
Programmer's Library
Reference Manual

SR-Ol13 C

Cray Research, Inc.

Copyright © 1986, 1987, 1988 by Cray Research, Inc. This manual or parts thereof
may not be reproduced unless permitted by contract or by written permission of Cray
Research, Inc.

CRAY, CRAY-l, SSD, and UNICOS are registered trademarks and CFT, CFT77, CFT2,
COS, CRAY-2, CRAYX-MP, CRAYX-MP EA, CRAYY-MP, CSIM, HSX, lOS, SEGLDR, and
SUPERLINK are trademarks of Cray Research, Inc.

DEC, PDP, VAX, and VT100 are trademarks of Digital Equipment Corporation.
HYPERchannel and NSC are registered trademarks of Network Systems Corporation.
IBM is a registered trademark of International Business Machines Corporation. OSx
is a registered trademark and Pyramid is a trademark of Pyramid Technology
Corporation. Sun Workstation is a registered trademark, NFS is a trademark, and
RPC and XDR are products of Sun Microsystems, Inc. Tektronix is a registered
trademark of Tektronix Corporation. UNIX is a registered trademark of AT&T. X
Window System is a trademark of Massachusetts Institute of Technology.

The TCP/IP documentation is copyrighted by The Wollongong Group and may not be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, except as provided in
the license agreement governing the documentation or by written permission of The
Wollongong Group, Inc., 1129 San Antonio Road, Palo Alto, California, 94303. The
Wollongong software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from The Regents of the University of California.
© The Wollongong Group, Inc., 1985.

The UNICOS operating system is derived from the AT&T UNIX System V operating
system. UNICOS is also based in part on the Fourth Berkeley Software Distribution
under license from The Regents of the University of California.

Requests for copies of Cray Research, Inc. publications should be sent to the following
address:

Cray Research, Inc.
Distribution Center
2360 Pilot Knob Road
Mendota Heights, MN 55120

NEW FEATURES

cos:

CALLCSP Loads and executes an absolute program from a dataset

TRIM LEN Returns the number of characters in a string

STARTSP, CLOSEV, Offer a new and better way of handling beginning-of volume (BOV) and end-of-volume
SETSP, and ENDSP (EOV) conditions on tape JlO jobs. Cray Research recommends the use of these routines

over the older CONTPIO, PROCBOV, PROCEOV, and SVOLPROC routines.

AQIO routines

TSMT, MTTS

JCCYCL

UNlCOS:

ACPTBAD,
SKIPBAD

AQIO routines

GETTP,SETTP

FSUP

BUFTUNE

TSECND

ACTTABLE

GETARG

IARGC

ISHELL

SYMDUMP

EXIT

Permit programs to delay program execution during I/O processing and to stop processing
requests already queued. New routines also allow concurrent read and write operations to
execute without forcing a wait by COS.

Include new parameters to handle real-time clock values on different machine types

Returns the machine cycle time in picoseconds

Make an area of bad data on a tape available to you by transferring it to a buffer or
permits you to skip over it

Permit the transfer of data and the execution of other statements in a program to proceed
concurrently

Permit positioning information to be set and received for tape files

Writes a specified value as a blank in a formatted JlO operation

Supports the use of barriers when multitasking

Gives timing information for a multi tasked program

Returns additional accounting information, such as the Task Accounting Table, the Generic
Resource Table, and Fast Secondary Storage (FSS) utilization information

Returns a Fortran command-line argument

Gives the number of command-line arguments for a command

Executes a UNICOS shell command from a program

Performs a snapshot dump of a running job

Ends the execution of a Fortran program

This release also contains miscellaneous technical changes to numerous routines.

RECORD OF REVISION RESEARCH, INC. PUBUCATION NUMBER SR-0113

Requests for copies of Cray Research, Inc. publications should be directed to the Distribution Center.
Comments about these publications should be directed to the following address:

CRA Y RESEARCH, INC.
Technical Publications
1345 Northland Drive
Mendota Heights, Minnesota 55120

Revision Description

March 1986 Original printing. This manual and the System Library Reference Manual, CRI publi­
cation SM-Ol14, obsolete the Library Reference Manual, CRI publication SR-0014. This
manual supports the Cray operating system COS release 1.15 and the UNICOS release
1.0 running on CRAY X-MP and CRAY-1 computer systems.

October 1986 This manual supports COS release 1.16 and UNICOS release 2.0 running on the CRA Y
X-MP and CRA Y -1 computer systems. Several routines are now available under
UNICOS as well as COS. These include the table management routines, Fortran I/O
routines, word-addressable I/O routines, multitasking routines, flowtrace routines, and
the machine characteristics routines. The manual style has changed to reflect UNICOS
on-line style. Miscellaneous technical and editorial changes are also included. All
trademarks are now documented in the record of revision.

June 1987 This reprint with revision includes documentation to support the UNICOS release 3.0
and COS release 1.16 running on the CRAY X-MP and CRAY-1 computer systems. The
following routines are now available under UNICOS: V AX conversion routines, IBM
conversion routines, miscellaneous conversion routines, logical record I/O routines,
and additional miscellaneous routines. The multitasking barrier routines have been
added for UNICOS. A miscellaneous UNICOS libraries and routines section has been
added. TCP/IP routines have been removed and are now in the TCP/IP Network Library
Reference Manual, publication SR-2057. Specific changes made to the routines are
documented in the New Features section following the table of contents. Miscellane­
ous technical and editorial changes are also included.

July 1988

SR-0113

This reprint with revision includes documentation to support the UNICOS 4.0 release
and the COS 1.17 release running on the CRAY Y-MP, CRAY X-MP, and CRAY-1 com­
puter systems. The Boolean arithmetic routines are now documented with their own
pages, as are three Fortran interfaces to C routines: GETENV, GETOPT, and UNAME.
A new set of routines (STARTSP, SETSP, CLOSEV and ENDSP) to handle tape volume
switching under COS replace the obsolete set (CONTPIO, CHECKTP, PROCBOV,
PROCEOV, SWITCHV, and SVOLPRC). The base set of Asynchronous Queued I/O
(AQIO) routines has been ported to UNICOS, and new routines have been added to the
base set on COS. Eleven new level 2 Basic Linear Algebra Subprograms (BLAS2)
have been added to the scientific library routines. The SYMDUMP and TSECND rou­
tines have been added to UNICOS, and the TRIMLEN and CALLCSP routines to COS.
Miscellaneous technical changes to existing routines and editorial changes to this
manual are also included.

iii C

PREFACE

The Programmer's Library Reference Manual describes Fortran subprograms and functions available to
users of the Cray operating systems cos and UNlCOS executing on CRAY Y-MP. CRAY X-MP. and
CRA Y -1 computer systems. It supplements the information contained in the other manuals in the
UNlCOS documentation set.

The System Library Reference Manual, publication SM-0114, describes internal system subprograms,
Cray Assembly Language (CAL) subprograms, and Cray Pascal subprograms used by the Pascal com­
piler. The Cray Y-MP. CRAY X-MP, and CRAY-1 C Library Reference Manual, publication SR-0136,
describes the C libraries available under both cos and UNlCOS on CRAY X-MP and CRAY-1 computer
systems.

The following Cray Research, Inc. (CRI) manuals provide additional information about UNlCOS and
related subjects. Unless otherwise noted, all publications referenced in this manual are CRI publica­
tions.

Introductory manuals:

• UNlCOS Overview for Users, publication SO-2052

• UNlCOS Primer, publication SO-2010

• TCP/IP Network User Guide, publication SO-2009

• UNlCOS Text Editors Primer, publication SO-2050

• UNlCOS Tape Subsystem User's Guide, publication SO-2051

• UNlCOS Source Code Control System (SCCS) User's Guide, publication SO-2017

• UNlCOS Index for CRAY Y-MP, CRAY X-MP, and CRAY-1 Computer Systems, publication
SR-2049

UNICOS reference manuals:

• UNlCOS User Commands Reference Manual, publication SR-2011

• UNlCOS User Commands Ready Reference, publication SQ-2056

• UNlCOS System Calls Reference Manual, publication SR-2012

• UNICOS File Formats and Special Files Reference Manual, publication SR-2014

• Fortran (CFf) Reference Manual, publication SR-0009

• CFT77 Reference Manual, publication SR-0018

• CAL Assembler Version 2 Reference Manual, publication SR-2003

• Cray C Reference Manual, publication SR-2024

• UNlCOS vi Reference Card, publication SQ-2054

• UNlCOS ed Reference Card, publication SQ-2055

• Network Library Reference Manual, publication SR-2057

SR-Ol13 v C

SR-Ol13

CONVENTIONS

The following conventions are used throughout UNICOS documentation:

command(1) Refers to an entry in the UNICOS User Commands Reference Manual, publication
SR-2011.

command(1BSD) Refers to an entry in the UNICOS User Commands Reference Manual, publication
SR-2011.

command(1M) Refers to an entry in the UNICOS Administrator Commands Reference Manual, publi­
cation SR-2022.

system call(2) Refers to an entry in the UNICOS System Calls Reference Manual, publication
SR-2012.

routine(3X) Refers to an entry in the appropriate CRI library reference manual The letter or letters
following the number 3 indicate that the routine is either COS-only or that the routine
belongs to a specific UNICOS library, as follows:

entry(4X)

entry(info)

(3M) UNICOS math library

(3 SCI)

(3F)

(310)

(3U)

(3DB)

UNICOS scientific library

UNICOS Fortran library

UNICOS I/O library

UNICOS utility library

UNICOS debugging library

Refers to an entry in the UNICOS File Formats and Special Files Reference Manual,
publication SR-2014. The letter following the number 4 indicates the section refer­
ence.

Refers to an entry in the info section, which contains topical information that is not
available in the UNICOS on-line manuals. The info man pages are not published in
hard-copy form.

All sections begin with an entry called intro, and the entries that follow the intro page are alphabet­
ized. Some entries may describe several routines. In such cases, the entry is usually alphabetized
under its major name.

In this manual, bold indicates all literal strings, including command names, directory names, file names,
path names, library routine names, man page entry names, options, shell or system variable code names,
system call names, C structures, and C reserved words.

Italic indicates variable information usually supplied by you and words or concepts being defined.

All entries are based on the following common format; however, most entries contain only some of
these parts:

NAME shows the name of the entry and briefly states its function.

SYNOPSIS presents the syntax of the routine. The Jollowing conventions are used in this sec­
tion:

Brackets [] around an argument indicate that the argument is optional.

vi C

SR-01l3

DESCRIPTION discusses the entry in detail.

IMPLEMENTATION provides details for using the command or routine with specific machines
or operating systems; normally this will tell you under which operating system the routine is
implemented

NOTES points out items of particular importance.

CAUTIONS describes actions that can destroy data or produce undesired results.

WARNINGS describes actions that can harm people, damage equipment, or damage system
software.

EXAMPLES shows examples of usage.

FILES lists files that are either part of the entry or related to it.

RETURN VALUE describes possible error returns.

MESSAGES describes the informational, diagnostic, and error messages that may appear.

BUGS indicates known bugs and deficiencies.

SEE ALSO lists entries that contain related information and specifies the manual title for each
entry.

All entries in this manual that are applicable to your Cray computer system are available on-line
through the man(l) command. To retrieve an entry, type the following, substituting the desired entry
name for entry:

man entry

If there is more than one entry with the same name, all entries with that name will be printed. To
retrieve the entry for a particular section, type the following, substituting the desired section name for
section and the desired entry name for entry:

man section entry

For further information on the man command, see man(l).

vii c

SR-0113

READER COMMENTS

If you have any comments about the technical accuracy, content, or organization of this manual, please
tell us. You can contact us in any of the following ways:

• Call our Technical Publications department at (612) 681-5729 during normal business hours (Central
Time).

• Send us electronic mail from a UNICOS or UNIX system, using one of the following electronic mail
addresses:

ihnp4! cray! publications
or
sun! tundra! hall! publications

• Use the postage-paid Reader's Comment form at the back of this manual.

• Write to us at the following address:

Cray Research, Inc.
Technical Publications Department
1345 Northland Drive
Mendota Heights, MN 55120

We value your comments and will respond to them promptly.

viii C

CONTENTS

PREFACE ... v

1. INTRODUCTION

IN1'R.O .. 1-1

2. COMMON MATHEMATICAL SUBPROGRAMS

IN1'R.O ... 2-1
ABS, lABS, DABS, CABS Computes absolute value .. 2-7
ACOS, DACOS Computes the arccosine .. 2-8
AIMAG .. Computes the imaginary portion of a complex number 2-9
AINT, DINT Computes real and double-precision truncation .. 2-10
ALOG, DLOG, CLOG Computes the natural logarithm ... 2-11
ALOGI0, DLOGI0 Computes a common logarithm ... 2-12
AND ... Computes the logical product .. 2-13
ANINT, DNINT Finds the nearest whole number ... 2-15
ASIN, DASIN Computes the arcsine .. 2-16
ATAN, DATAN Computes the arctangent for single argument .. 2-17
ATAN2, DATAN2 Computes the arctangent for two arguments ... 2-18
CHAR, ICHAR Converts integer to character and vice versa ... 2-19
CMPLX ... Converts to type complex ... 2-20
COMPL ... Computes the logical complement .. 2-21
CONJG .. Computes the conjugate of a complex number .. 2-22
COS, DCOS, CCOS Computes the cosine ... 2-23
COSH, DCOSH Computes the hyperbolic cosine ... 2-24
COT, DCOT Computes the cotangent .. 2-25
DBLE, DFLOAT Converts to type double-precision .. 2-26
DIM, IDIM, DDIM Positive difference of two numbers .. 2-27
DPROD .. Computes double-precision product of two real numbers 2-28
EQV ... Computes the logical equivalence ... 2-29
EXP, DEXP, CEXP Computes exponential function .. 2-31
INDEX ... Determines index location of a character substring 2-32
INT, IFIX, IDINT Converts to type integer .. 2-33
INT24, LINT Converts 64-bit integer to 24-bit integer ... 2-34
LEADZ .. Counts the number of leading 0 bits ... 2-35
LEN ... Determines the length of a character string .. 2-36
LGE, LGT, LLE, LLT Compares strings lexically .. 2-37
MOD, AMOD, DMOD Computes remainder ... 2-38
NEQV .. Computes the logical difference .. 2-39
NINT, IDNINT Finds the nearest integer ... 2-41
OR............................ Computes the logical sum .. 2-42
POPCNT .. Counts the number of bits set to 1 .. 2-44
POPP AR .. Computes the bit population parity ... 2-45

SR-0113 ix C

RANF, RANGET, RANSET Computes pseudo-random numbers ... 2-46
REAL, FI...OAT, SNGL Converts to type real ... 2-47
SillFf .. Performs a left circular shift .. 2-48
S~ .. Performs a left shift with zero fill ... 2-49
SillFfR ... Performs a right shift with zero fill ... 2-50
SIGN, ISIGN, DSIGN Transfers sign of numbers .. 2-51
SIN, DSIN, CSIN Computes the sine ... 2-52
SINH, DSINH Computes the hyperbolic sine .. 2-53
SQRT, DSQRT, CSQRT Computes the square root ... 2-54
TAN, DTAN Computes the tangent .. 2-55
TANH, DTANH Computes the hyperbolic tangent ... 2-56
XOR ... Computes the logical difference .. 2-57

3. COS DATASET MANAGEMENT SUBPROGRAMS

INTRO ... 3-1
ADDLFf ... Adds a name to the Logical File Table (LFf) ... 3-4
CALLCSP .. Executes a COS control statement ... 3-5
GETDSP .. Searches for a Dataset Parameter Table (DSP) address 3-6
IFDNT ... Determines if a dataset has been accessed or created 3-7
SDACCESS Allows a program to access datasets in the System Directory 3-8

4. LINEAR ALGEBRA SUBPROGRAMS

INTRO .. 4-1
CROT .. Applies the complex plane rotation computed by CROTG 4-9
CROTG .. Computes the elements of a complex plane rotation matrix 4-10
SOOT, CDOTC, COOTU Computes a dot product (inner product) .. 4-11
EISPACK ... Single-precision EISPACK routines .. 4-12
FILTERG ... Computes a convolution of two vectors .. 4-16
FILTERS ... Computes convolution of two vectors ... 4-17
FOLR, FOLRP Solves first-order linear recurrences .. 4-18
FOLR2, FOLR2P Solves first-order linear recurrences, ... 4-19
FOLRC .. Solves first-order linear recurrence shown .. 4-20
FOLRN .. Solves last term of first-order linear recurrence .. 4-21
FOLRNP .. Solves last term of a first-order linear recurrence .. 4-22
GATIIER ... Gathers a vector from a source vector .. 4-23
LINPACK .. Single-precision real and complex LINPACK routines 4-24
MINV ... Computes the determinant and inverse of a square matrix 4-27
MXM ... Computes a matrix times matrix product (c=ab) .. 4-28
MXMA .. Computes a matrix times matrix product (c=ab) ... 4-29
MXV .. Computes a matrix times a vector, skip distance equals 1 4-31
MXVA ... Computes a matrix times a vector, arbitrary skip distance 4-32
OPFIL T .. Solves Weiner-Levinson linear equations ... 4-33
RECPP ... Solves for a partial products problem .. 4-34
RECPS ... Solves for the partial summation problem ... 4-35
SASUM, SCASUM Sums the absolute value of elements of a vector .. 4-36
SAXPY, CAXPY Adds a scalar multiple of a real or complex vector 4-37
SSCAL, CSSCAL, CSCAL Scales a real or complex vector ... 4-38
SCATTER Scatters a vector into another vector ... 4-39
SCOPY, CCOPY Copies a real or complex vector into another vector 4-40

SR-0113 x C

SGBMV ... Multiplies a real vector by a real general band .. 4-41
SGEMV ... Multiplies a real vector by a real general matrix .. 4-43
SGER ... Performs the rank 1 update of a real general matrix 4-44
SMXPY ... Computes the product of a column vector and a matrix 4-45
SNRM2, SCNRM2 Computes the Euclidean norm of a vector .. 4-46
SOLR, SOLRN, SOLR3 Solves second-order linear recurrences ... 4-47
SPOOT, SPAXPY Primitives for the lower upper factorization .. 4-50
SROT ... Applies an orthogonal plane rotation .. 4-51
SROTG .. Constructs a Givens plane rotation .. 4-52
SROTM ... Applies a modified Givens plane rotation ... 4-54
SROTMG ... Constructs a modified Givens plane rotation .. 4-56
SSBMV .. Multipli~ a real vector by a real symmetric band 4-62
SSUM, CSUM Sums the elements of a real or complex vector ... 4-64
SSW AP, CSW AP Swaps two real or complex arrays .. 4-65
SSYMV ... Multiplies a real vector by a real symmetric .. 4-66
SSYR ... Performs symmetric rank 1 update of a real ... 4-67
SSYR2 ... Performs symmetric rank 2 update of a real symmetric matrix 4-68
STBMV ... Multiplies a real vector by a real triangular band matrix 4-69
STBSV ... Solves a real triangular banded system of linear equations 4-71
STRMV ... Multiplies a real vector by a real triangular matrix 4-73
SlRSV ... Solves a real triangular system of linear ... 4-74
SXMPY ... Computes the product of a row vector and a matrix 4-75

5. FAST FOURIER TRANSFORM ROUTINES

IN1RO ... 5-1
CFFT2 ... Applies a complex Fast Fourier transform .. 5-3
CFFTMLT Applies complex-to-complex Fast Fourier transforms 5-4
CRFFT2 ... Applies a complex to real Fast Fourier transform .. 5-5
RCFFf2 ... Applies a real to complex Fast Fourier transform .. 5-6
RFFTMLT Applies complex-to-real and real-to-complex ... 5-7

6. SEARCH ROUTINES

IN1RO .. 6-1
CLUSEQ, CLUSNE Finds index of clusters within a vector ... 6-5
CLUSFLT, CLUSFLE,
CLUSFGT, CLUSFGE Finds real clusters in a vector .. 6-6
CLUSIL T, CLUSILE,
CLUSIGT, CLUSIGE Finds integer clusters in a vector ... 6-7
IIlZ, ILIZ, ILSUM Returns number of occurrences of object in a vector 6-8
INTFLMAX, INTFLMIN Searches for the maximum or minimum value in a table 6-9
INTMAX, INTMIN Searches for the maximum or minimum value in a vector 6-10
ISAMAX, ICAMAX Finds first index of largest absolute value in vectors 6-11
ISMAX, ISMIN, ISAMIN Finds maximum, minimum, or minimum absolute value 6-12
ISRCHEQ, ISRCHNE Finds array element equal or not equal to target .. 6-13
ISRCHFLT, ISRCHFLE,
ISRCHFGT, ISRCHFGE Finds first real array element in relation to a real target 6-14
ISRCHILT, ISRCHILE,
ISRCHIGT, ISRCHIGE Finds first integer array element in relation to an integer target 6-15
ISRCHMEQ, ISRCHMNE Finds the first occurrence equal or not equal to a scalar 6-16

SR-0113 xi C

ISRCHMLT, ISRCHMLE,
ISRCHMGT, ISRCHMGE Searches vector for logical match ... 6-17
MAXO, AMAXl, DMAXl,
AMAXO, MAXI Returns the largest of all arguments .. 6-18
MINO, AMINI, DMINl,
AMINO, MINI Returns the smallest of all arguments ... 6-19
OSRCHI, OSRCfIF Searches an ordered array .. 6-20
WHENEQ, WHENNE Finds all array elements equal to or not equal .. 6-21
WHENFLT, WHENFLE,
WHENFGT, WHENFGE Finds all real array elements .. 6-22
WHENILT, WHENILE,
WHENIGT, WHENIGE Finds all integer array elements ... 6-23
WHENMEQ, WHENMNE Finds the index of occurrences equal or not equal 6-24
WHENMLT, WHENMLE,
WHENMGT, WHENMGE Finds the index of occurrences ... 6-25

7. SORTING ROUTINES

IN1RO .. 7-1
ORDERS ... Sorts using internal, fixed-length record sort ... 7-2

8. CONVERSION SUBPROGRAMS

IN1RO .. 8-1
B20CT .. Places an octal ASCII representation .. 8-5
BICONV, BICONZ Converts a specified integer to a decimal .. 8-6
CHCONV .. Converts decimal ASCII numerals .. 8-7
DSASC, ASCDC Converts CDC display code ... 8-8
FP6064, FP6460 Converts CDC 6O-bit single-precision numbers .. 8-9
INT6064 .. Converts CDC 6O-bit integers to Cray 64-bit integers 8-10
INT6460 .. Converts Cray 64-bit integers to CDC 6O-bit integers 8-11
RBN, RNB Converts trailing blanks to nulls and vice versa ... 8-12
'IR .. Translates a string from one code to another .. 8-13
TRR 1 ... Translates characters stored one character per word 8-14
USCCTC, USCCTI Converts IBM EBCDIC data to ASCII .. 8-15
USDCTC ... Converts IBM 64-bit floating-point numbers ... 8-16
USDCTI.. ... Converts Cray 64-bit single-precision, floating-point numbers 8-17
USICTC, USICTI. Converts IBM JN1EGER*2 and JN1EGER*4 numbers 8-18
USIClP ~ Converts a Cray 64-bit integer to IBM packed-decimal field 8-19
USLCTC, USLCTI Converts IBM LOGICAL*1 and LOGICAL*4 values 8-20
USPCTC .. Converts a specified number of bytes of an IBM ... 8-21
USSCTC .. Converts IBM 32-bit floating-point numbers .. 8-22
USSCTI ... Converts Cray 64-bit single-precision, floating-point numbers 8-23
VXDCTC ... Converts V AX 64-bit D format numbers .. 8-24
VXDCTI .. Converts Cray 64-bit single-precision, floating-point numbers 8-25
VXGCTC ... Converts VAX 64-bit G format numbers ... 8-26
VXGCTI .. Converts Cray 64-bit single-precision, floating-point numbers 8-27
VXICTC .. Converts V AX IN1EGER*2 or IN1'EGER*4 ... 8-28
VXICTI .. Converts Cray 64-bit integers ... 8-29
VXLCTC ... Converts V AX logical values to Cray 64-bit logical values 8-30

SR-OU3 xii C

VXSCTC ... Converts V AX 32-bit floating-point numbers .. 8-31
VXSCTI.. ... Converts Cray 64-bit single-precision, floating-point. 8-32
VXZCTC ... Converts V AX 64-bit complex numbers to Cray complex numbers 8-33
VXZCTI .. Converts Cray complex numbers to V AX complex numbers 8-34

9. PACKING ROUTINES

IN1RO .. 9-1
PACK ... Compresses stored data .. 9-2
P32, U32 .. Packs/unpacks 32-bit words into or from Cray 64-bit words 9-3
P6460, U6064 Packs/unpacks 6O-bit words into or from Cray 64-bit words 9-4
UNPACK ... Expands stored data .. 9-5

10. BYTE AND BIT MANIPULATION ROUTINES

IN1RO .. 10-1
PUTBYT, IGTBYT Replaces a byte in a variable or an array ... 10-2
FINDCH .. Searches a variable or an array for an occurrence 10-3
KOMSTR ... Compares specified bytes between variables or arrays 10-4
STRMOV, MOVBIT Moves bytes or bits from one variable or array to another 10-5
MVC .. Moves characters from one memory area to another 10-6
TRIMLEN Returns the number of characters in a string .. 10-7

11. HEAP MANAGEMENT AND TABLE MANAGEMENT

IN1RO .. 11-1
HP ALLOC Allocates a block of memory from the heap 11-4
HPClffiCK Checks the integrity of the heap .. 11-5
HPCLMOVE Extends a block or copies block contents into a larger block 11-6
HPDEALLC Returns a block of memory to the list of available space 11-7
HPDUMP ... Dumps the address and size of each heap block 11-8
HPNEWLEN Changes the size of an allocated heap block 11-9
HPSHRINK Returns an unused portion of heap to the operating system 11-10.
IHPLEN ... Returns the length of a heap block 11-11
IHPST AT ... Returns statistics about the heap ... 11-12
TMADW .. Adds a word to a table ... 11-13
TMAMU .. Reports table management operation statistics ... 11-14
TMATS .. Allocates table space .. 11-15
TMMEM .. Requests additional memory .. 11-16
TMMSC ... Searches the table with a mask to locate a specific field 11-17
TMMVE .. Moves memory (words). 11-18
TMP'fS .. Presets table space... 11-19
TMSRC .. Searches the table with an optional mask to locate a specific field 11-20
TMVSC ... Searches a vector table for the search argument .. 11-21

SR-OI13 xiii C

12. I/O ROUTINES

IN1R0 .. 12-1
ACP'I'BAD Makes bad data available ... 12-9
AQCLOSE Closes an asynchronous queued I/O dataset or file 12-11
AQOPEN ... Opens a dataset or file for asynchronous queued I/O 12-12
AQREAD, AQREADC,
AQREADI, ACREADCI Queues a simple or compound asynchronous I/O read request 12-13
AQRECALL, AQRIR Delays program execution during a queued I/O sequence 12-15
AQST AT ... Checks the status of asynchronous queued I/O requests 12-17
AQSTOP .. Stops the processing of asynchronous queued I/O requests 12-18
AQW AIT ... Waits on a completion of asynchronous queued I/O requests 12-19
AQWRlTE, AQWRlTEC,
AQWRlTEI, AQWRTECI. Queues a simple or compound asynchronous I/O write request 12-20
ASYNCMS, ASYNCDR Set I/O mode for random access routines to asynchronous 12-22
CHECKMS, CHECKDR Checks status of asynchronous random access I/O operation 12-23
CHECKTP Checks tape I/O status .. 12-24
CLOSEV .. Begins user EOV and BOV processing ... 12-25
CLOSMS, CLOSDR Writes master index and closes random access dataset. 12-26
CONlPIO .. Continues normal 1/0 operations ... 12-28
ENDSP ... Requests notification at the end of a tape volume .. 12-29
FINDMS .. Reads record into data buffers .. 12-30
FSUP, ISUP Output a value in an argument as blank ... 12-31
GETPOS, SETPOS Returns the current position of interchange tape ... 12-32
GETTP ... Receives position information about an opened tape dataset or file 12-34
GETW A, SEEK Synchronously and asynchronously reads data .. 12-36
OPENMS, OPENDR Opens a local dataset as a random access dataset 12-38
PROCBOV Allows special processing at beginning-of-volume 12-40
PROCEOV Begins special processing at end-of-volume (EOY) (obsolete) 12-41
PUTW A, APUTW A Writes to a word-addressable, random-access dataset. 12-42
READ, READP Reads words, full or partial record modes .. 12-43
READC, READCP Reads characters, full or partial record mode ... 12-44
READIBM Reads two IBM 32-bit floating-point words .. 12-45
READMS, READDR Reads a record from a random access dataset ... 12-46
RNLFLAG, RNLDELM, RNLSEP,
RNLREP, RNLCOMM................... Adds or deletes characters recognized by NAMELIST 12-48
RNLECHO Specifies output unit for NAMELIST error messages 12-49
RNLSKIP ... Takes. appropriate action when an undesired NAMELIST 12-50
RNLTYPE Detennines action if a type mismatch occurs on an input record 12-51
SETSP .. Requests notification at the end of a tape volume .. 12-52
SETTP ... Positions a tape dataset or file ... 12-53
SKIPBAD .. Skips bad data ... 12-55
ST ARTSP .. Begins user EOV and BOV processing... 12-56
STINDX, STINDR Allows an index to be used as the current index .. 12-57
SVOLPRC Initializes/terminates special BOV/EOV processing (obsolete) 12-59
SWITCHV Switches tape volume ... 12-60
SYNCH .. Synchronizes the program and an opened tape dataset 12-61
SYNCMS, SYNCDR Sets I/O mode for random access routines to synchronous 12-62
W AITMS, W AITDR Waits for completion of an asynchronous I/O operation 12-63
WCLOSE ... Closes a word-addressable, random access dataset 12-64
WNLFLAG, WNLDELM,
WNLSEP, WNLREP Provides user control of output .. 12-65

SR-0113 xiv C

WNLLINE Allows each NAMELIST variable to begin on a new line 12-66
WNLLONG Indicates output line length .. 12-67
WOPEN ... Opens a word-addressable, random access dataset 12-68
WRITE, WRITEP Writes words, full or partial record mode ... 12-70
WRITEC, WRITECP Writes characters, full or partial record mode .. 12-71
WRITIBM Writes two IBM 32-bit floating-point words ... 12-72
WRITMS, WRITDR Writes to a random access dataset on disk .. 12-73

13. DATASET UTILITY ROUTINES

IN1'RO .. 13-1
BACKFILE Positions a dataset after the previous EOF .. 13-3
COPYR, COPYF, COPYD Copies records, files, or a dataset ... 13-4
COPYU .. Copies either specified sectors or all data to EOD 13-5
EODW ... Terminates a dataset by writing EOD, EOF, and EOR 13-6
EOF, IEOF Returns real or integer value EOF status .. 13-7
IOSTAT ... Returns EOF and EOD status .. 13-8
NUMBLKS Returns the current size of a dataset in 512-word blocks 13-9
SKIPD .. Positions a blocked dataset at EOO .. 13-10
SKIPR, SKIPF Skip records or files ... 13~11
SKIPU .. Skips a specified number of sectors in a dataset .. 13-13

14. MUL TIT ASKING ROUTINES

IN1'RO ... 14-1
BARASGN Identifies an integer variable to use as a barrier .. ~ .. 14-5
BARREL ... Releases the identifier assigned to a barrier .. 14-6
BARSYNC Registers the arrival of a task at a barrier .. 14-7
BUFDUMP Unfonnatted dump of multitasking history trace buffer 14-8
BUFPRINT Formatted dump of multitasking history trace buffer 14-9
BUFTUNE Tune parameters controlling multitasking history trace buffer 14-10
BUFUSER Adds entries to the multitasking history trace buffer 14-13
EVASGN ... Identifies an integer variable to be used as an event 14-14
EVCLEAR Clears an event and returns control to the calling task 14-15
EVPOST .. Posts an event and returns control to the calling task 14-16
EVREL .. Releases the identifier assigned to the task ... 14-17
EVTEST .. Tests an event to determine its posted state ... 14-18
EVW AIT ... Delays the calling task until the specified event is posted..... 14-19
JCCYCL .. Returns machine cycle time ... 14-20
LOCKASGN Identifies an integer variable intended for use as a lock 14-21
LOCKOFF Clears a lock and returns control to the calling task 14-22
LOCKON ... Sets a lock and returns control to the calling task 14-23
LOCKREL Releases the identifier assigned to a lock ... 14-24
LOCKTEST Tests a lock to detennine its state (locked or unlocked) 14-25
MAXLCPUS Returns the maximum number of logical CPUs ... 14-26
TSECND .. Returns elapsed CPU time for a calling task .. 14-27
TSKSTART Initiates a task ... 14-28
TSKTEST .. Returns a value indicating whether the indicated task exists 14-29
TSKTUNE Modifies tuning parameters within the library scheduler 14-30
TSKV ALUE Retrieves user identifier specified in task control array 14-31
TSKW AIT Waits for the indicated task to complete execution 14-32

SR-0113 xv C

15. TIMING ROUTINES

IN'I'RO ... IS-1
CLOCK .. Returns the current system-clock time .. IS-3
DATE, JDATE Returns the current date and the current Julian date IS-4
DTIS ... Converts ASCn date and time to time-stamp ... IS-S
RTC, IR.TC Return real-time clock values .. IS-6
SECOND ... Returns elapsed CPU time .. IS-7
TIMEF ... Returns elapsed wall-clock time since the call to TIMEF IS-8
TREMAIN Returns the CPU time (in floating-point seconds) IS-9
TSDT ... Converts time-stamps to ASCII date and time strings IS-10
TSMT, MTTS Converts time-stamp to a corresponding real-time value, and vice versa ... IS-II
UNITTS ... Returns time-stamp units in specified standard time units IS-12

16. PROGRAMMING AID ROUTINES

IN'I'RO ... 16-1
CRAYDUMP Prints a memory dump to a specified dataset ... 16-3
DUMP, PDUMP Dumps memory to $OUT ... 16-4
DUMPJOB Creates an unblocked dataset containing the user job area image 16-S
FXP .. Formats and writes the contents of the Exchange Package 16-6
PERF .. Provides an interface to the hardware performance monitor 16-7
SNAP ... Copies current register contents to $OUT ... 16-10
SyMDEBUG Produces a symbolic dump .. 16-11
SYMDUMP Produces a snapshot dump of a running program .. 16-13
TRBK .. Lists all subroutines active in the current calling sequence 16-17
TRBKLVL Returns information on current level of calling sequence 16-18
XPFMT .. Produces a printable image of an Exchange Package 16-19

17. SYSTEM INTERFACE ROUTINES

IN'I'RO ... 17-1
ABORT .. ReQ.uests abort with traceback ... 17-S
ACTTABLE Returns the Job Accounting Table (JAT) .. 17-6
CCS .. Cracks a control statement ... 17-7
CEXPR .. Cracks an expression...... 17-8
CLEARBT, SETBT Temporarily disables/enables bidirectional memory transfers 17-9
CLEARBTS, SETBTS Permanently disables/enables bidirectional memory transfers 17-10
CLEARFI, SETFI Temporarily prohibits!permits floating-point interrupts 17-11
CLEARFIS, SETFIS Temporarily prohibits!permits floating-point interrupts 17-12
CRACK ... Cracks a directive ... 17-13
DELAy .. Do nothing for a fixed period of time ... 17-14
DRIVER .. Programs a Cray channel on an I/O Subsystem (IOS) 17-1S
ECHO .. Turns on and off the classes of messages to the user logfile 17-16
END, ENDRPV Terminates a job step ... 17-17
ERECALL Allows a job to suspend itself until selected events occur 17-18
ERREXIT .. ReQ.uests abort. .. 17-20
EXIT ~ Exits from a Fortran program .. 17-21

SR-0113 xvi C

GET ARG ... Return Fortran command-line argument ... 17-22
GE1LPP .. Returns lines per page .. 17-23
GETPARAM Gets parameters .. 17-24
IARGC , ... Returns number of command line arguments .. 17-26
ICEIL ... Returns integer ceiling of a rational number ... 17-27
DCOM ... Allows a job to communicate with another job .. 17-28
ISlIELL ~ ... Executes a UNICOS shell command ... 17-30
JNAME .. Returns the job name 17-31
JSYMSET, JSYMGET Changes a value for a JCL symbol ... 17-32
LGO ... Loads an absolute program from a dataset .. 17-33
LOC ... Returns memory address of variable or array...................... 17-34
MEMORy Manipulates a job's memory allocation ... 17-35
NACSED ... Returns the edition of a previously-accessed permanent dataset. 17-37
OVERLAy Loads an overlay ... 17-38
PPL .. Processes keywords of a directive ... 17-39
REMARK2, REMARK Enters a message in the user and system log files 17-40
REMARKF Enters a formatted message in the user and system logfiles 17-41
RERUN, NORERUN Declares a job rerunnable/not rerunnable .. 17-42
SENSEBT .. Determines whether bidirectional memory transfer is enabled 17-43
SENSEFI ... Determines if floating-point interrupts are permitted 17-44
SETRPV .. Conditionally transfers control to a specified routine 17-45
SMACH, CMACH Returns machine epsilon, small/large normalized numbers 17-46
SSWITCH .. Tests the sense switch 17-47
SYSTEM ... Makes requests of the operating system .. 17-48

18. INTERFACE TO C LIBRARY ROUTINES

INTRO ... 18-1
getenv .. Returns value for environment name 18-4
GETOPT .. Gets an option letter from an argument vector ... 18-5
uname .. Gets name of current operating system. 18-8

19. MISCELLANEOUS UNICOS ROUTINES

INTRO ... 19-1
curses ... Updates CRT screens ... 19-2
xio .. Text interface to the X Window System.. 19-8
Xlib .. C Language X Window System Interface Library 19-10

SR-OI13 xvii C

INTRO(3X) INTRO(3X)

1. INTRODUCTION

SR-0113

This manual describes Fortran programming subprograms provided in the standard cos libraries
$ARLIB. $FTLIB. $IOLm. $SCILm. $SYSLm, and $UTLm, and those subprograms supported by UNICOS
on the CRAY Y-MP. CRAY X-MP, and CRAY-l computer systems. The Cray Assembly Language (CAL)
subprograms and subprograms called by code generated by the Cray Fortran compiler or the Cray Pas­
cal compiler are described in the System Library Reference Manual, publication SM-0114. Routines
generated in the form of in-line code are generally not included in this manual, but they are described
in the Fortran (CPr) Reference Manual, publication SR-0009, and the CFf77 Reference Manual, publica­
tion SR-0018.

The routines are divided into functional sections. A brief description of each section follows:

Section

1

2

3

4

5

Description

Introduction

Common Mathematical Subprograms - General arithmetic, exponentiation, loga­
rithmic, trigonometric, character, type conversion, and Boolean functions

COS Dataset Management Subprograms - COS Job Control Language (JCL) routines

Linear Algebra Subprograms - Basic linear algebra, linear recurrence, matrix inverse
and multiplication, filter, gather/scatter, and LINPACK/EISPACK routines

Fast Fourier Transform Routines - Computing Fourier analysis and Fourier synthesis
routines

6 Search Routines - Maximum and minimum search and vector search routines

7 Sorting Routines - ORDERS optimized sort routine

8 Conversion Subprograms - Foreign dataset conversion (mM, CDC, and VAX),
numeric conversion, and miscellaneous conversion routines

9 Packing Routines - Packing and unpacking data routines

10 Byte and Bit Manipulation Routines - Routines for comparing, moving, and search­
ing at the element level

11 Heap Management and Table Management Routines - Routines for manipulating and
managing memory within heaps and tables

12 I/O Routines - Dataset positioning, auxiliary NAMELIST, logical record, random
access dataset, and output suppression routines

13 Dataset Utility Routines - Routines for positioning, copying, and skipping datasets

14 Multitasking Routines - Task, lock, event, and history trace buffer routines

15 Timing routines - Time-stamp and time/date routines

16 Programming Aids Routines - Flowtrace, traceback, dump, Exchange Package pro­
cessing, and hardware performance routines

17 System Interface Routines - JCL symbol, control statement processing, job control,
floating-point interrupt, bidirectional memory transfer, and special purpose interface
routines

1-1 C

INTRO(3X) INTRO(3X)

Section

18

19

Description

Interfaces to C Library Routines - C library interface routines available under
UNICOS and documented in the CRAY Y-MP, CRAY X-MP, and CRAY-l C Library
Reference Manual, publication SR-0136 and the UNICOS System Calls Reference
Manual, publication SR-2012.

Miscellaneous UNICOS Routines - X Window System routines and libraries.

SUBPROGRAM CLASSIFICATION

Unless otherwise noted, all routines in this manual are described as Fortran subroutines or functions. In
some cases (e.g., SECOND), the routine may be called as either a subroutine or a function. The Fortran
compilers will, however, enforce consistency in anyone compilation unit.

Programs written in C can call library functions intended for use by Fortran programs. The C program­
mer is responsible for passing arguments by address and not by value, as is the normal case in C.

C programs can also be written to accommodate Fortran users. Such programs must be written to
accept arguments passed by address rather than passed by value, as in the normal case in C.

Pascal programs can call library functions intended for use by Fortran programs. Similarly, Fortran
codes can invoke subroutines and functions written in Pascal. Unlike C, the Pascal compiler passes all
arguments by address, and supports several predefined conversion functions to facilitate communication
with Fortran routines. See the Pascal Reference Manual, publication SR-0060, for information regarding
parameter passing, data formats, and restrictions.

LINKAGE METHODS

SR-OI13

The externally-callable library routines are accessed by one of two methods: call-by-address or call-by­
value. Subroutines are always called by address. Fortran accesses intrinsic library functions or user
functions named in a VFUNCTION directive in either call-by-address or call-by-value mode, depending
on context

In call-by-address mode, addresses of arguments are stored sequentially in memory. Functions return
their results in registers. Subroutines return results through their argument lists (for information on the
calling sequence, see the Macros and Opdefs Reference Manual, CRI publication SR-OOI2).

In call-by-value mode, arguments are loaded into either scalar (S) or vector (V) registers, and the func­
tion returns its result in SI or VI. S2 or V2 is used for complex or double-precision functions. Vector
functions must also have the vector length present in the vector length (VL) register.

Linkage macros generate code to handle subprogram linkage between compiled routines and CAL­
assembled routines. These linkage macros and their uses follow.

Macro

CALL

CALLV

ENTER

EXIT

Description

Provides linkage to call-by-address routines

Provides linkage to call-by-value routines

Reserves space for parameter addresses, saves
Band T registers, and sets up traceback linkage

Initiates a return from a routine to its caller and
restores any B or T registers not considered scratch

1-2 C

INTRO(3X) INTRO(3X)

SR-0113

Linkage macros should be used whenever possible to maintain compatibility with future CRr software.
See the Macros and Opdefs Reference Manual for detailed descriptions of linkage macros and linkage
conventions.

All Cray library subroutines can use any of the A, S, V, VL, VM, B70 through B77, and TIO through
TI7 registers as scratch registers; therefore, the calling routine should not depend on any of these regis­
ters being preserved. These routines, however, preserve the contents of registers BOI through B65 and
TOO through T67 (all registers are numbered in octal).

NOTE

CRI reserves the right to make future use of any of the
A, S, V, VL, VM, B66-B77, and TIO-T77 registers in any
library subroutine. You cannot depend on the contents
of these registers being preserved in any library
routine.

CRI also reserves subroutine names beginning with the characters
roo for internal use only.

1-3 C

INTRO(3X) INTRO(3X)

2. COMMON MATHEMATICAL SUBPROGRAMS

NOTE

This section is divided into the following categories of mathematical subprograms:

• General arithmetic functions

• Exponential and logarithmic functions

• Trigonometric functions

• Character functions

• Type conversion functions

• Boolean functions

In general, real functions have no prefix, integer functions are prefixed with I, double-precision func­
tions are prefixed with D, and complex functions are prefixed with C (for example ABS, lABS, DABS,
and CABS). Arguments are. given in their type: real. integer. complex. logical. Boolean, and double
(double-precision); results are given as r. i. z. I. b, and d for real, integer, complex, logical, Boolean,
and double-precision, respectively. Functions with a type different from their arguments are noted.
Real functions are usually the same as the entry name.

IMPLEMENTATION

All routines in this section are available to users of both the cos and UNICOS operating systems.

GENERAL ARITHMETIC FUNCTIONS

SR-Ol13

The general arithmetic functions are based upon ANSI standards, with the exception of the pseudo­
random number routines (RANF, RANGET. and RANSET), which are CRI extensions.

The following table contains the purpose, name, and entry of each general arithmetic function.

In the routine descriptions, complex arguments are represented such that

where x r is the real portion and i* x i is the imaginary portion of the complex number. Arguments and
results are of the same type unless otherwise indicated.

Base values raised to a power and 64-bit integer division are implicitly called from Fortran. Details on
calls from CAL are documented in the System Library Reference Manual, publication SM-Ol14.

2-1 C

INTRO(3X) INTRO(3X)

General Arithmetic Routines
Purpose Name Entry

Compute absolute value for real, ADS ABS
integer, double-precision, and lABS
complex numbers DABS

CABS

Compute the imaginary portion of a AIMAG AIMAG
complex number
Compute real and double-precision AINT AINT
truncation DINT
Compute the conjugate of a complex CONJG CONJG
number

Find the positive difference of DIM
real, integer, or double-precision IDIM DIM
numbers DDIM

Compute the double-precision product DPROD DPROD
of two real numbers

Remainder of Xl/X2 MOD MOD
for integer, real, and double- AMOD
precision numbers DMOD

Find the nearest whole number for ANINT ANINT
real and double-precision numbers DNINT

Find the nearest integer for real NINT NINT
and double-precision numbers IDNINT

Obtain and establish a pseudo- RANGET
random number seed RAN SET

RAN
Obtain the first or next number in RANF
a series of pseudo-random numbers

Transfer the sign of a real, integer, SIGN SIGN
or double-precision number ISIGN

DSIGN

SR-Ol13 2-2 C

INTRO(3X) INTRO(3X)

EXPONENTIAL AND LOGARITHMIC FUNcrIONS

SR-Ol13

The CRI exponential and logarithmic functions are similar to the ANSI standard functions. Each func­
tion has variations for real, double-precision, and complex values except the common logarithm func­
tion, which only addresses real and double-precision values. Complex arguments are represented such
that

where Xr is the real portion and i*Xi is the imaginary portion of the complex number.

The following table contains the purpose, name, and entry of each exponential and logarithmic function.

Exponential and Logarithmic Functions
Purpose Name Entry

Compute the natural logarithm for ALOG ALOG
real, double-precision, and DLOG
complex numbers CLOG
Compute the common logarithm for real ALOGIO ALOGIO
and double-precision numbers DLOGIO
Compute exponents for real, double- EXP EXP
precision, and complex numbers DEXP

CEXP
Compute the square root for real, SQRT SQRT
double-precision, and complex numbers DSQRT

CSQRT

2-3 C

INTRO(3X) INTRO(3X)

TRIGONOMETRIC FUNCTIONS

The trigonometric functions are based on the ANSI standard, except for the cotangent function, which is
a CRI extension.

The following table contains the purpose, name, and entry of each trigonometric function.

Trigonometric Functions

Purpose Name Entry

Compute the arcsine for real and ASIN ASIN
double-precision numbers DASIN
Compute the arccosine for real and ACOS ACOS
double-precision numbers DACOS
Compute the arctangent with one ATAN AT AN
real or double-precision argument DATAN

Compute the arctangent with two ATAN2 ATAN2
real or double-precision arguments DATAN2

Compute the cosine for real, double- COS COS
precision, and complex numbers DCOS

CCOS
Compute the hyperbolic cosine for real COSH COSH
or double-precision numbers DCOSH

Compute the sine for real, double- SIN SIN
precision, and complex numbers DSIN

CSIN
Compute the hyperbolic sine for real SINH SINH
or double-precision numbers DSINH
Compute the tangent real and double- TAN TAN
double-precision numbers DTAN

Compute the cotangent for real and COT COT
double-precision numbers DCOT
Compute the hyperbolic tangent for real TANH TANH
or double-precision numbers DTANH

SR-0113 2-4 C

INTRO(3X) INTRO(3X)

CHARACfER FUNCTIONS

Character functions compare strings, determine the lengths of strings, and return the index of a sub­
string within a string. The character functions are ANSI standard functions.

The comparison functions return a logical value of true or false when two character arguments are com­
pared according to the ANSI collating sequence. These four functions are found under the entry
LGE(3F).

The routines for determining the length of a string and the index of a substring are found under the
entries LEN(3F) and INDEX(3F), respectively.

TYPE CONVERSION FUNcrIONS

Type conversion functions change the type of an argument. The following table contains the purpose,
name, and entry of each type conversion routine.

In the routine description, complex arguments are represented such that x=xr+i* Xi. Arguments and
results are of the same type unless indicated otherwise.

Type Conversion Routines
Purpose Name Entry

Convert type character to integer ICHAR
CHAR

Convert type integer to character CHAR
Convert to type complex CMPLX CMPLX
Convert to type double-precision DBLE

DBLE
Convert integer to double-precision DFLOAT
Convert to type integer !NT INT

IFIX
IDINT

Convert a 64-bit integer to a INT24
24-bit integer

INT24
Convert a 24-bit integer to a LINT
64-bit integer
Convert to type real REAL REAL

FLOAT
SNGL

BOOLEAN FUNCTIONS

SR-OI13

The Boolean functions perform logical operations and bit manipulations.

The scalar subprograms in the following table are external versions of Fortran in-line functions. These
functions can be passed as arguments to user-defined functions. They are all called by address; results
are returned in register S 1. All Boolean functions are CRI extensions.

2-5 C

INTRO(3X) INTRO(3X)

Boolean Arithmetic Routines
Purpose Name Entry

Compute the logical product AND AND
Compute the logical complement COMPL COMPL
Compute the logical equivalence EQV EQV
Count the number of leading 0 bits LEADZ LEADZ

Return a bit mask MASK MASK
Compute the logical difference (same as XOR) NEQV NEQV

Compute the logical sum OR OR
Count the number of bits set to 1 POPCNT POPCNT
Compute the bit population parity POPPAR POPPAR

Perform a left circular shift SHIFT SHIFT
Perform a left shift with zero fill SHIFTL SHIFTL
Perform a right shift with zero fill SHIFTR SHIFTR
Compute the logical difference (same as NEQV) XOR XOR

SR-Ol13 2-6 C

ABS(3M)

NAME

ABS, lABS, DABS, CABS - Computes absolute value (Cray Fortran instrinsic function)

SYNOPSIS

r=ABS(real)

i=IABS(integer)

d=DABS(double)

r=CABS(complex)

DESCRIPTION

ABS(3M)

These functions evaluate y= I x I. The argument range for ABS, lABS, and DABS is I x 1< inf. CABS
has an argument range of I x r I , I x i I < in f .

ABS is the generic function name. ABS, lABS, and DABS are inline Cray Fortran code.

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-Ol13 2-7 C

ACOS(3M)

NAME

ACOS, DACOS - Computes the arccosine (Cray Fortran intrinsic function)

SYNOPSIS

r=ACOS(real)

d=DACOS(double)

DESCRIPTION

ACOS(3M)

ACOS (generic name) and DACOS solve the equation y=arccos(x). The range for the real and double­
precision arguments is I x I S; 1.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 2-8 C

AIMAG(3M)

NAME

AIMAG - Computes the imaginary portion of a complex number

SYNOPSIS

r=AIMAG(complex)

DESCRIPTION

AIMAG(3M)

This real function evaluates Y=Xi' The argument ranges are I xr I , I Xi 1< inf. AlMAG is in-line Cray
Fortran code.

EXAMPLE

PROGRAM AIMTEST
REAL RESULT
RESUL T=AIMAG«(1.0,2.0»
PRINT * , RESULT
STOP
END

The preceding program gives the imaginary portion of the complex number (1.0,2.0). Mter running the pro­
gram, RESULT=2.0.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 2-9 C

AINT(3M) AINT(3M)

NAME

AINT, DINT - Computes real and double-precision truncation (Cray Fortran intrinsic function)

SYNOPSIS

r=AINT(real)

d=DINT(double)

DESCRIPTION

AINT (generic name) is in-line Fortran code. These ANSI functions evaluate y=[x] with no rounding.
The argument range for AINT is I x I < 246, and the range for DINT is I x I < 295•

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-10 C

ALOG(3M)

NAME

ALOG, DLOG, CLOG - Computes the natural logarithm (Cray Fortran intrinsic function)

SYNOPSIS

r=ALOG(real)

d=DLOG(double)

z=CLOG(complex)

DESCRIPTION

ALOG(3M)

LOG (generic name) evaluates the following equation for real, double-precision, and complex argu­
ments:

y=ln(x)

The argument range is O<:x<inf.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 2-11 C

ALOGIO(3M)

NAME

ALOGIO, DLOGIO - Computes a common logarithm (Cray Fortran intrinsic function)

SYNOPSIS

r=ALOG lO(real)

d=DLOGIO(double)

DESCRIPTION

LOGIO (generic name) evaluates the following equation:

y=log(x)

The argument range is O<x<inf.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OI13 2-12

ALOGIO(3M)

C

AND(3M) AND(3M)

NAME

AND - Computes the logical product

SYNOPSIS

I=AND(lo gical ,10 gical)
b=AND(arg,arg)

DESCRIPTION

arg Argument of type integer, real, or Boolean

When given two arguments of type logical, AND computes a logical product and returns a logical result.
When given two arguments of type integer, real, or Boolean, AND computes a bit-wise logical product
and returns a Boolean result. The truth tables below show both the logical product and bit-wise logical
product.

Logical 1 Logical 2 (Logical 1) AND (Logical 2)

T T T

T F F

F T F

F F F

Bit 1 Bit 2 (Bit 1) AND (Bit 2)

1 1 1
1 0 0
0 1 0
0 0 0

EXAMPLES

SR-0113

The following section of Fortran code shows the AND function used with two arguments of type logical.

LOGICAL LI, L2, L3

L3 = AND(LI,L2)

The following section of Fortran code shows the AND function used with two arguments of type
integer. The bit patterns of the arguments and result are also shown below. For clarity, an 8-bit word
is used instead of the actual 64-bit word.

INTEGER II, 12, I3

I3 =AND(II,I2)

10 I 0 1 0 1 0 1111 1 0 1 0 1

II

2-13 C

AND(3M) AND(3M)

10 10 I 0 10 11 10 11 101
12

10 10 10 1 0 11 1 0 1 0 1 01

I3

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-OII3 2-14 c

ANINT(3M)

NAME

ANINT, DNINT - Finds the nearest whole number (Cray Fortran intrinsic function)

SYNOPSIS

r=ANINT(real)

d=DNINT(double)

DESCRIPTION

ANINT(3M)

ANINT (generic name) finds the nearest whole number for real and double-precision numbers using the
following equations.

y= [x+.5] if x~

y= [x-.5] if x<O

The argument range for ANINT is I x I < 246• The range for DNINT is I x I < 295•

ANINT and DNINT are type real and type double-precision functions, respectively.

IMPLEMENTATION

These routines are available to users of both the COS and UNlCOS operating systems.

SR-OI13 2-15 C

ASIN(3M)

NAME

ASIN, DASIN - Computes the arcsine (Cray Fortran intrinsic function)

SYNOPSIS

r=ASIN (real)

d=DASIN(double)

DESCRIPTION

ASIN(3M)

ASIN (generic name) and DASIN solve the equation y=arcsin(x). The range for both real and double­
precision arguments is I x lSI.

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-OI13 2-16 C

ATAN(3M) ATAN(3M)

NAME

AT AN, DAT AN - Computes the arctangent for single argument (Cray Fortran intrinsic function)

SYNOPSIS

r=A T AN (real)

d=DATAN(double)

DESCRIPTION

ATAN (generic name) and DATAN solve for the equation with one real argument or one double­
precision argument as follows:

y=arctan(x)

The argument must be in the range I x 1< inf.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 2-17 C

ATAN2(3M) ATAN2(3M)

NAMB

AT AN2, DAT AN2 - Computes the arctangent for two arguments (Cray Fortran intrinsic function)

SYNOPSIS

r=ATAN2(real,real)

d=DAT AN2(double ,double)

DESCRIPTION

ATAN2 (generic name) and DATAN2 solve for two real or double-precision arguments as follows:

y =arctan (x l/X :z)

For real arguments, the range is I x I I , I x 2 I < in f ,and x I and x 2 are not both zero.

For double-precision arguments, the range is I Xl I, I x21 < inf , and Xl and X2 are not both zero.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OI13 2-18 C

CHAR (3F) CHAR (3F)

NAME

CHAR, ICHAR - Converts integer to character and vice versa (Cray Fortran intrinsic function)

SYNOPSIS

ch=CHAR(integer)
ch=CHAR(boolean)

i=ICHAR(char)

DESCRIPTION

CHAR (inline Fortran code) and ICHAR are inverse functions. CHAR (type character) converts an
integer or Boolean argument to a character specified by the Ascn collating sequence. Type conversion
routines assign the appropriate type to Boolean arguments without shifting or manipulating the bit pat­
terns they represent. For examplet CHAR(z) returns the ith character in the collating sequence. integer
must be in the range 0 to 255.

ICHAR (type integer) converts a character to an integer based on the character position in the collating
sequence.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 2-19 C

CMPLX(3M) CMPLX(3M)

NAME

CMPLX - Converts to type complex (Cray Fortran intrinsic function)

SYNOPSIS

c=CMPLX(arg 1 [,arg iD

DESCRIPTION

CMPLX (type complex) converts one or two arguments into type complex. Complex and 24-bit integer
arguments use a single argument. Integer, Boolean, real, and double-precision arguments can use either
one or two arguments. Type conversion routines assign the appropriate type to Boolean arguments
without shifting or manipulating the bit patterns they represent.

If two arguments are used, they must be of the same type. The following cases represent the evaluation
of CMPLX when using two arguments:

CMPLX(I,J) gives the value FLOAT(I)+i*FLOAT(J)
CMPLX(x,y) gives the complex value x +i*y

The following cases represent the evaluation of CMPLX when using one argument:

CMPLX(X) gives the value X+i*O
CMPLX(I) gives the value FLOAT(I)+i*O
CMPLX(C) where C is a complex number, gives the complex value x+i*y; that is,
CMPLX(C)=C.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-20 C

COMPL(3M) COMPL(3M)

NAME

COMPL - Computes the logical complement

SYNOPSIS

I=C OMPL (logical)
b=COMPL(arg)

DESCRIPTION

arg Argument of type integer, real, or Boolean

When given an argument of type logical, COMPL computes a logical complement and returns a logical
result. When given an argument of type integer, real, or Boolean, COMPL computes a bit-wise logical
complement and returns a Boolean result. The truth tables below show both the logical complement
and bit-wise logical complement.

Logical COMPL (Logical)

T F

F T

Bit COMPL (Bit)

1 0
0 1

EXAMPLES

The following section of Fortran code shows the COMPL function used with an argument of type
logical.

LOGICAL Ll, L2

L2 = CO~L(Ll)

The following section of Fortran code shows the COMPL function used with an argument of type
integer. The bit patterns of the argument and result are also shown below. For clarity, an 8-bit word is
used instead of the actual 64-bit word.

INTEGER 11, 12

12 = CO~L(I1)

11111111 10 10 I 0 101
11

10 10 10 10 111111111
12

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OU3 2-21 C

CONJG(3M) CONJG(3M)

NAME

CONJG - Computes the conjugate of a complex number

SYNOPSIS

z=CONJG(complex)

DESCRIPTION

The complex function CONJG evaluates y = xr-i * Xi. The argument range is I Xr I, I Xi 1< info
CONJG is in-line Cray Fortran code.

EXAMPLE

PROGRAM CONTEST
COMPLEX ARG , RESULT
ARG=(3.0,4.0)
RESUL T=CONJG(ARG)
PRINT * ,RESULT
STOP
END

The preceding program gives RESULT=(3.0,-4.0).

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-Ol13 2-22 C

COS(3M)

NAME

COS, DCOS, CCOS - Computes the cosine (Cray Fortran intrinsic function)

SYNOPSIS

r=C OS (real)

d=DCOS(double)

z=CCOS(complex)

DESCRIPTION

COS(3M)

COS (generic name) solves for the equation y=cos(x). The ranges for the real, double-precision, and
complex functions are as follows:

For COS:

For DCOS:

For CCOS:

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-23 C

COSH(3M)

NAME

COSH, DCOSH - Computes the hyperbolic cosine (Cray Fortran intrinsic function)

SYNOPSIS

r=COSH(real)

d=DCOSH(double)

DESCRIPTION

COSH(3M)

COSH (generic name) and DCOSH solve the equation y=cosh(x). The hyperbolic cosine functions have
a real or double-precision argument in the range of I x 1< 213 *In 2.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-Ol13 2-24 C

COT(3M)

NAME

COT, DCOT - Computes the cotangent (Cray Fortran intrinsic function)

SYNOPSIS

r=COT(real)

d=DCOT(double)

DESCRIPTION

COT(3M)

COT (generic name) solves for the equation y=cot(x). The range for the real and double-precision argu­
ments is I x 1< 22A.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-25 C

DBLE(3M)

NAME

DBLE, DFLOAT - Converts to type double-precision

SYNOPSIS

d=DBLE(arg)

d=DFLOAT(integer)

DESCRIPTION

DBLE(3M)

DBLE (type double-precision, Cray Fortran intrinsic function) converts complex, integer, 24-bit integer,
Boolean, real, and double-precision arguments into type double-precision. Type conversion routines
assign the appropriate type to Boolean arguments without shifting or manipulating the bit patterns they
represent. The range for real, double-precision, and Boolean arguments is I x I < inf.

Complex arguments have a range of I Xr 1< info (for complex arguments x = Xr + i * Xi)'

DFLOAT converts integer arguments to floating-point double-precision variables.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 2-26 C

DIM(3M)

NAME

DIM, IDIM, DDIM - Positive difference of two numbers (Cray Fortran intrinsic function)

SYNOPSIS

r=DIM(real,real)

i=IDIM(integer,integer)

d=DDIM(double ,double)

DESCRIPTION

DIM (3M)

These functions evaluate two numbers and, depending on their magnitude, subtract them. The result is
a positive difference. DIM (generic function) solves for

Y=Xl-X2 if Xl>X2

y=O if Xl~2

The range for all positive difference functions is I Xl I ,I x21 <inf. DIM and IDIM are in-line code func­
tions.

EXAMPLE

PROGRAMDIMTEST
INTEGER A,B,C,D,E
A=77
B=10
C=IDIM(A,B)
WRITE I,A,B,C

1 FORMAT(I2,'POSITIVE DIFFERENCE' ,12,' EQUALS', 12)
D=IDIM(B,A)
WRITE 2,B,A,D

2 FORMAT(I2,'POSITIVE DIFFERENCE' ,12,' EQUALS' ,12)
STOP
END

The preceding program gives the following output.

IMPLEMENTATION

77 POSITIVE DIFFERENCE 10 EQUALS 67
10 POSITIVE DIFFERENCE 77 EQUALS 0

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-27 C

DPROD(3M)

NAME

DPROD - Computes double-precision product of two real numbers

SYNOPSIS

d=DPROD(real,real)

DESCRIPTION

DPROD(3M)

This double-precision function evaluates y=x 1 * X 2. The argument range is I x 1 I , I x 21 < inf. DPROD
is an in-line code function.

EXAMPLE

PROGRAM OOUBT
REALX,Y
OOUBLE PRECISION Z
X=5.0
Y=6.0
Z=DPROD(X,Y)
PRINT *,Z
STOP
END

The preceding program gives Z to be the double-precision number 30.0 (or in Fortran, 30.DO).

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 2-28 C

EQV(3M) EQV(3M)

NAME

EQV - Computes the logical equivalence

SYNOPSIS

I=EQV(logical,logical)
b=EQV(arg,arg)

DESCRIPTION

arg Argument of type integer, real, or Boolean

When given two arguments of type logical, EQV computes a logical equivalence and returns a logical
result. When given two arguments of type integer, real, or Boolean, EQV computes a bit-wise logical
equivalence and returns a Boolean result. The truth tables below show both the logical equivalence and
bit-wise logical equivalence.

Logical 1 Logical 2 (Logical 1) EQV (Logical 2)
T T T
T F F

F T F
F F T

Bit 1 Bit 2 (Bit 1) EQV (Bit 2)
1 1 1
1 0 0
0 1 0
0 0 1

EXAMPLES

SR-OI13

The following section of Fortran code shows the EQV function used with two arguments of type logical.

LOGICAL Ll, L2, L3

L3 = EQV(Ll,L2)

The following section of Fortran code shows the EQV function used with two arguments of type
integer. The bit patterns of the arguments and result are also shown below. For clarity, an 8-bit word
is used instead of the actual 64-bit word.

INTEGER II, 12, 13

13 = EQV(Il,I2)

10 10 I 0 10 1111 I 0 10 1
11

10 10 I 0 10 11 10 11 10 1
12

2-29 C

EQV(3M)

IMPLEMENTATION

111111111010111
I3

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-30

EQV(3M)

c

EXP(3M)

NAME

EXP, DEXP, CEXP - Computes exponential function (Cray Fortran intrinsic function)

SYNOPSIS

r=EXP(real)

d=DEXP(double)

z=CEXP(complex)

DESCRIPTION

EXP(3M)

EXP (generic name) evaluates y=ex with real, double-precision, and complex arguments. The argument
ranges are as follows:

For EXP:

For DEXP:

I x I <213* In(2)

For CEXP:

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 2-31 C

INDEX(3F) INDBX(3F)

NAME

INDEX - Determines index location of a character substring within a string (eray Fortran intrinsic func­
tion)

SYNOPSIS

i=INDEX(string ,substring)

DESCRIPTION

The integer function INDEX takes Fortran character string arguments and returns an integer index into
that string. If substring is not located within string, a value of 0 is returned. If there is more than one
occurrence of substring, only the first index is returned. string and substring can be any legal Fortran
character string.

EXAMPLE

PROGRAM INDEXI
CHARACTER*23,A
CHARACTER*13,B
A='CRAY X-MP SUPERCOMPUTER'
B='SUPERCOMPUTER'
I=INDEX(A,B)
PRINT*, 1
STOP
END

The preceding program returns the index number of the substring SUPERCOMPUTER as 1= 11.

PROGRAM INDEX2
CHARACTER*20,A
CHARACTER*6,B
A='CRA Y -1 SUPERCOMPUI'ER'
B='CRAY-l '
I=INDEX(A,B)
PRINT*,I
STOP
END

The preceding program returns the index number of the substring CRAY-l as 1=1.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 2-32 C

INT(3M) INT(3M)

NAME

INT, IFIX, IDINT - Converts to type integer (Cray Fortran intrinsic function)

SYNOPSIS

i=INT(argl)

i=IFIX(real)
i=IFIX(boolean)

i=IDINT(double)

DESCRIPTION

argl Argument of type integer, complex, real, or Boolean

These type integer functions (all are in-line Fortran code) convert specified types to type integer by
truncating toward 0 (the fraction is lost). INT is the generic name.

The ranges for INT are as follows: for complex and real arguments, I x r I < 246; for 24-bit integer argu­
ments, I x 1<223; and for integer and Boolean arguments I x 1<263. Type conversion routines assign
the appropriate type to Boolean arguments without shifting or manipulating the bit patterns they
represent.

The range for IFIX real and Boolean arguments is I x r I < 246
,

The range for IDINT arguments is I x r I < 263.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-33 C

INT24(3M) 1NT24(3M)

NAME

INT24, LINT - Converts 64-bit integer to 24-bit integer and vice versa (Cray Fortran intrinsic function)

SYNOPSIS

i24=INT24(integer)
i24=INT24(boolean)

i24=LINT(integer)

DESCRIPTION

INT24 and LINT (type integer) are inverse functions. Both functions are CRI extensions to the ANSI
standard, and both are in-line code.

INT24 converts an integer argument into a 24-bit integer. LINT converts a 24-bit integer back into an
integer type. The range for all arguments is I x I < 223

• i24 represents a 24-bit integer result.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 2-34 C

LEADZ(3M) LEADZ(3M)

NAME

LEADZ - Counts the number of leading 0 bits (Cray Fortran intrinsic function)

SYNOPSIS

i=LEADZ(arg)

DESCRIPTION

NOTES

arg Argument of type integer, real, logical, or Boolean

When given an argument of type integer, real, logical, or Boolean, LEADZ counts the number of lead­
ing 0 bits in the 64-bit representation of the argument.

The bit representation of the logical data type is not consistent among Cray machines. See the follow­
ing manuals for further details: Fortran (CFf) Reference Manual, publication SR-0009; CRAY-2 Fortran
(CFf2) Reference Manual, publication SR-2007; CFf77 Reference Manual, publication SR-0018.

LEADZ(O) is equal to 64.

EXAMPLES

The following section of Fortran code shows the LEADZ function used with an argument of type
integer. The bit pattern of the argument and the value of the result are also shown below. For clarity,
a 16-bit word is used instead of the actual 64-bit word.

INTEGER Il, 12 ... 12 = LEADZ(Il)

101010101011111010 I I 1001101
Il

The LEADZ function returns the value 5 to the integer variable 12.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-35 C

LEN(3F)

NAME

LEN - Determines the length of a character string (Cray Fortran intrinsic function)

SYNOPSIS

i=LEN(string)

DESCRIPTION

LEN(3F)

The integer function LEN takes Fortran character string arguments and returns an integer length. string
can be any valid Fortran character string. LEN is an in-line code function.

EXAMPLE

PROGRAMLENTEST
1=LENCI..·+ 1. ... + 2 + 3 + .. ')
PRINT *,1
STOP
END

The preceding program returns the length of the character string; 1=37.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 2-36 C

LGE(3F)

NAME

LGE, LGT, LLE, LLT - Compares strings lexically (Cray Fortran intrinsic function)

SYNOPSIS

I=LGE(stringl.string2)

I=LGT(stringl.string2)

I=LLE(stringl.string2)

I=LL T(string].string2)

DESCRIPTION

LGE(3F)

Each of the these type logical functions takes two character string arguments and return a logical value.
string] and string2 are compared according to the ASCII collating sequence, and the resulting true or
false value is returned. Arguments can be any valid character string. If the strings are of different
lengths, the function treats the shorter string as though it were blank-filled on the right to the length of
the longer string.

The defining equation for each function is as follows:

For LG E, logic = a 1 ~a 2.

For LGT, logic = a l>a 2.

For LLE, logic = a 1 Sa 2.

For LLT, logic = a 1<a2

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-37 C

MOD(3M) MOD(3M)

NAMB

MOD, AMOD, DMOD - Computes remainder of xlIx 2 (Cray Fortran intrinsic function)

SYNOPSIS

i=M OD(integer ,integer)

r=AMOD(real,real)

d=DMOD(double ,double)

DBSCRIPTION

MOD (generic name) evaluates the equation Y=XI-X2[x l/xz]. AMOD is an in-line code function.

The argument range for each function is as follows:

For MOD:

I Xl 1<263,

o.q X 21 <263 ,2-63 <I xlIx 21 <263

For AMOD:

I xII <247

o.q X21 <247 ,2-47 <I'x l /x21 <247

For DMOD:

I xl 1<295

o.q x21 <295 ,2-95 <I X Ilx21 <295

IMPLBMBNTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 2-38 C

NEQV(3M) NEQV(3M)

NAME

NEQV - Computes the logical difference

SYNOPSIS

I=NEQV(logical ,10 gical)
b=NEQV(arg,arg)

DESCRIPTION

arg Argument of type integer, real, or Boolean

When given two arguments of type logical, NEQV computes a logical difference and returns a logical
result. When given two arguments of type integer, real, or Boolean, NEQV computes a bit-wise logical
difference and returns a Boolean result. The truth tables below show both the logical difference and
bit-wise logical difference.

Logical 1 Logical 2 (Logical 1) NEQ V (Logical 2)

T T F
T F T
F T T
F F F

Bit 1 Bit 2 (Bit 1) NEQV (Bit 2)

1 1 0
1 0 1
0 1 1
0 0 0

EXAMPLES

SR-0113

The following section of Fortran code shows the NEQV function used with two arguments of type
logical.

LOGICAL Ll, L2, L3

L3 = NEQV(Ll,L2)

The following section of Fortran code shows the NEQV function used with two arguments of type
integer. The bit patterns of the arguments and result are also shown below. For clarity, an 8-bit word
is used instead of the actual 64-bit word.

INTEGER II, 12, I3

I3 = NEQV(Il,I2)

10 10 10 10 1111 10 101
Il

10 10 10 10 11 10 11 101
12

2-39 C

NEQV(3M) NEQV(3M)

101000101111101
I3

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-40 c

NINT(3M)

NAME

NINT, IDNINT - Finds the nearest integer (Cray Fortran intrinsic function)

SYNOPSIS

i=NINT(real)

i=IDNINT(double)

DESCRIPTION

NINT(3M)

NINT (generic name) finds the nearest integer for real and double-precision numbers as defined by the
following equations.

y=[x+.5] if x~

y=[x-.5] if x<O

The argument range for NINT is I x I < 246. The range for IDNINT is I x I < 263.

NINT and IDNINT are both type integer functions. NINT is an in-line code function.

IMPLEMENTATION

These routines are available to users of both the COS and UNlCOS operating systems .

•

SR-OI13 2-41 C

OR(3M) OR(3M)

NAME

OR - Computes the logical sum (Cray Fortran intrinsic function)

SYNOPSIS

I=OR(logical,logical)
b=OR(arg,arg)

DESCRIPTION

arg Argument of type integer, real, or Boolean:

When given two arguments of type logical, OR computes a logical sum and returns a logical result.
When given two arguments of type integer, real, or Boolean, OR computes a bit-wise logical sum and
returns a Boolean result. The truth tables below show both the logical sum and bit-wise logical sum.

Logical 1 Logical 2 (Logical 1) OR (Logical 2)

T T T
T F T

F T T
F F F

Bit 1 Bit 2 (Bit 1) OR (Bit 2)
1 1 1
1 0 1

0 1 1

0 0 0

EXAMPLES

SR-0113

The following section of Fortran code shows the OR function used with two arguments of type logical.

LOGICAL L1, L2, L3

L3 = OR(Ll,L2)

The following section of Fortran code shows the OR function used with two arguments of type integer.
The bit patterns of the arguments and result are also shown below. For clarity, an 8-bit word is used
instead of the actual 64-bit word.

INTEGER n, 12, I3

I3 = OR(II ,12)

10101010111110101
II

10 1 0 I 0 1 0 11 1 0 11 1 0 1
12

2-42 C

OR(3M) OR(3M)

10 10 10 10 111111 10 1

I3

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-43 c

POPCNT(3M) POPCNT(3M)

NAME

POPCNT - Counts the number of bits set to 1 (Cray Fortran intrinsic function)

SYNOPSIS

i=POPCNT(arg)

DESCRIPTION

NOTES

arg Argument of type integer, real, logical, or Boolean

When given an argument of type integer, real, logical, or Boolean, POPCNT counts the number of bits
set to 1 in the 64-bit representation of the argument. POPCNT is an in-line code function.

The bit representation of the logical data type is not consistent among Cray machines. See the follow­
ing manuals for further details: Fortran (CFf) Reference Manual, publication SR-0009; CRAY-2 Fortran
(CFf2) Reference Manual, publication SR-2007; CFT77 Reference Manual, publication SR-OOI8.

EXAMPLES

The following section of Fortran code shows the POPCNT function used with an argument of type
integer. The bit pattern of the argument and the value of the result are also shown below. For clarity,
a 16-bit word is used instead of the actual 64-bit word.

INTEGER II, 12

12 = POPCNT(Il)

10 I 0 1 0 I 0 1 0 1111 1 0 I 0 111111 1 0 1 0 11 1 0 1
11

The POPCNT function returns the value 6 to the integer variable 12.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-44 C

POPPAR(3M) POPPAR(3M)

NAME

POPPAR - Computes the bit population parity (Cray Fortran intrinsic function)

SYNOPSIS

i=POPPAR(arg)

DESCRIPTION

NOTES

arg Argument of type integer, real, logical, or Boolean

When given an argument of type integer, real, logical, or Boolean, POPPAR returns the value 0 if an
even number of bits are set to 1 in the 64-bit representation of the argument or the value 1 if an odd
number of bits are set to 1 in the 64-bit representation of the argument. POPPAR is an in-line code
function.

The bit representation of the logical data type is not consistent among Cray machines. See the follow­
ing manuals for further details: Fortran (CFT) Reference Manual, publication SR-0009; CRAY-2 Fortran
(CFf2) Reference Manual, publication SR-2007; CFf77 Reference Manual, publication SR-OOI8.

EXAMPLES

The following section of Fortran code shows the POPPAR function used with an argument of type
integer. The bit pattern of the argument and the value of the result are also shown below. For clarity,
a 16-bit word is used instead of the actual 64-bit word.

INTEGER 11, 12

12 = POPP AR(I1)

10 1 0 1 0 1 0 I 0 1111 1 0 I 0 111111 1 0 1 0 11 1 0 1
11

The POPPAR function returns the value 0 to the integer variable 12.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OI13 2-45 C

RAN(3M) RAN(3M)

NAME

RANF, RANGET, RANSET - Computes pseudo-random numbers (Cray Fortran intrinsic function)

SYNOPSIS

r=RANF()

r=RANGET([integerD

r=RANSET(integer)

DESCRIPTION

NOTE

These CRI extension functions compute pseudo-random numbers and either set or retrieve a seed.
RANF obtains the first or next in a series of pseudo-random numbers, such that O<y<l, in the form of a
normalized floating-point number. RANF uses a null argument.

RANGET obtains a seed. RANSET establishes a seed such that y=x. RANGET has an optional integer
argument and RANSET a required integer argument in the range of I x I < in f .

When the seed of the random number generator is reset, RANSET does not store the supplied argument
as the first value in the buffer of the random number seeds.

EXAMPLES

DO 101=1,10
10 RANDOM(I)=RANFO

CALL RANGET(iseedl)
C or

iseed=RANGET()

CALL RANSET(ivalue)
C or

dummy=RANSET(ivalue)

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 ·2-46 C

REAL(3M)

NAME

REAL, FLOAT, SNGL - Converts to type real (Cray Fortran intrinsic function)

SYNOPSIS

r=REAL(arg)

r=FLOAT(integer)

r=SNGL(double)
r=SNGL(boolean)

DESCRIPTION

arg Argument of type complex, integer, or real

REAL(3M)

REAL (generic name) converts types to type real, such that)'=x (or y=xr for complex arguments). All
of these functions are inline Fortran code.

The range for REAL complex and real arguments is I x I < in f •

The range for FLOAT integer arguments is I x 1<246.

The range for SNGL Boolean and double-precision arguments is I Xr 1< info Type conversion routines
assign the appropriate type to Boolean arguments without shifting or maniputlating the bit patterns they
represent.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 2-47 c

SHIFf(3M) SlllFf(3M)

NAME

SIDFf - Performs a left circular shift

SYNOPSIS

b=SHIFT(argl,arg2)

DESCRIPTION

NOTES

argl Argument of type integer, real, logical, or Boolean specifying the value to be shifted

arg2 Argument of type integer specifying the number of bits to shift the value

For arg2 in the range 0:C:::;arg2:C:::;64, SIDFf performs a left circular shift of the 64-bit representation of
argl by arg2 bits.

For arg2~65, a left circular shift is not performed. Instead, SHIFf is defined as follows when arg2~65.

For arg2 in the range 65:C:::;arg2:C:::;128, SIDFT(argl,arg2) is defined as SIDFfL(argl,arg2-64). See
SIDFfL(3M).

For arg2 in the range 129~rg2:C:::;224-1, SlUFf returns a value with all bits set to O.

For arg2 in the range 224~g2<oo, SHIFT returns an undefined result.

The bit representation of the logical data type is not consistent among Cray machines. See the follow­
ing manuals for further details: Fortran (CFT) Reference Manual, publication SR-0009; CRAY-2 Fortran
(CFT2) Reference Manual, publication SR-2007; CFT77 Reference Manual, publication SR-OOI8.

EXAMPLES

The following section of Fortran code shows the SHIFT function used in the case where arg 1 is of type
integer. For purposes of clarity, a 16-bit word is used instead of the actual 64-bit word. The bit pattern
of argl and the bit pattern of the result are also shown below.

INTEGER II, 12, I3

12 = 5
I3 = SHIFf(Il,I2)

111111111111110101010101010101
Il (argl)

111111 1 0 1 0 1 0 1 0 1 0 1 0 1 0 I 011111111111
I3 (result)

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-48 C

SIDFrL(3M) SIDFrL(3M)

NAME

SIDFfL - Performs a left shift with zero fill

SYNOPSIS

b=SHIFTL(argl,arg2)

DESCRIPTION

NOTES

argl Argument of type integer, real, logical, or Boolean specifying the value to be shifted

arg2 Argument of type integer specifying the number of bits to shift the value

For arg2 in the range lli;arg2~224-I, SIDFTL performs a left shift with zero fill of the 64-bit representa­
tion of argl by arg2 bits. Note that when arg2 is in the range 64~arg2~224-1, SHIFTL returns a value
with all bits set to O.

For arg2 in the range 224~arg2<oo, SIDFfL returns an undefined result.

The bit representation of the logical data type is not consistent among Cray machines. See the follow­
ing manuals for further detail's: Fortran (CFf) Reference Manual, publication SR-0009; CRA Y-2 Fortran
(CFf2) Reference Manual, publication SR-2007; CFf77 Reference Manual, publication SR-0018.

EXAMPLES

The following section of Fortran code shows the SmFTL function used in the case where argl is of
type integer. The bit pattern of argl and the bit pattern of the result are also shown below. For pur­
poses of clarity, a 16-bit value is used instead of a 64-bit value.

INTEGER II, 12, I3

12 = 5
I3 = SHIFTL(l1,I2)

11111 1 1 1 11110101010101010101
II (argl)

111111 1 0 1 0 1 0 1 0 1 0 1 0 I 0 1 0 1 0 1 0 I 0 I 0 I 01
I3 (result)

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-49 c

SIDFfR(3M) SIllFfR(3M)

NAME

SHIFTR - Performs a right shift with zero fill

SYNOPSIS

b=SHIFTR(argl,arg2)

DESCRIPTION

NOTES

argl Argument of type integer, real, logical, or Boolean

arg2 Argument of type integer

For arg2 in the range 0~rg2~24-I, SHIFTR performs a right shift with zero fill of the 64-bit represen­
tation of argl by arg2 bits. Note that when arg2 is in the range 64~arg2~224-I, SHIFTR returns a
value with all bits set to O.

For arg2 in the range 224~rg2<oo, SHIFTR returns an undefined result.

The bit representation of the logical data type is not consistent among Cray machines. See the follow­
ing manuals for further details: Fortran (CFT) Reference Manual, publication SR-0009; CRAY-2 Fortran
(CFT2) Reference Manual, publication SR-2007; CFf77 Reference Manual, publication SR-OOI8.

EXAMPLES

The following section of Fortran code shows the SHIFfR function used in the case where argl is of
type integer. The bit pattern of argl and the bit pattern of the result are also shown below. For pur­
poses of clarity, a 16-bit value is used instead of a 64-bit value.

INTEGER 11, 12, I3

12 = 5
I3 = SHIFIR(Il ,12)

1111 1 1 1 1 11110101010101010101
11 (argl)

10 10 I 0 I 0 10 111111 10 10 I 0 10 I 0 I 0 I 0 10 1
I3 (result)

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OI13 2-50 C

SIGN(3M)

NAME

SIGN, ISIGN, DSIGN - Transfers sign of numbers (Cray Fortran intrinsic function)

SYNOPSIS

r=SIGN (real ,real)

i=ISIGN(integer,integer)

d=DSIGN (double ,double)

DESCRIPTION

SIGN(3M)

SIGN (generic name) evaluates one of the following equations, depending on the sign of the number.

y = I x 1 I if x 2~
or

y = -I x 1 I if x 2<0

The argument range for all transfer sign functions is I x 1 I , I x21 < inf. All of these functions are inline
Fortran code.

IMPLEMENTATION

These routines are available to users of both the cos and VNIeOS operating systems.

SR-0113 2-51 C

SIN(3M)

NAME

SIN, DSIN, CSIN - Computes the sine (Cray Fortran intrinsic function)

SYNOPSIS

r=SIN(real)

d=DSIN(double)

z=CSIN(complex)

DESCRIPTION

SIN(3M)

SIN (generic name) solves the equation y=sin(x). The ranges for the real, double-precision, and complex
functions are as follows:

For SIN:

For DSIN:

I x 1<248

For CSIN:

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-52 c

SINH (3M)

NAME

SINH, DSINH - Computes the hyperbolic sine (Cray Fortran intrinsic function)

SYNOPSIS

r=SINH(real)

d=DSINH(double)

DESCRIPTION

SINH (3M)

SINH (generic name) solves the equation y=sinh(x). The hyperbolic sine functions have a real or
double-precision argument in the range of I x I < 213 * In 2.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 2-53 C

SQRT(3M)

NAME

SQRT, DSQRT, CSQRT - Computes the square root (Cray Fortran intrinsic function)

SYNOPSIS

r=SQRT(real)

d=DSQRT(double)

z=CSQRT(complex)

DESCRIPTION

SQRT(3M)

SQRT (generic name) evaluates y=x 112 for real, double-precision, and complex arguments. The range
for real and double-precision arguments is O~~inf. The complex argument range is xr~O, Xi <inf.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 2-54 c

TAN(3M)

NAME

TAN, DT AN - Computes the tangent (Cray Fortran intrinsic function)

SYNOPSIS

r=T AN(real)

d=DT AN(double)

DESCRIPTION

TAN(3M)

T AN (generic name) solves for the equation y=tan(x). The range for the real and double-precision argu­
ments is I x 1<224.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 2-55 C

TANH (3M)

NAME

TANH, DT ANH - Computes the hyperbolic tangent (Cray Fortran intrinsic function)

SYNOPSIS

r=T ANH(real)

d=DT ANH(double)

DESCRIPTION

TANH (3M)

TANH (generic name) solves for the equation y=tanh(x). The hyperbolic tangent functions have a real or
double-precision argument in the range of I x 1< 213 *In 2. They solve the equation y=tanh(x}.

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-0113 2-56 C

XOR(3M) XOR(3M)

NAME

XOR - Computes the logical difference

SYNOPSIS

I=XOR(logical,logical)
b=XOR(arg ,arg)

DESCRIPTION

arg Argument of type integer, real, or Boolean

When given two arguments of type logical, XOR computes a logical difference and returns a logical
result. When given two arguments of type integer, real, or Boolean, XOR computes a bit-wise logical
difference and returns a Boolean result The truth tables below show both the logical difference and
bit-wise logical difference.

Logical 1 Logical 2 (Logical 1) XOR (Logical 2)

T T F
T F T
F T T
F F F

Bit 1 Bit 2 (Bit 1) XOR (Bit 2)

1 1 0
1 0 1

0 1 1
0 0 0

EXAMPLES

SR-0113

The following section of Fortran code shows the XOR function used with two arguments of type
logical.

LOGICAL Ll, L2, L3

L3 = XOR(Ll,L2)

The following section of Fortran code shows the XOR function used with two arguments of type
integer. The bit patterns of the arguments and result are also shown below. For clarity, an 8-bit word
is used instead of the actual 64-bit word.

INTEGER II, 12, I3

I3 = XOR(Il,I2)

10 10 10 10 1111 1 0 101
II

2-57 C

XOR(3M)

IMPLEMENTATION

1 0 1 0 1 0 I 0 11 10 11 101
I2

10101010101111101
I3

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 2-58

XOR(3M)

c

INTRO(3X) INTRO(3X)

3. COS DATASET MANAGEMENT SUBPROGRAMS

Dataset management subprograms provide the user with the means of managing COS permanent
datasets; creating, staging, and releasing datasets; and changing dataset attributes. These routines are
grouped into two subsections:

• COS control statement type subprograms

• COS dataset search type subprograms

IMPLEMENTATION

The dataset management routines are available only under cos.

COS CONTROL STATEMENTTVPE SUBPROGRAMS

SR-Ol13

A control-statement-type subprogram resembles Cray job control language (JCL) statements in name and
purpose. A subprogram, however, can be called from within Fortran or CAL programs while a JCL
statement cannot. See the cos Reference Manual, publication SR-OOll, for a description of control
statements, parameters and keywords, and JCL error codes.

The following is an example of a Fortran call to a control-statement-type subprogram:

EXAMPL='EXAMPL'L
IDC='PR'L
CALL ASSIGN(irtc, 'DN'L,EXAMPL, 'U'L, 'MR 'L, 'OC'L,IDC)

Variable irtc is an integer that contains a status code upon return. A status code of 0 indicates no errors.

This type of subprogram requires call-by-address subroutine linkage with the following calling
sequence:

CALL SUBROUTINE NAME(stat,keyl,key2, ... ,keyn)

stat Returned status code

key Keyword/value combinations in one of the following formats (must be entered in
uppercase):

'KEYWORD 'L, 'VALUE'L
or

'KEYWORD'L

When the keyword can accept multiple parameter values, the values must be passed as an array: one
parameter per word, terminated by a zero word. For example, the cos control statement
MODIFY(DN=DATASET,PAM=R:W) would be coded as follows:

INTEGER P AM(3)
DATA PAM/'R'L, 'W'L, 0/
CALL MODIFY(ISTAT, 'DN'L, 'DATASET'L, 'PAM'L, PAM)

3-1 C

INTRO(3X) INTRO(3X)

SR-Ol13

Permanent Dataset Management routines access the cos Permanent Dataset Manager (PDM) and
return the status of the operation in stat. The value is 0 if an error condition does not exist and nonzero
if an error condition does exist. The nonzero error codes correspond to the PMST codes defined in the
cos Reference Manual. The following is a list of the PDM routines and their functions.

Control Statement

ACCESS

ADJUST

DELETE

MODIFY

PERMIT

SAVE

Function

Associates a permanent dataset with the job

Expands or contracts a permanent dataset

Removes a saved dataset. The dataset remains available to the job until
it is released or the job terminates.

Changes the permanent dataset characteristics

Specifies the user access mode to a permanent dataset

Makes a dataset permanent and enters the dataset's identification and
location into the Dataset Catalog (DSC)

Dataset staging routines stage datasets to or from a front-end processor or to the Cray input queue.
The transfer aborts and an error code is returned if an error occurs. The error codes correspond to the
PMST codes in the cos Reference Manual. The following is a list of dataset staging routines and their
functions.

Control Statement

ACQUIRE

DISPOSE

FETCH

SUBMIT

Function

Obtains a front-end resident dataset, stages it to the Cray mainframe, and
makes it permanent and available to the job making the request

Directs a dataset to the specified front-end processor or designates it to a
scratch dataset

Brings a front-end resident dataset to the Cray mainframe and makes the
dataset available to the job

Places a job dataset into the Cray input queue. When called as an integer
function, the value of the function is the job sequence number of the sub­
mitted job, if successful.

Definition and control routines allow dataset attributes to be changed and datasets to be created and
released. They return the status of the operation in stat. The value of the stat is 0 if no error condition
exists and nonzero if an error condition exists. ASSIGN returns a three-digit code that corresponds to
log file message codes that begin with SL. Thus, a return code of 020 from ASSIGN corresponds to the
following log file message:

SL020 - INV AUD DATASET NAME OR UNIT NUMBER

All of the SL messages and descriptions of their meanings can be found in the COS Message Manual,
publication SR-0039.

3-2 C

INTRO(3X) INTRO(3X)

The following is a list of definition and control routines.

Control Statement

ASSIGN

OPTION

RELEASE

Function

Opens a dataset for reading and writing and assigns characteristics to it

Changes the user-specified options, such as lines per page and dataset
statistics, for a job

Closes a dataset, releases I/O buffer space, and renders it unavailable to
the job

COS DATASET SEARCH TYPE SUBPROGRAMS

Dataset search subprograms add information to or return information about a dataset.

The following table contains the purpose, name, and heading of each dataset search type routine.

COS Dataset Search Type Subprograms
Purpose Name Heading

Add a name to the Logical File ADDLFT ADDLFT
Table (LFT)

Search for a Dataset Parameter GETDSP GETDSP
Table (DSP) address

Determine if a dataset has been IFDNT IFDNT
accessed or created

Allow a program to access datasets SDACCESS SDACCESS
in the System Directory

SR-01l3 3-3 C

ADDLFI' (3COS)

NAME

ADDLFf - Adds a name to the Logical File Table (Lm

SYNOPSIS

CALL ADDLFT(dn,dsp)

DESCRIPTION

dn Name to add to the LFf

dsp Dataset Parameter Table (DSP) address for the name specified by dn

IMPLEMENTATION

This routine is available only to the users of the COS operating system.

SR-Ol13 3-4

ADDLFf(3COS)

c

CALLCSP (3COS) CALLCSP (3COS)

NAME

CALLCSP - Executes a COS control statement

SYNOPSIS

CALL CALLCSP(string)

DESCRIPTION

NOTE

string A valid COS JCL statement, either packed into an integer array and terminated by a null
byte or specified as a literal string.

The control statement specified in the string is executed as if it had been found next in the job stream.
For example, the following call invokes the NOTE utility, which writes IDGH, THEIR! to the $OUT
dataset:

CALL CALLCSP('NOTE,TEXT="HIGH, THEIR!".')

Control does not return from the CALLCSP routine.

In general, use CALLCSP instead of LGO.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-Ol13 3-5 C

GETDSP (3COS) GETDSP (3COS)

NAME

GETDSP - Searches for a Dataset Parameter Table (DSP) address

SYNOPSIS

CALL GETDSP(unit.dsp.ndsp.dn)

DESCRIPTION

unit Dataset name or unit number

dsp DSP address

ndsp Negative nsp offset relative to the base address of DSPs, or DSP address if the nsp is below
JCHLM.

dn Dataset name (ASCll, left-justified, blank-filled)

GETDSP searches for a nsp address. If none is found, a nsp is created.

IMPLEMENTATION

This routine is available only to the users of the COS operating system.

SR-Ol13 3-6 c

IFDNT (3COS)

NAME

IFDNT - Determines if a dataset has been accessed or created

SYNOPSIS

stat=IFDNT(dn)

DESCRIPTION

stat -1 (TRUE) if dataset was accessed or opened; otherwise 0 (FALSE).

dn Dataset name (ASCn, left-justified, zero-filled)

NOTE

stat must be declared LOGICAL in the calling program.

EXAMPLE

IF (NOT IFDNT(,MYFILE'L» CALL ACCESS(,DN'L, 'MYFILE'L)

IFDNT (3COS)

If you access MYFILE twice in a program, the system aborts the job. IFDNT allows you to test for its
having been previously accessed.

IMPLEMENTATION

This routine is available only to the users of the COS operating system.

SR-OI13 3-7 c

SDACCESS (3COS) SDACCESS (3COS)

NAME

SDACCESS - Allows a program to access datasets in the System Directory

SYNOPSIS

CALL SDACCESS(istat,dn)

DESCRIPTION

istat An integer variable to receive the completion status (0 or 1).

o The dataset is a system dataset and has been accessed.
1 The dataset is not a system dataset and has not been accessed.

dn Name of the system dataset to be accessed

This function has no corresponding control statement. Datasets accessed in this manner are automati­
cally released at the end of the job step.

EXAMPLE

IMPLEMENTATION

PROGRAM SDTEST
CHARACTER*7 NAME
INTEGER X
READ*, NAME
X=IFDNT(NAME)
IF (X.EQ.O) THEN

PRINT*,'***DATASET ',NAME. 'WAS NOT LOCAL***'
CALL SDACCESS(STAT,NAME)
IF (STAT.NE.O) THEN

PRINT*,'***DATASET ',NAME,' NOT AVAILABLE'
CALL ABORT

ELSE
PRINT*,'***DATASET ',NAME,' ACCESSED BY SDTEST'

ENDIF
ELSE

PRINT·, 'DATASET ',NAME,' ALREADY LOCAL'
ENDIF
END

This routine is available only to the users of the COS operating system.

SR-0113 3-8 c

INTRO(3X) INTRO(3X)

4. LINEAR ALGEBRA SUBPROGRAMS

The linear algebra subprograms are written to run optimally on Cray computer systems. These subpro­
grams use call-by-address convention when called by a Fortran or CAL program. (See section 1 for
details of the call-by-address convention.)

The linear algebra subprograms include the following:

• Linear algebra subprograms

• Linear recurrence routines

• Matrix inverse and multiplication routines

• Filter routines

• Gather, scatter routines

• LINP ACK and EISPACK routines

IMPLEMENTATION

All of the Linear Algebra Subprograms are available to users of both the COS and UNICOS operating
systems.

LINEAR ALGEBRA SUBPROGRAMS

BLAS

SR-OI13

The Cray computer user has access to the Basic Linear Algebra Subprograms (BLAS) and a subset of
the level 2 BLAS. The level 1 package is described first, and is followed by a description of the level 2
package.

The level 1 BLAS is a package of 22 CAL-coded routines, and their extensions. The package includes
only the single-precision and complex versions. The following operations are available:

• A constant times a vector plus another vector

• Dot products

• Euclidean norm

• Givens transformations

• Sum of absolute values

• Vector copy and swap

• Vector scaling

Section 6 documents two pivot search routines, ISAMAX and ICAMAX. These integer functions find
the first index of the largest absolute value of the elements of a vector.

Each BLAS routine has a real version and a complex version. There are several frequently used vari­
ables that must be declared in your program. The following table lists common variables and their For­
tran type declaration and dimensions, in generalized terms.

4-1 c

INTRO(3X) INTRO(3X)

SR-OI13

Linear Algebra Variables
Variable Description Fortran Type and Dimension

SX Primary real array or vector REAL SX(nu)

SY Secondary real array or vector REAL SY(my)

SA Real scalar REAL SA
CX Primary complex array or vector COMPLEX CX(nu)

CY Secondary complex array or vector COMPLEX CY(my)

CA Complex scalar COMPLEXCA
INCX Skip distance between elements

in SX or CX INTEGER INCX
INCY Skip distance between elements

in SY or CY INTEGER INCY
N Number of elements in vector to compute INTEGERN

The dimensions of the above arrays are as follows: mx=N*IINCXI and my=N*IINCYI, where N is the
array length of the input vectors. In all routines, if N ~O, inputs and outputs return unchanged.

The variables C, S, A, B, PARM, DI, D2, BI, and B4 are used in the Givens plane rotation routines.
Their type must be declared real.

The Fortran type declaration for complex functions is especially important; declare them to avoid type
conversion to zero imaginary parts. Fortran type declarations for function names follow:

Type

REAL

COMPLEX

Function Name

SASUM, SCASUM, SDOT, SNRM2, SCNRM2

CDOTC,CDOTU

Negative incrementation - For routines managing noncontiguous array elements, the parameters incx
and incy specify skip distances. A skip value of 1 or -1 indicate contiguous elements.

Given an n-element array A consisting of A(l), A(2), A(3), ••• ,A(n), for positive skip distances (incx)>O:

• The managed array elements are
A(l), A(l+incx), A(1+2*incx),
A(1+3*incx), ••• ,A(1+(p-l)*incx), where p is the number
of array elements to be processed.

• For n MODULO incX>O, p~I+~. Otherwise, p~~.
lncx zncx

Given the previous array and a negative skip distance (incx<O):

• The managed array elements are
A(l+(p-l)*ABS(incx»,
A(1+(p-2)*ABS(incx», A(1+(p-3)*ABS(incx»,
A(1+(p-4)*ABS(incx», ••• ,A(1+(p-p)*ABS(incx»,
where p is the number of array elements to be processed.

• For n MODULO incx>O, p, ~ l+nIABS(incx). Otherwise, p ~ nlABS(incx).

4-2 c

INTRO(3X) INTRO(3X)

SR-0113

EXAMPLE - The real function ISAMAX returns the relative index of I such that ABS(A(I» = MAX
ABS(A(l+(J-l)*INCX» for J=1,2,3, .•. J1.

The call from Fortran is as follows:

RELINDEX = ISAMAX(p,array,incx)

Assume A(I)=2.0, A(2)=4.0, A(3)=6.0, ••• ,A(20)=40.0 (the number of elements n=20).

With a positive skip distance (incx=3), the number of elements processed p=7 (since 20 MODULO 3 > 0,
p=l+n/incx=I+20/3=1+6=7).

Therefore, the function is evaluated as follows:

ISAMAX(7,A,3)=
reI. index of MAX (2.0,8.0,14.0,20.0,26.0,32.0,38.0)

= relative index of 38.0
=7

With a negative skip distance incx=-3, the number of elements processed p=7 (since 20 MODULO ABS(-
3»0,p = l+n/ABS(incx) =1 + 20/3 = 1+6 = 7.

Therefore, the function is evaluated as follows:

ISAMAX(7,A,-3)=
reI. index of MAX (38.0,32.0,26.0,20.0,14.0,8.0,2.0)

= relative index of 38.0
=1

The following table contains the purpose, name, and entry of each linear algebra subprogram.

4-3 c

INTRO(3X) INTRO(3X)

BLAS-2

SR-0113

Levell BLAS

Purpose Name Entry
Sum the absolute values of a real or SASUM SASUM
complex vector SCASUM

Add a scalar multiple of a real or SAXPY SAXPY
complex vector to another vector CAXPY
Copy a real or complex vector into SCOPY SCOPY
another vector CCOPY
Apply a complex Givens plane rotation CROT CROT
Compute a complex Givens plane rotation matrix CROTG CROTG
Compute a dot product of two real SDOT DOT
or complex vectors CDOTC

CDOTU
Scale a real or complex vector SSCAL SCAL

CSSCAL
CSCAL

Compute the product of a vector and a SXMPY SXMPY
matrix and add to another vector
Compute the Euclidean norm or SNRM2 SNRM2
12 norm of a real or complex SCNRM2
vector
Add a scalar multiple of a real vector SPAXPY SPAXPY
to an indexed vector
Compute an indexed dot product of two SPDOT SPDOT
real vectors
Apply a Givens plane rotation SROT SROT
Construct a Givens plane rotation SROTG SROTG
Apply a modified Givens plane SROTM SROTM
rotation
Construct a modified Givens plane SROTMG SROTMG
rotation
Sum the elements of a real or SSUM SSUM
complex vector CSUM

Swap two real or two complex arrays SSWAP SSWAP
CSWAP

The Basic Linear Algebra Routines version 2 (BLAS-2) consists of 11 Fortran routines for unpacked
data of type real. The following table describes these routines.

4-4 C

INTRO(3X) INTRO(3X)

Level 2 BLAS

Purpose Name Entry
Multiply a real vector by a real general SGBMV SGBMV
band matrix
Multiply a real vector by a real general SGEMV SGEMV
matrix
Perform rank 1 update of a real general SGER SGER
matrix
Multiply a real vector by a real symmetric SSBMV SSBMV
band matrix
Multiply a real vector by a real symmetric SSYMV SSYMV
matrix
Perform symmetric rank 1 update of a real SSYR SSYR
symmetric matrix
Perform symmetric rank 2 update of a real SSYR2 SSYR2
symmetric matrix
Multiply a real vector by a real triangular STBMV STBMV
band matrix
Solve a real triangular banded system STBSV STBSV
of equations
Multiply a real vector by a real triangular STRMV STRMV
matrix
Solve a real triangular system of equations STRSV STRSV

LINEAR RECURRENCE SUBROUTiNES

SR·Ol13

Linear recurrence subroutines solve first· order and some second· order linear recurrences. A linear
recurrence uses the result of a previous pass through the loop as an operand for subsequent passes
through the loop. Such use prevents vectorization. Therefore, these subroutines can be used to optim­
ize Fortran loops containing linear recurrences.

The following table contains the purpose, name, and entry of each linear recurrence subroutine.

4-5 c

INTRO(3X) INTRO(3X)

Linear Recurrence Subroutines
Purpose Name Entry

Solve first-order linear recurrences FOLR FOLR
FOLRP

Solve first-order linear recurrences FOLR2 FOLR2
and write the solutions to a new vector FOLR2P
Solve first-order linear recurrences FOLRC FOLRC
for a specific equation
Solve for the last term of a first-order FOLRN FOLRN
linear recurrence using Homer's method
Solve for the last term of a FOLRNP FOLRNP
first-order linear recurrence
Solve second-order linear recurrences SOLR SOLR

SOLRN
SOLR3

Solve for a partial products problem RECPP RECPP
Solve for a partial summation problem RECPS RECPS

MATRIX INVERSE AND MULTIPLICATION ROUTINES

The matrix inverse subroutine, MINV, computes the matrix inverse and solves systems of linear equa­
tions using the Gauss-Jordan elimination. MXM and MXMA are two optimal matrix multiplication rou­
tines. MXV and MXV A are similar to MXM and MXMA; however, MXV and MXV A handle the special
case of matrix times vector multiplication.

The following table contains a summary of the matrix inverse and multiplication routines.

Matrix Inverse and Multiplication Routines
Purpose Name Heading

Compute the determinant and inverse MINV MINV
of a square matrix
Compute a matrix times a matrix MXM MXM
(skip distance of 1)

Compute a matrix times a matrix MXMA MXMA
(arbitraIy spacing)
Compute a matrix times a vector MXV MXV
(skip distance of 1)

Compute a matrix times a vector MXVA MXVA
(arbitrary spacing)

FILTER SUBROUTINES

SR-0113

The filter subroutines are intended for filter analysis and design. They also solve more general prob­
lems. For detailed descriptions, algorithms, performance statistics, and examples, see Linear Digital
Filters for CPr Usage, CRI publication SN-021O.

The following table contains a summary of the filter subroutines.

4-6 C

INTRO(3X) INTRO(3X)

Filter Subroutines
Purpose Name Heading

Compute a convolution of two vectors FILTERG FILTERG
Compute a convolution of two vectors FILTERS FILTERS
(assumes that the filter coefficient
vector is symmetric)
Solve the Weiner-Levinson linear OPFILT OPFILT
equations

GATHER, SCATTER ROUTINES

The GATHER and SCA TIER subroutines allow you to gather a vector from a source vector or to scatter
a vector into another vector. A third vector of indexes determines which elements are accessed or
changed.

UNPACK AND EISPACK ROUTINES

UNPACK routines solve systems of linear equations and compute the QR, Cholesky, and singular value
decompositions. EISPACK routines solve the eigenvalue problem, and they compute and use singular
value decomposition.

SINGLE-PRECISION REAL AND COMPLEX LINPACK ROUTINES - UNPACK is a package of Fortran
routines that solve systems of linear equations and compute the QR, Cholesky, and singular value
decompositions. The original Fortran programs are documented in the UNPACK User's Guide by J. J.
Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart, published by the Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, 1979, Library of Congress catalog card number 78-78206
(available through Cray Research as publicaton SI-0113).

Each single-precision version of the UNPACK routines has the same name. algorithm. and calling
sequence as the original version. Optimization of each routine includes the following:

• Replacement of calls to the BLAS routines SSCAL, SCOPY, SSWAP, SAXPY, and SROT with
in-line Fortran code that the Cray Fortran compilers vectorize

• Removal of Fortran IF statements if the result of either branch is the same

• Replacement of SDOT to solve triangular systems of linear equations in SGESL, SPOFA,
SPOSL, STRSL, and SCHDD with more vectorizable code

These optimizations affect only the execution order of floating-point operations in modified DO loops.
See the UNPACK User's Guide for further descriptions. The complex routines have been added without
extensive optimization.

SINGLE-PRECISION EISPACK ROUTINES

SR-0113

EISPACK is a package of Fortran routines for solving the eigenvalue problem and for computing and
using the singular value decomposition.

The original Fortran versions are doucmented in the Matrix Eigensystem Routines - EISPACK Guide,
second edition, by T. B. Smith, J. M. Boyle, 1. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and
C. B. Moler, published by Springer-Verlag, New York, 1976, Library of Congress catalog card number
76-2662 (available through Cray Research as publicaton S2-0113); and in the Matrix Eigensystem Rou­
tines - EISPACK Guide Extension by B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler, pub­
lished by Springer-Verlag, New York, 1977, Library of Congress catalog card number 77-2802 (avail­
able through Cray Research as publicaton S3-0113).

4-7 c

INTRO(3X) INTRO(3X)

Each SCILIB version of the EISPACK routines has the same name, algorithm, and calling sequence as
the original version. Optimization of each routine includes the following:

• Use of the BLAS routines SDOT, SASUM, SNRM2, ISAMAX, and ISMIN when applicable

• Removal of Fortran IF statements if the result of either branch is the same

• Unrolling complicated Fortran DO loops to improve vectorization

• Use of the Fortran compiler directive CDIR IVDEP when no dependencies that prevent vector­
ization exist

These modifications increase vectorization and, therefore, reduce execution time. Only the order of
computations within a loop is changed; the modified version produces the same answers as the original
versions unless the problem is sensitive to small changes in the data.

SR-0113 4-8 c

CROT(3SCI)

NAME

CROT - Applies the complex plane rotation computed by CROTG

SYNOPSIS

CALL CROT(n,ex,inex,ey,iney,ee,es)

DESCRIPTION

n Number of elements in the vector

ex Complex vector to be modified

incx Skip distance between elements of ex

ey Complex vector to be modified

iney Skip distance between elements of ey

ee Complex cosine of the following equation

es Complex sine of the following equation

CROT performs the following equation:

where x and y are complex row vectors.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

CROTG

SR-0113 4-9

CROT(3SCI)

c

CROTO(3SCI) CROTO (3SCI)

NAME

CROTG - Computes the elements of a complex plane rotation matrix

SYNOPSIS

CALL CROTG(ca,cb,cc,cs)

DESCRIPTION

ca Complex a of the following equation

cb Complex b of the following equation

cc Complex cosine of the following equation

cs Complex sine of the following equation

CROTG computes the elements of a complex Givens plane rotation matrix as in the following equation:

The 2 x 2 matrix is unitary t and a and b are overwritten.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

CROT

SR-0113 4-10 C

DOT (3SCI) DOT(3SCI)

NAME

SDOT, CDOTC, CDOTU - Computes a dot product (inner product) of two real or complex vectors

SYNOPSIS

dot=SDOT(n,sx,incx,sy ,iney)

edot=CDOTC(n,ex,incx,cy ,iney)

edot=CDOTU(n,ex,incx,ey,incy)

DESCRIPTION

n Number of elements in the vectors

sx Real vector operand

ex Complex vector operand

incx Skip distance between elements of sx or ex

sy Real vector operand

ey Complex vector operand

iney Skip distance between elements of sy or cy. For contiguous elements, incy=l.

These real and complex functions compute an inner product of two vectors. SDOT computes

II

dot = L XiYi
i=1

where Xi and Yi are elements of real vectors.

CDOTC computes

II

edot = L XiYi
i=1

where Xi and Yi are elements of complex vectors and Xi is the complex conjugate of Xi.

CDOTU computes

II

edot = L XiYi
i=1

where Xi and Yi are elements of complex vectors.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OI13 4-11 c

EISPACK (3SCI) EISPACK(3SCI)

NAME

EISPACK - Single-precision EISPACK routines

DESCRIPTION

SR-0113

EISPACK is a package of Fortran routines for solving the eigenvalue problem and for computing and
using the singular value decomposition.

The original Fortran versions are documented in the Matrix Eigensystem Routines /- EISPACK Guide,
second edition, by B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and
C. B. Moler, published by Springer-Verlag, New York~ 1976, Library of Congress catalog card number
76-2662 (available through Cray Research as publicaton S2-0113); and in the Matrix Eigensystem Rou­
tines - EISPACK Guide Extension by B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler, pub­
lished by Springer-Verlag, New York, 1977, Library of Congress catalog card number 77-2802 (avail­
able through Cray Research as publicaton S3-0113).

Each scientific library version of the EISPACK routines has the same name, algorithm, and calling
sequence as the original version. Optimization of each routine includes the following:

• Use of the BLAS routines SDOT, SASUM, SNRM2, ISAMAX, and ISMIN when applicable

• Removal of Fortran IF statements if the result of either branch is the same

• Unrolling complicated Fortran DO loops to improve vectorization

• Use of the Fortran compiler directive CDm$ IVDEP when no dependencies exist that prevent
vectorization

These modifications increase vectorization and, therefore, reduce execution time. Only the order of
computations within a loop is changed; the modified versions produce the same answers as the original
versions unless the problem is sensitive to small changes in the data.

The following summary provides a list of the routines giving the name, matrix or decomposition, and
the purpose for each routine.

Name

CG
cn
RG
RGG

RS
RSB
RSG

RSGAB

RSGBA

RSP

Matrix or Decomposition

Complex general
Complex Hermitian
Real general
Real general
generalize A x = AB x
Real symmetric
Real symmetric band
Real symmetric
generalize A x = AB x

Real symmetric
generalize AB x = Ax
Real symmetric
generalize BA x = Ax
Real symmetric packed

4-12

Purpose

Find eigenvalues and eigenvectors
(as desired)

C

EISPACK(3SCI) EISPACK (3SCI)

Name Matrix or Decomposition Purpose

RST Real symmetric
tridiagonal

RT Special real
tridiagonal

BALANC Real general Balance matrix and isolate
eigenvalues whenever possible

CBAL Complex general

ELMHES Real general Reduce matrix to upper Hessenberg
ORTHES form
COMHES Complex general
CORTH

ELTRAN Real general Accumulate transformations used
ORTRAN in the reduction to upper

Hessenberg form done by ELMHES,
ORTHES

BALBAK Real general Form eigenvectors by back
ELMBAK transforming those of the
ORTBAK corresponding matrices

determined by BALANC, ELMHES,
ORTHES, COMMES, CORTH, and CBAL

COMBAK Complex general
CORTB
CBABK2
REBAK
REBAKB

TREDl Real symmetric Reduce to symmetric tridiagonal
TRED2
TRED3

TRBAK Real symmetric Form eigenvectors by back
TRBAK3 transforming those of the

by TREDt or TRED3

IMTQLV Symmetric tridiagonal Find eigenvalues and/or
IMTQLl eigenvectors by implicit QL
IMTQL2 method

RATQR Symmetric tridiagonal Find the smallest or largest
eigenvalues by rational QR
method with Newton corrections

TQLRAT Symmetric tridiagonal Find the eigenvalues by rational
QL method

SR-0113 4-13 C

EISPACK (3SCI) EISPACK (3SCI)

Name Matrix or Decomposition Purpose

TQLl Find the eigenvalues and/or
TQL2 eignenvectors by the rational QL

or QL method

BISECT Symmetric tridiagonal Find eigenvalues and/or
RIDIB eigenvectors which lie in a
TSTURM specified interval using
TINVIT bisection and/or inverse iteration

FIGI Nonsymmetric Reduce to symmetric tridiagonal
FIGI2 tridiagonal with the same eigenvalues

BAKVEC Nonsymmetric Form eigenvectors by back
transforming corresponding
matrix determined by FIGI

HQR Real upper Hessenberg Find eigenvalues and/or
HQR2 eigenvectors by QR method
COMQR Complex upper
COMQR2 Hessenberg

INVIT Upper Hessenberg Find eigenvectors corresponding
to specified eigenvalues

CINVIT Complex upper
Hessenberg

BANDR Real symmetric banded Reduce to a symmetric
tridiagonal matrix

BANDV Real symmetric banded Find those eigenvectors
corresponding to specified
eigenvalues using inverse iteration

BQR Real symmetric banded Find eigenvalues using QR
algorithm with shifts of origin

MINFIT Real rectangular Determine the singular value
decomposition A = USVT, forming
UTB rather than U.
Householder bidiagonalization and a variant
of the QR algorithm are used.

SVD Real rectangular Determine the singular value
decomposition A = USVT.
Householder bidiagonalization
and a variant of the QR algorithm are used.

SR-0113 4-14 C

EISPACK (3SCI) EISPACK(3SCI)

Name Matrix or Decomposition Purpose

HTRIBK Complex Hermitian All eigenvalues and eigenvectors
HTRIB3
HTRIDI
HTRID3

QZHES Real generalize All eigenvalues and eigenvectors
QZIT eigenproblem Ax = A Bx
QZVAL
QZVEC

COMLR Complex general Reduce matrix to upper Hessenberg
COMLR2
REDUC Real symmetric Transform generalize

generalize Ax = A Bx symmetric eigenproblems to
REDUC2 Real symmetric standard symmetric eigenproblems

generalize ABx = A Bx
or BAx = ABx

SR-0113 4-15 C

FILTERG(3SCI)

NAME

FIL TERG - Computes a convolution of two vectors

SYNOPSIS

CALL FILTERG(a,m,d,n,o)

DESCRIPTION

a Vector of filter coefficients

m Number of filter coefficients

d Input data vector

n Number of data points

0 Output vector

FIL TERG computes a convolution of two vectors. Given

(a;) i=l, , m

(dj) j=l, , n

FIL TERG computes the following:

m

OJ = L aj di +j - 1
j = 1

IMPLEMENTATION

Filter coefficients

Data

i=l, ... , n-m+l

This routine is available to users of both the COS and UNICOS operating systems.

SR-Ol13 4-16

FILTERG(3SCI)

C

FILTERS (3SCI) FILTERS (3SCI)

NAME

FILTERS - Computes convolution of two vectors (symmetric coefficient)

SYNOPSIS

CALL FlLTERS(a,m,d,n,o)

DESCRIPTION

a Symmetric filter coefficient vector

m M is formally the length of vector A, but because A is symmetric

(a; = am _; + 1 ; i= 1, ... , m), only ~ elements of A are ever referenced.

d Input data vector

n Number of data points

° Output vector

FILTERS computes the same convolution as FILTERG except that it assumes the filter coefficient vec­
tor is symmetric. Given

(C;) i=I, , rm/21

(d;) j =1 ,, n

(rm/21 = ~ for m even and (m;l) for m odd, called the ceiling function.)

FILTERS computes the following when m is an odd number:

(m-l)l2

0; = L aj (d;+j-l + d;+m-j) + a rm/21 . d; + rml21 i=l, ... , n-m+l
j = 1

FILTERS computes the following when m is an even number:

ml2

0; = L aj (d;+j-l + di+m- j) i=I, ... , n-m+l
j = 1

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

FlLTERG

SR-01l3 4-17 C

FOLR(3SCI)

NAME

FOLR, FOLRP - Solves first-order linear recurrences

SYNOPSIS

CALL FOLR(n,a,inca,b,incb)

CALL FOLRP(n,a,inca,b,incb)

DESCRIPTION

n Length of linear recurrence

a Vector of length n of equation 1. (A(I) is arbitrary.)

inca Skip distance between elements of the vector operand A or a

FOLR(3SCI)

b For FOLR, vector b of equation 1 on input and on output. For FOLRP, vector b of equa­
tion 2 on input on output. In either case, the output overwrites the input.

incb Skip distance between elements of the vector operand b and result B or b

FOLR solves first-order linear recurrences as in equation 1.

Equation 1:

hI = hI
hi = hi-hi -1 * ai for i = 2, 3 ... , n

The Fortran equivalent of equation 1 is as follows:

B(1) = B(I)
DO 10 I = 2, N

10 B(I) = B(I) - B(I-I) * A(I)

FOLRP solves first-order linear recurrences as in equation 2:

Equation 2:

hI = hI
hi = ai hi _ 1 + bi for i = 2, 3 ... , n

The Fortran equivalent of equation 2 is as follows:

B(1)=B(l)
00 10 I = 2, N

10 B(I) = A(I) * B(I-I) + B(I)

CAUTIONS

Do not specify inca or incb as zero; doing so yields unpredictable results.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OII3 4-18 c

FOLR2 (3SCI) FOLR2(3SCI)

NAME

FOLR2, FOLR2P - Solves first-order linear recurrences, write new vector

SYNOPSIS

CALL FOLR2(n,a,inca,b,incb,c,incc)

CALL FOLR2P(n,a,inca,b,incb,c,incc)

DESCRIPTION

n Length of the linear recurrence

a For FOLR2, vector a of length n of equation 1; for FOLR2P, vector a of length n of equa-
tion 2. (See equations 1 and 2 for FOLR.) A(I) is arbitrary.

inca Skip distance between elements of the vector operand a

b For FOLR2, vector b of equation 1. For FOLR2P, vector b of equation 2 on input.

incb For FOLR2, skip distance between elements of the vector operand b and result C; for
FOLR2P, skip distance between elements of the vector operand b.

c For FOLR2, vector c of equation 1. For FOLR2P, vector c of equation 2.

incc Skip distance between elements of the vector result c. For contiguous elements, incc=1.

FOLR2 solves first-order linear recurrences as in equation 1. (See the FOLR subroutine.) The solution,
however, is written to vector c, which is different from vector B in FOLR. FOLR2P is a combination of
FOLRP and FOLR2. -

CAUTIONS

Do not specify inca, incb, or incc as zero; doing so yields unpredictable results.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SEE ALSO

FOLR

SR-OI13 4-19 C

FOLRC(3SCI)

NAME

FOLRC - Solves first-order linear recurrence shown

SYNOPSIS

result=FOLRC(n,x,incx,c,incc,coej)

DESCRIPTION

n Length of linear recurrence

x Vector

incx Skip distance

c Vector c

incc Skip distance

coe! Coefficient

FOLRC solves a linear recurrence as in the Fortran equivalent below:

1=1
J=1
IF (INC X .LT. 0) THEN

1 = 1-(N-1)*INCX
ENDIF
IF (INCC. LT. 0) THEN

J = 1-(N-1)*INCC
ENDIF
X(I) = CO)
00 101=1, N

X(I+INCX) = COEF*X(I) + C(J+INCC)
J = J + INCC
1=1 + INCX

10 CONTINUE

CAUTIONS

Do not specify incx or incc as zero; doing so yields unpredictable results.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 4-20

FOLRC(3SCI)

C

FOLRN (3SCI)

NAME

FOLRN - Solves last term of first-order linear recurrence using Homer's method

SYNOPSIS

resuit=FOLRN(n.a.inca.b.incb)

DESCRIPTION

n Length of the linear recurrence

FOLRN(3SCI)

a Vector a of length n of equation 1 (see equation 1 under the FOLR). (A(l) is arbitrary.)

inca Skip distance between elements of the vector operand A

b Vector b of length n of equation 1. (The output overwrites the input.)

incb Skip distance between elements of the vector operand and result b

FOLRN solves for r" of

r1=b 1

ri = -ai ri-l + bi i = 2, 3, ... , n

CAUTIONS

Do not specify inca or incb as zero; doing so yields unpredictable results.

EXAMPLE

FOLRN allows for efficient evaluation of polynomials using Homer's method as follows:

" Letp(x)= L bi x"-;
i=O

thenp(a)=(... «bot +b1)x +bi)x + ... b,,) by Homer's rule.

The Fortran equivalent is as follows:

or

PA=B(O)
00101=I,N

PA = P A * X + B(I)
10 CONTINUE

PA=FOLRN(N+l,-X,O,B(O),I)

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems

SEE ALSO

FOLR

SR-0113 4-21 C

FOLRNP (3SCI)

NAME

FOLRNP - Solves last term of a first-order linear recurrence

SYNOPSIS

result=FOLRNP(n,a,inca,b,incb)

DESCRIPTION

n Length of the linear recurrence

FOLRNP(3SCI)

a Vector a of length n of equation 1 (see equation 1 under the FOLR). (A(I) is arbitrary.)

inca Skip distance between elements of the vector operand A

b Vector b of length n of equation 1. (The output overwrites the input.)

incb Skip distance between elements of the vector operand and result b

FOLRNP solves a linear recurrence as in the following Fortran equivalent:

1=1
J=1
IF (INCX .LT. 0) THEN

1 = 1 - (N-l) * INCX
ENDIF
IF (INCC .LT. 0) THEN

J = 1 - (N-l) * INeC
ENDIF
RESULT = B(J)
00 10 I = 2, N

RESULT = A(K+INCA) * RESULT + B(J+INCB)
J =J + INCB
K=K+ INCA

10 CONTINUE

CAUTIONS

Do not specify inca, incb, or incc as zero; doing so yields unpredictable results.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR-0113 4-22 C

GATHER (3SCI) GATHER (3SCI)

NAME

GATHER - Gathers a vector from a source vector

SYNOPSIS

CALL GATHER(n,a,b,index)

DESCRIPTION

n Number of elements in vectors a and index; not b

a Output vector

b Source vector

index Vector of indexes

GATHER is defined in the following way:

ai = bj ; where i = 1, ... , n

In Fortran:

A(I)=B(INDEX(I))

where I = 1, ... , N

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 4-23 c

LINP ACK (3SCI) LINP ACK (3SCI)

NAME

LINPACK - Single-precision real and complex UNPACK routines

DESCRIPTION

SR-0113

LINPACK is a package of Fortran routines that solve systems of linear equations and compute the QR,
Cholesky, and singular value decompositions. The original Fortran programs are documented in the
UNPACK User's Guide by J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart, published by
the Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1979, Library of Congress
catalog card number 78-78206. This guide is available through Cray Research as publicaton SI-0113.

Each single-precision scientific library version of the LINPACK routines has the same name, algorithm,
and calling sequence as the original version. Optimization of each routine includes the following:

• Replacement of calls to the BLAS routines SSCAL, SCOPY, SSWAP, SAXPY, and SROT with
in-line Fortran code that the Cray Fortran compilers vectorize

• Removal of Fortran IF statements if the result of either branch is the same

• Replacement of SDOT to solve triangular systems of linear equations in SGESL, SPOFA,
SPOSL, STRSL, and SCHDD with more vectorizable code

These optimizations affect only the execution order of floating-point operations in DO loops. See the
UNPACK User's Guide for further descriptions. The complex routines have been added without much
optimization.

The following summary provides a list of the routines giving the name, matrix or decomposition, and
the purpose for each routine.

Name

SGECO
SGEFA
SGESL
SGEDI

CGECO
CGEFA
CGESL
CGEDI

SGBCO
SGBFA
SGBSL
SGBDI

CGBCO
CGBFA
CGBSL
CGBDI

Matrix or Decomposition

Real general

Complex general

Real general banded

Complex general banded

4-24

Purpose

Factor and estimate condition
Factor
Solve
Compute determinant and inverse

Factor and estimate condition
Factor
Solve
Compute determinant and inverse

Factor and estimate condition
Factor
Solve
Compute determinant

Factor and estimate condition
Factor
Solve
Compute determinant

C

LINPACK(3SCI) UNPACK(3SCI)

Name Matrix or Decomposition Purpose

SPOCO Real positive definite Factor and estimate condition
SPOFA Factor
SPOSL Solve
SPODI Compute determinant and inverse

CPOCO Complex positive Factor and estimate condition
CPOFA definite Factor
CPOSL Solve
CPODI Compute determinant and inverse

SPPCO Real positive definite Factor and estimate condition
SPPFA packed Factor
SPPSL Solve
SPPDI Compute determinant and inverse

CPPCO Complex positive Factor and estimate condition
CPPFA definite packed Factor
CPPSL Solve
CPPDI Compute determinant and inverse

SPBCO Real positive definite Factor and estimate condition
SPBFA banded Factor
SPBSL Solve
SPBDI Compute determinant

CPBCO Complex positive Factor and estimate condition
CPBFA definite banded Factor
CPBSL Solve
CPBDI Compute determinant

SSICO Symmetric indefinite Factor and estimate condition
SSIFA Factor
SSISL Solve
SSIDI Compute inertia, determinant,

and inverse

CHICO Hermitian indefinite Factor and estimate condition
CHIFA Factor
CHISL Solve
CHIDI Compute inertia, determinant,

and inverse

SSPCO Symmetric indefinite Factor and estimate condition
SSPFA packed Factor
SSPSL Solve
SSPDI Compute inertia, determinant,

and inverse

SR-Ol13 4-25 C

LINP ACK (3SCI) LINP ACK (3SCI)

Name Matrix or Decomposition Purpose

CSPCO Complex symmetric Factor and estimate condition
CSPFA indefinite packed Factor
CSPSL Solve
CSPDI Compute inertia, determinant,

and inverse

CHPCO Hermitian indefinite Factor and estimate condition
CHPFA packed Factor
CHPSL Solve
CHPDI Compute inertia, determinant,

and inverse

STRCO Real triangular Factor and estimate condition
STRSL Solve
STRDI Compute determinant and inverse

CTRCO Complex triangular Factor and estimate condition
CTRSL Solve
CTRDI Compute determinant and inverse

SGTSL Real tridiagonal Solve

CGTSL Complex tridiagonal Solve

SPTSL Real positive definite Solve
tridiagonal

CPTSL Complex Solve

SCHDC Real Cholesky Decompose
SCHDD decomposition Downdate
SCHUD Update
SCHEX Exchange

CCHDC Complex Cholesky Decompose
CCHDD decomposition Downdate
CCHUD Update
CCHEX Exchange

SQRDC Real Orthogonal factorization
SQRSL Solve

CQRDC Complex Orthogonal factorization
CQRSL Solve

SSVDC Real Singular value decomposition

CSVDC Complex

SR-0113 4-26 C

MINV(3SCI) MINV(3SCI)

NAME

MINV - Computes the determinant and inverse of a square matrix

SYNOPSIS

CALL MINV(ab,n,nd,scratch,det,eps,m,mode}

DESCRIPTION

ab

n

nd

scratch

det

eps

m

mode

Augmented matrix of the square matrix a and the n x m matrix b of the m right-hand sides
for each system of equations to solve. The solution overwrites the corresponding right-hand
side. In the calling routine, ab must be dimensioned a(nd,n+m}.

Order of matrix a

Leading dimension of ab

User-defined working storage array of length at least 2*n

Determinant of matrix a

User-defined tolerance for the product of pivot elements

If m>O, m is the number of systems of linear equations to solve. If m=O, the determinant
of a is computed, depending on the value of mode.

If mode=+I, a is overwritten with a-I. If mode=O, a is not saved and a-I is not computed.

MINV can also be used to solve systems of linear equations with multiple right-hand sides.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 4-27 C

MXM(3SCI) MXM(3SCI)

NAME

MXM - Computes a matrix times matrix product (c=ab) ; skip distance equals 1

SYNOPSIS

CALL MXM(a,nar,b,nac,c,nbc)

DESCRIPTION

a First matrix of product

nar Number of rows of matrices a and c

b Second matrix of product

nac Number of columns of matrix a and the number of rows of matrix b

c Result matrix

nbc Number of columns of matrices b and c

MXM can be used only if both matrixes being multiplied are equal to the length at which they are
dimensioned. If a submatrix is being multiplied, use the MXMA routine.

IMPLEMENTATION

This routine is available to users of both COS and UNICOS operating systems.

SEE ALSO

MXV is similar to MXM; however, MXV handles the special case of a matrix times a vector.

SR-0113 4-28 C

MXMA(3SCI) MXMA(3SCI)

NAME

MXMA - Computes a matrix times matrix product (e=ab) with arbitrary skip distance

SYNOPSIS

CALL MXMA(a,na,iad,b,nb,ibd,e,ne,ied,nar,nbr,nee)

DESCRIPTION

a First matrix of the product

na Spacing between column elements of a

iad Spacing between row elements of a

b Second matrix of the product

nb Spacing between column elements of b

ibd Spacing between row elements of b

e Output matrix

ne Spacing between column elements of e

ied Spacing between row elements of e

nar Number of rows in the first operand and result

nbr Number of columns in the first operand and number of rows in the second operand

nee Number of columns in the second operand and result

MXMA is recommended for multiplying parts of matrices; that is, a multiplication that does not involve
all of the elements dimensioned. If the matrices to be multiplied are equal to their declared dimensions,
the MXM routine provides better performance.

EXAMPLES

SR-0113

The dimension of matrix A is 3x3. Consider the 2x3 submatrix A' marked by asterisks.

(1,3)* (1,1)* ~(1'2)*
(a)

(2,1) (2,2)
(b) (c)

(3,1)~ (3,2)*

(2,3)

(3,3)*

The row spacing of submatrix A ' (iad) is defined as the length of the path through A between two consecu­
tive row elements of A'. In this example, the path is (a) through (c) (iad=3).

The column spacing of A' (na) is defined as the path through A between two consecutive column elements
of A'. In this example, the path is (a) through (b) (nar=2); and the number of columns of A' is 3 (nbr=3).

4-29 C

MXMA(3SCI) MXMA(3SCI)

Example 2:

Consider the following matrices. Let AT, the transpose of A, equal the first operand of a matrix multiply
operand. The transpose of a matrix has as its ith column of the original matrix.

(1,1) (1,3) (1,1) (2,1) ~(3,1)
(a) (a) (b)

(2,2) (2,3) (1,2)~ (3,2)
(c)

(3,1) (3,2) (3,3) (1,3) (2,3) (3,3)

Matrix A Matrix AT

The length of the path between two consecutive column elements of A T is the same as the length of the path
between two consecutive row elements of A. Refer to paths (a) through (c) of both matrices (na=3). The
length of the path between two consecutive row elements of A T is the length of the path between two con­
secutive column elements of A. This path consists of just (a) (iad=l). In this example, nar=3 and nbr=3.

Therefore, if A is the first operand of a call to MXMA, the following subroutine call is used.

CALL MXMA(A,l,3, ••)

If A 'T is the first operand of a call to MXMA. the following subroutine call is used

CALL MXMA(A,3,1, •••)

IMPLEMENTATION

This routine is available to users of both COS and UNICOS operating systems.

SEE ALSO

MXV A is similar to MXMA; however, MXV A handles the special case of a matrix times a vector.

SR-0113 4-30 C

MXV(3SCI) MXV(3SCI)

NAME

MXV - Computes a matrix times a vector, skip distance equals 1

SYNOPSIS

CALL MXV(a.nar.b.nbr.c)

DESCRIPTION

a Matrix of the product

nar Number of rows of matrices a and c

b Vector of the product

nbr Number of elements of vector b and the number of columns of matrix a

c Resulting vector

The Fortran equivalent of MXV is as follows:

DO 10 1=1, NAR
10 C(I)=A(I,I)*B(I)+A(I,2)*B(2)+ ... +A(I,NBR)*B(NBR)

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

MXM is similar to MXV; however, MXM handles the case of a matrix times a matrix.

SR-0113 4-31 C

MXVA(3SCI) MXVA(3SCI)

NAME

MXVA - Computes a matrix times a vector, arbitrary skip distance

SYNOPSIS

CALL MXVA{a,na,iad,b,nb,c,nc,nar,nbr)

DESCRIPTION

a First matrix of the product

na Spacing between column elements of a

iad Spacing between row elements of a

b Vector of the product

nb Spacing between elements of b

c Result vector

nc Spacing between elements of c

nar Number of rows in the first operand and number of elements in the result

nbr Number of columns in the first operand and number of elements in the second operand

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

MXMA is similar to MXV A; however, MXMA handles the case of a matrix times a matrix.

SR-Ol13 4-32 C

OPFILT(3SCI) OPFILT(3SCI)

NAME

OPFILT - Solves Weiner-Levinson linear equations

SYNOPSIS

CALL OPFILT(m,a,b,c,r)

DESCRIPTION

NOTE

m Order of system of equations

a Output vector of filter coefficients

b Information auto-correlation vector

c Scratch vector of length 2m

r Signal auto-correlation vector

OPFILT computes the solution to the Weiner-Levinson system of linear equations Ta=b, where T is a
Toeplitz matrix in which elements are described by the following:

til = R (k) for I j -i I + 1 = k

andk = 1, ... , n

Although OPFILT solves this matrix equation faster than Gaussian elimination can, OPFILT does no
pivoting; therefore, it is less numerically stable than Gaussian elimination unless the matrix T is posi­
tive, definite, or diagonally dominant.

EXAMPLE

The following system of linear equations can be solved with the call OPFILT (3,A,B,C,R). The array
C is one dimension with a length of at least six. (The tij elements show how the numbers for R are
obtained.)

~ (1) R (2) R (3)] ~ (1)] ~ (1)] R (2) R (1) R (2) A (2) = B (2)
(3) R (2) R (1) (3) (3)

~:: :: ::] [::] = ~:]
IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OII3 4-33 C

RECPP (3SCI)

NAME

RECPP - Solves for a partial products problem

SYNOPSIS

CALL RECPP(n,x,incx,c ,inc c)

DESCRIPTION

n Length of linear recurrence

x Vector x

in ex Skip distance of vector x

c Vector c

incc Skip distance of vector c

RECPP solves the partial products problem as in the following Fortran equivalent:

1=1
J=1
IF (INCX .LT. 0) THEN

I = 1-(N-l)*INCX
ENDIF
IF (INCC. LT. 0) THEN

J = 1-(N-l)*INCC
ENDIF
X(I) = C(J)
DO 10 1=2,N

X(I+INCX) = C(J+INCC)*X(I)
J = J+INCC
1= I+INCX

10 CONTINUE

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 4-34

RECPP(3SCI)

C

RECPS (3SCI)

NAME

RECPS - Solves for the partial summation problem

SYNOPSIS

CALL RECPS(n,x,incx,c,incc)

DESCRIPTION

n Length of linear recurrence

x Vector x

incx Skip distance of vector x

c Vector c

incc Skip distance of vector c

RECPS solves the partial summation problem as in the following Fortran equivalent:

1=1
J=1
IF (INCX .LT. 0) THEN

1= l-(N-l)*INCX
ENDIF
IF (INCC .LT. 0) THEN

J = 1-(N-l)*INCC
ENDIF
X(I) = C(J)
00 10 1=2,N

X(I+INCX) = C(J+INCC)+X(I)
J = J+INCC
1 = I+INCX

10 CONTINUE

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-Ol13 4-35

RECPS (3SCI)

C

SASUM(3SCI) SASUM(3SCI)

NAME

SASUM, SCASUM - Sums the absolute value of elements of a vector

SYNOPSIS

sum=SASUM(n,sx,inex)

sum=SCASUM(n,ex,inex)

DESCRIPTION

n Number of elements in the vector to be summed. If n :::;; 0, SASUM and SCASUM return O.

sx Real vector to be summed

ex Complex vector to be summed

inex Increment between elements of sx or ex. For contiguous elements, inex= 1.

SASUM and SCASUM sum the absolute values of the elements of a real or complex vector, respectively.
SASUM computes

n {1+(i-l)(inCX), inex>O
sum = ti I xXi I where k; = 1 +(n -i) I inex I, inex <0 and where Xkj is an element of a real vec-

tor.

SCASUM computes
n

sum = L { I real (Xk.) I ~ imag (xx.) I } where k; is as defined for SASUM. XA;. is an element of a
i=l 1 1 I

complex vector.

Note that SASUM computes a true 11 norm, but SCASUM does not compute a true 11 norm.

EXAMPLE

REAL SUM,SUMMER(10)
SUMMER(I)=O.O
DO 101=2,10
SUMMER(I)=SUMMER+ 1.0

10 CONTINUE
SUM=SASUM(5,SUMMER,2)
PRINT*,SUM
STOP
END

In the preceding example, SUMMER(l)=O.O, SUMMER(2)=1.O, SUMMER(2)=3.0, ••• SUMMER(lO)=9.0.
The printed result of SUM equals 20.0.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 4-36 C

SAXPY (3SCI)

NAME

SAXPY, CAXPY - Adds a scalar multiple of a real or complex vector to another vector

SYNOPSIS

CALL SAXPY(n,sa,sx,inex,sy,iney)

CALL CAXPY(n,ea,ex,inex,ey,iney)

DESCRIPTION

SAXPY(3SCI)

n Number of elements in the vectors. If n S 0, SAXPY and CAXPY return without any compu-
tation.

sa Real scalar multiplier

ea Complex scalar multiplier

sx Real scaled vector

ex Complex scaled vector

incx Increment between elements of sx or ex; for contiguous elements, inex±1.

sy Real result vector

ey Complex result vector

iney Increment between elements of sy or ey; for contiguous elements, iney±1.

These subroutines add a scalar multiple of one vector to another.

SAXPY computes

{
1+(i-l)(ineX), inex>O {1+(i-l)(iney), iney>O

Yl; = ax,,; + Ylj , i=l, ... ,n where kj = l+(n-i) lin ex I, inex<O and Ii = l+(n-i) I iney I, iney<O

where a is a real scalar multiplier and x". and y,. are elements of real vectors.
I I

CAXPY computes

Yl; = ax"j + Ylj' i=I, ... , nand kj and Ij are as defined for SAXPY.

a is a complex scalar multiplier and x". and y,. are elements of complex vectors.
I I

When n SO , sa=O, or ea=O+Oi, these routines return immediately with no change in their arguments.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 4-37 C

SCAL(3SCI)

NAME

SSCAL, CSSCAL, CSCAL - Scales a real or complex vector

SYNOPSIS

CALL SSCAL(n,sa,.s:x,incx)

CALL CSSCAL(n,SQ,cx,incx)

CALL CSCAL(n,ca,ex,inex)

DESCRIPTION

SCAL(3SCI)

n Number of elements in the vector. If n S 0, SSCAL, CSSCAL, and CSCAL return without
any computation.

sa Real scaling factor

ea Complex scaling factor

sx Real vector to be scaled

ex Complex vector to be scaled

incx Skip distance between elements of sx or ex

These subroutines scale a vector. SSCAL computes

X=aX

where a is a real number and X is a real vector. CSSCAL computes

X=aX

where a is a real number and X is a complex vector. CSCAL computes

Y=aY

where a is a complex number and Y is a complex vector.

CAUTIONS

Do not specify inex as zero; doing so yields unpredictable results.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 4-38 C

SCAITER(3SCI) SCA ITER (3SCI)

NAME

SCATTER - ScaUers a vector into another vector

SYNOPSIS

CALL SCATTER(n,Q,index,b)

DESCRIPTION

n Number of elements in vectors index and b

a Output vector

index Vector of indexes

b Source vector

SCATTER is defined in the following way:

aj
j

= b; where i = I, 0 0 0' n

In Fortran:

A(INDEX(I))=B(I)

where I = I, ... , N

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 4-39 c

SCOPY(3SCI)

NAME

SCOPY, CCOPY - Copies a real or complex vector into another vector

SYNOPSIS

CALL SCOPY(n,sx,incx,sy,incy)

CALL CCOPY(n,cx,incx,cy,incy)

DESCRIPTION

SCOPY(3SCI)

n Number of elements in the vector to be copied. If n S 0, SCOPY and CCOPY return without
any computation.

sx Real vector to be copied

cx Complex vector to be copied

incx Increment between elements of sx or cx; for contiguous elements, incx=±l.

sy Real result vector

cy Complex result vector

incy Increment between elements of sy or cy; for contiguous elements, incy =±l.

These subroutines copy one vector into another.

SCOPY copies a real vector

{
l+(i-l)(inCX), incx>O {l+(i-l)(incy), incy>O

Ylj = Xkj , i = 1, ... ,n where ki = 1 +(n -i) I incx I , incx <0 and Ii = 1 +(n -i) I incy I , incy <0 and

Xk. and y,. are elements of real vectors.
I I

CCOPY copies a complex vector

y,. = Xk. , i= 1, ... ,n where ki and Ii are as defined above and Xk. and y,. are elements of complex
I I I I

vectors.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS systems.

SR-0113 4-40 C

SGBMV(3SCI) SGBMV (3SCI)

NAME

SGBMV - Multiplies a real vector by a real general band matrix

SYNOPSIS

CALL SGBMV(trans,m,n,kI,ku,alpha,a,lda.x,incx,beta,y,incy)

DESCRIPTION

SR-0113

SGBMV performs one of the matrix-vector operations

y:=alpha*a*x+beta*y or y:=alpha*d*x+beta*y

Arguments alpha and beta are scalars, x and y are vectors, a is an m-by-n band matrix, with kl sub­
diagonals and ku super-diagonals, and a' denotes the transpose of a.

trans Character*1. On entry, trans specifies the operation to be performed. If trans='N' or 'n',
y := alpha*a*x + beta*y. If trans='T' or 't', y := alpha*a'*x + beta*y. The trans argument
is unchanged on exit.

m Integer. On entry, m specifies the number of rows of the matrix a. m must be at least zero.
The m argument is unchanged on exit.

n Integer. On entry, n specifies the number of columns of the matrix a. n must be at least zero.
The n argument is unchanged on exit.

kl Integer. On entry, kl specifies the number of sub-diagonals of the matrix a. kl must satisfy
O.LE.kI. The kl argument is unchanged on exit.

ku Integer. On entry, ku specifies the number of super-diagonals of the matrix a. ku must satisfy
O.LE.ku. The ku argument is unchanged on exit.

alpha Real. On entry, alpha specifies the scalar alpha. The alpha argument is unchanged on exit.

a Real array of dimension (lda,n). Before entry, the leading (kl + ku + l)-by-n part of the array
a must contain the matrix of coefficients, supplied column-by-column, with the leading diago­
nal of the matrix in row (ku + 1) of the array, the first superdiagonal starting at position 2 in
row ku, the first subdiagonal starting at position 1 in row (ku + 2), and so on. Elements in the
array a that do not correspond to elements in the band matrix (such as the top left ku-by-ku tri­
angle) are not referenced. The following program segment will transfer a band matrix from
conventional full matrix storage to band storage:

DO 20, I=I,N
K = KV+I-J
DO 10, I=MAX(I, J -KU) , MIN(M, J+KL)

A(K+I,J) = MATRIX(I,J)
10 CONTINUE
20 CONTINUE

The a argument is unchanged on exit.

Ida Integer. On entry, Ida specifies the first dimension of a as declared in the calling (sub) pro­
gram. Ida must be at least (kl+ku+l). The Ida argument is unchanged on exit.

x Real array of dimension at least (l+(n-l)* abs(incx» when trans='N' or 'n' and at least
(l+(m-l)*abs(incx» otherwise. Before entry, the incremented array x must contain the vector
x. The x argument is unchanged on exit.

4-41 C

SGBMV(3SCI) SGBMV(3SCI)

NOTE

SR-Ol13

incx Integer. On entry, incx specifies the increment for the elements of x. incx must not be zero.
The incx argument is unchanged on exit

beta Real. On entry, beta specifies the scalar beta. When beta is supplied as zero, y need not be set
on input The beta argument is unchanged on exit.

y Real array of dimension at least (l+(m-l)*abs(incy» when trans='N' or 'n' and at least
(l+(n-l)* abs(incy» otherwise. Before entry, the incremented array y must contain the vector
y. On exit, y is overwritten by the updated vector y.

incy Integer. On entry, incy specifies the increment for the elements of y. incy must not be zero.
The incy argument is unchanged on exit.

The SGBMV routine is a level 2 Basic Linear Algebra Subroutine (BLAS2).

4-42 c

SGEMV(3SCI) SGEMV (3SCI)

NAME

SGEMV - Multiplies a real vector by a real general matrix

SYNOPSIS

CALL SGEMV(trans,m,n,alpha,a,lda,x,incx,bela,y,incy)

DESCRIPTION

NOTE

SR-Ol13

SGEMV performs one of the matrix-vector operations

y:= alpha*a*x + beta*y, or y:= alpha*a'*x + bela*y,

Arguments alpha and beta are scalars, x and yare vectors and a is an m-by-n matrix.

trans Character*!. On entry, trans specifies the operation to be performed. If trans='N' or 'n', y :=
alpha*a*x + beta*y. If trans='T' or 't', y := alpha*a'*x + beta*y. The trans argument is
unchanged on exit.

m Integer. On entry, m specifies the number of rows of the matrix a. m must be at least zero. The m
argument is unchanged on exit.

n Integer. On entry, n specifies the number of columns of the matrix a. n must be at least zero. The n
argument is unchanged on exit.

alpha Real. On entry, alpha specifies the scalar alpha. The alpha argument is unchanged on exit.

a Real array of dimension (lda,n). Before entry, the leading m by n part of the array a must contain
the matrix of coefficients. The a argument is unchanged on exit.

Ida Integer. On entry, Ida specifies the first dimension of a as declared in the calling subprogram. Ida
must be at least max(l,m). The Ida argument is unchanged on exit.

x Real array of dimension at least (1 + (n - l)*abs(incx» when trans='N' or 'n' and at least (1 + (m­
l)*abs(incx» otherwise. Before entry, the incremented array x must contain the vector x. The x
argument is unchanged on exit.

incx Integer. On entry, incx specifies the increment for the elements of x. incx must not be zero. The
incx argument is unchanged on exit.

beta Real. On entry, beta specifies the scalar beta. When beta is supplied as zero then y need not be set
on input. The beta argument is unchanged on exit.

y Real array of dimension at least (1 + (m - 1)*absCincy» when trans='N' or 'n' and at least (1 + (n
- 1)*abs(incy» otherwise. Before entry with beta nonzero, the incremented array y must contain
the vector y. On exit, y is overwritten by the updated vector y.

incy Integer. On entry, incy specifies the increment for the elements of y. incy must not be zero. The
incy argument is unchanged on exit.

The SGEMV routine is a level 2 Basic Linear Algebra Subroutine (BLAS2).

4-43 C

SGER(3SCI) SGER(3SCI)

NAME

SGER - Perfonns the rank 1 update of a real general matrix

SYNOPSIS

CALL SGER(m,n,alpha.x,incx,y,incy,a,lda)

DESCRIPTION

NOTE

SR-Ol13

SGER perfonns the rank 1 operation

a:= alpha*x*y' + a

where x is an m element vector, y is an n element vector and a is an m-by-n matrix. SGER has the following
arguments:

m Integer. On entry, m specifies the number of rows of the matrix a. m must be at least zero.
Unchanged on exit

n Integer. On entry, n specifies the number of columns of the matrix a. n must be at least zero.
Unchanged on exit

alpha Real. On entry, alpha specifies the scalar alpha. Unchanged on exit.

x Real. Array of dimension at least (1 + (m - 1)*abs(incx». Before entry, the incremented array x
must contain the m element vector x. Unchanged on exit.

incx Integer. On entry, incx specifies the increment for the elements of x. incx must not be zero.
Unchanged on exit

y Real. Array of dimension at least (1 + (n - 1)*abs(incy». Before entry, the incremented array y
must contain the n element vector y. Unchanged on exit.

incy Integer. On entry, incy specifies the increment for the elements of y. incy must not be zero.
Unchanged on exit

a Real array of dimension (/da,n). Before entry, the leading m-by-n part of the array a must contain
the matrix of coefficients. On exit, a is overwritten by the updated matrix.

Ida Integer. On entry, Ida specifies the first dimension of a as declared in the calling subprogram. Ida
must be at least max(1,m). Unchanged on exit

The SGER routine is a level 2 Basic Linear Algebra Subroutine (BLAS2).

4-44 c

SMXPY (3SCI) SMXPY(3SCI)

NAME

SMXPY - Computes the product of a column vector and a matrix and adds the result to another column
vector

SYNOPSIS

CALL SMXPY(nl,y,n2,ldm,x,m)

DESCRIPTION

nl Number of elements in the vector y

y Real vector

n2 Number of elements in the vector x

ldm Leading dimension of matrix m

x Real vector

m Matrix

SMXPY executes an operation equivalent to the following Fortran code:

SUBROUTINE SMXPY(Nl,Y,N2,LDM,X,M)
REAL Y(1), X(l), M(LDM,l)
DO 20 J=1,N2

DO 20 I=l,Nl
Y(I)=Y(I) + X(J) * M(lJ)

20 CONTINUE
RETURN
END

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 4-45 C

SNRM2 (3SCI)

NAME

SNRM2, SCNRM2 - Computes the Euclidean norm of a vector

SYNOPSIS

euenorm=SNRM2(n,sx,inex)

euenorm=SCNRM2(n,cx,incx)

DESCRIPTION

SNRM2 (3SCI)

n Number of elements in the vector. If n ~ 0, SNRM2 and SCNRM2 return without any com-
putation.

sx Real vector operand

ex Complex vector operand

incx Skip distance between elements of sx or ex

These real functions compute the Euclidean or 12 norm of a vector.

SNRM2 computes

eucnorm = [~ x 7]t
where Xi is an element of a real vector. SCNRM2 computes

[
n]1 eucnorm = ~ Xi Xi 2

&=1

where Xi is a complex vector and Xi is the complex conjugate of Xi.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 4-46 C

SOLR(3SCI) SOLR(3SCI)

NAME

SOLR, SOLRN, SOLR3 - Solves second-order linear recurrences

SYNOPSIS

CALL SOLR(n.a,inca,b,incb,c,incc)

resu/t=SOLRN(n,a,inca,b.incb,c,incc)

CALL SOLR3(n,a,inca,b,incb,c,incc)

DESCRIPTION

SR-0113

n Length of linear recurrence. For SOLR and SOLR3, if n S; 0, SOLR and SOLR3 return
without any computation. For SOLRN, 0 is returned.

a Vector a of length n of equation below

inca Skip distance between elements of the vector operand a

b Vector b of length n of equation below

incb Skip distance between elements of the vector operand b

c Vector result c of length n+2 of equation below

incc Skip distance between elements of the vector result c. C(l) and C(2) are input to this rou­
tine; C(3),C(4), .•. ,C(N+2) are output from this routine.

SOLR solves a second-order linear recurrence. SOLRN solves a second-order linear recurrence for the
last term only. SOLR3 solves a second-order linear recurrence for three terms.

SOLR solves second-order linear recurrences as in the following equation:

Ci = ai-2 Ci-l + bi - 2 Ci-2 for i =3, .. , n

The Fortran equivalent of equation 3 is:

00 10 I=3,N
10 C(I)=A(I-2)*C(I-l) + B(I-2)*C(I-2)

SOLRN, a real function, solves for only the last term of a second-order linear recurrence, that is, c(n) of
SOLR(n,a,inca,b,incb,c ,incc).

The Fortran loop

RI=C(1)
R2=C(2)
00 10 I=3,N

TEMP=R2
R2=A(I-2)*R2+B(I-22)*Rl
Rl=TEMP

10 CONTINUE
RESULT=R2

could be solved as follows:

4-47 C

SOLR(3SCI)

SOLR3 computes a second-order linear recurrence of three terms, that is

CI = CI Cz = Cz Ci = Ci + ai-Z Ci-I + bi-Z Ci-Z for i=3, ... n

CAUTIONS

Do not specify inca, incb, or incc as zero; doing so yields unpredictable results.

EXAMPLES

SR-OI13

Example 1 - SOLRN:

SOLRN might be used to find '" of the calculation

,,-Z

IT
i=I

rai bi] [C2] = ['''] II 0 CI ',,-1

with the following call:

'" =SOLRN (n ,a ,1,b ,1,c ,1)

The Fortran equivalent for example 1 is as follows:

Rl=C(1)
R2=C(2)
DO 10 I=I,N

1EMP=R2
R2=A(I)*R2+B(I)*R 1
Rl=TE:MP

10 CONTINUE
RN=R2

Example 2 - SOLR3:

SOLR3 solves a system of lower bidiagonal linear equations Lx=b.

1000 0 Xl b l

el 100 0 X2 b2
f 1 ez 1 O 0 X3 b 3

Ofz e 3 10 O X4 b4
Lx = . 0 f 3 e 41 0 ... 0 = = b

· 0
· 0
· 0
000 . ./,,_ze,,_Il

4-48

SOLR(3SCI)

C

SOLR(3SCI)

Then there is

This problem can be solved with the following Fortran:

DO 10 I=I,N-l
10 E(I)=-E(I)

DO 20 I=I,N-2
20 F(I)=-F(I)

B(1)=B(I)
B(2)=B(2)+E(1)*B(1)
CALL SOLR3(N,E(2),1,F(1),1,B(1),1)

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-0113 4-49

SOLR(3SCI)

C

SPDOT (3SCI) SPDOT(3SCI)

NAME

SPDOT, SP AXPY - Primitives for the lower upper factorization and solution of sparse linear systems

SYNOPSIS

pdot=SPDOT(n,sy,index,sx)

CALL SPAXPY(n,sa,sx,sy,index)

DESCRIPTION

For SPDOT:

n Number of elements in the vectors

sy Real vector operand

index Vector of indexes ascending order.

sx Real vector operand

For SPAXPY:

n Numbers of elements in the vectors

sa Real scalar multiplier

sx Real vector operand

sy Real vector operand

index Vector of indexes. All values in index should be unique and in ascending order.

SPAXPY executes an operation equivalent to the following Fortran code:

00 10 I=l,N
10 SY(INDEX(I»=SA *SX(I)+SY(INDEX(I»

SPDOT executes an operation equivalent to the following Fortran code:

00 10 I=l,N
10 POOT=PDOT +SY(INDEX(I»*SX(I)

IMPLEMENTATION

These routines are available to user~ of both the COS and UNICOS operating systems.

SR-0113 4-50 c

SROT(3SCI) SROT(3SCI)

NAME

SROT - Applies an orthogonal plane rotation

SYNOPSIS

CALL SROT(n,sx,incx,sy,incy,c,s)

DESCRIPTION

n Number of elements in the vector

sx Real vector to be modified

incx Skip distance between elements of sx

sy Real vector to be modified

incy Skip distance between elements of sy. For contiguous elements, incy=1.

c Real cosine of equation 1. Normally calculated using SROTG.

s Real sine of equation 1. Normally calculated using SROTG.

This subroutine performs a matrix multiplication. If the coefficients c and s satisfy
c • c + s • s = 1.0, the transfonnation is a Givens rotation. The coefficients c and s can be calculated
from sx and sy using SROTG. SROT computes equation 1 on each pair of elements Xi, Yi of real
arrays.

Equation 1:

~:] := [_; ~].~:] for i=l • ...• n

SROT returns without modification to any input parameters if c=1 and s=0.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SROTG

SR-0113 4-51 c

SROTG(3SCI) SROTG(3SCI)

NAME

SROTG - Constructs a Givens plane rotation

SYNOPSIS

CALL SROTG(a,b,c,s)

DESCRIPTION

SR-0113

a Scalar a of equation 2

b Scalar b of equation 2

c Scalar cosine of equation 2

s Scalar sine of equation 2

SROTG computes the elements of a rotation matrix. The previous call calculates the parameters r, z, c,
and s from input coordinates a, b as in the following equation:

Given a and b each of these subroutines computes

{
sgn (a) if I a I > I b I

a = sgn (b) if I b I ~ I a I

{
lIr if r::tO

c = 1 if r=O

Ib Ir if r::tO
s = 10 if r=O

a is not needed in computing a Givens rotation matrix; however, its use permits later reconstruction of
c and s from just one number. For this reason parameter z is also calculated as follows:

js if I a I > I b I
z = lIc if I b I ~ la I and c ~ 0

1 if c = 0

The subroutine uses parameters a and b and returns r, Z, c, and s, where r overwrites a, and Z

overwrites b.

4-52 C

SROTO(3SCI)

A later reconstruction of c and x from z can be done as follows:

If z = 1 set c = 0 and s = 1

If I z I < 1 set c = (1-z 2) 'fa and s = z

If I z I > 1 set c = 1/ z and s = (l-c z) 'A

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SROT

SR-Ol13 4-53

SROTO (3SCI)

c

SROTM (3SCI) SROTM (3SCI)

NAME

SROTM - Applies a modified Givens plane rotation

SYNOPSIS

CALL SROTM(n,sx,incx,sy,incy,param)

DESCRIPTION

SROTM applies the modified Givens plane rotation constructed by SROTMG. It computes

SR-Ol13

[Xi] [hu h12] [Xi] .
Yi = h21 h22 Yi :l=l, ... ,n

where the parameters HIl, H21, H12, and H22 are passed in the array PARAM according to the following
schedule: PARAM(l) is the key parameter having values 1.0, 0.0, -1.0, or -2.0.

Case for which PARAM(l)=l.O:

Hl1=PARAM(2)

H21=-1.0

H12=1.0

H22=PARAM(5)

and PARAM(3) and PARAM(4) are ignored.

Case for which PARAM(l)=O.O:

HIl=1.0

H21=PARAM(3)

H12=PARAM(4)

H22=1.0

and PARAM(2) and PARAM(S) are ignored.

Case for which PARAM(1)=-1.0 is rescaling case:

Hll=PARAM(2)

H21=PARAM(3)

Hl2=PARAM(4)

H22=PARAM(5)

is a full matrix multiplication.

4-54 C

SROTM(3SCI) SROTM(3SCI)

Case for which PARAM(1)=2.0 is H=l, namely:

Hll=1.0

H21=O.O

H12=O.O

H22=1.0

and PARAM(2), PARAM(3), PARAM(4), and PARAM(S) are ignored. If H=l, SROTM returns with no
operation on input arrays sx, sy.

If any other value for PARAM(l) is read (other than 1., 0, -1., or -2.), SROTM aborts the job with the
following message appearing in the logfile:

SROTM CALLED WITH INCORRECT PARAMETER KEY

The array PARAM must be declared in a dimension statement in the calling program, as follows:

DIMENSION PARAM(S)

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SR-0113

See the description of SROTMG for further details about the modified Givens transformation and the
array PARAM.

4-55 C

SROTMG(3SCI.) SROTMG(3SCI)

NAME

SROTMG - Constructs a modified Givens plane rotation

SYNOPSIS

CALL SROTMG(d 1 , d z , b 1 , b z , param)

DESCRIPTION

SR-Ol13

SROTMG computes the elements of a modified Givens plane rotation matrix.

SROTMG sets up parameters param from inputs d It d z' b It and b z.

An application of the Givens plane rotation

can be written in a form such that repeated applications require matrix multiplications by matrices con­
taining only two nonunit elements. Row transformations require only 2N rather than 4N multiplica­
tions. Scale factors d 1 , d z are defined such that

where the scaling upon each application of the G's is updated. Let H be a matrix

such that

G ~]
1

= D''2 H [:~]
where D ,t = diag{,til';" , ~} contains the updated scale factors; therefore, H is chosen according

to equation 3 or 4.

Equation 3:

[0'] =

1

[:~] D''2 H

Equation 4:

~,til';" * hll ,til';" * h 12] [Vdt C d 2 s]
~* hZ1 ~* h'12

= -{il"; s d z c

4-56 C

SROTMG (3SCI) SROTMG(3SCI)

SR-0113

Coefficients c and s are determined by equations 5 and 6.

Equation 5:

x ..Jd;b 1
c = =
~

Equation 6:

s = y
~ ...Jd1br + d 2bf

~b2

Equation 4 shows that the d's are going to be scaled by c or s if two of the h's are to be unity. Two
cases, I c I > I s I and I s I ~ I c I , are considered so that the d's are scaled down the least upon repeated
applications.

Case 1:

If I c I > I s I (which from equations 5 and 6 is the same as 1 d lb rl > 1 d 2b f D, the solutions for equation
4 are determined by equation 7.

Equation 7:

hl1=h22=1

Case 2:

If 1 s 1 ~ 1 c 1 (which is 1 d 2b i 1 ~ 1 d lb rl), equation 8 is chosen.

Equation 8:

Distinguishing the two cases 1 c 1 > _~ or lsi ~ _~ is the updating factor. Then the complete solu-
1 ~2 ~2

tions for D' 2' and H are as follows.

4-57 C

SROTMG(3SCI) SROTMG (3SCI)

Case 1:

In case 1, where I c I > I s I or I d I b f I > I d 2b ii, the following solutions for H are chosen:

hl1 1 hl2 =
d 2 b 2

=
d l b l

h21
-b 2

h22 = 1 =
b l

and scale factors d I, d 2 are updated to

where

U = det (H) =

Since x' = r, y' = 0, and b'l = x' / ~, then b'l b ' l'U' is updated,

Case 2:

In case 2, where I s I ~ I c I or I d I b f I ~ I d 2b ii, the following solutions for H are chosen:

d l b l
hl1 =

d 2 b 2
hl2 = 1

SR-0113 4-58 C

SROTMG (3SCI) SROTMG(3SCI)

SR-0113

Scale factors d 1 are updated to

with

d'l = d2lu

d'2 d l /u

d 1 bl
u = det (H) = 1 + -­

d2 bi

and the x' factor becomes

b'l = b 2·u.

Case 3:

Let m = 4096. Whenever the parameters d i are updated to be outside the window

which preserves about 36 = 48 - 12 bits or 10 decimal digits of precision, all parameters are rescaled
such that the d;'s are within that window. If either of the d i 's is 0, however, no rescaling action is
taken.

Underflow:

If I d' 1 I < (m r 2, the following is set:

h'n : = h'n . (m)-1

b'l : = b'l . (mr1 h'n: = h'i2 . (mr1

Overflow:

If I d'l I> (mi, the following is set:

d'i : = d'i . (mr2 h'il : = h'il . (m)

b'l : = b' 1 • (m) h'i2 : = h'i2· em)

SROTMG modifies the input parameters DI, D2, and BI and returns the array PARAM according to the
following cases:

4-59 C

SROTMG(3SCI)

SR-Ol13

Case 4:

If ABS(DI*BI*BI).GT.ABS(D2*B2*B2), then

PARAM(1)=O
P ARAM(3)=-B2/B 1
PARAM(4)=D2*B2/Dl *Bl

and parameters DI, D2, and BI are written over by

where

01=01/0
02=02/0
Bl=Bl*U

U=I.+(02*B2*B2)/(D1 *B 1 *B 1).

Case 5:

If ABS(D2*B2*B2).GE.ABS(DI*BI*BI), then

P ARAM(1)=1.
PARAM(2)=(01 *Bl)/(02*B2)
P ARAM(5)=B 1/B2

and parameters DI, D2, and BI are written over according to the following sequence:

TEMP=OI/O
01=02/0
Bl=B2*U

U=I.+(OI *Bl *Bl)/(D2*B2*B2)

4-60

SROTMG(3SCI)

C

SROTMG(3SCI) SROTMG(3SCI)

Case 6:

If, in either case 4 or case 5, the updated parameters Dl and D2 have been rescaled below/above the
window

(m)**(-2).LE.ABS(D 1).LE.(m)**2

(m)**C-2).LE.ABSCD2).LE.Cm)**2

then the parameters Dl, Hll, H12, Bl and D2, H21, H22, respectively, are rescaled up/down by factors of
m. Rescaling occurs as many times as necessary to bring Dl or D2 within the preceding window. If Dl
and D2 are within the window on entry, rescaling occurs only once.

Output parameters are

PARAMCl)=-l.
PARAM(2)=Hll
PARAM(3)=H21

PARAM(4)=H12
PARAM(5)=H22

and Dl, D2, and Bl are written over by correctly scaled versions of case 5 or case 6.

If Dl<O, the matrix H=O is generated (that is, h 11 = h 12 = h21 = h22 = 0). PARAM(I)=-I, and the rest of
the elements of P ARAM contain O.

Case 7:

If D2*B2=O on entry, then H=I. Output is

PARAM(1)=-2.0

only.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

SROTG

SR-0113 4-61 C

SSBMV (3SCI) SSBMV(3SCI)

NAME

SSBMV - Multiplies a real vector by a real symmetric band matrix

SYNOPSIS

CALL SSBMV{uplo,n,k,alpha,a,lda,x,incx,beta,y,incy)

DESCRIPTION

SR-0113

SSBMV performs the matrix-vector operation

y:=alpha*a*x+beta*y

where alpha and beta are scalars, x and y are n element vectors, and a is an n-by-n symmetric band
matrix, with k super-diagonals. SSBMV has the following arguments:

uplo Character*l. On entry, uplo specifies whether the upper or lower triangular part of the band
matrix a is being supplied. When uplo='U' or 'u', only the upper triangular part of array a is
to be referenced. When uplo='L' or '1', only the lower triangular part of array a is to be refer­
enced. The uplo argument is unchanged on exit

n Integer. On entry, n specifies the order of the matrix a. The n argument must be at least zero.
The n argument is unchanged on exit

k Integer. On entry, k specifies the number'of super-diagonals of the matrix a. k must satisfy
O.LE.k. The k argument is unchanged on exit.

alpha Real. On entry, alpha specifies the scalar alpha. The alpha argument is unchanged on exit

a Real array of dimension (Ida,n). Before entry with uplo='U' or 'u', the leading (k+l}-by-n part
of the array a must contain the upper triangular band part of the symmetric matrix, supplied
column-by-column, with the leading diagonal of the matrix in row (k+l) of the array, the first
super-diagonal starting at position 2 in row k, and so on. The top left k-by-k triangle of the
array a is not referenced. The following program segment will transfer the upper triangular
part of a symmetric band matrix from conventional full matrix storage to band storage:

DO 20, J=I,N
M = K+1-J
DO 1 0, I =MAX (1 . I - K). J

A(M+I.J) = MATRIX(I.I)
10 CONTINUE
20 CONTINUE

Before entry with uplo='L' or '1', the leading (k+l}-by-n part of the array a must contain the
lower triangular band part of the symmetric matrix, supplied column-by-column, with the lead­
ing diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in
row 2, and so on. The bottom right k-by-k triangle of the array a is not referenced. The fol­
lowing program segment will transfer the lower /triangular part of a symmetric band matrix
from conventional full matrix storage to band storage:

DO 20. J=I.N
M = 1-1
DO 10, 1=1. MIN(N.I+K)

A(M+I.I) = MATRIX(I.J)
10 CONTINUE
20 CONTINUE

4-62 C

SSBMV(3SCI)

NOTE

SSBMV (3SCI)

The a argument is unchanged on exit.

Ida Integer. On entry, Ida specifies the first dimension of a as declared in the cal­
ling (sub)program. Ida must be at least (k + I). The Ida argument is
unchanged on exit.

x Real array of dimension at least (l+(n-l)* abs(incx». Before entry, the incre­
mented array x must contain the vector x. The x argument is unchanged on
exit.

incx Integer. On entry, incx specifies the increment for the elements of x. incx
must not be zero. The incx argument is unchanged on exit.

beta Real. On entry, beta specifies the scalar beta. The beta argument is
unchanged on exit.

y Real. Array of dimension at least (1+(n-l)*abs(incy». Before entry, the
incremented array y must contain the vector y. The y argument is unchanged
on exit.

incy Integer. On entry, incy specifies the increment for the elements of y. incy
must not be zero. The incy argument is unchanged on exit

The SSBMV routine is a level 2 Basic Linear Algebra Subroutine (BLAS2).

SR-OI13 4-63 c

SSUM(3SCI)

NAME

SSUM, CSUM - Sums the elements of a real or complex vector

SYNOPSIS

sum=SSUM(n,sx,inex)

sum=CSUM(n,ex,incx)

DESCRIPTION

n Number of elements in the vector. If n S 0, SSUM and CSUM return 0.

sx Real vector to be summed

ex Complex vector to be summed

inex Skip distance between elements of sx or ex

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 4-64

SSUM(3SCI)

C

SSW AP (3SCI) SSW AP (3SCI)

NAME

SSWAP, CSWAP - Swaps two real or complex arrays

SYNOPSIS

CALL ssw AP(n,sx,incx,sy,incy)

CALL CSWAP(n,ex,inex,ey,iney)

DESCRIPTION

n Number of elements in the vector. If n S Ot SSWAP and CSWAP are returned.

sx One real vector

ex One complex vector

inex Skip distance between elements of sx or ex

sy Another real vector

ey Another complex vector

incy Skip distance between elements of sy or ey. For contiguous elements. incy=l.

SSW AP exchanges two real vectors. CSW AP exchanges two complex vectors.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 4-65 c

SSYMV(3SCI) SSYMV (3SCI)

NAME

SSYMV - Multiplies a real vector by a real symmetric matrix

SYNOPSIS

CALL SSYMV(uplo,n,alpha,a,lda,x,incx,beta,y,incy)

DESCRIPTION

NOTE

SR-Ol13

SSYMV performs the matrix-vector operation

y := alpha*a*x + beta*y

where alpha and beta are scalars, x and y are n element vectors, and a is an n-by-n symmetric matrix.
SSYMV has the following arguments:

uplo Character*l. On entry, uplo specifies whether the upper or lower triangular part of the band matrix
a is being supplied. When uplo='U' or 'u', only the upper triangular part of array a is to be refer­
enced. When uplo='L' or '1', only the lower triangular part of array a is to be referenced. The uplo
argument is unchanged on exit.

n Integer. On entry, n specifies the order of the matrix a. The n argument must be at least zero. The
n argument is unchanged on exit.

alpha Real. On entry, alpha specifies the scalar alpha. The alpha argument is unchanged on exit.

a Real array of dimension (lda,n). Before entry with uplo='U' or 'u', the leading n-by-n upper tri­
angular part of the array a must contain the upper triangular part of the symmetric matrix and the
strictly lower triangular part of a is not referenced. Before entry with uplo='L' or '1', the leading
n-by-n part of the array a must contain the lower triangular part of the symmetric matrix and the
strictly upper triangular part of a is not referenced. The a argument is unchanged on exit

Ida Integer. On entry, Ida specifies the first dimension of a as declared in the calling subprogram. Ida
must be at least max(I,n). The Ida argument is unchanged on exit.

x Real array of dimension at least (1+(n-l)* abs(incx ». Before entry, the incremented array x must
contain the n element vector x. The x argument is unchanged on exit.

incx Integer. On entry, incx specifies the increment for the elements of x. incx must not be zero. The
incx argument is unchanged on exit.

beta Real. On entry, beta specifies the scalar beta. When beta is supplied as zero, y need not be set on
input. The beta argument is unchanged on exit

y Real. Array of dimension at least (1+(n -1)* abs(incy ». Before entry, the incremented array y must
contain the n element vector y. On exit, y is overwritten by the updated vector y.

incy Integer. On entry, incy specifies the increment for the elements of y. incy must not be zero. The
incy argument is unchanged on exit.

The SSYMV routine is a level 2 Basic Linear Algebra Subroutine (BLAS2).

4-66 C

SSYR(3SCI) SSYR(3SCI)

NAME

SSYR - Performs symmetric rank 1 update of a real symmetric matrix

SYNOPSIS

CALL SSYR(uplo,n,alpha,x,incx,a,lda)

DESCRIPTION

NOTE

SR-0113

SSYR performs the symmetric rank 1 operation

a := alpha*x*x' + a

where alpha is a real scalar, x is an n element vector, and a is an n-by-n symmetric matrix. SSYR has the fol­
lowing arguments:

uplo Character* 1. On entry, uplo specifies whether the upper or lower triangular part of the array a is to
be referenced. When uplo= 'U' or 'u', only the upper triangular part of array a is to be referenced.
When uplo='L' or '1', only the lower triangular part of array a is to be referenced. The uplo argu­
ment is unchanged on exit

n Integer. On entry, n specifies the number of columns of the matrix a. The n argument must be at
least zero. The n argument is unchanged on exit

alpha Real. On entry, alpha specifies the scalar alpha. The alpha argument is unchanged on exit.

x Real. Array of dimension at least (l+(m-l)* abs(incx». Before entry, the incremented array x
must contain the m element vector x. The x argument is unchanged on exit.

incx Integer. On entry, incx specifies the increment for the elements of x. incx must not be zero. The
incx argument is unchanged on exit.

a Real array of dimension (lda,n). Before entry, the leading m-by-n part of the array a must contain
the matrix of coefficients. On exit, a is overwritten by the updated matrix.

Ida Integer. On entry, Ida specifies the first dimension of a as declared in the calling subprogram. Ida
must be at least max(l,m). The Ida argument is unchanged on exit.

The SSYR routine is a level 2 Basic Linear Algebra Subroutine (BLAS2).

4-67 C

SSYR2(3SCI) SSYR2(3SCI)

NAME

SSYR2 - Performs symmetric rank 2 update of a real symmetric matrix

SYNOPSIS

CALL SSYR2(uplo.n.alpha,x.incx.y.incy.a.lda)

DESCRIPTION

NOTE

SR-0113

SSYR2 performs the symmetric rank 2 operation

a:=alpha*x*y'+alpha*y*x'+a

where alpha is a scalar, x and y are n element vectors, and a is an n-by-n symmetric matrix. SSYR2
has the following arguments:

up 10 Character* 1. On entry, uplo specifies whether the upper or lower triangular part of the band
matrix a is being supplied. When uplo='U' or 'u', only the upper triangular part of array a is
to be referenced. When uplo='L' or T, only the lower triangular part of array a is to be refer­
enced. The uplo argument is unchanged on exit.

n Integer. On entry, n specifies the order of the matrix a. The n argument must be at least zero.
The n argument is unchanged on exit.

alpha Real. On entry, alpha specifies the scalar alpha. The alpha argument is unchanged on exit.

x Real array of dimension at least (1+(n-l)* abs(incx». Before entry, the incremented array x
must contain the n element vector x. The x argument is unchanged on exit.

incx Integer. On entry, incx specifies the increment for the elements of x. incx must not be zero.
The incx argument is unchanged on exit.

y Real. Array of dimension at least (l+(n-l)* abs(incy ». Before entry, the incremented array y
must contain the n element vector y. The y argument is unchanged on exit.

incy Integer. On entry, incy specifies the increment for the elements of y. incy must not be zero.
The incy argument is unchanged on exit.

a Real array of dimension (Ida,n). Before entry with uplo='U' or 'u', the leading n-by-n upper
triangular part of the array a must contain the upper triangular part of the symmetric matrix
and the strictly lower triangular part of a is not referenced. On exit, the upper triangular part of
the array a is overwritten by the upper triangular part of the updated matrix. Before entry with
uplo='L' or '1', the leading n-by-n lower triangular part of the array a must contain the lower
triangular part of the symmetric matrix and the strictly upper triangular part of a is not refer­
enced. On exit, the lower triangular part of the array a is overwritten by the lower triangular
part of the Updated matrix.

Ida Integer. On entry, Ida specifies the first dimension of a as declared in the calling
(sub)program. Ida must be at least max(1/l). The Ida argument is unchanged on exit.

The SSYR2 routine is a level 2 Basic Linear Algebra Subroutine (BLAS2).

4-68 C

STBMV (3SCI) STBMV(3SCI)

NAME

STBMV - Multiplies a real vector by a real triangular band matrix

SYNOPSIS

CALL STBMV(uplo,trans,diag,n,k,a,lda.x,incx)

DESCRIPTION

SR-OI13

STBMV performs one of the matrix-vector operations

x:= a*x or x:= a'*x

where x is an n element vector, and a is an n-by-n unit, or non-unit, upper or lower triangular band matrix,
with (k + 1) diagonals. STBMV has the following arguments:

uplo Character* 1. On entry, uplo specifies whether matrix is an upper of lower triangular matrix. When
uplo='U' or 'u', a is an upper triangular matrix. When uplo='L' or '1', a is a lower triangular
matrix. The uplo argument is unchanged on exit.

trans Character*1. On entry, trans specifies the operation to be performed. If trans = 'N' or 'n', x :=
a*x. If trans = 'T' or 't', x := a' *x. The trans argument is unchanged on exit.

diag Character*1. On entry, diag specifies whether or not a is unit triangular. If diag = 'U' or 'u', a is
assumed to be unit triangular. If diag = 'N' or 'n', a is not assumed to be unit triangular. The diag
argument is unchanged on exit.

n Integer. On entry, n specifies the order of the matrix a. The n argument must be at least zero. The
n argument is unchanged on exit.

k Integer. On entry with uplo='U' or 'u', k specifies the number of super-diagonals of the matrix a.
On entry with uplo='L' or '1', k specifies the number of sub-diagonals of the matrix a. k must
satisfy O.LE.k. The k argument is unchanged on exit.

a Real array of dimension (lda,n). Before entry with uplo= 'U' or 'u', the leading (k+ 1)-by-n, part of
the array a must contain the upper triangular band part of the matrix of coefficients, supplied
column by column, with the leading diagonal of the matrix in row (k+ 1) of the array, the first
super-diagonal starting at position 2 in row k, and so on. The top left k-by-k triangle of the array a is
not referenced. The following program segment will transfer the upper triangular band matrix from
conventional full matrix storage to band storage:

0020, J=l,N
M = K+I-J
DO 1 0, I =MAX (1 , J - K), J

A(M+I,J) = MATRIX(I,J)
10 CONTINUE
20 CONTINUE

Before entry with uplo='L' or '1', the leading (k+l)-by-n part of the array a must contain the lower
triangular band part of the matrix of coefficients, supplied column-by-column, with the leading
diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and
so on. The bottom right k-by-k triangle of the array a is not referenced. The following program seg­
ment will transfer a lower triangular band matrix from conventional full matrix storage to band
storage:

4-69 C

STBMV (3SCI)

NOTE

10
20

DO 20, I=l,N
M = 1-1
DO 10, 1=1, MIN(N,I+K)

A(M+I,I) = MATRIX(I,I)
CONTINUE

CONTINUE

STBMV (3SCI)

Note that when diag='U' or 'u' the elements of the array a corresponding to the diagonal
elements of the matrix are not referenced, but are assumed to be unity. The a argument is
unchanged on exit.

Ida Integer. On entry. Ida specifies the first dimension of a as declared in the calling
subprogram. Ida must be at least (k + I). The Ida argument is unchanged on exit.

x Real array of dimension at least (l+(n-I)* abs(incx». Before entry, the incre­
mented array x must contain the n element vector x. On exit. x is overwritten with
the transfonned vector x.

incx Integer. On entry. incx specifies the increment for the elements of x. incx must
not be zero. The incx argument is unchanged on exit.

The STBMV routine is a level 2 Basic Linear Algebra Subroutine (BLAS2).

SR-0113 4-70 c

STBSV(3SCI) STBSV(3SCI)

NAME

STBSV - Solves a real triangular banded system of linear equations

SYNOPSIS

CALL STBSV(uplo ,trans ,diag ,n,k,a,lda,x,incx)

DESCRIPTION

SR-OI13

STBSV solves one of the systems of equations

a*x=b or a'*x=b

where b and x are n element vectors, and a is an n-by-n unit, or non-unit, upper or lower triangular band
matrix, with (k + 1) diagonals.

No test for singularity or near-singularity is included in this routine. Such tests must be performed before
calling this routine.

uplo Character* 1. On entry, uplo specifies whether matrix is an upper of lower triangular matrix. When
uplo='U' or 'u', a is an upper triangular matrix. When uplo='L' or T, a is a lower triangular
matrix. The uplo argument is unchanged on exit

trans Character*1. On entry, trans specifies the equation to be solved. If trans='N' or 'n', a*x = b. If
trans='T' or 't', a' *x = b. The trans argument is unchanged on exit

diag Character*1. On entry, diag specifies whether or not a is unit triangular. If diag='U' or 'u', a is
assumed to be unit triangular. If diag='N' or 'n', a is not assumed to be unit triangular. The diag
argument is unchanged on exit

n Integer. On entry, n specifies the order of the matrix a. The n argument must be at least zero. The
n argument is unchanged on exit

k Integer. On entry with uplo='U' or 'u', k specifies the number of super-diagonals of the matrix a.
On entry with uplo='L' or T, k specifies the number of sub-diagonals of the matrix a. k must
satisfy O.LE.k. The k argument is unchanged on exit.

a Real array of dimension (lda,n). Before entry with uplo='U' or 'u', the leading (k+l)-by-n part of
the array a must contain the upper triangular band part of the matrix of coefficients, supplied
column-by-column, with the leading diagonal of the matrix in row (k+l) of the array, the first
super-diagonal starting at position 2 in row k, and so on. The top k-by-k traingle of the array a is
not referenced. The following program segment will transfer an upper triangular band matrix from
conventional full matrix storage to band storage:

00 20, J=l,N
M = K+1-J
00 1 0, I =MAX (1 , J - K), J

A(M+I,J) = MATRIX(I.J)
10 CONTINUE
20 CONTINUE

Before entry with uplo='L' or '1', the leading (k+ 1)-by-n part of the array a must contain the lower
triangular band part of the matrix of coefficients, supplied column-by-column, with the leading
diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and
so on. The bottom right k by k triangle of the array a is not referenced. The following program seg­
ment will transfer a lower triangular band matrix from conventional full matrix storage to band
storage:

4-71 C

STBSV(3SCI)

NOTE

10
20

DO 20, J=l,N
M = 1-J
DO 10, I=J, MIN(N,J+K)

A(M+I,J) = MATRIX(I,J)
CONTINUE

CONTINUE

STBSV(3SCI)

Note that when diag='U' or 'u' the elements of the array a corresponding to the diagonal
elements of the matrix are not referenced, but are assumed to be unity. The a argument is
unchanged on exit.

Ida Integer. On entry, Ida specifies the first dimension of a as declared in the calling
(sub)program.lda must be at least (k+l). The Ida argument is unchanged on exit.

x Real array of dimension at least (l+(n-l)* abs(inex». Before entry, the incre­
mented array x must contain the n element right-hand side vector h. On exit, x is
overwritten with the solution vector x.

in ex Integer. On entry, inex specifies the increment for the elements of x. inex must
not be zero. The inex argument is unchanged on exit.

The STBSV routine is a level 2 Basic Linear Algebra Subroutine (BLAS2).

SR-01l3 4-72 c

STRMV (3SCI) STRMV (3SCI)

NAME

STRMV - Multiplies a real vector by a real triangular matrix

SYNOPSIS

CALL STRMV(uplo,trans,diag,n,a,lda,x,incx)

DESCRIPTION

NOTE

SR-0113

STRMV solves one of the matrix-vector operations

x :=a*x or x :=a'*x

where x is an n element vector, and a is an n-by-n unit, or non-unit, upper or lower triangular band
matrix.

uplo Character* 1. On entry, uplo specifies whether matrix is an upper of lower triangular matrix.
When uplo='U' or 'u', a is an upper triangular matrix. When uplo='L' or T, a is a lower tri­
angular matrix. The uplo argument is unchanged on exit.

trans Character*1. On entry, trans specifies the equation to solved as follows: If trans='N' or 'n'
x :=a*x. If trans='T' o{, '1' x :=a'*x. The trans argument is unchanged on exit.

diag Character* 1. On entry, diag specifies whether or not a is unit triangular as follows: If
diag='U' or 'u' a is assumed to be unit triangular. If diag='N' or 'n' a is not assumed to be
unit triangular. The diag argument is unchanged on exit.

n Integer. On entry, n specifies the order of the matrix a. The n argument must be at least zero.
The n argument is unchanged on exit.

a Real array of dimension (lda,n). Before entry with uplo='U' or 'u', the leading n by n upper
triangular part of the array a must contain the upper triangular matrix and the strictly lower tri­
angular part of a is not referenced. Before entry with uplo='L' or '1', the leading n-by-n lower
triangular part of the array a must contain the lower triangular matrix and the strictly upper tri­
angular part of a is not referenced. Note that when diag='U' or 'u', the diagonal elements of
a are not referenced either, but are assumed to be unity. The a argument is unchanged on exit.

Ida Integer. On entry, Ida specifies the first dimension of a as declared in the calling
(sub)program. Ida must be at least max(l,nk). The Ida argument is unchanged on exit.

x Real array of dimension at least (l+(n-1)* abs(incx». Before entry, the incremented array x
must contain the n element vector b. On exit, x is overwritten with the transformed vector x.

incx Integer. On entry, incx specifies the increment for the elements of x. incx must not be zero.
The incx argument is unchanged on exit.

The STRMV routine is a level 2 Basic Linear Algebra Subroutine (BLAS2).

4-73 C

STRSV(3SCI) STRSV(3SCI)

NAME

STRSV - Solves a real triangular system of linear equations

SYNOPSIS

CALL STRSV(uplo .trans.diag .n.a.lda.x.incx)

DESCRIPTION

NOTE

SR-0113

STRSV solves one of the systems of equations

a*x = b or a' *x = b

where b and x are n element vectors, and a is an n-by-n unit, or non-unit, upper or lower triangular matrix.

uplo Character* 1. On entry, uplo specifies whether matrix is an upper of lower triangular matrix. When
uplo='U' or 'u', a is an upper triangular matrix. When uplo='L' or '1', a is a lower triangular
matrix. The uplo argument is unchanged on exit.

trans Character* 1. On entry, trans specifies the operation to be performed. If trans= 'N' or 'n', a*x = b.
If trans='T' or 't', a'*x = b. The trans argument is unchanged on exit.

diag Character*1. On entry, diag specifies whether or not a is unit triangular. If diag='U' or 'u', a is
assumed to be unit triangular. If diag='N' or 'n', a is not assumed to be unit triangular. The diag
argument is unchanged on exit.

n Integer. On entry, n specifies the order of the matrix a. The n argument must be at least zero. The
n argument is unchanged on exit.

a Real array of dimension (Ida,n). Before entry with uplo='U' or 'u', the leading n-by-n upper tri­
angular part of the array a must contain the upper triangular matrix and the strictly lower triangular
part of a is not referenced. Before entry with uplo='L' or '1', the leading n-by-n lower triangular
part of the array a must contain the lower triangular matrix and the strictly upper triangular part of a
is not referenced. Note that when diag='U' or 'u', the diagonal elements of a are not referenced
either, but are assumed to be unity. The a argument is unchanged on exit.

Ida Integer. On entry, Ida specifies the first dimension of a as declared in the calling subprogram. Ida
must be at least max(1,n). The Ida argument is unchanged on exit.

x Real array of dimension at least (1+(n-1)* abs(incx)). Before entry, the incremented array x must
contain the n element right-hand side vector b. On exit, x is overwritten with the solution vector x.

incx Integer. On entry, incx specifies the increment for the elements of x. incx must not be zero. The
incx argument is unchanged on exit.

The STRSV routine is a level 2 Basic Linear Algebra Subroutine (BLAS2).

4-74 C

SXMPY(3SCI) SXMPY (3SCI)

NAME

SXMPY - Computes the product of a row vector and a matrix and adds the result to another row vector

SYNOPSIS

CALL SXMPY(nl,ldy,y,n2,ldx,x,ldm,m)

DESCRIPTION

nl Number of columns in matrix y

ldy Leading dimension of matrix y

y Matrix y

n2 Number of columns in matrix x

ldx Leading dimension of matrix x

x Matrix x

ldm Leading dimension of matrix m

m Matrix m

SXMPY executes an operation equivalent to the following Fortran code:

SUBROUTINE SXMPY(Nl,LDY,Y,N2,LDX,X,LDM,M)
REAL Y(LDY,l), X(LDX,l), M(LDM,l)
DO 20 J=1,N2

DO 20 I=l,Nl
Y(1,I)=Y(l,I) + X(1,J) * MO,I)

20 CONTINUE
RETURN
END

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 4-75 C

INTRO(3X) INTRO(3X)

s. FAST FOURIER TRANSFORM ROUTINES

These routines apply a Fast Fourier transform. Each routine can compute either a Fourier analysis or a
Fourier synthesis. Detailed descriptionst algorithmst performance statisticst and examples of these rou­
tines appear in Complex Fast Fourier Transform Binary Radix Subroutine (CFFf2)t CRI publication SN-
0203; Real to Complex Fast Fourier Transform Binary Radix Subroutine (RCFFT2), CRI publication SN-
0204; and Complex to Real Fast Fourier Transform Binary Radix Subroutine (CRFFT2), CRI publication
SN-0206.

IMPLEMENTATION

All routines in this section are available to users of both the COS and UNICOS operating systems.

INTRODUCTION

SR-0113

Each routine has the same argument list: (init,ix,n,x,work,y).

Parameter Description

init Initialization flag

ix Analysis/Synthesis flag

n Size of transform

x Input vector

work Working storage vector

y Result vector

The routines are called the first time with init=tO and n as a power of 2 to initialize the needed sine and
cosine tables in the working storage area work. Then for each input vector of length n (length (n!l) + 1
for CRFFf2)t each routine is called with init=O. The sign of ix determines whether a Fourier synthesis
or a Fourier analysis is computed: if the sign of ix is negativet a synthesis is computed; if the sign is
positivet an analysis is computed. The following table shows the size and formats of x, y, and work for
each routine.

Arguments for Fast Fourier Transform Routines

Argument CFFT2 RCFFT2 CRFFT2

x Complex n Real n Complex
(n/2)+1

work Complex Complex Complex
(5/2)n (3/2)n+2 (3/2)n+2

y Complex n Complex Real n
(n/2)+1

The following table contains the purposet namet and entry of each Fast Fourier transform routine.

5-1 C

INTRO(3X) INTRO(3X)

Fast Fourier Transform Routines
Purpose Name Entry

Apply a complex Fast Fourier transform CFFf2 CFFf2
Apply multiple complex-to-real Fast CFFfMLT CFFfMLT
Fourier transforms
Apply a complex to real Fast Fourier CRFFf2 CRFFf2
transform
Apply a real to complex Fast Fourier RCFFf2 RCFFf2
transform
Apply multiple real-to-complex Fast RFFfMLT RFFfMLT
Fourier transforms

5-2 c

CFFI'2 (3SCI) CFFf2(3SCI)

NAME

CFFf2 - Applies a complex Fast Fourier transform

SYNOPSIS

CALL CFFf2(init,ix,n,x,work,y)

DESCRIPTION

init :;to Generates sine and cosine tables in work
=0 Calculates Fourier transforms using sine and cosine tables

of the previous call

ix >0 Calculates a Fourier analysis
<0 Calculates a Fourier synthesis

n Size of the Fourier transform; 2'" where 3~m for the CRAY X-MP computer system and
2~ for the CRA Y -1 computer system.

x Input vector. Vector of n complex values. Range: 102466 / n ~ I x (i) I ~ n * (10-2466) for
i=l, n. The input vector x can be equivalenced to either y or work; then the input sequence
is overwritten.

work Working storage. Vector of (;)n complex values.

y Result vector. Vector of n complex values.

CFFf2 calculates

ft-l 2'
Yk = L Xj exp(±--!.l jk)

j:::{) n

for k=O,I, ... ,n-l

where Xi i=O,l, ... ,n-l are stored in X(I),I=I,N
Yi i=O,l, ... ,n-l are stored in Y(I),I=l,N

and the sign of the exponent is determined by SIGN(IX).

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 5-3 C

CFFfMLT (3SCI) CFFTMLT(3SCI)

NAME

CFFTMLT - Applies complex-to-complex Fast Fourier transforms on multiple input vectors

SYNOPSIS

CALL CFFTMLT(ar,ai,work,trigs,i/ax,incJump,n,lot,isign)

DESCRIPTION

CFFTMLT applys complex-to-complex Fast Fourier transforms on more than one input vector. The
arguments are as follows:

ar Input vector. Vector of n*lot real values. It contains the real part of the input data. Result
vector. It contains the real part of the transformed data.

ai Input vector. Vector of n*lot real values. It contains the imaginary part of the input data.
Result vector. It contains the imaginary part of the transformed data.

work Working storage; a work area of size 4*n*lot real elements.

trigs Input vector of size 2*n. It must be initialized to contain sine and cosine tables. Vectors trigs
and ifax(*) can be initialized by the following call:

CALL CFTFAX(n,ifax;trigs).

ifax Input vector. Vector of size 19 integer elements. It has a previously prepared list of factors of n

inc The increment within each data vector.

jump The increment between the start of each data vector. inc and jump apply to both the real and
imaginary data. To obtain best performance jump should be an odd number.

n Length of the data vectors n must be factorable as: n = (2**p) * (3**q) * (4**r) * (5**s) ,
where p, q, rand s are integers.

lot The number of data vectors

isign + 1 for fourier analysis
-1 for fourier synthesis

CFFTMLT computes:

1&-1

(ar(inc* j+ 1),ai (inc * j+l)) = L exp (isign*iota* 2*pi*k* j In)(ar (inc*k+ 1),ai (inc*k+ 1))
k=O

for j = 0,2, ... ,n-1.

This calculation is performed for each of the n-vectors in the input.

The normalization used by cfftmlt is different from that used by cfft2, crfft2, and rcfft2.

Vectorization is achieved by doing the transforms in parallel, with vector length = lot.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 5-4 c

CRFFf2 (3SCI)

NAME

CRFFf2 - Applies a complex to real Fast Fourier transform

SYNOPSIS

CALL CRFFf2(init,zX,n,x,work,y)

DESCRIPTION

init

ix >0
<0

Generates sine and cosine tables in work
Calculates Fourier transforms using sine and cosine tables
of the previous call

Calculates a Fourier analysis
Calculates a Fourier synthesis

n Size of the Fourier transform; 2m where 3~

n
x Input vector. Vector of ("2)+ 1 complex values.

Range: 102466 / n ~ I x (i) I ~ n (** (10-2466) for i=I,n.

work Working storage. Vector of (;)n+2 complex values.

y Result vector. Vector of n real values.

CRFFf2 (3SCI)

CRFFf2 calculates the following equation, where the Xj elements are complex and Xj=x,,_j for

j =0,1, ... (;). Only the first (;)+ 1 elements are stored in x.

,,-1 2·
Yk = L Xj exp(±~ jk)

j::{) n

for k=O,I, ... ,n-l

where Xj elements are complex and related by Xj =x,,_j

for j =1,2,3, ... ,(;)

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-01l3 5-5 C

RCFFf2 (3SCI)

NAME

RCFFT2 - Applies a real to complex Fast Fourier transform

SYNOPSIS

CALL RCFFT2(init,ix,n,x,work,y)

DESCRIPTION

init

ix >0
<0

Generates sine and cosine tables in work
Calculates Fourier transforms using sine and cosine tables
of the previous call

Calculates a Fourier analysis
Calculates a Fourier synthesis

n Size of the Fourier transform; 2m where 3~m

x Input vector. Vector of n complex values. Range:
102466 / (2 * n) ~ I xCi) I ~ (2 * n) * (10-2466) for i=l,n.

work Working storage. Vector of (;)n+2 complex values.

n
y Result vector. Vector of (2")+ 1 complex values.

RCFFT2 calculates

where

n-l 2'
y" = 2 L Xj exp(±~ jk)

j:IJ n

n
for k=0,1~""(2)

Xi i=O,I, ... ,n-l are stored in X(I),I=l,N

Yi i=O,I, ... ,(~) are stored ~ Y(I),I=l,(~)+ 1

and the sign of the exponent is determined by SIGN(IX).

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 5-6

RCFFf2(3SCI)

C

RFFfMLT (3SCI) RFFfMLT (3SCI)

NAME

RFFfMLT - Applies complex-to-real and real-to-complex Fast Fourier transforms on multiple input
vectors

SYNOPSIS

CALL RFFfML T(a,work,trigs,ifax,inc jump,n,lot,isign)

DESCRIPTION

SR-0113

RFFfMLT applys complex-to-real and real-ta-complex Fast Fourier transforms on more than one input
vector. The arguments are as follows:

a When isign = -1, the n real input values for each data vector:
a (1),a(inc+l), ... ,a (inc * (n-l)+I)
should be stored in array a with stride=inc. The computed output vector is:
a (2*inc*i + 1),a (2*inc*i +inc + 1),i =0, 1 , ... ,n 12
The i-th fourier coefficient is:
(a (2*inc*i + l),a (2*inc*i +inc + 1»
When isign = + 1, the input and output data formats are reversed. It is important to note that for
i= 1 and i =n 12 the imaginary parts of the complex input numbers must be 0.

work Working storage; a work area of size 2*n*lot real elements.

trigs Input vector of size 2*n. It must be initialized to contain sine and cosine tables. Vectors trigs
and ifax(*) can be initialized by:
CALL FFfFAX(n,ifax,trigs).

ifax Input vector. Vector of size 19 integer elements. It has a previously prepared list of factors of n.

inc The increment within each data vector.

jump The increment between the start of each data vector. inc and jump apply to both the real and
imaginary data. For the best performance, jump should be an odd number.

n Length of the data vectors. nmust be factorable as: n = (2**p) * (3**q) * (4**r) * (5**s) ,
where p, q, rand s are integers.

lot The number of data vectors

isign -1 to calculate real-to-complex fourier transform
+ 1 to calculate complex-to-real fourier transform

For isign = -1, RFFfMLT calculates the following:

11-1

(ar(inc*j+l),ai(inc*j+l» = It exp(-iota*2*pi*k*jln)*a(inc*k+l)ln
k=O

for j = 0,1, ... ,n/2. The numbers on the left side of the equation are complex.

This calculation is performed for each of the n-vectors in the input.

For isign = +1, RFFfMLT calculates the following:

11-1

a (inc* j+l) = L exp(iota* 2*pi*k* j In)* (a (2*inc*k+l),a (2*inck+inc+l»
k=O

5-7 C

RFFfMLT(3SCI) RFFfMLT(3SCI)

for j = 0,1 , ... ,n. Each input vector satisfies the relation:

(a (2*inc*k +l),a (2*inc*k+inc +1» = (a (2*inc* (n-k)+l),-a (2*inc* (n-k)+inc+1), k = O,1, ... ,n12.

Only the first n/2+ 1 complex numbers are needed.

This calculation is performed for each of the n-vectors in the input.

It is important to note that for isign = -1, the division by n uses a normalization that is different from
the normalization used by CFFT2. CRFFf2, RCFFT2, and CFFfMLT.

Vectorization is achieved by doing the transforms in parallel, with vector length = lot.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 5-8 c

INTRO(3X) INTRO(3X)

6. SEARCH ROUTINES

The following search routines are written to run optimally on Cray computer systems. These subpro­
grams use the call-by-address convention when called by a Fortran or CAL program. See section 1,
Introduction, for details of the call-by-address convention.

The subprograms are grouped as follows:

• Maximum/minimum element search routines

• Vector search routines

IMPLEMENTATION

All routines in this section are available to users of both the COS and UNICOS operating systems.

MAXIMUM/MINIMUM ELEMENT SEARCH ROUTINES

SR-OI13

The maximum or minimum element search routines find the largest or smallest element of a vector or
argument and return either the element or its index.

To return an index - ISMAX and ISMIN return the index of the maximum or minimum vector element,
respectively. ISAMAX, ICAMAX, and ISAMIN search for maximum or minimum absolute values in a
real vector and return the index. INTMAX and INTMIN are the corresponding maximum and minimum
search routines for an integer vector. INTFLMAX and INTFLMIN return the index of the maximum and
minimum value within a table. The type declaration for these routines is integer. For further details
regarding type and dimension declarations for variables occurring in these subprograms, see section 4,
Linear Algebra Subprograms.

To return an element - The following functions find the maximum or minimum elements of two or
more vector arguments: MAXO, AMAXI, DMAXI, AMAXO, MAXI, MINO, AMINI, DMINI, AMINO, and
MINI. These functions differ mainly in their types for integer, real, and double-precision arguments.
In the description of these functions, the argument type does not always reflect the function type.

The following table contains the purpose, name, and entry of each maximum/minimum element search
routine.

6-1 C

INTRO(3X) INTRO(3X)

MaximumIMinim urn Element Search Routines
Purpose Name Entry

Find the first index of the largest ISAMAX ISAMAX
absolute value of the elements of a ICAMAX
real or complex vector

Retwn the index of the maximum value INTFLMAX
in a table

INTFLMAX
Retwn the index of the minimum value INTFLMIN
in a table

Retwn the index of the integer vector INTMAX
element with maximum value

INTMAX
Return the index of the integer vector INTMIN
element with minimum value

Return the index of the vector element ISMAX
with maximum value

Return the index of the vector element IS MIN ISMAX
with minimum value

Return the index of the vector element ISAMIN
with minimum absolute value

Return the largest of all arguments MAXO MAX
AMAXI
DMAXI
AMAXO
MAXI

Return the smallest of all arguments MINO MIN
AMINI
DMINI
AMINO
MINt

VECTOR SEARCH ROUTINES

SR-Ol13

Vector search routines have one of the following functions:

• To return occurrences of an object in a vector

• To search for an object in a vector

To return occurrences of an object in a vector - These integer routines return the number of
occurrences of a given relation in a vector. The routines ILLZ and llLZ find the first occurrence.
ILSUM counts the number of such occurrences. All three of these functions are described under the
heading IILZ.

To search for an object in a vector - ISRCH routines find the positions of an object in a vector. These
include the following: ISRCHEQ, ISRCHNE, ISRCHFLT, ISRCHFLE, ISRCHFGT, ISRCHFGE,
ISRCHILT, ISRCHILE, ISRCHIGT, ISRCHIGE, ISRCHMEQ, ISRCHMNE, ISRCHMLT, ISRCHMLE,
ISRCHMGT, and ISRCHMGE. These functions return the first location in an array that has a true rela­
tional value to the target

6-2 C

INTRO(3X) lNTRO(3X)

SR-0113

The WHEN routines are similar to the ISRCH routines in that they return the locations of elements in an
array that have a true relational value to the target. However, all locations are returned in an indexed
array. The WHEN routines are WHENEQ, WHENNE, WHENFLT, WHENFLE, WHENFGT, WHENFGE,
WHENILT, WHENll..E, WHENIGT, WHENIGE, WHENME, WHENNE, WHENMLT, WHENMLE,
WHENMGT and, WHENMGE.

The CLUS routines find the index of clusters that have a true relational value to the target. These rou­
tines are further divided into integer (CLUSILT, CLUSILE, CLUSIGT, CLUSIGT) and real (CLUSFLT,
CLUSFLE, CLUSFGT, and CLUSFGE) routines.

The OSRCHI and OSRCHF subroutines return the index of the location that would contain the target in
an ordered array. This is useful for sorting elements into a new array. Searching always begins at the
lowest value in the ordered array. The total number of occurrences of the target in the array can also
be returned.

The following table contains the purpose, name, and entry of each ISRCH, WHEN, CLUS, and OSRCH
routine.

ISRCH, WHEN, CLUS, and OSRCH Routines
Purpose Name Entry

Find the index of clusters equal or CLUSEQ CLUSEQ
not equal to the target CLUSNE

Find the index of clusters of real elements CLUSFLT CLUSFLT
in relation to a target CLUSFLE

CLUSFGT
CLUSFGE

Find the index of cluster of integer elements CLUSILT CLUSILT
in relation to a target CLUSILE

CLUSIGT
CLUSIGE

Find the first array element that ISRCHEQ ISRCHEQ
is equal or not equal to the target ISRCHNE

Find the first real array element ISRCHFLT ISRCHFLT
that is less than, less than or ISRCHFLE
equal to, greater than, or greater ISRCHFGT
than or equal to the real target ISRCHFGE
Find the first integer array element ISRCHILT ISRCHILT
that is less than, less than or ISRCHILE
equal to, greater than, or greater ISRCHIGT
than or equal to the integer target ISRCHIGE

Find the first array element that ISRCHMEQ ISRCHMEQ
is equal or not equal to the target ISRCHMNE
within a field
Find the first array element ISRCHMLT ISRCHMLT
that is less than, less than or ISRCHMLE
equal to, greater than, or greater ISRCHMGT
than or equal to the target within a ISRCHMGE
field

6-3 c

INTRO(3X) INTRO(3X)

ISRCH, WHEN, CLUS, and OSRCH Routines (continued)
Purpose Name Entry

Search an ordered integer or real OSRCHI OSRCHI
array and return the index of the OSRCHF
first location that contains the
target
Find all array elements that are WHENEQ WHENEQ
equal or not equal to the target WHENNE
Find all real array elements that WHENFLT WHENFLT
are less than, less than or equal to, WHENFLE
greater than, or great than or WHENFGT
equal to the real target WHENFGE
Find all integer array elements that WHENILT WHENILT
are less than, less than or equal to, WHENILE
greater than, or greater than or WHENIGT
equal to the integer target WHENIGE
Find all array elements that are WHENMEQ WHENMEQ
equal or not equal to the target WHENNME
within a field
Find all array elements that WHENMLT WHENMLT
are less than, less than or equal to, WHENMLE
greater than, or great than or WHENMGT
equal to the target within a field WHENMGE

SR-0113 6-4 C

CLUSEQ (3SCI) CLUSEQ (3SCI)

NAME

CLUSEQ, CLUSNE - Finds index of clusters within a vector

SYNOPSIS

CALL CLUSEQ(n,array ,inc ,target,index,nn)

CALL CLUSNE(n,array,inc,target,index,nn)

DESCRIPTION

NOTE

n

array

inc

target

index

nn

Number of elements to be searched; length of the array. Type integer.

Real or integer vector to be searched

Skip distance between elements of the searched array; type integer.

Scalar to match logically. Type integer or real.

Indexes in array where the cluster starts and stops (one based); index should be dimen­
sioned INDEX(2,n/2).

Number of matches found; length of index. Type integer.

These routines find the index of clusters of occurrences equal to or not equal to a scalar within a vector.
The Fortran equivalent of the type of logical search performed for CLUSEQ and CLUSNE follows:

ARRAY(ItI=INDEX(1tJ)tINDEX(2,J)tJ=ltNN).EQ.TARGET

ARRAY (IJ=INDEX(l J)tINDEX(2,J),J=1 tNN).NE.T ARGET

Searching for the cluster allows vectorization. Before using these routines, you should know that the
logical search results in clusters of finds.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 6-5 c

CLUSFLT(3SCI) CLUSFLT(3SCI)

NAME

CLUSFLT, CLUSFLE, CLUSFGT, CLUSFGE - Finds real clusters in a vector

SYNOPSIS

CALL CLUSFLT(n,array,inc ,target,index,nn)

CALL CLUSFLE(n,array,inc ,target,index,nn)

CALL CLUSFGT(n,array,inc ,target,index,nn)

CALL CLUSFGE(n,array,inc,target,index,nn)

DESCRIPTION

NOTE

n Number of elements to be searched; length of the array. Type integer.

array Real vector to be searched

inc Skip distance between elements of the searched array. Type integer.

target Scalar to match logically. Type real.

index Indexes in array where the cluster starts and stops (one based); index should be dimen-
sioned INDEX(2,nI2).

nn Number of matches found; length of index. Type integer.

These routines find the index of clusters of real occurrences in relation to a scalar within a vector. The
Fortran equivalent of the type of logical search perfonned for follows:

ARRAY(I,I=INDEX(1,J),INDEX(2,J),J=1,NN).LT.TARGET

ARRAY(I,I=INDEX(1,J),INDEX(2,J))=1,NN).LE.T ARGET

ARRA Y(I,I=INDEX(1,J),INDEX(2,J),J=1 ,NN).GT.T ARGET

ARRAY (I,I=INDEX(1 ,J),INDEX(2,J»)=1 ,NN).GE.T ARGET

Searching for the cluster allows vectorization. Before using these routines, you should know that the
logical search results in clusters of finds.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 6-6 c

CLUSILT(3SCI) CLUSILT (3SCI)

NAME

CLUSILT, CLUSILE, CLUSIGT, CLUSIGE - Finds integer clusters in a vector

SYNOPSIS

CALL CLUSILT(n,iarray,inc,itarget,index,nn)

CALL CLUSILE(n,iarray,inc,itarget,index,nn)

CALL CLUSIGT(n,iarray ,inc ,itarget ,index,nn)

CALL CLUSIGE(n,iarray ,inc ,itarget ,index,nn)

DESCRIPTION

NOTE

n

iarray

inc

itarget

index

nn

Number of elements to be searched; length of the array. Type integer.

Integer vector to be searched

Skip distance between elements of the searched array. Type integer.

Scalar to match logically. Type integer.

Indexes in iarray where the cluster starts and stops (one based). index should be dimen­
sioned INDEX(2,n/2).

Number of matches found; length of index. Type integer.

These routines find the index of clusters of integer occurrences in relation to a scalar within a vector.
The Fortran equivalent of the type of logical search performed for follows:

IARRAY(I,I=INDEX(1,J),INDEX(2).J=1,NN).LT.ITARGET

IARRAY(I,I=INDEX(1),INDEX(2,J).J=1,NN).LE.ITARGET

IARRA Y(I,I=INDEX(1),INDEX(2,J).J =1 ,NN).GT.IT ARGET

IARRAY(I.I=INDEX(1),INDEX(2,J).J=1,NN).GE.ITARGET

Searching for the cluster allows vectorization. Before using these routines, you should know that the
logical search will result in clusters of finds.

IMPLEMENT AnON

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 6-7 c

IILZ(3SCI) IILZ(3SCI)

NAME

IILZ, ILLZ, ILSUM - Returns number of occurrences of object in a vector

SYNOPSIS

kount=llLZ(n,array,incl)

kount=ILLZ(n,array,incl)

kount=ILSUM(n,array,incl)

DESCRIPTION

n Number of elements to process in the vector (n=vector length if incl=l; n=vector length/2 if
incl=2, and so on)

array Vector operand

incl Skip distance between elements of the vector operand. For contiguous elements, incl= 1.

llLZ returns the number of zero values in a vector before the first nonzero value. ILLZ returns the
number of leading elements of a vector that do not have the sign bit set. ILSUM returns the number of
TRUE values in a vector declared logical.

When scanning backward (incl < 0), both llLZ and ILLZ start at the end of the vector and move back­
ward (L(N),L(N + INCL),L(N + 2*INCL), ...).

If array is of type logical, ILLZ returns the number of FALSE values before encountering the first
TRUE value.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 6-8 c

INTFLMAX (3SCI) INTFLMAX (3SCI)

NAME

INTFLMAX, INTFLMIN - Searches for the maximum or minimum value in a table

SYNOPSIS

index=INTFLMAX(n,ix,inc ,mask,shift)

index=INTFLMIN (n,ix,inc ,mask,shift)

DESCRIPTION

index Index in ix where maximum or minimum occurs (one based). Type integer.

n Number of elements to be searched; length of the array. Type integer.

ix Table to be searched. Type integer.

inc Skip distance through ix. Type integer.

mask Right -justified mask used for masking the table vector

shift Number of bits to right shift the table vector before masking

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 6-9 c

INTMAX(3SCI)

NAME

INTMAX, INTMIN - Searches for the maximum or minimum value in a vector

SYNOPSIS

index=INTMAX(n,ix,inc)

index=INTMIN(n,ix,inc)

DESCRIPTION

index Index in ix where maximum or minimum occurs (one based). Type integer.

n Number of elements to be searched; length of the array. Type integer.

ix Integer vector to be searched

inc Skip distance between elements of ix. Type integer.

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-0113 6-10

INTMAX(3SCI)

c

ISAMAX (3SCI) ISAMAX (3SCI)

NAME

ISAMAX, ICAMAX - Finds first index of largest absolute value in vectors

SYNOPSIS

imax=ISAMAX(n,sx,inex)

imax=ICAMAX(n,ex,inex)

DESCRIPTION

n Number of elements to process in the vector to be searched (n=vector length if inex=l;
n=vector length/2 if inex=2, and so on). If n S 0, ISAMAX and ICAMAX return O.

sx Real vector to be searched

ex Complex vector to be searched

inex Skip distance between elements of sx or ex; for contiguous elements, inex= I.

These integer functions find the first index of the largest absolute value of the elements of a vector.
ISAMAX returns the first index i such that

I Xi I = max I Xi I : j = I, ... ,n

where Xi is an element of a real vector. ICAMAX determines the first index i such that

I Real (x;) I + I Jmag(xi) I = max I Real (Xi) I + I Jmag (Xi) I : j = I, ... ,n

where Xi is an element of a complex vector.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 6-11 C

ISMAX (3SCI)

NAME

ISMAX, ISMIN, ISAMIN - Finds maximum, minimum, or minimum absolute value

SYNOPSIS

imax=ISMAX(n,sx,incx)

imin=ISMIN(n,sx,incx)

imin=ISAMIN(n,sx,incx)

DESCRIPTION

ISMAX(3SCI)

n Number of elements to process in the vector to be searched (n=vector length if incx=1;
n=vector length/2 if incx=2; and so on). If n ~ 0, ISMAX, ISMIN, and ISAMIN return O.

sx Real vector to be searched

incx Skip distance between elements of sx. For contiguous elements, incx=1.

ISMAX returns the first index i such that

I Xi I = max Xj :j = 1, ... ,n

These routines return the index of the element with maximum, minimum, or minimum absolute value.
ISMIN and ISAMIN return the first index i such that

I Xi I = min Xj :j = 1, ... ,n

where Xj is an element of a real vector.

ISMAX, ISMIN, and ISAMIN are integer functions.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 6-12 c

ISRCHEQ(3SCI) ISRCHEQ (3SCI)

NAME

ISRCHEQ, ISRCHNE - Finds array element equal or not equal to target

SYNOPSIS

location=ISRCHEQ(n,array,inc,target)

location=ISRCHNE(n,array ,inc ,target)

DESCRIYTION

NOTE

n Number of elements to be searched. If n ~O, 0 is returned.

array First element of the real or integer array to be searched

inc Skip distance between elements of the searched array

target Real or integer value searched for in the array. If target is not found, the returned value is
n+1.

ISRCHEQ finds the first real or integer array element that is equal to a real or integer target. ISRCHNE
returns the first location for which the relational value not equal to is true for real and integer arrays.

The Fortran equivalent code for ISRCHEQ is as follows:

FUNCTION ISRCHEQ(N ,ARRA Y,INC,TARGET)
DIMENSION ARRAY(N)
J=l
IF(INC.LT.O) J=1-(N-1)*INC
00 100 I=l,N

IF(ARRAY(J).EQ.TARGET) GO TO 200
J=J+INC

100 CONTINUE
200 ISRCHEQ=J

RETURN
END

ISRCHEQ replaces the ISEARCH routine, but it has an entry point of ISEARCH as well as ISRCHEQ.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 6-13 C

IS RCHFLT (3SCI) ISRCHFLT(3SCI)

NAME

ISRCHFLT, ISRCHFLE, ISRCHFGT, ISRCHFGE - Finds first real array element in relation to a real
target

SYNOPSIS

location=ISRCHFL T(n,array ,inc ,target)

location=ISRCHFLE(n,array,inc ,target)

location=ISRCHFGT(n,array,inc ,target)

location=ISRCHFG E(n,array,inc ,target)

DESCRIPTION

n

array

inc

target

Number of elements to be searched. If n ~O, 0 is returned.

First element of the real array to be searched

Skip distance between elements of the searched array

Real value searched for in array. If target is not found, the returned value is n+1.

These functions return the first location for which the relational operator is true for real arrays.

ISRCHFLT finds the first real array element that is less than the real target. ISRCHFLE finds the first
real array element that is less than or equal to the real target. ISRCHFGT finds the first real array ele­
ment that is greater than the real target. ISRCHFGE finds the first real array element that is greater than
or equal to the real target.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 6-14 c

ISRCHILT(3SCI) IS RCHILT (3SCI)

NAME

ISRCIllLT, ISRCHILE, ISRCHIGT, ISRCHIGE - Finds first integer array element in relation to an
integer target

SYNOPSIS

location=ISRCHIL T(n,iarray,inc ,itarget)

location=ISRCHILE(n,iarray,inc,itarget)

location=ISRCHIGT(n,iarray ,inc ,itarget)

location=ISRCHIGE(n,iarray,inc,itarget)

DESCRIPTION

n

iarray

inc

itarget

Number of elements to be searched. If n ~O, 0 is returned.

First element of the integer array to be searched

Skip distance between elements of the searched array

Integer value searched for in iarray. If target is not found, the returned value is n+1.

These functions return the first location for which the relational operator is true for integer arrays.

ISRCHILT finds the first integer array element that is less than the integer target. ISRCIDLE finds the
first integer array element that is less than or equal to the integer target. ISRCIDGT finds the first
integer array element that is greater than the integer target. ISRCIDGE finds the first integer array ele­
ment that is greater than or equal to the integer target.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OI13 6-15 c

ISRCHMEQ (3SCI) ISRCHMEQ(3SCI)

NAME

ISRCHMEQ, ISRCHMNE - Finds the index of the first occurrence equal or not equal to a scalar within
a field of a vector

SYNOPSIS

index=ISRCHMEQ(n,array ,inc ,target,mask,rig ht)

index=ISRCHMNE(n,array ,inc ,target,mask,right)

DESCRIPTION

index Index in array where first logical match with the target occurred (one based); index=n+1 if
match is not found. Type integer.

n Number of elements to be searched; length of the array. Type integer.

array Real or integer vector to be searched

inc Skip distance between elements of the searched array. Type integer.

target Scalar to match logically. Type integer or real.

mask Mask of l' s from the right; the size of the field looked for in the table.

right Number of bits to shift right so as to right-justify the field searched. Type integer.

The Fortran equivalent of ISRCHMEQ and ISRCHMNE follows:

T ABLE(ARRA Y(INDEX(I)J=l ~).EQ.T ARGET

T ABLE(ARRAY(INDEX(I),I=l,NN).NE.T ARGET

where TABLEOC)=AND(MASK,SHIF1R(X,RIGH1)

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 6-16 c

IS RCHMLT (3SCI) ISRCHMLT(3SCI)

NAME

ISRCHMLT, ISRCHMLE, ISRCHMGT, ISRCHMGE - Searches vector for logical match

SYNOPSIS

index=ISRCHMLT(n,array,inc,target,mask,right)

index=ISRCHMLE(n,array ,inc ,target ,mask,right)

index=ISRCHMGT(n ,array ,inc , targe t, mask, rig ht)

index=ISRCHMGE(n,array,inc,target,mask,right)

DESCRIPTION

These routines search an array, returning the index of the first element that creates a logical match with
the target. ISRCHMLT searches for an element less than the target, ISRCHMLE for one that is less
than or equal to the target, ISRCHMGT for one that is greater than the target, and ISRCHMGE for one
that is greater than or equal to the target.

index Index in array where first logical match with the target occurred (one based); index=n+l if
match is not found. Type integer.

n Number of elements to be searched; length of the array. Type integer.

array Real or integer vector to be searched

inc Skip distance between elements of the searched array. Type integer.

target Scalar to match logically. Type integer or real.

mask Mask of l' s from the right; the size of the field looked for in the table.

right Number of bits to shift right so as to right justify the field searched (type integer)

The Fortran equivalent of each logical search performed follows:

TABLE(ARRAY(INDEX(I),I=I,NN).LT.TARGET

T ABLE(ARRAY(INDEX(I),I=I,NN).LE.TARGET

TABLE(ARRAY(INDEX(I),I=I,NN).GT.TARGET

TABLE(ARRAY(INDEX(I),I=I,NN).GE.TARGET

where TABLE(X)=AND(MASK,SHIFIR(X,RIGHT)

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OI13 6-17 c

MAX (3SCI) MAX (3SCI)

NAME

MAXO, AMAXI, DMAXI, AMAXO, MAXI - Returns the largest of all arguments

SYNOPSIS

i=MAXO (integerltinteger2, ... , integer,,)

r=AMAXI(reall,realz, ... , real,,)

d=DMAXI(double 1 ,double z, ... , double,,)

r=AMAXO(integer 1 ,integer z, ... , integer,,)

i=MAXI(real hreaIZt ... , real,,)

DESCRIPTION

NOTE

MAXO, AMAXI, and DMAXI use integert real, and double-precision arguments, respectively, and return
the same type of result. Each function is of the same type as its arguments.

AMAXO (type real) returns a real result from integer arguments. MAXI (type integer) returns an integer
result from real arguments.

All of the arguments within each function must be of the same type, and the number of arguments n
must be in the range 2~ <64. Arguments must be in the range I x I <info

MAX is the generic name for the maximum routines MAXO, AMAXI, and DMAXI. Calls to

i=MAX(integer 1 ,integer z, ... ,integer ,,)
r=MAX(reall ,realz,···,real,,)
d=MAX(double 1 ,double zt ... ,double,,)

will return integer, realt and double-precision results, respectively.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 6-18 c

MIN(3SCI) MIN(3SCI)

NAME

MINO, AMINI, DMINI, AMINO, MINI - Returns the smallest of all arguments

SYNOPSIS

i=MINO(integer hinteger z, ... , integer II)

r=AMINI(reall ,real z, ... , real,,)

d=DMINI(double hdoublez, ... , double,,)

r=AMINO(integer l,integerz, ... , integer,,)

i=MINI(reall ,reaI2,···,real,,)

DESCRIPTION

NOTE

MINO, AMINI, and DMINI use integer, real, and double-precision arguments, respectively, and return
the same type of result. Each of these functions is of the same type as its arguments.

AMINO (type real) returns a real result from integer arguments. MINI (type integer) returns an integer
result from real arguments.

All of the arguments within each function must be of the same type, and the number of arguments n
must be in the range 2Sn <64. Arguments must be in the range I x I <info

MIN is the generic name for the minimum routines MINO, AMINI, and DMINI. Calls to

i=MIN(integer 1 ,integer 2, ... ,integer,,)
r=MIN(real },reaI2, ... ,real,,)
d=MIN(double 1 ,double 2, ... ,double,,)

will return integer, real, and double-precision results. respectively.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 6-19 C

OSRCHI(3SCI) OSRCHI(3SCI)

NAME

OSRCID, OSRCHF - Searches an ordered array and return index of the first location that contains the
target

SYNOPSIS

CALL OSRCID(n,iarray,inc,target,index,iwhere,inurn)

CALL OSRCHF(n,array,inc,target,index,iwhere,inurn)

DESCRIPTION

n

iarray

array

inc

target

index

iwhere

inurn

Number of elements of the array to be searched

Beginning address of the integer array to be searched

Beginning address of the real array to be searched

A positive skip increment indicates an ascending array and returns the index of the first ele­
ment encountered. starting at the beginning of the array.

A negative skip increment indicates a descending array and returns the index of the last ele­
ment encountered. starting at the beginning of the array.

Integer or real target of the search

Index of the first location in the searched array that contains the target; exceptional cases
are as follows:

If n < 1. index=O
If no equal array elements. index=n+ 1

Index of the first location in the searched array that would contain the target if it were
found in the array. If the target is found, index=iwhere. There is one exceptional case; if n
is less than 1. iwhere=O.

Number of target elements found in the array

OSRCID searches an ordered integer array and returns the index of the first location that contains the
target (type integer). OSRCHF searches an ordered real array and returns the index of the first location
that contains the target (type real).

Searching always begins at the lowest value in the ordered array. Even if the target is not found. the
index of the location that would contain the target is returned. The total number of occurrences of the
target in the array (inurn) can also be returned. .

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 6-20 c

WHENEQ (3SCI) WHENEQ (3SCI)

NAME

WHENEQ, WHENNE - Finds all array elements equal to or not equal to the target

SYNOPSIS

CALL WHENEQ(n,array ,inc ,target ,index,nval)

CALL WHENNE(n,array ,inc ,target ,index,nval)

DESCRIPTION

n Number of elements to be searched

array First element of the real or integer array to be searched

inc Skip distance between elements of the searched array

target Real or integer value searched for in the array

index Integer array containing the index of the found target in the array

nval Number of values put in the index array

WHENEQ finds all real or integer array elements that are equal to a real or integer target. WHENNE
returns all locations for which the relational value not equal to is true for real and integer arrays.

The Fortran equivalent follows:

INA=1
NVAL=O
IF(INC .LT. 0) INA=(-INC)*(N-l)+1
DO 100 I=I,N

IF(ARRAY(INA) .EQ. TARGEn THEN
NY AL=NY AL+ 1
INDEX(NV AL)=I

END IF
INA=INA+INC

100 CONTINUE

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OI13 6-21 C

WHENFLT (3SCI) WHENFLT(3SCI)

NAME

WHENFLT, WHENFLE, WHENFGT, WHENFGE - Finds all real array elements in relation to the real
target

SYNOPSIS

CALL WHENFLT(n,array,inc ,target ,index,nval)

CALL WHENFLE(n,array,inc ,target,index,nval)

CALL WHENFGT(n,array,inc ,target,index,nval)

CALL WHENFGE(n,array,inc ,target,index,nval)

DESCRIPTION

n

array

inc

target

index

nval

Number of elements to be searched

First element of the real array to be searched

Skip distance between elements of the searched array

Real value searched for in the array

Integer array containing the index of the found target in the array

Number of values put in the index array

These functions return all locations for which the relational operator is true for real arrays.

WHENFLT finds all real array elements that are less than the real target. WHENFLE finds all real array
elements that are less than or equal to the real target. WHENFGT finds all real array elements that are
greater than the real target. WHENFGE finds all real array elements that are greater than or equal to the
real target.

IMPLEMENTATION

These routines are available to users of both the cos and UNICOS operating systems.

SR-Ol13 6-22 c

WHENILT (3SCI) WHENILT (3SCI)

NAME

WHENIL T, WHENILE, WHENIGT, WHENIGE - Finds all integer array elements in relation to the
integer target

SYNOPSIS

CALL WHENILT(n,iarray,inc,itarget,index,nval)

CALL WHENILE(n,iarray ,inc ,itarget,index,nval)

CALL WHENIGT(n,iarray,inc,itarget,index,nval)

CALL WHENIGE(n,iarray,inc,itarget,index,nval)

DESCRIPTION

n

iarray

inc

itarget

index

nval

Number of elements to be searched

First element of the integer array to be searched

Skip distance between elements of the searched array

Integer value searched for in the array

Integer array containing the index of the found target in the array

Number of values put in the index array

These functions return all locations for which the relational operator is true for integer arrays.

WHENIL T finds all integer array elements that are less than the integer target. WHENILE finds all
integer array elements that are less than or equal to the integer target. WHENIGT finds all integer array
elements that are greater than the integer target. WHENIGE finds all integer array elements that are
greater than or equal to the integer target.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 6-23 c

WHENMEQ (3SCI) WHENMEQ (3SCI)

NAME

WHENMEQ, WHENMNE - Finds the index of occurrences equal or not equal to a scalar within a field
in a vector

SYNOPSIS

CALL WHENMEQ(n,array,inc,target,index,nn,mask,right)

CALL WHENMNE(n,array,inc,target,index,nn,mask,right)

DESCRIPTION

n Number of elements to be searched; length of the array.

array Vector to be searched

inc Skip distance between elements of the searched array

target Scalar to match logically

index Indexes in array where all logical matches with the target occurred (one based)

nn Number of matches found. Length of index.

mask Mask of l' s from the right; the size of the field looked for in the table.

right Number of bits to shift right so as to right-justify the field searched

The Fortran equivalent of WHENMEQ and WHENMNE follows:

TABLE(ARRA Y(INDEX(I),I=l ,NN)).EQ.T ARGET

TABLE(ARRA Y(INDEX(I),I=l ,NN)).NE.T ARGET

where TABLE(X)=AND(MASK,SHIFTR(X,RIGH1))

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 6-24 c

WHENMLT (3SCI) WHENMLT (3SCI)

NAME

WHENMLT, WHENMLE, WHENMGT, WHENMGE - Finds the index of occurrences in relation to a
scalar within a field in a vector

SYNOPSIS

CALL WHENMLT{n,array,inc,target,index,nn,mask,right)

CALL WHENMLE{n,array,inc,target,index,nn,mask,right)

CALL WHENMGT{n,array ,inc , targe t, index, nn,mask,right)

CALL WHENMGE{n,array,inc,target,index,nn,mask,right)

DESCRIPTION

n Number of elements to be searched; length of the array.

array Vector to be searched

inc Skip distance between elements of the searched array

target Scalar to match logically

index Indexes in array where all logical matches with the target occurred (one based)

nn Number of matches found. Length of index.

mask Mask of l' s from the right; the size of the field looked for in the table.

right Number of bits to shift right so as to right-justify the field searched

The Fortran equivalent of logical search performed follows:

TABLE(ARRAY(INDEX(I),I=l,NN)).LT.TARGET

T ABLE(ARRAY(INDEX(I),I=l,NN)).LE.T ARGET

T ABLE(ARRAY(INDEX(I),I=l,NN)).GT.T ARGET

TABLE(ARRAY(INDEX(I),I=l,NN)).GE.TARGET

where TABLE(X)=AND(MASK,SHIFTR(X,RIGH1))

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 6-25 c

INTRO(3X) INTRO(3X)

7. SORTING ROUTINES

SR-OI13

There are two ways to perform a sort on files: they can be sorted using the SORT control statement or
the SORT subroutines. The ORDERS routine is used to sort memory arrays rather than files.

The SORT control statement provides a generalized sort and merge capability. SORT accesses multiple
input files and permits mixed key types and variable length records. It provides a variety of user­
specified random access devices (such as disk, Buffer Memory Resident (BMR), and SSD solid-state
storage device) and tuning parameters for performance enhancement.

The SORT program provides these capabilities through calls to the SORT subroutines. SORT subroutines
provide all of the above-mentioned options and allow the use of user-supplied subroutines. For more
information on SORT and its associated subroutines, see the SORT Reference Manual, eRI publication
SR-0074.

ORDERS is an internal, fixed-length record sort optimized for Cray computer systems. This section
gives the synopsis and description of the ORDERS routine, including several examples using ORDERS.

7-1 C

ORDERS (3SCI) ORDERS (3SCI)

NAME

ORDERS - Sorts using internal, fixed-length record sort optimized for Cray computer systems

SYNOPSIS

CALL ORDERS(mode ,iwork,data,index,n,irec Ith ,ikeylth,iradsiz)

DESCRIPTION

SR-Ol13

ORDERS assumes that the n records Jo be sorted are of length ireclth and have been stored in an array
data that has been dimensioned, as in the following Fortran code:

DIMENSION DATA(ireclth,n)

ORDERS does not move records within data, but returns a vector index containing pointers to each of
the records in ascending order. For example, DATA(l,INDEX(l» is the first word of the record with the
smallest key.

The ORDERS arguments are as follows:

mode Integer flag; describes the type of key and indicates an initial ordering of the records, as
follows:

o The key is binary numbers of length 8*ikeylth. These numbers are considered posi­
tive integers in the range 0 to 2(S*;reclth)-1. (The ordering of Ascn characters is the
same as their ordering as positive integers.)

1 The key is 64-bit Cray integers. These are twos complement signed integers in the
range _263 to +263. (The key length, if specified, must be 8 bytes.)

2 The key is 64-bit Cray floating-point numbers. (The key length, if specified, must
be 8 bytes.)

10 The key is the same as mode=O, but the array INDEX has an initial ordering of the
records (see subsection MULTIPASS SORTING later in this section).

11 The key is the same as mode=l, but the array INDEX has an initial ordering of the
records.

12 The key is the same as mode=2, but the array INDEX has an initial ordering of the
records.

7-2 c

ORDERS (3SCI)

SR-0113

iwork

data

index

n

ireclth

ikeylth

iradsiz

ORDERS (3SCI)

Upon completion of a call, ORDERS returns an error flag in mode. A value equal to the
input mode value indicates no errors. A value less than 0 indicates an error, as follows:

-1 Too few arguments; must be greater than 4.

-2 Too many arguments; must be less than 9.

-3 Number of words per record less than 1 or greater than 2**24

-4 Length of key greater than the record

-S Radix not equal to 1 or 2

-6 Key less than 1 byte long

-7 Number of records less than 1 or greater than 2**24

-8 Invalid mode input values; must be 0, 1, 2, 10, 11, or 12.

-9 Key length must be 8 bytes for real or integer sort

User-supplied working storage array of length K, where K=257 if iradsiz=l, or K=65537 if
iradsiz=2

Array dimensioned ireclth by N, containing N records of length ireclth each. The key in
each record starts at the left of the first word of the record and continues ikeylth bytes into
successive words as necessary. (By offsetting this address, any word within the record may
be used as a key. See subsection EXAMPLES later in this section.)

Integer array of length n containing pointers to the records. In mode=10, 11, or 12, index
contains an initial ordering of the records (see subsection MULTIPASS SORTING later in this
section). On output, index contains the ordering of the records; that is, DAT A(l,INDEX(I»
is the first word of the record with the smallest key, and DATA(l,INDEX(N» is the first
word of the record with the largest key.

Number of records to be sorted. Must be ~1.

Length of each record as a number of 64-bit words. Default is 1. ireclth is used as a skip
for vector loads and stores; therefore, ireclth should be chosen to avoid bank conflicts.

Length of each key as a number of 8-bit bytes. Default is 8 bytes (1 word).

Radix of the sort. iradsiz is the number of bytes processed per pass over the records.
Default is 1. See subsection of LARGE RADIX SORTING for iradsiz=2.

7-3 c

ORDERS (3SCI) ORDERS (3SCI)

METHOD

ORDERS uses the radix sort, more commonly known as a bucket or pocket sort. For this type of sort,
the length of the key in bytes determines the number of passes made through all of the records. The
method has a linear work: factor and is stable, in that the original order of records with equal keys is
preserved.

ORDERS has the option of processing I or 2 bytes of the key per pass through the records. This pro­
cess halves the number of passes through the record, but at the expense of increased working storage
and overhead per pass. ORDERS can sort on several keys within a record by using its multipass capa­
bility. The first 8 bytes of the keys use a radix sort. If the key length is greater than 8 bytes and any
records have the first 8 bytes equal, these records are sorted using a simple bubble sort. Using the bub­
ble sort with many records is time-consuming; therefore, the multipass option should be used.

ORDERS has been optimized in CAL to make efficient use of the vector registers and functional units at
each step of a pass through the data. Keys are read into vector registers with a skip through memory of
ireclth; therefore, ireclth should be chosen to avoid bank conflicts.

LARGE RADIX SORTING

The number of times the key of each record is read from memory is proportional to ikeyith/iradsiz.
Using ORDERS with iradsiz=2 halves this ratio because 2 bytes instead of 1 are processed each time
the key is read. The disadvantage of halving the number of passes is that the user-supplied working
storage array goes from 257 words to 65,537 words. This favors a I-byte pass for sorting up to approx­
imately 5000 records. For more than 5000 records, however, a 2-byte pass is faster.

MULTIPASS SORTING

Because the array INDEX can define an ordering of the records, several calls can be made to ORDERS
where the order of the records is that of the previous call. mode=10, 11, or 12 specifies that the array
INDEX contains an ordering from a previous call to ORDERS. This specification allows sorting of text
keys that extend over more than 1 word or keys involving double-precision numbers. (See the subsec­
tion EXAMPLES later in this section.)

Although the length of the key is limited only by the length of the record, up to 8 bytes are sorted with
the radix sort. The remaining key is sorted using a bubble sort, but only in those records whose keys
are equal for the first 8 bytes. Therefore, a uniformly-distributed key over the first 8 bytes of length
greater than 8 bytes might be sorted faster using a single call with a large ikeylth rather than a mul­
tipass call. When using the multipass capability, sort the least significant word first.

IMPLEMENTATION

ORDERS is available to users of both the COS and UNICOS operating systems.

SR-Ol13 7-4 c

ORDERS (3SCI) ORDERS (3SCI)

EXAMPLES

SR-0113

Example 1:

This example performs a sort on an array of random numbers, 20 records long, with a key length of 8
bytes (1 word).

Example 2:

C

PROGRAM ORDWAY
DIMENSION DATA(1 ,20)
DIMENSION INDEX(20)
DIMENSION IWORK(257)

C Place random numbers into the array DATA
C

C

C

C

DO 1 1=1,20
1 DATA(I,I)=2*RANFO

N=20
MODE=O

CALL ORDERS (MODE,IWORK,DATA,INDEX,N, 1 ,8, 1)

C Print out the sorted records in increasing order
C

00 2 K=I,20
2 PRINT *, DATA(I,INDEX(K»

STOP
END

This program uses two calls to ORDERS to completely sort an array of double-precision numbers. The sign
bit of the first word is used to change the second word into a text key that preserves the ordering. A sort is
done on these 6 bytes of the second word. (The changes made to the second word are reversed after the
call.) Last, a sort is done on the first word as a real key using the initial ordering from the previous call.

PROGRAMSORT2
DOUBLE PRECISION DATA(100)
INTEGER IATA(200)
EQUIV ALENCE(IATA, DATA)
INTEGER INDEX(lOO), IWORK(257)
N=12
D05I=I,N

DATA(I)=(-1.DO)**10.DO**(-20)*DBLE(RANFO)
5 CONTINUE

7-5 C

ORDERS (3SCI) ORDERS (3SCI)

SR-0113

C
C First the second word key is changed
C

C

DO 101=2, 2*N, 2
IF(DAT A(I/2).LE.0.DO) THEN
IATA(I)=CO:MPL(IATA(I»

ELSE
IAT A(I)=IATA(I)

ENDIF
10 CONTINUE

C Sort on second word
C

MODE=O
CALL ORDERS (MODE,IWORK,IATA(2),INDEX,N, 2,6, 1)

C
C Restore second word to original form
C

C

00 20 1=2, 2*N, 2
IF(DAT A(I/2).LE.0.DO) THEN
IAT A(I)=COMPL(IATA(I»

ELSE
IAT A(I)=IATA(I)

ENDIF
20 CONTINUE

C Sort on the first word using the initial ordering
C

MODE=12
CALL ORDERS (MODE,SORT,DATA,INDEX,N,2,8,l)
0050I=I,N

WRITE(6, 900)1, INDEX(I), DATA(INDEX(I»)
50 CONTINUE
900 FORMAT(IX, 215, 2X, D40.30)

END

7-6 c

INTRO(3X) INTRO(3X)

8. CONVERSION SUBPROGRAMS

These Fortran-callable subroutines perform conversion of data residing in Cray memory. Conversion
subprograms are listed under the following types of routines:

• Foreign data conversion

• Numeric conversion

• Ascn conversion

• Other conversion

For more information regarding foreign data conversion, see the Foreign Data Conversion on CRAY-l
and CRA Y X-MP Computer Systems technical note, publication SN-0236.

FOREIGN DATA CONVERSION ROUTINES

SR-0113

The foreign data conversion routines allow data translation between Cray internal representations and
other vendors' data types. These include IDM, CDC, and VAX data conversion routines.

The following tables convert values from Cray data types to ffiM, V AXNMS, and CDC data types. Rou­
tines that are inverses of each other (that is, convert from Cray data types to IBM and IDM to Cray) are
generally listed under a single entry. Routine descriptions follow later in this section, listed alphabeti­
cally by entry name.

The following table lists routines that convert foreign types to Cray types.

Convert Foreign Types to Cray Types

Convert to Foreign types

Convert from IBM CDC VAXNMS

Foreign single-precision to USSCTC FP6064 VXSCTC
Cray single-precision

Foreign double-precision to USDCTC --- VXDCTC
Cray single-precision VSGCTC

Foreign integer to Cray integer USICTC INT6064 VXICTC

Foreign logical to Cray logical USLCTC --- VXLCTC

Foreign character to ASCII USCCTC DSASC ---
V AX 64-bit complex to Cray --- --- VXZCTC
single-precision

IBM packed decimal field to USPCTC --- ---
Cray integer

8-1 C

INTRO(3X) INTRO(3X)

The following table lists routines that convert Cray types to foreign types.

Convert Cray Types to Foreign Types

Convert To Foreign Types

Convert From ffiM CDC VAXNMS
Cray single-precision to USSCTI FP6460 VXSCTI
foreign single-precision
Cray single-precision to USDCTI ... VXDCTI
foreign double-precision
Cray integer to foreign integer USICTI INT6460 VXICTI

Cray logical to foreign logical USLCTI ... VXLCTI

ASCII character to foreign USCCTI ASCDC ._.
character
Cray complex to foreign complex . -. ... VXZCTI

Cray integer to foreign packed- USICTP _.- ---
decimal field

NUMERIC CONVERSION ROUTINES

Numeric conversion routines convert a character to a numeric format or a number to a character format.

The following table contains the purpose t names t and entry of each numeric conversion routine.

Numeric Conversion Routines

Purpose Name En try_

Convert decimal ASCII numerals to an CHCONV CHCONV
integer value

Convert an integer to a decimal ASCII string BICONV
BICONV

Convert an integer to a decimal ASCII string BICONZ
(zero-filled, right-justified)

Ascn CONVERSION FUNCTIONS

SR-0113

The ASCII conversion functions convert binary integers to or from I-word ASCII strings (not Fortran
character variables). Fortran-callable entry points (in the form xu) use the call-by-address sequence;
CAL-callable entry points (in the form xu%) use the call-by-value sequence.

NOTE - The ASCII conversion functions are not intrinsic to Fortran. Their default type is real t even
though their results are generally used as integers.

IMPLEMENTATION - The ASClI conversion functions are available to users of both the COS and
UNICOS operating systems.

The ASClI conversion routines use one type integer argument. The DTB/DTB % and OTB/OTB % rou­
tines can also use a second optional argument as an error code. The resulting error codes (0 if no error;
-1 if there are errors) are returned in the second argument for Fortran calls and in register SO for CAL
calls. If no error code argument is included in Fortran calls t the routine aborts upon encountering an
error.

8-2 C

INTRO(3X) INTRO(3X)

SR-0113

The following calls show how the ASCII conversion routines are used. These Fortran calls convert a
binary number to decimal ASCIIt then convert back from ASCII to binary:

result=BTD(integer)

result Decimal ASCII result (right-justifiedt blank-filled)

integer Integer argument

result=DTB(arg,errcode)

Integer value result

arg

errcode

Decimal ASCII (left-justifiedt zero-filled)

o if conversion successful; -1 if error.

ASCII Conversion Routines

Argument
Purpose Name Range

Binary to decimal ASCII BTD O::;X ~99999999
(right-justifiedt BTD%
blank-filled)

Binary to decimal ASCII BTDL O::;X ~99999999
(left-justifiedt BTDL%
zero-filled)

Binary to decimal ASCII BTDR o::;x ~99999999
(right-justifiedt BTDR%
zero-filled)

Binary to octal ASCII BTO O::;X ~77777777 8

(right-justifiedt BTO%
blank-filled)

Binary to octal ASCII BTOL o::;x ~77777777 8

(left-justifiedt BTOL%
zero-filled)

Binary to octal ASCII BTOR o::;x ~77777777 8

(right-justified, BTOR%
zero-filled)

Decimal ASCII to binary DTB Decimal ASCII
DTB% (left-justifiedt

zero-filled)

Octal ASCII to binary OTB Octal ASCII
OTB% (left-justifiedt

zero-filled)

8-3

Result

One-word ASCII string
(right-justifiedt
blank-filled)

One-word ASCII string
(left-justifiedt
zero-filled)

One-word ASCII string
(right -justifiedt
zero-filled)

One-word ASCII string
(right-justifiedt
blank-filled)

One-word ASCII string
(left-justifiedt
(zero-filled)

One-word ASCII string
(right-justifiedt
zero-filled)

One word containing
decimal equivalent of
ASCII string

One word containing
octal equivalent of
ASCII string

C

INTRO(3X) INTRO(3X)

OTHER CONVERSION ROUTINES

SR-0113

These routines place the octal ASCII representation of a Cray word into a character area, convert trailing
blanks to nulls or trailing nulls to blanks, and translate a string from one code to another, using a trans­
lation table.

The following table contains the purpose, name, and entry of these conversion routines.

Other Conversion Routines

Purpose Name Entry

Place an octal ASCII representation of B20CT B20CT
a Cray word into a character area

Convert trailing blanks to nulls RBN
RBN

Convert trailing nulls to blanks RNB
Translate a string from one code to TR TR
another, using a translation table

8-4 C

B20CT (3COS) B20CT(3COS)

NAME

B20CT - Places an octal Ascn representation of a Cray word into a character area

SYNOPSIS

CALL B20CT(sj,k,v,n)

DESCRIPTION

s First word of an array where the Ascn representation is to be placed

j Byte offset within array s where the first character of the octal representation is to be
placed. A value of 1 indicates that the destination begins with the first (leftmost) byte of
the first word of s. j must be greater than O.

k Number of characters used in the Ascn representation; k must be greater than O. k indi­
cates the size of the total area to be filled, and the area is blank-filled if necessary.

v Value to be converted. The low-order n bits of word v are used to form the Ascn
representation. v must be less than or equal to 263_1.

n Number of low-order bits of v to convert to ASCn character representation (lSn S64). If
insufficient character space is available (3k<n), the character region is automatically filled
with asterisks (*).

B20CT places the Ascn representation of the low-order n bits of a full Cray word into a specified char­
acter area.

The k characters in array s, pointed to by j, are first set to blanks. The low-order n bits of v are then
converted to octal Ascn, using leading zeros if necessary. The converted value (n/3 characters,
rounded up) is right-justified into the blanked-out destination character region.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-Ol13 8-5 C

BICONV (3COS) BICONV (3COS)

NAME

BICONV, BICONZ - Converts a specified ASCII string representing the integer

SYNOPSIS

CALL BICONV(int,dest,isb,len)

CALL BICONZ(int,dest,isb,len)

DESCRIPTION

int Integer variable, expression, or constant to be converted

dest Variable or array of any type or length to contain the ASCII result

ish Starting byte count to generate the output string. Specify an integer variable, expression, or
constant Bytes are numbered from 1, beginning at the leftmost byte position of dest.

BICONV converts a specified integer to an ASCII string. The string generated by BICONV is blank­
filled, right-justified, and has a maximum width of 256 bytes. If the specified field width is not long
enough to hold the converted integer number, left digits are truncated and no indication of overflow is
given. If the number to be converted is negative, a minus sign is positioned in the output field to the
left of the first significant digit.

BICONZ is the same as BICONV except that the output string generated is zero-filled, right-justified.
(A minus sign, if any, appears in the leftmost character position of the field.)

IMPLEMENTATION

These routines are available only to users of the COS operating system.

SR-Ol13 8-6 C

CHCONV(3U) CHCONV(3U)

NAME

CHCONV - Converts decimal Ascn numerals to an integer value

SYNOPSIS

CALL CHCONV(src,isb,num,ir)

DESCRIPTION

src Variable or array of type Hollerith containing Ascn data or blanks

isb Starting character in the src string. Specify an integer variable, expression, or constant.
Characters are numbered from 1, beginning at the leftmost character position of src.

num Number of Ascn characters to convert. Specify an integer variable, expression, or constant.

ir Integer result

Blanks in the input field are treated as zeros. A minus sign encountered anywhere in the input field
produces a negative result. Input characters other than blank, digits 0 through 9, a minus sign, or more
than one minus sign produce a fatal error.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OII3 8-7 C

DSASC(3U) DSASC(3U)

NAME

DSASC, ASCDC - Converts CDC display code character to ASCII character and vice versa

SYNOPSIS

CALL DSASC(src,sc,dest,num)

CALL ASCDC(src,sc,dest,num)

DESCRIPTION

src For DSASC, a variable or array of any type or length containing CDC display code charac­
ters (64-character set), left-justified in a 64-bit Cray word. Contains a maximum of 10
display code characters per word. For ASCDC, a variable or array of any type or length
containing ASCII data.

sc Display code or Ascn character position to begin the conversion. Leftmost position is 1.

dest For DSASC, a variable or array of any type or length to contain the converted ASCII data.
Results are packed 8 characters per word. For ASCDC, a variable or array of any type or
length to contain the converted CDC display code characters (64-character set). Results are
packed into continuous strings without regard to word boundaries.

num Number of CDC display code or ASCII characters to convert. Specify an integer variable,
expression, or constant.

DSASC converts CDC display code characters to ASCII character.

ASCDC converts ASCII characters to CDC display code characters.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 8-8 C

FP6064 (3U) FP6064(3U)

NAME

FP6064, FP6460 - Converts CDC 6O-bit single-precision numbers to Cray 64-bit single-precision
numbers and vice versa

SYNOPSIS

CALL FP6064lfpn.dest.num)

CALL FP6460lfpn.dest.num)

DESCRIPTION

/pn For FP6064, a variable or array of any type or length contammg CDC 6O-bit, single­
precision numbers, left-justified in a Cray 64-bit word. For FP6460, a variable or array of
any length and of type real containing Cray single-precision numbers.

dest Variable or array of type real to contain the converted Cray 64-bit, single-precision or CDC
6O-bit single-precision numbers. (In FP6460, each floating-point number is left-justified in a
64-bit word.)

num Number of CDC or Cray single-precision numbers to convert. Specify an integer variable,
expression, or constant.

FP6064 converts CDC 6O-bit single-precision numbers to Cray 64-bit single-precision numbers.

FP6460 converts Cray 64-bit single-precision numbers to CDC 6O-bit single-precision numbers.

IMPLEMENTATION

These routines are available to users of the both the COS and UNICOS operating systems.

SR-Ol13 8-9 C

INT6064 (3U) INT6064 (3U)

NAME

INT6064 - Converts CDC 6O-bit integers to Cray 64-bit integers

SYNOPSIS

CALL INT6064(src,idest,num)

DESCRIPTION

src Variable or array of any type or length containing CDC 6O-bit integers, left-justified in a
Cray 64-bit word

idest Variable or array of type integer to contain the converted values. Each such integer is left­
justified and zero-filled.

num Number of CDC integers to convert. Specify an integer variable, expression, or constant.

INT6064 converts CDC 60-bit integer numbers to Cray 64-bit integer numbers.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

INT6460 is the inverse of this routine

SR-0113 8-10 C

INT6460(3U) INT6460 (3U)

NAME

INT6460 - Converts Cray 64-bit integers to CDC 6O-bit integers

SYNOPSIS

CALL INT6460(in,idest,num)

DESCRIPTION

in Variable or array of any length and of type integer containing Cray integer numbers

idest Variable or array of type integer to contain the converted values or CDC integer numbers.
Each such integer is left-justified and zero-filled.

num Number of Cray integers to convert. Specify an integer variable, expression, or constant.

INT6460 converts Cray 64-bit integer numbers to CDC 6O-bit integer numbers.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

INT6064 is the inverse of this routine

SR-0113 8-11 C

RBN(3U)

NAME

RBN, RNB - Converts trailing blanks to nulls and vice versa

SYNOPSIS

noblanks=RBN(blanks)

blanks=RNB(noblanks)

DESCRIPTION

NOTE

blanks For RBN, the argument to be converted. For RNB, the argument after conversion.

noblanks For RBN, the argument after conversion. For RNB, the argument to be converted.

RBN converts trailing blanks to nulls. RNB converts trailing nulls to blanks.

Fortran programs using RBN or RNB must declare the function to be type integer.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OI13 8-12

RBN(3U)

C

TR(3COS) TR(3COS)

NAME

TR - Translates a string from one code to another using a translation table

SYNOPSIS

CALL TR(sj.k.table)

DESCRIPTION

NOTE

s First word of an array containing the characters to be translated

j Byte offset within array s where the first character to be translated occurs

k Number of characters to be translated

table Translation table

TR translates a string in place from one character code to another using a user-supplied translation
table. The routine assumes 8-bit characters.

The translation table must be considered a string of 256 bytes (32 words). As each character to be
translated is fetched, it is used as an index into the translation table. The new value of the character is
the content of the translation-table byte addressed by the old value. (The first byte of the translation
table is considered to be byte 0.)

Several translation tables are available as com decks in UTLIBPL. You may want to make use of these
predefined tranlations. Each comdeck contains a Fortran declaration of the com deck name as a 32-word
integer array and contains data statements for each word of the array. The available translations are:

Comdeck Translation

TRUPPER ASCll to ASCll, but converting lower-case letters to upper-case

TRLOWER ASCll to ASCll, but converting upper-case letters to lower-case

TRASCII EBCDIC to ASCII. This differs from the translation provided by USSCTC in that
every byte value has a unique translation. (Use a subsequent translation with
TRNPC to remove nonprinting characters).

TREBCDIC ASCll to EBCDIC. This differs from the translation provided by USSCTI in that
every byte value has a unique translation.

TRNPC ASCll to ASCll, but converting nonprinting characters to periods ('. ')

Note that TRASCII and TREBCDIC are inverses of each other.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 8-13 C

TRRl(3COS) TRRl(3COS)

NAME

TRRI - Translates characters stored one character per word

SYNOPSIS

CALL TRRl(s,k,table)

DESCRIPTION

s Array containing the characters to be translated

k Number of characters to be translated

table Translation table

TRRI translates k characters, stored one character per word, right-justified, zero-filled, in array s using
the translation table table.

table is a 256-word array (dimensioned (0:255)) containing the translation for each character in the
entry for the character viewed as an integer.

TRRlleaves s(I) unchanged if s(I) is not in the range 0,00.,255.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 8-14 c

USCCTC(3U) USCCTC(3U)

NAME

USCCTC, USCCTI - Converts mM EBCDIC data to Ascn data and vice versa

SYNOPSIS

CALL USCCTC(src ,isb,dest,num,npw[, val])

CALL USCCTI(src,dest,isb,num,npw[,val])

DESCRIPTION

NOTE

src Variable or array of any type or length containing IDM EBCDIC data or ASCII data, left­
justified, in Cray words, to convert

isb For usccrc, a byte number to begin the conversion. Specify an integer variable, expres­
sion, or constant. Bytes are numbered from 1, beginning at the leftmost byte position of
src. For USCCTI, a byte number at which to begin generating EBCDIC characters in dest.

dest Variable or array of any type or length to contain the mM EBCDIC or Ascn data

num Number of IDM EBCDIC or Ascn characters to convert. Specify an integer variable,
expression, or constant.

npw Number of characters per word generated in dest (or selected from src in USCCTI). The
npw characters are left-justified and blank-filled in each word of dest. Specify an integer
variable, expression, or constant. Value must be from 1 to 8.

val A value of nonzero specifies lowercase characters (a through z) that are to be translated to
uppercase. A value of 0 results in no case translation. This is an optional parameter
specified as an integer variable, expression, or constant. The default is no case translation.

USCCTC converts ruM EBCDIC data to ASCII data. The same array can be specified for output as for
input only if isb = 1 and npw = 8.

USCCTI converts Ascn data to ffiM EBCDIC data. All unprintable characters are converted to blanks.
The same array can be specified for output as for input only if isb = 1 and npw = 8.

You may also find routine TR (described in this section) useful. It provides somewhat more control over
the specific translation used, although it does require the translation to be done in place.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OI13 8-15 C

USDCTC(3U) USDCTC(3U)

NAME

USDCTC - Converts mM 64-bit floating-point numbers to Cray 64-bit single-precision numbers

SYNOPSIS

CALL USDCTC(dpn,isb,dest,nwn[.ineD

DESCRIPTION

dpn Variable or array of any type or length containing mM 64-bit floating-point numbers to con­
vert

isb Byte number to begin the conversion. Specify an integer variable, expression, or constant.
Bytes are numbered from 1, beginning at the leftmost byte position of/pn or dpn.

dest Variable or array of type real to contain the converted values

num Number of mM 64-bit floating-point numbers to convert. Specify an integer variable,
expression, or constant.

ine Memory increment for storing the conversion results in dest. This is an optional parameter
specified as an integer variable, expression, or constant. The default value is 1.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

USDCTI is the inverse of this routine.

SR-0113 8-16 c

USDCTI(3U) USDCTI(3U)

NAME

USDCTI - Converts Cray 64-bit single-precision, floating-point numbers to mM 64-bit double precision
numbers

SYNOPSIS

CALL USDCTI(fpn,dest,isb ,num,ier[,inc])

DESCRIYfION

/pn Variable or array of any length and type real, containing Cray 64-bit single-precision,
floating-point numbers to convert

dest Variable or array of type real to contain the converted values

isb Byte number at which to begin storing the converted results. Specify an integer variable,
expression, or constant. Bytes are numbered from 1, beginning at the leftmost byte position
of dest.

num Number of Cray floating-point numbers to convert. Specify an integer variable, expression,
or constant.

ier Overflow indicator of type integer. Value is 0 if all Cray values convert to mM values
without overflow. Value is nonzero if one or more Cray values overflowed in the conver­
sion.

inc Memory increment for fetching the number to be converted. This is an optional parameter
specified as an integer variable, expression, or constant. The default value is 1.

USDCTI converts Cray 64-bit single-precision, floating-point numbers to mM 64-bit double-precision,
floating-point numbers. Precision is extended by introducing 8 more bits into the rightmost byte of the
fraction from the Cray number being converted. Numbers that produce an underflow when converted to
mM format are converted to 64 binary Os. Numbers that produce an overflow when converted to IBM
format are converted to the largest mM floating-point representation with the sign bit set if negative.
An error parameter returns nonzero to indicate that one or more numbers converted produced an
overflow. No such indication is given for underflow.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

USDCTC is the inverse of this routine.

SR-OI13 8-17 C

USICfC(3U) USICTC(3U)

NAME

USICTC, USICTI - Converts IBM lNTEGER*2 and lNTEGER*4 numbers to Cray 64-bit integer numbers,
and vice versa

SYNOPSIS

CALL USICTC(in,isb,dest,nwn,lenLineD

CALL USICTI(in,dest,isb,num,len,ierLineD

DESCRIPTION

in Variable or array of any type or length containing IBM lNTEGER*2 or INTEGER*4 numbers
or Cray 64-bit integers to convert

ish Byte number at which to begin the conversion or at which to begin storing the converted
results. Specify an integer variable. expression. or constant. Bytes are numbered from 1,
beginning at the leftmost byte position of in (dest in USICTI).

dest Variable or array of type integer to contain the converted values

num Number of IBM numbers or Cray integers to convert. Specify an integer variable, expres­
sion. or constant.

len Size of the IBM numbers to convert or of IBM result numbers. These values must be 2 or
4. A value of 2 indicates that input or output integers are INTEGER*2 (16-bit). A value of
4 indicates that input or output integers are lNTEGER*4 (32-bit). Specify an integer vari­
able, expression, or constant.

ine Memory increment for storing the conversion results in dest or for fetching the number to
be converted. This is an optional parameter specified as an integer variable, expression. or
constant. The default value is 1.

ier Overflow indicator of type integer. The value is zero if all Cray values converted to IBM
values without overflow. The value is not zero if one or more Cray values overflowed in
the conversion.

USICTC converts IBM INTEGER *2 and lNTEGER *4 numbers to Cray 64-bit integer numbers.

USICTI converts Cray 64-bit integer numbers to IBM lNTEGER*2 or lNTEGER*4 numbers.

Numbers that produce an overflow when converted to IBM format are converted to the largest IBM
integer representation, with the sign bit set if negative. An error parameter returns nonzero to indicate
that one or more of the numbers converted produced an overflow.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 8-18 C

USICTP(3U) USICTP(3U)

NAME

USICTP - Converts a Cray 64-bit integer to mM packed-decimal field

SYNOPSIS

CALL USICTP(ian,dest,isb,num)

DESCRIPTION

ian Cray integer to be converted to an ffiM packed-decimal field. Specify an integer variable,
expression, or constant.

dest Variable or array of any type or length to contain the packed field generated

isb Byte number within dest specifying the beginning location for storage. Specify an integer
variable, expression, or constant. Bytes are numbered from 1, beginning at the leftmost
byte position of dest.

num Number of bytes to be stored. Specify an integer variable, expression, or constant.

If the input value contains more digits than can be stored in num bytes, the leftmost digits are not con­
verted.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

USPCTC is the inverse of this routine.

SR-0113 8-19 C

USLCTC(3U) USLCTC(3U)

NAME

USLCTC, USLCTI - Converts ffiM LOOICAL"'1 and LOOICAL"'4 values into Cray 64-bit logical values,
and vice versa

SYNOPSIS

CALL USLCTC(sre ,isb ,dest ,num,len[,ine])

CALL USLCTI(src ,dest,isb,num,lenLine])

DESCRIPTION

sre Variable or array of any type (type logical in USLCTI) and any length containing ffiM LOG­
ICAL"'1, LOGICAL"'4, or Cray logical values to convert.

isb Byte number to begin the conversion or, in USLCTI, specifying the beginning location for
storage. Specify an integer variable, expression, or constant. Bytes are numbered from 1,
beginning at the leftmost byte position of sre.

dest Variable or array of any type or length to contain the converted values

num Number of ffiM or Cray logical values to be converted. Specify an integer variable, expres­
sion, or constant.

len Size of the ffiM logical values to convert or of the logical result value. These values must
be 1 or 4. A value of 1 indicates that input or output logical values are LOOICAL"'1 (8-bit).
A value of 4 indicates that input or output logical values are LOOICAL"'4 (32-bit). Specify
an integer variable, expression, or constant.

ine Memory increment for storing the conversion results in dest or for fetching the number to
be converted. This is an optional parameter specified as an integer variable, expression, or
constant The default value is 1.

USLCTC converts IBM LOOICAL*1 and LOOICAL*4 values to Cray 64-bit logical values.

USLCTI converts Cray logical values to mM LOGICAL*1 or LOGICAL*4 values.

All arguments must be entered in the same order in which they appear in the synopsis.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 8-20 C

USPCTC(3U) USPCTC(3U)

NAME

USPCTC - Converts a specified number of bytes of an mM packed-decimal field to a 64-bit integer
field

SYNOPSIS

CALL USPCTC(src ,isb,num,ian)

DESCRIPTION

src Variable or array of any type or length containing a valid mM packed-decimal field

isb Byte number to begin the conversion. Specify an integer variable, expression, or constant.
Bytes are numbered from 1, beginning at the leftmost byte position of src.

num Number of bytes to convert. Specify an integer variable, expression, or constant.

ian Returned integer result

The input field must be a valid packed-decimal number less than 16 bytes long, of which only the right­
most 15 digits are converted.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

USICTP is the inverse of this routine.

SR-0113 8-21 C

USSCTC(3U) USSCTC(3U)

NAME

USSCTC - Converts mM 32-bit floating-point numbers to Cray 64-bit single-precision numbers

SYNOPSIS

CALL USSCTC(fpn,isb,dest,num[,ine])

DESCRIPTION

/pn Variable or array of any type or length containing mM 32-bit floating-point numbers to con­
vert

isb Byte number to begin the conversion. Specify an integer variable, expression, or constant.
Bytes are numbered from 1, beginning at the leftmost byte position of /pn or dpn.

dest Variable or array of type real to contain the converted values

num Number of mM 32-bit floating-point numbers to convert. Specify an integer variable,
expression, or constant.

ine Memory increment for storing the conversion results in dest. This is an optional parameter
specified as an integer variable, expression, or constant. The default value is 1.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

USSCTI is the inverse of this routine.

SR-Ol13 8-22 C

USSCTI(3U) USSCTI(3U)

NAME

USSCTI - Converts Cray 64-bit single-precision, floating-point numbers to mM 32-bit single-precision
numbers

SYNOPSIS

CALL USSCTI(fpn.dest.ish.num.ier[,inc])

DESCRIPTION

/pn Variable or array of any length and type real, containing Cray 64-bit single-precision,
floating-point numbers to convert

dest Variable or array of type real to contain the converted values

ish Byte number at which to begin storing the converted results. Specify an integer variable,
expression, or constant. Bytes are numbered from 1, beginning at the leftmost byte position
of dest.

num Number of Cray floating-point numbers to convert. Specify an integer variable, expression,
or constant.

ier Overflow indicator of type integer. Value is 0 if all Cray values convert to mM values
without overflow. Value is nonzero if one or more Cray values overflowed in the conver­
sion.

inc Memory increment for fetching the number to be converted. This is an optional parameter
specified as an integer variable, expression, or constant. The default value is 1.

USSCTI converts Cray 64-bit single-precision, floating-point numbers to mM 32-bit single-precision,
floating-point numbers. Numbers that produce an underflow when converted to mM format are con­
verted to 32 binary Os. Numbers that produce an overflow when converted to mM format are converted
to the largest mM floating-point representation, with the sign bit set if negative.

An error parameter returns nonzero to indicate that one or more numbers converted produced an
overflow. No such indication is given for underflow.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

USSCTC is the inverse of this routine.

SR-0113 8-23 C

VXDCTC(3U) VXDCfC(3U)

NAME

VXDCTC - Converts VAX 64-bit D format numbers to Cray single-precision numbers

SYNOPSIS

CALL VXDCTC(dpn,isb,dest,num,[ine])

DESCRIPTION

dpn Variable or array of any type or length containing VAX D format numbers to convert

isb Byte number within dpn at which to begin the conversion. Specify an integer variable,
expression, or constant. Bytes are numbered from 1, beginning at the leftmost byte of dpn.

dest Variable or array of type real to contain the converted values

num Number of VAX D format numbers to convert. Specify an integer variable, expression, or
constant.

ine Memory increment for storing the conversion results in dest. This is an optional parameter
specified as an integer variable, expression, or constant. The default value is 1.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

VXDCTI is the inverse of this routine.

SR-OU3 8-24 C

VXDCTI(3U) VXDCTI(3U)

NAME

VXDCTI - Converts Cray 64-bit single-precision, floating-point numbers to VAX D format single­
precision, floating-point numbers

SYNOPSIS

CALL VXDCTI(fpn,dest,isb,num,ier,[incD

DESCRIPTION

/pn Variable or array of any length and type real containing Cray 64-bit single-precision,
floating-point numbers to convert

dest Variable or array of type real to contain the converted values

isb Byte number at which to begin storing the converted results. Specify an integer variable,
expression, or constant. Bytes are numbered from I, beginning at the leftmost byte position
of dest.

num Number of Cray floating-point numbers to convert. Specify an integer variable, expression,
or constant.

ier Overflow indicator of type integer. Value is 0 if all Cray values convert to VAX values
without overflow. Value is nonzero if one or more Cray values overflowed in the conver­
sion.

inc Memory increment for fetching the number to be converted. This is an optional parameter
specified as an integer variable, expression, or constant.

Numbers that produce an underflow when converted to VAX format are converted to 32 binary Os.
Numbers that are in overflow on the Cray computer system are converted to a "reserved" floating-point
representation, with the sign bit set if negative. Numbers that are valid on the Cray computer system
but overflow on the V AX are converted to the most positive possible number or most negative possible
number, depending on the sign.

An error parameter returns nonzero to indicate that one or more numbers converted produced an
overflow. (Deferred implementation; at present, you must supply the parameter, which is always
returned as 0.) No such indication is given for underflow.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

VXDCTC is the inverse of this routine.

SR-0113 8-25 C

VXGCTC(3U) VXGCTC(3U)

NAME

VXGCTC - Converts VAX 64-bit G format numbers to Cray single-precision numbers

SYNOPSIS

CALL VXGCTC(dpn,isb,dest,num,[incD

DESCRIPTION

dpn Variable or array of any type or length containing VAX G format numbers to convert

isb Byte number within dpn at which to begin the conversion. Specify an integer variable,
expression, or constant. Bytes are numbered from I, beginning at the leftmost byte of dpn.

dest Variable or array of type real to contain the converted values

num Number of VAX G format numbers to convert. Specify an integer variable, expression, or
constant

inc Memory increment for storing the conversion results in dest. This is an optional parameter
specified as an integer variable, expression, or conxtant. The default value is 1.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

VXGCTI is the inverse of this routine.

SR-OI13 8-26 C

VXGCTI(3U) VXGCTI(3U)

NAME

VXGCTI - Converts Cray 64-bit single-precision, floating-point numbers to VAX G format single­
precision, floating-point numbers

SYNOPSIS

CALL VXGCTI(fpn,dest,isb,num,ier, [inc])

DESCRIPTION

/pn Variable or array of any length and type real, containing Cray 64-bit single-precision,
floating-point numbers to convert

dest Variable or array of type real to contain the converted values

isb Byte number at which to begin storing the converted results. Specify an integer variable,
expression, or constant. Bytes are numbered from 1, beginning at the leftmost byte position
of dest.

num Number of Cray floating-point numbers to convert. Specify an integer variable, expression,
or constant.

ier Overflow indicator of type integer. Value is 0 if all Cray values convert to V AX values
without overflow. Value is nonzero if one or more Cray values overflowed in the conver­
sion.

inc Memory increment for fetching the number to be converted. This is an optional parameter
specified as an integer variable, expression, or constant. The default value is 1.

VXGCTI converts Cray 64-bit single-precision, floating-point numbers to VAX G format single­
precision, floating-point numbers.

Numbers that produce an underflow when converted to V AX format are converted to 32 binary zeros.
Numbers that are in overflow on the Cray computer system are converted to a "reserved" floating-point
representation, with the sign bit set if negative. Numbers that are valid on the Cray computer system
but overflow on the VAX are converted to the most positive possible number or most negative possible
number, depending on the sign.

An error parameter returns nonzero to indicate that one or more numbers converted produced an
overflow (Deferred implementation. At present, you must supply the parameter, which is always as 0.)
No such indication is given for underflow.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

VXGCTC is the inverse of this routine.

SR-0113 8-27 C

VXICfC(3U) VXICTC(3U)

NAME

VXICTC - Converts VAX INTEGER*2 or INTEGER*4 to Cray 64-bit integers

SYNOPSIS

CALL VXICTC(in,isb,dest,nwn,len,[incD

DESCRIPTION

in Variable or array of any type or length containing VAX 16- or 32-bit integers

isb Byte number at which to begin the conversion. Specify an integer variable, expression, or
constant. Bytes are numbered from 1, beginning at the leftmost byte position of in.

dest Variable or array of type integer to contain the converted values

num Number of V AX integers to convert. Specify an integer variable, expression, or constant.

len Size of the V AX numbers to convert. This value must be 2 or 4. A value of 2 indicates
that input integers are 16-bit. A value of 4 indicates that input integers are 32-bit. Specify
an integer variable, expression, or constant.

inc Memory increment for storing conversion results in dest. This is an optional parameter
specified as an integer variable, expression, or constant. The default value is 1.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

VXICTI is the inverse of this routine.

SR-OlI3 8-28 C

VXICfI(3U) VXICTI(3U)

NAME

VXICTI - Converts Cray 64-bit integers to either VAX INTEGER*2 or INTEGER*4 numbers

SYNOPSIS

CALL VXICTI(in,dest,isb,num,len,ier,[inc])

DESCRIPTION

in Variable or array of any length and type integer, containing Cray integers to convert

dest Variable or array of type integer to contain the converted values

isb Byte number at which to begin storing the converted results. Specify an integer variable,
expression, or constant. Bytes are numbered from 1, beginning at the leftmost byte position
of dest.

num Number of Cray integers to convert. Specify an integer variable, expression, or constant.

len Size of the V AX result numbers. This value must be 2 or 4. A value of 2 indicates that
output integers are INTEGER*2 (16-bit). A value of 4 indicates that output integers are
INTEGER *4 (32-bit). Specify an integer variable, expression, or constant.

ier Overflow indicator of type integer. Value is 0 if all Cray values are converted to VAX
values without overflow. Value is nonzero if one or more Cray values overflowed in the
conversion.

inc Memory increment for fetching the number to be converted. This is an optional parameter
specified as an integer variable, expression, or constant. The default value is 1.

Numbers that produce an overflow when converted to VAX format are converted to the largest VAX
integer representation, with the sign bit set if negative.

An error parameter returns nonzero to indicate that one or more numbers converted produced an
overflow. (Deferred implementation; at present, you must supply the parameter, which is always
returned as o.) No such indication is given for underflow.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

VXICTC is the inverse of this routine.

SR-0113 8-29 C

VXLCTC(3U) VXLCfC(3U)

NAME

VXLCTC - Converts VAX logical values to Cray 64-bit logical values

SYNOPSIS

CALL VXLCTC(src ,isb,dest,num,len,[incD

DESCRIPTION

src Variable or array of any type or length containing VAX logical values to convert

isb Byte number at which to begin the conversion. Specify an integer variable, expression, or
constant. Bytes are numbered from 1, beginning at the leftmost byte position of src.

dest Variable or array of type logical to contain the converted values

num Number of VAX logical values to be converted. Specify an integer variable, expression, or
constant.

len Size of the VAX logical values to convert. At present, this parameter must be set to 4, indi­
cating that 32-bit logical values are to be converted. Specify an integer variable, expres­
sion, or constant.

inc Memory increment for storing the conversion results in dest. This is an optional parameter
specified as an integer variable, expression, or constant. The default value is 1.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 8-30 C

VXSCTC(3U) VXSCTC(3U)

NAME

VXSCTC - Converts VAX 32-bit floating-point numbers to Cray 64-bit single-precision numbers

SYNOPSIS

CALL VXSCTC(fpn,isb,dest,num,[ineD

DESCRIPTION

fpn Variable or array of any type containing VAX 32-bit floating-point numbers to convert

isb Byte number at which to begin the conversion. Specify an integer variable, expression, or
constant Bytes are numbered from 1, beginning at the leftmost byte position of jpn.

dest Variable or array of type real to contain the converted values

num Number of VAX floating-point numbers to convert. Specify an integer variable, expression,
or constant.

ine Memory increment for storing the conversion results in dest. This is an optional parameter
specified as an integer variable, expression, or constant. The default value is 1.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

VXSCTI is the inverse of this routine.

SR-OI13 8-31 C

VXSCTI(3U) VXSCTI(3U)

NAME

VXSCTI - Converts Cray 64-bit single-precision, floating-point to VAX F format single-precision,
floating-point

SYNOPSIS

CALL VXSCTIlfpn,dest,isb,num,ier, [inc])

DESCRIPTION

/pn Variable or array of any length and type real, containing Cray 64-bit single-precision,
floating-point numbers to convert

dest Variable or array of type real to contain the converted values

isb Byte number at which to begin storing the converted results. Specify an integer variable,
expression, or constant. Bytes are numbered from 1, beginning at the leftmost byte position
of dest.

num Number of Cray floating-point numbers to convert. Specify an integer variable, expression,
or constant.

ier Overflow indicator of type integer. Value is 0 if all Cray values convert to V AX values
without overflow. Value is nonzero conversion.

inc Memory increment for fetching the number to be converted. This is an optional parameter
specified as an integer variable, expression, or constant. The default value is 1.

Numbers that produce an underflow when converted to V AX format are converted to 32 binary Os.
Numbers that are in overflow on the Cray computer system are converted to a "reserved" floating-point
representation, with the sign bit set if negative. Numbers that are valid on the Cray computer system
but overflow on the VAX are converted to the most positive possible number or most negative possible
number, depending on the sign.

An error parameter returns nonzero to indicate that one or more numbers converted produced an
overflow (Deferred implementation. At present you must supply the parameter, which is always
returned as 0.) No such indication is given for underflow.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

VXSCTC is the inverse of this routine.

SR-0113 8-32 C

VXZCTC(3U) VXZCTC(3U)

NAME

VXZCTC - Converts VAX 64-bit complex numbers to Cray complex numbers

SYNOPSIS

CALL VXZCTC(dpn,isb,dest,num,[inc])

DESCRIPTION

dpn Variable or array of any type or length containing complex numbers to convert

isb Byte number within dpn at which to begin the conversion. Specify an integer variable,
expression, or constant. Bytes are numbered from 1, beginning at the leftmost byte of dpn.

dest Variable or array of type complex to contain the converted values

num Number of complex numbers to convert. Specify an integer variable, expression, or con­
stant.

inc Memory increment for storing the conversion results in dest. This is an optional parameter
specified as an integer variable, expression, or constant. Default value is 1.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

VXZCTI is the inverse of this routine.

SR-0113 8-33 C

VXZCTI(3U) VXZCTI(3U)

NAME

VXZCTI - Converts Cray complex numbers to VAX complex numbers

SYNOPSIS

CALL VXZCTIlfpn,dest,isb,num,ier,[inc])

DESCRIPTION

/pn Variable or array of any length and type complex, containing Cray complex numbers to
convert

dest Variable or array of any type to contain the converted values

isb Byte number at which to begin storing the converted results. Specify an integer variable,
expression, or constant. Bytes are numbered from 1, beginning at the leftmost byte position
of dest.

num Number of Cray floating-point numbers to convert. Specify an integer variable, expression,
or constant.

ier Overflow indicator of type integer. Value is 0 if all Cray values convert to V AX values
without overflow. Value is nonzero if one or more Cray values overflowed in the conver­
sion.

inc Memory increment for fetching the number to be converted. This is an optional parameter
specified as an integer variable, expression, or constant. The default value is 1.

Numbers that produce an underflow when converted to VAX format are converted to 32 binary zero.
Numbers that are in overflow on the Cray computer system are converted to a "reserved" floating-point
representation, with the sign bit set if negative. Numbers that are valid on the Cray computer system
but overflow on the V AX are converted to the most positive possible number or most negative possible
number, depending on the sign.

An error parameter returns nonzero to indicate that one or more numbers converted produced an
overflow (Deferred implementation. At present, you must supply the parameter, which is always
returned as 0.) No such indication is given for underflow.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

VXZCTC is the inverse of this routine.

SR-0113 8-34 C

INTRO(3X) INTRO(3X)

9. PACKING ROUTINES

The packing routines provide alternative ways to pack and unpack data into or out of Cray words. The
following table contains the purpose, name, and entry of each packing routine.

Packing Routines
Purpose Name Entry

Pack 32-bit words into Cray 64-bit P32
words

P32
Unpack 32-bit words from Cray U32
64-bit words

Pack 6O-bit words into Cray 64-bit P6460
words

P6460
Unpack 6O-bit words fromCray 64-bit U6064
words

Compress stored data PACK PACK
Expand stored data UNPACK UNPACK

SR-Ol13 9-1 C

PACK(3U) PACK(3U)

NAME

PACK - Compresses stored data

SYNOPSIS

CALL PACK(p,nbits,u,nw)

DESCRIPTION

p On exi4 vector of packed data

nbits Number of rightmost bits of data in each partial word; must be 1, 2, 4, 8, 16, or 32.

U Vector of partial words to be compressed

nw Number of partial words to be compressed

PACK takes the 1, 2, 4, 8, 16, or 32 rightmost bits of several partial words and concatenates them into
full 64-bit words. The following equation gives the number of full words:

(nw·nbits)
n =~---'-

64

n Number of resulting full words

nw Number of partial words

nbits Number of rightmost bits of each partial word that contain useful data

This equation restricts nw ·nbits to a multiple of 64.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

UNPACK

SR-0113 9-2 C

P32(3U) P32(3U)

NAME

P32, U32 - Packs/unpacks 32-bit words into or from Cray 64-bit words

SYNOPSIS

CALL P32(src,dest,num)

CALL U32(src,dest,num)

DESCRIPTION

src For P32, a variable or array of any type or length containing 32-bit words, left-justified in a
Cray 64-bit word. For U32, a variable or array of any type or length containing 32-bit
words as a continuous stream of data. Unpacking always starts with the leftmost bit of src.

dest For P32, a destination array of any type to contain the packed 32-bit words as a continuous
stream of data. For U32, a destination array of any type to contain the unpacked 32-bit
words, left-justified and zero-filled in a Cray 64-bit word.

num Number of 32-bit words to pack or unpack. Reads this many elements of src or generates
this many elements of dest. Specify an integer variable, expression, or constant.

P32 packs 32-bit words into Cray 64-bit words. U32 unpacks 32-bit words from Cray 64-bit words.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-Ol13 9-3 C

P6460(3U) P6460(3U)

NAME

P6460, U6064 - Packs/unpacks 6O-bit words into or from Cray 64-bit words

SYNOPSIS

CALL P6460(src ,dest,isb,num)

CALL U6064(src,isb,dest,num)

DESCRIPTION

src Variable or array of any type or length containing 6O-bit words, left-justified in a Cray 64-
bit word (for U6064, words are contained as a continuous stream of data)

dest For P6460, a destination array of any type to contain the packed 6O-bit words as a continu­
ous stream of data. For U6064, a destination array of any type to contain the unpacked 60-
bit words, left-justified and zero-filled in a Cray 64-bit word.

isb Bit location that is the leftmost storage location for the 6O-bit words. Bit position is
counted from the left to right, with the leftmost bit O. Specify an integer variable, expres­
sion, or constant.

num Number of 6O-bit words to pack or unpack. Reads this many elements of src or generates
this many elements of dest. Specify an integer variable, expression, or constant.

P6460 packs 6O-bit words into Cray 64-bit words. U6064 unpacks 6O-bit words from Cray 64-bit words.
Parameter arguments must be addressed in the same order in which they appear in the synopsis above.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 9-4 C

UNPACK(3U) UNPACK(3U)

NAME

UNPACK - Expands stored data

SYNOPSIS

CALL UNPACK(p,nbits,u,nw)

DESCRIPTION

p Vector of full 64-bit words to be expanded

nbits Number of righbnost bits of data in each partial word; must be 1, 2,4, 8, 16, or 32.

U On exit, vector of unpacked data

nw Number of resulting partial words

UNPACK reverses the action of PACK and expands full words of data into a larger number of right­
justified partial words. This routine assumes nw * nbits to be a multiple of 64.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

PACK

SR-01l3 9-5 c

INTRO(3X) INTRO(3X)

10. BYTE AND BIT MANIPULATION ROUTINES

SR-0113

Byte and bit manipulation routines move bytes and bits between variables and arrays, compare bytes,
perform searches with a byte count as a search argument, and perform conversion on bytes.

The following table contains the purpose, name, and entry of each byte and bit manipulation routine.

Byte and Bit Manipulation Routines

Purpose Name Entry

Replace a byte in a variable or an PUTBYT
array with a specified value

BYT
Extract a byte from a variable IGTBYT

Search a variable or an array for FINDCH FINDCH
an occurrence of a character string
Compare bytes between variables or KOMSTR KOMSTR
arrays

Move bytes between variables or STRMOV
arrays

MOV
Move bits between variables or MOVBIT
arrays

Move characters between memory areas MVC MVC

10-1 C

BYT(3U) BYT(3U)

NAME

PUTBYT, IGTBYT - Replaces a byte in a variable or an array

SYNOPSIS

value=PUTBYT(string .position. value)

byte=I GTBYT(string .position)

DESCRIPTION

string The address of a variable or an array. The variable or array may be of any type except
character.

position The number of the byte to be replaced or extracted. This parameter must be an integer ~ 1.
If position is S 0, no change is made to the destination string; value returned is -1. For
IGTBYT, if position is ~ 0, value is an integer between 0 and 255.

value The new value to be stored into the byte. This parameter must be an integer with a value
between 0 and 255.

PUTBYT replaces a specified byte in a variable or an array with a specified value. IGTBYT extracts a
specified byte from a variable or an array.

If PUTBYT is called as an integer function (having been properly declared in the user program), the
value of the function is the value of the byte stored.

The high-order 8 bits of the first word of the variable or array are called byte 1.

The value of the byte returned by IGTBYT is an integer value between 0 and 255.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 10-2 c

FINDCH (3COS) FINDCH (3COS)

NAME

FINDCH - Searches a variable or an array for an occurrence of a character string

SYNOPSIS

CALL FINDCH(chrs,len,str,ls,nb,i/nd)

DESCRIPTION

chrs Variable or array of any type or length containing the search string

len Length of the search string in bytes (must be from 1 to 256). Specify an integer variable t

expression t or constant.

str Variable or array of any type or length that is searched for a match with chrs

Is Starting byte in the str string. Specify an integer variablet expressiont or constant. Bytes
are numbered from 1, beginning at the leftmost byte position of str.

nb Number of bytes to be searched. Specify an integer variablet expression t or constant.

ifnd Type integer result

The result of this subroutine search is equal to the I-based byte index into the variable or array where
the matching string was foundt or equal to 0 if no matching string was found.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

SR-0113 10-3 c

KOMSTR (3COS) KOMSTR (3CaS)

NAME

KOMSTR - Compares specified bytes between variables or arrays

SYNOPSIS

result=KOMSTR(strl,byte1 ,num,str2 ,byte2)

DESCRIPTION

result Type integer result indicating results of the comparison:
= 0 str1 = str2
= 1 str1 > str2
=-1 str1 < str2

strl Variable or array of any type or length containing the byte string to compare against the
byte string in str2

by tel Starting byte of str 1. Specify an integer variable, expression, or constant greater than O. In
a Cray word, bytes are numbered from 1 to 8, from the leftmost byte to the rightmost byte.

num An integer variable, expression, or constant that contains the number of bytes to compare;
must be greater than O.

str2 Variable or array of any type or length containing the byte string to compare against the
byte string in strl

byte2 Starting byte of str2. Specify an integer variable, expression, or constant greater than O. In
a Cray word, bytes are numbered from 1 to 8, from the leftmost byte to the rightmost byte.

KOMSTR performs an unsigned, twos complement compare of a specified number of bytes from one
variable or array with a specified number of bytes from another variable or array.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 10-4 C

MOV(3U) MOV(3U)

NAME

STRMOV, MOVBIT - Moves bytes or bits from one variable or array to another

SNYOPSIS

CALL STRMOV(src,isb,num,dest,idb)

CALL MOVBIT(src,isb,num,dest,idb)

DESCRIPTION

src Variable or array of any type or length containing the bytes or string of bits to be moved.
Bytes are numbered from 1, beginning at the leftmost byte position of src.

isb Starting byte or bit in the src string. Specify an integer variable, expression, or constant
greater than O. Bytes and bits are numbered from 1, beginning at the leftmost byte or bit
position of src.

num An integer variable, expression, or constant that contains the number of bytes or bits to be
moved; must be greater than O.

dest Variable or array of any type or length that contains the starting byte or bit to receive the
data. Bytes and bits are numbered from 1, beginning at the leftmost byte or bit position of
dest.

idb An integer variable, expression, or constant that contains the starting byte or bit to receive
the data; must be greater than O. Bytes and bits are numbered from 1, beginning at the left­
most byte or bit position of dest.

STRMOV moves bytes from one variable or array to another. MOVBIT moves bits from one variable
or array to another.

CAUTION

The argument dest must be declared long enough to hold num bytes, or a spill occurs and data is des­
troyed.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OI13 10-5 c

MVC(3U) MVC(3U)

NAME

MVC - Moves characters from one memory area to another

SYNOPSIS

CALL MVC(Sltit,s2,j2.k)

DESCRIPTION

S 1 Word address of the source string

j 1 Byte offset from the source string word address of the first byte of the source string (the
high-order byte of the first word of the source string is byte 1)

s 2 Word address of the destination string

j 2 Byte offset from the destination string word address of the first byte of the destination
string (the high-order byte of the first word of the destination string is byte 1)

k Number of bytes to be moved

Source and destination strings can occur on any byte boundary. The move is performed 1 character at a
time from left to right The destination string can overlap the source string.

EXAMPLE

To copy the first byte of an array throughout the array, invoke the routine as follows:

CALL MVC(ARRAY,1,ARRAY,2,K-l)

where K is the length of the array in bytes.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 10-6 c

TRIMLEN (3COS) TRIMLEN (3COS)

NAME

TRIMLEN - Retmns the number of characters in a string

SYNOPSIS

INTEGER TRIMLEN
num = TRIMLEN(string)

DESCRIPTION

num An integer variable giving the number of characters, excluding trailing blanks, in string

string A string variable

This function is intended for use with WRITE statements or with the concatenation operator. If you use
it on the right-hand side of an assignment statement, any trailing blanks are put back as they were.

EXAMPLE

The following are examples of typical use:

WRITE(6,901) STRING(l:TRIMLEN(STRING»
9 0 1 FORMAT (' The s t r i n g is>', A, '<')

This example writes the string with the < character against the last nonblank character in string A.

NEW = STRING(l:TRIMLEN(STRING» II '<The end'

In this example, the < is again butted up against the last significant character in STRING even though
STRING may have trailing blanks.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 10-7 c

INTRO(3X) INTRO(3X)

11. HEAP MANAGEMENT AND TABLE MANAGEMENT ROUTINES

These routines allow you to manage a block of memory (the heap) within your job area and to manipu­
late tables.

The management routines are divided into two categories: heap management and table management.
Corresponding CAL routines are found in the in the System Library Reference Manual, publication
SM-0114.

IMPLEMENTATION

The heap management and table management routines are available to users of both the COS and
UNICOS operating systems.

HEAP MANAGEMENT ROUTINES

SR-OI13

Heap management routines provide dynamic storage allocations by managing a block of memory, called
the heap, within your job area. Each job has its own heap. The functions of the heap management rou­
tines include allocating a block of memory, returning a block of memory to the heap's list of available
space, and changing the length of a block of memory. Heap managment routines may also move a heap
block to a new location if there is no room to extend it, return part of the heap to the operating system,
check the integrity of the heap, and report heap statistics. See the COS Reference Manual, publication
SR-OOll, and the Segment Loader (SEGLDR) Reference Manual, publication SR-0066, for the location of
the heap and a description of the parameters on the LDR control statement or the SEGLDR directive that
affect the heap.

The heap management routines keep various statistics on the use of the heap. These include values
used to tune heap parameters specified on the LDR control statement or the SEGLDR directive and infor­
mation used in debugging.

The following table contains the purpose, name, and entry of each heap management routine.

Heap Management Routines
Purpose Name Entry

Allocate a block of memory from the HPALLOC HPALLOC
heap
Check the integrity of the heap HPCHECK HPCHECK
Extend a block or copy block HPCLMOVE HPCLMOVE
contents into a larger block
Return a block of memory to the heap HPDEALLC HPDEALLC
Dump the address and size of each heap HPDUMP HPDUMP
block

Change the size of an allocated heap block HPNEWLEN HPNEWLEN
Return an unused portion of the heap HPSHRINK HPSHRINK
to the operating system
Return the length of a heap block IHPLEN IHPLEN
Return statistics about the heap IHPSTAT IHPSTAT

11-1 C

INTRO(3X) INTRO(3X)

TABLE MANAGEMENT ROUTINES

SR-0113

The following table contains the purpose, name, and entry of each Fortran-callable table management
routine.

Table Management Routines

Puroose Name Heading

Add a word to a table TMADW TMADW

Report table management operation TMAMU TMAMU
statistics

Allocate table space TMATS TMATS

Request additional memory TMMEM TMMEM

Search the table with a mask to TMMSC TMMSC
locate a field within an entry

Move memory TMMVE TMMVE

Preset table space TMPTS TMPTS
Search the table with or without a TMSRC TMSRC
mask to locate a field within an
entry and an offset

Search a vector table for the search argument TMVSC TMVSC

The Job Communication Block (JCB) field JCHLM (COS only) defines the beginning address of the table
area.

You must provide two control infonnation tables with corresponding CAL ENTRY pseudo-ops: the
Table Base Address (BTAB) and Table Length Table (LTAB). Their formats are listed in the System
Library Reference Manual, publication SM-Ol14. The Fortran-callable versions of these routines use
default BTAB and LTAB definitions from a common area in the library.

TMINIT initializes the table descriptor vector, BTAB, and zeros all elements of the table length vector,
LTAB. You must preset each element of BTAB to contain the desired interspace value for the
corresponding table; for instance, sl in the following example determines the interspace value for table
1. Interspace values determine how many words are added to a table when more room is needed for
that table or for any table with a lower number.

INTEGER BTAB(n), LTAB(n)
DATA BT AB /sl.s2 .s3 sn/

CALLTMINIT

After the call to TMINIT, BT AB should not be changed. The interspace values have been shifted 48 bits to
the left, bits 16 through 39 contain the current size of each table, and the rightmost 24 bits contain the abso­
lute address of each table's first word. LTAB is used only to pass new table lengths from the user to the
Table Manager.

You can use statements such as the following to access each table. In this example, T ABLEi is accessed.

EQUIVALENCE (BT AB(i), PTRi)
INTEGER PTRi, T ABLEi (0:0)
POINTER (PTRi, T ABLEi)

T ABLEi (subscript) = ...
11-2 c

INTRO(3X) lNTRO(3X)

TM COMMON BLOCK - The common block name TM is reserved for use by the Table Manager and must
always contain 64 LTAB words.

COMMON (fM/ BT AB(64), LT AB(64)

ACCESSING TABLE MANAGER TABLES (ALTERNATE METHOD) - Blank common can be used in the
customary way, but the last entry in it should be for a one-dimensional array declared to contain just 1 word.
The name of this array is then used to access the tables, beginning immediately after the end of blank com­
mon.

COMMON 1/ T ABLES(l)

WARNING

SR-0113

Under COS, the heap management and table management subroutines cannot be used in the same appli­
cation, unless the heap is of fixed size and placed before blank common. This restriction does not
apply to UNICOS.

The following statement function extracts the rightmost 24 bits from a BT AB word and changes that
value from an absolute address to a relative address or offset within the table area. Thus the result of
BASE(N) is an index into T ABLES(l), pointing to the first word currently allocated to table N.

BASE(N) = (BTAB(N) .AND. 77777777B) - LOC(TABLES(l))

WRlTE(6,101) TABN
101 FORMAT ('0 Dump of table ',12/)

OFFSET = 0
102 CONTINUE

00 103 1=1,4
INT ABLE = OFFSET .LT. LTAB(T ABN)
IF (!NT ABLE) THEN
OCTAL(I) = T ABLES (1 +BASE(TABN) + OFFSET)
ALPHA(I)=TABLES(l +BASE(T ABN) + OFFSET)
ELSE
OCTAL(I) = 0
ALPHA(I) ='
ENDIF
OFFSET = OFFSET + 1

103 CONTINUE
WRITE (6,104) OFFSET-4, OCTAL, ALPHA

104 FORMAT (16,2X,4(022,lX),4A8)

INTABLE = OFFSET .LT. LTAB(TABN)
IF (INTABLE) GO TO 102
WRITE (6,105)

105 FORMAT (j)
RETURN
END

11-3 C

HPALLOC(3U) HPALLOC(3U)

NAME

HPALLOC - Allocates a block of memory from the heap

SYNOPSIS

CALL HPALLOC(addr,length,errcode ,abort)

DESCRIPTION

addr

length

errcode

abort

First word address of the allocated block (output)

Number of words of memory requested (input)

Error code. 0 if no error was detected; otherwise, a negative integer code for the type of
error (output).

Abort code; nonzero requests abort on error; 0 requests an error code (input).

Allocate routines search the linked list of available space for a block greater than or equal to the size
requested.

The length of an allocated block can be greater than the requested length because blocks smaller than
the managed memory epsilon specified on the LDR control statement (or in a SEGLDR directive) are
never left on the free space list.

Error conditions are as follows:

Error Code

-1

-2

Condition

Length is not an integer greater than 0

No more memory is available from the system (checked if the
the request cannot be satisfied from the available blocks
on the heap)

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 11-4 C

HPCHECK (3U) HPCHECK (3U)

NAME

HPCHECK - Checks the integrity of the heap

SYNOPSIS

CALL HPCHECK(errcode)

DESCRIPTION

errcode Error code. 0 if no error was detected; otherwise, a negative integer code for the type of
error (output).

Each control word is examined to ensure that it has not been overwritten.

Error conditions are as follows:

Error Code

·s
·6

Condition

Bad control word for the allocated block

Bad control word for the free block

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 11-5 C

HPCLMOVE(3U) HPCLMOVE(3U)

NAME

HPCLMOVE - Extends a block or copies block contents into a larger block

SYNOPSIS

CALL HPCLMOVE(addr.length.status.abort)

DESCRIPTION

addr

length

status

abort

On entry, first word address of the block to change; on exit, the new address of the block if
it was moved.

Requested new total length (input)

Status. 0 if the block was extended in place; 1 if it was moved; a negative integer for the
type of error detected (output).

Abort code. Nonzero requests abort on error; 0 requests an error code (input).

Change length and move routines extend a block if it is followed by a large enough free block or copy
the contents of the existing block to a larger block and return a status code indicating that the block has
been moved. These routines can also reduce the size of a block if the new length is less than the old
length. In this case, they have the same effect as the change length routines.

The new length of the block can be greater than the requested length because blocks smaller than the
managed memory epsilon specified on the LDR control statement are never left on the free space list.

Error conditions are as follows:

Error Code

·1

·2

·3

·4

·5 .,

Condition

Length is not an integer greater than 0

No more memory is available from the system (checked if the
block cannot be extended and the free space list does not
include a large enough block)

Address is outside the bounds of the heap

Block is already free

Address is not at the beginning of the block

Control word for the next block has been overwritten

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 11-6 C

HPDEALLC (3U) HPDEALLC (3U)

NAME

HPDEALLC - Returns a block of memory to the list of available space (the heap)

SYNOPSIS

CALL HPDEALLC(addr,errcode,abort)

DESCRIPTION

First word address of the block to deallocate (input) addr

errcode Error code. 0 if no error was detected; otherwise, a negative integer code for the type of
error (output).

abort Abort code. Nonzero requests abort on error; 0 requests an error code (input).

Error conditions are as follows:

Error Code

·3

·4

·s .,

Condition

Address is outside the bounds of the heap

Block is already free

Address is not at the beginning of the block

Control word for the next block has been overwritten

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-Ol13 11-7 C

HPDUMP(3U) HPDUMP(3U)

NAME

HPDUMP - Dumps the address and size of each heap block

SYNOPSIS

CALL HPDUMP(code,dsname)

DESCRIPTION

code Code for the type of dump requested, as follows:

dsname

Code

o
1
2
3

Meaning

Print heap statistics
Dump all heap blocks in storage order
Dump free blocks; follow NEXT links.
Dump free blocks; follow PREV links.

Name of the dataset to which the dump is to be written. dsname must be in left-justified,
Hollerith form.

Three types of dump are available: a dump of all heap blocks; a dump of free blocks that traces the
links to the next block on the free list; and a dump of free blocks that traces the links to the previous
block on the free list. The dump stops if a recognizably invalid value is found in a field needed to con­
tinue the dump.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-Ol13 11-8 C

HPNEWLEN (3U) HPNEWLEN (3U)

NAME

HPNEWLEN - Changes the size of an allocated heap block

SYNOPSIS

CALL HPNEWLEN(addr,length,status,abort)

DESCRIPTION

addr

length

status

abort

First word address of the block to change (input)

Requested new total length of the block (input)

Status. 0 if the change in length was successful; 1 if the block could not be extended in
place; a negative integer for the type of error detected (output).

Abort code. Nonzero requests abort on error; 0 requests an error code (input).

Set new length routines change the size of an allocated heap block. If the new length is less than the
allocated length, the portion starting at ADDR+LENGTH is returned to the heap. If the new length is
greater than the allocated length, the block is extended if it is followed by a free block. A status is
returned, telling whether the change was successful.

The new length of the block can be greater than the requested length because blocks smaller than the
managed memory epsilon specified on the LDR or SEGLDR control statement are never left on the free
space list.

Error conditions are as follows:

Error Code

-1

-3

-4

-5

-7

Condition

Length is not an integer greater than 0

Address is outside the bounds of the heap

Block is already free

Address is not at the beginning of the block

Control word for the next block has been overwritten

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-Ol13 11-9 C

HPSHR.INK(3U) HPSHRINK(3U)

NAME

HPSHRINK - Returns an unused portion of heap to the operating system

SYNOPSIS

CALL HPSHRINK

DESCRIPTION

The unused portion of the heap is returned to the operating system only if the blocks closest to HLM
(COS only) are free; no allocated blocks are moved. The minimum amount of memory to be returned is
the managed memory increment specified on the LDR or SEGLDR control statement. These routines are
called only from the user program.

IMPLEMENTATION

This routine is available only to the users of the COS operating system.

SR-0113 11-10 c

IHPLEN(3U) mPLEN(3U)

NAME

IHPLEN - Returns the length of a heap block

SYNOPSIS

length=IHPLEN (addr ,errcode ,abort)

DESCRIPTION

length

addr

errcode

abort

Length of the block starting at addr (output)

First word address of the block (input)

Error code. 0 if no error was detected; otherwise, a negative integer code for the type of
error (output).

Abort code. Nonzero requests abort on error; 0 requests an error code (input).

The length of the block can be greater than the amount requested because of the managed memory
epsilon.

Error conditions are as follows:

Error Code

-3

-4

-5

-7

Condition

Address is outside the bounds of the heap

Block is already free

Address is not at the beginning of the block

Control word for the next block has been overwritten

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 11-11 C

IHPSTAT(3U)

NAME

IHPST AT - Returns statistics about the heap

SYNOPSIS

value=IHPSTAT(code)

DESCRIPTION

value Requested information

code Code for the type of information requested, as follows:

Code Meaning

1 Current heap length
2 Largest size of the heap so far
3 Smallest size of the heap so far
4 Number of allocated blocks
5 Number of times the heap has grown
6 Number of times the heap has shrunk
7 Last routine that changed the heap
8 Caller of the last routine that changed the heap
9 First word address of the heap area changed last
10 Size of the largest free block
11 Amount by which the heap can shrink
12 Amount by which the heap can grow
13 First word address of the heap
14 Last word address of the heap

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 11-12

llIPSTAT(3U)

C

TMADW(3U)

NAME

TMADW - Adds a word to a table

SYNOPSIS

index=TMADW(number,entry)

DESCRIPTION

index

number

entry

IMPLEMENTATION

Index of the added word

Table number

Entry for the table

This routine is available to the users of both the cos and UNICOS operating systems.

SR-OI13 11-13

TMADW(3U)

c

TMAMU(3U)

NAME

TMAMU - Reports table management operation statistics

SYNOPSIS

CALL TMAMU(len,tabnum,tabmov,tabmar,nword)

DESCRIPTION

len

tabnum

tabmov

tabmar

nword

IMPLEMENTATION

Allocated length of the table

Number of tables used

Number of table moves

Maximum amount of memory used throughout the Table Manager

Number of words moved

This routine is available to the users of both the COS and UNICOS operating systems.

SR-OI13 11-14

TMAMU(3U)

c

TMATS(3U)

NAME

TMATS - Allocates table space

SYNOPSIS

index=TMATS(number ,incre)

DESCRIPTION

index

number

incre

IMPLEMENTATION

Index of the specified change

Table number

Table increment

This routine is available to the users of both the COS and UNICOS operating systems.

SR-0113 11-15

TMATS(3U)

c

TMMEM(3U)

NAME

TMMEM - Requests additional memory

SYNOPSIS

CALL TMMEM(mem)

DESCRIPTION

mem Length of memory requested

Upon exit, memory is extended by the requested amount. No value is returned.

IMPLEMENTATION

This routine is available to the users of both the COS and UNICOS operating systems.

SR-OI13 11-16

TMMEM(3U)

c

TMMSC(3U)

NAME

TMMSC - Searches the table with a mask to locate a specific field within an entry

SYNOPSIS

index=TMMSC(tabnum.mask.sword.nword)

DESCRIPTION

index

tabnum

mask

sword

nword

IMPLEMENTATION

Table index of the match, if found; -1 if no match is found.

Table number

Mask defining a field within a word

Search word

Number of words per entry group

This routine is available to the users of both the COS and UNICOS operating systems.

SR-OI13 11-17

TMMSC(3U)

c

TMMVE(3U) TMMVE(3U)

NAME

TMMVE - Moves memory (words)

SYNOPSIS

CALL TMMVE(from,to,count)

DESCRIPTION

from Address from which words are to be moved

to Address of the location to which words are to be moved

count Number of words to be moved

IMPLEMENTATION

This routine is available to the users of both the COS and UNICOS operating systems.

SR-Ol13 11-18 c

TMPTS(3U)

NAME

TMPTS - Presets table space

SYNOPSIS

CALL TMPTS(start .len.preset)

DESCRIPTION

start

len

preset

IMPLEMENTATION

Starting address

Length to preset

Preset value; default is O.

This routine is available to the users of both the COS and UNICOS operating systems.

SR-OI13 11-19

TMPTS(3U)

c

TMSRC(3U) TMSRC(3U)

NAME

TMSRC - Searches the table with an optional mask to locate a specific field within an entry and an
offset

SYNOPSIS

index=TMSRC(tabnum,arg ,nword,offset,mask)

DESCRIPTION

index

tabnum

arg

nword

offset

mask

IMPLEMENTATION

Table index of the match, if a match is found; -1 if no match is found.

Table number to search

Search argument or key

Number of words per entry

Offset into the entry group

Field being searched for within an entry

This routine is available to the users of both the COS and UNICOS operating systems.

SR-OI13 11-20 c

TMVSC(3U)

NAME

TMVSC - Searches a vector table for the search argument

SYNOPSIS

index=TMVSC(tabnum,arg,nword)

DESCRIPTION

index

tabnum

arg

nword

IMPLEMENTATION

Table index of the match, if found; -1 if no match is found.

Table number

Search argument

Number of words per entry group

This routine is available to the users of both the COS and UNICOS operating systems.

SR-OI13 11-21

TMVSC(3U)

c

INTRO(3X) INTRO(3X)

12. I/O ROUTINES

The I/O routines include the following:

• Dataset positioning routines

• Auxiliary NAMEUST routines

• Logical record I/O routines

• Random access dataset I/O routines

• Asynchronous queued I/O routines

• Output suppression routines

• Fortran-callable tape routines involving beginning- and end-of-volume processing

DATASET POsmONING ROUTINES

SR-0113

Dataset positioning routines change or indicate the position of the current dataset. These routines set the
current positioning direction to input (read). If the previous processing direction is output (write), end­
of-data is written on a blocked sequential dataset, and the buffer is flushed. On a random dataset, the
buffer is flushed.

The following table contains the name, purpose, and entry of each dataset positioning routine.

Dataset Positioning Routines
Purpose Name Entry

Receive position information about GETTP GETTP
an opened tape dataset

Position a specified tape dataset at SETTP SETTP
a tape block

Synchronize the specified program and an SYNCH SYNCH
opened tape dataset

Return current position of an interchange GETPOS
tape or mass storage dataset

GETPOS
Return to the position retained from SETPOS
the GETPOS request

12-1 C

INTRO(3X) INTRO(3X)

AUXILIARY NAMELIST ROUTINES

SR-0113

NAMELIST routines allow you to control input and output defaults and are accessed by call-by-address
subprogram linkage. No arguments are returned. For a more complete description of the NAMELIST
feature, see the Fortran (CFT) Reference Manual, publication SR-0009 or the CFf77 Reference Manual,
publication SR-0018.

IMPLEMENT ATION - The auxiliary NAMEUST routines are available to users of both the cos and
UNlCOS operating systems.

The following table contains the purpose, name, and entry of each auxiliary NAMELIST routine.

Auxiliary NAMELIST Routines
Purpose Name Entry

Delete or add a trailing comment RNLCOMM
indicator

Delete or add a delimiting character RNLDELM
Delete or add an echo character RNLFLAG RNL
Delete or add a replacement character RNLREP
Delete or add a separator character RNLSEP
Specify the output unit for error RNLECHO RNLECHO
messages and echo lines

Take action when an undesired RNLSKIP RNLSKIP
NAMELIST group is encountered

Determine the action if a type mismatch RNLTYPE RNLTYPE
occurs across the equal sign on an
input record

Define an ASCII NAMELIST delimiter WNLDELM
Indicate the first ASCII character WNLFLAG
of the first line

WNL
Define ASCII NAMELIST replacement WNLREP
character

Define ASCII NAMELIST separator WNLSEP
Allow each NAMELIST variable to WNLLINE WNLLINE
begin on a new line

Indicate output line length WNLLONG WNLLONG

12-2 C

INTRO(3X) INTRO(3X)

LOGICAL RECORD UO ROUTINES

SR-0113

The logical record I/O routines are divided into read routines, write routines, and bad data error
recovery routines. The following table contains the purpose, name, and entry of each logical record I/O
routine.

Logical Record I/O Routines
Purpose Name Entry

Read words, full record mode READ READ
Read words, partial record mode READP
Read characters, full record mode READC READC
Read characters, partial record mode READCP
Read two ffiM 32-bit floating-point READIBM READIBM
words from each Cray 64-bit word
Write words, full record mode WRITE WRITE
Write words, partial record mode WRITEP
Write characters, full record mode WRITEC WRITEC
Write characters, partial record mode WRITECP
Write two IBM 32-bit floating-point WRITIBM WRITIBM
words from each Cray 64-bit word
Skip bad data SKIPBAD SKIPBAD
Make bad data available ACPTBAD ACPTBAD

READ ROUTINES - Read routines transfer partial or full records of data from the I/O buffer to the user
data area. Depending on the read request issued, the data is placed in the user data area either 1 char­
acter per word or in full words. (Blank decompression occurs only when data is being read 1 character
per word.) In partial mode, the dataset maintains its position after the read is executed. In record
mode, the dataset position is maintained after the end-of-record (EOR) that terminates the current
record.

WRITE ROUTINES - Write routines transfer partial or full records of data from the user data area to
the I/O buffer. Depending on the write operation requested, data either is taken from the user data area
1 character per word and packed 8 characters per word or is transferred in full words. In partial mode,
no end-of-record (EOR) is inserted in the I/O buffer in the word following the data that terminates the
record.

BAD DATA ERROR RECOVERY ROUTINES - Bad data error recovery routines enable a user program
to continue processing a dataset when bad data is encountered. "Bad data" refers to an unrecovered
error encountered while the dataset was being read. Skipping the data forces the dataset to a position
past the bad data, so that no data is transferred to the user-specified buffer. Accepting the data causes
the bad data to be transferred to a user-specified buffer. The dataset is then positioned immediately fol­
lowing the bad data.

When an unrecovered data error is encountered, continue processing by calling either the SKIPBAD or
the ACPTBAD routine.

12-3 C

INTRO(3X) INTRO(3X)

RANDOM ACCESS DATASET I/O ROUTINES

SR-OI13

Sequentially accessed datasets are used for applications that read input only once during a process and
write output only once during a process. However, when large numbers of intermediate results are used
randomly as input at different stages of jobs, a random access dataset capability is more efficient than
sequential acce~s. A random access dataset consists of records that are accessed and changed. Random
access of data eliminates the slow processing and inconvenience of sequential access when the order of
reading and writing records differs in various applications.

Random access dataset I/O routines allow you to specify how records of a dataset are to be changed,
without the usual limitations of sequential access. Choose specific routines based on performance
requirements and the type of access needed.

Random access datasets can be created and accessed by the record-addressable, random access dataset
routines (READMS/WRITMS, and READDRIWRITDR) or the word-addressable, random access dataset
routines (GETWA/PUTWA).

NOTE - Generally, random access dataset I/O routines used in a program with overlays or segments
should reside in the first overlay or root segment. However, if all I/O is done within one overlay or
segment, the routines can reside in that overlay. If all I/O is done in an overlay's successor, the rou­
tines can reside in the successor overlay.

IMPLEMENTATION - The random access dataset I/O routines are available to users of both the cos
and UNICOS operating systems.

RECORD-ADDRESSABLE, RANDOM ACCESS DATASET 110 ROUTINES - Record-addressable, random
access dataset I/O routines allow you to generate datasets containing variable-length, individually
addressable records. These records can be read and rewritten at your discretion. The library routines
update indexes and pointers. The random access dataset information is stored in two places: in an array
in user memory and at the end of the random access dataset.

When a random access dataset is opened, an array in user memory contains the master index to the
records of the dataset This master index contains the pointers to and, optionally, the names of the
records within the dataset. Although you provide this storage area, it must be modified only by the ran­
dom access dataset I/O routines.

When a random access dataset is closed and optionally saved, the storage area containing the master
index is mapped to the end of the random access dataset, thus recording changes to the contents of the
dataset.

The following Fortran-callable routines can change or access a record-addressable, random access
dataset: OPENMS, WRITMS, READMS, CLOSMS, FINDMS, CHECKMS, W AITMS, ASYNCMS,
SYNCMS, OPENDR, WRITDR, READDR, CLOSDR, STINDR, CHECKDR, W AITDR, ASYNCDR,
SYNCDR, and STINDX.

The READDRIWRITDR random access I/O routines are direct-to-disk versions of READMSIWRITMS.
All input or output goes directly between the user data area and the mass storage dataset without pass­
ing through a system-maintained buffer. Because mass storage can only be addressed in 512-word
blocks, all record lengths are rounded up to the next multiple of 512 words.

You can intermix READMSIWRITMS and READDR/WRITDR datasets in the same program, but you
must not use the same file in both packages simultaneously.

OPENMS/OPENDR opens a local dataset and specifies the dataset as a random access dataset that can
be accessed or changed by the record-addressable, random access dataset I/O routines. If the dataset
does not exist, the master index contains zeros; if the dataset does exist, the master index is read from
the dataset. The master index contains the current index to the dataset The current index is updated
when the dataset is closed using CLOSMS/CLOSDR.

12-4 C

INTRO(3X) INTRO(3X)

SR-0113

A single job can use up to 40 active READMSIWRITMS files and 20 READDRIWRITDR files.

The following table contains the name, purpose, and entry of each record-addressable, random access
dataset I/O routine.

Record-addressable, Random Access Dataset I/O Routines

Purpose Name Enjry

Set the I/O mode to be asynchronous ASYNCMS ASYNCMS
ASYNCDR

Check the status of an asynchronous I/O CHECKMS CHECKMS
operation CHECKDR

Close a random access dataset and write CLOSMS CLOSMS
the master index CLOSDR

Read records into data buffers used by FINDMS FINDMS
random access dataset routines

Open a local dataset as a random access OPENMS OPENMS
dataset OPENDR

Allow an index to be used as the current index STINDX STINDX
by creating a subindex STINDR

Set the I/O mode to be synchronous SYNCMS SYNCMS
SYNCDR

Wait for completion of an asynchronous I/O WAITMS WAITMS
operation WAITDR

Write data from user memory to a random WRITMS WRITMS
access dataset and update the index WRITDR

WORD·ADDRESSABLE, RANDOM ACCESS DATASET 110 ROUTINES - A word-addressable, random
access dataset consists of an adjustable number of contiguous words. You can access any word or con­
tiguous sequence of words from a word-addressable, random access dataset by using the associated rou­
tines. These datasets and their I/O routines are similar to the record-addressable, random access datasets
and their routines. The Fortran-callable, word-addressable random access I/O routines are WOPEN,
WCLOSE, PUTWA, APUTWA, GETWA, and SEEK. WOPEN opens a dataset and specifies it as a
word-addressable, random access dataset that can be accessed or changed with the word-addressable
routines. The WOPEN call is optional. If a call to GETW A or PUTW A is executed first, the dataset is
opened for you with the default number of blocks (16), and istats is turned on.

The following table contains the purpose, name, and entry of each word-addressable, random access
dataset I/O routine.

12-5 c

INTRO(3X) INTRO(3X)

Word-addressable, Random Access Dataset I/O Routines
Purpose Name Entry

Synchronously read words from the GETWA
dataset into user memory

GETWA
Asynchronously read data into SEEK
dataset buffers
Synchronously write words from PUTWA
memory to the dataset

PUTWA
Asynchronously write words from APUTWA
memory to the dataset
Finalize additions and changes WCLOSE WCLOSE
and close the dataset
Open a dataset and specify it as WOPEN WOPEN
word-addressable, random access

ASYNCHRONOUS QUEUED I/O ROUTINES

SR-0113

Asynchronous queued I/O routines initiate a transfer of data and allow the subsequent execution
sequence to proceed concurrently with the actual transfer.

The following table contains the purpose, name, and entry of each asynchronous queued I/O routine.

12-6 c

INTRO(3X) INTRO(3X)

Asynchronous Queued I/O Routines
Puroose Name Entry

Close an asynchronous queued I/O AQCLOSE AQCLOSE
dataset or file
Open a dataset or file for AQOPEN AQOPEN
asynchronous queued I/O
Queue a simple asynchronous I/O AQREAD
read request
Queue a compound asynchronous I/O AQREADC
read request

AQREAD
Queue a compound read request AQREADCI
with the ignore bit set
Queue a simple read request with the ignore AQREADI
bit set
Prevent a segment of I/O and part of AQRECALL
the program from executing concurrently
(used with AQRIR)

AQRECALL
Designate point in I/O at which AQRIR
concurrent processing can resume
(used with AQRECALL)
Check the status of asynchronous queued AQSTAT AQSTAT
I/O requests
Queue a stop request in the asyncronous AQSTOP AQSTOP
queued I/O buffer
Queue a synchronization request in the AQSYNC AQSYNC
asynchronous queued I/O buffer
Wait for completion of asynchronous AQWAIT AQWAIT
queued I/O requests
Queue a simple asynchronous I/O AQWRITE
write request
Queue a compound asynchronous I/O AQWRITEC
write request

AQWRITE
Queue a compound write request with AQWRITEC
bit set
Queue a write request with the ignore AQWRITEI
bit set

SR-0113 12-7 C

INTRO(3X) INTRO(3X)

OUTPUT SUPPRESSION ROUTINES

Output suppression routines are special-purpose routines designed to output blank values in Fortran pro­
grams.

FSUP and FSUPC turn suppression on and off for the following Fortran edit descriptors: F-type, G-type,
and E-type.

ISUP and ISUPC turn suppression on and off for the Fortran edit descriptor I-type.

All of these routines are described under the FSUP entry.

BOV /EOV FORTRAN-CALLABLE ROUTINES

SR-0113

Fortran-callable routines are designed to perform special functions on a tape dataset, such as
beginning-of-volume (BOV) and end-of-volume (EOV) processing.

The following tables contain the purpose, name, and entry of each BOV /EOV Fortran-callable routine.
Cray Research highly recommends using the first set of routines, ST ARTSP, SETSP, CLOSEV, and
ENDSP.

BOV/EOV Fortran-callable Routines (New Routines)
Purpose Name Entry

Switch tape volumes CLOSEV CLOSEV
End special EOV/BOV processing ENDSP ENDSP
Request notification at end of tape volume SETSP SETSP
Begin tape BOV /EOV processing STARTSP STARTSP

BOV/EOV Fortran-callable Routines (Obsolete Routines)
Purpose Name Entry

Check tape I/O status CHECKTP CHECKTP
Continue nonnal I/O operation CONTPIO CONTPIO
Begin special processing at PROCBOV PROCBOV
BOV

Begin special processing at PROCEOV PROCEOV
EOV

Switch tape volume SWITCHV SWITCHV
Initialize/terminate special SVOLPRC SVOLPRC
BOV /EOV processing

12-8 C

ACPTBAD (310) ACPTBAD (310)

NAME

ACPTBAD - Makes bad data available

SYNOPSIS

CALL ACPTBAD(dn,uda,wrdcnt,termcnd,ubcnt)

DESCRIPTION

dn Dataset name or unit number

uda User data area to receive the bad data

wrdcnt On exit, number of words transferred

termcnd On exit, address of termination condition
=0 Positioned at end-of-block
=1 Positioned at end-of-file
=2 Positioned at end-of-data
<0 Not positioned at end-of-block

ubcnt On exit, address of unused bit count. Only defined if termcnd is 0, and wrdcnt is nonzero.

ACPTBAD makes bad data available to you by transferring it to the user-specified buffer. UNICOS does
not support bad data recovery on transparent format tapes.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

EXAMPLE

C
PROGRAM EXAMPLE1
IMPLICIT INTEGER(A-Z)
REAL UNIT, UNITSTAT
PARAMETER(NBYTES=400000,NDIM=NBYTES/8,DN=99)
DIMENSION BUFFER(1:NDIM)
DIMENSION UDA(1:512)

2000 CONTINUE

NWORDS = ND 1M
CALL READ(DN,BUFFER,NWORDS,STATUS)

UNITSTAT = UNIT(DN)

IF(STATUS.EQ.4 .OR. UNITSTAT.GT.O.O) THEN !Pari ty error
3000 CONTINUE

CALL ACPTBAD(DN,UDA,WC,TERMCND,UBCNT)

C---->Build up user record:
IX = 0
DO 3500 I=(NWORDS + I),

IX = IX + 1
BUFFER(I)

CONTINUE
UDA(IX)

(NWORDS + WC), 1

3500

SR-0113 12 - 9 c

ACPTBAD (310)

IF(TERMCND.LT.O) THEN
GO TO 3000

ENDIF
ENDIF

STOP 'COMPLETE'
END

SEE ALSO

SKIPBAD

SR-OI13

ACPTBAD (310)

12-10 c

AQCLOSE(3IO) AQCLOSE (310)

NAME

AQCLOSE - Closes an asynchronous queued I/O dataset or file

SYNOPSIS

CALL AQCLOSE(aqp,status)

DESCRIPTION

aqp Type INTEGER array. The name of the array in the user's program that contains the asyn­
chronous queued I/O parameter block. This must be the same array specified in the
AQOPEN request.

status Type INTEGER variable. Status code; status returns any errors or status information to the
user. On output from AQCLOSE, status has one of the following values:

>0 Information only
=0 No error detected
<0 Error detected

Status Codes

0 No errors detected

+1 The asynchronous queued I/O parameter block is full

+2 No I/O is active on the asynchronous queued I/O dataset or file

+3 Asynchronous queued I/O request is stuck
+4 The asynchronous request is queued for I/O
-1 Illegal aqpsize on the AQOPEN request. Minimum size

is equal to 32 + 8n, where n = 1.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SR-0113

AQOPEN, AQREAD, AQREADC, AQSTAT, AQWAIT, AQWRITE, AQWRITEC
The AQIO User's Guide, publication SN-0247

12-11 C

AQOPEN (310) AQOPEN (310)

NAME

AQOPEN - Opens a dataset or file for asynchronous queued 110

SYNOPSIS

CALL AQOPEN(aqp,aqpsize,d,n,status)

DESCRIPTION

NOTES

aqp

aqpsize

dn

status

Type INTEGER array. The name of the array in the user's program that will contain the
asynchronous queued I/O.

Type INTEGER variable, expression, or constant. The length of the asynchronous queued
I/O parameter block. Each queued I/O entry in the parameter block is 8 words long. The
array aqp must contain at least 1 entry plus 32 words for dataset definitions. Therefore,
aqpsize should be 32 + 8n; n is the number of user-specified asynchronous queued I/O
entries in the parameter block.

Type INTEGER variable, expression, or constant. The name of the dataset as a Hollerith
constant or the unit number of the dataset

Type INTEGER variable. Status code status returns any errors or status information to the
user. On output from AQOPEN, status has one of the following values:

>0 Information only
=0 No errors detected
<0 Error detected

Status Codes

0 No errors detected

+1 The asynchronous queued I/O parameter block is full

+2 No I/O is active on the asynchronous queued I/O dataset or file

+3 The asynchronous queued I/O request is stuck

+4 The asynchronous request is queued for I/O

-1 Illegal aqpsize on the AQOPEN request Minimum size
is equal to 32 + 8n, where n = 1.

Asynchronous queued I/O provides a method of random access to or from mass storage into buffers in
user memory.

A file opened using AQOPEN should only be closed by AQCLOSE or, under COS, by job step advance.
If you close the file in some other way, the subsequent behavior of the program is unpredictable.
Among these other ways are explicit methods of closing the file (for example, CLOS and CALL
RELEASE) and implicit methods (such as CALL SA VE).

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SR-0113

AQREAD, AQREADC, AQWRITE, AQWRITEC, AQCLOSE, AQWAIT, AQSTAT
The AQIO User's Guide, SN -0247

12-12 C

AQREAD (310) AQREAD (310)

NAME

AQREAD, AQREADC, AQREADI, ACREADCI - Queues a simple or compound asynchronous I/O read
request

SYNOPSIS

CALL AQREAD(aqp,cpuadd,blknum,blocks ,reqid,queue ,status)

CALL AQREADC (aqp, cpuadd,mstride,blknum,blocks,dstride,incs,reqid,que ue,status)

CALL AQREADI(aqp,cpuadd,blknum,blocks,reqid,queue,status)

CALL AQ READCI(aqp , cpuadd,mstride ,blknum,blocks ,dstride ,incs,reqid,queue ,status)

DESCRIPTION

aqp

cpuadd

mstride

blknum

blocks

dstride

incs

reqid

queue

status

SR-0113

Type INTEGER array. The name of the array in the user's program that contains the asyn­
chronous queued I/O pammeter block. Must be the same array as specified in the AQOPEN
request.

Type determined by user. Starting memory address; the location where the first word of
data is placed.

Type INTEGER variable, expression, or constant. Data buffer stride; the number of memory
words to skip between the base addresses of consecutive transfers. The stride value may be
positive (to skip forward), negative (to skip backward), or O. This parameter is valid for
compound read requests only.

Type INTEGER variable, expression, or constant. Starting block number. The block
number of the first block to be read on this request.

Type INTEGER variable, expression, or constant. The number of 512-word blocks to be
read.

Type INTEGER variable, expression, or constant. Disk stride; the number of disk blocks to
skip between the base addresses of consecutive transfers. The stride value may be positive
(to skip forward), negative (to skip backward), or O. This parameter is valid for compound
requests only.

Type INTEGER variable, expression, or constant. The number of simple requests minus 1
that comprise a compound request. Zero (0) implies a simple request. This parameter is
valid for compound requests only.

Type INTEGER variable, expression, or constant. A user-supplied value for identifying a
particular request.

Type INTEGER variable, expression, or constant. Queue flag. If 0, I/O is initiated provided
that I/O on the dataset or file is not already active. If the queue flag is set to nonzero, the
request is added to the queue but no attempt is made to start I/O.

Type INTEGER variable. Status code status returns any errors to the user. On output from
these routines, status has one of the following values:

>0 Information only
=0 No error detected
<0 Error detected

12-13 C

AQREAD (310) AQREAD (310)

Status Codes
0 No errors detected

+1 The asynchronous queued I/O parameter block is full

+2 No I/O is active on the asynchronous queued I/O dataset or file

+3 The asynchronous queued I/O request is stuck
+4- The asynchronous request is queued for I/O
.;1 Illegal apqsize on the AQOPEN request. Minimum size

is equal to 32 + 8n, where n = 1.

AQREAD, AQREADC, AQREADI, and AQREADCI transfer data between the data buffer and the device
on which the dataset or file resides. Requests may be simple (AQREAD and AQREADI) or compound
(AQREADC and AQREADCI). A simple request is one in which data from consecutive sectors on the
disk is read into one buffer. A compound request is one in which a number of simple requests are
separated by a constant number of sectors on disk, or a constant number of memory words for buffers,
or both.

AQREADI and AQREADCI (both COS only) operate in the same fashion as AQREAD and AQREADC,
respectively, except the ignore bit is set. The ignore bit tells the operating system not to change from
write mode to process this read request. As an example, setting the ignore bit might be helpful on a
system with two high-speed SSD channels. A series of AQWRITE calls followed by an AQREADI call
would not force a wait by the operating system as would a normal read.

IMPLEMENTATION

AQREAD and AQREADC are available to users of both the cos and UNICOS operating systems.
AQREADI and AQREADCI are available only under the COS operating system.

SEE ALSO

SR-OI13

AQWRITE, AQWRITEC, AQCLOSE, AQW AIT, AQSTAT
The AQIO User's Guide, SN-0247

12-14 C

AQRECALL (310) AQRECALL(310)

NAME

AQRECALL, AQRIR - Delays program execution during a queued I/O sequence

SYNOPSIS

CALL AQRECALL(aqp,status)

CALL AQRIR(aqp,reqid,queue,status)

DESCRIPTION

aqp Type INTEGER array. The name of the array in the user's program that will contain the
asynchronous queued I/O.

reqid Type INTEGER variable, expression, or constant. A user-supplied value for identifying a
particular request.

queue Type INTEGER variable, expression, or constant. Queue flag. If 0, I/O is initiated provided
that 110 on the dataset is not already active. If the queue flag is set to nonzero, the request
is added to the queue but no attempt is made to start I/O.

status Type INTEGER variable. Status code status returns any errors or status information to the
user. On output from AQOPEN, status has one of the following values:

>0 Information only
=0 No errors detected
<0 Error detected

Status Codes

0 No errors detected

+1 The asynchronous queued I/O parameter block is full

+3 The asynchronous queued I/O request is stuck

AQRECALL and AQRIR work together to let you suspend the execution of your program during part of
an asynchronous queued I/O process. AQRIR marks the point in the I/O process up to which program
execution is delayed, while AQRECALL marks the point in the program beyond which execution should
not proceed until the specified I/O is complete.

EXAMPLE

SR-0113 12-15 C

AQRECALL(3IO) AQRECALL (310)

J = 1
00 I = 1,10

IF(I.EQIO) J = 0
CALL AQREAD(AQP,A,IBLOCK,10,I,J ,ISTA n
mLOCK = IBLOCK + 10

1 CONTINUE
CALL AQRIR(AQP,O O,ISTATI)
J = 1
00 2 I = 11,30

IF(I.EQ.30) J = 0
CALL AQREAD(AQP,A,IBLOCK,IO,I,J ,1ST A T2)
mLOCK = IBLOCK + 10

2 CONTINUE
CALL AQRECALL(AQP,ISTAT3)

In the above example, 10 asynchronous reads are queued up, followed by an AQRIR. Any code beyond
the AQRECALL call does not execute until the AQRIR request is encountered in the queue. When it is
encountered, execution beyond AQRECALL continues. The following illustrates the queue containing
the AQREAD requests and the AQRIR request.

1
2

10

11

AQREAD

AQREAD

AQREAD

AQRIR

IMPLEMENTATION

These routines are available only to users of the cos operating system.

SEE ALSO

SR-0113

AQREAD, AQREADC, AQWRITE, AQWRITEC, AQCLOSE, AQWAIT, AQSTAT
The AQIO User's Guide, SN-0247

12-16 C

AQSTAT(3IO) AQSTAT(3IO)

NAME

AQST AT - Checks the status of asynchronous queued I/O requests

SYNOPSIS

CALL AQSTAT(aqp,reply,reqid,status)

DESCRIPTION

aqp Type INTEGER array. The name of the array in the user's program that contains the asyn­
chronous queued I/O parameter block. This must be the same array specified in the
AQOPEN request.

reply Type INTEGER variable

reqid Type INTEGER variable, expression, or constant. If reqid is 0, AQSTAT returns the request
ID of the next queued I/O request to be done. If reqid is nonzero, status information about
the specified request ID will be returned.

status Type INTEGER variable. Status code, status returns any errors or status information to the
user. On output from AQST AT:

>0 Information only
=0 No errors detected
<0 Error detected

Status Codes

0 No errors detected

+1 The asynchronous queued I/O parameter block is full

+2 No I/O is active on the asynchronous queued I/O dataset or file

+3 The asynchronous queued I/O request is stuck

+4 The asynchronous request is queued for I/O

-1 illegal aqpsize on the AQOPEN request. Minimum size is equal to 32 + 8n, where n = 1.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SR-0113

AQOPEN, AQREAD, AQREADC, AQWRITE, AQWRITEC, AQCLOSE, AQWAIT
The AQIO User's Guide, SN-0247

12-17 C

AQSTOP(3IO) AQSTOP (310)

NAME

AQSTOP - Stops the processing of asynchronous queued I/O requests

SYNOPSIS

CALL AQSTOP (aqp,reqid,queue,status)

DESCRIPTION

aqp

reqid

queue

status

Type INTEGER array. The name of the array in the user's program that will contain the
asynchronous queued I/O.

Type INTEGER variable, expression, or constant. A user-supplied value for identifying a
particular request.

Type INTEGER variable, expression, or constant. Queue flag. If 0, I/O is initiated provided
that I/O on the dataset is not already active. If the queue flag is set to nonzero, the request
is added to the queue but no attempt is made to start I/O.

Type INTEGER variable. Status code status returns any errors or status information to the
user. On output from AQOPEN, status has one of the following values:

>0 Information only
=0 No errors detected
<0 Error detected

Status Codes

0 No errors detected

+1 The asynchronous queued I/O parameter block is full

+2 No I/O is active on the asynchronous queued I/O dataset or file

+3 The asynchronous queued I/O request is stuck

+4 The asynchronous request is queued for I/O

-1 Illegal aqpsize on the AQOPEN request. Minimum size
is equal to 32 + 8n, where n = 1.

The AQSTOP routine stops the processing of a list of asynchronous 1/0 requests when it is encountered
in the queue.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

SR-0113

AQREAD, AQWRITE, AQCLOSE, AQWAIT, AQSTAT, AQRECALL, AQSYNC
The AQIO User's Guide, SN-0247

12-18 c

AQW AIT (310) AQW AIT (310)

NAME

AQW AIT - Waits on a completion of asynchronous queued I/O requests

SYNOPSIS

CALL AQW AIT(aqp,status)

DESCRIPTION

aqp Type INTEGER array. The name of the array in the user's program that contains the asyn­
chronous queued I/O parameter block. This must be the same array specified in the
AQOPEN request.

status Type INTEGER variable. Status code status returns any errors or status information to the
user. On output from AQW AIT status has one of the following values:

>0 Information only
=0 No errors detected
<0 Error detected

Status Codes

0 No errors detected

+1 The asynchronous queued I/O parameter block is full

+2 No I/O is active on the asynchronous queued I/O dataset or file

+3 The asynchronous queued I/O request is stuck

+4 The asynchronous request is queued for I/O

-1 Illegal aqpsize on the AQOPEN request. Minimum size
is equal to 32 + 8n, where n = 1.

AQW AIT leaves the job suspended until the entire request list is exhausted.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

SR-OU3

AQOPEN, AQREAD, AQREADC, AQWRITE, AQWRITEC, AQCLOSE, AQSTAT
The AQIO User's Guide, SN-0247

12-19 c

AQWRITE(3IO) AQWRITE(3IO)

NAME

AQWRITE, AQWRITEC, AQWRITEI, AQWRTECI - Queues a simple or compound asynchronous I/O
write request

SYNOPSIS

CALL AQWRITE(aqp,cpuadd,blknum,blocks ,reqid,queue ,status)

CALL AQWRITEC(aqp,cpuadd,mstride,blknum,blocks,dstride,incs,reqid,queue,status)

CALL AQWRITEI(aqp,cpuadd,blknum,blocks,reqid,queue,status)

CALL AQWRTECI(aqp,cpuadd,mstride,blknum,blocks,dstride,incs,reqid,queue,status)

DESCRIPTION

aqp

cpuadd

mstride

blknum

blocks

dstride

incs

reqid

queue

status

SR-0113

Type INTEGER array. The name of the array in the user's program that contains the asyn­
chronous queued I/O parameter block. Must be the same array specified in the AQOPEN
request.

Type determined by user. Starting memory address; the location of the first word in the
user's program to be written.

Type INTEGER variable, expression, or constant. Data buffer stride; the number of memory
words to skip between the base addresses of consecutive transfers. The stride value may be
positive (to skip forward), negative (to skip backward), or O. This parameter is valid for
compound write requests only.

Type INTEGER variable, expression, or constant. Starting block number; the block number
of the first block to be written on this request.

Type INTEGER variable, expression, or constant. The number of 512-word blocks to be
written.

Type INTEGER variable, expression, or constant. Disk stride; the number of disk blocks to
skip between the base addresses of consecutive transfers. The stride value may be positive
(to skip forward), negative (to skip backward), or O. This parameter is valid for compound
requests only.

Type INTEGER variable, expression, or constant. The number of simple requests minus 1
that comprise a compound request. Zero (0) implies a simple request. This parameter is
valid for compound requests only.

Type INTEGER variable, expression, or constant. A user-supplied value for identifying a
particular request.

Type INTEGER variable, expression, or constant. Queue flag. If 0, I/O is initiated provided
that I/O on the dataset or file is not already active. If the queue flag is set to nonzero, the
request is added to the queue but no attempt is made to start I/O.

Type INTEGER variable. Status code status returns any errors to the user. On output from
these routines, status has one of the following values:

>0 Information only
=0 No error detected
<0 Error detected

12-20 C

AQWRITE (310) AQWRITE (310)

Status Codes

0 No errors detected

+1 The asynchronous queued I/O parameter block is full

+2 No I/O is active on the asynchronous queued I/O dataset or file

+3 The asynchronous queued I/O request is stuck
+4- The asynchronous request is queued for I/O

-1 Illegal aqpsize on the AQOPEN request Minimum size
is equal to 32 + 8n, where n = 1.

AQWRITE, AQWRITEC, AQWRITEI, and AQWRTECI transfer data between the device on which the
dataset or file resides and the data buffer. Requests may be simple (AQWRITE and AQWRITEI) or
compound (AQWRITEC and AQWRTECI). A simple request is one in which data from one buffer is
written to consecutive sectors on disk. A compound request is one in which a number of simple
requests are separated by a constant number of sectors on disk, a constant number of memory words for
buffers, or both.

AQWRITEI and AQWRTECI (both cos only) operate in the same fashion as AQWRITE and AQWRI­
TEC, respectively, except the ignore bit is set. The ignore bit tells the operating system not to change
from read mode to process this write request. As an example, setting the ignore bit might be helpful on
a system with two high-speed SSD channels. A series of AQREAD calls followed by an AQWRITEI
call would not force a wait by the operating system as would a normal write.

IMPLEMENTATION

AQWRITE and AQWRITEC are available to users of both the cos and UNICOS operating systems.
AQWRITEI and AQWRTECI are only available under cos.

SEE ALSO

SR-0113

AQOPEN, AQREAD, AQREADC, AQCLOSE, AQWAIT, AQSTAT
The AQIO User's Guide, SN-0247

12-21 C

ASYNCMS (310) ASYNCMS (310)

NAME

ASYNCMS, ASYNCDR - Set I/O mode for random access routines to asynchronous

SYNOPSIS

CALL ASYNCMS(dn[,ierr])

CALL ASYNCDR(dn[,ierr])

DESCRIPTION

dn The name of the dataset as a Hollerith constant or the unit number of the dataset (for exam­
ple, dn=7 corresponds to dataset FT07). Hollerith constant dataset names must be from 1 to
7 uppercase characters. Specify a type integer variable, expression, or constant.

ierr Error control and code. Specify a type integer variable. If ierr is supplied on the call to
ASYNCMS/ASYNCDR, ierr returns any error codes to you. If ierr>O, no error messages are
put into the log file. Otherwise, an error code is returned, and the message is added to the
job's log file. On output from ASYNCMS/ASYNCDR:

ierr=O No errors detected
<0 Error detected. ierr contains one of the error codes

described in the following table:

Error Codes
-1 The dataset name or unit number is illegal

-15 OPENMS/OPENDR was not called on this dataset

As ASYNCMS/ASYNCDR sets the I/O mode for the random access routines to be asynchronous, I/O
operations can be initiated, and subsequent execution can proceed simultaneously with the actual data
transfer. If you use READMS, precede asynchronous reads with calls to FINDMS.

IMPLEMENTATION

This routine is available to users of the both the cos and UNICOS operating systems.

SEE ALSO

SR-OI13

OPENMS, WRITMS, READMS, CLOSMS, FINDMS, CHECKMS, W AITMS, SYNCMS, OPENDR,
WRITDR, READDR, CLOSDR, STINDR, CHECKDR, W AITDR, SYNCDR, STINDX

12-22 C

CHECKMS (310) CHECKMS (310)

NAME

CHECKMS, CHECKDR - Checks status of asynchronous random access I/O operation

SYNOPSIS /
CALL CHECKMS(dn,istat[,ierr])

CALL CHECKDR(dn,istat[,ierrD

DESCRIPTION

dn The name of the dataset as a Hollerith constant or the unit number of the dataset. (For
example, dn=7 corresponds to dataset Fr07.) Hollerith constant dataset names must be
from 1 to 7 uppercase characters. Specify a type integer variable, expression, or constant.

istat Dataset I/O Activity flag. Specify a type integer variable.

=0 No I/O activity on the specified dataset
= 1 I/O activity on the specified dataset

ierr Error control and code. Specify a type integer variable. If you supply ierr on the call to
CHECKMS/CHECKDR, ierr returns any error codes to you. If ierr>O, no error messages
are put into the log file. Otherwise, an error code is returned, and the message is added to
the job's log file. On output from CHECKMS/CHECKDR:

ierr=O No error detected
ierr<O Error detected. ierr contains one of the error codes

in the following table:

ERROR CODES

-1 The dataset name or unit number is illegal

-15 OPENMS/OPENDR was not called on this dataset.

A status flag is returned to you, indicating whether the specified dataset is active.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SR-0113

OPENMS, WRITMS, READMS, CLOSMS, FINDMS, WAITMS, ASYNCMS, SYNCMS, OPENDR,
WRITDR, READDR, CLOSDR, STINDR, W AITDR, ASYNCDR, SYNCDR, STINDX

12-23 C

CHECKTP (310) CHECKTP (310)

NAME

CHECKTP - Checks tape I/O status

SYNOPSIS

CALL CHECKTP (dn,istat,icbuf)

DESCRIPTION

dn Type INTEGER variable, expression, or constant. The name of the dataset as a Hollerith
constant or the unit number of the dataset

istat Type INTEGER variable

=-1 No status
= 0 EOY
= 1 Tape off reel
= 2 Tape mark detected
= 3 Blank tape detected

icbuf Type INTEGER variable. Circular I/O buffer status.

= 0 Circular I/O buffer empty
= 1 Circular I/O buffer not empty

The user program can use CHECKTP to check on a tape dataset's condition following normal Fortran
I/O requests.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

CONTPIO,PROCBOV,PROCEOV,S~TCHV,SVOLPRC

SR-0113 12-24 C

CLOSEY (3COS) CLOSEY (3COS)

NAME

CLOSEV - Begins user EOV and BOV processing

SYNOPSIS

CLOSEV(dn[,trailer])

DESCRIPTION

A user program uses the CLOSEV subroutine to switch to the next tape volume at any time. CLOSEV
writes an end-of-volume (EOV) trailer label to a mounted output tape before switching tapes. CLOSEV
applies only to magnetic tape datasets.

If the tape is an input tape, you have the option of writing an EOV trailer label. An output tape job is
aborted if the output buffer is not empty.

In special EOV processing, the user program must execute the CLOSEV subprogram to switch to the
next tape and perform special beginning-of-volume (BOV) processing. After the CLOSEV macro is exe­
cuted, the next tape is at the beginning of the volume. The user program is permitted BOV processing
at this time. After the BOV processing is completed, the user program must execute the ENDSP subpro­
gram to inform the operating system that special processing is complete and to continue normal pro­
cessing.

dn

trailer

Dataset name or unit number

A logical constant, variable, or expression. If a value of .TRUE. is specified, a trailer EOV
label is written.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

SR-0113 12-25 c

CLOSMS (310) CLOSMS (310)

NAME

CLOSMS, CLOSDR - Writes master index and closes random access dataset

SYNOPSIS

CALL CLOSMS(dn[,ierr])

CALL CLOSDR(dn[,ierr])

DESCRIPTION

dn The name of the dataset as a Hollerith constant or the unit number of the dataset. (For
example, dn=7 corresponds to dataset Fr07.) Hollerith constant dataset names must be
from 1 to 7 uppercase characters. Specify a type integer variable, expression, or constant.

ierr Error control and code. Specify a type integer variable. If you supply ierr on the call to
CLOSMS/CLOSDR, ierr returns any error codes to you. If ierr>O, no error messages are
put into the log file. Otherwise, an error code is returned, and the message is added to the
job's log file. On output from CLOSMS/CLOSDR:

ierr=O No error detected
ierr<O Error detected. ierr contains one of the error codes

in the following table:

ERROR CODES

-1 The dataset name or unit number is illegal
-15 OPENMS/OPENDR was not called on this dataset.

CLOSMS/CLOSDR writes the master index specified in OPENMS/OPENDR from the user program area
to the random access dataset and then closes the dataset. Statistics on the activity of the random access
dataset and written to dataset $ST ATS (see table CLOSMS Statistics following). After the random access
dataset has been closed by CLOSMS/CLOSDR, the statistics can be written to $OUT using the following
control statements or their equivalent (COS only):

REWIND,DN=$STATS.
COPYF,I=$STATS,O=$OUT.

Under UNICOS, statistics are written to stderr. Under COS, CLOSMS/CLOSDR write a message to
$LOG upon closing the dataset, whether or not you have requested that error messages be written to the
logfile.

CAUTION

SR-OI13

If a job step terminates without closing the random access dataset with CLOSMS/CLOSDR, dataset
integrity is questionable.

12-26 C

CLOSMS (310) CLOSMS (310)

CLOSMS Statistics

Message Description

TOTAL ACCESSES = Number of accesses
READS = Number of reads
WRITES = Number of writes
SEQUENTIAL READS = Number of sequential reads
SEQUENTIAL WRITES = Number of sequential writes
REWRI1ES IN PLACE = Number of rewrites in place
WRI1ES TO EOI = Number of writes to EOI
TOTAL WORDS MOVED = Number of words moved
MINIMUM RECORD = Minimum record size
MAXIMUM RECORD = Maximum record size
TOTAL ACCESS TIME = Total access time
AVERAGE ACCESS TIME = Average access time

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR-0113 12-27 C

CONTPIO (3COS) CONTPIO (3COS)

NAME

CONTPIO - Continues normal 1/0 operations (obsolete)

SYNOPSIS

CALL CONTPIO (dn,iprc)

DESCRIPTION

NOTE

dn Type INTEGER variable, expression, or constant. The name of the dataset as a Hollerith
constant or the unit number of the dataset.

iprc Type INTEGER variable

= 2 Continue normal 1/0
=-1 End-of-data (close tape dataset)

The user program can use CONTPIO to inform COS that it intends to continue normal I/O operations.
This routine may also be used to close the tape dataset.

Cray Research discourages the use of the CONTPIO, PROCBOV, PROCEOV, SWITCHV, and SVOL­
PROC routines. Instead, use CLOSEV, SETSP, STARTSP, and ENDSP when creating special tape pro­
cessing routines to handle end-of-volume conditions.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

CHECKTP,PROCBOV,PROCEOV,S~TCHV,SVOLPRC

SR-OI13 12-28 C

ENDSP (3COS) ENDSP (3COS)

NAME

ENDSP - Requests notification at the end of a tape volume

SYNOPSIS

CALL ENDSP(dn)

DESCRIPTION

ENDSP indicates to COS that special end-of-volume (EOV) and beginning-of-volumen (BOV) processing
is complete.

ENDSP does not switch volumes; when the user program wants to switch to the next tape, it must exe­
cute CLOSEV. Furthermore, for output datasets, data in the I/O Processor (lOP) buffer is not written to
tape until ENDSP is executed at the beginning of the next tape. When the BOV processing is done, the
user program must execute ENDSP to terminate special processing. After executing ENDSP, the user
program can continue to process the tape dataset.

dn Dataset name or unit number

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 12-29 c

FINDMS (310) FINDMS (310)

NAME

FINDMS - Reads record into data buffers used by random access routines

SYNOPSIS

CALL FINDMS(dn,n,irec[tierr])

DESCRIPTION

dn The name of the dataset as a Hollerith constant or the unit number of the dataset (for exam­
plet dn=7 corresponds to dataset FT07. Hollerith constant dataset names must be from 1 to
7 characters. Specify a type integer variablet expressiont or constant.

n The number of words to be readt as in READMS or WRITMS. Type integer variablet

expression, or constant.

irec As in READMS or WRITMS t the record name or number to be read into the data buffers.
Specify a type integer variable t expression t or constant

ierr Error control and code. Specify a type integer variable. If you supply ierr on the call to
FINDMS, ierr returns any error codes to you. If ierr>Ot no error messages are put into the
log file. Otherwise, an error code is returnedt and the message is added to the job's log
file.

On output from FINDMS:
ierr=O No errors detected
ierr<O Error detected. ierr contains one of the error codes

in following table:

Error Codes

·6 The user-supplied named index is invalid

·8 The index number is greater than the maximum
on the dataset

·10 The named record was not found is the index array

·15 OPENMS/OPENDR was not called on this dataset
·17 The index entry is less than or equal to 0

in the users index array

·18 The user-supplied word count is less than or
equal to 0

·19 The user-supplied index number is less than or
equal to 0

FINDMS asynchronously reads the desired record into the data buffers used by the random access
dataset routines for the specified dataset The next READMS or WRITMS call waits for the read to
complete and transfers data appropriate I y.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SR-0113

OPENMS, WRITMS, READMS, CLOSMS, CHECKMS, W AITMS, ASYNCMS, SYNCMS, OPENDR,
WRITDR, READDR, CLOSDR, STINDR, CHECKDR, W AITDR, ASYNCDR, SYNCDR, STINDX

12-30 C

FSUP(3IO) FSUP(3IO)

NAME

FSUP, ISUP - Output a value in an argument as blank in Fortran format
FSUPC, ISUPC - Invalidate the function obtained by calling FSUP or ISUP, returning to ordinary I/O

SYNOPSIS

CALL FSUP(fvalue)

CALL ISUP(ivalue)

CALL FSUPC

CALL ISUPC

DESCRIPTION

fvalue and ivalue are real and integer arguments, respectively. If FSUP is not called, F-type, G-type, and
E-type values are output as for ordinary Fortran I/O. When FSUP is called, all values equal to fvalue
are output as blanks whenever they are encountered in a formatted I/O operation. FSUP may be called
again to redefine itself.

FSUPC invalidates the call from FSUP, and all types are output as ordinary Fortran I/O.

ISUP and ISUPC are the integer equivalents of FSUP and FSUPC. ISUP acts only upon I-type values.

IMPLEMENTATION

These routine are available to users of both the COS and UNICOS operating system.

SR-0113 12-31 c

GETPOS (310) GETPOS (310)

NAME

GETPOS, SETPOS - Returns the current position of interchange tape or mass storage dataset or file;
returns to position retained from GETPOS request.

SYNOPSIS

CALL GETPOS(dn,len,pa[,stat])

CALL SETPOS(dn,len,pa[,stat])

DESCRIPTION

GETPOS returns the current position of the specified interchange tape or mass storage dataset to the
Fortran user. GETPOS does not alter the dataset's position, but it captures information that you can use
later to recover the current position.

SETPOS lets you return to the position retained from the GETPOS request. SETPOS, like GETPOS, can
be used on interchange tape or mass storage datasets.

dn Dataset name, file name, or unit number

len Length in Cray words of the position array. This parameter determines the maximum
number of position values to return or process. For SETPOS, this parameter allows for the
addition of more information fields while ensuring that existing codes continue to run. Pos­
sible values for len are:

1 For disk datasets
2 For tape data sets
3 For disk or taPe datasets recorded as a foreign dataset (valid only

under COS)

pa Position array. On exit, pa contains the current position information. For GETPOS, you
should not modify this information. It should be retained to be passed on to SETPOS. For
SETPOS, pa contains the desired position information from the G ETPOS call. The format
of the position information is as follows:

SR-0113

• For a disk dataset, one word that contains the current position.

• For a tape dataset, two words; word 0 contains the volume serial number of the
current tape reel, and word 1 contains the block number before which the tape unit is
positioned. -

• For a foreign tape dataset (COS only), three words; word 0 contains the block number
before which the tape unit is positioned, word 1 contains the volume serial number of
the current tape reel, and word 2 contains the block length.

stat Return conditions. This optional parameter returns errors and warnings from the position
information routine, as follows:

=0 For GETPOS, indicates position information successfully returned. For SETPOS,
indicates dataset successfully positioned.

¢() Error or warning encountered during request. Error message number; see coded
$IOLffi messages in the COS Message Manual, publication SR-0039.

12-32 C

GETPOS (310) GETPOS (310)

NOTE

To set the position of a mass storage dataset, the position must be at a record boundary; that is, at the
beginning-of-dataset (BOD), following an end-of-record (EOR) or end-of-file (EOF) , or before an end­
of-dataset (EOD). A dataset cannot be positioned beyond the current EOD.

SETPOS positions to a logical record when processing a foreign file (COS only) with the library data
conversion support (FD parameter on the ACCESS and ASSIGN control statements). This same capabil­
ity also exists for mass storage files that have been assigned foreign dataset characteristics.

If foreign dataset conversion has not been requested, the physical tape block and volume position is
determined.

For interchange tape dataset, SETPOS must synchronize before the dataset can be positioned. Thus, for
input datasets, the dataset must be positioned at a Cray EOR. An EOR is added to the EOD before the
synchronization if the dataset is an output dataset and the end of the tape block was not already written.

For disk files only, G ETPOS and SETPOS also support calls of the following form:

PV = GETPOS(dn)
CALL SETPOS(dn,pv)

where dn is the dataset or file name or number, and pv is the position value. ~ ~

IMPLEMENTATION

These routines are available to users of both the UNICOS and COS operating systems. UNICOS does not
support the positioning of blocked files or tapes or of foreign files (those in a non-Cray format).

SEE ALSO

GETTP, SETTP, SYNCH (COS only)

SR-0113 12-33 C

GETTP(3IO) GETTP(3IO)

NAME

GETTP - Receives position information about an opened tape dataset or file

SYNOPSIS

CALL GETTP(dn,len,pa,synch,istat)

DESCRIPTION

SR-0113

dn Name of the dataset, file, or unit number to get the position information. Must be an
integer variable, or an array element containing Hollerith data of not more than 7 charac­
ters. This parameter should be of the form 'dn'L.

len Length in Cray words of the position array pa. GETTP uses this parameter to determine the
maximum number of position values to return. This parameter allows for the addition of
more information fields while ensuring that existing codes continue to run. Currently, 15
words are used.

pa Position array. On exit, pa contains the current position information, as follows:

pa(1) Volume Identifier of last block processed

Characters 1 through 8 of permanent dataset name or file name

Characters 9 through 16 of permanent dataset name or file name

Characters 17 through 24 of permanent dataset name or file name

Characters 25 through 32 of permanent dataset name or file name

Characters 33 through 40 of permanent dataset name or file name

Characters 41 through 44 of permanent dataset name or file name

File section number

File sequence number

Block number

pa(2)

pa(3)

pa(4)

pa(5)

pa(6)

pa(7)

pa(8)

pa(9)

pa(10)

pa(11) Number of blocks in the circular buffer. On output, blocks not sent to I/O
Processor (lOP); on input, always O.

pa(12)

pa(13)

pa(14)

pa(IS)

Number of blocks in the lOP buffer

Device ID (unit number)

Device identifier (name)

Generic device name

synch Synchronize tape dataset or file. GETTP uses this parameter to determine whether to syn­
chronize the program and an opened tape dataset or file before obtaining position informa­
tion. Synchronization, if requested, is done according to the current positioning direction.

=0 Do not synchronize tape dataset or file

=1 Synchronize tape dataset or file before obtaining position information

istat Return conditions. This parameter returns errors and warnings from the position routine.

=0 Dataset or file position information successfully returned

~ Error or warning encountered during request

12-34 C

GETIP(3IO) GETTP(3IO)

The GETTP routine lets you receive information about an opened tape dataset or file. The information
returned by GETTP refers to the last block processed if the dataset is an input dataset. For output
datasets, the information returned by GETTP can be meaningless unless the tape dataset or file has been
synchronized.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

SETTP, GETPOS, SYNCH (COS only)

SR-OI13 12-35 c

GETWA(3IO) GETWA(3IO)

NAME

GETW A, SEEK - Synchronously and asynchronously reads data from the word-addressable, random
access dataset

SYNOPSIS

CALL GETW A(dn,result,addr,count[,ierr])

CALL SEEK(dn,addr,count[,ierr])

DESCRIPTION

SR-0113

dn The name of the dataset as a Hollerith constant or the unit number of the dataset (for exam­
ple, dn=7 corresponds to Fr07). Hollerith constant dataset names must be from 1 to 7 char­
acters. Specify a type integer variable, expression, or constant.

result Variable or array of any type. The location in the user program where the first word is
placed.

addr For GETW A, the word location of the dataset from which the first word is transferred. For
SEEK, the word address of the next read. Specify a type integer variable, expression, or
constant

count For GETW A, the number of words from result written from the dataset into user memory.
For SEEK, the number of words of the next read. Specify a type integer variable, expres­
sion, or constant.

ierr Error control and code. Specify a type integer variable. If you supply ierr on the call to
GETW A or SEEK, ierr returns any error codes to you. If ierr is not supplied, an error
aborts the job.

On output from GETW A:
ie,,=O No errors detected

<0 Error detected. ierr contains one of the error codes in
the following table:

Error Codes

·1 Illegal unit number

·2 The number of datasets has exceeded memory
or size availability

·3 User attempt to read past end-of-data (EOD)
-4 The user-supplied word address less than or

equal to 0

·5 User-requested word count greater than maximum
allowed

-6 Illegal dataset name

·7 User word count less than or equal to 0

The SEEK and GETWA calls are used together. The SEEK call reads the data asynchronously; the
GETW A call waits for I/O to complete and then transfers the data. The SEEK call moves the last write
operation pages from memory to disk, loading the user-requested word addresses to the front of the I/O
buffers. You can load as much data as fits into the dataset buffers. Subsequent GETWA and PUTWA
calls that reference word addresses in the same range do not cause any disk I/O.

12-36 c

GETWA(3IO) GETWA(3IO)

NOTE

Most of the routines in the run-time libraries are reentrant or have internal locks to ensure that they are
single threaded. Some library routines, however, must be locked at the user level if they are used by
more than one task.

GETW A is not internally locked. You must lock each call to GETW A if it is called from more than one
task.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

EXAMPLE

Assume you want to use a routine that reads word addresses 1,000,000 to 1,051,200. A dataset is
opened with 101 blocks of buffer space, and CALL SEEK(dn,1000000,51200,ierr) is used before cal­
ling the routine. Subsequent GETWA or PUTWA calls with word addresses in the range of 1,000,000 to
1,051,200 do not trigger any disk I/O.

SEE ALSO

WOPEN, WCLOSE, PUTWA, APUTWA

SR-0113 12-37 c

OPENMS (310) OPENMS (310)

NAME

OPENMS, OPENDR - Opens a local dataset as a random access dataset that can be accessed or changed
by the record-addressable, random access dataset I/O routines

SYNOPSIS

CALL OPENMS(dn,index,length,it[,ierr])

CALL OPENDR(dn,index,length,it[,ierr])

DESCRIPTION

SR-0113

dn

index

length

it

The name of the dataset as a Hollerith constant or the unit number of the dataset (for exam­
ple, dn=7 corresponds to dataset Fr07. Hollerith constant dataset names must be from 1 to 7
characters. Specify a type integer variable, expression, or constant.

The name of the array in the user program that is going to contain the master index to the
records of the dataset. Specify a type integer array. This array must be changed only by
the random access dataset I/O routines. index should be a multiple of 512 words.

The length of the index array. Specify a type integer variable, expression, or constant. The
length of index depends upon the number of records on or to be written to the dataset using
the master index and upon the type of master index. The length specification must be at
least 2*nrec if it=1 or 3, or nrec if it=O or 2. nrec is the number of records in or to be
written to the dataset using the master index.

Flag indicating the type of master index. Specify a type integer variable, expression, or
constant

it=O Records synchronously referenced with a number between 1 and length

it= 1 Records synchronously referenced with an alphanumeric name of 8 or fewer char­
acters

it=2 Records asynchronously referenced with a number between 1 and length

it=3 Records asynchronously referenced with an alphanumeric name of 8 or fewer
characters

For a named index, odd-numbered elements of the index array contain the record name, and
even-numbered elements of the index array contain the pointers to the location of the record
within the dataset. For a numbered index, a given index array element contains the pointers
to the location of the corresponding record within the dataset.

ierr Error control and code. Specify a type integer variable. If you supply ierr on the call to
OPENMS/OPENDR, ierr returns any error codes to you. If ierr is not supplied, an error
aborts the job.

If you set ierr>O on input to OPENMS/OPENDR, error messages are not placed in the
log file. Otherwise, an error code is returned, and the error message is added to the job's
logfile. OPENMS/OPENDR writes an open message to the logfile whether or not the value
of ierr selects log messages.

12-38 c

OPENMS (310) OPENMS (310)

NOTES

On output from OPENMS/OPENDR:

ierr=O No errors detected

<0 Error detected. ierr contains one of the following error codes:

Error Codes

-1 The dataset name or unit number is illegal

-2 The user-supplied index length is less than
or equal to 0

-3 The number of datasets has exceeded memory
or size availability

-4 The dataset index length read from the dataset
is greater than the user-supplied index length
(nonfatal message)

-s The user-supplied index length is greater than
the index length read from the dataset
(nonfatal message)

-11 The index word address read from the dataset is less
than or equal to 0

-12 The index length read from the dataset is less than 0

-13 The dataset has a checksum error

-14 OPENMS has already opened the dataset

-20 Dataset created by WRITDR/WRITMS

A file opened with OPENMS should only be closed by CLOSMS. If you close the file in some other
way. the future behavior of the program is unpredictable.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SR-OI13

WRITMS, READMS, CLOSMS, FINDMS, CHECKMS, W AITMS, ASYNCMS, SYNCMS, WRITDR,
READDR, CLOSDR, STINDR, CHECK DR, WAITDR, ASYNCDR, SYNCDR, STINDX

12-39 C

PROCBOV (COS) PROCBOV (COS)

NAME

PROCBOV - Allows special processing at beginning-of-volume (BOV) (obsolete)

SYNOPSIS

CALL PROCBOV(dn,iprc)

DESCRIPTION

NOTE

dn Type INTEGER variable, expression, or constant. The name of the dataset as a Hollerith
constant or unit number of the dataset.

iprc Type INTEGER variable

= 1 Special processing at BOV
= 2 Continue normal I/O
=-1 End-of-data (close tape dataset)

The user program can use PROCBOV to infonn COS that it intends to reposition or perform special I/O
processing to the tape. This routine assumes that the tape dataset is positioned at BOV. PROCBOV
allows special processing at beginning-of-volume. This routine may also be used to continue normal
I/O or close the tape dataset.

Cray Research discourages the use of the CONTPIO, PROCBOV, PROCEOV, SWITCHV, and SVOL­
PROC routines. Instead, use CLOSEV, SETSP, STARTSP, and ENDSP when creating special tape pro­
cessing routines to handle end-of-volume conditions.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

CHECKTP, CONTPIO, PROCEOV, SWITCHV, SVOLPRC

SR-0113 12-40 C

PROCEOV (3COS) PROCEOV (3COS)

NAME

PROCEOV - Begins special processing at end-of-volume (EOV) (obsolete)

SYNOPSIS

CALL PROCEOV(dn,iprc)

DESCRIPTION

NOTE

dn Type INTEGER variable t expressiont or constant. The name of the dataset as a Hollerith
constant or unit number of the dataset.

iprc Type INTEGER variable.

= 0 Special processing at EOV
= 1 Special processing at BOV
= 2 Continue normal I/O
=-1 End-of-data (close tape dataset)

The user program can use PROCEOV to inform COS that it intends to reposition or perform special I/O
processing to the tape. This routine assumes that the tape dataset is positioned at EOV. PROCEOV
allows special processing at BOV ·EOV. This routine may also be used to continue normal I/O or to
close the tape dataset.

Cray Research discourages the use of the CONTPIO, PROCBOV, SWITCHV, PROCEOV, and SVOL­
PROC routines. Instead t use CLOSEV, SETSP, STARTSP, and ENDSP when creating special tape pro­
cessing routines to handle end-of-volume conditions.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

CHECKTP, CONTPIO, PROCBOV, SWITCHV, SVOLPRC

SR-Ol13 12-41 c

PUTWA(3IO) PUTWA(3IO)

NAME

PUTW A, APUTW A - Writes to a word-addressable, random-access dataset

SYNOPSIS

CALL PUTW A(dn,source,addr,count[,ierrD

CALL APUTWA(dn,source,addr,count[,ierrD

DESCRIPTION

NOTE

dn

source

addr

count

ierr

Name of the dataset as a Hollerith constant or the unit number of the dataset. Specify a
type integer variable, expression, or constant.

Variable or array of any type. The location of the first word in the user program to be
written to the dataset

The word location of the dataset that is to receive the first word from the user program.
addr= 1 indicates beginning of file. Specify a type integer variable, expression, or constant

The number of words from source to be written. Specify a type integer variable, expres­
sion, or constant.

Error control and code. Specify a type integer variable. If you supply ierr on the call to
PUTW A, ierr returns any error codes to you. If ierr is not supplied, an error causes the job
to abort.

On output from PUTW A/APUTW A:

ierr=O No errors detected
·1 Invalid unit number
·2 Number of datasets has exceeded memory size availability
·4 User-supplied word address less than or equal to 0
·5 User-requested word count greater than maximum allowed
·6 Invalid dataset name
., User word count less than or equal to 0

PUTW A synchronously writes a number of words from memory to a word-addressable, random-access
dataset. APUTW A asynchronously writes a number of words from memory to a word-addressable,
random-access dataset

Most of the routines in the run-time libraries are reentrant or have internal locks to ensure that they are
single threaded. Some library routines, however, must be locked at the user level if they are used by
more than one task.

PUTW A is not internally locked. You must lock each call to PUTW A if it is called from more than one
task.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SEE ALSO

WOPEN, WCLOSE, GETWA, SEEK

SR-0113 12-42 c

READ(3IO) READ(3IO)

NAME

READ, READP - Reads words, full or partial record modes

SYNOPSIS

CALL READ(dn.word.count.status.ubc)

CALL READP(dn.word.count.status.ubc)

DESCRIPTION

dn Unit number or file name as a Hollerith in seven characters or less ('MYFILE')

word W ord-recei ving data area, such as a variable or array

count On entry, the number of words requested. (Do not specify a constant.) On exit, the number
of words actually transferred.

status On exit, status has one of the following values:
=-1 Words remain in record
=0 EOR
= 1 Null record
= 2 End-of-file (EOP)
= 3 End-of-data (EOD)
= 4 Hardware error

ubc Optional unused bit count. Number of unused bits contained in the last word of the record.

READ and READP move words of data from disk to a user's variable or array. They are intended to
read COS blocked datasets, under both COS and UNICOS. After reading less than a full record from
disk, READ leaves the file positioned at the beginning of the next record, while READP leaves the file
positioned at the next item in the record just read.

EXAMPLE

The following example reads the first two words of two consecutive records:

INTEGER REC(10)
NlM = 2
CALL READ (DN= 1 5, REC, NUM)
NlM = 2
CALL READ (DN= 1 5, REC, NUM)
STOP

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SEE ALSO

READC, READCP, READIBM, WRITE, WRITEP, WRITEC, WRITECP, WRITIBM, SKIPBAD,
ACPTBAD

SR-0113 12-43 C

READC(3IO) READC(3IO)

NAME

READC, READCP - Reads characters, full or partial record mode

SYNOPSIS

CALL READC(dn,char,count,status)

CALL READCP(dn,char,count ,status)

DESCRIPTION

dn Unit number

char Character-receiving data area

count On entry, the number of characters requested. On exit, the number of characters actually
transferred.

status On exit, status has one of the following values:
=-1 Characters remain in record
= 0 End-of-record (EOR)
= 1 Null record
= 2 End-of-file (E0p)

Read character routines unpack characters from the I/O buffer and insert them into the user data area
beginning at the first word address. Characters are placed into the data area one character per word,
right-justified. This process continues until the count is satisfied or an EOR is encountered. If an EOR
is encountered first, the remainder of the field specified by the character count is filled with blanks.
Blank expansion is performed on the characters read from the buffer to the data area.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SEE ALSO

READ, READP, READIBM, WRITE, WRITEP, WRITEC, WRITECP, WRITIBM, SKIPBAD, ACPTBAD

SR-OI13 12-44 C

READmM (310) READmM (310)

NAME

READIBM - Reads two mM 32-bit floating-point words from each Cray 64-bit word

SYNOPSIS

CALL READIBM(dnfwa,word,increment)

DESCRIPTION

dn Dataset name or unit number

fwa First word address (FWA) of the user data area

word Number of words needed

increment Increment of the mM words read

On exit, the mM 32-bit format is converted to the equivalent Cray 64-bit value. The Cray 64-bit words
are stored in the user data area.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SR-OI13

READ, READP, READC, READCP, WRITE, WRITEP, WRITEC, WRITECP, WRITIBM, SKIPBAD,
ACPTBAD

12-45 C

READMS (310) READMS (310)

NAME

READMS, READDR - Reads a record from a random access dataset

SYNOPSIS

CALL READMS(dn,ubuff,n,irec[,ierr])

CALL READDR(dn,ubuff,n,irec[,ierr])

DESCRIPTION

SR-OI13

READMS and READDR read records from a random access dataset to a contiguous memory area in the
user's program.

dn The name of the dataset as a Hollerith constant or the unit number of the dataset. Hollerith
constant dataset names must be from 1 to 7 characters. Specify a type integer variable,
expression, or constant.

ubuff The location in your program where the first word of the record is placed. User-specified
type.

n The number of words to be read. Specify a type integer variable, expression, or constant.
n words are read from the random access record irec and placed contiguously in memory,
beginning at ubuff. If necessary, READDR rounds n up to the next multiple of 512 words.
If the file is in synchronous mode, the data is saved and restored after the read.

irec The record number or record name of the record to be read. Specify a type integer variable,
expression, or constant. A record name is limited to a maximum of 8 characters. For a
numbered index, irec must be between 1 and the length of the index declared in the
OPENMS/OPENDR call, inclusive. For a named index, irec is any 64-bit entity you specify.

ierr Error control and code. Specify a type integer variable. If you supply ierr on the call to
READMS/READDR, ierr returns any error codes to you. If ierr>O, no error messages are
put into the logfile. Otherwise, an error code is returned, and the message is added to the
job's logfile.

On output from READMSIREADDR:
ierr=O No errors detected

<0 Error detected. ierr contains one of the error codes
in the following table:

12-46 c

READMS (310) READMS (310)

Error Codes

-1 The dataset name or unit number is invalid

-6 The user-supplied named index is invalid

-7 The named record index array is full

-8 The index number is greater than the maximum
on the dataset

-9 Rewrite record exceeds the original

-10 The named record was not found is the index array

-15 OPENMS/OPENDR was not called on this dataset

-17 The index entry is less than or equal to 0
in the users index array

-18 The user-supplied word count is less than or
equal to 0

-19 The user-supplied index number is less than or
equal to 0

WARNING

NOTE

If you are using READDR in asynchronous mode, and the record size is not a multiple of 512 words,
user data can be overwritten and not restored. With SYNCDR, the dataset can be switched to read syn­
chronously, causing data to be copied out and restored after the read has completed.

Most of the routines in the run-time libraries are reentrant or have internal locks to ensure that they are
single threaded. Some library routines, however, must be locked at the user level if they are used by
more than one task.

READMS and READDR are not internally locked. You must lock each call to these routines if they are
called from more than one task.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SR-0113

OPENMS, WRITMS, CLOSMS, FINDMS, CHECKMS, W AITMS, ASYNCMS, SYNCMS, OPENDR,
WRITDR, CLOSDR, STINDR, CHECKDR, WAITDR, ASYNCDR, SYNCDR, STINDX -~--~-
.~~ -----.

12-47 C

RNL(3IO) RNL(3IO)

NAME

RNLFLAG, RNLDELM, RNLSEP, RNLREP, RNLCOMM - Adds or deletes characters from the set of
characters recognized by the NAMELIST input routine

SYNOPSIS

CALL RNLFLAG(char,mode)

CALL RNLDELM(char,mode)

CALL RNLSEP(char,mode)

CALL RNLREP(char,mode)

CALL RNLCOMM(char,mode)

DESCRIPTION

char For RNLFLAG, an echo character. Default is 'E'.
For RNLDELM, a delimiting character. Default is '$' and '&'.
For RNLSEP, a separator character. Default is ','.
For RNLREP, a replacement character. Default is '='.
For RNLCOMM, a trailing comment indicator. Defaults are ':' and ';'.

mode =0 Delete character
;to Add character

In each of these user-control subroutine argument lists, char is a character specified as 1Lx or 1Rx.

RNLFLAG adds or removes char from the set of characters that, if found in column 1, initiates echoing
of the input lines to SOUT (under COS) or stdont (under UNICOS).

RNLDELM adds or removes char from the set of characters that precede the NAMELIST group name
and signal end-of-input.

RNLSEP adds or removes char from the set of characters that must follow each constant to act as a
separator.

RNLREP adds or removes char from the set of characters that occur between the variable name and the
value.

RNLCOMM adds or removes char from the set of characters that initiate trailing comments on a line.

No checks are make to determine the reasonableness, usefulness, or consistency of these changes.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SEE ALSO

RNLSKIP, RNLECHO, RNLTYPE WNL, WNLLONG, WNLLINE

SR-0113 12-48 c

RNLECHO (310) RNLECHO (310)

NAME

RNLECHO - Specifies output unit for NAMELIST error messages and echo lines

SYNOPSIS

CALL RNLECHO(unit)

DESCRIPTION

unit Output unit to which error messages and echo lines are sent. If unit=O, error messages and
lines echoed because of an E in column 1 go to $OUT (under COS) or stdont (under
UNlCOS) (default).

If unit ii!O, error messages and input lines are echoed to unit, regardless of any echo flags
present. If unit=6 or unit=101, $OUT (under COS) or stdont (under UNlCOS) is implied.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

RNL, RNLSKIP, RNLTYPE WNL, WNLLONG, WNLLINE

SR-0113 12-49 c

RNLSKIP (310) RNLSKIP(310)

NAME

RNLSKIP - Takes appropriate action when an undesired NAMELIST group is encountered

SYNOPSIS

CALL RNLSKIP(mode)

DESCRIPTION

mode <0 Skips the record and issues a logfile message (default)
=0 Skips the record
>0 Aborts the job or goes to the optional ERR= branch

RNLSKIP determines action if the NAMELIST group encountered is not the desired group.

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

RNL, RNLSKIP, RNLECHO WNL, WNLLONG, WNLLINE

SR-0113 12-50 c

RNLTYPE(3IO) RNLTYPE(3IO)

NAME

RNL TYPE - Determines action if a type mismatch occurs across the equal sign on an input record

SYNOPSIS

CALL RNL TYPE(mode)

DESCRIPTION

mode ~ Converts the constant to the type of the variable (default)
=0 Aborts the job or goes to the optional ERR= branch

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

RNL, RNLSKIP, RNLECHO WNL, WNLLONG, WNLLINE

SR-0113 12-51 C

SETSP (3COS) SETSP(3COS)

NAME

SETSP - Requests notification at the end of a tape volume

SYNOPSIS

CALL SETSP(dn,on)

DESCRIPTION

SETSP informs the operating system that you wish to perform extra processing when the end of a tape
volume is reached. You must call SYNCH to ensure all data is written to tape before calling SETSP.

After the user program has called SETSP, the end-of volume (EOV) condition is set when the tape is
positioned after the last data block. For an input dataset, this occurs after the system has read the last
data block on the volume. For an output dataset, this occurs when end-of-tape (EOT) status is detected.

Automatic volume switching is not done by COS following the successful execution of SETSP with the
on parameter non-zero. If you want to switch volumes, call CLOSEV.

dn Dataset name or unit number

on Type LOGICAL variable, expression, or constant. A value of .FALSE. turns off special
processing. A value of .TRUE. turns on special processing.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

STARTSP,ENDSP,CLOSEV

SR-0113 12-52 C

SETIP(3IO) SETfP(3IO)

NAME

SETTP - Positions a tape dataset or file at a tape block of the dataset or file

SYNOPSIS

CALL SETTP(dn,nbs,nb,nvs,nv,vi,synch,istat)

DESCRIPTION

SR-0113

dn Name of the dataset or file or unit number to be positioned. Must be an integer variable, or
an array element containing Hollerith data of not more than 7 characters. This parameter
should be of the form 'dn' L.

nbs Block number request sign. This parameter must be set to either '+'L, '-'L, or ' 'L. See
the block number parameter (nb) for usage detail.

nb Block number or number of blocks to forward space or backspace from the current position.
The direction of the positioning is specified by the block number request sign parameter
nbs.

+nb Specifies the number of blocks to forward space from the current position. The nbs
parameter should be set to '+'L when forward block positioning is desired. The +
sign is invalid if either nv or vi is requested.

-nb Speified the number of blocks to backspace from the current position. The nbs
parameter should be set to '-'L when backward block positioning is desired. The­
sign is invalid if either nv or vi is requested.

nb Specifies the absolute block number to be positioned to. The nbs parameter should
be set to a blank (' 'L) when absolute block positioning is desired. This option is
not supported under UNICOS.

nvs Volume number request sign. This parameter must be set to '+'L, '-'L. or ' 'L. See the
volume number parameter (nv) for usage details.

nv Volume number or number of volumes to forward space or backspace from the current
position. This parameter should be set equal to a binary volume number or number of
volumes to forward space or backspace. This direction of the positioning is specified by
the volume number request sign parameter nvs. This parameter is invalid if vi is also
requested.

+nv Specifies the number of volumes to forward space from the current volume. The
nvs parameter should be set to An nb request must not be specified with + or -
signs.

-nv Specifies the number of volumes to backspace from the current volume. The nvs
parameter should be set to A nb request must not be specified with + or - signs.

nv Specifies the absolute volume number to be positioned to. The nvs parameter
should be set to

vi Volume identifier to be mounted. This parameter is invalid if nv is also requested. Also,
nb must not be specified without + or - signs. The volume identifier must be left-justified,
zero-filled.

12-53 c

SETIP(3IO) SETfP(3IO)

synch Synchronize tape dataset SETTP uses this parameter to determine whether to synchronize
the program and an opened tape dataset before positioning. Synchronization, if requested,
is done according to the current positioning direction.

=0 Do not synchronize tape dataset or file

=1 Synchronize tape dataset or file' before positioning

istat Return conditions. This parameter is used to return errors and warnings from the position
routine.

=0 Dataset or file successfully positioned

;t:() Error or warning encountered during request

SETTP allows you to position a tape dataset at a particular tape block of the dataset. Data blocks on
the tape are numbered so that block number 1 is the first data block on a tape. Before a tape dataset is
positioned with SETTP, the dataset must be synchronized with the SYNCH routine (COS only) or with
the synchronization parameter on the SETTP request.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

GETTP, SYNCH (COS only), GETPOS

SR-0113 12-54 c

SKIPBAD (310) SKIPBAD (310)

NAME

SKIPBAD - Skips bad data

SYNOPSIS

CALL SKIPBAD(dn,blocks,termcnd)

DESCRIPTION

dn

blocks

termcnd

Dataset name or unit number

On exit, under COS, contains the number of blocks skipped. Under UNICOS, this is the
number of physical tape blocks skipped.

On exit, termination condition.

<0 Not positioned at end-of-block
=0 Positioned at end-of-block
=1 If 1, positioned at end-of-file

SKIPBAD allows you to skip bad data so that no bad data is sent to the user-specified buffer. UNICOS
does not support bad data recovery on transparent tapes.

EXAMPLE

PROGRAM EXAMPLE2
IMPLICIT INTEGER(A - Z)
REAL UNIT, UNITSTAT
PARAMETER(NBYTES=400000,NDIM=NBYTES/8,DN=99)
DIMENSION BUFFER(l:NDIM)

2000 CONTINUE
NWORDS = NDIM
CALL READ(DN,BUFFER,NWORDS,STATUS)
UNITSTAT = UNIT(DN)
IF(STATUS.EQ.4 .OR. UNITSTAT.GT.O.O) THEN !Parity error

CALL SKIPBAD(DN,BLOCKS,TERCND)
IF(TERMCND.LT.O) THEN

CALL ABORT("SKIPBAD should position tape at EOR/EOf
ENDIF

STOP 'COMPLETE'
END

IMPLEMENTATION

This routine is available to users of both the COS and the UNICOS operating systems.

SEE ALSO

ACPTBAD

SR-0113 12-55 c

STARTSP(3COS) STARTSP (3COS)

NAME

ST ARTSP - Begins user EOV and BOV processing

SYNOPSIS

CALL STARTSP(dn)

DESCRIPTION

ST ARTSP starts special end-of-volume (EOV) and beginning-of-volume processing. No special­
processing I/O to the tape occurs until this routine (or the implementing macro) has been executed.
The user program must inform COS that it intends to reposition or perform special I/O to the tape by
executing the ST ARTSP routine.

After executing the ST ARTSP routine, the user program can issue READ, WRITE, and SETTP requests.
When processing is done, the user program must execute ENDSP to inform COS that special processing
is complete. ST ARTSP does not switch volumes; when the user program wants to switch to the next
tape, you must invoke CLOSEV. Moreover, after you execute STARTSP and before you execute
ENDSP, the CLOSEV call is the only method to perform volume switching for the user program.

Call SYNCH before executing STARTSP. For output datasets, the data in the lOP buffer is not written to
tape until the ENDSP call at the beginning of the next tape.

dn Dataset name or unit number

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 12-56 C

STINDX (310) STINDX (310)

NAME

STINDX, STINDR - Allows an index to be used as the current index by creating a subindex

SYNOPSIS

CALL STINDX(dn,index,length,it[,ierrD

CALL STINDR(dn,index,length,it[,ierr D

DESCRIPTION

SR-Ol13

dn

index

length

it

ierr

The name of the dataset as a Hollerith constant or the unit number of the file. Hollerith
constant dataset names must be from 1 to 7 characters. Specify a type integer variable,
expression, or constant.

The user-supplied array used for the subindex or new current index. Specify a type integer
array. If index is a subindex, it must be a storage area that does not overlap the area used
in OPENMS/OPENDR to store the master index.

The length of the index array. Specify a type integer variable, expression, or constant. The
length of index depends upon the number of records on or to be written to the dataset using
the master index and upon the type of master index. If it= 1, length must be at least twice
the number of records on or to be written to the dataset using index. If it=O, length must be
at least the number of records on or to be written to the dataset using index.

A flag to indicate the type of index. Specify a type integer variable, expression, or con­
stant. When it=O, the records are referenced with a number between 1 and length. When
it= 1, the records are referenced with an alphanumeric name of 8 or fewer characters. For a
named index, odd-numbered elements of the index array contain the record name, and
even-numbered elements of the index array contain pointers to the· location of the record
within the dataset. For a numbered index, a given index array element contains pointers to
the location of the corresponding record within the dataset. The index type defined by
STINDX/STINDR must be the same as that used by OPENMS/OPENDR.

Error control and code. Specify a type integer variable. If you supply ierr on the call to
STINDX/STINDR, ierr returns any error codes to you. If ierr>O, no error messages are put
into the log file. Otherwise, an error code is returned, and the message is added to the
job's log file.

On output from STINDX/STINDR:
ierr=O No errors detected

<0 Error detected. ierr contains one of the error codes described
in the following table:

Error Codes

·1 The dataset name or unit number is invalid

·15 OPENMS/OPENDR was not called on this dataset

·16 A STINDXlSTINDR

12-57 .. c

STINDX (310) STINDX (310)

STINDX/STINDR reduce the amount of memory needed by a dataset containing a large number of
records. It also maintains a dataset containing records logically related to each other. Records in the
dataset, rather than records in the master index area, hold secondary pointers to records in the dataset.

STINDX/STINDR allow more than one index to manipulate the dataset. Generally, STINDX/STINDR tog­
gle the index between the master index (maintained by OPENMS/OPENDR and CLOSMS/CLOSDR) and
a subindex (supplied and maintained by you).

You must maintain and update subindex records stored in the dataset. Records in the dataset can be
accessed and changed only by using the current index.

After a STINDX/STINDR call, subsequent calls to READMS/READDR and WRITMSIWRITDR use and
alter the current index array specified in the STINDX/STINDR call. You can save the subindex by cal­
ling STINDX/STINDR with the master index array, then writing the subindex array to the dataset using
WRITMS/WRITDR. Retrieve the subindex by calling READMS/READDR on the record containing the
subindex information. Thus, STINDX/STINDR allow logically infinite index trees into the dataset and
reduces the amount of memory needed for a random access dataset containing many records.

CAUTION

When generating a new subindex (for example, building a database), set the array or memory area used
for the subindex to O. If the subindex storage is not set to 0, unpredictable results occur.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SR-0113

OPENMS, WRITMS, READMS, CLOSMS, FINDMS, CHECKMS, W AITMS, ASYNCMS, SYNCMS,
OPENDR, WRITDR, READDR, CLOSDR, CHECKDR, W AITDR, ASYNCDR, SYNCDR

12-58 c

SVOLPRC (3COS) SVOLPRC (3COS)

NAME

SVOLPRC - Initializes/terminates special BOV/EOV processing (obsolete)

SYNOPSIS

CALL SVOLPRC(dn,ijlag)

DESCRIPTION

NOTE

dn Type INTEGER variable, expression, or constant. The name of the dataset as a Hollerith
constant or unit number of the dataset.

ijlag Type INTEGER variable

=1 Turn BOV/EOV processing ON
=0 Turn BOV/EOV processing OFF

SVOLPRC should be called to inform the operating system that you wish to perform extra processing
when the end of a tape volume is reached. Calling SVOLPRC with the OFF flag indicates that the user
program no longer needs to be notified of EOV conditions. COS does not perform automatic volume
switching following an SVOLPRC call with the ON flag set.

Cray Research discourages the use of the CONTPIO, PROCBOV, PROCEOV, SWITCHV, and SVOL·
PROC routines. Instead, use CLOSEV, SETSP, ST ARTSP, and ENDSP when creating special tape pro­
cessing routines to handle end-of-volume conditions.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

CHECKTP, CONTPIO, PROCBOV, PROCEOV, SWITCHV

SR-OI13 12-59 C

SWITCHV (3COS) SWITCHV (3COS) -

NAME

SWITCHV - Switches tape volume

SYNOPSIS

CALL SWITCHV(dn,ipre,istat,iebu/)

DESCRIPTION

NOTE

dn Type INTEGER variable, expression, or constant. The name of the dataset as a Hollerith
constant or unit number of the dataset.

ipre Type INTEGER variable. Processing option at EOV.

= 1 Continue processing at EOV
= 0 Stop at EOY and return tape status information

istat Type INTEGER variable

=-1 No status
=0 EOY
= 1 Tape off reel
= 2 Tape mark detected
= 3 Blank tape detected

iebuf Type INTEGER variable. Circular I/O buffer status.

= 0 Circular I/O buffer empty
= 1 Circular I/O buffer not empty

The user program can use SWITCHV to switch to the next tape volume and to check on a tape dataset's
condition.

Cray Research discourages the use of the CONTPIO, PROCBOV, PROCEOV, SWITCHV, and SVOL­
PROC routines. Instead, use CLOSEV, SETSP, STARTSP, and ENDSP when creating special tape pro­
cessing routines to handle end-of-volume conditions.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

CHECKTP, CONTPIO, PROCBOV, PROCEOV, SVOLPRC

SR-0113 12-60 C

SYNCH (3CaS) SYNCH(3COS)

NAME

SYNCH - Synchronizes the program and an opened tape dataset

SYNOPSIS

CALL SYNCH(dn,pd,istat)

DESCRIPTION

dn Name of the dataset or unit number to be synchronized. Must be a type integer variable or an
array element containing Hollerith data of not more than 7 characters. This parameter should
be of the form 'dn'L.

pd Processing direction:

=0 Input dataset

~ Output dataset

istat Return conditions. This parameter returns errors and warnings from the position routine.

=0 Dataset successfully synchronized

~ Error or warning encountered during request, as follows:
= 1 Execution error
=2 Dataset is not a tape dataset.

IMPLEMENT AnON

This routine is available only to users of the COS operating system.

SEE ALSO

GETTP,SETTP,GETPOS,SETPOS

SR-0113 12-61 C

SYNCMS (310) SYNCMS (310)

NAME

SYNCMS, SYNCDR - Sets I/O mode for random access routines to synchronous

SYNOPSIS

CALL SYNCMS(dni[,ierr])

CALL SYNCDR(dni[,ierr])

DESCRIPTION

dn The name of the dataset as a Hollerith constant or the unit number of the dataset. Hollerith
constant dataset names must be from 1 to 7 characters. Specify a type integer variable,
expression, or constant.

ierr Error control and code. Specify a type integer variable. If you supply ierr on the call to
SYNCMS/SYNCDR, ierr returns any error codes to you. If ierr>O, no error messages are
put into the logfile. Otherwise, an error code is returned, and the message is added to the
job's logfile.

On output from SYNCMSISYNCDR:
ierr=O No errors detected

<0 Error detected. ierr contains one of the following error codes:

Error Codes
-1 The dataset name or unit number is invalid
-15 OPENMS/OPENDR was not called on this dataset

All I/O operations wait for completion.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SR-0113

OPENMS, WRITMS, READMS, CLOSMS, FINDMS, CHECKMS, W AITMS, ASYNCMS, OPENDR,
WRITDR, READDR, CLOSDR, STINDR, CHECKDR, W AITDR, ASYNCDR, STINDX

12-62 c

W AITMS (310) W AITMS (310)

NAME

WAITMS, W AITDR - Waits for completion of an asynchronous I/O operation

SYNOPSIS

CALL W AITMS(dn,istat[,ierrD

CALL W AITDR(dn,istat[,ierr])

DESCRIPTION

dn The name of the dataset as a Hollerith constant or the unit number of the dataset. Hollerith
constant dataset names must be from 1 to 7 characters. Specify a type integer variable,
expression, or constant.

istat Dataset Error flag. Specify a type integer variable.
istat=<> No error occurred during the asynchronous I/O operation

= 1 Error occurred during the asynchronous I/O operation

ierr Error control and code. Specify a type integer variable. If you supply ierr on the call to
W AlTMS/W AlTDR, ierr returns any error codes to you. If ierr>O, no error messages are
put into the logfile. Otherwise, an error code is returned, and the message is added to the
job's logfile.

On output from W AlTMS/W AlTDR:
ierr=O No errors detected

<0 Error detected ierr contains one of the error codes described
in the following table:

Error Codes
-1 The dataset name or unit number is invalid
-IS OPENMS/OPENDR was not called on this dataset

A status flag is returned to you, indicating whether or not the I/O on the specified dataset was com­
pleted without error.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

SR-OI13

OPENMS, WRITMS, READMS, CLOSMS, FINDMS, CHECKMS, ASYNCMS, SYNCMS, OPENDR,
WRITDR, READDR, CLOSDR, STINDR, CHECKDR, ASYNCDR, SYNCDR, STINDX

12-63 C

WCLOSE(3IO) WCLOSE (310)

NAME

WCLOSE - Closes a word-addressable, random access dataset

SYNOPSIS

CALL WCLOSE(dn[,ierrD

DESCRIPTION

dn The name of the dataset as a Hollerith constant or the unit number of the dataset. Specify
a type integer variable, expression, or constant.

ierr Error control and code. Specify a type integer variable, expression, or constant If you
supply ie" on the call to WCLOSE, ierr returns any error codes to you. If ierr is not sup­
plied, an error aborts the job.

On output from WCLOSE:
ie"=O No errors detected

=-1 Invalid unit number
=-6 Invalid dataset name

WCLOSE finalizes the additions and changes to the word-addressable, random access dataset and closes
the dataset.

SYNOPSIS

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SEE ALSO

WOPEN, PUTWA, APUTWA, GETWA, SEEK

SR-0113 12-64 C

WNL(3IO) WNL(3IO)

NAME

WNLFLAG, WNLDELM, WNLSEP, WNLREP - Provides user control of output format

SYNOPSIS

CALL WNLFLAG(char)

CALL WNLDELM(char)

CALL WNLSEP(char)

CALL WNLREP(char)

DESCRIPTION

char For WNLFLAG, the first ASCII character of the first line. Default is blank.
For WNLDELM, a NAMELIST delimiter. Default is '&'.
For WNLSEP, a NAMELIST separator. Default is ','.
For WNLREP, a NAMELIST replacement character. Default is '='.

WNLFLAG changes the character written in column 1 of the first line from blank to char. Typically,
char is used for carriage control if the output is to be listed, or for forcing echoing if the output is to be
used as input for NAMELIST reads.

WNLDELM changes the character preceding the group name and END from '&' to char.

WNLSEP changes the separator character immediately following each value from ',' to char.

WNLREP changes the replacement operator that comes between name and value from '=' to char.

In each of these subroutines, char can be any ASCII character specified by 1Lx or 1Rx. No checks are
made to determine if char is reasonable, useful, or consistent with other characters. If the default char­
acters are changed, use of the output line as N AMELIST input might not be possible.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SEE ALSO

RNL, RNLECHO, RNLSKIP, RNLTYPE WNLLINE, WNLLONG

SR-Ol13 12-65 c

WNLLINE (310) WNLLINE (310)

NAME

WNLLINE - Allows each NAMELIST variable to begin on a new line

SYNOPSIS

CALL WNLLINE(value)

DESCRIPTION

value =0 No new line
= 1 New line for each variable

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

RNL, RNLECHO, RNLSKIP, RNLTYPE WNL, WNLLONG

SR-OI13 12-66 c

WNLLONG (310) WNLLONG (310)

NAME

WNLLONG - Indicates output line length

SYNOPSIS

CALL WNLLONG(length)

DESCRIPTION

length Output line length; S<length<161 or length=-1 (-1 specifies default of 133 unless the unit is
102 or $PUNCH, in which case the default is SO).

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

RNL, RNLECHO, RNLSKIP, RNLTYPE WNL, WNLLINE

SR-0113 12-67 c

WOPEN(3IO) WOPEN(3IO)

NAME

WOPEN - Opens a word-addressable, random access dataset

SYNOPSIS

CALL WOPEN(dn,blocks,istats[,ierr])

DESCRIPTION

NOTES

dn

blocks

istats

ierr

The name of the dataset as a Hollerith constant or the unit number of the dataset (for exam­
ple, 7 corresponds to Fr07). Hollerith constant dataset names must be from 1 to 7 charac­
ters. Specify a type integer variable, expression, or constant.

The maximum number of 512-word blocks that the word-addressable package can use for a
buffer. Specify a type integer variable, expression, or constant.

Specify a type integer variable, expression, or constant. If istats is nonzero, statistics about
the changes and accesses to the dataset dn are collected. (See the following table for infor­
mation about the statistics that are collected.) Under COS, these statistics are written to
dataset SST ATS and can be written to $OUT by using the following control statements or
their equivalents after the dataset has been closed by WCLOSE.

REWIND,DN=$STATS.
COPYD,I=$STATS,O=$OUT.

Under UNICOS, statistics are written to stderr.

Error control and code. Specify a type integer variable. If you supply ierr on the call to
WOPEN, ierr returns any error codes to you. If ierr is not supplied, an error aborts the job.

On output from WOPEN:

ierri=O No errors detected
-1 Invalid unit number
-2 Number of datasets has exceeded memory size availability
-() Invalid dataset name

WOPEN opens a dataset and specifies it as a word-addressable, random access dataset that can be accessed
or changed with the word-addressable I/O routines. The WOPEN call is optional.

A file opened using WOPEN should only by closed by WOPEN or, under COS, job .step advance. If you
close the file in some other way, the subsequent behavior of the program is unpredictable. These other
ways of closing a file include explicit methods (for example, CLOSE and CALL RELEASE) and implicit
methods (such as CALL SAVE).

If you bypass WCLOSE, the internal tables maintained by the word-addressable I/O package are not
updated, leaving dangling pointers in future computation.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

WCLOSE, PUTW A, APUTW A, GETW A, SEEK

MESSAGES

SR-Ol13 12-68 C

WOPEN(3IO) WOPEN(3IO)

WOPEN Statistics
Message Description

BUFFERS USED = Number of 512-word buffers used
by this dataset

TOT AL ACCESSES = Number of accesses. This is the
sum of the GETW A and PUTW A calls.

GETS = Number of times the user called GETWA

PUTS = Number of times the user called PUTW A

FINDS = Number of times the user called SEEK

fiTS = Number of times word addresses
desired were resident in memory

MISSES = Number of times no word addresses
desired were resident in memory

PARTIAL fiTS = Number of times that some but not
all of the word addresses desired
were in memory

DISK READS = Number of physical disk reads done

DISK WRITES = Number of times a physical disk
was written to

BUFFER FLUSHES = Number of times buffers were flushed

WORDS READ = Number of words moved from buffers
to user

WORDS WRITTEN = Number of words moved from user
to buffers

TOTAL WORDS = Sum of WORDS READ and WORDS WRITTEN

TOTAL ACCESS TIME = Real time spent in disk transfers

A VER ACCESS TIME = TOTAL ACCESS TIME divided by the sum
of DISK READS and DISK WRITES

EOD BLOCK NUMBER = Number of the last block of the dataset

DISK WORDS READ = Count of number of words moved from
disk to buffers

DISK WDS WRITTEN = Count of number of words moved from
buffers to disk

TOT AL DISK XFERS = Sum of DISK WORDS READ

-BUFFER BONUS % = TOTAL WORDS divided by value TOTAL
DISK XFERS multiplied bv 100

SR-OI13 12-69 c

WRITE (310) WRITE (310)

NAME

WRITE, WRITEP - Writes words, full or partial record mode

SYNOPSIS

CALL WRITE(dn,word,count,ubc)

CALL WRITEP(dn,word,count,ubc)

DESCRIPTION

dn Unit number or file name, seven characters or less and specified as a Hollerith

word Data area containing words

count Word count. For WRITE, a value of 0 causes an end-of record (EOR) record control word
to be written.

ubc Optional unused bit count. Number of unused bits contained in the last word of the record.

In routines where words are written, the number of words specified by the count are transmitted from
the area beginning at the first word address and are written in the I/O buffer. These routines are
intended to write to COS blocked datasets under both COS and UNICOS.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SEE ALSO

READ, READP, READC, READCP, READIBM, WRITEC, WRITECP, WRITIBM, SKIPBAD, ACPTBAD

SR-0113 12-70 c

WRITEC (310)

NAME

WRITEC, WRITECP - Writes characters, full or partial record mode

SYNOPSIS

CALL WRITEC(dn,char,count)

CALL WRITECP(dn,char ,count)

DESCRIPTION

dn Dataset name or unit number

char Data area containing characters

count Character count

WRITEC (310)

Write character routines pack characters into the I/O buffer for the dataset The count specifies the
number of characters packed. These characters originate from the user area defined at the first word
address, which is 1 character per source word (right-justified). Blank compression is performed on the
characters written out

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SEE ALSO

READ, READP, READC, READCP, READIBM, WRITE, WRITEP, WRITIBM, SKIPBAD, ACPTBAD

SR-0113 12-71 C

WRITIBM (310)

NAME

WRITIBM - Writes two mM 32-bit floating-point words from each Cray 64-bit word

SYNOPSIS

CALL WRITIBM(dnfwa, value,increment)

DESCRIPTION

dn Dataset name or unit number

twa First word address (FW A) of the user data area

value Number of values to be written

increment Increment of the source (Cray) words written

On exit, mM 32-bit words are written to the unit

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

WRITIBM (310)

READ, READP, READC, READCP, READIBM, WRITE, WRITEP, WRITEC, WRITECP, SKIPBAD,
ACPTBAD

SR-0113 12-72 C

WRITMS(310) WRITMS (310)

NAME

WRITMS, WRITDR - Writes to a random access dataset on disk

SYNOPSIS

CALL WRITMS(dn,ubuff,n,irec ,rrflag ,s[,ierr])

CALL WRITDR(dn,ubujf,n,irec,rrjlag,s[,ierrD

DESCRIPTION

SR-OI13

dn The name of the dataset as a Hollerith constant or the unit number of the dataset (for exam­
ple, dn=7 corresponds to dataset Fr07). Hollerith constant dataset names must be from 1 to
7 characters. Specify a type integer variable, expression, or constant.

ubuff The location of the first word in the user program to be written to the record. User­
specified type.

n The number of words to be written to the record. Specify a type integer variable, expres­
sion, or constant n contiguous words from memory, beginning at ubuff, are written to the
dataset record. Since COS unblocked-dataset I/O is in multiples of 512 words, it is recom­
mended that n be a multiple of 512 words when speed is important. However, the random
access dataset I/O routines support record lengths other than multiples of 512 words.
WRITDR rounds n up to the next multiple of 512 words, if necessary.

irec The record number or record name of the record to be written. Specify a type integer vari­
able, expression, or constant. A record name is limited to a maximum of 8 characters. For
a numbered index, irec must be between 1 and the length of the index declared in the
OPENMS/OPENDR call. For a named index, irec is any 64-bit entity you specify.

rrflag A flag indicating record rewrite control. Specify a type integer variable, expression, or con­
stant. rrflag can be one of the following codes:

o Write the record at EOn.

1 If the record already exists, and the new record length is less than or equal to the
old record length, rewrite the record over the old record. If the new record length
is greater than the old, abort the job step or return the error code in ierr. If the
record does not exist, the job aborts or the error code is returned in ierr.

-1 If the record exists, and its new length does not exceed the old length, write the
record over the old record. Otherwise, write the record at EOD.

s A sub-index flag. Specify a type integer variable, expression, or constant. (The implemen­
tation of this parameter has been deferred.)

ierr Error control and code. Specify a type integer variable. If you supply ierr on the call to
WRITMSIWRITDR, ierr returns any error codes to you. If ierr>O, no error messages are
put into the log file. Otherwise, an error code is returned, and the message is added to the
job's log file.

On output from WRITMSIWRITDR:
ierr=O No errors detected

<0 Error detected. ierr contains one of the error codes described
in the following table:

12-73 c

WRITMS (310) WRITMS (310)

NOTE

Error Codes

·1 The dataset name or unit number is invalid

·6 The user-supplied named index is invalid

·7 The named record index array is full

·8 The index number is greater than the maximum
on the dataset

·9 Rewrite record exceeds the original

·15 OPENMS/OPENDR was not called on this dataset

·17 The index entry is less than or equal to °
in the users index array

·18 The user-supplied word count is less than or
equal to 0

·19 The user-supplied index number is less than or
equal to 0

WRITMS and WRITDR write data from user memory to a record in a random access dataset on disk
and updates the current index.

Most of the routines in the run-time libraries are reentrant or have internal locks to ensure that they are
single threaded. Some library routines, however, must be locked at the user level if they are used by
more than one task.

WRITMS and WRITDR are not internally locked. You must lock each call to these routines if they are
called from more than one task.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

EXAMPLES

SR-0113

The following examples show some of the features and uses of random access dataset routines.

Example 1 - In the program SORT, a sequence of records is read in and then printed out as a sorted
sequence of records.

1 PROGRAM SORT
2 INTEGER IARRAY (512)
3 INTEGER INDEX (512), KEYS (100)
4 CALL OPENMS (,SORT' ,INDEX,255,1)
5 N=50 \
C READ IN RANDOM ACCESS RECORDS FROM UNIT "SORT"

/'-o~ 00 21 I=I,N
7 READ(5,1000) (IARRAY(J),J=I,512)
8 NAME=IARRAY(I)
9 KEYS(I)=IARRAY(I)

10 CALL WRITMS (,SORT' ,IARRAY,512,NAME,0)
21 CONTINUE

C SORT KEYS ALPHABETICALLY IN ASCENDING ORDER USING
C EXCHANGE SORT

12 00 23 I=I,N-l
13 MIN=I

12-74 C

WRITMS (310) WRITMS (310)

SR-0113

14 J=I+1
15 00 22 K=J,N
16 IF (KEYS(K).LT.KEYS(MIN) MIN=K

22 CONTINUE
18 IB=KEYS(I)
19 KEYS(I)=KEYS(MIN)
20 KEYS (MIN)=IB

23 CONTINUE
C WRITE OUT RANDOM ACCESS RECORDS IN ASCENDING
C ALPHABETICAL ORDER

22 00 24 l=l,N
23 NAME=KEYS(I)
24 CALL READMS (,SORT',IARRAY,512,NAME)
25 WRlTE(6,5120) (IARRA Y(J»)=1,512)

24 CONTINUE
1000 FORMAT (" ")
5120 FORMAT (lX," ")

29 CALL CLOSMS ('SORT')
30 STOP
31 END

In this example, the random access dataset is initialized as shown in line 4. Lines 6 through 11 show
that a record is read from unit 5 into array IARRA Y and then written as a record to the random access
dataset SORT. The first word of each record is assumed to contain an 8-character name to be used as
the name of the record

Lines 12 through 21 show that the names of the records are sorted in the array KEYS. Lines 22
through 26 show that the records are read in and then printed out in alphabetical order.

Example 2 - The programs INITIAL and UPDATE show how the random access dataset might be
updated without the usual search and positioning of a sequential access dataset.

Program INITIAL:

1 PROGRAM INITIAL
2 INTEGERIARRAY(512)
3 INTEGER INDEX (512)
C
C OPEN RANDOM ACCESS DATASET
C THIS INITIALIZES THE RECORD KEY "INDEX"
C
4 CALL OPENMS (,MASTER' ,INDEX,101,1)
C
C READ IN RECORDS FROM UNIT 6 AND
C WRITE THEM TO THE DATASET "MASTER"
C
5 00 101=1,50
6 READ(6,600) (lARRAY(J»)=1,512)
7 NAME=IARRAY(1)
8 CALL WRITMS ('MASTER',IARRAY,512,NAME,0,0)

10 CONTINUE

12-75 C

WRITMS (310) WRITMS (310)

SR-0113

C
CCLOSE "MASTER" AND SAVE RECORDS FOR UPDATING
C

10 CALLCLOSMS('MASTER')
600 FORMAT (lX,' ')

12 STOP
13 END

Program UPDATE:

1 PROGRAMUPDATE
2 INTEGER INEWRCD(512)
3 INTEGER INDX (512)
C
C OPEN RANDOM ACCESS DATASET CREATED IN THE
C PREVIOUS PROGRAM "INITIAL"
C
C INDX WILL BE WRITTEN OVER THE OLD RECORD KEY
C
4 CALLOPENMS (,MASTER',INDX,101,1)
C
C READ IN NUMBER OF RECORDS TO BE UPDATED
C
5 READ (6,610) N
C
C READ IN NEW RECORDS FROM UNIT 6 AND
C WRITE THEM IN PLACE OF THE OLD RECORD THAT HAS
CTHATNAME
C
6 00 10I=I,N
7 READ(6,600) (INEWRCD(J),J=1,512)
8 NAME=INEWRCD(I)
9 CALL WRITMS (,MASTER' ,INEWRCD,512,NAME,I,O)
10 CONTINUE
C
C CLOSE "MASTER" AND SAVE NEWLY UPDATED RECORDS
CFORFURTHERUPDATING
C

II CALL CLOSMS ("MASTER")
12600 FORMAT (lX," ")
13610FORMAT(lX," ")
14 STOP
15 END

In the preceding example, program INITIAL creates a random access dataset on unit MASTER; program
UPDATE then replaces particular records of this dataset without changing the remainder of the records.

12-76 C

WRITMS (310) WRITMS (310)

SR-0113

Line 10 shows that the call to CLOSMS at the end of INITIAL caused the contents of INDEX to be written to
the random access dataset.

Line 4 shows that the call to OPENMS at the beginning of UPD ATE has caused the record key of the random
access dataset to be written to INDX. The random access dataset and INDX are now the same as the random
access dataset and INDEX at the end of INITIAL.

Lines 6 through 10·show that certain records are replaced.

Example 3 - The program SNDYMS is an example of the use of the secondary index capability, using
STINDX. In this example, dummy information is written to the random access dataset.

PROGRAM SNDYMS
IMPLICIT INTEGER (A-Y)
DIMENSION PINDEX(20),SINDEX(30),zBUFFR(50)
DATA PLEN,SLEN,RLEN /20,30,50/

COPENTHEDATASET.
CALL OPENMS (l,PINDEX,PLEN,O,ERR)
IF (ERR.NE.O) THEN

PRINT*,' Error on OPENMS, err=' ,ERR
STOP 1

ENDIF
C LOOP OVER THE 20 PRIMARY INDICES. EACH TIME
C A SECONDARY INDEX IS FULL, WRITE THE
C SECONDARY INDEX ARRAY TO THE DATASET.

DO 40 K= I,PLEN
C ZERO OUT THE SECONDARY INDEX ARRAY.

DO 10I=I,SLEN
10 SINDEX(I)=O

C CALL STINDX TO CHANGE INDEX TO SINDEX.
CALL STINDX (I,SINDEX,SLEN,O,ERR)
IF (ERR.NE.O) THEN

PRINT*,' Error on STINDX,err=',ERR
STOP 2

ENDIF
C WRITE SLEN RECORDS.

D030J=I,SLEN
C GENERATE A RECORD LENGTH BETWEEN 1 AND RLEN.

TRLEN=MAXO(IFIX(RANF(O)*FLOAT(RLEN»,I)
C FILL THE "DATA" ARRA Y WITH RANDOM FLOATING POINT
CNUMBERS.

DO 20 I=l,TRLEN
20 ZBUFFR(I)=(J+SIN(FLOAT(I»)**(I.+RANF(O»
CALL WRITMS (I ,zBUFFR,TRLEN) ,-I ,DUMMY,ERR)
IF (ERR.NE.O) THEN

PRINT*,' Error on WRITMS, err=' ,ERR
STOP 3

ENDIF
30 CONTINUE

12-77 C

WRITMS (310)

SR-0113

C "TOGGLE" THE INDEX BACK TO THE MASTER AND
C WRITE THE SECONDARY INDEX TO THE DATASET.

CALL STINDX (I,PINDEX,PLEN,O)
C NOTE THE ABOVE STINDX CALL DOES NOT USE THE
C OPTIONAL ERROR PARAMETER, AND WILL ABORT
C IF STINDX DETECTS AN ERROR.

CALL WRITMS (l,SINDEX,SLEN,K,-l,DUMMY ,ERR)
IF (ERR.NE.O) THEN

PRINT*,' Error on STINDX, err=',ERR
STOP 4

ENDIF
40 CONTINUE
C CLOSE THE DATASET.

CALL CLOSMS (I,ERR)
IF (ERR.NE.O) THEN

PRINT*.' Error on CLOSMS, err=' ,ERR
STOPS

ENDIF
STOP 'Normal'
END

12-78

WRITMS (310)

C

INTRO(3X) INTRO(3X)

13. DATASET UTILITY ROUTINES

The dataset utility routines manipulate datasets for use by a program unit. The following routines are
ANSI standard Fortran routines (except LENGTH and UNIT, which are CFT extensions) and are
described in the Fortran (CFT) Reference Manual, publication SR-0009 and the CFT77 Reference Manual,
publication SR-0018.

Routine

OPEN

CLOSE

INQUIRE

BACKSPACE

REWIND

ENDFILE

UNIT

LENGTH

Description

Connects a dataset to a unit

Terminates the connection, of a dataset to a unit

Returns status of a unit or a dataset

Positions a dataset after the previous end-of-record (EOR)

Rewinds a dataset

Writes end-of-file (EOP) on a file

Returns I/O status upon completion of an I/O operation

Returns the number of Cray words transferred

IMPLEMENTATION

SR-0113

The preceding ANSI standard Fortran routines are available to users of both the COS and UNICOS
operating systems.

The following routine types are described by entries in this section: copy, skip, dataset positioning, ter­
mination, and I/O status routines.

Copy routines copy a specified number of records or files from one dataset to another, copy one dataset
to another, and copy a specified number of sectors or all data to end-of-data (EOD).

Skip routines direct the system either to bypass a specified number of records, files, sectors, or all data
from the current position of a named dataset, or to position a blocked dataset at EOD.

The termination routine EODW terminates a dataset by writing EOF, EOR, and EOD. It also clears the
uncleared End-of-file flag (UEOF) in the Dataset Parameter Table (DSP).

The last group of dataset utility routines return I/O information.

The following table contains the name, purpose, and entry for each dataset utility routine.

13-1 C

INTRO(3X) INTRO(3X)

Dataset Utility Routines
Purpose Name Entry

Position a dataset after the previous BACKFILE BACKFILE
EOF and clear the UEOF flag in the
DSP
Copy records from one dataset to COPYR
another COPYSR

Copy files from one dataset to COPYF COPYR
another COPYSF

Copy one dataset to another COPYD
COPYSD

Copy sectors or all data to EOD COPYU COPYU

Terminate a dataset by writing EODt EODW EODW
EOFt and EOR and clear the UEOF flag
in the DSP
Return the real value EOF status and EOF
clear the UEOF flag in the DSP

EOF -
Return the integer value EOF status and IEOF
clear the UEOF flag in the DSP
Return EOF and EOD status IOSTAT IOSTAT

Return the current size of a dataset NUMBLKS NUMBLKS
in 512-word blocks
Skip records SKIPR

SKIPR
Skip files SKIPF
Position a blocked dataset at EOD SKIPD SKIPD

Skip sectors in a dataset SKIPU SKIPU

SR-Ol13 13-2 C

BACKFILE (3COS) BACKFILE (3COS)

NAME

BACKFILE - Positions a dataset after the previous EOF

SNYOPSIS

CALL BACKFILE(dn)

DESCRIPTION

dn Dataset name or unit number of the dataset to be repositioned

BACKFILE positions a dataset after the previous end-of-file (EOF) and then clears the UEOF flag in the
Dataset Parameter Table (DSP).

This function is nonoperational if the dataset is at beginning-of-data (BOD).

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 13-3 c

COPYR (3COS) COPYR (3COS)

NAME

COPYR, COPYF, COPYD - Copies records, files, or a dataset from one dataset to another

SYNOPSIS

CALL COPYR(idn,odn,recordListat])
CALL COPYSR(idn,odn,record,scount[,istat])

CALL COPYF(idn,odnjile[,istat])
CALL COPYSF(idn,odnjile,scount[,istat])

CALL COPYD(idn,odn)
CALL COPYSD(idn,odn,scount)

DESCRIPTION

idn

odn

record

Dataset name or unit number of the dataset to be copied

Dataset name or unit number of the dataset to receive the copy

Number of records to be copied

file Number of files to be copied

scount

istat

Number of Ascn blanks to be inserted at the beginning of each line of text

A two-element integer array that returns the number of records copied in the first element
and the number of files copied in the second element. (For COPYR, the number of files
copied is always 0.) istat is an optional parameter. If present, only fatal messages are writ­
ten to the log file.

COPYR and COPYF copy a specified number of records or files from one dataset to another, starting at
the current dataset position. Following the copy, the datasets are positioned after the EOR or EOF for
the last record or file copied

COPYD copies one dataset to another, starting at their current positions. Following the copy, both
datasets are positioned after the EOF of the last file copied. The EOD is not written to the output
dataset.

COPYSR, COPYSF, and COPYSD are the same as COPYR, COPYF, and COPYD, respectively, except
that the copied data is preceded by scount blanks.

CAUTION

These routines are not intended for use with foreign dataset translation. When foreign dataset record
boundaries coincide with Cray dataset record boundaries, proper results may be expected. However, it
is difficult in general to determine when such coincidences occur. Use of these routines with foreign
datasets is discouraged.

IMPLEMENTATION

These routines are available only to users of the COS operating system.

SEE ALSO

COPYU, SKIPR, SKIPD, SKIPU

SR-0113 13-4 C

COPYU (3COS) COPYU (3COS)

NAME

COPYU - Copies either specified sectors or all data to EOD

SYNOPSIS

CALL COPYU(idn,odn,nsListat])

DESCRIPTION

idn Name of the unblocked dataset to be copied

odn Name of the unblocked dataset to receive the copy

ns Decimal number of sectors to copy. If the unblocked dataset contains fewer than ns sec­
tors, the copy terminates at EOD. The entire dataset is copied if -1 is specified. If COPYU
is called with only two parameters, only one sector is copied.

istat An integer array or variable that returns the number of sectors copied. istat is an optional
parameter. If istat is present, only fatal messages are written to the log file.

Copying begins at the current position on both datasets. Following the copy, the datasets are positioned
after the last sector copied.

CAUTION

This routine is not intended for use with foreign dataset translation.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

COPYR, SKIPU

SR-0113 13-5 C

EODW(3COS)

NAME

EODW - Terminates a dataset by writing EOD. EOF, and EOR

SYNOPSIS

CALL EODW(dn)

DESCRIPTION

dn Dataset name or unit number of the dataset to be terminated

EODW(3COS)

EODW writes an EOD, and, if necessary, an EOF and an EOR. The UEOF flag in the DSP is cleared.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-Ol13 13-6 c

EOF(3IO)

NAME

EOF, IEOF - Returns real or integer value EOF status

SYNOPSIS

rexit=EOF(dn)

iexit=IEOF(dn)

DESCRIPTION

rexit
-1.0 EOD on the last operation
0.0 Neither EOD nor EOP on the last operation

+ 1.0 EOF on the last operation

iexit
-1 EOD on the last operation
o Neither EOD nor EOP on the last operation

+ 1 EOP on the last operation

dn Dataset name or unit number

EOF(3IO)

EOF returns one of the above real values when checking the EOP status. IEOF returns one of the above
integer values when checking the EOP status. Under COS, both routines clear the UEOF flag in the DSP.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 13-7 c

IOSTAT(3COS)

NAME

IOSTAT - Returns EOP and EOD status

SYNOPSIS

iexit=IOST AT (dn)

DESCRIPTION

iexit 0 No error
1 Dataset at EOP (UEOF cleared)
2 Dataset at EOD (UEOF cleared)

dn Dataset name or unit number

IMPLEMENTATION

This routine is only available to users of the COS operating system.

SR-OI13 13-8

IOSTAT(3COS)

c

NUMBLKS (310) NUMBLKS (310)

NAME

NUMBLKS - Returns the current size of a da1aset in 512-word bloc~
SYNOPSIS

val=NUMBLKS(dn)

DESCRIPTION

val Number of blocks returned as an integer value. The value returned reflects only the data
actually written to disk and does not take into account data still in the buffers. If the
dataset is not local to the job, or has never been written to, a function value of 0 is
returned. A negative value indicates that the underlying system call failed.

dn Dataset name or unit number

IMPLEMENTATION

This routine is available to users of the both the COS and UNICOS operating systems.

SR-Ol13 13-9 c

SKIPD (3COS) SKIPD (3COS)

NAME

SKIPD - Positions a blocked dataset at EOD

SYNOPSIS

CALL SKIPD(dn[.istat])

DESCRIPTION

dn Dataset name or unit number to be skipped Must be a character constant, an integer vari­
able, or an array element containing Hollerith data of not more than 7 characters.

istat A two-element integer array that returns the number of records skipped in the first element
and the number of files skipped in the second element. istat is an optional parameter. If it
is present, only fatal messages are written to the log file.

SKIPD directs the system to position a blocked dataset at EOD, that is, after the last EOF of the dataset.
If the specified dataset is empty or is already at EOD, the call has no effect.

CAUTION

This routine is not intended for use with foreign dataset translation.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

COPYR, SKIPR, SKIPU

SR-0113 13-10 c

SKIPR (3COS) SKIPR (3COS)

NAME

SKIPR, SKIPF - Skip records or files

SYNOPSIS

CALL SKIPR(dn,record[,istat])

CALL SKIPF(dnftle[,istat])

DESCRIPTION

dn

record

file

istat

Dataset name or unit number that contains the record or file to be skipped. Must be a char­
acter constant, an integer variable, or an array element containing Hollerith data of not
more than 7 characters. If dn is opened before SKIPR or SKIPF is called, dn must be
opened to allow read or read/write access.

Decimal number of records to be skipped. The default is 1. If record is negative, SKIPR
skips backward on tin.

Decimal number of files to be skipped. The default is 1. If file is negative, SKIPR skips
backward on dn. If dn is positioned midfile, the partial file skipped counts as one file.

A two-element integer array that returns the number of records skipped in the first element
and the number of files skipped in the second element. (For SKIPR, the number of files
skipped is always 0.) istat is an optional parameter. If it is present, only fatal messages
are written to the log file.

SKIPR directs the system to bypass a specified number of records from the current position of the
named blocked dataset.

SKIPR does not bypass EOF or beginning-of-data (BOD). If an EOF or BOD is encountered before
record records have been bypassed when skipping backward, the dataset is positioned after the EOF or
BOD. When skipping forward, the dataset is positioned after the last EOR of the current file.

SKIPF directs the system to skip a specified number of files from the current position of the named
blocked dataset.

SKIPF does not skip EOD or BOD. If a BOD is encountered before file files have been skipped when
skipping backward, the dataset is positioned after the BOD. When skipping forward, the dataset is posi­
tioned before the EOD of the current file.

CAUTION

These routines are not intended for use with foreign dataset translation. When foreign dataset record
boundaries coincide with Cray dataset record boundaries, proper results may be expected. However, it
is difficult in general to determine when such coincidences occur. Use of these routines with foreign
datasets is discouraged.

EXAMPLE

SR-0113

If the dataset connected to unit FT07 is positioned just after an EOF, the following Fortran call positions
the dataset after the previous EOF. If the dataset is positioned midfile, it is positioned at the beginning
of that file.

CALL SKIPP(,Ff07',-I)

13-11 C

SKIPR (3COS) SKIPR (3COS)

IMPLEMENTATION

These routines are available only to users of the COS operating system.

SEE ALSO

COPYR, SKIPD, SKIPU

SR-Ol13 13-12 c

SKIPU (3COS) SKIPU (3COS)

NAME

SKIPU - Skips a specified number of sectors in a dataset

SYNOPSIS

CALL SKIPU(dn,ns[,istat])

DESCRIPTION

dn Dataset name or unit number of the unblocked dataset to be bypassed. Must be an integer
variable or an array element containing Ascn data of not more than 7 characters.

ns Decimal number of sectors to bypass. The default value is 1. If ns is negative, SKIPU
skips backward on dn.

istat An integer array or variable that returns the number of sectors skipped. istat is an optional
parameter. If it is present, only fatal messages are written to the logfile.

SKIPU directs the system to bypass a specified number of sectors or all data from the current position
of the named unblocked dataset

CAUTION

This routine is not intended for use with foreign dataset translation.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

COPYU, SKIPR, SKIPD

SR-0113 13-13 c

INTRO(3X) INTRO(3X)

14. MULTITASKING ROUTINES

Multitasking routines create and synchronize parallel tasks within programs. They are grouped in the
following categories:

• Task routines

• Lock routines

• Event routines

• History trace buffer routines

• Barrier routines

For further information on using these subprograms in a multitasking environment, see the CRAY Y-MP
and CRAY X-MP Multitasking Programmer's Manual, publication SR-0222.

TASK ROUTINES

SR-0113

Task routines handle tasks and task-related information.

T ASK CONTROL ARRAY - Each user-created task is represented by an integer task control array, con­
structed by the user program. At a minimum, the array must consist of 2 Cray words; however, a third
word can be included The three words composing the array contain the following information:

LENGTH Length of the array in Cray words. The length must be set to a value of 2 or 3,
depending on the optional presence of the task value field. Set the LENGTH field
before creating the task.

TASK ID A task identifier assigned by the multitasking library when a task is created. This
identifier is unique among active tasks within the job step. The multitasking library
uses this field for task identification, but the task identifier is of limited use to the user
program.

TASK VALUE (optional field)
This field can be set to any value before the task is created. If TASK VALUE is used,
LENGTH must be set to a value of 3. The task value can be used for any purpose. Sug­
gested values include a programmer-generated task name or identifier or a pointer to a
task local-storage area. During execution, a task can retrieve this value with the
TSKV ALUE subroutine.

The following example sets parameters for the task control array TASKARY:

C

PROGRAM MULTI
INTEGER TASKARY(3)

C SET TASKARY PARAMETERS
TASKARY(I)=3
TASKARY(3)='TASK I'

C
END

14-1 C

INTRO(3X) INTRO(3X)

T ASK SUBROUTINES - The following table contains the purpose, name, and entry of each task routine.

Task Routines
Purpose Name Entry

Initiate a task TSKSTART TSKSTART

Indicate whether a task exists TSKTEST TSKTEST

Modify tuning parameters within the TSKTUNE TSKTUNE
library scheduler

Wait for a task to complete execution TSKWAIT TSKWAIT

Retrieve the user identifier TSKVALUE TSKVALUE
specified in the task control array

LOCK ROUTINES

Lock routines protect critical regions of code and shared memory.

The following table contains the purpose, name, and entry of each lock routine.

Lock Routines
Purpose Name Entry

Identify an integer variable to be LOCKASGN LOCKASGN
used as a lock

Set a lock and return control to LOCKON LOCKON
the calling task

Clear a lock and return control to LOCKOFF LOCKOFF
the calling task

Release the identifier assigned to LOCKREL LOCKREL
a lock

Test a lock to determine its state LOCKTEST LOCKTEST
(locked or unlocked)

SR-Ol13 14-2 C

INTRO(3X) INTRO(3X)

EVENT ROUTINES

Event routines signal and synchronize between tasks.

The following table contains the purpose, name, and entry of each event routine.

Event Routines
Purpose Name Entry

Post an event and return control to EVPOST EVPOST
the calling task

Clear an event and return control to EVCLEAR EVCLEAR
the calling task

Identify a variable to be used as EVASGN EVASGN
an event
Release the identifier assigned to EVREL EVREL
a task
Test an event to determine its EVTEST EVTEST
posted state
Delay the calling task until an EVWAIT EVWAIT
event is posted

MULTITASKING mSTORY TRACE BUFFER ROUTINES

SR-0113

The user-level routines for the multitasking history trace buffer can be called from a user program to
control what is recorded in the buffer and to dump the contents of the buffer to a dataset.

The following table contains the purpose, name, and entry of each multitasking history trace buffer rou­
tine.

Multitasking History Trace Buffer Routines

Purpose Name Entry

Modify parameters used to control BUFfUNE BUFTUNE
which multitasking actions are
recorded in the history trace buffer

Write a formatted dump of the BUFPRINT BUFPRINT
history trace buffer to a dataset
Write an unformatted dump of the BUFDUMP BUFDUMP
history trace buffer to a dataset

Add entries to the history trace BUFUSER BUFUSER
buffer

14-3 C

INTRO(3X) INTRO(3X)

BARRIER ROUTINES·

SR-OI13

A barrier is a synchronization point in an application, beyond which no task will proceed until a
specified number of tasks have reached the barrier.

The following table contains the purpose, name, and entry of each barrier routine.

Barrier Routines
Purpose Name Entry

Identify an integer variable to use BARASGN BARASGN
as a barrier
Register the arrival of a task as BARSYNC BARSYNC
a barrier
Release the identifier assigned to BARREL BARREL
a barrier

14-4 c

BARASGN (3U) BARASGN (3U)

NAME

BARASGN - Identifies an integer variable to use as a barrier

SYNOPSIS

CALL BARASGN(name,value)

DESCRIPTION

name Integer variable to be used as a barrier. The library stores an identifier into this variable.
Do not modify the variable after the call to BARASGN unless a call to BARREL first
releases the variable.

value The integer number of tasks, between 1 and 31 inclusive, must call BARSYNC with name
before the barrier is opened and the waiting tasks allowed to proceed.

Before an integer variable can be used as an argument to any of the other barrier routines, it must first
be identified as a barrier variable by BARASGN.

IMPLEMENTATION

This routine is available both to users of the COS and UNICOS operating systems.

SR-OI13 14-5 c

BARREL(3U)

NAME

BARREL - Releases the identifier assigned to a barrier

SYNOPSIS

CALL BARREL(name)

DESCRIPTION

name Integer variable used as a barrier

IMPLEMENTATION

This routine is available both to users of the COS and UNICOS operating systems.

SR-OI13 14-6

BARREL(3U)

c

BARSYNC(3U)

NAME

BARSYNC - Registers the arrival of a task at a barrier

SYNOPSIS

CALL BARSYNC(name)

DESCRIPTION

name Integer variable used as a barrier

IMPLEMENTATION

This routine is available both to users of the COS and UNICOS operating systems.

SR-OI13 14-7

BARSYNC(3U)

c

BUFDUMP(3U) BUFDUMP(3U)

NAME

BUFDUMP - Unformatted dump of multitasking history trace buffer

SYNOPSIS

CALL BUFDUMP(empty,dn)

DESCRIPTION

empty On entry, an integer flag that is 0 if the buffer pointers are to be left unchanged, nonzero if
the buffer is to be emptied after its contents are dumped

dn Name of the dataset to which an unformatted dump of the contents of the multitasking his­
tory trace buffer is to be written. If 0, the dataset passed to BUFrUNE is used; if no
dataset was specified through BUFfUNE, the request is ignored.

BUFDUMP writes an unformatted dump of the contents of the multitasking history trace buffer to a
specified dataset dn can later be used by MTDUMP to examine the dataset and provide formatted
reports of its contents. Actions are reported in chronological order. A special entry is added if the
buffer has overflowed and entries have been lost

IMPLEMENTATION

This routine is available to users of both the cos and UNICOS operating systems.

SR-0113 14-8 c

BUFPRINT(3U) BUFPRINT (3U)

NAME

BUFPRINT - Formatted dump of multitasking history trace buffer to a specified dataset

SYNOPSIS

CALL BUFPRINT(empty[,dn])

DESCRIPTION

empty On entry, an integer flag that is 0 if the buffer pointers are to be left unchanged or nonzero
if the buffer is to be emptied after its contents are printed

dn Name of the dataset or file to which a formatted dump is to be written. If none is specified,
$OUT (under COS) or stdout (under UNICOS) is used.

BUFPRINT writes a formatted dump of the contents of the multitasking history trace buffer to a
specified dataset Actions are reported in chronological order.

EXAMPLE

This example of BUFPRINT leaves the buffer unchanged after its output to $OUT:

IEMPTY=O
CALL BUFPRINT{IEMPTY}

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

BUFDUMP

SR-OlI3 14-9 C

BUFI'UNE(3U) BUFfUNE(3U)

NAME

BUFTUNE - Tune parameters controlling multitasking history trace buffer

SYNOPSIS

CALL BUFfUNE(keyword,value[,string])

DESCRIPTION

SR-0113

keyword Ascn string, left-justified, blank-filled (see keywords following)

value Either an integer or an Ascn string (left-justified, blank-filled), depending on the keyword

string A 24-character string (left-justified, blank-filled) used only with the keyword INFO

Valid keywords and their associated functions and meanings are as follows:

Keyword

DN

FLUSH

ACTIONS

Description

The value of the DN keyword is the dataset which you specify to receive a dump of
the multitasking history trace buffer. DN itself directs this dump of the buffer to the
dataset. If BUFTUNE is called without the DN keyword, the multitasking history
trace buffer is not dumped to any dataset

The minimum-allowed integer number of unused entries in the multitasking history
trace buffer. When the number of unused entries falls below this level, the buffer is
automatically flushed; that is, it is written to the dataset specified by the DN option.
If DN is specified, the default FLUSH value is 40.

Value is a 128-element integer array with a flag for each action that can be recorded
in the multitasking history trace buffer. If the array element corresponding to a par­
ticular action is nonzero, that action is recorded; if the array element is 0, the action
is ignored. The array indexes (action codes) corresponding to each action follow:

Action Code Action

1 Start task
2 Complete task
3 TSKW AIT, no wait
4 Begin wait for task
5 Run after wait for task
6 Test task
7 Assign lock
8 Release lock
9 Set lock
10 Begin wait to set lock
11 Run after wait for lock
12 Clear lock
13 Test lock

14-10 C

BUFfUNE(3U)

Action Code

14
15
16
17
18
19
20
21
22
23
24,25

26
27,28

29,30

31,32

33
34
35
36
37
38
39-64
65-128

Action

Assign event
Release event
Post event
Clear event
EVW AIT, no wait
Begin wait for event
Run after wait for event
Test event
Attach to logical CPU
Detach from logical CPU
Request a logical CPU
(Note that these actions require two
action codes, the second containing
internal information.)
Acquire a logical CPU
Delete a logical CPU
(Note that these actions require two
action codes, the second containing
internal information.)
Suspend a logical CPU
(Note that these actions require two
action codes, the second containing
internal information.)
Activate a logical CPU
(Note that these actions require two
action codes, the second containing
internal information.)
Begin spin-wait for a logical CPU
Assign barrier
Release barrier
Call BARSYNC, no wait
Begin wait at barrier
Run after wait for barrier
Reserved for future use
Reserved for user
access (see BUFUSER)

BUFfUNE(3U)

INFO The value for this parameter is the integer user action code (65 through 128).

SR-0113

string is a 24-character information string, unique to each action, that you enter and
is printed for each user action code that is dumped.

BUFUSER allows you to add entries to the multitasking history trace buffer. When
the multitasking history trace buffer is dumped using DEBUG, BUFPRINT, or
MTDUMP, this 24-character information string is dumped along with each action.
This information must be available early in the program so that the strings can be
written to the dump dataset for processing by MTDUMP. The INFO keyword does
not turn these actions on to be recorded. They are normally on by default, but if
you have previously turned them off, you may reactivate them using the ACTIONS
or USERS keyword in a BUFfUNE call.

14-11 C

BUFfUNE(3U) BUFfUNE(3U)

Keyword

TASKS

LOCKS

EVENTS

CPUS

USERS

FIOLK

Description

If value='ON'H, the actions numbered 1 through 6 are recorded; if value='OFF'H,
those actions are ignored. The default is 'ON'H.

If value='ON'H, the actions numbered 7 through 13 are recorded; if value='OFF'H,
those actions are ignored. The default is 'ON'H.

If value='ON'H, the actions numbered 14 through 21 are recorded; if value='OFF'H,
those actions are ignored. The default is ' ON'H.

If value='ON'H, the actions numbered 22 through 33 are recorded; if value='OFF'H,
those actions are ignored. The default is 'ON'H.·

If value='ON'H, the actions numbered 65 through 128 are recorded; if
value='OFF'H, those actions are ignored. The default is value='ON'H.

If value='ON'H, actions affecting the Fortran I/O lock are recorded; if value='OFF'H
they are ignored. Library routines that handle Fortran reads and writes use this lock.
The default is 'OFF'H.

BUFTUNE can be called any number of times. If it is not called, or before it is called for the first time,
default parameter values are used.

Before BUFfUNE is called, all actions involving tasks, locks, events, logical CPUs, and users are
recorded except for actions involving the Fortran I/O lock, which are ignored. A call to BUFTUNE with
the TASKS, LOCKS, EVENTS, CPUS, or USERS keyword affects only the actions associated with that
keyword. The ACTIONS option overrides what has been requested through TASKS, LOCKS, EVENTS,
CPUS, or USERS.

EXAMPLES

The following BUFTUNE examples turn on task actions and turn everything else off:

* Example#1
INTEGER ACTION (64)
DATA ACTION(6*1,58*O)
CALL BUFTUNE ('DN'L, 'DMPFILE 'L)

* Example#2
CALL BUFTUNE ('DN'L, 'DMPFILE 'L)
CALL BUFTUNE (,TASKS'L,'ON'L)
CALL BUFTUNE (,LOCKS 'L, 'OFF'L)
CALL BUFTUNE ('EVENTS'L,'OFF'L)
CALL BUFTUNE ('CPUS 'L, 'OFF'L)

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 14-12 C

BUFUSER(3U) BUFUSER (3U)

NAME

BUFUSER - Adds entries to the multitasking history trace buffer

SYNOPSIS

CALL BUFUSER(action.data)

DESCRIPTION

action

data

On entry, code for the type of action (see action codes in MTDUMP). This value is com­
pared against the bit of the same number in the mask in global variable G@BUFMSK, set
up by BUFI'UNE. If the mask bit is set, an entry is added to the buffer. This value
becomes the third word of the buffer entry.

Values added to the multitasking history trace buffer in addition to the internal task
identifier and the current time. These actions-dependent data codes can be user-defined task
values, a logical CPU number, a lock or event address, or the task identifier of the waited­
upon task. The only restriction on these values is that they should be a single word. If an
entry is added to the buffer, this value becomes the fourth word of the entry.

These entries are added unconditionally.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 14-13 c

EVASGN(3U) EVASGN(3U)

NAME

EV ASGN - Identifies an integer variable to be used as an event

SYNOPSIS

CALL EV ASGN(name[,value])

DESCRIPTION

name Name of an integer variable to be used as an event. The library stores an identifier into this
variable; you should not modify this variable.

value The initial integer value of the event variable. An identifier should be stored into the vari­
able only if it contains the value. If value is not specified, an identifier is stored into the
variable unconditionally.

Before an integer variable can be used as an argument to any of the other· event routines, it must first
be identified as an event variable by EV ASGN.

EXAMPLE

C

C

C

C

IMPLEMENTATION

PROGRAM MULTI
INTEGER EVST ART,EVDONE
COMMON /EVENTS/ EVST ART,EVDONE

CALL EV ASGN (EVST ART)
CALL EV ASGN (EVDONE)

END
SUBROUTINE SUB 1
INTEGER EVENTI
COMMON /EVENTl/ EVENTI
DATA EVENTI/-l/

CALL EVASGN (EVENT1,-I)

END

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 14-14 C

EVCLEAR(3U) EVCLEAR(3U)

NAME

EVCLEAR - Clears an event and returns control to the calling task

SYNOPSIS

CALL EVCLEAR(name)

DESCRIPTION

name Name of an integer variable used as an event

EVCLEAR clears an event and returns control to the calling task. When the posting of a single event is
required (a simple signal), EVCLEAR should be called immediately after EVW AlT to note that the post­
ing of the event has been detected.

EXAMPLE

C

C

C

C

IMPLEMENTATION

PROGRAM MULTI
INTEGER EVSTART,EVOONE
COMM:ON /EVENTSI EVST ART ,EVOONE

CALL EV ASGN (EVST ART)
CALL EV ASGN (EVDONE)

CALL EVPOST (EVSTART)
END

SUBROUTINE MOL TI2
INTEGER EVST ART,EVDONE
COMM:ON /EVENTSI EVST ART ,EVDONE

CALL EVW AIT (EVST ART)
CALL EVCLEAR (EVST ART)

END

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 14-15 C

EVPOST(3U) EVPOST(3U)

NAME

EVPOST - Posts an event and returns control to the calling task

SYNOPSIS

CALL EVPOST(name)

DESCRIPTION

name Name of an integer variable used as an event

EVPOST posts an event and returns control to the calling task. Posting the event allows any other tasks
waiting on that event to resume execution, but this is transparent to the task calling EVPOST.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 14-16 c

EVREL(3U) EVREL(3U)

NAME

EVREL - Releases the identifier assigned to the task

SYNOPSIS

CALL EVREL(name)

DESCRIYfION

name Name of an integer variable used as an event

If tasks are currently waiting for this event to be posted, an error results. This subroutine detects
erroneous uses of the event beyond the specified region. The event variable can be reused following
another call to EV ASGN.

EXAMPLE

C

C

C

PROGRAM MULTI
ThITEGEREVSTART~VDONE

COMM:ON IEVENTS/EVSTART~VOONE

CALL EV ASGN (EVSTART)
CALL EV ASGN (EVDONE)

CALL EVPOST (EVSTART)

C EVSTARTWILL NOT BE USED FROM NOW ON
CALL EVREL (EVSTART)

C
END

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 14-17 c

EVTEST(3U)

NAME

EVTEST - Tests an event to determine its posted state

SYNOPSIS

LOGICAL EVTEST
return=EVTEST(name)

DESCRIPTION

NOTE

return

name

A logical .TRUE. if the event is posted. A logical the event is not posted.

Name of an integer variable used as an event

EVTEST and return must be declared as type LOGICAL in the calling module.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 14-18

EVTEST(3U)

c

EVWAIT(3U)

NAME

EVW AIT - Delays the calling task until the specified event is posted

SYNOPSIS

CALL EVW AIT(name)

DESCRIPTION

name Name of an integer variable used as an event

If the event is already posted, the task resumes execution without waiting.

EXAMPLE

C

C

IMPLEMENTATION

SUBROUTINE MUL TI2
INTEGER EVSTART,EVOONE
COMMON /EVENTS/ EVST ART ,EVOONE

CALL EVW AIT (EVST ARn

END

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 14-19

EVWAIT(3U)

C

ICCYCL (3COS)

NAME

JCCYCL - Returns machine cycle time

SYNOPSIS

INTEGER JCCYCL
integer = JCCYCLO

DESCRIPTION

integer Integer representing the cycle time of the machine in picoseconds.

JCCYCL(3COS)

JCCYCL returns the contents of the Job Control Block (JCB) field JCCYCL. For a CRA Y X-MP com­
puter system with a clock period of 8.5 nanoseconds, JCCYCL returns the integer 8,500.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 14-20 C

LOCKASGN(3U) LOCKASGN (3U)

NAME

LOCKASGN - Identifies an integer variable intended for use as a lock

SYNOPSIS

CALL LOCKASGN(name[,value])

DESCRIPTION

name Name of an integer variable to be used as a lock. The library stores an identifier into this
variable; you should not modify this variable.

value The initial integer value of the lock variable. An identifier should be stored into the vari­
able only if it contains the value. If value is not specified, an identifier is stored into the
variable unconditionally.

Before an integer variable can be used as an argument to any of the other lock routines, it must first be
identified as a lock variable by LOCKASGN.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 14-21 c

LOCKOFF(3U) LOCKOFF(3U)

NAME

LOCKOFF - Clears a lock and returns control to the calling task

SYNOPSIS

CALL LOCKOFF(name)

DESCRIPTION

name Name of an integer variable used as a lock

LOCKOFF clears a lock and returns control to the calling task.

Clearing the lock may allow another task to resume execution, but this is transparent to the task calling
LOCKOFF.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-Ol13 14-22 c

LOCKON(3U) LOCKON(3U)

NAME

LOCKON - Sets a lock and returns control to the calling task

SYNOPSIS

CALL LOCKON(name)

DESCRIPTION

name Name of an integer variable used as a lock

LOCKON sets a lock and returns control to the calling task.

If the lock is already set when LOCKON is called, the task is suspended until the lock is cleared by
another task and can be set by this one. In either case, the lock will have been set by the task when it
next resumes execution.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 14-23 c

LOCKREL(3U) LOCKREL(3U)

NAME

LOCKREL - Releases the identifier assigned to a lock

SYNOPSIS

CALL LOCKREL(name)

DESCRIPTION

name Name of an integer variable used as a lock

If the lock is set when LOCKREL is called, an error results. This subroutine detects some errors that
arise when a task is waiting for a lock that is never cleared. The lock variable can be reused following
another call to LOCKASGN.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 14-24 c

LOCKTEST (3U) LOCKTEST (3U)

NAME

LOCKTEST - Tests a lock to determine its state (locked or unlocked)

SYNOPSIS

LOGICAL LOCKTEST
return=LOCKTEST(name)

DESCRIPTION

NOTE

return

name

A logical .TRUE. if the lock was originally in the locked state. A logical .FALSE. if the
lock was originally in the unlocked state, but has now been set

Name of an integer variable used as a lock

Unlike LOCKON, the task does not wait A task using LOCKTEST must always test the return value
before continuing.

LOCKTEST and return must be declared type LOGICAL in the calling module.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 14-25 c

MAXLCPUS (3COS) MAXLCPUS (3COS)

NAME

MAXLCPUS - Returns the maximum number of logical CPUs that can be attached at one time to your
job

SYNOPSIS

INTEGER MAXLCPUS
integer = MAXLCPUSO

DESCRIPTION

integer Integer value for the maximum number of CPUs that can be attached at one time to your
job.

MAXLCPUS returns the contents of the Job Control Block (JCB) field JCMCP.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 14-26 C

TSECND(3U)

NAME

TSECND - Returns elapsed CPU time for a calling task during a multitasked program

SYNOPSIS

second=TSECND([result])

CALL TSECND(second)

DESCRIPTION

second

result

Result; elapsed CPU time (in floating-point seconds)

Same as above (optional for function call)

TSECND(3U)

TSECND returns the elapsed CPU time (in floating-point seconds) of a calling process since the start of
that process. than subsequent calls due to certain initializations performed by the routine. If the cost of
calling TSECND is important, ignore the initial call when computing TSECND' s time.

EXAMPLE

The following example calculates how much of the total execution time for a multitasked program is
accumulated by the calling process.

BEFORE = SECONDO
• TBEFORE = TSECNDO

CALL DOWORKO
AFfER = SECONDO
T AFfER = TSECNDO
CPU = (AFfER - BEFORE)
TCPU = (T AFfER - TBEFORE)
MYPORTION = TCPU/CPU

IMPLEMENTATION

! The subroutine DOWORK or
! something it calls may be
! multitasked.

This routine is available only to users of the UNICOS operating system.

SEE ALSO

SECOND(3U)

SR-0113 14-27 c

TSKST ART (3U) TSKST ART (3U)

NAME

TSKST ART - Initiates a task

SYNOPSIS

CALL TSKSTART(task-array,name[,list])

DESCRIPTION

task-array Task control array used for this task. Word 1 must be set. Word 3, if used, must also be
set On return, word 2 is set to a unique task identifier that the program must not
change.

name External entry point at which task execution begins. Declare this name EXTERNAL in
the program or subroutine making the call to TSKST ART. (Fortran does not allow a pro­
gram unit to use its own name in this parameter.)

list List of arguments being passed to the new task when it is entered. This list can be of
any length. See the CRAY Y-MP and CRAY X-MP Multitasking Programmer's Manual,
publication SR-0222, for restrictions on arguments included in list (optional parameter).

EXAMPLE

C

PROGRAM MULTI
INTEGER TASKIARY(3),TASK2ARY(3)
EXTERNALPLLEL
REALDATA(40000)

C LOAD DATA ARRAY FROM SOME OUTSIDE SOURCE
C
C
C CREATE TASK TO EXECUTE FIRST HALF OF THE DATA
C

C

C

TASKIARY(1)=3
TASKIARY(3)='TASK I'

CALL TSKSTART(TASKIARY,PLLEL,DATA(1),20000)

C CREATE TASK TO EXECUTE SECOND HALF OF THE DATA
C

C

C

TASK2ARY(I)=3
TASK2ARY(3)='TASK 2'

CALL TSKST ART(TASK2ARY,FLLEL,DATA(20001),20000)

END

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 14-28 c

TSKTEST (3U) TSKTEST (3U)

NAME

TSKTEST - Returns a value indicating whether the indicated task exists

SYNOPSIS

LOGICAL TSKTEST
return=TSKTEST(task-a"ay)

DESCRIPTION

return

task-a"ay

IMPLEMENTATION

A logical .TRUE.if the indicated task exists. A logical .FALSE. if the task was never
created or has completed execution.

Task control array TSKTEST and return must be declared type LOGICAL in the calling
module.

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 14-29 c

TSKTUNE(3U) TSKTUNE (3U)

NAME

TSKTUNE - Modifies tuning parameters within the library scheduler

SYNOPSIS

CALL TSKTUNE(keyword 1 ,value 1 Jreyword 2, value 2, •••)

DESCRIPTION

NOTE

Each keyword is a Fortran constant or variable of type CHARACTER. Each value is an integer. The
parameters must be specified in pairs, but the pairs can occur in any order. Legal keywords are as fol­
lows:

Keyword

MAX CPU

DBRELEAS

DBACTIVE

HOLDTIME

SAMPLE

Description

Maximum number of COS logical CPUs allowed for the job

Deadband for release of logical CPUs

Deadband for activation or acquisition of logical CPU

Number of clock periods to hold a CPU, waiting for tasks to become ready, before
releasing it to the operating system

Number of clock periods between checks of the ready queue

Each parameter has a default setting within the library and can be modified at any time to another valid
setting.

For more information about using this routine, see the CRAY Y-MP and CRAY X-MP Multitasking
Programmer's Manual, publication SR-0222.

This routine should not be used when multitasking on a CRA Y -1 computer system. Because of variabil­
ity between and during runs, the effects of this routine are not reliably measurable in a batch environ­
ment

EXAMPLE

CALL TSKTUNE(,DBACTIVE' ,I, 'MAXCPU' ,2)

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 14-30 c

TSKV ALUE (3U) TSKVALUE(3U)

NAME

TSKV ALUE - Retrieves user identifier specified in task control array

SYNOPSIS

CALL TSKV ALUE(return)

DESCRIPTION

return Integer value that was in word 3 of the task control array when the calling task was created.
A 0 is returned if the task control array length is less than 3 or if the task is the initial task.

TSKVALUE retrieves the user identifier (if any) specified in the task control array used to create the
executing task.

EXAMPLE

C

SUBROUTINE PLLEL(DATA$IZE)
REAL DATA(SIZE)

C DETERMINE WHICH OUTPUT FILE TO USE
C

C

CALL TSKV ALUE(IV ALUE)
IF(IV ALUE .EQ. 'TASK 1 ')THEN

IUNITN0=3
ELSEIF(IV ALUE .EQ. 'TASK 2')THEN

IUNITN0=4
ELSE

STOP !Error condition; do not continue.
ENDIF

END

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 14-31 C

TSKWAIT(3U)

NAME

TSKW AIT - Waits for the indicated task to complete execution

SYNOPSIS

CALL TSKW AIT(task-array)

DESCRIPTION

task-array Task control array

EXAMPLE

C

PROGRAM MULTI
INTEGER TASKIARY(3),TASK2ARY(3)
EXTERNAL PLLEL
REAL DATA(4()()()()

C LOAD DATA ARRAY FROM SOME OUTSIDE SOURCE
C
C
C CREATE TASK TO EXECUTE FIRST HALF OF THE DATA
C

C

TASKIARY(1)=3
TASKIARY(3)='TASK l'

CALL TSKSTART(TASKIARY,PLLEL,DATA(l),20000)
C
C CREATE TASK TO EXECUTE SECOND HALF OF THE DATA
C

C

C

TASK2ARY(l)=3
TASK2ARY(3)='TASK 2'

CALL TSKSTART(TASK2ARY,PLLEL,DATA(20001),2()()()()

C NOW WAIT FOR BOTH TO FINISH
C

C

CALL TSKW AIT(TArSK1 ARY)
CALL TSKWAIT(TASK2ARy)

C AND PERFORM SOME POST -EXECUTION CLEANUP
C
C

END

TSKWAIT(3U)

In the preceding example, TSKST ART is called once for each of two tasks. As an alternative, the second
TSKST ART could be replaced by a call to PLLEL, and the TSKW AIT removed. This alternate approach
reduces the overhead of the additional task but can make understanding the program structure more difficult.
The two approaches, however, produce the same results.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 14-32 C

INTRO(3X) INTRO(3X)

15. TIMING ROUTINES

The timing routines are grouped as follows:

• Time-stamp routines

• Time and date routines

TIME-STAMP ROUTINES

System accounting programs use these routines to convert between various representations of time.
Time-stamps can be used to measure from one point in time to another. Cray time-stamps are defined
relative to an initial date of January 1, 1973.

The following table contains the purpose, name, and entry for each time-stamp routine.

Time-stamp Routines
Purpose Name Entry

Convert from date and time to DTTS DTTS
time-stamp

Convert time-stamps into ASCII date TSDT TSDT
and time strings
Convert time-stamp to real-time clock TSMT
value

TSMT
Convert real-time clock value to MTTS
time-stamp
Return time-stamp units in standard UNITIS UNITTS
time units

TIME AND DATE ROUTINES

SR-OI13

Time and date routines produce the time and/or date in specified forms. These routines can be called as
Fortran functions or routines. All of the routines are called by address.

The following table contains the purpose, name, and entry for each time and date routine.

15-1 C

INTRO(3X) INTRO(3X)

Time and Date Routines
Purpose Name Heading

Return the current system clock time CLOCK CLOCK
Return the current date DATE

DATE
Return the current Julian date JDATE
Return real-time clock values RTC RTC

IRTC
Return the elapsed CPU time (in SECOND SECOND
floating-point seconds) since the
start of a job

Return the elapsed wall-clock time TIMEF TIMEF
since the initial call to TIMEF
Return the CPU time (in floating- TREMAIN TREMAIN
point seconds) remaining for a job

SR-0113 15-2 C

CLOCK(3U)

NAME

CLOCK - Returns the current system-clock time

SYNOPSIS

time=CLOCK()
CALL CLOCK(time)

DESCRIPTION

time Time in hh:mm:ss format (type integer)

CLOCK returns the current system-clock time in Ascn hh:mm:ss format.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 15-3

CLOCK(3U)

c

DATE (3U)

NAME

DATE, JDATE - Returns the current date and the current Julian date

SYNOPSIS

date=DATEO

CALL DATE(date)

date=JDATEO

CALL JDATE(date)

DESCRIPTION

DATE(3U)

date For DATE, today's date in mm/dd/yy format (type integer). For JDATE, today's Julian date
in yyddd format.

DATE returns today's date in mm/dd/yy format.

JDATE returns today's Julian (ordinal) date in yyddd format, left-justified, blank-filled.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OI13 15-4 c

DITS(3COS) DITS(3COS)

NAME

DTTS - Converts ASCII date and time to time-stamp

SYNOPSIS

ts=DTTS(date ,time ,ts)

DESCRIPTION

ts Time-stamp corresponding to date and time (type integer).· On return, if ts=O, an incorrect
parameter was passed to DTTS.

date On entry, ASCII date in mm/dd/yy format

time On entry, Ascn time in hh:mm:ss format

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-01l3 15-5 C

RTC(3U)

NAME

RTC, IRTC - Return real-time clock values

SYNOPSIS

time=RTC()
CALL RTC(time)

time=IRTC()
CALL IRTC(time)

DESCRIPTION

RTC(3U)

time For RTCt the low-order 46 bits of the clock register expressed as a floating-point integer
(real type). For ffiTC t the current clock register content expressed as an integer.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OI13 15-6 c

SECOND (3U) SECOND(3U)

NAME

SECOND - Returns elapsed CPU time

SYNOPSIS

second=SECOND([result])

CALL SECOND(second)

DESCRIPTION

NOTE

second

result

Result; CPU time (in floating-point seconds) accumulated by all processes in a program.

Same as above (optional for function call)

SECOND returns the elapsed CPU time (in floating-point seconds) since the start of a program, including
time accumulated by all processes in a multitasking program.

Under COS, all programs run as job steps of a job, and SECOND returns the total execution time for all
job steps since the job started. Under UNICOS, SECOND returns execution time for the current pro­
gram. For example, a job (COS or UNICOS) runs a 50-second program 10 times. In COS, if you make
a SECOND call at the end of the 10th run, SECOND will return 500 seconds. In UNICOS, a SECOND
call at the end of the 10th run (or first or third or seventh) will return 50 seconds.

The initial call to SECOND may take longer than subsequent calls due to certain initializations per­
formed by the routine. If the cost of calling SECOND is important, ignore the initial call when comput­
ing SECOND's time. The assignment to JUNK in the second example below serves this purpose.

EXAMPLE

BEFORE = SECONDO
CALL OOWORKO
AFTER = SECONDO
CPUTlME = AFTER - BEFORE

This example calculates the CPU time used in DOWORK. If the CPU time is small enough that the
overhead for calling SECOND may be significant, the following example is more accurate:

JUNK = SECOND(}
TO = SECONDO
OVERHEAD = SECONDO - TO
BEFORE = SECONDO
CALL OOWORKO
AFTER = SECONDO
CPUTlME = (AFTER - BEFORE) - OVERHEAD

IMPLEMENTATION

This routine is available to users of both the UNICOS and COS operating systems.

SEE ALSO

TSECND(3U)

SR-0113 15-7 C

TIMEF(3U)

NAME

TIMEF - Returns elapsed wall-clock time since the call to TIMEF

SYNOPSIS

time.f=TIMEF([resultD
CALL TIMEF(timej)

DESCRIPTION

TIMEF(3U)

time! Elapsed wall-clock time (in floating-point milliseconds) since the initial call to TIMEF.
Type real. The initial call to TIMEF returns O.

result Same as time!

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 15-8 c

TREMAIN (3COS) TREMAIN (3COS)

NAME

TREMAIN - Returns the CPU time (in floating-point seconds) remaining for job

SYNOPSIS

CALL TREMAIN(result)

DESCRIPTION

NOTE

result Calculated CPU time remaining; stored in result. Type real.

The time remaining is the time specified on the COS JOB statement, minus the time elapsed so far.

The value returned by TREMAIN may not always be updated between calls. For instance, the values
for X and Y may be the same in the following code:

CALL TREMAIN(X)
DO 10 I = 1. 1000000

10 T(I) = FLOAT(I)
CALL TREMAIN(y)

The value that TREMAIN uses is only updated when a program is exchanged out of memory. If calls
to TREMAIN occur during the same time slice (that is, the job has not been exchanged), the values will
be the same. If more accurate times are required, use the routine SECOND and subtract the value
from your job's time limit.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 15-9 C

TSDT(3COS) TSDT(3COS)

NAME

TSDT - Converts time-stamps to ASCII date and time strings

SYNOPSIS

CALL TSDT(ts ,date ,hhmmss,ssss)

DESCRIPTION

ts Time-stamp on entry (type integer)

date Word to receive ASCII date in mm/dd/yy format

hhmmss Word to receive ASCII time in hh:mm:ss format

ssss Word to receive ASCII fractional seconds in .ssssnnn format

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 15-10 c

TSMT(3COS) TSMT(3COS)

NAME

TSMT, MTTS - Converts time-stamp to a corresponding real-time value, and vice versa

SYNOPSIS

irtc=TSMT(ts[,cptype,cpcyc1e])
ts=MTTS(irtc[,cptype,cpcycle))

DESCRIPTION

irtc

ts

cptype

cpcycle

For TSMT, real-time clock value corresponding to specified time-stamp. For MTTS, real­
time clock value to be converted.

For TSMT, time-stamp to be converted (type integer). For MTTS, time-stamp correspond­
ing to real-time clock value (type integer).

CPU type. This is an optional argument specifying the CPU type. Valid values are as fol­
lows:

1 CRAY-l, models A and B
2 CRAY-l, model S
3 CRAYX-MP
4 CRAY-l, model M

The default is the CPU of the host machine. The cptype is necessary when doing a conver­
sion for a machine type other than the host machine. The real-time clock value is different
on, for instance, a CRAY X-MP computer system than on a CRAY-l computer system
because of the difference in cycle time. For TSMT to generate a correct result and for
MTTS to correctly interpret its argument, they must know the correct machine type.

CPU cycle time in picoseconds; for instance, a CRA Y X-MP computer system with a cycle
time of 8.5 nanoseconds would be specified as 8500. The default is the cycle time of the
host machine.

TSMT converts a time-stamp to a corresponding real-time value. MTTS converts a real-time clock value
to its corresponding time-stamp.

IMPLEMENTATION

These routines are available only to users of the COS operating system.

SR-OI13 15-11 C

UNlTIS (3COS) UNlTIS (3COS)

NAME

UNITTS - Returns time-stamp units in specified standard time units

SYNOPSIS

ts=UNITTS(periods,units)

DESCRIPTION

ts

periods

units

EXAMPLE

Number of time-stamp units in periods and units (type integer)

Number of time-stamp units to be returned in standard time units (that is, number of
seconds, minutes, and so on); type integer.

Specification for the units in which periods is expressed. The following values are
accepted: 'DA YS'H, 'HOURS'H, 'MINUTES'H, 'SECONDS'H, 'MSEC'H (milliseconds),
'USEC'H (microseconds), 'USECIOO'H (l00s of microseconds). Left-justified, blank-filled,
Hollerith. UNlTTS must be declared type integer.

ts=UNITTS(2, 'DAYS 'H)

ts Number of time-stamp units in 2 days

IMPLEMENT AnON

This routine is available only to users of the COS operating system.

SR-OI13 15-12 c

INTRO(3X) INTRO(3X)

16. PROGRAMMING AID ROUTINES

Programming aids consist of the following types of routines:

• Flowtrace routines

• Traceback routines

• Dump routines

• Exchange Package processing routines

• Hardware performance monitor interface routine

FLOWTRACE ROUTINES

NOTE

SR-0113

Flowtrace routines process the CFf flowtrace option (ON=F). The Cray Fortran compiler automatically
inserts calls to these routines (see the Fortran (CFf) Reference Manual, or the CFT77 Reference Manual
for details on flowtracing). Flowtrace routines are called by address. For more information on flow
trace calls from CAL, see the System Library Reference Manual, publication SM-0114, the UNICOS Per­
formance Utilities Reference Manual, publication SR-2040, and the COS Performance Utilities Refer­
ence Manual, publication SR-0146.

Many of the flowtrace subroutines begin with the characters "FLOWO". You should avoid using names
with this prefix.

IMPLEMENTATION - The flowtrace routines are available to users of both the COS and UNICOS
operating systems.

The following table contains the purpose, name, and call to each flow trace routine.

Flowtrace Routines
Purpose Name and Call

Process entry to a subroutine CALL FLOWENTR
Process RETURN execution CALL FLOWEXIT
Process a STOP statement CALL FLOWSTOP
Initiate a detailed tracing of SETPLIMQ(lines)
every call and return

lines Cycle count
when execution of
caller ceased

Print the final report CALL FLOWOSTP(outdev)

outdev Device to which
the report is written

Return the cycles charged to a job integer=IGETSECO

Return the cycle time in picoseconds integer=JCCYCLO
(value of field JCCYCL in the JCB)

16-1 C

INTRO(3X) INTRO(3X)

PERFfRACE ROUTINES

The perf trace routines output detailed information from the Hardware Performance Monitor Interface for
individual segments of a Fortran Program. These routines have the same interfaces as the ftowtrace
routines, which are described in the UNICOS Performance Utilities Reference Manual, publication SR-
2040.

IMPLEMENTATION - The perf trace subroutines are available only to the users of the UNICOS operat­
ing system.

TRACEBACK ROUTINES

The traceback routines list all subroutines active in the current calling sequence (TRBK) and return
information for the current level of the calling sequence (TRBKLVL). Traceback routines return
unpredictable results when subroutine linkage does not use CRI standard calling sequences.

DUMP ROUTINES

Dump routines produce a memory image and are called by address.

The following table contains the purpose. name. and entry of each dump routine.

Dump Routines
Purpose Name Entry

Print a memory dump to a dataset CRAYDUMP CRAYDUMP
Dump memory to $OUT and abort the job DUMP

DUMP
Dump memory to $OUT and return control PDUMP
to the calling program
Create an unblocked dataset DUMPJOB DUMPJOB
containing the user job area image
Copy current register contents SNAP SNAP
to $OUT
Produce a symbolic dump SYMDEBUG SYMDEBUG

Produce a snapshot dump of a SYMDUMP SYMDUMP
running program

EXCHANGE PACKAGE PROCESSING ROUTINES

Exchange Package processing routines (XPFMT and FXP) switch execution from one program to
another. An Exchange Package is a 16-word block of memory associated with a particular program.

HARDWARE PERFORMANCE MONITOR INTERFACE ROUTINE

SR-0113

PERF provides an interface to the hardware performance monitor feature on CRAY X-MP computer sys­
tems.

16-2 c

eRA YDUMP(3COS) CRA YDUMP(3COS)

NAME

eRA YDUMP - Prints a memory dump to a specified dataset

SYNOPSIS

CALL CRA YDUMP(fwa,lwa,dn)

DESCRIPTION

fwa First word to be dumped

lwa Last word to be dumped

dn Name or unit number of the dataset to receive the dump output

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 16-3 c

DUMP(3COS) DUMP(3COS)

NAME

DUMP, PDUMP - Dumps memory to $OUT and either abort or return to the calling program

SYNOPSIS

CALL DUMP(fwa,lwa,type)
CALL PDUMP(fwa,lwa,type)

DESCRIPTION

twa First word to be dumped

NOTES

lwa Last word to be dumped

type Dump type code, as follows:

o or 3 Octal dump
1 Floating-point dump
2 Integer dump

DUMP dumps memory to $OUT and aborts the job. PDUMP dumps memory to $OUT and returns con­
trol to the calling program.

If 4 is added to the dump type code, the first word and last word addresses specified are then addresses
of addresses (indirect addressing).

First word/last word/dump type address sets can be repeated up to 19 times.

IMPLEMENTATION

These routines are available only to users of the COS operating system.

SR-OI13 16-4 c

DUMPJOB (3COS) DUMPJOB (3COS)

NAME

DUMPJOB - Creates an unblocked dataset containing the user job area image

SYNOPSIS

CALL DUMPJOB(dn)

DESCRIPTION

dn Fortran unit number or Hollerith unit name. If no parameter is supplied, $DUMP is used by
default.

DUMPJOB creates an unblocked dataset containing the user job area image, including register states and
the Job Table Area. This data is suitable for input to the DUMP or DEBUG programs.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

DUMP, SYMDEBUG

SR-OI13 16-5 C

FXP(3COS) FXP(3COS)

NAME

FXP - Fonnats and writes the contents of the Exchange Package to an output dataset

SYNOPSIS

CALL FXP(dsp,xp,vm,ret)

DESCRIPTION

dsp Output Dataset Parameter Table address

xp Exchange Package address

vm Vector mask (VM) to be fonnatted

ret Contents of BO register to be formatted

FXP formats and writes to- the output dataset the contents of the Exchange Package, the contents of the
vector mask (VM), and the contents of the BO register. This routine complements the user reprieve pro­
cessing.

IMPLEMENTATION

SR-0113

This routine is available only to users of the COS operating system. FXP formats and writes to the out­
put dataset the contents

16-6 C

PERF(3COS) PERF(3COS)

NAME

PERF - Provides an interface to the hardware performance monitor feature on the CRA Y X-MP main­
frame

SYNOPSIS

CALL PERFlfunc ,group,buffer,bufl)

DESCRIPTION

SR-0113

tunc Perfonnance monitor function. Either an integer function number or one of the following
Ascn strings, left-justified, and zero-filled.

group

buffer

bufl

"'ON'L
"'OFF'L
"'REPORT'L
"'RESET'L

Enable perfonnance monitoring
Disable performance monitoring
Report current performance monitor statistics
Report current statistics, then clear performance
monitor tables

Perfonnance monitor group number (type integer). See the Performance Counter Group
Description table for group numbers and their corresponding counters and counter contents.

First word address of a perfonnance monitor request buffer

Number of words in the buffer array

Thirty-two counters are available, arranged into four groups of eight counters each. Only one group
can be accessed at a time.

The PERF request block format contains a fixed header and a variable number of subblocks following
the header. The first 3 words of the header are set in subroutine PERF before calling the system, while
the remaining words in the header are returned by the system.

The words in the block header allow you to analyze the information returned in the subblocks without
the use of constants. This allows programs to continue executing correctly when the contents of the
header or the subblocks change.

16-7 C

PERF(3COS) PERF(3COS)

SR-0113

The block header fonnat is as follows:

Field Word Description

HMRSF 0 Subfunction (0 through 3)
HMRGN 1 Group number (0 through 3) for PM$ON
HMRNW 2 Length of the request block
HMRNU 3 Number of words used
HMRBH 4 Number of words in the block header
HMRTS 5 Set to nonzero if the block is too small
HMRCT 6 Offset to the first group counter in the subblock
HMRCP 7 Offset to the first group accounted CPU cycles
HMRGE 8 Length of the counter group entry in suohlock
HMRNC 9 Number of counters in each group entry
HMRNG 10 Number of groups in each subblock
HMRLE 11 Length of subblock entries

Timing subblocks are returned for every REPORT and RESET call. Each subblock contains hardware
performance monitor data from a single COS user task.

The address of the first timing subblock is at (BLOCK FW A) +(contents of block header field HMRBH),
with the next following (contents of block header field HMRLE) word after the first. Subblocks end
when the offset to the next block would start after (contents of block header field HMRNU) words.

Eachsubblock contains a 2-word header, with fields HMTN and HMGRP. HMTN is the COS user task
number associated with the subblock. HMGRP is the last hardware performance monitor group number
active for the subblock.

Within the subblock, there are (contents of block header field HMRNG) performance monitor groups
reported. Each group report consists of two fields: counters associated with the group, and the number
of CPU cycles that were accounted for while the specified monitor was active. The offset to the first
group counter is (contents of block header field HMRCT) words into the subblock; there are (contents
of block header field HMRNC) counters for each performance monitor group. The offset to the first
group's accounted CPU cycle is at (contents of block header field HMRCP).

Timing groups within a subblock follow each other by (contents of block header field HMRGE) words.
The subblock format follows:

Field Word

HMTN 0
HMGRP 1
HMCNTO 2-9
HMCCYO 10
HM CNT 1 11-18
HMCCYI 19
HMCNT2 20-27
HMCCY2 28
HMCNT3 29-36
HMCCY3 37

Description

User task number
Latest performance monitor group number
Group 0, counter 0 through 7
Group 0, accounted CPU cycles
Group 1, counter 0 through 7
Group 1, accounted CPU cycles
Group 2, counter 0 through 7
Group 2, accounted CPU cycles
Group 3, counter 0 through 7
Group 3, accounted CPU cycles

16-8 c

PERF(3COS)

The performance counter group descriptions are listed below
in the following table.

Performance Counter Group Descriptions

Performance
Group Counter Description

Number of:
0 Instructions issued
1 Clock periods holding issue
2 Fetches

0 3 I/O references
4 CPU references
5 Floating-point add operations
6 Floating-point multiply operations
7 Floating-point reciprocal operations

Hold issue conditions:
0 Semaphores
1 Shared registers
2 A registers and functional units

1 3 S registers and functional units
4 V registers
5 V functional units
6 Scalar memory
7 Block memory

Number of:
0 Fetches
1 Scalar references
2 Scalar conflicts

2 3 I/O references
4 I/O conflicts
5 Block references
6 Block conflicts
7 Vector memory references

Number of:
0 000 - 017 instructions
1 020 - 137 instructions
2 140 - 157, 175 instructions

3 3 160 - 174 instructions
4 176,177instructions
5 Vector integer operations
6 Vector floating-point operations
7 Vector memory references

IMPLEMENTATION

This routine is only available to users of the cos operating system.

SR-0113 16-9

PERF(3COS)

C

SNAP(3COS)

NAME

SNAP - Copies current register contents to $OUT

SYNOPSIS

CALL SNAP(regs,controljorm)

DESCRIPTION

regs

control

Code indicating registers to be copied, as follows:

1 B registers
2 T registers
3 B and T registers
4 V registers
5 B and V registers
6 T and V registers
7 B, T, and V registers

Control word (currently unused)

SNAP(3COS)

form Code indicating the format of the dump. Dumps from registers S, T, and V are controlled

IMPLEMENTATION

by the following type codes:

o Octal
1 Floating-point
2 Decimal
3 Hexadecimal

Dumps from registers A and B are in octal format.

This routine is available only to users of the COS operating system.

SR-0113 16-10 C

SYMDEBUG (3DB) SYMDEBUG (3DB)

NAME

SYMDEBUG - Produces a symbolic dump

SYNOPSIS

CALL SYMDEBUG(' param {,param 1. ')

DESCRIPTION

SR-0113

param SYMDEBUG parameters. Under COS, param must be in uppercase; under UNICOS, param
may be entered in either uppercase or lowercase.

Some SYMDEBUG parameters allow you to specify a value along with the parameter. In these cases,
param=value substitutes for paramo

SYMDEBUG uses the following parameters:

S=sdn sdn names the dataset or file containing the debug symbol tables. Under COS, the default is
$DEBUG. Under UNICOS, the default is a.out. The symbol file is SYMBOLS.

L=ldn Idn names the dataset or file to receive the listing output from the symbolic debug routine.
Under COS, the default is SOUTo Under UNICOS, output goes to standard output.

CALLS=n Number of routine levels to be looked at in a symbolic dump. For each task reported,
SYMDEBUG traces back through the active subprograms the number of levels specified by
n. Routines for which no symbol table information is available are not counted for pur­
poses of the CALLS count If this parameter is omitted, or if CALLS is specified without a
value, the default is 50.

MAX DIM =dim {:dim lfR
Maximum number of elements from each dimension of the arrays to be dumped. MAXDIM
allows you to sample the contents of arrays without creating huge amounts of output
When MAXDIM is specified, arrays are dumped in storage order (row, column for Pascal;
column, row for Fortran). MAXDIM applies to all blocks dumped. The default is MAX­
DIM=20:S:2:1:1:1:1. No more than seven dimensions can be specified.

BLOCKS=blk { :blk 1
List of common blocks to be included from the symbolic dump. A maximum of 20 blocks
can be specified. Separate the blks with colons. All symbols (qualified by the SYMS and
NOTSYMS parameters) in the named blocks are dumped. Default is no common blocks
dumped; if you specify BLOCKS without any blks, all common blocks declared in routines
to be dumped are included in the symbolic dump.

NOTBLKS=nblk {:nblk 1
List of common blocks to be excluded in the symbolic dump. A maximum of 20 blocks
can be specified. Separate the nblks with colons. This parameter is used in conjunction
with BLOCKS and takes precedence over the BLOCKS parameter.

RPTBLKS Repeat blocks; when this option is used, the contents of common blocks specified with the
BLOCKS and NOTBLKS parameters are displayed for each subroutine in which they are
declared. The default displays common blocks only once.

16-11 c

SYMOEBUG(30B) SYMOEBUG (30B)

PAGES=np Page limit for the symbolic dump routine. Under UNICOS, SYMDEBUG does not format
output in pages. However, this parameter can still be used to regulate the amount of output
that SYMDEBUG generates. Every page is worth 45 lines of output from SYMDEBUG. The
default np is 70.

EXAMPLE

The following are example calls from Fortran to SYMDEBUG:

CALL SYMDEBUG('CALLS=40,RPTBLKS. ')

CALL SYMDEBUG('BLOCKS=AA:BB:CC. ')

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SEE ALSO

The Symbolic Debugging Package Reference Manual, publication SR-Ol12

SR-OI13 16-12 C

SYMDUMP(3DB) SYMDUMP (3DB)

NAME

SYMDUMP - Produces a snapshot dump of a running program

SYNOPSIS

CALL SYMDUMP (' -b blklist ·B ·c calls ·d dimlist -I lfile -r -s symfile -V -y symlist -Y',
abortJlag)

DESCRIPTION

SR-0113

SYMDUMP is a library routine that produces the same sort of output as DEBUG. It accepts C character
descriptors, Fortran hollerith strings, and Pascal packed character arrays.

The method of calling library routines differs from language processor to language processor, but SYM­
DUMP accepts the same arguments regardless of the language processor. The argument string, if pro­
vided, must be enclosed in parentheses, and the options (excluding the abort flag) must be enclosed in
quotation marks. When calling SYMDUMP from Fortran or Pascal, the quotation marks must be single;
when calling from C, the quotation marks must be double. All arguments are optional.

The options indicate the type and extent of information to be dumped by SYMDUMP. The options
string is passed to SYMDUMP in one of the following forms:

• As a character descriptor, produced by Fortran and C for defined characters strings

• As an address of a null terminated string, such as an integer, Hollerith, or Pascal packed char­
acter array

The argument string can contain a maximum of 4,096 characters. All options are optional, and they
may appear in any order.

Unlike command lines, SYMDUMP option-arguments may not be grouped after one hyphen on the
SYMDUMP call. That is, SYMDUMP(' -V .r') is permitted, but SYMDUMP(' -Vr') is not permitted.
The following are valid options and arguments:

·b blklist

·B These options control the displaying of common block symbols. The symbols to be
displayed from any particular common block will depend upon the use of the -Y and .y
symlist options.

If neither option is specified, no common blocks are included in the symbolic dump. This
is the default. If -B is specified, all common blocks are included in the symbolic dump. If
-b blklist is specified, only the common blocks named in blklist are included in the sym­
bolic dump. If both options are specified, all common blocks are included in the symbolic
dump except those in blklist.

blklist may have up to 20 common blocks named. There is no limit on the length of a
common block name. The common blocks named in blklist must be separated by commas
(for example: ·b c,d).

Enter the common blocks named in blklist in the case in which they appear in the symbol
table. Names may not always appear in the symbol table in the same way they appear in
your program. The UNICOS Symbolic Debugging Package Reference Manual, publication
SR-0112, describes how symbol names appear in the symbol table.

16-13 C

SYMDUMP(3DB) SYMDUMP(3DB)

SR-0113

-c calls calls is an integer that specifies the number of routine levels to be displayed in the sym­
bolic dump. For each task reported, SYMDUMP traces back through active routines the
number of levels specified by calls. Routines for which no symbol table information is
available are not counted for purposes of the routine level count. The default is 50.

-d dimlist dimlist is an integer that specifies the maximum number of elements from each dimension
of the arrays to be dumped. SYMDUMP can dump array elements from up to seven dimen­
sions. The dimensions must be specified by integer values, and the values must be
separated by commas (example: -d 4,6)

This option allows you to sample the contents of an array without creating huge amounts of output.
dimlist applies to all blocks dumped, and the arrays are dumped in storage order. The default is -d
20,5,2,1,1,1,1.

-I /file lfile names an output file. Specifying -I file directs SYMDUMP to write output to the specified
file. If you call SYMDUMP more than once, and you specify -I with the same file each time,
SYMDUMP output will be appended to the file each time. By default, SYMDUMP output is
written to stdout.

-r Repeat blocks. When this option is used, SYMDUMP displays the contents of common blocks
specified with the -B and -b blklist for each subroutine in which they are declared. The default
displays common blocks only once.

-s symfile
symfile names a file containing the Debug symbol tables. There is no limit on the length of the
symfile file name, and it may include a pathname to the desired file. SEGLDR puts both the
symbol table information and the executable binary in the same file. By default, Debug sym­
bol tables are written to a.out.

-V With -V specified, SYMDUMP generates SYMDUMP release statistics.

-y symlist

-Y These options may occur anywhere in the option string in any order. Use one of the following
methods to control the way symbols are displayed:

If neither option is specified, all symbols are displayed. Default.

If only the -Y option is specified, no symbols are displayed.

If only the -y option is specified, all symbols except those named in symlist are displayed.

If both options are specified, only the symbols named in symlist are displayed.

symlist may contain up to 20 named symbols, and there is no limit to the length of the symbol
names. The symbols named in symlist must be separated by commas (example: -y a, b)

Enter the symbols in the same case in which they appear in the symbol table. Names may not
always appear in the symbol table in the same way they appear in your program.

abortJlag
An optional abortJiag indicates to SYMDUMP whether or not to abort if it finds an error when
parsing the SYMDUMP statement. An abortJiag with a value of zero indicates no abort; an
abortJiag with a value other than zero indicates abort.

You cannot enter an abortJiag if you have not entered any options.

By default, SYMDUMP examines all options, reports errors found, and generates a dump based
on the options it could understand; the program does not abort.

16-14 c

SYMDUMP (3DB) SYMDUMP(3DB)

NOTES

Note that the abortJiag is not allowed when options contains a Pascal variant array.

Use SEGLDR or Id(l) to load programs that call SYMDUMP. When using SEGLDR, specify library
Iibdb.a, which contains SYMDUMP, on the -I option.

The following three examples show how to load programs that call SYMDUMP.

Example 1:
If you are not expanding blank common and do not need to specify a SEGLDR HEAP directive
on the SEGLDR command 1ine for any other reason, you do not need to specify a SEGLDR
HEAP or STACK directive. The following example shows a SEGLDR command line without
HEAP or STACK directives:

segldr -I libdb.a *.0

Example 2:
If you are expanding blank common, you need to specify SEGLDR STACK and HEAP direc­
tives. The following example shows a SEGLDR command line that can be used if the program
expands blank common.

segldr -llibdb.a -D "STACK=3000+0;HEAP=I()()()()+()" *.0

This example shows settings that should provide enough stack and heap space for SYMD UMP
to run, assuming that your program is an average large application that has as many as 1000
blocks. For applications with more blocks, 6 to 7 words per block over 1 ()()() should be added
to the heap setting. Optimal heap settings depend on the specific application.

If running the application causes SYMDUMP to exit with the following error message, the
value on the HEAP directive is too small:

HP ALLOC failed; return status = i

Example 3:
If a SEGLDR DYNAMIC directive is used, the stack and heap cannot expand, so a SEGLDR
ST ACK or HEAP directive may also be needed. Refer to the previous example for information
about expanding the stack and heap. To load the heap prior to blank common, use
DYNAMIC=II on SEGLDR's ·D option, as shown in the following example:

segldr -I libdb.a -D "DYNAMIC=//" *.0

For more information on SEGLDR, see the Segment Loader (SEGLDR) Reference Manual, publication
SR-0066.

EXAMPLES

SR-OI13

The following example shows how to call SYMDUMP from a Fortran program when passing a character
descriptor:

character*30 string
integer abtfl

string = '-s test -B -b STRING'
abtfl = 1

16-15 C

SYMDUMP (3DB)

C CHARAClER VARIABLE
call symdump (string, abtft)

C CHARAClER CONSTANT
call symdump ('-I outfile -V')

The following example shows how to call SYMDUMP from C:

extern void SYMDUMPO;

int abcflag = 1;
char *string;

string = "-s a.out -V";
SYMDUMP (string, &abt flag);

SYMDUMP(3DB)

The following example shows how to call SYMDUMP from Pascal when passing a conformant array:

type
string_type = packed array [1 . .30] of char;

var
abort_flag: boolean;

procedure symdump (var string: strin&-type; var flag: boolean);
imported (SYMDUMP);

abort_flag := true;
string [1 .. 20] := '-8 test -y STRING -V';
string [21] := chr (0); (* must null terminate the string *)
symdump (string, abort_flag);

IMPLEMENTATION

This routine is available only to users of the UNICOS operating system.

SR-0113 16-16 C

TRBK(3U) TRBK(3U)

NAME

TRBK - Lists all subroutines active in the current calling sequence

SYNOPSIS

CALL TRBK[(arg)]

DESCRIPTION

arg Address of dataset name or unit number

TRBK prints a list of all subroutines active in the current calling sequence from the currently active
subprogram. It also identifies the address of the reference. You can specify a unit (arg) to receive the
list. If you do not specify a unit, the list is printed to the user logfile or message log.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 16-17 c

TRBKLVL(3U) TRBKLVL(3U)

NAME

TRBKL VL - Returns information on current level of calling sequence

SYNOPSIS

CALL TRBKLVL(trbktab,arglist,status,name,calladr,entpnt,seqnum,numarg)

DESCRIPTION

trbktab

arglist

status

name

calladr

entpnt

seqnum

numarg

IMPLEMENTATION

Current level's Traceback Table address. On exit, current level's caller's Traceback Table
address. Zero if the current level is a main-level routine.

Current level's argument list address. On exit, current level's caller's argument list address.
Zero if the current level is a main-level routine.

<0 if error
=0 if no error
>0 if no error and the current level is the main level

Current level's name (ASCn, left-justified, blank-filled)

Parcel address from which the call to the current level was made

Parcel address of the current level's entry point

Line sequence number corresponding to the call address (0 indicates none)

Number of arguments or registers passed to the current level

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 16-18 C

XPFMT(3U) XPFMT(3U)

NAME

XPFMT - Produces a printable image of an Exchange Package

SYNOPSIS

CALL XPFMT(address,in,out,mode)

DESCRIPTION

address

in

out

mode

The nominal location of the Exchange Package to be printed as the starting Exchange Pack­
age address. This is not the address of the 16-word buffer containing the Exchange Pack­
age to be fonnatted.

A 16-word integer array containing the binary representation of the Exchange Package

An integer array, dimensioned (8,0:23), into which the character representation of the
Exchange Package is stored. Line 0 is a ruler for debugging and is not usually printed.

The first word of each line is an address and need not always be printed.

An integer word indicating the mode in which the Exchange Package is to be printed. 'Y'L
forces the Exchange Package to be fonnatted as a CRAY Y-MP Exchange Package; 'X'L
forces the Exchange Package to be fonnatted as a CRAY X-MP Exchange Package; 'S'L
forces the Exchange Package to be fonnatted as a CRA Y -I Exchange Package; 0 means that
the subprogram is to use the Exchange Package contents to deduce the machine type.

XPFMT produces a printable image of an Exchange Package in a user-supplied buffer. A and S regis­
ters appear in the buffer in both octal and character fonn; in the character fonn, the contents of the
register are copied unchanged to the printable buffer. The calling program is responsible for proper
translation of unprintable characters. Parcel addresses have a lowercase a, b, c, or d suffixed to the
memory address.

You can specify that the Exchange Package be fonnatted as a CRAY X-MP or CRAY·I Exchange Pack­
age, or you can allow XPFMT to detennine which fonnat to use based on the values in the Exchange
Package. Values within the Exchange Package detennine the Exchange Package fonnat. XPFMT
assumes that the Exchange Package was produced by or for a CRA Y X-MP computer system if either
the data base address or the data limit address is nonzero. Otherwise, it assumes that the Exchange
Package was produced by or for a CRA Y -I computer system.

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 16-19 c

INTRO(3X) INTRO(3X)

17. SYSTEM INTERFACE ROUTINES

System interface routines are grouped into the following categories:

• Job control language (JCL) symbol routines

• Control statement processing routines

• Job control routines

• Floating -point interrupt routines

• Bidirectional memory transfer routines

• Special purpose interface routines

JOB CONTROL LANGUAGE SYMBOL ROUTINES

The JCL symbol routines manipulate JCL symbols for conditional JCL statements.

JSYMSET changes a value for a JCL symbol. JSYMGET allows a user program to retrieve JCL symbols.

CONTROL STATEMENT PROCESSING ROUTINES

SR-0113

Control statement processing routines place control statement elements in appropriate memory locations
to perform the specified operations. These routines, CRACK, PPL, and CEXPR, can also process direc­
tives obtained from some source other than the control statement file ($CS).

Control statement cracking routines take the uncracked image from the JCCCI field and crack it into the
JCCPR field. The Job Communication Block (JCB) contains the control image in JCCCI. JCDLIT is a
flag indicating whether or not literal delimiters are to be retained in the string.

The following table contains the purpose, name, and entry of each control statement processing and
cracking routine.

Control Statement Processing and Cracking Routines

Purpose Name Entry

Crack a control statement CCS CCS

Process control statement parameter GETPARAM GETPARAM
values
Crack a directive CRACK CRACK

Process a parameter list PPL PPL

Crack an expression CEXPR CEXPR

17-1 c

INTRO(3X) INTRO(3X)

JOB CONTROL ROUTINES

Job control routines perform functions relating to job step termination, either causing a termination or
instructing the system on how to handle a termination. Unless otherwise specified, these routines are
called by address. No arguments are returned.

The following table contains the purpose, name, and entry of each job control routine.

Job Control Routines
Purpose Name Entry

Request abort with traceback ABORT ABORT

Terminate a job step and advance END
END

Continue exit processing after a reprievable ENDPRV
condition

Exit from a Fortran program EXIT EXIT

Request abort ERREXIT ERREXIT

Declare a job rerunnable or not RERUN
rerunnable

RERUN
Instruct the system to begin or NORERUN
cease monitoring jobs for functions
affecting rerunnability

Conditionally transfer control to a SETRPV SETRPV
specified routine

FLOATING-POINT INTERRUPT ROUTINES

SR-0113

Floating-point interrupt routines allow you to test, set, and clear the Floating-point Interrupt Mode flag.
Subroutine linkage is call-by-address.

The following table contains the purpose, name, and entry of each floating-point interrupt routine.

Floating-point Interrupt Routines

Purpose Name Entry

Temporarily prohibit floating-point CLEARFI
interrupts

CLEARFI
Temporarily permit floating-point SETFI
interrupts

Temporarily prohibit floating-point CLEARFIS
interrupts for a job

CLEARFIS
Temporarily enable floating-point SETFIS
interrupts for a job

Determine whether floating-point SENSEFI SENSEFI
interrupts are permitted or
prohibited

17-2 c

INTRO(3X) INTRO(3X)

BIDIRECTIONAL MEMORY TRANSFER ROUTINES

NOTE

Bidirectional memory transfer routines test, set, and clear the Bidirectional Memory Transfer Mode flag.
Subroutine linkage is call-by-address.

These routines are only effective on CRAY Y-MP and CRAY X-MP computer systems, which have
hardware support for bidirectional memory transfer. They are no-ops on other mainframe types.

The following table contains the purpose, name, and entry of each bidirectional memory transfer rou­
tine.

Bidirectional Memory Transfer Routines
Purpose Name Entry

Temporarily disable bidirectional CLEARBT
memory transfers

CLEARBT
Temporarily enable bidirectional SETBT
memory transfers

Permanently disable bidirectional CLEARBTS
memory transfers

CLEARBTS -
Permanently enable bidirectional SETBTS
memory transfers

Determine current memory transfer SENSEBT SENSEBT
mode

SPECIAL-PURPOSE INTERFACE ROUTINES

The following table contains the purpose, name, and entry of each special-purpose interface routine.

SR-0113 17-3 c

INTRO(3X) INTRO(3X)

Special-purpose Interface Routines

PurPOse Name Entry

Return the Job Accounting Table ACTTABLE ACTTABLE

Pro~am a Cray channel on an lOS DRIVER DRIVER
Turn on or off the class of ECHO ECHO
messages to the user logfile
Allow a job to suspend itself ERECALL ERECALL

Return lines per paKe GETLLP GETLLP
Return the integer ceiling of a ICEIL ICEIL
rational number formed by two
integer parameters
Allow a job to communicate with IJCOM IJCOM
another job

Return the job name JNAME JNAME
Load an absolute program from a LGO LGO
dataset containing a binary image
Return the memory address of a LOC LOC
variable or an array
Manipulate a job's memory allocation MEMORY MEMORY
and/or mode of field length
reduction
Return the edition for a previously NACSED NACSED
accessed ~rmanent dataset
Load an overlay and transfer control OVERLAY OVERLAY
to the overlay entry point
Enter a message (preceded by a message REMARK
prefix) in the user and system logfiles

REMARK
Enter a message in the user and REMARK2
system logfiles
Enter a formatted message in the REMARKF REMARKF
user and system 10Kfiles
Return Cray machine constants SMACH SMACH
(machine epsilon; smallest and CMACH
largest normalized numbers.)
Test the sense switch SSWITCH SSWITCH
Make requests of the operating SYSTEM SYSTEM
system

SR-0113 17-4 c

ABORT(3U) ABORT(3U)

NAME

ABORT - Requests abort with traceback

SYNOPSIS

CALL ABORT[(log)]

DESCRIPTION

log Log file message

ABORT requests abort with traceback and provides an optional log file message. The optional user­
supplied log file message is written to both user and system log files. The message is written in the
same format in which it was sent

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 17-5 C

ACTTABLE (3COS) ACTf ABLE (3COS)

NAME

ACTTABLE - Returns the Job Accounting Table OAT)

SYNOPSIS

CALL ACTTABLE(array,count[,tac,tasz,gut,gusz!ut!usz])

DESCRIPTION

array

count

tac

tasz

gut

gusz

An array in which to write a copy of the JAT

Count; the first count words of the JAT are returned in the array. If count is greater than
the size of the JAT, the array is padded with minus ones.

Address in which to write a copy of the Task Accounting Table

Length of the task accounting· information to copy in words. No more than tasz words are
returned.

Address in which to write a copy of the Generic Resource Table

Length of the Generic Resource Table information in words. No more than gusz words are
returned.

Jut Address in which to write a copy of the Fast Secondary Storage (FSS) device utilization
information

Jusz Length of the FSS device utilization information area in words. No more than Jusz words
are returned.

You can specify array and count without requesting any of the optional information with the other
parameters. However, to request any of the optional information, you must enter values for all six of
the optional parameters, entering a zero length for those you do not want.

EXAMPLE

The call to ACTT ABLE in the following example returns information from the JAT and six words from
the Task Accounting Table. Since the size parameters (GUSZ and FUSZ) are set to zero, no FSS or
Generic Resource Table information is returned.

PROGRAM ACITAB

IMPLICIT INTEGER (A-Z)

PARAMETER (COUNT = 10)
PARAMETER (T ASZ = 6)
PARAMETER (GUSZ = 0)
PARAMETER (FUSZ = 0)
DIMENSION ARRAY(60), TAC(6)

CALL ACTI ABLE(ARRA Y,COUNT,TAC,TASZ,JUNK,GUSZ,JUNK,FUSZ)
STOP
END

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-01l3 17-6 c

CCS(3COS)

NAME

CCS - Cracks a control statement

SYNOPSIS

CALL CCS

DESCRIPTION

No parameters. CCS aborts the job if errors are encountered.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 17-7

CCS(3COS)

c

CEXPR (3COS) CEXPR (3COS)

NAME

CEXPR - Cracks an expression

SYNOPSIS

CALL CEXPR(char,out,lmt,size)

DESCRIPTION

char Expression character-string array (terminated by a 0 byte)

out Reverse Polish Table array for output

Imt Upper limit to the size of the Reverse Polish Table

size Actual size of the Reverse Polish Table on return

CEXPR transforms an expression character string (1 right-justified character per word) to a Reverse Pol­
ish Table.

An expression can contain a mixture of symbols, literals, numeric values, and operators. Expressions
handled by this routine resemble Fortran in syntax.

Operator hierarchy follows Fortran rules and does parenthesis nesting. Symbols are defined as 1- to 8-
character strings having unknown value to CEXPR. CEXPR simply flags the strings for the caller. The
first character cannot be numeric. Literals are 1- to I5-character strings enclosed by double quotes (").

A character string consisting of numeric digits is taken as a 64-bit integer. A trailing B signifies an
octal number.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 17-8 C

CLEARBT (3COS) CLEARBT(3COS)

NAME

CLEARBT, SETBT - Temporarily disables/enables bidirectional memory transfers

SYNOPSIS

CALL CLEARBT
CALL SETBT

DESCRIPTION

CLEARBT temporarily disables bidirectional memory transfers. SETBT temporarily enables bidirectional
memory transfers.

These routines are local to the current job step. The system restores the most recent mode setting at the
start of the next job step. No arguments are required or returned.

IMPLEMENTATION

These routines are available only to users of the COS operating system.

SR-OI13 17-9 c

CLEARBTS (3COS) CLEARBTS (3COS)

NAME

CLEARBTS, SETBTS - Permanently disables/enables bidirectional memory transfers

SYNOPSIS

CALL CLEARBTS
CALL SETBTS

DESCRIPTION

CLEARBTS permanently disables bidirectional memory transfers. SETBTS permanently enables bidirec­
tional memory transfers.

The results of these routines are permanent and are propagated through job steps. The system does not
alter the mode setting unless another bidirectional memory transfer control subroutine is called or a
MODE control statement is executed. No arguments are required or returned.

IMPLEMENTATION

These routines are available only to users of the COS operating system.

SR-0113 17-10 c

CLEARFI (3U) CLEARFI (3U)

NAME

CLEARFI, SETFI - Temporarily prohibits/permits floating-point interrupts

SYNOPSIS

CALL CLEARFI
CALL SETFI

DESCRIPTION

CLEARFI temporarily prohibits floating-point interrupts. SETFI temporarily permits floating-point inter­
rupts.

These routines are local to the current job step. The system restores the most recent mode setting at the
start of the next job step. No arguments are required or returned.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-OI13 17-11 c

CLEARFIS (3COS) CLEARFIS (3COS)

NAME

CLEARFIS, SETFIS - Temporarily prohibits/permits floating-point interrupts for a job

SYNOPSIS

CALL CLEARFIS
CALL SETFIS

DESCRIPTION

CLEARFIS prohibits floating-point interrupts for a job until they are enabled or until the job terminates.

SETFIS enables floating-point interrupts until they are explicitly disabled or until the job terminates.

The results of these routines are propagated through job steps. The system does not alter the mode set­
ting until another floating-point interrupt control subroutine is called or a MODE control statement is
executed. No arguments are required or returned.

IMPLEMENTATION

These routines are available only to users of the COS operating system.

SR-OI13 17-12 c

CRACK (3COS) CRACK (3COS)

NAME

CRACK - Cracks a directive

SYNOPSIS

CALL CRACK(ibuj,ilen,cbuj,clen,fiag[.djlag])

DESCRIPTION

NOTES

ibuf Image of the statement to be cracked

ilen Integer length (in words) of the statement image to be cracked. Maximum value is 10
words.

cbuf Array to receive the cracked image

clen Integer length in words of the array cbuj

flag Integer variable to receive completion status. The Return Value flag has the following
meanings:

o Normal termination
1 No error; continuation character encountered.
2 Invalid character encountered
3 Premature end-of-input line
4 CRACK buffer overflow
5 Unbalanced parentheses
6 Input buffer too large

dflag Integer flag indicating that literal string delimiters are to be preserved in the cracked image.
If set to 0 or omitted, quotes are not included in the cracked string. If set to 1, all quotes
are included in the string.

CRACK reformats (parses) a user-supplied string into verb, separators, keywords. and values. The
cracked directive is placed in a user-supplied buffer and returns the status of the crack to the caller.
CRACK can be called repeatedly to process a control statem~nt across several records.

Each keyword or positional parameter should be assigned a separate word. Keywords or positional
parameters of more than 8 characters must be assigned 1 word for each 8 characters plus 1 for any
remaining characters if the length is not a multiple of 8 characters. Each separator must also be
assigned a separate word.

jlag should be set to 0 before the first call to CRACK and should not be changed (except by CRACK)
until after the last call to CRACK.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 17-13 C

DELAY (3COS) DELAY (3COS)

NAME

DELAY - Do nothing for a fixed period of time

SYNOPSIS

CALL DELAY(mstime)

DESCRIPTION

mstime Delay time in milliseconds. mstime must be in the range 0 to 224-1.

DELAY requests that the executing task not be rescheduled to a CPU until mstime milliseconds have
elapsed.

IMPLEMENTATION

This routine is only available to users of the COS operating system.

SR-OI13 17-14 C

DRIVER (3COS) DRIVER (3COS)

NAME

DRIVER - Programs a Cray channel on an I/O Subsystem (IOS)

SYNOPSIS

CALL DRIVER(array,lentry,status)

DESCRIPTION

array First element of the integer parameter block array. The array is len try words long. In all
cases, FUNC, PLEN, and LN are required in the parameter block, and COSS is returned in
the User Driver Parameter Block (DRPB) (see the COS Reference Manual, publication SR-
0011, for more infonnation on DRPB). DP is always sent to the driver and returned to you.
See individual driver specifications for the use of the word and other field requirements.

lentry

status

For the Fortran user, FUNC, DIR, and COSS are literal strings. (For example, set FUNC to
'CFN$OPE' and DIR to 'DIR$INP' to open an input channel. 'DRS$RSV' in COSS means
the channel is reserved for another job.)

The 'CFN$OPE' subfunction opens a channel; a job cannot access a channel until it opens
the channel. DRNM, TO, DIR, and OPD are required.

The 'CFN$CLS' subfunction closes a channel. Any open channels are closed during tenni­
nation. DIR is required.

The 'CFN$RD', 'CFN$RDH', and 'CFN$RDD' subfunctions read data. BAD and DLN are
required; TLN is returned. For read, either the channel is read to Central Memory or data is
moved from IDS Buffer Memory to Central Memory (if a read/hold was done prior to this
read). For read/hold, a second read is performed, and the data is held in Buffer Memory
for a subsequent read. For read/read, a second read to Central Memory is done.

The 'CFN$WT', 'CFN$WTH', and 'CFN$WTD' subfunctions write data. BAD and LN are
required; TLN is returned. For write, data is written to the channel from Central Memory
or Buffer Memory (if a write/hold was done prior to this request). For write/hold, a second
buffer of data is moved to and held in Buffer Memory for a subsequent write. For
write/write a second write is performed from Central Memory.

The 'CFN$DMIN'-'CFN$DMAX' subfunctions are defined by the driver. DFP and DIR are
required.

Length of the parameter block entry in array; user-specified integer variable.

Status; integer variable set by the system. On return, status is 0 if no errors have occurred,
and the job must poll COMS for nonzero. When COMS is nonzero, the driver has com­
pleted the request and the driver status is in DRS. See the individual driver specifications
for driver status. If status is nonzero on return, COSS contains the error code and the
request is not sent to the driver.

If no errors have occurred, and if status is nonzero on return, COSS contains the error code.

This capability is available only with devices connected to the Master I/O Processor (MIOP). This is a
privileged function available to all single-tasked job steps. It is prohibited to multitasking job steps.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 17-15 C

ECHO(3COS) ECHO(3COS)

NAME

ECHO - Turns on and off the classes of messages to the user logfile

SYNOPSIS

CALL ECHO('ON'L[,param-array].'OFF'L[,param-array])

DESCRIPTION

param-array Optional array of message class names or • ALL' . Message class names are defined in
the cos Reference Manual. publication SR-OOl1.

IMPLEMENTATION

This routine is available only to users of the cos operating system.

SR-OI13 11-16 c

END(3U)

NAME

END, ENDRPV - Terminates a job step

SYNOPSIS

END
CALL ENDRPV

DESCRIPTION

END terminates a job step and advances to the next job step.

END(3U)

ENDRPV continues normal exit processing after a reprievable condition has been processed. This exit
processing can be the result of normal termination or abort processing.

IMPLEMENTATION

END is available to users of both the COS and UNICOS operating systems.

SR-Ol13 17-17 c

ERECALL(3COS) ERECALL(3COS)

NAME

ERE CALL - Allows a job to suspend itself until selected events occur

SYNOPSIS

CALL ERECALL(fune ,status,sevents ,to,oevents ,levents)

DESCRIPTION

June User-specified integer variable to define the requested infonnation or action

SR-0113

status

sevents

to

oevents

'DISABLE' Disables event monitoring. All other words are
ignored.

'ENABLE'

~ECALL'

~ETURN'

Enables event monitoring or changes the events to be
monitored. levents and sevents are required. If
levents is 0, time-out is the only enabled event; time-out is
enabled to prevent a job remaining indefinitely in recall.
levents and oevents are returned by the system. to
is ignored.

Places the job in recall. An error is returned in
status if monitoring is disabled. to is required;
sevents is ignored. levents and oevents are set by
the system. If to is 0, an installation-defined default,
I@TODEF, is used. If to is specified,
but less than the
installation-defined minimum,
I@TOMIN, the installation
minimum is used with no notification. If levents is 0 on
return, time-out is the only event that occurred.

Requests that levents and oevents be set
by the system; all other words are ignored. An error is returned in
status if monitoring is disabled.

Status; an integer variable set by the system. Status is 0 if no errors occurred; otherwise,
see the Event Recall Parameter Block (ERPB) definition in the COS Reference Manual, pub­
lication SR-OOll, for error codes. The codes are returned as blank-filled literal strings (for
example, ERER$BFN is returned as 'ERER$BFN').

User-specified integer array containing the events to be monitored. levents is the number of
events specified in sevents. The events can be selected from the following:

'1J' Interjob message received
'UO' Unsolicited operator message received (Deferred implementation)
'OR' Operator reply received (Deferred implementation)

The following events are privileged:

'CH' Channel driver done
'IQ' SDT placed in input queue (Deferred implementation)
'OQ' SDT placed in output queue (Deferred implementation)

Time-out duration in milliseconds (rightmost 24 bits); user-specified integer variable.

Integer array set by the system to the occurred events. levents is the number of event
words that have been placed in oevents by the system. See sevents for possible values.

17-18 c

ERECALL(3COS) ERECALL(3COS)

NOTE

levents Integer value specifying the number of events in either sevents or oevents. For ENABLE,
set levents to the number of event words that you have placed in sevents. On return from
ENABLE, RECALL, and RETURN, levents is the number of event words that the system has
placed in oevents.

ERECALL allows a job to suspend itself until one or more selected events occur.

This routine is available to all single-tasking job steps; it is prohibited to multitasking job steps.

When event monitoring is enabled, the system monitors selected events for a job, keeping track of
which ones have occurred. Monitoring is disabled at the beginning of each job step and can be enabled
by making a system request, specifying the events to monitor. Once monitoring is enabled, a job can
make a system request to change the events that are to be monitored, get a map indicating which of the
monitored events occurred, go into event recall until one of the selected events occurs, or disable moni­
toring.

When monitoring is enabled, a map of occurred events is returned to you and discarded by the system.
If monitoring was disabled when the enable occurred, the map is O.

When the events to be monitored are changed, a map of occurred events is returned to you and dis­
carded by the system.

When· a map of occurred events is requested, the map is returned to you and discarded by the system.

When recall is requested and the map of occurred events is 0, the job is suspended for an event until
one of the events occurs. If the map is nonzero, the map is returned to you immediately and discarded
by the system.

When recall is disabled, the map of occurred events is discarded by the system.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

The COS Reference Manual, publication SR-OOll

SR-0113 17-19 c

ERREXIT (3U)

NAME

ERREXIT - Requests abort

SYNOPSIS

CALL ERREXIT

IMPLEMENTATION

This routine is available to users of bQth the COS and UNICOS operating systems.

SR-0113 17-20

ERREXIT(3U)

c

EXIT(3U) EXIT(3U)

NAME

EXIT - Exits from a Fortran program

SYNOPSIS

CALL EXIT

DESCRIPTION

EXIT ends the execution of a Fortran program and writes a message to the log file (COS) or stdout
(UNICOS). Under COS, the message is as follows:

UTOO3 - EXIT CALLED BY routine name

The UNICOS message is as follows:

EXIT (called by routine name, line n)

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 17-21 c

GETARG(3F) GETARG(3F)

NAME

GETARG - Return Fortran command-line argument

SYNOPSIS

ichars = GETARG(i,c)
ichars= GET ARG(i,c,size)

DESCRIPTION

ichars

c

size

Number of non-null characters in the string returned

Number of the argument to return

Character variable or integer array in which to return the command-line argument

If c is an array, the number of elements in that array

GETARG returns the i-th command-line argument of the current process. Thus, if a program is
invoked with the following command line, GETARG(2,C) returns the string arg2 in the character vari­
able C:

roo argl arg2 arg3

SEE ALSO

GETOPT(3C)

IMPLEMENTATION

This routine is available only to users of the UNICOS operating system.

SR-Ol13 17-22 C

GBTLPP(3COS) GBTLPP (3COS)

~
NAM;,E

>,.'

SYNOPSIS

DESCRIPTION

lpp

IMPLEMENTATION

This routine is available

SR-OI13 17-23 c

GETPARAM (3COS) GETPARAM (3COS)

NAME

GETPARAM - Gets parameters

SYNOPSIS

CALL GETPARAM(table,number,param)

DESCRIPTION

SR-0113

table The Parameter Control Table (PCT), dimensioned (5,number) and containing the following
in each 5-element row:

1 A left-justified, zero-filled keyword
2 A default value for use if the keyword is missing
3 A default value for use if the keyword is present but not

assigned a value
4 Subscript of param into which the first parameter value is

stored
5 Index of .the last word the the param array to be used for

storing the parameter value

If item 2 is negative, GETPARAM requires the keyword to be on the control statement.

If item 3 is negative, GETPARAM does not allow the use of the keyword alone (as in
II ••• ,keyword, ... ").

Either item 2 or 3 can be 0; GETP ARAM does not distinguish between Os and any other
positive values such as character strings, but the caller can test them after GETP ARAM
returns.

If items 2 and 3 are 0 and 1, or 1 and 0, respectively, GETPARAM does not allow the key­
word to be followed by an '='. The keyword must be simply absent or present.

If item 1 is a 64-bit mask (that is, 177777777777777777 7777B), the value given as the key­
word is returned in the control table. When an entry of this type is specified in the control
table, the number of parameters is limited to one.

If item 1 is given a value of 0, the entry describes a positional parameter. Entries of this
nature must be described in positional order.

If bit 2 in item 4 (that is, 020000 0000 0000 0000 OOOOB) is set, the parameters following the
keyword are defined to be secure and are edited out before the statement is echoed to the
user's logfile. If bit 3 is set, it indicates that a NULL character in the first word of a param­
eter value should be considered a string terminator.

number The number of parameters described in the control table. If set to 0, GETPARAM does not
allow any parameters on the control statement.

param An array sufficiently large to receive all the parameter values

GETP ARAM processes control statement parameter values from an already cracked control statement.
If the statement has been continued across card images, GETP ARAM automatically requests the next
control statement and calls $CCS to crack it. Processing is determined by the rules set up by the Pcf.

The PCf indicates default values for unspecified parameters. Through the Pcf, the caller also indicates
the following:

• If a parameter must be specified on the statement
• If a parameter is positional or keyword
• If a keyword parameter can have an equated value
• If a keyword parameter must have an equated value
• If any parameters are allowed

17-24 C

GETPARAM (3COS) GETPARAM(3COS)

EXAMPLE

NOTES

Example of control table definition in Fortran:

*
*
*

INTEGER PERMF~E(2) PARAMS(15), TABLE(5A), INPUT, LIBRARY(10), LIST
EQUIV ALENCE(PARAMS(I)~UT),

(PARAMS(2),PERMFILE),
(PARAMS(4),LIBRARY(I»,
(PARAMS(14)~IST)

DATA P ARAMS/15*O/
DATA (T ABLE {I , 1),1= 1,5)FI'L, '$IN'L,'$IN'L,I, 1/,

(T ABLE(I,2),I= 1 ,5)FP'L,O,-1 ,2,3/,
(TABLE(I,3),I=1 ,5)FLIB'L,-1 ,'$FTLIB'L,4,13/,
(TABLE(I,4),I=IS)FLIST'L,O,I,14,14/

CALL GETP ARAM (T ABLE,4,P ARAMS)

This table (for a hypothetical program) tells GETPARAM that the only keywords to be accepted are I, P,
LIB, and LIST. The -1 value means that P cannot appear alone (without an equal sign) and that LIB (with or
without an equal sign) must appear' in the control statement.

In this table, only one word is provided for the I parameter; therefore, if I=.ox appears in the control state­
ment, the option .ox must not exceed 8 characters. The 2 words provided for the P parameter allow for the
maximum of 16 characters or for two subparameters (up to 8 characters each) separated by a colon in the
control statement. Ten words are provided for the LIB parameter so that up to ten subparameters (or five 2-
word parameters) are allowed in the control statement. GETPARAM requires the keyword LIST to appear
alone or not at all. If LIST is specified, the value returned in the Parameter Value Table is 1. LIST cannot be
followed by an equal sign.

The following two subparameters cannot be distinguished from one another in the P ARAMS table:

A=AI234567:B 1234567(Two 8-character parameters)
A=AI234567BI234567(One 16-character parameter)

Thus, the caller is responsible for restricting such cases.

The output array P ARAMS must be as large as the largest subscript. If P ARAMS is initialized to Os, the
programmer can determine how many words are returned by GETPARAM for multi word parameters
such as P and LIB.

Because Fortran array numbering starts with 1, the array's base address is reduced by 1 in GETPARAM.
Therefore, the CAL user must supply the table address + 1 (This is not true for SGP) in order to use
labels directly in lieu of the Fortran subscripts.

The following characters should not be used in keywords: the colon, parentheses, period, comma, apos­
trophe, caret, and equal sign.

GETPARAM aborts if the control statement violates either the standard control statement syntax rules or
the additional rules imposed by the PCf. If there are no errors, the array is filled with values from the
control statement and/or with default values. The PCf is not altered by GETPARAM.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-0113 17-25 C

IARGC(3U)

NAME

IARGC - Returns number of command line arguments

SYNOPSIS

iargs = IARGC()

DESCRIPTION

iargs Number of command line arguments passed to the program

If a program is invoked with the following command line, IARGC returns 3:

foo argl arg2 arg3

SEE ALSO

GETOPT(3C)

IMPLEMENTATION

This routine is available only to users of the UNICOS operating system.

SR-OI13 17-26

IARGC(3U)

c

ICEIL(3U)

NAME

ICEIL - Returns integer ceiling of a rational number

SYNOPSIS

i=ICEIL(j,k)

DESCRIPTION

j The numerator of a rational number

k The denominator of a rational number

ICEIL(3U)

ICEIL returns the integer ceiling of a rational number fonned by two integer parameters. ICEIL is an
integer function.

The value of the function i is the smallest integer larger than or equal to f.
IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 17-27 c

IJCOM (3COS) IJCOM (3COS)

NAME

UCOM - Allows a job to communicate wi~ another job

SYNOPSIS

CALL UCOM(status,array,lentry,nentry)

DESCRIPTION

SR-0113

status status is a literal value of the error (or, in the case of multiple errors, the literal value of the
last error to occur). If status is not equal to UMSSOK, STAT contains the literal error code.
If multiple parameter blocks are used, all STAT fields must be examined if status is
nonzero.

array First element of the integer parameter block array. An installation-defined maximum
number of parameter blocks (I@MPBS) can be specified in array. The array is larray
words long, and each of the nentry parameter blocks in it is lentry words long. See the
Interjob Communications Parameter Block (UPB) table definition in the cos Reference
Manual, publication SR-OOll, for a description. You may ignore LINK; the system links the
entries together for the user. In all cases, FUNC, RID, and PLEN are required in each
parameter block, and the system sets STAT in each parameter block. The array length must
equal lentry * nentry.

lentry

nentry

FUNC and STAT are literal strings (for example, set FUNC to 'UMSOPEN' to open a path.

UMSNOP'

UMSREC'

UMSOPEN'

UMSACCE'

UMSREJE'

UMSSNDM'

UMSSNDL'

UMSCLOS'

Subfunction is a no op.

Subfunction marks the job as receptive. RCB is required; all other words
are ignored.

Subfunction initiates an attempt to open a communication path with
another job. HLEN, TID, and NCB are required; all other words are
ignored.

Subfunction accepts a request from another job to open communication.
TID, HLEN, and NCB are required; all other words are ignored.

Subfunction rejects a request from another job to open communication.
TID is required; all other words are ignored.

Subfunction sends a message to another job. NCB, TID, BADD, and BLEN
are required; all other words are ignored.

Subfunction sends a message to an attached job's logfile. This is a
privileged function. TID, OVR, FCS, FCU, CLS, and BADD are required;
all other words are ignored.

Closes a communication path. Either NCB and TID or neither are
required; all other words are ignored. If NCB and TID are specified, only
the path determined by RID and TID is closed; otherwise all communica­
tion paths with RID are closed.

UMSEND' Subfunction marks the job as not receptive. All other words are ignored.
Existing communication paths are not affected.

Length of each parameter block entry in array; user-specified integer variable. lentry must
equal LE@UPB (LE@UPB is defined in SSYSTXT as the length of the Interjob Communi­
cations Parameter Block).

Number of parameter blocks in the array; user-specified integer variable. Default is 1.

17-28 C

IJCOM (3COS) IJCOM (3COS)

NOTE

status Status; an integer variable set to 0 if no errors occurred. If status is nonzero, STAT con­
tains the error code. If multiple parameter blocks are used, all STAT fields must be exam­
ined if status is not equal to UMS$OK (if no errors occurred, status=UMS$OK).

IJCOM is available to all single-tasking job steps. At this time, interjob communication is prohibited to
multitasking job steps.

SEE ALSO

The COS Reference Manual, publication SR-OOll

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 17-29 c

ISHELL(3U)

NAME

ISH ELL - Executes a UNICOS shell command

SYNOPSIS

1ST AT = ISHELL(command)

DESCRIPTION

ISHELL has the following argument:

command Command to be given to the shell

ISHELL(3U)

ISH ELL passes command to the shell sb(1) as input, as if command was entered at a terminal. The
current process waits until the shell has completed, then returns the exit status.

EXAMPLE

ISTAT = ISHELL(,rm -f *.0')

IMPLEMENTATION

This routine is available only to users of the UNICOS operating system.

SR-0113 17-30 Release 3.0

JNAME (3COS)

NAME

JNAME - Returns the job name

SYNOPSIS

name=JNAME(result)

DESCRIPTION

name Job name; left-justified with trailing blanks.

result Returned job name

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 17-31

JNAME(3COS)

c

JSYMSET(3COS) JSYMSET(3COS)

NAME

JSYMSET, JSYMGET - Changes a value for a JCL symbol or retrieve a JCL symbol

SYNOPSIS

CALL JSYMSET(' sym'L,val[,len])
CALL JSYMGET(' sym'L,val[,len])

DESCRIPTION

sym Valid JCL symbol name

val For JSYMSET, the actual value assigned to the symbol. For JSYMGET, val receives the
actual value of the symbol if the value buffer is large enough and the symbol currently has
a value.

len For JSYMSET, the length of val in words (elements). For JSYMGET, the length of the
value buffer in words (elements). len is changed to the actual length of the symbol's value
(less than or equal to the value buffer).

JSYMSET allows you to change a value for a ICL symbol. The value specified is the actual value given
to the symbol; no evaluation is performed.

JSYMGET allows user programs to retrieve ICL symbols. JSYMGET also allows for the creation of ICL
symbols if they do not exist. See the COS Reference Manual, publication SR-OOll, for more information
on ICL symbol definitions.

IMPLEMENTATION

These routines are available only to users of the COS operating system.

SR-OI'13 17-32 C

LGO(3COS) LGO(3COS)

NAME

LGO - Loads an absolute program from a dataset containing a binary image as the first record

SYNOPSIS

CALL LGO(, dn'L)

DESCRIPTION

The dataset name containing the absolute load module is represented by dn. LGO loads an absolute
program from a local dataset containing the binary image as the first record. The loaded program is
then executed. Control does not return to LGO.

Security privileges may be required sometimes when using LGO might seem appropriate (specifically, if
you attempt to open a dataset using SDACCESS). Use CALLCSP as a more general replacement for this
routine.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

CALLCSP

SR-OI13 17-33 C

LOC(3F)

NAME

LOC - Returns memory address of variable or array

SYNOPSIS

address=LOC(arg)

DESCRIPTION

address

arg

IMPLEMENTATION

Argument address (type integer)

Argument whose address is to be returned

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 17-34

LOC(3F)

c

MEMORY(3COS) MEMORY(3COS)

NAME

MEMORY - Manipulates a job's memory allocation and/or its mode of field length reduction

SYNOPSIS

CALL MEMORY(code,value)

DESCRIPTION

SR-0113

code Determines what information or action is requested (blank-filled)

'VC' value specifies the number of words to be added to (if value is positive) or
subtracted from (if value is negative) the end of the user code/data area.

'FL' value specifies the number of words of field length to be allocated to the job.
If FL is specified and value is not, the new field length is set to the max­
imum allowed the job, and the job is placed in user mode for the duration of
the job step.

'USER' The job is put in user-managed field length reduction mode. value is
ignored.

'AUTO' The job is put in automatic field length reduction mode. value is ignored.

'MAXFL' The maximum field length allowed the job is returned in value.

'CURFL' The current field length is returned in value.

'TOTAL' The total amount of unused space in the job is returned in value.

value An integer value or variable when code is 'UC' or 'FL'. An integer variable that is to con-
tain a returned value if code is 'CURFL', 'MAXFL', or 'TOTAL'.

Memory can be added to or deleted from the end of the user code/data area by using the 'UC' code. If
the user code/data area is expanded, the new memory is initialized to an installation-defined value.

The job's field length can be changed by use of the 'FL' code. The field length is set to the larger of
the requested amount rounded up to the nearest multiple of 512-decimal words or the smallest multiple
of 512-decimal words large enough to contain the user code/data, Logical File Table (LFf), Dataset
Parameter Table (DSP), and buffer areas. The job is placed in user-managed field length reduction mode
for the duration of the job step.

The job's mode of field length reduction can be changed by use of either the 'USER' or 'AUTO' code.
When 'USER' is specified, the job is placed in user mode until a subsequent request is made to return it
to automatic mode. When' AUTO' is specified, the job is placed in automatic mode, and the field
length is reduced to the smallest multiple of 512-decimal words that can contain the user code/data,
LFf, DSP, and buffer areas.

The job's maximum or current field length can be determined by the 'MAXFL' or amount of unused
space in the job can be determined by the 'TOTAL' code.

The job is aborted if filling the request would result in a field length greater than the maximum allowed
the job. The maximum is the smaller of the total number of words available to user jobs minus the
job's Job Table Area (ITA) or the amount determined by the MFL parameter on the JOB statement.

17-35 c

MEMORY(3COS)

EXAMPLE

Example 1:

CALL MEMORY('FL')

MEMORY(3COS)

The job's field length is set to the maximum allowed the job, and the job is placed in user mode for the dura­
tion of the job step.

Example 2:

CALL MEMORY(,AUTO')

The job's field length is reduced to a minimum, and the job is placed in automatic mode.

Example 3:

CALL MEMORY('UC' ,-5)
CALL MEMORY('UC' ,IV AL)

where IV AL is-5

The job's user code/data area is reduced by 5 words.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-Ol13 17-36 C

NACSED (3COS)

NAME

NACSED - Returns the edition of a previously-accessed permanent dataset

SYNOPSIS

ed=NACSED()

DESCRIPTION

NACSED(3COS)

NACSED returns edition number ed in binary form for the permanent dataset most recently accessed by
a call to ACCESS.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 17-37 c

OVERLAY (3COS) OVERLAY (3COS)

NAME

OVERLAY - Loads an overlay and transfers control to the overlay entry point

SYNOPSIS

CALL OVERLA Y(nLdn , lev 1 ,lev 2[,recallD

DESCRIPTION

n Number of characters in dn

L Left-justified; zero-filled.

dn Dataset in which the overlay resides. Must be a character constant, integer variable, or an

NOTES

array element containing Hollerith data of not more than 7 characters.

lev 1 Overlay level 1 (LEVI)

lev 2 Overlay level 2 (LEV2)

recall Optional recall parameter. To reexecute an overlay without reloading it, enter 6LRECALL.
If the overlay is not currently loaded, it will be loaded.

This routine is used to implement LDR-style overlays. Cray Research recommends conversion to
SEGLDR-style segments whenever possible. See the Segment Loader (SEGLDR) Reference Manual,
publication SR-0066.

IMPLEMENTATION

This routine is available to users of both the cos and the UNICOS operating systems.

SEE ALSO

JdovJ(1)
See the COS Reference Manual, publication SR-OOll, for details of the OVERLAY routine.

SR-0113 17-38 C

PPL(3COS) PPL(3COS)

NAME

PPL - Processes keywords of a directive

SYNOPSIS

CALL PPL(cbuf,ctable,ltable ,outarray,stattbl)

DESCRIPTION

PPL processes the keywords for a given directive. Processing is governed by the Parameter Description
Table, which has the same format as the table GETP ARAM uses, except that the length of the table
used by PPL is seven words with the two extra words unused.

cbuf Array containing the cracked image (usually prepared by CRACK, which is described in
section 17)

ctable

ltable

outa"ay

stattbl

PPL control table

Number of 7-word entries in PPL control table

Array to receive parameter values

Three-word completion status code. On the first-time call, you must initialize the Return
Status Table to zero. If PPL returns a status that is not normal, and PPL is called again
with the invalid values left in, it attempts to recover.

Array element Meaning

1 Return status code:
o Normal termination
1 Required keyword not found
2 Output keyword overflow
3 Syntax error
4 Unknown or duplicate keyword
5 Unexpected separator encountered
6 Keyword cannot be equated
7 Keyword must have value
8 Maximum of 64 keywords exceeded
9 Invalid return status; cannot recover

2 Keyword in error
3 Ordinal keyword value

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

GETPARAM, CRACK

SR-0113 17-39 c

REMARK (3U)

NAME

REMARK2, REMARK - Enters a message in the user and system log files

SYNOPSIS

CALL REMARK2(message)
CALL REMARK(message)

DESCRIPTION

REMARK(3U)

message For REMARK2, message terminated by a 0 byte or a maximum of 79 characters. For
REMARK, message terminated by a 0 byte or a 71-character message.

REMARK2 enters a message in the user and system log files. REMARK enters a message preceded by
the prefix 'UT008 - ' in the user and system logfiles.

Under UNICOS, these routines write to stderr instead of the system logfile.

IMPLEMENTATION

These routines are available to users of both the COS and UNICOS operating systems.

SR-0113 17-40 c

REMARKF (3U) REMARKF (3U)

NAME

REMARKF - Enters a fonnatted message in the user and system logfiles

SYNOPSIS

CALL REMARKF(var /var,lf var2,···fvar liD

DESCRIPTION

var Variable containing the address of a fonnat statement for ENCODE

fvar Address of variable

Up to 12 variables can be passed in arguments 2 through 13. The variables must be of type integer,
real, or logical so that they each occupy only 1 word. The message is prefixed by 'UTOO9 - ' unless
you supply a prefix. To supply the prefix, the characters ' b-b' (b=blank) must appear in columns 6
through 8 of the fonnatted message.

EXAMPLE

Sample Fortran calling sequences with user-supplied prefixes:

10030 FORMAT (,CAOO1 - ',14, , errors')
ASSIGN 10030 TO LABEL
CALL REMARKF (LABEL, IERRCN1)

10770 FORMAT('PDOO1-ACCESS ',A8,A7,'ED=',I4, ';')
ASSIGN 10770 TO LABEL
CALL REMARKF (LABEL, DN(1), DN(2), ED)

Sample Fortran calling sequence without prefix:

10550 FORMAT ('LOOP EXECUTED ',14, , TIMES')
ASSIGN 10550 TO LABEL
CALL REMARKF (LABEL, LOOPCN1)

IMPLEMENTATION

This routine is available to users of both the COS and UNICOS operating systems.

SR-0113 17-41 C

RERUN (3COS) RERUN (3COS)

NAME

RERUN, NO RERUN - Declares a job rerunnable/not rerunnable and instruct the system to begin or
cease monitoring jobs for functions affecting rerunnability

SYNOPSIS

CALL RERUN(param)
CALL NORERUN(param)

DESCRIPTION

param One argument is required. For RERUN, if the argument is 0, the job can be rerun. If the
argument is nonzero, the job cannot be rerun. For NO RERUN, if the argument is 0, the sys­
tem monitors for conditions causing the job to be flagged as not rerunnable. If nonzero,
such conditions are not monitored.

RERUN declares a job rerunnable or not rerunnable.

NORERUN instructs the system to begin or cease monitoring jobs for functions affecting rerunnability.

IMPLEMENTATION

These routines are available only to users of the cos operating system.

SR-0113 17-42 c

SENSEBT (3COS) SENSEBT (3COS)

NAME

SENSEBT - Determines whether bidirectional memory transfer is enabled or disabled

SYNOPSIS

CALL SENSEBT(mode)

DESCRIPTION

mode Transfer mode; mode has one of the following values:

= 1 Bidirectional memory transfer is enabled
= 0 Bidirectional memory transfer is disabled

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 17-43 c

S ENS EFI (3U)

NAME

SENSEFI - Detennines if floating-point interrupts are permitted or prohibited

SYNOPSIS

CALL SENSEFI(mode)

DESCRIPTION

mode

IMPLEMENTATION

Interrupt mode:

mode=1
mode=O

Permit interrupts
Prohibit interrupts

This routine is available to users of both the COS and UNICOS operating systems.

SR-OI13 17-44

S ENS EFI (3U)

c

SETRPV (3COS) SETRPV (3COS)

NAME

SETRPV - Conditionally transfers control to a specified routine

SYNOPSIS

CALL SETRPV(rpvcode ,rpvtab,mask)

DESCRIPTION

rpvcode Routine to which control is transferred

rpvtab A 40-word array reserved for system use

mask User mask specifying reprievable conditions

SETRPV transfers control to the specified routine when a user-selected reprievable condition occurs.
SETRPV is called by address.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SEE ALSO

SR-Ol13

See the Macros and Opdefs Reference Manual, publication SR-0012, for details of the SETRPV parame­
ter formats.

17-45 C

SMACH(3U) SMACH(3U)

NAME

SMACH, CMACH - Returns machine epsilon, small/large normalized numbers

SYNOPSIS

result=SMA CH(int)

result=CMACH(int)

DESCRIPTION

result Machine constant returned

int An integer from 1 to 3. Any other value returns an error message to the logfile. For
SMACH, int indicates that one of the following machine constants is to be returned:

Int Constant Description

1

2

3

.710SE-14 The machine epsilon (the smallest number
E such that 1.± E:;t: 1) .

• 1290E-2449 A number close to the smallest
normalized, representable number

.77S0E+24S0 A number close to the largest normalized,
representable number

For CMACH, int indicates that one of the following machine constants is to be returned:

Int Constant Description

1 .710SE-14 The machine epsilon (the smallest number
E such that 1.± E:;t: 1).

2 .1348E+ 1216 A number close to the square root of the smallest
normalized, representable number

3 .7421E+1217 A number close to the square root of the largest
normalized, representable number

The use of CMACH(2) and CMACH(3) prevents overflow during complex division.

These functions are calculated by Fortran versions of SMACH and CMACH (see the Basic Linear Alge­
bra Subprograms for Fortran Usage by Chuck L. Lawson, Richard J. Hanson, Davis R. Kincaid, and
Fred T. Crow, published by Sandia Laboratories, Albuquerque, 1977, publication number SAND77-0898).

IMPLEMENTATION

These routines are availale to users of both the COS and UNICOS operating systems.

SR-OI13 17-46 C

SSWITCH (3COS) SSWITCH (3COS)

NAME

SSWITCH - Tests the sense switch

SYNOPSIS

CALL SSWITCH(swnum,result)

DESCRIPTION

Switch number (integer) swnum

result result is 1 if the switch value ranges from 1 to 6 and the switch is on. result is 2 if the
switch value is less than 1 or greater than 6, or if the switch is off (type integer).

IMPLEMENT AnON

This routine is available only to users of the COS operating system.

SR-OI13 17-47 c

SYSTEM (3COS) SYSTEM (3COS)

NAME

SYSTEM - Makes requests of the operating system

SYNOPSIS

status=SYSTEM(funcnon.arg harg i)

DESCRIPTION

status Status returned in S 1 register (function dependent)

function System action request number. This is the octal code of the desired system action request.

NOTE

The requests (which all begin with the characters 1'$) and their codes are described in the
COS Internal Reference Manual Volume IT: STP, publication SM-0141. The code is the
jump table address (relative offset) of the function.

arg 1 Optional argument (required by some requests)

arg 2 Optional argument (required by some requests)

Use of the SYSTEM command by other than CRI systems programmers is discouraged, as the details of
systems request formats are subject to change. In most cases, there is a library routine which performs
the desired functions and makes changes in request formats transparent to your program.

IMPLEMENTATION

This routine is available only to users of the COS operating system.

SR-OI13 17-48 c

INTRO(3X) INTRO(3X)

18. INTERFACES TO C LIBRARY ROUTINES

SR-OI13

A number of Fortran callable interfaces to C library routines are available under UNICOS. These rou­
tines give a Fortran programmer access to an extensive number of routines and system calls found in
the C library. The interfaces are simple routines which resolve calling sequence differences and pro­
vide uppercase entry point names. Argument lists and return values should match those of the
corresponding C routine, except where noted otherwise. Data types need to be handled as follows:

• C character data should be defined as Fortran integer and terminated by a null (zero) byte; 'L'
Hollerith data handles this for 1-7 characters in length.

• C pointers should be handled by Fortran integers

• Other C data types are compatible with their Fortran counterparts

Interface routines should be coded as Fortran functions.

Example:

INTEGER FOPEN, FWRITE
ISTREAM = FOPEN('filenm'L, 'w+ 'L)
IF (ISTREAM .EQ. 0) THEN

ENDIF

PRINT * " FOPEN failed'
CALL ABORT

J = FWRITE(IDA(I), N, 8, ISTREAM)

If an argument to one of these routines is a file name, as in the above example, the name must be word­
aligned and terminated by a null byte.

The following set of interface routines are provided in the standard CRA Y X-MP UNICOS libraries. Refer to
the appropriate Cray manuals for specific usage information.

18-1 C

INTRO(3X) INTRO(3X)

SR-Ol13

C Library Reference Manual (SR-0136)

Purpose Name Heading
Terminate a program and exit exit
specify status
Close or flush a stream fclose fclose
Get integer file descriptor fileno ferror
associated with stream
Open a stream fopen fopen

fdopen
freopen

Get a string from a stream fgets gets
Put a string on a stream fputs ~uts

Binary I/O fread fread
fwrite

Reposition a file pointer fseek fseek
in a stream fteU
Return value for environment getenv getenv
name
Get option letter from getopt getopt
argument vector
Make a unique file name mktemp mktemp
Change or add value putenv putenv
to the environment
Create a name for a tempnam tempnam
temporary file

The argument list of the getenv routine differs from that of the corresponding C routine. See the man page
in this section for the correct syntax when calling getenv from Fortran.

18-2 C

INTRO(3X) INTRO(3X)

SR-0113

UNICOS System Calls Manual (SR-2012)

Purpose Name Heading

Determine accessibility of access access
a file

Close a file descriptor close close

Allocate storage for a file ialloc ialloc

Move read/write file Iseek lseek
pointer

Change data segment sbreak brk
space allocation sbrk

Provide signal control sigctl sigctl
Fortran interface to sigctl fsigctl
Pascal interface to sigctl psigctl
Specify what to do upon receipt signal signal
ofasignal
Fortran interface to signal fsignal
Pascal interface to signal psignal

Change size of secondary ssbreak ssbreak
data segment

Read, write to ssread ssread
secondary data segment sswrite

Get file status stat stat

Get time time time

Set and get file umask umask
creation mark

Get name of current operating uname ·uname
system

Remove directory entry unlink unlink

The argument lists of the una me and time routines differ from those of the corresponding C routines. No
arguments can be used with the Fortran call to time. See the man page in this section for the correct syntax
when calling uname from Fortran.

The third argument of the Fortran routines ssread and sswrite specifies the number of words to be read or
written. This is different from the corresponding system call. The Fortran programmer should not call
ssbreak, ssread, or sswrite in a program that accesses the SDS using the assign(1) command.

18-3 C

GETENV(3U)

NAME

getenv - Returns value for environment name

SYNOPSIS

INTEGER GETENV
INTEGER value(valuesz)
int = GETENV(name,value,valuesz)

DESCRIPTION

int GETENV returns 1 if name was found in the environment and 0 if not.

GETENV(3U)

name The name of the environmental variable for which GETENV searches in the environment
list The name must be left-justified and terminated with a zero byte.

value The value to which name is set, if found, in the current environment. This is a character
string, and the value variable must be big enough to handle it.

valuesz Maximum number of words to hold string returned in value.

IMPLEMENTATION

This routine is available only to users of the UNICOS operating system.

SEE ALSO

getenv(3C) in the C Library Reference Manual, publication SR-0136
sb(1) in the UNICOS User Commands Reference Manual, publication SR-2011

SR-0113 18-4 C

GETOPT(3U) GETOPT(3U)

NAME

GETOPT - Gets an option letter from an argument vector

SYNOPSIS

INTEGER FUNCTION GETOPT(options,arg)
CHARACTER(*) options
CHARACTER(*) arg

INTEGER FUNCTION GETOPT(options,arg,argsz)
CHARACTER(*) options
INTEGER arg(*)
INTEGER argsz

INTEGER GETV ARG
morearg = GETVARG(varg,vargsz)

INTEGER GETOARG
morearg = GETOARG(oarg,oargsz)

DESCRIPTION

GETOPT returns the next option letter as the integer value of that ASCII code. For example, if the next
option letter is a, the GETOPT returns with the value 97. If there is no next option letter, GET OPT
returns zero. The CHAR routine can then be called to convert the integer back into a character.

The options argument is a string of recognized option letters. If the option letter encountered does not
match one of the letters in the options string, an error is generated. If a letter in options is followed by
a colon, the option is expected to have an argument that mayor may not be separated from it by white
space.

The arg argument returns the value of the argument following the option letter encountered. If arg is
declared as a character variable, argsz need not be specified. If arg is declared as an integer array,
argsz must be specified as the size of the array. The argument string is returned as characters packed in
the integer array, terminated by a null byte.

If a letter in options is followed by a semicolon (;), zero or more arguments are expected for the option.
You must then call GETV ARG to get the variable arguments until GETV ARG returns 0 before the next
call to GETOPT.

The next variable argument is copied into the array varg (of size vargsz). GETV ARG returns 0 when
no more variable arguments exist.

After GETOPT returns 0, you can call GETOARG to get the remaining arguments from the command
line.

GETOARG returns 0 if there are no more arguments. The next remaining argument is copied into the
array oarg (of size oargsz).

If GETOPT is not used, GETOARG can be called to get the command line arguments in order, starting
with the first argument

EXAMPLE

SR-0113

The following example shows how the options of a command might be processed using GETOPT. This
example assumes the options a and b, which have arguments, and x and y, which do not

CHARACTER*80vnONS
CHARACTER*80 ARGMNTS
CHARACTER OPTLET

18-5 c

GETOPT(3U)

SR-0113

INTEGER OPTVAL
DATA OPfIONSl'a:b:xy',

100 CONTINUE
OPTV AL = GETOPT(OPTIONS, ARGMNTS)
IF(OPTV AL .EQ. 0) GOTO 200
OPTLET = CHAR(OPTV AL)

IF (OPTLET .EQ. 'a') THEN
* Analyze arguments from ARGMNI'S
ELSEIF (OPTLET .EQ. 'b') THEN

* Analyze arguments from ARGMNI'S
ELSEIF (OPTLET .EQ. 'x') THEN

* Process x option
ELSEIF (OPTLET .EQ. 'y') THEN

* Process y option
ENDIF

200 CONTINUE

The following example iIIustrates the use of GETOPT and GETOARG together.

program test
external getopt,getoarg
integer getopt, getoarg
integer arglen
parameter (arglen=10)
integer opt,done,argbuf(arglen)

10 CONTINUE
OPT = GETOPT ('abo:',ARGBUF,ARGLEN)
IF (OPT .GT. 0) THEN

IF (OPT .EQ. 'a'R) THEN
print '(a)' , ' option -a- present'

ELSEIF (OPT .EQ. 'b'R) THEN
print '(a)' , ' option -b- present '

ELSEIF (OPT .EQ. 'o'R) THEN
print '(a,aS)' , ' option -0- present-' ,argbuf(l)

ELSE
C unknown option

print '(a,aS), , ' bad option present-',opt
ENDIF
GO TO 10

ENDIF
C all options processed.
C
C Get arguments

20 CONTINUE
DONE = GETOARG(ARGBUF,ARGLEN)
IF(DONE .NE. 0) THEN

print '(a,aS), , ' argument present-' ,argbuf(1)
GO TO 20

ENDIF

IS-6

GETOPT(3U)

C

GETOPT(3U)

C done processing arguments
end

RETURN VALUE

GETOPT(3U)

The value of GETOPT is 0 when no option characters can be found. GETOPT prints an error message
on stderr and returns a question mark when it encounters an option letter not included in options.

SR-OI13 18-7 C

UNAME(3U) UNAME(3U)

NAME

uname - Gets name of current operating system

SYNOPSIS

CALL UNAME(sysname, nodename, release, version, machine)

DESCRIPTION

The uname routine returns information identifying the current operating system. The arguments, which
are all of type CHARACTER, are as follows:

sysname Current operating system name

node name Name by which the system is known on a communications network

release Release of the operating system

version Release version of the operating system

machine Standard name identifying the hardware on which the operating system is running

IMPLEMENTATION

This routine is available only to users of the UNICOS operating system.

SEE ALSO

SR-OI13

uname(l} in the UNICOS User Commands Reference Manual, publication SR-201l
uname(2) in the UNICOS System Calls Reference Manual, publication SR-2012

18-8 C

INTRO(3X) INTRO(3X)

19. MISCELLANEOUS UNICOS ROUTINES

This section contains descriptions of various specialized UNICOS libraries or miscellaneous routines that
are not included elsewhere in this manual.

Miscellaneous Routines and Libraries
Purpose Name Entry

Update CRT screens CURSES CURSES
System call interface to Fortran SYSCALL SYSCALL
Text interface to X Window System XIO XIO
C language X Window System Interface Library XLIB XLIB

SR-OI13 19-1 c

CURSES (3X) CURSES (3X)

NAME

curses - Updates CRT screens

SYNOPSIS

#include <curses.h>
cc [flags] files -Icurses [libraries]

DESCRIPTION

The curses routines give you a method of updating screens with reasonable optimization. In order to
initialize the routines, the routine initscr() must be called before any of the other routines that deal
with windows and screens are used. The routine endwin() should be called before exiting. To get
character-at-a-time input without echoing, (most interactive, screen oriented-programs want this) after
calling initscrO you should call "nonIO; cbreakO; noechoO;"

The full curses interface permits manipulation of data structures called windows that can be thought of
as two dimensional arrays of characters representing all or part of a CRT screen. A default window
called stdscr is supplied, and others can be created with newwin. Windows are referred to by variables
declared WINDOW*, the type WINDOW* is defined in curses.h to be a C structure. These data struc­
tures are manipulated with functions described below, among which the most basic are move, and
addch. (More general versions of these functions are included with names beginning with 'w', allow­
ing you to specify a window. The routines not beginning with 'w' affect stdscr.) Then refreshO is
called, telling the routines to make the user's CRT screen look like stdscr.

Mini-Curses is a subset of curses that does not allow manipulation of more than one window. To
invoke this subset, use -DMINICURSES as a cc option. This level is smaller and faster than full curses.

If the environment variable TERMINFO is defined, any program using curses checks for a local termi­
nal definition before checking in the standard place. For example, if the standard place is
lusrllib/terminfo, and TERM is set to vt100, then normally the compiled file is found in
lusrllib/terminfo/v/vt100. (The v is copied from the first letter of vt100 to avoid creation of huge
directories.) However, if TERMINFO is set to lusr/marklmyterms, curses first checks
lopusr/marklmytermS/v/vt100, and if that fails, checks lusrllib/terminfo/v/vtlOO. This is useful for
developing experimental definitions or when write permission in lusrllib/terminfo is not available.

FUNCTIONS

SR-0113

Routines listed here may be called when using the full curses. Those marked with an asterisk may be
called when using Mini -Curses.

Routine
addch(ch)*

addstr(str)*
attroff(attrs)*
attron(attrs)*
attrset(attrs)*
baudrate()*
beep()*
box(win, vert, hor)

Description
Adds a character to stdscr
(like putchar) (wraps to next
line at end of line)
Calls addch with each character in str
Turns off attributes named
Turns on attributes named
Sets current attributes to attrs
Current terminal speed
Sounds beep on terminal
Draws a box around edges of win
vert and hor are characters to use for vertical
and horizontal edges of box

19-2 C

CURSES (3X)

SR-0113

Routine
clear()
clearok(win, bl>
clrtobot()
clrtoeol()
cbreak()*
delay_output(ms)*
delcb()
deleteln()
delwin(win)
doupdate()
ecbo()*
endwiQ()*
erase()
erasecbar()
fixterm()
f1asb()
f1usbinp()*
getcb()*
getstr(str)
gettmode()
getyx(win, y, x)
bas_ic()
bas_i1()
idlok(win, bl>*
incb()
initscr()*
inscb(e)
insertln()
intrflusb(win, bl>

keypad(win, bl>
killcbar()
leaveok(win, jlag)

longname()
meta(win, jlag)*
move(y, x)*
mvaddcb(y, x, eh)
mvaddstr(y, x, str)
mvcur(oldrow, oldeol, newrow, neweol)

mvdelcb(y, x)
mvgetcb(y, x)
mvgetstr(y, x)
mvincb(y, x)
mvinscb(y, x, e)
mvprintw(y, x, fmt, args)
mvscanw(y, x, fmt, args)
mvwaddcb(win, y, x, eh)

Description
Clears stdscr
Clears screen before next redraw of win
Clears to bottom of stdscr
Clears to end of line on stdscr
Sets cbreak mode
Inserts ms millisecond pause in output
Deletes a character
Deletes a line
Deletes win
Updates screen from all wnooutrefresb
Sets echo mode
Ends window modes
Erases stdscr
Returns user's erase character
Restores tty to "in curses" state
Flashs screen or beep
Throws away any typeahead
Gets a character from tty
Gets a string through stdscr
Establishes current tty modes
Gets (y, x) co-ordinates
True if terminal can do insert character
True if terminal can do insert line
Uses terminal's insert/delete line if bf != 0
Gets char at current (y, x) co-ordinates
Initializes screens
Inserts a character
Inserts a line
Interrupts fl ush output if bl
is TRUE
Enables keypad input
Returns current user's kill character
OK to leave cursor anywhere after refresh if
flag!=O for win, otherwise cursor must be left
at current position.
Returns verbose name of terminal
Allows meta characters on input if flag != 0
Moves to (y, x) on stdscr
Move(y, x) then addcb(eh)
similar ...

Low level cursor motion
like delcb, but move(y, x) first
etc.

19-3

CURSES (3X)

C

CURSES (3X) CURSES (3X)

SR-0113

Routine
mvwaddstr(win, y, x, str)
mvwdelch(win, y, xJ
mvwgetch(win, y, x)
mvwgetstr(win, y, x)
mvwin(win, by, bx)
mvwinch(win, y, x)
mvwinsch(win, y, x, c)
mvwprintw(win, y, x, fmt, args)
mvwscanw(win, y, x,fmt, argsJ
newpad(nlines, ncols)
newterm(type, ft/)
newwin(lines, cols, begin""y, begin~)

Description

Creates a new pad with given dimensions
Sets up new terminal of given type to output on fd

Creates a new window
nl()* Sets newline mapping
nocbreak()* Unsets cbreak mode
nodelay(win, bf) Enables nodelay input mode through getch
noecho()* Unsets echo mode
nonl()* Unsets newline mapping
noraw()* Unsets raw mode
overlay(winl, win2) Overlays winl on win2
overwrite(winl, win2) Overwrites winl on top of win2
pnoutrefresh(pad, pminrow. pmincol, sminrow.
smincol, smaxrow, smaxcol)

Like prefresh but with no output until doupdate called
prefresh(pad, pminrow, pmincol. sminrow,
smincol. smaxrow, smaxcol)

printw(fmt, argl. arg2, ...)

raw()*
refresh()*
resetterm()*
resetty()*
saveterm()*
savetty()*
scanw(fmt, argl. arg2 • ... J

scroll(win)
scrollok(win, flag)
set_term(new)
setscrreg(t , b)
setterm(type)
setupterm(term, filenum, errret)
standend()*
standout()*
subwin(win. lines. cols, begin""y. begin_x)

Refreshes from pad starting with given upper left
corner of pad with output to given
portion of screen

Does printf on stdscr
Sets raw mode
Makes current screen look like stdscr
Sets tty modes to "out of curses" state
Resets tty flags to stored value
Saves current modes as "in curses" state
Stores current tty flags

Does scanf through stdscr
Scrolls win one line
Allows terminal to scroll if flag != 0
Now talk to terminal new
Sets user scrolling region to lines t through b
Establishes terminal with given type

Clears standout mode attribute
Sets standout mode attribute

Creates a subwindow

19-4 C

CURSES (3X) CURSES (3X)

Routine
toucbwin(win)
traceoff()
traceon()
typeabead(fd)
unctrl(ch)*
waddcb(win. ch)
waddstr(win. str)
wattroff(win. aurs)
wattron(win. aurs)
wattrset(win. attrs)
welear(win)
welrtobot(win)
welrtoeol(win)
wdelch(win. c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win. str)
winch(win)
winsch(win. c)
win sert1n(win)
wmove(win. y. x)
wnoutrefresh(win)
wprintw(win. fmt. argl. arg2, ...)

wrefresh(win)
wscanw(win. fmt. argl. arg2, ...)

wsetscrreg(win. t. b)
wstandend(win)
wstandout(win)

Description
Changes all of win
Turns off debugging trace output
Turns on debugging trace output
Use file descriptor fd to check typeahead
Printable version of ch
Adds character to win
Adds string to win
Turns off aUrs in win
Turns on aUrs in win
Sets aUrs in win to aUrs
Clears win
Clears to bottom of win
Clears to end of line on win
Deletes character from win
Deletes line from win
Erases win
Gets a character through win
Gets a string through win
Gets character at current (y. x) in win
Inserts character into win
Inserts line into win
Sets current (y. x) co-ordinates on win
Refreshes but no screen output

Does printf on win
Makes screen look like win

Do scanf through win
Sets scrolling region of win
Clears standout attribute in win
Sets standout attribute in win

TERMINFO LEVEL ROUTINES

SR-0113

These routines should be called by programs wishing to deal directly with the terminfo database. Due
to the low level of this interface, use of them is discouraged. Initially, setupterm should be called.
This defines the set of terminal dependent variables defined in terminfo(4F). The include files
<curses.h> and <term.h> should be included to get the definitions for these strings, numbers, and flags.
Parmeterized strings should be passed through tparm to instantiate them. All terminfo strings (includ­
ing the output of tparm) should be printed with tputs or putp. Before exiting, resetterm should be
called to restore the tty modes. (programs desiring shell escapes or suspending with control Z can call
resetterm before the shell is called and fixterm after returning from the shell.)

Routine
fixterm()

resetterm()

Description
Restores tty modes for terminfo use
(called by setupterm)
Resets tty modes to state before program entry

19-5 C

CURSES (3X)

Routine
setupterm(term.ld. re)

tparm(str, pJ, p2, ... , p9)

tputs(str, affent, pute)

putp(str)

vidputs(attrs, pute)

vid attr (attrs)

TERMCAP COMPATIBILITY ROUTINES

Description
Reads in database. Terminal type is the
character string term, all output is to UNCOS
System file descriptor Id. A status value is
returned in the integer pointed to by re: 1
is normal. The simplest call would be
setupterm(O, 1, 0) which uses all defaults.

Instantiates string str with parameters p ..
Applies padding information to string s:r.
affent is the number of lines affected,
or 1 if not applicable. Pute is a
putchar-like function to which the characters
are passed, one at a time.
Calls tputs
(str, 1, putehar)
Outputs the string to put terminal in video
attribute mode attrs, which is any
combination of the attributes listed below.
Characters are passed to putchar-like
function pute.
Like vidputs but outputs through
putchar

CURSES (3X)

These routines were included as a conversion aid for programs that use termcap. Their parameters are
the same as for termcap. They are emulated using the terminfo database. They may go away at a
later date.

Routine
tgetent(bp, name)
tgetfiag(id)
tgetnum(id)
tgetstr(id, area)
tgoto(eap, col, row)
tputs(eap, affent, In)

ATIRffiUTES

Description
Looks up termcap entry for name
Gets Boolean entry for id
Gets numeric entry for id
Gets string entry for id
Applies parameters to given cap
Applies padding to cap calling In as putchar

The following video attributes can be passed to the functions attron,attroff,attrset.

SR-OI13

Attribute
A_STANDOUT
A_UNDERLINE
A_REVERSE
A_BLINK
A_DIM
A_BOLD
A_BLANK
A_PROTECT
A_ALTCHARSET

Description
Terminal's best highlighting mode
Underlining
Reverse video
Blinking
Half bright
Extra bright or bold
Blanking (invisible)
Protected
Alternate character set

19-6 C

CURSES (3X) CURSES (3X)

FUNCTION KEYS

The following function keys might be returned by getch if keypad has been enabled. Note that not all
of these are currently supported, due to lack of definitions in terminfo or the terminal not transmitting a
unique code when the key is pressed.

Name Value Key name
KEY_BREAK 0401 Break key (unreliable)
KEY_DOWN 0402 The four arrow keys ...
KEY_UP 0403
KEY_LEFf 0404
KEY_RIGHT 0405
KEY_HOME 0406 Home key (upward+left arrow)
KEY_BACKSPACE 0407 Backspace (unreliable)
KEY_FO 0410 Function keys. Space for 64 is reserved.
KEY_F(n) (KEY _FO+(n» Formula for In.
KEY_DL 0510 Delete line
KEY_IL 0511 Insert line
KEY_DC 0512 Delete character
KEY_IC 0513 Insert character or enter insert mode
KEY_EIC 0514 Exit insert character mode
KEY_CLEAR 0515 Clear screen
KEY_EOS 0516 Clear to end of screen
KEY_EOL 0517 Clear to end of line
KEY_SF 0520 Scroll 1 line forward
KEY_SR 0521 Scroll 1 line backwards (reverse)
KEY_NPAGE 0522 Next page
KEY_PPAGE 0523 Previous page
KEY_STAB 0524 Set tab
KEY_CTAB 0525 Clear tab
KEY_CATAB 0526 Clear all tabs
KEY_ENTER 0527 Enter or send (unreliable)
KEY_SRESET 0530 Soft (partial) reset (unreliable)
KEY_RESET 0531 Reset or hard reset (unreliable)
KEY_PRINT 0532 Print or copy
KEY_LL 0533 Home down or bottom (lower left)

IMPLEMENTATION

These routines are available only to users of the UNICOS operating system.

SEE ALSO

terminfo(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

SR-0113 19-7 C

XIO(3X)

NAME

xio - Text interface to the X Window System

SYNOPSIS

Display *
xstart(program, disp, evfunc)
char *program;
char *disp;
int (*evfunc)();
TEXT *
xopen(prompt, geom)
char *prompt;
char *geom;
xclose(win)
TEXT *win;
TEXT *
xtitle(pwin)
TEXT *pwin;
xprintf(win, format [, arg] ...)
TEXT *win;
char *fonnat;
xputc(c, win)
TEXT *win;
char c;
xputs(s, win)
TEXT *win;
char *s;
xftush(win)
TEXT *win;
xevents()
xselect(win, mask)
TEXT *win;
long mask;
xunselect(win, mask)
TEXT *win;
long mask;
xconfigure(win, nw, nh, xw, xh)
TEXT *win;
int nw, nh, xw, xh;
Window
xfindwindow(prompt)

,int (*prompt)();

DESCRIPTION

XIO(3X)

These functions provide a standard I/O like interface to the X Window System to a single display. The
xstart routine is used initialize the display. program is used to extract the following variables from
-1.Xdefaults:

SR-OI13

BodyFont
Reverse Video

BorderWidth

19-8

Foreground Background Border

c

XIO(3X) XIO(3X)

If disp is nonzero, it refers to the display name. If it is zero then the environment varaiable DISPLA Y is
used as the display name. The evfune is used by the xevent function (see below). xstart returns non
zero if the contact is made with the display.

The xopen routine is used to open a new window on the display started by xstart The geom argument
specifies a standard X geometry (i.e =width x height + xoff + yoft). xopen returns a non null TEXT
pointer if it succeeds.

xclose closes and destroys the window refered to by win

xtitle returns a TEXT pointer to a one line title subwindow contained in the window pwin. It is a vio­
lation to open a title in a title or try to open more than one title in a window.

xprintf, xpute, xputs, and xftush work as their stdio counterparts fprintf, fpute, fputs, and mush.

xevents handles X events and calls evfune from above for any event it does not know how to deal
with. It passes evfunc a pointer to the XEvent structure. This routine must be called whenever there is
input waiting on the file descriptor associated with X (dpynoO in C will return the file descriptor).

xselect allows the selection of more events on the TEXT window.

xunselete allows the deselections of events selected via xselect.

xeonfigure sets a minimum and maximum size for the TEXT window. Setting any value to 0 will
remove the limit for that value.

xfindwindow grabs the server, makes the mouse a target, calls the prompt routine (which should ask
the user to select a window) and returns the window ID of the window selected.

IMPLEMENTATION

These routines are available only to users of the UNICOS operating system.

SEE ALSO

NOTE

SR-0113

Complete documentation for the text interface to the X Window System, is in the Xlib - C Language X
Interface Protocol Version 10 by Jim Gettys and Tony Della Fera of the Digital Equipment Corporation,
and Ron Newman of the Massachusetts Institute of Technology.

The X Window System is a trademark of MIT.

19-9 C

XLm(3X) XLm(3X)

NAME

Xlib - C Language X Window System Interface Library

SYNOPSIS

#include <XlXlib.h>

DESCRIPTION

FILES

This library is the low level interface for C to the X protocol, which supports the X Window System, X
Version 10, January 1986, from M.I.T. At present, the X Window System comprises more than 150
subroutines.

This library gives complete access to all capability provided by the X Window System (protocol version
10), and is intended to be the basis for other higher level libraries for use with X.

/usr/includeIX/Xlib.h, /usr/lib/libX.a

IMPLEMENTATION

This library is available only to users of the UNICOS operating system.

SEE ALSO

SR-0113

Complete documentation for the C language interface to the X Window System, is in the Xlib - C
Language X Interface Protocol Version 10 by Jim Gettys and Tony Della Fera of the Digital Equipment
Corporation, and Ron Newman of the Massachusetts Institute of Technology.

19-10 C

APU'lWA - Writes to a word-addressable 12-42

AQCLOSE - Closes an asynchronous queued I/O file 12-11

AQIO dataset close ... ~ 12-11

AQIO dataset open ... 12-12

AQIO status .. 12-17

Index AQIO wait · .. 12-19

AQIO write ... 12-20

$OUT from register copy ... 16-10 AQOPEN - Opens a file for asynchronous queued I/O 12-12

32 bits from 64 bits write ... 12-72 AQREAD .. 12-13

32-bit words write .. 12-72 AQREADC ... 12-13

6O-bit integer ... 8-11 AQREADI .. 12-13

6O-bit integer to 64-bit integer conversion 8-10 AQRECALL ... 12-15

6O-bit pack and unpack ... 9-4 AQRIR - Delays program execution during queued 12-15

6O-bit single-precision to 64-bit single precision conversion .8-9 AQST AT - Checks the status of AQIO requests 12-17

64-bit complex conversion ... 8-33 AQSTOP - Stops the processing of AQIO requests12-18

64-bit D fonnat to single-precision conversion 8-24 AQWAIT - Waits on a completion of AQIO requests12-19

64-bit integer to 6O-bit integer conversion 8-11 AQWRITE .. 12-2~

64-bit integer to VAX INTEGER*2 conversion 8-29 AQWRITEC ... 12-20

64-bit single-precision .. 8-23 AQWRITEI ... 12-20

64-bit single-precision .. 8-25 AQWRTECI - Queues a simple or compound AQIO write .12-20

64-bit single-precision .. 8-27 arbitrary skip distance ... 4-29

64-bit single-precision .. 8-32 arbitrary skip distance ... 4-32

argument .. 17 -22

argument vector .. 18-5

abort job .. 17-20 array byte or bit move .. 1 0-5

abort job .. 17-5 array byte replace ... 10-2

abort NAMEUST job ... 12-50 array comparison .. 10-4

ABORT - Requests abort with traceback 17-5 array search ... 6-13

ABS ... 2-7 array search ... 6-14

absolute value of a complex vector ... 6-11 array search ... 6-15

absolute value of a real vector ... 6-11 array search ... 6-16

absolute values of vector elements addition 4-36 array search ... , 6-17

accept data ... 12-9 array search ... 6-21

access test for .. 3-7 array search .. 10-3

ACOS ..•......... 2-8 ASCDC - Converts CDC display code 8-8

ACPTBAD - Makes bad data available 12-9 ASCII conversion ... 8-8

ACREAOCI - Queues simple or compound AQIO 12-13 ASCII from binary conversion .. 8-5

active subroutine list ... 16-17 ASCII from time ... 15-10

ACTTABLE .. 17-6 ASCII to EBCDIC conversion ... 8-15

add characters for NAMEUST .. 12-48 ASCII to integer conversion .. 8-7

add memory .. 17-35 ASCII to time-stamp conversion .. 15-5

add to LFI' .. 3-4 ASCII translation ... 8-13

add word to table .. 11-13 ASIN ... 2-16

ADDLFf - Adds a name to the Logical File Table (LFf) 3-4 assign a multitasking lock .. 14-21

adjust heap block .. 11-9 assign multitasking barrier ... 14-5

AIMAG - Computes imaginary portion of a complex 2-9 assign variable .. 14-5

AINT ... 2-10 assign variable as a lock ... 14-21

allocate memory from heap .. 11-4 assign variable to an event ... 14-14

allocate table space ... 11-15 ASYNCDR - Set I/O mode to asynchronous 12-22

allocated heap block change ... 11-9 asynchronous I/O ... 12-12

ALOG ... 2-11 asynchronous I/O status check .. 12-23

ALOGI0 ... 2-12 asynchronous I/O wait .. 12-19

AMAXO .. 6-18 asynchronous I/O waiL ... 12-63

AMAXl .. 6-18 asynchronous mode .. 12-22

AMINO .. 6-19 asynchronous read .. 12-13

AMINI .. 6-19 asynchronous read .. 12-36

AMOD .. 2-38 asynchronous status .. 12-17

AND - Computes the logical product 2-13 asynchronous write ... 12-20

ANINT .. 2-15 ASYNCMS ... 12-22

SR-0113 Index-l c

ATAN ... 2-17 CABS - Computes absolute value ... 2-7

ATAN2 ... 2-18 CALLCSP - Executes a COS control statement 3-5

calling sequence information .. 16-18

calling sequence list .. 16-17

BO write ... 16-6 CAXPY - Adds scalar multiple of real or complex vector . .4-37

B20CI' - Places an octal ASCII representation 8-5 CCOPY - Copies a real or complex vector4-40

BACKFILE - Positions a dataset after the previous EOF 13-3 CCOS .. 2-23

bad data ... 12-9 CCOS - Computes the cosine .. 2-23

bad data skip ... 12-55 CCS - Cracks a control statement ... 17-7

banded symmetric systems of linear equations 4-12 COC 6O-bit integer conversion .. 8-10

BARASGN - Identifies an integer variable as a barrier 14-5 CDC 6O-bit single-precision conversion 8-9

BARREL - Releases the identifier assigned to a barrier 14-6 CDC display code characters ... 8-8

barrier .. 14-5 CDC to ASCII character conversion 8-8

barrier .. 14-6 CooTC ... 4-11

barrier synchronization with tasks .. .14-7 CooTU - Computes a dot product (inner product)4-11

BARSYNC - Registers the arrival of a task at a barrier 14-7 CEXP - Computes exponential function 2-31

beginning-of-volume processing .. 12-25 CEXPR - Cracks an expression .. 17-8

beginning-of-volume processing .. 12-40 CFFT2 - Applies a complex Fast Fourier transform 5-3

beginning-of-volume processing .. 12-56 CFFTMLT - Applies complex-to-complex FFT·s5-4

BICONV ... 8-6 change JCL symbol .. 17-32

BICONZ - Converts a specified integer to a decimal 8-6 change length of block ... 11-6

bidirectional memory test ... 17-43 change output value .. 12-31

binary to character conversion ... 8-5 change size of heap block .. 11-9

binary to octal conversion .. 8-5 channel programming ... 17-15

bit move .. 10-5 CHAR ... 2-19

bit population parity ... 2-45 character changes NAMEUST ... 12-48

bit shift .. 2-49 character conversion ... 2-19

bit shift .. 2-50 character conversion ... 8-8

bits count leading zero .. 2-35 character move ... 10-6

blanks for value .. 12-31 character read .. 12-44

block extend or copy .. 11-6 character string length .. 2-36

block heap change .. 11-9 character translate ... 8-14

block length heap .. 11-11 character write ... 12-71

block of memory to heap .. 11-7 CHCONV - Converts decimal ASCII numerals 8-7

block tape position .. 12-5 3 check AQIO status .. 12-17

blocks in dataset ... 13-9 check for multitasking task .. 14-29

BOV processing .. 12 -40 check heap .. 11-5

BOV processing .. 12-59 check status of I/O .. 12-23

BOV processing .. 12-25 CHECKDR - Checks status of random access I/O 12-23

BUFDUMP - Unformatted dump of history trace buffer 14-8 CHECKMS ... 12-23

buffer record into .. 12-30 CHECKTP - Checks tape I/O status 12-24

BUFPRINT - Formatted dump of history trace buffer 14-9 Cholesky ... 4-24

BUFTUNE - Tune parameters controlling history trace 14-10 circular shift .. 2-48

BUFUSER - Adds entries to history trace buffer 14-13 clear a multitasking lock .. 14-22

bypass file .. 13-11 clear floating-point interrupts ... 17-11

bypass records ... 13 -11 clear multitasking .. 14-15

byte comparison .. 10-4 clear multitasking event. ... 14-15

byte move .. 1 0-5 CLEARBT .. 17-9

byte replacement ... 10-2 CLEARBTS .. 17-10

CLEARFI .. 17-11

CLEARFIS .. 17-12

C interface X Window library .. 19-10 clock .. 15-3

C snapshot dump .. 16-13 clock .. 15-6

SR-Ol13 Index-2 c

clock register ... 15-6
CLOCK - Returns the current system-clock time 15-3

CLOG - Computes the natural logarithm 2-11

CLOSDR - Writes master index. closes dataset12-26

close AQIO dataseL .. 12-11

close random access dataset ... 12-26
close random access dataset ... 12-64
CLOSEV - Begins user EOV and BOV processing 12-25

CLOSMS .. 12-26

CLUSEQ ... 6-5

CLUSFGE - Finds real clusters in a vector 6-6

CLUSFGT ... 6-6

CLUSFLE ... 6-6

CLUSFLT ... 6-6

CLUSIGE - Finds integer clusters in a vector 6-7

CLUSIGT .. 6-7

CLUSILE .. 6-7

CLUSIL T .. 6-7

CLUSNE - Finds index of clusters within a vector 6-5

cluster search .. 6-5
cluSter search .. 6-6
cluster search ..•....... 6-7

clusters of integer occurrences ... 6-7

clusters of real occurences ... 6-6

CMACH - Returns machine epsilon 17-46
CMPLX ... 2-20

CMPLX - Converts to type complex 2-20

conunand execute shell ... 17 -30

common logarithm .. 2-12

conununications between jobs .. 17-28
cOlllpare bytes ... 10-4

COMPL - Computes the logical complemenL 2-21

COIllplement logical•................................... 2-21

cOlllplex Fast Fourier transform ... 5-3
COIllplex fast Fourier transform (multiple input vectors) 5-4

COIllplex LlN"PACK routines .. 4-24

COIllplex number computation .. 2-9

COIllplex plane rotation ... 4-9

cOlllplex plane rotation matrix .. 4-10
COIllplex vector .. 4-38

cOlllplex vector .. 4-40

COIllplex vector addition ... 4-37

COIllplex vector addition ... 4-64

cOlllplex vector dot product .. 4-11

COIllplex vector exchange ... 4-65
cOlllplex-to-real Fast Fourier transform 5-5

COIllplex-to-real Fast Fourier transfonn. multiple vectors5-7

COIllpress data. ... 9-2

COlllpute absolute value .. 2-7

COlllpute arcocosine ... 2-8

COIllpute arcsine .. 2-16

COlllpute arctangent for single argument 2-17

COIllpute cosine ..•........ 2-22

SR-0113

COlllpute cotangent .. 2-25

COIllpute double-precision product (real numbers) 2-28

COIllpute exponential function .. 2-31

COIllpute hyberbolic cosine•..............•........ 2-24

COIllpute integer ceiling .. 17-27
COIllpute tangent ..•....................... 2-55
CONIG .. 2-22

CONIG - Computes the conjugate of a complex number 2-22

CONTPIO - Continues normal I/O operations 12-28

control statement execute ... 3-5

control statement interpreter ... 17-13
control statement parameters .. 17 -24

conversion from mM ... 8-18

conversion input type •.•••••••....•••••••••.••••••••..•.••••••...•••••••..•••••.•.. 12-51

convert ASCII to integer .. 8-7
convert binaty to octal .. 8-5

convert tiIne .. 15-11

convert tiIne .. 15-5

convert tiIne to ASCII .. 15-10
convert to 24 bit frOlll 64 bit integer 2-34
convert to double precision ... 2-26

convert to integer .. 2-33

convert to real ... 2-47

convolution of symetric vectors•............. 4-17
convolution of vectors .. 4-16

copy block ... 11-6
Copy register to $OUT•.•.....•......•.......•.•........•...............•..... 16-10

copy \Dlblocked ... 13-5

COPYD ... 13-4

COPYD - Copies records .. 13-4
COPYF .. 13-4

copying .. 13-4

copying vectors ... 4-40

COPYR•.. 13-4
COPYU - Copies either specified sectors13-5

COS ... 2-23

COS dump .. 16-4

COS dump ... 16-5

COS parameters .. 17-24
COS system requests .. 17-48
COSH .. 2-24

cosine .. 2-23
cosine (hyberbolic) ... 2-24

COT ... 2-25

count 1 bits ... 2-44

count arguments •... 17-26

count leading zero bits ..•............ 2-35

count string characters ..•.................. 10-7

CPU tiIne .. 15-7

CPU time remaining ... 15-9

CPU tiIne return .. 14-27

CPUs available. ... 14-26

CRACK ... 17-13

Index-3 c

CRACK - Cracks a directive ... 17-13 dataset access in system directory .. 3-8

Cray 64-bit integer conversion ... 8-11 dataset AQIO close ... 12-11

Cray 64-bit integer conversion ... 8-18 dataset close .. 12-64

Cray 64-bit integer to VAX INTEGER*2 conversion 8-29 dataset close random access ... 12-26

Cray 64-bit integer to V AX INTEGER*4 conversion 8-29 dataset creation ... 3-7

Cray 64-bit single-precision conversion 8-9 dataset edition ... 17-37

Cray 64-bit single-precision floating-point conversion 8-17 dataset memory reduce .. 12-57

Cray 64-bit single-precision floating-point conversion 8-27 dataset open .. 12-38

Cray 64-bit single-precision to floating-point conversion 8-25 dataset open AQIO .. 12-12

Cray complex conversion ... 8-34 dataset parameter table (DSP) address 3-6

Cray complex conversion ... 9-34 dataset position ... 12-34

Cray complex to V AX complex conversion 8-34 dataset position .. 12-32

Cray complex to V AX complex conversion 9-34 dataset size in blocks .. 13-9

Cray to V AX conversion ... 8-34 dataset skip .. 13-10

Cray to V AX conversion ... 9-34 dataset tape position .. 12-53

CRA YDUMP .. 16-3 dataset tape synchronize with program 12-61

CRA YDUMP - Prints a memory dump to dataset16-3 DATE .. 15-4

create subindex ... 12-57 date conversion ... 15-5

CRFFf2 .. 5-5 date returned in Julian fonnat .. 15-4

CRFFf2 - Applies complex to real Fast Fourier transfonn .. .5-5 DBLE .. 2-26

CROT - Applies the rotation computed by CROTG 4-9 DCOS .. 2-23

CROTG - Computes complex plane rotation matrix 4-10 DCOSH ... 2-24

CRT screen update ... 19-2 DCOSH - Computes the hyperbolic cosine 2-24

CSCAL - Scales a real or complex vector 4-38 DCOT .. 2-25

CSIN" - Computes the sine ... 2-52 DCOT - Computes the cotangent ... 2-25

CSQRT - Computes the square root 2-54 DDIM - Positive difference of two numbers 2-27

CSSCAL ... 4-38 deallocate heap .. 11-7

CSUM - Sums the elements of a real or complex vector4-64 DEBUG-like snapshot dump .. 16-13

CSW AP - Swaps two real or complex arrays4-65 declare job rerunnable .. 17-42

current date Julian ... 15-4 decrease heap .. 11-1 0

current level of calling sequence .. 16-18 decrease heap block .. 11-9

current operating system ... 18-8 delay .. 17-14

current system time ... 15-3 delay multitasking event ... 14-19

curses - Updates CRT screens ... 19-2 delay task .. 14-19

custom translation .. 8-14 DELAY - Do nothing for a fixed period of time 17-14

cycle time of machine .. 14-20 delete characters for NAMEUST12-48

delimiter NAMEUST change .. 12-65

detenninant of a square matrix .. 4-27

DABS .. 2-7 DEXP .. 2-31

DACOS - Computes the arccosine " 2-8 DFLOAT - Converts to type double-precision 2-26

DASIN" - Computes the arcsine ... 2-16 difference logical .. 2-39

data accepL .. 12-9 difference logical .. 2-57

data bad skip ... 12-55 difference of two numbers (positive) 2-27

data buffer a record .. 12-30 DIM ... 2-27

data compression .. 9-2 DINT - Computes real and double-p~ision truncation 2-10

data reading ... l2-36 directive parameters process ... 17-39

data transfer .. 12-13 disk dataset positioning .. 12-32

data unpacking .. 9-5 disk random access write .. 12-73

data word-addressable ... 12-36 DLOG ... 2-11

data writing ... 12-70 DLOGI0 - Computes a common logarithm 2-12

DA T AN - Computes the arctangent for single argument. 2-17 DMAX1 .. 6-18

DATAN2 - Computes the arctangent for two arguments 2-18 DMIN"I .. 6-19

dataset access .. 3-7 DMOD - Computes renlainder ... 2-38

SR-0113 Index-4 c

DNINT - Finds the nearest whole number 2-15

dot product .. 4-11

double-precision truncation .. 2-10

DPROD - Computes double-precision product of real •.......... 2-28

DRIVER - Programs a Cray channel on an I/O Subsystem .17-15

DSASC .. 8-8

DSIGN - Transfers sign of numbers 2-51

DSIN ... 2-52

DSINH - Computes the hyperbolic sine 2-53

DSQRT ... 2-54

DT AN - Computes the tangent .. 2-55

DT ANH - Computes the hyperbolic tangent 2-56

DTTS - Converts ASCII date and time to time-stamp 15-5

dump ... 14-9

DUMP ... 16-4

dump from registers .. 16-10

dump heap size and address ... 11-8

dump job area ... 16-5

dump multitasking .. 14-8

dump of memory .. 16-4

dump of running program .. 16-13

dump to $OUT .. 16-4

dump to dataseL .. 16-5

dump to dataset ... 16-3

dump tuning .. 14-1 0

DUMPJOB - Creates dataset with user job area image 16-5

EBCDIC to ASCII conversion ... 8-15

EBCDIC translation .. 8-13

echo lines NAMEUST ... 12-49

ECHO - Turns on and off the classes of messages 17-16

edition of dataset ... 17-37

Eigenvalue problem .. 4-12

EISPACK - Single-precision EISPACK routines4-12

elements in a vector .. 6-8

elements of a complex vector .. 6-11

elements of a real vector .. 6-11

END .. 17-17

end Fortran prognpn ... 17-21

end job .. 17-17

end job .. 17-5

end job ... 17-17

end of file status ... 13-7

end of tape processing .. 12-52

end-of-dataset status ... 13-8

end-of-file status ... 13-8

end-of-volume notification ... 12-29

end-of-volume processing .. 12-25

end-of-volume processing .. 12-41

end-of-volume processing ... 12-56

ENDRPV - Tenninates a job step ... 17-17

ENDSP - Requests notification at the end of a tape volume.12-29

SR-0113

environment definitions .. 19-2

EOD position at ... 13-10

EOD status .. 13-8

EOD write ... 13-6

EODW ... 13-6

EOF ... 13-7

EOF status .. 13-8

EOF write ... 13-6

EOR write ... 13-6

EOV notification ... 12-29

EOV processing .. 12-25

EOV processing .. 12-41

EOV processing .. 12-59

equivalence logical .. , 2-29

EQV - Computes the logical equivalence 2-29

ERECALL - Allows a job to suspend itself 17-18

ERREXI1' - Requests abort ... 17-20

error unit NAMEUST .. 12-49

Euclidean nonn ... 4-46

EVASGN - Identifies variable to be used as event14-14

EVCLEAR - Clears event. returns control to calling task 14-15

event assign , .. , .. 14-14

event clear ... 14-15

event post .. 14-16

event release ... , .. 14-17

event test ... 14-18

events .. 14-15

events•.. 14-16

EVPOST - Posts event. returns control to caller 14-16

EVREL - Releases the identifier assigned to the task 14-17

EVTEST - Tests an event to detennine its posted state 14-18

EVW AIT - Delays calling task until event is posted 14-19

Exchange Package listing ... 16-19

Exchange Package write ... 16-6

exclusive OR ... 2-57

execute control statement .. 3-5

execute shell command from current process 17-30

execution time in CPU ... 14-27

execution time in CPU ... 15-7

exit from Fortran .. 17-21

exit job .. 17-20

EXIT - Exits from a Fortran program 17-21

EXP ... 2-31

expand data ... 9-5

extend block .. 11-6

extension function ... 2-46

Fast Fourier transfonn .. 5-5

Fast Fourier transfonn .. 5-6

Fast Fourier transfonn (complex. multiple input vectors) 5-4

Fast Fourier transfonn for multiple input vectors 5-7

Fast Fourier transfonns .. 5-4

Index-5 c

FFr .. 5-4

FFr ... 5-6

field finder ... 11-17

field length reduction .. 17-35

file position•........................•.. 12-34

file skip ... 13-11

file tape position ... 12-53

files .. 13-4

Fll..TERG - Computes a convolution of two vectors 4-16

Fll..1ERS - Computes convolution of two vectors 4-17

find field ... 11-17

find table field .. 11-20

FINDCH - Searches a variable or an array•...................... 10-3

FINDMS - Reads record into data buffers 12-30

first-order linear recurrence .. 4-20

first-order linear recurrence .. 4-21

first-order linear recurrence .. 4-22

first-order linear recurrences ... 4-18

first-order linear recurrences ... 4-19

fixed length record sort .. 7-2

fixed-length record sort ... 7-2

FLOAT .. 2-47

floating point conversion .. 8-17

floating point to 32-bit single-precision 8-23

floating point to single-precision conversion 8-25

floating-point ... 8-32

floating-point conversion .. 8-22

floating-point interrupts .. 17-11

floating-point interrupts .. 17-44

floating-point numbers .. 8-17

floating -point numbers .. 8-23

floating-point numbers .. 8-25

floating-point numbers•.. 8-27

floating-point to double-precision .. 8-17

floating-point to single-precision conversion 8-22

floating-point to single-precision number conversion 8-16

floating-point to V AX F fonnat single precision 8-32

floating-poiont to V AX G fonnat single precision 8-27

FOLR. .. 4-18

FOI..R.2 .. 4-19

FOI..R.2P - Solves first-order linear recurrences 4-19

FOLR.C - Solves first-order linear recurrence shown 4-2O

FOLRN - Solves last tenn of first-order linear recurrence .. .4-21

FOLRNP - Solves last tenn of first-order linear recurrence .. 4-22

FOI..R.P - Solves first-order linear recurrences4-18

fonnat Exchange Package .. 16-6

fonnat output control .. 12-65

fonnaned ... 14-9

Fortran argument .. 17-22

Fortran character string length ... 2-36

Fortran exit .. 17-21

Fortran extension GETENV ... 18-4

Fortran interface to getenv ... 18-4

Fortran intrinsic flUlction .. 2-11

Fortran intrinsic flUlction .. 2-12

Fortran intrinsic flUlction .. 2-17

Fortran intrinsic flUlction .. 2-20

Fortran intrinsic flUlction .. 2-7

Fortran intrinsic flUlction (arcosine) ... 2-8

Fortran intrinsic number•.......................•.......... 2-16

Fortran output change ... 12-31

Fortran routine GETEN"V ... 18-4

Fortran snapshot dump ... 16-13

Fourier transfonn .. 5-6

FP6064 .. 8-9

FP6460 - Converts COC 6O-biL .. 8-9

free block links for heap .. 11-8

FSUP ... 12-31

full or partial record mode .. .12-44

full or partial record mode .. .12-70

full or partial record mode ... 12-71

full or partial record modes12-43

full record read .. '" 12-44

full-record mode ... 12-70

full-record mode ... 12-71

full-record read ..•...........•...•........................•...••............•.•.•.•...•. 12-43

FXP - Fonnats and writes the Exchange Package16-6

GATHER - Gathers a vector from a source vector4-23

gathering vector .. 4-23

generates integer index ... 2-32

GETARG - Retum Fortran command-line argument17-22

GEIDSP - Searches for a Dataset Parameter Table (DSP) ... 3-6

getenv - Returns value for environment name18-4

GETLPP - Returns lines per page ... 17-23

GETOPT - Gets an option letter from an argument vector .. 18-5

GETPARAM - Gets parameters•......... 17 -24

GETroS ... 12-32

GETTP - Receives position infonnation about tape file 12-34

GETWA .. 12-36

Givens plane rotation application .. .4-54

Givens plane rotation construction ... 4-52

Givens plane rotation construction .. .4-56

hardware standard name ... 18-8

heap address .. 11-8

heap allocation .. 11-4

heap block adjust .. 11-9

heap block length .. 11-11

heap blocks dump ... 11-8

heap dea11ocation '" .. 11-7

heap decrease .. ll-l0

heap infonnation .. 11-8

heap integrity check .. 11-5

SR-0113 Index-6 c

heap size , .. 11-8 imaginary portion of complex number 2-9

heap statistics ... 11-12 in-line code function ... 2-38

history trace buffer dump ... 14-8 in-line function .. 2-36

history trace buffer dump ... 14-9 increase heap block ... 11-9

history trace buffer dump add entries 14-13 increasing vectorization .. 4-12

history trace buffer tuning parameters ~ 14-10 index location .. 2-32

hold for some time period .. 17 -14 index of clusters within a vector .. 6-5

Homer's method ... 4-21 index of elements of a vector ... 6-11

HPAllOC _ Allocates a block of memory from the heap 11-4 index write master ... 12-26

HPCHECK - Checks the integrity of the heap 11-5 INDEX - Determines location of a character substring 2-32

HPCLMOVE - Extends a block into a larger block 11-6 initiate a task ... 14-28

HPDEAllC - Returns a block of memory 11-7 inner·product ... 4-11

HPDUMP - Dumps the address, size of each heap block 11-8 input .. 12-43

HPNEWLEN - Changes the size of allocated heap block11-9 input routine .. 12-48

HPSHRINK - Returns an unused portion of heap11-10 input type mismatch ... 12-51

hyperbolic .. 2-53 input wait for end ... 12-63

hyperbolic tangent function .. 2-56 INT .. 2-33

INT24 .. 2-34

INT6064 - Converts COC integers to Cray integers 8-10

I/O asynchronous .. 12-12 INT6460 - Converts Cray integers to COC integers 8-11

I/O check of status .. 12-23 integer array element .. 6-13

I/O mode asynchronous .. 12-22 integer array element .. 6-15

I/O mode to synchronous ... 12-62 integer array element .. 6-17

I/O open ... 12-38 integer array element .. 6-20

I/O read asynchronous .. 12-13 integer array elements ... 6-21

I/O wait ... 12-63 integer array elements ... 6-23

I/O wait (AQIO) ... 12-19 integer array search ... 6-23

I/O write (AQIO) .. 12-20 integer ceiling value .. 17 -27

lABS ... 2-7 integer conversion ... 2-19

IARGe - Returns number of canmand line arguments 17-26 integer converter ... 2-34

mM 32-bit floating-point conversion 8-22 integer from ASCII conversion .. 8-7

mM 64-bit floating-point conversion 8-16 integer to packed-decimal conversion 8-19

ibm floating-point ... 12-45 INTEGER*2 to integer conversion .. 8-18

mM packed-decimal conversion .. 8-21 INTEGER*4 to integer conversion .. 8-18

ibm words read ... 12-45 integrity of heap check ... 11-5

mM words write .. 12-72 inter-job canmunication ... 17-28

ibm-from-Cray read .. 12-45 interface to X window .. 19-8

ICAMAX - Finds largest absolute value in vectors 6-11 interrupts floating -point .. 17 -11

ICEIL - Returns integer ceiling of a rational number 17-27 interrupts floating-point ... 17-44

ICHAR - Converts integer to character and vice versa 2-19 INTFLMAX .. 6-9

IDIM ... 2-27 INTFLMIN _ Searches for maximum or minimum value 6-9

IDINT - Converts to type integer .. 2-33 INTMAX .. 6-10

IDNINT - Finds the nearest integer 2-41 INTMIN - Searches for the maximum or minimum value 6-10

IEOF - Returns real or integer value EOF status 13-7 inverse of square matrix ... 4-27

IFDNT - Determines if a dataset has been accessed 3-7 lOS channel program .. 17-15

IFIX .. ; 2-33 IOSTAT - Returns EOF and EOD status13-8

IGTBYT - Replaces a byte in a variable or an array10-2 IRTC - Return real-time clock values 15-6

IHPLEN - Returns the length of a heap block 11-11 ISAMAX ... 6-11

IHPST A T - Returns statistics about the heap11-12 ISAMIN - Finds maximum ... 6-12

IILZ ... 6-8 ISHELL - Executes a UNICOS shell command 17-30

UCOM - Allows a job to communicate with another job 17 -28 ISIGN .. 2-51

ILLZ .. 6-8 ISMAX .. 6-12

ILSUM - Returns number of an object in a vector 6-8 ISMIN ... 6-12

SR-0113 Index-7 c

ISRCHEQ ... 6-13 LGT ... 2-37

ISRCHFGE - Finds first real element in relation to target.. .. 6-14 library scheduler tuning .. 14-30

ISRCHFGT ... 6-14 line length on output. .. 12-67

ISRCHFLE .. 6-14 linear equations ... 4-24

ISRCHFLT .. 6-14 linear equations ... 4-27

ISRCHIGE - Finds first integer element in relation to target6-15 lines per page .. 17-23

ISRCHIGT .. 6-15 UNPACK - Single-precision real and complex routines4-24

ISRClIILE ... 6-15 LlNT - Converts 64-bit integer to 24-bit integer 2-34

ISRClIILT ... 6-15 list calling sequence .. 16-17

ISRCHMEQ .. 6-16 list Exchange Package .. 16-19

ISRCHMGE - Searches vector for logical match 6-17 list subroutines .. 16-17

ISRCHMGT .. 6-17 LLE ... 2-37

ISRCHMLE .. 6-17 LL T - Compares strings lexically .. 2-37

ISRCHMLT .. 6-17 load absolute program .. 17 -33

ISRCHMNE - Finds value equal or not equal to scalar 6-16 load overlay .. 17-38

ISRCHNE - Finds element equal or not equal to target. 6-13 load program from dataset ... 17-33

ISUP - Output a value in an argument as blank 12-31 LOC - Returns memory address of variable or array 17-34

locate memory address ... 17-34

locate table field .. 11-20

JCCYCL - Retums machine cycle time 14-20 LOCKASGN - Identifies an integer variable as a lock14-21

JCL symbol change .. 17-32 LOCKOFF - Clears a lock and returns control.. 14-22

IDA TE - Returns the current date and the Julian date 15-4 LOCKON - Sets a lock and returns control.. 14-23

JNAME - Returns the job name .. 17-31 LOCKREL - Releases the identifier assigned to a lock 14-24

job area dump ... 16-5 LOCKTEST - Tests a lock to determine its state 14-25

job communication ... 17-28 logfile messages ... 17-16

job memory changes ... 17-35 logical complement ... 2-21

job name .. 17-31 logical CPUs available ... 14-26

job suspend ... 17-18 logical difference .. 2-39

job time in CPU .. 14-27 logical difference .. 2-57

job time left. .. 15-9 logical equivalence. ... 2-29

JSYMGET - Changes a value for a JCL. 17-32 logical file table .. 3-4

JSYMSET ... 17-32 logical product ... 2-13

Julian date list ... 15-4 logical sum .. 2-42

logical to LOGICAL*1 conversion .. 8-20

logical to LOGICAL*4 conversion .. 8-20

keywords process .. 17 -39 LOGICAL*1 to logical conversion .. 8-20

KOMSTR - Compares bytes between variables or arrays 10-4 LOGICAL*4 to logical conversion .. 8-20

lower upper factorization of sparse linear systems4-50

lowercase letters .. 8-13

large radix sorting ... 7-2

largest argument. ... 6-18

largest normalized number ... 17-46 machine epsilon .. 17 -46

leading zero bit count ... 2-35 manipulate memory .. 17-35

LEADZ - Counts the number of leading 0 bits 2-35 master index write .. 12-26

left circular shift .. 2-48 matrix multiplication ... 4-51

left shift ... 2-49 matrix multiplication ... 4-29

LEN - Determines the length of a character string 2-36 matrix times matrix multiplication ... 4-28

length of block change ... 11-6 matrix times vector multiplication .. 4-31

length of heap block ... 11-11 MAXO ... 6-18

length of output line .. 12-67 MAX 1 - Returns the largest of all arguments 6-18

lexical comparison .. 2-37 maximum CPUs available .. 14-26

LGE ... 2-37 maximum value in a vector .. 6-10

LGO - Loads an absolute program from a dataset 17-33 maximum value in a vector .. 6-9

SR-0113 Index-8 c

maximum vector element value ... 6-12

MAXLCPUS - Returns the maximum number of logical 14-26

memory address .. 17-34

memory allocation (heap) .. 11-4

memory bidirectional transfer ... 17-43

memory dump ... I6-3

memory less for dataset .. 12-57

memory manipulation ... 17-35

memory move ... 11-18

memory request .. 11-16

memory table allocate ... 11-15

memory to heap return .. .11-7

MEMORY - Manipulates a job's memory allocation17-35

message classes controlling .. 17-16

message control COS ... 17-16

MIN"O ... 6-19

MIN"1 - Returns the smallest of all arguments 6-19

mini-curses .. 19-2

minimum ... 6-12

minimum absolute value of vector element 6-12

minimum value in a vector .. 6-10

minimum value in a vector .. 6-9

minimum vector element value .. 6-12

MINV - Computes detenninant, inverse of square matrix 4-27

MOD ... 2-38

mode asynchronous .. 12-22

mode to synchronous .. 12-62

modified Givens plane rotation .. 4-54

modified Givens plane rotation .. 4-56

modify heap block .. 11-9

modify output value ... 12-31

modify tuning parameters library scheduler 14-30

modify tuning parameters multitasking 14-30

monitor perfonnance ... 16-7

MOVBIT - Moves bytes or bits from one variable or10-5

move block .. 11-6

move bytes or bits1 0-5

move characters .. 1 0-6

move memory words .. 11-18

MTfS - Converts time-stamp to real-time value 15-11

multipass sorting ... 7-2

multiple-input vector complex fast Fourier transfonn 5-4

multiplying a matrix with a vector .. .4-31

multiplying a matrix with a vector ... 4-32

multiplying matrices ... 4-28

multiplying matrices ... 4-29

multitasking ... 14-14

multitasking ... 14-15

multitasking ... 14-16

multitasking ... 14-17

multitasking ... 14-19

multitasking ... 14-23

multitasking ... 14-24

SR-0113

multitasking ... 14-28

multitasking ... 14-32

multitasking ... , ... 14-9

multitasking add entries to trace buffer 14-13

multitasking assign lock ... 14-21

multitasking barrier ... 14-5

multitasking barrier ... 14-6

multitasking clear lock .. 14-22

multitasking dump .. 14-8

multitasking dump .. 14-9

multitasking event test .. 14-18

multitasking modify library scheduler parameters 14-30

multitasking synchronizes task at barrier 14-7

multitasking test for task .. 14-29

multitasking test lock .. 14-25

multitasking tuning ... 14-10

MVC - Moves characters from one memory area to another 10-6

MXM - Computes a matrix times matrix product (c=ab) 4-28

MXMA - Computes a matrix times matrix product (c=ab) .. 4-29

MXV - Computes a matrix times a vector4-31

MXV A - Computes a matrix times a vector4-32

NACSED - Returns the edition of a pennanent dataset 17-37

name .. 18-8

name of job .. 17-31

NAMEUST delimiter change .. 12-65

NAMEUST error uniL ... 12-49

NAMEUST input changes ... 12-48

NAMEUST record skip ... 12-50

NAMEUST variable on new line .. 12-66

natura1logarithm ... 2-11

nearest integer search ... 2-41

nearest number search .. 2-15

NEQV - Computes the logical difference 2-39

NINT ... 2-41

NORERUN - Declares !l job rerunnable/not rerunnable 17-42

nonnalized number small and large ... 17-46

not equal .. 2-39

not rerunnable job ... 17-42

notification at EOV ... 12-29

notify of EOV ... 12-59

null to trailing blank conversion .. 8-12

number of arguments .. 17-26

number of characters in string .. 10-7

NUMBLKS - Returns size of a dataset in 512-word blocks .13-9

numerals to integer conversion ... 8-7

octal fI'OIll binary conversion ... 8-5

one bits counL ... 2-44

open AQIO dataset ... 12-12

open dataset .. 12-38

Index-9 c

open random access .. 12-68 POPP AR - Computes the bit population parity 2-45

OPENDR - Opens a local dataset for random access 12-38 population count .. 2-44

OPENMS .. 12-38 population parity .. 2-45

operating system (COS) request•................ 17-48 position .. 12-32

operating system name ... 18-8 position .. 12-34

OPFILT - Solves Weiner-Levinson linear equations4-33 position at EOD .. 13-10

option letters ... 18-5 position at tape block ... 12-53

or a dataset .. 13-4 position information .. 12-34

OR exclusive ... 2-57 positive diference .. 2-27

or function ... 2-42 post multitasking ... 14-16

or minimum absolute value .. 6-12 post multitasking events ... 14-16

OR - Cornputes the logical sum ... 2-42 PPL - Processes keywords of a directive 17-39

ordered array search ... 6-20 preset table space .. 11-19

ORDERS - Sorts using intemal .. 7-2 print Exchange Package ... 16-19

orthogonal plane rotation .. 4-51 print Exchange Package ... 16-6

OSRCHF - Searches an ordered array 6-2O PROCBOV - Allows special processing at BOV12-40

OSRCm .. 6-20 PROCEOV - Begins special processing at end-of-volume 12-41

output characters .. 12-71 process ... 17-24

output data .. 12-70 process COS .. 17-24

output Exchange Package ... I6-6 process parameters .. 17-39

output format control .. 12-65 produce symbolic dump ... 16-11

output line length .. 12-67 product logical .. 2-13

output unit NAMELIST ... 12-49 program execution resume for I/O ... 12-15

output value change .. 12-31 program exit .. 17-21

output wait for end .. 12-63 program lOS channe1. ... 17-15

overlay load ... 17-38 program load .. 17-33

OVERLAY - Loads an overlay .. .17-38 program synchronize with tape dataset 12-61

prohibit interrupts ... 17-11

pseudo-random number .. 2-46

P32 .. 9-3 PUTBYT ... 10-2

P6460 .. 9-4 PUTWA .. 12-42

pack 64 into 60 bits .. 9-4

pack data .. 9-2

pack fl'Olll 64 to 32 bits .. 9-3 QR ... 4-24

PACK - Compresses stored data ... 9-2 queue read request .. 12-13

packed decimal conversion ... 8-21 queue write request ... 12-20

packed decimal to integer conversion 8-21 quit program .. 17-21

page length .. 17-23

parameters ... 17 -24

parameters process .. 17-39 random access and asynchronous 1/0 12-22

parity bit population '/ ... 2-45 random access buffering .. 12-30

partial products problem ... 4-34 random access close ... 12-26

partial record read ... 12-44 random access close ... 12-64

partial summation problem ... 4-35 random access dataset ... 12-64

partial-record mode ... 12-71 random access dataset ... 12-68

partial-record mode ... 12-70 random access I/O .. 12-12

partial-record read ... 12-43 random access I/O check .. 12-23

Pascal snapshot dump ... 16-13 random access I/O mode .. 12-62

PDUMP - Dumps memory to $OUT16-4 random access open .. 12-38

PERF - Interfaces to the hardware performance monitor 16-7 random access open .. 12-68

performance monitor interface ... 16-7 random access read ... 12-36

permit interrupts .. 17-11 random access read ... 12-46

POPCNT - Counts the number of bits set to 1 2-44 random access synchronous ... 12-62

SR-0113 Index-IO c

random access write ... 12-73

random-access dataseL .. 12-42

random-access write ... 12-42

RANF .. 2-46

RANGET .. 2-46

RANSET - Computes pseudo-random numbers 2-46

RBN .. 8-12

RCFFT2 - Applies real to complex Fast Fourier transfonn .. .5-6

READ .. 12-43

read asynchronously ... 12-13

read characters .. 12-44

read data .. 12-36

read ibm words ... 12-45

read random access ... 12-46

read record .. 12-30

read words ... 12-43

REAOC ... 12-44

REAOCP - Reads characters ... 12-44

READDR - Reads a record from a random access dataset .. 12-46

READmM - Reads two mM 32-bit floating-point words .. .12-45

READMS .. 12-46

READP - Reads words .. 12-43

REAL .. 2-47

real array element ... 6-14

real array elements .. 6-21

real array elements .. 6-22

real array search .. 6-22

real product ... 4-11

real time value .. 15-6

real to complex FFT ... 5-6

real truncation , .. 2-1 0

real vector ... 4-38

real vector ... 4-40

real vector addition ... 4-37

real vector addition ... 4-64

real vector exchange ... 4-65

real-time to time-stamp ... 15-11

real-to-complex FFT for multiple input vectors5-7

record read random access .. 12-46

record skip .. 13-11

record skip NAMEUST ... 12-50

RECPP - Solves for a partial products problem 4-34

RECPS - Solves for the partial summation problem4-35

reduce dataset memory ... 12-57

reducing execution time .. 4-12

register to $OUT copy .. 16-10

release .. 18-8

release ... , , 14-6

release a multitasking event , , , 14-17

release a multitasking lock ... 14-24

release identifier , , , 14-6

release identifier assigned to lock .. 14-24

release lock ... 14-24

release multitasking barrier identifier 14-6

release variable assigned an event ... 14-17

release version .. 18-8

REMARK - Enters a message in the log files 17-40

REMARK2 ... 17-40

REMARKF - Enters a fonnatted message in the logfiles17-41

replace byte ... 1 0-2

replacement character NAMELIST .. 12-65

report table statistics , , , 11-14

reprieve .. , , , 17 -17

reprieve routine , , , , 17-45

request from COS ... 17-48

request memory .. 11-16

RERUN ... 17-42

rerunnable job declaration .. 17 -42

resume program during AQIO request. 12-15

retrieve JCL symbol ... 17-32

retrieve seed .. 2-46

return ... 13-9

return .. 12-32

retum end of file status .. 13-7

return Fortran argument .. 17-22

return identifier in task control array 14-31

return location of variable in memory 17-34

return memory to heap ... 11-7

return message to user and system .. 17-40

return message to user and system .. 17 -41

return number .. 1 0-7

return page length .. 17 -23

return part of heap .. 11-10

retum to ... 12-32

return value : ... 15-6

RFFTMLT - Applies complex-to-real and real-to-complex .. .5-7

right shift. .. 2-50

RNB - Converts trailing blanks to nulls and vice versa 8-12

RNLECHO - Specifies unit for NAMELIST messages 12-49

RNLSKIP - Takes action on undesired NAMELIST group .12-50

RNLTYPE - Detennines action if a type mismatch occurs ... 12-51

RTC ... 15-6

SASUM ... 4-36

SAXPY ... 4-37

scalar multiple addition .. 4-37

scaling a complex vector .. , 4-38

scaling a real vector .. 4-38

SCASUM - Sums absolute value of elements of a vector ... 4-36

SCA ITER - Scatters a vector into another vector4-39

scattering vectors .. 4-39

SCNRM2 - Computes the Euclidean nonn of a vector4-46

SCOpy .. 4-40

screen updating ... 19-2

SDACCESS - Access datasets in the System Directory 3-8

SR-OI13 Index-II c

SOOT .. 4-11 skip bad data ... 12-55

search environment list for value ... 18-4 skip dataseL ... 13-10

search for DSP .. 3-6 skip distance equals 1 ... 4-31

search for string .. 10-3 skip files .. 13-11

search table '" '" ... 11-17 skip record NAMEUST ... 12-50

search table ... 11-20 skip records ... 13-11

search vector table .. 11-21 skip sectors ... 13-13

··-.............SECOND - Returns elapsed CPU time 15-7 SKIPBAD _ Skips bad data ... 12-55

second-order linear recurrences .. 4-47 SKIPD - Positions a blocked dataset at EOD 13-10

sector skip ... 13-13 SKIPF - Skip records or files .. 13-11

See the AQIO User's Guide SN-024712-12 SKIPR ... 13-11

See the AQIO User's Guide SN-0247 12-15 SKIPU - Skips a specified number of sectors in a dataset 13-13

See the AQIO User's Guide SN-0247 12-18 SMACH .. 17-46

SEEK - Synchronously and asynchronously reads data 12-36 smallllarge nonnalized numbers ... 17 -46

sense switch test ... 17-47 smallest argument ... 6-19

SENSEBT - Detennines if bidirectional memory is enabled 17-43 smallest nonnalized number ... 17-46

SENSEFI - Checks if floating-point interrupts permitted 17-44 SMXPY - Computes product of column vector and matrix .4-45

separator NAMEUST change .. 12-65 SNAP - Copies current register contents to $OUT 16-10

set a multitasking event .. 14-14 snapshot dump .. 16-13

set a multitasking lock .. 14-23 SNGL - Converts to type real .. 2-47

set floating -point interrupts ... 17 -11 SNRM2 ... " 4-46

set I/O mode ... 12-22 SOLR .. 4-47

set lock .. 14-23 SOLR3 - Solves second-order linear recurrences 4-47

set seed .. 2-46 SOLRN ... 4-47

SETBT - Disables/enables bidirectional memory 17-9 solution of sparse linear systems .. .4-50

SETBTS - Disables/enables bidirectional memory 17-10 source vector ... 4-23

SETFI - Temporarily prohibitslpermits 17-11 space for table ... 11-19

SETFIS - Temporarily prohibits/pennits floating-point 17-12 sparse linear system .. 4-50

SETPOS - Returns the current position of interchange tape .12-32 SPAXPY - Primitives for the lower upper factorization4-50

SETRPV - Conditionally transfers control to a routine 17-45 SPOOT .. 4-50

SETSP - Requests notification at the end of a tape volume .. 12-52 special processing at end of tape ... 12-S2

SETTP - Positions a tape dataset or file 12-53 SQRT .. 2-54

SGBMV - Multiplies a real vector by a real general band4-41 square matrix .. 4-27

SGEMV - Multiplies a real vector by a real general4-43 square root .. 2-54

SGER - Perfonns the rank 1 update of a real general 4-44 SROT - Applies an orthogonal plane rotation 4-51

shell command execute ... 17 -30 SROTG - Constructs a Givens plane rotation4-52

shift circular '" ... 2-48 SROTM - Applies a modified Givens plane rotation 4-54

shift left ... 2-49 SROTMG - Constructs a modified Givens plane rotation 4-56

shift righL•... 2-50 SSBMV - Multiplies real vector by real symmetric band 4-62

SHIFf - Perfonns a left circular shift. 2-48 SSCAL :. .. 4-38

SHIFfL - Perfonns a left shift with zero fi11 2-49 SSUM .. 4-64

SHIFfR - Perfonns a right shift with zero fi11 2-50 SSWAP ... 4-65

shrink heap .. 11-1 0 SSW1TCH - Tests the sense switch .. 17-47

SIGN ... 2-51 SSYMV - Multiplies a real vector by a real symmetric 4-66

sign transfer .. 2-51 SSYR - Perfonns symmetric rank 1 update of a real 4-67

SIN .. 2-52 SSYR2 - Perfonns rank 2 update of a real symmetric 4-68

sine function .. 2-52 stamp time to ASCII ... 15-10

single-precision ... 8-17 standard time ... 15-12

single-precision real routines .. 4-24 _ start a task ... 14 -28

singular value decomposition ... 4-12 STARTSP - Begins user EOV and BOV processing 12-56

singular value decompositions ... 4-24 statistics about heap .. 11-12

SINH ... 2-53 statistics on perfonnance ... 16-7

size of dataset ... 13-9 statistics table management .. 11-14

SR-0113 Index-12 c

status of AQIO requests ... 12-17 table search ... 11-17

status of EOF and EOD .. 13-8 table search ... 11-20

status of I/O .. 12-23 table search vector ... 11-21

STBMV - Multiplies a real vector by a real triangular 4-69 table space allocation .. 11-15

STBSV - Solves a real triangular banded system of linear .. .4-71 table space preset .. 11-19

stderr message fran user .. 17-40 TAN .. 2-55

stderr message from user , 17-41 TANH ... 2-56

stdscr window ... 19-2 tape .. 12-34

STINDR - Allows an index to be used as the current index 12-57 tape ... J2-34

STINDX .. 12-57 tape block position at .. 12-53

stop Fortran program .. 17-21 tape BOV processing .. 12-40

storage request .. , 11-16 tape data accepting .. 12-9

string characters ... 10-7 tape dataset positioning .. 12-32

string comparison .. 10-4 tape dataset synchronize with program 12-61

string comparison .. 2-37 tape EOV and BOV processing ... 12-56

string search .. '" 10-3 tape EOV processing .. 12-25

string translation ... 8-13 tape EOV processing .. 12-59

S1RMOV .. 10-5 tape EOV processing ... 12-41

S1RMV - Multiplies real vector by real triangular matrix ... 4-73 tape file .. 12-34

STRSV - Solves a real triangular system of linear 4-74 tape notification at EOV ... 12-29

subindex creation .. 12-57 tape processing at end .. 12-52

subroutine listing .. 16-17 tape skip data ... 12-55

subtract memory ... 17-35 tape volume switch ... 12-60

subwindow .. 19-2 task identifier return value .. 14-31

sum 10gica1 .. 2-42 terminate dataset ... 13-6

suspend for AQIO requests .. 12-19 terminate Fortran program .. 17-21

suspend job ... 17-18 terminate job ... 17-17

SVOLPRC - Starts/ends special BOV/EOV processing 12-59 terminfo ... 19-2

swapping vectors .. 4-65 test for a task .. 14-29

switch tape volume ... 12-60 test for access .. 3-7

switch test sense ... 17-47 test multitasking event .. 14-18

SWITCHV - Switches tape volume .. 12-60 test multitasking lock .. 14-25

SXMPY - Computes product of row vector, matrix 4-75 test sense switch ... 17-47

symbol JCL ... 17-32 text interface X window ... 19-8

symbolic dump program ... 16-11 time conversion ... 15-5

SYMDEBUG - Produces a symbolic dump 16-11 time delay .. 17-14

SYMDUMP - Produces a snapshot dump of a program 16-13 time elapsed wall-clock .. 15-8

symetric vectors .. 4-17 time for machine cycle .. 14-20

SYNCDR - Sets I/O mode to synchronous 12-62 time in CPU .. 15-7

SYNCH - Synchronizes program and tape dataset 12-61 time in standard time .. 15-12

synchronize I/O mode .. 12-62 time remaining in job15-9

synchronize multitasking .. 14-7 time return execution .. 14-27

synchronize program and tape dataset12-61 time return execution ... 15-7

synchronous read .. 12-36 time to ASCII .. ~ 15-10

SYNCMS .. 12-62 time to time-stamp .. l5-5

system ... 15-3 time-stamp conversion .. 15-5

system clock time , ... 15-3 time-stamp to real-time ... 15 -11

system directory access ~ 3-8 time-stamp units .. 15-12

SYSTEM - Makes requests of the operating system 17-48 timed wait ... 17-14

TIMEF - Returns elapsed wall-clock time since last ca11 15-8

timing routines .. 15-8

table add word to11-13 TMADW - Adds a word to a table ... 11-13

table management statistics .. 11-14 TMAMU - Reports table management operation statistics 11-14

SR-0113 Index-13 c

lMA TS - Allocates table space .. 11-15 unpack data .. 9-5

lMMEM - Requests additional memory 11-16 unpack from 32 to 64 bits .. 9-3

lMMSC - Searches table with a mask to locate field 11-17 UNPACK - Expands stored data ... 9-5

lMMVE - Moves memory (words) .. 11-18 unused heap return .. 11-1 0

lMPl'S - Presets table space11-19 updating screen ... 19-2

lMSRC - Searches the table with an optional mask 11-20 uppercase letters .. 8-13

lMVSC - Searches a vector table for the search argumenL .. 11-21 USCCTC ... 8-15

TR - Translates a string from one code to another 8-13 USCCTI- Converts mM EBCDIC data to ASCII 8-15

traceback level ... '" '" 16-18 USDCTC - Converts mM 64-bit floating-point to Cray 8-16

trailing blank to null conversion .. 8-12 USDCTI - Converts Cray 64-bit single-precision 8-17

transfer bidirectional memory .. 17-43 user job area dump ... 16-5

transfer bytes or bits10-5 USICTC .. 8-18

transfer data asynchronously .. 12-13 USICTI- Converts mM INTEGER*2 and INTEGER*4 8-18

transfer upon abort .. 17 -45 USICTP - Converts Cray 64-bit integer to mM 8-19

transform Fourier .. 5-6 USLCTC ... 8-20

translate ASCII to integer ... 8-7 USLCTI- Converts mM LOGICAL*l and LOGICAL*4 .. 8-20

translate characters .. 8-14 USPCTC - Converts mM packed decimal to Cray 8-21

translate string ... 8-13 USSCTC - Converts mM 32-bit floating-point to Cray 8-22

TRB K - Lists all subroutines active in calling sequence 16-17 USSCTI - Converts Cray 64-bit single-precision 8-23

TRBKLVL - Returns information on calling sequence 16-18

TREMAIN" - Returns the CPU time 15-9

TRIMLEN - Returns the number of characters in a string 10-7 value of JCL symbol .. 17-32

TRR1 - Translates characters stored one character per word 8-14 values in a table .. 6-9

truncation ... '" 2-1 0 values in a vector .. 6-10

TSDT - Converts time-stamps to ASCII date and time 15-10 variable bit or byte move ... 10-5

TSECND - Returns elapsed CPU time for a calling 14-27

TSKSTART - Initiates a task ... ills'
variable byte replace ... 1 0-2

variable comparison .. 1 0-4

TSKTEST - Returns whether the indicated task exists 14-29 variable NAMELIST on new line .. 12-66

TSKTUNE - Modifies tuning parameters 14-30 variable search .. 10-3

TSKV ALUE - Retrieves user identifier 14-31 VAX 32-bit floating-point to 64-bit single-precision 8-31

TSKW AIT - Waits for the indicated task to complete 14-32 V AX 64-bit complex to Cray complex conversion 8-33

TSMT .. 15-11 VAX 64-bit D conversion .. 8-24

tty modes ... 19-2 V AX 64-bit G format to single-precision conversion 8-26

tune parameters for multitasking .. 14-30 VAX INTEGER*2 to 64-bit integer conversion 8-28

twos complement compare .. 1 0-4 V AX logical value to 64-bit logical value conversion 8-30

type conversion on input .. 12-51 vector addition .. 4-64

type converter ... 2-26 vector addition .. 4-75

type converter ... 2-47 vector element absolute value addition 4-36

type converter (complex) .. 2-20 vector element addition .. 4-36

type converter (integer) .. 2-33 vector mask write ... 16-6

type mismatch on input .. 12-51 vector multipication .. 4-75

vector search ... 6-24

vector search ... 6-25

U32 - Packs/unpacks 32-bit words intolfrom 64-bit 9-3 vector table search .. 11-21

U6064 - Packs/unpacks 6O-bit words intolfrom 64-bit 9-4 vector times matrix multiplication .. 4-45

unarne .. 18-8 vector times vector multiplication .. 4-37

unarne - Gets name of current operating system 18-8 VM write ... ; ... 16-6

unblocked copy ... 13-5 volume switch .. 12-60

unblocked dataset dump to ... 16-5 volume switching .. 12-59

unblocked dataset skip .. 13-13 VXDCTC - Converts V AX 64-bit D format to Cray 8-24

unit NAMEUST errors ... 12-49 VXDCTI - Converts Cray 64-bit single-precision 8-25

UNITfS - Returns time-stamp units in standard time units .. 15-12 VXGCTC - Converts V AX 64-bit G format numbers 8-26

unpack 60 into 64 bits .. 9-4 VXGCTI - Converts Cray 64-bit single-precision 8-27

SR-Ol13 Index-14 c

VXICfC - Converts V AX INTEGER*2 or INTEGER*4 8-28 words move ... 11-18

VXICIT - Converts Cray 64-bit integers 8-29 words read ... 12-43

VXLCfC - Converts V AX logical to Cray 64-bit logical 8-30 WRITDR - Writes to a random access dataset on disk12-73

vxscrc - Converts V AX 32-bit floating-point munbers ... 8-31 WRITE .. 12-70

VXSCIT - Converts Cray 64-bit single-precision 8-32 write AQIO ... 12-20

VXZCTC - Converts V AX 64-bit complex to Cray 8-33 write characters ., .. , 12-71

VXZCTI - Converts Cray complex nwnbers 8-34 write EOD ... 13-6

VXZCTI - Converts Cray complex nwnbers 9-34 write Exchange Package ... 16-6

write mM words .. 12-72

write master index .. 12-26

wait .. 17-14 write to random access dataset ... 12-73

wait for AQIO requests .. 12-19 write to random-access ... 12-42

wait for event .. 17-18 write words ... 12-70

wait for I/O ... 12-63 WRITEC ... 12-71

wait for multitasking task ... 14-32 WRITECP - Writes characters .. 12-71

wait for task completion ... 14-32 WRITEP - Writes words ... 12-70

WAITDR - Waits for completion of an asynchronous IJO 12-63 WRITIBM - Writes two mM 32-bit floating-point words ... 12-72

W ATI'MS .. 12-63 writing solutions to new vector .. 4-19

wall-clock time function ... 15-8 WRIlMS ... 12-73

WCLOSE - Coses a word-addressable 12-64

Weiner-Levinson linear equations .. 4-33

WHEN"EQ ... 6-21 X Window library ... 19-10

WHENFGE - Finds all real array elements 6-22 X window system ... 19-8

WHENFGT ... 6-22 xio - Text interface to the X Window System 19-8

WHENFLE ... 6-22 Xlib - C Language X Window System Interface Ubrary 19-10

WHENFLT ... 6-22 XOR - Computes the logical difference 2-57

WHENIGE - Finds all integer array elements 6-23 XPFMT - Produces a printable Exchange Package 16-19

WHENIGT .. 6-23

WHENILE .. 6-23

WHENILT .. 6-23 zero bits count leading ... 2-35

WHENMEQ .. 6-24 zero fill on right shift ... 2-50

WHENMGE - Finds the index of occurrences 6-25 zero fill shift .. 2-49

WHENMGT .. 6-25

WHENMLE .. 6-25

WHENML T .. 6-25

WHENMNE - Finds occurrences equal or not equal 6-24

WHENNE - Finds all array elements equal to or not equal .6-21

window manipulation ... 19-2

WNLDELM .. 12-65

WNLFLAG ... 12-65

WNLLIN"E - Allows each .. 12-66

WNLLONG - Indicates output line length12-67

WNLREP - Provides user control of output 12-65

WNLSEP ... 12-65

WOPEN - Opens a word-addressable 12-68

word add to table . '" , .. 11-13

word addressable open .. 12-68

word pack and unpack .. 9-3

word shift .. 2-49

word shift ... 2-50

word-addressable dataset close ... 12-64

word-addressable dataset read .. 12-36

word-addressable write .. 12-42

SR-0113 Index-IS c

READER'S COMMENT FORM

Programmer's Library Reference Manual SR-Ol13 C

Your reactions to this manual will help us provide you with better documentation. Please take a moment to
check the spaces below, and use the blank space for additional comments.

1) Your experience with computers: __ 0-1 year __ 1-5 years __ 5+ years
2) Your experience with Cray computer systems: __ 0-1 year __ 1-5 years __ 5+ years
3) Your occupation: __ computer programmer __ non-computer professional

__ other (please specify): ___________ _
4) How you used this manual: __ in a class __ as a tutorial or introduction __ as a reference guide

__ for troubleshooting

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria:

5) Accuracy __ 8) Physical qualities (binding, printing) __
6) Completeness __ 9) Readability __
7) Organization __ 10) Amount and quality of examples __

Please use the space below, and an additional sheet if necessary, for your other comments about this
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which
the problem occurred. We promise a quick reply to your comments and questions.

Name ----------------------- Address ________ _
Title ----------------------- City ___________ _
Company ________ _ Statel Country ______ _
Telephone ________ _ Zip Code ________ _
Today's Date ______ _

FOLD

.--~

I II II I

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUL. MN

POSTAGE Will BE PAID BY ADDRESSEE

RESEARCH. INC.

Attention: PUBLICATIONS
1345 Northland Drive
Mendota Heights, MN 55120

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

---~
FOLD

STAPLE

('"')
C
-i
:l>
r o
Z
G)

-i
:I:
u;
r
Z
m

READER'S COMMENT FORM

Programmer's Library Reference Manual SR-Ol13 C

Your reactions to this manual will help us provide you with better documentation. Please take a moment to
check the spaces below, and use the blank space for additional comments.

1) Your experience with computers: __ 0-1 year __ 1-5 years __ 5+ years
2) Your experience with Cray computer systems: __ 0-1 year __ 1-5 years __ 5+ years
3) Your occupation: __ computer programmer __ non-computer professional

__ other (please specify): ___________ _
4) How you used this manual: __ in a class __ as a tutorial or introduction __ as a reference guide

__ for troubleshooting

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria:

5) Accuracy __ 8) Physical qualities (binding, printing) __
6) Completeness __ 9) Readability __
7) Organization __ 10) Amount and quality of examples __

Please use the space below, and an additional sheet if necessary, for your other comments about this
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which
the problem occurred. We promise a quick reply to your comments and questions.

Name ------------------- Address ________ _
Title ---------------------- City __________ _
Company ___________ __ State/ Country ______ _
Telephone ________ _ Zip Code ________ _
Today's Date _______ __

FOLD

---~

III " I
BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUl. MN

POSTAGE Will BE PAID BY ADDRESSEE

RESEARCH. INC.

Attention: PUBLICATIONS
1345 Northland Drive
Mendota Heights, M N 55120

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

---~
FOLD

STAPLE

(")
C
-I
»
5
z
G)

-I
I
en
r
Z
m

