52
53
54
S5
S6
CALLV

Cl
C2
C3
Dl
D2
03

CI,O
C2,O
C3,O
Dl,O
D2,0
D3,O
TASS%

CON
CON
CON
CON
CON
CON

0'0532104567012345670123
0'0000000123456701234567
0'0000007654321076454321
0'1532667245435774406773
0'0000000227373374570723
0'0000000326757726541757

The results are returned in registers S 1, S2, and S3.

2-84 D

TAN(3M)

NAME

TAN, DTAN, tan - Computes tangent

SYNOPSIS

Fortran:

r = T AN(real)

d :::: DTAN(doub/e)

CAL register usage:

Scalar TAN:

TAN % (call by register)
on entry (SI) = argument
on exit (SI) = result

Scalar DT AN:

DTAN% (call by register)

c:
'include <math.1I>

double tan(x)

double x;

Vector TAN:

%TAN% (call by register)
on entry (VI) = argument vector
on exit (VI) = result vector

Vector DT AN:

%DTAN% (call by register)

TAN(3M)

on entry (S 1) and (S2) = argument on entry (VI) and (V2) = argument vector
on exit (SI) and (S2) = result on exit (VI) and (V2) = result vector

DESCRIPTION

These functions evaluate y = tan(x).

TAN and tan (callable only from C programs) return the real tangent of their real argument.
DTAN returns the double-precision tangent of its double-precision argument.

TANis the generic function name.

TAN and DT AN are intrinsic for CFf and CFf77.

ARGUMENT RANGE

Ixj<224

IMPLEMENTATION

NOTES

SR-OI13

These routines are available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: External

2-85 D

TAN(3M)

C:

SR-Ol13

ANSI C standard or Cray extension to standard: ANSI standard

Level of vectorization: None

Code generation: External

2-86

TAN(3M)

D

TANH(3M) TANH(3M)

NAME

TANH, DTANH, tanh - Computes hyperbolic tangent

SYNOPSIS

Fortran:

r '" T ANH(real)

d = DTANH(double)

CAL register usage:

Scalar TANH:

TANH% (call by register)
on entry (51) = argument
on exit (51) = result

Scalar DTANH:

DTANH% (call by register)

c:

#include <math.h>

double tanh(x)

double x;

Vector TANH:

%TANH% (call by register)
on entry (VI) = argument vector
on exit (VI) = result vector

Vector DT ANH:

%DTANH% (call by register)
on entry (51) and (S2) = arg words 1 and 2
on exit (SI) and (S2) = result words 1 and 2

on entry (VI) and (V2) = argument vector
on exit (VI) and (V2) = result vector

DESCRIPTION

These functions evaluate y :; tanh(x).

TANH and tanh (callable only from C programs) return the real hyperbolic tangent of their real argu
ment.
DT ANH returns the double-precision hyperbolic tangent of its double-precision argument.

TANH is the generic function name.

TANH and DT ANH are intrinsic for CFf and CFf77.

ARGUMENT RANGE

I X I < 213 * In 2

IMPLEMENTATION

NOTES

SR-Ol13

These routines are available to users of both the COS and UNICOS operating systems.

Fortran:

ANSI Fortran 77 standard or Cray extension to standard: ANSI standard

Level of vectorization: Full

Code generation: External

2-87 o

TANH(3M)

c:

SR-Ol13

ANSI C standard or Cray extension to standard: ANSI standard

Level of vectorization: None

Code generation: External

TANH(3M)

D

INTRO(3X) INTRO(3X)

3. COS DATASET MANAGEMENT SUBPROGRAMS

Dataset management subprograms provide the user with the means of managing cos permanent
datasets; creating, staging, and releasing datasets; and changing dataset attributes. These routines are
grouped into two subsections:

• cos control statement type subprograms

• cos dataset search type subprograms

IMPLEMENTATION

The dataset management routines are available only under cos.

cos CONTROL STATEMENT TYPE SUBPROGRAMS

SR-0113

A control-statement-type subprogram resembles Cray job conttollanguage (JCL) statements in name and
purpose. A subprogram, however, can be called from within Fortran or CAL programs while a JCL
statement cannot. See the COS Reference Manual, publication SR-OOll, for a description of control
statements, parameters and keywords. and JCL error codes.

The following is an example of a Fortran call to a conttol-statement-type subprogram:

EXAMPL='EXAMPL'L
IDC",'PR'L
CALL ASSIGN(irtc, 'DN'L,EXAMPL, 'U'L, 'MR 'L, 'OC'L,IDC)

Variable inc is an integer that contains a status code upon return. A status code of 0 indicates no errors.

This type of subprogram requiros ca1l-by-address subroutine linkage with the following calling
sequence:

CALL SUBROUTINE NAME(stat.keyl,key2, ... ,keyn)

stat Rennned status code

key Keyword/value combinations in one of the following formats (must be entered in
uppercase):

• KEYWORD'L. 'V ALUE'L
or

'KEYWORD'L

When the keyword can accept multiple parameter values, the values must be passed as an array: one
parameter per word, tenninated by a zero word. For example, the COS control statement
MODIFY(DN=DATASET,PAM=R:W) would be coded as follows:

INTEGER PAM(3)
DATA PAM/'R'L, 'W'L, 01
CALL MODIFY(ISTAT, 'DN'L. 'DATASET'L, 'PAM'L, PAM)

3-1 D

INTRO(3X) INTRO(3X)

SR-OI13

Permanent Dataset Management routines access the COS Permanent Dataset Manager (PDM) and
return the status of the operation in stat. The value is 0 if an error condition does not exist and nonzero
if an error condition does exist The nonzero error codes correspond to the PMST codes defined in the
cos Reference Manual. The following is a list of the PDM routines and their functions.

Control Statement

ACCESS

ADJUST

DELETE

MODIFY

PERMIT

SAVE

Function

Associates a permanent dataset with the job

Expands or contracts a permanent dataset

Removes a saved dataset. The dataset remains available to the job until
it is released or the job terminates. DELETE with PDN parameter
requires special privilege SCRDSC (read Dataset Catalog).

Changes the permanent dataset characteristics

Specifies the user access mode to a permanent dataset

Makes a dataset permanent and enters the dataset's identification and
location into the Dataset Catalog (DSC)

Dataset staging routines stage datasets to or from a front-end processor or to the Cray input queue.
The transfer aborts and an error code is returned if an error occurs. The error codes correspond to the
PMST codes in the cos Reference Manual. The following is a list of dataset staging routines and their
functions.

Conlrol Statement

ACQUIRE

DISPOSE

FETCH

SUBMIT

Function

Obtains a front-end resident datase~ stages it to the Cray mainframe. and
makes it permanent and available to the job making the request

Directs a dataset to the specified front-end processor or designates it to a
scratch dataset

Brings a front-end resident dataset to the Cray mainframe and makes the
dataset available to the job

Places a job dataset into the Cray input queue. When called as an integer
function, the value of the function is the job sequence number of the sub
mitted job. if successful.

Definition and control routines allow dataset attributes to be changed and datasets to be created and
released. They return the status of the operation in stal. The value of the stat is 0 if no error condition
exists and nonzero if an error condition exists. ASSIGN returns a three-digit code that corresponds to
log file message codes that begin with SL. Thus, a return code of 020 from ASSIGN corresponds to the
following log file message:

SL020 - INVAliD DATASET NAME OR UNIT NUMBER

All of the SL messages and descriptions of their meanings can be found in the COS Message Manual,
publication SR-0039.

3-2 D

INTRO(3X) INTRO(3X)

The following is a list of definition and control routines.

Control Statement

ASSIGN

OPrION

RELEASE

Function

Opens a dataset for reading and writing and assigns characteristics to it

Changes the user·specified options, such as lines per page and dataset
statistics, for a job

Closes a dataset, releases I/O buffer space, and renders it unavailable to
the job

COS DATASET SEARCH TYPE SUBPROGRAMS

Dataset search subprograms add information to or return information about a dataset.

The following table contains the purpose, name, and heading of each dataset search type routine.

COS Dataset Search Type Subprograms
Purpose Name HeadinJ!:

Add a name to the Logical File ADDLFf ADDLFT
Table (LFT)
Search for a Dataset Parameter GETDSP GETDSP
Table (DSP) address

Determine if a dataset has been IFDNT IFDNT
accessed or created

Allow a program to access datasets SDACCESS SDACCESS
in the System Directory

SR·0113 3·3 D

ADDLFf(3COS)

NAME

ADDLFr - Adds a name to the Logical File Table (LFD

SYNOPSIS

CALL ADDLFT(dn.dsp)

DESCRIPTION

dn Name to add to the LFf

dsp Dataset Pammeler Table (DSP) address for the name specified by dn

IMPLEMENTATION

This routine is available only to the users of the COS operating system.

SR-Ol13 3-4

ADDLFT(3COS)

D

CALLCSP(3COS) CALLCSP(3COS)

NAME

CALLesp - Executes a COS control statement

SYNOPSIS

CALL CALLCSP(slTing)

DESCRIPTION

NOTE

string A valid COS JCL statement. either packed into an integer array and tenninated by a null
byte or specified as a literal string.

The conuel stalement specified in the string is executed as if it had been found next in the job stream.
For example. the following call invokes the NOTE utility. which writes HIGH. THEIR! to the $OUT
dataset

CALL CALLCSP('NOTE,TEXT="HIGH, THEIR!".')

Control does not return from the CALLCSP routine.

In general. use CALLesp instead of LGO.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

SR-Ol13 3-5 D

GETDSP (3COS) GETDSP(3COS)

NAME

GETDSP - Searches for a Dataset Parameter Table (DSP) address

SYNOPSIS

CALL GETDSP(unil,dsp.ndsp,dn)

DESCRIPTION

unit Dataset name or unit number

dsp DSP address

ndsp Negative DSP offset relative to the base address of nsps, or nsp address if the nsp is below
JCHLM.

dn Dataset name (ASCII, left-justified. blank-filled)

GETDSP searches for a nsp address. If none is found. a nsp is created.

IMPLEMENTATION

This routine is available only to the users of the COS operating system.

SR-0113 3-6 n

IFDNf (3COS)

NAME

IFDNT - Determines if a dataset has been accessed or created

SYNOPSIS

stat:::IFDNT(dn)

DESCRIPTION

stat -1 (TRUE) if dataset was accessed or opened; otherwise 0 (FALSE).

dn Dataset name (ASCII, left-justified. zero-filled)

NOTE

IFDNT and stat must be declared LOGICAL in the calling program.

EXAMPLE

IF (.Naf. IFDNTCMYFILE'L)) CALL ACCESS(lSTAT,'DN'L,'MYFILE'L)

IFDNf (3COS)

If you access MYFILE twice in a program, the system abons the job. IFDNT allows you to test for its
having been previously accessed.

lMPLEMENTATION

SR-Ol13

This routine is available only to the users of the cos operating system.
The function of IFDNT can be achieved through the Fortran INQUIRE routine. which is available under
both COS and UNICOS.

3-7 D

SDACCESS (3COS) SDACCESS (3COS)

NAME

SDACCESS - Allows a program to access datasets in the System Directory

SYNOPSIS

CALL SDACCESS(ista(,dn)

DESCRIPTION

istat An integer variable to receive the completion status (0 or 1).

o The dataset is a system dataset and has been accessed.
1 The dataset is not a system dataset and has not been accessed.

dn Name of the system dataset to be accessed

This function has no corresponding control statement. Datasets accessed in this manner are automati
cally released at the end of the job step.

EXAMPLE

IMPLEMENTATION

PROGRAM SDTEST
CHARACTER·7 NAME
INTEGER X
READ·, NAME
X;;;;IFDNf(NAME)

IF (X.EQ.O) THEN
PRINT·,'''·DATASET ',NAME. 'WAS NOT LOCAL· •
CALL SDACCESS(STAT,NAME)
IF (STAT.NE.O) THEN

PRINf·: ·DATASET ',NAME,' NOT AVAILABLE'
CALL ABORT

ELSE
PRINT·.··· ... DATASET ',NAME,' ACCESSED BY SDTEST'

ENDIF
ELSE

PRINT·. 'DATASET' .NAME,' ALREADY LOCAL'
ENDIF
END

This routine is available only to the users of the COS operating system.

SR-Ol13 3-8 D

INTRO(3X) INTRO(3X)

4. LINEAR ALGEBRA SUBPROGRAMS

SR-Ol13

The linear algebra subprograms are written to run optimally on Cray computer systems. These subpro~
grams use call·by-address convention when called by a Fortran, C, or CAL program.

The linear algebra subprograms include the following:

• Basic linear algebra subprograms

• Linear recurrence routines

• Matrix inverse and multiplication routines

• Filter routines

• Gather·scatter routines

• LINP ACK. and EISPACK routines

Basic Linear Algebra Subprograms

The Cray computer user has access to the Basic Linear Algebra Subprograms (BLAS), the level 2 BLAS
(BLAS 2). and the level 3 BLAS (BLAS 3). The level 1 package is described first, and is followed by
descriptions of the level 2 and level 3 packages.

BLAS

The level 1 BLAS is a package of CAL-coded routines and their extensions. BLAS routines are
used for basic vector operations. The package includes only the Single-precision and complex
versions. The following operations are available:

• A constant times a vector plus another vector

• Dot products

• Euclidean norm

• Givens transformations

• Sum of absolute values

• Vector copy and swap

• Vector scaling

4-1 o

INTRO(3X)

SR-0113

INTRO(3X)

Each BLAS routine has a real version and a complex version. There are several frequently used
variables that must be declared in your program. The following table lists common variables and
their Fortran type declaration and dimensions. in generalized terms.

Linear A!Kebra Variables
Variable Description Fortran ~ and Dimension

SX Primary real array or vector REAL SX(mx)

Sy Secondary real array or vector REAL SY(my)

SA Real scalar REAL SA

CX Primary complex array or vector COMPLEX CX(mx)

CY Secondary complex array or vector COMPLEX CY(my)
CA Complex scalar COMPLEX CA

INCX Increment between elements
in SX or CX INTEGER INCX

INCY Increment between elements
in SY or CY INTEGER INCY

N Number of elements in vector to compute INTEGER N

The mmlmum dimensions of the preceding arrays are as follows: mx=l+(N-l)*IINCXI and
my=1+(N-l)*~INCYI. respectively; where N is the length of each vector operand. In all routines,
if N~. inputs and outputs return unchanged.

The Fortran type declaration for complex functions is especially important; declare them to avoid
type conversion to zero imaginary parts. Fortran type declarations for function names follow:

Type

REAL

COMPLEX

Function Name

SASUM. SCASUM, SDOT, SNRM2, SCNRM2

CDOTC,CDOTU

Negative incrementation - For routines managing noncontiguous elements in a one-dimensional
array, the parameters incx and incy specify increments. An increment value of 1 or -1 indicates
contiguous elements.

Given an n-element array A consisting of A(l)~ A(2), A(3), ... ,A(n), for positive increments (incx >
0):

• The managed array elements are as follows:

A(l), A(l+incx). A(1+2*incx), A(1+3*incx), .•• , A(l+(p-l)*incx),

where p is the number of array elements to be processed.

• For n MODULO incx > 0, pSI +~. Otherwise. p S ~.
mcx mcx

4-2 o

INTRO(3X)

SR-01l3

Given the previous array and a negative increment (incx < 0):

• The managed array elements are as follows:

A(l+(p-l)*ABS(inc.x»,
A(1+(p-2)*ABS(inc.x», A(1+(p-3)· ABS(incx»,
A(1+(p.4)·ABS(incx», •••• A(1+(p-p)*ABS(incx».

where p is the number of array elements to be processed.

• For n MODULO incx > 0, p S 1+ ABS~incx) . Otherwise. p s ABS~inCX)

EXAMPLE - The real function ISAMAX returns the relative index of I such that
ABS(A(I» = MAX ABS(A(l+(J-l)"'INCX» for J=1,2,3, ..• {J.

The call from Fortran is as follows:

RELINDEX = ISAMAX(p,array,incx)

Assume A(1)=2.0, A(2)=4.0, A(3)=6.0, ••• ,A(20)=40.0 (the number of elements n=20).

With a positive increment (incx=3). the number of elements processed p=7
(since 20 MODULO 3 > 0, p = l+n/incx = 1+20/3 = 1+6 = 7).

Therefore. the function is evaluated as follows:

ISAMAX(7,A,3)=
rei. index of MAX (2.0,8.0,14.0,20.0,26.0,32.0,38.0)

= relative index of 38.0
=7

With a negative increment incx=-3. the number of elements processed p=7
(since 20 MODULO ABS(-3) > 0, p = 1+nlABS(incx) = 1+20/3 = 1+6 = 7.

Therefore, the function is evaluated as foUows:

ISAMAX(7,A,-3)=
reI. index of MAX (38.0,32.0,26.0,20.0,14.0,8.0,2.0)

= relative index of 38.0
= 1

4-3

INTRO(3X)

D

INTRO(3X)

SR-01l3

INTRO(3X)

The following table contains the purpose, name, and manual entry of each level 1 BLAS routine.

The "manual entry" is the name of the manual page containing documentation for the routine(s)
listed.

Levell BLAS

Puroose Name Manual Entry
Sum the absolute values of a real or SASUM SASUM
complex vector SCASUM
Add a scalar multiple of a real or SAXPY SAXPY
complex vector to another vector CAXPY

Copy a real or complex vector into SCOPY SCOPY
another vector CCOpy

Apply a complex Givens plane rotation CROT CROT
Compute a complex Givens plane rotation matrix CROTG CROTG
Compute a dot product of two real SDOT DOT
or complex vectors CDOTC

CDOTU
Scale a real or complex vector SSCAL SCAL

CSSCAL
CSCAL

Compute the product of a column vector SMXPY SMXPY
and a matrix and add to another column
vector

Compute the product of a row vector and a SXMPY SXMPY
matrix and add to another row vector

Compute the Euclidean norm or SNRM2 SNRM2
12 norm of a real or complex SCNRM2
vector
Compute a sparse dot product of two SPDOT SPDOT
real vectors or add a scalar multiple SPAXPY
of a vector to a sparse vector

Apply an orthogonal plane rotation SROT SROT
Construct a Givens plane rotation SROTG SROTG
Apply a modified Givens plane SROTM SROTM
rotation

Construct a modified Givens plane SROTMG SROTMG
rotation

Sum the elements of a real or SSUM SSUM
complex vector CSUM
Swap two real or two complex anays SSWAP SSWAP

CSWAP

4-4 D

INTRO(3X) INTRO(3X)

BLASl

The Basic linear Algebra Subprograms, level 2 (BLAS 2). consist of CAL routines for Wlpacked
data of type real and complex. They handle matrix-vector operations. The following table
describes these routines. The "manual entry" is the name of the manual page containing docu
mentation for the routine(s) listed. NOTE: Routines for type complex data (beginning with "C")
are available only to COS users.

Level 2 BLAS

Puroose Name Manual Entry

Multiply a real vector by a real general SGBMV SGBMV
band mattix
Multiply a complex vector by a complex general CGBMV CGBMV
band matrix
Multiply a real vector by a real general matrix SGEMV SGEMV
Multiply a complex vector by a complex general CGEMV CGEMV
mauix
Perform rank 1 update of a real general SGER SGER
matrix
Perform conjugated rank 1 update of a complex CGERC CGERC
general matrix
Perform unconjugated rank 1 update of a complex CGERU CGERU
general matrix
Multiply a real vector by a real symmetric SSBMV SSBMV
bandmattix
Multiply a complex vector by a complex Hermitian CHBMV CnBMV
band matrix
Multiply a real vector by a real symmetric matrix SSYMV SSYMV
Multiply a complex vector by a complex Hermitian CHEMV CnEMV
matrix
Perform symmettic rank 1 update of a real SSYR SSYR
symmetric matrix
Perform Hermitian rank 1 update of a complex CHER CHER
Hermitian matrix

Perform symmetric rank 2 update of a real SSYR2 SSYR2
symmetric matrix
Perfonn Hermitian rank 2 update of a complex CHER2 CHER2
Hermitian matrix
Multiply a real vector by a real triangular STBMV STBMV
band matrix
Multiply a complex vector by a complex triangular CTBMV CTBMV
band matrix
Solve a real triangular banded system STBSV STBSV
of equations
Solve a complex triangular banded system CTBSV CTBSV
of equations

Multiply a real vector by a real triangular matrix STRMV STRMV

Multiply a complex vector by a complex triangular CTRMV CTRMV
matrix
Solve a real triangular system of equations STRSV STRSV

Solve a complex lriangular system of equations CTRSV CTRSV

4-5 D

INTRO(3X)

SR-0113

INTRO(3X)

Level 2 BLAS routines for packed data are also available, but they are written in unoptimized
Fortran and CRI does not recommend their use. They will be optimized in a future release.

BLAS3

The Basic Linear Algebra Subprograms, level 3 (BLAS 3), consist of CAL routines for unpacked
data of type real and complex. They handle matrix-matrix operations. The following table
describes these routines. NOTE: These routines are available only to cos users.

The "manual entry" is the name of the manual page containing documentation for the routine(s)
listed.

The last two routines in this table, SGEMMS and CGEMMS, are Cray extensions to the standard
set of BLAS 3 routines.

Level 3 BLAS (COS only)

Purpose Name Manual Entry

Multiply a real general matrix by SGEMM SGEMM
a real general matrix

Multiply a complex general matrix by CGEMM CGEMM
a complex general matrix

Multiply a real general matrix by SSYMM SSYMM
a real symmetric matrix

Multiply a complex general matrix by CSYMM CSYMM
a complex symmetric matrix

Multiply a complex general matrix by a CHEMM CHEMM
complex Hermitian matrix

Perform symmetric rank k update of a SSYRK SSYRK
real symmetric matrix

Perform symmetric rank k update of a CSVRK CSYRK
complex symmetric matrix

Perform Hermitian rank k update of a CHERK CHERK
complex Hermitian matrix

Perform symmetric rank 2k update of a SSVR2K SSYR2K
real symmetric matrix
Perform symmetric rank 2k update of a CSYR2K CSVR2K
complex symmetric matrix

Perform Hermitian rank 2k update of a GHER2K CHER2K
complex Hermitian matrix

Multiply a real general matrix by a STRMM STRMM
real triangular matrix
Multiply a complex general matrix by a CTRMM CTRMM
complex triangular matrix

SoLve a real triangular system of equations STRSM STRSM
with multiple right-hand sides

Solve a complex triangular system of equations CTRSM CTRSM
with multiple right-hand sides

Multiply a real general matrix by a SGEMMS SGEMMS
real general matrix using a variation
of Suassen's algorithm

Multiply a complex general matrix by a CGEMMS CGEMMS
complex general matrix using a variation
of Suassen's algorithm

D

INTRO(3X) INTRO(3X)

SR-0113

Linear Recurrence Routines

Linear recurrence routines solve first-order and some second-order linear recurrences. A linear
recurrence uses the result of a previous pass through the loop as an operand for subsequent passes
through the loop. thereby preventing vectorization. Therefore, these routines can be used to optimize
Fortran loops containing linear recurrences.

The following table contains the purpose, name, and manual entry of each linear recurrence routine.

The "manual entry" is the name of the manual page containing documentation for the routine(s) listed.

Linear Recurrence Subroutines
Purpose Name Manual Entry

Solve first-order linear recurrences, FOLR FOLR
overwriting input vector FOLRP

Solve first-order linear recurrences FOLR2 FOLR2
and write the solutions to a new vector FOLR2P

Solve special first-order linear recurrences FOLRC FOLRC
Solve for the last term of a first-order FOLRN FOLRN
linear recurrence using Homer's method

Solve for the last term of a FOLRNP FOLRNP
first-order linear recurrence

Solve second-order linear recurrences SOLR SOLR
SOLRN
SOLR3

Compute partial products RECPP RECPP

Compute partial sums RECPS RECPS

Matrix Inverse and Multiplication Routines

The matrix inverse subroutine, MINV, solves systems of linear equations by inverting a square matrix,
using Gauss-Jordan elimination. MXM and MXMA are two optimized matrix multiplication routines.
MXV and MXV A are similar to MXM and MXMA; however, MXV and MXV A handle the special case of
matrix times vector multiplication.

The following table contains a summary of the matrix inverse and multiplication routines.

The "manual entry" is the name of the manual page containing documentation for the routine(s) listed.

Mattix Inverse and Multiplication Routines
Purpose Name Manual Entry

Solve systems of linear equations MINV MINV
by inverting a square matrix

Multiply a matrix by another matrix MXM MXM
(unit increments)

Multiply a matrix by another matrix MXMA MXMA
(arbitrary increments)

Multiply a matrix and a vector MXV MXV
(unit increments)

Multiply a matrix and a vector MXVA MXVA
(arbitrary increments)

4-7 D

INTRO(3X) INTRO(3X}

SR-0113

Filter Routines

The filter routines are used for filter analysis and design. They also solve more general problems. For
detailed descriptions, algorithms, perfonnance statistics, and examples, see Linear Digital Filters for
CFf Usage, CRI publication SN-0210.

The following table contains a summary of the filter routines.

The "manual entry" is the name of the manual page containing documentation for the routine(s) listed.

Filter Routines
Purpose Name Manual Entry

Compute a correlation of two vectors FILTERG FILTERG
Compute a correlation of two vect:ors FILTERS FILTERS
(assuming the filter coefficient
vector is symmetric)
Solve the Weiner-Levinson linear OPFILT OPFILT
equations

Gather-Scatter Routines

The GATHER and SCATTER routines gather a vector from a source vector or scatter a vector into
another vector, given a vect:or of indices specifying which elements of the source or target vect:or are to
be accessed or changed.

UNPACK and EISPACK Routines

UNPACK routines solve systems of linear equations and compute the QR, Cholesky, and singular value
decompositions. EISPACK routines solve eigenvalue problems; they also compute and use singular
value decompositions.

Single-precision Real aod Complex LINPACK Routines

UNPACK is a package of Fortran routines that solve systems of linear equations and compute the
QR, Cholesky, and singular value decompositions. The original Fortran programs are documented
in the UNPACK User's Guide by J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart,
published by the Society for Industrial and Applied Mathematics (SIAM). Philadelphia, 1979,
Library of Congress catalog card number 78-78206 (available through Cray Research as publica
tion SI-0113).

Each single-precision version of the LINPACK routines has the same name, algorithm. and calling
sequence as the original version. Optimization of each routine includes the following:

• Replacement of cal1s to the BLAS routines SSCAL, SCOPY, SSWAP, SAXPY, and SROT
with in-line Fortran code vectorized by Cray FortIan compilers

• Removal of Fortran IF statements where the result of either branch is the same

• Replacement of SDOT to solve triangular systems of linear equations in SGESL, SPOFA,
SPOSL, STRSL, and SCHDD with more vectorizable code

These optimizations affect only the execution order of floating-point operations in modified DO
loops. See the UNPACK User's Guide for further descriptions. The complex routines have been
added without extensive optimization.

4-8 D

INTRO(3X)

SR-01l3

INTRO(3X)

Single-precision EISPACK Routines

EISPACK is a package of Fortran routines for solving the eigenvalue problem and for computing
and using the singular value decomposition.

The original Fortran versions are documented in the Matrix Eigensystem Routines - EISPACK
Guide, second edition, by T. B. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C.
Klema, and C. B. Moler, published by Springer-Verlag, New York, 1976, Library of Congress
catalog card number 76-2662 (available through Cray Research as publication S2-0113)~ and in the
Matrix Eigensystem Routines - EISPACK Guide Extension by B. S. Garbow, J. M. Boyle, J. J.
Dongarra. and C. B. Moler, published by Springer-Verlag, New York, 1977, Library of Congress
catalog card number 77-2802 (available through Cmy Research as pUblication S3-0113).

Each libsci version of the EISPACK routines has the same name, algorithm, and calling sequence
as the original version. Optimization of each routine includes the following:

• Use of the BLAS routines SDOT, SASUM, SNRM2, ISAMAX, and ISMIN when applica-
ble

• Removal of Fortran IF statements where the result of either branch is the same

• Unrolling complicated Fortran DO loops to improve vectorization

• Use of the Fortran compiler directive CDIR$ IVDEP when no dependencies preventing
vectorization exist

These modifications increase vectorization and. therefore. reduce execution time. Only the order
of computations within a loop is changed; the modified version produces the same answers as the
original versions unless the problem is sensitive to small changes in the data.

4-9 D

CGBMV (3COS) CGBMV (3COS)

NAME

CGBMV - Multiplies a complex vector by a complex general band matrix

SYNOPSIS

CALL CGBMV (trans,m,n.kl,ku,alpha,a,lda,x.incx,bela.y.incy)

DESCRIPTION

CGBMV perfonns one of the following matrix-vector operations:

y := alpha*a*x+beta*y,

or y:= alpha*a' *x+beta*y,

or y:= alpha*conjg(a')*x+beta>t:y

Arguments alpha and beta are scalars, x and y are vectors, a is an m-by-n band matrix, kl is a number
of subdiagonals, ku is a number of superdiagonals, and a' is the transpose of a.

SR-Ol13

trans Type character* 1.

On entry, trans specifies the operation to be performed:

If trans = 'N' or 'n', y:= alpha>t:a*x+beta>t:y.
If trans = 'T' or 't', y:= alpha>t:a'*x+beta*y.
If trans = 'c' or 'c', y:= alpha*conjg(a')*x+beta*y.

On exit, trans is unchanged.

m Type integer.
On entry. m specifies the number of rows in matrix a.
Argument m must be at least O.
On exit, m is unchanged.

n Type integer.
On entry, n specifies the number of columns in matrix a.
Argument n must be at least O.
On exit, n is unchanged.

kl Type integer.
On entry, kl specifies the number of subdiagonals of matrix a.
Argwnent kl must satisfy O.LE.kl.
On exit, kl is unchanged.

ku Type integer.
On entry, ku specifies the number of superdiagonals of matrix a.
Argument ku must satisfy O.LE.ku.
On exit, ku is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

4-10 D

CGBMV (3eas) CGBMV (3cas)

SR-0113

a Type complex.
Array of dimension (Ida, n).
Before entry, the leading (kl+ku+l)-by-n part of array a must contain the matrix of coefficients,
supplied column by column, with the leading diagonal of the matrix in row (ku+l) of the array,
the first superdiagonaI starting at position 2 in row ku, the first subdiagonal starting at position
1 in row (ku+2), and so on. Elements in array a that do not correspond to elements in the band
matrix (such as the top left ku-by-ku triangle) are not referenced.

The following program segment will transfer a band matrix. from conventional full matrix
storage to band storage:

DO 20, J = 1, N
K"" KU + 1- J
DO 10, I = MAX(I, J - KU). MINCM, J + KL)

A(K + I, J) = MATRIX(I, J)
10 CONTINUE
20 CONTINUE

On exit, a is unchanged.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.
Argument lda must be at least (kl+ku+l).
On exit, Ida is unchanged.

x Type complex.
Array of dimension at least:

1+(n-l)"'!incxl when trans = 'N' or 'n',

I +(m-l)* I incx I otherwise.

Before entry, the incremented array x must contain vector x.
On exit, x is unchanged.

incx Type integer.
On entry, incx specifies the increment for the elements of x.
Argument ina must nol be O.
On exit, incx is unchanged.

beta Type complex.
On entry, beta specifies the scalar beta.
When beta is supplied as 0, y need not be set on input.
On exit, bela is unchanged.

y Type complex.
Array of dimension at least:

1+(m-l)*lincyl when trans = 'N' or 'n',

I+(n-l)*/incylotherwise.

Before entry. the incremented array y must contain vector y.
On exit, y is overwritten by Updated vector y.

incy Type integer.
On entry. incy specifies the increment for the elements of y.
Argument incy must not be O.
On exit, incy is unchanged.

4-11 o

CGBMV (3eaS) COBMV (3eOS)

IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTE

CGBMV is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-0113 4-12 D

CGEMM (3COS) CGEMM (3COS)

NAME

CGEMM - Multiplies a complex general matrix by a complex general matrix

SYNOPSIS

CALL CGEMM(transa.transb,m.n.k,aiphiJ,a,lda,b,ldb,beta,c.ldc)

DESCRIPTION

SR-0113

CGEMM perfonns one of the matrix-matrix operations:

c := alpha*op(a)*op(b)+beta*c

where op(x) is one of the following:

op(x) = x,

or op(x) = x',

or op(x) = conjg(x')

Argwnents alpha and beta are scalars, a. b, and c are matrices, op(a) is an m-by-k matrix, op(b) is a
k-by-n matrix, and c is an m-by-n matrix.

Iransa Type cha..racter*l.

On entry, transa specifies the fonn of op(a) to be used in the matrix multiplication as follows:

If transa = 'N' or 'n\ op(a) = a.
If transa = 'T' or 't', op(a) = a' .
If transa = 'C' or 'c'. op(a) = conjg(a').

On exit, transa is unchanged.

transb Type character* 1.

On entry, transb specifies the fonn of op(b) to be used in the matrix multiplication as follows:

If transb = 'N' or 'n', op(b) = h.
If /Tansb = 'r or 't', oP(b) = b'.
If transb = 'C' or 'c', oP(b)::: conjg(b').

On exit. transb is unchanged.

m Type integer.
On entry. m specifies the number of rows in matrix op(a) and in matrix c.
Argument m must be at least O.
On exit, m is unchanged.

n Type integer.
On entry, n specifies the number of columns in matrix op(b) and in matrix c.
Argument n must be at least O.
On exit, n is unchanged.

k Type integer.
On entry, k specifies the number of columns of matrix op(a) and the number of rows of matrix
oP(b).
Argument k must be at least O.
On exit, k is unchanged.

4-13 D

CGEMM(3COS) CGEMM(3COS)

alpha Type complex.
On entry, alpha specifies the scalar alpha.
On exit. alpha is unchanged.

a Type complex.
Array of diinension (Ida. ka).
Argument ka is k when lransa = 'N' or 'n', and is m otherwise.

Before entry with transa = 'N' or 'n', the leading m-by-k part of array a must contain matrix a.
Otherwise, the leading k-by-m part of array a must contain matrix a.
On exit. a is unchanged.

Ida Type integer.
On entry. Ida specifies the first dimension of a as declared in the calling (sub)program.
When transa = 'N' or 'n', Ida must be at least max(l. m).
Otherwise, Ida must be at least max(l, k).
On exit, Ida is unchanged.

b Type complex.
Array of dimension (/db, kb).
Argwnent kb is n when Iransb = 'N' or 'n', and is k otherwise.

Before entry with transb = 'N' or 'n', the leading k-by-n part of array b must contain matrix b.
Otherwise. the leading n-by-k part of array b must contain matrix b.
On exit, b is unchanged.

ldb Type integer.
On entry, ldb specifies the first dimension of b as declared in the calling (sub)program.
When transb = 'N' or 'n', /db must be at least max(l, k).
Otherwise, ldb must be at least max(l, n).
On exit. [db is unchanged.

beta Type complex.
On entry. beta specifies the scalar beta.
When beta is supplied as 0, c need not be set on input.
On exit, beta is unchanged.

c Type complex.
Array of dimension (Ide, n).

Before entry, the leading m-by-n part of array c must contain matrix c, except when bela is 0,
in which case c need not be set on entry.
On exit, array c is overwritten by the m-by-n matrix (alpha*op(a)*op(b)+beta*e).

Ide Type integer.
On entry. Ide specifies the first dimension of c as declared in the calling (sub)program.
Argument Ide must be at least max(!, m).
On exit. Ide is unchanged.

IMPLEMENTATION

This routine is available only 10 users of the COS operating system.

NOTE

CGEMM is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SEE ALSO

CGEMMS(3COS)

SR-01l3 4-14 D

CGEMMS (3CaS) CGEMMS (3CaS)

NAME

CGEMMS - Multiplies a complex general matrix by a complex general matrix using Strassen's algo
rithm

SYNOPSIS

CALL CGEMMS(transa,transb ,m,n.k,aipha,a.lda.b ,ldb .beta.e .Ide ,work)

DESCRIPTION

SR·01l3

Routine CGEMMS is functionally equivalent to CGEMM, except for the additional parameter, work.
The primary difference is that CGEMMS is implemented Ilsing Winograd's variation of Strassen's algo
rithm for matrix multiplication, which is significantly faster for large matrices.

Strassen's algorithm for matrix multiplication is a complex, recursive algorithm that perfonns the multi
plication in a manner completely different from the usual inner product method. While the inner pro
duct method reqires a number of operations on the order of n3 (where n is the dimension of the
matrices), Strassen's algorithm requires, in theory, a number of operations on the order of n2.8• The tra
deoff is that Strassen's algorithm requires a work array in memory of size 2.34*n 2• Specifically,
CGEMMS requires a complex array. work. supplied by the calling program, of size at least

2.34*max(m, k)"'max(k, n)

(or equivalently, a real array of twice this dimension).

The work array is overwritten. and no diagnostic is given if the supplied array is 100 small.

Numerical results from CGEMMS may differ slightly from those of CGEMM, owing to a very different
order of operations carried out by Strassen's algorithm.

CGEMMS can be called for any values of the parameters that are legal for CGEMM. A performance
improvement over CGEMM would not be expected, however, unless the minimum of the array dimen
sions is at least 128. For small dimensions, performance is approximately the same as CGEMM.

CGEMMS performs one of the matrix-matrix operations:

c := alpha*op(a)*op(b)+beta"'c

where op(x) is one of the fonowing:

op(x) ;::; x,

or op(x) = x' ,

or op(x) = conjg(x')

Arguments alpha and beta are scalars, a, b, and c are matrices. op(a) is an m-by-k matrix, op(b) is
a k-by-n matrix. and c is an m-by-n matrix.

4-15 D

CGEMMS(3COS) CGEMMS (3COS)

SR-0113

transa Type character* 1.

On entry, transa specifies the fonn of op(a) to be used in the matrix multiplication as follows:

If transa == 'N' or 'n', op(a) = a.
If transa = 'T' or 't', op(a) = a'.
If transa = 'C' or 'c', op(a) = conjg(a').

On exit, transa is unchanged.

transb Type character* 1.

On entry, transb specifies the fonn of op(b) to be used in the matrix multiplication as follows:

If transb = 'N' or 'n', op(b) = b.
If transb = 'T' or't', op(b) = b'.
If transb = 'C' or 'c', op(b) = conjg(b').

On exit, transb is unchanged.

m Type integer.
On entry, m specifies the number of rows in matrix op(a) and in matrix c.
Argument m must be at least O.
On exit, m is unchanged.

n Type integer.
On entry, n specifies the number of columns in matrix op(b) and in matrix c.
Argument n must be at least O.
On exit, n is unchanged.

k Type integer.
On entry. k specifies the number of columns of matrix op(a) and the number of rows of matrix
oP(b).
Argument k must be at least O.
On exit, k is unchanged.

alpha Type complex.
On entry. alpha specifies the scalar alpha.
On exit. alpha is unchanged.

a Type complex.
Array of dimension (Ida, ka).
Argument ko is k when lransa == 'N' or 'n'. and is m otherwise.

Before entry with transa "" 'N' or 'n'. the leading m-by-k part of array a must contain matrix a.
Otherwise, the leading k-by-m part of array a must contain matrix a.
On exit, a is unchanged.

ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.
When transa:= 'N' or 'n', Ida must be at least max(l, m).
Otherwise, Ida must be at least max(l, k).
On exit, Ida is unchanged.

b Type complex.
Array of dimension (ldb, kb).
Argument kb is n when transb::::: 'N' or 'n', and is k otherwise.

Before entry with transb = 'N' or 'n', the leading k-by-n part of array b must contain matrix b.
Otherwise, the leading n-by-k part of array b must contain matrix b.
On exit, b is unchanged.

D

CGEMMS (3COS) CGEMMS (3eas)

Idb Type integer.
On entry, (db specifies the first dimension of b as declared in the calling (sub)program.
When transb = 'N' or 'n', Idb must be at least maxCI, k).
Otherwise, [db must be at least maxCI, n).
On exit, ldb is unchanged.

beta Type complex.
On entry, bela specifies the scalar beta.
When beta is supplied as 0, e need not be set on input.
On exit, beta is unchanged.

c Type complex.
Array of dimension (Ide, n).

Before entry, the leading m by n part of array e must contain matrix c, except when beta is 0,
in which case c need not be set on entry.
On exit, array c is overwritten by the m by n matrix (alpha*op(a)*op(b)+beta*c).

Ide Type integer.
On entry, Ide specifies the first dimension of e as declared in the calling (sub)program.
Argument Ide must be at least maxCl, m).
On exit, Ide is unchanged.

work Type complex.
Array of dimension 2.34*max(m, k)*max(k. n).
Used for scratch storage.
On exit, work is overwritten.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTES

CGEMMS is a CRI extension to the standard level 3 Basic Linear AJgebra Subprograms (BLAS 3).

SEE ALSO

CGEMM(3COS)

SR-OI13 4-17 D

CGEMV (3CaS) COEMV (3COS)

NAME

CGEMV - Multiplies a complex vector by a complex general matrix

SYNOPSIS

CALL CGEMV{trans,m,n,alpha,a,lda,x,incx,beta,y,incy)

DESCRIPTION

SR-01l3

CGEMV perfonns one of the following matrix-vector operations:

y := a/pha*a*x+beta*y,

or y:= alpha*a' *x+beta*y,

or y:= alpha*conjg(a')*x+beta*y

Arguments alpha and beta are scalars, x and y are vectors, a is an m-by-n matrix, and a' is the tran
spose of a.

trans Type character'" 1.

On entry. trans specifies the operation to be performed:

If trans = 'N' or 'n', y:= alpha*a*x+beta*y.
If trans = 'T' or 't', y:= alpha*a' *x+beta*y.
If trans"" 'C' or 'e', y:"" alpha*eonjg(a')*x+bela*y.

On exit, trans is unchanged.

m Type integer.
On entry, m specifies the number of rows in matrix a.
Argument m must be at least O.
On exit, m is unchanged.

n Type integer.
On entry, n specifies the number of colwnns in matrix a.
Argwnent n must be at least O.
On exit, n is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

a Type complex.
Array of dimension (Ida, n).
Before entry. the leading m-by-n part of array a must contain the matrix of coefficients.
On exit. a is unchanged.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.
Argument Ida must be alleast max(l, m)
On exit. Ida is unchanged.

4-18 D

CGEMV (3COS) CGEMV (3COS)

x Type complex.
Array of dimension at least:

l+{n-l)*lincxj when trans = 'N' or 'n',

l+(m-l)*lincxlotherwise.

Before entry. the incremented array x must contain vector x.
On exit, x is unchanged.

incx Type integer.
On entry. incx specifies the increment for the elements of x.
Argument incx must not be O.
On exit, incx is unchanged.

beta Type complex.
On entry, beta specifies the scalar beta.
When beta is supplied as 0, y need not be set on input.
On exit, beta is unchanged.

y Type complex.
Array of dimension at least:

l+(m-l)*lincyl when trans == 'N' or 'n'.

l+(n-l)*lincylotherwise.

Before entry. with beta non-zero, the incremented array y must contain vector y.
On exit. y is overwritten by updated vector y.

incy Type integer.
On entry, incy specifies the increment for the elements of y.
Argument incy must not be O.
On exit, incy is unchanged.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTE

CGEMV is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-Ol13 4-19 D

CGERC (3CaS) CGERC(3CaS)

NAME

CGERC - Performs conjugated rank 1 update of a complex general matrix

SYNOPSIS

CALL CGERC(m,n,alpha,x,incx.y.incy,a,lda)

DESCRIPTION

CGERC performs the rank 1 operation:

a := alpha*x*conjg(y')+0

Argwnent alpha is scalar. x is an m element vector, y is an n element vector, and 0 is an m-by-n
matrix.

SR-Ol13

m Type integer.
On entry, m specifies the number of rows in matrix a.
Argument m must be at least O.
On exit, m is unchanged.

n Type integer.
On entry. n specifies the number of columns in matrix a.
Argument n must be at least O.
On exit, n is unchanged.

alpha Type complex.
On entry. alpha specifies the scalar a1pha.
On exit. alpha is unchanged.

x Type complex.
Array of dimension at least:

1 +(m-l)*1 incxj.

Before entry, the incremented array x must contain the m element vector x.
On exit, x is unchanged.

incx Type integer.
On entry. incx specifies the increment for the elements of x.
Argument incx must not be O.
On exit, incx is unchanged.

y Type complex.
Array of dimension at least:

l+(n-l)* 1 incyl·

Before entry, the incremented array y must contain the n element vector y.
On exit. y is unchanged.

incy Type integer.
On entry, incy specifies the increment for the elements of y.
Argument incy must not be O.
On exit, incy is unchanged.

4-20 D

CGERC (3COS) CGERe (3COS)

a Type complex.
Array of dimension (Ida. n).
Before entry. the leading m·by·n part of array a must contain the matrix of coefficients.
On exit, a is overwritten by the updated matrix.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.
Argument Ida must be at least max(l. m).
On exit. Ida is unchanged.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

NOTE

CGERC is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-Ol13 4-21 D

CGERU(3COS) CGERU(3COS)

NAME

CGERU - Performs unconjugated rank 1 update of a complex general matrix

SYNOPSIS

CALL CGERU(m.n.aipha,x.incx.y.incy,a,lda)

DESCRIPTION

CGERU performs the rank 1 operation:

a := alpha*x*y' +a

Argument alpha is scalar, x is an m element vector, y is an n element vector, and a is an m-by-n
matrix.

SR-Ol13

m Type integer.
On entry, m specifies the number of rows in matrix a.
Argument m must be at least O.
On exit, m is unchanged.

n Type integer.
On entry, n specifies the number of columns in malrix a.
Argument n must be at least O.
On exit, n is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

x Type complex.
Array of dimension at least:

l+(m-l)"'lincxl·

Before entty, the incremented array x must contain the m element vector x.
On exit, x is unchanged.

inex Type integer.
On entry, incx specifies the increment for the elements of x.
Argument inez must not be O.
On exit. incx is unchanged.

y Type complex.
Array of dimension at least:

l+(n-l)*lincyl·

Before entry. the incremented array y must contain the n element vector y.
On exit, y is unchanged.

incy Type integer.
On entry, incy specifies the increment for the elements of y.
Argument incy must not be O.
On exit, incy is unchanged.

4-22 D

CGERU(3COS) CGERU(3COS)

a Type complex.
Array of dimension (Ida, n).
Before entry, the leading m-by-n part of array a must contain the matrix of coefficients.
On exit, a is overwritten by the updated matrix.

Ida Type integer.
On entry, lda specifies the first dimension of a as declared in the calling (sub)program.
Argument ida must be at least max(1, m).
On exit, Ida is unchanged.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTE

CGERU is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-OI13 4-23 D

CHBMV (3COS) CHBMV (3eOS)

NAME

CHBMV - Multiplies a complex vector by a complex Hermitian band matrix

SYNOPSIS

CALL CHBMV(uplo.n.k.alpha.a.1da.x,incx.beta,y.incy)

DESCRIPTION

SR-0113

CHBMV performs the following matrix-vector operation:

y := alpha*a*x+beta*y

Arguments alpha and beta are scalars, x and y are n element vectors, a is an n-by-n Hennitian band
matrix. and k is a number of superdiagonals.

uplo Type character* 1.

On entry, trans specifies whether the upper or lower triangular part of band matrix a is being
supplied as follows:

If uplo = 'U' or 'u', the upper lriangular part of a is being supplied.
If uplo = 'L' or T. the lower triangular part of a is being supplied.

On exit. uplo is unchanged.

n Type integer.
On entry, n specifies the order of matrix a.
Argument II must be at least O.
On exit, n is unchanged.

k Type integer.
On entry. k specifies the number of superdiagonals of matrix a.
Argument k must satisfy O.LE.k.
On exit, k is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

a Type complex.
Array of dimension (Ida. n).
Before entry with uplo = 'U' or ·u·. the leading (k+ I)-by-n part of array a must contain the
upper triangular band part of the Hermitian matrix. supplied column by column, with the lead
ing diagonal of the matrix in row (k+ I) of the array, the first superdiagonal starting at position
2 in row k. and so on. The top left k-by-k triangle of array a is not referenced.

The following program segment will transfer the upper triangular part of a Hennitian band
matrix from conventional full matrix storage to band storage:

DO 20, J = I, N
M=K+I-J
DO 10, I = MAX(1. J - K). J

A(M + I, J) = MATRIX(I, J)
10 CONTINUE
20 CONTINUE

4-24 D

CHBMV (3eaS) CHBMV (3COS)

Before entry with uplo = 'U or '1', the leading (k+l)-by-n part of array a must contain the
lower triangular band part of the Hermitian matrix, supplied column by column, with the lead
ing diagonal of the matrix in row 1 of the array, the first subdiagonal starting at position 1 in
row 2, and so on. The bottom right k-by-k triangle of array a is not referenced.

The following program segment will transfer the lower triangular part of a Hermitian band
matrix from conventional full matrix storage to band storage:

DO 20, J = 1, N
M= 1-1
DO 10, I = J, MIN(N, J + K)

A(M + I, J) = MATRIX(I, J)
10 CONTINUE
20 CONTINUE

Note that the imaginary parts of the diagonal elements need not be set and are assumed to be
O.

On exit, a is unchanged.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.
Argument Ida must be at least (k+l).
On exit, Ida is unchanged.

x Type complex.
Array of dimension at least:

1 +(n-l)* I incxj.

Before entry. the incremented array x must contain vector x.
On exit, x is unchanged.

incx Type integer.
On entry, incx specifies the increment for the elements of x.
Argument incx must not be O.
On exit, incx is unchanged.

beta Type complex.
On entry, beta specifies the scalar beta.
On exit. beta is unchanged.

y Type complex.
Array of dimension at least:

l+(n-l)* I incYI.

Before entry. the incremented array y must contain vector y.
On exit, y is overwritten by updated vector y.

incy Type integer.
On entty, incy specifies the increment for the elements of y.
Argument incy must not be O.
On exit, incy is unchanged.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTE

CHBMV is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-OI13 4-25 D

CHEMM (3COS) CHEMM (3COS)

NAME

CHEMM - Multiplies a complex general matrix by a complex Hermitian matrix

SYNOPSIS

CALL CHEMM(side ,upio,m,n.alpha,a.lda.b,ldb.beta,c .ide)

DESCRIPTION

SR-0113

CHEMM perfonns one of the following matrix-matrix operations:

c := aipha*a"'b+beta"'c

or c:= a/pha*b*a+beta*c

Arguments alpha and beta are scalars, a is a Hermitian matrix, and band c are m-by-n matrices.

side Type character'" 1.

On entry, side specifies whether the Hennitian matrix a appears on the left or right in the
operation as follows:

If side = 'L' or '1', c := aipha*a*b+beta*c
If side = 'R' or 'r'. c := alpha*b*a+beta*c

On exit. side is unchanged.

uplv Type character* 1.

On entry. uplo specifies whether the upper or lower triangular part of the Hermitian matrix is to
be referenced as follows:

If uplo = 'U' or 'u', only the upper triangular part of the Hermitian matrix is to be referenced.
If uplo = 'L' or '1', only the lower triangular part of the Hermitian matrix is to be referenced.

On exit. uplo is unchanged.

m Type integer.
On entry, m specifies the number of rows in matrix c.
Argument m must be at least O.
On exit, m is unchanged.

n Type integer.
On entry, n specifies the number of columns in matrix c.
Argument n must be at least O.
On exit, n is unchanged.

alpha Type complex
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

4-26 D

CHEMM (3COS) CHEMM (3COS)

SR-0113

a Type complex.
Array of dimension (Ida, ka).
lea is m when side = 'L' or '1', and is n otherwise.

Before entry with side = 'L' or T, the m-by-m part of array a must contain the Hermitian
matrix, such that:

If uplo = 'U' or 'u', the leading m-by-m upper triangular part of array a must contain the upper
triangular part of the Hermitian matrix.
The strictly lower triangular part of a is not referenced.

If uplo = 'L' or '1', the leading m-by-m lower triangular part of array a must contain the lower
triangular part of the Hermitian matrix.
The strictly upper triangular part of a is not referenced.

Before entry with side = 'R' or 'r', the n-by-n part of array a must contain the Hermitian
matrix, such that:

If uplo = 'U' or 'u', the leading n-by-n upper triangular part of array a must contain the upper
triangular part of the Hermitian matrix.
The strictly lower triangular part of a is not referenced.

If upJo = 'L' or 'I', the leading n-by-n lower triangular part of array a must contain the lower
triangular part of the Hennitian matrix.
The strictly upper triangular part of a is not referenced.

Note that the imaginary parts of the diagonal elements need not be set. They are assumed to
be O.

On exit, a is unchanged.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.
When side = 'L' or '1', Ida must be at least max(l. m).
Otherwise, Ida must be at least max(l, n).
On exit, Ida is unchanged.

b Type complex.
Array of dimension (ldb, n).
Before entry, the leading m-by-n part of array b must contain matrix b.
On exit, b is unchanged.

Idb Type integer.
On entry, [db specifies the first dimension of b as declared in the calling (sub)program.
Argwnent ldb must be at least max(l, m).
On exit, [db is unchanged.

beta Type complex.
On entry, beta specifies the scalar beta.
When beta is supplied as 0, e need not be set on input.
On exit, beta is unchanged.

e Type complex.
Array of dimension (Ide, n).

Before entry, the leading m-by-n part of array c must contain matrix e, except when beta is 0,
in which case c need not be set on entry.
On exit, array e is overwritten by the m-by-n updated matrix.

4-27 D

CHEMM (3COS) CHEMM (3COS)

Ide Type integer.
On entry. Ide specifies the first dimension of c as declared in the calling (sub)program.
Argwnent Ide must be at least max(l, m).
On exit. Ide is unchanged.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

NOTE

CHEMM is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-Ol13 4·28 D

CHEMV (3COS) cnEMV (3COS)

NAME

CHEMV - Multiplies a complex vector by a complex Hermitian matrix

SYNOPSIS

CALL CHEMV(uplo ,n,alpha,a,lda,x,incx,beta,y,;ncy)

DESCRIPTION

SR-01l3

CBEMV performs the following matrix-vector operation:

y := alpha*a*x+beta*y

Arguments alpha and beta are scalars, x and y are n element vectors, and a is an n-by-n Hermitian
matrix.

uplo Type character*l.

On entry, uplo specifies whether the upper or lower triangular part of array a is to be refer
enced as follows:

If uplo= 'U' or 'u', only the upper triangular part of a is to be referenced.
If uplo= 'L' or '1', only the lower triangular part of a is to be referenced.

On exit, uplo is unchanged.

n Type integer.
On entry, n specifies the order of matrix a.
Argument n must be at least O.
On exit, n is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

a Type complex.
Array of dimension (ida, n).

Before entry with upio = 'U' or 'u', the leading n-by-n upper triangular part of array a must
contain the upper triangular part of the Hermitian matrix.
The strictly lower triangular part of a is not referenced.

Before entry with uplo = 'L' or T. the leading n-by-n lower triangular part of array a must
contain the lower triangular part of the Hermitian matrix.
The strictly upper triangular part of a is not referenced.

Note that the imaginary parts of the diagonal elements need not be set and are assumed to be
O.
On exit, a is unchanged.

Ida Type integer.
On entry. Ida specifies the first dimension of a as declared in the calling (sub)program.
Argument Ida must be at least max(l, n).
On exit, ida is unchanged.

4-29 D

CHEMV(3COS) CHEMV(3COS)

x Type complex.
Array of dimension at least:

l+(n-l)'" lincxl.

Before entry. the incremented array x must contain the n element vector x.
On exit. x is unchanged.

zncx Type integer.
On entty, incx specifies the increment for the elements of x.
Argument incx must not be O.
On exit, incx is unchanged.

beta Type complex.
On entry, beta specifies the scalar beta.
If beta is supplied as 0, y need not be set on input.
On exit, beta is unchanged.

y Type complex.
Array of dimension at least:

1 +(n-l)'" I incy I.
Before entry, the incremented array y must contain n element vector y.
On exit, y is overwritten by updated vector y.

incy Type integer.
On entry, incy specifies the increment for the elements of y.
Argument incy must not be O.
On exit, incy is unchanged.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTE

CHEMV is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-0113 4-30 D

CHER(3COS) CHER(3COS)

NAME

CHER - Performs Hennitian rank. 1 update of a complex Hermitian matrix

SYNOPSIS

CALL CHER(uplo,n,a1pha,x,incx,a,lda)

DESCRIPTION

CHER perfonns the following Hennitian rank 1 operation:

a := alpha"'x*conjg(x')+a

Argument alpha is a real scalar, x is an n element vector, and a is an n-by-n Hennitian matrix.

SR-Ol13

uplo Type character* 1.

On entty, uplo specifies whether the upper or lower triangular part of array a is to be refer
enced as follows:

If uplo= 'V' or 'u', only the upper triangular part of a is to be referenced.
If upio= 'L' or 'I', only the lower triangular part of a is to be referenced.

On exit, uplo is unchanged.

n Type integer.
On entty, n specifies the order of matrix a'
Argwnent n must be at least O.
On exit, n is unchanged.

alpha Type complex.
On entty. alpha specifies the scalar alpha.
On exit, alpha is unchanged.

x Type complex.
Array of dimension at least:

1 +(n-l)* I incxl.

Before entry, the incremented array x must contain the 11 element vector x.
On exit. x is unchanged.

incx Type integer.
On entry. incx specifies the increment for the elements of x.
Argwnent incx must not be O.
On exit, incx is unchanged.

4-31 D

CHER(3COS) CHER.(3COS)

a Type complex.
Array of dimension (Ida. n).

Before entry with uplo = 'U' or 'u·. the leading n-by-n upper triangular part of alTay a must
contain the upper triangular part of the Hermitian matrix.
The strictly lower triangular part of a is not referenced.
On exit, the upper triangular pan of array a is overwritten by the upper triangular part of the
updated matrix.

Before entry with uplo = 'L' or the leading n-by-n lower triangular part of array a must
contain the lower triangular part of the Hermitian matrix.
The strictly upper triangular part of a is not referenced.
On exit, the lower triangular part of array a is overwritten by the lower triangular part of the
updated matrix.

Note that the imaginary partS of the diagonal elements need not be set and are assumed to be
O. On exit. they are set to O.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.
Argumenl/da must be at least max(l. n).
On exit. Ida is unchanged.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

NOTE

CHER is a level 2 Basic Linear Algebra Subprogram (BIAS 2).

SR-Ol13 4-32 D

CHER2 (3COS) CHER2(3COS}

NAME

CHER2 - Perfonns Hennitian rank 2 update of a complex Hermitian matrix

SYNOPSIS

CALL CHER2(uplo,n,alpha,x,incx,y,incy,a,Jda)

DESCRIPTION

CHER2 perfonns the following Hennitian rank 2 operation:

a := alpha*.x*conjg(y')+conjg(alpha)"'y*conjg{x')+a

Argument alpha is a scalar. x and y are n element vectors, and a is an n-by-n Hennitian matrix.

SR-OI13

uplo Type character"'l.

On entry. uplo specifies whether the upper or lower triangular part of array a is to be refer
enced as follows:

If uplo= 'U' or 'u". only the upper triangular part of a is to be referenced.
If uplo= 'V or '1'. only the lower ttiangular part of a is to be referenced.

On exit. uplo is unchanged.

n Type integer.
On entry. n specifies the order of matrix a.
Argument n must be at least O.
On exit. n is unchanged.

alpha Type complex.
On entry. alpha specifies the scalar alpha.
On exit, alpha is unchanged.

x Type complex.
Array of dimension at least:

1+(n-l)* I incxl·

Before entry, the incremented array x must contain the n element vector x.
On exit, x is unchanged.

incx Type integer.
On entry. incx specifies the increment for the elements of x.
Argwnent incx must not be O.
On exit, incx is unchanged.

y Type complex.
Array of dimension at least:

l+(n-l)* I incyl·

Before entry, the incremented array y must contain the n element vector y.
On exit, y is unchanged.

incy Type integer.
On entry, incy specifies the increment for the elements of y.
Argument incy must not be O.
On exit. incy is unchanged.

4-33 D

CHER2(3COS) CHER2(3COS)

a Type complex.
Array of dimension (Ida, n).

Before entry with uplo = 'u' or 'u', the leading n-by-n upper triangular part of array a must
contain the upper triangular part of the Hermitian matrix.
The strictly lower triangular part of a is not referenced.
On exit, the upper triangular part of array a is overwritten by the upper triangular part of the
updated matrix.

Before entry with uplo = 'V or 'I', the leading n-by-n lower triangular pan of array a must
contain the lower triangular part of the Hermitian matrix.
The strictly upper triangular part of a is not referenced.
On exit, the lower triangular part of array a is overwritten by the lower triangular part of the
updated matrix.

Note that the imaginary partS of the diagonal elements need not be set and are assumed to be
O. On exit, they are set to O.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared "in the calling (sllb)program.
Argument Ida must be at least max(l, n).
On exit, Ida is unchanged.

IMPLEMENTATION

This routine is available only 10 users of the cos operating system.

NOTE

CHER2 is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-0113 4-34 D

CHER2K(3COS) CHER2K (3COS)

NAME

CHER2K - Performs Hermitian 13nk. 2k update of a complex Hermitian malrix

SYNOPSIS

CALL CHER2K(upio,trans,n,k,alpha,a,lda,b,ldb,beta,c,ldc)

DESCRIPTION

CHER2K performs one of the following Hermitian rank 2k operations:

c := alpha*a*conjg(b'}+conjg(alpha)*b*conjg(a')+beta*c

or

c := aJpha*conjg(a')*b+eonjg(alpha)*conjg(b')*a+beta*c.

Arguments alpha and beta are scalars with beta real, and c is an n-by-n Hermitian matrix. Arguments
a and b are n-by-k matrices in the first operation listed previously. and k-by-n matrices in the second.

uplo Type character* 1.

On entry, uplo specifies whether the upper or lower triangular part of array c is to be refer
enced as follows:

If uplo = 'u' or 'u', only the upper triangular part of c is to be referenced.
If uplo = 'L' or 'I', only the lower triangular part of c is to be referenced.

On exit, uplo is unchanged.

trans Type character* 1.
On entry, trans specifies the opel3tion to be performed as follows:

If trans = 'N' or 'n'.
c := alpha*a*conjg(b')+conjg(alpha)*b*conjg(a'}+beta*c.

If trans = 'C t or 'c',

c := alpha *conjg(a') *b+conjg(aJpha)* conjg(b')*a+beta*c.

On exit, trans is unchanged.

n Type integer.
On entry. n specifies the order of matrix c.
Argument n must be at least O.
On exit, n is unchanged.

k Type integer.

On entry with trans = 'N' or 'n', k specifies the number of columns of matrices a and b.
On entry with trans = 'Ct or 'c', k specifies the number ofrows of matrices a and b.

Argument k must be at least O.
On exit, k is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

4-35 D

CHER2K(3COS) CHER2K (3COS)

a Type complex.
Array of dimension (Ida, ka).
Argument ka is k if trans = 'N' or 'n', and is n otherwise.

Before entry with trans = 'N' or 'n', the leading n-by-k part of array a must contain matrix a.
Otherwise, the leading k-by-n part of array a must contain matrix a.

On exit, a is unchanged

ida Type integer.
On entry, lda specifies the first dimension of a as declared in the calling (sub)program.

If trans = 'N' or 'n', ida must be at least max(l, n).
Otherwise, Ida must be at least max(1, k).

On exit, Ida is unchanged.

b Type complex.
Array of dimension (ldb, kb)
Argument kb is k if trans = 'N' or 'n', and is n otherwise.

Before entry with trans = 'N' or 'n', the leading n-by-k part of array b must contain matrix b.
Otherwise, the leading k-by-n part of array b must contain matrix b.

On exit, b is unchanged.

Idb Type integer.
On entry, [db specifies the first dimension of b as declared in the calJing(sub) program.
If trans = 'N' or 'n', ldb must be at least max(1, n).
Otherwise, Idb must be at least max(1. k).
On exit, Idb is unchanged.

beta Type real.
On entry, beta specifies the scalar beta.
On exit, beta is unchanged.

c Type complex.
Array of dimension (Ide, n).

Before entry with upio = 'U' or 'u', the leading n-by-n upper triangular part of array e must
contain the upper triangular part of the Hennitian matrix.
The strictly lower triangular part of e is not referenced.
On exit, the upper triangular part of array e is overwritten by the upper triangular part of the
updated matrix.

Before entry with uplo ;:;;; 'V or T. the leading n by n lower triangular part of array c must
contain the lower triangular part of the Hermitian matrix.
The strictly upper triangular part of c is not referenced.
On exit. the lower triangular part of array e is overwritten by the lower triangular part of the
updated matrix.

Note that the imaginary parts of the diagonal elements need not be set and are assumed to be
O. On exit, they are set to O.

Ide Type integer.
On entry, Ide specifies the first dimension of e as declared in the calling (sub)program.
Argument Ide must be at least max(l. n).
On exit, Ide is unchanged.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

SR·Ol13 4-36 D

CHER2K (3COS) CHER2K(3 COS)

NOTE

CHER2K is a level 3 Basic Unear Algebra Subprogram (BLAS 3).

SR..QII3 4-37 D

CHERK(3COS) CHERK(3COS)

NAME

CHERK - Performs Hermitian rank k update of a complex Hennitian matrix

SYNOPSIS

CALL CHERK(uplo,trans ,n,k,alpha.a.lda.beta,e .Ide)

DESCRIPTION

SR-Ol13

CHERK performs one of the following Hermitian rank k operations=

e := alpha*a*conjg(a')+beta*e

or

c := alpha*conjg(a')*a+beta*c.

Arguments alpha and beta are real scalars, and c is an n-by-n Hermitian matrix. Argument a is
an n-by-k matrix in the first operation listed previously, and a k-by-n matrix in the second.

uplo Type character* 1.

On entry. uplo specifies whether the upper or lower triangular part of array c is to be refer
enced as follows:

If uplo = 'U' or 'u'. only the upper triangular part of e is to be referenced.
If uplo = 'V or T, only Ihe lower biangular part of c is to be referenced.

On exit, uplo is unchanged.

trans Type character*1.
On entry, trans specifies the operation to be performed as follows:

If Irans = 'N' or 'n',

e := alpha*a*conjg(a')+beta*c.

If trans = 'C' or 'c',

c := alpha*conjg(a')*a+beta*c.

On exit, trans is unchanged.

n Type integer.
On entry. n specifies the order of matrix e.
Argument n must be at least O.
On exit, n is unchanged.

k Type integer.

On entry with trans = 'N' or 'n', k specifies the number of columns of matrix a.
On entry with trans = 'C' or 'c', k specifies the number of rows of matrix a.

Argument k must be at least O.
On exit, k is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

4-38 D

CHERK (3COS) CHERK (3COS)

a Type complex.
Array of dimension (Ida, ka).
Argwnenl ka is k if trans::: 'N' or 'n', and is n otherwise.

Before entry with trans::: 'N' or 'n', the leading n-by-k part of array a must contain matrix a.
Otherwise, the leading k-by-n part of array a must contain matrix a.

On exit, a is unchanged.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.

If trans ::: 'N' or 'n', Ida must be at least max(l, n).
Otherwise, Ida must be at least max(l, k).

On exit, Ida is unchanged.

beta Type real.
On entry, beta specifies the scalar beta.
On exit, beta is unchanged.

e Type complex.
Array of dimension (Ide, n).

Before entry with up[o ::: 'V' or 'u', the leading n-by-n upper triangular part of array e must
contain the upper uiangular part of the Hermitian matrix.
The strictly lower triangular part of e is not referenced.
On exit, the upper triangular part of array e is overwritten by the upper triangular part of the
updated matrix.

Before entry with uplo ::: 'L' or T, the leading n-by-n lower triangular part of array e must
contain the lower triangular part of the Hermitian matrix.
The strictly upper triangular part of e is not referenced.
On exit, the lower triangular part of array c is overwritten by the lower triangular part of the
updated matrix.

Note that the imaginary parts of the diagonal elements need not be set and are assumed to be
O. On exit, they are set to O.

lde Type integer.
On entry. Ide specifies the first dimension of c as declared in the calling (sub)program.
Argument Ide must be alleast max(l, n).
On exit, Ide is unchanged.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

NOTE

CHERK is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-Ol13 4-39 D

CROT(3SCI) CROT(3SCI)

NAME

CROT - Applies the complex plane rotation computed by CROTG

SYNOPSIS

CALL CROT(n,cx,incx,ey,incy,sc,cs)

DESCRIPTION

n Number of vector elements on which to apply rotation (input)

ex Complex array of length at least l+(n~l)*lincxl containing vector to be modified
(input/output)

inex Increment between vector elements in ex (input)

cy Complex vector to be modified. of length at least l+(n-l)*lincyl (input/output)

incy Increment between vector elements in ey (input)

sc Real cosine of rotation (computed by CROTG) (input)

es Complex sine of rotation (computed by CROTG) (input)

CROT applies the following complex plane rotation to row vectors ex and cy:

rcxx] = r sc es] rex] lcyy l-ecs sc ley

where en and cyy are the resulting complex row vectors, overwriting ex and cY. and ccs is the complex
conjugate of es.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

CROTG(3SCI). SROT(3SCI)

SR-OI13 4-40 D

CROTG(3SCI) CROTG(3SCI)

NAME

CROTG - Consll'ucts a Givens pJane rotation

SYNOPSIS

CALL CROTG(ca.cb.sc.cs)

DESCRIPTION

ca First complex element of the two-element vector that detennines the angle of rotation
(input/output)

cb Second complex element of the two-element vector that detennines the angle of rotation
(input/output)

sc Real cosine of the rotation (output)

cs Complex sine of the rotation (output)

CROTG computes the elements of a complex Givens plane rotation matrix such that:

[cea] = r se cs] rca] o L-ccs se Lcb

where cea overwrites ea, cb remains unchanged, and ees is the complex conjugate of cs.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

CROT(3SCI). SROT(3SCI)

SR-0113 4-41 D

CSYMM(3COS) CSYMM(3COS)

NAME

CSYMM - Multiplies a complex general matrix by a complex symmetric matrix

SYNOPSIS

CALL CSYMM(side.uplo.m.n.alpha.a,lda.b.ldb.beta.c,ldc)

DESCRIPTION

CSYMM performs one of the following matrix-matrix operations:

or c:= alpha*b*a+beta*c

Arguments alpha and beta are scalars. a is a symmetric matrix, and band care m-by-n matrices.

side Type character*l.

On entry, side specifies whether the symmetric matrix a appears on the left or right in the
operation as follows:

If side = 'L' or 'l', c := alpha*a*b+beta*c
If side = 'R' or 'r', c := alpha*b*a+beta*c

On exit, side is unchanged.

upio Type character*l.

On entry. uplo specifies whether the upper or lower triangular part of the symmetric matrix a is
to be referenced as follows:

If uplo = 'U' or 'u', only the upper triangular part of the symmettic matrix is to be referenced.
If uplo = 'L' or T. only the lower triangular part of the symmetric mattix is to be referenced.

On exit, upto is unchanged.

m Type integer.
On entry. m specifies the number of rows in matrix c.
Argwnent m must be at least O.
On exit, m is unchanged.

n Type integer.
On entry. n specifies the number of columns in matrix c.
Argument n must be at least O.
On exit, n is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha.
On exit. alpha is unchanged.

4-42 D

CSYMM(3COS) CSYMM(3COS)

SR-Ol13

a Type complex.
Array of dimension (Ida, lea).
Argument ka is m when side = 'L' or '1', and is n otherwise.

Before entry with side = 'L' or 'I', the m-by-m part of array a must contain the symmetric
matrix, such that:

If uplo = 'U' or 'u', the leading m-by-m upper triangular part of array a must contain the upper
biangular part of the symmetric matrix.
The strictly lower biangular part of a is not referenced.

If upla = 'L' or '}', the leading m-by-m lower triangular part of array a must contain the lower
ttiangular part of the symmetric matrix.
The strictly upper triangular part of a is not referenced.

Before entry with side = 'R' or 'r'. the n-by-n part of array a must contain the symmetric
mattix, such that:

If uplo = 'U' or 'u', the leading n-by-n upper triangular part of array a must contain the upper
triangular part of the symmetric matrix.
The strictly lower triangular part of a is not referenced.

If uplo = 'L' or or. the leading n-by-n lower triangular part of array a must contain the lower
triangular part of the symmetric matrix.
The strictly upper triangular part of a is not referenced.

On exit, a is unchanged.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.
When side = 'L' or 'I', Ida must be at least max(l, m).
Otherwise, Ida must be at least max(l, n).
On exit, Ida is unchanged.

b Type complex.
Array of dimension (Idb, n).
Before entry, the leading m-by-n part of array b must contain matrix b.
On exit, b is unchanged.

ldb Type integer.
On entry, ldb specifies the first dimension of b as declared in the calling (sub)program.
Argumentldb must be at least max(l, m).
On exit, /db is unchanged.

bela Type complex.
On entry, bela specifies the scalar beta.
When bela is supplied as O. e need not be set on input.
On exit, bela is unchanged.

e Type complex.
Array of dimension (Ide, n).
Before entry, the leading m-by-n part of array e must contain matrix c. except when beta is 0,
in which case c need not be set on entry.
On exit, array c is overwriuen by the m-by-n updated matrix.

Ide Type integer.
On entry, Ide specifies the first dimension of e as declared in the calling (sub)program.
Argwnent Ide must be at least max(l. m).
On exit. Ide is unchanged.

443 D

CSYMM (3CaS) CSYMM(3COS)

IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTE

CSYMM is a level 3 Basic Linear Algebra Subprogram (BLAS 3),

SR-Ol13 4-44 D

CSYR2K (3COS) CSYR2K(3COS)

NAME

CSYR2K - Performs symmetric rank 2k update of a complex symmetric matrix

SYNOPSIS

CALL CSYR2K(uplo,trans,n,k,a/pha,a,lda.b.ldb,beta,c.ldc)

DESCRIPTION

SR-01l3

CSYR2K performs one of the following symmetric rank 2k operations:

c := alpha*a*b' +alplul*b*a' +beta*c

or

c := alpha*a'*b+alpha*b'*a+beta*c

Arguments alpha and beta are scalars. and c is an n-by-n symmetric matrix. Arguments a and b
are n-by·k matrices in the first operation listed previously, and k-by-n matrices in the second.

uplo Type charac~I.

On entry, uplo specifies whether the upper or lower triangular pan of array c is to be refer
enced as follows:

If uplo :: 'U' or 'u', only the upper triangular part of c is to be referenced.
If .upio :: 'L' or '1', only the lower triangular part of c is to be referenced.

On exit, uplo is unchanged.

trans Type character* 1.
On entry, trans specifies the operation to be performed as follows:

If trans = 'N' or 'n',

C := alpha*a*b' +alpha*b*a' +heta*c

If trans = 'T' or 't',

c := aipha*a'*b+alplul*b'*a+beta*c

On exit, trans is unchanged

n Type integer.
On entry. n specifies the order of matrix c.
Argument n must be at least O.
On exit, n is unchanged.

k Type integer.

On entry with trans = 'N' or 'n', k specifies the number of columns of matrices a and b.
On entry with trans = 'T' or 't', k specifies the number of rows of matrices a and b.

Argument k must be at least O.
On exit, k is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha.
On exit. alpha is unchanged.

4-45 D

CSYR2K(3COS) CSYR2K(3COS)

a Type complex.
Array of dimension (Ida, ka).
Argument lea is k if trans = 'N' or 'n', and is n otherwise.

Before entry with trans = 'N' or 'n', the leading n-by-k part of array a must contain matrix a.
Otherwise, the leading k-by-n part of array a must contain matrix a.

On exit, a is unchanged.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.

If trans = 'N' or 'n', Ida must be at least max(I, n).
Otherwise, Ida must be at least max(l, k).

On exit, Ida is unchanged.

b Type complex.
Array of dimension (ldb, kh)
Argwnent kb is k if trans = 'N' or 'n', and is n otherwise.

Before entry with trans = 'N' or 'n', the leading n-by-k part of array b must contain matrix b.
Otherwise, the leading k-by-n part of array b must contain matrix b.

On exit, b is unchanged.

Idb Type integer.
On entry, [db specifies the first dimension of b as declared in the calling (sub)program.

If trans = 'N' or 'n', ldb must be at least max(I, n).
Otherwise. Idb must be at least max(l. k).

On exit, ldb is unchanged.

beta Type complex.
On entry, beta specifies the scalar beta.
On exit, beta is unchanged.

e Type complex.
Array of dimension (Ide, n).

Before entry with up[o = 'U' or 'u', the leading n-by-n upper triangular part of array c must
contain the upper triangular part of the symmetric matrix.
The strictly lower triangular part of e is not referenced.
On exit, the upper triangular part of array c is overwritten by the upper triangular part of the
updated matrix.

Before entry with uplo :;;;; 'L' or 'I'. the leading n-by-n lower triangular part of array e must
contain the lower triangular part of the symmetric matrix.
The strictly upper triangular part of e is not referenced.
On exit, the lower triangular part of array e is overwritten by the lower triangular part of the
updated matrix.

Ide Type integer.
On entry. Ide specifies the first dimension of e as declared in the calling (sub)program.
Argument Ide must be at least max(l. n).
On exit, Ide is unchanged.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-Ol13 4-46 D

CS YR2K (3COS) CSYR.2K (3COS)

NOTE

CSYR2K is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-Ol13 4-47 D

CSYRK(3COS) CSYRK.(3COS)

NAME

CSYRK - Performs symmetric rank k update of a complex symmetric matrix

SYNOPSIS

CALL CSYRK(uplo,trans,n,k.alpha,a,lda,beta,e .Ide)

DESCRIPTION

SR-01l3

CSYRK perfonns one of the following symmetric rank k operations:

e := alpha*a*a' +beta*c

or

c := alpha*a' *a+beta*c

Arguments alpha and beta are scalars, and c is an n-by-n symmetric matrix. Argument a is an n-by-k
matrix in the first operation listed previously. and a k-by-n matrix in the second.

uplo Type character"'1.

On entry, uplo specifies whether the upper or lower triangular part of array e is to be refer
enced as follows:

If uplo = 'V' or 'u'. only the upper triangular part of c is to be referenced.
If up/o = ,L' or T, only the lower triangular pan of c is to be referenced.

On exit, up/o is unchanged.

trans Type character* 1.
On entry, trans specifies the operation to be performed as follows:

If trans = 'N' or 'n',

e := alpha*a*a' +bela*c.

If trans = 'T' or 't',

C := alpha*a'*a+beta"'c.

On exit, trans is unchanged.

n Type integer.
On entry, n specifies the order of matrix c.
Argument n must be at least O.
On exit, n is unchanged.

k Type integer.

On entry with trans = 'N' or 'n', k specifies the number of columns of matrix a.
On entry with trans = 'T' or '1', k specifies the number of rows of matrix a.

Argument k must be at least O.
On exit, k is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

4-48 D

CSYRK(3COS) CSYRK(3COS)

a Type complex.
Array of dimension (ida, ka).
Argument ka is k if trans = 'N' or 'n', and is n otherwise.

Before entry with trans = 'N' or 'n', the leading n-by-k part of array a must contain matrix a.
Otherwise, the leading k-by-n part of array a must contain matrix a.

On exit, a is unchanged.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sllb)program.

If trans = 'N' or 'n', Ida must be at least max(l, n).
Otherwise, Ida must be at least max(l, k).

On exit, Ida is unchanged.

beta Type complex.
On entry, beta specifies the scalar beta.
On exit, bela is unchanged.

e Type complex.
Array of dimension (Ide, n).

Before entry with uplo ;;;; 'u' or 'u', the leading n-by-n upper triangular part of array c must
contain the upper triangular part of the symmetric matrix.
The strictly lower triangular part of e is not referenced.
On exit, the upper triangular part of array e is overwritten by the upper triangular pan of the
updated matrix.

Before entry with uplo = 'L' or "1', the leading n-by-n lower triangular part of array e must
contain the lower triangular part of the symmetric matrix.
The strictly upper triangular part of c is not referenced.
On exit, the lower triangular part of array c is overwritten by the lower triangular pan of the
updated matrix.

Ide Type integer.
On entry, Ide specifies the first dimension of e as declared in the calling (sub)program.
Argumentlde must be at least max(l. n).
On exit, Ide is unchanged.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

NOTE

CSYRK is a level 3 Basic Linear AJgebra Subprogram (BLAS 3).

SR-Ol13 4-49 D

CTBMV (3COS) CTBMV (3COS)

NAME

CTBMV - Multiplies a complex vector by a complex triangular band matrix

SYNOPSIS

CALL CTBMV(uplo, trans ,diag ,n,k,a,lda.x,incx)

DESCRIPTION

SR-01l3

CTBMV performs one of the following matrix~vector operations:

x:= a*x

or x := a'·x

or x := conjg(a')"'x

Argument x is an n element vector, and a is an n-by-n unit, or non-unit, upper or lower triangular band
matrix. with (k+ 1) diagonals.

uplo Type character'" 1.

On entry, uplo specifies whether the matrix is an upper or lower triangular matrix as follows:

If uplo = 'U' or 'u', a is an upper triangular matrix.
If uplo = 'L' or '1', a is a lower triangular matrix.

On exit, uplo is unchanged.

trans Type character "'I.

On entry, trans specifies the operation to be perfonned as follows:

If trans = 'N' or 'n'. x := a"'x.
If trans = 'T' or 't'. x := a' "'x.
If trans = 'C' or 'c', x := conjg(a')*x.

On exit, trans is unchanged.

diag Type character '" 1.

On entry, diag specifies whether or not a is unit triangular as follows:

If diag = 'U' or 'u', a is assumed to be unit triangular.
If diag = 'N' or 'n', a is not assumed to be unit triangular.

On exit, diag is unchanged.

n Type integer.
On entry, n specifies the order of matrix a.
Argument n must be at least O.
On exit. n is unchanged.

k Type integer.

On entry with uplo = 'U' or ·u'. k specifies the number of superdiagonals of matrix a.
On entry with uplo = 'L' or '1', k specifies the number of subdiagonaIs of matrix a.

Argument k must satisfy O.LE.k.
On exit, k is unchanged.

4-50 D

CTBMV (3COS) CTBMV (3COS)

a Type complex.
Array of dimension (Ida, n).
Before entry with uplo = 'U' or 'u', the leading (k+l)-by-n part of array a must contain the
upper triangular band part of the matrix of coefficients, supplied column by column, with the
leading diagonal of the matrix in row (k+l) of the array, the first superdiagonal starting at posi
tion 2 in row k, and so on. The top left k-by-k triangle of array a is not referenced.

The following program segment will transfer an upper triangular band matrix from conven
tional full matrix storage to band storage:

DO 20, J = I, N
M=K+I-J
DO 10, I = MAX(I, J - K), J

A(M + I, J) ::: MATRIX(I, J)
10 CONTINUE
20 CONTINUE

Before entry with up/o = 'L' or '1', the leading (k+l)-by-n part of array a must contain the
lower triangular band part of the matrix of coefficients, supplied column by column, with the
leading diagonal of the matrix in row 1 of the array, the first subdiagonal starting at position 1
in row 2, and so on. The bottom right k-by-k triangle of array a is not referenced.

The following program segment will transfer a lower triangular band matrix from conventional
full matrix storage to band storage:

DO 20, J = 1, N
M= I-J
DO 10, I = J, MIN(N, J + K)

A(M + I, J) = MA TRIX(I, J)
10 CONTINUE
20 CONTINUE

Note that when diag ;;;;;; 'U' or 'u', the elements of array a corresponding to the diagonal ele
ments of the matrix are not referenced, but are assumed to be unity.

On exit, a is unchanged.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.
Argument Ida must be at least (k+ 1).
On exit, fda is unchanged.

x Type complex.
Array of dimension at least:

l+(n-l)* I incxl·

Before entry, the incremented array x must contain the n element vector x.
On exit, x is overwritten with the transformed vector x.

incx Type integer.
On entry, incx specifies the increment for the elements of x.
Argument incx must not be O.
On exit, incx is unchanged.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

SR-Ol13 4-51 D

CTBMV(3COS) CTBMV (3COS)

NOTE

CTBMV is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-OI13 4-52 D

crBSV (3CaS) crBSV (3CaS)

NAME

crBSV - Solves a complex triangular banded system of equations

SYNOPSIS

CALL CTBSV(uplo,trafls,diog,n.k,a,lda.x,incx)

DESCRIYfION

SR-Ol13

crBSV solves one of the following systems of equations:

o"'x=b

or a''''x=b

or conjg(a')*x = b

Arguments x and b are n element vectors, and a is an n·by·n unit, or non-unit. upper or lower triangular
band matrix, with (1+ 1) diagonals.

uplo Type character*1.

On entry; upla specifies whether the matrix is an upper or lower triangular matrix as follows:

If upla = 'U' or 'u', a is an upper triangular matrix.
If uplo = 'L' or '1', a is a lower triangular matrix.

00 exit. uplo is unchanged.

trans Type character'" 1.

On entry, trans specifies the operation to be performed as follows:

If trans = 'N' or 'n', a*x = b
If trans = 'T' or 't', a'*x = b
If trans = 'C' or 'c', conjg(a')*x ;;; b

On exit, trans is unchanged.

diag Type character "'I.

On entry, diag specifies whether or not a is Wlit triangular as follows:

If diag = 'U' or 'u', a is asswned to be unit triangular.
If diag = 'N' or 'n', a is not assumed to be unit triangular.

On exit, diag is unchanged.

n Type integer.
On entry, n specifies the order of matrix a.
Argument n must be at least O.
On exit, n is unchanged.

k Type integer.

On entry with uplo = 'V' or 'u', k specifies the number of superdiagonals of matrix a.
On entry with upJo = 'L' or 'I', k specifies the number of subdiagonals of matrix a.

Argument k must satisfy OLE.k.
On exit, k is unchanged.

4-53 D

CTBSV(3COS) CTBSV(3COS)

a Type complex.
Array of dimension (Ida, n).
Before entry with uplo = 'U' or 'u', the leading (k+l)-by-n part of array a must contain the
upper triangular band part of the matrix of coefficients, supplied column by column, with the
leading diagonal of the matrix in row (k+l) of the array, the first superdiagonal starting at posi
tion 2 in row k, and so on. The top left k-by-k triangle of array a is not referenced.

The following program segment will transfer an upper triangular band matrix from conven
tional full matrix storage to band storage:

DO 20. J = I, N
M=K+I-J
00 10, I = MAX(1. J - K), J

A(M + I, J) = MATRIX(I. J)
10 CONTINUE
20 CONTINUE

Before entry with uplo = 'L' or T, the leading (k+I)-by-n part of array a must contain the
lower triangular band part of the matrix of coefficients. supplied column by column. with the
leading diagonal of the matrix in row 1 of the array. the first subdiagonal starting at position 1
in row 2, and SO on. The bottom right k-by-k triangle of array a is not referenced.

The following program segment will transfer a lower triangular band matrix from conventional
full matrix storage to band storage:

DO 20, J = 1, N
M= 1 - J
00 10, I = J, MIN(N, J + K)

A(M + I, J) = MA TRIX(It J)
10 CONTINUE
20 CONTINUE

Note that when diag = 'U' or 'u', the elements of array a corresponding to the diagonal ele
ments of the matrix are not referenced, but are assumed to be unity.

On exit, a is unchanged.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.
Argument Ida must be at least (k+l).
On exit, Ida is unchanged.

x Type complex.
Array of dimension at least:

1 +(n-l)* I incx I.
Before entry, the incremented array x must contain the n element right-hand side vector b.
On exit, x is overwritten with the solution vector x.

incx Type integer.
On entry, incx specifies the increment for the elements of x.
Argument ina must not be O.
On exit, incx is unchanged.

IMPLEMENTATION

This routine is avaiJable only to users of the COS operating system.

SR-0113 4-54 D

CTBSV(3COS) CfBSV (3eOS)

NOTES

SR-01l3

No tests for singularity or near-singularity are included in CTBSV. Such tests must be performed before
calling this routine.

CTBSV is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

4-55 D

CTRMM (3CaS) CfRMM (3CaS)

NAME

CTRMM - Multiplies a complex general matrix by a complex triangular matrix

SYNOPSIS

CALL CTRMM(side,uplo,transa,diag,m,n,alpha,a,lda,b,ldb)

DESCRIPTION

CTRMM performs one of the matrix-matrix operations:

b := alpha*op(a)*b

or b:= alpha*b*op(a)

Argument alpha is a scalar. b is an m-by-n matrix,
a is a unit, or non-unit, upper or lower triangular matrix,
and op(a) is one of the following:

op(a) = a,

or op(a) = a',

or op(a) = conjg(a')

side Type cbaract.er*l.

On entry, side specifies whether op(a) multiplies b from the left or right as follows:

If side :: 'L' or '1', b:= alpha*op(a)*b.
If side = 'R' or 'r'. b:= alpha*b*op(a).

On exit, side is unchanged.

uplo Type character'" 1.

On entry, uplo specifies whether malrix (a) is an upper or lower triangular malrix as follows:

If uplo = Out or 'u·. a is an upper triangular matrix.
If uplo = 'L' or T. a is a lower triangular matrix.

On exit, uplo is unchanged.

Iransa Type character* 1.

On entry, transa specifies the form of op(a) to be used in the matrix multiplication as follows:

SR-01l3

If transa = '~ or 'n', op(a) = a.
If transa = 'r or 't', op(a) = a'.
If transa = 'C' or 'c'. op(a) = conjg(a').

On exit. transa is unchanged.

diag Type character*l.

On entry, diag specifies whether or not a is unit triangular as follows:

If diag = 'U' or 'u', a is assumed to be unit bianguJar.
If mag = 'N' or 'n', a is not assumed to be unit triangular.

On exit, diag is unchanged.

4-56 D

CTRMM (3COS) CfRMM (3COS)

m Type integer.
On entry, m specifies the number of rows in b.
Argument m must be at least O.
On exit, m is unchanged.

n Type integer.
On entry, n specifies the number of columns in b.
Argument n must be at least O.
On exit, n is unchanged.

alpha Type complex.
On entry, alpha specifies the scalar alpha.
When alpha is 0, a is not referenced, and b need not be set before entry.
On exit, alpha is unchanged.

a Type complex.
Array of dimension (lda, k).
Argument k is m when side = 'L' or '1', and is n when side = 'R' or'r',

Before entry with uplo = 'U' or 'u', the leading k-by-k upper triangular part of array a must
contain the upper triangular matrix.
The strictly lower triangular part of a is not referenced.

Before entry with uplo = 'L' or '1'. the leading k-by-k lower triangular part of array a must
contain the lower triangular matrix.
The strictly upper triangular part of a is not referenced.

Note that when diag = 'U' or 'u', the diagonal elements of a are not referenced. but are
assumed to be unity.
On exit, a is unchanged.

Ida Type integer.
On entry. Ida specifies the first dimension of a as declared in the calling (sub)program.
When side = 'L' or '1'. Ida must be at least max(l, m),
When side = 'R' or 'r', Ida must be at least max(l, n).
On exit, Ida is unchanged.

b Type complex,
Array of dimension (Jdb, n).
Before entry, the leading m-by-n part of array b must contain matrix b.
On exit, b is overwritten by the transformed matrix.

ldb Type integer.
On entry. ldb specifies the first dimension of b as declared in the calling (sub)program.
Argument ldb must be at least max(l, m).
On exit, ldb is unchanged

IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTE

CTRMM is a level 3 Basic Linear Algebra Subprogram (BLAS 3),

SR-0113 4-57 D

CTRMV (3COS) CTRMV (3COS)

NAME

CTRMV - Multiplies a complex vector by a complex triangular matrix

SYNOPSIS

CALL CTRMV(uplo,trans,diag,n,a,Id£l,x,incx)

DESCRIPTION

CTRMV performs one of the following matrix-vector operations:

or x:= d*x

or x:= conjg(a')*x

Argument x is an n element vector, and a is an n-by-n unit, or non-unit, upper or lower triangular
matrix.

SR-0113

uplo Type character* 1.

On entry, uplo specifies whether the matrix is an upper or lower triangular matrix as follows:

If uplo = 'U' or 'u', a is an upper triangular matrix.
If uplo == 'L' or '1'. a is a lower triangular matrix.

On exit, uplo is unchanged.

trans Type character * 1.

On entry, trans specifies the operation to be perfonned as follows:

If trans = 'N' or 'n', x := a*x.
If trans::;;: 'T' or 't', x :== a'*x.
If trans == 'C' or 'c', x :== conjg(a')*x.

On exit, trans is unchanged.

diag Type character *1.

On entry, diag specifies whether or not a is unit triangular as follows:

If diag = 'U' or 'u', a is assumed to be unit triangular.
If diag = 'N' or 'n', a is not assumed to be unit triangular.

On exit, diag is unchanged.

n Type integer.
On entry. n specifies the order of matrix a.
Argument n must be at least O.
On exit, n is unchanged.

4-58 D

CTRMV(3COS) CfRMV(3COS)

a Type complex.
Array of dimension (Ida, n).
Before entry with uplo = 'V' or 'u', the leading n-by-n upper triangular part of array a must
contain the upper triangular matrix.
The strictly lower triangular part of a is not referenced.

Before entry with uplo = 'L' or '}', the leading n-by-n lower triangular part of array a must
contain the lower ttiangular matrix.
The strictly upper triangular part of a is not referenced.

Note that when mag = 'V' or 'u', the diagonal elements of a are also not referenced, and are
asswned to be unity.

On exit, a is unchanged.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub}program.
Argument Ida must be at least max{l, n).
On exit, Ida is unchanged.

x Type complex.
Array of dimension at least:

l+(n-l)* I incxl·

Before entry, the incremented array x must contain the n element vector x.
On exit. x is overwritten with the ttansfonned vector x.

incx Type integer.
On entry, incx specifies the increment for the elements of x.
Argument incx must not be O.
On exit, incr. is unchanged.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTE

CTRMV is a leve12 Basic Linear Algebra Subprogram (BLAS 2).

SR-OI13 4-59 D

CTRSM (3COS) CfRSM (3COS)

NAME

CTRSM - Solves a complex triangular system of equations with multiple right-hand sides

SYNOPSIS

CALL CTRSM(side,uplo.transa.diag.m,n,alpha.a,lda,b,ldb)

DESCRIPTION

SR-Ol13

CTRSM solves one of the following matrix equations:

op(a)*x = alpha*b

or x*op(a);;;:; alpha*b

Argument alpha is a scalar, x and b are m-by-n matrices, a is a unit, or non-unit, upper or lower tri
angular matrix, and op(a) is one of the following:

op(a) = at

or op(a) ;;;:; a' ,

or op(a) = conjg(a')

Matrix x is overwritten on b.

side Type character"'1.

On entry. side specifies whether op(a) appears on the left or right of x as follows:

If side ;;;:; 'V or '1', op(a)*x = alpha*b
If side = 'R' or 'r', x*op(a) = alpha*b

On exit, side is unchanged.

uplo Type character* 1.

On entry, uplo specifies whether matrix (a) is an upper or lower triangular matrix as follows:

If uplo ;;;:; 'V' or 'u', a is an upper triangular matrix.
If uplo = 'L' or '1', a is a lower triangular matrix.

On exit, uplo is unchanged.

transa Type character*l.

On entry. transa specifies the fonn of op(a) to be used in the matrix multiplication as follows:

If transa = 'N' or 'n', op(a) = a.
If transa = 'T' or 't', op(a) = a' .
If transa "'" 'C' or 'c', op(a) = conjg(o').

On exit, transa is unchanged.

diag Type character"'1.

On entry, diag specifies whether or not 0 is unit triangular as follows:

If diag = 'V' or 'u', a is assumed to be unit triangular.
If diag = 'N' or 'n'. a is not assumed to be unit triangular.

On exit. diag is unchanged.

4-60 D

CTRSM (3COS) CTRSM (3COS)

m Type integer.
On entry, m specifies the number of rows in b.
Argument m must be at least O.
On exit, m is unchanged.

n Type integer.
On entry, n specifies the number of columns in b.
Argument n must be at least O.
On exit, n is unchanged.

alpha Type complex.
On entry. alpha specifies the scaIar alpha.
When alpha is O. a is not referenced, and b need not be set before entry.
On exit, alpha is unchanged.

a Type complex.
Array of dimension (Ida, k).
Argument k is m when side = 'L' or 'I', and is n when side = 'R' or 'r'.

Before entry with uplo = 'U' or 'u', the leading k-by-k upper triangular part of array a must
contain the upper triangular matrix.
The strictly lower triangular part of a is not referenced.

Before entry with uplo = 'L' or '1', the leading k-by-k lower triangular part of array a must
contain the lower triangular matrix.
The strictly upper triangular part of a is not referenced.

Note that when mag = 'U' or 'u', the diagonal elements of a are not referenced, but are
assumed to be unity.
On exit. a is unchanged.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.
When side = 'L' or '1', Ida must be at least max(l, m).
When side = 'R' or 'r', Ida must be at least max.(l, n).
On exit, Ida is unchanged.

b Type complex.
Array of dimension (ldb, n).
Before entry, the leading m-by-n part of array b must contain the right-hand side matrix b.
On exit, b is overwritten by the solution matrix x.

{db Type integer.
On entry, /db specifies the first dimension of b as declared in the calling (sub)program.
Argument (db must be at least max(l, m).
On exit, ldb is unchanged.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTE

CTRSM is a level 3 Basic Linear AJgebra Subprogram (BLAS 3).

CTRSV(3COS) CTRSV(3COS)

NAME

CTRSV - Solves a complex triangular system of equations

SYNOPSIS

CALL CfRSV(upio,trans,diag ,n,a,lda,x.incx)

DESCRIPTION

CfRSV solves one of the following systems of equations:

a*x = b

or a'*x = b

or conjg(a')*x = b

Arguments b and x are n element vectors, and a is an n-by-n unit, or non-unit, upper or lower triangular
matrix.

SR-0113

uplo Type character* 1.

On entry, uplo specifies whether the matrix is an upper or lower triangular matrix as follows:

If uplo = 'U' or 'u', a is an upper triangular matrix.
If uplo := 'V or '1'. a is a lower triangular matrix.

On exit, uplo is unchanged.

trans Type character * 1.

On entry, trans specifies the operation to be performed as follows:

If trans = 'N' or 'n', a*x = b
If trans = 'T' or 't', a· ... x = b
If trans = te' or 'c', conjg(a')*x = b

On exit, trans is unchanged.

diag Type character'" 1.

On entry, mag specifies whether or not a is unit triangular as fol1ows:

If wag = 'U' or 'u', a is assumed to be unit triangular.
If diag = 'N' or 'n', a is not assumed to be unit triangular.

On exit, diag is unchanged.

n Type integer.
On entry, n specifies the order of matrix a.
Argument n must be at least O.
On exit, n is unchanged.

4-62 D

CTRSV(3COS) CTRSV(3COS)

a Type complex.
Array of dimension (Ida, n).
Before entry with uplo = 'U' or 'u', the leading n-by-n upper lJiangular part of array a must
contain the upper triangular malrix.
The strictly lower triangular part of a is not referenced.

Before entry with uplo = 'L' or '1', the leading n-by-n lower triangular part of array a must
contain the lower triangular matrix.
The strictly upper triangular part of a is not referenced.

Note that when mag = 'u' or 'u', the diagonal elements of a are also not referenced, and are
assumed to be unity.

On exit, a is unchanged.

Ida Type integer.
On enlry, Ida specifies the first dimension of a as declared in the calling (sub)program.
Argumenllda must be at least max(l. n).
On exit, Ida is unchanged.

x Type complex.
Array of dimension at least:

1 +(n-l)* I incxl.

Before entry, the incremented array x must contain the n element right-hand side vector b.
On exit, x is overwritten with the solution vector x.

incx Type integer.
On entry. incx specifies the increment for the elements of x.
Argument incx must not be O.
On exit, incx is unchanged.

IMPLEMENTATION

NOTES

SR-0113

This routine is available only to users of the COS operating system.

No tests for singularity or near-singularity are included in CTRSV. Such tests must be performed before
calling this routine.

CTRSV is a level 2 Basic Linear Algebra Subprogram (BLAS 2),

4-63 D

DOT (3SCI) DOT (3SCI)

NAME

SOOT, COOTC, CDOTU - Computes a dot product (inner product) of two real or complex vectors

SYNOPSIS

dol = SDOT(n,sx,incx,sy,incy)

cdot = CDOTC(n,cx,incx,cy,incy)

edot = COOTU(n,cx";ncx,ey,incy)

DESCRIPTION

n Number of elements in each vector (input)

sx Real vector operand of length at least 1 +(n-l)* I ina I (input)

cx Complex vector operand of length at least l+(n-l)*lincxl (input)

inex Increment between elements of x in sx or ex (input)

sy Real vector operand of length at least 1 +(n-l) * I incy I (input)

cy Complex vector operand of length at least l+(n-I)*lincyl (input)

incy Increment between elements of sy or ey (input)
For contiguous elements, iney = 1

These real and complex functions compute an inner product of two vectors.

SOOT computes

"
dot = L XiYi

;=1

where Xi and Yi are elements of real vectors.

CDOTe computes

"
cdot= L XiY;

;",1

where Xi and Yi are elements of complex vectors and Xi is the complex conjugate of Xi.

CDOTU computes

"
edot::: L XiYi

;=1

where Xi and Yi are elements of complex vectors.

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-Ol13 4-64 D

EISPACK(3SCI) EISPACK(3SCI)

NAME

EISPACK - Single-precision EISPACK routines

DESCRIPTION

SR-0113

EISPACK is a package of Fortran routines for solving the eigenvalue problem and for computing and
using the singular value decomposition.

The original Fortran versions are documented in the Matrix Eigensystem Routines - EISPACK Guide,
second edition. by B. T. Smith. J. M. Boyle. J. J. Dongarra. B. S. Garbow, Y. Ikebe. V. C. Klema. and
C. B. Moler. published by Springer-Verlag, New York, 1976, Library of Congress catalog card number
76-2662 (available through Cray Research as publicaton S2-0113); and in the Matrix Eigensystem Rou
tines - ElSPACK Guide Extension by B. S. Garbow, J. M. Boyle. J. J. Dongarra. and C. B. Moler, pub
lished by Springer-Verlag, New York, 1977, Library of Congress catalog card number 77-2802 (avail
able through Cray Research as publicaton S3-0113).

Each scientific library version of the EISPACK routines has the same name, algorithm. and calling
sequence as the original version. Optimization of each routine includes the following:

• Use of the BLAS routines SDOT, SA SUM, SNRM2, ISAMAX, and ISMIN where applicable

• Removal of Fortran IF statements where the result of either branch is the same

• Unrolling complicated Fortran 00 loops to improve vectorization

• Usc of the Fortran compiler directive CDIR$ IVDEP when no dependencies preventing vcctori·
zation exist

These modifications increase vectorization and therefore reduce execution time. Only the order of com
putations within a loop is changed; the modified versions :produce the same answers as the original ver
sions unless the problem is sensitive to small changes in the data.

The following summary provides a list of the routines giving the name. matrix or decomposition. and
the purpose for each routine.

Name

CG
cn
RG
RGG

RS
RSB
RSG

RSGAB

RSGBA

RSP

Matrix or Decomposition

Complex general
Complex Hennitian
Real general
Real general
generalize (Ax = '}.JJx)
Real symmetric
Real symmetric band
Real symmetric
generalize (Ax = ABx)

Real symmetric
generalize (ABx = Ax)
Real symmetric
generalize (BAx = Ax)
Real symmetric packed

4-65

Purpose

Find eigenvalues and eigenvectors

o

EISPACK(3SCI) EISPACK(3SCI)

Name Matrix or Decomposition Purpose

RST Real symmebic
tridiagonal

RT Special real
tridiagonal

BALANC Real general Balance matrix and isolate
eigenvalues whenever possible

CBAL Complex general

ELMHES Real general Reduce mabix to upper Hessenberg
ORTHES form
eOMHES Complex general
eORTH

ELTRAN Real general Accumulate transformations used
ORTRAN in the reduction to upper

Hessenberg form done by ELMHES,
ORTHES

BALBAK Real general Form eigenvectors by back
ELMBAK transforming those of the
ORTBAK corresponding matrices

determined by BALANC, ELMHES,
ORTHES~ COMMES, eORTH, and CBAL

eOMBAK Complex general
eORTB
CBABK2
REBAK
REBAKB

TREDI Real symmetric Reduce to symmetric tridiagonal
TRED2
TRED3

TRBAK Real symmetric Form eigenvectors by back
TRBAK3 transforming those of the

corresponding matrices determined
by TREDt or TRED3

IMTQLV Symmetric tridiagonal Find eigenvalues and/or
IMTQLl eigenvectors by implicit QL
IMTQL2 method

RATQR Symmetric tridiagonal Find the smallest or largest
eigenvalues by rational QR
method with Newton corrections

TQLRAT Symmetric tridiagonal Find the eigenvalues by rational
QL method

SR-01l3 4-66 D

EISPACK (3SCI)

SR·OI13

Name

TQLl
TQL2

BISECT
RIDIB
TSTURM
TINVIT

FIGI
FIGI2

BAKVEC

HQR
HQR2
COMQR
COMQR2

INVIT

CINVIT

BANDR

BANDV

BQR

MINFIT

SVD

Matrix or Decomposition

Symmetric tridiagonal

Nonsymmetric
tridiagonal

Nonsymmetric

Real upper Hessenberg

Complex upper
Hessenberg

Upper Hessenberg

Complex upper
Hessenberg

Real symmetric banded

Real symmetric banded

Real symmetric banded

Real rectangular

Real rectangular

4-67

EISPACK(3SCI)

Purpose

Find the eigenvalues and/or
eigenvectors by the rational QL
orQL method

Find eigenvalues and/or
eigenvectors that lie in a
specified interval using
bisection and/or inverse iteration

Reduce to symmetric tridiagonal
with the same eigenvalues

Form eigenvectors by back
transforming corresponding
matrix determined by FIGl

Find eigenvalues and/or
eigenvectors by QR method

Find eigenvectors corresponding
to specified eigenvalues

Reduce 10 a symmetric
tridiagonal matrix

Find those eigenvectors
corresponding to specified
eigenvalues using inverse iteration

Find eigenvalues using QR
algorithm with shifts of origin

Determine the singular value
decompoSition A = USyT, forming
UTB rather than U.
Householder bidiagonalization and a variant
of the QR algorithm are used.

Determine the singular value
decomposition A = USyT.
Householder bidiagonalizalion
and a variant of the QR algorithm are used.

D

EISPACK(3SCI) EISPACK(3SCI)

Name Matrix or Decomposition Purpose

HTRIBK Complex Hermitian All eigenvalues and eigenvectors
HTRIB3
HTRIDI
"TRID3

QZHES Real generalized All eigenvalues and eigenvectors
QZIT eigenproblem (Ax "'" "AiJx)
QZVAL
QZVEC

COMLR Complex general Reduce matrix to upper Hessenberg
COMLR2
REDUC Real symmetric Transform generalized

(Ax = 'AEx) symmetric eigenproblems to
REDUC2 Real symmetric standard symmetric eigenproblems

(ABx = 'AiJx
or BAx "'" ABx)

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 4-68 D

FD..TERG (3SCI)

NAME

m.. TERG - Computes a correlation of two vectors

SYNOPSIS

CALL FILTERG(a.m.d.n,o)

DESCRIPTION

a Vector of filter coefficients (input)

m Number of filter coefficients (input)

d Data vector (input)

n Number of data points (input)

o Resulting vector (output)

FlLTERG computes a correlation of two vectors.

Given

(ai) ;=1, , m

(dj) j=l, , n

Filter coefficients

Data

nLTERG computes the following:

III

OJ = 1: OJ di+j - 1
j = 1

i=1 • ... , n-m+l

IMPLEMENTATION

This routine is available to users of both the COS and UNlCOS operating systems.

SR-01l3 4-69

FILTERG(3SCI)

D

FILTERS (3SCI) FILTERS (3SCI)

NAME

FILTERS - Computes a correlation of two vectors (symmetric coefficient)

SYNOPSIS

CALL FIL TERS(a,m,d.n,r)

DESCRIPTION

a Symmetric filter coefficient vector (input)

m m is fonnally the length of vector a, but because a is symmetric

(aj = am-Hl ; i;::;l, ... , m), only «m+l) div 2) elements of a are ever referenced (input)

d Data vector (input)

n Number of data points (input)

r Resulting vector (output)

FILTERS computes the same correlation as FILTERG except that it assumes the filter coefficient vector
is symmetric.

Given

(el) i=I •....• rml21

(dj) r:::;I •..•. , n

(rml21 ~ ~ for m even, and (m;l) for m odd. This is called the ceiling function.)

FILTERS computes the following when m is an odd number:

(m-l)12

r,;::; L aj * (di+}-l + dj+m_j) + a(m+l)12 * di -t{m+l)12 i=I,.", n-m+l
j =1

FILTERS computes the following when m is an even number:

11'112
rj "" L aj * (d j +j - l + dj +m_j) i=l • .. " n-m+l

j '" 1

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

FIL TERG(3SCI)

SR-Ol13 4-70 D

FOLR(3SCI) FOLR(3SCI)

NAME

FOLR~ FOLRP - Solves first-order linear recurrences

SYNOPSIS

CALL FOLR(n,a,inca.b.incb)

CALL FOLRP(n,a,inca,b,incb)

DESCRIPTION

n Length of linear recurrence (input)

a Vector of length at least l+(n-I)*lincal used for recurrence (the first element of a in the
recurrence is arbitrary) (input)

inca Increment between recWTence elements of the vector operand a (input)

b Vector of length at least 1 +(n-l)* I inch I used as operand and for the result of the linear
recurrence (input/output)

inch Increment between recurrence elements of vector b (input)

FOLR solves first-order linear recurrences as follows:

Equation 1:

b i "" b i

b j = hi-bi -1 • aj for i = 2,3 ... , n

The Fortran equivalent of equation 1 is as follows:

B(1)=B(1)
DO 10 1= 2. N

B(I);::;B(I)-B(I-I)* A (I)
10 CONTINUE

FOLRP solves first-order linear recurrences as follows:

Equation 2:

hI = hI
hi ;;:; hi +aj hi _ I for i = 2. 3 ...• n

The Fortran equivalent of equation 2 is as follows:

B(I)=B(l)
00 10 I = 2, N

B(I)=B(I)+A(I)*B(I-I)
10 CONTINUE

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 4-71 D

FOLR(3SCI) FOLR(3SCI)

CAUTIONS

Do not specify inca or inch as zero; doing so yields unpredictable results.

SR-01l3 4-72 D

FOLR2(3SCI) FOLR2(3SCI)

NAME

FOLRZ, FOLRZP - Solves first-order linear recurrences without overwriting operand vector

SYNOPSIS

CALL FOLRl(n,a,inca,b,incb,c ,incc)

CALL FOLR2P(n,a,inca,b,incb,c,incc)

DESCRIPI'ION

SR-Ol13

n Length of linear recurrence (input)

a Vector of length at least 1+(n-l)*lincal used for recurrence (the first element of a in
recurrence is arbitrary) (input)

inca Increment between recurrence elements of vector a (input)

b Vector of length at least 1+(n-l)"'lincbl used as operand of linear recurrence (input)

incb Increment between recurrence elements of vector b (input)

c Vector of length at least 1+{n-l)"'linccl to contain resulting vector of linear recurrence
(output)

incc Increment between recurrence elements of vector c (input)

FOLRl solves first-order linear recurrences as follows:

Equation 1:

C1 == b l

Ci = bj-a; '" C;-1 for i = 2.3 •...• 11

The Fortran equivalent of equation 1 follows:

(given for case inca = incb = incc = 1)

C(l)=B(l)
DO 10 1=2,N

C(I)=B(I)-A(I)*C(I-l)
10 CONTINUE

FOLRZP solves first-order linear recurrences as follows:

Equation 2:

Cl = b l

Cj = b;+ai '" Ci-l for i = 2,3 •...• n

4-73 D

FOLR2 (3SCI)

The Fortran equivalent of equation 2 follows:

(given for case inca = incb = incc = I)

C(l)=B(l)
00 10 I=2,N

C(I)=B(I)+A(I)*C(I-I)
10 CONTINUE

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

CAUTIONS

Do not specify inca. incb, or incc as 0; doing so yields unpredictable results.

SEE ALSO

FOLR(3SCI)

SR-01l3 4-74

FOLR2(3SCI)

D

FOLRC(3SCI)

NAME

FOLRC - Solves first-order linear recurrence with constant coefficient

SYNOPSIS

CALL FOLRC(n,x.incx.c ,incc .coef)

DESCRIPTION

n Length of linear recurrence (input)

x Vector operand of length at least 1+(n-l)*lincxl (input/output)

incx Increment between recurrence elements of vector x (input)

c Vector operand oflength at least l+(n-l)*linccl (input)

incc Increment between recurrence elements of vector c (input)

coe/ Coefficient used for recurrence (input)

FOLRC solves a linear recurrence as in the Fortran equivalent below:

1=1
J=1
IF (lNCX .LT. 0) THEN

1= l-(N-l)*INCX
ENDIF
IF (lNCC. LT. 0) THEN

J = l-(N-l)*INCC
ENDIF
X(I) = C(l)
00 10 K=l.N

X(I+INCX) = COEF*X(I) + C(J+INCC)
J =J + INCe
I = I + INCX

10 CONTINUE

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

CAUTIONS

Do not specify incx or incc as zero; doing SO yields unpredictable results.

SR-Ol13 4-75

FOLRC(3SCI)

D

FOLRN (3SCI) FOLRN(3SCI)

NAME

FOLRN - Solves for the last teno of first-order linear recurrence using Horner's method

SYNOPSIS

result = FOLRN(n.a,inca,b.incb)

DESCRlYTION

n Length of the linear recurrence (input)

a Vector of length at least 1+(n-l)*linca/ used for recurrence (the first element of a in
recurrence is arbitrary) (input)

inca Increment between recurrence elements of the vector operand a (input)

b Vector of length at least 1+(n-I)*lincbl used as operand for recurrence (input)

incb Increment between recurrence elements of the vector b (input)

FOLRN solves for r 11 of

rl = b l

ri = bi - ai r'-1 i = 2, 3, ... , n

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

CAUTIONS

Do not specify incb as 0; doing so yields unpredictable results.

EXAMPLE

FOLRN allows for efficient evaluation of polynomials using Homer's method as follows:

1\

Letp(x)= L bi X ll - i

j = 0

then pea) = (. .. «b~ + b l) x + b,) x + ... bll) by Homer's rule.

The Fonran equivalent is as follows:

or

PA = B(O)
DO 10 I = I, N

PA = PA * X + B(l)
10 CONTINUE

PA=FOLRN(N+ I,-X,O,B(O),1)

SEE ALSO

FOLR(3SCI)

SR-0113 4-76 D

FOLRNP(3SCI)

NAME

FOLRNP - Solves for last lem of a first~order linear recurrence

SYNOPSIS

result = FOLRNP(n.a.inca.b,incb)

DESCRIPTION

n Length of the linear recurrence (input)

a Vector of length at least l+(n-I)*lincal used for recurrence (input)

inca Increment between recurrence elements of the vector operand a (input)

b Vector of length at least l+(n-I)*lincbl used for recurrence (input)

incb Increment between recurrence elements of the vector operand b (input)

FOLRNP solves a linear recurrence as in the following Fortran equivalent:

K=1
J=1
IF (INCX .LT. 0) THEN

K = 1 - (N~I) '" INCX
ENDIF
IF (!NCe .LT. 0) THEN

J:;: 1 - (N-l) '" INCe
ENDIF
RESULT = B(J)
00 10 I:;: 2, N

RESULT = A(K+JNCA) '" RESULT + B(J+INCB)
J =J + INCB
K=K+INCA

10 CONTINUE

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

CAUTIONS

Do nOl specify inca or incb as 0; doing so yields unpredictable results.

SR-0113 4-n

FOLRNP(3SCI)

D

GATHER (3Sel)

NAME

GATHER - Gathers a vector from a source vector

SYNOPSIS

CALL GATHER(n,a,b,index)

DESCRIPTION

n Number of elements in vectors a and index (not in b) (input)

a Resulting vector (oulput)

b Source vector (input)

index Vector of indices (input)

GATHER is defined in Ihe following way:

aj = bi; where i = 1, ...• n

In Fortran:

00 100 I=l,N
A(I)=B(INDEX(I»

100 CONTINUE

IMPLEMENTATION

This routine is available to users of both Ihe COS and UNlCOS operating systems.

SR-Ol13 4-78

GATHER (3SCI)

D

LlNPACK(3SCI) UNPACK (3SCI)

NAME

UNPACK - Single-precision real and complex UNPACK routines

DESCRIPTION

SR-Ol13

UNPACK is a package of Foruan routines that solve systems of linear equations and compute the QR,
Cholesky. and singular value decompositions. The original Fortran programs are documented in the
UNPACK User's Guide by J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart, published by
the Society for Industtial and Applied Mathematics (SIAM), Philadelphia, 1979, Library of Congress
catalog card number 78-78206. This guide is available through Cray Research as publica ton SI-0113.

Each single-precision scientific library version of the LINPACK routines has the same name, algorithm,
and calling sequence as the original version. Optimization of each routine includes the following:

• Replacement of calls to the BLAS routines SSCAL, SCOPY, SSWAP, SAXPY, and SROT with
in~line Fortran code vectorized by the Cray Fortran compilers

• Removal of Fortran IF statements where the result of either branch is the same

• Replacement of SDOT to solve triangular systems of linear equations in SGESL, SPOFA,
SPOSL, STRSL, and SCHDD with more vectorizable code

These optimizations affect only the execution order of floating-point operations in DO loops. See the
UNPACK User's Guide for further descriptions. The complex routines have been added without much
optimization.

The following summary provides a list of the routines, giving the name, matrix or decomposition, and
the purpose for each routine.

Name

SGECO
SGEFA
SGESL
SGEDI

CGECO
CGEFA
CGESL
CGEDI

SGBCO
SGBFA
SGBSL
SGBDI

CGBCO
CGBFA
CGBSL
CGnDI

Matrix or Decomposition

Real general

Complex general

Real general banded

Complex general banded

4-79

Purpose

Factor and estimate condition
Factor
Solve
Compute determinant and inverse

Factor and estimate condition
Factor
Solve
Compute determinant and inverse

Factor and estimate condition
Factor
Solve
Compute determinant

Factor and estimate condition
Factor
Solve
Compute determinant

D

LINPACK(3SCl) LlNPACK(3SCI)

Name Matrix or Decomposition Purpose

SPOCO Real positive definite Factor and estimate condition
SPOFA Factor
SPOSL Solve
SPODI Compute determinant and inverse

CPOCO Complex positive Factor and estimate condition
CPOFA definite Factor
CPOSL Solve
CPODI Compute determinant and inverse

SPPCO Real positive definite Factor and estimate condition
SPPFA packed Factor
SPPSL Solve
SPPDI Compute determinant and inverse

CPPCO Complex positive Factor and estimate condition
CPPFA definite packed Factor
CPPSL Solve
CPPDI Compute detenninant and inverse

SPBCO Real positive definite Factor and estimate condition
SPBFA banded Factor
SPBSL Solve
SPBDI Compute determinant

CPBCO Complex positive Factor and estimate condition
CPBFA definite banded Factor
CPBSL Solve
CPBDI Compute determinant

SSICO Symmetric indefinite Factor and estimate condition
SSIFA Factor
SSISL Solve
SSIDI Compute inertia, determinant,

and inverse

CSICO Complex symmetric Factor and estimate condition
CSIFA Factor
CSISL Solve
CSIDI Compute determinant and inverse

CHICO Hennitian indefinite Factor and estimate condition
CHIFA Factor
CHISL Solve
CHIDI Compute inertia, determinant,

and inverse

SSPCO Symmetric indefinite Factor and estimate condition
SSPFA packed Factor
SSPSL Solve
SSPDr Compute inertia, determinant,

and inverse

SR-01l3 4-80 D

LINPACK(3SCI) LIN PACK (3SCI)

Name Matrix or Decomposition Purpose

CSPCO Complex symmetric Factor and estimate condition
CSPFA indefinite packed Factor
CSPSL Solve
CSPDI Compute inertia, detenninant,

and inverse

CHPCO Hennitian indefinite Factor and estimate condition
CHPFA packed Factor
CHPSL Solve
CHPDI Compute inertia. detenninant,

and inverse

STRCO Real triangular Factor and estimate condition
STRSL Solve
STRDI Compute detenninant and inverse

CTRCO Complex triangular Factor and estimate condition
CTRSL Solve
CTRDI Compute determinant and inverse

SGTSL Real tridiagonal Solve

CGTSL Complex tridiagonal Solve

SPTSL Real positive definite Solve
tridiagonal

CPTSL Complex Solve

SCHDC Real Cholesky Decompose
SCHDD decomposition Downdate
SCHUD Update
SCHEX Exchange

CCHDC Complex Cholesky Decompose
CCHDD decomposition Downdate
CCHUD Update
CCHEX Exchange

SQRDC Real Orthogonal factorization
SQRSL Solve

CQRDC Complex Orthogonal factorization
CQRSL Solve

SSVDC Real Singular value decomposition

CSVDC Complex

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 4-81 D

MINV(3SCI) MINV(3SCI)

NAME

MINV - Solves systems of linear equations by inverting a square matrix

SYNOPSIS

CALL MINV(ab.n.ldab.scratch.det.tol.m.mode)

DESCRIPTION

ab Array containing the augmented matrix A:B. A is the square matrix to be inverted and B is
the matrix whose columns are the sources for the systems of linear equations to be solved.
(input)

A:B is overwritten by the solutions and (optionally) by the inverse of A. (output)

n Order of matrix A; that is, A is an n-by-n matrix. (input)

ldab Leading dimension of array abo (input)

scratch Array of at least 2·n elements used by MINV as a work space.

del Determinant of A. computed as the product of pivot elements. (output)

tol Lower limit for the determinant's partial products. Matrix A is declared singular once the
partial product of pivot elements is less than or equal in magnitude to this parameter, which
should be positive. (input)

m Number of columns in B. This number may be O. (input)

mode Parameter specifying whether or not the inverse of A is required.
In ab, A is overwritten by its inverse only if modeoO. (input)

MINV can be used to solve systems of linear equations. compute the inverse of a square matrix, or
compute the determinant of the matrix.

If m>O, MINV solves

A"'X=B

for the n-by-m matrix X, replacing B by X (that is, the solution overwrites B).

Thus, MINV solves m systems of linear equations:

A"'X(:j) = B(:j) , j = 1,2, 3, ...• m ,

where X(:j) and B(:j) denote the j-th columns of X and D, respectively.

If modeoO, MINV replaces A by the inverse of A.
If mode=O. A is overwritten, but not by the inverse of A.
The effect of mode is independent of the value of m.

Regardless of the values of m and mode, MINV computes the detenninant of A, subject to the restric
tion imposed by tol (see CAtmONS).

4-82 o

MINV(3SCI) MINV(3SCI)

The following table summarizes the effect of different combinations of parameter values:

Parameter values Results retmned by MINV

m.=O, mode;;;;()
m=O, modeoO
m>O, mode=O
m>O, mode<:>O

A**(-l) denotes the inverse of A.

det(A)
det(A) , A** (- 1)
det(A). X=(A**(-1))*B
de/(A) , A**(-I), X=(A**(-l»*B

IMPLEMENTATION

NOTES

This routine is available to users of both the COS and UNICOS operating systems.

MINV solves linear equations using a partial pivot search (one unused row) and Gauss-Jordan reduction.

References:

1. W. P. Petersen, "Partial Pivoting Linear Equation Solver (MINV)", Cray Computer Systems Techni
cal Note SN-0215 (1980).

2. D. E. Knuth, The Art of Computer Programming. Volume 1 (Fundamental Algorithms), (Addison
Wesley. Reading. MA. 1973): pp. 301-302.

CAUTIONS

At each reduction step, MINV computes the partial product of pivot elements. MINV aborts computa
tion if this product's magnitude is less than or equal to 101. Therefore, if the value returned in det is
less or equal in magnitude to the value input as 101, then M1NV did not invert A or solve for X
(although A:B may have been overwritten); in this case. the value returned in del may not be the deter
minant of A.

EXAMPLES

Example 1.

SR-Ol13

The following program computes only the determinant of a square matrix. overwriting the matrix in the
process.

PROGRAM MINVI
DIMENSION A(4,4), SCRATCH(8)
DATA N5.,7.,6 .• 5.,7.,lO.,8 .• 1.,6.,8.,1O .• 9.,5 .• 7.,9.,10./
CALL MINV(A.4,4,SCRATCH,DET,lE-12,O,O)
WRITE(6,'(JA,F14.12),) 'Determinant = '. DET
END

Output:

Determinant = 1.000000000002

(The matrix is unimodular.)

4-83 D

MINV(3SCI) MINV(3SCI)

SR-OI13

Example 2.

This program computes the inverse of the matrix whose determinant was computed in Example 1.

PROGRAM MINV2
DIMENSION A(4,4). AINV(4,4). SCRATCH(8), E(4.4). P(4,4)
DATA A/5 .• 7.,6.,5.,7.,10.,8.,7.,6.,8.,1O.,9.,5.,7.,9.,lO./

& E/1.,4*0.,l.,4*0.,1.,4"'0.,I./
c copy A into AINV

AINV;:; A
CALL MINV(AINV.4,4,SCRATCH,DET.1E-12,0.1)
WRITE(6,902) «A(I))=1.4). (AINV(I,J»)=I.4), 1=1,4)

c compare A*AINV to E
CALL MXM(A,4.AINV.4.P.4)
WRITE(6,903) «P(I,J)-E(I),J=I,4),I=I,4)

902 FORMAT(4(14FS.0,9X,4F5.0»
903 FORMAT(4(1IX,4(EI0.4,5X}»

END

Output:

5. 7. 6. 5. 68. -41. -17.
7. 10. 8. 7. -41. 2S. 10.
6. 8. 10. 9. -17. 10. S.
S. 7. 9. 10. 10. -6. -3.

O.682IE-12 0.909SE-12 - .2274E-12
0.4093E-II - .682IE-12 - .S684E-12
O.2274E-ll - .2274E-12 - .341lE-12
O.2274E-ll O.OOOOE+OO - .4547E-12

10.
-6.
-3.
2.

O.5684E-13
O.7958E-12
O.4547E-12
O.2274E-12

Though not printed, the determinant of the input matrix is available in the variable del after the call to
MINV.

4-84 D

MINV(3SCI) MINV(3SCI)

Example 3.

In the following program. MlNV solves

A"'X=B

for the two-column matrix X, where A is the same 4-by-4 matrix used for input in the previous exam
ples.

PROGRAM MINV3
DIMENSION AB(4,6), SCRATCH(8)
DATA

& AB/5.,7.,6 . .5.,7 .• W .• 8 .• 7.,6.,8.,10.,9.,5.,7 .,9.,10.,
c first column of B

& 0.,1.,2.,3.,
c second column of B

& 1.,2.,1.:1./
WRlTE(6,904) 'input matrix A:B', «AB(I).J=l,6), 1=1.4)
CALL MINV(ABAA,SCRATCH,DET,lE-lO,2,0)
WRITE(6,904) 'output matrix" «AB(I))=1,6), I=1.4)

904 FORMAT(JN4(j6F5.0»
END

The solution matrix is slored in the last two columns of AB, as shown by the program's output

input matrix A:B

5. 7. 6. 5. O. 1.
7. 10. 8. 7. 1. 2.
6. 8. 10. 9. 2. 1.
5. 7. 9. 10. 3. 2.

output matrix

10. 68. -41. -17. -45. -11.
-6. -41. 25. 10. 27. 7.
-3. -17. 10. 5. 11. 2.
2. 10. -6. -3. -6. -1.

The first four columns of ab, which were occupied by A on input, have been overwritten.

SEE ALSO

SGEFA in LINPACK(3SCI)

SR-0113 4-85 D

MXM(3SCI) MXM(3SCI)

NAME

MXM - Computes matrix-times-matrix product (unit increments)

SYNOPSIS

CALL MXM(a,nra,b,nca,c,ncb)

DESCRIPTION

a Matrix A. the first factor (input)

"ra Number of rows in A (input)

b Matrix B, the second factor (input)

nco Number of colwnns in A (input)

c Matrix C, the product A*B (output)

ncb Number of columns in B (input)

MXM computes the nra-by-ncb matrix product C=A"'B of the nra-by-nca matrix A and the nco-by-ncb
matrix B.

The following Fortran subroutine is equivalent to MXM:

SUBROUTINE MXMF(A,NRA,B,NCA,C,NCB)
DIMENSION A(NRA,NCA), B(NCA,NCB), C(NRA,NCB)

c initialize product
DO 120 K=1, NCB

00 110 1=1, NRA
C(IJ()=O

110 CONTINUE
120 CONTINUE
c multiply matrices A and B

DO 230 K=l, NCB
DO 220 1=1, NCA

DO 210 1=1, NRA
C(IJ()=C(I,K)+A(I,J)"'B(J ,K)

210 CONTINUE
220 CONTINUE
230 CONTINUE

RETURN
END

IMPLEMENTATION

NOTES

SR-OI13

This routine is available to users of hom the cos and UNICOS operating systems.

MXM is restricted to multiplying matrices whose elements are stored by columns in successive memory
locations. MXMA is a general subroutine for multiplying matrices that can be used to multiply matrices
that do not satisfy the requirements of MXM.

MXV is similar to MXM, but is specialized to the case of a matrix times a vector.

4-86 D

MXM(3SCI)

CAUTIONS

To be computed correctly, the product must not overwrite either factor. Thus, for example,

CALL MXM(A,NRA,B,NCA,A,NCA)

will not (in general) assign the product A *B to A.

EXAMPLE

The following program multiplies a 4-by-4 matrix and a 4-by-3 matrix.

PROGRAM MXMl
DIMENSION A(4,4), B(4,3), C(4,3)
DATA A/3.,2.,7.,l.,6.,3.,l.,6.,4.,6.,4.,2.,l.,3 .• 7.,5./

& B/-5.,6.,4.,3.,2.,l.,-3.,6.,I.,5.,-4.,4./
CALL MXM(A,4,B,4,C,3)
WRITE(6,90I) «A(I).J=l,4). (B(I»J=I,3),

& (C(I,J))=l,3),I=I,4)
901 FORMAT(4(f4F4.0,4X.3F4.0,9X,3F4.0»

END

Output:

3. 6. 4. 1. -5. 2. 1.
2. 3. 6. 3. 6. 1. 5.
7. 1. 4. 7. 4. -3. -4.
1. 6. 2. 5. 3. 6. 4.

SEE ALSO

MXMA(3SCI), MXV(3SCn

SR-Ol13 4-87

40. 6.
41. 7.
8. 45.

54. 32.

21.
5.

24.
43.

MXM(3SCI)

D

MXMA(3SCI) MXMA(3SCI)

NAME

MXMA - Computes matrix-limes-matrix product (arbitrary increments)

SYNOPSIS

CALL MXMA(sa,iac ,iar,sb,ibc ,ibr ,sc ,icc ,icr,nrp,m,ncp)

DESCRIPTION

SR-Ol13

sa Array containing matrix A, the first operand (input)

iac Increment in sa between adjacent elements in a column of A (input)

iar Increment in sa between adjacent elements in a row of A (input)

sb Array containing matrix B. the second operand (input)

ibe Increment in sb between adjacent elements in a column of B (input)

ibr Increment in sb between adjacent elements in a row of B (input)

sc Array receiving C, the product AfjoB (output)

icc Increment in se between adjacent elements in a column of C (input)

ier Increment in sc between adjacent elements in a row of C (input)

nrp Number of rows in C (that is. the number of rows in A) (input)

m Middle dimension: number of columns in A and number of rows in B (input)

ncp Number of columns in the product (that is, the number of columns in the second operand B)
(input)

Let A denote the nrp-by-m matrix defined by iac and far in array sa; and let B denote the m-by-ncp
matrix defined by ibe and ibr in sb.

MXMA returns the nrp-by-ncp matrix product C=A*B in elements of C specified by icc and icr.

4-88 D

MXMA(3SCI) MKMA(3SCI)

NOTE

SR-0113

The following Fortran subroutine is equivalent to MXMA:

SUBROUTINE
& MXMAF(SAJACJAR,SB,IBC,ffiR,SC;CC.ICR,NRP .M.NCP)

DIMENSION SACI), SB(I), SC(I)
c INITIALIZE PRODUCT

DO 120 K = 1, NCP
DO 110 I = 1, NRP

SC(1 + (I-I)*ICC + (K-l)*ICR) = o.
c (C(I,K) := O.)
110 CONTINUE
120 CONTINUE
c MULTIPLY MATRICES FROM SA AND SB

DO 230 K = 1. NCP
DO 220J = 1, M

DO 210 I == I, NRP
SC(1 + (I-l)*ICC + (K-l)*ICR)

& = SC(1 + (I-l)*ICC + (K-l)*ICR)
& + SAC 1 + (I-I)*IAC + (J-l)*1AR)
& ... SB(1 + (J-l)*IBC + (K-I)*IBR)

c (C{I,K) := C(I,K) + A(I,J)*BO,K))
210 CONTINUE
220 CONTINUE
230 CONTINUE

RETURN
END

This subroutine shows how nrp. m, ncp, and the six increments define the locations of the operands and
result in the arrays sa, sb, and sc.

Interchanging the arguments specifying column and row increments for one of the matrices involved in
the computation (A, B, or C) is equivalent to replacing that matrix by its transpose. Consider the first
operand: in the subroutine MXMAF (in the previous example), interchanging iae and iar replaces A(I)
with A(J,I).

Commonly, sa, sb. and sc are two-dimensional arrays. If they are defined to have leading dimensions
ldsa, ldsb, and ldsc as follows:

DIMENSION SA(LDSA,NCP), SB(LDSB,NCP), SC(LDSC,NCP)

then

CALL MXMA(SAJAC,LDSA,SB,IBC.LDSB,SC,ICC,LDSC,NRP .NCP ,NCP)

multiplies a submatrix of sa and a submatrix of sb, storing the product in a sub matrix of se, while

CALL MXMA(SA,IAC,LDSA,SB,LDSB,IBC,SC,ICC,LDSC,NRP ,NCP ,NCP)

computes the product of A and the transpose of B.

MXMA is a general subroutine for multiplying matrices. It can be used to compute a product of
matrices where one or more of the operands or the product must be transposed. MXMA can be used to
multiply any matrices whose elements are not stored by columns in successive memory locations, pro
vided only that the elements of rows and columns are spaced by increments constant for each matrix.

4-89 o

MXMA(3SCI) MXMA(3SCI)

MXV A is a similarly general subroutine that computes the product of a matrix and a vector.

The product of matrices whose elements are stored by columns in successive memory locations can be
computed slightly faster using MXM.

The following subroutine calls are equivalent:

CALL MXMA(SA,l,NRP,SB,I,M,SC,l,NCP,NRP,M,NCP)

CALL MXM(SA.NRP,SB.M.SC.NCP)

(The product elements computed by MXM are also stored by columns in successive memory locations).

CAlITION

To be compuled correctly, the product must not overwrite either operand. Thus. if alpha is a one
dimensional array,

CALL MXMA(ALPHA,3,9,BETA,I,2,ALPHA(2),l,3, 3,2,2)

correctly computes the product of the matrices defined in alpha and beta, whereas

CALL MXMA(ALPHA,3,9,BETA,1,2,ALPHA,l.3. 3,2,2)

does not (in general).

EXAMPLES

Example 1.

SR-01l3

Suppose sa, sb. and se are dimensioned as follows:

REAL SA(3,3), SB(4,3), SC(4,3)

then CALL MXMA(SA,l,3,SB.4,l,SC.3,8,2,3,2)

multiplies a 2-by-3 matrix operand A from sa times a 3-by-2 matrix operand B from sb, storing the 2-
by-2 matrix product C in sc.

Elements of the matrices A, B, and C are identified with elements of the arguments sa, sb, and se,
respectively, as follows:

memory operand

sa(I.1) = A(I,I)
sa(2,l) = A(2,1)
sa(3,l)
sa(l,2) == A(I,2)
sa(2,2) = A(2,2)
sa(3,2)
sa(l,3) = A(l,3)
sa(2,3) = A(2,3)
sa(3,3)

memory operand

sb(I,I) = B(I,I)
sb(2,1) = B(I,2)
sb(3,l)
sb(4,1)
sb(I,2) = B(2,1)
sb(2,2) = B(2,2)
sb(3,2)
sb(4,2)
sb(1,3) = B(3,1)
sb(2,3) = B(3,2)
sb(3,3)
sb(4,3)

4-90

memory product

sc(1,I) = C(1.1)
sc(2,1)
se(3,1)
se(4,1) == C(2,1)
sc(1,2)
sc(2,2)
se(3,2)
sc(4,2)
se(l,3) ::;::; C(1,2)
se(2,3)
sc(3,3)
sc(4,3) == C(2,2)

D

MXMA(3SCI) MXMA(3SCI)

The columns labeled "memory" list all the elements of the arrays sa, sb, and sc in the order of their
storage addresses; the columns labeled "operand" show the role of these elements in the computation.
Note that B(iJ) = BG,i): in this example, B is a submatrix of the transpose of sb.

Example 2. MXMA accepts non-positive increments.

Consider the following program:

PROGRAM MXMA2
DIMENSION Al(3,3), A2(3,3), B(3,3), C(3,2)
DATA Al/l.,2.!J9.,3 . .4.99.,99.99.,99J

& A2/4.,3. ,99 .• 2 .• 1.,99 .• 99.,99.,99./
& BJtl.,42., 1.,1. ,42.,2.,3 . .42.,5./

CALL MXMA(al ,I ,3,b,2.3,c,3, 1,2,2,3)
WRITE(6,901) «Al(I,J»)=I,3),

& (B(I)),J=1.3), (C(I,J»)=l,2). 1=1,3)
CALL MXMA(A2(2,2).·I.-3,B,2,3,C,3,1,2,2.3)
WRITE(6,901) «A2(IJ)J=I,3),

& (B(lJ),J=1.3), (C(IJ)J:l,2), 1=1,3)
901 FORMA T(3(13F4.0,9X.3F4.0,9X,2F4.0»

END

which produces the following output

1. 3.99.
2. 4. 99.

99. 99. 99.

4. 2. 99.
3. 1. 99.

99. 99. 99.

O. 1. 3.
42. 42. 42.

1. 2. 5.

O. 1. 3.
42. 42. 42.

1. 2. 5.

3. 4.
7. 10.

18. 26.

3. 4.
7. 10.

18. 26.

This demonstrates that both calls to MXMA define the same first operand.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

MXM(3SCI), MXV A(3SCI)

SR-Ol13 4-91 o

MXV(3SCI) MXV(3SCI)

NAME

MXV - Computes matrix-limes-vector product (unit increments)

SYNOPSIS

CALL MXV(a.nra.b.nca.c)

DESCRIPTION

a Matrix factor (input)

nra Number of rows in the matrix (input)

b Vector factor (input)

nca Number of columns in the matrix (input)

c Vector product (output)

MXV computes the nra-vector product C=A*B of the nra-by-nca matrix A and the nca-vector B.

The following Fortran subroutine is equivalent to MXV:

SUBROUTINE MXVFCA,NRA,B,NCA,C)
DIMENSION A(NRA,NCA), B(NCA), C(NRA)

c initialize product
DO 100 I = I, NRA

C(I) = o.
100 CONTINUE
c multiply matrix A and vector" B

DO 220 J;;;; I, NCA
DO 210 I ;;;; I, NRA

C(I) = C(I) + A(U)*B(J)
210 CONTINUE
220 CONfINUE

RETURN
END

IMPLEMENTATION

NOTES

SR-0113

This routine is available to users of both the COS and UNICOS operating systems.

MXV is restricted to multiplying a vector occupying successive memory locations (in order) by a matrix
whose elements are stored by columns in successive memory locations. MXV A is a general subroutine
for multiplying a matrix and a vector, which can be used to multiply a vector by a matrix stored with
arbitrary column and row increments.

4-92 D

MXV(3SCI)

EXAMPLES

The following program multiplies a 3-by-4 matrix and a 4·element vector:

PROORAM MXVL
DIMENSION A(3,4), B(4). C(3)
DATA AI9.,4.,2.,3.,3.,S .. 7 . .1.,7 . .4.,2.,2./B/l.,-2.,-1.,3./
CALL MXV(A,3.BA.C)
WRITE(6.901) «A(LJ))=I,4), B(l), C(I). 1=1,3), B(4)

901 FORMA T(3(/4F4.0.T20,F4.0,T30.F4.0)/I'20.F4.0)
END

Output:

9. 3. 7. 4. 1. 8.
4. 3. 1. 2. -2. 3.
2. 5. 7. 2. -1. -9.

3.

CAUTIONS

To be computed correctly. the product must not overwrite either factor. Thus, for example,

CALL MXV(A.N.B.N.B)

will not (in geneml) assign to B the product A*B.

SEE ALSO

MXVA(3SCI)

SR-0113 4-93

MXV(3SCI)

D

MXVA(3SCI) MXVA(3SCI)

NAME

MXV A - Computes matrix· times-vector product (arbitrary increments)

SYNOPSIS

CALL MXV A (sa.iae .iar .sb ,w ,sc.ic .nra.nea)

DESCRIPTION

SR-Ol13

sa Array containing matrix A. the first operand (input)

iae Increment in sa between adjacent elements in a column of A (input)

iar Increment in sa between adjacent elements in a row of A (input)

sb Array containing vector B. the second operand (input)

ib Increment in sb between adjacent elements of B (input)

sc Array receiving C, the product A*B (output)

ic Increment in sc between adjacent elements of the product (input)

nra Number of rows in A (input)

nca Number of columns in A (input)

Let A denote the nra-by-nca matrix defined by iae and iar in array sa; let B denote the nca-vectDr
defined by ib in sb. MXVA returns the nra-vector product C=A*B in elements of sc specified by icc
and ier.

The following Fortran subroutine is equivalent to MXV A:

SUBROUTINE MXV AF (SA,IAC,IAR,SB,m,SCJC,NRA,NCA)
DIMENSION SA(I), SB(I), scCt)

c initialize product
DO 100 I = t.NRA

SC(t + (J-I)*IC) = o.
c (C(i) := O.)
100 CONTINUE
c multiply matrix from sa and vector from sb

00 220 1 ::: I, NCA
DO 210 I = I, NRA

SC(1 + (I-l)*IC)
& = SC(1 + (I-I)*IC)
& + SA(1 + (l-l)*IAC + (J-l)*1AR)
& '" SB(1 + (J-l)*ffi)

c (C(i) := C(i) + A(ij)*B(j))
210 CONTINUE
220 CONTINUE

RETURN
END

This subroutine shows how we, iar, ib. ie, nra, and nca define the locations of the operands and result
in the arrays sa, sb, and se.

Interchanging the arguments specifying column and row increments for the matrix has the effect of
replacing the matrix by its transpose. In subroutine MXV AF (previous example), interchanging iae and
iar replaces A(i. J) by AU. I).

4-94 D

MXVA(3SCI) MXVA(3SCI)

NOTES

Suppose sa is a two-dimensional array defined to have leading dimension Idsa as follows:

DIMENSION SA(LDSA,NCA)

Then

CALL MXV A(SA,IAC,LDSA.SB,m,SC,IC,NCA,NCA)

multiplies a submatrix A of sa times a vector from sb, storing the product in se, while

CALL MXVA(SA,LDSA,IAC,SB,m.SC,IC,NCA.NCA)

computes the product of the transpose of A times the same vector from sb.

MXV A is a general subroutine for multiplying a matrix and a vector, and is operationally similar to
MXMA. MXVA can be used to multiply a vector by any matrix whose elements are not stored by
columns in successive memory locations, provided only that the elements of rows and columns are
spaced by constant increments. The factor and product vector increments are independent and arbitrary.

The product of a matrix whose elements are stored by columns in successive memory locations and a
vector stored likewise can be computed somewhat faster using MXV. The following two subroutine
calls have the same result:

CALL MXVA(SA,l.NRA,SB,l,SC,l.NRA,NCA)
CALL MXV(SA,NRA.SB.NCA,SC)

(The product elements computed by MXV are also stored in successive memory locations.)

EXAMPLES

SR-OI13

Example 1. Suppose sa, sb. and se are dimensioned as follows:

REAL SA(3,3). SB(9). SC(8)

Then

CALL MXVA(SA.l.3,SB.4.SC.3,2.3)

multipJies a 2·by·3 matrix operand A from sa times a 3-element vector operand B from sb, storing
the 2-element vector product C in se. Elements of the matrix A and the vectors Band C are identified
with elements of the arguments sa, sb, and se, respectively, as follows:

memory operand memory operand memory product

sa(l,l) == A(t,I) sb(l) == B(l) seCt) == C(l)
sa(2.1) = A(2,1) sb(2) sc(2)
sa(3,t) sb(3) se(3)
sa(1.2) = A(1,2) sb(4) sc(4) == C(2)
sa(2,2) = A(2.2) sb(5) == B(2) sc(5)
sa(3.2) sb(6) sc(6)
sa(l,3) = ACt,3) sb(7) se(7)
sa(2,3) = AC2.3) sb(8) sc(8)
sa(3,3) sb(9) === B(J)

4-95 D

MXVA(3SCI} MXVA(3SCI)

SR-0113

The columns labeled "memory" list all the elements of the arrays sa, sb, and sc in the order of their
storage addresses; lhe columns labeled "operand" show the role of these elements in the computation.

Example 2. In the following program, the first call to MXV A computes the product of the 3-by-5
matrix A and the S·element vector B; the second call computes the product of the S-by-3 transpose of
A and the 3-element vector (B(I),B(2),B(3»:

PROGRAM MXV A2
DIMENSION A(3,5}, B(5). C(5}
DATA AJl .• 2 .• -S.,-S.,-6.,3 .• S.,-7.,4.,I.,-S.,O.,5.,6.,6./

& B/6 .• -1.,2.,S.,4./
& C/5*O./

CALL MXV A(A, 1.3,B,l,C,l,3,5)
WRITE(6,901) «A(I.J).J=1,5), B(I), C(I), 1=1,3),

& (B(I), C(I). 1=4,5)
CALL MXVA(A.3,l.B.l.C,l,S,3)
WRrrE(6,901) «A(I,J),J=l,S), B(l), C(I), 1=1,3),

& (B(I), C(I). 1=4,5)
901 FORMAT(3(1SF4.0,T2S,F4.0, T35,F4.0).2(fI'25.F4.0,T3S,F4.0)/)

END

The output of this program is as follows:

I. -8. 8.
2. -6. -7.

-5. 3. 4.

1. -8. 8.
2. -6. -7.

-5. 3. 4.

1. 5.
-5. 6.
O. 6.

1. 5.
-5. 6.
O. 6.

6. 58.
-1. -12.
2. -1.
8. O.
4. O.

6. -6.
-1. -36.
2. 63.
8. 11.
4. 36.

Example 3. The following program multiplies a 2-by-3 matrix and a 3-element vector, storing the
product's two elements in reverse order:

PROGRAM MXVA3
DIMENSION A(3,2), B(3), C(3)
DATA A/2.,9 .• 8.,4.,3.,7./B/4.,-4.,1./C!3*O./
CALL MXV A(A,3,1.B.l,C(3),-2.2.3)
WRITE(6,901) «A(I,J).J=l,2), B(l), C(I), 1=1,3)

901 FORMA T(3(/lF4.0,4X.F4.0,9X,F4.0»
END

Output:

2. 4. 4. 11.
9. 3. -4. O.
8. 7. 1. -20.

4-96 D

MXVA(3SCI) MXVA(3SCI)

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

CAUTIONS

To be computed correctly, the product must not overwrite either operand. Thus. for example,

CALL MXVA(SA,IAC,IAR,SB,m,SB.IB.NRA.NCA)

will not (in general) compute correctly the product of the matrix in sa and the vector in sb.

SEE ALSO

MXV(3SCI). MXMA(3SCI)

SR-0113 4-97 D

OPFILT(3SCI) OPFlLT(3SCI)

NAME

OPFILT - Solves Weiner-Levinson linear equations

SYNOPSIS

CALL OPFlLT(m,a,b,c,r)

DESCRIPTION

m Order of the system of equations (input)

a Resulting vector of m filter coefficients (output)

b Infonnation auto-correlation vector of length m (input)

c Scratch vector of length 2m

r Signal auto-correlation vector of length m (input)

OPFILT computes the solution to the Weiner-Levinson system of linear equations Ta=b. where T is a
Toeplitz matrix in which elements are described by the following:

tij ~ R (k) for I j -i I + 1 ;;; k

and k = I, .. . ,11

IMPLEMENTATION

NOTES

This routine is available to users of both the COS and UNICOS operating systems.

Although OPFILT solves this matrix equation faster than Gaussian elimination can, OPFll..T does no
pivoting; therefore. it is less numerically stable than Gaussian elimination unless the matrix T is posi
tive definite, or diagonally dominant.

EXAMPLES

SR-01l3

The following system of linear equations can be solved with the call OPFILT (3,A,B,C,R). The vector
C has a length of at least six. (The tIl elements show how the numbers for R are obtained.)

~ (1) R (2) R (3)] ~ (I)] ~ (1)]
R(2) R(I) R(2) A (2) = B(2)

(3) R (2) R (1) (3) (3)

D

RECPP(3SCI)

NAME

RECPP - Solves a panial products problem

SYNOPSIS

CALL RECPP(n.x.incx.c.incc)

DESCRIPTION

n Recurrence length (input)

x Vector of length at least l+(n-l)* I incxl (input/output)

incx Increment between recurrence elements in vector X (input)

c Vector of length at least l+(n-l)* lincc I (input)

incc Increment between recurrence elements in vector c (input)

RECPP solves a partial products problem as in the following Fortran equivalent:

1=1
J=1
IF (INCX .LT. 0) THEN

I = 1-(N~l)*1NCX
ENDIF
IF (INec. LT. 0) THEN

J = l-(N-l)*INCC
ENDIF
X(I) = C(J)
DO 10 I=2.N

X(I+INCX) = C(J+INCC)*X(I)
J = J+INCC
1= I+INCX

10 CONTINUE

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR-0113 4-99

RECPP(3SCI)

D

RECPS(3SCI)

NAME

RECPS - Solves a partial summation problem

SYNOPSIS

CALL RECPS(n,x.incx.c.incc)

DESCRIPTION

n Recurrence length (input)

x Vector of length at least 1 +(n-l)* I incx I (input/output)

incx Increment between recurrence elements in vector x (input)

c Vector of length at least 1+(n-l)* I incc I (input)

incc Increment between recurrence elements in vector c (input)

RECPS solves a partial summation problem as in the following Fortran equivalent:

1=1
J=1
IF (INCX .LT. 0) THEN

1 = l-(N-l)*INCX
ENDIF
IF (INee LT. 0) THEN

J ;;;; l-(N-l)*INCC
ENDIF
X(1) = C(J)
DO 10 1=2.N

X(I+INCX) = C(J+INCC)+X(I)
J = J+INCC
1= I+INCX

10 CONTINUE

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-Ol13 4-100

RECPS (3SCI)

D

SASUM(3SCI)

NAME

SASUM, SCASUM - Sums the absolute value of elements in a vector

SYNOPSIS

sum = SASUM(n,sx,inex)

sum = SCASUM(n.ex.inex)

DESCRIPTION

SASUM(3SCI)

n Number of elements in the vector to be summed. If n ~ 0, SASUM and SCASUM return O.
(input)

sx Real vector to be summed (input)

ex Complex vector to be summed (input)

mcx Increment between elements of sx or ex. For contiguous elements, inex=1. (input)

SASUM and SCASUM sum the absolute values of the elements of a real or complex vector, respectively.

SASUM computes
n

sum;::;; L IXkl1
i=l

{
l+(i-l)(incx), incx>O

where ki '== l+(n-i)lincxl, inex<O and where Xii is an element of a real vector.

SCASUM computes
n

sum "'" L [Ireal (xkJI + limag(xkJI]
1 1

i=l

where ki is as defined for SASUM. Xi. is an element of a complex vector.
I

Note that SASUM computes a true 11 norm, but SCASUM does nOL

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

EXAMPLES

SR-OI13

REAL SUM,SUM:MER(10)
SUMMER(l)=O.O
DO 101=2,10
SUMMER(I},.SUMMER(I-l)+1.0

10 CONTINUE
SUM=SASUM(5,SUMMER,2)
PR1NT*,SUM
STOP
END

In the preceding example, SUMMER(I)=O.O, SUMMER(2):I.O, SUMMER(3)=2.0, ... SUMMER(lO)=9.0.

The printed result of SUM equals 20.0.

4-101 D

SAXPY (3SCI) SAXPY(3SCI)

NAME

SAXPY, CAXPY - Adds a scalar multiple of a real or complex vector to another vector

SYNOPSIS

CALL SAXPY(n,sa,sx,inex,sy,incy)

CALL CAXPY(n,ca,cx,incx,cy,incy)

DESCRIYfION

n Number of elements in the vectors. If n :s; 0. SAXPY and CAXPY return without any compu-
tation. (input)

sa Real scalar multiplier (input)

ca Complex scalar multiplier (input)

sx Real vector to be scaled for sum (input)

ex Complex vector to be scaled for sum (input)

incx Increment between elements of sx or ex. For contiguous elements. incx±l. (input)

sy Real vector used in summation. It receives the resulting vector. (input/output)

cy Complex vector used in summation. It receives the resulting vecto£. (input/output)

incy Increment between elements of sy or cy. For contiguous elements. incy±l. (input)

These subroutines add a scalar multiple of one vector to another.

SAXPY computes

{
l+(i-l)(inCX). incx>O {1+(i-1)(incy). incy>O

Y/j = cut; + Y/j • ;=I n where ki = l+(n-;)Iincx/. incx<.O and Ii = 1+(n-i)lincyl. incy<.O

where a is a real scalar multiplier and x~ and Ylj are elements of real vectors.

CAXPY computes

Yli == ax!; + YII t i=1 •...• nand kj and Ij are as defined for SAXPY.

where a is a complex scalar multiplier and Xl. and Y,. are elements of complex vectors.
l •

When n ~O t sa=O. or ca=O+Oi. these routines return immec:fiately with no change in their arguments.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 4-102 D

SCAL(3SCI)

NAME

SSCAL, CSSCAL, CSCAL - Scales a real or complex vector

SYNOPSIS

CALL SSCAL(n,sa,.\X,inex)

CALL CSSCAL(n.sa.ex,inex)

CALL CSCAL(n.ea,ex.incx)

DESCRIPTION

SCAL(3SCI)

n Number of elements in the vector. If n ~ 0, SSCAL, CSSCAL. and CSCAL return without
any computation. (input)

sa Real scaling factor (input)

ea Complex scaling factor (input)

sx Real vector to be scaled (input/output)

ex Complex vector to be scaled (input/output)

incx Increment between elements of sx or ex (input)

These subroutines scale a vector.

SSCAL computes

X=aX

where a is a real number and X is a real vector.

CSSCAL computes

X=aX

where a is a real number and X is a complex vector.

CSCAL computes

Y=aY

where a is a complex number and Y is a complex vector.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

CAUTIONS

Do not specify incx as zero; doing so yields unpredictable results.

SR-01l3 4-103 D

SCATIER (3SCI)

NAME

seA TIER - Scatters a vector into another vector

SYNOPSIS

CALL SCATTER(n.a.index.b)

DESCRIPTION

n Number of elements in vectors index and b (not in a) (input)

a Resulting vector (output)

index Vector of indices (input)

b Source vector (input)

SCATTER is defined as follows:

where i = 1 •... , n

In Fortran:

DO 100 I=1.N
ACINDEX(I)=B(I)

100 CONTINUE

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-Ol13 4-104

seA TIER (3SCI)

D

SCOPY(3SCI) SCOPY(3SCI)

NAME

SCOpy. CCOPY - Copies a real or complex vector into another vector

SYNOPSIS

CALL SCOPY(n,£x,incx,sy,incy)

CALL CCOPY(n,cx,incx,cy,incy)

DESCRIPTION

n Number of elements to be copied. If n S O. SCOPY and CCOPY return without any compu-
tation. (input)

£x Real vector to be copied (input)

ex Complex vector to be copied (input)

incx Increment between elements of £x or ex; for contiguous elements. incx = ± 1 (input)

sy Real result vector (output)

cy Complex result vector (output)

incy Increment between elements of sy or cy; for contiguous elements. incy = ± 1 (input)

These subroutines copy one vector into another.

SCOpy copies a real vector

y,. = Xl . • i= 1 ,11
, I

{ I+(i-l)(incl:). incx>O . _ {l+(i-iXincy), incy>O
where ki = l+(n-i)lincxl. incx<O and 1, - I+(n-i}lincyl. incy<.O

and Xl. and y,. are elements of real vectors.
I I

CCOPY copies a complex vector

Yl. = Xl . • i= 1 '"
I •

where ki and Ii are as defined in the previous example. and Xl, and Yli are elements of complex
vectors.

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-01l3 4-105 D

SGBMV (3SCI) SGBMV (3SCI)

NAME

SGBMV - Multiplies a real vector by a real general band matrix

SYNOPSIS

CALL SGBMV(trans,m,n,kl,ku,aiplul,a,ldIJ,x,incx,beta.y,incy)

DESCRIPTION

SR-Ol13

SGBMV perfonns one of the matrix-vector operations

y:=alplul*a*x+beta*y or y:=alpha*a'*x+beta*y

Arguments alpha and beta are scalars, x and y are vectors. a is an m-by-n band matrix, with kl subdiag
onals and ku superdiagonals, and a' denotes the transpose of a.

trans Character*1. On enb)'. trans specifies the operation to be perfonned If trans='N' or '0',
y := alpha*a*x+beta*y. H trans='r or '1", y := aipha*a'*x+beta*y. The trans argument is
unchanged on exit.

m Integer. On entry, m specifies the number of rows of the matrix a. m must be at least zero.
The m argument is unchanged on exit.

n Integer. On entry, n specifies the number of columns of the matrix a. n must be at least zero.
The n argument is unchanged on exit.

kl Integer. On entry, Id specifies the number of subdiagonals of the matrix a. ki must satisfy
OLE.Id. The kl argument is unchanged on exit

ku Integer. On entry. ku specifies the number of superdiagonals of the matrix a. ku must satisfy
OLE.ku. The ku argument is unchanged on exit

alpha Real. On entry, alpha specifies the scalar alpha. The alpha argument is unchanged on exit

a Real array of dimension (lda,n). Before entry, the leading (kl+ku+l)-by-n part of the array a
must contain the matrix of coefficients, supplied column-by-column, with the leading diagonal
of the matrix in row (ku+l) of the array, the first superdiagonal starting at position 2 in row ku,
the first subdiagonal starting at position 1 in row (ku+2), and so on. Elements in the array a
that do not correspond to elements in the band matrix (such as the top left ku-by-ku triangle)
are not referenced. The following program segment will transfer a band matrix from conven
tional full matrix storage to band storage:

00 20, J=l,N
K = KU+I-J
00 10. I=MAX(I,l-KU), MIN(M,l+KL)

A(K+I,J) = MATRIX(I,J)
10 CONTINUE
20 CONTINUE

The a argument is unchanged on exit.

Ida Integer. On entry. Ida specifies the first dimension of a as declared in the calling
(sub)program. Ida must be at least (kl+ku+l). The lda argument is unchanged on exit.

Real array of dimension at least l+(n-l)* I incx I when trans='N' or 'n' and at least
l+(m-l)'" I incxl otherwise. Before entry, the incremented array x must contain the vector x.
The x argument is unchanged on exit

4-106 D

SGBMV(3SCI) SGBMV(3SCI)

incx Integer. On entty. incx specifies the increment for the elements of x. The ina argument must
not be zero. The ina argument is unchanged on exit

beta Real On entty. beta specifies the scalar beta. When beta is supplied as zero, y need not be set
on input. The bela argument is unchanged on exit.

y Real array of dimension at least 1+(m·l)*lincyl when trans='N' or 'n' and at least
l+(n-l)*lincylotherwise. Before entry, the incremented array y must contain the vector y. On
exit, y is overwritten by the updated vector y.

incy Integer. On entry, incy specifies the increment for the elements of y. incy must not be zero.
The incy argument is unchanged on exil

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

NOTE

SGBMV is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-01I3 4-107 D

SGEMM(3COS) SGEMM(3COS)

NAME

SGEMM - Multiplies a real general matrix by a real general matrix

SYNOPSIS

CALL SGEMM (transa.transb.m,n.k.alpha.a.lda.b,ldb.beta.c,ldc)

DESCRIPTION

SR-01I3

SGEMM performs one of the matrix-matrix operations:

c := a/pha*op(a)*op(b)+beta*c

where op(x) is one of the following:

op(X) = x,

or op(x) =x'

Arguments alpha and beta are scalars, a. b, and c are matrices, op(a) is an m-by-k matrix, op(b) is
a k-by-n matrix, and c is an m-by-n matrix.

trans a Type character* 1.

On entry, transa specifies lhe fonn of op(a) to be used in the matrix multiplication as follows:

If transa ;; 'N' or 'n', op(a) = a.
If transa = 'T' or 't', op(a) = a'.
If transa = 'C' or 'c'. op(a) = a'.

On exit, transa is unchanged.

transb Type character* 1.

On entry, transb specifies the form of op(b) to be used in the matrix multiplication as follows:

If transb = 'N' or 'n', op(b) = b.
If transb = 'T' or 't'. op(b) = b' .
If transb = 'C' or ·c'. oP(b) = b'.

On exit, trarub is unchanged.

m Type integer.
On entry. m specifies the number of rows in matrix op(a) and in matrix c.
Argument m must be at least O.
On exit, m is unchanged.

n Type integer.
On entry. n specifies the number of columns in matrix op(b) and in matrix c.
Argument n must be at least O.
On exit. n is unchanged.

k Type integer.
On entry. k specifies the number of columns of matrix op(a) and the number of rows of matrix
oP(b).
Argument k must be at least O.
On exit, k is unchanged.

4-108 D

SGEMM(3COS) SGEMM(3COS)

alpha Type real.
On entty, alpha specifies the scalar alpha.
On exit, alpha is unchanged.

a Type real
Array of dimension (Ida, lea).
Argument ka is k when transa = 'N' or 'n', and is m otherwise.

Before entry with transa = 'N' or 'n', the leading m-by-k part of array a must contain matrix a.
Otherwise, the leading k-by-m part of array a must contain matrix a.
On exit, a is unchanged.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.
When transa = 'N' or 'n', Ida must be at least max(l, m).
Otherwise, Ida must be at least max(l, k).
On exit. Ida is unchanged.

b Type real.
Array of dimension (Idb, kb).
Argument kb is " when transb = 'N' or 'n', and is k otherwise.

Before entry with Iransb = 'N' or 'n', the leading k-by-n part of array b must contain matrix b.
Otherwise, the leading n-by-k part of anay b must contain matrix b.
On exit, b is unchanged.

Idb Type integer.
On entry, ldb specifi.es the first dimension of b as declared in the calling (sub)program.
When transb = 'N' or 'n', ldb must be at least max(!. k).
Otherwise, ldb must be at least max(l, n).
On exit, ldb is unchanged.

beta Type real.
On entry, beta specifies the scalar beta.
When beta is supplied as 0, c need not be set on input.
On exit, beta is unchanged.

c Type real.
Array of dimension (Ide, n).

Before entry, the leading m-by-n part of array c must contain matrix c, except when beta is 0,
in which case c need not be set on entry.
On exit. array e is overwritten by the m-by-n matrix (alpha*op(a)*op(b)+beta*c).

Ide Type integer.
On entry. Ide specifies the first dimension of e as declared in the calling (sub)program.
Argument Ide must be alleast max(l, m).
On exit, Ide is unchanged.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTES

SGEMM is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SEE ALSO

SGEMMS(3COS)

SR-0113 4-109 D

SGEMMS (3COS) SGEMMS (3COS)

NAME

SGEMMS - Multiplies a real general matrix by a real general matrix using Strassen's algorithm

SYNOPSIS

CALL SGEMMS(transa.transb.m.n.k.alpha.a.lda.b ,Idb.beta.c .Idc .work)

DESCRIPTION

SR-0113

Routine SGEMMS is functionally equivalent to SGEMM, except for an additional parameter. work. The
primary difference is that SGEMMS is implemented using Winograd's variation of Strassen's algorithm
for matrix multiplication, which is significantly faster for large matrices.

Strassen's algorithm for matrix multiplication is a complex, recursive algorithm that performs the multi
plication in a manner completely different from the usual inner product method. While the inner pro
duct method requires a number of operations on the order of n 3 (where n is the dimension of the
matrices), Strassen's algorithm requires, in theory, a number of operations on the order of n 2.8. The tra
deoff is that Strassen's algorithm requires a work array in memory of size 2.34* n 2. Specifically, the
work array must be of size at least

2.34*max(m. k)*max(k. n).

The work array is overwritten, and no diagnostic is given if the supplied array is too small.

Numerical results from SGEMMS may differ slightly from those of SGEMM, due 10 a very different
order of operations carried out by S trassen' s algorithm.

SGEMMS can be called for any values of the parameters that are legal for SGEMM. A performance
improvement over SGEMM would not be expected. however, unless the minimum of the array dimen
sions is at least 128. For small dimensions, performance is approximately the same as SGEMM,
although there is some slight overhead.

SGEMMS performs one of the matrix-matrix operations:

c := alpha*op(a)*op(b)+bela*c

where op(x) is one of the following:

op(x) = x,

or op(x) = x·

Arguments alpha and bela are scalars, a, b. and c are matrices, op(a) is an m-by-k matrix, op(b) is
a k-by-n matrix, and c is an m-by-n matrix.

4-110 D

SGEMMS (3eOS) SGEMMS (3eOS)

SR-0113

transa Type character'" 1.

On entry, transa specifies the fonn of op(a) to be used in the matrix multiplication as follows:

If lTansa = 'N' or 'n', op(a) = a.
If lTansa = 'T' or '1', op{a) = a'.
If transa = 'C' or 'c', op{a) = a'.

On exit, transa is unchanged.

transb Type character· 1.

On entry, lTansb specifies the fonn of op(b) to be used in the matrix multiplication as follows:

If transb = 'N' or 'n', op(b) = b.
If transb = 'r or 't', oP(b) = b'.
If transb = 'C' or 'c', op(b) = b'.

On exit, transb is unchanged.

m Type integer.
On entry, m specifies the number of rows in matrix op(a) and in matrix c.
Argument m must be at least O.
On exit, m is unchanged.

11 Type integer.
On entry, 11 specifies the number of columns in matrix op(b) and in matrix c.
Argument n must be at least O.
On exit, 11 is unchanged.

k Type integer.
On entry, k specifies the number of columns of matrix op(a) and the number of rows of matrix
oP(b).
Argument k must be at least O.
On exit, k is unchanged.

alpha Type real
On entry, alpha specifies the scalar alpha.
On exit. alpha is unchanged.

a Type real.
Array of dimension (Ida, /ca).
Argwnent ka is k when Iransa = 'N' or 'n', and is m otherwise.

Before entry with trama = 'N' or 'n', the leading m-by-k part of array a must contain matrix a.
Otherwise, the leading k-by-m part of array a must contain matrix a.
On exit, a is unchanged.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.
When lTansa = 'N' or 'n" Ida must be at least max(1. m).
Otherwise, Ida must be at least max(l, k).
On exit. Ida is unchanged.

b Type real.
Array of dimension (Idb, kb).
Argument kb is n when lransb = 'N' or 'n·. and is k otherwise.

Before entry with lTamb = 'N' or 'n', the leading k-bY-1I part of array b must contain matrix b.
Otherwise, the leading n-by-k part of array b must contain matrix b.
On exit. b is unchanged.

4-111 D

SGEMMS (leaS) SGEMMS(3COS)

Idb Type integer.
On entry, ldb specifies the first dimension of b as declared in the calling (sub)program.
When transb =- 'N' or 'n', ldb must be at least max(l, k).
Otherwise, [db must be at least max(l. n).
On exit, ldb is unchanged.

beta Type real.
On entry. bela specifies the scalar beta.
When beta is supplied as 0, e need not be set on inpuL
On exit, beta is unchanged.

c Type real.
Array of dimension (Ide, n).

Before entry, the leading m-by-n part of army c must contain matrix c, except when beta is 0,
in which case c need not be set on entry.
On exit. array c is overwritten by the m-by-n matrix (alpha*op(a)*op(b)+beta*c).

Ide Type integer.
On enlly, Idc specifies the first dimension of c as declared in the calling (sub)program.
Argwnent Idc must be at least max(l, m).
On exit, Ide is unchanged.

work Type real.
Array of dimension at least 2.34*max(m, k)*max(k. n).
Used for intennediate calculations.
On exit, work is overwritten.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTBS

SGEMMS is a CRT extension to the standard level 3 Basic Linear Algebra Subprograms (BLAS 3).

SEE ALSO

SGEMM(3COS)

SR-01l3 4-112 D

SGEMV(3SCI) SGEMV(3SCI)

NAME

SGEMV - Multiplies a real vector by a real general matrix

SYNOPSIS

CALL SGEMV(trans,m,n,a[pha,a,lda,x,incx,beta,y,incy)

DESCRIPfION

SGEMV performs one of the matrix-vector operations

y := alpha*a*x + beta*y, or y:= alpha*a' *x + beta"'y

Arguments alpha and beta are scalars, x and y are vectors, a is an m-by-n matrix, and a' is the transpose of a.

trans Character* 1. On entry, trans specifies the operation to be performed.
If tra!l.>-'N' or 'n' ,y := alpha"'a*r + beta*y.
If tra!l.>-'T' or 'C ,y:= alpha*a'*x + beta*y.
The trans argument is unchanged on exit

m Integer. On entry, m specifies the number of rows of the matrix a. m must be at least O. The m
argument is unchanged on exit.

n Integer. On entry, n specifies the number of columns of the matrix a. n must be at least O. The n
argument is unchanged on exit

alpha Real. On entry, alpha specifies the scalar alpha. The alpha argument is unchanged on exit.

a Real array of dimension (lda,n). Before entry, the leading m-by-n part of the array a must contain
the matrix of coefficients. The a argument is unchanged on exit.

Ida Integer. On entry, Ida specifies the first dimension of a as declared in the calling subprogram. Ida
must be at least max{1 ,m). The Ida argument is unchanged on exit.

x Real array of dimension at least l+(n-l)*lincxl when trans='N' or 'n' and at least l+(m-l)*lincxl
otherwise. Before entry, the incremented array x must contain the vector x. The x argument is
unchanged on exit.

incx Integer. On entry. incx specifies the increment for the elements of x. incr must not be O. The incx
argument is unchanged on exit.

beta Real. On entry. beta specifies the scalar beta. When beta is supplied as 0 then y need not be set on
input. The beta argument is unchanged on exit.

y Real array of dimension at least l+(m-l)*lincyJ when trans='N' or 'n' and at least l+(n-l)*lincyl
otherwise. Before entry with beta nonzero, the incremented array y must contain the vector y. On
exit, y is overwritten by the updated vector y.

incy Integer. On entry. incy specifies the increment for the elements of y. incy must not be O. The incy
argument is unchanged on exit

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SGEMV is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-Ol13 4-113 D

SGER(3SCI) SGER(3SCI)

NAME

SGER - Performs rank 1 update of a real general matrix

SYNOPSIS

CALL SGER(m,n,alpha,x,incx,y,incy,a,lda)

DESCRIPTION

SGER performs the rank 1 operation

a := alpha*x*y' + a

where x is an m element vector. y is an n element vector. a is an m-by-n matrix. and y' is the transpose of y.

m Integer. On entry, m specifies the number of rows of the matrix a. m must be atleastO. Unchanged
on exit.

n Integer. On entry. n specifies the nwnber of colwnns of the matrix a. n must be at least O.
Unchanged on exit.

alpha Real. On entry. alpha specifies the scalar alpha. Unchanged on exit.

x Real. Array of dimension at least l+(m-l)* I incxl· Before entry. the incremented array x must con
fain the m element vector x. Unchanged on exit.

incx Integer. On entry. incx specifies the increment for the elements of x. incx must not be O.
Unchanged on exit

y Real. Array of dimension at least l+(n-l)*lincyl. Before entry. the incremented array y must con
tain the n element vector y. Unchanged on exit.

incy Integer. On entry. incy specifies the increment for the elements of y. incy must not be D.
Unchanged on exit.

a Real array of dimension (lda,n). Before entry. the leading m-by-n part of the array a must contain
the matrix of coefficients. On exit, a is overwritten by the updated matrix.

Ida Integer. On entry. Ida specifies the first dimension of a as declared in the calling subprogram. Ida
must be at least max(1.m). Unchanged on exit.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

NOTES

SGER is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-Ol13 4-114 D

SMXPY(3SCI) SMXPY(3SCI)

NAME

SMXPY - Multiplies a column vector by a matrix and adds the result to another column vector

SYNOPSIS

CALL SMXPY(nl.y,n2,ldm.x,m)

DESCRIPI'ION

nl Number of elements in vector y and number of rows in matrix m (input)

y Real vector of length nl which is added to the product of m and x. It is overwritten by the
resulting vector. (inpur/output)

112 Number of elements in vector x and number of columns in matrix m (input)

Idm Leading dimension of mattix m (input)

x Real vector of length 112 used in the mattix-vector product (input)

m nl-by-n2 matrix used in the matrix-vector product (input)

SMXPY performs the matrix-vector operation:

where y is a vector of length nI. m is an nl-by-n2 matrix, and x is a vector of length n2.

SMXPY executes an operation equivalent to the following Fortran code:

SUBROUTINE SMXPY(Nl.Y.N2.LDM.X.M)
REAL Y(l), X(l), M(LDM,l)
00 20 J=1,N2

DO 20 I=l,Nl
Y(I)=Y(I) + X(J) * M(IJ)

20 CONTINUE
RETIJRN
END

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR-Ol13 4-115 D

SNRM2(3SCI) SNRM2(3SCI)

NAME

SNRM2. SCNRM2 - Computes the Euclidean norm of a vector

SYNOPSIS

eucnorm = SNRM2(n.sx.inc.x)

eucnorm = SCNRM2(n.ex.inc.x)

DESCRIYfION

n Number of elements in vector x for which to compute norm. If n ~ O. SNRM2 and SCNRM2
return without any computation. (input)

sx Real vector of length at least 1 +(n-l)·1 inc.x 1 containing operand vector x (input)

ex Complex vector of length at least l+(n-l)*lincxl containing operand vector x (input)

incx Increment between elements of sx or ex (input)

These real functions compute the Euclidean or 12 norm of vector X as follows:

SNRM2 computes

SCNRM2 computes

Xi is the complex conjugate of Xi •

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-01l3 4-116 D

SOLR(3SCI) SOLR(3SCI)

NAME

SOLR, SOLRN, SOLR3 - Solves second-order linear recurrences

SYNOPSIS

CALL SOLR(n,sa,inca,sb,incb.sc ,incc)

result == SOLRN(n,sa,inca,sb,incb,sc,incc)

CALL SOLR3(n,sa,inca,sbjncb,scjncc)

DESCRIPTION

SR-Ol13

n Length of linear recurrence. If n :s; 0, SOLR and SOLR3 return without any computation,
and SOLRN returns 0 (input)

sa Vector of length at least 1 +(n-l)* I inca I containing vector operand a (input)

inca Increment between elements of vector sa (input)

sb Vector oflength at least 1+(n-l)*lincbl containing vector operand b (input)

incb Increment between elements of vector sb (input)

sc Vector of length at least l+(n-l)*I inccj containing resulting vector c.
Values for C(l) and C(2) are input to these routines. (input/output)

incc Increment between elements of vector sc (input)

SOLR solves a second-order linear recurrence.
SOLRN solves a second-order linear recurrence for the last term only.
SOLRJ solves a second-order linear recurrence for three terms.

SOLR solves second-order linear recurrences as in the following equation:

Ci == aj-2 Ci-l + bi - 2 Ci-2 for i=3 • .. , n

Note that Cl and Cz are input to this routine, and C3, C4, •.• , CIl are output.

SOLRN, a real function, solves for only the last term of a second-order linear recurrence, as given
above for SOLR.

The Fortran loop

DO 10 I=3,N
C(I)=A(I-2)*C(I-l)+B(I-2)*C(I-2)

10 CONTINUE
RESULT==C(N)

could be solved as follows:

result == SOlRN(n,a,l,b,l,c,l)

For SOLRN, even though only the last tenn is computed, vector c is used to hold intennediate results
and is therefore overwritten.

4-117 D

SOLR(3SCI)

SOLR3 computes a second-order linear recurrence of three terms, as in the following:

Cj ;;;;; Ci + ai-2 Ci-I + bi- 2 Ci-2 for i =3, ... n

eland c 2 are input to this routine, and C 3. C 4. . . .• c" are output.

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

CAUTIONS

Do not specify inca, incb, or incc as zero; doing so yields unpredictable results.

EXAMPLES

SR-Ol13

Example 1 - SOLRN:

SOLRN might be used to find '2 of the calculation

with the following call:

R2 = SOLRN(n,a,l,b,l,c,l)

The Fortran equivalent for example 1 is as follows:

Rl=C(l)
R2=C(2)
DO 10 I=l,N-2

TEMP=R2
R2=A(I)*R2+B(I)*Rl
Rl=TEMP

10 CONTINUE

4-118

SOLR(3SCI)

D

SOLR(3SCI) SOLR(3SCI)

Example 2 - SOLR3:

SOLR3 solves a system of lower bidiagonal linear equations Lx=b. That is, since

1000 0 Xl bl

el I 00 0 Xz b2
fle2 JO .•.•• 0 X3 b)
Of 2e3 1 O 0 X4 b4

Lx= .Of3e410 ... 0 = :;:; b
0
0
0

000 . .j,,-2e,,-11 x" b"

can be written as:

this problem can be solved with the following Fortran:

00 10 I=l,N-l
10 E(I)=-E(1)

DO 20 1=1.N-2
20 F(I)=-F(I)

B(2)=B(2)+E(1)*B(l)
CALL SOLR3(N;E(2),I,F(I).I,B(1),1)

SR-0113 D

SPDOT(3SCI}

NAME

SPDOT J SPAXPY - Performs sparse vector operations

SYNOPSIS

pdot = SPDOT(n,sy.index.sx)

CALL SPAXP"f(n,sa,sx.sy,index)

DESCRIPTION

SPDOT:

Performs a sparse dot product (inner product) computation.

n Number of elements to be used in the computation (input)

sy Sparse real vector operand (input)

index Vector of indices for elements of sy in ascending order (input)

sx Real vector operand (input)

SPAXPY:

SPDOT(3SCI}

Performs an elementary vector operation by adding a scalar multiple of a vector to a sparse vector.

n Numbers of elements to be used in the computation (input)

sa Real scalar multiplier (input)

sx Real vector operand scaled for sum (input)

sy Sparse real vector used in summation and resulting vector (input/output)

index Vector of indices for elements of sy. All values in index should be unique and in ascending
order. (input)

SPAXPY executes an operation equivalent to the following Fortran code:

DO 10 I=I.N
SY(INDEX(I»=SA*SX(I)+SY(lNDEX(I»

10 CONTINUE

SPDOT executes an operation equivalent to the foJlowing Fortran code:

PDOT=O.O
DO 10 I=l,N

POOT=PDOT +SY(INDEX(I»*SX(I)
10 CONTINUE

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

RETURN VALUE

SR-OlI3

If n ~ O. SPAXP"f and SPDOT return without any computation.

If sa = 0, SPAXPY returns without any computation.

4-120 D

SROT(3SCI) SROT(3SCI)

NAME

SROT - Applies an orthogonal plane rotation

SYNOPSIS

CALL SROT(n,sx,incx,sy,incy,c,s)

DESCRIPTION

n Number of vector elements 011 which to apply rotation (input)

sx Real vector to be modified of length at least l+(n-l)"'lincxl (input/output)

incx Increment between elements of sx (input)

sy Real vector to be modified of length at least l+(n-l)*lincyl (input/output)

incy Increment between elements of sy. For contiguous elements, incy = 1. (input)

c Real cosine of rotation. Normally calculated using SROTG. (input)

s Real sine of rotation. Nonnally calculated using SROTG. (input)

This subroutine applies a matrix plane rotation. If the coefficients c and s satisfy c*c+s*s = 1.0, the
transfonnation is a Givens rotation. The coefficients c and s can be calculated from the elements of a
two-element vector that determine the angle of rotation using SROTG.

SROT applies to each pair of elements Xi and Yi in the following plane rotation:

~i 1 [c s] rXi 1 fi . 1 ~i := -$ c • ~i or l = •... , n

SROT returns without modifying any input parameters if c = 1 and $;;;: O.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SROTG(3SCI)

4-121 D

SROTG(3SCI) SROTG (3SCI)

NAME

SROTG - Consttucts a Givens plane rotation

SYNOPSIS

CALL SROTG(a.b.c.s)

DESCRIPTION

SR·Ol13

a First scalar element of the two-element vector that determines the angle of rotation
(input/output)

b Second scalar element of the two·element vector that detennines the angle of rotation
(input/output)

e Cosine of rotation (output)

s Sine of rotation (output)

SROTG computes the elements of a rotation matrix such that:

The above call calculates the parameters r. z. c, and s from input coordinates a. b as in the following:

{ sgn (a) if I a I > I b I
(J = sgn (b) if I a I s; I b I

faIr if r~
e = 11 if r=O

fblr if r~
s = 10 ifr=Q

(J is not needed in computing a Givens rotation matrix; however, its use permits later reconstruction of
c and s from just one number. For this reason parameter z is also calculated as follows:

{
s iflal>lbl

z = lie if I a I s; I b I and c ;t 0
1 ifc=O

The subroutine uses parameters a and b and returns r, z. c, and s, where r overwrites a, and z
overwrites b.

4·122 D

SROTG(3SCI) SROTG(3SCI)

A later reconstruction of c and s from : can be done as follows:

Ifz=I, setc=Oands=l

If I: 1< 1 , set c = (1_: 2)'''' and s = z

If j : I > 1, set e = l/z and s = (l-e 2)''''

IMPLEMENTATION

This routine is available to users of both the COS and UNlCOS operating systems.

SEE ALSO

SROT(3SCI), CROT(3SCI)

4-123 D

SROTM(3SCI)

NAME

SROTM - Applies a modified Givens plane rotation

SYNOPSIS

CALL SROTM(n,$X,incx,sy,incy,param)

DESCRIPTION

n

sx

incx

sy

incy

param

Number of elements on which to apply rotation (input)

Real vector to be modified of length at least 1+(n41)* I incxl (input/output)

Increment between elements of sx (input)

Real vector to be modified of length at least 1 +(n-l)* I incy I (input/output)

Increment between elements of sy (input)

5-element vector containing rotation matrix information (input)

SROTM applies the modified Givens plane rotation constructed by SROTMG.

It computes

rXy,i.] = [h 11 h 12] rXj] . ~ h21 hZ2 ~i : fOIl=1 •... • n

SROTM(3SCI)

where the parameters HII, H21, HI2, and H22 are the elements of the rotation matrix H, and are passed
in the array PARAM according to the following schedule:

PARAM(l) is the key parameter having values 1.0.0.0, -1.0. or -2.0.

Case for which PARAM(l)=l.O:

Hll:=PARAM(2)

H21=-1.0

Hl2=1.0

H22=PARAM(5)

and PARAM(3) and PARAM(4) are ignored.

Case for which PARAM(l)=O.O:

H11=1.0

H21=PARAM(3)

Hl2=PARAM(4)

H22=1.0

and PARAM(l) and PARAM(5) are ignored.

SR-0113 4-124 o

SROTM(3SCI) SROTM{3SCI)

Case for which P ARAM(l)=-l.O is rescaling case, so:

Hl1=PARAM(2)

H21=PARAM(3)

Hl2=PARAM(4)

H22=PARAM(5}

is a full matrix multiplication.

Case for which PARAM(1)=2.0 is H=I, namely:

Hll=1.0

H21=O.0

H12=O.0

H22=1.0

and PARAM(2), PARAM(3), PARAM(4), and PARAM(5) are ignored.

If n ~ 0, or if H is an identity matrix, SROTM returns with no operation on input arrays sx and sy.

If any other value for PARAM(l) is read (other than 1., 0, -1., or -2.), SROTM aborts the job with the
following message appearing in the logfile:

SROTM CALLED WITH INCORRECT PARAMETER KEY

The array PARAM must be declared in a dimension statement in the calling program, as follows:

DIMENSION PARAM(S)

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

SR-Ol13

See the description of SROTMG(3SCI) for further details about the modified Givens transformation and
the array PARAM.

4-125 D

SROTMG (3SCI) SROTMG(3SCI)

NAME

SROTMG - Consttucts a modified Givens plane rotation

SYNOPSIS

CALL SROTMG(d it d 2. b h b 2. param)

DESCRIPTION

SR-01l3

Real quantities that define a 2-element vector in partition form as given below
(input/output)

param 5-elemenl vector containing rotation matrix information (output)

SROTMG computes the elements of a modified Givens plane rotation matrix.

SROTMG sets up the computed elements in param from inputs d 1. d 2. b 1. and b 2'

The algorithm for SROTMG is based on the observation that an application of the Givens plane rotation

can be written in a form such that repeated applications require matrix multiplications by matrices con
taining only two nonunit elements. Thus, row transfonnations require only 2N rather than 4N multipli
cations. This application uses the input quantities d 1. d 2• b 1. and b 2 to define a 2-elernent vector in
partitioned form as

where d 1 and d 2 are scale factors. and the scaling upon each application of matrix G is updated.

Let H be a matrix

H = [::: :~l
such that

G ~] [:: 1

where D' 1- = diax{ Vd';" • ~ d' 2 } contains !he updated scale factors; !herefore. H is chosen according

to equation 3 or 4.

Equation 3:

H ~:l

4-126 D

SROTMG(3SCI) SROTMG(3SCI)

SR-0113

Equation 4:

Coefficients c and s are determined by equations 5 and 6.

Equation 5:

x
c =

Equation 6:

s = y
...Jx2+y2

.,[dtb I
=

~bz
=

Equation 4 shows that the d's are going to be scaled by c or s if two of the h's are to be unity.

Two cases, I c I > I s I and I s I ~ I c I , are considered so that the d's are scaled down the least upon
repeated applications.

Case I:

If I c I > I s I (which from equations 5 and 6 is the same as I d 1 b f I > I d zb i I). the solutions for equa
tion 4 are determined by equation 7.

Equation 7:

h n =h')2=l

Case 2:

If I s I ~ I c I (which is I dzbi I ~ I d Ib? I), equation 8 is chosen.

Equation 8:

DiStinguishi~g the two cases I c I > ~ or I s I ~ ~ is the updating factor. Then the complete solu

tions for D'''2 and H are as follows:

Case 1:

In case 1, where I c I > I s I or I d I b f I > I d zb ll. the following solutions for H are chosen:

hll = 1
d z b',1.

h 12 = d 1 b l

4-127 D

SROTMG(3SCI) SROTMG (3SCI)

SR-Ol13

-b z
hZI =

b l

and scale factors d)_

d'] = d 1/ u

d'2 = d'li u

where

u = del (H)

d 2 are updated to

= C 2 d 1

= C 2 d 2

d z bi
;;;; 1---

d1br

and x' becomes b'1 = b]"u

Case 2:

In case 2, where I s I ~ I c I or I d tb f I ~ I d lb ii, the following solutions for H are chosen:

d l b l
Ii 11 =

d z b 1
hl2 = 1

h =

Scale factors d 1 are updated to

d'l = dzlu

d'z = d l/U

with

and the x' factor becomes b') = b1·u.

Case 3:

Let m = 4096. Whenever the parameters d j are updated to be outside the window

which preserves about 36 = 48 . 12 bits or 10 decimal digits of precision, all parameters are rescaled
such that the d j 's are within that window. If either of the d i'S is 0, however, no rescaling action is
taken.

4-128 D

SROTMG(3SCI) SROTMG (3SCI)

SR-Ol13

Underflow:

If I d'i 1< (mr2• the following rescaling is done:

d ' . - d' ()2 i • - i' m

and if i = I, b /l : == b ' • . (m)-l

Overflow:

If I d /i I > (m)2, the following rescaling is done:

d ' . - d' ()-2 i • - i' m

and if i = I, b /l : = b'l . (m)

h ' . - h' ()-1 .2· - .2' m

h'i2 : = h 'i2 • (m)

Thus. SROTMG modifies the input parameters DI, D2, and Bl and returns the array PARAM according
to the following cases:

Case Sl:

If ABS(DI*Bl*Bl).GT.ABS(02*B2*B2), then

PARAM(l)=O
PARAM(3)::.B2/BI
PARAM(4)=D2*B2/DI*Bl

and parameters DI, D2, and Bl are written over by

where

Dl=Dl/V
D2=D2/V
Bl",Bl*U

U=1.+(D2*B2*B2)/(Dl *Bl *B 1).

Case 52:

If ABS(D2*B2*B2).GE.ABS(01*Bl*Bl), then

P ARAM(1)=1.
PARAM(2)=(Dl *BI)/(D2*B2)
PARAM(5)=BI/B2

and parameters 01, D2, and BI are wriuen over according to the following sequence:

TEMP=D1/U
Dl=D2/V
Bl=B2*U

U= 1. +(D 1 *B 1 *B 1)/(D2*B2*B2)

4-129 D

SRUfMG(3SCI) SROTMG(3SCI)

Case 53:

If. in either case 51 or case S2, the updated parameters Dl and D2 have been rescaled below/above the
window

(m)··(-2).LE.ABS(Dl).LE.(m)··2
(m) (-2).LE.ABS(D2).LE.(m)· ... Z

then the parameters Dl, Hll, HU, Bl and D2, 821, H22. respectively, are rescaled up/down by factors of
m. Rescaling occurs as many times as necessary to bring Dl or D2 within the preceding window. IT Dl
and D2 are within the window on entty, rescaling occurs only once.

Output parameters are

PARAM(1)=-l.
PARAM(2)=Hll
PARAM(3):H21
PARAM(4)=H12
PARAM(S):H22

and Dlt D2, and Bl are written over by correctly scaled versions of case S2 or case S3.

If Dl<O, the matrix 8=0 is generated (that is, h 11 = h 12 = h 21 = h22 = 0). PARAM(l)=-l. and the rest of
the elements of PARAM contain O.

Case S4:

If Dl*BZ--o on entry. then H=I.

Output is

PARAM(1)=-2.0 only.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SROTG(3SCI)

SR-01l3 4-130 D

SSBMV (3SCI) SSBMV(3SCI)

NAME

SSBMV - Multiplies a real vector by a real symmetric band matrix

SYNOPSIS

CALL SSBMV(uplo.n,k.alpha.a.lda.x.illcx.beta,y.incy)

DESCRIPTION

SR-0113

SSBMV performs the matrix-vector operation

y :=alpha*a* x +beta*y

where alpha and beta are scalars, x and y are n element vectors, and a is an n-by-n symmetric band
matrix, with k superdiagonals. SSBMV has the following arguments:

uplo Character'" 1. On entry. uplo specifies whether the upper or lower triangular part of the band
matrix a is being supplied. When uplo='U' or 'u', only the upper triangular pan of array a is
to be referenced. When uplo='L' or 'I', only the lower triangular part of array a is to be refer
enced. The uplo argument is unchanged on exit

n Integer. On entry, n specifies the order of the matrix a. The n argument must be at least O.
The n argument is unchanged on exit.

k Integer. On entry, k specifies the number of superdiagonals of the matrix a. k must satisfy
O.LE.k. The k argument is unchanged on exit

alpha Real. On entry, alpha specifies the scalar alpha The alpha argument is unchanged on exit.

a Real array of dimension (lda,n). Before entry with uplo='U' or 'u'. the leading (k+l)-by-n part
of the array a must contain the upper triangular band part of lhe symmetric matrix, supplied
column-by-column, with the leading diagonal of the matrix in row (k+l) of the array, the first
superdiagonal starting at position 2 in row k. and so on. The top left k-by-k triangle of the
array a is not referenced. The following program segment will transfer the upper triangular
part of a symmetric band matrix from conventional full matrix storage to band storage:

DO 20, h:l,N
M "" K+I-J
DO 10, I=MAX(l.J-K), J

A(M+I.J) = MATRIX(I,J)
10 CONTINUE
20 CONTINUE

4-131 D

SSBMV(3SCI) SSBMV(3SCI)

Before entry with uplo='L' or '1', the leading (k+l)-by-n part of the array a must contain the
lower triangular band part of the symmetric matrix, supplied column-by-column, with the lead
ing diagonal of the matrix in row 1 of the array, the first subdiagonal starting at position 1 in
row 2. and so on. The bottom right k-by-k triangle of the array a is not referenced. The fol
lowing program segment will transfer the lower triangular part of a symmetric band matrix
from conventional full matrix storage to band storage:

DO 20, hd,N
M = I-J
DO 10. 1=:01. MIN(N,J+K)

A(M+I.J) = MATRIX(I,J)
10 CONTINUE
20 CONTINUE

The a argument is unchanged on exit.

Ida Integer. On entry. Ida specifies the first dimension of a as declared in the calling
(sub)program. Ida must be at least (k+ 1). The Ida argument is unchanged on exit.

x Real array of dimension at least 1 +(n-l)* I ina I. Before entry, the incremented array x must
contain the vector x. The x argument is unchanged on exit.

ina Integer. On entry. incx specifies the increment for the elements of x. incx must not be 0. The
incx argument is unchanged on exit.

beta Real On entry, beta specifies the scalar beta. The beta argument is unchanged on exit.

y Real. Array of dimension at least 1 +(n-l)* I incy I. Before entry, the incremented array y must
contain the vector y. On exit, y is overwritten by the updated vector y.

incy Integer. On entry. incy specifies the increment for the elements of y. incy must not be 0. The
incy argument is unchanged on exit.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

NOTES

SSBMV is a level 2 Basic Linear Algebra Subprogram (BIAS 2).

SR-0113 4-132 D

SSUM(3SCI) SSUM(3SCI)

NAME

SSUM, CSUM - Sums the elements of a real or complex vector

SYNOPSIS

sum = SSUM(n.,uincx)

sum = CSUM(n,ex,inex)

DESCRIPTION

n Number of elements to be summed. If n S; 0, SSUM and CSUM return O. (input)

,u Real vector oflength at least 1 +(n-l)* I incx I containing elements to be summed (input)

ex Complex vector of length alleast l+(n-l)"'linexl containing elements to be summed (input)

inex Increment between elements of sx or ex (input)

SSUM computes the sum of the elements in a real vector (sx) specified by incx.

CSUM computes the complex sum of the elements in a complex vector (ex) specified by incx.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-01l3 4-133 D

SSWAP(3SCI) SSWAP(3SCI)

NAME

SSWAP, CSWAP - Swaps two real or complex arrays

SYNOPSIS

CALL SSW AP(n,sx,incx,sy .incy)

CALL CSWAP(n.cx,incx,cy,incy)

DESCRIPTION

71 Number of elements to be swapped (input)
If 71 ~ 0, SSWAP and CSW AP return without any computation

sx Real vector of length at least 1+(n-l)*lincxl (input/output)

ex Complex vector of length at least 1 +(71-1)* I ina I (input/output)

ina Increment between elements of sx or ex (input)

sy Real vector of length at least 1+(71-1)* I incy 1 (input/output)

cy Complex vector of length at least 1 +(71-1)*1 incy I (input/output)

incy Increment between elements of sy or cy. For contiguous elements, incy=1. (input)

SSW AP exchanges two real vectors.

CSW AP exchanges two complex vectors.

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-Ol13 4·134 D

SSYMM(3COS) SSYMM(3COS)

NAME

SSYMM - Multiplies a real general matrix by a real symmetric matrix

SYNOPSIS

CALL SSYMM(side,upio,m,n,alpha,a.lda,b,ldb,beta,c.ldc)

DESCRIPTION

SR-Ol13

SSYMM performs one of the following matrix-matrix operations:

c := alpha*a*b+beta*c

or c:= alpha*b*a+beta*c

Arguments alpha and beta are scalars, a is a symmelric matrix, and band c are m-by-n matrices.

side Type character* 1.

On entry, side specifies whether the symmetric matrix a appears on the left or right in the
operation as follows:

If side = 'L' or '1', c := alpha*a*b+beta*c
If side = 'R' or 'r', c := alpha*b*a+beta*c

On exit, side is unchanged.

uplo Type character* 1.

On entry, uplo specifies whether the upper or lower triangular part of the symmetric matrix a is
to be referenced as follows:

If uplo = 'u' or 'u', only the upper triangular part of the symmetric matrix is to be referenced.
If uplo = 'L' or '1', only the lower triangular part of the symmetric matrix is to be referenced.

On exit, uplo is unchanged.

m Type integer.
On entry, m specifies the number of rows in matrix c.
Argument m must be at least O.
On exit, m is unchanged.

n Type integer.
On entry, n specifies the number of columns in matrix c.
Argument n must be at least O.
On exit, n is unchanged.

alpha Type real.
On entry. alpha specifies the scalar alpha.
On exit, alpha is unchanged.

4-135 D

SSYMM(3COS) SSYMM(3COS)

SR-01l3

a Type real.
Array of dimension (Ida, ka).
Argument ka is m when side = 'L' or '1', and is n otherwise.

Before entry with side = 'V or '1', the m-by-m part of array a must contain the symmetric
matrix, such that:

If uplo == 'V' or 'u', the leading m-by~m upper triangular part of array a must contain the upper
triangular part of the symmetric matrix.
The strictly lower triangular part of a is not referenced.

If uplo = 'V or '1'. the leading m-by-m lower triangular part of array a must contain the lower
triangular part of the symmetric matrix.
The strictly upper triangular part of a is not referenced.

Before entry with side == 'R' or 'r', the n-by-n part of array a must contain the symmetric
matrix, such that:

If uplo = 'u' or 'u', the leading n-by-n upper triangular part of array a must contain the upper
triangular part of the symmetric matrix.
The strictly lower triangular part of a is not referenced.

If uplo = 'L' or '1', the leading n-by-n lower triangular part of array a must contain the lower
triangular part of the symmetric matrix.
The strictly upper triangular part of a is not referenced.

On exit, a is unchanged.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.
When side = 'L' or T, Ida must be at least max(l, m).
Otherwise, Ida must be at least max(1, n).
On exit, Ida is unchanged.

b Type real.
Array of dimension (/db, n).
Before entry, the leading m-by-n part of array b must contain matrix b.
On exit, b is unchanged.

ldb Type integer.
On entry. ldb specifies the first dimension of b as declared in the calling (sub)program.
Argument Idb must be at least max(!, m).
On exit, ldb is unchanged.

beta Type real.
On entry, beta specifies the scalar beta.
When beta is supplied as 0, e need not be set on input.
On exit, beta is unchanged.

c Type real.
Array of dimension (Ide, n).
Before entry, the leading m-by-n part of array c must contain matrix e, except when beta is 0,
in which case e need not be set on entry.
On exit, array c is overwritten by the m-by-n updated matrix.

Ide Type integer.
On entry, Ide specifies the first dimension of c as declared in the calling (sub)program.
Argument Ide must be at least max(l, m).
On exit, Ide is unchanged.

4-136 D

SSYMM(3COS) SSYMM(3COS)

IMPLEMENTATION

This routine is available only to users of the cos operating system.

NOTES

SSYMM is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-Ol13 4-137 D

SSYMV(3SCI} SSYMV(3SCI)

NAME

SSYMV - Multiplies a real vector by a real symmetric matrix

SYNOPSIS

CALL SSYMV(uplo.n.alpha,a,lda,x,incx,beta.y,incy)

DESCRIPTION

SSYMV performs the matrix-vector operation

y := alpha*a*x + beta*y

where alpha and beta are scalars, x and y are n element vectors, and a is an n-by-n symmetric matrix.
SSYMV has the following arguments:

upJo Character* 1. On entry, uplo specifies whether the upper or lower triangular part of the band matrix
a is being supplied. When" uplo='U' or 'u', only the upper triangular part of array a is to be refer
enced. When uplo='L' or T, only the lower triangular part of array a is to be referenced. The uplo
argument is unchanged on exit

n Integer. On entry, n specifies the order of matrix a. The n argument must be at least O. The n argu
ment is unchanged on exit.

alpha Real. On entry, alpha specifies the scalar alpha. The alpha argument is unchanged on exit.

a Real. Array of dimension (lda.n). Before entry with uplo='U' or 'u', the leading n-by-n upper tri
angular part of array a must contain the upper triangular part of the symmetric matrix and the
strictly lower triangular part of a is not referenced. Before entry with uplo= 'V or 'I', the leading
n-by-n part of the array a must contain the lower triangular part of the symmetric matrix and the
strictly upper triangular part of a is not referenced. The a argument is unchanged on exit.

Ida Integer. On entry, Ida specifies the first dimension of a as declared in the calling subprogram. Ida
must be at least max(l.n). The Ida argument is unchanged on exit.

x Real. Array of dimension at least 1 +(n-l)* I inal. Before entry, the incremented array x must con
tain the n element vector x. The x argument is unchanged on exit.

incx Integer. On entry, incx specifies the increment for the elements of x. incx must not be O. The incx
argument is unchanged on exit.

beta Real. On entry, beta specifies the scalar beta. When beta is supplied as 0, y need not be set on
input. The beta argument is unchanged on exit.

y Real. Array of dimensioo at least 1 +(n-l)* I incy I. Before entry. the incremented anay y must con
tain the n element vector y. On exit. y is overwritten by the updated vector y.

incy Integer. On entry t incy specifies the increment for the elements of y. incy must not be O. The incy
argument is unchanged on exit.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

NOTES

SSYMV is a level 2 Basic Linear Algebra Subprogram (BLAS 2),

SR-Ol13 4-138 D

SSYR(3SCI) SSYR(3SCI)

NAME

SSYR - Perfonns symmetric rank 1 update of a real symmetric matrix

SYNOPSIS

CALL SSYR(uplo.n.alpha.x.incx.a.lda)

DESCRIPTION

SSYR perfonns the symmetric rank 1 operation

a := alpha* x* x' + a

where alpha is a real scalar, x is an n element vector. and a is an n-by-n symmetric matrix.

SSYR has the following argwnents:

uplo Character· 1. On entry, uplo specifies whether the upper or lower triangular part of array a is to be
referenced. When up/o='l}' or 'u', only the upper triangular part of array a is to be referenced.
When uplo='L' or '1', only the lower triangular part of array a is to be referenced. The upio argu
ment is unchanged on exit.

n Integer. On entry, n specifies the number of columns of the matrix a. The n argument must be at
least O. The n argwnent is unchanged on exiL

alpha Real. On entry, alpha specifies the scalar alpha. The alpha argument is unchanged on exit.

x Real. Array of dimension at least 1 +(n-l)* 1 incx I. Before entry, the incremented array x must con
tain the n element vector x. The x argument is unchanged on exit.

incx Integer. On entry. incx specifies the increment for the elements of x. Argument incx must not be O.
The incx argwnent is unchanged on exit.

a Real. Array of dimension (fda.n). Before entry, the leading n-by-n part of array a must contain the
matrix of coefficients. On exit, a is overwritten by the updated matrix.

Ida Integer. On entry. Ida specifies the first dimension of a as declared in the calling subprogram.
Argument Ida must be at least max(l,n). The Ida argument is unchanged on exit.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

NOTES

SSYR is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-OlI3 4-139 D

SSYR2(3SCI) SSYR2(3SCI)

NAME

SSYR2 - Perfonns symmetric rank 2 update of a real symmetric matrix

SYNOPSIS

CALL SSYR2(uplo.n,alpha,x,incx,y,incy,a,lda)

DESCRIPTION

SSYR2 performs the symmetric rank 2 operation

a:= alpha*x*y' +aipha*i"x' +a

where alpha is a scalar, x and y are n element vectors, and a is an n-by-n symmetric matrix.

SSYR2 has the following arguments:

uplo Character*1. On entry, uplo specifies whether the upper or lower triangular part of the band
matrix a is being supplied. When up[o='U' or 'u', only the upper triangular part of array a is
to be referenced. When up/o= 'L' or '1', only the lower triangular part of array a is to be refer
enced. The uplo argument is unchanged on exit.

n Integer. On entry, n specifies the order of the matrix a. The n argument must be at least O.
The n argument is unchanged on exit.

alpha Real. On entry, alpha specifies the scalar alpha. The alpha argument is unchanged on exit.

x Real. Array of dimension at least l+(n-l)*lincxl. Before entry. the incremented array x must
contain the n element vector x. The x argument is unchanged on exit.

incx Integer. On entry, mcx specifies the increment for the elements of x. ina must not be O. The
incx argument is unchanged on exit.

y Real. Array of dimension at least 1 +(n-l)'''' incy I. Before entry, the incremented array y must
contain the n element vector y. The y argument is unchanged on exit.

incy Integer. On entry, incy specifies the increment for the elements of y. incy must not be zero.
The incy argument is unchanged on exit.

a Real. Array of dimension (lda.n). Before entry with up/o='U' or 'u', the leading n-by-n
upper triangular part of the array a must contain the upper triangular part of the symmetric
matrix and the suietly lower triangular part of a is not referenced. On exit, the upper triangular
part of the array a is overwritten by the upper triangular part of the updated matrix. Before
entry with up/o~'L' or '1', the leading n-by-n lower triangular part of the array a must contain
the lower triangular part of the symmetric matrix and the strictly upper triangular part of a is
not referenced. On exit, the lower triangular part of the array a is overwritten by the . lower tri
angular part of the updated matrix.

lda Integer. On entry, Ida specifies the first dimension of a as declared in the calling
(sub)program. Ida must be at least max(l,n). The IdtJ argument is unchanged on exit.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

NOTES

SSYR2 is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-Ol13 4-140 D

SSYR2K(3COS) SSYR2K(3COS)

NAME

SSYR2K - Perfonns symmetric rank 2k update of a real symmetric matrix

SYNOPSIS

CALL SSYR2K(uplo.trans.n.k.alpha.a.lda,b,ldb,beta,c,ldc)

DESCRIPTION

SR-OI13

SSYR2K perfonns one of the following symmetric rank 2k operations:

c := alpha*a*b' +alpha*b*a' +beta*c

or

c := aipha*a'*b+aipha*b'*a+beta*c

Arguments alpha and beta are scalars, and c is an n-by-n symmetric matrix. Arguments a and b
are n-by-k matrices in the first operation listed previously, and k-by-n matrices in the second.

uplo Type character* 1.

On entry, up/o specifies whether the upper or lower triangular part of array c is to be refer
enced as follows:

If up/o = 'u' or 'u', only the upper triangular part of c is to be referenced.
If uplo = 'L' or '1', only the lower triangular part of c is to be referenced.

On exit,. uplo is unchanged.

trans Type character* 1.
On entry, trans specifies the operation to be performed as follows:

If trans = 'N' or 'n',

c := a/pha*a*b' +aipha*b*a' +beta*c

If trans = 'T' or 't',

c := alpha*a'*b+alpha*b' *a+beta*c

If trans = 'C' or 'C',

c := alpha*a' *b+aJpha*b' *a+bela*c

On exit, trans is unchanged.

n Type integer.
On entry, n specifies the order of matrix c.
Argument n must be at least O.
On exit, n is unchanged.

k Type integer.

On entry with trans = 'N' or 'n', k specifies the number of columns of matrices a and b.
On entry with trans = 'T, '1', 'C', or 'c', k specifies the number ofrows of matrices a and b.

Argument k must be at least O.
On exit, k is unchanged.

alpha Type real.
On entry, alpha specifies the scalar alpha.
On exit, alpha is Wlchanged.

4-141 D

SSYR2K(3COS) SSYR2K(3COS)

a Type real.
Array of dimension (Ida, lea).
Argument ka is k if trans = 'N' or 'n', and is n otherwise.

Before entry with trans = 'N' or 'n', the leading n-by-k part of array a must contain matrix a.
Otherwise, the leading k-by-n part of array a must contain matrix a.

On exit, a is unchanged.

ida Type integer.
On entry. Ida specifies the first dimension of a as declared in the calling (sub)program.

If trans = 'N' or 'n', Ida must be at least max(1, n).
Otherwise, Ida must be at least max(l, k).

On exit, Ida is unchanged.

b Type real.
Array of dimension (Idb, kb)
Argument kb is k if Irons = 'N' or 'n', and is n otherwise.

Before entry with trans = 'N' or 'n', the leading n-by-k pan of array b must contain matrix b.
Otherwise, the leading k-by-n pan of array b must contain matrix b.

On exit. b is unchanged.

[db Type integer.
On entry. [db specifies the first dimension of b as declared in the calling (sub)program.

If Irans = 'N' or 'n', Idb must be at least max(l. n).
Otherwise, Idb must be at least max(1, k).

On exit, /db is unchanged.

beta Type real.
On entry, beta specifies the scalar beta.
On exit, beta is unchanged.

c Type real.
Array of dimension (Ide, n).

Before entry with uplo = 'V' or 'u', the leading n-by-n upper triangular part of array c must
contain the upper biangular part of the symmetric matrix.
The strictly lower triangular part of c is not referenced.
On exit, the upper triangular part of array c is Qverwritten by the upper triangular part of the
updated mattix.

Before entry with uplo = 'L' or T, the leading n-by-n lower triangular pan of array c must
contain the lower triangular part of the symmetric matrix.
The strictly upper triangular part of e is not referenced.
On exit, the lower triangular part of array e is overwrinen by the lower triangular part of the
updated matrix.

{de Type integer.
On entry, Ide specifies the first dimension of c as declared in the calling (sub)program.
Argument ide must be at least max(l, n).
On exit, Ide is unchanged.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 4-142 D

SSYR2K (3COS) SSYR2K(3COS)

NOTES

SSYR2K is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-OI13 4-143 D

SSYRK(3COS) SSYRK(3COS)

NAME

SSYRK - Performs symmetric rank k update of a real symmetric matrix

SYNOPSIS

CALL SSYRK(uplo ,trans ,n,k,aipha,a,lda.beta.e ,Ide)

DESCRIYITON

SR-Ol13

SSYRK performs one of the following symmetric rank. k operations:

c := alpha*a*a' +beta*c

or

c := a/phatl<a' *a+beta*c

Arguments alpha and beta are scalars, and c is an n-by-n symmetric matrix. Argument a is an n-by-k
matrix in the first operation listed previously, and a k-by-n matrix in the second.

upla Type character"'l,

On entry, uplo specifies whether the upper or lower triangular part of array c is to be refer
enced as follows:

If up/a = 'U' or 'u" only the upper triangular part of c is to be referenced.
If up/o = 'L' or '1', only the lower triangular part of c is to be referenced.

On exit, uplo is uncnanged.

trans Type character'" 1.
On entry, trans specifies the operation to be performed as follows:

If trans = 'N' or 'n'.

c := aipha*a*a' +beta*c.

If trans = 'T' or 't',

c := alpha*a'*a+beta*c.

If trans = 'C' or 'c',

c := alpha*a'*a+beta*c.

On exit, trans is unchanged.

n Type integer.
On entry, n specifies the order of matrix c.
Argwnent n must be at least O.
On exit, n is unchanged.

k Type integer.

On entry with trans = 'N' or 'n', k specifies the number of columns of matrix a.
On entry with trans = 'T', 'C, 'C', or 'c', k specifies the number of rows of matrix a.

Argument k must be at least O.
On exit, k is unchanged.

4-144 D

SSYRK(3COS) SSYRK(3COS)

alpha Type real
On entry, alpha specifies the scalar alpha.
On exit. alpha is unchanged.

a Type real.
Array of dimension (Ida, ka).
Argument ka is k if trans = 'N' or 'n', and is n otherwise.

Before entry with trans = 'N' or 'n', the leading n-by-k part of array a must contain matrix a.
Otherwise, the leading k-by-n part of array a must contain matrix a.

On exit, a is unchanged.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.

If trans = 'N' or 'n" Ida must be at least max(l, n).
Otherwise, Ida must be at least max(l, k).

On exit, Ida is unchanged.

beta Type real.
On entry, beta specifies the scalar beta.
On exit, beta is unchanged.

c Type real.
Array of dimension (Ide, n).

Before entry with uplo = 'u' or 'u', the leading n-by-n upper triangular part of array e must
contain the upper triangular part of the symmetric matrix.
The strictly lower triangular part of e is not referenced.
On exit, the upper triangular part of array e is overwritten by the upper triangular part of the
updated matrix.

Before entry with uplo = 'L' or '1'. the leading n-by-n lower triangular part of array e must
contain the lower triangular part of the symmetric matrix.
The strictly upper triangular part of e is not referenced.
On exit, the lower triangular part of array c is overwritten by the lower triangular part of the
updated matrix.

Ide Type integer.
On entry, Ide specifies the first dimension of e as declared in the calling (sub)program.
Argument Ide must be at least max(l, n).
On exit, Ide is unchanged.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

NOTES

SSYRK is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-OI13 4~145 D

STBMV (3SCI) STBMV(3SCI)

NAME

STBMV - Multiplies a real vector by a real triangular band matrix

SYNOPSIS

CALL STBMV(upio.trans.diag.n.k.a.lda.x,incx)

DESCRIPTION

SR-Ol13

STBMV performs one of the matrix-vector operations

x:=a*x orx:= a''''x

where x is an n element vector, and a is an n-by-n unit. or non-unit, upper or lower triangular band matrix,
with (k+ 1) diagonals.

STBMV has the following arguments:

upio Character'" 1. On entry. uplo specifies whether matrix is an upper or lower triangular matrix. When
uplo='U' or ·u'. a is an upper triangular matrix. When uplo='L' or T, a is a lower triangular
matrix. The uplo argument is unchanged on exit

trans Character* 1. On entry, trans specifies the operation to be performed. If trans:; 'N' or 'n' ,x := a*x.
If trans = 'r or 't' ,x := a' *x. The trans argument is Wlchanged on exit.

diag Character*1. On entry. diag specifies whether or not a is unit triangular. If diag = 'U' or 'u', a is
assumed to be unit triangular. If diag :; 'N' or 'n'. a is not assumed to be unit triangUlar. The diag
argument is unchanged on exit.

n Integer. On entry, n specifies the order of the matrix a. The n argument must be at least O. The n
argument is unchanged on exit

k Integer. On entry with uplo='U' or 'u', k specifies the number of superdiagonals of the matrix a.
On entry with uplo='V or 'I', k specifies the number of subdiagonals of the matrix a. Argument k
must satisfy O.LE.k. The k argument is unchanged on exit.

a Real array of dimension (lda,n). Before entry with uplo='U' or 'u', the leading (k+l)-by-n part of
the array a must contain the upper triangular band part of the matrix of coefficients, supplied
column by column, with the leading diagonal of the matrix in row (k+ 1) of the array. the first super·
diagonal starting at position 2 in row k, and so on. The top left k-by-k triangle of the array a is not
referenced. The following program segment will transfer the upper triangular baild matrix from
conventional full matrix storage to band storage:

DO 20. J=l.N
M = K+I-J
00 10, I=MAX(1.J-K). J

A(M+I,J) = MATRIX(I.J)
10 CONTINUE
20 CONTINUE

Before entry with uplo='L' or'!', the leading (k+ 1)-by-n part of the array a must contain the lower
triangular band part of the matrix of coefficients, supplied column-by-column. with the leading
diagonal of the matrix in row 1 of the array. the first subdiagonal starting at position 1 in row 2, and
so on. The bottom right k-by-k triangle of the array a is not referenced. The following program seg
ment will transfer a lower triangular band matrix from conventional full matrix storage to band
storage:

4-146 D

STBMV(3SCI) STBMV(3SCI)

DO 20. I-I,N
M = 1.J
DO 10, I=J. MIN(N.J+K)

A(M+I,J) = MATRIX(I,J)
10 CONTINUE
20 CONTINUE

Note that when diag='U' or 'u' the elements of the array a corresponding to the diagonal elements
of the mab'ix are not referenced. but are assumed to be unity. The a argument is unchanged on exit.

Ida Integer. On entry. Ida specifies the first dimension of a as declared in the calling subprogram.
Argument Ida must be at least (k+ 1). The Ida argument is unchanged on exit.

x Real array of dimension at least l+(n-l)* I in ex I. Before entry, the incremented army x must contain
the n element vector x. On exit, x is overwritten with the transfonned vector x.

incx Integer. On entry, ina specifies the increment for the elements of x. Argument incx must not be O.
The ina argument is unchanged on exit.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

NOTES

STBMV is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-Ol13 4·147 D

STBSV (3SCI) STBSV (3SCI)

NAME

STBSV - Solves a real triangular banded system of linear equations

SYNOPSIS

CALL STBSV(uplo ,trans ,diag ,n.k,a,lda,x,incx)

DESCRIPTION

SR-0113

STBSV solves one of the systems of equations

a*x = b or a' *x = b

where b and x are n element vectors, and a is an n-by-n unit, or non-unit, upper or lower triangular band
matrix, with (k+ 1) diagonals.

No test for singularity or near-singularity is included in this routine. Such tests must be perfonned before
calling this routine.

upio Character* 1. On entty, lIplo specifies whether matrix is an upper or lower triangular matrix. When
uplo='U' or 'u', a is an upper triangular matrix. When uplo='L' or '1', a is a lower triangular
matrix. The uplo argument is unchanged on exit.

trans Character*!. On entty, trans specifies the equation to be solved. If trans='N' or 'n', a*x::: b. If
trans='T' or 't', a'*x = h. The trans argument is unchanged on exit.

diag Character*1. On entry, diag specifies whether or not a is unit triangular. If diag='U' or 'u', a is
assumed to be unit triangular. If diag='N' or 'n', a is not assumed to be unit triangular. The diag
argument is unchanged on exit.

n Integer. On entry, n specifies the order of matrix a. The n argument must be at least O. The n argu
ment is unchanged on exit

k Integer. On entry with uplo='U' or 'u', k specifies the number of superdiagonals of the matrix a.
On entry with uplo='L' or '1', k specifies the number of subdiagonals of the matrix a. Argument k
must satisfy OLE.k. The k argument is unchanged on exit

a Real array of dimension (lda,n). Before entry with uplo='U' or 'u', the leading (k+l)-by-n part of
array a must contain the upper triangular band part of the matrix of coefficients. supplied column
by-column, with the leading diagonal of the matrix in row (k+ I) of the array, the first superdiagonal
starting at position 2 in row k, and so on. The top k-by-k triangle of array a is not referenced. The
following program segment will transfer an upper triangular band matrix from conventional full
matrix storage to band storage:

DO 20. I=l.N
M = K+I-J
DO 1 O. I =MAX (1 , J - K). J

A(M+I.J) ~ MATRIX(I.J)
10 CONTINUE
20 CONTINUE

4-148 D

STBSV(3SCI) STBSV (3SCI)

Before entry with uplo='L' or T, the leading (k+ l)-by-n part of array a must contain the lower tri
angular band part of the matrix of coefficients, supplied column-by-column, with the leading diago
nal of the matrix in row 1 of the array, the first subdiagonal starting at position 1 in row 2, and so on.
The bottom right k-by-k triangle of array a is not referenced. The following program segment will
transfer a lower lriangular band matrix from conventional full matrix storage to band storage:

DO 20, hd,N
M = I-J
DO 10, I~I, MIN(N,I+K)

A(M+I,J) = MATRIX(I,J)
10 CONTINUE
20 CONTINUE

Note that when diag='U' or 'u·. the elements of array a corresponding to the diagonal elements of
the matrix are not referenced, but are assumed to be unity. The a argument is unchanged on exit.

Ida Integer. On entry, 100 specifies the first dimension of a as declared in the calling (sub)program.
Argument ida must be at least (k+ 1). The ida argument is unchanged on exit.

x Real array of dimension at least 1 +(n-l)* 1 incx I. Before entry. the incremented array x must contain
the n element right-hand side vector b. On exit, x is overwritten with the solution vector x.

incx Integer. On entry, incx specifies the increment for the elements of x. Argument incx must not be O.
The incx argument is unchanged on exit.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

NOTES

STBSV is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-Ol13 4-149 D

STRMM(3COS) STRMM (3008)

NAME

STRMM - Multiplies a real general matrix by a real triangu1ar mattix

SYNOPSIS

CALL STRMM(side ,uplo .transa,diag .m.n,alpha,a.lda.b.ldb)

DESCRIPTION

SR-Ol13

STRMM perfonns one of the matrix-matrix operations:

or b:= alpha*b*op(a)

Argument alpha is a scalar, b is an m-by-n matrix, a is a unit, or non-unit. upper or lower triangular
matrix, and ope a) is one of the following:

op(a) = a,

or op(a) = a' .

side Type character·t.

On entty. side specifies whether op(a) multiplies b from the left or right as follows:

If side = 'L' or '1', b:= alpha*op(a)*b.
If side = 'R' or 'r', b:= alpha*b*op(a).

On exit, side is unchanged.

uplo Type character· 1.

On entry, uplo specifies whether matrix (a) is an upper or lower triangular matrix as follows:

If uplo = 'U' or 'u', a is an upper triangular matrix.
If uplo = 'L' or 'I'. a is a lower triangular matrix.

On exit, uplo is unchanged.

transa Type character* 1.

On entry, transa specifies the form of op(a) to be used in the matrix multiplication as follows:

If transa = 'N' or 'n', op(a) = a.
If transa = 'T' or 't', op(a) = a'.
If transa = 'C' or 'c', op(a) = a'.

On exit. transa is unchanged.

diag Type character'" 1.

On entry, diag specifies whether or not a is unit triangular as follows:

If diag = 'U' or 'u', a is assumed to be unit triangular.
If diag = 'N' or 'n', a is not assumed to be unit triangular.

On exit, diag is unchanged.

4-150 D

STRMM (3COS) STRMM (3COS)

m Type integer.
On entry, m specifies the number of rows in b.
Argwnent m must be at least O.
On exit, m is unchanged.

n Type integer.
On enny, n specifies the number of colwnns in b.
Argument n must be at least O.
On exit, n is unchanged.

alpha Type real.
On entry, alpha specifies the scalar alpha.
When alpha is 0, a is not referenced, and b need not be set before entry.
On exit, alpha is unchanged.

a Type real.
Array of dimension (Ida, k).
Argwnent k is m when side = 'L' or 'I', and is n when side = 'R' or 'r'.

Before entry with uplo = 'U' or 'u', the leading k-by-k upper triangular part of array a must
contain the upper triangular matrix.
The strictly lower triangular part of a is not referenced.

Before entry with uplo = 'L' or '1', the leading k-by-k lower triangular part of array a must
contain the lower triangular matrix.
The strictly upper triangular part of a is not referenced.

Note that when diag = 'U' or 'u', the diagonal elements of a are not referenced. but are
assumed to be unity.
On exit, a is unchanged.

Ida Type integer.
On entry, Ida specifies the first dimension of a as declared in the calling (sub)program.
When side = 'L' or '1'. Ida must be at least max(1. m).
When side = 'R' or 'r', Ida must be at least max(I, n).
On exit, Ida is unchanged.

b Type real.
Array of dimension (ldb, n).
Before entry, the leading m-by-n part of array b must contain matrix b.
On exit, b is overwritten by the transformed matrix.

Idb Type integer.
On entry. ldb specifies the first dimension of b as declared in the calling (sub)program.
Argument [db must be at least max(l, m).
On exit, Idb is unchanged.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

NOTES

STRMM is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-Ol13 D

STRMV (3SCI) STRMV(3SCI)

NAME

STRMV - Multiplies a real vector by a real triangular matrix

SYNOPSIS

CALL STRMV(upio,trans,diag ,n,a,lda,x,incx)

DESCRIPTION

STRMV solves one of the matrix-vector operations

x :==a* x or x :=a'* x

where x is an n element vector, and a is an n-by-n unit, or non-unit, upper or lower triangular band
matrix.

uplo Character·t. On entry, uplo specifies whether matrix is an upper of lower triangular matrix.
When uplV""'U' or 'u', a is an upper triangular matrix. When uplcr-'L' or T, a is a lower tri
angular matrix. The uplo argument is lDlchanged on exit.

trans Character·1. On entry, trans specifies the equation to solved as follows: If trans='N' or 'n',
x:==a*x. If trans=:'r or 't', x:=a'*x. The trans argument is unchanged on exit.

diag Character'" 1. On entry, diag specifies whether or not a is unit triangular as follows: If
diag='U' or 'u', a is assumed to be unit triangular. If diag='N' or 'n', a is not assumed to be
unit triangular. The diag argument is unchanged on exit.

n Integer. On entry. n specifies the order of the matrix a. The n argument must be at least O.
The n argument is unchanged on exit.

a Real array of dimension (lda,n). Before entry with uplo='U' or 'u', the leading n-by-n upper
triangular part of the array a must contain the upper triangular matrix and the strictly lower tri
angular part of a is not referenced. Before entry with uplo='V or '1', the leading n-by-n lower
triangular part of the array a must contain the lower triangular matrix and the strictly upper tri
angular part of a is not referenced. Note that when diag='U' or 'u', the diagonal elements of
a are not referenced either, but are assumed to be unity. The a argument is unchanged on exit.

Ida Integer. On entry, Ida specifies the first dimension of a as declared in the calling
(sub)program. Argument Ida must be at least max(1,n). The Ida argument is unchanged on
exit.

x Real array of dimension at least l+(n-l)·lincxl. Before entry, the incremented array x must
contain the n element vector b. On exit, x is overwritten with the transformed vector x.

incx Integer. On entry, incx specifies the increment for the elements of x. Argument incx must not
be O. The ino: argument is unchanged on exit.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

NOTES

STRMV js a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-01l3 4-152 D

STRSM (3COS) STRSM (3COS)

NAME

STRSM - Solves a real triangular system of equations with multiple right-hand sides

SYNOPSIS

CALL STRSM(side,uplo,transa,diag .m,n.alphtz,a.lda.b.ldb)

DESCRIPTION

SR-Ol13

STRSM solves one of the following matrix equations:

op(a)"'x = aJphtz"'b

or x"'op(a) = alpha"'b

Argument alpha is a scalar, x and b are m-by-n matrices, a is a unit, or non-unit. upper or lower tri
angular matrix, and op(a) is one of the following:

op(a) = at

or op(a) = a' .

Matrix X is overwritten on b.

side Type character* 1.

On entty. side specifies whether op(a) appears on the left or right of x as follows:

If side = tL' or '1'. op(a)"'x = alphtz"'b
If side = 'R' or 'r', x"'op(a) = alpha*b

On exit, side is unchanged.

uplo Type character* 1.

On entry. uplo specifies whether matrix Ca) is an upper or lower triangular matrix as follows:

If uplo = 'U' or 'u', a is an upper triangular matrix.
If uplo = 'L' or '1', a is a lower triangular matrix.

On exit, up/o is unchanged.

transa Type character·t.

On enrry, transa specifies the fonn of op(a) 10 be used in the matrix multiplication as follows:

If transa = 'N' or tn', op(a) ::;: a.
If transa = 'T' or 't', op(a) = a'.
If transa = 'C' or 'c t , op(a) = a'.

On exit, transa is unchanged.

diag Type character"'I.

On entry, diag specifies whether or not a is unit triangular as follows:

If mag = 'U' or 'u'. a is assumed 10 be unit biangular.
If diag = 'N' or 'n', a is not assumed to be unit triangular.

On exit. diag is unchanged.

4-153 D

STRSM(3COS} STRSM(3COS)

m Type integer.
On entty, m specifies the number of rows in b.
Argument m must be at least O.
On exit, m is unchanged.

n Type integer.
On entty. n specifies the number of columns in b.
Argument n must be at least O.
On exit, n is unchanged.

alpha Type real.
On entry, alpha specifies the scalar alpha.
When alpha is 0, a is not referenced, and b need not be set before entry.
On exit. alpha is unchanged.

a Type real.
Array of dimension (Ida, k).
Argument k is m when side = 'L' or '1', and is n when side = 'R' or 'r'.

Before entry with uplo = 'U' or ·u'. the leading k-by-k upper triangular pan of array a must
contain the upper triangular matrix.
The strictly lower triangular part of a is not referenced.

Before entry with uplo = 'L' or '1', the leading k-by-k lower triangular part of array a must
contain the lower triangular matrix.
The strictly upper triangular part of a is not referenced.

Note that when diag = 'U' or 'u'. the diagonal elements of a are not referenced, but are
assumed to be unity.
On exit, a is unchanged.

Ida Type integer.
On entry. Ida specifies the first dimension of a as declared in the calling (sub)program.
When side = 'L' or '1', Ida must be at least max.(l. m).
When side = 'R' or 'r', Ida must be at least max(I, n).
On exit, Ida is unchanged.

b Type real.
Array of dimension (Idb, n).
Before entry. the leading m-by-n part of array b must contain the right-hand side matrix b.
On exit, b is overwritten by the solution matrix x.

ldb Type integer.
On entry. ldb specifies the first dimension of b as declared in the calling (sub)program.
Argument Idb must be alleasl max(l, m).
On exit, ldb is unchanged.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

NOTES

STRSM is a level 3 Basic Linear Algebra Subprogram (BLAS 3).

SR-01l3 4-154 D

STRSV (3SCI) STRSV(3SCI)

NAMB

STRSV - Solves a real triangular system of linear equations

SYNOPSIS

CALL STRSV(uplo .trans.diag ,n,a.lda,x.incx)

DESCRIPTION

STRSV solves one of the systems of equations

a*x = b or Q' "'x = b

where b and x are n element vectors, and Q is an n-by-n unit, or non-unit, upper or lower triangular matrix.

uplo Character'" 1. On entry, uplo specifies whether matrix is an upper of lower triangular matrix. When
uplo='U' or 'u', a is an upper triangular matrix. When uplo='L' or '1', a is a lower triangular
matrix. The upio argument is unchanged on exit.

trans Character*1. On entry, trans specifies the operation to be performed. If trans='N' or 'n', a"'x = b.
If trans='T' or 't', a' *x = b. The trans argument is unchanged on exit.

diag Chantcter"'l. On entry, diag specifies whether or not a is unit triangular. If diag='U' or 'u', a is
assumed to be unit triangular. If diag='N' or 'n\ a is not assumed to be unit triangular. The diag
argument is unchanged on exit.

n Integer. On entry, n specifies the order of the matrix a. The n argument must be at least O. The n
argument is unchanged on exit. .

a Real array of dimension (lda,ll). Before entry with up[o='U' or 'u', the leading n-by-n upper tri
angular part of the array a must contain the upper triangular matrix and the strictly lower triangular
part of a is not referenced. Before entry with uplo:;;'L' or '1', the leading n-by-n lower triangular
part of the array a must contain the lower triangular matrix and the strictly upper triangular part of a
is not referenced. Note that when diag='U' or 'u', the diagonal elements of a are not referenced
either, but are assumed to be unity. The a argument is unchanged on exit.

Ida Integer. On entry, Ida specifies the first dimension of a as declared in the calling subprogram.
Argmnent Ida must be at least max(1,n). The Ida argument is unchanged on exit.

x Real array of dimension at least I +(n-l)"'1 incx I. Before entry, the incremented array x must contain
the n element right-hand side vector b. On exit, x is overwritten with the solution vector x.

in ex Integer. On entry. incx specifies the increment for the elements of x. Argument incx must not be O.
The incx argument is unchanged on exit

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

NOTES

STRSV is a level 2 Basic Linear Algebra Subprogram (BLAS 2).

SR-Ol13 4-155 D

SXMPY (3SCI)

NAME

SXMPY - MUltiplies a matrix by a row vector and adds the result to another row vector

SYNOPSIS

CALL SXMP¥(nl.ldy.y,n2,ldx.x.ldm,m)

DESCRIPTION

nl Number of columns in matrix y (input)

ldy Leading dimension of matrix y (input)

y Matrix specifying row vector used in sum and for result (input/output)

n2 Number of columns in matrix x (input)

ldx Leading dimension of matrix x (input)

x Matrix specifying row vector used in product (input)

ldm Leading dimension of matrix m (input)

m Matrix used in product (input)

SXMPY executes an operation equivalent to the following Fortran code:

SUBROUTINE SXMPY(Nl.LDY,Y.N2,LDX,x,LDM,M)
REAL Y(LDY,l). X(LDXJ). M(LDM,l)
00 20 J=l,N2

DO 20 I=l.Nl
Y(l.I)=Y(I,I) + X(l.J) ... M(J,I)

20 CONTINUE
RE1URN
END

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 4-156

SXMPY(3SCI)

D

INTRO(3X) INTRO(3X)

s. FAST FOURIER TRANSFORM ROUTINES

SR-OI13

These routines apply a Fast Fourier Transform. Each routine can compute either a Fourier analysis or a
Fourier synthesis. Detailed descriptions. algorithms, performance statistics, and examples of two of
these routines appear in Complex Fast Fourier Transform Binary Radix Subroutine (CFFT2), CRI publi
cation SN-0203; and Complex to Real Fast Fourier Transform Binary Radix Subroutine (CRFFT2), CRI
publication SN-0206.

CFFT2, RCFFT2, and CRFFT2 have the same argument list: (init,ix,n,x,work,y).

Parameter

init

ix

n

x

work

y

Description

Initialization flag

Analysis/Synthesis flag

Size of transform

Input vector

Working storage vector

Result vector

The routines are called the first time with init~ and n as a power of 2 to initialize the needed sine and
cosine tables in the working storage area work. Then for each input vector of length n (length (n/2)+ 1
for CRFYr2). each routine is called with init==O. The sign of ix determines whether a Fourier synthesis
or a Fourier analysis is computed: if the sign of ix is negative, a synthesis is computed; if the sign is
positive. an analysis is computed.

The foUowing table shows the size and fonnats of x. y. and work for each routine.

Arguments for Fast Fourier Transform Routines

Argument CFFT2 RCFFT2 CRFFT2

x Complex n Real n Complex
(n/2)+1

work Complex Complex Complex
(5/2)71 (3/2)71+2 (3/2)71+2

y Complex n Complex Real n
(n/2)+1

CFFTMLT and RFFTMLT apply Fast Fourier Transforms on mUltiple input vectors. Refer to the docu
mentation for each routine for details.

5-1 D

INTRO(3X) INTRO(3X)

SR-Ol13

The following table contains the purpose. name. and manual entry of each Fast Fourier Transform rou
tine.

The "manual entry" is the name of the manual page containing documentation for the routine listed.

Fast Fourier Transform Routines

Puroose Name Manual Entrv
Apply a complex Fast Fourier Transform CFFT2 CFFT2

Apply multiple complex-to-complex CFFTMLT CFFTMLT
Fast Fourier Transforms

Apply a complex-to-real Fast Fourier CRFFT2 CRFFT2
Transform
Apply a rea1-to-complex Fast Fourier RCFFT2 RCFFT2
Transform
Apply multiple complex-to-real and RFFTMLT RFFTMLT
real-la-complex Fast Fourier Transforms

5-2 D

CFFI'2(3SCI) CFFf2 (3SCI)

NAME

CFFTl - Applies a comp1ex Fast Fourier Transfonn (FFI)

SYNOPSIS

CALL CFFI'2.(init,ix,n,x,work,y)

DESCRlPTION

init If non-zero, generates sine and cosine tables in work.
If zero, calculates Fast Fourier Transfonns using sine and cosine tables of the previous call.

a > 0 Calculates a Fourier Analysis
< 0 Calculates a Fourier Synthesis

n Size of the Fourier transform; 2'" where m ~ 3 for the CRAY Y-MP. CRAY X-MP, and
CRAY-2 computer systems. and m ~ 2 for the CRAY-l computer system.

x Input vector of n complex values.

work

y

Range of r.

':66 ~ I Xi I ~ 102466 for i ;;; 1.2 n.
Iv-· n

Vector x can be equivalenced to the work vector. In this case the input values are
overwritten.

5
Wark storage vector of (2')n complex values.

Complex result vector of size n.

CFFT2 ca1culates:

1&-1 2 1t i
YA; = L Xj exp(±- jk)

j",(J n

for k;:::;O.I ,n-l; where i 2 =-1.

The sign of the exponent is the same as the sign of ix.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

CRFFT2.(3SCI). RCFFT2.(3SCI)

SR-Ol13 5-3 D

CFFfMLT(3SCI) CFFfMLT(3SCI)

NAME

CFFfMLT - Applies complex-to-complex Fast Fourier Transfonns (FFI') on multiple input vectors

SYNOPSIS

CALL CFFTMLT(ar,ai,work,trigs,ifax,incjump,n,lot,isign)

DESCltlM10N

SR-0113

ar Vector of n*lot real values.
On input. it contains the real part of the input data.
On ouput. it contains the real part of the transformed data.

ai Vector of n*101 real values.
On input. it contains the imaginary part of the input data.
On output. it contains the imaginary part of the transfonned data.

work Work storage vector of 4*n*lot real values.

trigs Input vector of 2i1<n real values. It must be initialized to contain sine and cosine tables.
This vector and ifax (following) can be initialized by the following call:

CALL CFTFAX(n,ifax,trigs).

(CFTFAX returns in ifax(l) an error flag of -99 if n is not factorable as given below.)

ifax Input vector of at most 19 integer values. It has a previously prepared list of factors of n.

inc The increment within each data vector.

jump The increment between the start of each data vector.
inc and jump apply to both the real and imaginary parts of the data.
To obtain best performance. jump should be an odd number.

n Length of the data vectors.
n must be factorable as:

n = 2P Ii< 3q * 5r

where P. q. and r are integers.

lot The number of data vectors.

isign + I for Fourier analysis
-1 for Fourier synthesis

CFFfMLT applies complex-to-complex Fast Fourier transfonns on more than one input vector:

"-I
(ar (inc*k +l),ai (inc*k+l)) = L exp (isign*iota* 2*pi* j*kln)(ar(inc* j+l).ai (inc* j +1»

i~

for k = O.l,n~1.

This calculation is performed for each of the n-vectors in the input.

Vectorization is achieved by doing parallel transforms. with vector]ength = lot.

5-4 D

CFFI'MLT(3SCI) CFFTMLT(3SCI)

IMPLEMENTATION

NOTES

SR-01l3

This routine is available to users of both the cos and UNICOS operating systems.

In the division by n, the normalization used by CFFTMLT is different from that used by CFFT2,
CRFFT2, and RCFFT2.

5-5 D

CRFFr2 (3SCI) CRFFT2(3SCI)

NAME

CRFFf2 - Applies a complex-to-real Fast Fourier Transform (FFf)

SYNOPSIS

CALL CRFFf2(init,i.t,n,x,work,y)

DESCR.IPTION

init If non-zero, generates sine and cosine tables in work.
If zero, calculates Fast Fourier Transfonns using sine and cosine tables of the previous call.

ix

n

x

work

y

> 0 Calculates a Fourier Analysis
< 0 Calculates a Fourier Synthesis

Size of the Fourier transform; 2'" where m ~ 3
n

Input vector of (2")+1 complex values.

Range of x: ~ ~ I x, I ~ 1~ for i = 1.2, ... ,n.
Iv-~~ n

3
Work storage vector of ("2)n +2 complex values.

Real result vector of n values.

CRFFT2 calculates the following equation:

,,-1 2'
Yi = L Xj exp(±~ jk)

j=lJ n

for k=O,l •... ,n-1

IMPLEMENTATION

NOTES

This routine is available to users of both the COS and UNICOS operating systems.

Xj elements are complex and related by Xi = ~_j for j = 1.2 •...• <;).
Only the first (~)+ 1 elements are stored in x.

SEE ALSO

CFFI'2(3SCI). RCFFf2(3SCI)

SR-01l3 5-6 D

RCFFf2(3SCI) RCFFT2(3SCI)

NAME

RCFFrl - Applies a reaI-to-complex Fast Fourier Transform (FFf)

SYNOPSIS

CALL RCFFfl(inil,ix,n,x,work.y)

DESCRIPTION

init If non-zero. generates sine and cosine tables in work.
If zero. calculates Fast Fourier Transforms using sine and cosine tables of the previous call.

ix > 0 Calculates a Fourier Analysis
< 0 Calculates a Fourier Synthesis

n Size of the Fourier transform; 2'" where m ~ 3.

x Input vector of n real values.
Range of x:

2n 1()2466
lQ2466 5; I Xi 15; 2;;- for i = 1.2, ... /1.

work
3 Work storage vector of (2")n + 2 complex values.

n Complex result vector of (2") + 1 values. y

RCFFT2 calculates:

II-I 2·
YA: = 21: Xj exp(±~ jk)

j-o n

The sign of the exponent is the same as the sign of ix.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

CFFf2(3SCl). CRFFf2(3SCI}

SR-0113 5-7 D

RFFI'MLT(3SCI) RFFrMLT(3SCI)

NAME

RFFTMLT - Applies complex-to-real and real-to-complex Fast Fourier Transforms (FFT) on multiple
input vectors

SYNOPSIS

CALL RFFfMLT(a.work.trigs.ijax,incjump,n,lot,isign)

DESCRIPTION

SR-OI13

a When isign = -I, the n real input values for each data vector:
a(I), a (1+inc), a (2*inc +1), "', a «n-I)*inc+l)
should be stored in vector a with stride = inc.

The computed output vector is:

a (2*inc*i + 1), a (2*inc* (i+ 1)+ 1), for i = 1,2, ... , ~.

The i-th Fourier coefficient is:

(0 (2*inc*i + 1), a (2*inc* (i+ 1)+1».

When isign ;;;;; ... 1, the input and output data fOffilat<; are reversed.

It is important to note that for i = 1 and i = ;. the imaginary parts of the complex input

numbers must be O.

work Work storage vector of size 2*n*lol real values.

trigs Input vector of 2*n real values. It must be initialized to contain sine and cosine tables. Vectors
trigs and ifax (following) can be initialized by the following call:

CALL FFTFAX(n.ifax.trigs).

(FFfFAX retwns in itifax(l) an error flag of -99 if n is not factorable as given below.)

ifax Input vector of at most 19 integer elements. It has a previously prepared list of factors of n.

inc The increment within each data vector.

jump The increment between the start of each data vector. inc and jump apply to both real and ima
ginary data. For the best performance. jump should be an odd number.

n Length of the data vectors.
n must be even and factorable as:

n;;;;; ")f' * 3q * 5"

where p. q, and r are integers.

lot The number of data vectors

isign -1 to calculate real-to-complex Fourier transform
+1 to calculate complex-ta-real Fourier transform

5-8 D

RFFfMLT(3SCI) RFFfMLT (3SCI)

RFFfMLT applies complex-to-real and real-to-complex Fast Fourier transforms on more than one input
vector.

For isign = -1. RFFfMLT calculates the following:

,,-1

(ar(inc*k+l).ai(inc*k+l» = L exp(-iota*2*pi*j*kln)*a(inc*j+l)/n
j~

n
for k = 0.1 •...• 2 .
iota is the square root of -I.

The numbers on the left side of the equation are complex.

This calculation is performed for each of the n-vectors in the input.

For isign "" +1. RFFfMLT calculates the following:

11-1

a (inc*k+l) = L exp(iota*2*pi*j*kln)*(a(2*inc*j+l),a(2*inc*j+inc+l»
J=()

for k "" O.l •... .n.
iota is the square root of -1.

This calculation is performed for each of the n-vectors in the input.

Each input vector satisfies the relationship:

a (2*k*inc+l) = a(2* (n-k)*inc+l)

a (2* (k+l)*inc+l) ;; -a «2* (n-k)+l)*inc+l)

n
for k = 0,1 •...• 2'

n
Only the first (2)+ 1 complex values are needed,

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

NOTES

RFFTML T uses a normalization different from the one used by CFFf2, CRFFf2, and RCFFr2.

Vectorization is achieved by doing parallel transforms, with vector length "" lot.

SR-OU3 5-9 o

INTRO(3X) lNTRO(3X)

6. SEARCH ROUTINES

SR-0113

The following search routines are written to run optimally on Cray computer systems. These subpro
grams use the ca1l-by-address convention when called by a Forttan or CAL program.

The subprograms are grouped as follows:

• Maximum/minimum element search routines

• Vector search routines

MaximumlMinimum Element Search Routines

The maximum and minimum element search routines find the largest or smallest element of a vector or
argument and return either the element or its index.

To return an index - ISMAX and ISMIN return the index of the maximum 01' minimum vector element,
respectively. ISAMAX, ICAMAX, and ISAMIN search for maximum or minimum absolute values in a
real vector and return the index. INTMAX and INTMIN are the corresponding maximum and minimum
search routines for an integer vector. INFLMAX and INFLMIN retmn the index of the maximum and
minimum value within a table. The type declaration for these routines is integer. For further delails
regarding type and dimension declarations for variables ocCUlTing in these subprograms, see section 4,
Linear Algebra Subprograms.

To return all element - The following functions find the maximum 01' minimum elements of two or
more vector arguments: MAXO, AMAXl, DMAXl, AMAXO, MAXI, MINO, AMINI, DMlNI, AMINO, and
MINI. These functions differ mainly in their types for integer. reaI. and double-precision arguments.
In the description of these functions. the argument type does not always reflect the function type.

6-1 D

INTRO(3X) INTRO(3X)

SR-0113

The following table contains the purpose. name, and manual entry of each maximum/minimum element
search routine.

The "manual entry" is the name of the manual page containing documentation for the routine(s) listed.

Maximum/Minim urn Element Search Routines

Purpose Name Manual Entry_

Find the first index of the largest ISAMAX ISAMAX
absolute value of the elements of a ICAMAX
real or complex vector

Return the index of the maximum value INFLMAX
in a table

INFLMAX
Return the index of the minimum value INFLMIN
in a table

Return the index of the integer vector INTMAX
element with maximum value

INTMAX
Return the index of the integer vector INTMIN
element with minimum value

Return the index of the vector element ISMAX
with maximum value

Return the index of the vector element ISMIN ISMAX
with minimum value

Return the index of the vector element ISAMIN
with minimum absolute value

Return the largest of all arguments MAXO MAX
AMAXI
DMAXI
AMAXO
MAXI

Return the smallest of all arguments MINO MIN
AMINI
DMlNl
AMINO
MINI

Vector Search Routines

Vector search routines have one of the following functions:

• To return occurrences of an object in a vector

• To searcb for an object in a vector

To return occurrences of an object in a vector . These integer routines return the number of
occurrences of a given relation in a vector. The routines ILLZ and IILZ find the first occurrence.
ILSUM counts lhe number of such occurrences. All three of lhese functions are described under the
heading IILZ.

6-2 D

INTRO(3X) INTRO(3X)

SR-0113

To search for an object in a vector - ISRCH routines find the positions of an object in a vector. These
include the fonowing: ISRCHEQ, ISReHNE, ISRCHFLT, ISRCHFLE, ISRCHFGT, ISRCHFGE,
ISRCHILT, ISRCHILE, ISRCIflGT, ISRCHIGE, ISRCHMEQ, ISRCHMNE, ISRCHMLT, ISRCHMLE,
ISRCHMGT, and ISRCHMGE. These functions return the firSllocalion in an array that has a true rela
tional value to the targeL

The WHEN routines are similar to the ISRCH routines in that they return the locations of elements in an
array that have a true relationaJ value to the target. However. all locations are returned in an indexed
array. The WHEN routines are WHENEQ, WHENNE. WHENFLT, WHENFLE, WHENFGT, WHENFGE,
WHENlLT, WHENlLE, WHENlGT, WHENIGE, WHENME, WHENNE, WHENMLT, WHENMLE.
WHENMGT and, WHENMGE.

The CLUS routines find the index of clusters that have a true relational value to the target. These rou
tines are further divided into integer (CLUSILT, CLUSILE, CLUSIGT, CLUSIGT) and real (CLUSFLT,
CLUSFLE, CLUSFGT, and CLUSFGE) routines.

The OSRcm and OSRCHF subroutines return the index of the location that would contain the target in
an ordered array. This is useful for sorting elements into a new array. Searching always begins at the
lowest value in the ordered array. The total number of occurrences of the target in the array can also
be returned. The OSRCHM routine returns the index of the first location equal to an integer target in an
ordered integer array. (OSRCHM is available only to COS users.)

The following table contains the purpose, name, and manual entry of each vector search routine.

The "manual entry" is the name of the manual page containing documentation for the routine(s) listed.

Vector Search Routines
Purpose Name Manual Entrv

Return the number of occurrences of an llLZ IILZ
object in a vector ILLZ

ILSUM
Find the index of clusters equal or CLUSEQ CLUSEQ
not equal to the target CLUSNE
Find the index of clusters of real elements CLUSFLT CLUSFLT
that are less than. less than or CLUSFLE
equal to, greater than, or greater CLUSFGT
than or equal to the target CLUSFGE
Find the index of clusters of integer elements CLUSILT CLUSILT
that are less than, less than or CLUSILE
equal to, greater than, or greater CLUSIGT
than or equal to the target CLUSIGE
Find the first array element that ISRCHEQ ISRCHEQ
is equal or not equal to the target ISRCHNE
Find the first real array element ISRCHFLT ISRCHFLT
that is less than. less than or ISRCHFLE
equal to, greater than, or greater ISRCHFGT
than or equal to the real target ISRCHFGE
Find the first integer array element ISRCHILT ISRCHILT
that is less than, less than or ISRCHILE
equal to, greater than, or greater ISRCHIGT
than or equal to the integer target ISRCHIGE

6-3 D

INTRO(3X) INTRO(3X)

Vector Search Routines (continued)
Purpose Name Manual Entry

Find the first array element that ISRCHMEQ ISRCHMEQ
is equal or not equal to the target ISRCHMNE
within a field

Find the first array element ISRCHMLT ISRCHMLT
that is less than, less than or ISRCHMLE
equal to, greater than, or greater ISRCHMGT
than or equal to the target within a ISRCHMGE
field

Search an ordered integer or real OSRCHI OSRCHI
array and return the index of the OSRCHF
first location that contains the
target

Search an ordered integer array OSRCHM OSRCHM
and return index of the first location
that is equal to the integer target
(COS only)

Find all array elements that are WHENEQ WHENEQ
equal or not equal to the target WHENNE
Find all real array elements that WHENFLT WHENFLT
are less than, less than or equal to, WHENFLE
greater than, or greater than or WHENFGT
equal to the real target WHENFGE
Find all integer array elements that WHENILT WHENILT
are less than, less than or equal to, WHENILE
greater than, or greater than or WHENIGT
equal to the integer target WHENIGE

Find all array elements that are WHENMEQ WHENMEQ
equal or not equal to the target WHENNME
within a field

Find all array elements that WHENMLT WHENMLT
are less than. less than or equal to, WHENMLE
greater than, or greater than or WHENMGT
equal to the target within a field WHENMGE

SR-Ol13 6-4 D

CLUSEQ (3SCI) CLUSEQ(3SCI)

NAME

CLUSEQ, CLUSNE - Finds index of clusters within a vector

SYNOPSIS

CALL CLUSEQ(n,array,inc,target,index,nn)

CALL CLUSNE(n,array ,inc ,target ,index,1In)

DESCRIPTION

n Number of elements to be searched; length of the array. Type integer.

array Real or integer vector to be searched

inc Increment between elements of the searched array. Type integer.

target Scalar to match logically. Type integer or real.

index Indexes in array where the cluster starts and stops (one based); index should be dimen
sioned INDEX(2,n/2).

nn Number of matches found; length of index. Type integer.

These routines find the index of clusters of occurrences equal to or not equal to a scalar within a vector.

The Fortran equivalent of the type of logical search performed for CLUSEQ and CLUSNE follows:

ARRA Y(I,I=INDEX(l ,J),INDEX(2..T).I=1.NN).EQ. TARGET

ARRA Y(I,I=INDEX(l)).INDEX(2,J).J=1,NN).NE.TARGET

IMPLEMENTATION

NOTES

SR-01l3

These routines are available to users of both the COS and UNICOS operating systems.

Searching for the cluster allows vectorization. Before using Ihese routines, you should know that the
logical search results in clusters of finds.

6-5 D

CLUSFL T (3SCI) CLUSFLT(3SCI)

NAME

CLUSFLT, CLUSFLE, CLUSFGT, CLUSFGE - Finds real clusters in a vector

SYNOPSIS

CALL CLUSFLT(n,array,inc ,target,index,,,,,)

CALL CLUSFLE(n,array,inc ,targetJndex,nn)

CALL CLUSFGT(n,array,inc ,target ,index,nn)

CALL CLUSFGE(n,array,inc,target,index.nn)

DESCRIPTION

n Number of elements to be searched; length of the array. Type integer.

array Real vector to be searched.

inc Increment between elements of the searched array. Type integer.

target Scalar to match logically. Type real.

index Indexes in array in which the cluster starts and stops (1 based); index should be dimen
sioned INDEX(l,n/2).

nn Number of matches found; length of index. Type integer.

These routines find the index of clusters of real occurrences in relation to a scalar within a vector.

The Fortran equivalent of the type of logical search performed by each respective routine fonows:

ARRA Y(I,I=INDEX{l,J),INDEX(2),J=1,NN).L T.T ARGET

ARRAY(I,I=INDEX(1,J),INDEX(2,J),J=l,NN).LE.T ARGET

ARRA Y(I,I=INDEX(1,J),INDEX(2J)J=1 ,NN).GT.TARGET

ARRA Y(I,I=INDEX(l J),lNDEX(2,J)J=1,NN).GE.T ARGET

IMPLEMENTATION

NOTES

SR-0113

These routines are available to users of both the COS and UNICOS operating systems.

Searching for the cluster allows veclorization. Before using these routines, you should know that the
logical search results in clusters of finds.

6-6 D

CLUSILT(3SCI) CLUSILT(3SCI)

NAME

CLUSILT, CLUSILE, CLUSIGT, CLUSIGE - Finds integer clusters in a vector

SYNOPSIS

CALL CLUSILT(n,iarray,inc,itarget,index,nn)

CALL CLUSILE(n,iarray ,inc .itarget .index.nn)

CALL CLUSIGT(n,ia"ay,inc.itarget ,index,nn)

CALL CLUSIGE(n,ia"ay.inc,itarget.index,nn)

DESCRIPTION

n

iarray

inc

itarget

index

nn

Number of elements to be searched; length of the array. Type integer.

Integer vector to be searched.

Increment between elements of the searched array. Type integer.

Scalar to match logically. Type integer.

Indexes in iarray in which the cluster starts and stops (1 based). index should be dimen
sioned INDEX(2,ni2).

Number of matches found; length of index. Type integer.

These routines find the index of clusters of integer occurrences in relation to a scalar within a vector.

The Fortran equivalent of the type of logical search performed by each respective routine follows:

IARRAY(I.I=INDEX(1,J),INDEX(2,J)J=1,NN).LT.ITARGET

IARRAY(I,I=INDEX(I.J),INDEX(2,J»)=1,NN).LE.ITARGET

IARRAY(I,I=INDEX(1,J),INDEX(2,J)J=I,NN).GT.ITARGET

IARRA Y(I,I=INDEX(l,J),INDEX(2,J),J=l ,NN).GE.IT ARGET

IMPLEMENTATION

NOTE

SR-OI13

These routines are available to users of both the COS and UNICOS operating systems.

Searching for the cluster allows vectorization. Before using these routines. you should know that the
logical search wilJ result in clusters of finds.

6-7 D

llLZ(3SCI) llLZ(3SCI)

NAME

IILZ, ILLZ, n..SUM - Returns number of occurrences of object in a vector

SYNOPSIS

kount = IILZ(n.array,incl)

kount == ILLZ(n,array,incl)

kount == ILSUM(n,array,incl)

DESCRIPTION

n Number of elements to process in the vector (n=vector length if incl=l; n=vector length/2 if
incl==2, and so on)

array Vector operand

ioci Increment between elements of the vector operand. For contiguous elements, inc/=L

IILZ returns the number of zero values in a vector before the first nonzero value.
ILLZ returns the number of leading elements of a vector that do not have the sign bit set.
ILSUM returns the number of TRUE values in a vector declared logical.

When scanning backward (incl < 0), both llLZ and ILLZ start at the end of the vector and move back
ward {L(N),L(N + INCL);L(N + 2*INCL); ...).

If array is of type logical, TILZ returns the number of FALSE values before encountering the first TRUE
value.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 6-8 D

INFLMAX (3SeI) INFLMAX (3SCI)

NAME

INFLMAX, INFLMIN - Searches for the maximum or minimum value in a table

SYNOPSIS

index=INFLMAX(n,ix,inc ,mask.shift)

index=INFLMIN(n,ix,inc,mask.shift)

DESCRIPTION

index Index in ix where maximum or minimum occurs (one based). Type integer.

n Number of elements to be searched; length of the array. Type integer.

ix Table to be searched. Type integer.

inc Skip distance through ix. Type integer.

mask Right-justified mask used for masking the table vector

shift Number of bits to right shift the table vector before masking

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 6-9 D

INTMAX(3SCI) INTMAX(3SCI)

NAME

INTMAX, INTMIN - Searches for the maximum or minimum value in an integer vector

SYNOPSIS

index = INTMAX(n,ix';nc)

index = INTMIN(n,ix,inc)

DESCRIPTION

index Index in ix where maximum or minimum occurs (one based)

n Number of elements to be searched; length of the array

ix Integer vector to be searched

inc Increment between elements of ix

IMPLEMENTATION

1bese routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 6-10 D

ISAMAX(3SCI}

NAME

ISAMAXJ ICAMAX - Finds first index of largest absolute value in vectors

SYNOPSIS

imax = ISAMAX(n,sx,incx)

imax = ICAMAX(n,cx,incx)

DESCRIPTION

n Number of elements to process in the vector to be searched
(n ;;;;;: vector length if incx = 1; n = vector length/2 if incx = 2. and so on).
If n ~ O. ISAMAX and ICAMAX return O.

sx Real vector to be searched

ex Complex vector to be searched

inex Increment between elements of sx or c.r, for contiguous elements. incx = 1.

ISAMAX(3SCI)

These integer functions find the first index of the largest absolute value of the elements of a vector.

ISAMAX returns the first index i such that

I Xj ,= max I Xj I: j = 1 •... .n

where Xj is an element of a real vector.

ICAMAX determines the first index i such that

I Real (x;) I + Ilmag(x,) I = max I Real (Xj) I + Ilmag(xj) I: j = 1 •... ,n

where Xj is an element of a complex vector.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 6-11 D

ISMAX(3SCI)

NAME

ISMAX, ISMIN', ISAMIN - Finds maximum. minimum, or minimum absolute value

SYNOPSIS

imax = ISMAX(n,sx,incx)

imin = ISMIN(n,sxJncx)

imin = ISAMIN(n,sx,incx)

DESCR.lYI'ION

n Number of elements to process in the vector to be searched
(n = vector length if inC% = 1: n = vector length{l if inc% = 2; and so on).
If n ~ 0, ISMAX, ISMIN, and ISAMIN return O.

s.x Real vector to be searched

incx Increment between elements of sx. For contiguous elements, incx :;;: 1.

IS MAX (3SCI)

These routines return the index of the element with maximum, minimum, or minimum absolute value.

ISMAX returns the first index i such that

I Xi I = max Xj :j = l •... ,n

where Xj is an element of a real vector.

ISMIN and ISAMIN return the first index i such that

I Xi I:;;: min Xj :j = l, ... ,n

where Xj is an element of a real vector.

ISMAX, ISMIN, and ISAMIN are integer functions.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 6-12 D

ISRCHEQ(3SCI) ISRCHEQ(3SCI)

NAME

ISRCHEQ, ISRCHNE - Finds array element equal or not equal to target

SYNOPSIS

location = ISRCHEQ(n,array,inc,target)

location = ISRCIINE(n,a"ay.inc,large/)

DESCRIPTION

n Number of elements to be searched. If n S O. 0 is returned.

array First element of the real or integer array to be searched

inc Increment between elements of the searched may

targel Real or integer value searched for in the array.
If target is not found. the returned value is n+ 1.

ISRCHEQ finds the first real or integer array element that is equal to a real or integer target.

ISRCHNE returns the first location for which the relational value not equal to is ttue for real and integer
arrays.

The FortIan equivalent code for ISRCHEQ is as follows:

FUNCTION ISRCHEQ(N,ARRAY,INC,TARGET)
DIMENSION ARRA Y(l)
J=1
ISRCHEQ=O
IF(N.LE.O} RETIJRN
IF(INCLT.O) J=l-(N-l)*INC
DO lOOI=l,N

IF(ARRA Y(J).EQ.T ARGElj GO TO 200
]=J+INC

100 CONTINUE
200 ISRCHEQ=I

RETURN
END

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

NOTES

ISRCHEQ replaces the ISEARCH routine, but it has an entry point of ISEARCH as well as ISRCHEQ.

SR-Ol13 6-13 D

ISRCHFL T (3SCI) IS RCHFLT (3SCI)

NAME

ISRCHFLT, ISRCHFLE, ISRCHFGT, ISRCHFGE - Finds first real array element in relation to a real
target

SYNOPSIS

location = ISRCHFLT(n,array,inc,target)

location = ISRCHFLE(n,array,inc,target)

location = ISRCHFGT(n,array,inc,target)

location = ISRCHFGE(n,array,inc,target)

DESCRIPTION

n Number of elements to be searched. If n SO, 0 is returned.

array First element of the real array to be searched

inc Increment between elements of the searched array

target Real value searched for in array.
If target is not found. the returned value is n+ 1.

These functions return the first location for which the relational operator is true for real arrays.

ISRCHFLT finds the first real array element that is less than the real target.

ISRCHFLE finds the first real array element that is less than or equal to the real target.

ISRCHFGT finds the first real array element that is greater than the real target.

ISRCHFGE finds the first real array element that is greater than or equal to the real target.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 6-14 D

ISRCIULT(3SCI) IS RCHILT (3SCI)

NAME

ISRCHILT, ISRCIDLE, ISRCIDGT, ISRCIDGE - Finds first integer array element in relation to an
integer target

SYNOPSIS

location = ISRCHlLT(n.iarray,inc,itargel)

location = ISRCHILE(n.ia"ay,inc.itarget)

location = ISRCmGT(n,iarray,inc,itarget)

location = ISRCmGE(n,iarray.inc .itarget)

DESCRIPTION

n

iarTay

inc

itargel

Number of elements to be searched. IT n SO, 0 is returned.

First element of the integer array to be searched

Increment between elements of the searched array

Integer value searched for in iarray.
If target is not fOlD1d. the returned value is n+1.

These functions return the first location for which the relational operator is true for integer arrays.

ISRCIULT finds the first integer array element that is less than the integer target

ISRCHILE finds the first integer array element that is less than or equal to the integer target

ISRCHIGT finds the first integer array element that is greater than the integer target

ISRCHIGE finds the first integer array element that is greater than or equal to the integer target.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 6-15 D

ISRCHMEQ(3SCI) ISRCHMEQ(3SCI)

NAME

ISRCHMEQ, ISRCHMNE - Finds the index of the first occurrence equal or not equal to a scalar within
a field of a vector

SYNOPSIS

index = ISRCHMEQ(n,array,inc,targel,mask.righ/)

index = ISRCHMNE(n,array,inc,target,mask,right)

DESCRIPTION

index Index in array where first logical match with the target occurred (one based); index=n+ 1 if
match is not found. Type integer.

n Number of elements to be searched; length of the array. Type integer.

array Real or integer vector to be searched

inc Increment between elements of the searched array. Type integer.

target Scalar to match logically. Type integer or real.

mask Mask of 1 's from the right; the size of the field looked for in the table.

right Number of bits to shift right so as to right-justify the field searched. Type integer.

The Fortran equivalent of ISRCHMEQ and ISRCHMNE follows:

T ABLE(ARRA Y(INDEX(I),I=l,NN».EQ.T ARGET

T ABLE(ARRAY(INDEX(I)J=l,NN).NE.T ARGET

where T ABLE(X)=AND(MASK,SHIFTR(X,RIGH1)

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OIl3 6-16 D

IS RCHMLT (3SCI) ISRCHMLT(3SCI)

NAME

ISRCHMLT, ISRCHMLE, ISRCHMGT, ISRCHMGE - Searches vector for logical match

SYNOPSIS

index = ISRCHMLT(n.array,inc,target,mask,right)

index = ISRCHMLE(n,a"ay.inc.target,mask.right)

index = ISRCHMGT(n,array.inc,target,mask,right)

index = ISRCHMGE(n,arrayinc,target,mask,right)

DESCRIPTION

index Index in array where first logical match with the target occurred (one based); index=n+l if
match is not found. Type integer.

11 Number of elements to be searched; length of the array. Type integer.

array Real or integer vector to be searched

inc Increment between elements of the searched array. Type integer.

target Scalar to match logically. Type integer or real.

mask Mask of I's from the right; the size of the field looked for in the table

right Number of bits to shift right so as to right justify the field searched. Type integer.

These routines search an array. returning the index of the first element that creates a logical match with
the target.

ISRCHMLT searches for an element less than the target.

ISRCHMLE searches for an element less than or equal to the target.

ISRCHMGT searches for an element greater than the target.

ISRCHMGE searches fot an element greater than or equal to the target.

The Fortran equivalent of each logical search performed follows:

TABLE(ARRAY(INDEX(I).I=l,NN)LT.TARGET

T ABLE(ARRAY(lNDEX(I),I= l.NN».LE. TARGET

TABLE(ARRA Y(INDEX(I).I=I.NN».GT.T ARGET

T ABLE(ARRA Y(INDEX(I),I=l.NN».GE.T ARGET

where T ABLE(X)=AND(MASK.SHIFIR(X,RIGH1)

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-0113 6-17 D

MAX (3SCI) MAX (3SCI)

NAME

MAXO, AMAXl, DMAXI, AMAXO, MAXI - Returns the largest of aU arguments

SYNOPSIS

i = MAXO (integerl.,integerz, ... , integer,.)

r = AMAXl(reai1,reaiz, ... , real,.)

d = DMAXl(double1.doublez, ... , double,.}

r = AMAXO(integerhinteger2, ..•• integer,,)

i = MAXl(realt,realz , real,.)

DESCRIPTION

MAXO, AMAXl, and DMAXI use integer, real, and double-precision arguments, respectively, and return
the same type of result. Each function is of the same type as its arguments.

AMAXO (type real) returns a real result from integer arguments.

MAXI (type integer) returns an integer result from real arguments.

All of the arguments within each function must be of the same type. and the number of arguments n
must be in the range 2 ~ n < 64. Arguments must be in the range I x I < 00

IMPLEMENTATION

Noms

SR-0113

These routines are available to users of both the cos and UNICOS operating systems.

MAX is the generic name for the maximum routines MAXO, AMAXl, and DMAX1. Calls to

i = MAX(inlegerl>integer2, ... ,integer,.)
r = MAX(real t ,reaiz, ... ,real,.)
d = MAX(doublel>douhle2, ... liouble,,)

will return integer, real, and double-precision results, respectively.

6-18 D

MIN(3SCI)

NAME

MINO, AMINI, DMIN1, AMINO, MINI - Returns the smallest of all arguments

SYNOPSIS

i = WNO(integerl,inlegerz integer,,)

r = AMINI(realt.real2 real,,)

d = DMINI(double 1 ,double 2,.... double,,)

r = AMINO (integer 1 ,integer 2,.... integer,,)

i = MINl(real hreai2, reai,,)

DESCRIPTION

MIN(3SCI)

MINO, AMINI, and DMINI use integer, real. and double-precision arguments. respectively. and return
the same type of result. Each of these fWlCtions is of the same type as its arguments.

AMINO (type real) returns a real result from integer arguments.

MINI (type integer) returns an integer result from real arguments.

All of the arguments within each function must be of the same type.

The number of arguments n must be in the range 2 ~ n < 64.

Arguments must be in the range I x l < 00

IMPLEMENTATION

NOTES

SR-OI13

These routines are available to users of both the COS and UNICOS operating systems.

MIN is the generic name for the minimum routines MINO, AMINI, and DMINI. Calls to

i = MIN (integer hinteger 2 integer II)
r = MIN(real IoreaI2, ... ,reala)
d = MIN(double lodouble 2 ,double,,)

will return integer. real. and double-precision results, respective1y.

6-19 D

OSRCHI(3SCI) OSRCHI(3SCI)

NAME

OSRCHI, OSRCHF - Searches an ordered array and returns index of the first location that contains the
target

SYNOPSIS

CALL OSRCHI(n.iarray.inc.target.index,iwhere,inwn)

CALL OSRCHF(n.array .inc.target,index,iwhere ,inum)

DESCRIPTION

n

ia"ay

array

inc

target

index

iwhere

inum

Number of elements of the array to be searched

Beginning address of the integer array to be searched

Beginning address of the real array to be searched

A positive increment indicates an ascending array and returns the index of the first element
encountered, starting at the beginning of the array.

A negative increment indicates a descending array and returns the index of the last element
encountered, starting at the beginning of the array.

Integer or real target of the search

Index of the first location in the searched array that contains the target; exceptional cases
are as follows:

If n < I, index = 0
If no equal array elements. index = n+ 1

Index of the first location in the searched array that would contain the target if it were
found in the array. If the target is found, index;:;; iwhere. There is one exceptional case; if
n is less than 1. iwhere =: O.

Number of target elements found in the array

OSRCHI searches an ordered integer array and returns the index of the first location that contains the
target (type integer).

OSRCHF searches an ordered real array and returns the index of the first location that contains the tar
get (type real).

Searching always begins at the lowest value in the ordered array. Even if the target is not found, the
index of the location that would contain the target is returned. The total number of occurrences of the
target in the array (inurn) can also be returned.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OI13 6-20 D

OSRCHM (3COS) OSRCHM (3COS)

NAME

OSRCHM - Searches an ordered integer array and returns index of the first location that is equal to the
integer target

SYNOPSIS

CALL OSRCHM(n,iarray,inc,itarget.mask,shi/t,index,iwhere,inum)

DESCRIPTION

n

farray

inc

itarget

mask

shift

index

iwhere

inwn

Number of elements of the array to be searched

Beginning address of the integer array to be searched

Increment between elements of the array to be searched. Argument inc should be I for
contiguous elements of memory. Argument inc should be -1 to find the last element with a
true condition.

A positive increment indicates an ascending array. A negative increment indicates a des
cending array.

Integer target of the search

Mask set from the right side of the field of interest in vector farray

Amount to right-shift vector iaffay to position the field of interest at right side of word

Index of the first location in the searched array where the target is equal to an element of
that array; exceptional cases are as foUows:

If n < 1, index = 0
If no equal array elements. index = n+ 1

Index of the first location in the searched array where the target would fit and maintain the
order of the array. If the target is found. index = iwhi!re. There is one exceptional case;
if n < I, index = O.

On input. must be non-zero if the number of array elements equal to the target is desired.
On output, number of elements found in the array equal 10 the targeL This will return a
value only if asked for and at least 1 target value is found in the array. Otherwise, it will
always be O.

OSRCHM searches an ordered integer array and returns the index of the first location that is equal to
the integer targeL It also returns the index of where the target should fit into the array, whether it finds
a value equal to the target or nOL Optionally. it will find the total number of array elements equal to
the target

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-01l3 6-21 D

WHENEQ(3SCI) WHENEQ(3SCI)

NAME

WHENEQ, WHENNE - Finds all array elements equal to or nOl equal to the target

SYNOPSIS

CALL WHENEQ(n,array,inc,target,index,nval)

CALL WHENNE(n,array,inc ,targel,index,nval)

•
DESCRIYI10N

n Number of elements to be searched

a"ay First element of the real or integer array to be searched

inc Increment between elements of the searched array

target Real or integer value searched for in the array

index Integer array containing the index of the found target in the array

n ... al Number of values put in the index array

WHENEQ finds all real or integer array elements that are equal to a real or integer target.

WHENNE returns all locations for which the relational value not equal to is true for real and integer
arrays.

The Fortran equivalent follows:

INA=1
NVAL=O
IF(lNC LT. 0) INA=(.INC)*(N.I)+l
DO 100 I=l,N

IF(ARRAY(lNA) .EQ. TARGET) THEN
NY AL=NV AL+l
INDEX(NV AL)=I

END IF
INA=INA+INC

100 CONTINUE

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-0113 6-22 o

WHENFLT (3SCI) WHENFLT (3SCI)

NAME

WHENFLT, WHENFLE, WHENFGT, WHENFGE - Finds all real array elements in relation to the real
target

SYNOPSIS

CALL WHENFLT(n.array ,inc ,tar get,index,nval)

CALL WHENFLE(n,array,inc ,target,index,nval)

CALL WHENFGT(n,array,inc .target ,index,nvaJ)

CALL WHENFGE(n.array.inc .targel.index.nval)

DESCRIPTION

n Number of elements to be searched

array First element of the real array to be searched

inc Increment between elements of the searched array

target Real value searched for in the array

index Integer array containing the index of the found target in the array

nval Number of values put in the index array

These functions return all locations for which the relational operator is true for real arrays.

WHENFLT finds all real array elements that are less than the real target.

WHENFLE finds all real array elements that are less than or equal to the real target

WHENFGT finds all real array elements that are greater than the real target.

WHENFGE finds a11 real array elements that are greater than or equal to the real target.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 6-23 D

WHENILT (3SeI) WHENILT(3SCI)

NAME

WHENILT, WHENILE, WHENIGT, WHENIGE - Finds all integer array elements in relation to the
integer target

SYNOPSIS

CALL WHENIL T(n.iarray,inc ,itarget.index.nvaf)

CALL WHENll.E(n,iarray ,inc ,itarget,index,nval)

CALL WHENIGT(n .iarray ,inc .ilarget.index,nvaf)

CALL WHENIGE(n .iarray ,inc ,itarget ,index,nval)

DESCRIPTION

n

iarray

inc

itarget

index

nvai

Number of elements to be searched

First element of the integer array to be searched

Increment between elements of the searched array

Integer value searched for in the array

Integer array containing the iodex of the found target in the array

Number of values put in the index array

These functions return all locations for which the relational operator is true for integer arrays.

WHENIL T finds all integer array elements that are less than the integer target.

WHENILE finds all integer array elements that are less than or equal to the integer target.

WHENIGT finds all integer array elements that are greater than the integer target.

WHENIGE finds all integer array elements that are greater than or equal to the integer target.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 6-24 D

WHENMEQ(3SCI) WHENMEQ(3SCI)

NAME

WHENMEQ, WHENMNE - Finds the index of occWTences equal or not equal to a scalar within a field
in a vector

SYNOPSIS

CALL WHENMEQ(n,array.inc,target,index,nn,mask.right)

CALL WHENMNE(n,array,inc,targel,index,nn.mask.right)

DESCRIPTION

n Number of elements to be searched; length of the array

array Vector to be searched

inc Increment between elements of the searched array

target Scalar to match logically

index Indexes in array where all logical matches with the target occurred (one based)

nn Number of matches found. Length of index.

mask Mask of l's from the right; the size of the field looked for in the table

right Number of bits to shift right SO as to right-justify the field searched

The Fortran equivalent of WHENMEQ and WHENMNE follows:

T ABLE(ARRA Y(INDEX(I),I=l,NN».EQ.TARGET

TABLE(ARRAY(lNDEX(I),I=I,NN).NE.TARGET

where TABLE(X)=AND(MASK,SHIFTR(x,RIGH1)

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 6-25 D

WHENMLT (3SCI) WHENMLT(3SCI)

NAME

WHENMLT, WHENMLE, WHENMGT, WHENMGE - Finds the index of occurrences in relation to a
scalar within a field in a vector

SYNOPSIS

CALL WHENMLT(n,array,inc,target,index,nn,mask,right)

CALL WHENMLE(n,array,inc,target,index,nn,mask,right)

CALL WHENMGT(n,array,inc,target,index,nn,mask,right)

CALL WHENMGE(n,array,inc,target,index,nn,mask,right)

DESCRIPTION

n Number of elements to be searched; length of the array

array Vector to be searched

inc Increment between elements of the searched array

target Scalar to match logically

index Indexes in array where all logical matches with the target occurred (one based)

nn Number of matches found. Length of index.

mask Mask of 1 's from the right; the size of the field looked for in the table

right Number of bits to shift right so as to right-justify the field searched

The Fortran equivalent of logical search performed follows:

TABLE(ARRAY(1NDEX(I),I=l,NN).LT.TARGET

TABLE(ARRAY(lNDEX(I),I=l,NN)LE.TARGET

T ABLE(ARRA Y{lNDEX(I) ,1= l,NN».GT. TARGET

T ABLE(ARRA Y(INDEX(I),I:::1 ,NN).GE.T ARGET

where T ABLE(X)=AND(MASK,SHIF1R(X,RIGHT)

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-01l3 6-26 D

INTRO(3X) INTRO(3X)

7. SORTING ROUTINES

SR-01l3

There are two ways to perform a sort on files: they can be sorted using the SORT control statement or
the SORT subroutines. The ORDERS routine is used to sort memory arrays rather than files.

The SORT control statement provides a generalized sort and merge capability. SORT accesses multiple
input files and permits mixed key types and variable length records. It provides a variety of user
specified random access devices (such as disk. Buffer Memory Resident (BMR). and SSD solid-state
storage device) and tuning parameters for performance enhancemenL

The SORT program provides these capabilities through calls to the SORT subroutines. SORT subroutines
provide all of the above-mentioned options and allow the use of user-supplied subroutines. For more
information on SORT and its associated subroutines. see the SORT Reference ManUal. CRI publication
SR-0074.

ORDERS is an internal, fixed-length record sort optimized for Cray computer systems. This section
gives the synopsis and description of the ORDERS routine, including several examples using ORDERS.

7-1 D

ORDERS (3SCI) ORDERS (3SCI)

NAME

ORDERS - Sorts using internal. fixed-length record sort optimized for Cray computer systems

SYNOPSIS

CALL ORDERS(mode,iwork,data,index,n,irecith,ikeyith,iradsiz)

DESCRIPTION

SR-Ol13

ORDERS assumes that the n records to be sorted are of length ireclth and have been stored in an array
data that has been dimensioned, as in the following Fortran code:

DIMENSION DATA(ireclth.n)

ORDERS does not move records within data, but returns a vector index containing pointers to each of
the records in ascending order. For example, DATA(I,INDEX(I») is the first word of the record with the
smallest key.

The ORDERS arguments are as follows:

mode Integer flag; describes the type of key and indicates an initial ordering of the records, as
follows:

o The key is binary numbers of length 8 "'ikeylth. These numbers are considered posi
tive integers in the range 0 to 2(S*ir.cltlaH. (The ordering of Ascn characters is the
same as their ordering as positive integers.)

1 The key is 64-bit Cray integers. These are twos complement signed integers in the
range _263 to +263. ('The key length. if specified. must be 8 bytes.)

2 The key is 64-bit Cray floating-point numbers. (fhe key length. if specified, must
be 8 bytes.)

10 The key is the same as mode""'O. but the array INDEX has an initial ordering of the
records (see subsection MULTIPASS SORTING later in this section).

11 The key is the same as nwdr-l, but the array INDEX has an initial ordering of the
records.

12 The key is the same as nwde=2, but the array INDEX has an initial ordering of the
records.

7-2 D

ORDERS (3SCI)

SR-Ol13

iwork

data

index

n

ireclth

ikeylth

iradsiz

ORDERS (3SCI)

Upon completion of a call, ORDERS renuns an error flag in 1rIIXU. A value equal to the
input mbde value indicates no elTOrs. A value less than 0 indicates an error. as follows:

-1 Too few arguments; must be greater than 4.

-2 Too many arguments; must be less than 9.

-3 Number of words per record less than 1 or greater than 2 24

-4 Length of key greater than the record

·5 Radix not equal to 1 or 2

-6 Key less than 1 byte long

-7 Number of records less than 1 or greater than 2 24

-8 Invalid mbde input values; must be 0, IJ 2, 10, II. or 12.

·9 Key length must be 8 byteS for real or integer son
User-supplied working storage array of length K. where K=257 if iradsiz=l, or K=65537 if
iradsiz=2

Array dimensioned ireclth by N. containing N records of length ireclth each. The key in
each record starts at the left of the first word of the record and continues ikeylth bytes into
successive words as necessary. (By offsetting this address, any word within the record may
be used as a key. See subsection EXAMPLES later in this section.)

Integer array of length n containing pointers to the records. In mode=10, 11, or 12. index
contains an initial ordering of the records (see subsection MULTIPASS SORTING later in this
section). On output, index contains the ordering of the records; that is, DATA(l,INDEX(l»
is the first word of the record with the smallest key, and DATA(I,INDEX(N» is the first
word of the record with the largest key.

Number of records to be sorted. Must be ~l.

Length of each record as a number of 64-bit words. Default is 1. ireclth is used as a skip
for vector loads and stores; therefore, ireclth should be chosen to avoid bank conflicts.

Length of each key as a number of 8-bit bytes. Default is 8 bytes (1 word).

Radix of the sort. iradsiz is the number of bytes processed per pass over the records.
Default is 1. See subsection of LARGE RADIX SORTING for iradsiz=2.

7-3 D

ORDERS (3SCI) ORDERS (3SCI)

METHOD

ORDERS uses the radix sort, more commonly known as a bucket or pocket sort. For this type of sort,
the length of the key in bytes detennines the number of passes made through all of the records. The
method has a linear worle factor and is stable, in that the original order of records with equal keys is
preserved.

ORDERS has the option of processing 1 or 2 bytes of the key per pass through the records. This pro
cess halves die number of passes through the record, but at the expense of increased working storage
and overhead per pass. ORDERS can sort on several keys within a record by using its multipass capa
bility. The first 8 bytes of the keys use a radix sort. If the key length is greater than 8 bytes and any
records have the first 8 bytes equal, these records are sorted using a simple bubble sort. Using the bub
ble sort with many records is time-consuming; therefore, the multipass option should be used.

ORDERS has been optimized in CAL to make efficient use of the vector registers and functional units at
each step of a pass through the data. Keys are read into vector registers with a skip through memory of
ireclth; therefore, ireclth should be chosen to avoid bank conflicts.

LARGE RADIX SORTING

The number of times the key of each record is read from memory is proportional to ikeylth/iradsiz.
Using ORDERS with iTadsiz=2 halves this rJllio because 2 bytes instead of 1 are processed each time
the key is read. The disadvantage of halving the number of passes is that the user-supplied working
storage array goes from 257 words to 65,537 words. This favors a 1-byte pass for sorting up to approx
imately 5000 records. For more than 5000 records, however, a 2-byte pass is faster.

MULTIPASS SORTING

Because the array INDEX can define an ordering of the records, several calls can be made to ORDERS
where the order of the records is that of the previous call. mode=10, 11, or 12 specifies that the array
INDEX contains an ordering from a previous call to ORDERS. This specification allows sorting of text
keys that extend over more than 1 word or keys involving double-precision numbers. (See the subsec
tion EXAMPLES later in this section.)

Although the length of the key is limited only by the length of the record, up to 8 bytes are sorted with
the radix son. The remaining key is sorted using a bubble sort. but only in those records whose keys
are equal for the first 8 bytes. Therefore. a unifonnly-distributed key over the first 8 bytes of length
greater than 8 bytes might be sorted faster using a single call with a large ikeylth rather than a mul
tipass call. When using the multipass capability, sort the least significant word first.

IMPLEMENTATION

ORDERS is available to users of both the cos and UNICOS operating systems.

SR-Ol13 7-4 D

ORDERS (3SeI) ORDERS (3SCl)

EXAMPLES

SR-OI13

Example 1:

This example performs a sort on an array of random numbers, 20 records long, with a key length of 8
bytes (1 word).

Example 2:

C

PROGRAM ORDWAY
DIMENSION DATA(I,20)
DIMENSION INDEX(20)
DIMENSION IWORK(257)

C Place random numbers into the array DATA
C

C

C

C

DO 11=1,20
1 DATA(1,I)=2*RANFO

N=20
MODE=O

CALLORDERS(MODE,IWORK,DATA,INDEX,N,l,8,l)

C Print out the sorted records in increasing order
C

D02K=I,20
2 PRINT"', DATA(I,lNDEX(K»

STOP
END

This program uses two calls to ORDERS to completely sort an array of double-precision numbers. The sign
bit of the first word is used to change the second word into a text key that preserves the ordering. A sort is
done on these 6 bytes of the second word. (The changes made to the second word are reversed after the
call.) Last, a sort is done on the first word as a real key using the initial ordering from the previou·s call.

PROGRAM SORT2
DOUBLE PRECISION DATA(lOO)
INTEGER IA T A(200)
EQUIV ALENCE(IA T A, DATA)
INTEGER INDEX(lOO), IWORK(257)
N=12
D05 r""I,N

DATA(I)=(·I.DO)"'*10.DO**(-20)*DBLE(RANFO)
5 CONTINUE

7·5 D

ORDERS (3SCI) ORDERS (3SCI)

c
C First the second word key is changed
C

DO 10 1:;;2, 2*N. 2
IF(DAT A(I/2).LE.O.DO) THEN
IATA(l)"",COMPL(IATA(I»

ELSE
IATA(l)=IATA(I)

ENDIF
10 CONTINUE

C
C Sort on second word
C

MODE,..Q
CALL ORDERS(MODE,IWORK,IATA(2),INDEX,N, 2,6,1)

C
C Restore second word to original form
C

00 20 l=2, 2*N, 2
IF(DAT A(IJ2).LE.0.DO) THEN
IATA(I)"",COMPL(IATA(I»

ELSE
IATA(I)""IATA(I)

ENDIF
20 CONTINUE

C
C Sort on the first word using the initial ordering
C

MODE=12
CALL ORDERS(MODESORT.DAT A,INDEX.N.2,8,l)
00 50 1=1,N

WRlTE(6, 9(0)1, INDEX<n, DATA(INDEX(I»
50 CONTINUE
900 FORMA T(lX, 215, 2X, D40.30)

END

SR-0113 7-6 D

INTRO(3X) INTRO(3X)

8. CONVERSION SUBPROGRAMS

These Fortran-callable subroutines perfonn conversion of data residing in Cray memory. Conversion
subprograms are listed under the following types of routines:

• Foreign data conversion

• Numeric conversion

• AScn conversion

• Other conversion

For more information regarding foreign data conversion, see the Foreign Data Conversion on CRAY-l
and CRA Y X-MP Computer Systems technical note, publication SN-0236.

FOREIGN DATA CONVERSION ROUTINES

SR-Ol13

The foreign data conversion routines allow data translation between Cray internal representations and
other vendors' data types. These include IBM, CDC. and VAX data conversion routines.

The following tables convert values from Cray data types to mM, V AXJVMS, and CDC data types. Rou
tines that are inverses of each other (that is, convert from Cray data types to IBM and WM to Cray) are
generally listed under a single entry. Routine deSCriptions follow later in this section, listed alphabeti
cally by entry name.

The following table lists routines that convert foreign types to Cray types.

Convert Foreign T~s to Cr~ Types
Convert to Foreign types

Convert from mM CDC VAXNMS
Foreign single-precision to USSCTC FP6064 VXSCTC
eray single-precision

Foreign double-precision to USDCTC ... VXDCTC
Cray single-precision VXGCTC
Foreign integer to Cray integer USICTC INT6064 VXICTC
Foreign logical to Cray logical USLCTC ... VXLCTC
Foreign character to ASCII USCCTC DSASC ---
Foreign complex to Cray _.- --- VXZCTC
complex

Foreign packed decimal field to USPCTC ._- ---
Cray integer

8·1 o

INTRO(3X) INTRO(3X)

The following table lists routines that convert eray types to foreign types.

Conven Cray Types to Foreign Types
Convert To Foreign Types

Convert From ffiM CDC VAXNMS

Cray single-precision to USSCTI FP6460 VXSCTI
foreign single-precision
Cray single-precision to USDCTI --- VXDCTI
foreign double-precision VXGCTI
Cray integer to foreign integer USICTI INT6460 VXICTI
Cray logical to foreign logical USLCTI --- VXLCTI
ASCII character to foreign USCCTI ASCDC ---
character
eray complex to foreign complex --- --- VXZCTI
Cray integer to foreign packed- USICTP --- ---
decimal field

NUMERIC CONVERSION ROUTINES

Numeric conversion routines convert a character to a numeric fonnat or a number 10 a character fomlat.

The following table contains the purpose, names, and entry of each numeric conversion routine.

Numeric Conversion Routines
Purpose Name Entrv

Convert decimal ASCII numerals to an CHCONV CHCONV
integer value
Convert an integer to a decimal ASCII string BICONV

BICONV
Conven an integer to a decimal ASCII string BICONZ
(zero-filled. right-justified)

Ascn CONVERSION FUNCTIONS

SR-OI13

The ASCII conversion functions conven binary integers to or from I-word ASCII strings (not Fortran
character variables). Fortran-callable entry points (in the fonn xxx) use the call-by-address sequence;
CAL-ca1Iable entry points (in the form x.u%) use the caIl-by-vaIue sequence.

NOTE - The ASCII conversion functions are not intrinsic to Fortran. Their default type is real, even
though their results are generally used as integers.

IMPLEMENT A TION - The Ascn conversion functions are available to users of both the cos and
UNICOS operating systems.

The ASCII conversion routines use one type integer argument. The DTBIDTB % and OTB/OTB % rou
tines can also use a second optional argument as an error code. The resulting error codes (0 if no error;
-1 if there are errors) are returned in the second argument for Fortran calls and in register SO for CAL
caUs. If no error code argument is included in Fortran calls, the routine aborts upon encountering an
error.

8-2 D

INTRO(3X) INTRO(3X)

SR-0113

The following calls show how the Ascn conversion routines are used. These Fortran calls convert a
binary munber to decimal ASCn, then convert back from ASCII to binary:

resul~BTD(integer)

result Decimal ASCII result (right-justified, blank-fined)

integer Integer argument

result=DTB(ar g ,errcode)

result Integer value

arg

errcode

Decimal ASCII (Jeft-justified, zero-filled)

o if conversion successful; -1 if error.

AScn Conversion Routines

Argument
Pu~ose Name Range

Binary to decimal ASCI[BTD OSx ~99999999
(right-justified, BTD%
blank-filled)

Binary to decimal ASClI BTDL ~~99999999

(left-justified. BTDL%
zero-filled)

Binary to decimal ASCII BTDR ~~9999999
(right-justified, BTDR%
zero-filled)

Binary to octal ASCII BTO 0Sx ~77777777 8

(right-justified, BTO%
blank-filled)

Binary to octal ASCII BTOL ~ ~77777777 8

(left-justified. BTOL%
zero-filled)

Binary to octal ASCII BTOR ~ ~777777778
(right-justified. BTOR%
zero-filled)

Decimal ASCII to binary DTB Decimal ASCII
DTB% (left-justified.

zero-fined)

Octal ASCII to binary OTB Octal ASCII
OTB% (left-justified,

zero-filled)

8-3

Result

One-word ASCn string
(right-justified,
blank-filled)

One-word ASCII string
(left-justified,
zero-filled)

One-word ASCII string
(right-justified,
zero-filled)

One-word ASCII string
(right-justified,
blank-filled)

One-word ASCII string
(left-justified ,
(zero-filled)

One-word ASCII string
(right-justified,
zero-filled)

One word containing
decimal equivalent of
ASCII string

One word containing
octal equivalent of
ASCII string

D

INTRO(3X) INTRO(3X)

OTHER CONVERSION ROUTINES

SR-Ol13

These routines place the octal ASCII representation of a Cray word into a character area, convert trailing
blanks to nulls or trailing nulls to blanks, and translate a string from one code to another, using a trans·
lation table.

The following table contains the purpose, name, and entry of these conversion routines.

Other Conversion Routines
Purpose Name Entry

Place an octal ASCII representation of B20CT B2DCT
a Cray word into a character area

Convert trailing blanks to nulls RBN
RBN

Convert trailing nulls to blanks RNB

Translate a string from one code to TR TR
another, using a translation table

8-4 D

B2OCT(3U) B2OCT(3U)

NAME

B10CT - Places an octal Ascn representation of a Cray word into a character area

SYNOPSIS

CALL B2OCT(sJ.k.v.n)

DESCRIPl'ION

s Fast word of an array where the Ascn representation is to be placed

j Byte offset within anay s where the first character of the octal representation is to be
placed. A value of 1 indicates that the destination begins with the first (leftmost) byte of
the first word of s. j must be greater than O.

k Number of characters used in the AScn representation; k must be greater than O. k indi
cates the size of the total area to be filled. and the area is blank· filled if necessary.

v Value to be converted. The low-order n bits of word \I are used to fonn the ASCII
representation. v must be less than or equal to 263-1.

n Number of low-order bits of v to convert to ASCll character representation (l~ ~). If
insufficient character space is available (3k<n). the character region is automatically filled
with asterisks (*).

B10CT places the ASCll representation of the low-order n bits of a full Cray word into a specified char·
acter area.

The k characters in array s. pointed to by jt are first set to blanks. The low~ n bits of v are then
converted to octal ASCII, using leading zeros if necessary. The converted value (nf3 characters,
rounded up) is right-justified into the blanked-out destination character region.

IMPLEMENTATION

This routine is available to users of borb the COS and UNICOS operating systems.

SR-OII3 8-5 D

BICONV (3COS) BICONV(3COS)

NAME

BICONV, BICONZ - Converts a specified integer to a decimal AScn string representing the integer

SYNOPSIS

CALL BICONV(int,dest,isb.len)

CALL BICONZ(int.desl,isb.len)

DESCRIPTION

int Integer variable, expression, or constant to be convened (input)

desl Variable or array of any type or length to contain me AScn result (output)

isb Starting byte count to generate the output suing. Specify an integer variable, expression, or
constant Bytes are numbered from I, beginning at the leftmost byte position of dest.
(input)

len Number of bytes desired in the ASCU result (input)

BICONV converts a specified integer to an AScn sUing. The string generated by BICONV is blank
filled, right-justified, and has a maximum width of 256 bytes. If the specified field width is not long
enough to hold the converted integer number, left digits are truncated and no indication of overflow is
given. If the number to be converted is negative, a minus sign is positioned in the output field to the
left of the first significant digit

BICONZ is the same as BICONV except that the output string generated is ASCll-zero-filled, right
justified. (A minus sign, if any, appears in the leftmost character position of the field.)

IMPLEMENTATION

These routines are available only to users of the cos operating system.

NOTES

Unused bytes in deSI are left undisturbed.

EXAMPLES

SR-01l3

The output from these examples uses the letter x for unprintable characters. If the variable inl is zero,
the routine returns blanks or zeros for the specified bytes of variable jdesr.

PROGRAM TEST
INTEGER INT,IHEXF,JDEST
DATA llIEXF/X'FFFFFFFFFFFFFFFF 'j

• TEST BICONV

• Example 1: Convert contents of !NT from byte 8 for 1 byte

INT=-12034056
JDEST=IHEXF
CAlL BICONV(INT JDEST,8,1)

Output:

INT= -12034056 JDEST=xxxxxxx6

8-6 D

BICONV (3COS)

SR-01l3

... Example 2: Convert contents of INT from byte 1 for 8 bytes

lNT=89001200
JDEST=IHEXF
CALL BICONV(INT,JOBST,l,8)

Output:

!NT= 89001200 JOEST"" 89001200

... Example 3: Convert contents of !NT from byte 3 for 6 bytes

JDEST""llIEXF
CALL BICONV(INT,JDEST,3,6)

Output:

INT= 89001200 JOBST= xxOOl200

... Example 4: Convert contents of INT from byte 5 for 3 bytes

!NT=12034056
JDEST=IHEXF
CALL BICONV(INT,JDEST,5,3)

Outpue

!NT= 12034056 JOEST= xxxx056x

... Example 5: Convert contents of zero !NT from byte 3 for 3 bytes

lNT=O
JDEST=IHEXF
CALL BICONV(lNT ,JDEST.3,3)

Output:

INT= 0 JOEST= xx xxx

... Example 6: Convert smaller number than needed

INT=99
JDEST=IHEXF
CALL BICONV(INT JDEST,I,6)

Output:

INT= 99 JDEST= 99xx

8-7

BICONV (3COS)

o

BICONV (3COS)

SR-0113

... Example 7: Convert smaller number than needed

JDEST=IHEXF
INT=-99
CALL BICONV(INT ,JDEST,2,6)

Output:

INT= -99 JOBST= x -99x

... TEST BICONZ

* Example lA: Convert contents ofINT from byte 8 for 1 byte

!NT=12034056
JDEST=IHEXF
CALL BICONZ(INT ,JDEST,8.l)

Output:

!NT"" 12034056 JDEST= xxxxxxx6

... Example 2A: Convert contents of !NT from byte 1 for 8 bytes

!NT=89001200
JOEST=IHEXF
CALL BICONZ(lNT ,JDEST,l,8)

Output:

!NT= 89001200 JOBST= 89001200

... Example 3A: Convert contents of !NT from byte 3 for 6 bytes

JOEST=IHEXF
CAll BICONZ(INT JDEST,3,6)

Output:

!NT"" 89001200 JOEST= xxool200

... Example 4A: Convert contents of !NT from byte 5 for 3 bytes

INT=-12034056
JOEST=IHEXF
CALL BICONZ(INT JOEST,5,3)

8-8

BICONV (3COS)

D

BICONV (3COS)

SR-0113

Output:

INT= -12034056 JDEST::::: xxxx056x

... Example SA: Convert contents of zero INT from byte 3 for 3 bytes

INT=O
JDEST=IHEXF
CALL BICONZ(INT)DEST,3,3)

Output:

~= OJDEST=xx~

>II Example 6A: Convert smaller number than needed

INT=99
JDEST=IHEXF
CALL BICONZ(INT)DEST,l,6)

Output:

INT= 99 JDEST= 000099xx

• Example 7 A: Convert smaller number than needed

JDEST=IHEXF
INT=-99
CALL BICONZ(INT JDEST ,2,6)

Output:

!NT= -99 JDEST= x-00099x

8-9

BICONV (3eOS)

D

CHCONV(3U) CHCONV(3U)

NAME

CHCONV - Converts decimal AScn numerals to an integer value

SYNOPSIS

CALL CHCONV(src,isb,num,ir)

DESCRIPTION

src Variable (X' array of type Hollerith containing Ascn data or blanks

ish Starting character in the src string. Specify an integer variable, expression, or constant.
Characters are numbered from I, beginning at the leftmost character position of src.

num Number of Ascn characters to convert. Specify an integer variable, expression, or constant

iT Integer result

Blanks in the input field are treated as zeros. A minus sign encountered anywhere in the input field
produces a negative result Input characters other than blank, digits 0 through 9, a minus sign, or more
than one minus sign produce a fatal error.

IMPLEMENTATION

This routine is available to users of both lhe cos and UNICOS operating systems.

SR-01l3 8-10 D

DSASC(3U) DSASC(3U)

NAME

DSASCJ ASCDC - Converts CDC display code character to Ascn character and vice versa

SYNOPSIS

CALL DSASC(src,sc,tiest,num)

CALL ASCDC(src,sc,dest,num)

DESCRIPTION

src For DSASC, a variable or array of any type or length containing CDC display code charac~
ters (64~character set), left-justified in a 64-bit Cray word. Contains a maximum of 10
display code characters per word. For ASCDC, a variable or array of any type or length
containing AScn data.

sc Display code or ASCII character position to begin the conversion. Leftmost position is 1.

dest For DSASC, a variable or array of any type or length to contain the converted ASCII data.
Results are packed 8 characters per word. For ASCDC, a variable or array of any type or
length to contain the converted CDC display code characters (64-character set). Results are
packed into continuous strings without regard to word boundaries.

num Number of CDC display code or ASCII characters to convert. Specify an integer variable,
expression, or constant.

DSASC converts CDC display code characters to ASCII character.

ASCDC converts Ascn characters to CDC display code characters.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 8-11 D

FP6064(3U) FP6064 (3U)

NAME

FP6064, FP6460 - Converts COC 6O-bit single-precision numbers to Cray 64-bit single-precision
numbers and vice versa

SYNOPSIS

CALL FP6064(fpn,dest,num)

CALL FP6460(fpn,dest,num)

DESCRIPTION

/pn For FP6064. a variable or array of any type or length containing CDC 60-bil, single
precision numbers, left-justified in a Cray 64-bit word. For FP6460, a variable or array of
any length and of type real containing Cray single-precision numbers.

dest Variable or array of type real to contain the converted Cray 64-bit, single-precision or COC
6O-bit single-precision numbers. (In FPM60. each floating-point number is left-justified in a
64-bit word.)

num Number of CDC or Cray single-precision numbers to convert. Specify an integer variable,
expression. or constant.

FP6064 converts CDC 6O-bit single-precision numbers to Cray 64-bit single-precision numbers.

FP6460 converts Cray 64-bit single-precision numbers to CDC 6O-bit single-precision numbers.

IMPLEMENTATION

These routines are available to users of the both the COS and UNICOS operating systems.

SR-OI13 8-12 D

INT6064 (3U) INT6064 (3U)

NAME

INT6064 - Converts CDC 6O-bit integers to Cray 64-bit integas

SYNOPSIS

CALL INT6064(src,idest,num)

DESCRIPTION

src Variable or array of any type or length containing CDC 6O-bit integers. left-justified in a
Cray 64-bit word

idest Variable or array of type integer to contain the converted values. Each such integec is left
justified and zero-filled.

num Number of CDC integers to conven. Specify an integer variable, expression, or constant.

INT6064 converts CDC 6O-bit integer numbers to Cray 64-bit integer numbers.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

1NT6460 is the invecse of this routine

SR-OI13 8-13 D

1NT6460(3U) INT6460(3U)

NAME

INT6460 - Converts Cray 64-bit integers to CDC 6O-bit integers

SYNOPSIS

CALL INT6460(in,idest,num)

DESCRIPTION

in Variable or array of any length and of type integer containing Cray integer numbers

idest Variable or array of type integer to contain the converted values or CDC integer numbers.
Each such integer is left-justified and zero-filled.

num Number of Cray integers to convert. Specify an integer variable, expression, or constant

INT6460 converts Cray 64-bit integer numbers to CDC 60-bit integer numbers.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

INT6064 is the inverse of this routine

SR-OU3 8-14 D

RBN(3U)

NAME

RBN, RNB - Converts trailing blanks to nulls and vice versa

SYNOPSIS

noblanks=RBN (blanks)

blanks=RNB (noblanlcs)

DESCRIPTION

NOTE

blanks For RBN, the argument to be converted.
For RNB, the argument after conversion.

noblanks For RBN. the argument after conversion.
For RNB, the argument to be converted.

RBN converts trailing blanks to nulls.
RNB converts trailing nulls to blanks.

Fortran programs using RBN or RNB must declare the function to be type integer.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 8-15

RBN(3U)

D

TR(3COS) TR(3COS)

NAME

TR - Translates a string from one code to another using a translation table

SYNOPSIS

CALL TR(sj.k,table)

DESCRIPTION

s First word of an array containing the characters to be translated

j Byte offset within array s where the first character to be translated occurs

k Number of characters to be translated

table Translation table

TR translates a string in place from one character code to another using a user -supplied translation
table. The routine assumes 8-bit characters.

The translation table must be considered a string of 256 bytes (32 words). As each character to be
translated is fetched. it is used as an index into the translation table. The new value of the character is
the content of the translation-table byte addressed by the old value. ([he first byte of the translation
table is considered to be byte 0.)

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 8-16 D

TRRl(3COS) TRRl(3COS)

NAME

TRRI - Translates characters stored one character per word

SYNOPSIS

CALL TRRl(sktable)

DESCRIPTION

s Array containing the characters to be translated

k Number of characters to be translated

table Translation table

TRRI translates k characters, stored one character per word, right-justified, zero-filled, in array s using
the translation table tab/e.

table is a 256-word array (dimensioned (0:255» containing the translation for each character in the
entry for the character viewed as an integer.

TRRt leaves 8(I) unchanged if 8(I) is not in the range 0 •... .255.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

SR-Ol13 8-17 D

USCCTC(3U) USCCTC(3U)

NAME

USCCTC, USCCTI - Converts IDM EBCDIC data to ASCII data and vice versa

SYNOPSIS

CALL USCCTC(.vc ,isb,dest,num,npwL val])

CALL USCCTI(.vc,dest,isb,num,npw[,val])

DESCRIPTION

NOTE

src Variable or array of any type or length containing mM EBCDIC data or ASCII data, left
justified, in Cray words, to convert

isb For usccrc, a byte number to begin the conversion. Specify an integer variable, expres
sion, or constant Bytes are numbered from 1. beginning at the leftmost byte position of
src. For USCCTI, a byte number at which to begin generating EBCDIC characters in des/.

des/ Variable or array of any type or length to contain the mM EBCDIC or ASCII data

num Number of mM EBCDIC or ASCII characters to convert Specify an integer variable,
expression, or constant.

npw Number of characters per word generated in dest (or selected from src in USCCTI). The
npw characters are left-justified and blank-filled in each word of dest. Specify an integer
variable, expression, or constant Value must be from 1 to 8.

val A value of nonzero specifies lowercase characters (a through z) that are to be translated to
uppercase. A value of 0 results in no case translation. This is an optional parameter
specified as an integer variable, expression. or constant. The default is no case translation.

USCCTC converts mM EBCDIC data to ASCII data. The same array can be specified for output as for
input only if isb ::; 1 and npw ::; 8.

USCCTI converts ASCII data to IBM EBCDIC data. All unprintable characters are converted to blanks.
The same array can be specified for output as for input only if ish = 1 and npw = 8.

You may also find routine TR (described in this section) useful. It provides somewhat more control over
the specific translation used, although it does require the translation to be done in place.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OI13 D

USDCTC(3U) USDCTC(3U)

NAME

USDCTC - Converts mM 64~bit floating-point numbers to Cray 64-bit single-precision nwnbers

SYNOPSIS

CALL USDCTC(dpn.isb.dest,nwn[.ine])

DESCRIPTION

dpn Variable or array of any type or length containing mM 64-bit ftoating~point numbers to con
ven

isb Byte number to begin the conversion. Specify an integer variable, expression, or constant.
Bytes are numbered from I, beginning at the leftmost byte position of /pn or dpn.

dest Variable or array of type real to contain the converted values

num Number of IBM 64-bit floating-point numbers to conven. Specify an integer variable,
expression, or constant.

inc Memory increment for storing the conversion results in dest. This is an optional parameter
specified as an integer variable. expression, or constant. The default value is 1.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

USDCT! is the inverse of this routine.

SR-OI13 8-19 D

USDCTI(3U) USDCTI(3U)

NAME

USDcrI - Converts Cray 64-bit single-precision, floating-point numbers to mM 64-bil double precision
numbers

SYNOPSIS

CALL USDCTI(fpn,dest,isb,num.ier[,incD

DESCRIPTION

/pn Variable or array of any length and type real, containing ClaY 64-bit single-precision,
floating-point numbers to convert

dest Variable or array of type real to contain the converted values

isb Byte number at which to begin storing the converted results. Specify an integer variable,
expression. or constant. Bytes are numbered from 1, beginning at the leftmost byte position
of dest.

num Number of Cray floating-point numbers to convert. Specify an integer variable, expression,
or constant.

ier Overflow indicator of type integer. Value is 0 if all Cray values convert to ffiM values
without overflow. Value is nonzero if one or more Cray values overflowed in the conver
sion.

inc Memory increment for fetching the number to be converted. This is an optional parameter
specified as an integer variable, expression. or constant The default value is 1.

USDCTI converts Cray 64-bit single-precision, floating-point numbers to ffiM 64-bit double-precision,
floating-point numbers. Precision is extended by introducing 8 more bits into the rightmost byte of the
fraction from the Cray number being converted. Numbers that produce an underflow when convened to
ffiM format are converted to 64 binary Os. Numbers that produce an overflow when converted to ffiM
format are converted to the largest mM floating-point representation with the sign bit set if negative.
An error parameter returns nonzero to indicate that one or more numbers converted produced an
overflow. No such indication is given for underflow.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

USDCTC is the inverse of this routine.

SR-Ol13 8-20 D

USICTC(3U) USICTC(3U)

NAME

USICTCt USICTI - Converts IBM INTEGER*2 and INTEGER*4 numbers to Clay 64-bit integer numbers,
and vice versa

SYNOPSIS

CALL USICTC(in,isb,desr,num,ien[,incJ)

CALL USICTI(in,desl ,isb,num,ien,ier[,inc])

DESCRIPTION

in Variable or array of any type or length containing mM INTEGER*2 or INTEGER*4 numbers
or Cray 64-bit integers to convert

isb Byte number at which to begin the conversion or at which to begin storing the converted
results. Specify an integer variable, expression, or constant. Bytes are numbered from 1,
beginning at the leftmost byte position of in (dest in USICI'I).

desl Variable or array of type integer to contain the convened values

num Number of IBM numbers or Cray integers to convert. Specify an integer variable, expres
sion, or constant.

len Size of the IBM numbers to convert or of IBM result numbers. These values must be 2 or
4. A value of 2 indicates that input or output integers are INTEGER*2 (16-bit). A value of
4 indicates that input or output integers are INTEGER*4 (32-bit). Specify an integer vari
able. expression, or constant.

inc Memory increment for storing the conversion results in des, or for fetching the number to

be converted. This is an optional parameter specified as an integer variable. expression. or
constant. The default value is 1.

ier Overflow indicator of type integer. The value is zero if all Cmy values converted to mM
values without overflow. The value is not zero if one or more Cray values overflowed in
the conversion.

USICTC converts mM INTEGER*2 and INTEGER*4 numbers to Cray 64-bil integer numbers.

USICTI converts Cray 64-bit integer numbers to mM INTEGER*2 or INTEGER*4 numbers.

Numbers that produce an overflow when converted to mM fonnat are converted to the largest mM
integer representation, with the sign bit set if negative. An error parameter returns nonzero to indicate
that one or more of the numbers converted produced an overflow.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR-0113 8-21 o

USICfP(3U) USICTP(3U)

NAME

USICTP - Converts a Cmy 64-bit integer to mM packed-decimal field

SYNOPSIS

CALL USICTP(ian,dest,isb,num)

DESCRIPTION

ian Cray integer to be converted to an mM packed-decimal field. Specify an integer variable,
expression, or constant.

dest Variable or array of any type or length to contain the packed field generated

ish Byte number within dest specifying the beginning location for storage. Specify an integer
variable, expression, or constanL Bytes are numbered from I, beginning at the leftmost
byte position of dest.

num Number of bytes to be stored. Specify an integer variable, expression, or constant.

If the input value contains more digits than can be stored in num bytes, the leftmost digits are not con
verted.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

USPCTC is the inverse of this routine.

SR-0113 8-22 D

USLCTC(3U) USLCTC(3U)

NAME

USLCTC, USLCTI - Converts IBM LOOICAL*l and LOGICAL*4 values into Cray 64-bit logical values,
and vice versa

SYNOPSIS

CALL USLCTC(src.isb,dest,num,len[.incD

CALL USLCTI(src .dest.isb.num.len[.inc])

DESCRIPTION

src Variable or array of any type (type logical in USLCTI) and any length containing IBM LOG
ICAL*1. WGICAL·4, or Cray logical values to convert.

isb Byte number to begin the conversion or, in USLCTI, specifying the beginning location for
storage. Specify an integer variable. expression, or constant. Bytes are numbered from 1,
beginning at the leftmost byte position of sre.

dest Variable or array of any type or length to contain the converted values

num Number of mM or Cray logical values to be converted. Specify an integer variable, expres
sion, or constant.

ten Size of the IBM logical values to convert or of the logical result value. These values must
be 1 or 4. A value of 1 indicates that input or output logical values are LOGICAL*l (8-bit).
A value of 4 indicates that input or output logical values are LOOICAL*4 (32-bit). Specify
an integer variable, expression. or constant.

ine Memory increment for storing the conversion results in dest or for fetching the number to
be converted. This is an optional parameter specified as an integer variable, expression, or
constant. The default value is 1.

USLCTC converts IBM LOGICAL"'! and LOGICAL*4 values to Cray 64-bit logical values.

USLCTI converts Cray logical values to mM LOGICAL·l or LOGICAL*4 values.

All arguments must be entered in the same order in which they appear in the synopsis.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

8-23 D

USPCfC(3U) USPCfC(3U)

NAME

USPCTC - Converts a specified number of bytes of an mM packed-decimal field to a 64-bit integer
field

SYNOPSIS

CALL USPCTC(src,isb,num,ian)

DESCRIPTION

src Variable or array of any type or length containing a valid mM packed-decimal field

isb Byte number to begin the conversion. Specify an integer variable, expression, or constant.
Bytes are numbered from 1, beginning at the lefbnost byte position of src.

num Nwnber of bytes to convert. Specify an integer variable, expression, or constant.

ian Returned integer result

The input field must be a valid packed-decimal number less than 16 bytes long, of which only the right
most 15 digits are converted.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

USICTP is the inverse of this routine.

SR-01l3 8-24 D

USSCTC(3U) USSCTC(3U)

NAME

usscrc - Converts mM 32-bit floating-point numbers to Cray 64-bit single-precision numbers

SYNOPSIS

CALL USSCTC(fpn,isb,dest,num[,inc])

DESCRIPTION

fpn Variable or array of any type or length containing mM 32-bit floating-point numbers to coo
vert

ish Byte number to begin the conversion. Specify an integer variable. expression, or constant
Bytes are numbered from 1. beginning at the leftmost byte position of/pn or dpn.

deSl Variable or array of type real to contain the converted values

num Number of mM 32-bit floating-point numbers to convert. Specify an integer variabJe,
expression, or constant.

inc Memory increment for storing the conversion results in dest. This is an optional parameter
specified as an integer variable, expression. or constant The default value is 1.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

USSCTI is the inverse of this routine.

SR-0113 8-25 D

USSCTI{3U) USSCTI(3U)

NAME

USSCfI - Convens Cray 64-bit single-precision. floating-point numbers to mM 32-bit single-precision
numbers

SYNOPSIS

CALL USSCTI(fpn.dest.isb,num,ier[.inc])

DESCRIPTION

/pn Variable or array of any length and type real. containing Cray 64-bit single-precision,
floating-point numbers to convert

dest Variable or array of type real to contain the converted values

isb Byte number at which to begin storing the converted results. Specify an integer variable,
expression. or constant. Bytes are numbered from I, beginning at the lefunost byte position
of dest.

num Number of Cray floating-point numbers to convert. Specify an integer variable. expression,
or constant.

ieT Overflow indicator of type integer. Value is 0 if all Cray values convert to mM values
without overflow. Value is nonzero if one or more Cray values overflowed in the conver
sion.

inc Memory increment for fetching the number to be converted. This is an optional parameter
specified as an integer variable, expression, or constant. The default value is 1.

USSCTI converts Cray 64-bit single-precision, floating-point numbers to IDM 32-bit single-precision,
floating-point numbers. Numbers that produce an underflow when converted to mM format are con
verted to 32 binary Os. Numbers that produce an overflow when converted to mM fonnat are converted
to the largest mM floating-point representation, with the sign bit set if negative.

An error parameter returns nonzero to indicate that one or more numbers converted produced an
overflow. No such indication is given for underflow.

If you present this routine with invalid Cray floating-point numbers, a floating-point interrupt will result.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

USSCTC is the inverse of this routine.

SR-0113 8-26 D

VXDCTC(3U) VXDCTC(3U)

NAME

VXDCTC - Converts VAX 64-bit D fonnat nwnbers to Cray single-precision numbers

SYNOPSIS

CALL VXDCTC(dpn.isb .dest,num. [inc])

DESCRIPTION

dpn Variable or array of any type or length containing VAX D fonnat numbers to convert

ish Byte number within dpn at which to begin the conversion. Specify an integer variable,
expression, or constant. Bytes are numbered from 1, beginning at the leftmost byte of dpn.

dest Variable or array of type real to contain the converted values

num Number of VAX D fonnat numbers to convert. Specify an integer variable, expression, or
constant

inc Memory increment for storing the conversion results in dest. This is an optional parameter
specified as an integer variable, expression, or constant. The default value is 1.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

VXDCTI is the inverse of this routine.

SR-0113 8-27 D

VXDCTI(3U) VXDCTI(3U)

NAME

VXDCTI - Converts Cray 64-bit single-precision, floating-pomt numbers to VAX D fonnat floating-point
numbers

SYNOPSIS

CALL VXDCTI(fpn.dest,isb,num,ier,[inc])

DESCRIPTION

jpn Variable or array of any length and type real containing Cray 64-bit single-precision,
floating-point numbers to convert

des' Variable or array of type real to contain the converted values

isb Byte number at which to begin storing the converted results. Specify an integer variable.
expression. or constant. Bytes are numbered from 1, beginning at the leftmost byte position
of dest.

num Number of Cray floating-point numbers to convert. Specify an integer variable, expression.
or constant.

ier Overflow indicator of type integer. Value is 0 if all Cray values convert to V AX values
without overflow. Value is nonzero if one or more Cray values overflowed in the conver
sion.

inc Memory increment for fetching the number to be converted. This is an optional parameter
specified as an integer variable. expression, or constant

Numbers that produce an underflow when converted to VAX fonnat are converted to 32 binary Os.
Numbers that are in overflow on the Cray computer system are converted to a "reserved" floating-point
representation. with the sign bit set if negative. Numbers that are valid on the Cray computer system
but overflow on the VAX are converted to the most positive possible number or most negative possible
number. depending on the sign.

An error parameter returns nonzero to indicate that one or more numbers converted produced an
overflow. (Deferred implementation; at present, you must supply the parameter. which is always
returned as 0.) No such indication is given for underflow.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

VXDCTC is the inverse of this routine.

SR-0113 8-28 D

VXGCTC(3U) VXGCTC(3U)

NAME

VXGCTC - Converts V AX 64-bit G format numbers to Cray single-precision numbers

SYNOPSIS

CALL VXGCTC(dpn,isb.dest,num.[inc])

DESCRIPTION

dpn Variable or array of any type or length containing VAX G fonnal numbers to convert

isb Byte number within dpn at which to begin the conversion. Specify an integer variable,
expression, or constant. Bytes are numbered from I, beginning at the leftmost byte of dpn.

dest Variable or array of type real to contain the converted values

num Number of VAX G fonnal numbers to convert Specify an integer variable, expression, or
constant

me Memory increment for storing the conversion results in dest. This is an optional parameter
specified as an integer variable, expression, or conxtant The default value is 1.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

VXGCTI is the inverse of this routine.

SR-OI13 8-29 o

VXGC'TI(3U) VXGCTI(3U)

NAME

VXGCTI - Converts Cray 64-bit single-precision. floating-point numbers to VAX G fonnat floating-point
numbers

SYNOPSIS

CALL VXGCTI(fpn.dest,isb,num,ier,[incJ)

DESCRIPTION

jpn Variable or array of any length and type real, containing Cray 64-bit single-precision.
floating-point numbers to convert

dest Variable or array of type real to contain the converted values

ish Byte number at which to begin storing the converted results. Specify an integer variable,
expression, or constant. Bytes are numbered from I, beginning at the leftmost byte position
of dest.

num Number of Cray floating-point numbers to convert. Specify an integer variable, expression,
or constant.

ier Overflow indicator of type integer. Value is 0 if all Cray values conven to VAX values
without overflow. Value is nonzero if one or more Cray values overflowed in the conver
sion.

ine Memory increment for fetching the number to be converted. This is an optional parameter
specified as an integer variable, expression, or constant The default value is 1.

VXGCTI converts Cray 64-bit single-precision, floating-point numbers to VAX 0 format single
precision, floating-point numbers.

Numbers that produce an underflow when converted to VAX fonnat are converted to 32 binary zeros.
Numbers that are in overflow on the Cray computer system are converted to a "reserved" floating-point
representation, with the sign bit set if negative. Numbers that are valid on the Clay computer system
but overflow on the VAX are converted to the most positive possible number or most negative possible
number. depending on the sign.

An error parameter returns nonzero to indicate that one or more numbers converted produced an
overflow (Deferred implementation. At present, you must supply the parameter, which is always as 0.)
No such indication is given for underflow.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

VXGCTC is the inverse of this routine.

SR-Ol13 8-30 D

VXICTC(3U) VXICTC(3U)

NAME

VXICTC - Convens VAX INTEGER*2 or INTEOER*4 to Cray 64·bit integers

SYNOPSIS

CALL VXICTC(in,isb,dest,num.len,[inc))

DESCRIYfION

in Variable or array of any type or length containing VAX 16- or 32·bit integers

isb Byte number at which to begin the conversion. Specify an integer variable. expression, or
constant Bytes are numbered from 1, beginning at the leftmost byte position of in.

dest Variable or array of type integer to contain the converted values

num Numrer of V AX integers to convert. Specify an integer variable, expression, or constant.

len Size of the V AX numbers to convert This value must be 2 or 4. A value of 2 indicates
that input integers are 16-bit A value of 4 indicates that input integers are 32-bit. Specify
an integer variable, expression, or constant

inc Memory increment for storing conversion results in dest. This is an optional parameter
specified as an integer variable, expression, or constant. The default value is 1.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

VXICTI is the inverse of this routine.

SR-0113 D

VXICTI(3U) VXICTI(3U)

NAME

VXICfI- Converts Cray 64-bit integers to eiaher VAX INTEGERIjI2 or INTEGER*4 numbers

SYNOPSIS

CALL VXICTI(in,dest,ish,num,len,ier,[incD

DESCRIPTION

in Variable or array of any length and type integer, containing Cray integers to convert

dest Variable or array of type integer to contain lhe converted values

ish Byte number at which to begin storing the converted results. Specify an integer variable.
expression. or constant. Bytes are numbered from 1. beginning at the leftmost byte position
of dest.

num Number of Cray integers to convert. Specify an integer variable. expression, or constant.

len Size of the V AX result numbers. This value must be 2 or 4. A value of 2 indicates that
output integers are INTEGERIjIZ (l6-bit). A value of 4 indicates that output integers are
INTEGER·4 (32-bit). Specify an integer variable. expression, or constant.

ier Overflow indicator of type integer. Value is 0 if all Cray values are converted to VAX
values without overflow. Value is nonzero if one or more Cray values overflowed in the
conversion.

inc Memory increment for fetching the number to be converted. This is an optional parameter
specified as an integer variable. expression. or constant The default value is 1.

Numbers that produce an overflow when converted to VAX format are converted to the largest VAX
integer representation, with the sign bit set if negative.

An error parameter returns nonzero to indicate that one or more numbers converted produced an
overflow. (Deferred implementation; at present. you must supply the parameter, which is always
returned as 0.) No such indication is given for underflow.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

VXICTC is the inverse of this routine.

8-32 D

VXLCfC(3U) VXLCTC(3U)

NAME

VXLCTC - Converts VAX logical values to Cray 64-bit logical values

SYNOPSIS

CALL VXLCTC(src .isb,desl,num.len.[inc])

DESCRIPTION

sre Variable or array of any type or length containing VAX logical values to convert

isb Byte number at which to begin the conversion. Specify an integer variable, expression. or
constant Bytes are numbered from I, beginning at the leftmost byte position of sre.

desl Variable or array of type logical to contain the converted values

num Number of VAX logical values to be converted. Specify an integer variable, expression. or
constant

len Size of the VAX logical values to convert. At present, this parameter must be set to 4, indi
cating that 32-bit logical values are to be converted. Specify an integer variable, expres
sion, or constant.

inc Memory increment for storing the conversion results in dest. This is an optional parameter
specified as an integer variable, expression, or constant The default value is 1.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS opemting systems.

SR-OI13 8-33 o

YXSCTC(3U) YXSCTC(3U)

NAME

VXSCTC - Converts V AX 32-bit floating-point numbers to Cray 64-bit single-precision numbers

SYNOPSIS

CALL VXSCTC(j'pn.isb.dest.num,[inc])

DESCRIPTION

/pn Variable or array of any type containing VAX 32-bit floating-point numbers to convert

isb Byte number at which ro begin the conversion. Specify an integer variable, expression, or
constant. Bytes are numbered from I, beginning at the leftmost byte position of Ipn.

dest Variable or array of type real to contain the convened values

num Number of V AX floating-point numbers ro convert. Specify an integer variable, expression,
or constant.

inc Memory increment for sroring the conversion results in dest. This is an optional parameter
specified as an integer variable, expression, or constant. The default value is 1.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

VXSCTI is the inverse of this routine.

SR-0113 8-34 D

VXSCTI(3U) YXSCTI(3U)

NAME

VXSCTI - Converts Cray 64-bit single-precision, floating-point to VAX F fonnat single-precision,
floating-point

SYNOPSIS

CALL VXSCTI(jpn,desl,isb.num.ier,[incJ)

DESCRIPTION

jpn Variable or array of any length and type real, containing Cray 64-bit single-precision,
floating-point numbers to convert

dest Variable or array of type real to contain the converted values

isb Byte number at which to begin storing the converted results. Specify an integer variable,
expression. or constant. Bytes are numbered from 1, beginning at the leftmost byte position
of dest.

num Number of Cray floating-point numbers to convert. Specify an integer variable, expression,
or constant

ier Overflow indicator of type integer. Value is 0 if all Cray values convert to VAX values
without overflow. Value is nonzero conversion.

inc Memory increment for fetching the number to be converted. This is an optional parameter
specified as an integer variable, expression, or constant The default value is 1.

Numbers that produce an underflow when converted to VAX fonnat are converted to 32 binary Os.
Numbers that are in overflow on the Cray computer system are converted to a "reserved" floating-point
representation, with the sign bit set if negative. Numbers that are valid on the Cray computer system
but overflow on the V AX are converted to the most positive possible number or most negative possible
number, depending on the sign.

An error parameter returns nonzero to indicate that one or more numbers converted produced an
overflow (Deferred implementation. At present you must supply the parameter. which is always
returned as 0.) No such indication is given for underflow.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

VXSCTC is the inverse of this routine.

SR-0113 8-35 D

V:XZCTC(3U) VXZCfC(3U)

NAME

VXZCTC - Converts VAX 64-bit complex numbers to Cray complex numbers

SYNOPSIS

CALL VXZCTC(dpn.isb.dest.num.(incD

DESCRIPTION

dpn Variable or array of any type or length containing complex numbers to convert

isb Byte number within dpn at which to begin the conversion. Specify an integer variable,
expression, or constant. Bytes are nwnbered from I, beginning at the leftmost byte of dpn.

dest Variable or array of type complex to contain the convened values

num Number of complex numbers to convert. Specify an integer variable, expression, or con
stant.

inc Memory increment for storing the conversion results in dest. This is an optional parameter
specified as an integer variable, expression, or constant Default value is 1.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

VXZCTI is the inverse of this routine.

SR-0113 8-36 D

VXZCTI(3U) VXZCTI(3U)

NAME

VXZCTI - Converts Cray complex numbers to VAX complex nwnbers

SYNOPSIS

CALL VXZCTI(fpn.dest.isb.mun,ier.[inc])

DBSCRIPTION

/pn Variable or array of any length and type complex. containing Cray complex numbers to
conven

dest Variable or array of any type to contain the converted values

ish Byte number at which to begin storing the converted results. Specify an integer variable.
expression, or constant. Bytes are numbered from I, beginning at the leftmost byte position
of dest.

num Number of Cray Boating-point numbers to convert. Specify an integer variable. expression.
or constanL

ier Overflow indicator of type integer. Value is 0 if all Cray values convert to VAX values
without overflow. Value is nonzero if one or more Cray values overflowed in the conver
sion.

inc Memory increment for fetching the number to be converted. This is an optional parameter
specified as an integer variable, expression, or constant. The default value is 1.

Numbers that produce an underflow when converted to VAX fonnat are converted to 32 binary zero.
Numbers that are in overflow on the Cray computer system are converted to a "reserved" floating-point
representation, with the sign bit set if negative. Numbers that are valid on the Cray computer system
but overflow on the V AX are converted to the most positive possible number or most negative possible
number. depending on the sign.

An error parameter returns nonzero to indicate that one or more numbers converted produced an
overflow (Deferred implementation. At present. you must supply the parameter. which is always
returned as 0.) No such indication is given for underflow.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

VXZCTC is the inverse of this routine.

SR-Ol13 8-37 D

INTR.O(3X) INTRO(3X)

9. PACKING ROUl1NES

The packing routines provide alternative ways to pack and unpack data into or out of Cray words. The
following table contains the purpose, name, and entry of each packing routine.

Packing Routines

Pwoose Name Entry

Pack 32-bit words into Cray 64-bit P32
words

P32
Unpack 32-bit words from Cmy U32
64-bit words

Pack 6O-bit words into Cray 64-bit P6460
words

P6460
Unpack 6O-bil words from Cray 64-bit U6064
words

Co stored data PACK PACK
Expand stored data UNPACK UNPACK

SR-OU3 9-1 o

PACK(3U) PACK(3U)

NAME

PACK - Compresses stored data

SYNOPSIS

CALL PACK(p,nbits,u,nw)

DESCRIPTION

p On exit, vector of packed data

nbits Number of rightmost bits of data in each partial word; must be 1,2,4,8, 16. or 32.

u Vector of partial words to be compressed

nw Number of partial words to be compressed

PACK takes the 1. 2,4, 8, 16, or 32 rightmost bits of several partial words and concatenates them into
full 64-bit words. The following equation gives the number of full words:

n = (nw ·Rbits)
64

n Nwnber of resulting full words

nw Number of partial words

nbits Nwnber of rightmost bits of each partial word that contain useful data

This equation restricts nw 'nbits to a multiple of 64.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

UNPACK

SR-01l3 9-2 o

P32(3U) P32(3U)

NAME

P31, U32 - Packs/unpacks 32-bil words into or from Cray 64-bit words

SYNOPSIS

CALL P31(sre,dest,num)

CALL U32(src,dest,num)

DESCRIPTION

sre For P32, a variable or array of any type or length containing 32-bit words, left-justified in a
Cray 64-bit word. For U32, a variable or array of any type or length containing 32-bit
words as a continuous stream of data. Unpacking always starts with the leftmost bit of 8re.

desl For P32. a destination array of any type to contain the packed 32-bit words as a continuous
stream of data. For U32. a destination array of any type to contain the unpacked 32-bit
words, left-justified and zero-filled in a Cray 64-bit word.

num Number of 32-bit words to pack or unpack. Reads this many elements of sre or generates
this many elements of dest. Specify an integer variable, expression, or constant.

P32 packs 32-bit words into Cray 64-bit words. U32 unpacks 32-bit words from Cray 64-bit words.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

9-3 D

P6460(3U) P6460(3U)

NAME

P6460, U6064 - Packs/unpacks 6O-bit words into or from CIay 64-bit words

SYNOPSIS

CALL P6460(sre,dest,isb,lIum)

CALL U6064(sre,isb,dest,lIum)

DESCRIPTION

src Variable or array of any type or length containing 6O-bit words. left-justified in a Cray 64-
bit word (for U6064, words are contained as a continuous stream of data)

desl For P6460, a destination 8IT8y of any type to contain the packed 6O-bit words as a continu
ous stream of data. For U6064. a destination array of any type to contain the unpacked 60-
bit words. left-justified and zero-filled in a Oay 64-bit word.

isb Bit location that is the lefbllost storage location for the 6O-bit words. Bit position is
counted from the left to right, with the leftmost bit O. Specify an integer variable. expres
sion, or constanL

num Number of 6O-bit words to pack or unpack. Reads this many elements of sre or generates
this many elements of dest. Specify an integer variable, expression, or constant.

P6460 packs 6O-bit words into Cray 64-bit words. U6064 unpacks 6O-bit words from Cmy 64-bit words.
Parameter arguments must be addressed in the same order in which they appear in the synopsis above.

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-OI13 9-4 D

UNPACK(3U) UNPACK(3U)

NAME

UNPACK - Expands stored data

SYNOPSIS

CALL UNPACK(p,nbits,u,nw)

DESCRIPI10N

p Vector of full 64-bit words to be expanded

nbils Number of rightmost bias of data in each partial word; must be 1,2.4.8, 16. or 32.

" On exi~ vector of unpacked data

nw Number of resulting partial words

UNPACK reverses the action of PACK and expands full words of data into a larger number of right
justified partial words. This routine assumes nw * nbilS to be a multiple of 64.

IMPLEMENTATION

This routine is available to users of both. the cos and UNICOS operating systems.

SEB ALSO

PACK

SR-0113 9-5 D

INTRO(3X) INTRO(3X)

10. BYTE AND BIT MANIPULATION ROUTINES

SR-01l3

Byte and bit manipulation routines move bytes and bits between variables and arrays, compare bytes,
perfonn searches with a byte count as a search argument. and perform conversion on bytes.

The fonowing table contains the purpose, name, and entry of each byte and bit manipulation routine.

Byte and Bit Manipulation Routines

Puroose Name Entry

Replace a byte in a variable or an PUTBYT
array with a specified value

BYT
Extract a byte from a variable IGTBYT

Search a variable or an array for FINDC" FINDC"
an occurrence of a character string
Compare bytes between variables or KOMSTR KOMSTR
arrays
Move bytes between variables or STRMOV
arrays

MOV
Move bits between variables or MOVBIT
arrays
Move characters between memory areas MVC MVC

to-I D

BYT(3U) BYT(3U)

NAME

PUTBYT, IGTBYT - Replaces a byte in a variable or an array

SYNOPSIS

value=PUTBYT(string .position. value)

byte=I GTBYT(string .position)

DESCRIPI10N

string The address of a variable or an array. The variable or array may be of any type except
character.

position The number of the byte to be replaced or extracted. This parameter must be an integer ~ 1.
If position is ~ 0, no change is made to the destination string; value returned is -1. For
IGTBYT. jf position is ~ 0, value is an integer between 0 and 255.

vaJue The new value to be stored into the byte. This parameter must be an integer with a value
between 0 and 255.

PUTBYT replaces a specified byte in a variable or an array with a specified value. IGTBYT extracts a
specified byte from a variable or an array.

If PUTBYT is called as an integer function (having been properly declared in the user program), the
value of the function is the value of the byte stored.

The high-order 8 bits of the first word of the variable or array are called byte 1.

The value of the byte returned by IGTBYT is an integer value between 0 and 255.

IMPLEMENfATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 10-2 D

FINDeH (3COS) FINDCH (3COS)

NAME

FINDCH - Searches a variable or an array for an OCCUJreDCe of a character string

SYNOPSIS

CALL FINDCH(chrs.len,str.ls ,nb,i/nd)

DESCRIPTION

eMS Variable or array of any type or length containing the search string

len Length of the search string in bytes (must be from 1 to 256). Specify an integer variable.
expression. or constant.

str Variable or array of any type or length that is searched for a match with ehrs

Is Starting byte in the SIr string. Specify an integer variable, expression, or constant Bytes
are numbered from 1. beginning at the leftmost byte position of str.

nb Number of bytes to be searched. Specify an integer variable, expression. or constant.

ifnd Type integer result

The result of this subroutine search is equal to the l-based byte index into the variable or array where
the matching string was found. or equal to 0 if no matching string was found.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-01l3 10-3 D

KOMSTR.(3COS) KOMSTR(3COS)

NAME

KOMSTR - Compares specified bytes between variables or arrays

SYNOPSIS

result=KOMSTR(strl,bytel ,num,str2 ,byte2)

DESCRIYI10N

result Type integer result indicating results of the comparison:
= 0 strl = str2
= I Slrl > slr2
_-1 str1 < str2

slrl Variable or array of any type or length containing the byte string to compare against the
byte stting in slr2

by tel Slarting byte of SIr}. Specify an integer variable, expression, or constant greater than O. In
a Cray word. byteS are numbered from 1 to 8, from the leftmost byte to the righunost byte.

num An integer variable. expression. or constant that contains the number of bytes to compare;
must be greater than O.

slr2 Variable (X' array of any type or length containing the byte string to compare against the
byte string in strl

byte2 Staning byte of str2. Specify an integer variable, expression, or constant greater than O. In
a emy word, byteS are numbered from 1 10 8, from the leftmost byte to the righunost byte.

KOMSTR perf<rms an unsigned. twos complement compare of a specified number of bytes from one
variable or array with a specified number of bytes from another variable or array.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

SR-OII3 10-4 D

MOV(3U) MOV(3U)

NAME

STRMOV, MOVBIT - Moves bytes or bits from one variable or array to another

SNYOPSIS

CALL STRMOV(src.isb,num,dest,idb)

CALL MOVBIT(src,isb.num.dest,idb)

DESCRIPTION

sre Variable or array of any type or length containing the bytes or string of bits to be moved.
Bytes are numbered from I, beginning at the leftmost byte position of sre.

isb Starting byte or bit in the sre string. Specify an integer variable, expression, or constant
greater than O. Bytes and bits are numbered from I, beginning at the leftmost byte or bit
position of src.

num An integer variable, expression, or constant that contains the number of bytes or biLS to be
moved; must be greater than O.

dest Variable or array of any type or length that contains the starting byte or bit to receive the
data. Bytes and bits are numbered from I, beginning at the leftmost byte or bit position of
dest.

idh An integer variable, expression, or constant that contains the starting byte or bit to receive
the data; must be greater than O. Bytes and bits are numbered from I, beginning at the left
most byte or bit position of dest.

STRMOV moves bytes from one variable or array to another. MOVBIT moves bits from one variable
or array to another.

CAUTION

The argument dest must be declared long enough to hold num bytes, or a spill occurs and data is des
troyed.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-01l3 10-5 D

MVC(3U) MVC(3U}

NAME

MVC - Moves characters from one memory area to another

SYNOPSIS

CALL MVC(SIJl,s2JZ,Jc)

DESCRIPTION

S 1 Word address of the source string

j 1 Byte offset from the source string word address of the first byte of the source string (the
high-order byte of the first word of the source string is byte 1)

S:1 Word address of the destination string

it Byte offset from the destination string word address of the first byte of the destination
string (the high-order byte of the first word of the destination string is byte 1)

k Number of bytes to be moved

Source and destination strings can occur on any byte boundary. The move is perfonned 1 character at a
time from left to right The destination string can overlap the source string.

EXAMPLE

To copy the first byte of an array throughout the array, invoke the routine as follows:

CALL MVC(ARRA Y,l,ARRA Y,2,K.l)

where K is the length of the array in bytes.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR-01l3 10-6 D

TRIM LEN (3COS) TRIMLEN (3COS)

NAME

TRIMLEN - Returns the number of characters in a string

SYNOPSIS

INTEGER TRIMLEN
num = TRIMLEN(slring)

DESCRIPl'ION

num An integer variable giving the number of characters. excluding l1'ailing blanks. in string

string A string variable

This function is intended for use with WRITE statements or with the concatenation operator. If you use
it on the right-hand side of an assignment statement. any wiling blanks are put back as they were.

EXAMPLE

The following are examples of typical use:

WRITE(6,901) STRING(l:TRIMLEN(STRINO»
901 FORMATe- The string is >',A.'<')

This example writes the string with the < character against the last nonblank character in string A.

NFW = STRING(l:TRIMLEN(STRING» II '<The end'

In this example. the < is again butted up against the last significant character in STRING even though
STRING may have trailing blanks.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-Ol13 10-7 D

INTRO(3X) INTRO(3X)

11. HEAP MANAGEMENT AND TABLE MANAGEMENT ROUTINES

These routines allow you to manage a block of memory (the heap) within your job area and to manipu.
late tables.

The management routines are divided into two categories: heap management and table managemenL
Corresponding CAL routines are found in the System Library Reference Manual, publication SM·0l14.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

HEAP MANAGEMENT ROUTINES

SR-OU3

Heap management routines provide dynamic stomge allocations by managing a· block of memory, called
the heap, within your job area. Each job has its own heap. The fWlctions of the heap management rou·
tines include allocating a block of memory, returning a block of memory to the heap's list of available
space, and changing the length of a block of memory. Heap managment routines may also move a heap
block to a new location if there is no room to extend it, return part of the heap to the opemting system,
check the integrity of the heap, and repon heap statistics. See the cos Reference Manual, publication
SR-OOll, and the Segment Loader (SEGLDR) and Id Reference Manual, publication SR.OO66. for the
location of the heap and a description of the parameters on the LDR conb'ol statement or the SEGLDR
directive that affect the heap.

The heap management routines keep various statistics on the use of the heap. These include values
used to blne heap parameters specified on the LDR conb'ol statement or the SOOLDR directive and infor
mation used. in debugging.

The following table contains the purpose. name, and entry of each heap management routine.

Heap Management Routines

Puroose Name Entry

Allocate a block of memory from the HPALLOC HPALLOC
heap

Check the integrity of the heap HPCHECK HPCHECK

Extend a block or copy block HPCLMOVE HPCLMOVE
contents into a larger block

Return a block of memory to the heap HPDEALLC HPDEALLC

Dump the address and size of each heap HPDUMP HPDUMP
block

Cban~e the size of an allocated heap block HPNEWLEN HPNEWLEN

Return an unused portion of the heap HPSHRINK HPSHRINK
to the operating system

Return the length of a heap block IHPLEN IHPLEN

Return statistics about the heap IHPSTAT IHPSTAT

11·1 D

INfRO(3X) INTRO(3X)

TABLE MANAGEMENT ROUTINES

SR-0113

The following table contains the purpose, name, and entry of each Fortran-callable table management
routine.

Table Management Routines
Purpose Name Heading

Add a word to a table TMADW TMADW

Report table management operation TMAMU TMAMU
statistics

Allocate table space TMATS TMATS

Request additional memory TMMEM TMMEM

Search the table with a mask to TMMSC TMMSC
locate a field within an entry

Move memory TMMVE TMMVE

Preset table space TMPTS TMPTS

Search the table with or without a TMSRC TMSRC
mask to locate a field within an
entry and an offset

Search a vector table for the search argument TMVSC TMVSC

The Job Communication Block (JCB) field JCHLM (COS only) defines the beginning address of the table
area.

You must provide two control information tables with corresponding CAL ENTRY pseudo-ops: the
Table Base Address (BTAB) and Table Length Table (LTAB). Their formats are listed in the System
Library Reference Manual. pUblication SM-0114. The Fortran-callable versions of these routines use
default BTAB and LTAB definitions from a common area in the library.

TMINIT initializes the table descriptor vector, BTAB, and zeros all elements of the table length vector,
LTAB. You must preset each element of BTAB to contain the desired interspace value for the
corresponding table; for instance, sl in the following example determines the interspace value for table
1. Interspace values determine how many words are added to a table when more room is needed for
that table or for any table with a lower number.

INTEGER BTAB(n), LTAB(n)
DATA BT AB /s1 ,s2 ,s3 , ... ,sn/

CALLTMINIT

After the call to TMINlT, BT AB should not be changed. The interspace values have been shifted 48 bits to
the left, bilS 16 through 39 contain the current size of each table, and the rightmost 24 bits contain the abso
lute address of each table's first word. LTAB is used only to pass new table lengths from the user to the
Table Manager.

You can use statements such as the following to access each table. In this example. T ABLEi is accessed.

EQUIVALENCE (BTAB(i), PTRi)
INTEGER PTRi. T ABLEi (0:0)
POINTER (PTRi, T ABLEi)

T ABLEi (subscript) = ...

11-2 D

INTRO(3X) INTRO(3X)

TM COMMON BLOCK - The common block name TM is reserved for use by the Table Manager and must
always contain 64 LTAB words.

COMMON!fM/ BT AB(64), LTAB(64)

ACCESSING TABLE MANAGER TABLES (ALTERNATE METHOD) - Blank common can be used in the
customary way, but the last entry in it should be for a one-dimensional array declared to contain just 1 word.
The name of this array is then used to access the tables. beginning immediately after the end of blank com
mon.

COMMON IITABLES(l)

WARNING

SR-0113

Under COS, the heap management and table management subroutines cannot be used in the same appli
cation, unless the heap is of fixed size and placed before blank common. This restriction does not
apply to UNlCOS.

The following statement function extracts the righbnost 24 bits from a BT AB word and changes that
value from an absolute address to a relative address or offset within the table area. Thus the result of
BASE(N) is an index into TABLES(l), pointing to the first word currently allocated to table N.

BASE(N) = (BTAB(N) .AND. n777777B) - LOC(TABLES(l»

WRITE(6,101) TABN
101 FORMAT CO Dump of table ' ,I2/)

OFFSET = 0
102 CONTINUE

DO 103 1=1,4
INTABLE = OFFSET .LT. LT AB(TABN)
IF (INT ABLE) THEN
OCTAL(I) = TABLES(I+BASE(TABN) + OFFSET)
ALPHA(I)=TABLES(I+BASE(TABN) + OFFSET)
ELSE
OCTAL(I) = 0
ALPHA(l) ='
ENDIF
OFFSET = OFFSET + 1

103 CONTINUE
WRITE (6,104) OFFSET-4, OCTAL, ALPHA

104 FORMAT (I6,2X.4(022,lX).4A8)

INTABLE == OFFSET .LT. LTABCTABN)
IF (!NT ABLE) GO TO 102
WRITE (6.105)

105 FORMAT (j)
RETURN
END

11-3 D

HPAll.OC(3U) HPALLOC(3U)

NAME

HPALLOC - Allocates a block of memory from the heap

SYNOPSIS

CALL HPALLOC(addr)ength,e"code,abort)

DESCRIPTION

addr

length

errcode

abort

First word address of the allocated block (output)

Number of words of memory requested (input)

Error code. 0 if no error was detected; otherwise. a negative integer code for the type of
error (output).

Abort code; nonzero requests abort on error; 0 requests an error code (input).

Allocate routines searcb the linked list of available space for a block greater than or equal to the size
requested.

The length of an allocated block can be greater than the requested length because blocks smaller than
the managed memory epsilon specified on the LOR control statement (or in a SEGLDR directive) are
never left on the free space list.

Error conditions are as follows:

Error Code

·1

·2

Condition

Length is not an integer greater than 0

No more memory is available from the system (checked if the
the request cannot be satisfied from the available blocks
on the beap)

lMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 11-4 D

HPCHECK:(3U) HPCHECK(3U)

NAME

BPeDECK - Checks the integrity of the heap

SYNOPSIS

CALL HPCHECK(e"code)

DESCRIPTION

errcode Error code. 0 if no enur was detected; otherwise, a negative integer code for the type of
error (output).

Each control word is examined to ensure that it has not been overwritten.

Error conditions are as follows:

Error Code

·5

-6

Condition

Bad control word for the allocated block

Bad conttol word for the free block

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR·Ol13 11-5 o

HPCLMOVE(3U) HPCLMOVE(3U)

NAME

HPCLMOVE - Extends a block or copies block contents into a larger block

SYNOPSIS

CALL HPCLMOVE(addr,length.status.abort)

DESCRIPTION

addr

length

status

abort

On entry. first word address of the block to change; on exit. the new address of the block if
it was moved.

Requested new total length (input)

Status. 0 if the block was extended in place; 1 if it was moved; a negative integer for the
type of error detected (output).

Abort code. Nonzero requests abort on error; 0 requests an error code (input).

Change length and move routines extend a block if it is followed by a large enough free block or copy
the contents of the existing block to a larger block and return a status code indicating that the block has
been moved. These routines can also reduce the size of a block if the new length is less than the old
length. In this case, they have the same effect as the change length routines.

The new length of the block can be greater than the requested length because blocks smaller than the
managed memory epsilon specified on the LDR control statement are never left on the free space list.

Error conditions are as follows:

Error Code

·1

-2

-3

·4

-s
-7

Condition

Length is not an integer greater than 0

No more memory is available from the system (checked if the
block cannot be extended and the free space list does nOl
include a large enough block)

Address is outside the bounds of the heap

Block is already free

Address is not at the beginning of the block

Control word for the next block has been overwritten

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 11-6 D

HPDEALLC(3U) HPDEALLC(3U)

NAME

HPDEALLC - Returns a block of memory to the list of available space (the heap)

SYNOPSIS

CALL HPDEALLC(addr,errcode,abort)

DESCRIYI'lON

addr First word address of the block to deallocate (input)

errcode Error code. 0 if no error was detected; otherwise, a negative integer code for the type of
error (output).

abort Abort code. Nonzero requests abort on error; 0 requests an error code (input).

Error conditions are as follows:

Error Code

·3

-4

·s
-7

Condition

Address is outside the bounds of the heap

Block is already free

Address is not at the beginning of the block

Control word for the next block has been overwritten

IMPLEMENTATION

This routine is available to users of both the cos and UNJCOS operating systems.

SR-Ol13 11-7 D

HPDUMP(3U) HPDUMP(3U)

NAME

HPDUMP - Dumps the address and size of each heap block

SYNOPSIS

CALL HPDUMP(code,dsname)

DESCRIPTION

code Code for the type of dump requested, as follows:

Code

o
1
2
3

Meaning

Print heap statistics
Dump all heap blocks in storage order
Dump free blocks; follow NEXT links.
Dump free blocks; follow PREV links.

Name of the dataset to which the dump is to be written. dsname must be in left-justified,
Hollerith form.

Three types of dump are available: a dump of all heap blocks; a dump of free blocks that ttaces the
links to the next block on the free list; and a dump of free blocks that traces the links to the previous
block on the free list. The dump stops if a recognizably invalid value is found in a field needed to con
tinue the dump.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-Ol13 11-8 D

HPNEWLEN(3U) HPNEWLEN(3U)

NAME

HPNEWLEN - Changes the size of an allocated heap block

SYNOPSIS

CALL HPNEWLEN(addr,length,status,abort)

DESCRIPTION

addr FIrst word address of the block to change (input)

length Requested new total length of the block (input)

status Status. 0 if the change in length was successful; I if the block could not be extended in
place; a negative integer for the type of error detected (output).

abort Abon code. Nonzero requests abort on error; 0 requests an error code (input).

Set new length routines change the size of an allocated heap block. If the new length is less than the
allocated length. the portion starting at ADDR+LENGTH is returned to the heap. If the new length is
greater than the allocated length. the block is extended if it is followed by a free block. A status is
returned. telling whether the change was successful.

The new length of the block can be greater than the requested length because blocks smaller than the
managed memory epsilon specified on the LDR or SEGLDR control statement are never left on the free
space list.

Error conditions are as follows:

Error Code

-1

-3

-4

-s
-7

Condition

Length is not an integer greater than 0

Address is outside the bounds of the heap

Block is already free

Address is not at the beginning of the block

Control word for the next block has been overwritten

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR-0l13 11-9 D

HPSHR.INI{(3U) HPSHRINK (3U)

NAME

HPSHRINK - Returns an unused portion of heap to the operating system

SYNOPSIS

CALL HPSHRINK

DESCRIYfION

The unused portion of the heap is returned to the opemting system only if the blocks closest to HLM
(COS only) are free; no allocated blocks are moved. The minimum amount of memory to be returned is
the managed memory increment specified on the LDR or SEGLDR control statement. These routines are
called only from the user program.

IMPLEMENTATION

This routine is available only to the users of the cos operating system.

SR-OI13 11-10 D

IHPLEN(3U) llIPLEN(3U)

NAME

IHPLEN - Returns the length of a heap block

SYNOPSIS

length=IHPLEN (addr,errcode,aoort)

DESCRIPTION

abort

Length of the block starting at addr (output)

First word address of the block (input)

Error code. 0 if no error was detected; otherwise, a negative integer code for the type of
error (output).

Abort code. Nonzero requests abort on error; 0 requests an error code (input).

The length of the block can be greater than the amount requested because of the managed memory
epsilon.

Error conditions are as follows:

Error Code

-3

-4

-s
-7

Condition

Address is outside the bounds of the heap

Block is already free

Address is not at the beginning of the block

Control word for the next block has been overwritten

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 11-11 D

IHPSTAT(3U) IHPSTAT(3U)

NAME

IHPST AT - Returns statistics about the heap

SYNOPSIS

value=IHPSTA T(code)

DESCRll'I10N

value Requested infonnation
~

code Code for the type of information requested, as follows:

Code Meaning

1 Current heap length
2 Largest size of the heap so far
3 Smallest size of the heap so far
4 Number of allocated blocks
5 Number of times the heap has grown
6 Number of times the heap has shrunk
7 Last routine that changed the heap
8 Caller of the Jast routine that changed the heap
9 First word address of the heap area changed last
10 Size of the largest free block
11 Amount by which the heap can shrink
12 Amount by which the heap can grow
13 First word address of the heap
14 Last word address of the heap

IMPLEMENTATION

This routine is available only to users of the cos operating system.

SR-Ol13 11-12 D

TMADW(3U)

NAME

TMADW - Adds a word to a table

SYNOPSIS

index=TMADW(number,entry)

DESCRIPTION

index

number

entry

IMPLEMENTATION

Index of the added word

Table number

Entry for the table

This routine is available to the users of both the COS and UNICOS operating systems.

SR-0113 11-13

TMADW(3U)

D

TMAMU(3U)

NAME

TMAMU - Reports table management operation statistics

SYNOPSIS

CALL TMAMU(Ien.tabnum.tabmov.tabmar .nword)

DESCRIPTION

len

tabnum

tabmov

tabmar

nword

IMPLEMENTATION

Allocated length of the table

Number of tables used

Number of table moves

Maximum amount of memory used throughout the Table Manager

Number of words moved

This routine is available to the users of both the COS and UNICOS operating systems.

SR-0113 11-14

TMAMU(3U)

D

TMATS(3U)

NAME

TMATS - Allocates table space

SYNOPSIS

index=TMATS(number,incre)

DESCRIYfION

index

number

incre

IMPLEMENTATION

Index of the specified change

Table number

Table increment

This routine is available to the users of both the cos and UNICOS operating systems.

SR-0113 11-15

TMATS(3U)

D

TMMEM(3U}

NAME

TMMEM - Requests additional memory

SYNOPSIS

CALL TMMEM(mem)

DESCRIYl'ION

mem Length of memory requested

Upon exit, memory is extended by the requested amount No value is returned.

IMPLEMENTATION

This routine is available to the users of both the COS and UNICOS operating systems.

SR-Ol13 11-16

TMMEM(3U)

D

TMMSC(3U)

NAME

TMMSC - Searches the table with a mask to locate a specific field within an entry

SYNOPSIS

ind.ex:::TMMSC(tabnum,mask.sword.nword)

DESCRIPTION

index

tahnum

mask

sword

nword

IMPLEMENTATION

Table index of the match. if found; -1 if no match is found.

Table number

Mask: defining a field within a word

Search word

Number of words per entry group

This routine is available to the users of both the COS and UNICOS operating systems.

SR"()113 11-17

TMMSC(3U)

D

TMMVE(3U)

NAME

TMMVE - Moves memory (words)

SYNOPSIS

CALL TMMVE(from,to,count)

DESCRIPI10N

from

to

count

IMPLEMENTATION

Address from which words are to be moved

Address of the location to which words are to be moved

Number of words to be moved

This routine is available to the users of both the COS and UNICOS operating systems.

SR-0113 11-18

TMMVE(3U)

D

TMPfS(3U)

NAME

TMPTS - Presets table space

SYNOPSIS

CALL TMPTS(start,len,preset)

DESCRIPTION

start

len

preset

Starting address

Length to preset

Preset value; default is O.

IMPLEMENTATION

This routine is available to the users of both the COS and UNICOS operating systems.

SR-OI13 11-19

TMPfS(3U)

D

TMSRC(3U) TMSRC(3U)

NAME

TMSRC - Searches the table with an optional mask to locate a specific field within an entry and an
offset

SYNOPSIS

index=TMSRC(tabnum,arg .nword,offset.mask)

DESCRIPTION

index

tabnum

arg

nword

offset

mask

IMPLEMENTATION

Table index of the match, if a match is found; -1 if no match is found.

Table number to search

Search argument or key

Number of words per entry

Offset into the entry group

Field being searched for within an entry

This routine is available to the users of both the cos and UNICOS operating systems.

SR-0113 11-20 D

TMVSC(3U)

NAME

TMVSC - Searches a vector table for the search argument

SYNOPSIS

index=TMVSC(tabnwn,arg,nword)

DESCIUPTION

intkx

tabnum

arg

nword

IMPLEMENTATION

Table index of the match, if found; -1 if no match is found.

Table number

Search argument

Number of words per entry group

This routine is available to the users of both the COS and UNICOS operating systems.

SR"()113 11-21

TMVSC(3U)

D

INTRO(3X) INTRO(3X)

12. IJO ROUTINES

The I/O routines include the following:

• Dataset positioning routines

• Auxiliary NAMEUST routines

• Logical record I/O routines

• Random access dataset I/O routines

• Asynchronous queued I/O routines

• Output suppression routines

• Fortran-callable tape routines involving beginning- and end-of-volume processing

DATASET POSITIONING ROUTINES

SR-OI13

Dataset positioning routines change or indicate the position of the current dataset. These routines set the
current positioning direction to input (read). If the previous processing direction is output (write), end
of-data is written on a blocked sequential dataset, and the buffer is flushed. On a random dataset, the
buffer is flushed.

The following table contains the name, purpose, and entry of each dataset positioning routine.

Dataset Positioning Routines
Purpose Name Entry

Receive position infonnation about GETTP GETTP
an opened tape dataset
Position a specified tape dataset at SETTP SETTP
a tape block
Synchronize the specified program and an SYNCH SYNCH
opened tape dataset
Return current position of an interchange GETPOS
tape or mass storage dataset

GETPOS
Return to the position retained from SETPOS
the GETPOS request

12-1 D

INfRO(3X) INTRO(3X)

AUXILIARY NAMEUST ROUTINES

SR-O 11 3

NAMEUST routines allow you to control input and output defaults and are accessed by call-by-address
subprogram linkage. No arguments are retwned. For a more complete description of the NAMELIST
feature, see the Fortran (CFT) Reference Manual. publication SR-0009 or the CFT77 Reference Manual,
publication SR-0018.

The following table contains the purpose, name. and entry of each auxiliary NAMEUST routine.

Auxiliary NAMELIST Routines

Purpose Name Entrv

Delete or add a IIailing comment RNLCOMM
indicator

Delete or add a delimiting character RNLDELM
Delete or add an echo character RNLFLAG RNL
Delete or add a replacement character RNLREP
Delete or add a separator character RNLSEP
Specify the output unit for error RNLECHO RNLECHO
messages and echo lines

Take action when an undesired RNLSKIP RNLSKIP
NAMELIST group is encountered

Determine the action if a type mismatch RNLTYPE RNLTYPE
occurs across the equal sign on an
input record

Define an ASCII NAMELIST delimiter WNLDELM
Indicate the first ASCn character WNLFLAG
of the first line

WNL
Define ASCII NAMELIST replacement WNLREP
character

Define ASCII NAMELIST separator WNLSEP
Allow each NAMELIST variable to WNLLINE WNLLINE
begin on a new line

Indicate output line length WNLLONG WNLLONG

12-2 D

INTRO(3X) INTRO(3X)

LOGICAL RECORD I/O ROUTINES

SR-01l3

The logical record I/O routines are divided into read routines. write routines. and bad data error
recovery routines. The following table contains the purpose. name, and entry of each logical record I/O
routine.

Logical Record I/O Routines

Puroose Name Entrv
Read words. full record mode READ READ
Read words, partial record mode READP
Read characters. full record mode READC READC
Read characters. partial record mode READCP
Read two mM 32-bit floating-point READffiM READmM
words from each Oay 64-bit word

Write words, full record mode WRITE WRITE
Write words. partial record mode WRITEP
Write characters, full record mode WRITEC WRITEC

Write characters. ~~ record mode WRITECP
Write two IBM 32-bit ftoating-point WRITmM WRITIBM
words from each Cray 64-bit word

Skip bad data SKIPBAD SKIPBAD
Make bad data available ACPTBAD ACPfBAD

READ ROUTINES - Read routines transfer partial or full records of data from the I/O buffer to the user
data area Depending on the read request issued, the data is placed in the user data area either 1 char
acter per word or in full words. (Blank decompression occurs only when data is being read 1 character
pet word.) In partial mode. the dataset maintains its position after the read is executed. In record
mode, the dataset position is maintained after the end-of-record (EOR) that terminates the current
record.

WRITE ROUTINES - Write routines transfer partial or full records of data from the user data area to
the 110 buffer. Depending on the write operation requested, data either is taken from the user dara area
1 character per word and packed 8 characters per word or is ttansferred in full words. In partial mode,
no end-of-record (EOR) is inserted in the I/O buffer in the word following the data that tenninates the
record.

BAD DATA ERROR RECOVERY ROUTINES - Bad data error recovery routines enable a user program
to continue processing a dataset when bad data is encountered. "Bad dara" refers to an unrecovered
error encountered while the dataset was being read. Skipping the data forces the dataset to a position
past the bad data, so that no data is transferred to the user-specified buffer. Accepting the data causes
the bad data to be transferred to a user-specified buffer. The dataset is then positioned immediately fol
lowing the bad data.

When an unrecovered data error is encountered. continue processing by calling either the SKIPBAD or
the ACPTBAD routine.

12-3 D

INTRO(3X) INTRO(3X)

RANDOM ACCESS DATASET 110 ROUTINES

SR-01l3

Sequentially accessed datasets are used for applications that read input only once during a process and
write output only once during a process. However, when large numbers of intennediate results are used
randomly as input at different stages of jobs. a random access dataset capability is more efficient than
sequential access. A random access dataset consists of records that are accessed and changed. Random
access of data eliminates the slow processing and inconvenience of sequential access when the order of
reading and writing records differs in various applications.

Random access dataset I/O routines allow you to specify how records of a dataset are to be changed,
without the usual limitations of sequential access. Choose specific routines based on performance
requirements and the type of access needed.

Random access datasets can be created and accessed by the record-addressable, random access dataset
routines (READMSIWRITMS, and READDRIWRITDR) or the word-addressable, random access dataset
routines (GETWAIPUTWA).

NOTE - Generally, random access dataset I/O routines used in a program with overlays or segments
should reside in the first overlay or root segment. However, if all I/O is done within one overlay or
segment. the routines can reside in that overlay. If all I/O is done in an overlay's successor, the rou
tines can reside in the successor overlay.

RECORD-ADDRESSABLE, RANDOM ACCESS DATASET 110 ROUTINES - Record-addressable, random
access dataset I/O routines allow you to generate datasets containing variable-length. individual1y
addressable records. These records can be read and rewritten at your discretion. The library routines
update indexes and pointers. The random access dataset information is stored in two places: in an array
in user memory and at the end of the random access dataset.

When a random access dataset is opened. an array in user memory contains the master index to the
records of the dataset This master index contains the pointers to and, optionally, the names of the
records within the dataset. Although you provide this storage area, it must be modified only by the ran
dom access dataset I/O routines.

When a random access dataset is closed and optionally saved. the storage area containing the master
index is mapped to the end of the random access dataset, thus recording changes to the contents of the
dataset.

The following Fortran-callable routines can change or access a record-addressable, random access
dataset OPENMS, WRITMS, READMS, CLOSMS, FINDMS, CHECKMS, W AITMS, ASYNCMS,
SYNCMS, OPENDR, WRITDR, READDR, CLOSDR, STINDR, CHECKDR, W AITDR, ASYNCDR,
SYNCDR, and STINDX.

The READDRlWRlTDR random access I/O routines are direct-to-disk versions of READMSIWRITMS.
All input or output goes directly between the user data area and the mass storage dataset without pass
ing through a system-maintained buffer. Because mass storage can only be addressed in 512-word
blocks. all record lengths are rounded up to the next multiple of 512 words.

You can intermix READMSIWRITMS and READDR/WRITDR datasets in the same program, but you
must not use the same file in both packages simultaneously.

OPENMS/OPENDR opens a local dataset and specifies the dataset as a random access dataset that can
be accessed or changed by the record-addressable. random access dataset I/O routines. If the dataset
does not exist, the master index contains zeros; if the dataset does exist, the master index is read from
the dataset. The master index contains the current index to the dataset The current index is updated
when the dataset is closed using CLOSMS/CLOSDR.

12-4 D

INTRO(3X) INTRO{3X)

SR-OI13

A single job can use up to 40 active READMS/WRITMS files and 20 READDRIWRITDR files.

The following table contains the name, pwpose. and entry of each record-addressable, random access
dataset I/O routine.

Record-addressable. Random Access Dataset I/O Routines
Purpose Name Entry

Set the I/O mode to be asynchronous ASYNCMS ASYNCMS
ASYNCDR

Check the status of an asynchronous I/O CHECKMS CHECKMS
operation CHECK DR

Close a random access dataset and write CLOSMS CLOSMS
the master index CLOSDR

Read records into data buffers used by FINDMS FINDMS
random access dataset routines

Open a local dataset as a random access OPENMS OPENMS
dataset OPENDR

Allow an index to be used as the current index STINDX STINDX
by creating a subindex STINDR

Set the I/O mode to be synchronous SYNCMS SYNCMS
SYNCDR

Wait for completion of an asynchronous I/O WAITMS WAITMS
operation WAITDR

Write data from user memory to a random WRITMS WRrmS
access dataset and update the index WRITDR

WORD-ADDRESSABLE, RANDOM ACCESS DATASET I/O ROUTINES - A word-addressable, random
access dataset consists of an adjustable number of contiguous words. You can access any word or con
tiguous sequence of words from a word-addressable, mndom access dataset by using the associated rou
tines. These datasets and their I/O routines are similar to the record-addressable. random access datasets
and their routines. The Fortran-callable. word-addressable random access I/O routines are:

COS and UNICOS: WOPEN, WCLOSE, PUTWA, APUTWA, GETWA, and SEEK.
COS only: WOPENU, WCLOSEU, PUTWAU, GETWAU, and WCHECK.

WOPEN opens a dataset and specifies it as a word-addressable. random access dataset that can be
accessed or changed with the word-addressable routines. The WOPEN call is optional. If a call to
GETW A or PUTW A is executed first, the dataset is opened for you with the default number of blocks
(16). and istats is turned on.

The following table contains the purpose, name. and entry of each word-addressable, random access
dataset I/O routine.

12-5 D

INTRO(3X) INTRO(3X)

Word-addressable. Random Access Dataset I/O Routines
Purpose Name Entry

Synchronously read words from the GETWA
dataset into user memory

GETWA
Asynchronously read data into SEEK
dataset buffers
Asynchronously read words from GETWAU GETWAU
disk. directly to user
Synchronously write words from PUTWA
memory to the dataset

PUTWA
Asynchronously write words from APUTWA
memory to the dataset
Asynchronously write words from PUTWAU PUTWAU
memory to the unbuffered dataset
Checks word-addressable file status WCHECK WCHECK
Finalize additions and changes WCLOSE WCLOSE
and close the dataset
Finalize additions and changes WCLOSEU WCLOSEU
and close the unbuffered dataset
Open a dataset and specify it as WOPEN WOPEN
word-addressable. random access
Open an unbuffered dataset and specify WOPENU WOPENU
it as word-addressable, random access

ASYNCHRONOUS QUEUED I/O ROUTINES

SR-Ol13

Asynchronous queued I/O (AQIO) routines initiate a transfer of data and allow the subsequent execution
sequence to proceed concurrently with the acrual transfer.

These routines allow programmers to create a queue of I/O requests to a single-user dataset. Program
mers can issue several I/O requests to a given dataset without having to manage the busy status of the
dataset. By allowing the queue to build up before issuing an I/O request, AQIO routines prevent the
normal job abort that occurs when an I/O request is issued while another I/O request is still active. In
addition, AQIO routines allow increased perfonnance over other 110 methods.

The following table contains the purpose, name, and entry of each asynchronous queued I/O routine.

12-6 D

INTRO(3X) INTRO(3X}

Asynchronous Queued I/O Routines

Puroose Name Entrv
Close an asynchronous queued I/O AQCLOSE AQCLOSE
dataset or file

Open a dataset or file for AQOPEN AQOPEN
asynchronous queued VO
Open a dataset or file for AQOPENDV AQOPENDV
asynchronous queued I/O, allowing
user to specify dataset size
and location

Queue a simple asynchronous I/O AQREAD
read request

Queue a compound asynchronous I/O AQREADC
read request

AQREAD
Queue a compound read request AQREADCI
with the ignore bit set

Queue a simple read request with the ignore AQREADI
bit set

Prevent a segment of I/O and part of AQRECALL
the program from executing concurrently
(used with AQRIR)

AQRECALL
Designate point in I/O at which AQRIR
concurrent processing can resume
(used with AQRECALL)

Check the status of asynchronous queued AQSTAT AQSTAT
I/O requests
Queue a stop request in the asyncronous AQSTOP AQSTOP
queued I/O buffer
Queue a synchronization request in the AQSYNC AQSYNC
asynchronous queued I/O buffer

Wait for completion of asynchronous AQWAlT AQWAIT
queued I/O requests

Queue a simple asynchronous I/O AQWRITE
write request
Queue a compound asynchronous 1/0 AQWRITEC
write request

AQWRITE
Queue a compound write request with AQWRITEC
bit set
Queue a write request with the ignore AQWRITEI
bit set

SR-Ol13 D

INTRO(3X) INTRO(3X)

OUTPUT SUPPRESSION ROUTINES

Output suppression routines are special-purpose routines designed to output blank values in Fortran pro
grams.

FSUP and FSUPC tum suppression on and off for the following Fortran edit descriptors: F-type, G-type.
and E-type.

ISUP and ISUPC tum suppression on and off for the Fortran edit descriptor I-type.

All of these routines are described under the FSUP entry.

BOV/EOV FORTRAN-CALLABLE ROUTINES

SR-0113

Fortran-callable routines are designed to perform special functions on a tape dataset, such as
beginning-of-volume (BOV) and end-of-volume (BOV) processing.

The following tables contain the purpose. name, and entry of each BOV/EOV Fortran-callable routine.
Cray Research highly recommends using the first set of routines, STARTSP, SETSP, CLOSEV, and
ENDSP.

BOV /EOV Fortran-callable Routines (New Routines)
Purpose Name Entry

Switch tape volumes CI,OSF.V CLOSEV

End special EOV/BOV processing ENDSP ENDSP
Request notification at end of tape volume SETSP SETSP
Begin tape BOV/EOV processing STARTSP STARTSP

BOV/EOV Fortran-callable Routines (Obsolete Routines)

Puroose Name Entrv

Check tape I/O status CHECKTP CHECKTP
Continue nonna! I/O operation CONTPIO CONTPIO
Begin special processing at PROCBOV PROCBOV
BOV

Begin special processing at PROCEOV PROCEOV
EOV
Switch tape volume SWITCHV SWITCHV
InitiaJize/tenninate special SVOLPRC SVOLPRC
BOV /BOV processing

12-8 D

ACPTBAD (310) ACPTBAD (310)

NAME

ACPTBAD - Makes bad data available

SYNOPSIS

CALL ACPTBAD(dn,uda,wrdcnt,termcnd,ubcnt)

DESCRIPTION

dn Dataset name or unit number

uda User data area to receive the bad data

wrdcnt On exit, number of words transferred

termcnd On exit, address of termination condition
=0 Positioned at end-of-block
=1 Positioned at end-of-file
=2 Positioned at end-of-data
<0 Not positioned at end-of-block

ubent On exit, address of unused bit count. Only defined if termend is 0, and wrdcnt is nonzero.

ACPTBAD makes bad data available to you by transferring it to the user-specified buffer.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

EXAMPLE

C

SR-Ol13

PROORAM EXAMPLEl
IMPLICIT INTEGER(A-Z)
REAL UNIT, UNITSTAT
PARAMETER(NBYTES=400000,NDIM=NBYTES/S,DN=99)
DIMENSION BUFFER(l:NDIM)
DIMENSION UDA(1:512)

2000 CONTINUE

NWORDS = NDIM
CALL READ(DN,BUFFER,NWORDS,STATUS)

UNITST AT = UNIT(DN)

IF(STATUS.EQ.4 .OR. UNlTSTAT.GT.O.O) THEN IParity error
3()Q() CONTINUE

CALL ACPI1JAD(DN,UDA,WC,TERMCND,UBCNf)

C---->Build up user record:
IX= 0
DO 3500 I=(NWORDS + 1). (NWORDS + We), 1

lX=IX+l
BUFFER(l) = UDA(IX)

3500 CONTINUE

12-9 D

ACPTBAD(3IO)

IF(fERMCND.LT.O) THEN
GO TO 3000

ENDIF
ENDIF

STOP 'COMPLETE'
END

SEE ALSO

SKIPBAD

SR-0113

ACPTBAD (310)

12-10 D

AQCLOSE(3IO) AQCLOSE (310)

NAME

AQCLOSE - Closes an asynchronous queued I/O dataset or file

SYNOPSIS

CALL AQCLOSE(aqp,status)

DESCRIPTION

aqp Type INrEGER array. The name of the array in the user's program that contains the asyn
chronous queued I/O parameter block. This must be the same anay specified in the
AQOPEN request.

status Type INTEGER variable. Status code; status returns any errors or status information to the
user. On output from AQCLOSE, status has one of the following values:

>0 Information only
=0 No error detected
<0 Error detected

Status Codes

0 No errors detected

+1 The asynchronous queued I/O parameter block is full

+2 No I/O is active on the asynchronous queued I/O dataset or file

+3 Asynchronous queued I/O request is stuck
+4 The asynchronous request is queued for I/O

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

SR-01l3

AQOPEN, AQREAD, AQREADC, AQSTAT, AQWAIT, AQWRITE, AQWRITEC
The AQIO User's Guide. publication SN-0247

12-11 D

AQOPEN(310} AQOPEN (310)

NAME

AQOPEN - Opens a dataset or file for asynchronous queued I/O

SYNOPSIS

CALL AQOPEN(aqp.aqpsize.dn,status)

DESCRIPTION

aqp

aqpsize

dn

status

Type INTEGER array. The name of the array in the user's program that will contain the
asynchronous queued I/O.

Type INTEGER variable, expression, or constant. The length of the asynchronous queued
I/O parameter block. Each queued I/O entry in the parameter block is 8 words long. The
array aqp must contain at least 1 entry plus 32 words for dataset definitions. Therefore,
aqpsize should be 32 + 8n; n is the number of user-specified asynchronous queued J)O

entries in the parameter block, and n ~ 3.

Type INTEGER variable. expression, or constant. The name of the dataset as a Hollerith
constant or the unit number of the dataset

Type INTEGER variable. Status code status returns any errors or status information to the
user. On output from AQOPEN. status has one of the following values:

>0 Information only
=0 No errors detected
<0 Error detected

Status Codes

0 No errors detected
+1 The asynchronous queued I/O parameter block is full

+2 No I/O is active on the asynchronous queued I/O dataset or file

+3 The asynchronous queued 1/0 request is stuck

+4 The asynchronous request is queued for I/O
-1 Illegal aqpsize on the AQOPEN request Minimum size

is equal to 32 + 8n, where n ~ 3.

Asynchronous queued I/O provides a method of random access to or from mass storage into buffers in
user memory.

IMPLEMENTATION

NOTES

This routine is available to users of both the COS and UNICOS operating systems.

A file opened using AQOPEN should only be closed by AQCLOSE or by job step advance. If you close
the file in some other way, the subsequent behavior of the program is unpredictable. Among Ihese
other ways are explicit methods of closing the file (for example, CLOS and CALL RELEASE) and
implicit methods (such as CALL SAVE).

SEE ALSO

SR-0113

AQREAD, AQREADC, AQWluTE, AQWRITEC, AQCLOSE, AQWAIT, AQSTAT
The AQIO User's Guide, SN-0247

12-12 D

AQOPENDV (3COS) AQOPENDV (lCOS)

NAME

AQOPENDV - Opens a dataset or file for asynchronous queued JlO, allowing user to specify dataset size
and physical location

SYNOPSIS

CALL AQOPENDV(aqp,aqpsize.dn.pdv.plength.slatUS)

DESCRIPTION

aqp

aqpsize

dn

pdv

plength

status

Type INTEGER array. The name of the array in the user's program that will contain the
asynchronous queued Jlo.

Type INTEGER variable, expression, or constant. The length of the asynchronous queued
I/O parameter block. Each queued I/O entry in the parameter block is 8 words long. The
array aqp must contain at least 1 entry plus 32 words for dataset definitions. Therefore,
aqpsize should be 32 + 8n; n is the number of user-specified asynchronous queued I/O
entries in the parameter block, and n :2: 3.

Type INTEGER variable, expression. or constant The name of the dataset as a Hollerith
constant or the unit number of the dataset.

Name of a specific device on which the asynchronous queued I/O dataset is to reside. such
as SSD-O-2O.

Minimum desired length of the asynchronous queued 110 dataset (in 512-word blocks), to
be set upon initialization. If plength = O. this routine will operate the same as AQOPEN.

Type INTEGER variable. Status code status returns any errors or status infonnation to the
user. On output from AQOPENDV, status has one of the following values:

>0 Information only
=0 No errors detected
<0 Error detected

Status Codes
0 No errors detected

+1 The asynchronous queued I/O parameter block is full

+2 No I/O is active on the asynchronous queued I/O dataset or file

+3 The asynchronous queued I/O request is stuck

+4 The asynchronous request is queued for 1/0
-1 IIJegal aqpsize on the AQOPENDV request. Minimum size

is equal 10 32 + 8n. where n ~ 3.

Asynchronous queued I/O provides a method of random access to or from mass storage into buffers in
user memory.

IMPLEMENTATION

NOTES

SR-Ol13

This routine is available only to users of the cos operating system.

A file opened using AQOPENDV should only be closed by AQCLOSE or by job step advance. If you
close the file in some other way I the subsequent behavior of the program is unpredictable. Among
these other ways are explicit methods of closing the file (for example. CLOS and CALL RELEASE) and
implicit methods (such as CALL SAVE).

12-13 D

AQOPENDV (3COS) AQOPENDV (3COS)

SEE ALSO

SR-01l3

AQOPEN, AQREAD, AQREADC, AQWRITE, AQWRITEC, AQCLOSE, AQWAIT, AQSTAT
The AQIO User's Guide. SN-0247

12-14 D

AQREAD(3IO) AQI.EAD (310)

NAME

AQREAD. AQREADC. AQREADI, AQREADCI - Queues a simple or compound asynchronous I/O read
request

SYNOPSIS

CALL AQREAD(aqp,cpuodd,blknum,bloclcs,reqid.queue,stalus)

CALL AQREADC(aqp,cpuadd.mslride.blknum.blocks,dstride,incs.reqid.queue,status)

CALL AQREADI(aqp.cpuadd,blkn.um.blocks,reqid,queue,status)

CALL AQREADCI(aqp,cpuadd,mstride ,blkn.um,bloclcs,dstride,incs,reqid,queue ,status)

DESCRIPJ'ION

aqp

cpuadd

mstride

blknum

blocks

dslride

incs

reqid

queue

status

SR-0113

Type INTEGER array. The name of the amly in the user's program dlat contains the asyn
chronous queued I/O parcuneter block. Must be the same amly as specified in the AQOPEN
requesL

Type determined by user. Starting memory address; the location where the first word of
data is placed.

Type INTEGER variable, expression, or constant. Data buffer stride; the number of memory
words to skip between the base addresses of consecutive transfers. The stride value may be
positive (to skip forward), negative (to skip backward), or O. This parameter is valid for
compound read requests only.

Type INTEGER variable, expression. or constant. Starting block number. The block
number of the first block to be read on this request.

Type INTEGER variable, expression, or constanL The nurnbel' of Sl2-word blocks to be
read.

Type INTEGER variable, expression. or constant. Disk stride; the number of disk blocks to
skip between the base addresses of consecutive transfers. The stride value may be positive
(to skip forward), negative (to skip backward), or O. This parameter is valid for compound
requests only.

Type INTEGER variable, expression. or constanL The number of simple requests minus 1
that comprise a compound requesL Zero (0) implies a simple request. This parameter is
valid for compound requests only.

Type INTEGER variable, expression. or constanL A user-supplied value for identifying a
particular request.

Type INTEGER variable, expression, or constant. Queue 8ag. If 0, I/O is initiated provided
that I/O on the dataset or file is not already active. If the queue flag is set to nonzero, the
request is added 10 the queue but no attempt is made to start I/O.
Type INTEGER variable. Status code status returns any errors to the user. On output from
these routines, status has one of the following values:

>0 Information only
=0 No error detected
<0 Error detected

12-15 D

AQREAD(3IO) AQREAD(3IO)

Status Codes

0 No errors detected

+1 The asynchronous queued I/O parameter block is full

+2 No IK> is active on the asynchronous queued I/O dataset or file

+3 The asynchronous ~ueued I/O request is stuck

+4 The asynchronous request is queued for I/O

AQREAD, AQREADC, AQREADI. and AQREADCI transfer data between the data buffer and the device
on which the dataset or file resides. Requests may be simple (AQREAD and AQREADI) or compound
(AQREADC and AQREADCI). A simple request is one in which data from consecutive sectors on the
disk is read into one buffer. A compound request is one in which a number of simple requests are
separated by a constant number of sectors on disk, or a constant number of memory words for buffers,
or both.

AQREADI and AQREADCI operate in the same fashion as AQREAD and AQREADC, respectively,
except the ignore bit is set. The ignore bit tells the operating system not to change from write mode to
process this read request. As an example, setting the ignore bit might be helpful on a system with two
high-speed SSD channels. A series of AQWRITE calls followed by an AQREADI call would not force a
wait by the operating system as would a nonnal read.

IMPLEMENTATION

AQREAD and AQREADC are available to users of both the cos and UNICOS operating systems.
AQREADI and AQREADCI are available only to users of the COS operating system.

SEE ALSO

SR-OU3

AQWRITE, AQWRITEC, AQCLOSE, AQWAIT, AQSTAT
The AQIO User's Guide, SN-0247

12-16 D

AQRECALL(3IO) AQRECALL(3IO)

NAME

AQRECALL, AQRIR - Delays program execution during a queued I/O sequence

SYNOPSIS

CALL AQRECALL(aqp,status)

CALL AQRIR(aqp,reqid.queue,status)

DESCRIPTION

aqp Type INTEGER array. The name of the array in the user's program that will contain the
asynchronous queued I/O.

reqid Type INTEGER variable, expression, or constant. A user-supplied value for identifying a
particular request.

queue Type INTEGER variable, expression. or constant. Queue flag. If 0, I/O is initiated provided
that 110 on the dataset is not already active. If the queue flag is set to nonzero, the request
is added to the queue but no attempt is made to start I/O.

status Type INTEGER variable. Status code status returns any errors or status information to the
user. On output from AQOPEN, status has one of the following values:

>0 Infonnation only
=0 No errors detected
<0 Error detected

Status Codes

0 No errors detected

+1 The asynchronous queued I/O parameter block is fun

+3 The asynchronous queued I/O request is stuck

AQRECALL and AQRIR work together to let you suspend the execution of your program during part of
an asynchronous queued I/O process. AQRIR marks the point in the I/O process up to which program
execution is delayed, while AQRECALL marks the point in the program beyond which execution should
not proceed until the specified I/O is complete.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

12-17 D

AQRECALL(310) AQRECALL(31O}

EXAMPLE

J = 1
DO I = 1,10

JF(I.EQ 10) J = 0
CALL AQREAD(AQP,A,IBLOCK,10,I,],ISTAT)
IBLOCK = IBLOCK + 10

1 CONTINUE
CALL AQRIR(AQP,O O,ISTATl)
1=1
DO 2 1=11,30

JF(I.EQ.30) J = 0
CALL AQREAD(AQP,A,IBLOCK,lO.IJ.IST A T2)
mLOCK = IBLOCK + 10

2 CONTINUE
CALL AQRECALL(AQP .ISTAT3)

In the above example, 10 asynchronous reads are queued up, followed by an AQRIR. Any code beyond
the AQRECALL call does not execute until the AQRIR request is encountered in the queue. When it is
encountered, execution beyond AQRECALL continues. The following illustrates the queue containing
the AQREAD requests and the AQRIR request.

I

2

10

11

AQREAD

AQREAD

.

AQREAD

AQRIR

SEE ALSO

SR-01l3

AQREAD, AQREADC, AQWRITE, AQWRITEC, AQCLOSE, AQWAlT, AQSTAT
The AQIO User's Guide, SN-0247

12-18 D

AQSTAT(3IO) AQSTAT(3IO)

NAME

AQST AT - Checks the status of asynchronous queued I/O requests

SYNOPSIS

CALL AQSTAT(aqp,reply,reqid,status)

DESCRIPTION

aqp Type INTEGER array. The name of the array in the user's program that contains the asyn
chronous queued I/O parameter block. This must be the same array specified in the
AQOPEN request.

reply Type INTEGER variable

reqid Type INTEGER variable, expression, or conslant If reqid is O. AQST AT returns the request
In of the next queued I/O request to be done. If Teqid is nonzero, status information about
the specified request ID will be returned.

status Type INTEGER variable. Status code, status retW'DS any errors or status infonnation to the
user. On output from AQST AT:

>0 Information only
=<> No errors detected
<0 Error detected

Status Codes
0 No errors detected

+1 The asynchronous queued I/O parameter block is full
+2 No I/O is active on the asynchronous queued I/O dataset or file
+3 The asynchronous queued I/O request is stuck
+4 The asynchronous request is queued for I/O

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

AQOPEN, AQREAD, AQREADC, AQWRITE, AQWRITEC, AQCLOSE, AQW Art
The AQIO User's Guide, SN-0247

D

AQSTOP (310) AQSTOP(3IO)

NAME

AQSTOP - Stops the processing of asynchronous queued I/O requests

SYNOPSIS

CALL AQSTOP(aqp,reqid,queue,status)

DESCRIPTION

aqp

reqid

queue

status

Type INTEGER array. The name of the array in the user's program that will contain the
asynchronous queued I/O.

Type INTEGER variable. expression. or constant. A user-supplied value for identifying a
particular request.

Type INTEGER variable. expression, or constant. Queue flag. If 0, I/O is initiated provided
that I/O on the dataset is not already active. If the queue flag is set to nonzero, the request
is added to the queue but no attempt is made to start I/O.

Type INTEGER variable. Status code status returns any errors or status information to the
user. On output from AQSTOP. status has one of the following values:

>0 Information only
=0 No errors detected
<0 Error detected

Status Codes

0 No errors detected

+1 The asynchronous queued I/O parameter block is full

+2 No 1/0 is active on the asynchronous queued I/O dataset or file

+3 The asynchronous queued I/O request is stuck
-+4 The asynchronous request is queued for I/O

The AQSTOP routine SlopS the processing of a list of asynchronous I/O requests when it is encountered
in the queue.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SR-0113

AQREAD, AQWRITE, AQCLOSE, AQWAIT, AQSTAT, AQRECALL, AQSYNC
The AQIO User's Guide, SN-0247

12-20 D

AQW AIT (310) AQW AIT (310)

NAME

AQW AlT - Waits on a completion of asynchronous queued I/O requests

SYNOPSIS

CALL AQW AIT(aqp.status)

DESCRIPTION

aqp Type INTEGER array. The name of the array in the user's program that contains the asyn
chronous queued I/O parameter block. This must be the same array specified in the
AQOPEN request.

status Type INTEGER variable. Status code status returns any errors or status information to the
user. On output from AQW AIT status has one of the following values:

>0 Information only
=0 No errors detected
<0 Error detected

Status Codes

0 No errors detected

+1 The asynchronous queued I/O J,,\~eter block is full

+2 No I/O is active on the asynchronous queued I/O dataset or file

+3 The asynchronous queued I/O request is stuck

+4 The asynchronous request is queued for I/O

AQW AIT leaves the job suspended until the entire request list is exhausted.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SR-01l3

AQOPEN, AQREAD, AQREADC, AQWRITE, AQWRITEC, AQCLOSE, AQSTAT
The AQIO User's Guide, SN-0247

12-21 D

AQWRITE(310) AQWlUTE (310)

NAME

AQWRITE, AQWRITEC, AQWRITEI, AQWRTECI - Queues a simple or compound asynchronous I/O
write request

SYNOPSIS

CALL AQWRITE(aqp,cpuadd,blknum,blocks,reqid.queue.status)

CALL AQWRITEC(aqp ,cpuadd.mstride.blknum.blocks.dstride .inc s ,reqid.queue .status)

CALL AQWRITEI(aqp.cpuadd,blknum,blocks.reqid.queue .status)

CALL AQWRTECI(aqp ,cpuadd.mslride.blknum.blocks,dstride .incs .reqid.queue .status)

DESCRIPTION

SR-0113

aqp

cpuadd

mstride

blknum

blocks

dstride

incs

reqid

queue

Type INTEGER array. The name of the array in the user's program that contains the asyn
chronous queued I/O parameter block. Must be the same array specified in the AQOPEN
request.

Type determined by user. Starting memory address; the location of the first word in the
user's program to be written.

Type INTEGER variable, expression, or constant. Data buffer stride; the number of memory
words to skip between rhe base addresses of consecutive transfers. The stride value may be
positive (to skip forward). negative (to skip backward), or O. This parameter is valid for
compound write requests only.

Type INTEGER variable, expression. or constant. Starting block number; the block number
of the first block to be written on this request.

Type INTEGER variable. expression, or constant. The number of 512-word blocks to be
written.

Type INTEGER variable. expression. or constant. Disk stride; the number of disk blocks to
skip between the base addresses of consecutive transfers. The stride value may be positive
(to sldp forward). negative (to skip backward), or O. This parameter is valid for compound
requests only.

Type INTEGER variable. expression, or constant. The number of simple requests minus 1
that comprise a compound request. Zero (0) implies a simple request. This parameter is
valid for compound requests only.

Type INTEGER variable. expression, or constant. A user-supplied value for identifying a
particular request.

Type INTEGER variable. expression. or constant: Queue flag. If 0, I/O is initiated provided
that I/O on the dataset or file is not already active. If the queue flag is set to nonzero. the
request is added to the queue but no attempt is made to start I/O.

status Type INTEGER variable. Status code status returns any errors to the user. On output from
these routines, status has one of the following values:

>0 Information only
=0 No error detected
<0 Error detected

12-22 D

AQWRITE (310) AQWRITE(3IO)

Stams Codes
0 No errors detected

+1 The asynchronous queued I/O parameter block is full
+2 No I/O is active on the asynchronous queued I/O dataset or file

+3 The asynchronous queued I/O request is stuck
+4 The asynchronous request is queued for I/O

AQWRITE, AQWRITEC, AQWRlfEI, and AQWRTECI transfer data between the device on which the
dataset or file resides and the data buffer. Requests may be simple (AQWRITE and AQWRITEI) or
compound (AQWRITEC and AQWRTECI). A simple request is one in which data from one buffer is
written to consecutive sectors on disk. A compound request is one in which a number of simple
requests are separated by a constant number of sectors on disk, a constant number of memory words for
buffers, or both.

AQWRITEI and AQWRTECI operate in the same fashion as AQWRITE and AQWRlTEC. respectively,
except the ignore bit is set. The ignore bit tells the operating system not to change from read mode to
process this write request. As an example. setting the ignore bit might be helpful on a system with two
high-speed SSD channels. A series of AQREAD calls followed by an AQWRITEI call would nOl force a
wait by the operating system as would a norma1 write.

IMPLEMENTATION

AQWRITE and AQWRITEC are available to users of both the cos and UNICOS opetating systems.
AQWRITEI and AQWRITECI are available only to users of the cos operating system.

SEE ALSO

SR-OI13

AQOPEN, AQREAD, AQREADC, AQCLOSE, AQWAIT, AQSTAT
The AQIO User's Guide, SN-0247

12-23 D

ASYNCMS (310) ASYNCMS (310)

NAME

ASYNCMS, ASYNCDR - Set I/O mode for random access routines to asynchronous

SYNOPSIS

CALL ASYNCMS(dn[,ieTT])

CALL ASYNCDR(dn{,ierT])

DESCRIPTION

dn The name of the dataset as a Hollerith constant or the unit number of the dataset (for exam
ple, dn=7 corresponds to dataset Ff07). Hollerith constant dataset names must be from I to
7 uppercase characters. Specify a type integer variable, expression, or constant.

ieTr Error control and code. Specify a type integer variable. If ierr is supplied on the call to
ASYNCMS/ASYNCDR, ierr returns any error codes to you. If ierr>O, no error messages are
put into the log file. Otherwise, an error code is returned, and the message is added to the
job's log file. On output from ASYNCMS/ASYNCDR:

ie"=O No errors detected
<0 Error detected. ierr contains one of the error codes

described in the following table:

Error Codes
-1 The dataset name or unit number is illegal

-15 OPENMS/OPENDR was not called on this dataset

As ASYNCMS/ASYNCDR sets the I/O mode for the random access routines to be asynchronous. I/O
operations can be initiated, and subsequent execution can proceed simultaneously with the actual data
transfer. If you use READMS, precede asynchronous reads with calls to FINDMS.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SEE ALSO

SR-0113

OPENMS, WRITMS, READMS, CLOSMS, FINDMS, CHECKMS, W AlTMS, SYNCMS, OPENDR,
WRITDR, READDR, CLOSDR, STINDR, CHECKDR, W AITDR, SYNCDR, STINDX

12-24 D

CHECKMS (310) CHECKMS(3IO)

NAME

CHECKMS, CHECKDR - Checks status of asynchronous random access I/O operation

SYNOPSIS

CALL CHECKMS(dn,istat[,ierr])

CALL CHECKDR(dn,istat[,ierr])

DESCRIPTION

dn The name of the dataset as a Hollerith constant or the unit number of the dataset. (For
example, dn=7 corresponds to dataset FT07.) Hollerith constant dataset names must be
from 1 to 7 uppercase characters. Specify a type integer variable, expression, or constant.

islat Dataset I/O Activity flag. Specify a type integer variable.

=0 No I/O activity on the specified dataset
=1 I/O activity on the specified dataset

ierr Error control and code. Specify a type integer variable. If you supply ierr on the call to
CHECKMSICHECKDR, ierr returns any error codes to you. If ierr>Ot no error messages
are put into the log file. Otherwise, an error code is returned, and the message is added to
the job's log file. On output from CHECKMS/CHECKDR:

ierr=O No error detected
ierr<O Error detected. ierr contains one of the error codes

in the following table:

ERROR CODES
-1 The dataset name or unit number is illegal

-15 OPENMS/OPENDR was not called on this dataset.

A status flag is returned to you, indicating whether the specified dataset is active.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SEE ALSO

SR-OI13

OPENMS, WRITMS, READMS, CLOSMS, FlNDMS, W AITMS, ASYNCMS, SYNCMS, OPENDR,
WRITDR, READDR. CLOSDR, STINDR, WAITDR, ASYNCDR. SYNCDR, STINDX

12-25 D

CHECKTP (3COS) CHECKTP (3COS)

NAME

CHECKTP - Checks tape I/O status

SYNOPSIS

CALL CHECKTP (dn.istat,icbuj)

DESCRIPTION

dn Type INTEGER variable, expression, or constant. The name of the dataset as a Hollerith
constant or the unit number of the dataset.

iSlat Type INTEGER variable

=-1 No status
=0 EOV
= 1 Tape off reel
= 2 Tape mark detected
= 3 Blank tape detected

iebu[Type INTEGER variable. Circular I/O buffer status.

= 0 Circular I/O buffer empty
= 1 Circular I/O buffer not empty

The user program can use CHECKTP to check on a tape dataset's condition following nonnal Fortran
I/O requests.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

SEE ALSO

CONTPIO, PROCBOV, PROCEOV, SWITCHV, SVOLPRC

SR-Ol13 12-26 D

CWSEV (3COS) CLOSEV (3COS)

NAME

CLOSEV - Begins user EOV and BOV processing

SYNOPSIS

CLOSEV(dn[.trailer])

DESCRIPTION

A user program uses the CLOSEV subroutine to switch to the next tape volume at any time. CLOSEV
writes an end-of-volume (EOV) trailer label to a mounted oulput tape before switching tapes. CLOSEV
applies only to magnetic tape datasets.

If the tape is an input tape, you have the option of writing an EOV trailer label. An output tape job is
aborted if the output buffer is not empty.

In special BOV processing. the user program must execute the CLOSEV subprogram to switch to the
next tape and perfonn special beginning-of-volume (BOV) processing. Mter the CLOSEV macro is exe
cuted, the next tape is at the beginning of the volume. The user program is pennilted BOV processing
at this time. After the BOV processing is completed. the user program must execute the ENDSP subpro
gram to Wonn the operating system that special processing is complete and to continue normal pro
cessing.

dn
trailer

Dataset name or unit number

A logical constant, variable, or expression. If a value of .TRUE. is specified, a trailer EOV
label is written.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-Ol13 12-27 D

CLOSMS (310) CLOSMS(3IO)

NAME

CLOSMS, CLOSDR - Writes master index and closes random access dataset

SYNOPSIS

CALL CLOSMS(dn[.ierr])

CALL CLOSDR(dn[,ierr])

DESCRIPTION

dn The name of the dataset as a Hollerith constant or the unit number of the dataset (For
example. do=7 corresponds to dataset Ff07.) Hollerith constant dataset names must be
from 1 to 7 uppercase characters. Specify a type integer variable. expression. or constant

ierr Error control and code. Specify a type integer variable. If you supply ierr on the call to
CLOSMS/CLOSDR. ierr returns any error codes to you. If ierr>O. no error messages are
put into the log file. Otherwise, an error code is returned, and the message is added to the
job's log file. On output from CLOSMS/CLOSDR:

ierr=O No error detected
ierr<'o Error detected. ierr contains one of the error codes

in the following table:

ERROR CODES

-1 The dataset name or unit number is illegal

-15 OPENMS/OPENDR was not called on this dataset.

CLOSMS/CLOSDR writes the master index specified in OPENMS/OPENDR from the user program area
to the random access dataset and then closes the dataset. Statistics on the activity of the random access
dataset and written to dataset $STATS (see table CLOSMS Statistics following). After the random access
dataset has been closed by CLOSMS/CLOSDR. the statistics can be written to $OUT using the following
control statements or their equivalent:

REWIND,DN=SSTATS.
COPYF,I=$STATS,O=$OUT.

CLOSMS/CLOSDR write a message to $LOG upon closing the dataset, whether or not you have
requested that error messages be written to the logfile.

CAUTION

SR-Ol13

If a job step tenninates without closing the random access dataset with CWSMS/CLOSDR, dataset
integrity is questionable.

12-28 D

CLOSMS (310) CWSMS(3IO)

CLOSMS Statistics

Message Description

TOTAL ACCESSES = Number of accesses
READS = Number of reads
WRITES = Number of writes
SEQUENTIAL READS ;:; Number of sequential reads
SEQUENTIAL WRITES = Number of sequential writes
REWRITES IN PLACE = Number of rewrites in place
WRITES TO EOI = Number of writes to EO!
TOTAL WORDS MOVED = Number of words moved
MINIMUM RECORD = Minimum record size
MAXIMUM RECORD :;::: Maximum record size
TOTAL ACCESS TIME = Total access time
AVERAGE ACCESS TIME = Average access time

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-OI13 12-29 D

CONTPIO (3COS) CONTPIO(3COS)

NAME

CONTPIO - Continues nonnal I/O operations (obsolete)

SYNOPSIS

CALL CONTPIO (dn,iprc)

DESCRIPTION

dn Type INTEGER variable, expression, or constant. The name of the dataset as a Hollerith
constant or the unit number of the dataset.

iprc Type 1NTEGER variable

= 2 Continue nonnal I/O
=-1 End~f-data (close tape dataset)

The user program can use CONTPIO to infonn COS that it intends to continue normal I/O operations.
This routine may also be used to close the tape dataset.

IMPLEMENTATION

NOTE

This routine is available only to users of the COS operating system.

Cray Research discourages the use of the CONTPIO, PROCBOV, PROCEOV, SWITCHV, and SVOL
PROC routines. Instead, use CLOSEV, SETSP, STARTSP, and ENDSP when creating special tape pro
cessing routines to handle end-of-volume conditions.

SEE ALSO

CHECKTP, PROCBOV, PROCEOV, SWITCHV, SVOLPRC

SR-01l3 12-30 D

ENDSP (3COS) ENDSP(3COS)

NAME

ENDSP - Requests notification at the end of a tape volume

SYNOPSIS

CALL ENDSP(dn)

DESCRIPTION

ENDSP indicates to COS that special end-of-volume (BOY) and beginning-of-volumen (BOY) processing
is complete.

ENDSP does not switch volumes; when the user program wants to switch to the next tape, it must exe
cute CLOSEV. Furthennore, for output datasets, data in the I/O Processor (lOP) buffer is not written to
tape until ENDSP is executed at the beginning of the next tape. When the BOY processing is done, the
user program must execute ENDSP to tenninate special processing. After executing ENDSP. the user
program can continue to process the tape dataset.

dn Dataset name or unit number

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-Ol13 12-31 D

FINDMS (310) FINDMS (310)

NAME

FINDMS - Reads record into data buffers used by random access routines

SYNOPSIS

CALL FINDMS(dn,n,irec[.ierr])

DESCRIPTION

tin The name of the dataset as a Hollerith constant or the unit number of the dataset (for exam
ple, dn-7 corresponds to dataset Ff07. Hollerith constant dataset names must be from 1 to

7 characters. Specify a type integer variable. expression. or constant

n The number of words to be read. as in READMS or WRlTMS. Type integer variable,
expression. or constant.

irec As in READMS or WRlTMS, the record name or number to be read into the data buffers.
Specify a type integer variable. expression, or constant

ie" Error control and code. Specify a type integer variable. If you supply ierr on the call to
FlNDMS, ieTr returns any error codes to you. If ierr>O, no error messages are put into the
log file. Otherwise, an error code is returned, and the message is added to the job's log
file.

On output from F1NDMS:
ierr=O No errors detected
ierr<O Error detected. ie" contains one of the error codes

in following table:

Error Codes

-6 The user-supplied named index is invalid

-8 The index number is greater than the maximum
on the dataset

-10 The named record was not found is the index array

-15 OPENMS/OPENDR was not called on this dataset

-17 The index entry is less than or equal to 0
in the users index array

-18 The user-supplied word count is less than or
equal to 0

-19 The user-supplied index number is less than or
equal to 0

F1NDMS asynchronously reads the desired record into the data buffers used by the random access
dataset routines for the specified dataset The next READMS or WRITMS call waits for the read to
complete and transfers data appropriately.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SR-Ol13

OPENMS, WRITMS, READMS, CLOSMS, CHECKMS, W AITMS, ASYNCMS, SYNCMS, OPENDR,
~DR,READDR,CLOSDR,S11NDRtCHECKDR,WArrDR,ASYNCDR,SVNCDR,STINDX

12-32 D

FSUP(3IO) FSUP(3IO)

NAME

FSUP, ISUP - Output a value in an argument as blank in Fortran format
FSUPC, ISUPC - Invalidate the function obtained by calling FSUP or ISUP. returning to ordinary I/O

SYNOPSIS

CALL FSUP(f\'alue)

CALL ISUP(ivalue)

CALL FSUPC

CALL ISUPC

DESCRIPTION

jvalue and ivalue are real and integer arguments. respectively. If FSUP is not called, F-type, G-type. and
E-type values are output as for ordinary Fortran I/O. When FSUP is called, all values equal to fvalue
are output as blanks whenever they are encountered in a formatted I/O operation. FSUP may be called
again to redefine itself.

FSUPC invalidates the call from FSUP. and all types are output as ordinary Fortran I/O.

ISUP and ISUPC are the integer equivalents of FSUP and FSUPC. !SUP acts upon I-type, Ootype, and
Z-type values.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 12-33 D

GETPOS (310) GETPOS(3IO)

NAME

GETPOS, SETPOS - Returns the current position of interchange tape or mass storage dataset or file;
returns to position retained from GETPOS request.

SYNOPSIS

CALL GETPOS(dn,len,pa[,stat])

CALL SETPOS(dn,Jen,pa[,stat])

DESCRlYfION

GETPOS returns the current position of the specified interchange tape or mass storage dataset to the
Fortran user. GETPOS does not alter the dataset's position, but it captures infonnation that you can use
later to recover the current position.

SETPOS leIS you return to the position retained from the GETPOS request. SETPOS, like GETPOS, can
be used on interchange tape or mass storage dataselS.

dn Dataset name, file name, or unit number

len Length in Cray words of the position array. This parameter determines the maximum
number of position values to return or process. For SETPOS, this parameter allows for the
addition of more information fields white enswing that existing codes continue to run. Pos
sible values for len are:

1 For disk datasets
2 For tape datasets
3 For disk or tape datasets recorded as a foreign dataset

pa Position array. On exit, pa contains the current position information. For GETPOS, you
should not modify this information. It should be retained to be passed on to SETPOS. For
SETPOS, pa contains the desired position information from the GETPOS call. The format
of the position infonnation is as follows:

• For a disk dataSet, one word that contains the current position.

• For a tape dataset, two words; word 0 contains the volume serial number of the
current tape reel, and word 1 contains the block number before which the tape unit is
positioned.

• For a foreign tape dataset. three words; word a contains the block number before
which the tape unit is positioned, word 1 contains the volume serial number of the
current tape reel, and word 2 contains the block length.

stat Return conditions. This optional parameter returns errors and warnings from the position
information routine, as follows:

=0 For GETPOS, indicates position infonnation successfully returned. For SETPOS,
indicates dataset successfully positioned.

¢() Error or warning encountered during request Error message number; see coded
$IOLIB messages in the COS Message Manual, publication SR-0039.

12-34 D

GETPOS (310) GETPOS (310)

NOTE

To set the position of a mass storage dataset, the position must be at a record boundary; that is, at the
beginning-of-dataset (BOD). following an end-of-record (EOR) or end-of-file (EOF). or before an end
of-daaaset (000). A dataset cannot be positioned beyond the current EOD.

SETPOS positions to a logical record when processing a foreign file with the library data conversion
support (FD parameter on the ACCESS and ASSIGN control statements). This same capability also
exists for mass storage files that have been assigned foreign dataset characteristics.

If foreign dataset conversion has not been requested. the physical tape bloclc and volume position is
determined.

For interchange tape dataset, SETPOS must synchronize before the dataset can be positioned. Thus. for
input datasets, the dataset must be positioned at a Cray £OR. An OOR is added to the 000 before the
synchronization if the dataset is an output dataset and the end of the tape block was not already written.

For disk files only, GETPOS and SETPOS also support calls of the following form:

pv = GETPOS(dn)
CALL SETPOS(dnJJv)

where dn is the dataset or file name or number, and pv is the position value.

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems. UNICOS does not
support the positioning of blocked files or tapes or of foreign files (those in non-Cray format).

SEE ALSO

GETTP,SETT~SYNCH

SR-Ol13 12-35 D

GETIP(3IO) GETIP(3IO)

NAME

GETTP - Receives position infonnation about an opened tape dataset or file

SYNOPSIS

CALL GETTP(dn.ien.pa.synch.istat)

DESCRIPTION

SR-0113

dn Name of the dataset. file, or unit number to get the position information. Must be an
integer variable, or an array element containing Hollerith data of not more than 7 charac
ters. This parameter should be of the form 'dn'L.

len Length in Cray words of the position array pa. GETTP uses this parameter to detemline the
maximum number of position values to retnrn. This parameter allows for the addition of
more information fields while ensuring that existing codes continue to run. Currently, 15
words are used.

po Position array. On exit. po contains the current position information. as follows:

pa(l) Volume Identifier of last block processed

pa(2) Characters 1 through 8 of permanent dataset name or file name

pa(3) Characters 9 through 16 of permanent dataset name or file name

po(4) Characters 17 through 24 of pennanent dataset name or file name

Characters 25 through 32 of pennanenl dataset name or file name

Characters 33 through 40 of permanent dataset name or file name

Characters 41 through 44 of permanent dataset name or file name

File section number

File sequence number

Block number

pa(5)

pa(6)

pa(7)

po(8)

pa(9)

pa(10)

pa(ll) Number of blocks in the circular buffer. On output. blocks not sent to I/O
Processor (lOP); on input, always O.

pa(12)

pa(13)

pa(14)

pa(l5)

Number of blocks in the rop buffer

Device ID (unit number)

Device identifier (name)

Generic device name

synch Synchronize tape dataset or file. GETTP uses this parameter to determine whether to syn
chronize the program and an opened tape dataset or file before obtaining position informa
tion. Synchronization, if requested, is done according to the current positioning direction.

=0 Do not synchronize tape dataset or file

=1 Synchronize tape dataset or file before obtaining position information

istat Return conditions. 1bis parameter returns errors and warnings from the position routine.

=0 Dataset or :file position information successfully returned

~ Error or warning encountered during request

12-36 D

GEITP(3IO) GEITP(3IO)

The GETTP routine lets you receive information about an opened tape dataset or file. The infonnation
returned by GETTP refers to the last block processed if the dataset is an input dataset. For output
datasets, the information returned by GETTP can be meaningless unless the tape dataset or file has been
synchronized.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SETTP~GETPOS~SYNCH

SR-OlI3 12-37 D

GETWA(3IO) GETWA(3IO)

NAME

GETWA, SEEK - Synchronously and asynchronously reads data from the word-addressable, random
access dataset

SYNOPSIS

CALL GETWA(dn.result,addr,count[,ierrJ)

CALL SEEK(dn.addr.count[,ierr])

DESCIUPTION

SR-01l3

dn The name of the dataset as a Hollerith constant or the unit number of the dataset (for exam
ple, dn=7 corresponds to FrO?). Hollerith constant dataset names must be from 1 to 7 char
acters. Specify a type integer variable. expression, or constant.

result Variable or array of any type. The location in the user program where the first word is
placed.

addr For GETW A, the word location of the dataset from which the first word is transferred. For
SEEK, the word address of the next read. Specify a type integer variable, expression. or
constant.

count For GETWA, the number of words from result written from the dataset into user memory.
For SEEK, the number of words of the next read. Specify a type integer variable, expres
sion, or constant.

ierr Error control and code. Specify a type integer variable. If you supply ierr on the call to
GETW A or SEEK, ierr returns any error codes to you. If ierr is not suppJied, an error
aborts the job.

On output from GETWA:
ierr=O No errors detected

<0 Error detected. ierr contains one of the error codes in
the following table:

Error Codes
~1 Illegal unit number

-2 The number of datasets has exceeded memory
or size availability

-3 User attempt to read past end-of-data (BOD)

-4 The user-supplied word address less than or
equal to 0

-5 User-requested word count greater than maximum
allowed

-6 IUega} dataset name
~7 User word count less than or ~uaI to 0

The SEEK and GETWA calls are used together. The SEEK call reads the data asynchronously; the
GETW A call waits for I/O to complete and then transfers the data. The SEEK call moves the last write
operation pages from memory to disk, loading the user-requested word addresses to the front of the I/O
buffers. You can load as much data as fits into the dataset buffers. Subsequent GETWA and PUTWA
calls that reference word addresses in the same range do not cause any disk I/O.

12-38 D

GETWA(31O) GETWA(3IO)

IMPLEMENTATION

NOTE

These routines are available 10 users of both the COS and UNICOS operating systems.

Most of the routines in the run-time libraries are reentrant or have internal locks to ensure that they are
single threaded. Some library routines, however, must be locked at the user level if they are used by
more than one task.

GETWA is not internally locked. You must lock each call to GETWA if it is called from more than one
task.

EXAMPLE

Assume you want to use a routine that reads word addresses 1,000,000 to 1,051,200. A dataset is
opened with 101 blocks of buffer space, and CALL SEEK(dn,lOOOOOO,51200,ierr) is used before cal
ling the routine. Subsequent GETWA or PUTWA calls with word addresses in the range of 1,000,000 to
1,051,200 do not trigger any disk I/O.

SEE ALSO

WOPEN, WCLOSE, PUTWA. APUTWA

SR-Ol13 12-39 D

GETWAU(3COS) GETW AU (3COS)

NAME

GETW AU - Asynchronously reads a number of words from the disk, directly to user

SYNOPSIS

CALL GETW AU(dn,result,addr,counl[,ierr])

DESCRIPTION

SR-01l3

dn Name of the dataset as a Hollerith constant, or the unit number of the dataset (for example,
dn=7 corresponds to Fr07). Hollerith constant dataset names must be from 1 to 7 charac
ters. Specify a type integer variable, expression, or constant.

result Variable or array of any type. The location in the user program at which the first word is
placed.

addr The word location of the dataset from which the first word is read Starts with 1, not O.
The word location must specify a sector boundary. That is, it must be of the form
(n*512)+1 for n=O.I,2,

count The number of words to read from disk. Must be a multiple of 512.

ie" Error control and code. Specify a type integer variable. If ierr is not supplied, an error
aborts the job.

On output from GETWAU:
ierr=O No errors detected

<0 Error detected. ierr contains one of the enor codes in
the following table:

Error Codes

-1 illegal unit number

-2 The number of files has exceeded memory
or size availability

-3 User attempt to read past end-of-data (EOD)

-4 The user-supplied word address less than or
equal to 0

-5 User-requested word count greater than maximum
allowed

-6 megal dataset name

-7 User word count less than or equal to 0

12-40 D

GETWAU(3COS) GETW AU (3COS)

NOTES

Most of the routines in the run-time libraries are reentrant or have internal locks to ensure that they are
single threaded. Some library routines, however. must be locked at the user level if they are used by
more than one task.

GETWAU is not internally locked. You must lock each call to GETWAU if it is called from more than
one task.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

WINITU, WRITEWA, READWA

SR-D1l3 12-41 D

OPENMS (310) OPENMS (310)

NAME

OPENMS, OPENDR - Opens a local dataset as a random access dataset that can be accessed or changed
by me record-addressable, random access dataset 1/0 routines

SYNOPSIS

CALL OPENMS(dn,index,iength.it[je"J)

CALL OPENDR(dn.index.length.it[je"])

DESCRIPTION

SR-0113

dn

index

length

it

The name of the dataset as a HoUerith constant or the unit number of the dataset (for exam
ple, dn ... 7 corresponds to dataset FI'07). Hollerith constant dataset names must be from 1 to
7 characters. Specify a type integer variable, expression, or constant.

The name of the array in the user program that is going to contain the master index to me
records of the dataset. Specify a type integer array. This array must be changed only by
the random access dataset I/O routines. index should be a multiple of 512 words.

The length of the index array. Specify a type integer variable, expression, or constant. The
length of index depends upon the number of records on or to be written to the dataset using
the master index and upon me type of master index. The length specification must be at
least 2"'nrec if it-:ol or 3, or nrec if il=O or 2. nrec is the number of records in or to be
written to the dataset using the master index.

Flag indicating the type of master index. Specify a type integer variable, expression, or
constant.

it=O Records synchronously referenced with a number between 1 and length

it=l Records synchronously referenced with an alphanumeric name of 8 or fewer char
acters

it=2 Records asynchronously referenced with a number between 1 and length

it=3 Records asynchronously referenced with an alphanumeric name of 8 or fewer
characters

For a named index, odd-numbered elements of the index array contain the record name, and
even-numbered elements of the index array contain the pointers to the location of the record
within the dataset. For a numbered index, a given index array element contains the pointers
to the location of the corresponding record within me dataset

ierr Error control and code. Specify a type integer variable. If you supply ie" on me call to
OPENMS/OPENDR, iur returns any error codes to you. If ierr is not supplied, an error
aborts the job.

If you set ierr>O on input to OPENMS/OPENDR, error messages are not placed in the
logfile. Otherwise, an error code is returned. and the error message is added to the job's
logfile. OPENMS/OPENDR writes an open message to the logfile whemer or not the value
of ie" selects log messages.

12-42 D

OPENMS(3IO) OPENMS(3IO)

On output from OPENMS/OPENDR:

ierr=O No errors detected

<0 Error detected. ierr contains one of the following error codes:

Error Codes

-1 The dataset name or unit number is illegal

-2 The user-supplied index length is less than
or equal to 0

-3 The number of datasets has exceeded memory
or size availability

-4 The dataset index length read from the dataset
is greater than the user-supplied index length
(nonfatal message)

-5 The user-supplied index length is greater than
the index length read from the dataset
(nonfatal message)

-11 The index word address read from the dataset is less
than or equal to 0

-12 The index length read from the dataset is less than 0

-13 The dataset has a checksum error

·14 OPENMS has already opened the dataset

·20 Dataset created by WRITDR/WRITMS

IMPLEMENTATION

NOTES

These routines are available to users of both the cos and UNICOS operating systems.

A file opened with OPENMS should only be closed by CLOSMS. If you close the file in some other
way. the future behavior of the program is unpredictable.

SEE ALSO

SR-Ol13

WRITMS, READMS, CLOSMS, FINDMS, CHECKMS, W AITMS, ASYNCMS, SYNCMS, WRITDR,
READDR, CLOSDR, STINDR, CHECKDR, WAITDR, ASYNCDR, SYNCDR, STINDX

12-43 D

PROCBOV (3COS) PROCBOV (3COS)

NAME

PROCBOV - Allows special processing at beginning-of-volume (BOV) (obsolete)

SYNOPSIS

CALL PROCBOV(dn.iprc)

DESCRIPTION

NOTE

dn Type INTEGER variable, expression, or constant. The name of the dataset as a Hollerith
constant or unit number of the dataset.

iprc Type INTEGER variable

= 1 Special processing at BOV
= 2 Continue nonnall!O
=-1 End-of-data (close tape dataset)

The user program can use PROCBOV to inform COS that it intends to reposition or perform special I/O
processing to the tape. This routine assumes that the tape dataset is positioned at BOV. PROCBOV
allows special processing at beginning-of-volume. This routine may also be used to continue normal
I/O or close the tape dataset.

Cray Research discourages the use of the CONTPIO, PROCBOV, PROCEOV, SWITCHV, and SVOL
PROC routines. Instead, use CLOSEV, SETSP, STARTSP, and ENDSP when creating special tape pro
cessing routines to handle end-of-volwne conditions.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

SEE ALSO

CHECKTP, CONTPIO, PROCEOV, SWITCHV, SVOLPRC

SR-Ol13 12-44 D

PROCEOV(3COS) PROCEOV (3COS)

NAME

PROCEOV - Begins special processing at end-of-volume (BOV) (obsolete)

SYNOPSIS

CALL PROCEOV(dn,iprc)

DESCRIPTION

NOTE

dn Type JNTEGER variable. expression, or constant. The name of the dataset as a Hollerith
constant or unit number of the dataset.

ipre Type INTEGER variable.

= 0 Special processing at EOV
= 1 Special processing at BOV
= 2 Continue normal I/O
=-1 End-of-data (close tape dataset)

The user program can use PROCEOV to inform COS that it intends to reposition or perform special I/O
processing to the tape. This routine assumes that the tape dataset is positioned at EOV. PROCEOV
allows special processing at BOV EOV. This routine may also be used to continue normal I/O or to
close the tape dataset.

Cray Research discourages the use of the CONTPIO, PROCBOV, SWITCHV, PROCEOV, and SVOL·
PROC routines. Instead, use CLOSEV, SETSP, STARTSP, and ENDSP when creating special tape pro
cessing routines to handle end-of-volmne conditions.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

CHECKTP, CONTPIO, PROCBOV, SWITCH V, SVOLPRC

SR-0113 12-45 D

PUTWA(3IO) PUTWA(3IO)

NAME

PUTW A, APUTW A - Writes to a word-addressable, random-access dataset

SYNOPSIS

CALL PUTW A(dn,source ,addr ,count[,ierr])

CALL APUTWA(dn.source,addr,count[.ierrD

DESCRIPTION

NOTE

dn

source

addr

count

Name of the dataset as a Hollerith constant or the unit number of the dataset. Specify a
type integer variable, expression, or constant.

Variable or array of any type. The location of the first word in the user program to be
written to the dataset.

The word location of the dataset that is to receive the first word from the user program.
addr=1 indicates beginning of file. Specify a type integer variable, expression, or constant.

The number of words from source to be written. Specify a type integer variable, expres
sion, or constant.

ierr Error control and code. Specify a type integer variable. If you supply ierr on the call to
PUTW A, ierr returns any error codes to you. If ierr is not supplied, an error causes the job
to abort.

On output from PUTW A/APUTWA:

ierr=O No errors detected
~1 Invalid unit number
-2 Number of datasets has exceeded memory size availability
-4 User-supplied word address less than or equal to 0
-5 User-requested word count greater than maximum allowed
-6 Invalid dataset name
-1 User word count less than or equal to 0

PUTW A synchronously writes a number of words from memory to a word-addressable, random-access
dataset. APUTW A asynchronously writes a number of words from memory to a word-addressable,
random-access dataset.

Most of the routines in the run-lime libraries are reentrant or have internal locks to ensure that they are
single threaded. Some library routines, however, must be locked at the user level if they are used by
more than one task.

PUTW A is not internally locked. You must lock each call to PUTWA if it is called from more than one
task.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SEE ALSO

WOPEN, WCLOSE~ GETWA. SEEK

SR-O 11 3 12-46 D

PlITWAU(3COS) PUTWAU(3COS)

NAME

PUTWAU - Writes to a word-addressable. random-access dataset, unbuffered

SYNOPSIS

CALL PUTW AU(dn,source.addr.count[,ierr])

DESCRIPTION

SR w Ol13

dn

source

addr

count

ierr

Name of the dataset as a Hollerith constant. or the unit number of the dataset Specify a
type integer variable. expression. or constant.

Variable or array of any type. The location of the first word in the user program to be
written to the dataset

The word location of the dataset that is to receive the first word from the user program.
addr=1 indicates beginning of file. Specify a type integer variable. expression, or constant.
The word location must specify a sector boundary. That is. it must be of the form
(n*512)+1 for n:::;:0.1.2

The number of words from source to be written. Must be a multiple of 512. Specify a type
integer variable, expression, or constant.

Error control and code. Specify a type integer variable. If you supply ierr on the call to
PUTWAU, ierr returns any error codes to you. If ierr is not supplied. an error aborts the
job.

On output from PUTW AU:
ierr=O No errors detected

<0 Error detected. ierr contains one of the error codes in
the following table:

Error Codes

-1 Invalid unit number

-2 The number of datasets has exceeded memory
or size availability

-4 The user-supplied word address less than or
equal to 0

-5 User-requested word count greater than maximum
allowed.

-6 Invalid dataset name

-7 User word count less than or equal to 0

PUTW AU asynchronously writes a number of words from memory to a word-addressable. randomw

access dataset.

12-47 D

PUTWAU(3COS) PUTW AU (3COS)

NOTES

Most of the routines in the run-time libraries are reentrant or have internal locks to ensure that they are
single threaded. Some library routines, however, must be locked at the user level if they are used by
more than one task.

PUTWAU is not internally locked. You must lock each call to PUTWAU if it is called from more than
one task.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

SHE ALSO

WOPEN, WCLOSE, GETWA, SEEK

SR-Ol13 12-48 D

READ(3IO) READ(3IO)

NAME

READ, READP - Reads words. full or partial record modes

SYNOPSIS

CALL READ(dn,word.coWlt ,status.ubc)

CALL READP(dn. word,count,status,ubc)

DESCRIPTION

dn Unit number or file name as a Hollerith in seven characters or less ('MYFILE')

word Word-receiving data area, such as a variable or array

count On entry, the number of words requested. (Do not specify a constant) On exit, the number
of words actually transferred.

status On exit. status has one of the following values:
=-1 Words remain in record
=0 EaR
= 1 Null record
= 2 End-of-file (EOP)
~ 3 End-of-data (EOD)
= 4 Hardware error

ubc Optional unused bit count Number of unused bits contained in the last word of the record.

READ and READP move words of data from disk to a user's variable or array. They are intended to
read cos blocked datasets. After reading less than a full record from disk, READ leaves the file posi
tioned at the beginning of the next record, while READP leaves the file positioned at the next item in
the record just read.

EXAMPLE

The following example reads the first two words of two consecutive records:

INTEGER REC(10)
N1..M = 2
CALL READ (DN= 15, REC, NlM)
NlM = 2
CALL READ(DN=15, REC, NUM)
STOP

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SEE ALSO

READe, READep, READlBM, WRITE, WRITEP, WRITEC, WRITECP, WRITIBM, SKIPBAD.
ACPTBAD

SR-Ol13 12·49 D

READC(3IO) READC(3IO)

NAME

READC, READCP - Reads characters, full or partial record mode

SYNOPSIS

CALL READC(dn,char,count,status)

CALL READCP(dn,char,count,slatUS)

DESCRIPTION

dn Unit number

char Character-receiving data area

count On entry. the number of characters requested. On exit, the number of characters actually
transferred.

status On exit, status has one of the following values:
=-1 Chamcters remain in record
= 0 End-of-record (EOR)
= 1 Null record
= 2 End-of-file (BOp)

Read character routines unpack characters from the 00 buffer and insert them into the user data area
beginning at the first word address. Characters are placed into the data area one character per word.
right-justified. This process continues until the count is satisfied or an EOR is encountered. If an EOR
is encountered first, the remainder of the field specified by the character count is filled with blanks.
Blank expansion is performed on the characters read from the buffer to the data area.

IMPLEMENTATION

These routines are available 10 users of both the COS and UNICOS operating systems.

SEE ALSO

READ, READP, READIBM, WRITE, WRITEP, WRITEC, WRITECP, WRITIBM, SKIPBAD, ACPTBAD

SR-0113 12-50 D

READmM (310) RBADmM (310)

NAME

READIBM - Reads two IBM 32-bit floating-point words from each Cray 64-bit word

SYNOPSIS

CALL READIBM(dn/wa,word,increment)

DESCRIPTION

dn Dataset name or unit number

fwa First word address (FW A) of the user data area

word Number of words needed

increment Increment of the mM words read

On exit, the IBM 32-bit formal is converted to the equivalent Cray 64-bit value. The Cray 64-bit words
are stored in the user data area.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SR-0113

READ, READP, READC, READCP, WRITE, WRITEP, WRITEC, WRITECP, WRITIBM, SKIPBAD,
ACPTBAD

12-51 D

READMS (310) READMS(3IO)

NAME

READMS, READDR - Reads a record from a random access dataset

SYNOPSIS

CALL READMS(dn,ubuff,n,irec(.ierr])

CALL READDR(dn,ubtiff,n,irec[jerr])

DESCRIPTION

SR-Ol13

READMS and READDR read records from a random access dataset to a contiguous memory area in the
user's program.

dn The name of the dataset as a Honerith constant or the unit number of the dataset. Hollerith
constant dataset names must be from 1 to 7 characters. Specify a type integer variable.
expression, or constant.

ubujf The location in your program where the first word of the record is placed. User~specified
type.

n The number of words to be read. Specify a type integer variable, expression, or constant.
n words are read from the random access record irec and placed contiguously in memory,
beginning at ubuff. If necessary, READDR rounds n up to the next multiple of 512 words.
If the file is in synchronous mode, the data is saved and restored after the read.

irec The record number or record name of the record to be read. Specify a type integer variable,
expression, or constant A record name is limited to a maximum of 8 characters. For a
numbered index, irec must be between 1 and the length of the index declared in the
OPENMS/OPENDR call, inclusive. For a named index, vee is any 64-bit entity you specify.

ierr Error control and code. Specify a type integer variable. If you supply ierr on the call to
READMS/READDR, ierr returns any error codes to you. If ierr>D, no error messages are
put into the logfile. Otherwise, an error code is returned, and the message is added to the
job's logfile.

On output from READMSIREADDR:
ierr=O No errors detected

<0 Error detected. ierr contains one of the error codes
in the following table:

12-52 D

READMS(3IO) READMS (310)

Error Codes

·1 The dataset name or unit number is invalid

·6 The user-supplied named index is invalid ., The named record index array is full

-8 The index number is greater than the maximum
on the dataset

·9 Rewrite record exceeds the original

-10 The named record was not found is the index array

-IS OPENMSIOPENDR was not called on this dataset

-17 The index entry is less than or equal to 0
in the users index array

-18 The user-supplied word count is less than or
equal to 0

-19 The user-supplied index number is less than or
equal to 0

WARNING

NOTE

If you are using READDR in asynchronous mode, and the record size is not a multiple of 512 words,
user data can be overwritten and noL restored. With SYNCDR, Ihe dataset can be switched to read syn
chronously, causing data to be copied out and restored after the read has completed.

Most of the routines in the run· time libraries are reentrant or have internal locks to ensure that they are
single threaded. Some library routines. however. must be locked at the user level if they are used by
more than one task.

READMS and READDR are not internally locked. You must lock each call to these routines if they are
called from more than one task.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SEE ALSO

SR-0113

OPENMS, WRITMS, CLOSMS, FINDMS, CHECKMS, W AITMS, ASYNCMS, SYNCMS, OPENDR,
WRITDR, CLOSDR, STINDR, CHECKDR, W AITDR, ASYNCDR, SYNCDR, STINDX

12-53 D

RNL(3IO) RNL(3IO)

NAME

RNLFLAG, RNLDELM, RNLSEP, RNLREP, RNLCOMM - Adds or deletes characters from the set of
characters recognized by the NAMEUsr input routine

SYNOPSIS

CALL RNLFLAG(char.mode)

CALL RNLDELM(char.mode)

CALL RNLSEP(char ,mode)

CALL RNLREP(char.mode)

CALL RNLCOMM(char.mode)

DESCRIPTION

char For RNLFLAG. an echo character. Default is 'E'.
For RNLDELM, a delimiting character. Default is'S' and '&'.
For RNLSEP, a separator character. Default is .,'.
For RNLREP, a replacement character. Default is '='.
For RNLCOMM, a trailing comment indicator. Defaults are ':' and ';'.

mode ",,0 Delete character
;t:() Add character

In each of these user-control subroutine argument lists, char is a character specified as lLx or IRx.

RNLFLAG adds or removes char from the set of characters that, if found in column 1. initiates echoing
of the input lines to SOUTo

RNLDELM adds or removes char from the set of characters that precede the NAME LIST group name
and signal end-of-input.

RNLSEP adds or removes char from the set of characters that must follow each constant to act as a
separator.

RNLREP adds or removes char from the set of characters that occur between the variable name and
the value.

RNLCOMM adds or removes char from the set of characters that initiate trailing comments on a line.

No checks are make to determine the reasonableness, usefulness. or consistency of these changes.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SEE ALSO

RNLSKIP, RNLECHO, RNLTYPE, WNL, WNLLONG, WNLLINE

SR-0113 12-54 D

RNLECHO(3IO) RNLECHO(3IO)

NAME

RNLECHO - Specifies output unit for NAMELIST error messages and echo lines

SYNOPSIS

CALL RNLECHO(unit)

DESCRIPTION

unit Output unit to which error messages and echo lines are sent If unit=O. error messages and
lines echoed because of an E in column 1 go to SOUT (default).

IMPLEMENTATION

If unit :;to, error messages and input lines are echoed to unit, regardless of any echo flags
present. If unit=6 or unit=:101, $OUT is implied.

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

RNL, RNLSKIP, RNLTYPE WNL, WNLLONG, WNLLINE

SR-0113 12-55 D

RNLSKlP(3IO) RNLSKIP(3IO)

NAME

RNLSKIP - Takes appropriate action when an undesired NAMELIST group is encounte~ed

SYNOPSIS

CALL RNLSKIP(mode)

DESCRIPTION

mode <0 Skips the record and issues a logfile message (default)
=0 Skips the record
>0 Aborts the job or goes to the optional ERR= branch

RNLSKIP detennines action if the NAMELIST group encountered is not the desired group.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

RNL, RNLSKIP, RNLECHO WNL, WNLLONG, WNLLINE

SR-Ol13 12-56 o

RNLTYPE(3IO) RNL TYPE{ 310)

NAME

RNLTYPE - Detennines action if a type mismatch occurs across the equal sign on an input record

SYNOPSIS

CALL RNL TYPE(mode)

DESCRIPTION

mode ;to Converts the constant to the type of the variable (default)
=0 Aborts the job or goes to the optional ERR= branch

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

RNL, RNLSKIP, RNLECHO WNL, WNLLONG, WNLLINE

SR-01l3 12-57 D

SETSP(3COS) SBTSP(3COS)

NAME

SETSP - Requests notification at the end of a tape volume

SYNOPSIS

CALL SETSP(dn.on)

DESCRIYI10N

SETSP infonns the operating system that you wish to perfonn extra processing when the end of a tape
volume is reached. You must call SYNCH to ensure all data is written to tape before calling SETSP.

After the user program has called SETSP, the end~f volume (BOV) condition is set when the tape is
positioned after the last data block. For an input dataset. this occurs after the system bas read the last
data block on the volume. For an output dataset. this OCCW'S when end-of-tape (BOT) status is detected.

Automatic volume switc:hing is nOl done by COS following the successful execution of SETSP with the
on parameter non-zero. If you want to switch volumes, call CLOSEV.

dn Dataset name or unit number

on Type LOGICAL variable, expression, or constant. A value of .FALSE. turns off special
processing. A value of .TRUE. turns on special processing.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

STARTS~ENDSP,CLOSEV

SR-0113 12-58 D

SEITP(3IO) SE'ITP (310)

NAME

SETTP - Positions a tape dataset or file at a tape block of the dataset or file

SYNOPSIS

CALL SETTP(dn,nbs ,nb,nvs ,nv, vi,synch,istat)

DESCRIPTION

SR-OU3

dn Name of the dataset or file or unit number to be positioned. Must be an integer variable, or
an array element containing Hollerith data of not more than 7 characters. This parameter
should be of the form 'dn'L.

nbs Block number request sign. This parameter must be set to either '+'L, '~'L, or ' 'L. See
the block number parameter (nb) for usage detail.

nb Block number or number of blocks to forward space or backspace from the current position.
The direction of the positioning is specified. by the block number request sign parameter
nbs.

+nh Specifies the number of blocks to forward space from the current position. The nbs
parameter should be set to '+'L when forward block positioning is desired. The +
sign is invalid if either nv or vi is requested..

-nb Specifies the number of blocks to backspace from the current position. The nbs
parameter should be set to ' -'L when backward block positioning is desired.. The
sign is invalid if either nv or vi is requested..

nb Specifies the absolute block: number to be positioned to. The nbs parameter should
be set to a blank (' 'L) when absolute block positioning is desired.

nvs Volume number request sign. This parameter must be set to '+'L, '-'L. or ' 'L. See the
volume number parameter (nv) for usage details.

nv Volume number or number of volumes to forward space or backspace from the current
position. This parameter should be set equal to a binary volume number or number of
volumes to forward space or backspace. This direction of the positioning is specified by
the volume number request sign parameter nvs. This parameter is invalid if vi is also
requested.

+nv Specifies the number of volumes to forward space from the current volume. The
IlVS parameter should be set to '+'L when forward volume positioning is desired.
An nb request must not be specified with + or - signs.

-nv Specifies the number of volumes to backspace from the current volume. The nvs
parameter should be set to '-'L when forward volume positioning is desired. A nb
request must not be specified with + or - signs.

nv Specifies the absolute volume number to be positioned. to. The nvs parameter
should be set to ' 'L when absolute volume positioning is desired.

vi Volume identifier to be mounted. This parameter is invalid if nv is also requested. Also,
nb must not be specified without + or - signs. The volume identifier must be left-justified.
zero-filled.

12-59 D

SETTP(3IO) SETIP(3IO)

synch Synchronize tape dataset. SETTP uses this parameter to detennine whether to synchronize
the program and an opened tape dataset before positioning. Synchronization, if requested,
is done according to the current positioning direction.

=0 Do not synchronize tape dataset or file

=1 Synchronize tape dataset or file before positioning

istat Return conditions. This parameter is used to return errors and warnings from the position
routine.

=0 Dataset or file successfully positioned

:;f() Error or warning encountered during request

SETTP allows you to position a tape dataset at a particular tape block of the dataset. Data blocks on
the tape are nwnbered so that block number 1 is the first data block on a tape. Before a tape dataset is
positioned with SETTP, the dataset must be synchronized with the SYNCH routine or with the synchron
ization parameter on the SETTP request.

IMPLEMENTATION

This routine is available to users of both the cos and UNlCOS operating systems.

SEE ALSO

GETTP,SYNCH,GETPOS

SR-Ol13 12-60 D

-- --

SKIPBAD(3IO) SKIPBAD (310)

NAME

SKIPBAD - Skips bad data

SYNOPSIS

CALL SKIPBAD(dn,bloc/cs,termcnd)

DESCRIPTION

dn Dataset name or unit number

blocks On exit, contains the number of blocks skipped.

termcnd On exit. termination condition.

<0 Not positioned at end-of-block
=0 Positioned at end-of-block
=1 If 1. positioned at end-of-file

SKIPBAD allows you to skip bad data so that no bad data is sent to the user-specified buffer.

EXAMPLE

PROGRAM EXAMPLE2
IMPLICIT INTEGER(A - Z)
REAL UNIT, UNITSTAT
PARAMETER(NBYTES=400000,NOIM=NBYTES/8,DN=99)
DIMENSION BUFFER(l:NDIM)

2000 CONTINUE
NWORDS = NDIM
CALL READ(DN,BUFFER,NWORDS,STATUS)
UNITSTAT = UNIT(DN)
IF(STATUS.EQ.4 .OR. UNITSTAT.GT.O.O) THEN IParity error

CALL SKIPBAD(DN,BLOCKS,TERCND)
IF(TERMCND.LT.O) THEN

CALL ABORT ("SKIPBAD shou 1 d po sit ion I ape at EORjE0J'
ENDIF

STOP 'COMPLETE'
END

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

ACPTBAD

SR-0113 12-61 D

STARTSP(3COS) STARTSP(3COS)

NAME

ST ARTSP - Begins user EOY and BOV processing

SYNOPSIS

CALL ST ARTSP(dn)

DESCRIPTION

ST ARTSP slans special end-of-volume (EOV) and beginning-of-volume processing. No special
processing I/O to the tape occurs until this routine (or the implementing macro) has been executed.
The user program must inform COS that it intends to reposition or perform special I/O to the tape by
executing the ST ARTSP routine.

Mter executing the ST ARTSP routine, the user program can issue READ t WRITE, and SETTP requests.
When processing is done, the user program must execute ENDSP to inform COS that special processing
is complete. STARTSP does not switch volumes; when the user program wants to switch to the next
tape, you must invoke CLOSEV. Moreover, after you execute STARTSP and before you execute
ENDSP. the CLOSEV call is the only method to perform volume switching for the user program.

Call SYNCH before executing STARTSP. For output datasets. the data in the lOP buffer is not written
to tape until the ENDSP call at the beginning of the next tape.

dn Dataset name or unit number

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 12-62 D

STINDX(3IO) STINDX (310)

NAME

STINDX, STlNDR - Allows an index to be used as the current index by creating a subindex

SYNOPSIS

CALL STINDX(dn,index,len8th.it[.ie"])

CALL STINDR(dn,index,length,itl,ierr])

DESCRIPTION

SR-OU3

dn

index

length

it

ierr

The name of the dataset as a Hollerith constant or the unit number of the file. Hollerith
constant dataset names must be from 1 to 7 characters. Specify a type integer variable,
expression, or constant

The user-supplied array used for the subindex or new current index. Specify a type integer
array. If index is a subindex. it must be a storage area that does not overlap the area used
in OPENMS/OPENDR to store the master index.

The length of the index array. Specify a type integer variable. expression. or constant The
length of index depends upon the number of records on or to be written to the dataset using
the master index and upon the type of master index. If it=l. length must be at least twice
the number of records on or to be written to the dataset using index. If it=O, length must be
at least the number of records on or to be written tD the dataset using index.

A flag to indicate the type of index. Specify a type integer variable, expression, or con
stant When it=O, the records are referenced with a number between -1 and length. Wben
it=I, the records are referenced with an alphanumeric name of 8 or fewer characters. For a
named index, odd-numbered elements of the index array contain the record name, and
even-numbered elements of the index array contain pointers 10 the location of the record
within the dataset. For a numbered index. a given index array element contains pointers to
the location of the corresponding record within the dataset The index type defined by
STINDXlSTINDR must be the same as that used by OPENMS/OPENDR.

Error control and code. Specify a type integer variable. If you supply ierr on the call to
STINDXISTINDR. ie" returns any error codes to you. If ierr'>O. no error messages are put
into the log file. Otherwise, an error code is returned, and the message is added tD the
job's log file.

On output from STINDXlSTINDR:
ierr=O No errors detected

<0 Error detected ierr contains one of the error codes described
in the following table:

Error Codes

·1 The dataset name or unit number is invalid

-15 OPENMS/OPENDR was not called on this dataset

-16 A STINDXlSTINDR

12-63 D

STlNDX(3IO) STINDX (310)

STINDXlSTINDR reduce the amount of memory needed by a dataset containing a large number of
records. It also maintains a dataset containing records logically related to each other. Records in the
dataset. rather than records in the master index area. hold secondary pointers to records in the dataset.

STINDXlSTINDR allow more than one index to manipulate the dataset. Generally, STINDX/STINDR tog
gle the index between the master index (maintained by OPENMS/OPENDR and CLOSMSICLOSDR) and
a subindex (supplied and maintained by you).

You must maintain and update subindex records stored in the dataset Records in the dataset can be
accessed and changed only by using the current index.

Mter a STINDX/STINDR call, subsequent calls to READMSIREADDR and WRITMSiWRITDR use and
alter the current index array specified in the STINDXlSTINDR calL You can save the subindex by cal
ling STINDX/STINDR with the master index array, then writing the subindex array to the dataset using
WRITMSlWRITDR. Retrieve the subindex by calling READMS/READDR on the record containing the
subindex information. Thus, STINDXlSTINDR allow logically infinite index trees into the dataset and
reduces the amount of memory needed for a random access dataset containing many records.

CAlITION

When generating a new subindex (for example, building a database), set the array or memory area used
for the subindex to O. If the subindex storage is not set to 0, unpredictable results occur.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SEE. ALSO

SR-01l3

OPENMS, WRITMS, READMS, CLOSMS, FlNDMS, CHECKMS, W AITMS, ASYNCMS, SYNCMS,
OPENDR,~TDR,READDR,CLOSDR,CRECKDR,WAffDR,ASYNCDR,SYNCDR

12-64 D

SVOLPRC (3COS) SVOLPRC (3COS)

NAME

SVOLPRC - Initializes/terminates special BOV/EOV processing (obsolete)

SYNOPSIS

CALL SVOLPRC(dnjjlag)

DESCRIPTION

NOTE

dn Type INTEGER variable, expression, or constant. The name of the dataset as a Hollerith
constant or unit number of the dataset.

iflag Type INTEGER variable

= 1 Turn BOV/EOV processing ON
=0 Turn BOV /EOV processing OFF

SVOLPRC should be called to inform the operating system that you wish to perform extra processing
when the end of a tape volume is reached. Calling SVOLPRC with the OFF flag indicates that the user
program no longer needs to be notified of EOV conditions. cos does not perform automatic volume
switching following an SVOLPRC call with the ON flag set.

Cray Research discourages the use of the CONTPIO, PROCBOV, PROCEOV, SWITCHV, and SVOL
PROC routines. Instead, use CLOSEV, SETSP, STARTSP, and ENDSP when creating special tape pro
cessing routines to handle end-of-volume conditions.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

CHECKTP, CONTPIO, PROCBOV, PROCEOV, SWITCHV

SR-0113 12-65 D

SWITCHV (3eOS) SWITCHV (3COS)

NAME

SWITCHV - Switches tape volume

SYNOPSIS

CALL SWITCHV(dn,iprc.istat.icbuj)

DESCRIPTION

NOTE

dn Type INTEGER variable, expression, or constant. The name of the dataset as a Hollerith
constant or unit number of the dataset.

iprc Type INTEGER variable. Processing option at EOV.

= 1 Continue processing at EOV
= 0 Stop at EOV and return tape status information

istal Type INTEGER variable

=-1 No status
=0 EOV
= 1 Tape off reel
= 2 Tape mark detected
= 3 Blank tape detected

icbuf Type INTEGER variable. Circular I/O buffer status.

= 0 Circular I/O buffer empty
= 1 Circular I/O buffer not empty

The user program can use SWITCHV to switch to the next tape volume and to check on a tape dataset's
condition.

Cray Research discourages the use of the CONTPIO, PROCBOV, PROCEOV. SWITCHV, and SVOL
PROC routines. Instead. use CLOSEV, SETSP, STARTSP, and ENDSP when creating special tape pro
cessing routines to handle end-of-volume conditions.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

CHECKTP, CONTPIO, PROCBOV, PROCEOV, SVOLPRC

12-66 D

SYNCH (3COS) SYNCH(3COS)

NAME

SYNCH - Synchronizes the program and an opened tape dataset

SYNOPSIS

CALL SYNCH(dn,pd,istat)

DESCRIPTION

dn Name of the dataset or unit number to be synchronized. Must be a type integer variable or an
array element containing Hollerith data of not more than 7 characters. This parameter should
be of the form 'dn'L.

pd Processing direction:

=0 Input dataset

;to Output dataset

istal Return conditions. This parameter returns errors and warnings from the position routine.

=0 Dataset successfully synchronized

:;to Error or warning encountered during request. as follows:
= 1 Execution error
=2 Datasct is not a tape dataset.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

GETTP, SETTP, GETPOs, SETPOS

SR-0113 12-67 D

SYNCMS(3IO) SYNCMS(3IO)

NAME

SYNCMS, SYNCDR - Sets I/O mode for random access routines to synchronous

SYNOPSIS

CALL SYNCMS(dni[,ierrD

CALL SYNCDR(dni[,ie"])

DESCRIPTION

dn. The name of the dataset as a Hollerith constant or the unit number of the dataset. Hollerith
constant dataset names must be from 1 to 7 characters. Specify a type integer variable,
expression, or constant

ierr Error control and code. Specify a type integer variable. If you supply ierr on the call to
SYNCMS/SYNCDR. it" returns any error codes to you. If ieT1">O, no error messages are
put into the logfile. Otherwise, an error code is returned, and the message is added to the
job's logfile.

On output from SYNCMS/SYNCDR:
ierr=O No errors detected

<.1) Error detected ierr contains one of the following error codes:

Error Codes

·1 I The dataset name or unit number is invalid

·15 [OPENMS/OPENDR was not called on this dataset

All I/O operations wait for completion.

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SEE ALSO

SR-Ol13

OPENMS, WRITMS, READMS, CLOSMS, FINDMS, CHECKMS, W AITMS, ASYNCMS, OPENDR,
WRITDR, READDR, CLOSDR, STINDR, CHECKDR, W AITDR, ASYNCDR, STINDX

12-68 D

WAlTMS(3IO) WAITMS(3IO)

NAME

W AITMS, W AlTDR - Waits for completion of an asynchronous I/O operation

SYNOPSIS

CALL W AlTMS(dn.istat[JerrD

CALL W A1TDR(dn,istat[Jerr))

DESCRIPTION

dn The name of the dataset as a Hollerith constant or the unit number of the dataset. Hollerith
constant dataset names must be from 1 to 7 characters. Specify a type integer variable.
expression, or constant.

iSlal Dataset Error flag. Specify a type integer variable.
iSlat=O No error occurred during the asynchronous VO operation

= 1 Error occurred during the asynchronous I/O operation

ie" Error control and code. Specify a type integer variable. If you supply ierr on the call to
W AITMSIW AITDR, ierr returns any error codes to you. If iernO, no error messages are
put into the logfile. Otherwise. an error code is returned. and the message is added to the
job's logfile.

On output from W AITMSIW AITDR.:
ierr=O No errors detected

<0 Error detected. ierr contains one of the error codes described.
in the following table:

Error Codes

-1 The dataset name or unit number is invalid

-15 OPENMS/OPENDR was not called on this dataset

A status flag is returned to you. indicating whether or not the 1/0 on the specified dataset was com
pleted without error.

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SEE ALSO

SR-0113

OPENMS, WRITMS, READMS, CLOSMS, FINDMS, CHECKMS, ASYNCMS, SYNCMS, OPENDR,
WRITDR, READDR, CLOSDR, STINDR, CHECKDR, ASYNCDR, SYNC DR, STINDX

12-69 D

WCHECK(3COS) WCHECK (3COS)

NAME

WCHECK - Checks word-addressable file status

SYNOPSIS

CALL WCHECK(dn,stat[,ierrJ)

DESCRIPTION

NOTES

dn Name of the dataset as a Hollerith constant. or the unit number of the dataset (for example,
dn=7 corresponds to Fr07). Hollerith constant dataset names must be from 1 to 7 charac
ters. Specify a type integer variable, expression, or constant.

stat Status code

ierr Error control and code. Specify a type integer variable. If you supply ierr on the call to
WCHECK, ierr returns any error codes to you. If ierr is not supplied, an error aborts the
job.

On output from WCHECK:

stat=O No file activity
=1 File is active when called

ierr=O No errors detected
= 5 Check on a file that is not open
=-1 InvaHd unit nwnber
=-6 Invalid dataset name

Most of the routines in the run-time libraries are reentrant or have internal locks to ensure that they are
single threaded. Some library routines, however, must be locked at the user level if they are used by
more than one task.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

PUTWAU, GETWAU

SR-0113 12-70 D

WCLOSE(3IO) WCLOSE(310)

NAME

WCLOSE - Ooses a word-addressable. I31ldom-access dataset

SYNOPSIS

CALL WCLOSE(dn[,ieTr])

DESCRIPTION

dn Name of the dataset as a Hollerith constant. or the unit nwnber of the dataset Specify a
type integer variable, expression. a- constant

ie" Error control and code. Specify a type integer variable. expression. or constant. If you
supply ieTF on the call to WCLOSE, ieTF returns any error codes to you. If;err is not sup
plied, an error aborts the job.

On output from WCLOSE:
ierr=O No errors detected

=-1 Invalid unit nwnber
=-6 Invalid dataset name

WCLOSE finalizes the additions and changes to the word-addressable. random-access dataset and closes
the dataset.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

WOPEN, PUTWA, APUTWA, GETWA, SEEK

SR-OU3 12-71 D

WCLOSEU (3COS) WCLOSEU (3CaS)

NAME

WCLOSEU - Closes a word-addressable, unbuffered random-access dataset

SYNOPSIS

CALL WCLOSEU(dn(,ie"])

DESCRIPTION

dn Name of the dataset as a Hollerith constant. or the unit number of the dataset. Specify a
type integer variable, expression, or constant.

ierr Error control and code. Specify a type integer variable, expression, or constant. If you
supply ierr on the call to WCLOSE, ierr returns any error codes to you. If ie" is not sup
plied. an error aborts the job.

On output from WCLOSE:
ierr=O No errors detected

=-1 Invalid unit nwnber
=-6 Invalid dataset name

WCLOSEU finalizes the additions and changes to the word-addressable. random-access dataset and
closes the dataset.

IMPLEMENI' ATION

This routine is available only to users of the cas operating system.

SEE ALSO

WOPEN, PUTWA, APUTWA, GETWA, SEEK

SR..ol13 12-72 D

WNL(3IO) WNL(3IO)

NAMB

WNLFLAG, WNLDELM, WNLSEP, WNLREP - Provides user control of output format

SYNOPSIS

CALL WNLFLAG(char)

CALL WNLDELM(char)

CALL WNLSEP(char)

CALL WNLREP(char)

DESCRIPTION

char For WNLFLAG, the first ASCll character of the first line. Default is blank.
For WNLDELM, a NAMELIST delimiter. Default is '&'.
PorWNLSEP, a NAMELIST separator. Default is .,'.
Por WNLREP, a NAMELIST replacement character. Default is '='.

WNLFLAG changes the character written in column 1 of the first line from blank to char. Typically.
char is used for carriage control if the output is to be listed, or for forcing echoing if the output is to
be used as input for NAMEUST reads.

WNLDELM changes the character preceding the group name and END from '&' to char.

WNLSEP changes the separator character immediately following each value from ',' to char.

WNLREP changes the replacement operator that comes between name and value from '=' to char.

In each of these subroutines, char can be any AScn character specified by lI..x or lRx. No checks are
made to determine if char is reasonable. useful, or consistent with other characters. If the default char
acters are changed, use of the output line as NAMELIST input might not be possible.

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SEE ALSO

RNL, RNLECHO, RNLSKlP, RNLTYPE WNLLINE, WNLLONG

SR-0113 12-73 D

WNLLINE(3IO} WNLUNE (310)

NAME

WNLLINE - Allows each NAMELIST variable to begin on a new line

SYNOPSIS

CALL WNLLINE(value)

DESCRIPTION

value =0 No new line
=1 New line for each variable

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

RNL, RNLECHO, RNLSKlP, RNLTYPE WNL, WNLLONG

SR-01l3 12-74 D

WNLWNG(3IO) WNLLONG (3IO)

NAME

WNLLONG - Indicates output line length

SYNOPSIS

CALL WNLLONG(length)

DESCRIPTION

length Output line length; 8<length<161 or length=-1 (-1 specifies default of 133 unless the unit is
102 or $PUNCH. in which case the default is 80).

IMPLEMENTATION

This routine is avai1able to users of both the COS and UNICOS operating systems.

SEE ALSO

RNL, RNLECHO, RNLSKlP, RNLTYPE WNL, WNLLINE

SR-Ol13 12-75 D

WOPEN(3IO) WOPEN(3IO)

NAME

WOPEN - Opens a word-addressable, random-access dataset

SYNOPSIS

CALL WOPEN(dn,blocks ,istats[,ierr D

DESCRIPTION

dn

blocks

istats

Name of the dataset as a Hollerith constant, or the unit number of the dataset (for example.
7 corresponds to FT07). Hollerith constant dataset names must be from 1 to 7 characters.
Specify a type integer variable, expression, or constant

The maximum number of 512-word blocks that the word-addressable package can use for a
buffer. Specify a type integer variable. expression. or constant.

Specify a type integer variable, expression, or constant. If istats is nonzero, statistics about
the changes and accesses to the dataset dn are collected. (See the following table for infor-
mation about the statistics that are collected.) Under COS, these statistics are written to
dataset SST ATS and can be to $OUT by using the following control statements or their
equivalents after the dataset has been closed by WCLOSE.

REWIND,DN=$STATS.

COPYD,I=SSTATS,O=$OUT.

Under UNICOS, statistics are written to stderr.

ierr Error control and code. Specify a type integer variable. If you supply ierr on the call to
WOPEN, ierr returns any error codes to you. If ierr is not supplied, an error aborts the
job.

On output from WOPEN:

ierr=O No errors detected
-1 Invalid unit number
-2 Number of datasets has exceeded memory size availability
-6 Invalid dataset name

WOPEN opens a dataset and specifies it as a word-addressable, random-access dataset that can be
accessed or changed with the word-addressable I/O routines. The WOPEN call is optional.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

WCLOSE, PUTWA, APUTWA, GETWA, SEEK

SR-OI13 12-76 D

WOPEN(3IO) WOPEN(3IO)

MESSAGES

WOPEN Statistics

Messa~e Descri..Qtion

BUFFERS USED = Number of 512-word buffers used
by this dataset

TOTAL ACCESSES = Number of accesses. This is the
swn of the GETWA and PUTWA calls.

GETS = Number of times the user called GETWA

PUTS = Number of times the user called PUTW A

FINDS = Number of times the user called SEEK

mTS= Number of times word addresses
desired were resident in memory

MISSES = Number of times no word addresses
desired were resident in memory

PARTIAL IUTS = Number of times that some but not
aU of the word addresses desired
were in memory

DISK READS = Number of ~l'lysical disk reads done
DISK WRITES = Number of times a physical disk

was written to

BUFFER FLUSHES = Number of times buffers were flushed

WORDS READ = Number of words moved from buffers
to user

WORDS WRITTEN = Number of words moved from user
to buffers

TOTAL WORDS = Sum of WORDS READ and WORDS WRITTEN

TOTAL ACCESS TIME = Real time spent in disk transfers
AVER ACCESS TIME = TOTAL ACCESS TIME divided by the sum

of DISK READS and DISK WRITES

EOD BLOCK NUMBER = Number of the last block of the dataset
DISK WORDS READ = Count of number of words moved from

disk to buffers
DISK WDS WRITTEN = Count of number of words moved from

buffers to disk
TOTAL DISK XFERS = Sum of DISK WORDS READ

and DISK WORDS WRITTEN

BUFFER BONUS % = TOTAL WORDS divided by value TOTAL
DISK XFERS mUltiplied b"'y 1 00

SR-01l3 12-77 D

WOPENU (3COS) WOPENU (3COS)

NAME

WOPENU - Opens a word-addressable, random-access dataset, unbuffered

SYNOPSIS

CALL WOPENU(dn.blocks ,istals[,ierr[.ipru]])

DESCRIPTION

dn

blocks

iSlalS

Name of the dataset as a Hollerith constant, or the unit number of the dataset (for example.
7 corresponds to Fr07). Hollerith constant dataset names must be from 1 to 7 characters.
Specify a type integer variable. expression, or constant.

Size of buffer to use for this dataset. Since this is a special unbuffered dataset, this param
eter is ignored.

Specify a type integer variable, expression. or constant If iSlats is nonzero, statistics about
the changes and accesses to the dataset dn are collected. (See the following table for infor-
mation about the statistics that are collected.) Under COS, these statistics are written to
dataset SST ATS and can be to SOUT by using the following control statements or their
equivalents after the dataset has been closed by WCLOSEU.

REWIND,DN=$STATS.

COPYDJ=SSTATS.O=SOlIT.

Under UNICOS. statistics are written to stderr.

ierr Error conttol and. code. Specify a type integer variable. If you supply ieTr on the call to
WOPENU. ierr returns any error codes 10 you. If ierr is not supplied. an error aborts the
job.

On output from WOPENU:

ierr=O No errors detected
-1 Invalid unit number
-2 Number of datasets has exceeded memory size availability
-6 Invalid dataset name

iPTU When you use WOPENU, the physical record size is always 512 words. This parameter is
ignored if supplied and is provided only for compatibility with other calls.

WOPENU opens a dataset and specifies it as a word-addressable. random-access dataset that can be
accessed or changed with the word-addressable I/O routines.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

WCLOSEU, PUTWAU, GETWAU, SEEK

SR-0113 12-78 D

WOPENU (3COS) WOPENU (3COS)

MESSAGES

WOPENU Statistics
Messa2e DescriDtion

BUFFERS USED = Number of 512-word buffers used
by this dataset

TOTAL ACCESSES = Number of accesses. This is the
swn of the GETWA and PUTWA calls.

GETS = Number of times lite user called GETW A

PUTS = Number of times lite user called PUTW A

FINDS = Number of times the user called SEEK

HITS = Number of times word addresses
desired were resident in memOIy'

MISSES = Number of times no word addresses
desired were resident in memory

PARTIAL JUTS = Number of times that some but not
all of the word addresses desired
were in mem~!y

DISK READS = Number of j)h~sical disk reads done
DISK WRITES = Number of times a physical disk

was written to
BUFFER FLUSHES = Number of times buffers were flushed
WORDS READ = Number of words moved from buffers

to user
WORDS WRITTEN = Number of words moved from user

to buffers
TOTAL WORDS = Sum of WORDS READ and WORDS WRITTEN

TOTAL ACCESS TIME = Real time spent in disk: transfers
AVER ACCESS TIME = TOTAL ACCESS TIME divided by the sum

of DISK READS and DISK WRITES

EOD BLOCK NUMBER = Number of the last block of lite dataset
DISK WORDS READ = Count of number of words moved from

disk to buffers
DISK WDS WRITTEN = Count of number of words moved from

buffers to disk
TOTAL DISK XFERS = Sum of DISK WORDS READ

and DISK WORDS WRITTEN

BUFFER BONUS % = TOTAL WORDS divided by value TOTAL
DISK XFERS multiDlied bv 100

SR-01l3 12-79 D

WRITE (310) WRITE(3IO)

NAME

WRITE, WRITEP - Writes words, full or partial record mode

SYNOPSIS

CALL WRITE(dn,word,count,ubc)

CALL WRITEP(dn.word.count.ubc)

DESClUPTION

dn Unit number or file name, seven characters or less and specified as a Hollerith

word Data area containing words

count Word count. For WRITE, a value of 0 causes an end-of record (EOR) record control word
to be written.

ubc Optional unused bit count. Number of unused bits contained in the last word of the record.

In routines where words are written, the number of words specified by the count are transmitted from
the area beginning at the first word address and are written in the I/O buffer. These routines are
intended to write to COS blocked datasets.

IMPLEMENTATION

These routines are available to users of both the COS and UNlCOS operating systems.

SEE ALSO

READ, READP, READe, READCP, READIBM, WRITEC, WRITECP, WRITIBM, SKIPBAD, ACPTBAD

SR-01l3 12-80 D

WRITEC(31O) WRITEC (310)

NAME

WRITEC, WRITECP - Writes characters, full or partial record mode

SYNOPSIS

CALL WRITEC(dn,char,counr)

CALL WRlTECP(dn,char,count)

DESCRIPTION

tin Dataset name or unit number

char Data area containing characters

count Character count

Write character routines pack characters into the I/O buffer for the dataset The count specifies the
number of characters packed, These characters originate from the user area defined at the first word
address. which is 1 character per source word (right-justified). Blank compression is perfonned on the
characters written out.

IMPLEMENTATION

These routines are available to users of both the COS and UNICQS operating systems.

SEE ALSO

READ, READP, READC, READCP, READlBM, WRITE, WRITEP, WRITIBM, SKIPBAD. ACPTBAD

SR-Ol13 12-81 D

WRITIBM(3IO)

NAME

WRmBM - Writes two mM 32-bit floating-point words from each Cray 64-bit word

SYNOPSIS

CALL WRITIBM(dnfwa.value.increment)

DESCRlYflON

dn Dataset name or unit number

fwa First word address (FW A) of the user data area

value Number of values to be written

increment Increment of the source (Cray) words written

On exit, IBM 32-bit words are written to the unit

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

WRITIBM (310)

READ, READP, READC, READCP, READmM, WRITE, WRITEP, WRITEC, WRITECP, SKIPBAD,
ACPTBAD

SR-0113 12-82 D

WRITMS (31O) WRITMS(3IO)

NAME

WRITMS, WRITDR - Writes to a random access dataset on disk

SYNOPSIS

CALL WRITMS(dn.ubl4ff.n,irec.njlag.s[,ieTT])

CALL WRITDR(dn,ubzU,n,irec,n:flag,s[,ierr])

DESCRIPTION

SR-0113

dn The name of the dataset as a Hollerith constant or the unit number of the dataset (for exam
ple, dn=7 corresponds to dataset FI'07). Hollerith constant dataset names must be from 1 to
7 characters. Specify a type integer variable, expression, or constant.

ubujf The location of the first word in the user program to be written to the record. User
specified type.

n The numbec of words to be written to the record. Specify a type integer variable, expres
sion, or constant. n contiguous words from memory, beginning at ubuff, are written to the
dataset record. Since COS unblocked-dataset I/O is in multiples of 512 words, it is recom
mended ahat n be a multiple of 5'12 words when speed is important. However, the random
access dataset I/O routines support record lengths other than multiples of 512 words.
WRITDR rounds n up to the next multiple of 512 words, if necessary.

irec The record number or record name of the record to be written. Specify a type integer vari
able. expression, or constant. A record name is limited to a maximum of 8 characters. For
a numbered index, irec must be between 1 and the length of the index declared in the
OPENMS/OPENDR call. For a named index, irec is any 64-bit entity you specify.

rrjlag A flag indicating record rewrite control. Specify a type integer variable. expression, or con
stant. rrjlag can be one of the following codes:

o Write the record at EOD.

1 If the record aJready exists, and the new record length is less than or equal to the
old record length, rewrite the record over the old record. If the new record length
is greater than the old, abort the job step or return the error code in ierr. H the
record does not exist, the job aborts or the error code is retllrned in ieTr.

-1 If the record exists, and its new length does not exceed the old length, write the
record over the old record. Otherwise, write the record at EOD.

s A sub-index flag. Specify a type integer variable, expression, or constant. (!be implemen
tation of this parameter has been deferred.)

ie" Error control and code. Specify a type integer variable. If you supply ierT on the call to
WRITMSIWRITDR, ie" returns any error codes 10 you. If ierr>O. no error messages are
put into the log file. Otherwise, an error code is returned, and the message is added to the
job's log file.

On output from WRlTMSIWRITDR:
ierr=O No errors detected

<0 Error detected. ie" contains one of the error codes described
in the following table:

12-83 D

WRITMS(3IO) WRITMS (3[0)

Error Codes

·1 The dataset name or unit number is invalid
-6 The user-supplied named index is invalid

-7 The named record index array is full
-8 The index number is greater than the maximum

on the dataset

-9 Rewrite record exceeds the original

·15 OPENMS/OPENDR was not called on this dataset

-17 The index entry is less than or equal to 0
in the users index array

·18 The user-supplied word count is less than or
~uallO 0

-19 The user-supplied index number is less than or
equal 10 0

WRITMS and WRlTDR write data from user memory to a record in a random access dataset on disk
and updates the cOlTent index.

IMPLEMENTATION

NOTE

These routines are available to users of both the COS and UNICOS operating systems.

Most of the routines in the run-time libraries are reentrant or have internal locks to ensure that they are
single threaded. Some library routines, however, must be locked at the user level if they are used by
more than one task.

WRITMS and WRlTDR are not internally locked. You must lock each call to these routines if they are
called from more than one task.

EXAMPLES

SR-0113

The following examples show some of the features and uses of random access dataset routines.

Example 1 - In the program SORT, a sequence of records is read in and then printed out as a sorted
sequence of records.

1 PROGRAM SORT
2 INTEGER IARRAY (512)
3 INTEGER INDEX (512), KEYS (100)
4 CALL OPENMS ('SORT',INDEX,25S,l)
5 N=SO
C READ IN RANDOM ACCESS RECORDS FROM UNIT "SORT"

6 DO 21 I=l,N
7 READ(S,l000) (IARRAY(J),J=1,512)
8 NAME=IARRAY(I)
9 KEYS(I)=IARRAY(I)

10 CALL WRITMS (,SORT',IARRAY,512,NAME,O)
21 CONTINUE

C SORT KEYS ALPHABETICALLY IN ASCENDING ORDER USING
C EXCHANGE SORT

12 DO 23 I=l,N-l
13 MIN=I

12-84 D

WRITMS(3IO)

14 1=1+1
15 DO 22 K=J,N
16 IF (KEYS(K)LT.KEYS(MIN) MIN""K

22 CONTINUE
18 ffi=KEYS(1)
19 KEYS(I)=KEYS(MIN)
20 KEYS(MIN)=IB

23 CONTINUE
C WRITE our RANDOM ACCESS RECORDS IN ASCENDING
C ALPHABETICAL ORDER

22 00 24 I=I,N
23 NAME=KEYS(I)
24 CALL READMS (,SORT',IARRAY.512.NAME)
25 WRlTE(6.5120) (IARRA YO»)=1,512)

24 CONTINUE
1000 FORMAT (rr •••••• ")
5120 FORMAT (lX," ")

29 CALL CWSMS ('SORT')
30 STOP
31 END

WRITMS (3ID)

In this example, the random access dataset is initialized as shown in line 4. Lines 6 through 11 show
that a record is read from unit 5 into array IARRAY and then written as a record to the random access
dataset SORT. The first word of each record is assumed to conlain an 8-character name to be used as
the name of the record.

Lines 12 through 21 show that the names of the records are sorted in the array KEYS. Lines 22
through 26 show that the records are read in and then printed out in alphabetical order.

Example 1 - The programs INITIAL and UPDATE show how the random access dataset might be
updated without the usual search and positioning of a sequential access dataset.

Program INITIAL:

I PROORAM INITIAL
2 INTEGER IARRA Y(512)
3 INTEGER INDEX (512)
C
C OPEN RANDOM ACCESS DATASET
C THIS INITIALIZES THE RECORD KEY "INDEX"
C
4 CALLOPENMS ('MASTER',INDEX,lOl.l)
C
C READ IN RECORDS FROM UNIT 6 AND
C WRITE THEM TO THE DATASET "MASTER"
C
5 DO 101=1,50
6 READ(6,600)(IARRAY(J»)=I,512)
7 NAME=IARRAY(l)
8 CALL WRITMS (,MAS'IER' ,IARRA Y,512,NAME.0.O)

10 CONTINUE

12-85 D

WRITMS (310) WRITMS (310)

SR-0113

C
C CLOSE "MAS1ER" AND SAVE RECORDS FOR UPDATING
C

10 CALLCLOSMS('MASTER')
600 FORMAT (IX,' ')

12 STOP
13 END

Program UPDATE:

1 PROGRAM UPDA 1E
2 INTEGER INEWRCD(512)
3 INTEGER INDX (512)
C
C OPEN RANDOM ACCESS DATASET CREATED IN THE
C PREVIOUS PROORAM "INITIAL"
C
C INDX WILL BE WRIITEN OVER THE OLD RECORD KEY
C
4 CALLOPENMS (,MASTER',INDX.101,l)
C
C READ IN NUMBER OF RECORDS TO BE UPDATED
C
5 READ (6,610) N
C
C READ IN NEW RECORDS FROM UNIT 6 AND
C WRITE THEM IN PLACE OF THE OLD RECORD THAT HAS
CTHATNAME
C
6 00 lOI=l,N
7 READ(6.600) (INEWRCD(J).J=1.512)
8 NAME=INEWRCD(I)
9 CALL WRITMS ('MASTER' ,INEWRCD,512,NAME,I,O)
10 CONTINUE
C
C CLOSE "MASTER" AND SA VB NEWL Y UPDATED RECORDS
C FOR FURTHER UPDATING
C

11 CALL CLOSMS ("MASTER")
12 600 FORMAT (IX," If)
13 610 FORMAT (lX." ")
14 STOP
15 END

In the preceding example. program INITIAL creates a random access dataset on unit MASTER; program
UPDATE then replaces particular records of this dataset without changing the remainder of the records.

12-86 D

WRlTMS(3IO) WRITMS(3IO)

SR-0113

Line 10 shows that the caIl to CLOSMS at the end of INITIAL caused the contents of INDEX to be written to
the random access dataset

Line 4 shows that the call to OPENMS at the beginning of UPD ATE bas caused the rec(B'd key of the random
access dataset to be written to INDX. The random access dataset and INDX are now the same as the random
access dataset and INDEX at the end of INITIAL.

Lines 6 through 10 show that certain records are replaced.

Example 3 - The program SNDYMS is an example of the use of the secondary index capability, using
STINDX. In this example, dummy information is written to the random access dataset.

PROORAMSNDYMS
IMPLICIT INTEGER (A-Y)
DIMENSIONPINDEX(20),SlNDEX(30),zsUFFR(SO)
DATA PLEN,SLEN,RLEN 120,30,50/

C OPEN THE DATASET.
CALL OPENMS (l,PINDEX.PLEN,O,ERR)
IF (ERR.NE.O) THEN

PRIN'f'I',' Error on OPENMS. err=' ,ERR
STOP 1

ENDIF
C LOOP OVER THE 20 PRIMARY INDICES. EACH TIME
C A SECONDARY INDEX IS FULL. WRITE TIlE
C SECONDARY INDEX ARRAY TO THE DATASET.

DO 40 K= I,PLEN
C ZEROOUTTIIE SECONDARY INDEX ARRAY.

DO 10 1= 1 ,SLEN
10 SINDEX(I)=O

C CALL STINDX TO CHANGE INDEX TO SINDEX.
CALL STINDX (I,SINDEX,SLEN,O,ERR)
IF (ERR.NE.O) THEN

PRJNT*: Error on STINDX, err=',ERR
STOP 2

ENDIF
C WRITE SLEN RECORDS.

00 30J=1.sLEN
C GENERATE A RECORD LENGTH BE1WEEN 1 AND RLEN.

TRLEN;;;:MAXO(IFIX(RANF(O)*FLOAT(RLEN),I)
C FILL THE "DATA" ARRAY WITH RANDOM FLOATING POINT
CNUMBERS.

00 20 I=l,1RLEN
20 ZBUFFR(I)=(I+SIN(R..OAT(I)**(I.+RANF(O))
CALL WRITMS (l.zBUFFR.TRLEN),-l,DUMMY ,ERR)
IF (ERRNE.O) THEN

PRINT*,' Error on WRITMS. err=' ,ERR
STOP 3

ENDIF
30 CONTINUE

12-87 D

WRITMS(3IO)

SR-Ol13

C "TOGGLE" THE INDEX BACK TO THE MASTER AND
C WRITE THE SECONDARY INDEX TO THE DATASET.

CALL STINOX (l,PINDEX,PLEN,O)
C NOTE THE ABOVE STINDX CALL DOES NOT USE THE
C OPTIONAL ERROR PARAMETER, AND WILL ABORT
elF STINDX DEmCI'S AN ERROR.

CALL WRITMS (l,SINDEX,SLEN,K,-l,DUMMY ,ERR)
JF (ERRNE.O) TIffiN

PRINT*,' Error on STINDX, elT'=' ,ERR
STOP 4

ENDIF
40 CONTINUE
C CLOSE THE DATASET.

CALL CLOSMS (l,ERR)
IF (ERR.NE.O) THEN

PRINT*,' Error on CLOSMS,err=',ERR
STOPS

ENDIF
STOP 'Normal'
END

12-88

WRITMS(3IO)

D

INTRO(3X) INTRO(3X)

13. DATASET UTILITY ROUTINES

The dataset utility routines manipuJate datasets for use by a program unit. The following routines are
ANSI standard Fortran routines (except LENGTH and UNIT, which are CFT extensions) and are
described in the Fortran (CFT) Reference Manual, publication SR-0009 and the crn7 Reference Manual.
publication SR-0018.

Routine

OPEN

CLOSE

INQUIRE

BACKSPACE

REWIND

END FILE

UNIT

LENGTH

Description

Connects a dataset to a unit

Tenninates the connection of a dataset to a unit

Returns status of a unit or a dataset

Positions a dataset after the previous end-of-record (EOR)

Rewinds a dataset

Writes end-of-file (EOF) on a file

Returns I/O status upon completion of an I/O operation

Returns the number of Cray words transferred

IMPLEMENTATION

SR-0113

The preceding ANSI standard Fortran routines are available to users of both the COS and UNICOS
operating systems.

The following routine types are described by entries in this section: copy, skip, dataset positioning, ter
mination, and I/O status routines.

Copy routines copy a specified number of records or files from one dataset to another. copy one dataset
to another, and copy a specified number of sectors or all data to end-of-data (BOD).

Skip routines direct the system either to bypass a specified number of records, files, sectors, or all data
from the current position of a named dataset, or to position a blocked dataset at 000.

The termination routine EODW terminates a dataset by writing EOP. EOR, and EOD. It also clears the
uncleared End-of-fi1e flag (UEOF) in the Dataset Parameter Table (DSP).

The last group of dataset utility routines return 110 information.

The following rable contains the name, purpose, and entry for each dataset utility routine.

13-1 D

INTRO(3X) INTRO(3X)

Dataset Utility Routines
Purpose Name Entry

Position a dataset after the previous BACKFILE BACKFILE
EOP and clear the UEOF flag in the
DSP

Copy records from one dataset to COPYR
another COPYSR

Copy files from one dataset to COPYF COPYR
another COPYSF

Copy one dataset to another COPYO
COPYSO

Copy sectors or all data to EOD COPYU COPYU

Tenninate a dataset by writing EOD, EOOW EOOW
EOF, and EOR and clear the UEOF flag
in the nsp
Return the real value EOF status and EOF
clear the UEOF flag in the nsp

EOF -
Return the integer value EOF status and IEOF
clear the UEOF flag in the DSP

Return EOF and EOD status IOSTAT IOSTAT

Return the current size of a dataset NUMBLKS NUMBLKS
in 512-word blocks

Skip records SKIPR
SKIPR

Skip files SKIPF

Position a blocked dataset at EOD SKIPO SKIPD

Skip sectors in a dataset SKIPU SKIPU

SR-0113 13-2 o

BACKFILE(3COS) BACKFILE(3COS)

NAME

BACKFILE - Positions a dataset after the previous EOF

SNYOPSIS

CALL BACKFlLE(dn)

DESCRIPTION

tin Dataset name or unit number of the dataset to be repositioned

BACKFILE positions a dataset after the previous end-of-file (EOF) and then clears the UEOF flag in the
Dataset Parameter Table (DSP).

This function is nonoperational if the dataset is at beginning-of-data (BOD).

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-01l3 13-3 D

COPYR (3COS) COPYR(3COS)

NAME

COPYR, COPYF, COPYD - Copies records, files, or a dataset from one dataset to another

SYNOPSIS

CALL COPYR(idn,odn,recordListat])
CALL COPYSR(idn,odn,record,scount[,istat])

CALL COPYF(idn,odn.!ile[,istat])
CALL COPYSF(idn,odnJile .scounr[,islat])

CALL COPYD(idn,odn)
CALL COPYSD(idn,odn,scount)

DESCRIPTION

idn

odn

record

file

.'fcounJ

istal

Dataset name or unit number of the dataset to be copied

Dataset name or unit number of the dataset to receive the copy

Number of records to be copied

Number of files to be copied

Number of Ascn blanks to be inserted at the beginning of each line of text

A two-element integer array that returns the number of records copied in the first element
and the number of files copied in the second element. (For COPYR, the number of files
copied is always 0.) istat is an optional parameter. If present, only fatal messages are writ
ten to the log file.

COPYR and COPYF copy a specified number of records or files from one dataset to another, starting at
the current dataset position. Following the copy, the datasets are positioned after the EOR or EOF for
the last record or file copied.

COPYD copies one dataset to another, starting at their current positions. Following the copy, both
datasets are positioned after the EOF of the last file copied. The EOD is not written to the output·
dataset.

COPYSR, COPYSF, and COPYSD are the same as COPYR, COPYF, and COPYD, respectively, except
that the copied data is preceded by seount blanks.

CAUTION

These routines are not intended for use with foreign dataset translation. When foreign dataset record
boundaries coincide with Cray dataset record boundaries, proper results may be expected. However, it
is difficult in general to determine when such coincidences occur. Use of these routines with foreign
datasets is discouraged.

IMPLEMENJ'ATION

These routines are available only to users of the cos operating system.

SEE ALSO

COPYU, SKIPR, SKIPD, SKIPU

SR-01l3 13-4 D

COPYU (3eas) COPYU (3cas)

NAME

COPYU - Copies either specified sectors or all data to EOD

SYNOPSIS

CALL COPYU(idn,odn.ns[.islat])

DESCRIPTION

idn Name of the unblocked dataset to be copied

odn Name of the unblocked dataset to receive the copy

ns Decimal number of sectors to copy. If the unblocked dataset contains fewer than ns sec
tors, the copy terminates at EOD. The entire dataset is copied if -I is specified. If COPYU
is called with only two parameters. only one sector is copied.

istat An integer array or variable that returns the number of sectors copied. iSlal is an optional
parameter. If istat is present, only fatal messages are written to the log file.

Copying begins at the current position on both datasets. Following the copy, the datasets are positioned
after the last sector copied.

CAUTION

This routine is not intended for use with foreign dataset translation.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

COPYR, SKIPU

SR-Ol13 13-5 o

EODW(3COS)

NAME

EODW - Terminates a dataset by writing EOD. EOF, and EaR

SYNOPSIS

CALL EODW(dn)

DESCRIPTION

dn Dataset name or unit number of the dataset to be terminated

EODW(3COS)

EODW writes an EOD, and, if necessary. an EOF and an EOR. The UEOF flag in the DSP is cleared.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

SR-0113 13-6 D

EOP(3IO)

NAME

EOF, IEOF - Returns real or integer value BOF status

SYNOPSIS

rexit=EOF(dn)

iexit=IEOF(dn)

DESCRIPTION

rexit
-1.0 EOD on the last operation
0.0 Neither EOD nor EOF on the last operation

+ 1.0 EOP on the last operation

iexil
-1 EOD on the last operation
o Neither EOD nor EOF on the last operation

+ 1 EOF on the last operation

dn Dataset name or unit number

EOF(3IO)

EOF returns one of the above real values when checking the EOF status. IEOF returns one of the above
integer values when checking the EOP status. Under COS. both routines clear the UEOF flag in the DSP.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 13-7 D

IOSTAT(3COS)

NAME

lOST AT - Returns BOF and EOD status

SYNOPSIS

iexit=IOST AT(dn)

DESCRIPTION

iexit 0 No error
1 Dataset at £OF (UEOF cleared)
2 Dataset at EOD (UEOF cleared)

dn Dataset name or unit number

IMPLEMENTATION

This routine is only available to users of the COS operating system.

SR"()l13 13-8

IOSTAT(3COS)

D

NUMBLKS (310)

NAME

NUMBLKS - Returns the current size of a dataset in 512-word blocks

SYNOPSIS

val=NUMBLKS(dn)

DESCRIPTION

NUMBLKS (3IO)

val Number of blocks returned as an integer value. The value returned reflects only the data
actually written to disk and does not take into account data still in the buffers. If the
dataset is not local to the job. or has never been written to, a function value of 0 is
returned. A negative value indicates that the underlying system call failed.

dn Dataset name or unit number

IMPLEMENTATION

This routine is available to users of the both the COS and UNICOS operating systems.

SR-0113 13-9 D

SKIPD(3COS) SKIPD (3COS)

NAME

SKIPD - Positions a blocked dataset at EOD

SYNOPSIS

CALL SKIPD(dn{,istat])

DESCRIPTION

dn Dataset name or unit number to be skipped. Must be a character constant. an integer vari
able. or an array element containing Hollerith data of not more than 7 characters.

istat A two-element integer array that returns the number of records skipped in the first element
and the number of files skipped in the second element. islat is an optional parameter. If it
is present. only fatal messages are written to the log file.

SKIPD directs the system to position a blocked dataset at EOD. that is, after the last EOF of the dataset.
If the specified dataset is empty or is already at EOD, the call has no effect.

CAUTION

This routine is not intended for use with foreign dataset translation.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

COPYR, SKIPR, SKIPU

SR-0113 13-10 D

SKIPR (3CaS) SKlPR (3CaS)

NAME

SKIPR, SKIPF - Skip records or files

SYNOPSIS

CALL SKIPR(dn,record[,istat])

CALL SKIPF(dn,jile[,istat])

DESCRIPTION

dn

record

file

iSlat

Dataset name or unit number that contains the record or file to be skipped. Must be a char
acter constant, an integer variable, or an array element containing Hollerith data of not

more than 7 characters. If dn is opened before SKIPR or SKIPF is called, dn must be
opened to allow read or read/write access.

Decimal number of records to be skipped. The default is I. If record is negative. SKIPR
skips backward on fin.

Decimal number of files to be skipped. The default is 1. If file is negative, SKIPR skips
backward on dn. If dn is positioned midfile, the partial file skipped counts as one file.

A two-element integer array that returns the number of records skipped in the first element
and the number of files skipped in the second element. (For SKIPR. the number of files
skipped is always 0.) islat is an optional parameter. If it is present, only fatal messages
are written to the log file.

SKIPR directs the system to bypass a specified number of records from the current position of the
named blocked dataset.

SKIPR does not bypass BOF or beginning-of-data (BOD). If an EOF or BOD is encountered before
record records have been bypassed when skipping backward. the dataset is positioned after the EOF or
BOD. When skipping forward, the dataset is positioned after the last EOR of the current file.

SKIPF directs the system to skip a specified number of files from the current position of the named
blocked dataset

SKIPF does not skip EOD or BOD. If a BOD is encountered before file files have been skipped when
skipping backward, the dataset is positioned after the BOD. When skipping forward, the dataset is posi
tioned before the EOD of the current file.

CAUTION

These routines are not intended for use with foreign dataset translation. When foreign dataset record
boundaries coincide with Cray dataset record boundaries, proper results may be expected. However. it
is difficult in general to determine when such coincidences occur. Use of these routines with foreign
datasets is discouraged.

EXAMPLE

SR-OI13

If the dataset connected to unit Fr07 is positioned just after an EOF t the following Fortran call positions
the dataset after the previous EOP. If the dataset is positioned midfile. it is positioned at the beginning
of that file.

CALL SKIPF('Ff07',-l)

13-11 D

SKIPR(3COS) SKIPR (3COS)

IMPLEMENTATION

These routines are available only to users of the cos operating system.

SEE ALSO

COPYRt SKIPDt SKIPU

SR-01l3 13-12 D

SKIPU(3COS) SKIPU (3COS)

NAME

SKIPU - Skips a specified number of sectors in a dataset

SYNOPSIS

CALL SKIPU(dn,ns[,istal])

DESCRIPTION

tin Dataset name or unit number of the unblocked dataset to be bypassed. Must be an integer
variable or an array element containing Ascn data of not more than 7 characters.

ns Decimal number of sectors to bypass. The default value is 1. If AS is negative, SKIPU
skips backward on dn.

istat An integer array or variable that returns the number of sectors skipped. iSlat is an optional
parameter, If it is present. only fatal messages are written to the logfile.

SKIPU directs the system to bypass a specified number of sectors or all data from the current position
of the named unblocked dataseL

CAUTION

This routine is not intended for use with foreign dataset translation.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

COPYU, SKIPR, SKIPD

SR-0113 13-13 D

INTRO(3X) INTRO(3X)

14. MULTITASKING ROUTINES

Multitasking routines create and synchronize parallel tasks within programs. They are grouped in the
following categories:

• Task routines

• Lock routines

• Event routines

• History trace buffer routines

• Barrier routines

For further infonnation on using these subprograms in a multitasking environment, see the CRA Y Y-MP
and CRAY X-MP Multitasking Programmer's Manual, publication SR-0222.

TASK ROlITlNBS

SR-OI13

Task routines handle tasks and task-related infonnation.

TASK CONTROL ARRAY - Each user-created task is represented by an integer task control array, con
structed by the user program. At a minimum. the array must consist of 2 Cray words; however, a third
word can be included. The three words composing the array contain the following infonnation:

LENGTH Length of lhe array in Cray words. The length must be set to a value of 2 or 3,
depending on the optional presence of the task value field. Set the LENGTH field
before creating the task.

TASK ID A task identifier assigned by the multitasking library when a task is created. This
identifier is unique among active tasks wilhin the job step. The multitasking library
uses this field for task identification, but the task identifier is of limited use to the user
program.

TASK VALUE (optional field)
This field can be set to any value before the task is created. If TASK VALUE is used,
LENGTH must be set to a value of 3. The task value can be used for any purpose. Sug
gested values include a programmer-genernted task name or identifier or a pointer to a
task local-storage area. During execution, a task can retrieve this value with the
TSKV ALUE subroutine.

The following example sets parameters for the task control array TASKARY:

C

PROGRAM MULTI
INTEGER TASKARY(3)

C SETTASKARYPARAMETERS

c

TASKARY(I)=3
TASKARY(3)='TASK l'

END

14-1 D

INTRO(3X) INTRO(3X)

TASK SUBROUTINES - The following cable contains the purpose, name, and entry of each task routine.

Task Routines
Purpose Name Entry

Initiate a task TSKSTART TSKSTART
Indicate whether a task exists TSKTEST TSKTEST
Modify bJDing parameters within the TSKTUNE TSKTUNE
library scheduler
Wait for a task to complete execution TSKWAIT TSKWAIT
Retrieve the user identifier TSKVALUE TSKVALUE
specified in the task control array

LOCK R011I'INES

Lock routines protect critical regions of code and shared memory.

The fonowing table contains the purpose. name. and entry of each lock routine.

Lock Routines
PUI')Jose Name Entry

Identify an integer variable to be LOCKASGN LOCKASGN
used as a lock

Sel a lock and return control to LOCKON LOCKON
the calling task
Clear a lock and return control to LOCKOFF LOCKOFF
the calling task
Release the identifier assigned 10 LOCKREL LOCKREL
a lock
Test a lock to detennine its stale LOCKTEST LOCKTEST
(locked or unlocked]

SR-Ol13 14-2 D

INfRO(3X) INTRO(3X)

EVENT ROUTINES

Event routines signal and synchronize between tasks.

The following table contains the purpose, name, and entry of each event routine.

Event Routines

Puroose Name Entrv

Post an event and return control to EVPOST EVPOST
the calling task

Clear an event and return control to EVCLEAR EVCLEAR
the calling task

Identify a variable to be used as EVASGN EVASGN
an event

Release the identifier assigned to EVREL EVREL
a task
Test an event to determine its EVTEST EVTEST
posted state

Delay the calling task until an EVWAIT EVWAIT
event is posted

MULTITASKING IllSTORY TRACE BUFFER ROUTINES

SR-01l3

The user-level routines for the multitasking history trace buffer can be called from a user program to
control wbat is recorded in the buffer and to dump the contents of the buffer to a dataset.

The following table conrains the purpose, name, and entry of each multitasking history trace buffer rou
tine.

Multitasking History Trace Buffer Routines

Puroose Name Entrv

Modify parameters used to control BUFTUNE BUFTUNE
which multitasking actions are
recorded in the history trace buffer

Write a formatted dump of the BUFPRINT BUFPRINT
history trace buffer to a dataset
Write an unformatted dump of the BUFDUMP BUFDUMP
history trace buffer to a dataset

Add entries to the history trace BUFUSER BUFUSER
buffer

14-3 D

INTRO(3X) INTRO(3X)

BARRIER ROUTINES

A barrier is a synchronization point in an application. beyond which no IaSk will proceed. until a
specified number of tasks have reached the barrier.

The following table contains the purpose, name, and entry of each barrier routine.

Banier Routines
Purpose Name Entrv

Identify an integer variable to use BARASGN BARASGN
asabarrier
Register the arrival of a task as BARSYNC BARSYNC
a barrier
Release the identifier assigned to BARREL BARREL
a barrier

14-4 D

BARASGN(3U) BARASGN(3U)

NAME

BARASGN - Identifies an integer variable to use as a barrier

SYNOPSIS

CALL BARASGN(name.value)

DESCRIPTION

name Integec variable to be used as a barrier. The library stores an identifier into this variable.
Do not modify the variable after the call to BARASGN unless a call to BARREL first
releases the variable.

value The integer number of tasks, between 1 and 31 inclusive. must call BARSYNC with name
before the barrier is opened and the waiting tasks allowed to proceed.

Before an integer variable can be used as an argument to any of the other barrier routines, it must first
be identified as a barrier variable by BARASGN.

IMPLEMENTATION

This routine is avai1able both to users of the COS and UNICOS operating systems.

SR·Ol13 14·5 D

BARREL(3U)

NAME

BARREL - Releases the identifier assigned to a barrier

SYNOPSIS

CALL BARREL(name)

DESCRIYI10N

namJ! Integer variable used as a barrier

IMPLEMENTATION

This routine is available both to users of the cos and UNICOS operating systems.

SR-Ol13 14-6

BARREL(3U)

D

BARSYNC (3U)

NAME

BARSYNC - Registers the arrival of a task at a barrier

SYNOPSIS

CALL BARSYNC(name)

DESCRIPTION

name Integer variable used as a barrier

IMPLEMENTATION

This routine is available both to users of the COS and UNICOS operating systems.

SR-01l3 14-7

BARSYNC(3U)

D

BUFDUMP(3U) BUFDUMP(3U)

NAME

BUFDUMP - Unformatted dump of multitasking history trace buffer

SYNOPSIS

CALL BUFDUMP(empty,dn)

DESCRIPTION

empty

dn

On entry. an integer flag that is 0 if the buffer pointers are to be left unchanged, nonzero if
the buffer is to be emptied after its contents are dumped

Name of the dataset to which an unformatted dump of the contents of the multitasking his
tory trace buffer is to be written. If 0, the dataset passed to BUFfUNE is used; if no
dataset was specified through BUFfUNE. the request is ignored.

BUFDUMP writes an unformatted dump of the contents of the multitasking history trace buffer to a
specified dataset dn can later be used by MTDUMP to examine the dataset and provide formatted
reports of its contents. Actions are reported in chronological order. A special entry is added if the
buffer has overflowed and entries have been lost.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0l13 14-8 D

BUFPRINT(3U) BUFPRINT(3U)

NAME

BUFPRINT - Fonnatted dump of multitasking history trace buffer to a specified dataset

SYNOPSIS

CALL BUFPRINT(empty[,dn])

DESCRIPTION

empty On entry. an integer flag that is 0 if the buffer pointers are to be left unchanged or nonzero
if the buffer is to be emptied after its contents are printed

dn Name of the dataset or file to which a formatted dump is to be written. If none is specified,
$OUT (under COS) or stdout (under UNICOS) is used.

BUFPRINT writes a formatted dump of the contents of the multitasking history trace buffer to a
specified dataset Actions are reported in chronological order.

EXAMPLE

This example of BUFPRINT leaves the buffer unchanged after its output to $OUT:

IEMPTY=O
CALL BUFPRINT(IEMPfY)

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

BUFDUMP

SR-0113 14-9 D

BUFfUNE(3U) BUFfUNE(3U)

NAME

BUFI'UNE - Tune parameters controlling multitasking history trace buffer

SYNOPSIS

CALL BUFrUNE(keyword, value [,string])

DESCRIPTION

SR-Ol13

keyword ASCII string, left-justified, blank-filled (see keywords following)

value Either an integer or an ASCII string Qeft-justified. blank-filled), depending on the keyword

string A 24-character string (left-justified, blank-filled) used only with the keyword INFO

Valid keywords and their associated functions and meanings are as follows:

Keyword

DN

FLUSH

ACTIONS

Description

The value of the DN keyword is the dataset which you specify to receive a dump of
the multitasking history trace buffer. DN itself directs this dump of the buffer to the
dataset. If BUFI'UNE is called without the ON keyword, the multitasking history
trace buffer is not dumped to any dataset

The minimum-allowed integer number of unused entries in the multitasking history
trace buffer. When the number of unused entries falls below this level, the buffer is
automatically flushed; that is, it is written to the dataset specified by the ON option.
If ON is specified, the default FLUSH value is 40.

Value is a 128-element integer array with a flag for each action that can be recorded
in the multitasking history trace buffer. If the array element corresponding to a par
ticular action is nonzero, that action is recorded; if the array element is O. the action
is ignored. The array indexes (action codes) corresponding to each action follow:

Action Code Action

1 Start task
2 Complete task
3 TSKW AIT, no wait
4 Begin wait for task
5 Run afrer wait for task
6 Test task
7 Assign lock
8 Release lock
9 Set lock
10 Begin wait to set lock
11 Run after wait for luck
12 Clear lock
13 Test lock

14-10 D

BUFI'UNE(3U)

Action Code

14
15
16
17
18
19
20
21
22
23
24,25

26
27,28

29.30

31,32

33
34
35
36
37
38
39-64
65-128

Action

Assign event
Release event
Post event
Clear event
EVW AIT. no wait
Begin wait for event
Run after wait for event
Test event
Attach to logical CPU
Detach from logical CPU
Request a logical CPU
(Note that these actions require two
action codes, the second containing
internal information.)
Acquire a logical CPU
Delete a logical CPU
(Note that these actions require two
action codes, the second containing
internal information.)
Suspend a logical CPU
(Note that these actions require two
action codes, the second containing
internal information.)
Activate a logical CPU
(Note that these actions require two
action codes, the second containing
internal information.)
Begin spin-wait for a logical CPU
Assign barrier
Release barrier
Call BARSYNC. no wait
Begin wait at barrier
Run after wait for barrier
Reserved for future use
Reserved for user
access (see BUFUSER)

BUFfUNE(3U)

INFO The value for this parameter is the integer user action code (65 through 128).

SR-0113

string is a 24-character information string, unique to each action, that you enter and
is printed for each user action code that is dumped..

BUFUSER allows you to add entries to the multitasking history trace buffer. When
the multitasking history trace buffer is dumped using DEBUG, BUFPRlNT, or
MTDUMP, t1lis 24-character information string is dumped along with each action.
This information must be available early in the program so that the strings can be
written to the dump dataset for processing by MTDUMP. The INFO keyword does
not turn these actions on to be recorded. They are normally on by default, but if
you have previously turned them off, you may reactivate them using the ACTIONS
or USERS keyword in a BUFfUNE call.

14-11 D

BUFTUNE(3U) BUFI'UNE(3U)

Keyword Description

TASKS If value='ON'H, the actions numbered 1 through 6 are recorded; if value='OFF'H,
those actions are ignored. The default is 'ON'H.

LOCKS If value='ON'H, the actions numbered 7 through 13 are recorded; if value='OFF'H.
those actions are ignored. The default is 'ON'H.

EVENTS If value='ON'H, the actions numbered 14 through 21 are recorded; if value='OFF'H,
those actions are ignored. The default is 'ON'H.

CPUS If value='ON'H, the actions numbered 22 through 33 are recorded; if value='OFF'H.
those actions are ignored. The default is 'ON'H.

USERS If value='ON'H. the actions numbered 65 through 128 are recorded; if
value='OFF'H, those actions are ignored. The default is value='ON'H.

F10LK If value='ON'H, actions affecting the Fortran I/O lock are recorded; if value='OFF'H
they are ignored. Library routines that handle Fortran reads and writes use this lock.
The default is 'OFF'H.

BUFTUNE can be called any number of times. If it is not called, or before it is called for the first time,
default parameter values are used.

Before BUFI'UNE is called. all actions involving tasks, locks, events, logical CPUs, and users are
recorded except for actions involving the Fortran I/O lock, which are ignored. A call to BUFI'UNE with
the TASKS, LOCKS, EVENTS, CPUS, or USERS keyword affects only the actions associated with that
keyword. The ACTIONS option overrides what has been requested through TASKS, LOCKS, EVENTS,
CPUS, or USERS.

EXAMPLES

The following BUFTUNE examples turn on task actions and tum everything else off:

* Example#1
INTEGER ACTION (64)
DATA ACTION(6* 1,58"'0)
CALL BUFfUNE CDN'L:DMPFlLE'L)

* Example#2
CALL BUFI'UNE CDN'L, 'DMPFILE 'L)
CALL BUFfUNE CTASKS'L,'ON'L)
CALL BUFTUNE CLOCKS'L,'OFF'L)
CALL BUFTUNE ('EVENfS'L:OFF'L)
CALL BUFfUNE ('CPUS 'L. , OFF' L)

IMPLEMENTATION

This routine is available to users of both the cos and UNIcas operating systems.

SR-01l3 14-12 D

BUFUSER(3U} BUFUSER(3U)

NAME

BUFUSER - Adds entries 10 the multitasking history trace buffer

SYNOPSIS

CALL BUFUSER(action,dala)

DESCRIPTION

action On entry, code for the type of action (see action codes in MTDUMP). This value is com
pared against the bit of the same number in the mask in global variable G@BUFMSK, set
up by BUFfUNE. If the mask bit is set. an entry is added to the buffer. This value
becomes the third word of the buffer entry.

data Values added to the multitasking history trace buffer in addition to the internal task
identifier and the current time. These actions-dependent data codes can be user-defined task
values, a logical CPU number, a lock or event address, or the task identifier of the waited
upon task. The only restriction on these values is that they should be a single word. If an
entry is added to the buffer, this value becomes the fourth word of the entry.

These entries are added unconditionally.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR-01l3 14-13 D

EVASGN(3U) EVASGN(3U)

NAME

EV ASGN - Identifies an integer variable to be used as an event

SYNOPSIS

CALL EVASGN(name[,valueD

DESCRIPTION

name Name of an integer variable to be used as an event The library stores an identifier into this
variable; you should not modify this variable.

value The initial integer value of the event variable. An identifier should be stored into the vari
able only if it contains the value. If value is not specified, an identifier is stored into the
variable unconditionally.

Before an integer variable can be used as an argument to any of the other event routines, it mUSi first
be identified as an event variable by EV ASGN.

EXAMPLE

C

c

C

c

IMPLEMENTATION

PROGRAM MULTI
INTEGER EVSTART,EVDONE
COMMON /EVENTS/EVST ART .EVDONE

CALL EVASGN (EVSTART)
CALL EVASGN (EVDONE)

END
SUBROUTINESUBl
INTEGER EVENT!
COMMON /EVENTl/ EVENTl
DATA EVENTI/-l/

CALL EVASGN (EVENTl,-l)

END

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 14-14 D

EVCLEAR(3U) EVCLEAR(3U)

NAME

EVCLEAR - Clears an event and returns control to the calling task

SYNOPSIS

CALL EVCLEAR(name)

DESCRIPTION

nmne Name of an integer variable used as an event

EVCLEAR clears an event and returns control to the calling task. When the posting of a single event is
required (a simple signal), EVCLEAR should be called immediately after EVW AlT to note that the post~
ing of the event bas been detected.

EXAMPLE

C

C

C

c

IMPLEMENTATION

PROGRAM MULTI
INlEGER EVST ART.EVDONE
COMMON /EVENTS/ EVST ART.EVOONE

CALL EVASGN (EVSTART)
CALL EVASGN (EVDONE)

CALL EVPOST (EVST ART)
END

SUBROUfINE MULTI2
INTEGER EVST ART.EVDONE
COMMON /EVENTS/EVST ART .EVDONE

CALL EVW AIT (EVST ART)
CALL EVCLEAR (EVST ART)

END

This routine is available to users of both the COS and UNICOS operating systems.

SR~01l3 14~15 D

EVPOST(3U) EVPOST(3U)

NAME

EVPOST - Posts an event and returns control to the calling task

SYNOPSIS

CALL EVPOST(name)

DESCRIPTION

name Name of an integer variable used as an event

EVPOST posts an event and returns control to the calling task. Posting the event allows any other tasks
waiting on that event to resume execution, but this is transparent to the task calling EVPOST.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR-OI13 14-16 D

EVREL(3U) EVREL(3U)

NAME

EVREL - Releases the identifier assigned to the task

SYNOPSIS

CALL EVREL(name)

DESCRIPTION

name Name of an integer variable used as an event

If tasks are currently waiting for this event to be posted, an error results. This subroutine detects
erroneous uses of the event beyond the specified region. The event variable can be reused following
another call to EV ASGN.

EXAMPLE

c

c

c

PROGRAM MULTI
INTEGER EVSTART.EVDONE
COM:MON /EVENTS! EVSTART .EVDONE

CALL EVASGN (EVSTART)
CALL EVASGN (EVDONE)

CALL EVPOST (EVSTART)

C EVSTART WILL NOT BE USED FROM NOW ON
CALL EVREL (EVSTART)

c
END

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR-0113 14-17 D

EVTEST(3U)

NAME

EVTEST - Tests an event to determine its posted state

SYNOPSIS

LOGICAL EVTEST
return=EVTEST(name)

DESCRIPTION

NOTE

return A logical .TRUE. if the event is posted. A logical the event Is not posted.

Name of an integer variable used as an event

EVTEST and return must be declared as type LOGICAL in the calling module.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 14-18

EVTEST(3U)

D

EVWAIT(3U)

NAME

EVW AIT - Delays the calling task until the specified event is posted

SYNOPSIS

CALL EVW AIT(Ilame)

DESCRIPTION

name Name of an integer variable used as an event

If the event is already posted. the task resumes execution without waiting.

EXAMPLE

c

c

IMPLEMENTA110N

SUBROUTINE MULTI2
INTEGER EVST ART.EVOONE
COMMON /EVENTSI EVST ART ,EVDONE

CAlL EVW AIT (EVST ART)

END

This routine is available to users of both the cos and UNICOS operating systems.

SR"()l13 14-19

EVWAIT(3U)

D

JCCYCL(3COS)

NAME

JCCYCL - Returns machine cycle time

SYNOPSIS

INTEGER JCCYCL
integer = JCCYCLO

DESCRIPTION

integer Integer representing the cycle time of the machine in picoseconds.

JCCYCL(3COS)

JCCYCL returns the contents of the Job Control Block (JCB) field JCCYCL. For a CRAY X-MP com
puter system with a clock period of 8.5 nanoseconds, JCCYCL returns the integer 8,500.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

D

LOCKASGN(3U) LOCKASGN(3U)

NAME

WCKASGN - Identifies an integer variable intended for use as a lock

SYNOPSIS

CALL LOCKASGN(name[,value])

DESCRIPTION

name Name of an integer variable to be used as a lock. The library stores an identifier into this
variable; you should not modify this variable.

value The initial integer value of the lock variable. An identifier should be stored into the vari
able only if it contains the value. If value is not specified. an identifier is stored into the
variable unconditionally.

Before an integer variable can be used as an argument to any of the other lock routines, it must first be
identified as a lock variable by LOCKASGN.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-01l3 14-21 D

LOCKOFF(3U) LOCKOFF(3U)

NAME

LOCKOFF - Clears a lock and returns control to the calling task

SYNOPSIS

CALL LOCKOFF(name)

DESCRIPTION

name Name of an integer variable used as a lock

LOCKOFF clears a lock and returns control to the calling task.

Clearing the lock may allow another task to resume execution. but this is 1I'8J1Sparent to the task calling
LOCKOFF.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR-0113 14-22 D

LOCKON(3U) LOCKON(JU)

NAME

LOCKON - Sets a lock and returns control to the calling task

SYNOPSIS

CALL LOCKON(name)

DESCRIPTION

name Name of an integer variable used as a lock

LOCKON sets a lock and returns control to the calling task.

If the lock is already set when LOCKON is called. the Lask is suspended until the lock is cleared by
another task and can be set by this one. In either case, the lock will have been set by the task when it
next resumes execution.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR·0113 14-23 D

LOCKREL(3U) LOCKREL (3U)

NAME

LOCKREL - Releases the identifier assigned to a lock

SYNOPSIS

CALL LOCKREL(name)

DESCRIPTION

name Name of an integer variable used as a lock

If the lock is set when LOCKREL is called, an error results. This subroutine detects some errors that
arise when a task is waiting for a lock that is never cleared. The lock variable can be reused following
another call to LOCKASGN.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 14-24 D

LOCKTEST(3U) LOCKTEST(3U)

NAME

LOCKTEST - Tests a lock to determine its state Oocked or unlocked)

SYNOPSIS

LOGICAL LOCKTEST
return=LOCKTEST(name)

DESCRIPTION

NOTE

return A logical .TRUE. if the lock was originally in the locked state. A logical .FALSE. if the
lock was originally in the unlocked state. but has now been sel

name Name of an integer variable used as a lock

Unlike LOCKON. the task does not wait. A task using LOCKTEST must always test the return value
before continuing.

LOCKTEST and return must be declared type LOGICAL in the calling module.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0l13 14-25 D

MAXLCPUS (3eOS) MAXLCPUS (3COS)

NAME

MAXLCPUS - Returns the maximum number of logical CPUs that can be attached at one time to your
job

SYNOPSIS

INTEGER MAXLCPUS
integer = MAXLCPUSO

DESCRIPTION

integer Integes value for the maximum number of CPUs that can be attached at one time to your
job.

MAXLCPUS returns the contents of the Job Control Block (ICB) field JCMCP.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

14-26 D

TSECND(3U)

NAME

TSECND - Returns elapsed CPU time for a calling task during a multitasked program

SYNOPSIS

second=TSECND([result])

CALL TSECND(second)

DESCRIPTION

second Result; elapsed CPU time (in floating.point seconds)

result Same as above (optional for function call)

TSECND(3U)

TSECND returns the elapsed CPU time (in floating-point seconds) of a caI1ing process since the start of
that process. than subsequent calls due to certain initializations ped'ormed by the routine. If the cost of
calling TSECND is important. ignore the initial call when computing TSECND' s time.

EXAMPLE

The following example calculates how much of the total execution time foc a multitasked program is
accumulated by the calling process.

BEFORE = SECOND()
TBEFORE = TSECND()
CALL OOWORKO I The subroutine OOWORK or
AFTER = SECOND() ! something it calls may be
TAFTER = TSECNDO ! multitasked.
CPU = (AFI'ER - BEFORE)
TCPU = (T AFfER - TBEFORE)
M¥PORTION = TCPU/CPU

IMPLEMENTATION

This routine is available only to users of the UNICOS operating system.

SEE ALSO

SECOND(3U)

D

TSKSTART(3U) TSKSTART(3U)

NAME

TSKST ART - Initiates a task

SYNOPSIS

CALL TSKSTART(task-array,name[,list])

DESCRIPTION

task-array Task control army used for this task. Word 1 must be sel Word 3, if used, must also be
sel On return, word 2 is set to a unique task identifier that the program must not
change.

name External entry point at which task execution begins. Declare this name EXTERNAL in
the program or subroutine making the call to TSKSTART. (Fortran does not allow a pro
gram unit to use its own name in this parameter.)

list List of arguments being passed to the new task when it is entered. This list can be of
any length. See the CRAY Y·MP, CRAY X-MP EA, and CRAY X-MP Multitasking
Programmer's Manual, publication SR.0222, for restrictions on arguments included in list
(optional parameter).

EXAMPLE

C

PROGRAM MULTI
INfEGER TASKIARY(3),TASK2ARY(3)
EXTERNALPLLEL
REALDATA(40000)

C LOAD DATA ARRAY FROM SOME OUTSIDE SOURCE
C
C
C CREATE TASK TO EXECUfE FIRST HALF OF THE DATA
C

c

c

TASKIAR Y(l)=3
TASKIARY(3}='TASK I'

CALL TSKSTART(TASKIARY,PI.LEL,DATA(1).20000)

C CREATE TASK TO EXECUTE SECOND HALF OF THE DATA
C

c

C

TASK2ARY(1)=3
TASK2ARY(3)='TASK 2'

CALL TSKST ART(TASK2ARY.FLLEL.DATA(20001),20000)

END

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 14-28 D

TSKTEST(3U)

NAME

TSKTEST - Returns a value indicating whether the indicated task exists

SYNOPSIS

LOGICAL TSKTEST
return=TSKTEST(task.array)

DESCRIPTION

TSKTEST(3U)

return A logical .TRUE. if the indicated task exists. A logical .FALSE. if the task was never
created or has completed execution.

task·array Task control array TSKTEST and return must be declared type LOGICAL in the calling
module. '

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR·OI13 14·29 D

TSKTUNE(3U) TSKTUNE(3U)

NAME

TSKTUNE - Modifies tuning parameters within the library scheduler

SYNOPSIS

CALL TSKTUNE(f.eyword 1.value l.,keywordz• value 2."')

DESCRIPTION

NOTE

Each keyword is a Forttan constant or variable of type CHARACTER. Each value is an integer. The
parameters must be specified in pairs. but the pairs can occur in any order. Legal keywords me as fol
lows:

Keyword Description

MAX CPU Maximum number of cos logical CPUs allowed for the job

DBRELEAS Deadband for release of logical CPUs

DBACTIVE Deadband for activation or acquisition of logical CPU

HOLDTIME Number of clock periods to hold a CPU, waiting for tasks to become ready. before
releasing it to the operating system

SAMPLE Number of clock peri~s between checks of the ready queue

Each parameter has a default setting within the library and can be modified at any time to another valid
setting.

For more infonnation about using this routine. see the eRAY Y-MP. CRAY X-MP EA. and CRAY X-MP
Multitasking Programmer's Manual. publication SR-0222.

This routine should not be used when multitasking on a CRA Y-I compurer system. Because of variabil
ity between and during runs. the effects of this routine are not reliably measurable in a batch environ
ment

EXAMPLE

CALL TSKTUNE('DBACTlVE',1,'MAXCPU',2)

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR-O 11 3 14-30 D

TSKVALUE(3U) TSKVALUE(3U)

NAME

TSKV ALUE - Retrieves user identifier specified in task control array

SYNOPSIS

CALL TSKV ALUE(return)

DESCRIPTION

return Integer value that was in word 3 of the task control array when the calling task was created.
A 0 is returned if the task control array length is less than 3 or if the task is the initial task.

TSKV ALUE retrieves the user identifier (if any) specified in the task control array used to create the
executing task.

EXAMPLE

C

SUBROUTINE PLLEL(DATA,sIZE)
REAL DATA(SIZE)

C DETERMINE WHICH OUTPUT FILE TO USE
C

c

CALL TSKV ALUEQV ALUE)
IF(N ALUE .EQ. 'TASK 1 ')TIJEN

IUNITNO=3
ELSEIF(IV ALUE .EQ. 'TASK 2'}THEN

IUNITN0=4
ELSE

STOP !Error condition; do not continue.
ENDIF

END

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 14-31 D

TSKWAlT{3U)

NAME

TSKW AlT - Waits for the indicated task to complete execution

SYNOPSIS

CALL TSKW AIT(task-array)

DESCRIPTION

task-array Task control array

EXAMPLE

C

PROGRAM MULTI
INTEGER TASKIARY(3),TASK2ARY(3)
EXTERNALPLLEL
REAL DATA(40000)

C LOAD DATA ARRAY FROM SOME OUTSIDE SOURCE
C
C
C CREATE TASK TO EXECUTE FIRST HALF OF THE DATA
C

c

TASKIARY(I}=3
TASKIARY(3)='TASK l'

CALL TSKSTART(TASKIARY.PLLEL.DATA(l),20000)
C
C CREATE TASK TO EXECUTE SECOND HALF OF THE DATA
C

c

c

TASK2ARY(I)=3
TASK2ARY(3)='TASK2'

CALL TSKST ART(TASK2ARY,PLLEL.DATA(2000I),20000)

C NOW WAIT FOR Born TO FINISH
C

C

CALL TSKWAIT(TASKIARY)
CALL TSKW AIT(TASK2ARy)

C AND PERFORM SOME POST-EXECUTION CLEANUP
C
C

END

TSKWAIT(3U)

In the preceding example, TSKST ART is called once for each of two tasks. As an alternative. the second
TSKSTART could be replaced by a call to PLLEL, and the TSKWAIT removed. This alternate approach
reduces the overhead of the additional task but can make understanding the program structure more difficult.
The two approaches, however, produce the same results.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OlI3 14-32 D

INTRO(3X) INTRO(3X)

IS. TIMING ROUTINES

The timing routines are grouped as follows:

• Time stamp routines

• Time and date routines

TIME STAMP ROUTINES

System accounting programs use these routines to convert between various representations of time.
Time stamps can be used to measure from one point in time to another. Cray time stamps are defined
relative to an initial date of January I, 1973.

The following table contains the purpose. name, and entry for each time stamp routine.

Time stamp Routines

Plllll<!SC Name Entry

Convert from date and time to DITS DTTS
timestamp

Convert time stamps into ASCII date TSDT TSDT
and time strings

Convert time stamp to real-time clock TSMT
value

TSMT
Convert real-time clock value to MTTS
time stam~
Return time stamp units in standard UNITIS UNITTS
time units

TIME AND DATE ROUTINES

SR-0113

Time and date routines produce the time and/or date in specified fonns. These routines can be called as
Fortran functions or routines. All of the routines are called by address.

The following table contains the purpose, name, and entrr for each time and date routine.

15-1 D

INTRO(3X) INTRO(3X)

Time and Date Routines
Puroose Name Headiosz

Return the current system clock time CLOCK CLOCK
Return the current date DATE

DATE
Return the current Julian date JDATE
Return real-time clock values RTC RTC

IRTC
Return the elapsed CPU time (in SECOND SECOND
floating-point seconds) since the
start of a job
Return the elapsed wall-clock time TIMEF TIMEF
since the initial call to TIMEF
Return the CPU time (in ftoating- TRFMAIN TREMAIN
point seconds) remainin2 for a job

SR-Ol13 15-2 D

CLOCK(3U)

NAME

CWCK - Returns the current system-cJock time

SYNOPSIS

time=CLOCK()
CALL CLOCK(time)

DESCRIPTION

lime Time in hh;mm:ss fonnat (type integer)

CLOCK returns \he current system-clock time in AScn hh:mm:ss fonnat.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-Ol13 15-3

CLOCK(3U)

D

DATE(3U)

NAME

DATE, JDATE - Returns the current date and the current Julian date

SYNOPSIS

date=DATEO

CALL DATE(date)

date=JDATEO

CALL JDATE(dale)

DESCRIPTION

DATE(3U)

date For DATE. today's date in mm/dd1yy format (type integer). For JDATE, today's Julian date
in yyddd format.

DATE returns today's date in mm/dd/yy format.

JDATE retwns today's Julian (ordinal) date in yyddd format, left-justified, blank-filled.

IMPLEMENTATION

These routines are available to users of both the cos and UNICQS operating systems.

SR-01l3 15-4 D

DTIS(3COS) DITS(3COS)

NAME

DTTS - Converts ASCII date and time to time-stamp

SYNOPSIS

Is=DITS(date ,time ,IS)

DESCRIPTION

IS Time stamp corresponding to date and time (type integer). On return, if ts-O. an incorrect
parameter was passed to DTIS.

date On entry. ASCII date in mm/dd/yy format

time On entry, AScn time in hh:mm:ss fonnat

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 15-5 D

RTC(3U)

NAME

RTC, IRTC - Return real-time clock values

SYNOPSIS

time=RTC()
CALL RTC(time)

time=IRTC()
CALL IRTC(time)

DESCRIPTION

RTC(3U)

lime For RTC, the low-order 46 bits of the clock register expressed as a Boating-point integer
(real type). For IRTC, the cwrent clock register content expressed as an integer.

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-Ol13 15-6 D

SECOND(3U) SECOND (3U)

NAME

SECOND - Returns elapsed CPU time

SYNOPSIS

second=SEC OND ([resullD

CALL SECOND(second)

DESCRIPTION

NOTE

second Result; CPU time (in floating-point seconds) accumulated by all processes in a program.

result Same as above (optional for function call)

SECOND returns the elapsed CPU time (in floating-point seconds) since the stan of a program, including
time accumulated by all processes in a multitasking program.

Under COS, all programs run as job steps of a job, and SECOND returns the total execution time for all
job steps since the job started. Under UNICOS, SECOND returns execution time for the current pro
gram. For example, a job (COS or UNICOS) runs a 50-second program 10 times. In COS, if you make
a SECOND call at the end of the 10th run, SECOND will return 500 seconds. In UNICOS, a SECOND
call at the end of the 10th run (or first or third or seventh) will return 50 seconds.

The initial call to SECOND may take longer than subsequent calls due to certain initializations per
fonned by the routine. If the cost of calling SECOND is important, ignore the initial call when comput
ing SECOND's time. 1be assignment 10 JUNK in the second example below serves this purpose.

EXAMPLE

BEFORE: SECOND()
CALL DOWORKO
AFTER = SECONDO
CPUl'lME : AFTER - BEFORE

This example calculates the CPU time used in DOWORK. If the CPU time is small enough that the
overhead for calling SECOND may be significant, the following example is more accurate:

JUNK = SECONDO
TO = SECONDO
OVERHEAD = SECONDO - TO
BEFORE = SECOND()
CALL DOWORKO
AFTER::; SECOND()
CPUTlME :;;;; (AFrER - BEFORE) - OVERHEAD

IMPLEMENTATION

This routine is available to users of both the UNICOS and COS operating systems.

SEE ALSO

TSECND(3U)

SR-O 11 3 15-7 D

TIMEF(3U)

NAME

TIMEF - Returns elapsed wall-clock time since the call to TIMEF

SYNOPSIS

timef=TIMEF([result])
CALL TIMEF(timej)

DESCRIPTION

TIMEF(3U)

time! Elapsed wall-clock time (in floating-point milliseconds) since the initial call to T1MEF.
Type real. The initial call to T1MEF returns O.

result Same as lime!

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 15-8 D

TREMAIN (3COS) TREMAIN (3eOS)

NAME

TREMAlN - Returns the CPU time (in floating-point seconds) remaining for job

SYNOPSIS

CALL TREMAIN(result)

DESCRIPTION

NOTE

result Calculated CPU time remaining; stored in result. Type real.

The time remaining is the time specified on the COS JOB statement. minus the time elapsed so far.

The value returned by TREMAIN may not always be updated between calls. For instance, the values
for X and Y may be the same in the following code:

CALL TREMAIN(X)
DO 10 I = I, 1000000

10 T(I) = FLOAT(I)
CALL TREMAIN(y)

The value that TREMAIN uses is only updated when a program is exchanged out of memory. If calls
to TREMAIN occur during the same time slice (that is. the job has not been exchanged). the values will
be the same. If more accurate times are required, use the routine SECOND and subtract the value
from your job~s time limit.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

SR-OI13 15-9 D

TSDT(3COS) TSDT(3COS)

NAME

TSDT - Converts time-stamps to AScn date and time strings

SYNOPSIS

CALL TSDT(ts .date ,hhmmss,ssss)

DESCRIPTION

ts Time-stamp on entry (type integer)

date Word to receive ASCII date in mm/dd/yy format

hhmmss Word to receive ASCII time in hh:mm:ss format

ssss Word to receive AScn fractional seconds in .sssmnn formal

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 15-10 D

TSMT(3COS) TSMT(3COS)

NAME

TSMT, MTTS - Converts time-stamp to a corresponding real-time value. and vice versa

SYNOPSIS

irtc=TSMT(ts[,cptype,cpcycle])
ts=MTTS(irtc{,cptype.cpcydej)

DESCIUPTION

iTtc

ts

cpty~

cpcycle

For TSMT. real-time clock value corresponding to specified time-stamp. For MTTS. real
time clock value to be converted.

For TSMT, time-stamp to be converted (type integer). For MTTS, time-stamp correspond
ing to real-time clock value (type integer).

CPU type. This is an optional argument specifying the CPU type. Valid values are as fol
lows:

1 CRAY-l, models A and B
2 CRAY-l, model S
3 CRAYX-MP
4 CRAY-l, model M

The default is the CPU of the host machine. The cptype is necessary when doing a conver
sion for a machine type other than the host machine. The real-time clock value is different
on, for instance, a CRAY X-MP computer system than on a CRAY-l computer system

'because of the difference in cycle time. For TSMT to generate a correct result and for
MTTS to correctly interpret its argument. they must know the correct machine type.

CPU cycle time in picoseconds; for instance. a CRA Y X-MP computer system with a cycle
time of 8.5 nanoseconds would be specified as 8500. The default is the cycle time of the
host machine.

TSMT converts a time-stamp to a corresponding real-time value. MTTS converts a real-time clock value
to its corresponding time-stamp.

IMPLEMENTATION

These routines are available only to users of the COS operating system.

SR-Ol13 15-11 D

UNI1TS (3COS) UNlTI'S (3COS)

NAME

UNlTTS - Returns time-stamp units in specified standard time units

SYNOPSIS

ts: UNITTS(periods ,units)

DESCRIPTION

IS

periods

units

EXAMPLE

Number of time-stamp units in periods and units (type integer)

Number of time-stamp units to be returned in standard time units (that is. number of
seconds. minutes. and so on); type integer.

Specification for the units in which periods is expressed. The following values are
accepted: 1JA YS'H, 'HOURS'H, 'MINUTES'H, 'SECONDS'H, 'MSEC'H (milliseconds),
~SEC'H (microseconds), 'USECIOO'H (1008 of microseconds). Left-justified, blank-filled,
Hollerith. UNfITS must be declared type integer.

Is=UNITIS(2, 'DAYS 'H)

Is Number of time-stamp units in 2 days

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 15-12 D

INTRO(3X) INTRO(3X)

16. PROGRAMMING AID ROUTINES

Programming aids consist of the following types of routines:

• Flowtrace routines

• Traceback routines

• Dump routines

• Exchange Package processing routines

• Hardware perionnance monitor interface routine

FLOWfRACE ROUTINES

NOTE

SR-OU3

Flowtrace routines process the CFT ftowtrace option (ON=F). The Cray Fortran compiler automatically
inserts calls to these routines (see the Fortran (CFT) Reference Manual. or the CFf77 Reference Manual
for details on flowtracing). Flowtrace routines are called by address. For more information on flow
trace calls from CAL, see the System Library Reference Manual, pUblication SM-0114, the UNICOS Per
formance Utilities Reference Manual, publication SR-2040, and the cos Perfonnance Utilities Reference
Manual, publication SR-0146.

Many of the flowtrace subroutines begin with the characters "FLOWO". You should avoid using names
with this prefix.

The following table contains the purpose, name, and call to each flow trace routine.

Flowtrace Routines

Puroose Name and Call

Process entry to a subroutine CALL FLOWENTR

Process RETURN execution CALL FLOWEXIT
Process a STOP statement CALL FLOWSTOP

Initiate a detailed tracing of SETPLIMQ(lines)
every call and return

lines Nwnber of lines to be
printed (one for each call
and return). If lines
is ~ 0, no lines are printed.
or printing is terminated.

Print the final report CALL FLOWOSTP(outdev)

outdev Device to which
the report is written

Return name of the caller SUBROUTINE GETNAMEQ(name)
INTEGER name

Return the cycles charged to a job integer=IGETSEC()

Return the cycle time in picoseconds integer=JCCYCL()
(value of field ICCYCL in the ICB)

16-1 D

INTRO(3X) INTRO(3X)

TRACEBACK ROUTINES

The traceback routines list all subroutines active in the current calling sequence (TRBK) and return
information for the current level of the calling sequence (TRBKLVL). Traceback routines return
unpredictable results when subroutine linkage does not use CRI standard calling sequences.

DUMP ROUTINES

Dump routines produce a memory image and are called by address.

The following table contains the purpose, name, and entry of each dump routine.

Dump Routines
Purpose Name Entry

Print a memory dump to a dataset CRAYDUMP CRAYDUMP

Dump memory to $OUT and abort the job DUMP
DUMP

Dump memory to $OUT and return conttol PDUMP
to the calling program

Create an unblocked dataset DUMPJOB DUMPJOB
containing the user job area image

Copy current register contents SNAP SNAP
to $OUT

Produce a symbolic dump SYMDEBUG SYMDEBUG

Produce a snapshot dump of a SYMDUMP SYMDUMP
running program

EXCHANGE PACKAGE PROCESSING ROUTINES

Exchange Package processing routines (XPFMT and FXP) switch execution from one program to
another. An Exchange Package is a 16-word block of memory associated with a particular program.

HARDW ARB PERFORMANCE MONITOR INTERFACE ROUTINE

SR-0113

PERF provides an interface to the hardware performance monitor feature on eRA Y X-MP computer sys
tems.

16-2 D

eRA YDUMP (3eOS) CRAYDUMP(3COS)

NAME

eRA YDUMP - Prints a memory dump to a specified dataset

SYNOPSIS

CALL CRAYDUMP(fwa,lwa,dn)

DESCRIPTION

fwa First word to be dumped

lwa Last word to be dumped

dn Name or unit number of the dataset to receive the dump output

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0l13 16-3 D

DUMP(3COS) DUMP(3COS)

NAME

DUMP, PDUMP - Dumps memory to $OUT and either abon or return to the calling program

SYNOPSIS

CALL DUMP(fwa,/wQ,type)
CALL PDUMP(fwa.lwa.type)

DESCRIPTION

NOTES

fwa First word to be dumped

twa Last word to be dumped

type Dump type code, as follows:

o or 3 Octal dump
1 Floating-point dump
2 Integer dump

DUMP dumps memory to $OUT and aborts the job. PDUMP dumps memory to $OUT and returns con
trol to the calling program.

If 4 is added to the dump type code, the first word and last word addresses specified are then addresses
of addresses (indirect addressing).

First word/last word/dump type address sets can be repeated up to 19 times.

IMPLEMENTATION

These routines are available only to users of the COS operating system.

SR-01I3 16-4 D

DUMPJOB (3COS) DUMPJOB (3CaS)

NAME

DUMPJOB - Creates an unblocked dataset containing the user job area image

SYNOPSIS

CALL DUMPJOB(dn)

DESCRIPTION

dn Fortran unit number or Hollerith unit name. If no parameter is supplied, $DUMP is used by
default.

DUMPJOB creates an unblocked datasel containing the user job area image. including register states and
the Job Table Area. This data is suitable for input to the DUMP or DEBUG programs.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

DUMP, SYMDEBUG

SR-0113 16-5 D

FXP(3COS) FXP(3COS)

NAME

FXP - Fonnats and writes the contents of the Exchange Package to an output dataset

SYNOPSIS

CALL FXP(dsp,xp,vm,ret)

DESCRIPTION

dsp Output Dataset Parameter Table address

xp Exchange Package address

vm Vector mask (VM) to be formatted

ret Contents of BO register to be formatted

FXP fonnats and writes to the output dataset the contents of the Exchange Package. the contents of the
vector mask (VM). and the contents of the BO register. This routine complements the user reprieve pro
ceSSing.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

SR-Ol13 16-6 D

GETNAMEQ(3U)

NAME

GETNAMEQ - Returns name of the caller

SYNOPSIS

SUBROUTINE GETNAMEQ(name)
INTEGER name

DESCRIPTION

GETNAMEQ returns the name of the caller of its caller.

GETNAMEQ (3U)

Suppose FOO calls BAR. If BAR calls GETNAMEQ, name is set to "FOO". (The result is left-justified
in a Cray word.)

NOTES

GETNAMEQ returns only the first 8 cbaracters of a name.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR-0113 16-7 D

IGETSEC(3U)

NAME

IGETSEC - Returns the cycles charged to a job

SYNOPSIS

Call from Fortran:

integer=IGETSEC()

DESCRIPTION

integer Cycles charged to a job

IGETSEC returns the cycles charged to a job up to its own execution.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR-0113 16-8

IGBTSEC(3U)

D

PERF(3COS) PERF(3COS)

NAME

PERF - Provides an interface to the hardware perfonnance monitor feature on the CRA Y X-MP main
frame

SYNOPSIS

CALL PERF(func .gToup.bujjeT,bufl)

DESCRIPTION

SR-Ol13

/UJIC Performance monitor function. Either an integer function number or one of the following
ASCII strings, left-justified, and zero-filled.

group

buffer

bull

'ON'L
'OFF'L
'REPORT'L
'RESET'L

Enable perfonnance monitoring
Disable performance monitoring
Report current perfonnance monitor statistics
Report cmrent statistics, then clear performance
monitor tables

Perfonnance monitor group number (type integer). See the Perfonnance Counter Group
Description table for group numbers and their corresponding counters and counter contents.

First word address of a perfonnance monitor request buffer

Number of words in the buffer array

Thirty-two counters are available. arranged into four groups of eight counters each. Only one group
can be accessed at a time.

The PERF request block format contains a fixed header and a variable number of subblocks following
the header. The first 3 words of the header are set in subroutine PERF before calling the system. while
the remaining words in the header are returned by the system.

The words in the block header allow you to analyze the information returned in the subblocks without
the use of constants. This allows programs to continue executing correctly when the contents of the
header or the subblocks change.

16-9 D

PERF(3COS) PERF(3COS)

SR-OI13

The block header fonnat is as follows:

Field Word Description

HMRSF 0 Subfunction (0 through 3)
HMRGN 1 Group number (0 through 3) for PM$ON
HMRNW 2 Length of the request block
HMRNU 3 Number of words used
HMRBH 4 Number of words in the block header
HMRTS 5 Set to nonzero if the block is too small
HMRCT 6 Offset to the first group counter in the subblock
HMRCP 7 Offset to the first group accounted CPU cycles
HMRGE 8 Length of the counter group entry in subblock
HMRNC 9 Number of counters in each group entty
HMRNG 10 Number of groups in each subblock
HMRLE 11 Length of subblock entries

Timing subblocks are returned for every REPORT and RESET call. Each subblock contains hardware
performance monitor data from a single cos user task.

The address of the first timing subblock is at (BLOCK FWA) + (contents of block header field HMRBH),
with the next following (contents of block header field HMRLE) word after the first. Subblocks end
when the offset to the next block would start after (contents of block header field HMRNU) words.

Each subblock contains a 2-word header. with fields HMTN and HMGRP. HMTN is the COS user task
number associated with the subblock. HMGRP is the last hardware performance monitor group number
active for the subblock.

Within the subblock. there are (contents of block header field HMRNG) performance monitor groups
reported. Each group report consists of two fields: counters associated with the group. and the number
of CPU cycles that were accounted for while the specified monitor was active. The offset to the first
group counter is (contents of block header field HMRCT) words into the subblock; there are (contents
of block header field HMRNC) counters for each perfonnance monitor group. The offset to the first
group's accounted CPU cycle is at (contents of block header field HMRCP).

Timing groups within a subblock follow each other by (contents of block header field HMRGE) words.
The subblock format follows:

Field Word Description

HMTN 0
HMGRP I
HMCNTO 2-9
HMCCYO 10
HMCNTl 11-18
HMCCYI 19
HMCNT2 20-27
HMCCY2 28
HMCNT3 29-36
HMCCY3 37

User task number
Latest performance monitor group number
Group 0, counter 0 through 7
Group 0. accounted CPU cycles
Group 1, counter 0 through 7
Group 1, accounted CPU cycles
Group 2, counter ° through 7
Group 2. accounted CPU cycles
Group 3, counter 0 through 7
Group 3, accounted CPU cycles

16-10 D

PERF(3COS)

The perfonnance counter group descriptions are listed below
in the following table.

Perfonnance Counter Group Descriptions

Performance
Group Counter Description

Number of:
0 Instructions issued
1 Clock periods holding issue
2 Fetches

0 3 I/O references
4 CPU references
5 floating-point add operations
6 Floating-point mu1tiply operations
7 Floating-point reciprocal operations

Hold issue conditions:
0 Semaphores
1 Shared registers
2 A registers and functional units

1 3 S registers and functional units
4 V registers
5 V functional units
6 Scalar memory
7 Block memory

Number of:
0 Fetches
1 Scalar references
2 Scalar conflicts

2 3 I/O references
4 I/O conflicts
5 Block references
6 Block conflicts
7 Vector memory references

Number of:
0 000 - 017 instructions
1 020 - 137 instructions
2 140 - 157, 175 instructions

3 3 160 - 174 instructions
4 176. 177 instructions
5 Vector integer operations
6 Vector floating-point operations
7 Vector memory references

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 16-11

PERF(3COS)

D

SETPLIMQ(3U) SETPLIMQ (3U)

NAME

SETPLIMQ - Initiates detailed tracing of every call and return

SYNOPSIS

Call from CAL and Fortran:

CALL SETPLIMQ(lines)

DESCRIPTION

lines Number of lines to be printed (one for each call and return). If lines ~ 0, no lines are
printed, or printing is terminated.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR-OI13 16-12 D

SNAP(3COS)

NAME

SNAP - Copies current register contents to $OUT

SYNOPSIS

CALL SNAP(regs,controljorm)

DESCRIPTION

regs

control

Code indicating registers to be copied, as follows:

1 B registers
2 T registers
3 B and T registers
4 V registers
5 B and V registers
6 T and V registers
7 B, T, and V registers

Control word (currently unused)

SNAP(3COS)

form Code indicating the fonnat of the dump. Dumps from registers S, T, and V are controlled

IMPLEMENTATION

by the following type codes:

o Octal
1 Floating-point
2 Decimal
3 Hexadecimal

Dumps from registers A and B are in octal fonnat

This routine is available only to users of the COS operating system.

SR-0113 16-13 D

SYMDEBUG (3DB) SYMDEBUG(3DB)

NAME

SYMDEBUG - Produces a symbolic dump

SYNOPSIS

CALL SYMDEBUG('param[/Jaram):)

DESCRIPTION

SR-0113

param SYMDEBUG parameters. param must be in uppercase.

Some SYMDEBUG parameters allow you to specify a value along with the parameter. In these cases,
param=value substitutes for paramo

SYMDEBUG uses the following parameters:

S=sdn

L=ldn

sdn names the dataset or file containing the debug symbol tables. The default is $DEBUG.
The symbol file is SYMBOLS.

ldn names the dataset or file to receive the listing output from the symbolic debug routine.
The default is SOUT.

CALLS=n Number of routine levels to be looked at in a symbolic dump. For each task reported,
SYMDEBUG traces back through the active subprograms the number of levels specified by
n. Routines for which no symbol table infonnation is available are not counted for pur
poses of the CALLS count If this parameter is omitted, or if CALLS is specified without a
value. the default is SO.

MAXDIM=dim(:dimJiR
Maximum number of elements from each dimension of the arrays to be dumped. MAXDIM
allows you to sample the contents of arrays willIout creating huge amounts of output
When MAX DIM is specified. arrays are dumped in storage order (row, column for Pascal;
column, row for Fortran). MAXDIM applies to all blocks dumped. The default is MAX
DIM=20:5:2:1:1:1:1. No more than seven dimensions can be specified.

BLOCKS=blk(:blk}
List of common blocks to be included from the symbolic dump. A maximum of 20 blocks
can be specified. Separate the biles with colons. All symbols (qualified by the SYMS and
NOTSYMS parameters) in the named blocks are dumped. Default is no common blocks
dumped; if you specify BLOCKS without any bib. all common blocks declared in routines
to be dumped are included in the symbolic dump.

NOTBLKS=nblk {:nblk)
List of common blocks to be excluded in the symbolic dump. A maximum of 20 blocks
can be specified. Separate the nbllcs with colons. This parameter is used in conjunction
with BLOCKS and takes precedence over the BLOCKS parameter.

RPTBLKS Repeat blocks; when this option is used, the contents of common blocks specified with the
BLOCKS and NOTBLKS parameters are displayed for each subroutine in which they are
declared. The default displays common blocks only once.

PAGES=np Page limit for the symbolic dump routine. Every page is worth 45 lines of output from
SYMDEBUG. The default np is 70.

16-14 D

SYMDEBUG(3DB)

EXAMPLE

The following are example calls from Fortran to SYMDEBUG:

CALL SYMDEBUGCCALLS=40,RPTBLKS.·)

CALL SYMDEBUG(,BLOCKS=AA:BB:CC.')

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

The UNICOS Symbolic Debugging Package Reference Manual. publication SR-Ol12

SR-Ol13 16-15

SYMDEBUG(3DB)

D

SYMDUMP(3DB) SYMDUMP(3DB)

NAME

SYMDUMP - Produces a snapshot dump of a running program

SYNOPSIS

CALL SYMDUMP (' -b blkJist ·B -c calls -d dimJist -I /file .r -s symfile • V -y symlist -Y·.
abort.Jlag)

DESCRIPTION

SYMDUMP is a library routine that produces the same son of output as DEBUG. It accepts C character
descriptors, Fortran hollerith strings, and Pascal packed character arrays.

The method of calling library routines differs from language processor to language processor, but SYM
DUMP accepts the same arguments regardless of the language processor. The argument string, if pro
vided, must be enclosed in parentheses, and the options (excluding the abort flag) must be enclosed in
quotation marks. When calling SYMDUMP from Fortran or Pascal, the quotation marks must be single;
when calling from C, the quotation marks must be double. All arguments are optional.

The options indicate the type and extent of infonnation to be dumped by SYMDUMP. The options
string is passed to SYMDUMP in one of the following forms:

• As a character descriptor, produced by Fortran and C for defined characters sttiogs

• As an address of a null terminated string. such as an integer, Hollerith, or Pascal packed char
acter array

The argument string can contain a maximum of 4,096 characters. All options are optional. and they
may appear in any order.

Unlike command lines. SYMDUMP option-arguments may not be grouped after one hyphen on the
SYMDUMP call. That is. SYMDUMP('-V or') is pennitted, but SYMDUMpe·Vr t) is not pennitted.
The following are valid options and arguments:

·b blklist

·B These options control the displaying of common block symbols. The symbols to be
displayed from any particular common block will depend upon the use of the .y and -y
symlist options.

If neither option is specified, no common blocks are included in the symbolic dump. This
is the default. If -B is specified, all common blocks are included in the symbolic dump. If
-b blklist is specified, only the common blocks named in blklist are included in the sym
bolic dump. If both options are specified. all common blocks are included in the symbolic
dump except those in blklist.

blldist may have up to 20 common blocks named. There is no limit on the length of a
common block name. The common blocks named in blklist must be separated by commas
(for example: -b c,d).

Enter the common blocks named in blklist in the case in which they appear in the symbol
table. Names may not always appear in the symbol table in the same way they appear in
your program. The UNICOS Symbolic Debugging Package Reference Manual. publication
SR-0112, describes how symbol names appear in the symbol table.

D

SYMDUMP(3DB) SYMDUMP(3DB)

SR-Ol13

-c calls calls is an integer that specifies the number of routine levels 10 be displayed in the sym
bolic dump. For each task reported, SYMDUMP traces back through active routines the
number of levels specified by calls. Routines for which no symbol table infonnation is
available are not counted for pwposes of the routine level count. The default is 50.

-d dimlist dimlist is an integer that specifies the maximum number of elements from each dimension
of the arrays to be dumped. SYMDUMP can dump array elements from up to seven dimen
sions. The dimensions must be specified by integer values, and the values must be
separated by commas (example: -d 4,6)

This option allows you to sample the contents of an array without creating huge amounts of output
dimlist applies 10 all blocks dumped, and the arrays are dumped in storage order. The default is -d
20,5,2,1,1,1,1.

-I /file /file names an output file. Specifying -I file directs SYMDUMP to write output to the specified
file. If you call SYMDUMP more than once, and you specify.) with the same file each time,
SYMDUMP output will be appended to the file each time. By default, SYMDUMP output is
written to stdout.

-r Repeat blocks. When this option is used, SYMDUMP displays the contents of common blocks
specified with the -B and -b blklist for each subroutine in which they are declared. The default
displays common blocks only once.

-s symftle
symfile names a file containing the Debug symbol tables. There is no limit on the length of the
symfile file name, and it may include a pathname to the desired file. SEGLDR puts both the
symbol table information and the executable binary in the same file. By default. Debug sym
bol tables are written to a.out.

-V With -V specified, SYMDUMP generates SYMDUMP release statistics.

-y symJist

-y These options may occur anywhere in the option string in any order. Use one of the follOwing
methods to control the way symbols are displayed:

If neither option is specified. all symbols are displayed. Default.

If only the -Y option is specified, no symbols are displayed.

If only the -y option is specified, all symbols except those named in symlisl are displayed.

If both options are specified, only the symbols named in symlisl are displayed.

symlisl may contain up 10 20 named symbols, and there is no limit to the length of the symbol
names. The symbols named in symlisl must be separated by commas (example: -y a, b)

Enter the symbols in the same case in which they appear in the symbol table. Names may not
always appear in the symbol table in the same way they appear in your program.

abort.flag
An optional abort.ftag indicates to SYMDUMP whether or not to abort if it finds an error when
parsing the SYMDUMP statement. An abortJiag with a value of zero indicates no abort; an
abortJiag with a value other than zero indicates abort.

You cannot enter an abortJiag if you have not entered any options.

By default, SYMDUMP examines all options. reports errors found, and generates a dump based
on the options it could understand; the program does not abon.

16-17 D

SYMOUMP (30B) SYMOUMP(30B)

NOTES

Note that the abortJlag is not allowed when options contains a Pascal variant array.

Use SEGLDR or Id(l) to load programs that call SYMDUMP. When using SEGLDR, specify b'brary
Ubdb.a. which contains SYMDUMP, on the -I option.

The following three examples show how to load progrnms that call SYMDUMP.

Example 1:
If you are not expanding blank common and do not need to specify a SEGLDR HEAP directive
on the SEGLDR command line for any other reason, you do not need to specify a SEGLDR
HEAP or STACK directive. The following example shows a SEGLDR command line without
HEAP or STACK directives:

segldr -llibdb.a "'.0

Example 2=
If you are expanding blank common, you need to specify SEGLDR STACK and HEAP direc
tives. The following example shows a SEGLDR command line that can be used if the program
expands blank common.

segldr -llibdb.a -D "STACK=3000+0;HEAP=l()()()()+O" *.0

This example shows settings that should provide enough stack and heap space for SYMDUMP
to run, assuming that your program is an average large application that has as many as 1000
blocks. For applications with more blocks, 6 to 7 words per block over 1000 should be added
to the heap setting. Optimal heap settings depend on the specific application.

If running the application causes SYMDUMP to exit with the following error message. the
value on the HEAP directive is too small:

HPALLOC failed; return status:::;: i

Example 3:
If a SEGLDR DYNAMIC directive is used. the stack and heap cannot expand, so a SEGLDR
STACK or HEAP directive may also be needed. Refer to the previous example for information
about expanding the stack and heap. To load the heap prior to blank common, use
DYNAMIC=II on SEGLDR's -D option, as shown in the following example:

segldr -I libdb.a -D "DYNAMIC-II" 11<.0

For more infonnation on SEGLDR, see the Segment Loader (SEGLDR) Reference Manual, publication
SR-0066.

EXAMPLES

SR-0113

The following example shows how to caU SYMDUMP from a Fortran program when passing a character
descriptor:

character*30 string
integer abtft

string :::;: • -s test -B -b STRING'
abtfl = 1

16-18 D

SYMDUMP(3DB)

C CHARACTER VARIABLE
call symdump (string. abtfl)

C CHARAClER CONSTANT
call symdump (' -1 ouctile -V')

The following example shows how to call SYMDUMP from C:

extern void SYMDUMPQ;

fit abcflag = 1;
char *string;

string = ., -s a.out -V";
SYMDUMP (string. &abt flag);

SYMDUMP(3DB)

The following example shows how to call SYMDUMP from Pascal when passing a conformant array:

type
strin&-type = packed array [1..30] of char;

var
abort_flag: boolean;

procedure symdump (var string: strinLtype; var flag: boolean);
imported (SYMDUMP);

abort_flag := true;
string [1..20] != 'os test -y S'IRING -Y';
string [21] := ehr (0); (* must null terminate the string *)
syrndump (string. abort_flag);

IMPLEMENTATION

This routine is available only to users of the UNICOS operating system.

SR-0113 16-19 D

TRBK(3U) TRBK(3U)

NAME

TRBK - Lists all subroutines active in the current calling sequence

SYNOPSIS

CALL TRBK[(arg)]

DESCRIPTION

arg Address of dataset name or unit number

TRBK prints a list of all subroutines active in the current calling sequence from the currently active
subprogram. It also identifies the address of the reference. You can specify a unit (arg) to receive the
list. H you do not specify a unit, the list is printed to the user logfile or message log.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR"()113 16-20 D

TRBKLVL(3U) TRBKLVL(3U)

NAME

TRBKLVL - Returns infonnation on current level of calling sequence

SYNOPSIS

CALL TRBKL VL(trbktab,arglist,status,name ,calladr,entpnt,seqnum,numarg)

DESCRIPTION

Irb/aab

arglist

status

name

calladr

entpnl

seqnum

numarg

IMPLEMENTATION

Current level's Traceback Table address. On exit, current level's caller's Traceback Table
address. Zero if the current level is a main-level routine.

Current level's argument list address. On exit, current level's caller's argument list address.
Zero if the current level is a main-level routine.

<0 if error
=0 if no error
>0 if no error and the cmrent level is the main level

Current levers name (ASCII, left-justified, blank-filled)

Parcel address from which the call to the CWl'ent level was made

Parcel address of the current level's entry point

Line sequence number corresponding to the call address (0 indicates none)

Number of arguments or registers passed to the current level

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 16-21 D

XPFMT(3U) XPFMT(3U)

NAME

XPFMT - Produces a printable image of an Exchange Package

SYNOPSIS

CALL XPFMT(address, in, out, mode)

DESCRIYI10N

address

in

out

mode

The nominal location of the Exchange Package to be printed as the starting Exchange Pack
age address. The output buffer contains an 8-character field at the beginning of each line of
the Exchange Package to indicate a CRA Y address. The binary number in address is used
to fill these eight characters of the first line of the Exchange Package in the output buffer
and is incremented to fill each succeeding line of the output buffer. This is not the address
of the 16-word buffer containing the Exchange Package to be formatted.

A 16-word integer array containing the binary representation of the Exchange Package

An integer array, dimensioned (8.0:23), into which the character representation of the
Exchange Package is stored. Line 0 is a ruler for debugging and is not usually printed.

The first word of each line is an address and need not always be printed.

An integer word indicating the mode in which the Exchange Package is to be printed. 'Y'L
forces the Exchange Package to be formatted as a CRAY Y-MP Exchange Package; 'X'L
forces the Exchange Package to be formatted as a CRAY X-MP Exchange Package; 'S'L
forces the Exchange Package to be fonnatted as a CRAY-l Exchange Package; 0 means that
the subprogram is to use the Exchange Package contents to deduce the machine type.

XPFMT produces a printable image of an Exchange Package in a user-supplied buffer. A and S regis
ters appear in the buffer in both octal and character fonn; in the character form. the contents of the
register are copied unchanged to the printable buffer. The calling program is responsible for proper
translation of unprintable characters. Parcel addresses have a lowercase a. b. c. or d suffixed to the
memory address.

You can specify that the Exchange Package be formatted as a CRAY X-MP or CRAY-l Exchange Pack
age. or you can allow XPFMT to determine which format to use. based on the values in the Exchange
Package. Values within the Exchange Package determine the Exchange Package fonnat. XPFMT
assumes that the Exchange Package was produced by or for a CRA Y X-MP computer system if either
the data base address or the data limit address is nonzero. Otherwise. it assumes thal the Exchange
Package was produced by or for a CRAY-l computer system.

IMPLEMENI' A TION

This routine is available to users of both the cos and UNICOS operating systems.

SR-0113 16-22 D

XPFMT(3U)

EXAMPLE

SR-0113

SUBROUTINE SUB 1 (INTXP,OUTXP)
INTEGER INTXP(16),OUTXP(8,O:23),IADDR,IMODE

*
* address to use in output array

IADDR=8700

*
* let processor deduce machine type

*
IMODE""O

*
* pass the input Exchange Package to XPFMT and get the formatted
* version to print in OUTXP

*
CALL XPFMT(IADDR,INTXP,OUTXP,IMODE)

*
* print the output of the XPFMT routine

*
PRINT I,OlITXP

1 FORMAT(24(IX.8A81))
END

16-23

XPFMT(3U)

D

INTRO(3X) INTRO(3X)

17. SYSTEM INTERFACE ROUTINES

System interface routines are grouped into the following categories:

• Job control language (JCL) symbol routines

• Control statement processing routines

• Job control routines

• Floating-point interrupt routines

• Bidirectional memory transfer routines

• Special purpose interface routines

JOB CONTROL LANGUAGE SYMBOL ROUTINES

The JCL symbol routines manipulate JCL symbols for conditional JCL statements.

JSYMSET changes a value for a ICL symbol. JSYMGET allows a user program to retrieve JCL symbols.

CONTROL STATEMENT PROCESSING ROlITINES

SR-0113

Control statement processing routines place control statement elements in appropriate memory locations
to perfonn the specified operations. These routines, CRACK, PPL, and CEXPR, can also process direc
tives obtained from some source other than the control statement file ($CS).

Control statement cracking routines take the uncracked image from the ICCCI field and crack it into the
ICCPR field. The Job Communication Block (JCB) contains the control image in ICCC!. JCDl1T is a
flag indicating whether or not literal delimiters are to be retained in the string.

The following table contains the purpose, name, and entry of each control statement processing and
cracking routine.

Control Statement Processing and Cracking Routines
Purpose Name Entry

Crack a control statement CCS CCS
Process control statement parameter GETPARAM GETPARAM
values
Crack a directive CRACK CRACK
Process a parameter list PPL PPL
Cmck an expression CEXPR CEXPR

17-1 D

INTRO(3X) INTRO(3X)

JOB CONTROL ROUTINES

Job control routines perform functions relating to job step termination, either causing a tennination or
instructing the system on how to handle a tennination. Unless otherwise specified, these routines are
called by address. No arguments are returned.

The following table contains the purpose, name, and entry of each job control routine.

Job Control Routines
Purpose Name Entry

Request abort with ~eback ABORT ABORT

Terminate a job step and advance END
END

Continue exit processing after a reprievable ENDPRV
condition

Exit from a Fortran program EXIT EXIT

Request abort ERREXIT ERREXIT
Declare a job rerunnable or not RERUN
rerunnable

RERUN
Instruct the system to begin or NORERUN
cease monitoring jobs for functions
affecting rerunnability

Conditionally transfer control to a SETRPV SETRPV
specified routine

FLOATING-POINT INTERRUPT ROUTINES

SR-0113

Floating-point interrupt routines allow yOIl to test, set, and clear the Floating-point Interrupt Mode flag.
Subroutine linkage is ca1l-by-address.

The following table contains the purpose, name, and entry of each Hoating-point interrupt routine.

Floating-point Interrupt Routines
Purpose Name Entry

Temporarily prohibit Hoating-point CLEARFI
interrupts

CLEARFI
Temporarily permit floating-point SETFI
interrupts

Temporarily prohibit floating-point CLEARFIS
interrupts for a job

CLEARFIS
Temporarily enable floating-point SETFlS
interrupts for a job

Determine whether floating-point SENSEFI SENSEFI
interrupts are permitted or
. prohibited

17-2 D

INTRO(3X) INTRO(3X)

BIDIRECTIONAL MEMORY TRANSFER ROUTINES

NOTE

Bidirectional memory transfer routines test, set. and clear the Bidirectional Memory Transfer Mode flag.
Subroutine linkage is call-by-address.

These routines are only effective on CRAY Y-MP and CRAY X-MP compuler systems. which have
hardware suppon for bidirectional memory transfer. They are no-ops on other mainframe types.

The following table contains the purpose, name, and entty of each bidirectional memory transfer rou
tine.

Bidirectional Mem~ Transfer Routines
Purpose Name Entry

Temporarily disable bidirectional CLEARBT
memory transfers

CLEARBT
Temporarily enable bidirectional SETBT
memory transfers
Permanently disable bidirectional CLEARBTS
memory transfers

- CLEARBTS
Permanently enable bidirectional SETBTS
memory transfers
Detennine current memory ttansfer SENSEBT SENSEBT
mode

SPECIAL-PURPOSE INTERFACE ROUTINES

The following table contains the purpose, name, and entry of each special-purpose interface routine.

SR-0113 17-3 D

INTRO(3X) INTRO(3X)

Special-purpose Interface Routines

Purpose Name EnlrV
Return the Job Accounting Table ACTTABLE ACTTABLE

Program a Cray channel on an lOS DRIVER DRIVER
Turn on or off the class of ECHO ECHO
messages to the user logfile
Allow a job to suspend itself ERECALL ERECALL

Return lines per page GETLLP GETLLP

Return the integer ceiling of a ICEIL ICEIL
rational number formed by two
integer parameters
Allow a job to communicate with UCOM IJCOM
another job

Return the job name JNAME .JNAME
Load an absolute program from a LGO LGO
dataset containing a binary image

Return the memory address of a LOC LOC
variable or an array

Manipulate a job's memory allocation MEMORY MEMORY
andlor mode of field length
reduction
Return the edition for a previously NACSED NACSED
accessed pennanentdataset
Load an overlay and transfer control OVERLAY OVERLAY
to the overlay entry point
Entec a message (preceded by a message REMARK
prefix) in the user and system logfiles

REMARK
Enter a message in the user and REMARK2
system logfiles

Enter a fonnatted message in the REMARKF REMARKF
user and system logfiles

Return Cray machine constants SMACH SMACH
(machine epsilon; smallest and CMACH
largest normalized numbers.)

Test the sense switch SSWITCH SSWITCH
Make requests of the operating SYSTEM SYSTEM
system

SR-01l3 17-4 D

ABORT(3U) ABORT(3U)

NAME

ABORT - Requests abon with traceback

SYNOPSIS

CALL ABORT[(log)]

DESCRIPTION

log Log file message

ABORT requests abort with traceback and provides an optional log file message. The optional user
supplied log file message is wriuen to both user and system log files. The message is written in the
same format in which it was senL

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OII3 17-5 D

AC'ITABLE (3COS) ACITABLE(3COS)

NAME

ACTTABLE - Returns the Job Accounting Table (JAT)

SYNOPSIS

CALL ACTT ABLE(array,count[,tac ,tasz,gut ,guszjut/usz])

DESCRIPTION

array

count

tac

tasz

gut

gusz

Jut

JUSZ

An array in which to write a copy of the JAT

Count; the first count words of the JAT are returned in the array. If count is greater than
the size of the JAT. the array is padded with minus ones.

Address in which to write a copy of the Task Accounting Table

Length of the task accounting infonnation to copy in words. No more than tasz words are
returned.

Address in which to write a copy of the Generic Resource Table

Length of the Generic Resource Table information in words. No more than gusz words are
returned.

Address in which to write a copy of the Fast Secondary Storage (PSS) device utilization
infonnation

Length of the PSS device utilization infonnation area in words. No more than Jusz words
are returned.

You can specify array and count without requesting any of the optional information with the other
parameters. However, to request any of the optional information. you must enter values for all six of
the optional parameters, entering a zero length for those you do not want.

EXAMPLE

The call to ACTTABLE in the following example returns information from the JAT and six words from
the Task Accounting Table. Since the size parameters (GUSZ and FUSZ) are set to zero, no FSS or
Generic Resource Table information is returned.

PROGRAM ACITAB

IMPUCIT INTEGER (A-Z)

PARAMETER (COUNT = 10)
PARAMETER (TASZ = 6)
PARAMETER (GUSZ "" 0)
PARAMETER (FUSZ = 0)
DIMENSION ARRAY(60), TAC(6)

CALL ACTT ABLE(ARRA Y,COUNT,TAC.TASZ.JUNK.GUSZ.JUNK,FUSZ)

STOP

END

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 17-6 D

CCS(3COS)

NAME

CCS - Cracks a conttol statement

SYNOPSIS

CALL CCS

DESCRIPTION

No parameters. CCS aborts the job if errors are encountered.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 17-7

CCS(3COS)

D

CEXPR(3COS) CEXPR (3eOS)

NAME

CEXPR - Cracks an expression

SYNOPSIS

CALL CEXPR(char ,out,iml,size)

DESCRIPTION

char Expression character-string array (tenninated by a 0 byte)

out Reverse Polish Table array for output

lml Upper limit to the size of the Reverse Polish Table

size Actual size of the Reverse Polish Table on return

CEXPR transforms an expression character string (I right-justified character per word) to a Reverse Pol
ish Table.

An expression can contain a mixture of symbols. literals. numeric values, and operators. Expressions
handled by this routine resemble Fortran in syntax.

Operator hierarchy follows Fortran rules and does parenthesis nesting. Symbols are defined as 1- to 8-
character strings having unknown value to CEXPR. CEXPR simply flags the strings for the caller. The
first character cannot be numeric. Literals are 1- to IS-character strings enclosed by double Quotes (").

A character string consisting of numeric digits is taken as a 64-bit integer. A trailing B signifies an
octal number.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 D

CLEARBT (3COS) CLEARBT (3COS)

NAME

CLEARBT, SETBT - Temporarily disables/enables bidirectional memory transfers

SYNOPSIS

CALL CLEARBT
CALL SETBT

DESCRIPTION

CLEARBT temporarily disables bidirectional memory transfers. SETBT temporarily enables bidirectional
memory transfers.

These routines are local to the current job step. The system restores the most recent mode setting at the
start of the next job step. No arguments are required or returned.

IMPLEMENTATION

These routines are available only to users of the COS operating system.

SR-01l3 17-9 D

CLEARBTS (3COS) CLEARBTS (3COS)

NAME

CLEARBTS, SETBTS - Permanently disables/enables bidirectional memory transfers

SYNOPSIS

CALL CLEARBTS
CALL SETBTS

DESCRIPTION

CLEARBTS permanently disables bidirectional memory transfers. SETBTS permanently enables bidirec
tional memory transfers.

The results of these routines are permanent and are propagated through job steps. The system does not
alter the mode setting unless another bidirectional memory transfer control subroutine is called or a
MODE control statement is executed. No arguments are required or returned.

IMPLEMENTATION

These routines are available only to users of the cos operating system.

SR-OI13 17-10 D

CLEARFI(3U) CLEARFI (3U)

NAME

CLEARF1, SETFI - Temporarily prohibits/permits floating-point interrupts

SYNOPSIS

CALL CLEARFI
CALL SETFI

DESCRIPTION

CLEARFI temporarily prohibits floating-point interrupts. SETFI temporarily permits floating-point inter
rupts.

These routines are local to the current job step. The system restores the most recent mode setting at the
start of the next job step. No arguments are required or returned.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 17-11 D

CLEARFIS (3eOS) CLEARFIS (3COS)

NAME

CLEARFIS, SETFIS - Temporarily prohibits/pennits floating-point interrupts for a job

SYNOPSIS

CALL CLEARFIS
CALL SETFIS

DESCRIPTION

CLEARFIS prohibits floating-point interrupts for a job until they are enabled or until the job tenninates.

SETFIS enables floating-point interrupts until they are explicitly disabled or until the job tenninates.

The results of these routines are propagated through job steps. The system does not alter the mode set
ting until another floating-point interrupt control subroutine is called or a MODE control statement is
executed. No arguments are required or returned.

IMPLEMENTATION

These routines are available only to users of the cos operating system.

SR-OI13 17-12 D

CRACK(3COS) CRACK (3COS)

NAME

CRACK - Cracks a directive

SYNOPSIS

CALL CRACK(ibuj.ilen.cbuj.clen,/lag[,djlag])

DESCRIPTION

NOTES

ibuf Image of the statement to be cracked

ilen Integer length (in words) of the statement image to be cracked. Maximum value is 10
words.

cbuf Array to receive the cracked image

clen Integer length in words of the array cbuf

flag Integer variable to receive completion status. The Return Value flag has the follOwing
meanings:

o Nonna} termination
1 No error; continuation character encountered.
2 Invalid character encountered
3 Premature end-of-input line
4 CRACK buffer overflow
5 Unbalanced parentheses
6 Input buffer too large

dflag Integer flag indicating that literal string delimiters are to be preserved in the cracked image.
If set to 0 or omitted. quotes are not included in the cracked string. If set to 1, all quotes
are included in the string.

CRACK refonnats (parses) a user-supplied string into verb. separators. keywords, and values. The
cracked directive is placed in a user-supplied buffer and returns the status of the crack to the caller.
CRACK can be called repeatedly to process a control statement across several records.

Each keyword or positional parameter should be assigned a separate word. Keywords or positional
parameters of more than 8 characters must be assigned I word for each 8 characters plus 1 for any
remaining characters if the length is not a multiple of 8 characters. Each separator must also be
assigned a separate word.

jlag should be set to 0 before the first call to CRACK and should not be changed (except by CRACK)
until after the last call to CRACK.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

SR-Ol13 17-13 D

DELA Y (3COS) DELAY(3COS)

NAME

DELA Y - Do nothing for a fixed period of time

SYNOPSIS

CALL DELA Y(mstime)

DESCRIPTION

mstime DeJay time in milliseconds. mstime must be in the range 0 to 224-1.

DELA Y requests that the executing task not be rescheduled to a CPU until mstime milliseconds have
elapsed.

IMPLEMENTATION

This routine is only available to users of the COS operating system.

SR-0113 17-14 D

DRIVER (3COS) DRIVER (3COS)

NAME

DRIVER - Programs a eray channel on an 110 Subsystem (lOS)

SYNOPSIS

CALL DRIVER(array,lentry,status)

DESCRIPTION

array First element of the integer parameter block array. The array is lentTY words long. In all
cases, FUNC, PLEN, and LN are required in the parameter block, and COSS is returned in
the User Driver Parameter Block (DRPB) (see the COS Reference Manual, publication SR-
0011, for more infonnation on DRPB). DP is always sent to the driver and returned to you.
See individual driver specifications for the use of the word and other field requirements.

For the Fortran user, FUNC, DIR, and COSS are literal strings. (For example, set FUNC to
'CFN$OPE' and DIR to'DIR$INP' to open an input channel. 'DRS$RSV' in COSS means
the channel is reserved for another job.)

The 'CFN$OPE' subfunction opens a channel; a job cannot access a channel until il opens
the channel. DRNM, TO, DIR, and OPD are required.

The 'CFN$CLS' subfunction closes a channel. Any open channels are closed during tenni
nation. DIR is required.

The 'CFN$RD', 'CFN$RDH', and 'CFN$RDD' subfunctions read data. BAD and DLN are
required; TLN is returned. For read, either the channel is read to Centtal Memory or data is
moved from lOS Buffer Memory to Central Memory (if a readJhold was done prior to this
read). For read/hold, a second read is perfonned, and the data is held in Buffer Memory
for a subsequent read. For reacVread, a second read to Central Memory is done.

The 'CFN$WT', 'CFN$WTH', and 'CFN$WTD' subfunctions write data. BAD and LN are
required; TLN is returned. For write, dara is written to the channel from Central Memory
or Buffer Memory (if a writelhold was done prior to this request). For write/hold. a second
buffer of data is moved to and held in Buffer Memory for a subsequent write. For
write/write a second write is performed from Central Memory.

The 'CFN$DMIN'-'CFN$DMAX' subfunctions are defined by the driver. DFP and DIR are
required.

lentTY Length of Ihe parameter block entry in array; user-specified integer variable.

status Status; integer variable set by the system. On return. status is 0 if no errors have occurred,
and the job must poll COMS for nonzero. When COMS is nonzero. the driver has com
pleted the request and Ihe driver starus is in DRS. See the individual driver specifications
for driver status. If status is nonzero on return, COSS contains the error code and the
request is not sent 10 the driver.

If no errors have OCCWTed, and if status is nonzero on return, COSS contains the error code.

This capability is available only with devices connected to the Master I/O Processor (MIOP). This is a
privileged function available to all single-tasked job steps. It is prohibited to multitasking job steps.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 17-15 D

ECHO(lCOS) ECHO(3COS)

NAME

ECHO - Turns on and off the classes of messages to the user logfile

SYNOPSIS

CALL ECHO('ONtL[lIJaTam·a"ay].'OFFtL[,param-array])

DESCIUFfION

param.-array Optional array of message class names or 'ALL', Message class names are defined in
the COS Reference Manual, publication SR-OOll.

IMPLEMENTA1l0N

This routine is available only to users of the COS operating system,

SR-Ol13 17-16 D

END(3U)

NAME

END, ENDRPV - Terminates a job step

SYNOPSIS

END
CALL ENDRPV

DESCRIPTION

END terminates a job step and advances to the next job step.

END(3U)

ENDRPV continues nonnal exit processing afler a reprievable condition has been processed. This exit
processing can be the result of normal termination or abort processing.

IMPLEMENTATION

END is available to users of both the COS and UNlCOS operating systems.

SR-0113 17-17 D

ERECALL(3COS) ERECALL(3COS)

NAME

ERECALL - Allows a job to suspend itself until selected events occur

SYNOPSIS

CALL ERECALL(func,status,sevents,to,oevenls,levents)

DESCRIPTION

June User-specified integer variable to define the requested information or action

status

sevents

to

oevents

SR-0113

1)ISABLE' Disables event monitoring. All other words are
ignored.

'ENABLE'

'RECALL'

'RETURN'

Enables event monitoring or changes the events to be
monitored. levents and sevents are required. If
levents is 0, time-out is the only enabled event; time-out is
enabled to prevent a job remaining indefinitely in recall.
levents and oevents are returned by the system. to
is ignored.

Places the job in recall. An error is returned in
status if monitoring is disabled. to is required;
sevents is ignored. levents and oevents are set by
the system. If to is O. an installation-defined default,
I@TODEF, is used. If to is specified,
but less than the
installation-defined minimum,
I@TOMIN. the installation
minimum is used with no notification. If [events is 0 on
return, time-out is the only event that occurred

Requests that levents and oevents be set
by the system; all other words are ignored. An error is returned in
status if monitoring is disabled.

Status; an integer variable set by the system. Status is 0 if no errors occurred; otherwise,
see the Event Recall Parameter Block (ERPB) definition in the COS Reference Manual, pub
lication SR-OOll, for error codes. The codes are returned as blank-filled literal strings (for
example, ERER$BFN is returned as 'ERER$BFN').

User-specified integer array containing the events to be monitored. levents is the number of
events specified in sevents. The events can be selected from the following:

'LJ' Interjob message received
'UO' Unsolicited operator message received (Deferred implementation)
'OR' Operator reply received (Deferred implementation)

The following events are privileged:

'CW Channel driver done
1:Q' SDT placed in input queue (Deferred implementation)
'OQ' SOT placed in output queue (Deferred implementation)

Time-out duration in milliseconds (rightmost 24 bits); user-specified integer variable.

Integer array set by the system to the occurred events. levents is the number of event
words that have been placed in oevents by the system. See sevents for possible values.

17-18 D

ERECALL(3COS) ERECALL(3COS)

NOTE

levents Integer value specifying the number of events in either sevents or oevelllS. For ENABLE.
set levents to the number of event words that you have placed in sevents. On return from
ENABLE, RECALL. and RETURN, levents is the nwnber of event words that the system has
placed in oevenlS.

ERECALL allows a job to suspend itself until one or more selected events occur.

This routine is available to all single-tasking job steps; it is prohibited to multitasking job steps.

When event monitoring is enabled. the system monitors selected evenlS for a job. keeping track of
which ones have occurred. Monitoring is disabled at the beginning of each job step and can be enabled
by making a system request, specifying the events to monitor. Once monitoring is enabled, a job can
make a system request to change the events that are to be monitored, get a map indicating which of the
monitored events occurred. go into event recall until one of the selected events occurs, or disable moni
toring.

When monitoring is enabled, a map of occurred events is returned to you and discarded by the system.
If monitoring was disabled when the enable occurred, the map is O.

When the events to be monitored are changed, a map of occurred events is returned to you and dis
carded by the system.

When a map of occurred events is requested, the map is returned to you and discarded by the system.

When reca11 is requested and the map of occurred events is 0, the job is suspended for an event until
one of the events occurs. If the map is nonzero, the map is returned to you immediately and discarded
by the system.

When recall is disabled, the map of occurred events is discarded by the system.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEB ALSO

The COS Reference Manual, publication SR-OOll

SR-0113 D

ERREXIT(3U)

NAME

ERREXIT - Requests abon

SYNOPSIS

CALL ERR EXIT

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR-01l3 17-20

ERREXlT(3U)

D

EXIT(3U) EXIT(3U)

NAME

EXIT - Exits from a Forttan program

SYNOPSIS

CALL EXIT

DESCRIPTION

EXIT ends the execution of a Fortran program and writes a message to the Jog file (COS) or stdout
(UNICOS). Under COS, the message is as follows:

UTOO3 - EXIT CALLED BY Toutine name

The UNICOS message is as follows:

EXIT (called by Toutine name, line n)

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-Ol13 17-21 D

GETARG(3F)

NAME

GET ARG - Return Fortran command-line argument

SYNOPSIS

ichars = GET ARG(i.c)
ichars= GETARG(i.c.size)

DESCRIPTION

ichars Number of non-null characters in the string returned.

Number of the argument to retwn

GETARG(3F)

c Character variable or integer array in which to return the command-line argument

size If c is an array. the number of elements in that array

GETARG returns the i-th command-line argument of the current process. Thus. if a program is
invoked with the following command line, GET ARG(2,C) returns the string arg2 in the character vari
able C:

foo argl arg2 arg3

SEE ALSO

GETOPT(3C)

IMPLEMENTATION

This routine is available only to users of the UNICOS operating system.

SR-Ol13 17-22 D

GETLPP (3COS)

NAME

GETLPP - Returns lines per page

SYNOPSIS

lpp;GETLPP()

DESCRIPTION

lpp Lines per page (type integer)

OETLPP(3COS)

GETLPP returns the lines per page from field JCLPP of the Job Control Block (JCB) in register Sl.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 17-23 D

GETPARAM (3COS) GETPARAM (3COS)

NAME

GETPARAM - Gets parameters

SYNOPSIS

CALL GETPARAM(table,number,param)

DESClUPTION

table The Parameter Control Table (PCI'), dimensioned (5,number) and containing the following

number

in each 5·element row:

1 A left-justified. zero-filled keyword
2 A default value for use if the keyword is missing
3 A default value for use if the keyword is present but not

assigned a value
4 Subscript of param into which the first parameter value is

stored
5 Index of the 1ast word the the param array to be used for

storing the parameter value

If item 2 is negative. GETPARAM requires the keyword to be on the control statement.

If item 3 is negative. GETPARAM does not allow the use of the keyword alone (as in
" ... ,keyword, ... ").

Either item 2 or 3 can be 0; GETPARAM does not distinguish between Os and any other
positive values such as character strings, but the caller can test them after GETPARAM
returns.

If items 2 and 3 are 0 and 1. or 1 and O. respectively, GETPARAM does not allow the key
word to be followed by an '='. The keyword must be simply absent or present.

If item 1 is a 64-bit mask (that is, 177717 77717777 7777 7777B), the value given as the key
word is returned in the control table. When an entry of this type is specified in the control
table. the number of parameters is limited to one.

If item 1 is given a value of 0, the entry describes a positional parameter. Entries of this
nature must be described in positional order.

If bit 2 in item 4 (that is. 020000 0000 0000 0000 OOOOB) is set, the parameters following the
keyword are defined to be secure and are edited out before the statement is echoed to the
user's logfile. If bit 3 is set, it indicates that a NULL character in the first word of a param
eter value should be considered a string terminator.

The number of parameters described in the control table. If set to 0, GETPARAM does not
allow any parameters on the conttol statement.

param An array sufficiently large to receive all the parameter values

SR-OU3

GETPARAM processes control statement parameter values from an already cracked control statement.
If the statement has been continued across card images, GETPARAM automatically requests the next
control statement and calls $CCS to crack it. Processing is detennined by the rules set up by the PCT.

The PCI' indicates default values for unspecified parameters. Through the PCT, the caller also indicates
the following:

• If a parameter must be specified on the statement
• If a parameter is positional or keyword
• If a keyword parameter can have an equated value
• If a keyword parameter must have an equated value
• If any parameters are allowed

17-24 D

GETPARAM(3COS) GETPARAM(3COS)

EXAMPLE

NOTES

Example of control table definition in Fortran:

*
*
*

INTEGER PERMFILE(2) PARAMS(15), TABLE(5,4), INPUT,UBRARY(lO),LIST
EQUIV ALENCE(pARAMS(l).INPUT),

(p ARAMS(2),PERMFILE),
(PARAMS(4),LIBRARY(1».
(PARAMS(14),LISn

DATAPARAMS/15*O/
DATA (TABLE(I,1),I=1.5)I'I'L,'$IN'L.'$IN'L.l,lI,

(T ABLE(l.2),I= 1 ,5)!'P'L,O,-1;2.,3/,
(T ABLE(l.3).I=1 ,5)/'LIB 'L,-I. '$FrLIB 'L,4,I3/.
(TABLE(I,4).I=1,5)fLIST'L,O,I,14,14/

CALL GE1PARAM (TABLE,4,PARAMS)

This table (for a hypothetical program) teUs GETPARAM that the only keywords to be accepted are I~ p~
LIB, and UST. The -I value means that P cannot appear alone (without an equal sign) and that LIB (with or
without an equal sign) must appear in the control statement.

In this table, only one word is provided for the I parameter; therefore, if I=xu appears in the control state
ment. the option .at must not exceed 8 characters. The 2 words provided for the P parameter allow for the
maximum of 16 characters or for two subparameters (up to 8 characters each) separated by a colon in the
control statement. Ten words are provided for the Lm parameter so that up to ten subparameters (or five 2-
word parameters) are allowed in the control statement. GETPARAM requires the keyword UST to appear
alone or not at all. IfUST is specified, the value returned in the Parameter Value Table is 1. LIST cannot be
followed by an equal sign.

The following two subparameters cannot be distinguished from one another in the P ARAMS table:

A=A1234567:B1234567(Two 8-character parameters)
A=A1234567B1234567(One 16-character parameter)

Thus. the caDer is responsible for restricting such cases.

The output array PARAMS must be as large as the largest subscript. If PARAMS is initialized to as, the
programmer can determine how many words are retumed by GETPARAM for multi word parameters
such as P and LIB.

Because Fortran array numbering starts with 1, the array's base address is reduced by 1 in GETPARAM.
Therefore, the CAL user must supply the table address + 1 (This is not true for SGP) in order to use
labels directly in lieu of the Fortran subscripts.

The following characters should not be used in keywords: the colon, parentheses, period, comma. apos
trophe. caret, and equal sign.

GETPARAM aborts if the control statement violates either the standard control statement syntax rules or
the additional rules imposed by the PCf. If there are no errors, the array is fined with values from the
control statement and/or with default values. The PCf is not altered by GETPARAM.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 17-25 D

IARGC(3U)

NAME

lARGe - Returns number of command line arguments

SYNOPSIS

iargs = IARGC()

DESCRIPTION

iargs Number of command line arguments passed to the program

If a program is invoked with the following command line, lARGe returns 3:

foo argl arg2 arg3

SEE ALSO

GETOPT(3C)

IMPLEMENTATION

This routine is available only to users of the UNICOS operating system.

SR-0113 17-26

JARGC(3U)

o

ICEIL(3U)

NAME

ICEIL - Returns integer ceiling of a rational number

SYNOPSIS

i=ICEIL(j,k)

DESCRIPTION

j The numerator of a rational number

k The denominator of a rational number

ICEIL(3U)

ICEIL returns the integer ceiling of a rational number fonned by two integer parameters. ICEIL is an
integer function.

The value of the function i is the smallest integer larger than or equal to f.
IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-01l3 17-27 D

llCOM(3COS) UCOM(3COS)

NAME

UCOM - Allows a job to communicate with another job

SYNOPSIS

CALL UCOM(status,array,lentry,nentry)

DESCRIPTION

SR-0113

status is a literal value of the error (or. in the case of multiple errors. the literal value of the
last emB' to occur). If status is not equal to DMS$OK, STAT contains the literal error code.
If multiple parameter blocks are used. all STAT fields must be examined if status is
nonzero.

array First element of the integer parameter block array. An installation-defined maximum
number of parameter blocks (I@MPBS) can be specified in array. The array is larray
words long, and each of the nentry parameter blocks in it is lentry words long. See the
Interjob Communications Parameler Block (UFB) table definition in the COS Reference
Manual. publication SR-OOll, for a description. You may ignore LINK; the system links the
entries together for the user. In all cases. FUNC, RID, and PLEN are required in each
parameter block, and the system sets STAT in each parameter block. The array length must
equal lentry • nentry.

lentry

nentry

FUNC and STAT are literal strings (for example, set FUNC to 'UM$OPEN' to open a path.

'JJMSNOP'

'JJMSREC'

'JJMSOPEN'

'IJM$ACCE'

'IJMSREJE'

'JJMSSNDM'

'I.JM$SNDL'

'1JMSCLOS'

Subfunction is a no op.

Subfunction marks the job as receptive. RCB is required; all other words
are ignored.

Subfunction initiates an attempt to open a communication path with
another job. HLEN, TID, and NCB are required; all other words are
ignored.

Subfunction accepts a request from another job to open communication.
TID, HLEN. and NCB are required; all other words are ignored.

Subfunction rejects a request from another job to open communication.
TID is required; all other words are ignored.

Subfunction sends a message to another job. NCB, TID, BADD. and BLEN
are required; all other words are ignored.

Subfunction sends a message to an attached job's logfile. This is a
privileged function. TID, OVR, FCS, FCU, CLS, and BADD are required;
all other words are ignored.

Closes a communication path. Either NCB and TID or neither are
required; all other words are ignored. If NCB and TID are specified. only
the path determined by RID and TID is closed; otherwise all communica
tion paths with RID are closed.

"IJMSEND' Subfunction marks the job as not receptive. All other words are ignored.
Existing communication paths are not affected.

Length of each parameter block enlI)' in array; user-specified integer variable. lentry must
equal LE@UPB (LE@UPB is defined in $SYSTXT as the length of the Interjob Communi
cations Parameter Block).

Number of parameter blocks in the array; user-specified integer variable. Default is 1.

17-28 D

UCOM(3COS) UCOM(3COS)

NOTE

status Status; an integer variable set to 0 if no errors occurred. If status is nonzero, STAT con
tains the error code. If multiple parameter blocks are used, all STAT fields must be exam
ined if status is not equal to UMS$OK (if no errors occurred, status=UMSSOK).

UCOM is available to all single-tasking job steps. At this time, inter job communication is prohibited to
multitasking job steps.

SEE ALSO

The COS Reference Manual, publication SR-OOll

IMPLEMENT AnON

This rouline is available only to users of the COS operating system.

17-29 D

ISHELL(3U)

NAME

ISBELL - Executes a UNICOS shell command

SYNOPSIS

1ST AT = ISHELL(command)

DESCRIPTION

ISHELL has the following argument:

command Command to be given to the shell

ISHELL(3U)

ISHELL passes command to the shell sh(l) as input. as if command was entered at a terminal. The
current process waits until the shell.has completed. then returns the exit status.

EXAMPLE

ISTAT = ISHELLCrrn -f *.0')

IMPLEMENTATION

This routine is available only to users of the UNICOS operating system.

SR-Ol13 D

JNAME(3COS)

NAME

JNAME - Returns the job name

SYNOPSIS

name=JNAME(result)

DESCRIPTION

name Job name,; left-justified with trailing blanks.

result Returned job name

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 17-31

JNAME(3COS)

D

JSYMSET (3eOS) JSYMS ET (3COS)

NAME

JSYMSET, JSYMGET - Changes a value for a JCL symbol or retrieve a JCL symbol

SYNOPSIS

CALL JSYMSET{' sym'L.val[,len])
CALL JSYMGET(' sym'L.val[.len])

DESCIUPTION

$)1m Valid JCL symbol name

val For JSYMSET, the actual value assigned to the symbol. For JSYMGET, val receives the
actual value of the symbol if the value buffer is large enough and the symbol currently has
a value.

len For JSYMSET. the length of val in words (elements). For JSYMGET, the length of the
value buffer in words (elements). len is changed to the actual length of the symbol's value
(less than or equal to the value buffer).

JSYMSET allows you to change a value for a JCL symbol. The value specified is the actual value given
to the symbol; no evaluation is performed.

JSYMGET allows user programs to retrieve JCL symbols. JSYMGET also allows for the creation of JeL
symbols if they do not exist. See the cos Reference Manual, publication SR-OOll, for more information
on JCL symbol definitions.

IMPLEMENTATION

These routines are available only to users of the cos operating system.

SR-Ol13 17-32 D

LGO(3COS) LGO(3COS)

NAME

LGO - Loads an absolute program from a dataset containing a binary image as the first record

SYNOPSIS

CALL LGO(, dn'L)

DESCRIYI10N

The dataset name containing the absolute load module is represen&ed by dn. LGO loads an absolute
program from a local dataset containing the binary image as the first record The loaded program is
then executed. Control does not return to LGO.

Security privileges may be required sometimes when using LGO might seem appropriate (specifically, if
you attempt to open a dataset using SDACCESS). Use CALLesp as a more general replacement for this
routine.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

CALLeSp

SR-0113 17-33 D

LOC(3F)

NAME

LOC - Returns memory address of variable or array

SYNOPSIS

address=LOC(arg)

DESCRIPTION

address

arg

IMPLEMENTATION

Argument address (type integer)

Argument whose address is to be returned

This routine is available to users of both the COS and UNICOS operating systems.

SR-01l3 17-34

LOC(3F)

D

MEMORY(3COS) MEMORY(3COS)

NAME

MEMORY - Manipulates a job's memory allocation and/or its mode of field length reduction

SYNOPSIS

CALL MEMORY(code,value)

DESCRIPTION

SR-Ol13

code Determines what infomtation or action is requested (blank-filled)

'UC' value specifies the number of words to be added to (if value is positive) or
subtracted from (if value is negative) the end of the user code/data area.

'F[} value specifies the number of words of field length to be allocated to the job.
If FL is specified and value is not, the new field length is set to the max
imum allowed the job, and the job is placed in user mode for the duration of
the job step.

'USER' The job is put in user-managed field length reduction mode. value is
ignored.

'AUTO' The job is put in automatic field length reduction mode. value is ignored.

'MAXFL' The maximum field length allowed the job is returned in value.

'CURFL' The cWTent field length is returned in value.

'TOT At' The total amount of unused space in the job is returned in value.

value An integer value or variable when code is 'UC' or 'FL'. An integer variable that is to con-
tain a returned value if code is 'CURFL', 'MAXFL', or 'TOTAL'.

Memory can be added to or deleted from the end of the user code/data area by using the 'UC' code. If
the user code/data area is expanded. the new memory is initialized to an installation-defined value.

The job's field length can be changed by use of the 'FL' code. The field length is set to the larger of
the requested amount rounded up to the nearest multiple of 512-decimal wolds or the smallest multiple
of 512-decimal words large enough to contain the user code/data, Logical File Table (LFf), Dataset
Parameter Table (DSP), and buffer areas. The job is placed in user-managed field length reduction mode
for the duration of the job step.

The job's mode of field length reduction can be changed by use of either the 'USER' or 'AUTO' code.
When 'USER' is specified, the job is placed in user mode until a subsequent request is made to return it
to automatic mode. When' AUTO' is specified, the job is placed in automatic mode, and the field
length is reduced to the smallest multiple of 512-decimal words that can contain the user code/data.
LFf. DSP, and buffer areas.

The job's maximum or current field length can be determined by the 'MAXFL' or amount of unused
space In the Job can be determined by the 'TOTAL' code.

The job is aborted if filling the request would result in a field length greater than the maximum allowed
the job. The maximum is the smaller of the total number of words available to user jobs minus the
job's Job Table Area (ITA) or the amount determined by the MFL parameter on the JOB statement.

17-35 o

MEMORY (3COS)

EXAMPLE

Example 1:

CALL MEMORY('FL')

MEMORY(3COS)

The job I s field length is set to the maximum allowed the job, and the job is placed in user mode for the dura
tion of the job step.

Example 2:

CALL MEMORY(' AUfO')

The job's field length is reduced 10 a minimum, and the job is placed in automatic mode.

Example 3:

CALL MEMORY('UC' ,-5)
CALL MEMORYCUC' ,IV AL)

where IV AL is -5

The job's user code/data area is reduced by 5 words.

IMPLEMENTATION

This routine is available only 10 users of the cos operating system.

SR-Ol13 17-36 D

NACSED(3COS)

NAME

NACSED - Returns the edition of a previously-accessed permanent dataset

SYNOPSIS

ed=NACSED()

DESCRIPTION

NACSBD(3COS)

NACSED returns edition number ed in binary fann for the permanent dataset most recently accessed by
a call tD ACCESS.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

SR-0113 17-37 D

OVERLAY (3COS) OVERLAY (3eOS)

NAME

OVERLAY - Loads an overlay and transfers control to the overlay entry point

SYNOPSIS

CALL OVERLAY(nLdn,levl,lev2[,reca//])

DESCRIPTION

NOTES

n Number of characters in dn

L Left-justified; zero-filled.

dn Dataset in which the overlay resides. Must be a character constant. integer variable, or an
array element containing Hollerith data of not more than 7 characters.

levt Overlay level 1 (LEVI)

lev 2. Overlay level 2 (LEV2)

recall Optional recall parameter. To reexecute an overlay without reloading it, enter 6LRECALL.
If the overlay is not currently loaded, it will be loaded.

This routine is used to implement LDR-style overlays. Cray Research recommends conversion to
SEGLDR-style segments whenever possible. See the Segment Loader (SEGLDR) Reference Manual,
publication SR-0066.

IMPLEMENTATION

This routine is available to users of both the COS and the UNICOS operating systems.

SEE ALSO

Idovl(l)
See the COS Reference Manual, publication SR-OOll, for details of the OVERLAY routine.

SR-01l3 D

PPL(3COS) PPL(3COS)

NAME

PPL - Processes keywords of a directive

SYNOPSIS

CALL PPL(cbuf,clable .ltable .outarray,slattbl)

DESCRIPTION

PPL processes the keywords for a given directive. Processing is governed by the Parameter Description
Table, which has the same fonnat as the table GETPARAM uses, except that the length of the table
used by PPL is seven words with the two exb'a words unused.

cbut Array containing the cracked image (usually prepared by CRACK, which is described in
section 17)

ctable

lIable

outarray

stattbl

PPL control table

Number of 7-word entries in PPL control table

Array to receive parameter values

Three-word completion status code. On the first-time call, you must initialize the Return
Status Table to zero. If PPL returns a status that is not nonnal, and PPL is called again
with the invalid values left in, it attempts to recover.

Array element Meaning

I Return status code:
o Nonnal tennination
1 Required keyword not found
2 Output keyword overflow
3 Syntax error
4 Unknown or duplicate keyword
5 Unexpected separator encountered
6 Keyword cannot be equated
7 Keyword must have value
8 Maximum of 64 keywords exceeded
9 Invalid return status; cannot recover

2 Keyword in error
3 Ordinal keyword value

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

GETPARAM, CRACK

SR-01I3 17-39 D

REMARK(3U)

NAME

REMARK2, REMARK - Enters a message in the user and system log tiles

SYNOPSIS

CALL REMARK2(message)
CALL REMARK(message)

DESCRIPTION

REMARK(3U)

message For REMARK2, message tenninated by a 0 byte or a maximum of 79 characters. For
REMARK, message tenninated by a 0 byte or a 71 ~character message.

REMARK2 enters a message in the user and system log files. REMARK enters a message preceded by
the prefix 'UTOOS - ' in the user and system logfiles.

Under UNICOS, these routines write to stderr instead of the system logfile.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 17-40 D

REMARKF(3U) REMARKF(3U)

NAME

REMARKF - Enters a fonnatted message in the user and system logfiles

SYNOPSIS

CALL REMARKF(var fvar.[fvar2fvar 12l)

DESCRIPTION

vaT Variable containing the address of a fonnat statement for ENCODE

/var Address of variable

Up to 12 variables can be passed in arguments 2 through 13. The variables must be of type integer,
real, or logical so that they each occupy only 1 word. The message is prefixed by 'UToo!.) - ' unless
you supply a prefix. To supply the prefix, the characters 'b-b' (lr-blank) must appear in columns 6
through 8 of the formatted message.

EXAMPLE

Sample Fortran calling sequences with user-supplied prefixes:

10030 FORMAT(,CAOOl· \14.' errors')
ASSIGN 10030 TO LABEL
CALL REMARKF (LABEL, IERRCNT)

10770 FORMAT (,PDOOI - ACCESS " AS,A 7: ED=', 14, '; ')
ASSIGN 10770 TO LABEL
CALL REMARKF (LABEL, DN(l), DN(2) , ED)

Sample Fortran calling sequence without prefix:

10550 FORMAT (,LOOP EXECUTED ',14, • TIMES')
ASSIGN 10550 TO LABEL
CALL REMARKF (LABEL, LOOPCNI)

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR-0113 17-41 D

RERUN (3COS) RERUN(3COS)

NAME

RERUN, NORERUN - Declares a job rerunnable/not rerunnable and insttuct the system to begin or
cease monitoring jobs for functions affecting rerunnability

SYNOPSIS

CALL RERUN(param)
CALL NORERUN(param)

DESCRIPTION

param One argwnent is required. For RERUN, if the argument is 0, the job can be rerun. If the
argwnent is nonzero, the job caIUlot be rerun. For NORERUN, if the argument is 0, the sys
tem monitors for conditions causing the job to be flagged as not rerunnable. If nonzero,
such conditions are not monitored.

RERUN declares a job rerunnable or not rerunnable.

NORERUN instructs the system to begin or cease monitoring jobs for functions affecting rerunnability.

IMPLEMENTATION

These routines are available only to users of the COS operating system.

SR-0113 17-42 D

SENSEBT (3COS) SENSEBT(3COS}

NAME

SENSEBT - Detennines whether bidirectional memory transfer is enabled or disabled

SYNOPSIS

CALL SENSEBT(mode)

DESCRIPTION

mode Transfer mode; mode has one of the folJowing values:

= 1 Bidirectional memory transfer is enabled
= 0 Bidirectional memory transfer is disabled

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-Ol13 17-43 D

SENSEFI(3U)

NAME

SENSEFI - Detennines if floating-point interrupts are permitted or prohibited

SYNOPSIS

CALL SENSEFI(mmk)

DESCRIPTION

mode Interrupt mode:

IMPLEMENTATION

mode: 1
mode=O

Pennit interrupts
Prohibit interrupts

This routine is available to users of both the COS and UNICOS operating systems.

SR-Ol13 17-44

SENSEFI(3U)

o

SETRPV (3COS)

NAME

SETRPV - Conditionally transfers control to a specified routine

SYNOPSIS

CALL SETRPV(rpvcode.rpvtab,mask)

DESCRIPTION

rpvcode

rpvtab

mask

Routine to which control is transferred

A 40-word array reserved for system use

User mask specifying reprievable conditions

SETRPV (3COS)

SETRPV ttansfers control to the specified routine when a user-selected reprievable condition occurs.
SETRPV is called by address.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

SR-01l3

See the Macros and Opdefs Reference Manual. publication SR-0012. for details of the SETRPV parame
ter formats.

17-45 D

SMACH(3U) SMACH(3U)

NAME

SMACH, CMACH - Returns machine epsilon, smalJ/large normalized numbers

SYNOPSIS

resull=SMACH(int)

result=CMACH(int)

DESCRIPTION

result Machine constant returned

int An integer from 1 to 3. Any other value returns an error message to the logfile. For
SMACH, int indicates that one of the following machine constants is to be returned:

Int Constant Description

1 .710SE·14 The machine epsilon (the smallest number
E such that 1.± E;i: 1).

2 .1290E·2449 A number close to the smallest

3
normalized, representable number

.77S0E+24S0 A number close to the largest normalized.
representable number

For CMACH, int indicates that one of the following machine constants is to be returned:

Int Constant Description

1 .710SE-14 The machine epsilon (the smallest number
e such that 1.± e;t: 1).

2 .1348E+1216 A number close to the square root of the smallest
nonnalized. representable number

3 .7421E+1217 A number close to the square root of the largest
nonnalized. representable number

The use of CMACH(2) and CMACH(3) prevents overflow during complex division.

These functions are calculated by Fortran versions of SMACH and CMACH (see the Basic Linear Alge
bra Subprograms for Fortran Usage by Chuck L. Lawson, Richard J. Hanson, Davis R. Kincaid, and
Fred T. Crow. published by Sandia Laboratories. Albuquerque, 1977. publication number SAND77-0898).

IMPLEMENTATION

These routines are availale 10 users of both the COS and UNICOS operating systems.

SR-OlI3 17-46 D

SSWITCH (3COS) SSWITCH (3COS)

NAME

SSWITCH - Tests the sense switch

SYNOPSIS

CALL SSWITCH(swnwn,resuIl)

DESCRIPTION

Switch number (integer) swnum

result result is 1 if the switch value ranges from 1 to 6 and the switch is on. result is 2 if the
switch value is less than 1 or greater than 6, or if the switch is off (type integer),

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-01l3 17-47 D

SYSTEM(3COS) SYSTEM (3COS)

NAME

SYSTEM - Makes requests of the opernting system

SYNOPSIS

status=SYSTEM(funcnon,arg 1,argi)

DESCRIPTION

NOTB

status Status returned in S 1 register (function dependent)

function System action request number. This is the octal code of the desired system action request.
The requests (which all begin wilh the characters 1'$) and their codes are described in the
cos Internal Reference Manual Volume H: STP. publication SM-0141. The code is !:he
jump table address (relative offset) of the function.

arg 1 Optional argument (required by some requests)

argz Optional argument (required by some requests)

Use of !:he SYSTEM command by other than CRI systems programmers is discouraged, as the details of
systems request formats are subject to change. In most cases. there is a library routine which performs
the desired functions and makes changes in request fonnats transparent to your program.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

SR-Ol13 17-48 D

INTRO(3X) INTRO(3X)

18. INTERFACES TO C LIBRARY ROUTINES

SR-0113

A number of Fortran callable interfaces to C library routines are avai1able under UNICOS. These rou
tines give a Fortran programmer access to an extensive number of routines and system calls found in
the C library. The interfaces are simple routines which resolve calling sequence differences and pro
vide uppercase entry point names. Argument lists and return values should match those of the
corresponding C routine, except where noted otherwise. Data types need to be handled as follows:

• C character data should be defined as FortIan integer and terminated by a null (zero) byte; 'L'
Hollerith data handles this for 1-7 characters in length.

• C pointers should be handled by Fortran integers

• Other C data types are compatible with their Fortran counterparts

Interface routines should be coded as Fortran functions.

Example:

INTEGER FOPEN, FWRllE
ISTREAM = FOPEN('filenm'L, 'w+'L)
IF (ISTREAM .EQ. 0) mEN

ENDIF

PRINT "',' FOPEN failed •
CALL ABORT

1 = FWRITE(IDA(l), N, 8. ISTREAM)

If an argument to one of these routines is a file name, as in the above example, the name must be word
aligned and terminated by a null byte,

The following sel of interface routines are provided in the standard CRA Y X-MP UNICOS libraries. Refer to
the appropriate Cmy manuals for specific usage information.

18-1 D

INTRO(3X) INTR.O(3X)

SR-01l3

C Library Reference Manual (SR-0136)
Purpose Name Heading

Tenninate a program and exit exit
specify Stallis

Close or flush a stream fclose fclose
Get integer file descriptor fileno ferror
associated with stream
Open a stream fopen fopen

fdopen
freopen

Get a string from a stream fgets gets
Put a string on a Sb'eam fputs puts
Binary I/O fread tread

fwrite
Reposition a file pointer fseek fseek
in a stream hell
Return value for environment getenv getenv
name
Get option letter from getopt getopt
argument vector
Make a unique file name mktemp mktemp
Change or add value putenv putenv
to the environment
Create a name for a tempnam tempnam
temporary file

The argument list of the aetenv routine differs from that of the corresponding C routine. See the man page
in this section for the correct syntax when calling getenv from Fortran.

18-2 D

INTRO(3X) INTR.O(3X)

SR-0113

UNICOS System Calls Manual (SR-2012)

Puroose Name Heading
Determine accessibility of access access
a file
Close a file descriptor close close
Allocate storage for a file ialloc ialloc
Move read/write file Iseek lseek
pointer
Change data segment sbreak brk
space allocation sbrk
Provide signal control sigctl sigctl
Fortran interface to sigctl (sigctl
Pascal interface to sigctl psigctl
Specify what to do upon receipt signal signal
ofasignal
Forttan interface to signal rsignal
Pascal interface to signal psignal
Change size of secondary ssbreak ssbreak
data segment
Read, write to ssread ssread
secondary data segment sswrite
Get file status stat stat
Get time time time
Set and get file umask umask
creation mark
Get name of current operating uname uname
system
Remove directory entry unlink unlink

The argument lists of the uname and time routines differ from those of the corresponding C routines. No
arguments can be used with the Fortran call to time. See the man page in this section for the correct syntax
when calling uname from Fortran.

The third argument of the Fortran routines ssread and sswrite specifies the number of words to be read or
written. This is different from the corresponding system call. The Fortran programmer should not call
ssbreak, ssread, or sswrite in a program that accesses the SDS using the assign(l) command.

18-3 o

GETENV(3U)

NAME

getenv - Returns value for environment name

SYNOPSIS

INTEGER GETENV
INTEGER value(valuesz)
int = GETENV(name.value.valuesz)

DESCRIPTION

inl GETENV returns 1 if name was found in the environment and 0 if nOlo

GETENV(3U)

name The name of the environmental variable for which GETENV searches in the environment
list The name must be left-justified and tenninated with a zero byte.

value The value to which name is set. if found. in the current environment. This is a character
smng, and the value variable must be big enough to handle it

values: Maximum number of words to hold string returned in value.

IMPLEMENTATION

This routine is available only to users of the UNICOS operating system.

SEE ALSO

getenv(3C) in the C Library Reference Manual, publication SR-OI36
sh(l) in the UNICOS User Commands Reference Man~ publication SR-2011

SR-OII3 184 D

GETOPT(3U) GETOPT(3U)

NAME

GETOPT - Gets an option letter from an argument vector

SYNOPSIS

INTEGER FUNCTION GETOPT(options,arg)
CHARACTERC*) options
CHARACTER(-) arg

INTEGER FUNCTION GETOPT(options,arg,argsz)
CHARACTER(*) options
INTEGER arg(*)
INTEGER argsz

INTEGER GETV ARG
morearg = GETVARG(varg,vargsz)

INTEGER GETOARG
morearg = GETOARG(oarg,oargsz)

DESCRIPTION

GETOPT returns the next option letter as the integer value of that AScn code. For example, if the next
option letter is a, the GETOPT returns with the value 97. If there is no next option letter, GETOPT
returns zero. The CHAR routine can then be called to convert the integer back into a character.

The options argument is a string of recognized option letters. If the option letter encountered does not
match one of the letters in the options string, an error is generated. If a letter in optwns is followed by
a colon, the option is expected to have an argwnent that may or may not be separated from it by white
space.

The arg argument returns the value of the argument following the option letter encountered. If arg is
declared as a character variable, argsz need not be specified. If arg is declared as an integer array.
argsz must be specified as the size of the array. The argument string is retmned as characters packed in
the integer array, terminated by a null byte.

If a letter in options is followed by a semicolon (;). zero or more arguments are expected for the option.
You must then call GETV ARG to get the variable arguments until GETV ARG returns 0 before the next
call to GETOPT.

The next variable argument is copied into the array varg (of size vargsz). GETV ARG retlD1lS 0 when
no more variable arguments exisL

After GETOPT returns O. you can call GETOARG to get the remaining arguments from the command
line.

GETOARG returns 0 if there are no more arguments. The next remaining argument is copied into the
array oarg (of size oargsz).

If GETOPT is not used. GETOARG can be called to get the command line arguments in order. starting
with the first argument

EXAMPLE

SR-Ol13

The following example shows how the options of a command might be processed using GETOPT. This
example assumes the options a and b. which have arguments. and :x and y, which do not

CHARACfER*S omONS
CHARACfER*SO ARGMNTS
CHARACfER OPI1EI"

18-5 D

GETOPT(3U)

SR-0113

INTEGER OPTV AL
DATA OPTIONS/'a:b:xy'/

100 CONTINUE
OPTVAL = GETOPT(OPTIONS, ARGMNTS)
IF(OPTV AL .EQ. 0) GOTO 200
OPTLET '" CHAR(OPTV AL)
IF (OPTLET .EQ. 'a') THEN
* Analyze arguments from ARGMNfS
ELSEIF (OPTLET .EQ. 'b') THEN

* Analyze arguments from ARGMNfS
ELSEIF (OPTLET .EQ. tx') THEN

* Process x option
ELSEIF (OPTLET .EQ. 'y') THEN

* Process y option
ENDIF

200 CONTINUE

The following example illustrates the use of GETOPT and GETOARG together.

program test
external getopt,getoarg
integer getopt, getoarg
integer arglen
parameter (arglen=lO)
integer opt,done,argbuf(arglen)

10 CONTINUE
OPT = GETOPT (,abo:',ARGBUF.ARGLEN)
IF (OPT .GT. 0) THEN

IF (OPT .EQ. 'a'R) THEN
print '(a)' • ' option -a- present •

ELSEIF (OPT .EQ. 'b'R) THEN
print '(a)' • ' option -b- present'

ELSEIF' (OPT .EQ. 'o'R) THEN
print • (a,a8), , • option -0- present-' ,argbuf(l)

ELSE
C unknown option

print '(a.aB), • ' bad option present-',opt
ENDIF
GO TO 10

ENDIF
C all options processed.
C
C Get arguments

20 CONTINUE
DONE = GETOARG(ARGBUF,ARGLEN)
IF(DONE .NE. 0) THEN

print '(a,a8)' , ' argument present-' ,argbuf(l)
GO TO 20

ENDIF

18-6

GETOPT(3U)

D

GETOPT(3U)

C done processing arguments
end

RETURN VALUE

GETOPT(3U)

The value of GETOPT is 0 when no option characters can be found. GETOPT prints an error message
on stderr and returns a question mark when it encounters an option letter not included in options.

SR-0113 18-7 D

UNAME(3U) UNAME(3U)

NAME

uname - Gets name of current operating system

SYNOPSIS

CALL UNAME(sysname, node1UJ11le, release, version, machine)

DESCRIPTION

The uname routine returns information identifying the current operating system. 1be arguments, which
are all of type CHARACfER, are as follows:

sysname Current operating system name

nodename Name by which the system is known on a communications network

release Release of the operating system

version Release version of the operating system

machine Standard name identifying the hardware on which the operating system is running

IMPLEMENTATION

This routine is available only to users of the UNICOS operating system.

SEE ALSO

SR-01l3

uname(l) in the UNICOS User Commands Reference Manual, publication SR-2011
uname(2) in the UNICOS System Calls Reference Manual, publication SR-1012

18-8 D

INTRO(3X} INTRO(3X}

19. MISCELLANEOUS UNICOS ROUTINES

This section contains descriptions of various specialized UNlCOS libraries or miscellaneous routines that
arc not included elsewhere in this manual.

Miscellaneous Routines and Libraries
Puroose Name Entry

Update CRT screens CURSES CURSES
System call interface to Fortran SYSCALL SYSCALL
Text interface to X Window System XIO XIO
C language X Window System Interface Library XLIB XLIB

SR-01l3 19-1 D

CURSES (3X) CURSES (3X)

NAME

curses - Updates CRT screens

SYNOPSIS

#include <curses.h>
ec [flags] files -lcurses [libraries]

DESCRIPTION

The curses routines give you a method of updating screens with reasonable optimization. In order to
initialize the routines. the routine initscr() must be called before any of the other routines that deal
with windows and screens are used. The routine endwin() should be called before exiting. To get
character-at-a-time input without echoing. (most interactive. screen oriented-programs want this) after
calling initscrO you should call "nonIO; cbreakO; noechoO;"

The full curses interface permits manipulation of data structures called windows that can be thought of
as two dimensional arrays of characters representing all or part of a CRT screen. A default window
called stdscr is supplied, and others can be created with newwin. Windows are referred to by variables
declared WINDOw*, the type WINDOW* is defined in curses.h to be a C structure. These data struc
tures are manipulated with functions described below, among which the most basic are move, and
addch. (More general versions of these functions are included with names beginning with 'w', allow
ing you to specify a window. The routines not beginning with 'w' affect stdscr.) Then refreshO is
called, telling the routines to make the user's CRT screen look like stdser.

Mini-Curses is a subset of curses that does not allow manipulation of more than one window. To
invoke this subset. use -DMINICURSES as a cc option. This level is smaller and faster than full curses.

If the environment variable TERMINFO is defined, any program using curses checks for a local termi
nal definition before checking in the standard place. For example, if the standard place is
lusr/lib/terminfo, and TERM is set to vt100, then normally the compiled file is found in
lusrllib/terminro/v/vtlOO. (The v is copied from the first letter of vt100 to avoid creation of huge
directories.) However, if TERMINFO is set to lusr/marklmyterms. curses first checks
lopusr/marklmytermslv/vtlOO, and if that fails, checks lusrllib/terminfolv/vtlOO. This is useful for
developing experimental definitions or when write permission in lusrllib/terminro is not available.

FUNCfIONS

SR-Ol13

Routines listed here may be called when using the full curses. Those marked with an asterisk may be
called when using Mini-Curses.

Routine
addch(ch)*

addstr(stT)*
attroff(attrs)*
attron(attrs)*
attrset(attrs)*
baudrate()*
beep()*
box(win, verI, hor)

Description
Adds a character to stdscr
(like putchar) (wraps to next
line at end of line)
Calls addch wilh each character in str
Turns off attributes named
Turns on attributes named
Sets current attributes to attrs
Current terminal speed
Sounds beep on terminal
Draws a box around edges of win
vert and hor are characters to use for vertical
and horizontal edges of box

19-2 D

CURSES (3X)

SR-0113

Routine
clear()
clearok(win. bf)
clrtobot()
clrtoeol()
cbreak()'"
delay _output(ms)*
delch()
deleteln()
delwin(win)
doupdate()
echo()'"
endwin()'"
erase()
erasecbar()
fixterm()
flasbO
flushinp()*
getch()'"
getstr(str)
gettmode()
getyx(win. y. x)
bas_ic()
has_il()
idJok(win. bf)*
inchO
initscr()'"
insch(c)
insertln()
intrftush(win. bf)

keypad(win. bj)
killchar()
leaveok(win. flag)

longnameO
nleta(win,jlag)'"
nlove(y. x)*
mvaddch(y, x, ch)
mvaddstr(y. x. str)
mvcur(oldrow. oldco/, newrow, newcol)

mvdelcb(y. x)
nlvgetch(y, x)
mvgetstr(y, x)
nlvinch(y, x)
mvinsch(y. x. c)
mvprintw(y, x, /mt, args)
mvscanw(y, x, frnl, args)
nlvwaddch(win, y. x, ch)

Description
Clears stdscr
Clears screen before next redraw of win
Clears to bottom of stdscr
Clears to end of line on stdscr
Sets cbreak mode
Inserts ms millisecond pause in output
Deletes a character
Deletes a line
Deletes win
Updates screen from all WDooutrefresh
Sets echo mode
Ends window modes
Erases stdscr
Returns user's erase character
Restores tty to "in curses" state
Flashs screen or beep
Throws away any typeahead
Gets a character from tty
Gets a string through sUlser
Establishes current tty modes
Gets (y, x) co-ordinates
True if terminal can do insert character
True if terminal can do insert line
Uses tenninal's insert/delete line if bf ! ... 0
Gets char at cunent (y, x) co-ordinates
Initializes screens
Inserts a character
Inserts a line
Interrupts fI ush output if hI
is TRUE
Enables keypad input
Returns current user's kil] chamcter
OK to leave cursor anywhere after refresh if
flagl=O for win, otherwise cursor must be left
at current position.
Returns verbose name of terminal
Allows meta characters on input if flag != 0
Moves to (y. x) on stdscr
Move(y, x) then addch(ch)
similar ...

Low level cursor motioo
like deleh, but move(y, x) first
etc.

19·3

CURSES (3X)

D

CURSES (3X) CURSES (3X)

SR-0113

Routine
mvwaddstr(win. y. x. str)
mvwdelch(win. y. x)
mvwgetch(win. y. x)
mvwgetstr(win, y. x)
mvwin(win. by, bx)
rovwinch(win, y. x)
mvwinsch(win. y. x. c)
mvwprintw(win. y. x.lmt. args)
mvwscanw(win. y. x,fmt. args)
newpad(nlines. neols)
newterm(type.lrJ)
newwln(lines, eo/s. begin....Y. begin_x)

Description

Creates a new pad with given dimensions
Sets up new tenninal of given type to output on fd

Creates a new window
nl()* Sets newline mapping
nocbreak()* Unsets cbreak mode
nodelay(win. bf) Enables nodelay input mode through getch
noecho()* Unsets echo mode
nonlO· Unsets newline mapping
noraw()* Unsets raw mode
overlay(winl, win2) Overlays winl on win2
overwrite(winl. win2) Overwrites winI on top of win2
pnoutrerresh(pad. pminrow. pminco/. sminrow.
smincol. smaxrow. smaxcol)

Like prerresh but with no output until doupdate called
prefresh(pad, pminrow. pmincol. sminrow.
smincol. smoxrow. smaxcol)

printw(fmt. argl. arg2, ...)

raw()*
refresh()*
resetterm()*
resetty()*
saveterm()*
savetty()*
scanw(tmt, argl. arg2 • ...)

scroll(win)
scrollok(win. flag)
seLterm(new)
setscrreg(t. b)
seUerm(type)
setupterm(term, filenum. errret)
standendO*
standout()*
subwin(win, lines, cols. begin....Y. begin_x)

Refreshes from pad starting with given upper left
comer of pad with output to given
portion of screen

Does printf on stdscr
Sets raw mode
Makes current screen look like sUlser
Sets tty modes to "out of curses" state
Resets tty flags to stored value
Saves current modes as "in curses" state
Stores current tty flags

Does scanf through stdscr
Scrolls win one line
Allows terminal to scroll if flag != 0
Now talk to terminal new
Sets user scrolling region to Jines t through b
Establishes tenninaI with given type

Clears standout mode attribute
Sets standout mode attribute

Creates a subwindow

19-4 D

CURSES (3X) CURSES (3X)

Routine
touchwin(win)
traceoff()
traceon()
typeahead(fd)
unctrl(ch)*
waddch(win, ch)
waddstr(win, sir)
wattroff(win, attrs)
wattron(win, attrs)
wattrset(win, attrs)
wclear(win)
wclrtobot(win)
wclrtoeol(win)
wdelch(win, c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win, sir)
winch(win)
winsch(win. c)
winsertln(win)
wmove(win, y, x)
wnoutrefresh(win)
wprintw(win,fint, argl, arg2 • ...)

wrerresh(win)
wscanw(win, fmt, argl. arg2 • ...)

wsetscrreg(win, t, b)
wstandend(win)
wstandout(win)

Description
Changes all of win
Turns off debugging trace output
Turns on debugging trace output
Use file descriptor fd to check typeahead
Printable version of ch
Adds character to win
Adds string to win
Turns off attrs in win
Turns on attrs in win
Sets attr s in win to attrs
Clears win
Clears to bottom of win
Clears to end of line on win
Deletes character from win
Deletes line from win
Erases win
Gets a character through win
Gets a string through win
GelS character at current (y, x) in win
Inserts character into win
Inserts line into win
Sets current (y, x) co~ordinates on win
Refreshes but no screen output

Does print' on win
Makes screen look like win

Do scanr through win
Sets scrolling region of win
Clears standout attribute in win
Sets standout attribute in win

TERMINFO LEVEL ROUTINES

SR-Ol13

These routines should be called by programs wishing to deal directly with the tenninfo database. Due
to the low level of this interface. use of them is discouraged. Initially, setupterm should be called.
This defines the set of tenninal dependent variables defined in terminto(4F). The include files
<curses.h> and <term.h> should be included to get the definitions for these slrings, numbers, and flags.
Parmeterized strings should be passed through tparm to instantiate them. All terminro strings (includ
ing the output of tparm) should be printed with tputs or putp. Before exiting, resetterm should be
called to restore the tty modes. (programs desiring shell escapes or suspending with control Z can call
resetterm before the shell is called and fixterm after returning from the shell.)

Routine
fixtermO

resetterm()

Description
Restores tty modes for terminro use
(called by setup term)
Resets tty modes to state before program entry

19-5 D

CURSES (3X)

Routine
setupterm{term,fd. re)

tparm(Slr. pl. p2 • ...• p9)

tputs(str, affent, pute)

putp(str)

vidputs(attrs. pute)

vidattr(attrs)

TERMCAPCOMPATIrnlllTYROunNES

Description
Reads in database. Terminal type is the
character string term, all output is to UNCOS
System file descriptOr fd. A status value is
returned in the integer pointed to by re: 1
is normal. The simplest call would be
setupterm(O, l~ 0) which uses all defaults.

Instantiates string sir with parameters p ..
Applies padding information to string s:r.
affent is the number of lines affected,
or 1 if not applicable. Putc is a
putcbar-like function to which the characters
are passed, one at a time.
Calls tputs
(sir, I, pUlehar)
Outputs the string to put terminal in video
attribute mode atlrs, which is any
combination of the attributes listed below.
Characters are passed to putchar-like
function pute.
Like vidputs but outputs through
putchar

CURSES (3X)

These routines were included as a conversion aid for programs that use termcap. Their parameters are
the same as for termeap. They are emulated using the terminro database. They may go away at a
later date.

Routine
tgetent(bp, name)
tgetflag(id)
tgetnum(id)
tgetstr(id. area)
tgoto(cap. col, row)
tputs(cap, affent, In)

ATIRIBUTES

Description
Looks up termeap entry for name
Gets Boolean entry for id
Gets numeric entry for id
Gets string entry for id
Applies parameters to given cap
Applies padding to cap calling In as putcbar

The following video attributes can be passed to the functions attron,attroff,attrset.

SR-01l3

Attribute
A_STANDOUT
A_UNDERLINE
A_REVERSE
A_BLINK
A_DIM
A_BOLD
A_BLANK
A_PROTECT
A_ALTCHARSET

Description
Tenninal's best highlighting mode
Underlining
Reverse video
Blinking
Half bright
Extta bright or bold
Blanking (invisible)
Protected
Alternate character set

19-6 D

CURSES (3X) CURSES(3X)

FUNCTION KEYS

The following function keys might be returned by getch if keypad has been enabled Note that not all
of these are currendy supported, due to lack of definitions in terminfo or the terminal not transmitting a
unique code when the key is pressed.

Name Value Key name
KEY_BREAK 0401 Break key (unreliable)
KEY_DOWN 0402 The four arrow keys ...
KEY_UP 0403
KEY~EFf 0404
KEY_RIGHT 0405
KEY_HOME 0406 Home key (upward+left arrow)
KEY_BACKSPACE 0407 Backspace (unreliable)
KEY_FO 0410 Function keys. Space for 64 is reserved.
KEY_F(n) (KEY _fO+.(n» Fonnula for In.
KEY_DL 0510 Delete line
KEYJL 0511 Insert line
KEY_DC 0512 Delete character
KEY_Ie 0513 Insert character or enter insert mode
KEY_EIC 0514 Exit insert character mode
KEY_CLEAR 0515 Clear screen
KEY_EOS 0516 Clear to end of screen
KEY_EOL 0517 Clear to end of line
KEY_SF 0520 Scroll 1 line forward
KEY_SR 0521 Scroll 1 line backwards (reverse)
KEY_NPAGE 0522 Next page
KEY_PPAGE 0523 Previous page
KEY_STAB 0524 Set tab
KEY_CTAB 0525 Clear tab
KEY_CATAB 0526 Clear all tabs
KEY_ENTER 0527 Enter or send (unreliable)
KEY_SRESET 0530 Soft (partial) reset (unreliable)
KEY_RESET 0531 Reset or hard reset (unreliable)
KEY_PRINT 0532 Print or copy
KEY-.LL 0533 Home down or bottom (lower left)

IMPLEMENTATION

These routines are available only to users of the UNICOS operating system.

SEE ALSO

terminfo(4F) in the UNICOS File Fonnats and Special Files Reference Manual, publication SR-2014

SR-0113 19-7 D

XIO(3X)

NAME

xio - Text interface to the X Window System

SYNOPSIS

Display •
xstart(program, disp, evrunc)
char ·program;
char ·disp;
int (·evfunc)O;

TEXT •
xopen(prompt, geom)
cbar ·prompt;
char ·geom;
xclose(win)
TEXT *win;

TEXT •
xtitle(pwin)
TEXT *pwiD;
xprintf(win, fonnat [, arg] ...)
TEXT * win;
char "'fannat;
xputc(c, win)
TEXT ·win;
char c;
xputs(s. win)
TEXT ·win;
char "'8;
xflush(win)
TEXT *win;
xeventsQ
xselect(win, mask)
1EXT ·win;
long mask;
xunselect(win, mask)
TEXT *win;
long mask;
xconfigure(win, nw, nh, XW, xh)
TEXT ·win;
int nw, nh, xw, xh;
Window
xfindwindow(prompt)
int (*prompt)Q;

DESCRIPTION

XIO(3X}

These functions provide a standard I/O like interface to the X Window System to a single display. The
xstart routine is used initialize the display. program is used to extract the following variables from
-/.xdefaults:

SR-OI13

BodyFont
Reverse Video

BorderWidth

19-8

Foreground Background Border

D

XIO(3X) XIO(3X)

If disp is nonzero, it refers to the display name. If i1 is zero then the environment varaiable DJSPLA Y is
used as the display name. The evtuDc is used by the xevent function (see below). xstart returns non
zero if the contact is made with the display.

The xopeo routine is used to open a new window on the display started by xstart 1be geom argument
specifies a standard X geometry (i.e =width x height + xoff + yoft). xopen returns a non null TEXT
pointer if it succeeds.

xclose closes and desb'Oys the window refered to by win

xtitle returns a TEXT pointer to a one line title subwindow contained in the window pwin. It is a vio
lation to open a title in a title or try to open more than one title in a window.

xprintf~ xputc, xputs, and xflush work as their stdio counterpartS (printf, tpute, !puts, and mush.

xeveots handles X events and caUs evrunc from above for any event it does not know how to deal
with. 11 passes evfunc a pointer to the XEvent structure. This routine must be called whenever there is
input waiting on the file descriptor associated with X (dpynoO in C will reDlm the file descriptor).

xselect allows the selection of more events on the TEXT window.

xunseletc allows the deselect ions of events selected via xselect.

xconfigure sets a minimum and maximum size for the TEXT window. Setting any value to 0 will
remove the limit for that value.

xfindwindow grabs the server. makes the mouse a target. calls the prompt routine (which should ask
the user to select a window) and returns the window ID of the window selected

IMPLEMENTATION

These routines are available only to users of the UNICOS operating system.

SEE ALSO

NOTE

SR-0113

Complete documentation for the text interface to the X Window System, is in the Xlib - C Language X
Interface Protocol Version 10 by Jim Geuys and Tony Della Fem of the Digital Equipment Corporation,
and Ron Newman of the Massachusetts Institute of Technology.

The X Window System is a trademark of MIT.

19-9 D

XLIB(3X) XLIB(3X)

NAMB

Xlib - C Language X Window System Interface Library

SYNOPSIS

'include <XlXlib.h>

DESCRIPTION

FILES

This library is the low level interface for C to the X protocol, which supports the X Window System, X
Version 10. January 1986. from M.I.T. At present, the X Window System comprises more than 150
subroutines.

This library gives complete access to all capability provided by the X Window System (protocol version
10). and is intended to be the basis for other higher level libraries for use with X.

lusr/includelXlXIib.h~ lusr/libllibX.a

IMPLEMENTATION

This library is available only to users of the UNICOS operating system.

SEB ALSO

SR-OI13

Complete documentation for the C language interface to the X Window System, is in the Xlib - C
Language X Interface Protocol Version 10 by Jim Gettys and Tony Della Fera of the Digital Equipment
Corporation. and Ron Newman of the Massachusetts Institute of Technology.

19-10 D

INDEX

INDEX

SOUT from register copy - SNAP16-13
32 bits from 64 bits write - WRITIBM12-82
32-bit words write - WRITIBM 12-82
60-bit integer - INT6460 .. 8-14
60-bit integer to 64-bit integer conversion -

INT6064 ... 8-13
60-bit pack and unpack - P6460 9-4
60-bit single-precision to 64-bit single

precision conversion - FP6064 8-12
64 bit integer divide - LDIV .. 2·51
64-bit complex conversion - VXZCTC 8-36
64-bit D format to single-precision

conversion - vxocrc .. 8-27
64-bit integer divide· LDlV .. 2-51
64-bit integer to 60-bit integer conversion·

INT6460 ... 8-14
64·bit integer to VAX INTEGER "'2 conversion -

VXICTI .. 8-32
64-bit single'precision - USSCI1 S-26
64-bit single·precision - VXDCTI 8-28
64-bit single-precision - VXGcn 8-30
64-bit single-precision. VXSCTL 8·35

ABORT - Requests abort with traceback. 17-5
abort job - ABORT .. 17-5
abort job - ERREXIT ... 17·20
aoort NAMEUST job - RNLSKIP 12-56
ABS - Computes absolute value 2-7
absolute value - ABS ... 2-7
absolute value - ISAMAX ... 6-11
absolule value - ISMAX .. 6-12
absolute value· SASUM ... 4-101
absolule value of a complex vector - ISAMAX 6·11
absolute value of a real vector· ISAMAX 6-11
absolute values of vector elements addition -

SASUM .. 4·101
accept data· ACPTBAD12-9
access test· IFDNf ... " .. .3-7
ACOS ~ Computes arccosine .. 2-9
acos - Computes arccosine .. 2·9
ACPTBAD· Makes bad data available12·9
active subroutine list· TRBK .. 16·20
ACIT ABLE· Returns the Iob Accounting Table

(JAT) .. 17·6
add characters for NAMEUST - RNL 12·54
add memory - MEMORY17-35
add to LFr - ADDLFr3-4
add word to table - TMADW ... ll-13
addition (double-precision) - DBL]REC 2.37
addition (triple-precision) - TADD 2-84
ADDLFr • Adds a name to the Logical File

Table (LFf) ... 3-4
Adds a name to the Logical File Table (LFf)-

ADDLFf .. 3-4
Adds a scalar multiple of a real or complex

vector - SAXPY .. 4-102
Adds a word to a table - TMADWll-13
Adds entries to the multitasking history

trace buffer - BUFUSER14-13

SR"()113 Index-l

Adds Or deletes characters from the set of
characlers recognized by the NAMELIST •
RNL .. 12-54

adjust heap block - HPNEWLEN 11·9
AIMAG - Computes imaginary portion of a

complex number ... 2-11
AINT - Computes rea1 and double-precision

truncation ... 2-12
allocale memory from heap - HPALLOC 11-4
allocate table space - TMATS .. 11-15
allocated heap block change - HPNEWLEN 11-9
Allocates a block of memory from the heap -

HPALLOC ... 11-4
Allocates table space - TMATS11·15
Allows a job to communicate with another job

- DCOM ... 17·28
Allows a job to suspend itself until selected

events occur - ERECALL 17-18
Allows a program to access datasets in the

System Directory - SDACCESS 3-S
Allows an index to be used as the current

index - STINDX .. 12.63
Allows each NAMEUST variable to begin on a

new line - WNLLINE12-74
Allows special processing at

beginning-of-volume - PROCBOV 12-44
AlDG - Computes narurallogarithm 2-13
ALOGI0 - Computes common logarithm 2-15
AMAXO - Returns the largest of all argument 6-18
AMAXI • Returns the largest of all argwnents 6·18
AMINO - Returns the smallest of all arguments 6-19
AMINI - Returns the smallest of all arguments 6-19
AMOD· Computes remainder ohl/x2 2-56
AND· Computes logicalproduct 2.17
ANINT· Finds nearest whole numher 2-19
Applies a complex Fast Fourier Transform

(FFf) - CFFT2 ... 5-3
Applies a complex-to-real Fast Fourier

Transform (FFr) - CRFFf2 5-6
Applies a modified Givens plane rotation -

SROTM .. 4-124
Applies a real-to-complex Fast Fourier

Transform (FFr) - RCFFT2 5-7
Applies an orthogonal plane rotation - SROT 4-121
Applies complex-to-complex Fast Fourier

Transforms (FFI') on mUltiple input vectors
- CFFfMLT .. .5-4

Applies complex-to-real and ~al.to-complex
Fast Fourier Transfonns (FFT) on
multiple input vectors - RFFrMLT 5-8

Applies the complex plane rotation computed
by CROTG • CROT .. .4-40

approximate double.precision value· SNGLR 2-81
APUTW A - Writes to a word-addressable.

random· access dataset .. 1 2-46
AQCLOSE - Closes an asynchronous queued I/O

dataset or file .. 12·11
AQIO dataset close - AQCLOSE 12-11
AQIO dataset open - AQOPEN 12·12
AQIO dataset open - AQOPENDV 12-13
AQIO request stop· AQSTOP 12-20
AQIO status - AQSTAT .. 12-19
AQIO wait· AQW AfT'12·21
AQIO write - AQWRITE .. .12.22

o

AQOPEN - Opens a dataset or file for
asynchronous queued I/O 12-12

assign variable La an event- EVASON 14-14
ASYNCDR - Set I/O mode for random access

AQOPENDV - Opens a dataset or file for routines to asynchronous .. 12-24
asynchronous queued I/O. allowing user to
specify dataset size and physicallocation 12-13

asynchronous I/O - AQOPENDV 12-13
asynchronous I/O • AQOPEN .. 12-12

AQREAD - Queues a simple or compound asynchronous 110 status check - CHECKMS 12-25
asynchronous I/O rcad rcquest 12-15 asynchronous I/O stop - AQSTOP12-20

AQREADC - Queues a simple or compound asynchronous I/O wait - AQW AIT 12-21
asynchronous I/O read request 12-15 asynchronous I/O wait - WAITMS 12-69

AQREADCI - Queues a simple or compound asynchronous mode - ASYNCMS 12-24
asynchronous I/O read request 12-1 5 asynchronous read - AQREAD 12.15

AQREADI - Queues a simple or compound asynchronous read - GETWA12-38
asynchronous I/O read request 12-15 asynchronous read - GETW AU 12-40

AQRECALL - Delays program execution during a asynchronous status - AQSTAT 12-19
queued I/O sequence .. .12-17 asynchronous write - AQWRITE 12.22

AQRIR - Delays program execution during a Asynchronously reads a number of words from
queued I/O sequence ... 12-17 the disk. directly to user - GETWAU 12-40

AQST AT - Checks the status of asynchronous ASYNCMS - Set I/O mode for random access
queued I/O requests .. 12-19

AQSTOP - Stops the processing of asynchronous
routines to asynchronous12-24

ATAN - Computes arctangent for single argument 2-22
queued 110 requests .. .12-20 alan - Computes arctangent for single argument 2-22

AQW AIT - Waits on a completion of ATAN2 - Computes arctangent for two arguments 2-24
asynchronous queued IIO requests12-21 atan2 - Computes arctangent for two arguments 2-24

AQWRITE - Queues a simple or compound attributes (video) - CURSES .. 19-2
asynchronous I/O write .. .12-22

AQWRITEC - Queues a simple or compound BO write - FXP .. 16-6
asynchronous I/O write .. .12-22 B20CT - Places an octal ASCII representation

AQWRITEI - Queues a simple or compound of a Cray word into a character area 8-5
asynchronous I/O write .. .12-22 BACKFILE - Positions a dataset after the

AQWRTECI . Queues a simple or compound previous EOF .. 13-3
asynchronous I/O write ... 12-22 bad data - ACPTBAD12-9

arbitraty increments - MXMA4-88 bad data skip - SKiPBAD .. 12-61
arbitraty increments - MXV A. 4·94 banded symmenic systems of linear equations
arccosine - ACOS .. 2-9 - EISPACK ... 4-65
arcsine - ASlN .. 2-20 BARASGN - Identifies an integer variable to
arctangent - AT AN .. 2-22 use as a barrier ... 14-5
arctangent - A TAN2 .. 2-24 BARREL - Releases the identifier assigned to
argument - GEl" ARG .. .17-22 a barrier .. 14-6
argument -IARGC ... 17·26 barrier - BARASGN .. 14-5
argument vector - GEfOPT .. 18-S barrier - BARREL .. 14-6
array byte or bit move - MOV 10-5 barrier synchronization with tasks _ BARSYNC 14-7
array byte replace - B YT1 0-2 BARSYNC - Registers the arrival of a task at
array comparison - KOMSTR.10·4 a barrier .. 14-7
array search - FINDCH .. .10·3 Basic Linear Algebra Subprogram (CRI
array search - ISRCHEQ .. 6-13 extension) - CGEMMS .. 4-15
array search - ISRCHFLT .. 6-14 Basic Linear Algebra Subprogram (CRI
array search - ISRCHILT ... 6·15 extension) - SGEMMS ... 4-110
array search - ISRCHMEQ .. 6-16 Basic Linear Algebra Subprogram - COBMV 4-10
array search - ISRCHMLT ... 6-17 Basic Linear Algebra Subprogram - CGEMM 4-13
array search - WHENEQ ... 6-22 Basic Linear Algebra Subprogram - CGEMV 4-18
ASCDC - Converts CDC display code character Basic Linear Algebra SUbprogram - COERC 4-20

to ASCII character and vice versa 8-11 Basic Linear Algebra Subprogram - COERU 4-22
Ascn conversion - DSASC .. 8-11 Basic Linear Algebra Subprogram - CHBMV 4-24
ASCn from binary conversion - B20Cf 8·5 Basic Linear Algebra Subprogram - CHEMM 4-26
ASCn from time - TSDT ... 15-10 Basic Linear Algebra Subprogram - CHEMV 4-29
ASCII to EBCDIC conversion - usccrC 8-18 Basic Linear Algebra Subprogram - CHER 4-31
ASCn La integer conversion - CHCONV 8-10 Basic Linear Algebra Subprogram - CHER2 4-33
ASCn to time-stamp conversion· DTIS15-5 Basic Linear Algebra Subprogram - CHER2K 4-35
Ascn translation - TR .. 8-16 Basic Linear Algebra Subprogram - CHERK 4-38
ASIN - Computes arcsine ... 2-20 Basic Linear Algebra Subprogram - CROT 4-40
asin - Computes arcsine .. 2-20 Basic Linear Algebra Subprogram - CROTG 441
assign a multitasking lock - LOCKASGN 14-21 Basic Linear Algebra Subprogram - CSYMM 4-42
assign multitasking barrier - BARASGN14·5 Basic Linear Algebra Subprogram - CSYR2K4-45
assign variable - BARASGN .. .14·5 Basic Linear Algebra Subprogram - CSYRK 4-48
assign variable as a lock - LOCKASGN14-21 Basic Linear Algebra Subprogram - CTBMV4-50

SR-01l3 o

Basic Linear Algebra Subprogram. CfBSV 4-53
Basic Linear Algebra Subprogram - CTRMM4-56
Basic Linear Algebra Subprogram - CfRMV 4-58
Basic Linear Algebra Subprogram. CfRSM 4-60
Basic Linear Algebra Subprogram· CfRSV 4-62
Basic Linear Algebra Subprogram. DOT 4-64
Basic Linear Algebra Subprogram· INTRO 4-1
Basic Linear Algebra Subprogram - SASUM4-101
Basic Linear Algebra Subprogram - SAXPY 4-102
Basic Linear Algebra Subprogram - SCAL 4-103
Basic Linear Algebra Subprogram. SCOPY 4·105
Basic Linear Algebra Subprogram· SGBMV 4·106
Basic Linear Algebra Subprogram - SGEMM 4-108
Basic Linear Algebra Subprogram. SGEMV4-113
Basic Linear Algebra Subprogram - SGER4-114
Basic Linear Algebra Subprogram - SMXPY 4-115
Basic Linear Algebra Subprogram. SNRM24-116
Basic Linear Algebra Subprogram - SPDOT 4·120
Basic Linear Algebra Subprogram - SROT 4-121
Basic Linear Algebra Subprogram - SROTG4-122
Basic Linear Algebra Subprogram - SROTM 4-124
Basic Linear Algebra Subprogram. SROTMG 4-126
Basic Linear Algebra Subprogram - SSBMV 4-131
Basic Linear Algebra Subprogram - SSUM 4·133
Basic Linear Algebra Subprogram· SSWAP 4-134
Basic Linear Algebra Subprogram - SSYMM 4-135
Basic Linear Algebra Subprogram - SSYMV 4-138
Basic Linear Algebra Subprogram - SSYR 4-139
Basic Linear Algebra Subprogram - SSYR24·140
Basic Linear Algebra Subprogram. • SSYR2K 4·141
Basic Linear Algebra Subprogram - SSYRK 4-144
Basic Linear Algebra Subprogram - STBMV4·146
Basic Linear Algebra Subprogram - STBSV4-148
Basic Linear Algebra Subprogram - STRMM 4·150
Basic Linear Algebra Subprogram - STRMV 4-152
Basic Linear Algebra Subprogram.. STRSM 4-153
Basic Linear Algebra Subprogram - STRSV4·155
Basic Linear Algebra Subprogram - SXMPY 4·156
beginning-of-volume processing - CLOSEV12-27
beginning-of-volume processing - PROCBOV 12·44
beginning.of-volume processing - STARTSP 12-62
Begins special processing at end-of-volwne

(EOV) (obsolete) - PROCEOV12-45
Begins user EOV and BOV processing - CLOSEV 12·27
Begins user EOV and BOV processing - STARTSP12-62
BICONV • Converts a specified integer to a

decimal ASCII string representing the
integer .. 8·6

BICONZ - Converts a specified integer to a
decimal ASCII string representing the
integer .. 8·6

bidirectional memory test - SENSEBT 17·43
bidirectional memory transfer - CLEARBT17-9
bidirectional memory transfer· CLEARBTS 17-10
binary to character conversion - B20CT 8-5
binary to octal conversion - B20CT 8-5
bit mask • MASK ... 2·55
bit move - MOV ... I0-5
bit popUlation parity - POPPAR 2-64
bit shift· SHIFrL .. 2-72
bit shift· SHIFfR .. 2·74
blanks for value - FSUP .. .12-33
BLAS - CROT ... 4-40
BLAS - CROTG .. 4-41
BLAS - DOT .. 4-64

SR-O 11 3 Index-3

BLAS - INTRO .. 4-1
BLAS - SASUM4-101
BLAS - SAXPY .. .4-102
BLAS - SCAL4-103
BLAS - SCOPY ... 4·105
BLAS - SMXPY4-115
BLAS - SNRM2 ... 4-116
BLAS - SPDOT .. .4·120
BLAS • SROT .. 4-121
BLAS· SROTG ... 4-122
BLAS - SR()TM4-124
BLAS - SROTMG .. .4-126
BLAS - SSUM ... 4-133
BLAS • SSWAP ... 4·134
BLAS - SXMPY4-156
BLAS 2 . CGBMV .. 4-1 0
BLAS 2 • CGEMV .. .4·18
BLAS 2 - CGERC .. 4-20
BLAS 2· CGERU ... 4-22
BLAS 2 - CHBMV .. 4-24
BLAS 2· CHEMV ... 4·29
BLAS 2 • CHER .. 4-31
BLAS 2 - CHER2 .. 4-33
BLAS 2 - crBMV .. .4-50
BLAS 2 - CTBSV .. 4·53
BLAS 2· CTRMV ... 4-58
BLAS 2 - CfRSV4-62
BLAS 2 • INTRO .. .4·1
BLAS 2 • SGBMV .. .4-I06
BLAS 2 - SGEMV ... 4-113
BLAS 2· SGER ... 4-114
BLAS 2 - SSBMV ... 4·131
BLAS 2 - SSYMV ... 4·138
BLAS 2 - SSYR ... 4-139
BLAS 2 - SSYR2 ... 4·140
BLAS 2 • STBMV ... 4-146
BLAS 2 - STBSV .. .4·148
BLAS 2 - STRMV .. .4·152
BLAS 2 • STRSV ... 4-155
BLAS 3 (CRI extension). CGEMMS 4-15
BLAS 3 (CRI extension) - SGEMMS4-110
BLAS 3 - CGEMM .. 4-13
BLAS 3 - CHEMM .. 4-26
BLAS 3 • CHER2K ... 4-35
BLAS 3 - CHERK ... 4-38
BLAS 3 - CSYMM .. 4-42
BLAS 3 • CSYR2K .. 4-45
BLAS 3 - CSYRK .. 4-48
BLAS 3 • CfRMM .. 4-56
BLAS 3 - CfRSM ... 4·60
BLAS 3 - INTRO ... 4-1
BLAS 3 - SGEMM4.108
BLAS 3 • SSYMM ... 4-135
BLAS 3 - SSYR2K4·141
BLAS 3 - SSYRK4·144
BLAS 3 - STRMM ... 4-150
BLAS 3 - STRSM4-153
block extend or copy - HPCLMOVE 11-6
block heap change - HPNEWLEN11-9
block length heap - IHPLEN ... 11-11
block of memory to heap - HPDEALLC 11-7
block tape position - SETIP12·59
blocks in dataset· NUMBLKS13·9
Boolean - AND .. 2-17
Boolean - COMPL .. 2·29

D

Boolean ~ BQV ... 2-44
Boolean - LEADZ. ... 2-52
Boolean - MASK ... 2-55
Boolean - NEQV .. 2-58
Boolean - OR ... 2-61
Boolean - P<>PCNI' .. 2-63
Boolean - POPP AR .. 2·64
Boolean - SHIFf .. 2-70
Boolean - SIDFrL ... 2-72
Boolean· SIUFrR ... 2-74
BOV processing - CLOSEV .. .12-27
BOV processing - PROCBOV 12-44
BOV processing - SVOLPRC .. 12·65
BUFDUMP - Unfonnatted dump of multitasking

history trace buffer14-8
buffer record into· FINDMS ... 12-32
BUFPRINT - Formatted dwnp of multitasking

history trace buffer14-9
BUFI'UNE - Tune parameters controlling

multitasking history trace14-10
BUFUSER - Adds entries to the multitasking

history trace buffer ... 14·13
bypass file - SKIPR ... 13-11
bypass records - SKIPR ... 13-11
byte and bit manipulation routines

introduction - INTRO10·1
byte comparison - KOMSTR .. .10-4
byte move - MOV10-5
byte replacement - BYT ... I0-2

C Language X Window System Interface Library
- XLIB .. 19-10

C library for X Window System - XLIB19-10
C snapshot dwnp - SYMDUMP 16-16
CABS - Computes absolute value 2-7
call tracml- SE1'PUMQ ... 16-12
CALLCSP - Executes a COS control statement3-5
caller name - OE1'NAMEQ ... 16-7
c:alling sequence intonnation - TRBKL VL 16·21
c:alling sequence list - TRBK .. .16·20
CAXPY • Adds a scalar multiple of a real or

complex vector .. 4-102
CCOPY - Copies a real or complex vector into

another vector .. .4·105
CCOS _ Computes cosine ... 2-32
CCS - Cracks a control statement 17-7
CDC 60-bit integer conversion -1NT6064 8-13
CDC 60·bit single'precision conversion·

FP6064 ... 8·12
CDC display code characters - DSASC 8-11
CDC to ASCII character conversion· DSASC 8-11
CooTC • Computes a dot product (inner

product) of two real or complex vectors 4·64
COOTU - Computes a dot product (inner

product) of two real or complex vectors 4-64
CEXP • Computes exponential function 2-46
CEXPR - Cracks an expression : 17·8
CFFT2 - Applies a complex Fast Fourier

Transfonn (FFf)5·3
CFFI'MLT . Applies complex-to-complex Fast

Fourier Transforms (FFf) on mUltiple
input vectors .. .5-4

COBMV - Multiplies a complex vector by a
complex general band matrix 4-l0

SR-0113 Index-4

CGEMM - Multiplies a complex general matrix
by a complex general matrix 4-13

CGEMMS - Multiplies a complex general matrix
by a complex general matrix using
Strassen's algorithm. .. 4.15

CGEMV - Multiplies a complex vector by a
complex general matrix. ... 4-18

CGERC - Performs conjugated rank 1 update of
a complex general matrix 4-20

CGERU - Perfonns unconjugated rank 1 update
of a complex general matrix 4-22

change JCL symbol· JSYMSET17-32
change length of block - HPCLMOVE 11-6
change output value - FSUP12-33
change size of heap block - HPNEWLEN11-9
Changes a value for a JCL symbol or retrieve

a JCL symbol- JSYMSET 17-32
Changes the size of an allocated heap block·

HPNEWLEN .. 11-9
channel programming - DRIVER 17-15
CHAR - Converts integer to character and vice

versa ... 2-26
character changes NAMEUST - RNL 12-54
character conversion - CHAR2-26
character conversion - DSASC 8-11
character move - MVC .. 10-6
character read - READC12-50
character siring length - LEN ... 2-S3
character translate - TRRI ... 8-17
character wrire • WRlTEC ... 12-81
CHBMV - Multiplies a complex vector by a

complex Hermitian band matrix 4·24
CHCONV - Converts decimal ASCII numerals to

an integervalue .. 8-10
check AQIO status - AQST AT 12-19
check for multitasking task - TSKTEST 14-29
check heap - HPCHECK .. ll·S
check status ofI1O - CHECKMS 12-25
CHECKDR - Checks status of asynchronous

random access 00 operation. 12-25
CHECKMS - Checks status of asynchronous

random access lJO operation. 12-25
Checks status of asynchronous random access

I/O operation· CHECKMS 12-25
Checks tape I/O status - CHECKTP 12-26
Checks the integrity of the heap - HPCHECK 11-5
Checks the status of asynchronous queued I/O

requests - AQSTAT ... 12-19
Checks word·addressable file status - WCHECK 12-70
CHECKTP - Checks tape I/O status 12-26
CHEMM - Multiplies a complex general matrix

by a complex Hermitian matrix 4-26
CHEMV - Multiplies a complex vector by a

complex Hennitian matrix 4-29
CHER - Performs Hermitian rank 1 update of a

complex Hermitian matrix 4.31
CHER2 - Performs Hennitian rank 2 updare of a

complex Hermitian matrix 4-33
CHER2K - Performs Hennitian rank: 2k update of

a complex Hermitian matrix 4-35
CHERK - Performs Hermitian rank k update of a

complex Hennitian matrix 4-38
Cholesky . LlNPACK .. 4-79
circular shift - SHIFf ... 2-10
clear a multitasking lock - LOCKOFF 14-22

D

clear floating-point interrupts - CLEARFI17-11 COMPL . Computes logical complement 2-29
clear floating-point interrupts - CLEARFIS 17-12 complement logical - COMPL2-29
clear multitasking - EVCLEAR 14-15 complex Fast Fourier transform (multiple
clear multitasking event - EVCLEAR 14-15 input vectors) - CFFI'MLT 5-4
CLEARBT - Temporarily disables/enables complex Fast Fourier transfonn - CFFT25-3

bidirectiona.l memory transfers 17-9 complex general band matrix • CGBMV 4·10
CLEARBTS - Permanently disables/enables complex general matrix - CGEMM 4-13

bidirectional memory transfers 17-10 complex general matrix • CGERC 4·20
CLEARFI - Temporarily prohibits/permits complex general matrix - CGERU 4-22

floating-point interrupts ... 17-11 complex general matrix - CGEMMS 4-15
CLEARFIS - Temporarily prohibits/permits complex general matrix - CGEMV 4·18

floating-point interrupts for a job 17-12 complex general matrix· CHEMM 4-26
Clears a lock and returns control to the complex general matrix - CSYMM 4-42

calling task - LOCKOFF14-22 complex general matrix - CTRMM 4-56
Clears an event and returns control to the complex Givens plane rotation matrix - CROTO 4-41

calling task - EVCLEAR 14-15 complex Hermitian band matrix - CHBMV 4-24
clock - CI.OCK .. 15-3 complex Hennitian matrix • CHER 4-31
CLOCK _ Returns the current system-clock time 15·3 complex Hermitian matrix - CHER2 4-33
clock - RTC .. 15-6 complex Hermitian matrix • CHER2K 4·35
clock register - RTC ... 15-6 complex Hermitian matrix - CHEMM 4·26
CLOG - Computes natural logarithm 2-13 complex Hermitian matrix - CHEMV 4-29
CLOSOR • Writes master index and closes complex Hermitian matrix· CHERK 4·38

random access dataset .. 12-28 complex number computation - AIMAG 2-11
close AQIO dataset - AQCLOSE 12-11 complex plane rotation - CROT 4-40
close dataset - WCLOSEU ... 12-72 complex plane rotation matrix· CROTG 4-41
close random access dataset - CWSMS 12-28 complex symmetric matrix - CSYRK4-48
close random access dataset - WCLOSEU12-72 complex symmetric matrix - CSYMM 4·42
close random access file - WCLOSE 12-71 complex symmetric matrix - CSYR2K 4-45
close unbuffered dataset - WCLOSEU 12-72 complex triangular band mattix· CTBMV 4-50
Closes a word-addressable, random· access complex triangular banded system of equations

dataset - WCLOSE ... 12-71 • CI'BSV ... 4-53
Closes a word.addressable. Wlbuffered complex triangular matrix - CI'RMM 4-S6

random-access dataset - WCLOSEU 12·72 complex triangular matrix - CfRMV 4-58
Closes an asynchronous queued 1/0 dataset or complex triangular system of equations. CTRSM 4-60

file • AQCLOSE ... 12·11 complex triangular system of equations· erRS V 4·62
CLOSEV - Begins user EOV and BOV processing 12·27 complex vector - CGBMV ... 4-10
CLOSMS - Writes master index and closes complex vector - CGEMV ... 4-18

random access dataset .. 12·28 complex vector - CHBMV ... 4-24
CLUSEQ - Finds index of clusters within a complex vector· CHEMV ... 4-29

vector .. 6-5 complex vector· CTBMV ... 4-50
CLUSFGE - Finds real clusters in a vector 6-6 complex vector - CTRMV ... 4-58
CLUSFGT • Finds real clusters in a vector 6-6 complex vector - OOT ... 4-64
CLUSFLE • Finds real clusters in a vector 6-6 complex vector - SCAL ... 4-103
CLUSFLT - Finds real clusters in a vector 6-6 complex vector· SCOPY ... 4-105
CLUSIGE • Finds integer clusters in a vector 6-7 complex vector addition - SAXPY4-102
CLUSIGT - Finds integer clusters in a vector 6-7 complex vector addition - SSUM 4-133
CLUSILE - Finds integer clusters in a vector 6-7 complex vector dot product· Dar 4-64
CLUSILT . Finds integer clusters in a vector 6·7 complex vector exchange. SSWAP 4-134
CLUSNE • Finds index of clusters within a complex.to-real Fast Fourier transform

vector .. 6-5 (multiple input vectors) - RFFfML T 5-8
cluster search - CLUSEQ ... 6-5 complex-to-real Fast Fourier transfonn •
cluster search - CLUSFLT ... 6-6 CRFFf2 ... 5-6
cluster search - CLUSILT .. 6-7 compress data - PACK ... 9-2
clusters of integer occurrences - CLUSILT 6-7 Compresses stored data - PACK 9-2
clusters oCreal occurences - CLUSFLT 6-6 compute arctangent for single argument - AT AN 2-22
CMACH . Returns machine epsilon, small/large compute arctangent for two arguments - ATAN2 2·24

normalized numbers .. 17-46 compute conjugate - CONIG ... 2-31
CMPLX - Converts to type complex 2·27 compute integer ceiling - ICEIL 17·27
column vector - SMXPY ... 4-115 Computes a correlation of two vectors -
common logarithm· ALOGlO 2-15 FIL TERG ... 4·69
commWlications between jobs - DCOM 17-28 Computes a correlation of two vectors •
compare bytes - KOMSTR .. 10-4 FIL TERS .. 4-70
Compares specified bytes between variables or Computes a dot product (inner product) of two

arrays - KOMSTR .. I0-4 real or complex vectors· Dar 4-64
Compares strings lexically - LGE 2-S4 Computes absolute value· ABS2-7

SR-Ot13 Index-5 D

Computes arccosine - ACOS .. 2-9
Computes arcsine - ASIN ... 2-20
Computes arctangent for single argument - AT AN 2-22
Computes arctangent for two arguments - ATAN2 2-24
Computes bit population parity - POPPAR 2-64
Computes common logarithm - ALOGIO 2·15
Computes conjugate of a complex number - CONJG ... 2-31
Computes cosine • COS .. 2·32
Computes cotangent . COT .. 2·36
Computes double-precision product of two real

numbers - DPROD ... 2-43
Computes exponential function - EXP 2-46
Computes hyperbolic cosine • COSH 2-34
Computes hyperbolic sine - SINH 2-79
Computes hyperbolic tangent - TANH 2-87
Computes imaginary portion of a complex

number - AIMAG .. 2·11
Computes logical complement - COMPL.2-29
Computes logical difference - NEQV 2-58
Computes logical equivalence - EQV 2-44
Computes logical product. AND 2-17
Computes logical sum - OR ... 2-61
Computes matrix-times-matrix product

(arbitrary increments) - MXMA4-88
Computes matrix-times-matrix product (unit

increments) - MXM ... 4-86
Computes matrix-times-vector product

(arbitrary increments) - MXVA 4-94
Computes matrix-times-vector product (unit

increments) - MXV .. 4-92
Computes natural logarithm - ALOG 2·13
Computes positive difference of two numbers

- DW ... 2-41
Computes pseudo-random numbers - RAN 2-66
Computes real and double-precision lnmCation

• AlNT .. 2·12
Computes remainder of x1lx2 - MOD 2·56
Computes square root - SQRT 2·82
Computes tangent - TAN .. 2·85
Computes the Euclidean nonn of a vector -

SNRM2 .. 4·116
Computes the sine • SIN ... 2-77
Conditionally transfers control to a

specified routine - SETRPV 17-45
CONJG • Computes conjugate of a complex number ... 2-31
conjugate - CONJG .. 2-31
conjugate of complex number - CONJG 2·31
conjugated rank 1 update - CGERC 4-20
constant coefficient· FOLRC .. 4·75
Consnucts a Givens plane rotation - CRarG 4-41
Constructs a Givens plane rotation - SROTG 4-122
Constructs a modified Givens plane rotation -

SROTMG ... 4·126
continue normal I/O - CONTPIO 12-30
Continues nonnal I/O operations· CONTPIO 12-30
CONTPIO - Continues normal I/O operations 12-30
control statement - CCS ... 17·7
control statement execute - CALLCSP 3-5
control statement inteIpreter - CRACK17-13
control statement parameters - GETPARAM17·24
conversion from IBM - USICfC 8-21
conversion input type - RNLTYPE12-57
conversion subprograms introduction - INTRO 8·1
convert 24 bit integer - INT24 2·50
convert 64 bit integer - INT24 2-50

SR·01l3 Index-6

convert AScn to integer - CHCONV 8-10
convert binary to octal· B20Cf 8·5
convert integer • INT24 .. 2-50
convert time - DTTS .. 15-5
convert time - TSMI' ... 15-11
convert time to ASCII· TSDTIS-10
convert to double precision - DBLE2·39
convert to integer - INT ... 2-49
convert to real - REAL .. 2-68
Converts 64-bit integer to 24·bit integer and

vice versa (CFf only) • INT24 2-50
Converts a Cray 64-bit integer to mM

packed-decimal field - USICTP 8-22
Converts a specified integer to a decimal

ASCII string representing the integer -
BICONV .. 8-6

Converts a specified number of bytes of an
IBM packed-decimal field to a 64·bit
integer field - USPCI'C .. 8-24

Converts ASCn date and time to time.stamp •
DTI'S .. lS-5

Converts CDC 60-bit integers to Cray 64-bit
integers - INT6064 .. 8-13

Converts CDC 60·bit single·precision numbers
10 Cray 64-bit single-precision
numbers and vice versa· FP6064 8·12

Converts CDC display code character to ASCn
character and vice versa - DSASC 8-11

Converts Cray 64-bit integers 10 CDC 60-bit
integers • INr6460 .. 8-14

Converts Cray 64-bit integers to either VAX
INTEGER *2 or INTEGER *4 numbers· VXICTI 8-32

Converts Cray 64-bit single.precision,
floating-point numbers to mM 32·bit
single-precision numbers· USSCTI 8·26

Converts Cray 64·bit single·precision.
floating-point numbers [0 mM 64-bit double
precision numbers - usocn 8-20

Converts Cray 64-bit single-precision.
floating-point numbers to VAX D format
floating-point numbers - VXDCTI 8-28

Converts Cray 64·bil single-precision.
floating-point numbers 10 V AX G format
floating-point numbers - VXGCTI 8-30

Converts Cray 64-bit Single-precision.
floating-point to VAX F format
single-precision. floating-point - VXSCTI 8-35

Converts Cray complex numbers to V AX complex
nUInbers - VXZCTI .. 8-37

Converts decimal AScn numerals to an integer
value - CHCONV ... 8·10

Converts mM 32-bil floating-point numbers to
Cray 64-bit Single-precision numbers
-usscrc .. 8·25

Converts mM 64-bit floating-point numbers to
Cray 64-bit single-precision numbers
- USDCTC ... 8·19

Converts mM EBCDIC data to ASCII data and
vice versa - USCCTC ... 8·18

Converts mM INTEGER *2 and INTEGER *4 numbers
to Cray 64-bit integer numbers. and
vice versa· USICfC .. 8·21

D

Converts IBM LOGICAL*l and LOGICAL*4 values
into Cray 64-bit logical values. and
vice versa - USLCfC ... 8-23

converts integer to Ascn string - BICONV 8-6
Converts integer to character and vice versa

- CHAR .. 2-26
Converts time-stamp to a corresponding

real-time value. and vice versa - TSMT15-11
Converts time-stamps to ASCn date and time·

TSDT .. 15-10
Converts to type complex - CMPLX 2-27
Converts to type double precision • DBLE 2-39
Converts to type integer . 1NT 2-49
Converts to type real - REAL 2-68
Converts trailing blanks to nulls and vice

versa - RBN ... 8-15
Converts VAX 32-bit floating-point munbers to

Cray 64-bit single-precision numbers
-vxscrc ... 8-34

Converts VAX 64-bit complex numbers to Cray
complex nwnbers - VXZCTC 8-36

Converts VAX 64·bit 0 format numbers to Cray
single-precision numbers - VXDCTC 8-27

Converts VAX 64-bit G format numbers to Cray
single-precision numbers - VXOCTC 8-29

Converts VAX INTEGER *2 or INTEGER·4 to Cray
M-bit integers - VXICTC 8·31

Converts V AX logical values to Cray 64-bit
logical values - VXLCTC 8·33

Copies a real or complex vector into another
vector - SCOPY .. .4-105

Copies current register contents to sour .
SNAP ... 16·13

Copies either specified sectors or all data
to EOD • COPYU .. 13-5

Copies records, files, or a dataset from one
dataset to another· COPYR 13·4

copy block - HPCLMOVE .. .11·6
Copy register to SOUT - SNAP 16-13
copy unblocked - COPYU .. .13·5
COPYD - Copies records, files, or a dataset

from one dataset to' another 13-4
COPYF • Copies records. files. or a dataset

from one dataset to another 13·4
copying - COPYR ... 13·4
copying vectors· SCOPY4-105
COPYR • Copies records. files. or a dataset

from one dataset to another 13-4
COPYU . Copies either tpecified sectors or

all data to EOD .. .13·5
correlation - FILTERG4-69
correlation - FlLTERS .. .4-70
correlation ofsymrnetric vectors - FILTERS 4-70
correlation of two vectors - FILTERS4-70
correlation of vectors - FILTERG 4·69
COS - Computes cosine .. 2-32
cos - Computes cosine .. 2-32
COS dump - DUMPJOB ... 16·5
COS dump - DUMP ... 16-4
COS parameters - GETPARAM 17-24
COS system requests· SYSTEM 17-48
COSH - Computes hyperbolic cosine 2-34
cosh· Computes hyPerbolic cosine 2-34
cosine (hyberboJic) - COSH ... 2-34
cosine - COS .. 2·32

SR·Ol13 Index-7

COT - Computes cotangent .. 2-36
cotangent - COT ... 2-36
count 1 bits - POPCNT .. 2-63
count arguments· lARGC .. .17-26
count leading zero bits - LEADZ 2·52
count string characters - TRIM LEN1 0-7
Counts number of bits set to 1 - POPCNT 2-63
COWlts number of leading 0 bits - LEADZ 2-52
CPU time - SECOND15-7
CPU time remaining. TREMAIN 15-9
CPU time return - TSECND .. 14-27
CPUs available - MAXLCPUS 14-26
CRACK - Cracks a directive .. 17-13
Cracks a control statement· CCS 17-7
Cracks a directive - CRACK .. 17 -13
Cracks an expression - CEXPR 17·8
Cray 64-bit integer conversion - INT6460 8·14
Cray 64-bit integer conversion - USICTC 8-21
Cray 64-bil integer to V AX INTEGER· 2

conversion - VXICTI ... 8-32
Cray 64-bit integer to V AX INTEGER*4

conversion - VXICTI ... 8-32
Cray 64-bit single-precision conversion -

FP6064 ... 8-12
Cray 64-bit single.precision floating-point

conversion - USDCfI .. 8-20
Cray 64-bit single-precision floating-point

conversion - VXGCTI .. 8-30
Cray 64-bit single-precision to

floating.point conversion - VXDCTL 8-28
Cray complex conversion - VXZerI 8-37
Cray complex to V AX complex conversion -

VXZCTI ... 8-37
Cray to V AX conversion - VXZCIT 8-37
CRA YDUMP - Prints a memory dump to a

specified dataset .. .16-3
create subindex - STINDX ... 12-63
Creates an unblocked dataset containing the

user job area image - DUMPJOB 16-5
CRFfT2 • Applies a complex·to·real Fast

Fourier Transfonn (FFf) 5-6
CROT - Applies the complex plane rotation

computed by CROTO .. 4-40
CROTG • Constructs a Givens plane rotation 4·41
CRT screen updating - CURSES 19-2
CSCAL - Scales a real or complex vector4-103
CSIN - Computes the sine ... 2.77
CSQRT - Computes square root 2-82
CSSCAL - Scales a real or complex vector4-103
CSUM - Sums the elements of a real or complex

vector .. 4-133
CS W AP - Swaps two real or complex arrays 4·134
CSYMM - Multiplies a complex general matrix

by a complex symmetric matrix 4-42
CSYR2K • Perfonns symmetric rank 2k update of

a complex symmetric matrix4-45
CSYRK - Performs symmetric rank k update of a

complex symmetric matrix 4-48
CTBMV . Multiplies a complex vector by a

complex triangular band matrix4-50
CI'BSV . Solves a complex triangular banded

system of equations4-53
eroc - Raises base value to a power 2·65
er01 - Raises base value to a power 2-65
erOR - Raises base value to a power 2-65

D

CTRMM - Multiplies a complex general matrix DBLE • Converts to type double precision 2·39
by a complex triangular matrix4-56 OCOS • Computes cosine ... 2-32

CTRMV - Multiplies a complex vector by a OCOSH - Computes hyperbolic cosine 2-34
complex triangular matrix4-58 OCOT - Computes cotangent .. 2-36

CfRSM - Solves a complex triangular system of DDIM - Computes positive difference of two
equations with multiple right-hand numbers ... 2-41
sides .. 4-60 DDSS - Performs double-precision arithmetic 2-37

CfRSV - Solves a complex triangular system of DDSV - Performs double.precision arithmetic 2-37
equations "4-62 DDVS - Performs double-precision arithmetic 2-37

current date Julian - DATE15-4 DDVV - Perfonns double-precision arithmetic 2-37
current level of calling sequence - TRBKLVL.. 16-21 deallocate heap - HPDEALLC11-7
current operating system - UNAME 18-8 DEBUG-like snapshot dump - SYMDUMP 16-16
current system time - CLOCK 15-3 declare job rerunnable - RERUN17-42
curses - Updates CRT screens .. 19-2 Declares a job rerwmable/not rerunnable -
custom translation - TRR1 .. 8-17 RERUN .. 17-42
cycle time of machine - JCCYCL 14-20 decrease heap - HPSHRINK .. I1-10
cycles - IGETSEC .. 16-8 decrease heap block - HPNEWLEN11-9

DELAY - Do nothing for a fixed period of time 17-14
DABS - Computes absolute value 2-7 delay multitasking event - EVW AIT 14·19
DACOS - Computes arccosine 2-9 delay task - EVWAlT .. 14-19
DASIN - Computes arcsine .. 2-20 Delays program execution during a queued I/O
DASS - Performs double-precision arithmetic 2·37 sequence - AQRECALL 12-17
DASV - Perfonns double-precision arithmetic 2-37 Delays the calling task until the specified
data accept - ACPTBAD12-9 event is posted - EVW AIT 14-19
data bad skip - S KIPBAD .. 12-61 delete characters for NAMELIST - RNL.. 12-54
data buffer a record - FINDMS 12-32 delimiter NAMEUST change - WNL 12-73
data compression - PACK .. 9-2 Determines action if a type mismatch occurs
data reading - GETW A12-38 across the equal sign on an input
data reading - GETWAU ... 12-40 record - RNLTYPE .. 12-57
data transfer - AQREAD .. 12-15 Determines if a dataset has been accessed or
data unpacking - UNPACK ... 9-5 created - IFDNT .. .3-1
data word-addressable - GETWA12·38 Determines if floating-point interrupts are
data word-addressable - GETWAU 12-40 permitted or prohibited· SENSEFI 17-44
data writing - WRITE .. 12-80 Determines index location of a character
DATAN - Computes arctangent for single substring - INI)EX ... 2·48

argument .. 2-22 Determines the length of a character string -
DAT AN2 - Computes arctangent for two arguments 2·24 LEN ... 2-53
dataset access - !FDNT .. 3-7 Determines whether bidirectional memory
dataset access in system directory - SDACCESS 3-8 transfer is enabled or disabled - SENSEBT 11-43
dataset AQIO close - AQCWSE 12-11 DEXP - Computes exponential function 2-46
dataset close - WCLOSEU ... 12-72 DFLOAT - Converts to type double precision 2-39
dataset close random access - CLOSMS 12-28 difference (logical) - NEQV .. 2-58
dataset creation - IFDNT ... 3·7 difference of two numbers (positive) • DIM 2-41
dataset edition - NACSED .. .17·37 DIM - Computes positive difference of two
dataset management subprograms introduction - numbers ... 2-41

INTRO ... 3-1 DINf - Computes real and double-precision
dataset memory reduce - STINDX12-63 truncation ... 2·12
dataset open - OPENMS .. 12-42 directive parameters process - PPL 17 -39
dataset open - WOPENU ... 12-78 disk dataset positioning - GETPOS 12-34
dataset open AQIO - AQOPEN 12-12 disk random access write - WRITMS 12-83
dataset open AQIO - AQOPENDV 12-13 divide long integers - LDIV ... 2-51
dataset parameter table (DSP) address - GETDSP 3-6 division (double.precision) - DBL_PREC 2-37
data.o;et position - BACKFILE 13-3 division (triple-precision) - T ADD 2-84
d81aset position - GETPOS .. 12-34 division - LDIV 2-S 1
dataset size in blocks - NUMBLKS 13-9 DLOG - Computes natural logarithm 2-13
dataset skip - SKlPD .. 13-10 DLOGlO - Computes common logarithm 2-15
dataset tape position - SETIP .. 12-59 DMAXI - Returns the largest of all arguments 6-18
dataset tape synchronize with program - SYNCH12-67 DMINI - Returns the smallest of all arguments 6·19
dataset utility routines introduction - INTRO 13-1 DMOD - Computes remainder of x 1/x2 2-56
DATE - Returns the current date and the DMSS - Performs double-precision arithmetic 2-37

current Julian date .. 15·4 DMSV - Performs double-precision arithmetic 2-37
date conversion· DTIS ... 15-5 DMVS - Performs double-precision arithmetic 2-37
date returned in Julian fonnat - DATE15·4 DMVV - Performs double-precision arithmetic 2-37
DA VS - Perfonns double.precision arithmetic 2·37 DNINT - Finds nearest whole number 2-19
DAVV - Perfonns double-precision arithmetic 2-37 Do nothing for a fixed period of lime - DELA Y17-14

SR-01l3 Index-S D

dot product • DOT .. 4-64 end job - ABORT .. .17·5
double precision - DBLE ... 2-39 end job - END17-17
double precision - DBL_PREC 2-37 end of file status - EOF .. 13-7
double precision - DPROD .. 2-43 end of tape processing· SETSP 12-58
double'precision addition - DBkPREC 2-37 end-of-dataset status - IOSTAT 13-8
double.precision arithmetic· DBL_PREC 2-37 end-of·fi.le status - IOSTAT ... 13-8
double-precision division - DBL_PREC 2-37 end-of-volume notification - ENDSP 12-31
double-precision multiplication - DBL_PREC 2-37 end-of-volume processing - STARTSP 12-62
double-precision product (real numbers) - end-of-volume processing - CLOSEV 12-27

DPROD .. 2-43 end-of-volume processing - PROCEOV12·45
double-precision subtraction - DBL_PREC 2-37 ENDRPV - Terminates ajobstepl7-17
double.precision truncation - AINT 2-12 ENDSP • Requests notification at the end of a
DPROD - Computes double-precision product of tape volume .. 12·31

two real numbers .. 2-43 Enters a fonnaned message in the user and
DRIVER - Programs a Cray channel on an I/O system logfiles - REMARKF11·41

Subsystem (IOS) .. 17-15 Enters a message in the user and system log
DSASC • Converts CDC display code character files· REMARK .. 17·40

to ASCII character and vice versa 8-11 envirorunent name - GETENV 18-4
DSIGN - Transfers sign of numbers 2-76 EOD position - SKIPD ... 13-10
DSIN" - Computes the sine .. 2-77 EOD status - IOSTAT13-8
DSIN"H - Computes hyperbolic sine 2-79 EOD write - EODW .. .13-6
DSQRT - Computes square root 2-82 EODW - EODW13-6
DSSS - Performs double-precision arithmetic 2-37 EOF - Returns real or integer value EOF status13-7
DSSV - Performs double.precision arithmetic 2-37 EOF status - lOST AT13-8
DSVS - Performs double-precision arithmetic 2-37 EOF write - EODW ... 13·6
DSVV - Perfonns double-precision arithmetic 2-37 EOR write - EODW .. .13-6
DT AN - Computes tangent ... 2·85 EOV notification - ENDSP .. 12-31
DT ANH - Computes hyperbolic tangent 2-87 EOV processing - CLOSEV .. 12-27
DTOD • Raises base value to a power2-65 EOV processing - PROCEOV12-45
DTOI - Raises base value to a power 2-65 EOV processing - SVOLPRC ,12-65
DTOR - Raises base value to a power 2-65 equivalence (logical) - EQV .. 2-44
DTIS - Converts ASCII date and time to equivalence - EQV ... 2-44

time-stamp .. 15-5 EQV - Computes logical equivalence 2-44
dump _ BUFPRINT .. 14-9 ERECALL - Allows a job to suspend itself
DUMP· Dumps memory to SOUT 16-4 until selected events occur 17-18
dump from registers - SNAP .. .16·13 ERREXIT· Requests abort .. 17-20
dump heap size and address - HPDUMP11·8 error unit NAMEUST - RNLECHO12-55
dump job area· DUMPlOB ... 16-5 EucIideannonn - SNRM2 ... 4-116
dump multitasking. BUFDUMP 14-8 EV ASGN - Identifies an integer variable to be
dump of memory - DUMP ... 16-4 used as an event ... 14-14
dump ofrunning program - SYMDUMP 16-16 EVCLEAR - Clears an event and returns control
dump to $OUT - DUMP .. .16-4 to the calling task ... 14-15
dump to dataset • CRA YDUMP 16-3 event assign - EVASGN .. 14-14
dump to dataset· DUMPJOB .. 16-5 event clear - EVCLEAR .. 14-15
dump tuning - BUFTUNE .. .14-10 event post - EVPOST ... 14-16
DUMPJOB • Creates an unblocked dataset event release - EVREL ... 14-17

containing the user job area image16-5 event test - EVTEST14-18
Dumps memory to $OUT - DUMP 16·4 events·- EVCLEAR .. 14-15
Dumps the address and size of each heap block events - EVroST ... 14-16

- HPDUMP ... 11-8 EVPOST - Posts an event and returns control
to the calling task ... 14-16

EBCDIC to ASCII conversion - usccrc 8-18 EVREL - Releases the identifier assigned to
EBCDIC translation - TR ... 8-16 the task ... 14-17
ECHO - Turns on and off the classes of EVTEST - Tests an event to detennine its

messages to the user logfile 17·16 posted state ... 14-18
echo lines NAMEUST· RNLECHO 12-55 EVW AIT - Delays the calling task until the
edition of dataset- NACSED ... 17-37 specified event is posted ... 14-19
Eigenvalue problem. EISPACK 4-65 Exchange Package listing - XPFMT 16-22
EISPACK· Single-precision ElSPACK routines 4-65 Exchange Package write - FXP 16·6
EISPACK routines - INTRO ... 4-1 execute control statement - CALLeSP 3-5
elements in a vector - II1.2 ... 6-8 execute shell command from current process -
elements of a complex vector - ISAMAX 6-11 ISHELL .. 17-30
elements of a real vector - ISAMAX 6-11 Executes a COS control statement - CALLeSP 3-5
£ND - Tenninates a job step17-17 Executes a UNICOS shell command - ISHELL 17-30
end Fortran program· EXIT .. 17-21 execution time in CPU - SECOND15-7

Index·9 o

execution time in CPU - TSECND •............•................. .14-27
EXIT· Exits from a Fortran program 17.21
exit front Fortran - EXIT17-21
exit job - ERREXIT ... 17-20
Exits from a Fortran program - EXIT 17-21
exp - Computes exponential function ..•....................... 2-46
EXP - Computes exponential function 2-46
expand data - UNPACK ... 9-5
Expands stored data - UNPACK 9-5
exponential function· EXP .. 2-46
expression - CEXPR17-8
extend block - HPCLMOVE .. 11-6
Extends a block or copies block contents into

a larger block - HPCLMOVE 11-6

Fast Fourier transfonn (complex with multiple
input vectors) - CFFTMLT54

Fast Fourier transfonn - CFFf25-3
Fast Fourier transform - CRFFf25-6
Fast Fourier transform - INTRO 5-1
Fast Fourier transfonn - RCFFf2 5-7
Fast Fourier transfonn - RFFfMLT5-8
Fast Fourier transform for multiple input

vectors - RFFTMLT ... 5-8
Fast Fourier transfonn routines introduction

-INTRO .. .5·1
Fast Fourier transfonns - CFFTMLT 5·4
FFr - RCFFf2 .. .5·7
FFT - CFFf2 .. 5·3
FFT - CFFTMLT .. .5-4
FFf - CRFFr2 ... 5-6
FFT - INTRO ... 5-1
FFT - RFFTMLT ... 5-8
field finder - TMMSC11-17
field length reduction - MEMORY17-35
file check - WCHECK .. .12· 70
file close - WCLOSE ... 12-71
file skip - SKIPR .. 13·11
file tape position - SETTP .. 12·59
filter - FlLTERG .. 4-69
filter - OPFIL T ... 4-98
filter routines· INTRO ... 4-1
FIL TERG • Computes a correlation of two

vectors4·69
FILTERS· Computes a. correlation of two

vectors .. 4·70
find field - TMM SC11-17
find table field - TMSRC ... 11-20
FINDCH - Searches a variable or an array for

an occurrence of a character string 10-3
FINDMS - Reads record into data buffers12-32
Finds all array elements equal to or not

equal to the target - WHENEQ 6-22
Finds all integer array elements in relation

to the integer target - WHENILT 6-24
Finds all real array elements in relation to

the real target - WHENFLT 6-23
Finds array element equal or not equal to

target - ISRCHEQ .. 6-13
Finds first index of largest absolute value

in vectors - ISAMAX ... 6-11
Finds first integer array element in relation

to an integer target - ISRCHILT 6·15

SR-Ol13

Finds first real array element in relation to
areal target - ISRCHFLT 6-14

Finds index of clusters within a vector -
CLUSEQ .. 6-5

Finds integer clusters in a vector - CLU SILT 6·7
Finds maximum, minimum. or minimum absolute

value - ISMAX ... 6·12
Finds nearest integer - NlNT .. 2·60
Finds nearest whole number· ANINT 2-19
Finds real clusters in a vector - CLU S FL T 6-6
Finds the index of occurrences equal or not

equal to a scalar within a field in a
vector - WHEN"MEQ ... 6-25

Finds the index of occurrences in relation to
a scalar within a field in a vector
- WHENMLT ... 6-26

Finds the index of the first occurrence equal
or not equal to a scalar within a
field of a vector - ISRCHMEQ 6-16

first-order linear recurrence - FOLRC 4-75
first-order linear recurrence - FOLRN 4-76
first-order linear recurrence - FOLRNP4-71
first-order linear recurrences - FOLR4-71
first-order linear recurrences - FOLR2 4-73
fixed length record sort - ORDERS 7-2
FLOAT - Converts to type real 2-68
floating point conversion· USDCIT 8-20
floating point to 32-bit single-precision -

USSCTI. ... 8-26
floating point to single-precision conversion

- VXDCTI .. 8-28
floating-point conversion - usscrC 8-25
floating-point interrupts - CLEARFll7-11
floating-point interrupts - CLEARFlS17·12
floating-point interrupts - SENSEFI 17-44
floating-point to double-precision - USDCTI 8-20
floating-point to single-precision conversion

- USSCTC .. 8-25
fioating-point to single-precision number

conversion - USDCTC ... 8-19
floating -point to VAX F format single

precision - VXSCfI ... 8-35
fioating-poiont to VAX G format single

precision - VXGCfI .. 8-30
FOLR - Solves first-order linear recurrences 4-71
FOLR2 - Solves first-order linear recurrences

without overwriting operand vector 4-73
FOLR2P - Solves first-order linear

recurrences without overwriting operand vector ... 4-73
FOLRC - Solves first-order linear recurrence

wilh constant coefficient .. 4-75
FOLRN - Solves for the last term of

first-order linear recurrence4-76
FOLRNP - Solves for last term of a

first-order linear recurrence4-77
FOLRP - Solves first-order linear recurrences4-71
fonnat Exchange Package - FXP16-6
format output control - WNL..12-73
Formats and writes the contents of the

Exchange Package - FXP16-6
Formatted dump of multitasking history trace

buffer - BUFPRINT .. 14-9
Fortran argument - GET ARG .. 17 -22
Fortran character string length - LEN 2-53
Fortran exit - EXIT .. 17-21

D

Fortran interface to getenv - GETENV18-4 Gathers a vector from a source vector - GATHER 4-78
Fortran intrinsic - ABS ... 2-7 generates integer index - INDEX 2-48
Fortran intrinsic - ACOS .. 2-9 get option letter - GETOPT18-5
Fortran mtrinsic - AIMAG ... 2·11 GET ARG • Return Fortran command-line argument 17-22
Fortran intrinsic - AlNT ... 2-12 GETARG • Returns number of command-line
Fortran intrinsic - ALOG ... 2-13 arguments .. 17-26
Fortran intrinsic - ALOG 10 ... 2-15 GETDSP - Searches for a Dataset Parameter
Fortran intrinsic - AND .. 2-17 Table (DSP) ... 3·6
Fortran intrinsic - ANINT .. 2-19 getenv - Returns value for environment name18-4
Fortran intrinsic - ASIN ... 2-20 GETLPP· Returns lines perpage 17-23
Fortran intrinsic - AT AN" ... 2-22 GETNAMEQ - Returns name of the caller16·1
Fortran intrinsic - AT AN2 ... 2-24 getopt - Gets option letter from argument
Fortran intrinsic - CMPLX ... 2-27 vector .. 18-5
Fortran intrinsic - COMPL ... 2-29 GETPARAM _ Gets parameters17.24
Fortran intrinsic - CONJG ... 2-31 GETPOS • GETPOS, SETPOS - Returns the current
Fortran intrinsic· COS ... 2-32 position of interchange tape 12-34
Fortran intrinsic· COSH .. 2-34 GETPOS. SETPOS - Retum5 the current position
Fortran intrinsic - COT .. 2-36 of interchange tape - GETPOS 12-34
Fortran intrinsic· DIM ... 2-41 Gets name of current operating system· UNAMEI8·8
Fortran intrinsic - DPROD ... 2-43 Gets option letter from argument vector -
Fortran intrinsic - EQV .. 2-44 GETOPT .. 18-5
Fortran intrinsic - EXP ... 2·46 Gets parameters· GETPARAM 17-24
Fortran intrinsic - INT .. 2-49 GETTP - Receives position information about
Fortran intrinsic - LEADZ ... 2-52 an opened tape dataset or file - GETTP 12-36
Fortran intrinsic - MASK ... 2-55 GETW A • Synchronously and asynchronously
Fortran intrinsic - MOD ... 2·56 reads data .. 12-38
Fortran intrinsic - NEQV ... 2-58 GETWAU - Asynchronously reads a number of
Fortran intrinsic - NINT ... 2-60 words from the disk, direct1y to user 12-40
Fortran intrinsic - OR ... 2-61 Givens· CROTG ... 4-41
Fortran intrinsic - POPCNT ... 2·63 Givens - SROTG .. 4-122
Fortran intrinsic - POPPAR ... 2-64 Givens - SR01M ... 4-124
Fortran intrinsic - RAN .. 2-66 Givens - SROTMG4-126
Fortran intrinsic - REAL .. 2-68 Givens plane rotation application - SROTM 4-124
Fortran intrinsic - SHIFT ... 2-70 Givens plane rotation construction - SROTG 4-122
Fortran intrinsic· SHIFfL ... 2-72 Givens plane rotation construction - SROTMG 4-126
Fortran intrinsic - SHIFTR ... 2-74
Fortran intrinsic - SIGN ... 2-76 hardware standard name - UNAME18-8
Fortran intrinsic· SIN .. 2-77 heap address • HPDUMP .. .11"8
Fortran intrinsic - SINH ... 2-79 heap allocation - HPALLOC .. .11-4
Fortran intrinsic - SQRT .. 2·82 heap block adjust - HPNEWLEN 11-9
Fortran intrinsic . TAN .. 2·85 heap block length - IHPLEN .. 11-11
Fortran intrinsic - TANH ... 2-87 heap blocks dump - HPDUMP 11-8
Fortran output change. FSUP 12-33 heap dea1location - HPDEALLC11-1
Fortran snapshot dump - SYMDUMP16-16 heap decrease - HPSHRINK .. 11-10
Fourier transfonn - INTRO .. 5-1 heap information - HPDUMP 11·8
Fourier transfonn - RCFF1'2 .. 5-7 heap integrity check - HPCHECK 11-5
FP6064 - Converts CDC 60-bit single-precision heap management and table management

numbers to Cray 64·bit introduction - INTRO .. 11-1
single-precision numbers and vice versa 8-12 heap size - HPDUMP ... 11-8

FP6460 - Converts CDC 6O·bit single-precision heap statistics - IHPST AT11-12
numbers to Cray 64-bit Hennitian - CHBMV ... 4-24
single-precision numbers and vice versa 8-12 Hennitian • CHEMM ... 4-26

free block links for heap· HPDUMP11-8 Hennitian - CHEMV .. 4·29
FSUP . Output a value in an argument as blank12-33 Hennitian - CHER ... 4-31
full record read - READC12-50 Hennitian - CHER2 ... 4·33
full-record mode - WRITE ... 12·80 Hennitian - CHER2K .. 4-35
full-record mode - WRITEC .. 12-81 Hennitian - CHERK .. 4-38
full-record read - READ .. 12-49 Hennitian rank 1 update - CHER4-31
function key definitions - CURSES 19·2 Hermitian rank 2 update - CHER2 4-33
FXP - Fonnats and wri tes the contents of the Hermitian rank 2k update. CHER2K 4-35

Exchange Package .. 16·6 Hennitian rank k update - CHERK4·38
history trace buffer dump - BUFDUMP 14-8

GATHER· Gathers a vector from a source vector 4-78 history trace buffer dwnp - BUFPRINT 14-9
gather·scatter routines - INTRO4·1
gathering vector - GATHER .. 4-78

SR-01l3 Index·li D

history trace buffer dump add entries - IFDNT • Determines if a dataset has been
BUFUSER .. 14-13 accessed or created .. .3-7

history trace buffer tuning parameters - IFIX - Converts to type integer 2-49
BUFTUNE ... 14-10 IGETSEC - Returns the cycles charged to a job 16-8

hold for some time period - DELAY 17-14 IGTBYT - Replaces a byte in a variable or an
Homer's method - FOLRN .. 4-76 8lTay ... 10-2
HP ALLOC - Allocates a block of memory from IHPLEN - Returns the length ola heap block ll-11

the heap .. 1 1-4 IHPSTAT - Returns statistics about the heap 11-12
HPCHECK - Checks the integrity of the heap 11-5 IIlZ - Returns number of occurrences of
HPCLMOVE - Extends a block or copies block object in a vector ... 6-8

c~tents into a larger block11-6 IJCOM - Allows a job to communicate with
HPDEALLC - Returns a block of memory to the another job ... 17-28

list of available space .. 11-7 ILLZ - Returns number of occurrences of
HPDUMP - Dumps the address and size of each object in a vector , 6-8

heap block .. 11·8 ILSUM - Returns number of occurrences of
HPNEWLEN - Changes the size of an allocated object in a vector ... 6-8

heap block11-9 imaginary portion of complex number - AlMAG2-11
HPSHRINK - Returns an mused portion of heap increase heap block - HPNEWLEN 11-9

to the operating system .. 11·1 0 increasing vectorization - EISPACK 4-65
hyberbolic cosine - COSH ... 2-34 INDEX - Determines index location of a
hyperbolic sine - SINH .. 2·79 character substring ... 2-48
hyperbolic tangent - TANH ... 2-87 index location - INDEX .. .2-48

index of clusters within a vector - CLUSEQ 6·5
I/O asynchronous. AQOPEN .. 12-12 index of elements of a vector· ISAMAX 6-11
I/O asynchronous - AQOPENOV12·13 index write master - CLQSMS 12-28
I/O check of status - CHECKMS 12-25 Indicates output line length - WNLLONG 12-75
I/O mode asynchronous - ASYNCMS I2-24 INFLMAX - Searches for the maximum or minimum
I/O mode to synchronous - SYNCMS 12·68 value in a table ... 6-9
I/O normal - CONTPIO .. .12-30 INFLMIN - Searches for the maximum or minimwn
I/O open - OPENMS ... 12-42 value in a table ... 6-9
I/O read asynchronous - AQREAD12-15 Initializes/terminates special BOV /EOV
I/O routines introduction - INTRO 12-1 processing (obsolete) - SVOLPRC 12-65
I/O stop (AQIO) - AQSTOP .. 12-20 Initiates a task- TSKSTART ... 14-28
I/O wait (AQIO) - AQW AIT ... 12-21 Initiates detailed tracing of every call and
I/O wait - W AITMS ... 12·69 retUJ1l - SETPUMQ ... 16-12
I/O write (AQIO) - AQWRlTE 12-22 inner product - OOT ... 4-64
lABS - Computes absolute value 2-7 input - READ ... 12-49
lARGe - Returns number of command-line input type mismatch - RNL TypE12·57

arguments .. 17-26 input wait for end - W AITMS12-69
IBM 32-bit floating-point conversion - USSCTC 8·25 !NT - Converts to type integer 2-49
IBM 64-bit floating-point conversion· USOCTC 8-19 INT24 - Converts 64-bit integer to 24-bit
ibm floating-point - READIBM 12-5 1 integer and vice versa (CFf onJy) 2-50
mM packed-decimal conversion· USPCTC 8-24 INT6064 - Converts COC 60-bit integers to
ibm words read - READIBM _ 12-51 Cray 64-bit integers ... 8-13
IBM words write - WRITIBM 12-82 INT6460 • Converts Cray 64-bit integers to
ibm-from-Cray read - READIBM 12-51 CDC 6O-bit integers .. 8-14
ICAMAX - Finds first index of largest integer - INT .. 2-49

absolute value in vectors .. 6-11 integer array element - ISRCHEQ 6-13
ICEIL - Renuns integer ceiling of a rational integer array element - ISRCHILT 6-15

number .. 17-27 integer array element -ISRCHMLT 6-17
ICHAR - Converts integer to character and integer array element - OSRCHI... 6-20

vice versa ... 2-26 integer array element - OSRCHM 6-21
Identifies an integer variable intended for integer array elements - WHENEQ 6-22

use as a lock - LOCKASGN 14-21 integer array elements - WHENILT 6-24
Identifies an integer variable to be used as integer array search - OSRCHM 6-21

an event· EVASGN .. .14·14 integer array search· WHENILT 6-24
Identifies an integer variable to use as a

barrier - BARASGN14-5
integer ceiling value - ICEIL ... 17 ·27
integer cluster· CLUSILT ... 6·7

!DIM - Computes positive difference of two integer conversion - CHAR ... 2-26
numbers ... 2-41 integer converter -1NT24 .. 2-50

IDINT - Converts to type integer 2-49 integer divide - LOIV ... 2-51
IDNINT - Finds nearest integer 2-60 integer division - LDIV .. 2-51
IEOF - Returns real or integer value EOF integer from ASCII conversion - CHCONV 8-10

status .. 13-7 integer to ASCII conversion - BleONV 8-6
integer to packed-decimal conversion - USICTP 8-22

SR-01l3 Index-12 D

INTEGER "'2 to integer conversion - USICfC 8-21 introduction to heap management and table
1NTEGER"'4 to integer conversion - USICfC 8-21 management ·lNTRO11-1
integrity of heap check - HPCHECK ...•.•...•................... 11-5 introduction to I/O routines - INTRO 12·1
inter-job communication - IJCOM 17-28 introduction to library subprograms - INTRO l-l
interface to C library routines introduction introduction to linear algebra subprograms-

- INTRa .. .18-1 INTRO ... 4·1
interrupts floating-point . SENSEFI 17-44 introduction to multitasking routines - INTRO14-1
interrupts floating-point - CLEARFI17-11 introduction to packing routines - INrRO 9-1
interrupts floating-point - CLEARFIS17-12 introduction to programming aid routines -
INTMAX • Searches for the maximum or minimum INTRO ... 16-1

value in an integer vector 6-10 introduction to search routines· INTRO 6-1
INTMIN - Searches for the maximum or minimum introduction to sorting routines - INTRO 7-1

vaJue in an integer vector 6·1 0 introduction to system interface routines -
intrinsic - ABS2-7 INTRO ... 17-1
intrinsic - ACOS ... 2·9 introduction to the conunon math subprograms -
intrinsic - ALOG ... 2-13 INTRO ... 2-1
intrinsic - ALOGI0 ... 2-15 introduction to the interface to C library
intrinsic - AIMAO .. 2-11 routines· INTRO .. .18-1
intrinsic - AINT .. 2-12 introduction to the miscellaneous UNICOS
intrinsic - AND .. 2-17 routines· INTRO ... 19-1
intrinsic - ANINT ... 2-19 introduction to timing routines· INTRO 15-1
intrinsic - ASIN .. 2-20 inverse of square matrix - MINV 4-82
intrinsic - AT AN .. 2-22 IDS channel program· DRIVER 17-15
intrinsic - AT AN2 .. 2-24 lOST AT - Returns EOF and EOD status 13-8
intrinsic - CMPLX ... 2-27 IRTC - Return real-time clock values 15-6
intrinsic - COMPL _ 2-29 ISAMAX - Finds first index of largest
intrinsic - CONJG .. 2-31 absolute value in vectors .. 6-11
intrinsic - COS ... 2-32 ISAMIN - Finds maximum. minimum. or minimum
intrinsic· COSH .. 2-34 absolute value ... 6·12
intrinsic - COT ... 2-36 ISHELL - Executes a UNICOS shell command 17-30
intrinsic - DIM ... 2-41 ISIGN· Transfers sign of numbers 2-76
intrinsic - DPROD .. 2-43 ISMAX - Finds maximum. minimum. or minimum
intrinsic - EQV ... 2-44 absolute value ... 6·12
intrinsic - EXP .. 2·46 ISMIN - Finds maximum. minimum. or minimum
intrinsic - INT .. 2-49 absolute value ... 6-12
intrinsic - LEADZ .. 2-52 ISRCHEQ - Finds array element equal or not
intrinsic • MASK .. 2-55 equal to target ... 6-13
intrinsic· MOD .. 2-56 ISRCHFGE - Finds first real array element in
intrinsic - NEQV .. 2-58 relation to a real target ... 6-14
intrinsic - NINT .. 2-60 ISRCHFGT - Fmds first real array element in
intrinsic - OR2-61 relation to a real target ... 6-14
intrinsic - POPCNT .. 2·63 ISRCHFLE • Finds first real array element in
intrinsic - POPP AR .. 2-64 relation to a real target ... 6-14
intrinsic· RAN ... 2-66 ISRCHFLT • Finds first real array element in
intrinsic· REAL ... 2·68 relation to a real target ... 6-14
intrinsic - SHIFf .. 2-10 ISRCHIGE - Finds first integer array element
intrinsic - SHIFfL ... 2-12 in relation to an integer target.. 6-15
intrinsic· SHIFfR ... 2-74 ISRCHIGT - Finds first integer array element
intrinsic· SIGN .. 2-76 in relation to an integer target 6-15
intrinsic· SIN ... 2-77 ISRCHILE • Finds first integer array element
intrinsic - SINH .. 2-79 in relation to an integer target. 6-15
intrinsic· SQRT ... 2-82 ISRCHILT - Finds first integer array element
intrinsic· TAN · ... 2-85 in relation to an integer target 6-15
intrinsic . TANH .. 2-87 ISRCHMEQ - Finds the index of the first
introduction to byte and bit manipulation occurrence equal or not equal to a scalar

routines - INTRO .. .10-1 within a field of a vector .. 6-16
introduction to conversion subprograms - INTRO 8-1 ISRCHMGE - Searches vector for logical match 6·17
introduction to dataset management ISRCHMGT - Searches vector for logical match 6-17

subprograms - INTRO .. .3-1 ISRCHMLE - Searches vector for logical match 6-11
introduction to dataset utility routines - ISRCHMLT· Searches vector for logical match 6-11

INTRO ... 13-1 ISRCHMNE • Finds the index of the first
introduction to Fast Fourier Transfonn occurrence equal or not equal to a scalar

routines - INTRO ... 5-1 within a field of a vector .. 6-16

SR-0113 Index-13 D

ISRCHNE - Finds array element equal or not Level 2 BLAS - CGBMV .. 4-10
equal to target ... 6-13 Level 2 BLAS • COEMV .. 4-18

ISUP - Output a value in an argument as blank 12-33 Level 2 BLAS - COERC .. 4-20
rrOI - Raises base value to a power 2-65 Level 2 BLAS - CGERU .. .4-22

Level 2 BLAS - CHBMV .. 4·24
JAT - ACI7ABLE .. 17-6 Level 2 BLAS - CHEMV .. 4-29
JCCYCL - Returns machine cycle time 14-20 Level 2 BLAS - CHER .. 4-31
JCL symbol change. JSYMSET17-32 Level 2 BLAS - CHER24-33
JDATE - Returns the current date and the Level 2 BLAS - CTBMV ... 4-50

current Julian date .. 15-4 Level 2 BLAS - CTBSV4-53
JNAME - Returns the job name 17-31 Level 2 BLAS - CfRMV ... 4·58
Job Acco\Ulting Table - ACTTABLE17-6 Level 2 BLAS - CTRSV .. 4-62
job area dump - DUMPJOB .. .16-5 Level 2 BLAS - INTRO ... 4-1
job communication - UCOM .. .17-28 Leve12BLAS - SGBMV ... 4-106
job cycles - IGETSEC .. 16-8 Levell BLAS - SGEMV .. .4-113
job memory changes - MEMORY17-35 Level 2 BLAS • SGER ... 4-114
job name - JNAME17-31 Level 2 BLAS - SSBMV ... 4-131
job suspend - ERECALL ... 17-18 Level 2 BLAS - SSYMV ... 4-138
job time in CPU - TSECND .. .14-27 Level 2 BLAS - SSYR ... 4-139
job time left - TREMAIN'15-9 Level 2 BLAS - SSYR2 ... 4-140
JSYMGET - Changes a value for a JCL symbol or Level 2 BLAS - STBMV ... 4-146

retrieve a]CL symbol17-32 Level 2 BLAS - STBSV4-148
JSYMSET - Changes a value for a JCL symbol or Level 2 BLAS - STRMV ... 4-152

retrieve a JCL symbol .. 17-32 Level 2 BLAS - STRSV .. 4-155
Julian date list - DATE .. 15-4 Level 3 BLAS (CRI extension) - COEMMS4-15

Level 3 BLAS (CRI extension) - SGEMMS4-110
keywords process - PPL ... 17-39 Level 3 BLAS - CGEMM .. 4-13
KOMSTR - Compares specified bytes between Level 3 BLAS - CHEMM .. 4-26

variables or a:rrays .. 10-4 Level 3 BLAS • CHER2K ... 4-35
Level 3 BLAS - CHERK ... 4-38

large radix sorting. ORDERS 7-2 Level 3 BLAS - CSYMM .. 4-42
largest absolute value -ISAMAX 6-11 Level 3 BLAS - CSYR2K .. 4-45
largest argument - MAX .. 6-18 Level 3 BLAS - CSYRK. ... 4-48
largest nonnalized number - SMACH 17-46 Level 3 BLAS - CfRMM .. 4-56
LDSS • Performs 64-bit integer divide 2·51 Level 3 BLAS - CfRSM ... 4-60
LDSV - Performs 64-bit integer divide , 2·51 Level 3 BLAS - INTRO ... 4-1
LDVS • Performs 64-bit integer divide 2-5 1 Level 3 BLAS - SGEMM .. 4-108
LDVV • Perfonns 64-bit integer divide 2-51 Level 3 BLAS - SSYMM4-135
leading zero bit count- LEADZ 2-52 Level 3 BLAS - SSYR2K .. 4-141
LEADZ - Counts number of leading 0 bits 2-52 Level 3 BLAS - SSYRK .. 4-144
left circular shift - SHIFf .. 2·70 Level 3 BLAS - STRMM .. 4-150
left shift· SHIFTL ... 2-72 Level 3 BLAS - STRSM .. 4-1S3
LEN· Determines the length of a character lexical comparison - LGE .. 2-54

string .. 2-53 LOE - Compares strings lexically 2-54
length of block change - HPCLMOVE 11-6 LGO - Loads an absolute program from a
length of heap block· IHPLEN 11-11 dataset containing a binary image as the
length of output line - WNLLONG12-75 first record .. 17-33
Level 1 BLAS - CROT .. 4-40 LGT - Compares strings lexically 2-54
Level 1 BLAS • CROTO .. .4-41 library scheduler tuning. TSKTUNE 14-30
Levell BLAS - DOT ... 4-64 library subprogram introduction· INfRO l-1
Levell BLAS - IN1RO ... 4-1 line length on output· WNLLONG 12-75
Levell BLAS· SASUM ... 4-101 linear algebra subprograms introduction -
Levell BLAS • SAXPY .. 4-102 INTRO .. .4-1
Levell BLAS - SCAL ... 4-103 linear equations. UNPACK ... 4·79
Levell BLAS· SCOPY .. 4-105 linear equations - MINV .. 4-82
Levell BLAS - SMXPY ... 4·115 linear equations - OPFILT ... 4-98
Levell BLAS - SNRM24·116 linear equations - STBSV .. 4-148
Levell BLAS • SPDOT .. 4-120 linear equations - STRSV .. 4-155
Levell BLAS - SROT ... 4-121 linear recurrence - FOLR ... 4.71
Levell BLAS - SROTG .. 4-122 linear recurrence • FOLR2 ... 4-73
Levell BLAS • SROTM ... 4-124 linear recurrence - FOLRC .. 4-75
Level 1 BLAS - SROTMO .. 4·126 linear recurrence - FOLRN .. 4·76
Levell BLAS - SSUM .. 4·133 linear recurrence - FOLRNP .. 4.77
Levell BLAS - SSWAP4·134 linear recurrence· RECPP ... 4·99
Levell BLAS - SXMPY ... 4-156 linear recurrence - RECPS ... 4-1 00

SR-OI13 Index· 14 D

linear recWTence - SOLR .. .4-117
linear recurrence routines - INTRO 4-1

matrix inverse and multiplication routines -
INTRO .. .4-1

lines per page - GETLPP ... 17-23 matrix times matrix multiplication - MXMA4-88
UNPACK - Single-precision real and complex matrix times matrix multiplication - CGEMM4-13

LIN'PACK routines .. 4-79 matrix times matrix multiplication - CGEMMS 4-15
LINP ACK routines - INTRO ... 4-1 matrix times matrix multiplication - CHEMM 4-26
LINT . Converts 64-bit integer to 24-bit matrix times matrix multiplication - CSYMM 4-42

integer and vice versa (CFf only) 2-50 matrix times matrix multiplication - CTRMM 4-56
list calling sequence - TRBK .. .16-20 matrix times matrix multiplication - MXM4-86
list Exchange Package - XPFMT 16-22 matrix times matrix mUltiplication - SGEMM 4-108
list subroutines - TRBK .. .16-20 matrix times matrix multiplication - SOEMMS4-110
Lists aU subroutines active in the current matrix times matrix multiplication - SSYMM 4-135

calling sequence - TRBK 16-20 matrix times matrix multiplication - STRMM 4-150
LLE - Compares strings lexically 2-54 matrix times vector multiplication - CGBMV 4-10
LLT - Compares strings lexically 2-54 matrix times vector multiplication - CGEMV4-18
load absolute program - LOO17-33 matrix times vector multiplication - CHBMV 4-24
load overlay - OVERLAY .. .17-38 matrix times vector multiplication - CHEMV 4-29
load program from dataset - LGO 17-33 matrix times vector multiplication - CTBMV4-50
Loads an absolute program from a dataset

containing a binary image as the first
matrix times vector multiplication - CTRMV 4-58
matrix times vector multiplication - MXV 4-92

record - LGO .. 17-33 matrix times vector multiplication - MXV A 4-94
Loads an overlay and transfers control to Ihe matrix times vector multiplication - SGBMV 4-106

overlay entry point - OVERLAy 17 -38 matrix times vector multiplication - SGEMV 4-113
we -Rerums memory address of variable or matrix times vector multiplication - SMXPY 4-115

array ... 17-34 matrix times vector multiplication - SSBMV 4-131
locate memory address - LOC17-34 matrix times vector multiplication - SSYMV 4-138
locate table field - TMSRC .. 11-20 matrix times vector mUltiplication - STBMV 4-146
LOCKASGN - Identifies an integer variable matrix times vector multiplication - STRMV 4-152

intended for use as a lock 14-21 matrix times vector multiplication - SXMPY 4-156
LOCKOFF - Clears a lock and returns control MAXO - Returns the largest of all arguments 6-18

to the calling task ... 14-22 MAXI - Returns the largest of all arguments 6-18
LOCKON - Sets a lock and returns control to maximum - INTRO .. 6-1

the calling task .. .14-23 maximum - ISMAX ... 6-12
LOCKREL - Releases the identifier assigned to maximum CPUs availabJe - MAXLCPUS 14-26

a lock .. 14-24 maximum value in a vector - INFLMAX 6-9
LOCKTEST _ Tests a lock to determine its maximum value in a vector - INfMAX 6-10

state (locked or unlocked) 14-25 maximum vector element value - ISMAX 6-12
log - Computes natural logarithm 2-13 MAXLCPUS·R~wnsiliemaximumnum~of
log 10 - Computes common logaritlun 2·15 logiCal CPUs available ... 14-26
logfilemessages - ECHO17-16 MEMORY - Manipulates ajob's memory
logical complement - COMPL.. 2-29 allocation and/or its mode of field length
logicalCPUs available - MAXLCPUS 14-26 reduction .. 17-35
logical difference - NEQV ... 2-58 memory address - Lex::: .. 17-34
logical equivalence - EQV ... 2-44 memory allocation (heap) - HPALLOC 11-4
logical file table - ADDLFI' ... 3-4 memory bidirectional transfer - SENSEBT17-43
logical product - AND ... 2-17 memory dump - CRA YDUMP 16-3
logical sum - OR .. 2-61 memory less for dataset - STlNDX 12-63
logical to LOGICAL*l conversion - USLCTC 8-23 memory manipulation - MEMORY11-35
logical to LOGICAL*4 conversion - USLCTC 8-23 memory move - TMMVE11-18
LOGICAL*} to logical conversion - USLCTC 8-23 memory request- TMMEM ... 11-16
LOGICAL *4 to logical conversion - USLCTC 8·23 memory table allocate - TMATS 11-15
lowercase letters - TR .. 8-16 memory to heap return - HPDEALLC 11-7

message classes controlling - ECHO 17-16
machine epsilon - SMACH17 -46 message control COS - ECHO 17-16
Makes bad data available - ACPTBAD12·9 MINO - Returns the smallest of all arguments 6-19
Makes requests of the operating system - MINI - Returns the smallest of all arguments 6-L9

SYSTEM .. 17-48 minimum - INTRO .. 6-L
manipulate memory - MEMOR Y 17-35
Manipulates a job's memory allocation and/or

minimum - ISMAX .. 6-12
minimum absolute value of vector element -

its mode of field length reduction - ISMAX ... 6-l2
MEMORY .. 17-35 minimum value in a vector - INFLMAX 6-9

MASK - Returns a bit mask ... 2-55 minimum value in a vector - INTMAX 6-10
master index write - CLOSMS 12-28 minimum vector element value - ISMAX 6-12
math library introduction - INTRO 2-1

SR-Ol13 Index-15 D

MINV - Solves systems of linear equations by
inverting a square matrix 4-82

miscellaneous UNICOS routines introduction -
INTRO ... 19-1

MOD - Computes remainder of x1/x2 2-56
mode asynchronous - ASYNCMS 12-24
mode to synchronous - SYNCMS12-68
modified Givens plane rotation - SROTM 4-124
modified Givens plane rotation - SROTMG4-126
Modifies wning parameters within the library

scheduler - TSKTUNE .. .14-30
modify heap block - HPNEWLEN 11-9
modify output value - FSUP .. 12-33
modify runing parameters library scheduler -

TSKTUNE ... 14-30
modify tuning parameters multitasking -

TSKTUNE ... 14-30
monitor performance - PERF ... 16-9
MOVBIT - Moves bytes or bits from one

variable or array to another10-5
move block - HPCLMO VE ... 11-6
move bytes or bits - MOV ... 10-5
move characters - MVC ... 10-6
move memory words - TMMVE11-18
Moves bytes or bits from one variable or

array to another. MOV .. I0-5
Moves characters from one memory area to

another - MVC ... 10-6
Moves memory (words) - TMMVE 11-18
MTTS - Converts time-stamp to a corresponding

real-time value, and vice versa.15-11
multipass sorting - ORDERS ... 7-2
multiple right-hand sides - CI'RSM 4-60
multiple right-hand sides - STRSM 4-153
multiple-input vector complex Fast Fourier

transform - CFFrMLT ... 5-4
multiplication (double-precision) - DBL_PREC 2·37
multiplication (triple-precision) - T ADD 2-&4
Multiplies a colunm vector by a matrix and

adds the result to another column vector
- SMXP¥ ... 4-115

Multiplies a complex general matrix by a
complex general matrix - CGEMM4-13

Multiplies a complex general matrix by a
complex general matrix using Strassen's
algorithm - CGEMMS .. .4-15

Multiplies a complex general matrix by a
complex Hermitian matrix - CHEMM 4-26

Multiplies a complex general matrix by a
complex symmetric matrix - CSYMM4-42

Multiplies a complex general matrix by a
complex triangular matrix - CTRMM 4-56

Multiplies a complex vector by a complex
general band matrix - CGBMV 4-10

Multiplies a complex vector by a complex
general matrix - CGEMV 4-18

Multiplies a complex vector by a complex
Hermitian band matrix - CHBMV 4-24

Multiplies a complex vector by a complex
Hermitian matrix - CHEMV4-29

Multiplies a complex vector by a complex
triangular band matrix - CTBMV4-50

Multiplies a complex vector by a complex
triangular matrix - CI'RMV4-58

Multiplies a matrix by a row vector and adds
the result to another row vector -
SXMPY4-1S6

Multiplies a real general matrix by a real
general matrix - SGEMM4-108

Multiplies a real general matrix by a real
general matrix using Strassen's
algorithm - SGEMMS .. 4-110

Multiplies a real general matrix by a real
symmetric matrix - SSYMM4-135

Multiplies a real general matrix by a real
triangular matrix - STRMM 4-150

Multiplies a real vector by a real general
band matrix - SGBMV ... 4-106

Multiplies a real vector by a real general
matrix - SGEMV .. 4-113

Multiplies a real vector by a real symmetric
band matrix - SSBMV ... 4-131

Multiplies a real vector by a real symmetric
matrix - SSYMV .. 4-138

Multiplies a real vector by a real triangular
band matrix ~ STBMV ... 4-146

Multiplies a real vector by a real triangular
matrix - STRMV ... 4-152

multiplying matrices - MXM ... 4-86
multiplying matrices - MXMA4-88
multitasking - B UFPRINT .. .14-9
multitasking - EVASGN14-14
multitasking - EVCLEAR .. 14-15
multitasking. EVPOST ... 14-16
multitasking. EVREL ... 14-17
multitasking - EVWAIT .. 14-19
multitasking - LOCKON .. 14·23
multitasking - LOCKREL .. 14-24
multitasking - TSKSTART14-28
multitasking - TSKW AlT .. 14-32
multitasking add entries to trace buffer -

BUFUSER .. 14-13
multitasking assign lock - LOCKASGN 14-21
multitasking barrier - BARASGN 14-5
multitasking barrier· BARREL. ~ 14-6
multitasking clear lock - LOCKOFF14-22
multitasking dump - BUFDUMP14-8
multitasking dump - BUFPRINT 14-9
multitasking event test - EVTEST14-18
multitasking modify library scheduler

parameters - TSKTUNE .. 14-30
multitasking routines introduction -INTRO 14-1
multitasking synchronizes task at barrier·

BARSYNC ... 14-7
multitasking test for task - TSKTEST 14-29
multitasking test lock - WCKTEST14-25
multitasking tuning - BUFI'UNE 14-10
MVC - Moves characters from one memory area

to another ... 10-6
MXM· Computes matrix-limes-matrix product

(unit increments) .. 4-86
MXMA - Computes matrix-limes-matrix product

(arbitrary increments) .. .4-88
MXV - Computes matrix-tiMes-vector product

(unit increments)4-92
MXV A - Computes matrix-times-vector product

(arbitrary increments) .. 4-94

SR-01l3 Index-16 D

NACSED • Returns the edition of a
previously.accessed pennanenl dataset17-37

nllJTle - UNAME ... 18·8
nllJTle of job - JNMiE ... 17 -31
NAMEUST delimiter change. WNL 12-73
NAMEUST error unit - RNLECHO12-55
NAMELIST input changes - RNL..12-54
NAMELIST record skip· RNLSKIP 12-56
NAMEUST variable on new line • WNLLINE12-74
natural logarithm - ALOG ... 2-13
nearest integer - NINT ... 2-60
nearest integer search - NINT .. 2-60
nearest number search - ANINT 2-19
nearest whole number - ANINT 2-19
NEQV • Computes logical difference 2-58
NINT - Finds nearest integer .. 2-60
NORERUN - Declares ajob rerunnable/not

renmnable ... 17-42
normal I/O continuing - CONTPIO 12-30
nonnalizednumber small and large· SMACH 17-46
not rerunnable job - RERUN ... 17-42
notification at EOV - ENDSP .. 12-31
notify of EOV . SVOLPRC .. 12-65
null to trailing blank: conversion - RBN 8-15
number of arguments - IARGC17-26
num ber of characters in string - TRIM LEN 1 0-7
NUMBLKS • Returns the current size of a

dataset in 512-woro blocks13-9
numerals to integer conversion - CHCONV 8-10

octal from binary conversion - B20cr 8-5
one bits count - POPCNT .. 2-63
open AQIO dataset - AQOPEN 12-12
open AQIO dataset - AQOPENDV12-13
open dataset - OPENMS .. 12-42
open random access - WOPEN 12-76
open random access - WOPENU12-78
open unbuffered dataset - WOPENU12-78
OPENDR - Opens a local dataset as a random

access dataset .. 12-42
OPENMS . Opens a local dataset as a random

access dataset .. 12-42
Opens a dataset or file for asynchronous

queued I/O - AQOPEN12-12
Opens a dataset or file for asynchronous

queued I/O. allowing user to specify
dataset size and physical location - AQOPENDV.12·13

Opens a local dataset as a random access
dataset - OPENMS .. 12-42

Opens a word· addressable, random-access
dataset • WOPEN12-76

Opens a word-addressable, random-access
dataset. unbuffered - WOPENU12-78

operating system (COS) request - SYSTEM17-48
operating system name - UNAME18-8
OPFILT • Solves Weiner-Levinson linear

equations4·98
option letter· GETOPf ... 18-5
OR - Computes logical sum ... 2-61
ordered array search - OSRCHI. 6-20
ordered array search - OSRCHM 6-21
ORDERS - Sorts using internal. fixed-length

record sort ... 7-2
orthogonal plane rotation - SROT 4·121

OSRCHF - Searches an ordered array and
returns index of the first location that
contains the target .. 6-20

OSRcm - Searches an ordered array and
returns index of the first location that
contains the target .. 6-20

OSRCHM - Searches an ordered integer array
and returns index of the first location
that is equal to the integer target 6-21

Output a value in an argwnent as bJank - FSUP 12·33
output characters - WRITEC .. 12-81
output data - WRITE12-80
output Exchange Package - FXP 16-6
output fonnat control - WNL.12-73
output line length - WNLLONG , 12-75
output unit NAMELIST - RNLECHO 12-55
output value change - FSUP .. 12-33
output wait for end - W AITMS 12-69
OVERLAY - Loads an overlay and transfers

control to the overlay entry point... 17 -38
overlay load - OVERLAy17 ·38

P32 - Packs/unpacks 32-bit words into or from
Cray 64-bit words ... 9-3

P6460 - Packs/unpacks 60-bit words into or
from Cray 64-bit words .. 9-4

PACK - Compresses stored data 9-2
pack 64 into 60 bits - P6460 .. 94
pack data - PACK ... 9-2
pack from 64 to 32 bits - P32 ... 9·3
packed decimal conversion - USPCTC 8-24
packed decimal to integer conversion - USPCTC 8-24
packing routines introduction - INTRO 9-1
Packs/unpacks 32-bit words into or from Clay

M-bit words - P32 ... 9-3
Packs/unpacks 6O-bit words into or from Cray

64-bit words - P6460 .. 94
page length - GETLPP ... 17 -23
panuneters - GETPARAM ... 17-24
parllJTleters process· PPL ... 17-39
parity bit population - POPPAR 2-64
partial products problem· RECPP 4-99
partial record read - READC12-50
partial summation problem - RECPS4-100
partial-record mode - WRITE12-80
partial-record mode - WRlTEC12-81
partial-record read - READ ... 12-49
Pascal snapshot dump - SYMDUMP 16-16
PDUMP - Ownps memory to $OUT 16-4
PERF - Provides an interface to the hardware

perfonnance monitor ... , .16-9
perfonnance monitor interface· PERF 16·9
Perfonns 64-bit integer divide - LDIV 2-51
Perfonns a left circular shift - SHIFT 2-70
Performs a left lihift with zero fill - SHIFTL 2-72
Performs aright shift with zero fill- SHIFfR 2-74
Perfonns conjugated rank 1 update of a

complex general matrix - CGERC4-20
Performs double-precision arithmetic -

DBL_PREC .. 2-37
Performs Hennitian rank 1 update of a complex

Hermitian matrix - CHER 4-31
Perfonns Hermitian rank 2 update of a complex

Hennitian matrix - CHER2 4-33

SR-01l3 Index-I7 D

Perfonns Hennitian rank 2k update of a produce symbolic dump - SYMDEBUG16-14
complex Hennitian matrix - CHER2K 4-35 Produces a printable image of an Exchange

Perfonns Hermitian rank. k update of a complex Package - XPFMf .. 16·22
Hennitian matrix - CHERK 4-38 Produces a snapshot dump of a running program

Performs rank 1 update of a real general - SYMDUMP ... 16·16
matrix - SOER .. 4-114 Produces a symbolic dwnp - SYMDEBUG 16·14

Performs sparse vector operations - SPDOT 4-120 product logical - AND ... 2-17
Performs symmetric rank 1 update of a real program execution resume for I/O - AQRECALL 12-17

synunetric malrix - SSYR 4-139 prognun exit - Exrr ... 17-21
Performs symmetric rank 2 update of a real program lOS channel- DRIVER 17·15

symmetric matrix. SSYR2 4-140 program load - LGO ... 11-33
Performs symmetric rank 2lc update of a program synchronize with tape dataset - SYNCH12-67

complex symmetric matrix - CSYR2K 4-45 programming aid routines introduction - INTRO 16·1
Perfonns symmetric rank 2k update of a real Programs a Cray channel on an I/O Subsystem

symmetric matrix - SSYR2K 4-141 (lOS) - DRIVER17-15
Perfonns symmetric rank k update of a complex prohibit interrupts - CLEARFI 17 -II

symmetric matrix - CSYRK 4-48 prohibit interrupts - CLEARFIS17 ·12
Performs symmetric rank k update of a real Provides an interface to the hardware

symmetric matrix - SSYRK 4-144 performance monitor - PERF 16-9
Perfonns triple-precision arithmetic - T ADD 2·84 Provides user control of output - WNL 12·73
Performs unconjugated rank 1 update of a pseudo· random nwnber - RAN 2·66

complex general matrix. - COERU 4-22 PUTB YT " Replaces a byte in a variable or an
Permanently disables/enables bidirectional array ... l0.2

memory transfers - CLEARBTS l1-1O PUTWA - Writes to a word-addressable.
permit interrupts - CLEARFI .. 17-11 random-access dataset. ... 12-46
permit inteITUpts - CLEARFlSl1·12 PUTW AU - Writes to a word· addressable.
Places an octal ASCII representation of a random· access dataset. unbuffered 12-47

Cray word inlo a character area - B20er 8-5
plane rotation - CROT ... 4-40 QR - UNPACK ... 4-79
plane rotation - CROTG .. .4-41 queue read request - AQREAD 12-15
plane rotation - SRaTG ... 4-122 queue write request - AQWRITE 12-22
plane rotation - SROTM .. 4-124 Queues a simple or compound asynchronous 110
plane rotation - SROTMG ... 4-126 read request - AQREAD .. 12·15
Polish Table - CEXPR ... 11-8 Queues a simple or compound asynchronous 110
POPCNT - Counts nwnber of bilS set to 1 2·63 write - AQWRITE ... 12-22
POPPAR - Computes bit population parity 2-64 quit program - EXIT .. 17-21
population count· POPCNT .. 2-63
population parity - POPPAR .. 2-64 Raises base value to a power • POWER 2·65
position at EOD - SKIPD .. .l3-1O random access and asynchronous I/O - ASYNCMS 12·24
position at tape block - SETTP 12-59 random access buffering - FINDMS 12·32
position information - GETIP 12-36 random access close - CLOSMS12·28
Positions a blocked dataset at EOD - SKIPD 13-10 random access close - WCLOSE 12-11
Positions a dataset after the previous EOF - random access close - WCLOSEU 12-12

BACKFILE .. 13·3 random access I/O· AQOPEN12-12
Positions a tape dataset or file - SETTP12·59 random access I/O - AQOPENDV12-13
positive difference· DIM ... 2-41 random access I/O check· CHECKMS 12-25
post mullitasking - EVPOST ... 14-16 random access I/O mode - SYNCMS12-68
post multitasking events - EVPOST14-16 random access open - OPENMS 12·42
Posts an event and returns control to the random access open· WOPEN 12·76

calling task - EVPOST ... 14-16 random access open • WOPENU 12-78
pow • Raises base value to a power 2-65 random access read· GETW A12·38
power function - POWER .. 2-65 random access read - GETWAU12-40
PPL - Processes keywords of a directive 17-39 random access read - READMS12-52
preset table space • TMPTS ... 11-19 random access synchronous - SYNCMS 12-68
Presets table space ·1MPTS ... 11-19 random access write· WRITMS 12-83
print Exchange Package. FXP 16-6 random-access write - PUlWAl2-46
print Exchange Package. XPFMT16·22 random-access write - PlITWAU 12-41
Prints a memory dump to a specified dataset - RAMP - Computes pseudo-random numbers 2-66

CRAYDUMP ... 16-3 RANGEr - Computes pseudo-random numbers 2-66
PROCBOV - Allows special processing at rank. 1 - CGERC ... 4·20

beginning-of-volume ... 12-44 rank 1 - CGERU ... 4-22
PROCEOV - Begins special processing at rank I - CHER ... 4-31

end-of-volume (EOV) (obsolete) 12-45 rank 1 - SGER .. 4-114
process par8Jlleters - PPL ... 17-39 rank 1 - SSYR .. 4-139
Processes keywords of a directive - PPL11·39 rank 1 update - SGER4-114

SR..()I13 Index-1S D

rank 2 - CHER2 ... 4-33 real symmetric matrix - SSYR4-139
rank 2 - SSYR24-140 real symmetric matrix· SSYR24-140
rank 2k - CHER2K .. .4-35 rea1 time value· RTC .. .15-6
rank 2k • CSYR2K.. .. 4-45 real to complex FFT - RCFFr2 5-7
rank 2k - SSYR2K .. .4-141 real triangular band matrix - STBMV4-146
rank k - CHERK .. 4-38 real triangular banded system of linear
rank k - CSYRK .. _4-48 equations. STBSV .. 4-148
rank: k • SS YRK ... 4-144 real triangular matrix - STRMM 4-150
RANSET - Computes pseudo-random numbers 2-66 real triangular matrix - STRMV 4-152
RBN • Converts trailing blanks to nulls and real triangular system of equations - STRSM 4-153

vice versa .. 8-15 real triangular system of linear equations -
RCFFf2 - Applies a real·to-complex Fast STRSV ... 4-155

Fourier Transform (FFf) 5-7 real trwlcation - AINT ... 2-12
READ - Reads words, full or partial record real vector - SCAL .. .4-103

modes ... 12-49 real vector - SCOPY .. 4-105
read asynchronously - AQREAD 12-15 real vector· SGBMV ... 4-106
read characters - REAOC ... 12-50 real vector - SGEMV .. .4·113
read data - GETWA ... 12-38 real vector - SSBMV .. 4·131
read data· GETWAU .. 12-40 real vector· SSYMV .. .4-138
read ibm words - READIBM ... 12-51 real vector - S1BMV ... 4-146
read random access - READMS12-52 real vector - STRMV ... 4-152
read record - FINDMS .. .12-32 real vector addition - SAXPY4-102
read words - READ .. 12-49 real vector addition· SSUM .. 4-133
READe - Reads characters, full or partial real vector exchange - SS W AP4-134

record mode ... 12-50 real· time to time-stamp - TSMT15-11
READCP - Reads characters, full or partial real·to-complex Fast Fourier transfonn

record mode ... 12-50 (multiple input vectors) • RFFfMLT 5-8
READDR - Reads a record from a random access record read random access • READMS12-52

dataset ... 12-52 record skip· SKlPR ... 13-11
READIBM - Reads two mM 32-bit floating·point record skip NAMEUST· RNLSKlP12·56

words ... 12-51 RECPP - Solves a partial products problem 4-99
READMS _ Reads a record from a random access RECPS - Solves a partial summation problem4-100

dataset ... 12-52 reduce dataset memory· STINDX 12-63
READP • Reads words, full or partial record reducing execution time - EISPACK 4-65

modes ... 12-49 register to $OUT copy· SNAP 16-13
Reads a record from a random access dataset Registers the arrival of a task at a barrier

- READMS ... 12-52 - BARSYNC .. 14-7
Reads characters, full or partial record mode release - UNAME .. 18-8

- READC .. 12-50 release a multitasking event - EVREL 14-17
Reads record into data buffers - FINDMS12-32 release a multitasking lock - LOCKREL 14-24
Reads two IBM 32-bit floating-point words - release identifier - BARREL .. .14-6

READIBM ... 12·51 release identifier assigned to lock - LOCKREL14-24
Reads words, full or partial record modes - release lock - LOCKREL ... 14-24

READ ... 12-49 release multitasking barrier identifier -
REAL - Converts to type real 2-68 BARREL .. 14-6
real approximation of double-precision nwnber release variable assigned an event· EVREL 14-17

- SNGLR .. 2-81 release version - UNAME .. 18-8
real array element - ISRCHFLT 6·14 Releases the identifier assigned to a barrier
real array elements - WHENEQ 6-22 - BARREL ... 14-6
real array elements . WHENFLT 6-23 Releases the identifier assigned to a lock -
real array search - WHENFLT 6-23 LOCKREL ... 14-24
real cluster - CLUSFLT ... 6-6 Releases the identifier assigned to the task
real general band matrix - SGBMV4-106 - EVREL .. 14-17
real general matrix - SGEMM4-1 08 remainder - MOD ... 2-56
real general matrix· SGEMMS4-110 REMARK· Enters a message in the user and
real general matrix - SGEMV4-113 system log files ... 17-40
real general matrix - SGER .. 4-114 REMARK2 - Enters a message in the user and
real general matrix - SSYMM4-135 system log files ... 17-40
real general matrix - STRMM .. 4·150 REMARKF . Enters a formatted message in the
real product - DOT .. .4-64 user and system 10 gfiles ... 17 -41
real symmetric band matrix - SSBMV4-131 replace byte - BYT .. .1 0-2
real symmetric matrix - SSYR2K 4-141 replacement character NAMEUST - WNL.. 12-73
real symmetric matrix· SSYRK 4-144 Replaces a byte in a variable or an array -
real symmetric matrix - SSYMM 4-135 BYT .. I0-2
real symmetric matrix - SSYMV 4-138 report table statistics - TMAMU 11·14

SR-Ol13 Index· 19 D

Reports table management operation statistics
- TMAMU .. 11-14

reprieve routine - SETRPV17-45
request from COS - SYSTEM17 ·48
request memory - TMMEM ... 11-16
Requests abort - ERREXIT .. 17-20
Requests abort with traceback - ABORT 17-5
Requests additional memory - TMMEM 11-16
Requests notification at the end of a tape

volume - ENDSP .. 12-31
Requests notification at the end of a. tape

volume - SETSP ... 12-58
RERUN - Declares a job rerunnablelnot

rerunnable ... 17-42
rerunnable job declaration - RERUN 17-42
resume program during AQIO request - AQRECALL..12-17
retrieve JCL symbol- JSYMSET 17·32
retrieve seed - RAN' ... 2-66
RelI'ieves user identifier specified in task

control array· TSKVALUE 14-31
return bit mask - MASK .. 2-55
return end of file status • EOF .. 13-7
return Fortran argument - GETARG 17-22
Return Fortran command-line argwnent· GETARG17-22
return identifier in task control array -

TSKVALUE .. 14-31
return location of variable in memory· LOC17 -34
return memory to heap - HPDEALLC 11-7
retwn message to user and system - REMARK 17-40
return message to user and system - REMARKF 17-41
returnnurnber - TRIMLEN ... I0-7
retwn page length - GETLPP 17-23
return part of heap - HPSHRINK11-10
Rewm real·time clock values - RTC 15-6
return value· RTC ... 15-6
Returns a bit mask - MASK ... 2-55
Returns a block of memory to the list of

available space - HPDEALLC11-7
Returns a value indicating whether the

indicated task exists - TSKTEST 14-29
Returns an unused portion of heap to the

operating system· HPSHRINK I1-10
Returns closest real approximation to double

precision - SNGLR .. 2-81
Returns elapsed CPU time - SECOND 15-7
Retums elapsed CPU time for a calling task

during a multitasked program - TSECND14-27
Returns elapsed wall-clock time since the

call to TIMEF - TIMEF ... 15-8
Returns EOF and EOD status - IOSTAT 13-8
Returns information on current level of

calling sequence - TRBKLVL16-21
Returns integer ceiling of a rational number

- ICEIL ... 17-27
Returns lines per page - GETLPP 17-23
Rewrns machine cycle time - JCCYCL 14-20
Returns machine epsilon. small/large

normalized numbers • SMACH 17 -46
Returns memory address of variable or array-

LOC .. 17-34
Returns name of the caUer • GETNAMEQ16-7
Returns number of command-line argwnents -

IARGC ... 17-26

Rerums number of occurrences of object in a
vector -llLZ .. 6-8

Returns real or integer value EOF status - EOF13·7
Returns statistics about the heap - IHPSTAT 11-12
Returns the CPU time (in floating-point

seconds) - TREMAIN ... 15-9
Rewrns the current date and the current

Julian date - DATE15-4
Rewms the current size of a dataset in

512-word blocks· NUMBLKS13-9
Returns the current system.clock time - CLOCK 15·3
Returns the cycles charged to ajob - IGETSEC 16-8
Returns the edition of a previously.accessed

permanent dataset - NACSED17-37
Rewms the Job Accounting Table (JAT)-

AC11'ABLE ... 17-6
Returns the job name - JNAME 17-31
Returns the largest of aU arguments - MAX 6-18
Returns the length of a heap block - IHPLEN 11-11
Returns the maximwn nwnber of logical

CPUs available - MAXLCPUS14-26
Returns the nwnber of characters in a string

- TRllVILEN ... 10-7
Rewms the smallest of all arguments - MIN 6-19
Returns time-stamp units in specified

standard time units - UNrITS 15-12
Returns value for environment name· GETENV18-4
Reverse Polish Table - CEXPR 17-8
RFFfMLT - Applies complex-to-real and

real· to-complex Fast Fourier Transforms (FFf)
on multiple input vectors 5-8

right shift - SHIFTR ... 2-74
RNB - Converts trailing blanks to nulls and

vice versa .. 8-15
RNLCOMM • Adds or deletes characters from the

set of characters recognized by the
NAMEUST .. 12-54

RNLDELM - Adds or deletes characters from the
set of characters recognized by the
NAMEUST .. 12-54

RNLECHO - Specifies output unit for NAMELIST
error messages ... 12-55

RNLFLAG - Adds or deletes characters from the
set of characters recognized by the
NAMEUST .. 12-54

RNLREP • Adds or deletes characters from the
set of characters recognized by the
NAMEUST .. 12-54

RNLSEP - Adds or deletes characters from the
set of characters recognized by the
NAMEUST .. 12-54

RNLSKIP - Takes appropriate action when an
undesired NAMEUST .. 12·56

RNL TYPE - Determines action if a type
mismatch occurs across the equal sign on an
input record .. 12-57

row vector - SXMPY ... 4-156
RTC • Return real-time clock values 15-6
RTOI - Raises base value to a power 2-65
RTOR - Raises base value to a power 2-65

SASUM • Sums the absolute value of elements
in a vector .. 4-101

SR-01l3 Jndex-20 o

SAXPY - Adds a scalar multiple of a real or set floating-point interrupts - CLEARFl 17-11
complex vector4·1 02 set floating-point interrupts - CLEARFIS 17-12

scalar multiple addition - SAXPY 4-1 02 set I/O mode· ASYNCMS12-24
scale - SCAL .. 4-103 Set 110 mode for random access routines to
Scales a real or complex vector _ SCAL 4-103 asynchronous - ASYNCMS 12-24
scaling a complex vector - SCAL 4-103 set lock - LOCKON ... 14-23
scaling a real vector - SCAL .. 4-103 set seed - RAN ... 2·66
SCASUM - Sums the absolute value of elements SETBT - Temporarily disables/enables

in a vector .. 4-101 bidirectional memory transfers 17-9
SCATIER - Scatters a vector into another SETBTS - Permanently disables/enables

vector .. 4-104 bidirectional memory transfers 17-10
scattering vectors - SCATIER 4-104 SETFI - Temporarily prohibits/permits
Scatters a vector into another vector - floating-point interrupts ... 17-11

SCA TIER .. 4-104 SETFIS - Temporarily prohibits/permits
SCNRM2 - Computes the Euclidean nonn of a floating-point interrupts for ajob 17-12

vector .. 4-116 SETPLIMQ - Initiates detailed !racing of
SCOPY - Copies a real or complex vector into every call and rerurn.16-12

another vector ... 4-105 SETRPV - Conditionally transfers control to a
screen (CRT) updating - CURSES 19-2 specified routine ... 17-45
SDACCESS - Allows a program to lICcess Sets a lock and returns control to the

datasets in the System Directory 3-8 calling task - LOCKON .. .14-23
SOOT - Computes a dot product (inner product) Sets I/O mode for random access routines to

of two real or complex vectors 4-64 synchronous - SYNCMS .. 12-68
search environment list for value - GETENV18-4 SETSP - Requests notification at the end of a
search for DSP - GETDSP3-6 tape volume .. 12-S8
search for string - FINDCH ... 10·3 SETTP - Positions a tape dataset or tile 12-59
search routines introduction - INTRO 6-1 SGBMV - Multiplies a real vector by a real
search table - TMMSC ... 11-17 general band matrix4-106
search table - TMSRC .. 11-20 SGEMM - Multiplies a real general matrix by
search vector table - TMVSC .. 11-21 a real general matrix ... 4-108
Searches a variable or an array for an SGEMMS - Multiplies a real general matrix by

occurrence of a character string - FINDCH I0·3 a real general matrix using Strassen's
Searches a vector table for the search algorithm .. 4-110

argument - TMVSC .. .11-21 SGEMV - Multiplies a real vector by a real
Searches an ordered array and returns index general matrix .. 4-113

of the tirst location that contains the SOER - Perfonns rank 1 update of a real
target - OSRCHI .. 6-20 general matrix .. 4-114

Searches an ordered integer array and returns shell command execute - ISHELL 17-30
index of the first location that is SHIFf - Perfonns a left circular shift 2-70
equal to the integer target - OSRCHM 6-21 shift circular - SHIFI' .. .2-70

Searches for a Dataset Parameter Table (DSP) shift left - SIDFrL ... 2-72
- GETDSP3-6 shift rigbt- SHIFrR ... 2-74

Searches for the maximum or minimum value in S HIFfL • Perfonns a left shift with zero fill2-72
a table - INFLMAX ... 6-9 SIDFfR - Perfonns a right shift with zero fill 2-74

Searches for the maximum or minimum value in shrink heap - HPSHRINK11-1 0
an integer vector· INfMAX 6-10 sign - SIGN .. 2-76

Searches the table with a mask to locate a SIGN - Transfers sign of numbers 2-76
specific field - TMMSC .. .11-17 sign !ransfer - SIGN ... 2-76

Searches the table with an optional mask to SIN - Computes the sine ... 2-71
locate a specific field within an entry sin - Computes the sine ... 2-77
and I\J1 offset - TMSRC .. 11-20 sine (hyperbolic) - SINH .. 2-79

Searches vector for logical match - ISRCHMLT 6-17 sine - sm ... 2-77
SECOND - Rerums elapsed CPU time15-7 single-precision - USDCTI .. 8-20
second-order linear recurrences - SOLR 4-117 single-precision approximation of
sector skip - SKIPU ... 13-13 double-precision number - SNGLR 2-81
SEEK - Synchronously and asynchronously reads Single-precision EISPACK routines - EISPACK 4-65

data .. 12-38 Single-precision real and complex UNPACK
sense switch test - SSWlTCHl7-47 routines - LINP ACK4-79
SENSEBT· Determines whether bidirectional singular value decomposition - EISPACK 4-65

memory transfer is enabled or disabled 17-43
SENSER- Determines if floating-point

singular value decompositions - LINPACK4-79
SINH - Computes hyperbolic sine 2-79

interrupts are penniued or prohibited17 -44 sinh - Computes hyperbolic sine 2-79
separator NAMEUST change - WNL 12-73
set a multitasking event - EV ASGN14-14
set a multitasking lock - LOCKON14-23

size of dataset - NUMBLKS .. 13-9
skip bad data - SKIPBAD .. 12-61
skip dataset - SKIPD .. 13-10

SR-Ol13 Index-21 D

skip files -SKIPR ... 13-11 Sorts using internal. fixed-length record
skip record NAMELIST - RNLSKIP 12-56 sort· ORDERS ... 7-2
skip records - SKIPR ... 13-11 source vector - GATHER ... 4·78
Skip records or files - SKIPR ... 13-11 space for table - TMPTS .. .11-19
skip sectors - SKIPU .. 13-13 sparse dot product - SPDOT .. 4-120
SKIPBAD - Skips bad data .. 12-61 sparse inner product - SPDOT 4-120
SKIPD - Positions a blocked dataset at EOD 13-10 sparse vector - SPOOT .. .4-120
SKIPF - Sldp records or files ... 13-11 SP AXPY - Performs sparse vector operations 4-120
SKIPR - Skip records or files ... 13·11 SPOOT - Performs sparse vector operations 4-120
Skips a specified number of sectors in a special processing at end of tape - SETSP 12-58

dataset - SKIPU .. 13-13 Specifies output unit for NAMELIST error
Skips bad data - SKIPBAD .. 12-61 messages - RNLECHO ... 12-55
SKIPU - Skips a specified number of sectors SQRT - Computes square root 2-82

in a dataset .. 13-13 sqrt - Computes square root .. 2-82
SMACH - Returns machine epsilon. small/large square matrix - MINV .. 4-82

normalized numbers17-46 square root - SQRT .. 2-82
smallest argument - MIN ... 6-19 SROT - Applies an orthogonal plane rotation4-121
smallest nonnalized number - SMACH 17-46 SROTG - Constructs a Givens plane rotation 4-122
SMXPY - Multiplies a column vector by a SROTM - Applies a modified Givens plane

matrix and adds the result to another rotation .. .4-124
column vector .. .4·115 SROTMG - Constructs a modified Givens plane

SNAP - Copies current register contents to rotation .. .4·126
SOUT ... 16-13 SSBMV - Multiplies a real vector by a real

snapshot dump - SYMDUMP .. 16·16 sytnmetric band matrix .. 4-131
SNGL - Converts to type real 2-68 SSCAL - Scales a real or complex vector 4·103
SNGLR - Returns closest real approximation to SSUM - Sums the elements of a real or complex

double precision .. .2-81 vector .. 4-133
SNRM2 - Computes the Euclidean nonn of a SSWAP - Swaps two real or complex arrays _4-134

ve(:tor .. 4-116 SSWITCH - Tests the sense switch17-47
SOLR - Solves second-order linear recurrences 4-117 SSYMM - Multiplies a real general matrix by a
SOLR3 - Solves second-order linear real symmetric matrix .. 4-135

recurrences .. .4-117 SSYMV • Multiplies a real vector by a real
SOLRN - Solves second-order linear recurrences4-117 sytnmetric matrix ... 4-138
Solves a complex triangular banded system of SSYR - Performs symmetric rank 1 update of a

equations - CfBSV4-53 real symmetric matrix .. 4-139
Solves a complex triangular system of SSYR2 - Perfonns symmetric rank 2 update of a

equations - CTRSV4·62 real synunetric matrix4-140
Solves a complex triangular system of SSYR2K - Performs symmetric rank 2k update of

equations with multiple right-hand sides - a real synunetric matrix ... 4-141
CfRSM .. 4·60 SSYRK - Performs symmetric rank k update of a

Solves a partial products problem - RECPP 4·99 real synunetric matrix .. 4-144
Solves a partial summation problem - REepS 4-100 stamp time to ASCn - TSDT .. 15-10
Solves a real triangular banded system of standard tinte - UNtITS _ 15-12

linear equations - STBSV 4-148 start a task - TSKST ART .. .14-28
Solves a real triangular system of equations STARTSP - Begins user EOV and BOV procesl>ing 12-62

with multiple right-hand sides - STRSM 4-153 statistics about heap - IHPSTAT 11-12
Solves a real triangular system of linear statistics on perfonnance - PERF16-9

equations - STRSV .. 4-155 statistics table management - TMAMU 11-14
Solves first-order linear recurrence with status of AQIO requests - AQSTAT 12-19

constant coefficient - FOLRC 4-75 status of EOF and EOD - lOST AT 13-8
Solves first·order linear recurrences - FOLR 4-71 status of I/O - CHECKMS ... 12-25
Solves first-order linear recurrences without STBMV - Multiplies a real vector by a real

overwriting operand vector - FOLR2 4-73 triangular band matrix4-146
Solves for last term of a first-order linear STBSV - Solves a real triangular banded

recurrence - FOLRNP .. 4-77 system of linear equations 4-148
Solves for the last term of first-order stderr message from user - REMARK 17 -40

linear recurrence - FOLRN4·76 stderr message from user - REMARKF 17-41
Solves second-order linear recurrences - SOLR 4-117 STINDR - Allows an index to be used as the
Solves systems of linear equations by current index ... 12-63

inverting a square matrix - MINV 4-82 S'flNDX - Allows an index to be used as the
Solves Weiner-Levinson linear equations - current index ... 12-63

OPFILT .. 4-98 stop Fortran program - EXIT ... 17-21
sorting routines introduction - INTRO 7-1 Stops the processing of as}1lchronous queued

I/O requests - AQSTOP .. 12-20
storage request - TMMEM .. 11-16

SR-0113 Index-22 D

Strassen's algorithm - CGEMMS 4-15
Strassen's algorithm - SGEMMS 4·110

Synchronously and asynchronously reads data
- GETWA ... 12-38

string characters - TRIM LEN .. 10-7 SYNCMS • Sets I/O mode for random access
string comparison - KOMSTR IO-4 routines to synchronous .. .12-68
string comparison - LGE .. 2-54 system - CWCK .. 15-3
string search - FINOCH ... 10-3 SYSTEM - Makes requests of the operating
string translation - TR .. 8-16 system .. 17-48
STRMM - Multiplies a real general matrix by a system clock tUne - CLOCK .. 15·3

real triangular matrix4-150 system directory access - SDACCESS3-8
STRMOV • Moves bytes or bits from one system interface routines introduction - INTRO 17-1

variable or array to another10-5 system of equations - CTBSV .. 4-53
STRMV - Multiplies a real vector by a real system of equations - CfRSM 4-60

triangular matrix .. 4-152 system of equations - CTRSV .. 4-62
STRSM - Solves a real triangular system of system of equations - STRSM 4-153

equations with multiple right-hand sides 4-153 system of linear equations. MINV4-82
STRSV - Solves a real triangular system of system of linear equations - STBSV4·148

linear equations .. 4-155
subindex creation· STINOX ... 12·63 table, add word to - TMADW .. II-13
subroutine listing - TRBK16-20 table management statistics - TMAM U11-14
subtract memory - MEMORY 17·35 table search - TMMSC ... 11-17
subtraction (double-precision) - DBL_PREC 2-37 table search· TMSRC .. 11-20
subtraction (triple-precision) - T ADD 2-84 table search vector - TMVSC 11·21
sum (logical) - OR ... 2-61 table space allocation - TMATS 11-15
Sums the absolute value of elements in a table space preset· TMPTS ... 11-19

vector - SASUM .. .4·101 TADD - Performs triple·precision arithmclic 2-84
Sums the elements of a real or complex vector Takes appropriate action when an undesired

- SSUM .. 4-133 NAMEUST - RNLSKIP 12·56
suspend for AQIO requests - AQW AIT 12-21 TAN - Computes tangent .. 2-85
suspend job - ERECALL ... 17-18 tan - Computes tangent ... 2·85
SVOLPRC - Initializes/tenninates special tangent (hyperbolic) - TANH ... 2-87

BOV/EOV processing (obsolete)l2-65 tangent - TAN .. 2·85
swapping vectors - SSW AP ... 4-134 TANH - Computes hyperbolic tangent 2-87
Swaps two real or complex arrays - SSW AP4 -134 tanh • Computes hyperbolic tangent 2-87
switch tape volume· SWITCHV 12-66 tape block position - SETIP .. 12-59
switch test sense - SSWITCH 17-47 tape BOV processing· PROCBOV 12-44
S witches tape volume· SWITCHV12-66 tape data accepting • ACPTBAD 12-9
SWITCHV· Switches tape volume 12-66 tape dataset position. GETTP12-36
SXMPY - Multiplies a matrix by a row vector tape dataset positioning· GETPOS 12·34

and adds the result to another row tape dataset synchronize with program - SYNCH 12-67
vector4-156 tape EOV and BOV processing - STARTSP12-62

symbol JCL - JSYMSET ... 17·32 tape EOV processing - PROCEOV12-45
symbolic dump program - SYMDEBUG 16-14 tape EOV processing. CLOSEV12·27
SYMDEBUG - Produces a symbolic dump16-14 tape EOV processing. SVOLPRC 12-65
SYMDUMP - Produces a snapshot dump of a tape file position - GETIP .. .12-36

running program ... 16-16 tape I/O status· CHECKTP ... 12-26
symmetric coefficient - FILTERS4-70 tape notification at EOV - ENDSP12-31
symmetric rank 1 update - SSYR 4-139 tape processing at end - SETSP12-58
symmetric rank 2 update· SSYR2 4-140 tape skip data - SKIPBAD .. 12-61
symmetric rank 2k update - CSYR2K 4-45 tape volume switch - SWITCHV 12-66
symmetric rank 2k update - SSYR2K 4·141 task identifier retum value - TSKV ALUE 14-31
symmetric rank k update - CSYRK4-48 TASS· Perfonns triple-precision arithmetic 2-84
symmetric rank k update - SS YRK 4-144 TDIV - Performs triple.precision arithmetic 2-84
symmetric vectors • FILTERS 4-70 TOSS - Performs triple-precision arithmetic 2-84
SYNCDR - Sets 110 mode for random access Temporarily disables/enables bidirectional

routines to synchronous .. .12·68 memory transfers - CLEARBT17·9
SYNCH • Synchronizes the program and an Temporarily prohibitslpennits floating-point

opened tape dataset .. 12-67
synchronize I/O mode - SYNCMS 12·68

interrupts - CLEARFI .. 17 ·11
Temporarily prohibits/permits fioaiing-point

synchronize multitasking - BARSYNC 14-7 intenupts for ajob - CLEARFIS 17-12
synchronize program and tape dataset· SYNCH12·67
Synchronizes the program and an opened tape

dataset· SYNCH .. 12-67

tenncap Toutines - CURSES .. 19-2
terminate dataset - EOOW .. .13·6
terminate Fortran program - EXIT17 -21

synchronous read - GETWA. ... 12-38 terminate job - END ... 17-17
Terminates a job step· END .. 17-17
terminfo database· CURSES ... 19-2

SR-0113 Index-23 D

test for a task • TSKTEST14-29 TRBK - Lists all subroutines active in the
test for access· IFDNT .. 3-7 current calling sequence ... 16.20
test multitasking event· EYTEST 14-18 TRBKL VL - Returns information on current
test multitasking lock - LOCKTEST14-25 level of calling sequence .. 16-21
test sense switch - SSWITCH17·47 TREMAIN - Returns the CPU time (in
Tests a lock to detennine its state (locked floating-point seconds) " ..•• " " 15-9

or unlocked) - LOCKTEST14-25 TRIM LEN - Retmns the number of characters in
Tests an event to determine its posted state a string .. l0.7

- EYTEST .. 14-18 triple precision. T ADD ... 2-84
Tests the sense switch - SSWITCH 17-47 triple.precision addition - TADD 2-84
Text interface to the X Window System - XIO 19-8 triple-precision arithmetic· TADD " 2-84
time conversion - DTTS ... 15-5 triple·precision division - T ADD 2-84
time delay· DELAY .. 17-14
time elapsed wall-clock - TIMEF 15-8

triple-precision multiplication - TADD " 2-84
triple·precision subtraction - TADD 2-84

time for machine cycle - JCCYCL 14·20 TRRI - Translates characters stored one
time in CPU - SECOND .. 15-7 character per word. "" 8-17
time in standard time· UNITTS 15-12 truncation -AINT .. 2-12
time remaining injob • TREMAIN 15-9 TSDT - Converts time-stamps to ASCII date and
time return execution - SECOND 15-7 lime .. 15-10
time return execution - TSECND 14-27 TSECND - Returns elapsed CPU time for 8.

time to ASCII - TSDT .. 15-10 calling task during a multi tasked program 14-27
time to time-staJnp - DTIS .. 15-5 TSKSTART - Initiates a task ... 14-28
time· stamp conversion - DTIS lS-S TSKTEST - Returns a value indicating whether
time-stamp to real-time - TSMT 15-11 the indicated task exists .. .14·29
time-stamp units - UNfITS ... 15-12 TSKTUNE - Modifies tuning parameters within
timed wait - DELAY .. 17-14 the library scheduler ... 14-30
TIMEF - Returns elapsed wall-clock time since TSKV ALUE • Retrieves user identifier

the call to TIMEF ... 15-8 specified in task control array 14-31
timing routines· TlMEF .. 15-8 TSKW AIT - Waits for the indicated task to
timing routines introduction - INTRO15-1 complete execution .. 14-32
TMADW - Adds a word to a table11-13 TSMT - Converts time-stamp to a corresponding
TMAMu - Reports table management operation real-time value. and vice versa 15-11

statistics .. l1-14 TSSS - Performs triple-precision arithmetic 2·84
TMATS - Allocates table space 1l-15 TSUB - Performs triple-precision arithmetic 2-84
TMLT· Performs triple-precision aritlunetic 2-84 Tune parameters controlling multitasking
TMMEM - Requests additional memory 11-16 history trace - BUFTUNE14·10
TMMSC - Searches the table with a mask to tune parameters for multitasking - TSKTVNE 14-30

locate a specific field .. ll·17 Turns on BIld off the classes of messages to
TMMVE - Moves memory (words) 11-18 the user logfile - ECHO .. 17-16
TMPTS • Presets table space ... 11·19 twos complement compare - KOMSTR 10-4
TMSRC - Searches the table with an optional type - CMPLX .. 2·27

mask to locate a specific field within type conversion - CMPLX ... 2-27
an entry and an offsel. .. l1·20 type conversion - DBLE .. 2-39

TMSS - Performs triple-precision arithmetic 2-84 type conversion - INT .. 2-49
TMVSC • Searches a vector table for the type conversion - REAL .. 2-68

search argument ... 11·21 type conversion on input. RNLTYPE12·57
TR - Translates a string from one code to type converter (complex) - CMPLX 2-27

another using a translation table 8-16 type converter - DBLE ... 2-39
trace - SETPLIMQ .. .16-12 type converter - INT ... 2-49
traceback level- TRBKLVL. .. 16-21 type converter - REAL ... 2-68
tracing - SETPUMQ .. 16-12 type mismatch on input - RNLTYPE12-57
trailing blank to null conversion - RBN 8·15
transfer bidirectional memory· SENSEBT 17-43 U32 • Packs/unpacks 32-bit words into or from
transfer bytes or bits - MOV ... 10·5 Cray 64-bit words ... 9-3
transfer data asynchronou~ly - AQREAD 12.15 U6064 - Packstunpacks 6O·bit words into or
transfer upon abort - SETRPV 17-45 from Cray 64-bit words .. 9-4
Transfers sign of numbers - SIGN 2·76 UNAME - Gets name of current operating systemlS-8
translate ASCII 10 integer· CHCONV S-1 0 unblocked copy - COPYU ... 13·5
translate characters - TRRl. ... 8·17 unblocked dataset dump to· DUMPJOB 16·5
translate string - TR ... 8·16 unblocked dataset skip - SKIPU " 13-13
Translates a string from one code to another unbuffered dataset open - WOPENU 12-78

using a translation table - TR 8·16 unconjugated rank 1 update - CGERU " 4-22
Translates characters stored one character Unformatted dump of multitasking history

per word - TRR1 .. 8-17 trace buffer - BUFDUMP 14·8
unit increments· MXM ... 4-86

SR-01l3 Index-24 D

unit increments - MXV .. 4-92
unit NAMELIST enors - RNLECHO 12-55
UNfITS - Returns time-stamp units in

specified standard time units 15-12
UNPACK - Expands stored data. 9-5
unpack 60 into 64 bits - P6460 9-4
unpack data - UNPACK .. 9-5
unpack from 32 to 64 bits - P32 9-3
unused heap return - HPSHRINK l1·1O
Updates CRT screens - CURSES 19-2
uppercase letters - TR .. 8-16
USCCTC - Converts IDM EBCDIC data to ASCII

data and vice versa ... 8-18
USCCTI - Converts IBM EBCDIC data to ASCn

data and vice versa ... 8-18
USJX:TC - Converts mM 64-bit floating-point

numbers to Cray 64-bit single-precision
numbers .. 8-19

USDCTI - Converts Cray 64-bit
single-precision. floating-point numbers 10 mM
64-bit double precision numbers 8-20

user job area dump - DUMPJOB 16-5
USICTC - Converts mM INTEGER "'2 and INTEGER "'4

numbers to Cray 64-bit integer
numbers. and vice versa ... 8-21

USICTI - Converts mM INTEGER*2 and INTEGER*4
numbers to Cray 64-bit integer
numbers. and vice versa ... 8-21

USICfP - Converts It Cray 64-bit integer to
IDM packed-decimal field 8-22

USLCTC - Converts mM LOGICAL *1 and LOGICAL *4
values into Cray 64-bit logical
values. and vice versa .. 8-23

USLCTI - Converts IBM LOGICAL*1 and LOGlCAL*4
values into Cray 64-bit logical
values. and vice versa .. 8-23

uspcrc - Converts a specified number of bytes
of an IBM packed-decimal field to a
64-bit integer field .. 8-24

usscrc -Converts mM 32-bit floating-point
numbers to Cray 64-bitsingle-precision
numbers .. 8-25

USSCTI - Converts Cray 64-bit
single-precision. floating·point numbers to IBM
32-bit single-precision numbers 8-26

value of JCL symbol • 1S YMSET 17-32
values in a table - INFLMAX .. 6-9
values in a vector - INTMAX .. 6-10
variable bit or byte move - MOV 1O·5
variable byte replace - BYT .. .10-2
variable comparison - KOMSTR 10-4
variable NAMEUST on new line - WNLLINE12-74
variable search - FINDCH ... 10-3
VAX 32-bit floating·point 10 64-bil

single-precision - VXSCTC 8-34
V AX 64-bit complex to Cray complex conversion

- VXZCTC ... 8-36
VAX 64-bit D conversion - VXDCTC 8-27
VAX 64-bit G format to single-precision

conversion - VXGCfC .. 8-29
V AX INTEGER*2 to 64-bit integer conversion -

VXICTC ... 8-31

V AX logical value to 64-bit logical value
conversion - VXLCTC ... 8-33

vector addition - SSUM ... 4-133
vector addition - SXMPY .. 4-156
vector element absolute value addition - SASUM 4·101
vector element addition - SASUM 4-101
vector mask write - FXP _16-6
vector object - IILZ .. 6-8
vector search - CLUSEQ ... 6-5
vector search - CLUSFLT _ 6-6
vector search - CLUSILT ... 6-7
vector search - INTRO ... 6-1
vector search - WHENMEQ .. 6-25
vector search - WHENMLT ... 6-26
vector table search - TMVSC .. 11-21
video attributes - CURSES19-2
VM write • FXP ... 16-6
volume switch - SWITCHV12-66
volume switching - SVOLPRC 12-65
VXDCTC - Converts VAX 64-bit D format numbers

to Cray single·precision numbers 8-27
VXDCTI - Converts Cray 64-bil

single-precision. floating-point numbers to V AX D
fonna! floating-point numbers 8-28

VXGCTC - Converts V AX 64·bit G fonnal numbers
to Cray single-precision numbers 8-29

VXGCTI - Converts Cray 64-bit
single-precision, floating-point numbers to V AX G
fonnat floating-point numbers 8-30

VXICTC - Convens VAX INTEGER*2 or INTEGER*4
to Cray 64-bit integers ... 8-31

VXICTI - Converts Cray 64-bit integers to
either VAX INTEGER·2 or INTEGER*4 numbers8-32

VXLCTC - Converts V AX logical values to Cray
64-bit logical values ... 8-33

VXSCTC - Converts VAX 32-mt floating-point
numbers to Cray 64-bit single-precision
numbers .. 8-34

vxscn . Converts Cray 64-bit
single-precision. floating-point to V AX F format
single·precision, floating-point 8-35

VXZCTC - Converts V AX 64-bit complex numbers
to Cray complex numbers 8-36

VXZCTI - Convens Cray complex numbers to V AX
complex numbers ... 8-37

wait - DELAY .. 17-14
wail for AQIO requests - AQWAIT _ ... 12-21
wait for event - ERECALL. .. 11-18
wait for IJ() - W AITMS ... 12-69
wait for multitasking task - TSKWAIT14-32
wait for task completion - TSKW AIT14-32
W AITDR - Waits for completion of an

asynchronous I/O operation 12-69
W AITMS • Waits for completion of an

asynchronous I/O operation 12-69
Waits for completion of an asynchronous I/O

operation - W AITMS ... 12-69
Waits for the indicated task to complete

execution - TSKWAIT ... 14-32
Waits on a completion of asynchronous queued

I/O requests - AQW AIT ... 12-21
wall-clock time function - TIMEF15-8
WCHECK - Checks word· addressable file statusl2-70

SR-0113 Index-25 D

WCLOSE - Closes a word-addressable,
random-access dataset .. 12-71

WCWSEU - Closes a word-addressable.
unbuffered random-access dataset 12-72

Weiner-Levinson linear equations - OPFILT 4-98
WHENEQ - Finds all array elements equal to or

not equal to the target.. ... 6-22
WHENFGE - Finds all real array elements in

relation to the real target .. 6·23
WHENFGT - Finds all real array elements in

relation to the real target .. 6-23
WHENFLE - Finds all real array elements in

relation to the real target .. 6-23
WHENFLT - Finds all real array elements in

relation to the real target .. 6-23
WHENIGE - Finds all integer array elements in

relation to the integer target 6-24
WHENIGT - Finds aU integer array elements in

relation to the integer target 6-24
WHENILE - Finds all integer array elements in

relation w the integer target 6-24
WHENILT - Finds all integer array elements in

relation to the integer target 6-24
WHENMEQ - Finds the index of occurrences

equal or not equal to a scalar within a
field in a vector ... 6-25

WHENMGE - Finds the index of occurrences in
relation to a scalar within a field in
a vector .. 6-26

WHENMGT - Finds the index of occurrences in
relation to a scalar within a field in
a vector .. 6-26

WHENMLE - Finds the index of occurrences in
relation to a scalar within a field in
a vector .. 6-26

WHENMLT . Finds the index of occurrences in
relation to a scalar within a field in
a Vector .. 6-26

WHENMNE - Finds £he index of occurrences
equal or not equal to a scalar within a
field in a vector ... 6-25

WHENNE - Finds all array elements equal to or
not equal to the target. .. 6-22

window routines - CURSES .. 19-2
windows - XllB .. 19-10
Winograd - CGEMMS ... " 4-15
Winograd - SGEMMS .. .4-110
WNLDELM - Provides user control of output 12-73
WNLFLAG . Provides user control of output 12-73
WNLUNE - Allows each NAMELISt variable to

begin on a new line .. 12-74
WNLLONG - Indicates output line length 12-75
WNLREP - Provides user control of output12-73
WNLSEP - Provides user control of output 12-73
WOP EN - Opens a word-addressable,

random-access dataset ... 12-76
WOPENU - Opens a word-addressable.

random·access dataset. unbuffered 12-78
word add to table - TMADW .. 11-13
word addressable open - WOPEN 12-76
word addressable open - WOPENU 12-78
word pack and unpack - P32 ... 9·3
word shift - SHIFfL .. 2-72
word shift· SHIFTR .. 2-74
word-addressable dataset close - WCLOSEU 12-72

word·addressable dataset read· GETW A 12·38
word-addressable file check - WCHECK 12-70
word-addressable file close - WCLOSE 12-71
word-addressable file read - GETWAU 12-40
word-addressable write - PUTW A12-46
word-addressable write - PUTWAU 12-47
words move - TMMVE .. .1l-18
words read - READ .. 12-49
WRITDR - Writes to a random access dataset on

disk .. 12-83
WRITE - Writes words, full or partial record

mode ... 12-80
write AQIO - AQWRITE ... 12-22
write characters· WRITEC ... 12-81
write EOD - EODW ... 13-6
write Exchange Package - FXP 16-6
writemM words - WRITIBM 12-82
write master index - CLOSMS 12-28
write to random access dataset - WRITMS 12-83
write to random-access - PUTW A 12-46
write to random-access - PUTW AU 12-47
write words - WRITE ... 12-80
WRITEC - Writes characters, full or partial

record mode .. .12-81
WRITECP - Writes characters, full or partial

record mode ... 12-81
WRITEP - Writes words, full or partial record

mode ... 12-80
Writes characters, full or partial record

mode - WRITEC .. 12-81
Writes master index and closes random access

dataset - CWSMS ... 12·28
Writes to a random access dataset on disk -

WRITMS .. 12-83
Writes to a word-addressable. random-access

dataset - PUTW A ... 12-46
Writes to a word-addressable, random-access

dataset, unbuffered - PUTWAU 12-47
Writes two IBM 32-bit floating-point words -

WRl11BM ... , 12-82
Writes words, full or partial record mode -

WRITE ... 12-80
WRITIBM - Writes two IBM 32-bit

floating-point words .. 12-82
writing solutions to new vector - FOLR2 4-73
WRIT'MS - Writes to a random access dataset on

disk .. 12-83

X Window System interface library. XLIB 19-10
X windows - XIO ... 19-8
xio - Text interface to the X Window System 19-8
Xlib - C Language X Window System Interface

Ubrary .. 19-10
XOR - Computes logical difference 2-58
XPFMT . Produces a printable image of an

Exchange Package ... 16-22

zero bits count - LEADZ .. 2-52
zero fill on right shift - SHIFfR 2·74
zero fill shift· SHIFTL .. 2-72

SR-Ol13 Index-26 D

READER'S COMMENT FORM

Programmer's Library Reference Manual SR-Ol13 D

Your reactions to this manual will help us provide you with better documentation. Please take a moment to
check the spaces below. and use the blank space ior additional comments.

1) Your experience with computers: __ 0-1 year __ 1-5 years __ 5+ years
2) Your experience with Cray computer systems: __ 0-1 year __ 1-5 years __ 5+ years
3) Your occupation: __ computer programmer __ non-computer professional

__ other (please specify): ___________ _
4) How you used this manual: __ in a class __ as a tutorial or introduction __ as a reference guide

__ fortroubleshooting

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria:

5) Accuracy __ 8) Physical qualities (binding, printing) __
6) Completeness __ 9) Readability __
7) Organization __ 10) Amount and quality of examples __

Please use the space below, and an additional sheet if necessary. for your other comments about this
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which
the problem occurred. We promise a quick reply to your comments and questions.

Name __________ _ Address _____________ _
Title _________ _ City ____________ _
Company __________ _ Statel Country ______ _
Telephone _________ _ Zip Code _______ _
Today's Date _______ _

J

---~

III " I
BUSINESS REPLY CARD
FIRST ClASS PERMIT foil) 6184 Sf PAUL. MN

POSTAGE Wllt8E PAiD 8Y ADDRESSEE

C i
RESEARCH. INC.

Attention: PUBLICATIONS
1345 Northland Drive
Mendota Heights, MN 55120

ND POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

I
I
I
I

---~

2
-!

l>
r
o
·z
C'l

:i!
Vi
r
Z
m

READER'S COMMENT FORM

Programmer's Library Reference Manual SR-Ol13 D

Your reactions to this manual will help us provide you with better documentation. Please take a moment to
check the spaces below, and use the blank space for additional comments.

1) Your experience with computers: __ 0-1 year __ 1-5 years __ 5+ years
2) Your experience with Cray computer systems: ~_0-1 year __ 1-5 years __ 5+ years
3) Your occupation: __ computer programmer ~_ non-computer professional

__ other (please specify): ___________ _
4) How you used this manual: __ in a class __ as a tutorial or introduction __ as a reference guide

__ for troubleshooting

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria:

5) Accuracy __ 8) Physical qualities (binding, printing) __
6) Completeness __ 9) Readability __
7) Organization __ 10) Amount and quality of examples __

Please use the space below, and an additional sheet if necessary, for your other comments about this
manual. If you have discovered any inaccuracies or omisSions, please give us the page number on which
the problem occurred. We promise a quick reply to your comments and questions.

Name __________ _ Address ___________ _
Title ___________ _ City ____________ _
Company __________ _ Statel Country ______ _
Telephone ________ _ Zip Code ________ _
Today's Date ______ _

I
I
I
I
I
I
I
I
I
I
I
I
Ig
I;
15
I·~
I~
I~
I~
I
I
I
1

) I
---~

111111 ;~~~: l i
UNITED STATES

BUSINESS REPLY CARD
fiRST ClASS PERMIT NO 61 ~ ST PAUL MN

POSTAGE Will BE PAID BV ADDRESSEE

E i .","V
I=IESEAI=ICH, INC.

Attention: PUBLICATIONS
1345 Northland Drive
Mendota Heights. MN 55120

I
I
I
I
I
I

---~ I
I
I
I
I
I
I
I
J

CGBMV

CGEMM

CGEMMS

CGEMV

CGERC

CGERU

CHBMV

CHEMM

CHEMV

CHER

CHER2

CHER2K

CHERK

CSYMM

CSYR2K

CSYRK

CTBMV

CTBSV

CTRMM

CTRMV

CTRSM

CTRSV

SGEMM

SGEMMS

SSYMM

SSYR2K
:::,. ..::::.

NEW FEATURES (COS only)

Multiplies a complex vector by a complex general band matrix

Multiplies a complex general matrix by a complex general matrix

Multiplies a complex general matrix by a complex general matrix using Strassen' s algorithm

Multiplies a complex vector by a complex general matrix

Performs conjugated rank: 1 update of a complex general matrix

Performs unconjugated rank 1 update of a complex general matrix

Multiplies a complex vector by a complex Hermitian band matrix

Multiplies a complex general matrix by a complex Hermitian matrix

Multiplies a complex vector by a complex Hermitian matrix

Performs Hermitian rank 1 update of a complex Hermitian matrix

Performs Hermitian rank 2 update of a complex Hermitian matrix

Performs Hermitian rank 2k update of a complex Hermitian matrix

Performs Hermitian rank k update of a complex Hermitian matrix

Multiplies a complex general matrix by a complex symmetric matrix

Performs symmetric rank 2k update of a complex symmetric matrix

Performs symmetric rank k update of a complex symmetric matrix

Multiplies a complex vector by a complex triangular band matrix

Solves a complex triangular banded system of equations

Multiplies a complex general matrix by a complex triangular matrix

Multiplies a complex vector by a .complex triangular matrix

Solves a complex triangular system of equations with multiple right-hand sides

Solves a complex triangular system of equations

Multiplies a real general matrix by a real general matrix

Multiplies a real general matrix by a real general matrix using Strassen's algorithm

Multiplies a real general matrix by a real symmetric matrix

Performs symmetric rank 2k update of a real symmetric matrix

SSYRK

STRMM

STRSM

OSRCHM

AQOPENDV

GE1WAU

PU1WAU

WCHECK

WCLOSEU

WOPENU

Perfonns symmetric rank k update of a real symmetric matrix

Multiplies a real general matrix by a real triangular matrix

Solves a real triangular system of equations with multiple right-hand sides

Searches an ordered integer array and returns index of the first location
that is equal to the integer target

Opens a dataset or file for asynchronous queued I/O. allowing the user to specify
dataset size and physical location

Asynchronously reads a number of words from the disk, directly to user

Writes to a word-addressable, random-access dataset, unbuffered

Checks word-addressable file status

Closes a word-addressable. unbuffered random-access dataset

Opens a word-addressable. random-access dataset. unbuffered

