
r'-

-

-t' 

IOS™ Software 
Internal Reference Manual 

SM-0046 G 

Cray Research, Inc. 



Copyright © 1980, 1981, 1982, 1983, 1984, 1986, 1987, 1988 by Cray Research, Inc. 
This manual or parts thereof may not be reproduced unless permitted by contract or 
by written permission of Cray Research, Inc. 

CRAY, CRAY-l, SSD, and UNICOS are registered trademarks and CFT, CFT77, CFT2, 
COS, CRAY-2, CRAYX-MP, CRAYX-MP EA, CRAYY-MP, CSIM, HSX, lOS, SEGLDR, and 
SUPERLINK are trademarks of Cray Research, Inc. 

HYPERchannel and NSC are registered trademarks of Network Systems Corporation. 
IBM is a registered trademark of International Business Machines Corporation. UNIX 
is a registered trademark of AT&T. 

The UNICOS operating system is derived from the AT&T UNIX System V operating 
system. UNICOS is also based in part on the Fourth Berkeley Software Distribution 
under license from The Regents of the University of California. 

Requests for copies of Cray Research, Inc. publications should be sent to the following 
address: 

Cray Research, Inc. 
Distribution Center 
2360 Pilot Knob Road 
Mendota Heights, MN 55120 



NEW FEATURES 

Release 4.2 of the 1/0 Subsystem (lOS) includes several enhancements of 
and additions to previous versions of the subsystem. Those enhancements 
that affect the liD Subsystem Internal Reference Manual are presented in 
this description. 

Drivers have been added to the 105 to support the HSX High-speed External 
Communications channel and the VMEbus. The HSX driver supports the CRI 
HSX channel. The VMEbus driver allows a VMEbus-based front-end processor 
connected to a CRI VMEbus interface to communicate with a Cray computer 
system. Sections 12 and 13 have been added to document this support. 

The NSC HYPERchannel driver links a Cray mainframe and a front-end 
through the NSC HYPERchannel. The driver allows multiple front-end 
computers to be connected to one physical MIOP channel pair. The FEI 
driver provides an FEI connection for UNICOS. This connection parallels 
the NSC logical path connection. The driver allows front-end stations to 
communicate with the UNICOS Station Call Processor (USCP) by using the 
SCP protocol. To clarify the special features of these drivers, the NSC 
HYPERchannel driver and the Front-end Interface (FEI) logical path driver 
are each documented in a separate section for release 4.2. 

The Tape Exec (TEX) software to process tape 1/0 requests from the 
mainframe and the block multiplexer (BMX) channel interface software have 
been restructured for the 4.2 release. The documentation for TEX and the 
BMX driver has also been extensively updated and restructured. 

IDS release 4.2 supports the RD-10 and DD-40 disk storage units. All 
information regarding disk liD has been revised to document this support. 





RECORD OF REVISION RESEARCH. INC. PUBLICATION NUMBER SM-0046 

Each time this manual is revised and reprinted. all changes issued against the previous version are incorporated into the new version 
and the new version is assigned an alphabetic level. 

Every page changed by a reprint with revision has the revision level in the. lower righthand cor.ner. Changes to part.of!J page are noted 
by a change bar In the margin directlv o~posite the change. A change bar In the margin opposite the page number indicates that the 
entire page is new. If the manual IS rewritten, the revISion level changes but the manual does not contain change bars. 

Requests for copies of Crav Research, Inc. publications should be directed to the Distribution Center and comments about these 
publications should be directed to: 

CRAY RESEARCH. INC. 

1345 Northland Drive 
Mendota Heights. Minnesota 55120 

Revision Description 

November 1980 - Original printing. 

A June 1981 - This rewrite incorporates the interactive station, 
the division of debugger code into two decks, the PATCH and 
LISTO commands, descriptions of the main disk overlays, the 
Concentrator Table, the dynamic allocation of overlay space in 
Local Memory, the FLUSH service function, and other 
miscellaneous technical and editorial changes to bring this 
manual into agreement with the version 1.10 lOS software. 
This manual obsoletes all previous printings. 

B June 1982 - This reprint incorporates lOS tape support 
software, especially the interface to block multiplexer 
channels, the Tape Exec software, and their respective 
tables. Other new features include on-line diagnostics; error 
channel processing; the OUTCALL and ASLEEP Kernel service 
functions; station message support, the LOAD, ISFIELD, FLDADD, 
and FLDSUB macros; the LISTP and DKDMP analyst aids; and 
miscellaneous technical and editorial changes to bring this 
manual into agreement with the version 1.11 lOS software. 
This manual obsoletes all previous printings. 

C May 1983 - This reprint with revision supports APML loader and 
Tape Exec updates, error recovery enhancements, the addition 
of deadstart from 80 Mbyte disk on lOS, Local Memory refresh, 
station debug commands, the A13001 Kernel service function, 
new concentrator software (NSC), startup channel and device 
configuration changes, and the capability of accepting bad 
data from disk. It incorporates an entirely new Block Mux 
section and associated tables, new history trace information 
and format, a new section on SYSDUMP, and a section provided 
for dump analysis. This manual obsoletes all previous 
printings. 

SM-0046 G iii 



C-01 

o 

E 

iv 

February 1984 - This change packet brings the manual into 
agreement with version 1.13 of COS and supports disk striping, 
multitasking, the ECHCP diagnostic, changes to the MGET and 
MPUT macros, dataset disposition to Peripheral Expander disk, 
recursive error recovery for on-lin'e tape, and an lOS on-line 
mainframe channel test. This change packet also includes 
miscellaneous technical and editorial changes. 

December 1984 - This reprint with revision brings the manual 
into agreement with version 1.14 of COS and supports the 
addition of 00-49 disk controlling software, tape end-read 
functions, trace event codes and parameters, the deck OVLNUM, 
and the D4STIO, D4SEEK, STATIO, and SEND functions. An 
entirely new section is included on User Channel 1/0. Changes 
are incorporated for STAGEIN and STAGEOUT tasks, concentrator 
software, the structure of the interactive concentrator, the 
FIELD, TABLE, and REGDEFS macros, Kernel Disk 1/0, the MGET 
and MPUT functions, and the 1/0 processor intercommunication 
function codes. Changes and additions have been made to the 
device request stream and field engineering diagnostics. This 
revision also contains documentation of the Integrated Support 
Processor (ISP). The completed ISP code will not be available 
until a later date, when you will be notified in a letter 
accompanying the code. ISP manuals will be available when the 
completed ISP code is released. This manual obsoletes all 
previous printings. 

January 1986 - This reprint with rev~s~on brings the manual 
into agreement with COS version 1.15 and obsoletes all 
previous printings. Information has been added to support: 
00-39 disk control and error recovery; the new TRANSFER Kernel 
service function; the CLEAR, COPY, and RETREG macros; the new 
BYPIO trace parameter; and the NSCNCIO overlay in the NSC 
activity of the front-end concentrator. Changes have been 
made to support changes to: the AWAKE, CALL, CREATE, GETMEM, 
HSPR, HSPW, and PUSH Kernel service functions; some trace 
event parameters; Tape Exec to support cartridge-type tape 
drives; the lOS station global symbols; and the FIELD macro. 
Information has been deleted about: the D4SEEK, D4STIO, 
STATIO, and SYNC kernel service functions; and the F80M 
diagnostic. Appendix B was deleted and relevant information 
moved into the body of the manual. To support the Cray 
operating system UNICOS, changes to SYSDUMP were made. Many 
miscellaneous technical and editorial changes have also been 
made. 

SM-0046 G 



F April 1987 - This reV1S1on brings the manual into agreement 
with COS version 1.16 and UNICOS version 2.0. Information has 
been added on Target Memory, DD-19 and DD-29 On-line 
Diagnostics, and Trace Event Codes supporting concentrator 
status. The CaNCIO Activity Description and the NSC overlay 
subsections in section 7 have been rewritten and FEI Logical 
Path Activity description has been added; the Field 
Engineering Diagnostic information has been removed from 
appendix B; and changes have been made to the DKDMP overlay in 
section 11. All trademarks are now documented in the record 
of revision. Many miscellaneous technical and editorial 
changes have also been made. 

G September 1988 - This reprint with reV1S1on brings the manual 
into agreement with lOS 4.2. Sections 4 and 5 were 
extensively rewritten to support the restructure of the tape 
and BMX software. The information on NSC HYPERchannel and 
Front-end Interface logical path activity (previously part of 
section 7) were put into sections by themselves (sections 10 
and 11, respectively). Section 12 on the HSX channel 
interface and section 13 on the VMEbus driver were both newly 
added. Appendix B has been renamed "lOS Confidence 
Utilities". Examples have been added to sections 2 and 14. 
Many miscellaneous technical and editorial changes have also 
been made. 

SM-0046 G v 





PREFACE 

This manual describes the software executing in the Cray I/O Subsystem 
(lOS). This software can be divided into the following general 
categories: 

• The Kernel 
• Disk I/O software 
• Tape I/O software 
• Block multiplexer channel 
• The lOS station 
• The front-end concentrator 
• User channel I/O software 
• Drivers 
• Communications channel software 

In addition to the preceding categories, this manual also contains 
sections describing the interactive station, the program library and 
macros, and debugging tools for working with the software. 

Cray Research, Inc. (CRI) publications that provide additional 
information on the lOS are as follow: 

Publication Manual Title 

lOS Table Descriptions Internal Reference Manual 
I/O Subsystem (lOS) Operator's Guide for COS 
I/O Subsystem (105) Operator's Guide for UNICOS 
Cray Front-end Protocol Internal Reference Manual 
COS Operational Procedures Reference Manual 
Operational Aids Reference Manual 

SM-0007 
SG-0051 
SG-2005 
SM-0042 
SM-0043 
SM-0044 
SG-2018 UNICOS System Administrator's Guide for CRAY Y-MP, 

CRAY X-MP, and CRAY-l Computer Systems 
HR-0030 
HR-0077 
HR-0081 

I/O Subsystem Model B Hardware Reference Manual 
Disk Systems Hardware Reference Manual 
I/O Subsystem Model C Hardware Reference Manual 

Supplemental information on the lOS is available in the lOS hardware 
reference manual for your site. This manual also assumes you are 
familiar with and experienced in coding APML as described in the APML 
Assembler Reference Manual, CRI publication SM-0036. All publications 
referenced in this manual are CRI publications unless otherwise noted. 

SM-0046 G vii 



The following IBM form numbers are helpful in understanding the 
capabilities of the Block Multiplexer channel: 

Form Number 

GA22-6974-4 

GA22-6974-5 

GA22-7000-5 

Manual Title 

IBM System/360 and System/370 1/0 Interface Channel to 
Control Unit Original Equipment Manufacturers' 

Information (IBM OEMI Channel Standard) 

IBM System/370 Principles of Operation 

READER COMMENTS 

If you have any comments about the technical accuracy, content, or 
organization of this manual, please tell us. You can contact us in any 
of the following ways: 

• Call our Technical Publications department at (612) 681-5729 
during normal business hours (Central Time). 

• Send us electronic mail from a UNICOS or UNIX system, using one of 
the following electronic mail addresses: 

ihnp4!cray!publications or sun!tundra!hall!publicatioDs 

• Use the postage-paid Reader Comment form at the back of this 
manual. 

• Write to us at the following address: 

Cray Research, Inc. 
Technical Publications Department 
1345 Northland Drive 
Mendota Heights, Minnesota 55120 

We value your comments and will respond to them promptly. 

viii SM-0046 G 



CONTENTS 

PREFACE • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• vii 

1. INTRODUCTION • . . . . . . · · 

2. 

1.1 
1.2 
1.3 
1.4 
1.5 

THE 

2.1 

2.2 

2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 

SM-0046 G 

HARDWARE SPECIFICATIONS 
SYSTEM CONFIGURATION 
REGISTER ASSIGNMENTS · · 
TERMINOLOGY . . . . · · 
FORMAL SYNTAX CONVENTIONS 

KERNEL • . . . 
LOCAL MEMORY USAGE • 
2.1.1 Local Memory scrubbing. 
BUFFER MEMORY USAGE • • • • • • • • • • 
2.2.1 System Directory. 
2.2.2 Message areas .•••.••• 
2.2.3 Kernel area 
2.2.4 Buffer Memory resident datasets 
TARGET MEMORY . . . • • • . • • • • • 
ACTIVITY-SOFTWARE STACKING . 
DEMON ACTIVITIES • • • . 
OVERLAYS • . . • . . • • • 
INTERRUPT PROCESSING . . • • . • . • • • 
lOP CENTRAL PROCESSOR QUEUING AND ACTIVITY DISPATCHING . 
KERNEL SERVICE REQUESTS • • • • • • • • • 
2.9.1 
2.9.2 
2.9.3 
2.9.4 

General service functions . . . . 
Memory allocation and deal location 
I/O operations . • • . • • • . . • • • • • • • • 
Function descriptions • • • • 
2.9.4.1 ALERT function (15) 
2.9.4.2 ASLEEP function (14) 
2.9.4.3 AWAKE function (16) •••••• 
2.9.4.4 A1300I function (24) 
2.9.4.5 BGET function (32) • 
2.9.4.6 BRET function (33) ••• 
2.9.4.7 CALL function (50) • 
2.9.4.8 CREATE function (55) • 
2.9.4.9 FIND function (53) • 
2.9.4.10 FLUSH function (54) ..•• 
2.9.4.11 GETDAL function (26) • 

1-1 

1-3 
1-4 
1-6 
1-6 
1-8 

2-1 

2-1 
2-2 
2-3 
2-3 
2-5 
2-6 
2-6 
2-6 
2-7 
2-8 
2-9 
2-11 
2-12 
2-12 
2-12 
2-12 
2-13 
2-16 
2-16 
2-18 
2-19 
2-21 
2-22 
2-23 
2-23 
2-24 
2-26 
2-26 
2-27 

ix 



x 

2.10 

2.11 
2.12 
2.13 
2.14 

2.9.4 Function descriptions (continued) 
2.9.4.12 GETMEM function (30) · · · · · 2.9.4.13 GIVEUP function (4) · · · · 2.9.4.14 GOTO function (51) · · · · 2.9.4.15 HSPR function (42) · · · · · · · · · · 2.9.4.16 HSPW function (43) · · · · · 2.9.4.17 MGET function (35) · · · · · · 2.9.4.18 MOSR function (46) · · · · · · · · · · 2.9.4.19 MOSW function (47) · · · · · · 2.9.4.20 MPUT function (36) · · · · · 2.9.4.21 MSG function (20) · · · · · · · · 2.9.4.22 MSGR function (21) · · · · · · · 2.9.4.23 OUTCALL function (37) · · · · · 
2.9.4.24 OUTPUT function (22) · · · · · · 2.9.4.25 PAUSE function (7) 
2.9.4.26 POLL function (44) · · · · 2.9.4.27 POP function (2) . 
2.9.4.28 PUSH function (1). · · · · · · · · 
2.9.4.29 RECEIVE function (25) 
2.9.4.30 RELDAL function (27) · · · · · 2.9.4.31 RELMEM function (31) · 
2.9.4.32 RESPOND function (17) · · · · · 2.9.4.33 RETURN function (52) · · · · · · · 2.9.4.34 SEND function (34) · · · · · · · · 2.9.4.35 TERM function (3) · · · · · · · · · · 2.9.4.36 TPUSH function (11) · · · · 
2.9.4.37 TRANSFER function (45) · CLOCK FUNCTIONS . . . • • • • • • • • . 

2.10.1 Real-time clock interrupt handler ••••• 
2.10.2 Clock demon ••••••••••••• 
2.10.3 System event timer. 
lOP DEADSTART . • • . . • • • 
STATISTICS • . 
COMMUNICATION AMONG lOPs • . 
MIOP-MAINFRAME COMMUNICATION CHANNEL • • 

2-27 
2-28 
2-29 
2-30 
2-32 
2-33 
2-34 
2-35 
2-36 
2-37 
2-37 
2-38 
2-39 
2-40 
2-40 
2-41 
2-42 
2-43 
2-43 
2-44 
2-44 
2-45 
2-45 
2-46 
2-46 
2-47 
2-49 
2-49 
2-49 
2-50 
2-51 
2-52 
2-52 
2-54 

2.14.1 MIOP-mainframe communication initialization 2-55 
2.14.2 Input channel from the mainframe 2-55 
2.14.3 Input packet disposition. . • • . . • • • • •• 2-56 
2.14.4 Output channel to the mainframe • • • •• 2-56 

2.15 ERROR PROCESSING. . . • • • . • • • • • • • •• 2-57 
2.15.1 Error channel processing (lOS Serial No. 21 

and below) • • • . • • • • • • 2-57 
2.15.1.1 Interrupt answering • • •. 2-58 
2.15.1.2 Retrieving error log information. 2-59 

2.15.2 Error logging (lOS Serial No. 21 and up) • 2-59 

SM-0046 G 



3. DISK INPUT/OUTPUT . . . · · · · · · · · · · · · · · · 3-1 

3.1 REQUEST PROCESS OVERVIEW · · · · · 3-2 
3.2 DCU-4 CONTROLLING SOFTWARE · 3-2 

3.2.1 DCU-4 software overlays · · · · · · · · · 3-2 
3.2.1.1 ACOM overlay · · · · · · 3-3 
3.2.1.2 CDEM overlay · · · · · · · · · 3-3 
3.2.1.3 DISK overlay · · · · · · · · · · 3-3 
3.2.1.4 ERRECK overlay · · · · · · 3-4 
3.2.1.5 Disk interrupt answering subroutine 3-4 
3.2.1.6 Disk driving subroutines · · · · · 3-4 

3.2.2 DCU-4 tables and packet structure · · · · · 3-4 
3.2.3 Stepflow for DCU-4 disk write request from 

mainframe · · · · · · · · · · · · · · · · · 3-4 
3.2.4 Stepflow for DCU-4 disk read request from 

mainframe · · · · · · · · · 3-6 
3.2.5 Local handling of disk queues · · · · 3-8 
3.2.6 DCU-4 disk read-ahead 3-9 

3.2.6.1 Disk read · · · · · · 3-10 
3.2.6.2 Disk write · · · · · · · · · 3-12 

3.2.7 On-line disk diagnostic requests · · · · · · 3-13 
3.3 DCU-4 DISK ERROR RECOVERY · · · · · · · · · · · · · · · 3-13 

3.3.1 Disk errors requiring recovery · · 3-14 
3.3.1.1 Data error · · · · · · · 3-15 
3.3.1.2 Lost data errors · · · · · · · · · · · 3-16 
3.3.1.3 Seek errors · · · · · 3-16 
3.3.1.4 ID errors · · · · 3-16 
3.3.1.5 Interlock status · · · · · · · · · · · 3-16 
3.3.1.6 Miscellaneous disk errors · · · · 3-17 

3.3.2 1/0 time-out · · · · · · 3-18 
3.3.3 Error recovery summary · · · · · 3-18 
3.3.4 Error status returned to mainframe · · 3-20 
3.3.5 DCU-4 disk error message · · · · · 3-21 

3.4 DCU-5 DISK CONTROLLING SOFTWARE · · · · · · · · 3-21 
3.4.1 DCU-5 software components · · · · 3-22 
3.4.2 DCU-5 disk driver tables and packets · 3-22 

3.4.2.1 Disk Request Packet (DAL) - DL@ 3-22 
3.4.2.2 Disk Control Block (DCB) - DK@ · · 3-22 
3.4.2.3 Local Buffer entry - LB@ · · 3-22 
3.4.2.4 Buffer Memory Control Block 

(MCB) - CB@ · · · · · · · · 3-23 
3.4.2.5 Data Transfer Request (DTR) - TR@ 3-23 
3.4.2.6 Abort Transfer Request (ATR) - AR@ · 3-23 
3.4.2.7 Device Parameter Table (DPT) - DP@ · 3-23 
3.4.2.8 MEMIO Queue Table - MEM@ · · 3-23 

3.4.3 Resource management · · · · · · · · · · · 3-23 
3.4.3.1 Local Memory management 3-24 
3.4.3.2 Buffer Memory management · · 3-24 

SM-0046 G xi 



4. 

xii 

3.4 

3.5 

3.6 

3.7 

DCU-5 
3.4.4 
3.4.S 
3.4.6 

DISK CONTROLLING SOFTWARE (continued) 
DCU-S disk read request stepflow • • • • • • • • 
DCU-S disk write request stepflow • • • • • 
DCU-5 read-ahead and write-behind • • • • 
3.4.6.1 DCU-S read-ahead. • • •• • ••• 
3.4.6.2 DCU-5 write-behind •••• 

3.4.7 Spiral formatting • • • • •• • ••• 
3.4.8 On-line disk diagnostics requests •••• 
DCU-5 DISK ERROR RECOVERY • • • • • • • • • • 
3.S.1 Recovery activity • • • •• • •••• 
3.5.2 Error recovery process. • • • • • •••• 

3.5.2.1 Unit select process •••• 
3.5.2.2 Cylinder select process •••• 
3.5.2.3 Head select-LMA select-read process 
3.5.2.4 Head select-LMA select-write process. 
3.5.2.5 Unit release process 

3.5.3 Operator messages •••• 
3.5.4 Error reporting ••••• 
STRIPED DISK GROUPS • • • • • • • • • • • 
3.6.1 Logical to physical address mapping 
3.6.2 Stepflow for a request to a striped group 
KERNEL INTERNAL DISK I/O • • • • • • • • • 

3-24 
3-2S 
3-26 
3-26 
3-27 
3-28 
3-28 
3-29 
3-30 
3-33 
3-33 
3-34 
3-35 
3-36 
3-37 
3-37 
3-39 
3-40 
3-41 
3-42 
3-45 

TAPE EXEC 4-1 

4.1 

4.2 
4.3 

4.4 

ARCHITECTURE • . . • • • • • • • • • • 
4.1.1 Tape Exec activity 
4.1.2 BYPASS activity 
4.1.3 Data Stream Control Table 
4.1.4 TDEM1 activity •••.•••. 
4.1.5 Tape error recovery activities 
REQUEST AND RESPONSE PACKET ROUTING • • • • • • • • 
REQUEST PROCESSING • • • • • • • • • • • • • • 
4.3.1 Configuration change request (FC$CHNGE) •.•• 
4.3.2 Mount request (FC$MOUNT) • 
4.3.3 Read request (FC$READ) .•••••. 
4.3.4 Write request (FC$WRITE) • • • • •. • •.• 
4.3.5 End read requests (FC$EOFR, FC$EORR, FC$EODR) 
4.3.6 NO-OP request (FC$NOOP) ••.••••••••• 
4.3.7 Positioning requests (FC$FWFIL, FC$FWSPC, 

4.3.8 
4.3.9 
4.3.10 
4.3.11 
4.3.12 
ERROR 
4.4.1 
4.4.2 
4.4.3 

FC$BKFIL, FC$BKSPC) ••••• 
Load display request (FC$DSP) 
Remount request (FC$RMNT) 
Rewind requests (FC$REWND, FC$RWND1, FC$RWND2) • 
Unload requests (FC$UNLC, FC$UNLD1, FC$UNLD2) 
Free reques ts (FC$FREE) • • . • 

RECOVERY PROCESSING ... . . . . 
TAPERR routine 
TERROR routine 
TCART routine 

4-1 
4-2 
4-2 
4-3 
4-4 
4-4 
4-5 
4-5 
4-6 
4-6 
4-9 
4-23 
4-37 
4-40 

4-42 
4-45 
4-48 
4-51 
4-54 
4-57 
4-60 
4-60 
4-60 
4-61 

SM-0046 G 



4.4 ERROR RECOVERY PROCESSING (continued) 
4.4.4 Recovery subroutines · · · · · · · · · · · · 4-62 

4.4.4.1 Equipment check (noncartridge 
device only) · · · · · · · · · · · 4-62 

4.4.4.2 Bus-out check (noncartridge device 
only) · · · · · · · · · · · 4-62 

4.4.4.3 Intervention required (noncartridge 
device only) · · · · · · · · · · · · · 4-62 

4.4.4.4 Command reject, data converter check, 
and not capable · · · · · · · · · · · 4-63 

4.4.4.5 Data overrun (noncartridge device 
only) 4-63 

4.4.4.6 Load point · · · · · · · · · · 4-63 
4.4.4.7 Data check · · · · · 4-63 
4.4.4.8 Data security erase 4-63 
4.4.4.9 ID burst check (noncartridge device 

only) · · · · · 4-64 
4.4.5 Error display · · · · · · · · · · · · 4-64 

5. BLOCK MULTIPLEXER CHANNEL INTERFACE · · · · · · · · 5-1 

5.1 lOS BLOCK MUX (BMX) SUBSYSTEM OVERVIEW · · · · 5-1 
5.2 BMX CONFIGURATION · · · · · · · · · · · · 5-3 
5.3 BMX TABLES . . · . · · · · · · · 5-3 
5.4 CHANNEL PROGRAM WORD (CPW) · · · · · · · · · · 5-9 

5.4.1 Nondata transfer commands · · · · 5-9 
5.4.2 Local Memory data transfer commands 5-10 
5.4.3 Buffer Memory data transfer commands · 5-10 
5.4.4 Command chaining (CPN@CC) · · · · · 5-11 

5.5 DESCRIPTION OF ROUTINES · · · · · · · · · · 5-12 
5.5.1 BMXCON · · · · · · · · · · · · · 5-12 

5.5.1.1 Channel configuration (CON$CHN) 5-13 
5.5.1.2 Control unit configuration (CON$CUT) · 5-13 
5.5.1.3 Device configuration (CON$DEV) · · 5-14 
5.5.1.4 BMXCON messages · · · · · · · · · 5-14 

5.5.2 BMXCPU · · · · · · · · · 5-15 
5.5.3 BMXSIO · · · · · · · · · · · · · · · · · 5-16 

5.5.3.1 Start 1/0 (RQ$SIO) · 5-16 
5.5.3.2 Wait 1/0 (RQ$WIO) · · · · · 5-20 
5.5.3.3 Return to caller · · · · · · 5-20 

5.5.4 BMXAIO · . · · · · · · 5-20 
5.5.4.1 Halt 1/0 (RQ$HIO) · · · 5-21 
5.5.4.2 Assign device path (RQ$APTH) · 5-21 
5.5.4.3 Release device path (RQ$RPTH) 5-21 
5.5.4.4 Request reset (RQ$RSET) · · · · · · 5-21 

5.5.5 BMXDEM · · · · · · · · · · · · · 5-21 
5.5.5.1 Start command sequence (KIC$SC) 5-22 
5.5.5.2 Advance command sequence (KIC$AC) 5-24 
5.5.5.3 Advance data sequence (KIC$AD) · · 5-25 
5.5.5.4 Request-in sequence (KIC$ER) · · · · 5-25 

SM-0046 G xiii 



5.5 DESCRIPTION OF ROUTINES (continued) 
5.5.6 BMX interrupt handler (IBMX) · · · · · · · · · · 5-26 

5.5.6.1 Immediate return (KIC$IR) 5-27 
5.5.6.2 Advance data (KIC$AD) · · · · · · · · 5-27 
5.5.6.3 Start request-in {KIC$SR) 5-27 
5.5.6.4 Continue request-in (KIC$CR) · · · · · 5-28 
5.5.6.5 End request-in (KIC$ER) · · · · 5-28 

5.5.7 BMXOPE . · · · · · · · · · · · · · · · · · · · · 5-28 
5.5.7.1 Open (FC$MOUNT/FC$REMOUNT) · · · · · · 5-28 
5.5.7.2 Close (FC$FREE) · · · · 5-28 

5.5.8 BMXTPO . · · · · · · · · · · · · · · · · · · 5-29 

6. 1/0 SUBSYSTEM STATION · · · · · 6-1 

6.1 STATION TASKS · · · · · · · · · · · · · 6-1 
6.2 STATION STORAGE 6-2 
6.3 TASK FLOW AND INTERACTION · · · · 6-5 

6.3.1 Station initialization · · · · · 6-5 
6.3.2 KEYBD task · · · · · 6-6 
6.3.3 DISPLAY task · · · · · 6-8 
6.3.4 CLI task · · · · · · · · · · · · 6-11 
6.3.5 PROTOCOL task · · · · 6-16 
6.3.6 STAGEIN task · · · · · · · · · · 6-25 
6.3.7 STAGEOUT task · · · · 6-27 
6.3.8 STIO overlay · · · · · 6-29 
6.3.9 POST overlay · · · · · 6-32 

6.4 GLOBAL SYMBOLS · · · · · 6-33 
6.5 CONSOLE OUTPUT · · · · · 6-34 
6.6 SCREEN IMAGE . · · · · · · · · · · · · · · 6-34 

7. FRONT-END CONCENTRATOR · · · · · · · · · · · · · · · · · · · · 7-1 

7.1 CONC OVERLAY DESCRIPTION (CONCENTRATOR INITIALIZATION) · 7-2 
7.2 CONCIO ACTIVITY DESCRIPTION · · · · · · · · · 7-2 
7.3 CONCID OVERLAY DESCRIPTION · · · · · 7-7 
7.4 CONCERR OVERLAY DESCRIPTION · · · · 7-7 
7.5 ENDCONC OVERLAY DESCRIPTION · · · · 7-8 

8. INTERACTIVE STATION · · · · · · · · · · · · · · 8-1 

8.1 INTERACTIVE CONCENTRATOR OVERLAYS · · · · 8-1 
8.1.1 IAIOP overlay · · · · · · · · 8-1 
8.1.2 IAIOP1 overlay · · · · · · · · · · · · 8-4 
8.1.3 IAFUNC overlay · · · · · · · · · 8-4 
8.1.4 IAMSG overlay · · · · 8-5 

xiv SM-0046 G 



8. INTERACTIVE STATION (continued) 

8.2 INTERACTIVE CONSOLE OVERLAYS · · · · · 8-6 
8.2.1 lACON overlay · · · · · · . · 8-6 
8.2.2 IACON1 overlay . · · · . · 8-7 
8.2.3 IACMD overlay · · · · · 8-7 
8.2.4 IAOUT overlay · · · · · · · · · 8-8 

9. USER-CHANNEL I/O . . . . · · · · · · · · · · 9-1 

9.1 USER CHANNEL REQUESTS · · · · 9-1 
9.1.1 Open request (CR$OPN) · · · · 9-1 
9.1.2 Read request (CR$RD) · · 9-2 
9.1.3 Read-hold request (CR$RDH) · · · · 9-2 
9.1.4 Read-read request (CR$RD2) · · · · · 9-2 
9.1.5 Write request (CR$WRT) · · · 9-2 
9.1.6 Write-hold request (CR$WRTH) · · · · · 9-3 
9.1.7 Write-write request (CR$WRT2) 9-3 
9.1.8 Driver request (CR$DRV) · · · · 9-3 
9.1.9 Close request (CR$CLS) · · · · · 9-3 

9.2 SHELL ARCHITECTURE · · · · · · · · · · · · · 9-4 
9.2.1 User Channel Table · · · · · · · · · 9-5 
9.2.2 User channel message handler · · · · 9-5 
9.2.3 User channel shell (UCSHL) · · · · · 9-5 

9.2.3.1 UCSHL open subroutine (UCOPN) · · · · 9-5 
9.2.3.2 UCSHL close subroutine (UCCLS) 9-6 - 9.2.3.3 UCSHL read subroutine (UCRD) 9-6 · · · · · 9.2.3.4 UCSHL write subroutine (UCWRT) · 9-6 
9.2.3.5 UCSHL driver subroutine (UCDRV) 9-7 

9.2.4 User channel shell data handler (UCXFR) · · · · 9-7 
9.3 SHELL AND DRIVER INTERFACE · · · · · · · 9-7 

9.3.1 SIGNAL and WATCH macros · · · 9-7 
9.3.2 Shell requests · · · · · 9-8 
9.3.3 Driver responses · · · · · · · · 9-9 
9.3.4 Buffering · · · · · · · · 9-9 
9.3.5 Interrupt processing · · · · · · · 9-10 
9.3.6 User channel configuration · · · · · 9-10 
9.3.7 Driver installation · · · · · · · · 9-10 

10. NSC HYPERCHANNEL . · · · · · · · · · 10-1 

10.1 NSC ACTIVITY INITIALIZATION · · · · · · · 10-1 
10.2 NSCIO ACTIVITY . . · · · · · · · · 10-2 

10.2.1 NSCIO idle loop · · · 10-2 
10.2.2 Write sequence for the protocol-independent 

interface · · · · · · · 10-3 
10.2.3 Read sequence for the protocol-independent 

interface · · · · · · 10-3 
10.2.4 SCP interface logon sequence · · · · · 10-4 

SM-0046 G xv 



10. 

11. 

NSC HYPERCHANNEL (continued) 

10.3 NSC ACTIVITY TERMINATION · · · · · · 
10.4 OVERLAYS . . . . . . · · · · · · · · · · · · · · · 10.4.1 ADEM overlay · · 

10.4.2 FNSC overlay · · 10.4.3 NIDEND overlay · · · · · · 
10.4.4 NSC overlay · · · · · · · · · 10.4.5 NSCEND overlay · · · · · · · · · 
10.4.6 NSCID overlay · · · · · · · 10.4.7 NSCIO overlay · · · · · · · · 
10.4.8 NSCMSG overlay · · · · 
10.4.9 NSCRW overlay · · · · · · · · · · · · 10.4.10 SCPIO overlay · · · · · · · · · · · · · · 10.4.11 TERMNSC overlay 

10.5 ERROR RECOVERY . . . · · · · · · · 
10.5.1 Error recovery for SCP protocol 

10.5.1.1 Driver input/read operations · 10.5.1.2 Driver output/write operations 
10.5.2 Error recovery for the protocol-independent 

interface · · · · · · · · · · · · 10.5.2.1 Driver input/read operations · 10.5.2.2 Driver output/write operations 
10.6 CHANNEL/ID ORDINAL DESCRIPTION · · · · · · · · 
FRONT-END INTERFACE LOGICAL PATH ACTIVITY 

11.1 
11.2 
11.3 

FEI LOGICAL PATH ACTIVITY INITIALIZATION • • . 
FEI LOGICAL PATH ACTIVITY TERMINATION 
OVERLAYS • • • • • • • • • • • • • 
11.3.1 ADEM overlay •. 
11.3.2 FNSC overlay. 
11.3.3 FEIR overlay 
11.3.4 FEIW overlay. 
11.3.5 FEIMSG overlay ••••••••.•• 

· 

· 
· · 
· 

· · · 
· · · 

· · · · 
· · · 

10-6 
10-6 
10-6 
10-6 
10-9 
10-9 
10-9 
10-9 
10-9 
10-9 
10-10 
10-10 
10-10 
10-10 
10-11 
10-11 
10-11 

10-12 
10-12 
10-12 
10-12 

11-1 

11-1 
11-1 
11-2 
11-2 
11-3 
11-3 
11-3 
11-3 

12. HSX CHANNEL INTERFACE 12-1 

xvi 

12.1 HSX CHANNEL REQUESTS. •• • . . • . . • 12-1 
12.1.1 OPEN request (HSF$OPEN) ..••.•••• 12-2 
12.1.2 READ request (HSF$READ) • • •• 12-2 
12.1.3 WRITE request (HSF$WRIT) . . . •. 12-2 
12.1.4 CONTROL request (HSF$CNTL) • • • • • 12-2 

12.1.4.1 Set parameters (HSS$SET) . . . • • 12-2 
12.1.4.2 Send interrupt (HSS$SNDI) ..•.•. 12-3 
12.1.4.3 Receive interrupt (HSS$RECI) . • . •. 12-3 

12.1.5 CLOSE request (HSF$CLOS) . • . . • • • . . . •• 12-3 

SM-0046 G 



--

12. HSX CHANNEL INTERFACE (continued) 

12.2 

12.3 
12.4 
12.5 

12.6 

HSX DRIVER ARCHITECTURE . • . . • • . 
12.2.1 HSX DEMON overlay (HCOM) •••••• 
12.2.2 HSX input interrupt handler'(HSXI) •••.• 
12.2.3 HSX output interrupt handler (HSXO) 
12.2.4 Buffering ••.• 
DEBUG MODE • • . • • • • • • • • • • • . • • . 
OVERLAY LISTING 
ERROR PROCEDURES • 

12-3 
12-3 
12-4 
12-4 
12-4 
12-5 
12-5 
12-5 

12.5.1 Input errors. . . . . . • • . 12-6 
12.5.1.1 Clear pulse received (HST$CLR) • • 12-6 
12.5.1.2 Multiple bit error (HST$DATA) •••. 12-6 
12.5.1.3 Data overrun error (HST$OVER) 12-6 
12.5.1.4 Long block error (HST$LONG) 12-7 
12.5.1.5 Software time-out (HST$TMO) 12-7 
12.5.1.6 Device not present (HST$NDEV) 12-7 
12.5.1.7 Short block error (HST$SHRT) • • • 12-7 

12.5.2 Output errors • • • • • • • • • • • • • • 12-7 
12.5.2.1 Exception pulse received during 

transfer (HST$XDT) • . • • . • • 12-8 
12.5.2.2 

12.5.2.3 
12.5.2.4 
12.5.2.5 

SPECIAL SEQUENCES 

Exception pulse received while 
channel idle (HST$XFT) • • • • • 
Receiving device aborted (HST$ABRT) 
Software time-out (HST$TMO) 
Device not present (HST$NDEV) 

12.6.1 Input sequences •• • • • ••..•. 
12.6.1.1 Send exception pulse (HSS$SNDI) 
12.6.1.2 Wait for clear pulse (HSS$RECI) 

12.6.2 Output sequences. • • • • •••••• 
12.6.2.1 Send clear pulse (HSS$SNDI) 
12.6.2.2 Wait for exception pulse (HSS$RECI) 

12-8 
12-8 
12-8 
12-8 
12-9 
12-9 
12-9 
12-9 
12-9 
12-10 
12-10 

13. VMEBUS (FEI) DRIVER . . . . 13-1 

13.1 
13.2 

SM-0046 G 

N-PACKET INTERFACE • . 
DRIVER OVERLAYS . • • . 
13.2.1 ADEM overlay 
13.2.2 FNSC overlay. 
13.2.3 NSCRWoverlay .•... 
13.2.4 VME overlay .••. 
13.2.5 VMEND overlay .•••••.• 
13.2.6 FEIMSG overlay •. 
13.2.7 VMERD overlay 
13.2.8 VMEWT overlay . . . . • • . . 
13.2.9 TERMVME overlay 
13.2.10 TERMNSC overlay 
13.2.11 NSCID overlay 
13.2.12 SCPIO overlay 

13-1 
13-2 
13-2 
13-2 
13-4 
13-4 
13-4 
13-4 
13-4 
13-5 
13-5 
13-5 
13-5 
13-5 

xvii 



13. VMEBUS (FEI) DRIVER (continued) 

13.3 

13.4 
13.5 

READ AND WRITE REQUESTS FLOW DESCRIPTIONS 
13.3.1 Read request sequence ••••••• 
13.3.2 Write request sequence.. • •••••• 
FLOW DESCRIPTION FOR SCP PROTOCOL • • • • 
INTERRUPT HANDLING . • . • • • .• •••• 

14. PROGRAM LIBRARY AND MACROS. 

xviii 

14.1 PL STRUCTURE. 

14.2 

14.1.1 Common deck structure 
14.1.2 Adding an overlay 
MACROS 
14.2.1 

14.2.2 

. . . . . . . . . . . . 
Exit stack macros 
14.2.1.1 EGET macro. 
14.2.1.2 EPUT macro. 
14.2.1.3 EINCR macro 
14.2.1.4 EDECR macro 
14.2.1.5 
14.2.1.6 

EXSGET macro 
EXSPUT macro • 

Execution control macros • • 
14.2.2.1 $IF macro •••• 
14.2.2.2 $UNTIL macro. 
14.2.2.3 $GOTO macro 
14.2.2.4 $PUNTIF macro 

14.2.3 Data definition macros. • ••••. 
14.2.3.1 FIELD macro •••••••• 
14.2.3.2 ISFIELD macro 
14.2.3.3 TABLE macro 

14.2.4 Data access macros ..• 
14.2.4.1 ADDRESS macro 
14.2.4.2 
14.2.4.3 
14.2.4.4 
14.2.4.5 
14.2.4.6 

GET macro • • • • 
LOAD macro • 
PUT macro 
STORE macro 
RGET macro .. 

14.2.4.7 RPUT macro •. 
14.2.4.8 RSTORE macro 
14.2.4.9 FLDADD macro. 
14.2.4.10 FLDSUB macro. 

14.2.5 Overlay and register definition macros 
14.2.5.1 OVERLAY macro 
14.2.5.2 REGDEFS macro 
14.2.5.3 REGISTER macro .. 
14.2.5.4 RETREG macro 

14.2.6 Memory macros .••.•. 
14.2.6.1 CLEAR macro 
14.2.6.2 COPY macro. 

13-5 
13-6 
13-7 
13-7 
13-8 

14-1 

14-1 
14-2 
14-2 
14-4 
14-8 
14-9 
14-9 
14-9 
14-10 
14-10 
14-10 
14-11 
14-11 
14-13 
14-14 
14-15 
14-16 
14-16 
14-17 
14-18 
14-19 
14-19 
14-20 
14-20 
14-22 
14-22 
14-22 
14-23 
14-23 
14-25 
14-25 
14-26 
14-26 
14-27 
14-28 
14-29 
14-31 
14-31 
14-31 

SM-0046 G 



15. DEBUGGING TOOLS . . . · · · · · 
15.1 SUMMARY UTILITY · · · · 

15.1.1 Overlays · · · · · · · · · · · · · · · · · · · · 15.1.2 Interrupts · · · · · · 
15.1.3 Kernel calls · · · · · · · · 15.2 HISTORY TRACE 
15.2.1 Examining trace buffers on-line 
15.2.2 Examining trace buffers off-line · · · · · 15.2.3 Trace event codes, subcodes, and parameters 

15.3 DEBUGGER . . . . · · · · · · · · · · · · · · · 15.3.1 Display accumulator command · · · · · · · · 15.3.2 Display B register command · · · · · · 
15.3.3 Display carry register command · · · 15.3.4 Display channel status command · · · · 15.3.5 Issue a function on a channel command 
15.3.6 Display exit stack command · · · · · 15.3.7 Display operand register command · · · · · · 15.3.8 Toggle display mode command · · · · 
15.3.9 Display Local Memory command · · · · 15.3.10 Display P register command · · · · · · · · 15.3.11 Set single breakpoint command · · · · 15.3.12 Set double breakpoint command · · · · 15.3.13 Display breakpoints command · · · · 15.3.14 Delete breakpoints command · · · · 15.3.15 Set count register and proceed from breakpoint 

command · · · · · · · · · · · · · · · 15.3.16 Display Buffer Memory command · · · · · · · 15.3.17 Display high-speed channel command · · · · · · · 15.3.18 Processing of channels used by the debugger 
command · · · · · · · 15.4 PATCH OVERLAY · · · · · · · · 15.5 LISTP OVERLAY · · · · · · · · 

15.6 LISTO OVERLAY · · · · · · · · 15.7 DKDMP OVERLAY · · · · 

APPENDIX SECTION 

A. DUMP ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . 

B. lOS CONFIDENCE UTILITIES . 

B.1 
B.2 
B.3 
B.4 
B.5 
B.6 

SM-0046 G 

CHNTEST command • • • . 
CPTEST command • • 
ECHOCP command . 
HSPTEST command 
MOSTEST command 
SSDTEST command 

15-1 

15-1 
15-3 
15-3 
15-4 
15-4 
15-4 
15-7 
15-8 
15-22 
15-24 
15-24 
15-25 
15-25 
15-25 
15-26 
15-26 
15-27 
15-27 
15-28 
15-28 
15-28 
15-29 
15-29 

15-29 
15-30 
15-31 

15-31 
15-32 
15-33 
15-34 
15-36 

A-I 

B-1 

B-2 
B-3 
B-4 
B-5 
B-7 
B-9 

xix 



B. 

C. 

D. 

lOS CONFIDENCE UTILITIES (continued) 

B.7 STOP command · · · · · · · · · · · · · · · · B.S XDK command · · · · · · B.9 XMT command · · · · · · · · · · · · · B.10 XPR command · · · · · 

SYSDUMP 

C.1 
C.2 

OPERATIONAL DESCRIPTION 
DUMP FORMAT • • • • • • 

ISP CHANNEL DRIVER 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 

MAIN LOOP 
OPEN PROCESSING • • • • . • • • • • • • • • • • • • 
CLOSE PROCESSING • • • • • • 
IIO REQUEST PROCESSING • •••••••••••• 
STARTIO SUBROUTINE • • • • • • • • • • • • • • 
WAITIO SUBROUTINE • • • •• ••••• 
GETL SUBROUTINE 

FIGURES 

1-1 A Cray Computer System with Four IIO Processors · · · · · 
2-1 Local Memory Structure · · · · · · · · · · · · · · · 2-2 Buffer Memory Organization · · · 
2-3 ALERT Stepflow · · · · · · · · · · · · 2-4 AWAKE Stepflow · · · · · · · · · · · · · · 3-1 Striped Group (Six Physical Units Constituting One 

Logical Unit) · · · · · · · · · · · · · · · · · 3-2 Target Memory Mapping for a Single Device · · · · · 3-3 Target Memory Mapping for a Two-unit Group · · · · · · 4-1 Processing of Configuration Change Requests 
4-2 Processing of Mount Requests · · · · · · · · · · · 
4-3 Processing of Read Requests · · · · · · · 4-4 Processing of Write Requests · · · · 4-5 Processing of End Read Requests · · · · 
4-6 Processing of No-op Requests · · 
4-7 Processing of Positioning Requests · · · · · 4-8 Processing of Display Requests · · · · · · · · · 4-9 Processing of a Remount Request to the Same Device · · · · 4-10 Processing of a Remount Request to a New Device 
4-11 Processing of Rewind Requests · · · 4-12 Processing of Unload Requests · · · · · · · · 4-13 Processing of Free Requests · · · · · · · · · · · · · 5-1 BMX Overview . · · · · · · · · · · · · · 
5-2 A 2-by-2 Configuration (Multiple Path, Single Bank) 

xx 

· · 
· · 
· · 

· · 

· · 

· · 

· · 

B-11 
B-11 
B-12 
B-13 

C-1 

C-1 
C-S 

0-1 

0-1 
0-1 
0-2 
0-2 
0-3 
0-3 
0-4 

1-4 
2-2 
2-4 
2-17 
2-20 

3-41 
3-44 
3-44 
4-7 
4-S 
4-9 
4-24 
4-3S 
4-40 
4-42 
4-46 
4-49 
4-50 
4-51 
4-55 
4-58 
5-2 
5-4 

SM-0046 G 



FIGURES (continued) 

5-3 
5-4 
5-5 
5-6 
5-7 
5-8 
6-1 
6-2 
6-3 

Two I-by-l Configurations (Single Path, Multiple Bank) • 
A 2-by-1 Configuration (Multiple Path, Multiple Bank) •••• 
Pointer to Channel Tables for Each Configured Channel 
Pointer to Device Table for Each Configured Device 
BMXDEM's Usage of the Channel Table 
Location of BDV@UN • • • • • 
Local Memory Stack Area • • . • 
Station Initialization Flow 
KEYBD Task Flow and Interaction 

6-4 DISPLAY Task Flow and Interaction Operator Displays • 
6-5 CLI Task Flow and Interaction 
6-6 STATUS Command Flow and Interaction 
6-7 DROP Command Flow • . . • • • • • • • . 
6-8 PROTOCOL Task Flow (Initialization) 
6-9 PROTOCOL Task Flow and Interaction (Main Body) • 
6-10 PROTOCOL Task Flow (Termination). ••••• 
6-11 STAGEIN Task Flow and Interaction 
6-12 STAGEOUT Task Flow and Interaction 
7-1 Tree Structure of Concentrator Software 
8-1 
8-2 
9-1 
10-1 
11-1 
13-1 
15-1 
15-2 
15-3 
C-1 
C-2 
C-3 

Structure of Interactive Concentrator Software • . 
Structure of Interactive Console Software 
Shell Architecture • • • . . • • • • • • • . 
NSC HYPERchannel Driver Overlay Connection 
FEI Logical Path Overlay Connections •...•• 
VMEbus Driver Overlay Connections • • • • 
The SUMMARY Display • . • . 
History Trace Sample Output 
LISTO Sample Output . . . • • • • • . 
SYSDUMP Memory Map of lOP with Master Disk Attached 
AI List . . . . . . . . . . . . . . . . . . . 
Head Format for OS = UNICOS 

TABLES 

2-1 
2-2 
2-3 
2-4 
3-1 
3-2 
3-3 
3-4 
3-5 
3-6 
3-7 
6-1 
6-2 
6-3 

System Directory Contents 
Overlay Format . • • . • . 
Summary of Service Functions • . 
I/O Processor Intercommunication 
Error Conditions • • • . • • . . 
Interlock Error Conditions . . 
Miscellaneous Error Conditions . 

Function Codes 

Disk Error Recovery Summary . . • • . . • • . 
Disk Error Information in DAL • . • . . . . • •. .••. 
DD-49 Error Retry Limits . . . . . . . • . . . • • . 
RD-10, DO-39, and 00-40 Error Retry Limits . . . • . . . • • . 
Station Tasks 
Shared Memory Access . . . . . . . 
KEYBO Task Interaction Areas . 

SM-0046 G 

5-5 
5-6 
5-7 
5-8 
5-22 
5-26 
6-4 
6-6 
6-7 
6-11 
6-13 
6-14 
6-15 
6-19 
6-20 
6-24 
6-26 
6-28 
7-1 
8-2 
8-2 
9-4 

10-7 
11-2 
13-3 
15-2 
15-6 
15-32 

C-2 
C-3 
C-4 

2-5 
2-11 
2-14 
2-53 
3-14 
3-17 
3-18 
3-19 
3-20 
3-30 
3-31 
6-2 
6-3 
6-7 

xxi 



TABLES (continued) 

6-4 
6-5 
6-6 
6-7 

DISPLAY Task Interaction Areas • 
PROTOCOL Task Interaction Areas 
STAGEIN Task Interaction Areas • 
STAGEOUT Task Interaction Areas 

14-1 Summary of Macros 
15-1 Trace Event Codes 
15-2 Trace Event Parameters • • 
A-1 Kernel Registers • • • • 
0-1 Stepflow for 0010 Buffered Loops • 

INDEX 

xxii 

6-8 
6-16 
6-25 
6-27 

14-5 
15-7 
15-9 

A-3 
0-2 

SM-0046 G 



1. INTRODUCTION 

This manual describes the internal design of the software running in the 
I/O Subsystem (lOS) of the CRAY Y-MP, CRAY X-MP EA, CRAY X-MP, and CRAY-1 
computer systems. lOS software supports either the COS or UNICOS 
operating systems. 

The parts of lOS software are as follows (with references to the section 
that describes them): 

• The Kernel (section 2) 
• Disk I/O (section 3) 
• Tape Exec (section 4) 
• Block multiplexer channel interface (section 5) 
• lOS station (section 6) 
• Front-end concentrator (section 7) 
• Interactive station (section 8) 

• User channel I/O (section g) 
• NSC HYPERchannel (section 10) 
• Front-end interface logical path activity (section 11) 
• HSX channel interface (section 12) 
• VMEbus (FEI-3) driver (section 13) 
• Program library and macros (section 14) 
• Debugging tools (section 15) 

Commands for the lOS are described in the I/O Subsystem (lOS) operator's 
guides. 

The Kernel serves as the operating system. A copy of the Kernel runs in 
each I/O Processor (lOP) in the subsystem, adapting itself to the special 
functions of each processor. In addition to the operating system 
section, Kernel software includes the following: 

• A deadstart package 
• An interactive debugger 
• A buffer from which overlay areas are allocated 
• A section of free memory 
• An I/O buffer area 
• A trace buffer area 

The disk I/O software moves data in streams between Central Memory in the 
mainframe or SSD Memory in the optional SSD solid-state storage device, 
and disks attached to the lOS. 

SM-0046 G 1-1 



Tape Exec (TEX) software processes requests from the mainframe. TEX 
performs functions related to tape 1/0 such as message routing, data 
formatting, data movement, and error recovery. 

Block multiplexer channel interface software drives the block multiplexer 
channel hardware. It contains device-independent command and interrupt 
code that executes requests from the Tape Exec. 

Station software runs in the Master 1/0 Processor (MIOP) and supports 
operator commands, station displays, and dataset staging. All dataset 
staging is performed without queuing; datasets are transferred directly 
to the mainframe. 

Concentrator software accepts data from front-end computers into lOS 
Local Memory, builds the data into a message, and sends it to the 
mainframe. The concentrator relieves the mainframe of the burden of 
handling an interrupt for each subsegment of messages transferred. 

The interactive station permits interaction with a job running in the 
mainframe. Interactive commands are entered at a console connected 
directly to the lOS. 

User Channel 1/0 software runs in the MIOP and supports access to lOS 
channels by COS tasks. User Channels may be used for connecting new 
devices or mainframes to the IDS. 

The NSC HYPERchannel driver links a Cray mainframe and a front-end 
through the NSC HYPERchannel. The driver allows multiple front-end 
computers to be connected to one physical MIOP channel pair. 

The Front-end Interface (FEI) logical path driver provides an FEI 
connection for UNICOS. This connection parallels the NSC logical path 
connection. The driver allows front-end stations to communicate with the 
UNICOS Station Call Processor (USCP) under UNICOS by using the SCP 
protocol. 

The HSX High-speed External Communications channel driver supports the 
CRI HSX channel. 

The VMEbus driver allows a VMEbus-based front-end processor connected to 
a CRI VMEbus interface to communicate with a Cray computer system. The 
driver allows simultaneous use of multiple application protocols. 

The IDS software program library (IOPPL) contains the following: the 
system text ($APTEXT), the Kernel, the configuration overlay AMAP, 
overlay decks, TAPELOAD, DISKLOAD, DUMP, and CAL overlays used for 
deadstarting and dead dumping the mainframe. Macro instructions used by 
the IDS are defined in $APTEXT and perform exit stack access, execution 
control, table access, and overlay and register definition. 

The debugging tools provide a means to analyze and maintain lOS software. 

1-2 SM-0046 G 



1.1 HARDWARE SPECIFICATIONS 

The IDS consists of channel interfaces, at least one-half million words 
of Buffer Memory, and two, three, or four lOPs. 

Each lOP contains a Local Memory section, a computation section, a 
control section, and an 110 section. 

The computation section includes functional units for integer arithmetic 
(addition and twos complement subtraction) and shifting. The computation 
section does not perform multiplication, division, or floating-point 
arithmetic. The accumulator (A register) is a 16-bit register used in 
single-address operations. Each lOP has 512 16-bit operand registers. 

The control section consists of an instruction stack, a program exit 
stack, and control logic. The instruction stack is a 32-parcel circular 
buffer. New instructions brought in from memory replace the parcels that 
have resided the longest in the instruction stack. The program exit 
stack is a set of 16 registers that stores return addresses during the 
execution of subroutines and the Kernel interrupt processing routine. 
Local Memory contains 65,536 parcels of 16 bits, plus 2 parity bits, 
each. Local Memory is located in four sections, each consisting of four 
banks. 

The IDS model B is linked to the mainframe by two types of channels: the 
100-Mbyte channel used for data streaming and the 6-Mbyte channel used to 
pass control information. The standard configuration for the IDS model B 
provides one channel of each type (the 6-Mbyte channel connected to the 
MIOP, the 100-Mbyte channel connected to the Buffer liD Processor 
(BIOP»; a second 100-Mbyte channel linking the Disk lID Processor (DIOP) 
and the mainframe is optional. A detailed description of the IDS model B 
is contained in the lID Subsystem Model B Hardware Reference Manual, 
publication HR-0030. 

The IDS model C is linked to the mainframe with the same type of 
channels, but its standard configuration contains one channel of each 
type for each lOP. In addition, the 100-Mhyte channels on the model C 
supports a Bypass mode of operation that enables data transfer directly 
between Buffer Memory and Central Memory bypassing the lOP's Local 
Memory. A detailed description of the IDS model C is contained in the 
lID Subsystem Model C Hardware Reference Manual, publication HR-0081. 

The IDS may optionally be linked to an SSD Memory by a 100-Mbyte 
channel. Software supports the movement of disk data over such a channel 
if it is attached to the BIOP, an optional DIOP, or an optional Auxiliary 
lID Processor (XIOP). This channel can support the Bypass mode of 
operation on a model C IDS if attached to channels 148 and 158 on an 
lOP. 

SM-0046 G 1-3 



1.2 SYSTEM CONFIGURATION 

The lOS has a minimum of two lOPs. The MIOP and BIOP are mandatory. In 
addition, the lOS can have either one or two DIOPs, permitting a maximum 
of 48 disk units to be connected to the system~ One XIOP, which 
controls block multiplexer channels, can be selected as the third or 
fourth processor. Figure 1-1 shows an example of a Cray computer system 
with each of the four types of lOPs. 

Each processor in the lOS is responsible for a unique set of functions. 
A processor's functions are defined by the peripheral equipment attached 
to it. The software in each processor knows its functions and is 
structured to perform these functions as efficiently as possible. The 
processors can communicate with each other through Buffer Memory. Thus, 
a processor can request that another processor perform a function for it. 

1-4 

- Cray 6-Mbyte channel 
- Cray 100-Mbyte channel 
_ Cray 1000-Mbyte channel 

Front-end 
Computers 

Front-end 
Interfaces 

Boxes and/ or 
NSC Adapters 

To mainframe or 
I/O Subsystem 

Cray Mainframe 
SSD 

1031 

Figure 1-1. A Cray Computer System with Four 1/0 Processors 

SM-0046 G 



I 

MIOP responsibilities are as follows: 

• The MIOP is the first lOP in the lOS to be deadstarted. The MIOP 
initializes the contents of Buffer Memory and deadstarts the other 
processors in the configuration using Buffer Memory and 
accumulator channels to the other processors. 

• The MIOP and the BIOP ·are used to deadstart the mainframe. 

• The MIOP handles all communication with the mainframe over a 
6-Mbyte channel. This traffic includes disk and tape requests and 
station communications. 

• The MIOP performs front-end and station software support. 

• The MIOP handles input and output operations on the expander 
channel. 

• The MIOP accepts information from the error channel and transmits 
it to the mainframe for inclusion in the system error log. 

• The MIOP is the operator interface to the lOS editor, which 
maintains deadstart and restart parameter files. 

• The MIOP handles input and output operations on user channels for 
COS tasks. 

BIOP responsibilities are as follows: 

• The BIOP uses a 100-Mbyte channel to transfer data between Central 
Memory and Buffer Memory for all lOPs. 

• The BIOP transfers tape data between Central Memory and Buffer 
Memory under direction of the XIOP. It also blocks and deblocks 
tape data as it is moved between Central Memory and Buffer Memory. 

• The BIOP performs disk I/O to and from disk units attached to its 
channels. (lOS software supports the 00-19, 00-29, 00-39, 00-40, 
RO-10, and 00-49 Disk Storage Units.) It performs error recovery 
when errors are detected on data transfers. 

• If a 100-Mbyte channel is connected to SSO Memory, the BIOP 
transfers disk data between SSO Memory and Local Memory. 

OIOP responsibilities are as follows: 

• The OIOP moves data from Buffer Memory to disk and vice versa at 
the request of packets from the mainframe through the MIOP. These 
packets also return status to the requester. 

SM-0046 G 1-5 



I 

• When errors are detected in data transfers to or from disk, DIOP 
software attempts error recovery. 

• If a 100-Mbyte channel is connected to Central Memory, the DIOP 
transfers data between Central Memory and Local Memory. 

• If a 100-Mbyte channel is connected to SSD Memory, the DIOP 
transfers disk data between SSD Memory and Local Memory. 

XIOP responsibilities are as follows: 

• The XIOP handles data to and from IBM-compatible tape drives and 
buffers the data to and from Buffer Memory at the request of 
packets from the mainframe. 

• When errors are detected while transferring data to or from tape, 
the XIOP performs error recovery procedures. 

• If a 100-Mbyte channel is connected to SSD Memory, the XIOP 
transfers disk data between SSD Memory and Local Memory. 

Each processor logs information and keeps statistics about channel use, 
error detection, and error recovery. 

1.3 REGISTER ASSIGNMENTS 

The 512 operand registers are conventionally assigned to lOS software 
entities as follows (register numbers are in octal). 

Registers 

0-377 
400-577 
600-677 
700-777 

Software Entity 

Kernel 
Overlays 
Interrupt handling overlays 
Debug packages (the debugger, trace, and DUMP) 

The , symbol usually designates global Kernel registers and R! 
usually designates APML assembly operand registers. 

1.4 TERMINOLOGY 

Although the lOPs are usually referred to by their acronyms (MIOP, BIOP, 
DIOP, and XIOP), they can also be referred to as lOPs 0 through 3. In 
this manual, the third and fourth lOPs are often referred to as IOP-2 and 
IOP-3. 

1-6 SM-0046 G 



This terminology is necessary because the identities of those two 
processors can vary. If the lOS has three lOPs, either IOP-2 or IOP-3 
can be present. If the lOS has four processors, both IOP-2 and IOP-3 are 
present. rOP-2, when present, must be a Drop due to hardware 
limitations. IOP-3, when present, can be a DIOP or an XIOP. When IOP-3 
is specified, the documentation applies to either a Drop or an xrop. 

The words task and activity are used interchangeably in this manual. 
Activities (or tasks) are routines that do specific jobs within the 
subsystem. 

An activity is initiated either by a command keyed in at a Kernel 
console or by a Kernel service request function. Within the domain of an 
activity there is a set of routines that reside as overlays in Buffer 
Memory. These routines operate under a stack-like structure. When an 
activity begins, an initial routine gains control. The routine may give 
control to another routine, and so on. As a routine completes, control 
may pass back to the previous routine. An activity is terminated when 
the initial routine relinquishes control. 

Parcel is used in this manual when referring to a storage unit of 16 
bits. Word refers to a 64-bit storage unit. 

Central Memory consists of 64-bit words and is located in the 
mainframe. SSD Memory consists of 64-bit words and is located in an 
optional SSD solid state storage device. Data transfer to or from SSD 
Memory must be a mUltiple of 64 words, and to an address that is a 
multiple of 64 words. Buffer Memory consists of 64-bit words and is 
located in the lOS chassis. Local Memory stores information in 16-bit 
units (parcels) and is located within each rOPe 

Target memory refers to the ability of the mainframe operating system 
to specify the source or destination of disk data as being Central 
Memory, SSD Memory, or the portion of Buffer Memory reserved for dataset 
storage. An rop with a 100-Mbyte channel connected to a particular 
target memory is referred to as the Target Memory Processor for that 
memory type. 

Although the ros includes 100-Mbyte channels between each of the raps and 
Buffer Memory, the term lOO-Mbyte channel as used in this manual refers 
only to the channel linking an rop to Central Memory or SSD Memory. 
Similarly, 6-Mbyte channel refers to the command channel linking an rop 
to the mainframe, unless otherwise stated. 

SM-0046 G 1-7 



I 

1.5 FORMAL SYNTAX CONVENTIONS 

This manual uses the following conventions to describe macro calls, 
console commands, and other formal representations: 

• An uppercase word, such as MSG, is a predefined system keyword. 

• A lowercase word in italics, such as msg, represents variable 
data. Italics also highlights terms being defined. 

• Information delimited by square brackets, [], is optional. 

• A vertical bar in a command format (AlB) separates two or more 
literal parameters when only one choice can be used. 

Any command entered at a console must be followed by a carriage return, 
unless otherwise specified. 

1-8 SM-0046 G 



I 

2. THE KERNEL 

The Kernel is the software package that controls activities running in 
each 1/0 Processor (lOP). Each lOP has its own copy of the Kernel, and 
all copies are basically the same. At deadstart, each copy of the Kernel 
dynamically adjusts to configurations and functions assigned to its lOP. 

Kernel functions consist of answering interrupts, managing overlay areas, 
and handling independent activities running in the 1/0 Subsystem (lOS). 
The functions of the independent activities include handling other 
activities, allocating memory, and partial handling of peripherals. 

2.1 LOCAL MEMORY USAGE 

Kernel code, as figure 2-1 shows, is stored in a separate area of Local 
Memory away from the constants and tables it references. The table area 
contains configuration maps, memory allocation tables, activity 
dispatching parameters, and information about overlays in Buffer Memory 
and in Local Memory. 

Space for overlays follows the Kernel code area in Local Memory. A 
specified amount of space is available to each of the rops and is 
allocated dynamically as new overlays are loaded. 

Three memory areas managed by the Kernel come next in Local Memory. One 
area provides communication packets (DALs), one contains free memory, and 
one provides 1/0 buffers. The DAL area contains a linked list of 
32-parcel packets. The free memory area is used for Kernel tables and 
small buffers and is organized as a chain structure. Free memory is 
allocated in multiples of 4 parcels, with the first address always 
falling on a 4-parcel boundary. 

The 1/0 buffer area is allocated in pieces of 2048 parcels. 

The relative size of each of these types of areas in Local Memory is 
determined by parameters in the overlay AMAP during deadstart. (See the 
COS Operational Procedures Reference Manual, publication SM-0043, or the 
UNICOS System Administrator's Guide for CRAY Y-MP, CRAY X-MP, and CRAY-1 
Computer Systems, publication SG-2018, for information on rop 
configurations set in AMAP.) The size of the areas depends on the 
functions that each rop performs. For example, an lOP that is used 
exclusively for disk 1/0 has more Local Memory assigned to 1/0 buffers 
than an lOP that performs functions in addition to disk 1/0. 

SM-0046 G 2-1 



I 

o 
o 

65,536 

Kernel Constants and Tables 

Kernel Code 

Overlay Area 

DALs for Communication 
among the lOPs 

Free Memory for Kernel Tables, 
Small Buffers, and Data Areas 

I/O Buffers 

Figure 2-1. Local Memory Structure 

2.1.1 LOCAL MEMORY SCRUBBING 

15 

In the IOS Model B, the ECL technology used for lOP Local Memory is 
susceptible to soft memory errors caused by alpha particle migration. 
These soft errors are seen as bits changing state in areas of memory 
that are infrequently or never written. Because the lOS Model B has no 
Local Memory correction and the IOS Model C has SECDED Local Memory error 
correction only during transfer of data from Local Memory to issue, a 
method is needed to correct Local Memory errors. 

2-2 SM-0046 G 



The SCRUB routine is used to correct Local Memory errors. SCRUB is 
created in each lOP at deadstart time. It uses the TPUSH Kernel call to 
activate itself once every 15 minutes. 

SCRUB allocates a Buffer Memory data buffer and uses it to write out, 
then read back in, the Kernel-resident area of Local Memory. SCRUB then 
issues a FLUSH Kernel call, which causes all overlays to be reloaded from 
Buffer Memory before being activated. The time spent in SCRUB is 
approximately 0.5 ms. 

The remainder of Local Memory consists of dynamically allocated parcels 
that are written before they are read. 

2.2 BUFFER MEMORY USAGE 

The lOPs share Buffer Memory, which is organized according to the plan 
defined in figure 2-2. The first locations are reserved for a deadstart 
package. During deadstart, the Master IIO Processor (MIOP) initializes 
common tables and the System Directory so that all the control 
information is ready to begin execution when the other lOPs are 
deadstarted. 

The next area in Buffer Memory is reserved for the System Directory, 
followed by the message area, Kernel area (includes AMAP, the overlays, 
and lOPs Kernel storage), and lastly, Buffer Memory resident datasets. 

Buffer Memory addresses require 32-bits (2 parcels). The high-order bits 
of the address are in the first parcel and the low-order bits are in the 
second. 

2.2.1 SYSTEM DIRECTORY 

The System Directory contains pointers to other information saved in 
Buffer Memory, including message area locations for each processor, and 
pointers to Kernel storage reserved for each processor. The System 
Directory begins at the first address after the deadstart package. 
Table 2-1 lists the directory structure. 

All of the lOPs can access the System Directory, but information in the 
directory can be changed only by the MIOP during Deadstart. 

SM-0046 G 2-3 



o 
o 

Deadstart package 

System directory (see table 2-1 for expansion of area) 

Message Area (for communicating control information) 

MIOP 
BIOP 
lOP-2 (DlOP) 
lOP-3 (DIOP or XIOP) 

(Size of area set in AMAP 
for each lOP. Each 
message area is divided 
into 32 parcel units.) 

AMAP (Individual lOP configuration overlays) 

Overlays (Read-only, shared by all lOPs) 

MlOP Kernel storage: 
- Tables and queues 
- Software stack area (200S words) 
- I/O buffers 
- Trace buffer 
- Other memory requirements 

63 

IOP-2 Kernel storage (same as MIOP Kernel storage description 
except size of 100S words) 

lOP-3 Kernel storage (same as MIOP Kernel storage description 
except size of 100S words) 

BIOP Kernel storage (same as MlOP Kernel storage description 
except size of 100S words) 

Buffer Memory resident datasets 

Figure 2-2. Buffer Memory Organization 

2-4 SM-0046 G 



Table 2-1. System Directory Contents 

Parcel Bits Description 

0-1 0-15 MlOP message area 

2-3 0-15 SlOP message area 

4-5 0-15 lOP-2 message area 

6-7 0-15 IOP-3 message area 

8-11 0-15 Reserved 

12-13 0-15 First overlay (AMAP) address 

14-15 0-15 Unused 

16-17 0-15 MIOP Kernel storage area 

18-19 0-15 Size of MIOP storage area in 512-word blocks 

20-21 0-15 BIOP Kernel storage area 

22-23 0-15 Size of SlOP storage area in 512-word blocks 

24-25 0-15 IOP-2 Kernel storage area 

26-27 0-15 Size of IOP-2 storage area in 512-word blocks 

28-29 0-15 IOP-3 Kernel storage area 

30-31 0-15 Size of IOP-3 storage area in 512-word blocks 

2.2.2 MESSAGE AREAS 

Message areas accessed by senders and receivers of messages follow the 
System Directory. The sending lOP maintains control of the area and 
allocates or deallocates memory within it. The receiving processor 
signals when the message has been received and processed; the memory is 
then released to the pool of message areas belonging to the sender. This 
process is described in detail in subsection 2.13, Communications Among 
lOPs. 

SM-0046 G 2-5 



I 

2.2.3 KERNEL AREA 

Each lOP has access to its own reserved Kernel storage area, which holds 
temporary information about activities and swapped activity areas. 
Reserved areas also provide data buffer storage for disks and other 
peripherals. A buffer is also reserved for history trace information. 
(TRACE is a debugging tool described in subsection 15.2, History Trace.) 
Each area is solely under the control of its respective lOP. 

2.2.4 BUFFER MEMORY RESIDENT DATASETS 

Part of Buffer Memory can be allocated for dataset storage. See the COS 
Operational Procedures Reference Manual, publication SM-0043, or the 
UNICOS System Administrator's Guide for CRAY Y-MP, CRAY X-MP, and CRAY-l 
Computer Systems, publication SG-2018, for more information about 
configuring storage for Buffer Memory resident datasets. 

2.3 TARGET MEMORY 

The lOS may be configured so that it can access various types of memory 
through lOO-Mbyte channels. The concept of a target memory allows lOS 
activities to specify which of these memories to access in Kernel Service 
Request IIO functions. It also allows the mainframe to specify which 
memory type to use in disk requests. An lOP with a 100-Mbyte channel 
connected to a particular memory is referred to as the Target Memory 
Processor for that memory. 

Memory types are defined in $APTEXT by equates as follows: 

Memory Type 

TM$CMEM 
TM$SSD 
TM$BMR 

Description 

Central Memory 
SSD Memory 
BMR Memory 

The Target Memory Control Block (TMCB) residing in the Kernel table area 
contains a pointer to the Target Memory Control Table (TM@) for each type 
of target memory. The IDS Kernel Service Request routines and the disk 
software use these control tables to determine memory base and limit 
addresses, and to determine the Target Memory Processor number for each 
memory type. 

2-6 SM-0046 G 



2.4 ACTIVITY-SOFTWARE STACKING 

Each independent activity is controlled by the Kernel using the 
parameters and data stored within the Activity Descriptor (AD) for that 
activity. The Kernel establishes an AD in the free memory section of 
Local Memory when a new activity is created. The AD for each activity 
currently in use remains in Local Memory until the activity is 
terminated. The format ·of the Activity Descriptor is defined in the lOS 
Table Descriptions Internal Reference Manual, publication SM-0007. 

An activity may be composed of more than one overlay. When control 
passes to a new overlay that is not already resident in Local Memory, the 
new overlay is copied from Buffer Memory to the overlay area in Local 
Memory, where it executes. 

Each overlay to execute is assigned a storage module (SMOD), which saves 
information relating to that overlay's executing environment. An SMOD is 
of variable size. Each SMOD contains the following information: 

• Links to the AD and the previous SMOD 
• Overlay information (for instance, its base address) 
• Contents of A, B, C, E, and P registers 

Additionally, an SMOD may contain the following information: 

• Contents of operand registers 
• Entries in the exit stack 

The format of an SMOD is illustrated in the lOS Table Descriptions 
Internal Reference Manual, pUblication SM-0007. 

An SMOD is created when an overlay is first activated. When an 
overlay completes execution, either by returning control to the 
overlay that called it or by performing a GOTO service request to 
another overlay, its SMOD is deleted by removing all pointers to it. 
However, if the overlay performs a service request that results in the 
temporary loss of control (such as a CALL), the SMOD is updated with 
the executing environment of its overlay in anticipation of the return 
of control. 

When an activity calls two or more overlays, multiple SMODs are 
retained. The collection of SMODs for a single activity is called a 
software stack. While the activity is executing, this software stack 
occupies an area of fixed size in Local Memory. 

When an overlay performs a CALL, its SMOD is pushed onto the 
software stack. When the overlay regains control, its SMOD is 
popped from the stack. Each SMOD, except the SMOD for the first 
overlay of an activity, contains a link to the SMOD associated with 
the overlay that called it. For the first overlay, the pointer to the 
previous SMOD is o. 

SM-0046 G 2-7 



When an activity relinquishes control of the lOP central processor to 
the Kernel and other activities are waiting on the central processor 
queue, the software stack for the activity losing control is written 
to Buffer Memory. The Local Memory software stack area is thus 
available to another activity. When the original activity regains 
control of the lOP central processor, its software stack returns to 
the software stack area in Local Memory. The AD remains in Local 
Memory and contains a link to the SMOD for the next overlay to be 
activated. 

2.5 DEMON ACTIVITIES 

Demon activities are created to perform tasks necessary to sustain 
1/0, but which take too much time and memory to execute directly in an 
interrupt handler. 

Demon activities differ from normal activities in that they are 
assigned a Local Memory-resident SMOD. This provision minimizes 
activation time by eliminating the time normally needed for the SMOD 
exchange between Local and Buffer Memory. 

The SMOD assigned to a Demon activity is large enough to contain the 
minimum amount of information needed to activate it. No room is 
provided for register saves or SMOD stacking, which means that Demon 
activities cannot perform Kernel service routines (such as CALL, PUSH, 
MSG, and RECEIVE) that could alter or temporarily suspend an activity. 

Demon activities are created the same way as the normal activities, 
using the CREATE Kernel service routine. The DPTR keyword parameter 
on the CREATE macro (see the CREATE function later in this section) is 
used to specify that the activity being created is a Demon. The DPTR 
keyword is set to the Demon pointer D$name, which has been 
previously defined using the DAEMON macro in the Kernel Demons Table. 

The D$name Demon pointer is used as an index into the Kernel Demons 
Table in the Kernel to find the AD for each'Demon. 

2-8 SM-0046 G 



Example: Create ACOM Demon 

Kernel Demons Table: 

DEMONS • 

ACOM DAEMON 

ACOM Demon creation: 

EXT D$ACOM 
CREATE ACOM"DPTR=D$ACOM,PRI=O 

The preceding statement causes an AD and SMOD to be assigned and 
initialized for the ACOM Demon. The AD address is placed in the 
Kernel Demons Table, using D$ACOM as an index. 

Demon activities are activated by making a call to the DACT Kernel 
subroutine. The D$name pointer assigned to the Demon to be 
activated is passed as a parameter in the accumulator. 

Example: Activate ACOM Demon 

EXT D$ACOM 
A=D$ACOM 
R=DACT 

(Define if not in Kernel code) 

The D$name pointer is used as an index into the Kernel Demons Table 
to find the AD for the Demon. If the Demon is not already active or 
queued to be activated (AD@ACT=O), the AD address is passed to EQCP to 
be queued for activation. 

2.6 OVERLAYS 

Because of the limited size of Local Memory, the lOP software uses 
overlays. An overlay is an executable program or subroutine that 
normally resides in Buffer Memory. It is read into Local Memory when 
activated to perform some function. 

The MIOP establishes the overlays in Buffer Memory and constructs the 
Overlay Table when the system is deadstarted. The Overlay Table 
contains an entry for each defined overlay. (The Overlay Table entry 
is illustrated in the lOS Table Descriptions Internal Reference 
Manual, publication SM-0007.) The entry for a particular overlay is 
derived from the overlay index, an equate of the form O$ovlname, 
defined in the overlay OVLNUM. 

SM-0046 G 2-9 



The Kernel uses the Overlay Table entry to load the associated overlay 
(if it is not already resident) when that overlay is called, and to 
determine the registers through which it receives parameters. If the 
overlay is called from a console, the parameters are the characters 
keyed in following the command, two characters per register; the 
maximum is one line of input. Internally called overlays are supplied 
parameters from the caller within the caller's registers. 

During deadstart, the Kernel initializes the memory allocated for 
overlay space. The initialized space consists of three memory 
blocks: a header and a trailer delimiting the overlay space and one 
block containing the memory available for assignment. The amount of 
space allocated in a particular lOP is specified as a parameter in the 
overlay AMAP. 

Two doubly linked lists run through the block headers. (See Local 
Memory Block Header in the lOS Table Descriptions Internal Reference 
Manual, publication SM-0007, for a description of the header 
contents.) The two lists are as follows: 

• The adjacent block list is ordered by block address and is used to 
calculate block sizes and to combine a block with adjacent free 
blocks when it is released. 

• The memory search list links the free memory blocks and overlay 
blocks; the free blocks are kept at the head of the list and the 
overlays at the end, ordered in a least recently used manner. 

When an overlay load is required, the Kernel scans the memory search list 
for an area large enough to accommodate the overlay. Overlay areas are 
released and combined with adjacent blocks, if necessary, as they are 
encountered during the scan. Upon finding a block of sufficient size, 
the Kernel creates a block for the overlay and reads the overlay into 
Local Memory. If the block is larger than that required, the Kernel also 
allocates a block of free memory, which is placed on the memory search 
list. 

Whenever an overlay is entered (through a service function such as CALL, 
GOTO, RETURN, or CREATE), the memory block for that overlay is placed at 
the end of the memory search list. 

The format of an overlay running under the Kernel is depicted in table 
2-2. The first 4 parcels contain the name of the overlay, which has a 
maximum of 8 characters, zero-filled. All overlays are entered at 
parcel 6. 

Overlays contain no variable data areas; that is, overlays are read-only 
programs and cannot be modified. An overlay obtains a data area by 
requesting a Local Memory area from the Kernel. Data areas thus 
allocated m~st be explicitly released when no longer needed. (The memory 
can be released in a different overlay or even in a different activity.) 

2-10 SM-0046 G 



Table 2-2. Overlay Format 

Field Parcel Bits Description 

QV@NAM 0-3 0-15 Overlay name (up to 8 ASCII characters) 

OV@TYP 4 0 Type of overlay: 
0 Executable 
1 Data 

OV@NUM 4 1-15 Overlay number 

OV@PAR 5 0-15 Parameter information: 

SM@NUM 0-6 Number of registers 

SM@FST 7-15 First operand register 

OV@ENT 6 Entry point (first executable statement) 

2.7 INTERRUPT PROCESSING 

with the exception of the 100-Mbyte channels to Central Memory, SSD 
Memory, and Buffer Memory, lOS channels are normally managed through 
interrupts rather than by polling the Channel Done flag. That is, a 
function is initiated and control is relinquished to the Kernel, allowing 
the Kernel to do other useful work. A subsequent interrupt or time-out 
reactivates the software and processing continues. 

When any peripheral function is completed (the done indicator is set), an 
interrupt is generated to the address contained in the first entry of the 
exit stack. That address is the same for any task running under the 
Kernel. All interrupts, therefore, go to the Kernel, which processes 
them in a manner consistent with the device causing the interrupt. 
Essential parts of interrupt handling routines are performed with 
interrupts disabled. 

SM-0046 G 2-11 



2.8 lOP CENTRAL PROCESSOR QUEUING AND ACTIVITY DISPATCHING 

The Kernel maintains a queue containing the activities eligible for 
control of the lOP central processor. A simple priority scheme 
determines the order in which the activities receive control. The queue 
has 16 priority levels for activities, with priority 0 the highest and 15 
the lowest. Demon activities performing Kernel functions run at a higher 
priority than other activities. A Kernel function can be interrupted by' 
the hardware, but otherwise it gives up control only when its task is 
complete. The task is always of brief duration. 

The priority of an activity is maintained within the Activity Descriptor 
and as such is semipermanent. 

2.9 KERNEL SERVICE REQUESTS 

The Kernel monitors the operation of lOP software and performs several 
service functions for software activities. These services are performed 
through well-defined interfaces between the activity and the Kernel. 

2.9.1 GENERAL SERVICE FUNCTIONS 

The general service functions are activity-oriented functions, including 
queuing and dequeuing operations, activity creation, and front-end 
communication. 

2.9.2 MEMORY ALLOCATION AND DEALLOCATION 

Each lOP has two types of Local Memory chains for allocating and 
deallocating memory for activities: the free memory chain and the 
fixed-size pool. The free memory chain is a block of memory that can be 
allocated in variable sizes. The first parcel of each allocated segment 
of memory is on a 4-parcel boundary. The Kernel always allocates in 
multiples of 4 parcels, regardless of the size of the request, by 
rounding up to the next multiple. 

The other type of memory chain is the fixed-size pool, of which there are 
two types: the I/O buffer pool and the Disk Activity Link (DAL) pool. 

Each memory piece in the I/O buffer pool is 2048 parcels in length and 
begins on a parcel boundary that is a multiple of 2048 parcels. This 
pool is used for storing data from disk sectors, on its way either to or 
from a disk attached to an lOP, and for other I/O device buffering. 

2-12 SM-0046 G 



Each memory piece in the DAL pool is 8 words (32 parcels) in length and 
begins on a 4-parcel boundary. This pool contains 1/0 requests from the 
mainframe and IOP-to-IOP messages while they reside in Local Memory. 

The size of each of these pools is adjustable at assembly time; each 
processor has a pool size consistent with its function in the lOS. For 
example, the MIOP (the controller lOP) has few 1/0 buffers, but it has a 
relatively large quantity of free memory for use by overlays and station 
software. The Buffer 1/0 Processor (BIOP), because it largely moves data 
to and from Buffer Memory (and disk), assigns most of Local Memory to the 
1/0 buffer pool. 

Six Kernel requests allocate and deallocate memory from these pools. Two 
other requests allocate and deallocate Buffer Memory from the Kernel's 
pool of available memory. 

2.9.3 1/0 OPERATIONS 

Activities executing in the lOS perform 1/0 for peripherals attached to 
the subsystem. In addition, the lOS software occasionally accepts files 
from front-end processors and writes them on disk at the direction of 
software executing in the mainframe. At other times, an lOP moves files 
from disk to a front-end computer for further processing. 

The Kernel performs all of these functions. An activity running in an 
lOP makes a service request to the Kernel specifying the parameters for 
an 1/0 operation. The Kernel loads a special overlay containing the 
handler for the relevant device, and the function is performed while the 
activity waits for its completion. 

Table 2-3 provides a brief summary of the service functions and the octal 
function codes. Each function is described in more detail in the 
following subsections, arranged alphabetically by function. 

A macro call is the normal method for requesting service from the Kernel. 

The address to which the service request macro performs its return jump 
is within the resident Kernel and is held in operand register ~EX, which 
is dedicated to that function. The Kernel sets the register contents; 
the register must not be altered by any other software. 

Following the Kernel call and the performance of the service function, 
control returns to the caller at the instruction after the return jump. 
After the call, the contents of the A and B registers depend on the type 
of call. The operand registers specified to be saved contain the values 
they contained at the time of the call, except in cases where they pass 
parameters back to the caller. 

SM-0046 G 2-13 



Function 
Code 

Table 2-3. Summary of Service Functions 

Name Fun'ction 

General Service Functions 

1 PUSH 

2 POP 

3 TERM 

4 GIVEUP 

7 PAUSE 

11 TPUSH 

14 ASLEEP 

15 ALERT 

16 AWAKE 

17 RESPOND 

20 MSG 

21 MSGR 

22 OUTPUT 

24 A13001 

25 RECEIVE 

37 OUTCALL 

50 CALL 

2-14 

Deactivates activity until popped 

Reactivates pushed activity 

Terminates activity 

Reschedules activity 

Suspends activity for specified tenths of a 
second 

Pushes activity until popped or time expires 

Suspends activity until an AWAKE message is 
received 

Creates an activity in another lOP 

Activates an activity in another lOP 

Sends message response to an activity in 
another lOP 

Sends message to Kernel console 

Sends message to Kernel console and waits for 
operator response 

Sends message to controlled CRT 

Performs front-end IIO on an NSC channel 

Waits for a character to be entered from a CRT 
controlled by USURP 

Calls (through the CALL function) an overlay in 
another lOP 

Calls another overlay to perform a function 

SM-0046 G 



Function 
Code 

51 

52 

53 

54 

55 

Table 2-3. Summary of Service Functions (continued) 

Name 

GOTO 

RETURN 

FIND 

FLUSH 

CREATE 

Function 

Calls another overlay but does not save return 
information; returns to caller of this overlay. 

Returns to caller of the overlay; if none, 
terminates. 

Returns the Buffer Memory address and length 
of an overlay 

Releases all overlays in Local Memory 

Creates a new activity in the system 

Memory Allocation and Deallocation 

26 GETDAL 

27 RELDAL 

30 GETMEM 

31 RELMEM 

32 BGET 

33 BRET 

35 MGET 

36 MPUT 

Allocates local OAL 

Releases local DAL 

Allocates Local Memory in multiples of 4 
parcels from free pool 

Releases memory to free pool 

Allocates a Local Memory 1/0 buffer of 2048 
parcels 

Deallocates a Local Memory IIO buffer 

Gets Buffer Memory from pool of free buffers 

Returns Buffer Memory to free pool 

InputlOutput Operat~ons 

34 

42 

SM-0046 G 

SEND 

HSPR 

Sends message to mainframe 

Reads data from a Target Memory into Local 
Memory 

2-15 



Function 
Code 

43 

44 

45 

46 

47 

Table 2-3. Summary of Service Functions (continued) 

N~e 

HSPW 

POLL 

TRANSFER 

MOSR 

MOSW 

Function 

Writes data from Local Memory to a target 
memory 

Sends message to mainframe ar.d waits for 
response 

Moves data between Buffer Memory and a target 
memory 

Reads data from Buffer Memory into Local Memory 

Writes data from Local Memory into Buffer Memory 

2.9.4 FUNCTION DESCRIPTIONS 

The following subsections describe the service functions in alphabetical 
order. 

2.9.4.1 ALERT function (15) 

ALERT creates an activity in a different lOP. Subsequent AWAKE functions 
can pass parameters to the newly created activity. 

The stepflow for the ALERT service function (shown in figure 2-3) is as 
follows: 

1. An activity in the originating lOP performs an ALERT service 
function, specifying the first overlay of the activity to be 
created and the lOP in which the activity will be created. 

2. The Kernel in the originating lOP builds a message from the 
information provided in the service function and sends it to the 
Kernel in the target lOP by way of an interprocessor interrupt 
and Buffer Memory. 

3. The Kernel in the originating lOP idles the activity that 
performed the service function. 

2-16 SM-0046 G 



.-

Originating rop Target rop 

1 3 6 7 
Popcell 

Kernel Kernel 

Buffer Memory 

1865 

Figure 2-3. ALERT Stepflow 

4. The Kernel in the target rop performs the following operations: 

• Builds a popcell in Local Memory. A popcell contains 
linkage and message information allowing an activity in one 
rop to communicate with an activity in another rOPe 

• Creates the new activity with a CREATE service function 

• Saves the popcell address; the address is supplied to the 
new activity in the first parameter register. 

• Places the Activity Descriptor on its central processor queue 

SM-0046 G 2-17 



I 

5. The Kernel in the target lOP sends a message response containing 
the address of the popcell to the Kernel in the originating lOP 
by way of the Kernel's interprocessor message facility. 

6. The Kernel in the originating lOP saves the popcell address. 

7. The Kernel in the originating lOP places the originating activity 
on its central processor queue. When the activity is scheduled, 
the popcell address is supplied in the A register. 

8. The newly created activity is popped off the central processor 
queue in the target lOP. The activity can issue ASLEEP functions 
to receive AWAKE requests generated in the originating lOP and 
RESPOND functions to respond to the requests. 

Format: 

ILocation IResult I Operand 

I I 
I I ALERT 

I 
liop,overlay 

iop 1/0 Processor number: 
0 lOP-O 
1 lOP-1 
2 lOP-2 
3 lOP-3 

overlay Name of initial overlay of activity to create 

Example: 

This example executes in MIOP and alerts overlay UCXFR (create a slave 
activity) in BlOP. 

ILocation IResult 

I I 
I IALERT 

I Operand 

I 
12,UCXFR 

2.9.4.2 ASLEEP function (14) 

ASLEEP gets messages supplied by AWAKE requests for activities created 
through ALERT functions. 

If a message is queued on the popcell DAL queue, it is immediately 
returned to the activity. Otherwise, the activity is suspended until an 
appropriate AWAKE message is received. 

2-18 SM-0046 G 



All messages must be acknowledged through the RESPOND call so that 
resources allocated by the AWAKE request are released. 

Format: 

ILocation !Result !Operand 

I I 
I IASLEEP 

I 
Ipopcell,dal 

popcell Popcell address supplied when the activity was created 

dal Returned address of the message DAL 

Example: 

This example shows how a slave activity created by an ALERT request 
checks if any OALs, representing work to do, have been sent by the master 
activity. 

ILocation !Result 

I I 
I I ASLEEP 

I Operand 

I 
IR!PO,R!OAL 

2.9.4.3 AWAKE function (16) 

AWAKE passes parameters to an activity created earlier with an ALERT 
service function by sending it a Disk Activity Link (DAL). A DAL is a 
32-parcel message. The Kernel uses the first 8 parcels for control 
purposes; parcels 8 through 31 may contain messages or data. The target 
activity receives messages by issuing the ASLEEP request. 

The stepflow for the AWAKE service function (shown in figure 2-4) is as 
follows: 

1. The originating activity builds a DAL with a message for the 
target activity and performs an AWAKE service function, 
specifying the target lOP, the popcell address, and the OAL 
address. 

2. The Kernel in the originating lOP sends the DAL to the Kernel in 
the target lOP by way of Buffer Memory, using the interprocessor 
message facility. 

3. The Kernel in the originating lOP idles the originating activity. 

4. The Kernel in the target lOP places the DAL on the popcell DAL 
queue. 

SM-0046 G 2-19 



Originating lOP Target rop 

Activity Activity 

~~ 

5 

~~ 
6 

1 3 8 I popcelll 

4 

" ~~ 

Kernel Kernel 

Buffer Memory 

1870 

Figure 2-4. AWAKE Stepflow 

5. The target activity processes the DAL returned by the ASLEEP 
request. 

6. The target activity performs a RESPOND service function, and the 
Kernel in the target rop places a status code in the message. 

7. The Kernel in the target lOP sends the message to the Kernel in 
the originating lOP by way of Buffer Memory. 

8. The Kernel in the originating rop returns the status code to the 
originating activity in the A register and places the activity on 
its central processor queue. 

2-20 SM-0046 G 



I 

,-

Format: 

ILocation !Result !Operand 

I I 
I I AWAKE 

I 
liop,popcell,dal 

iop 1/0 Processor designator: 
0 IOP-O 
1 IOP-1 
2 IOP-2 
3 IOP-3 

popcell Popcell address returned on the ALERT call 

dal Message packet (DAL) address 

Example: 

This example executes in MIOP and shows how a master activity notifies 
the slave activity that there is work to do. The master created the 
slave by issuing an ALERT service request; then a DAL is sent to a 
specific slave in the BIOP. 

ILocation !Result 

I I 
I I AWAKE 

!Operand 

I 
12,R!XFR,R!DAL 

2.9.4.4 A13001 function (24) 

The A13001 function performs as a readlwrite operation to a front end 
that is connected through an NSC A130 adapter. Control returns to the 
caller after the specified interrupt occurs. 

Format: 

ILocation !Result !Operand 

I I 
I IA13001 

I 
lint,inl,in,chan,outl,out,q 

int 

inl 

in 

SM-0046 G 

Interrupt control; A '0' specifies an output channel 
interrupt, and a '1' specifies an input channel interrupt. 

Input buffer length (in parcels) 

Input buffer starting address 

2-21 



chan Physical lOP input channel number 

outl Output buffer length (in parcels) 

out Output buffer starting address 

q A 2-parcel queue address for Kernel queuing 

Example: 

This example shows one way to issue a read command to the A130 adapter. 
The constant value 1, signifies an input channel interrupt. The output 
buffer length is specified by using a table field name; NSB is the Input 
Status Buffer used to hold information relevant to the A130 adapter. LE 
represents the field name for the length of each entry in the table. 

ILocation IResult 
I I 
I IA13001 

I Operand 
I 
11,R!LEN,R!IN,R!CHAN,NSB@LE,R!OUT,R!Q 

2.9.4.5 BGET function (32) 

The BGET function allows an activity to get a fixed-size Local Memory 
buffer of 2048 parcels. The request is satisfied from the pool of IIO 
buffers. The first address of the buffer is a multiple of 512. 

The error response, EC$BUFF, is returned in the A register if the 
function is unsuccessful. If successful, the address is returned in the 
specified register, and the A register is O. The BGET call does not 
require a register save. 

Format: 

ILocation IResult 

I I 
I IBGET 

I Operand 

I 
Ireg 

reg Operand register in which the buffer address is returned 

Example: 

This example shows that a 2-character register designator may be used to 
receive the address of the local 1/0 buffer. 

ILocation IResult 
I I 
I IBGET 

2-22 

10perand 

I 
I~ 

SM-0046 G 



2.9.4.6 BRET function (33) 

The BRET function returns an IIO buffer of 2048 parcels to the pool of 
available buffers. The BRET call does not require a register save. 

Format: 

/Location !Result !Operand 

I I I 
I /BRET /address 

address Address of buffer to be released 

Example: 

This example shows that a 2-character register designator may be used 
when making the service request. Like anywhere else is APML, the R! 
register notation could alternatively be used. 

/Location IResult 

I I 
I IBRET 

!Operand 

I 
I~ 

2.9.4.7 CALL function (50) 

The CALL function activates an overlay to perform some service for the 
caller. The Kernel saves the caller's operand registers in a storage 
module, pushes the storage module on the software stack, loads the called 
overlay in Local Memory, and passes the parameters contained in the 
caller's operand registers. The number of parameters passed to the 
called overlay is determined by information the Kernel keeps about each 
overlay. The parameters are moved from the caller's registers to those 
of the called overlay. 

After the called overlay completes the function for which it was called, 
it performs a RETURN function. The Kernel reloads the original caller 
(if necessary), loads its registers with the contents of the storage 
module, and returns control to the caller. 

Format: 

\Location IResult I Operand 
I I I 
I ICALL lovl(,pars) [,TYPE=NUMBER] 

SM-0046 G 2-23 



ovl Name of the called overlay if TYPE=NUMBER is not specified; 
number of called overlay or register containing the called 
overlay number if TYPE=NUMBER is specified. 

pars Parameters to be passed to the called overlay. Each 
register in which the caller expects a return parameter may 
be specified in the parameter list using the RO=reg 
option. The called overlay returns parameters to the 
caller through the RETREG macro described in section 14, 
Program Library and Macros. Blanks and extra commas are 
not allowed in the parameter list unless they serve as 
parameter space holders. 

TYPE=NUMBER 
If specified, ovl contains the overlay number or the 
register holding the overlay number. 

Example: 

This example shows a call to overlay BTO, by name. Parameters are passed 
to BTO according to the way the REGDEFS macro was used to define 
registers within overlay BTD. Notice that passed parameters may be 
registers, numeric constants, or symbols. 

ILocation IResult 

I I 
I I CALL 

I Operand 

I 
IBTO,(R!MSGR,D'16,R!MSG,DTOFF,O) 

2.9.4.8 CREATE function (55) 

An activity can create an independent activity to run under the Kernel. 
The new activity is assigned a unique activity number distinguishing it 
from other activities. If the new activity is created successfully, the 
A register is 0 and the descriptor address of the new activity is 
returned in AD@P1 of the Activity Descriptor of the creator. If the 
creation is unsuccessful, the error code is returned in th~ A register. 

The activity executing the CREATE function specifies the priority of the 
new activity, the initial overlay, and parameters for the new activity. 
The parameters are loaded into the overlay's specified registers when the 
new activity is activated. 

The activity performing the CREATE function regains control immediately 
after the CREATE; the new activity is placed on the rop central processor 
queue for later activation. 

2-24 SM-0046 G 



Format: 

ILocation IResult IOperand 

I I I 
I I CREATE lovl(,pars) [,PRI=pril[,DPTR=dptr] [,TYPE=NUMBER] 

ovl Name of the initial overlay in the created activity 

pars Parameters to be passed to the created activity. Blanks 
and extra commas are not allowed in the parameter list 
unless they serve as parameter space holders. 

PRI=pri Activity priority (0 through 15); the default is 8. 

DPTR=dptr Index into Kernel Demons Table (D$name), if a Demon; 
default is AD$NODEM (normal activity, not a Demon). 

TYPE=NUMBER 
If specified, ovl contains the overlay number or the 
register holding the overlay number. 

Examples: 

This example shows the simplest form of CREATE. The name of the root 
overlay of the activity must be specified. 

ILocation !Result 

I I 
I I CREATE 

!Operand 

I 
ICLKSNC 

This example shows how to specify the overlay number of the root overlay 
of the activity. Notice that a priority may be specified in a register, 
and the demon index may be contained in a register. No parameters are 
being passed to the new activity. 

ILocation IResult !Operand 

I I 
I I CREATE IR!TO"PRI=R!T1,DPTR=R!T2,TYPE=NUMBER 

This example shows that passed parameters should be enclosed by 
parentheses. If more than one parameter is passed, refer to the CALL 
example to see that syntax. Priority of the CREATEd overlay can be 
specified with a numeric constant. 

ILocation IResult 

I I 
I I CREATE 

SM-0046 G 

IOperand 

I 
IUCSHL,(R!DAL),PRI=l 

2-25 



2.9.4.9 FIND function (53) 

FIND returns the Buffer Memory address and length of an overlay in the 
registers designated. If the overlay does not exist, the error code 
EC$FIND is returned in the A register. If the' overlay is found, the A 
register contains 0, and the specified operand registers contain the 
requested parameters upon return. The FIND call does not require a 
register save. 

Format: 

ILocation !Result !Operand 

I I 
I IFIND 

I 
lovl,mosu,mosl,size[,TYPE=NUMBER] 

ovl 

mosu 

mosl 

size 

Overlay name if TYPE=NUMBER is not specified; overlay 
number or register containing overlay number if TYPE=NUMBER. 

Operand register in which the high-order bits of the Buffer 
Memory address of the overlay are returned 

Operand register in which the low-order bits of the Buffer 
Memory address of the overlay are returned 

Operand register in which the word length of the overlay is 
returned 

TYPE=NUMBER 
If this parameter is specified, ovl contains the overlay 
number or the register holding the overlay number. 

Example: 

This example shows coding the FIND service request by using an overlay 
name and 2-character register designators to hold information returned by 
the Kernel. 

ILocation !Result 

I I 
I IFIND 

!Operand 

I 
IAMAP,T3,TA,T2 

2.9.4.10 FLUSH function (54) 

The FLUSH function releases all overlays in Local Memory. The memory 
occupied by the overlays is returned to the overlay space pool and is 
reallocated when overlays are read in from Buffer Memory. 

2-26 SM-0046 G 



Format: 

ILocation !Result !Operand 

I I 
I I FLUSH 

2.9.4.11 GETDAL function (26) 

The GETDAL function allocates a DAL from the DAL pool. The address of 
the DAL allocated is returned to the register provided. If no DALs are 
available, an error response, EC$MEM, is returned to the caller's 
accumulator. The GETDAL function does not require a register save. 

Format: 

ILocation !Result !Operand 

I I I 
I IGETDAL I reg 

reg Register to receive address of allocated DAL 

Example: 

This example shows how to code a GETDAL request. 

ILocation !Result 

I I 
I IGETDAL 

!Operand 

I 
IR!DAL 

2.9.4.12 GETMEM function (30) 

The GETMEM function allocates Local Memory to the requesting activity 
from the free memory pool. All sizes are rounded upward to a multiple of 
four. The address returned is also a multiple of four. The requester is 
responsible for releasing the memory to the free pool when it is finished 
with it. If no memory is available, a zero address is returned to the 
requester and an error response, EC$MEM, is returned in the A register; 
the requester may then delay and repeat its request. If successful, the 
memory address is returned in the specified register, and the A register 
is O. The GETMEM call does not require a register save. 

SM-0046 G 2-27 



Format: 

ILocation IResult 

I I 
I IGETMEM 

I Operand 

I 
Isize,reg[,txO,txl,tx2] 

size Number of parcels requested 

reg Operand register in which the buffer address is returned 

txO,txl,tx2 
Optional ASCII name (maximum of 6 characters) stored in the 
4-parcel header that identifies the owner of the buffer. 
If not supplied, the overlay name of the requester is used. 

Examples: 

This example shows a common form of the GETMEM request. Notice that the 
size is designated by a symbol. 

ILocation IResult 

I I 
I IGETMEM 

I Operand 

I 
IMEMSIZ,R!MSG 

This example shows a less common form of coding a GETMEM request. A 
register is used to pass the size, and three parcels of text are being 
passed through registers. 

ILocation IResult 
I I 
I IGETMEM 

I Operand 
I 
IR!T3,R!T4,R!~Wl,R!~W2,R!~W3 

2.9.4.13 GIVEUP function (4) 

The GIVEUP function allows an activity to relinquish control of the lOP 
in favor of higher priority tasks, if any exist. The Kernel places the 
activity on the lOP central processor queue at the activity's priority. 
If the current activity has the highest priority in the system, it 
regains control immediately. 

Format: 

ILocation IResult I Operand 

I I 
I I GIVEUP 

2-28 SM-0046 G 



2.9.4.14 GOTO function (51) 

The GOTO function activates an overlay without rega1n1ng control after 
the new overlay completes execution. The routine receiving control from 
the GOTO performs its function based on the parameters passed to it. 
When complete, it passes control to the caller of the routine that 
performed the GOTO. If such a routine does not exist in the software 
stack, the activity is terminated. The Kernel passes parameters in the 
operand registers specified in the B register of the caller. The number 
of parameters depends on the routine receiving the GOTO. 

Format: 

ILocation IResult I Operand 
I I I 
I I GOTO lovl(,pars) [,TYPE=NUMBER] 

ovl Name of the called overlay if TYPE=NUMBER is not 
specified. Number of called overlay or register containing 
the called overlay number if TYPE=NUMBER is specified. 

pars Parameters to be passed to the called overlay. Blanks and 
extra commas are not allowed in the parameter list unless 
they serve as parameter space holders. 

TYPE=NUMBER 
If specified, ovl contains the overlay number or the 
register holding the overlay number. 

Examples: 

This example shows how to pass control from one overlay directly to 
another. This example uses the name of the overlay to GOTO, and one 
parameter is passed by using a symbol. 

ILocation !Result 
I I 
I I GOTO 

!Operand 
I 
ICLINIT,(CLI$TERM) 

This example shows how to use the overlay number on the GOTO statement. 
It also illustrates that many parameters may be passed to the new overlay. 

ILocation IResult 
I I 
I I GOTO 

SM-0046 G 

I Operand 
I 
IR!~W2,(IA,IB,IC,ID,IE,IF,IG,IH,IJ,IK,IL,IM,IN, 

IO,IP,IQ,IR,IS,IT,IU,IV,IX,IY,IZ,R!IAA,R!IAB, 
R!IAC,R!IAD,R!IAE,R!IAF,R!IAG,R!IAH,R!IAI,R!IAJ, 
R!IAK,R!IAL,R!IAM,R!IAN),TYPE=NUMBER 

2-29 



2.9.4.15 HSPR function (42) 

The HSPR function reads data from a target memory to Local Memory. If 
the request is made in an lOP with a 100-Mbyte channel connected to the 
target memory, the I/O is done immediately. If the request is made in an 
lOP that does not have a 100-Mbyte channel connected to the target 
memory, the following actions are performed: 

1. The Kernel allocates a 512-word buffer in Buffer Memory. 

2. A DAL is built that contains the target memory and Buffer Memory 
addresses and the number of words to read. 

3. The DAL is sent to the Kernel in the lOP, which has a channel to 
the target memory, by way of Buffer Memory, using the 
interprocessor message facility. 

4. The originating lOP's Kernel returns control to the calling 
activity if the NOWAIT parameter is specified or idles the 
activity if NOWAIT is not specified. 

5. The AMSG activity in the Target Memory Processor reads the data 
from the target memory into the Buffer Memory buffer supplied by 
the originating lOP. 

6. A response DAL is built and sent to the originating lOP, using 
the interprocessor message facility. 

7. The originating lOP receives the response DAL and reads the 
requested data from Buffer Memory into a Local Memory buffer 
supplied on the HSPR call. 

8. The Kernel deallocates the Buffer Memory buffer. 

9. If NOWAIT was not specified, the status code returned from the 
Target Memory Processor is placed in the A register of the 
originating activity and the activity is placed on the central 
processor queue. 

Format: 

ILocation IResult 
I I 
I IHSPR 

2-30 

I Operand 
I 
Itm,tmu,tml,buf,len[,NOWAIT] 

SM-0046 G 



-

tm Target memory type: 
FS$CMEM Central Memory 
FS$SSD SSD Memory 

tmu High-order bits of target memory address 

tml Low-order bits of target memory address; must be on a 
64-word boundary if target memory is FS$SSD. 

buf Local Memory buffer address; must be on a word boundary. 

len Length of transfer in 64-bit words; must be nonzero. 

NOWAIT 

Example: 

Maximum length of transfer is 512 64-bit words, and length 
must be a multiple of 64 words if target memory is FS$SSD. 
The target memory address plus the length must not exceed 
the configured size of the target memory (CRAY@SIZ for 
Central Memory; SSD@SIZ for SSD Memory). 

If NOWAIT is not specified, the 110 is completed before the 
activity is resumed. If NOWAIT is specified, the 110 is 
initiated and the activity is resumed immediately. The 
activity can then be made to wait for 1/0 completion, if a 
100-Mbyte channel is present, by using a return jump to the 
Kernel subroutine CHNWTDN with B set to the 100-Mbyte input 
channel number. If a 100-Mbyte channel is not present, the 
calling activity should not use the NOWAIT option, because 
it cannot determine when 110 is complete. 

This example shows how to code a "high-speed read" data transfer. The 
first parameter indicates whether the 100-Mbyte channel is connected to 
an SSD or Cray Central Memory. 

ILocation IResult 

I I 
I IHSPR 

SM-0046 G 

I Operand 

I 
IFS$CMEM,R!CU,R!CL,R!MPR,R!MOSL 

2-31 



2.9.4.16 HSPW function (43) 

The HSPW function writes data from Local Memory to a target memory. If 
the request is made in an lOP with a 100-Mbyte channel connected to the 
target memory, the I/O is done immediately. If the request is made in an 
lOP that does not have a 100-Mbyte channel connected to the target 
memory, the following actions are performed: 

1. The Kernel allocates a 512-word buffer in Buffer Memory. 

2. The Kernel writes the data from the Local Memory buffer supplied 
on the HSPW call to the Buffer Memory buffer. 

3. A DAL is built that contains the target memory and Buffer Memory 
addresses and the number of words to write. 

4. The DAL is sent to the Target Memory Processor by using the 
interprocessor message facility. 

5. The originating lOP's Kernel returns control to the calling 
activity if the NOWAIT parameter is specified or idles the 
activity if NOWAIT is not specified. 

6. The AMSG activity in the destination lOP writes the data to the 
target memory from the Buffer Memory buffer supplied by the 
originating lOP. 

7. A response DAL is built and sent to the originating lOP by using 
the interprocessor message facility. 

8. The originating lOP receives the response DAL. 

9. The Kernel deallocates the Buffer Memory buffer. 

10. If NOWAlT was not specified, the status code returned from the 
Target Memory Processor is placed in the A register of the 
originating activity and the activity is placed on the central 
processor queue. 

Format: 

ILocation IResult I Operand 
I I 
I I HSPW 

I 
Itm,tmu,tml,buf,len[,NOWAIT] 

tm Target memory type: 
FS$CMEM Central Memory 
FS$SSD SSD Memory 

2-32 SM-0046 G 



tmu 

tml 

buE 

len 

NOWAIT 

Example: 

High-order bits of target memory address 

Low-order bits of target memory address; must be on a 
64-word boundary if target memory is FS$SSD. 

Local Memory address; must be on a word boundary. 

Length of transfer in 64-bit words; must be nonzero. 
Maximum length of transfer is 512 64-bit words, and length 
must be a multiple of 64 words if target memory is FS$SSD. 
The target memory address plus the length must not exceed 
the configured size of the target memory (CRAY@SIZ for 
Central Memory; SSD@SIZ for SSD Memory). 

If NOWAIT is not specified, the 1/0 is completed before the 
activity is resumed. If NOWAIT is specified, the 1/0 is 
initiated and the activity is resumed immediately. The 
activity can then be made to wait for 1/0 completion, if a 
100-Mbyte channel is present, by using a return jump to the 
Kernel subroutine CHNWTDN with B set to the 100-Mbyte 
output channel number. If a 100-Mbyte channel is not 
present, the calling activity should not use the NOWAIT 
option, because it cannot determine when 1/0 is complete. 

This example shows how to code a high-speed write data transfer. 

ILocation !Result 

I I 
I IHSPW 

!Operand 

I 
IFS$CMEM,R!CU,R!CL,R!~W1,R!TLEN 

2.9.4.17 MGET function (35) 

The MGET function allows a user overlay to allocate one or more 512-word 
units of Buffer Memory for its own use. 

When multiple buffers are requested, the allocated space consists of 
contiguous 512-word buffers. If the number of multiple buffers requested 
is not available, a smaller number is allocated. 

Format: 

ILocation !Result !Operand 

I I I 
I IMGET lupper,lower[,NUM=num] [,GOT=got] 

SM-0046 G 2-33 



upper 

lower 

NUM=num 

GOT=got 

Example: 

Operand register in which the high-order bits of the 
address of the first buffer are returned 

Operand register in which the low-order bits of the address 
of the first buffer are returned' 

Number of contiguous 512-word buffers to allocate. If 
num is not specified, 1 is assumed. 

Operand register in which the riumber of buffers allocated 
is returned; got is used when num is specified. 

This example shows how to code an MGET request. 

ILocation IResult !Operand 
I I 
I IMGET 

I 
IR!MU,R!ML 

2.9.4.18 MOSR function (45) 

The MOSR function reads data from Buffer Memory to Local Memory. 

Format: 

ILocation IResult !Operand 
I I 
I I MOSR 

I 
Imsu,msl,buE,len[,NOWAIT] 

msu 

msl 

buE 

len 

NOWAIT 

2-34 

High-order bits of Buffer Memory address 

Low-order bits of Buffer Memory address 

Local Memory address; must be on a word boundary. 

Length of transfer in 54-bit words; must be nonzero. 
Buffer Memory address plus length must not exceed the 
configured size of Buffer Memory (MOS@SIZ). 

If NOWAIT is not specified, the IIO is completed before the 
activity is resumed; if NOWAIT is specified, the IIO is 
initiated, and the activity is resumed immediately. The 
activity can then be made to wait for IIO completion, if 
desired, by using a return jump to the Kernel subroutine 
CHNWTDN, with B set to the IIO channel number. 

SM-0045 G 



-

-

-

Example: 

This example shows how to code a MOSR request. 

ILocation IResult I Operand 
I I I 
I I MOSR IT3,T4,MA,T2 

This example shows that numeric constants and symbols can be used as 
parameters. 

ILocation IResult 
I I 
I I MOSR 

I Operand 
I 
IO,DEBSTART,R!NA,DEBLEN 

2.9.4.19 MOSW function (47) 

The MOSW function writes data to Buffer Memory from Local Memory. 

Format: 

ILocation IResult I Operand 
I I 
I I MOSW 

I 
Imsu,msl,buf,len[,NOWAIT] 

msu High-order bits of Buffer Memory address 

msl Low-order bits of Buffer Memory address 

buE Local Memory address; must be on a word boundary. 

len Length of transfer in 54-bit words; must be nonzero. 
Buffer Memory address plus length must not exceed the 
configured size of Buffer Memory (MOS@SIZ). 

NOWAIT If NOWAIT is not specified, the I/O is completed before the 
activity is resumed; if NOWAIT is specified, the I/O is 
initiated, and the activity is resumed immediately. The 
activity can then be made to wait for 1/0 completion, if 
desired, by using a return jump to the Kernel subroutine 
CHNWTDN, with B set to the I/O channel number. 

SM-0046 G 2-35 



Examples: 

This example shows how to code a Buffer Memory write request. Numeric 
constants and symbols can be used as parameters. 

ILocation !Result 
I I 
I I MOSW 

!Operand 
I 
IR!MU,R!ML,LBPT,l 

This example shows the use of the optional NOWAIT parameter. It also 
shows that calculations will be performed as part of the macro processing 
of the request, so that R!~TIME>2 will be evaluated and passed as the 
actual parameter. 

ILocation !Result 
I I 
I I MOSW 

!Operand 
I 
10,R!~TIME>2,R!'TIME,2,NOWAIT 

2.9.4.20 MPUT function (36) 

The MPUT function request allows an overlay to return one or more 
512-word units of Buffer Memory to the pool of free areas. 

Multiple buffers returned must be contiguous. 

Format: 

ILocation !Result !Operand 
I I I 
I I MPUT I upper, lower[,NUM=num] 

upper High-order bits of the address of the first buffer to 
release 

lower 

NUM=num 

Example: 

Low-order bits of the address of the first buffer to release 

Number of contiguous 512-word buffers to release. If num 
is not specified, 1 is assumed. 

This example shows how to code an MPUT request. 

ILocation !Result 
I I 
I I MPUT 

2-36 

!Operand 
I 
IR!MSU,R!MSL 

SM-0046 G 



.-

2.9.4.21 MSG function (20) 

An activity sends a message to the Kernel console with the MSG function. 
No response is expected. A formatted line is sent to the CRT, while the 
activity waits for the message to complete. The line must be in ASCII; 
binary zeros in the last character of the message signal the end of the 
line. The CRT-handling routine provides line feeds and carriage 
returns. The line is located in a Local Memory data area, outside of the 
overlay space. When the message is complete, the activity is placed on 
the lOP central processor queue for reactivation at its priority. 

Format: 

ILocation !Result 
I I 
I IMSG 

!Operand 
I 
/msg 

msg Message address 

Example: 

This example shows how to code an MSG request. 

ILocation !Result 
I I 
I IMSG 

!Operand 
I 
IR!MSG 

2.9.4.22 MSGR function (21) 

An activity uses the MSGR function to send a message to the Kernel 
console and to receive a response from the operator. A formatted ASCII 
line, with a binary zero for the last character, is sent to the console. 
The activity then waits until the operator enters a response to the 
message. The response is returned in a specified buffer and is also in 
ASCII. 

After the response is entered (signified by a carriage return or line 
feed), the activity is placed on the lOP central processor queue for 
reactivation. 

Format: 

ILocation IResult 
I I 
I IMSGR 

SM-0046 G 

!Operand 
I 
Imsg,count,buffer 

2-37 



msg 

count 

buffer 

Example: 

Output message address 

Response buffer size in characters (allow one byte for line 
feed) 

Response message buffer address 

This example shows that symbols may be used as parameters in the MSGR 
request. 

ILocation IResult I Operand 
I I 
I IMSGR 

I 
IR!MSG,MSGRSIZ,R!MSGR 

2.9.4.23 OUTCALL function (37) 

The OUTCALL function calls an overlay in another lOP for execution. The 
Kernel passes the overlay number and a maximum of eight parameters to the 
destination lOP. The destination lOP creates an activity that calls the 
target overlay. When a RETURN function is executed, a response message 
is sent to the originating lOP, which reschedules the activity that 
issued the OUTCALL. 

On return, the A register contains either the error code EC$IOP if the 
destination lOP is not configured or the response code returned by the 
called overlay, if applicable. 

Format: 

ILocation IResult I Operand 
I I I 
I 10UTCALL liop,ovl(,pars) [,TYPE=NUMBER] 

2-38 

iop 

ovl 

pars 

I/O Processor in which the called overlay is to execute 

If TYPE=NUMBER is specified, the number of the called 
overlay; otherwise, the name of the called overlay. 

Parameters to pass to the called overlay (eight maximum) 

TYPE =NUMBE R 
If specified, ovl contains the number of the called 
overlay. 

SM-0046 G 



Example: 

This example shows how to OUTCALL an overlay in a different lOP. The 
name of the overlay is specified, along with the lOP in which the overlay 
should run. lOP may be designated with a symbol, or by a value (0 

through 3) stored in a register. It is possible to pass parameters to 
the OUTCALLed overlay. 

ILocation IResult 
I I 
I IOUTCALL 

I Operand 
I 
IMlOP,DKERR1,(R!%MYID,R!MU,R!ML) 

2.9.4.24 OUTPUT function (22) 

When an activity gains control of a CRT by calling the USURP overlay, the 
activity can send characters to the screen, one at a time, with the 
OUTPUT function. The Kernel neither interprets the output character nor 
provides any carriage return or line feed functions. 

Format: 

ILocation IResult I Operand 
I I I 
I I OUTPUT I device, base, offset, num 

device CRT logical address (0 to 3) 

base Output message parcel address 

offset Output message byte offset from base 

num Output message byte count 

Example: 

This example shows how to code an OUTPUT request. 

ILocation IResult 
I I 
I I OUTPUT 

SM-0046 G 

!Operand 
I 
IR!DEVICE,R!BUFFER,O,R!TEMP 

2-39 



2.9.4.25 PAUSE function (7) 

The PAUSE function enables an activity to deactivate itself for a 
specified number of one-tenth second quanta. The activity is placed on a 
timer queue until expiration of the interval, when real-time clock 
interrupt code removes it from the queue and places it on the lOP central 
processor queue for activation at the priority level. 

Format: 

ILocation !Result !Operand 

I I I 
I I PAUSE I tenths 

tenths Interval before reactivation in tenths of a second 

Examples: 

This example shows that a common way to specify pause time is with a 
numeric constant. 

ILocation IResult 

I I 
I I PAUSE 

!Operand 

I 
11 

This example shows that it is possible to specify PAUSE time with a 
symbol. 

ILocation IResult I Operand 

I I I 
I I PAUSE I REFRESH 

2.9.4.26 POLL function (44) 

The POLL function allows an overlay to send a B or S type message packet 
to the mainframe and wait fo~ a response. The message is a buffer of 
6-words containing information recognized by COS. After sending the 
message, the activity is placed on a PUSH queue until a matching message 
returns from the mainframe. When the response returns, the waiting 
activity is removed from the queue and is reactivated to process the 
message received from the mainframe. Only overlays in the MIOP can make 
this request. 

If the request is not answered within the time-out period, the 
message-sending activity is reactivated and status is returned so that it 
can perform error recovery. 

2-40 SM-0046 G 



.-

Format: 

ILocation IResult I Operand 
I I I 
I I POLL /message 

message Message packet (OAL) address 

Example: 

This example shows how to code a POLL request. The R!CXT in this example 
serves as a reminder that Cray packets/DALs are stored in CXT. 

ILocation IResult 
I I 
I /POLL 

I Operand 
I 
IR!CXT 

2.9.4.27 POP function (2) 

The POP function reactivates an activity that was placed on a queue with 
a PUSH function. The Kernel removes the activity from the top of the 
queue and places it on the lOP central processor queue at its priority 
for activation later. The message supplied is returned in the A register 
of the activity that was popped. A response code (either 0 or EC$EMPTY) 
is returned in the A register of the activity performing the POP. The 
POP call does not require a register save. When a pushed activity is 
subsequently popped, the A register contains a message from the routine 
that performed the POP. 

Format: 

ILocation IResult !Operand 
I I I 
I I POP /queue,message 

queue Queue address 

message Message for popped activity 

SM-0046 G 2-41 



Examples: 

This example shows that zero should be used as a parameter when there is 
no message to send to the popped activity. 

ILocation !Result 
I I 
I I POP 

!Operand 

I 
IR!<IoWl,O 

This example shows that a message can be passed through a register. 

ILocation !Result 

I I 
I I POP 

!Operand 

I 
IR!MJ,R!MF 

2.9.4.28 PUSH function (1) 

The PUSH call deactivates an activity by placing the Activity Descriptor 
for the activity that is currently running on a specified queue. The 
Kernel then searches for other functions to perform. The AD is removed 
from the queue when another activity performs the POP function. The PUSH 
function is used when an activity needs a facility that is currently 
being used by another activity. When the other activity is finished with 
the facility, it activates the first by performing a POP. When a pushed 
activity is subsequently popped, the A register contains a message from 
the routine that performed the POP. 

Format: 

ILocation !Result 

I I 
I I PUSH 

!Operand 

I 
Iqueue[,order] 

queue Queue address 

order Order to add activity to queue. Default is to add activity 
by priority. 

Example: 

FIFO Add activity at queue tail 
LIFO Add activity at queue head 

This example show how to code a simple PUSH request. 

ILocation !Result 

I I 
I I PUSH 

2-42 

!Operand 

I 
IR!<IoW1 

SM-0046 G 



2.9.4.29 RECEIVE function (25) 

An activity that has gained control of the keyboard of a CRT by calling 
the USURP overlay can perform a RECEIVE function. The activity is placed 
on the input queue of the designated CRT. The-activity is dequeued and 
rescheduled when a character is received or when the specified time 
interval expires. If the A register contains 0 upon return, the input 
character is in the specified operand register; if A contains the EC$TIME 
message, the time limit was exceeded and no character is returned. The 
character is not echoed to the screen; that is the responsibility of the 
receiving activity. 

Format: 

\Location IResult I Operand 
\ I I 
I I RECEIVE I device, char, tenths 

device CRT logical address (0 to 3) 

char Operand register to receive input character 

tenths Maximum time to wait for input in tenths of a second 

Example: 

This example shows that the CRT address may be stored in a register, and 
wait time can be specified as a numeric constant. 

ILocation IResult 
I I 
I I RECEIVE 

I Operand 
I 
IR!DEVICE,R!CHAR,D'lO 

2.9.4.30 RELDAL function (27) 

The RELDAL function returns a DAL to the DAL pool. The RELDAL call does 
not require a register save. 

Format: 

ILocation IResult I Operand 
I I I 
I IRELDAL I reg 

reg Register containing address of DAL to be returned 

SM-0046 G 2-43 



Example: 

This example shows how to code the request to deallocate a Local Memory 
DAL. 

ILocation IResult 
I I 
I IRELDAL 

I Operand 
I 
IR!RESP 

2.9.4.31 RELMEM function (31) 

The RELMEM function deal locates a segment of memory previously allocated 
from the free memory pool. The requester supplies the address returned 
in a GETMEM call. The entire buffer allocated through the corresponding 
GETMEM call is released. The RELMEM call does not require a register save. 

Format: 

ILocation IResult I Operand 
I I I 
I I RELMEM I address 

address Address of buffer to be released 

Example: 

This example shows that it is common to store memory addresses in 
registers. 

ILocation IResult 
I I 
I IRELMEM 

!Operand 
I 
IR!MSG 

2.9.4.32 RESPOND function (17) 

The RESPOND function is performed by the activity in the lOP named in the 
AWAKE call after it processes the data in the request. A RESPOND 
function allows the Kernel to release the Buffer Memory message space and 
to reactivate the calling activity, if it is waiting. 

Format: 

ILocation IResult 
I I 
I I RESPOND 

2-44 

I Operand 
I 
Idal,message 

SM-0046 G 



I 

dal Message packet (DAL) address 

message Message returned in the A register of the activity doing 
the corresponding AWAKE call 

Example: 

This example shows how a slave activity ALERTed in one lOP will notify 
the master in a different lOP that a DAL has been processed. 

ILocation IResult 
I I 
I I RESPOND 

I Operand 
I 
IR!DAL,R!UST 

2.9.4.33 RETURN function (52) 

The RETURN function in a CALL sequence indicates to the Kernel that the 
function is complete and control is returning to the previous entry in 
the software stack. The Kernel loads the registers of the previous entry 
from the storage module, adjusts its software stack pointers, reloads the 
overlay if necessary, and gives control to the caller of the overlay 
performing the RETURN function. The registers returned may contain 
parameters defined by the called routine. The RETURN call does not 
require a register save. 

If no entries exist in the software stack, the Kernel terminates the 
activity. 

Format: 

ILocation IResult I Operand 
I I 
I I RETURN 

2.9.4.34 SEND function (34) 

The SEND function allows an overlay to send a 6-word message packet to 
the mainframe without waiting for a response. If the function 
successfully completes, the A register contains 0 upon return. If the 
low-speed channel to the mainframe is not enabled, the EC$NRDY error code 
is returned to the A register. Only overlays in the MIOP can make this 
request. 

SM-0046 G 2-45 



Format: 

ILocation !Result !Operand 
I I I 
I I SEND I message 

message Message packet (DAL) address 

Example: 

This example shows how to code a SEND request. 

ILocation !Result 
I I 
I I SEND 

!Operand 
I 
IR!DAL 

2.9.4.35 TERM function (3) 

The TERM function signals the end of an activity's processing. The 
Kernel terminates the activity and releases its Activity Descriptor, 
Buffer Memory software stack, and possibly the popcell. The TERM call 
does not require a register save. 

Format: 

ILocation !Result !Operand 
I I 
I I TERM 

2.9.4.36 TPUSH function (11) 

The TPUSH macro deactivates an activity until either the time interval 
expires or a POP is performed by some other activity. Either occurrence 
places the activity on the lOP central processor queue for activation. 
When an activity executing the TPUSH macro is eventually popped, the A 
register contains either a message from the activity performing the POP 
or the response code EC$TlME if the time limit expired. 

Format: 

ILocation !Result !Operand 
I I I 
I I TPUSH I queue, tenths 

2-46 SM-0046 G 



queue PUSH queue address 

tenths Interval before activation, if not popped, in tenths of a 
second 

Examples: 

This example shows how to use registers in a TPUSH request. 

ILQcation !Result 
I I 
I I TPUSH 

!Operand 
I 
IR!~Wl,R!~W2 

This example shows that calculations will be performed before the actual 
argument is sent to the Kernel, and time can be specified with a symbol. 

ILocation !Result 

I I 
I I TPUSH 

!Operand 

I 
IR!Q+l,CT$RW 

2.9.4.31 TRANSFER function (45) 

The TRANSFER function moves data between Buffer Memory and a target 
memory. If the request is made in an lOP that has a 100-Mbyte channel 
connected to the target memory, the I/O is done immediately. If the 
request is made in an lOP that does not have a lOO-Mbyte channel 
connected to the target memory, the following actions are performed: 

1. A DAL is built that contains the target memory and Buffer Memory 
addresses, the direction of transfer, and the number of words to 
transfer. 

2. The DAL is sent to the Target Memory Processor using the 
interprocessor message facility. 

3. The originating lOP's Kernel returns control to the calling 
activity if the NOWAIT parameter is specified or idles the 
activity if NOWAIT is not specified. 

4. The AMSG activity in the Target Memory Processor moves the data 
between the Target Memory and Buffer Memory in the direction 
requested. 

5. A response DAL is built and sent to the originating lOP using the 
interprocessor message facility. 

SM-0046 G 2-41 



I 

I 

6. The originating lOP receives the response DAL. 

7. If NOWAIT was specified, the status code returned from the Target 
Memory Processor is placed in the A register of the originating 
activity and the activity is placed on- the central processor queue. 

Format: 

ILocation !Result !Operand 
I I I 

Idir,tm,tmu,tml,msu,msl,len[,NOWAIT] I I TRANSFER 

2-48 

dir Direction of transfer: 

tm 

FS$IN From Target Memory to Buffer Memory 
FS$OUT From Buffer Memory to Target Memory 

Target memory type: 
FS$CMEM Central Memory 
FS$SSD SSD Memory 
FS$BMR BMR Memory 

tmu High-order bits of Target memory address 

tml Low-order bits of target memory address; must be on a 
64-word boundary if target memory is FS$SSD. 

msu High-order bits of Buffer Memory address 

msl Low-order bits of Buffer Memory address 

len 

NOWAIT 

Length of transfer in 64-bit words; must be nonzero. 
Maximum length of transfer is 65,535 64-bit words, and 
length must be a multiple of 64 words if target memory is 
FS$SSD. The target memory address plus the length must not 
exceed the configured size of the Target Memory (CRAY@SIZ 
for Central Memory; SSD@SIZ for SSD Memory; BMR@SIZ for BMR 
Memory). The Buffer Memory address plus the length must 
not exceed the configured size of Buffer Memory (MOS@SIZ). 

If NOWAIT is not specified, the IIO is completed before the 
activity is resumed. If NOWAIT is specified, the IIO is 
initiated and the activity is resumed immediately. The 
activity can then be made to wait for IIO completion, if a 
lOO-Mbyte channel is present, by using a return jump to the 
Kernel subroutine CHNWTDN with B set to the lOO-Mbyte lID 
channel number. If a lOO-Mbyte channel is not present, the 
calling activity should not use the NOWAIT option, because 
it cannot determine when I/O is complete. 

SM-0046 G 



,-

Example: 

This example shows how a TRANSFER request may be coded. Note that 
direction of transfer and target memory had previously been loaded into 
registers R!SC2 and R!TM, respectively. 

ILocation !Result 
I I 
I I TRANSFER 

2.10 CLOCK FUNCTIONS 

!Operand 

I 
IR!SC2,R!TM,R!CPU,R!CPL,R!SCO,R!SC1,R!LNl 

The lOS real-time clock provides a system interrupt once every 
millisecond. This fixed time interrupt allows the operating system to 
time out events (such as pending interrupts) as well as maintain the time 
of day. 

2.10.1 REAL-TIME CLOCK INTERRUPT HANDLER 

The real-time clock interrupt handler is given control when a real-time 
clock interrupt occurs. Its functions are to do the fOllowing: 

• Clear the interrupt 

• Increment the interval counter (%MSEC) by 1. When the interval 
counter (%MSEC) reaches 100, indicating a one-tenth second 
interval, the clock demon (CLOCK) is activated and the counter 
(%MSEC) is reset to o. 

2.10.2 CLOCK DEMON 

The clock demon (CLOCK) is activated once every tenth of a second by the 
real-time clock interrupt handler. Its functions are as follows: 

• Services the event timer. Decrement 1 from TMR@TM of each entry 
linked to the timer queue (RTCQUE). If the decrement results in a 
count of 0, a time-out is indicated and the following occurs: 

SM-0046 G 

The entry is unlinked from the timer queue. The TMR@RT field 
in the entry is checked for nonzero; if nonzero, a return 
jump to that address occurs, and the entry address in 
register R!EH is passed. 

2-49 



If TMR@RT is 0, the entry is assumed to be AD@P1 of an 
Activity Descriptor, and the following occurs: 

The function code that caused the entry to be placed on the 
timer queue is checked for a POLL (AD@FU=F$POLL). If the 
function was a POLL, the DAL that was being polled is 
removed from the MIOP-mainframe poll queue (CPI@PO). 

If the function was not a poll, AD@RC is checked for an 
event queue address. If it is nonzero, the activity is 
removed from the event queue. 

Finally, the time-out code (EC$TlME) is placed in the 
activity return code (AD@RC) and the activity is reactivated. 

• Increments the 1-second interval counter ('TENTHS). If the 
counter has not reached 10, indicating a 1-second interval, CLOCK 
terminates. 

• Resets the 1-second counter to O. 

• Updates the idle time, Buffer Memory channel transfers, and 
100-Mbyte channel transfers for the last second. 

• Checks for MIOP-mainframe output channel time-out (CPO@TO#O). If 
the condition is found, activate the NOBEAT activity to display a 
message on the Kernel console. 

• If 1 minute has expired (SECOND=O) in MIOP, sends a heart beat 
signal (M$SYNCH) to each configured lOP. Check to see if all lOPs 
signaled on the previous minute boundary have responded. If any 
were found to have not responded, activate the NOBEAT activity to 
display a message on the Kernel console. 

• Updates the day clock in MIOP. 

• If not running in MIOP, deselects inactive disks. 

2.10.3 SYSTEM EVENT TIMER 

The system event timer provides the means to regain control when an 
expected event does not occur within the expected time. It also allows 
an activity to give up control for a specified amount of time (see the 
PAUSE function earlier in this section). 

2-50 SM-0046 G 



#-

The system event timer consists of the following elements: 

Element 

QTIME 

DQTIME 

CLOCK DEMON 

TIMER ENTRY 

2.11 lOP DEADSTART 

Description 

A Kernel subroutine called to link entries to the 
timer queue (RTCQUE). The following parameters are 
passed: 

• R!EH - Entry address 
• R!EG - Time Quantum in tenths of a second 

A Kernel subroutine called to remove an entry from the 
timer queue. The following parameter is passed: 

• R!EH - Entry address 

Activated every tenth of a second by the real-time 
clock interrupt handler. It is responsible for 
decrementing the time-out count for each entry 
(TMR@TM) and processing any time-outs that occur 
(TMR@TM=O). 

Any system routine wishing to use the event timer is 
responsible for the allocation and maintenance of its 
timer entry, including setting a time-out routine 
address in TMR@RT, calling QTIME to link the entry, 
and calling DQTIME to unlink the entry, if the event 
being timed occurs before the timer expires. 

Activities using the service requests for timing 
events (TPUSH, PAUSE, and so on) do not need to know 
about the timer mechanisms. The timer entry for each 
activity is contained in its Activity Descriptor 
(AD@Pl) and all maintenance is handled by the Kernel. 

The original deadstart of the lOS occurs from either the Peripheral 
Expander tape or Peripheral Expander disk. The Deadstart package is read 
directly into MIOP Local Memory, beginning at address 0 and continuing 
until complete. 

Once this operation is complete, the MIOP can read and write from the 
channels attached to it. The MIOP initializes Buffer Memory and any 
common tables residing there. 

SM-0046 G 2-51 



Once Buffer Memory is established and the MIOP is running, the MIOP 
deadstarts the other lOPs in the configuration. This is accomplished by 
sending a special function across the accumulator channel that reads 
Buffer Memory into Local Memory. Once read, the special function starts 
the lOP at address O. Processors started in this way have access to 
tables and data in Buffer Memory that they can use to initialize their 
Local Memory. 

2.12 STATISTICS 

The Kernel keeps statistics on important events within the operating 
environment. The statistics consist mainly of counts of the occurrence 
of various phenomena and may be useful in tuning the system to maximize 
throughput and efficiency. The following occurrences and events are 
monitored: 

• Buffer Memory references, including both input and output 

• Disk channel references and the number of times error recovery 
is called, by channel 

• Number of communications among lOPs 

• Number of mainframe channel interrupts 

• Number of 100-Mbyte channel transfers to or from Central Memory 

• Number of 100-Mbyte channel transfers to or from SSD Memory 

2.13 COMMUNICATION AMONG lOPs 

Communication among lOPs occurs across accumulator channels. One 
parcel (16 bits) of information can be passed through the accumulator 
through the interrupt mechanism. 

The message can be either in the accumulator itself or in a portion of 
Buffer Memory specified in the accumulator. In the latter case, an 
address within the Buffer Memory communications area of the sending 
lOP and a function code telling what sort of action is being requested 
are specified in the accumulator. Some messages can require a packet 
of information in the Buffer Memory data area specified in the 
accumulator. The data area indicated is an offset from the beginning 
of the communications area assigned to the sending lOP. 

For a listing of the function codes and their meanings, see table 2-4. 

2-52 SM-0046 G 



Table 2-4. 1/0 Processor Intercommunication Function Codes 

Function 
Code 

o 

Definition 

The command code, contained in bits 4 through 15, is one 
of the fOllowing: 

M$GO 
M$SYNCH 

Initiate SYSDUMP processing 
Synchronize lOP software clock 

No Buffer Memory data is associated with these codes. 

1-3 Unused 

4 The message is contained in the Buffer Memory message 
area of the MIOP at an address specified in the low-order 
12 bits of the accumulator. Each message area consists 
of eight 64-bit words. To find the Buffer Memory 
address, shift the accumulator left 3 bit positions and 
add the base address of the Buffer Memory message area 
for the MIOP. The message is intended for the BCOM 
overlay. 

5 

6 

7 

10 

11 

12 

13 

SM-0046 G 

The message is in the area controlled by the BIOP for 
messages to the other processors. Otherwise, the 
protocol is the same as for function code 4. The 
message is routed to BCOM. 

The message is in IOP-2 message area and is routed 
to BCOM. 

The message is in IOP-3 message area and is routed 
to BCOM. 

The message is in the MlOP message area and is routed 
to ACOM. 

The message is in the BlOP message area and is routed 
to ACOM. 

The message is in IOP-2 message area and is routed 
to ACOM. 

The message is in lOP-3 message area and is routed 
to ACOM. 

2-53 



I 

Table 2-4. IIO Processor Intercommunication Function Codes 
(continued) 

Function 
Code 

14 

15 

Definition 

The message is in the lOP message area indicated in bits 
4 and 5 of the accumulator. The low-order 10 bits 
specify the Buffer Memory address. The message is 
intended for the ICOM overlay. 

The message is in the lOP message area indicated in bits 
4 and 5 of the accumulator. The low-order 10 bits 
specify the Buffer Memory address. The message is 
intended for the HCOM overlay. 

The sender of the message controls allocation and deal location of message 
areas within its own Buffer Memory space. The lOP receiving a message 
informs the sending lOP when the function is complete and the message 
area can be deallocated. 

An accumulator message of the form 177nnn; nnn is an error code, 
indicates a fatal error in the sending lOP and requests that the 
receiving lOP terminate normal operations. Otherwise, the accumulator 
contains the octal function code in its first 4 bits and the address or 
command in its final 12 bits. 

2.14 MIOP-MAINFRAME COMMUNICATION CHANNEL 

All communication between the lOS and the mainframe is in the form of 
fixed-length packets passed back and forth across a pair of 6-Mbyte 
asynchronous channels. The communication packets are referred to as DALs 
in the lOS. 

A DAL is composed of two parts: the header (DA@@LH), which contains 
information used internally by the lOS, and the entry (DA@@LE), which is 
the actual information exchanged with the mainframe. 

The first 2 parcels of the DAL entry are standard for all packets 
exchanged between the mainframe and the lOS. These parcels contain the 
source and destination information used for routing packets to 
appropriate routines. 

2-54 SM-0046 G 



2.14.1 MIOP-MAINFRAME COMMUNICATION INITIALIZATION 

Before communication can begin between the lOS and the mainframe, a 
handshaking sequence must occur to ensure that the mainframe and lOS are 
synchronized. The CRAY overlay is called either by the deadstart process 
or by operator command to accomplish the following: 

1. Clear both the input and output channels 

2. Strip any data currently on the input channel 

3. Poll an RQ$INITO(I) packet; validate content returned. 

4. Poll an RQ$INITl(J) packet; validate content returned. 

5. Set input/output channels enabled (CPO@ON/CPI@ON) 

2.14.2 INPUT CHANNEL FROM THE MAINFRAME 

The normal state of the input channel from the mainframe is busy and 
not-done, which means the channel is open to accept a packet from the 
mainframe at any time. (It is open to the entry portion of a DAL.) When 
the mainframe sends a packet to the lOP, the input channel state (done 
and not-busy) generates an interrupt in the MIOP. 

The input channel has a table associated with it (CPI@), which is 
described in the lOS Table Descriptions Internal Reference Manual, 
publication SM-0007. The address of the table is kept in a global 
register (~LSPI). 

The input interrupt handler has the following functions: 

• Validates and saves the channel status (CPI@ST) 

• Validates and saves the ending channel address (CPI@CA) 

• Determines by destination ID (DA@DID) who to send the packet to 

• Reopens the channel to another DAL for the next message. If no 
DALs are available, the channel is disabled (CPI@ON=O). 

SM-0046 G 2-55 



I 

2.14.3 INPUT PACKET DISPOSITION 

All input packets are checked for a recognized destination ID (DA@DID). 
Based on this ID, the packets are dealt with in three different ways, as 
follows: 

• Packets with a destination ID of RQ$STAT (station) or RQ$PERF 
(statistics) can only be received in response to a poll. These 
packets have a code (CXCNT) which is matched to a DAL on the poll 
queue (CPI@PO). The activity pointed to by the matched DAL 
(DA@ACT) is reactivated with the address of the DAL just received 
(DA@HPO). 

• A packet with a destination ID (DA@DID) of RO$KERN (Kernel 
request) is checked for a code of KF$KILL in CXKFC of the packet. 
This is a mainframe request for the lOS to crash. The lOS obliges 
immediately. 

• Packets with a destination ID of RO$DISK, RO$HSX, or RO$BMXO are 
placed on the CDEM demon queue (CPI@CO) for disposition to other 
lOPs or special processing in the MIOP. Packets with a 
destination ID of RQ$UCHN, RQ$KERN, or RQ$TTY are placed on the 
ADEM demon queue (DPI@AQ) for processing. 

2.14.4 OUTPUT CHANNEL TO THE MAINFRAME 

The output channel to the mainframe sends messages from the lOS to the 
mainframe. When a message is to be sent to the mainframe, a call is made 
to the SEND Kernel service request or IDALSND routine with the address of 
the DAL to send. 

If the channel is busy, the DAL is placed on a queue in the Output 
Channel Table (CPO@QU); otherwise, the channel is immediately opened to 
the entry portion of the passed DAL. When the mainframe accepts the 
message from the channel, an interrupt is generated in the MIOP. The 
output channel has a table associated with it (CPO@). The address of 
this table is kept in a global register (~LSPO). 

The output interrupt handler has the following functions: 

• Clears the interrupt 

• Validates and saves the channel status (CPO@ST) 

• Validates and saves the ending channel address (CPO@CA) 

2-56 SM-0046 G 



• Checks the queue (CPO@QU) for more messages to send. If there are 
more messages, a call is made to IDALSND to transfer the next 
message on the queue . 

• Checks the state of the input channel (CPI@ON). If off, the input 
channel is reenabled with the DAL that contained the message just 
accepted by the mainframe. 

2.15 ERROR PROCESSING 

lOS error processing is handled in two different methods, depending on 
the serial number of the lOS. lOSs with serial numbers of 21 or less use 
an error channel on the MIOP for error processing. lOSs with serial 
numbers greater than 21 use an error multiplex that passes error 
information to a maintenance computer. The following subsections 
describe these two methods. 

2.15.1 ERROR CHANNEL PROCESSING (lOS SERIAL NO. 21 AND BELOW) 

The lOS error channel exists only in the MIOP. Subroutines for 
processing interrupts on this channel reside only in the MIOP. (These 
subroutines are overwritten in the other lOPs and the space used for 
other purposes.) 

An interrupt on the error channel (channel 16) indicates an error in 
Local Memory of one of the other lOPs, in Buffer Memory, in Central 
Memory, or on the 100-Mbyte channel. Local Memory errors in the MIOP are 
reported on the Local Memory error channel in the MIOP (channel 3). 

When interrupts occur on the error channel, the hardware retains 4 
parcels of information, which the software can access through registers 
to learn the type and location of the error. (A complete description of 
the error information can be found in the lOS hardware reference manual 
for your system). Four registers contain the following error information: 

SM-0046 G 2-57 



Register 

1 

Contents 

The interface error status register contains a bit for 
each possible error. If the bit is set, the 
corresponding error has occur·red. The error status 
register bits are as follows: 

Bit Control Signal 

20 BIOP, Local Memory error 
21 IOP-2, Local Memory error 
22 IOP-3, Local Memory error 
23 Buffer Memory error 
24 Central Memory error 
25 100-Mbyte channel input A error 
26 100-Mbyte channel output B error 
27 100-Mbyte channel input C error 
28 100-Mbyte channel output D error 

2 Parameter 1, containing special information that depends 
on the error type 

3 Parameter 2, containing the low-order bits of the 
address of a Central Memory or Buffer Memory error. 
This parameter is not meaningful on Local Memory errors. 

4 Parameter 3, containing the high-order bits of the 
address of a Central Memory or Buffer Memory error. 
This parameter is not meaningful on Local Memory errors. 

2.15.1.1 Interrupt answering 

When an interrupt occurs on the error channel, interrupt answering 
handles the possible errors singly. Interrupt answering reads the error 
status register and begins processing from the rightmost bit (for the 
BIOP Local Memory errors). 

If a bit is set, interrupt answering reads the parameter registers for 
that type, puts the status into the Error Log Table (ERRLOG) in the 
Kernel, and counts the error. (See the lOS Table Descriptions Internal 
Reference Manual, publication SM-0007, for the format of the Error Log 
Table.) 

Interrupt answering builds an error log packet (type C) containing the 4 
status parcels (parcels 4 through 7 in the packet) and sends it across 

I the 6-Mbyte channel to be processed by the mainframe. 

2-58 SM-0046 G 

--- -------



The MIOP maintains a table in Buffer Memory containing the last 512 
errors reported on the channel. The table is circular and has 4 parcels 
of information about each error (the contents of the parameter 
registers). The information may be printed through an ERRDMP command at 
the Kernel console. (See the ros operator's guides for the ERRDMP Kernel 
command). 

Interrupt answering processes the errors that were indicated in the 
original status register readout. When all errors are processed and 
logged, interrupt answering returns to routine ICHK to check for 
interrupts on other channels. 

If more than 65,535 errors are reported to the error channel, the 
software automatically turns off the error channel so that no more 
interrupts are taken. The channel can be turned on with an ERROR ON 
command at the Kernel console (see the IDS operator's guides). Local 
Memory errors in the MIOP are processed and sent to the mainframe in a 
similar manner, except that Local Memory errors in the MIOP cause a 
Kernel halt. Therefore, the information is not written to the circular 
table in Buffer Memory. 

2.15.1.2 Retrieving error log information 

Information about errors can be obtained from the COS system log by using 
I EXTRACT, from UNICOS using errpt, or from one of the following 

IDS-resident operations: 

Operation 

ERRDMP 

ERROR 

Description 

Entered at the Kernel console, ERRDMP prints the 
contents of the circular table in Buffer Memory 
containing the last 512 errors. 

This station command displays error status information 
as specified in the IDS operator's guides. 

2.15.2 ERROR LOGGING (lOS SERIAL NO. 21 AND UP) 

lOSs with serial numbers greater than 21 use an error multiplex for 
detecting and reporting IDS errors. This multiplex passes channel error 
information and memory error information to a maintenance computer. The 
maintenance computer program logs the error information for later 
analysis. 

The multiplex module captures single and multiple errors, even if the 
multiple error is embedded in a burst of single-bit errors. Channels 
that are multiplexed include the Buffer Memory channels, the Local Memory 
channels, and the 100-Mbyte channel pairs to Central Memory. 

SM-0046 G 2-59 





I 

I 

I 

3. DISK INPUT/OUTPUT 

The 1/0 Subsystem (lOS) provides control for disk input and output. This 
section describes the components of the diSk-controlling software in the 
following order: 

• OCU-4 controlling software 

• OCU-4 disk error recovery 

• OCU-5 controlling software 

• OCU-S disk error recovery 

• Striped disk groups 

• Kernel internal disk IIO 

The IDS disk software performs disk IIO and error recovery for the 
mainframe and for routines internal to the lOS. 

The IDS can access a maximum of 48 disk storage units (OSUs). The 
maximum is attained by a system with four 1/0 Processors (lOPs), three of 
which have the maximum of 16 OSUs attached. All of the OSUs can be 
selected concurrently, but the number of data streams that can be 
maintained is limited. This limit is based on the disk device type, the 
number of 100-Mbyte channels configured, and the amount of Local Memory 
and Buffer Memory available for disk use. 

Two independent disk drivers support six types of DSUs on the IDS. One 
driver supports the 00-19 and 00-29 OSUs through the OCU-4 Disk 
Controller. The other driver supports the DO-39 Disk Unit, OS-40 Disk 
Subsystem, RO-10 Disk Subsystem, and 00-49 Disk Unit through the OCU-5 
Disk Controller. Both drivers may execute in the same lOP 
simultaneously, allowing all types of disks to be configured on the same 
lOP. 

Current Cray disk conventions allocate space on disk at installation time 
for diagnostic system files and scratch areas. See the COS Operational 
Procedures Reference Manual, publication SM-0043, or the UNICOS System 
Administrator's Guide for CRAY Y-MP, CRAY X~MP, and CRAY-! Computer 
Systems, publication SG-2018 for specific information on reserved areas. 

SM-0046 G 3-1 



I 

3.1 REQUEST PROCESS OVERVIEW 

The mainframe initiates disk 1/0 by sending information to the lOS in a 
request packet. The information sent includes a starting device address, 
a target memory type and starting address, a t·ransfer word length, and a 
read/write function code. The target memory may be Central Memory, SSD 
Memory, or the Buffer Memory resident (BMR) dataset portion of Buffer 
Memory. See the COS Operational Procedures Reference Manual, publication 
SM-0043, or the UNICOS System Administrator's Guide for CRAY Y-MP, 
CRAY X-MP, and CRAY-1 Computer Systems, publication SG-2018, for more 
information on BMR datasets. 

The lOS disk software validates the request parameters and sends an error 
status back to the mainframe if any illegal values are detected. 110 is 
then performed as efficiently as possible using Local Memory disk 
buffers, the 100-Mbyte channel connected to the specified target memory, 
and the optional Buffer Memory disk buffers. All disk buffers are 512 
decimal words in length. When I/O is complete, the IDS sends the status 
back to the mainframe in the original request packet. 

Buffer Memory disk buffers are used by the disk software in data caching 
mechanisms called "Read-ahead" and "Write-behind." These mechanisms are 
designed to facilitate data streaming by overlapping the disk I/O with 
request preparation in the mainframe. 

3.2 OCU-4 CONTROLLING SOFTWARE 

This subsection describes the architecture and request process for the 
OCU-4 (00-19 and 00-29) controlling software. 

3.2.1 OCU-4 SOFTWARE OVERLAYS 

A set of overlays, in cooperation with disk interrupt answering, performs 
the actions necessary to stream data to OCU-4 disk devices. Each overlay 
is activated by the Kernel in the normal overlay activation process. The 
overlays ACOM, COEM, and DISK are, however, demon processes and thus have 
only minimal SMOOs associated with them. Therefore, parameters are not 
passed to them through registers, and contents of registers are not 
preserved if they perform Kernel service requests. 

ERRECK, the error processor, runs as a normal overlay. Its activity is 
created through a service request by DISK. Each time ERRECK is created, 
it handles errors only for the channel for which it was created. 

The following subsections describe the overlays and resident subroutines 
that handle the streaming of data to OCU-4 disk devices. 

3-2 SM-0046 G 



3.2.1.1 ACOM overlay 

ACOM handles messages from other IOPs and initiates disk processing of 
new requests. It runs in all lOPs. 

ACOM's message function codes are as follows: 

Code Function 

1 Initiate disk request 

2 Release Disk Activity Link (DAL) in originating lOP 

3 Transfer data from target memory to Buffer Memory 

4 Transfer data from Buffer Memory to target memory 

5 Send status to mainframe; the MIOP receives this function. 

6 Target memory to Buffer Memory transfer done 

7 Buffer Memory to target memory transfer done 

3.2.1.2 CDEM overlay 

CDEM is the MIOP overlay that dispatches requests from the mainframe to 
the correct recipient. Messages processed by CDEM include disk, tape, 
and Kernel requests. 

3.2.1.3 DISK overlay 

DISK runs in all lOPs that have attached disks. It performs the 
following functions: 

• Manages the Disk Control Block (DCB) done queue 

• Initiates requests to the target memory processor to receive data 
from or send data to the target memory 

• When executing in the target memory processor, moves data to the 
target memory through the 100-Mbyte channel 

• Starts IIO if the channel is disabled (the channel can be disabled 
while waiting for data or a local disk buffer) 

SM-0046 G 3-3 



3.2.1.4 ERRECK overlay 

ERRECK processes errors, attempts to recover from errors, and puts out 
the unrecoverable error message. It executes in all lOPs with attached 
disks. 

3.2.1.5 Disk interrupt answering subroutine 

The disk interrupt answering subroutine puts the finishing DAL on the DCB 
done queue, allocates local buffers on reads, and initiates IIO for the 
next DAL. Finally, it activates the DISK demon to further process the 
1/0 completed on the channel. 

3.2.1.6 Disk driving subroutines 

Disk driving subroutines are called by ACOM and DISK to build executable 
DALs. These subroutines calculate the cylinder, head, sector, and the 
target memory address of data. They also allocate Buffer Memory space 
and initiate IIO on read requests, if necessary. 

3.2.2 DCU-4 TABLES AND PACKET STRUCTURE 

When the mainframe initiates communication with the lOS, it sends a 
6-word (30a-parcel) packet to MIOP across the 6-Mbyte channel with 
information about the request. Two words (lOa parcels) of control 
information are added to the packet, which is called a master DAL. The 
contents of that packet are defined in the lOS Table Descriptions 
Internal Reference Manual, publication SM-0007. 

3.2.3 STEPFLOW FOR DCU-4 DISK WRITE REQUEST FROM MAINFRAME 

The following sequence of operations handles a write to a disk attached 
to the DIOP. The target memory processor is BIOP. The lOP in which each 
step occurs is identified. 

Step lOP Description 

3-4 

1. MIOP An interrupt on the 6 Mbyte channel is recognized as a disk 
request by interrupt answering. The CD EM overlay is 
activated. 

2. MIOP CDEM forms a DAL using 30a parcels of information from 
the mainframe and lOa parcels of control information. 
The DAL function code is set to 1 (in DA@IFC) and put on 
the channel queue that connects lOPs, targeted for the 

SM-0046 G 



Step lOP Description 

DIOP. Buffer Memory is allocated and the address is saved 
in the OAL. OA@MES contains the encoded address in Buffer 
Memory of the message. (See the· lOS Table Descriptions 
Internal Reference Manual, publication SM-0007, for an 
example of a DAL format.) 

3. MIOP A message crosses the accumulator channel to the DIOP. 

4. DIOP The interrupt handler gets the accumulator channel data and 
puts it on the ACOM activities data queue. ACOM is 
activated by being placed on the lOP central processor 
queue. 

5. DIOP ACOM gets the entry from the queue, calculates the Buffer 
Memory address of the message, and reads the DAL into the 
Local Memory DAL area. 

6. DIOP ACOM recognizes function code 1 as a new disk request. If 
the DSU is not busy, or if the queue is sufficiently short, 
ACOM calls subroutine DBUD to build executable DALs. 

7. DIOP DBUD builds a DAL, allocates a disk buffer area in Buffer 
Memory, puts the DAL on the executable DAL queue, 
recognizes the request as a write, and sends a request to 
the BlOP to get data from the target memory. This request 
has a function code of 3 in the DAL; a copy of the DAL is 
written to Buffer Memory so the BlOP can move the data from 
the target memory to the Buffer Memory address specified in 
the DAL. 

8. BlOP The interrupt handler gets 1 parcel from the accumulator 
channel and puts it on the ACOM data queue. The ACOM 
Activity Descriptor (AD) is put on the lOP central 
processor queue. 

9. BIOP ACOM gets the entry from its queue. It recognizes function 
code 3, reads data from the target memory over the 
100-Mbyte channel, and writes it to Buffer Memory. 

10. BlOP ACOM sets the function code in the DAL to 6, writes it to 
the Buffer Memory assigned for this DAL, and sends an 
accumulator channel message to the DIOP. 

11. DIOP The DIOP gets the interrupt on the accumulator channel and 
activates ACOM. 

12. DIOP ACOM recognizes function code 6. The data is flagged, 
identifying its location as Buffer Memory. 

SM-0046 G 3-5 



Step lOP Description 

13. DIOP If write-behind (meaning early status is requested) is 
specified and if this is the last sector for this request, 
status is sent to the MIOP and hence to the mainframe 
indicating that the data is in Buffer Memory. 

14. DIOP If this sector is the first or second on the disk request 
queue for this channel, the data is read into Local Memory 
and flagged as Local Memory resident. 

15. DIOP If this request is at the top of the queue, the write to 
disk begins. The Disk Control Block (DCB) is flagged as 
performing a write. 

16. DIOP An interrupt indicates that the write is complete. The 
interrupt handler moves the top request on the ready queue 
to the done queue for the DCB. If the next IIO request is 
ready, the function is started. The DISK demon overlay is 
activated. 

17. DIOP The DISK demon overlay takes the request off the done queue 
and releases the Buffer Memory space assigned. It checks 
to see whether this is the last write for the request; if 
it is, the DISK demon writes the master DAL to Buffer 
Memory with a code of 5, indicating that the status is to 
be returned to the mainframe. An accumulator channel 
message is sent to the MIOP. 

18. MIOP The MIOP gets the interrupt, puts the accumulator channel 
data on the ACOM queue, and activates ACOM. 

19. MIOP ACOM recognizes the function code of 5 and sends the DAL in 
six 64-bit words of data across the 6-Mbyte channel to the 
mainframe. 

20. MIOP ACOM releases Buffer Memory space for the DAL and any Local 
Memory space. 

3.2.4 STEPFLOW FOR DCU-4 DISK READ REQUEST FROM MAINFRAME 

The following sequence of operations accomplishes a request to read a 
disk attached to the DIOP. The Target Memory Processor is BIOP. The lOP 
in which each step occurs is identified. 

3-6 SM-0046 G 



Step lOP Description 

1. MlOP An interrupt on the 6-Mbyte channel is recognized as a disk 
request by interrupt answering. The CDEM overlay is 
activated. 

2. MIOP CDEM forms a DAL using 308 parcels of information from 
the mainframe and lOa parcels of control information. 
The DAL function code is set to 1 (in DA@IFC) and put on 
the channel queue that connects lOPs, targeted for the 
DIOP. Buffer Memory is allocated, and the address is saved 
in the DAL. DA@MES contains the encoded address in Buffer 
Memory of the message. (See the lOS Table Descriptions 
Internal Reference Manual, publication SM-0007, for an 
example of a DAL format.) 

3. MIOP A message crosses the accumulator channel to the DIOP. 

4. DIOP The interrupt handler gets the accumulator channel data and 
puts it on the ACOM activities data queue. ACOM is 
activated by being placed on the lOP central processor 
queue. 

5. DIOP ACOM gets the entry from the queue, calculates the Buffer 
Memory address of the message, and reads the DAL into the 
Local Memory DAL area. 

6. DlOP ACOM recognizes function code 1 as a new disk request. If 
the disk unit is not busy, or if the queue is sufficiently 
short, ACOM calls subroutine DBUD to build executable DALs. 

7. DIOP DBUD builds a DAL, allocates disk space, and queues the 
request on the executable CAL queue. The request is 
recognized as a read. If the entry is the first on the 
queue, the 1/0 is initiated on the proper disk channel. 

8. Drop An interrupt indicates that 1/0 has successfully 
completed. The interrupt handler moves the DAL to the done 
queue and starts the next DAL (if another exists) or begins 
read-ahead (if last). The DrSK demon overlay is activated. 

9. DIOP The DISK demon overlay takes the DAL off the done queue and 
moves data from Local Memory to Buffer Memory. The 
executable DAL, with a function code of 4, is written to 
Buffer Memory and its address is passed to BlOP across the 
accumulator channel. 

10. BlOP The interrupt handler gets the accumulator, puts it on the 
ACOM queue, and activates ACOM. 

SM-0046 G 3-7 



Step lOP Description 

11. BIOP ACOM gets the entry from the queue. It recognizes function 
code 4, reads data from Buffer Memory, and writes it to the 
target memory through the 100-Mbyte channel. 

12. BIOP ACOM sets the function code in the DAL to 7, writes it to 
Buffer Memory assigned for the DAL, and sends the 
accumulator channel message to the DIOP. 

13. DIOP The interrupt handler gets an interrupt on the accumulator 
channel, queues the message, and activates the ACOM 
activity. 

14. DIOP ACOM recognizes function code 7. It releases Buffer Memory 
and DAL space. If this is the last DAL for this request, 
ACOM puts a function code of 5 into the master DAL 
(indicating status is to be sent to the mainframe), writes 
the DAL to Buffer Memory, and sends an accumulator channel 
message to the MIOP. 

15. MIOP The MIOP gets the interrupt, puts the accumulator channel 
data on the ACOM queue, and activates ACOM. 

16. MIOP ACOM recognizes the function code of 5 and sends the 
command from the DAL (containing status) to the mainframe 
across the 6-Mbyte channel. 

17. MIOP ACOM releases Buffer Memory space for the DAL and any Local 
Memory used. 

3.2.5 LOCAL HANDLING OF DISK QUEUES 

Each lOP maintains its own queues in Local Memory (by disk unit) for 
disks attached to it. 

Queues are composed of linked lists of disk packets that take the same 
form as the 30a-parcel packets, or DALs, that come from the mainframe. 
These packets reside in Buffer Memory and are allocated and deallocated 
by the MIOP. When data for a disk IIO comes into Local Memory (from 
Buffer Memory or disk), a copy of the packet has already been read into 
Local Memory. When I/O is complete, the packet is removed from the queue 
and its address sent to the next lOP, which performs processing for it. 

Disk data must always move through the Local Memory of the processor 
attached to the relevant disk. 

3-8 SM-0046 G 



Each lOP facilitates streaming on devices by reading ahead as requested 
by disk packets and by maintaining the data read-ahead in Buffer Memory 
until subsequent requests are received for this data. The data in these 
read-ahead buffers is retained in Buffer Memory. If no request is 
received to transfer the data to the mainframe before the next write 
request, the Buffer Memory is deallocated for use by other requests. 
Each read request that is received causes examination of the read-ahead 
queue to find data that has been preread. 

3.2.6 DCU-4 DISK READ-AHEAD 

Each disk control block (DCB) has a Read-ahead Control Table assigned to 
it at initialization time. These tables are used on both disk reads and 
writes to anticipate subsequent I/O requests. 

Each entry in a Read-ahead Control Table represents one sector of data 
and contains information used to identify and locate that sector. The 
number of entries in each Read-ahead Control Table is determined by the 
$APTEXT constants RA$NUM (single-device units) and RA$NUMS 
(striped-device units). Entries in the Read-ahead Control Table are 
described by the RA@ definitions (see the IDS Table Descriptions Internal 
Reference Manual, publication SM-0007). 

The Read-ahead Control Table is treated as a circular list and has 
associated with it the following pointers located in the DCB: 

Pointer 

DB@INF 

DB@UNF 

DB@IN 

DB@OUT 

DB@RAK 

DB@RAF 

SM-0046 G 

Description 

Pointer to the first entry in the table; remains constant 
from initialization. 

Pointer to the last entry in the table; remains constant 
from initialization. 

Pointer to the next entry to be read into (reading if 
from disk to Buffer Memory; writing if from the target 
memory to Buffer Memory). 

Pointer to the next entry to be used to satisfy a 
request 

Count of number of entries in the Read-ahead Control 
Table; remains constant from initialization. 

Count of number of entries containing read-ahead data 

3-9 



3.2.6.1 Disk read 

Upon completion of a disk read request, the read interrupt routine checks 
for additional I/O requests for the current channel. If there are none, 
read-ahead control is initiated. Read-ahead control anticipates that the 
next I/O request for the current channel will be a read for sectors 
contiguous to the one just read. 

Two cases in which read-ahead is not initiated and the channel is idled 
until the next 1/0 request is received areas follows: 

• When a seek is required to position to the next sequential sector 

• When no local disk buffers are available 

The read-ahead sequence is as follows: 

1. Read complete. No requests pending (DB@MDL=O). Initialize 
Read-ahead Control Table: 

DB@RAF=O 
DB@IN=DB@OUT=DB@INF 

2. Compute disk address of next sector to be read and store in the 
entry pointed to by DB@IN (RA@CYL, RA@HED, and RA@SEC). 

3. Allocate a local disk buffer and store the address in the 
read-ahead entry (RA@LOC). 

4. Set disk activity in DCB (DB@FLG) to read-ahead (function code is 
4) and initiate read. 

3.2.6.1.1 Interrupt occurs due to read-ahead - Read-aheads are 
terminated if any of the following conditions are found: 

• Read-ahead abort is set in the DCB (bit 215 in DB@FLG). 

• An error is detected in the read-ahead just completed. 

• No more entries are available in the Read-ahead Control Table 
(DB@RAF=DB@RAK). 

• No local disk buffers are available. 

• A seek is required to position to the next sequential sector. 

The following sequence applies to an interrupt due to a read-ahead: 

1. Set data location in entry pointed to by DB@IN to Local Memory 
(RA@DAT=I). Increment count of read-ahead entries in use 
(DB@RAF+l). Advance DB@IN to next entry. 

3-10 SM-0046 G 



-

2. Compute next sequential disk address and store in the entry 
pointed to by DB@IN (RA@CYL, RA@HED, and RA@SEC). Allocate a 
local disk buffer and store the address in the read-ahead entry 
(RA@LOC). Initiate read. 

3. Activate Disk Demon to move read-ahead sector just completed to 
Buffer Memory. 

3.2.6.1.2 Disk Demon read-ahead process - The Disk Demon read-ahead 
process follows: 

1. Allocate Buffer Memory buffer and save address in the entry 
pointed to by DB@IN (RA@BMO/BM1). 

2. Transfer data from Local Memory buffer (RA@LOC) to Buffer 
Memory. Set data location to Buffer Memory (RA@DAT=2). Release 
Local Memory buffer. 

3.2.6.1.3 1/0 request received during read-ahead - If the lID request 
received specifies a write, the Read-ahead Abort flag is set (2 15 in 
DB@FLG), causing read-aheads to terminate after the current read 
completes. 

If the 1/0 request received specifies a read, a check is made to see 
whether the first sector ocf the request matches either data previously 
read-ahead or the sector currently being read. 

ACOM checks to see if the first sector of the request matches any of the 
sectors previously read-ahead. If there is a match, ACOM makes sure that 
the pointer DB@OUT gets set to the matching entry. 

ACOM then calls the DBUD routine to prepare E-DALs for the request. As 
each E-DAL is built, a check is made to see whether the sector for which 
the E-DAL is being built matches the sector in the read-ahead entry 
pointed to by DB@OUT. If there is a match, the memory location of the 
data is moved from the read-ahead entry to the E-DAL. The E-DAL is then 
placed on the done queue (DB@DNQ) for processing by the Disk Demon. The 
DB@OUT pointer is then advanced to the next read-ahead entry and the 
read-ahead count (DB@RAF) is decremented. 

This process continues until all of the read-ahead data has been used. 

If the read-ahead count (DB@DRAF) is 0 and read-ahead is in progress 
(DB@FLG=4), a check is made to see if the sector for which the E-DAL is 
being built is the same as that being read. If they are the same, the 
information from the read-ahead entry pointed to by DB@IN is moved to the 
E-DAL, the Disk Activity flag is set to read (DB@FLG=l), and the E-DAL is 
put on the executable queue (DB@EDL). This process is referred to as a 
read-ahead steal, because the active read-ahead is redirected into the 
normal read flow. 

SM-0046 G 3-11 



3.2.6.2 Disk write 

Read-ahead during a disk write (sometimes referred to as write-behind) 
involves moving sectors of data from the target memory to Buffer Memory, 
where it is held until the disk is positioned to where the data is to be 
written. A response is' sent after the last sector of data (for a given 
request) has been moved out of the target memory. The read-ahead allows 
overlap of current and previous request processing; that is, overlap of 
the preparing of data to be written with the writing of data to disk. 

Read-ahead during a disk write always attempts to keep the Read-ahead 
Control Table full. As each write request is satisfied and a new one 
received, data is moved to Buffer Memory, as long as entries are 
available in the Read-ahead Control Table. As each sector is moved from 
Buffer Memory to Local Memory to disk, the next sequential sector of the 
most recent request is moved from the target memory to Buffer Memory to 
take its place. 

3.2.6.2.1 Disk Demon: Read-ahead input - The sequence that applies to 
Disk Demon read-ahead input follows: 

1. Check to see whether there is any more room in the Read-ahead 
Control Table (DB@RAF=DB@RAK). If no room exists, the sequence 
ends here. 

2. Check each M-DAL queued (DB@MDL) beginning with the first for a 
sector waiting to be moved. (DA@WBH # DA@TOT). If none exist, 
the sequence ends here. 

3. Transfer sector from the target memory to Buffer Memory. Save 
Buffer Memory address of the entry in the Read-ahead Control 
Table that is pointed to by DB@IN (RA@BMO/BM1). Save the disk 
address of the sector in the entry (RA@CYL, RA@HED, and RA@SEC). 

4. Advance DB@IN to the next entry. Increment read-ahead count 
(DB@RAF). Increment next read-ahead/write-behind sector in the 
M-DAL (DA@WBH). 

5. If the last sector for the request has been moved 
(DA@WBH=DA@TOT), send a response to the mainframe. 

3.2.6.2.2 Disk Demon: Read-ahead output - The sequence that applies to 
Disk Demon read-ahead output follows: 

1. Call the Kernel DBUD routine to build the next E-DAL. 

2. DBUD checks to see if the read-ahead entry pointed to by DB@OUT 
matches the sector for which the E-DAL is being built. 

3-12 SM-0046 G 



3. The Buffer Memory address is moved from the entry (RA@BMO and 
RA@BM1) to the E-DAL (DA@BMO and DA@BM1). The data location is 
set to Buffer Memory in the E-DAL (DA@DAT=2). DB@OUT is advanced 
to the next entry and the read-ahead count is decremented 
(DB@RAF). 

4. Disk Demon allocates a local buffer, detects that data is in 
Buffer Memory rather than target memory (DA@DAT=2), and transfers 
data from Buffer Memory to Local Memory in preparation for a 
write to disk. 

3.2.7 ON-LINE DISK DIAGNOSTIC REQUESTS 

The DCU-4 disk driver supports on-line disk diagnostic requests for the 
data, format, and correction code options of the read/write commands. In 
addition to specifying a read/write option, the diagnostic request may 
enable or disable error recovery, error reporting, read-ahead, and 
write-behind. 

Diagnostic request processing in the lOS proceeds according to the 
following rules: 

• Only full sector I/O is supported 

• Diagnostic requests may only be made for physical devices. Thus, 
a diagnostic request for a device that is a member of a striped 
group is valid, while a request for the striped group itself is 
invalid. 

In the event an error occurs during diagnostic request processing, the 
lOS returns an error record to the diagnostic job and/or the system log 
if indicated in the original request packet. See subsection 3.3.4, Error 
Status Returned to Mainframe, for more information on error reporting. 

3.3 DCU-4 DISK ERROR RECOVERY 

The Kernel's disk error recovery routines process and recover from errors 
on disk. The routines are resident in the Kernel overlay ERRECK, which 
is activated when a disk error is recognized on one of the lOP disk 
channels. The DISK overlay creates ERRECK when it recognizes that error 
recovery must be attempted. 

After activation, the ERRECK overlay attempts recovery in a predefined 
order, according to entries in a Kernel table and depending on the type 
of error. Table 3-4 summarizes the process. 

SM-0046 G 3-13 



ERRECK recognizes the following four types of disk errors: 

• Data errors, indicating the data was not transferred correctly 

• Lost data errors, indicating memory was unable to keep up with the 
disk data transfers 

• Seek errors, resulting from the incorrect physical movement of the 
read/write head 

• Disk interlock, which occurs when the disk is not physically ready 
to transfer data 

The Kernel maintains statistics for each disk unit on the number and 
types of errors for each disk channel. 

3.3.1 DISK ERRORS REQUIRING RECOVERY 

Disk storage units signal an error condition by setting the done bit and 
leaving the busy bit set on the channel. The done bit causes an 
interrupt that activates the ERRECK routine. The done and busy condition 
is sensed by the disk interrupt routine, which reads the status into the 
A register from the channel to determine the type of error that has 
occurred. Table 3-1 shows the relationship between the contents of the A 
register and the error condition. A bit signals an error if it is set 
to 1. These errors are defined in the following subsections. 

3-14 

Table 3-1. Error Conditions 

Bit Error 

o 
1 
2 

3 
4 

5 
6 
7 

8 
9 

10 
11 
12 
13 
14 
15 

Angular position counter failure 
Lost function 
Lost data 
Read error channel 3 
Read error channel 2 
Read error channel 1 
Read error channel 0 
Address error 
Seek error 
Write error channel 3 
Write error channel 2 
Write error channel 1 
Write error channel 0 
Multiple head select 
Read/write conflict 
Read/write off cylinder 

SM-0046 G 



I 

3.3.1.1 Data error 

Data errors are detected on read and write functions when the hardware 
senses that the correct data has not been transferred as requested. The 
Kernel disk interrupt answering routine senses that both Done and Busy 
flags are set and reads the disk status. If any of the bits between 3 
and 6 are set in the status parcel, an error occurred in transferring 
data from the disk. If any of the bits between 9 and 12 are set, an 
error occurred when trying to transfer data to the disk. 

3.3.1.1.1 Recovery for data errors on read operations - When a data 
error is encountered, the Kernel tries to recover the data with a series 
of operations. The recovery sequence occurs in the following order: 

1. Error recovery repeats the read operation a fixed number of times 
to determine if the error is transient. 

2. If the function repetition fails, recovery is attempted through 
cylinder margin selection, read early/late selection, or 
combinations of the two. The READSEQ table in ERRECK controls 
the sequence of events and contains margin and read early/late 
parameters. 

3. Disk error correction is attempted for data errors if cylinder 
margin and read early/late selection retries are unsuccessful. 
Error recovery reads the data and the associated error correction 
code without cylinder offset or read early/late selection. The 
overlay FIRECODE is called to generate correction vectors and 
correct the data, if possible. The error correction algorithm 
corrects data in a single burst of 11 bits or less for each of 
the four read heads. 

The disk error correction feature can be disabled if desired (see 
the I@IOSECC parameter description in the COS Operational 
Procedures Reference Manual, SM-0043 or the UNICOS System 
Administrator's Guide for CRAY Y-MP, CRAY X-MP, and CRAY-1 
Computer Systems, publication SG-2018). 

4. If none of the preceding procedures is successful, error recovery 
sends the sector of data containing the error to the mainframe 
along with a status indicating the unsuccessful data request. 
The remainder of the current disk request is thrown away, and the 
Kernel continues processing any subsequent requests. 

3.3.1.1.2 Recovery for data errors on write operations - If the disk 
hardware detects an error while attempting to write data to disk, the 
error recovery routine repeats the function a set number of times to 
determine if the error is transient. If the requests· are not successful, 
the lOS returns a status to the mainframe indicating unsuccessful 
completion of the operation. 

SM-0046 G 3-15 



3.3.1.2 Lost data errors 

When the status parcel has a 1 set in bit 2, the hardware has detected 
that Local Memory was unable to keep up with the disk transfer on a read 
operation. In this case, the data transfer was not completed, and error 
recovery attempts to complete the function by repeating it a set number 
of times. 

ERRECK then clears fault flags, does a seek to cylinder 0, and attempts 
to repeat the disk function. This operation is repeated a set number of 
times. If the data is not successfully transferred by these repeated 
operations, the lOS returns a status to the mainframe indicating 
unsuccessful completion of the operation. 

3.3.1.3 Seek errors 

Seek errors are detected by the hardware and are indicated when bit 8 is 
set in the status parcel. The recovery procedure is to return to 
cylinder 0, then attempt to do the seek again. This sequence is repeated 
a set number of times. If the seek cannot be completed successfully, an 
error status is returned to the mainframe. 

3.3.1.4 10 errors 

Following a normal disk seek operation, the hardware returns the cylinder 
number from the disk 10 field in the Status Response register. If this 
cylinder number does not agree with the cylinder that software is trying 
to select, error recovery is invoked. The error recovery procedure is to 
return to cylinder 0, then attempt to do the seek again. This sequence 
is repeated a set number of times. Before the final retry, the head 
group is switched in an effort to determine if the correct cylinder is 
being selected. If all retries fail, an error status is returned to the 
mainframe. 

3.3.1.5 Interlock status 

When error recovery finds no bits set in the status parcel after 
detecting an error condition, it knows that the disk referenced is not in 
a condition to perform the 1/0. To determine the cause of the condition, 
the error recovery overlay reads the interlock status into the status 
response register and then into the A register with an IOB:11 
instruction. Error recovery checks to see whether the lOS has reserved 
bit set. If reserved, the status word is checked to see if a real 
interlock condition is set. If not set, the recovery routine considers 
the interlock falsb and tries to recover as though it were a 
miscellaneous type. Otherwise, error recovery displays a message 
indicating the type of error so the operator can correct physical 
interlocks. An interlock status (irrecoverable error) is returned to the 
mainframe. 

3-16 SM-0046 G 



Conditions considered interlocks, along with their bit positions in the 
status response register, are indicated in table 3-2. In all cases, a 1 
in the bit position indicates that the corresponding condition is true. 

Table 3-2. Interlock Error Conditions 

Bit Error 

8 Positive voltage supply for the 
DSU is below normal 

9 Negative voltage supply for the 
DSU is below normal 

11 DSU start switch is off 

12 DSU brush cycle is in process 

13 Disk heads are not loaded on 
the disk surface 

14 Disk surface is not up to speed 

15 Disk drive cabinet is over the 
normal temperature range 

3.3.1.6 Miscellaneous disk errors 

Certain disk errors do not fit neatly into any of the previous 
classifications. When these errors occur, they are treated as transient 
conditions that may disappear on retry, and the last function executed on 
the channel is reexecuted up to a set maximum number of times. If the 
error continues to occur, the condition is processed as though it were an 
interlock condition, causing a message to be sent to the operator and a 
status response to the mainframe. 

Miscellaneous errors, along with their bit positions in the status 
response register, are given in table 3-3. A 1 in the bit position 
indicates that the condition is true. 

SM-0046 G 3-17 



Table 3-3. Miscellaneous Error Conditions 

Bit Error 

0 Angular position counter failure 

7 Address error 

13 Multiple head select 

14 Read and write conflict 

15 Readlwrite off cylinder 

3.3.2 IIO TIME-OUT 

When a read, write, or seek function is sent to a disk channel, the timer 
entry for that channel (DB@TMO) is passed along with a time-out value 
(SEEKLIM/SEEK, DISKTLIM/READ, or WRITE) to the OTIME routine for 
placement on the system event timer queue. If the interrupt occurs 
before the timer expires, a call is made to DOTIME to remove the entry 
from the timer queue. 

If the interrupt does not occur in time, control is given to the IDKTOUT 
routine. IDKTOUT is entered into TMR@RT of each timer entry (DB@TMO) for 
all disk channels at system initialization. The IDKTOUT routine either 
activates the disk demon (DISK) to initiate error recovery or activates 
ERRECK if error recovery is already in progress. 

3.3.3 ERROR RECOVERY SUMMARY 

Table 3-4 summarizes the handling of the various disk error conditions. 
The order of recovery is defined by the lowercase letters; the letter a 
designates the first operation attempted; b, the second, and so on. 
The recovery actions are abbreviated as follows: 

R Repeat last function I-M lOP message to CRT 
M Margin select ST Send status to mainframe 
ElL Strobe early and late CO Return to cylinder 0 and retry 
C Combination of M and ElL FC Firecode processing (error 
RS Read interlock status correction code) 

3-18 SM-0046 G 



Table 3-4. Disk Error Recovery Summary 

-- I 
Error Condition IBit R M E/L C RS I-M ST CO FC 

I 
I 

Angular position failure 0 a c d b 

Disk not ready 1 a c d b 

Lost data 2 a c d b 

Data error, channel 3 3 a b c d f g e 

Data error, channel 2 4 a b c d f 9 e 

Data error, channel 1 5 a b c d f 9 e 

Data error, channel 0 6 a b c d f 9 e 

Address error 7 a b c 

Seek error 8 b c d a 

Write fault, channel 3 9 a c d b 

Write fault, channel 2 10 a c d b 

Write fault, channel 1 11 a c d b 

Write fault, channel 0 12 a c d b 

Multiple head select 13 a c d b 

Read/write conflict 14 a c d b 

Read/write off cylinder 15 a c d b 

Time-out a b c 

10 error b c d a 

Interlock b a c d 

SM-0046 G 3-19 



3.3.4 ERROR STATUS RETURNED TO MAINFRAME 

When a 00-19 or 00-29 disk error occurs, the lOS returns the final error 
status to the mainframe. The status is returned in field DA@RC of the 
disk command packet that made the original request. Valid error statuses 
that may be returned are as follows: 

Error Status 

DAR$OK 
DAR$REC 
DAR$COR 
DAR$UNC 
DAR$UNR 

Description 

No error encountered 
Recovered error 
Corrected data error 
Uncorrected data error 
Unrecovered error 

Limited information about disk errors is passed back to COS in parcels 
308 through 338 of the DAL (parcels 208 through 238 of data 
transferred to the mainframe). Table 3-5 defines this information. 

Table 3-5. Disk Error Information in DAL 

Parcel Bits Description 

30 0-10 Cylinder on which error was detected 

30 11-15 Head group in which error was detected 

31 0-6 Sector of error 

31 7-15 Offset from the beginning of the sector 

32-33 0-15 Length of actual transfer 

Additional information is sent to the mainframe in a disk error packet for 
logging. This packet is built in the REPORT overlay. (See the lOS Table 
Descriptions Internal Reference Manual, publication SM-0007, for the 
format of the Disk Error Packet, DE@.) 

3-20 SM-0046 G 



3.3.5 DCU-4 DISK ERROR MESSAGE 

If an irrecoverable error occurs in an lOP, the error reporting overlay 
(REPORT) informs the operator of the error location, the hardware status 
returned, and time of the error through the following message: 

CHANNEL chan - DISK ERROR CYL cyl HD hd ST status hh:mm:ss 

chan 

cyl 

hd 

status 

Channel number (20 through 378) 

Cylinder number 

Head number 

If hardware detected the error, status is the hardware 
status code returned from disk. If software detected the 
error, status is one of the following: 

INT-LK 
BAO-SK 
TM-OUT 

Channel interlocked, not ready 
Bad cylinder number after seek (IO error) 
Channel timed out 

hh:mm:ss lOP time of day 

3.4 OCU-5 OISK CONTROLLING SOFTWARE 

This subsection describes the architecture and request process for the 
OCU-5 (RD-10, DO-39, DO-40, and DO-49) controlling software. 

The 00-40 OSUs are part of the OS-40 Disk Subsystem. The 00-40s are 
connected to the OCU-5 through OC-40 Oisk Controllers. The RD-10 OSUs 
are part of the RD-10 Transportable Disk Subsystem and are connected to 
the DCU-5 through a DCU-S1 serial Disk Controller. 

It is recommended that RO-10s not share the same DCU-5 controller as 
other disk types, as this may result in overrun/underrun errors on the 
RO-10s during periods of heavy activity. These errors are recoverable, 
but will result in a loss of performance and a potentially large number 
of errors being logged. 

SM-0046 G 3-21 



3.4.1 DCU-5 SOFTWARE COMPONENTS 

The DCU-5 disk controlling software consists of the following four demon 
overlays and the interrupt answering overlay: 

Overlay 

DD49 

D4DEM 

I COM 

TRANSFR 

Function 

Loads into Local Memory at lOS deadstart time and resides 
as the disk interrupt handler in the lOPs that have DCU-5 
disk devices configured. 

Starts 1/0 to the disk and performs tasks to keep the 1/0 
going 

Handles all communication between lOPs for the DCU-5 disk 
driving software 

Moves disk data between Buffer Memory and the target 
memory through the TRANSFER Kernel service request 

3.4.2 DCU-5 DISK DRIVER TABLES AND PACKETS 

The following are software components that control the disk processing. 
These structures are defined in the IDS Table Descriptions Internal 
Reference Manual, publication SM-0007. 

3.4.2.1 Disk Request Packet (DAL) - DL@ 

The DAL is a fixed-length packet containing request information from the 
mainframe plus control information used by the lOS. For more information 
about DALs, see subsection 2.14, MIOP-mainframe Communication Channel. 

3.4.2.2 Disk Control Block (DCB) - DK@ 

The DCB is the main control table for disk operations. One DeB is 
defined for each disk channel. This table is created at system 
initialization and resides in Local Memory. 

3.4.2.3 Local Buffer entry - LB@ 

The Local Buffer entry is used for Local Memory buffer control. There is 
one entry for each dedicated Local Memory buffer being used by the disk 
channel. The entries serve as requests to the D4DEM overlay to move a 
sector of data to or from Local Memory. The Local Buffer entries 
immediately follow the DCB. 

3-22 SM-0046 G 



3.4.2.4 Buffer Memory Control Block (MCB) - CB@ 

The MCB is a table resident in Buffer Memory. The MCB controls the flow 
of data between the target memory and the disk on rops without a 
lOO-Mbyte channel to that target memory. There is one MCB for each disk 
channel defined. This table is created at system initialization. A 
pointer to the MCB is contained in its associated DCB in Local Memory. 

3.4.2.5 Data Transfer Request (DTR) - TR@ 

The DTR is a fixed-length packet used to make requests to the TRANSFR 
overlay. It contains all the necessary information to move data between 
Buffer Memory and target memory. 

3.4.2.6 Abort Transfer Request (ATR) - AR@ 

The ATR is a fixed-length packet used to terminate the movement of data 
between Buffer Memory and the target memory before the completion of a 
DTR. This packet is sent to the TRANSFR overlay in the event of an 
irrecoverable disk error. 

3.4.2.7 Device Parameter Table (DPT) - DP@ 

The DPT contains information common to all disk devices of the same 
type. During system initialization, one DPT is established in Local 
Memory for each configured device type. Each DCB contains a pointer to 
the DPT associated with its device type. 

3.4.2.8 MEMIO Queue Table - MEM@ 

The MEMIO queues serve as request queues for all disk channels needing 
data moved to or from Local Memory. Each request is a Local Buffer 
entry. Each memory channel has its own distinct queue, allowing for I/O 
overlap on the different channels. This table is serviced by the D4DEM 
overlay. 

3.4.3 RESOURCE MANAGEMENT 

The DCU-5 disk driving software makes extensive use of two lOS 
resources: Local Memory and Buffer Memory. 

SM-0046 G 3-23 



I 

3.4.3.1 Local Memory management 

The sector chaining feature requires at least two dedicated Local Memory 
disk buffers per active disk channel. The number of buffers is 
controlled by the equates LB$DD10 for RD-10 disks, LB$DD39 for 00-39 
disks, LB$DD40 for 00-40, and LB$DD49 for 00-49 disks. 

Local buffers are allocated when a request is received to activate a disk 
channel and are retained for as long as that channel is busy. Each 
buffer address is assigned to a Local Buffer entry. These buffers are 
used in a circular fashion to store data on its way to or from disk. 
Buffer allocation and release are performed by D4DEM. 

3.4.3.2 Buffer Memory management 

Each DCU-5 disk channel has a number of contiguous Buffer Memory disk 
buffers assigned to it at lOS initialization time. These buffers are 
used in a circular fashion for read-ahead and write-behind data. For 
disks on lOPs with a 100-Mbyte channel, the starting buffer address and 
control information is stored in the channel's DCB. For disks on lOPs 
without 100-Mbyte channels, the address and information is stored in the 
channel's MCB. The number of buffers allocated is based on the 
read-ahead and write-behind count constants. More detailed information 
on read-ahead and write-behind is included later in this section. 

3.4.4 DCU-5 DISK READ REQUEST STEPFLOW 

The following sequence of operations handles a read request to a DCU-5 
type DSU attached to the DIOP: 

1. CDEM receives a request packet (DAL) from the mainframe, 
recognizes it as a DCU-5 disk request, and routes it to ICOM in 
the target lOP. See discussions of the MIOP-mainframe 
Communication Channel and Communication Between lOPs in section 2 
for more information about packet handling. 

2. ICOM in the target lOP validates the DAL parameters, puts the DAL 
on the DCB DAL queue, and activates D4DEM. 

3. D4DEM allocates Local Memory buffers and starts 1/0 to the disk. 
If this lOP does not have a 100-Mbyte channel to the specified 
target memory, a DTR is sent to TRANSFR in the Target Memory 
Processor. 

3-24 SM-0046 G 



4. An interrupt signals the completion of a sector transfer from 
disk. The 0049 interrupt handler continues the next sector 1/0 
to disk and initiates the 1/0 to empty the Local Memory buffer 
just filled with disk data. This sector of data is moved from 
Local Memory to the target memory across the lOO-Mbyte channel 
while the disk is filling the next Local Memory buffer with 
data. If this lOP does not have a 100-Mbyte channel, the data is 
moved to Buffer Memory where TRANSFR can then move it to the 
target memory. 0049 then activates 040EM. 

5. 040EM waits for the sector transfer to the target memory to 
complete, and prepares the Local Memory buffer for the next read 
from disk. 

6. Steps 4 and 5 are repeated until the entire request is complete. 
When all the data has moved to the target memory, 040EM is 
activated either by 0049, if the lOP has a 100-Mbyte channel, or 
by ICOM when ICOM receives a message from TRANSFR indicating the 
OTR has been completed. 

7. 040EM sends the final status to ICOM in MIOP and releases the 
Local Memory buffers. 

8. ICOM in MIOP sends the OAL containing status back to the 
mainframe to signal completion of the request. 

3.4.5 DCU-5 DISK WRITE REQUEST STEPFLOW 

The following sequence of operations handles a write request to a OCU-5 
type OSU attached to the DIOP. 

1. COEM receives a request packet (OAL) from the mainframe, 
recognizes it as a OCU-5 disk request, and routes it to ICOM in 
the target lOP. See subsection 2.13, Communication Among lOPs, 
and subsection 2.14, MIOP-mainframe Communication Channel, for 
more information about packet handling. 

2. ICOM in the target lOP validates the OAL parameters, puts the DAL 
on the DCB DAL queue, and activates D4DEM. 

3. If this lOP has a 100-Mbyte channel to the specified target 
memory, 040EM allocates Local Memory buffers, and fills the first 
buffers with data from the target memory across the 100-Mbyte 
channel. If this lOP does not have a 100-Mbyte channel, 040EM 
sends a DTR to TRANSFR in the target memory processor. The data 
is obtained from Buffer Memory after TRANSFR has made it 
available. 

SM-0046 G 3-25 



4. 040EM initiates IIO to the disk. 

5. An interrupt signals the completion of a sector transfer to 
disk. The 0049 interrupt handler continues the next sector IIO 
to disk and initiates the IIO to fill the next available Local 
Memory buffer with data. This sector of data is moved from the 
target memory to Local Memory across the 100-Mbyte channel while 
the data from the current Local Memory buffer is emptied to 
disk. If this lOP does not have a 100-Mbyte channel, the data is 
moved from Buffer Memory after TRANSFR has obtained it from the 
target memory. 0049 then activates 040EM. 

6. 040EM waits for the sector transfer from the target memory (or 
Buffer Memory) to complete, and prepares the Local Memory buffer 
for the next write to disk. 

7. Steps 5 and 6 are repeated until the entire request is complete. 
At that time, D4DEM is activated by the D049 interrupt handler. 

8. 04DEM sends the final status to ICOM in MIOP and releases Local 
Memory buffers. 

9. ICOM in MIOP sends the OAL containing status back to the 
mainframe to signal complet~on of the request. 

3.4.6 DCU-5 READ-AHEAD AND WRITE-BEHIND 

The OCU-5 driving software uses Buffer Memory as a disk cache in 
anticipation of contiguous disk requests from the mainframe. This 
subsection describes the cache mechanism. 

3.4.6.1 OCU-5 read-ahead 

Upon completion of a disk read request, the 00-49 interrupt handler 
automatically initiates read-ahead I/O. Read-ahead control anticipates 
that the next 1/0 request for that channel will be a read for sectors 
contiguous to the previous request. 

Read-aheads are terminated if anyone of the following conditions occur: 

• The read-ahead count, defined in $APTEXT, is satisfied; the 
read-ahead equate takes the form RA$type, where type indicates 
the device type. 

• A seek is required to position to the next sequential sector 

• Sector chaining is broken 

3-26 SM-0046 G 



• An error is detected 

• The Read-ahead Abort flag, DK@ABT, is set in the DCB; this flag is 
set when an I/O request is received that cannot be satisfied by 
the current read-ahead sectors. 

When an interrupt occurs, signaling the completion of a read-ahead, the 
DD49 interrupt handler activates D4DEM to store the sector of data in the 
Buffer Memory read-ahead area. 

If the next I/O request cannot be satisfied by 
data, read-aheads are terminated, as required. 
pointers to the Buffer Memory read-ahead area, 
data has been thrown away. 

the current read-ahead 
D4DEM then updates the 

indicating the read-ahead 

If the next I/O request can be satisfied by the current read-ahead data, 
D4DEM moves the data stored in Buffer Memory to target memory. Any 
remaining sectors for the request are read from disk through the normal 
path. 

3.4.6.2 DCU-5 write-behind 

Write-behind control during write request processing is the equivalent of 
read-ahead control during read request processing. It involves storing 
sectors of data in Buffer Memory until the disk can be positioned where 
the data is to be written. The mainframe is notified when all data for 
the current write request has been moved out of the target memory. This 
allows for overlapping the preparation of the next I/O request with the 
writing of data to disk for the current request. 

Write-behind processing occurs only under the following conditions: 

• The write-behind count constant, defined in $APTEXT, has not been 
satisfied; the write-behind equate takes the form WB$type, where 
type indicates the device type. 

• All local buffers are full 

• There is data remaining in the target memory for the most recent 
write request 

• There are no pending sectors on queue to be moved to or from Local 
Memory buffers 

D4DEM attempts to satisfy the write-behind count by transferring sectors 
for the most recent request from the target memory to Buffer Memory in 
reverse order; for example, the last sector for a request is moved into 
Buffer Memory first, the next-to-Iast sector is moved second, and so on. 

SM-0046 G 3-27 



I 

When the 00-49 interrupt handler detects that the next sector of data 
resides in Buffer Memory rather than the target memory, it activates 
040EM to get the data from the appropriate location. 040EM updates the 
pointers to the Buffer Memory write-behind area after moving the last 
sector for a request into Local Memory, indicating the Buffer Memory 
space is now free for subsequent write-behind requests. 

3.4.7 SPIRAL FORMATTING 

The OCU-S disk driver incorporates spiral formatting to reduce the time 
spent waiting for cylinder-to-cylinder seeks to complete. Spiral 
formatting is done by the software and does not affect physical 
formatting of the drive. Only RO-lO, 00-39 and 00-49 disk drives are 
spirally formatted. 00-40 disk drives are not spirally formatted as this 
would defeat the read-ahead and write-behind logic in the OC-40 
controller. 

On a disk with spiral formatting, each cylinder starts a partial 
revolution later than the previous cylinder. Thus, when moving from one 
cylinder to the next, sector 0 of the new cylinder is available for 
reading within a partial revolution, rather than waiting for a full 
revolution to complete. 

To implement spiral formatting, the driver maps each logical data sector 
onto a physical sector according to a conversion table residing in the 
OPT for that device. This table contains a list of offset values used to 
calculate the physical sector number. 

To calculate the physical sector number, add the value of the low-order 
bits of the requested cylinder number to the base address of the 
conversion table. The resulting location contains the correct offset 
value. Add the offset to the logical sector number to obtain the 
physical sector number. 

Only the low-order bit of the cylinder number is used in the conversion 
I algorithm for DO-lOs and 00-39s; thus the disk is logically divided into 

two halves. The low-order 2 bits of the cylinder number are used in the 
conversion algorithm for 00-49s; thus, the disk is logically divided into 
four quadrants. 

3.4.8 ON-LINE OISK DIAGNOSTIC REQUESTS 

The DCU-S disk driver supports on-line disk diagnostic requests for all 
options of the read/write commands. In addition to specifying a 
read/write option, the diagnostic request may enable/disable error 
recovery, error reporting, read-ahead, and write-behind. 

3-28 SM-0046 G 



Diagnostic request processing in the IDS proceeds according to the 
following rules: 

• Only full sector lID is supported 

• Diagnostic requests may be made only for physical devices. This 
means that a diagnostic request for a device that is a member of a 
striped group is valid, while a request for the striped group 
itself is invalid. 

• Software spiral formatting is not part of diagnostic request 
processing. 

If an error occurs during diagnostic request processing, the IDS returns 
an error record to the diagnostic job and/or the system log, if so 
indicated in the original request packet. See subsection 3.5.4, Error 
Reporting, for more information. 

3.5 DCU-5 DISK ERROR RECOVERY 

Error recovery for the DCU-5 type disks is enacted when the OD-49 disk 
interrupt handler detects one of the following error types: software 
detected, status register 0, or Drive General Status. When the DD-49 
disk interrupt handler detects an error on a disk channel, an error 
status is stored in the DCB for the channel and the 040EM overlay is 
activated. 040EM recognizes that an error has occurred and creates an 
error recovery activity for the channel. 

Error recovery consists of five major areas that are assumed to be single 
processes; it is rarely required to go from one process to another during 
error recovery. These areas are as follows: 

• Unit Select Process (04SLR for 00-49 or 03SLR for RO-10, OD-39 and 
DD-40) 

• Cylinder Select Process (04SKR for DO-49 or 03SKR for RO-10, 
00-39, and 00-40) 

• Head Select-LMA Select-Read Process (04IOR for DD-49, D40IOR for 
DO-40, 03IOR for 00-39, or OlOIOR for RO-10) 

• Head Select-LMA Select-Write Process (04IOR for 00-49, 040IOR for 
00-40, 03IOR for 00-39, or OlOIOR for RO-10) 

• Release Process (04RLR for 00-49 or 03RLR for RO-10, 00-39, and 
DO-40) 

The following sUbsection describes the overlays that make up the error 
recovery activity. 

SM-0046 G 3-29 



3.5.1 RECOVERY ACTIVITY 

The error recovery activity consists of one controlling overlay, four 
overlays to perform each major recovery process, three overlays to perform 
subprocess disk functions, and two overlays to report errors. 

The recovery activity is table-driven (for flexibility) and recursive so 
that the procedure can tolerate errors on the recovery functions. It is 
also time-delayed so that environmentally induced errors have a chance to 
dissipate without the DCU-5 software becoming dedicated to error 
recovery. An overall maximum retry count per I/O sector and error process 
is assigned (see the subsection 3.5.2, Error Recovery Process). Within 
each process a retry limit is assigned to the various subprocess errors, 
that is, errors which occur in the recovery functions themselves. See 
tables 3-6 and 3-7 for the retry limits on each recovery function. 

For more information on disk hardware status, see the Disk Systems 
Hardware Reference Manual, publication HR-0077. 

Table 3-6. 00-49 Error Retry Limits 

Select Seek Read Write Release Description 

63 63 140 63 63 Maximum retries available 

15 15 15 15 15 Time-out 

15 15 15 15 15 Not ready 

15 15 Busy response 

15 15 15 15 Input parity error 

15 15 15 15 Sequence option in progress 

15 15 15 Invalid command or option, 
function or bus-out parity 

15 15 15 Function lost 

5 15 15 15 Catastrophic drive error 

15 15 15 Seek fault 

15 15 Overrun/underrun 

3-30 SM-0046 G 



-
Select 

I 

Select 

63 

15 

15 

15 

15 

15 

5 

SM-0046 G 

Table 3-6. DD-49 Error Retry Limits (continued) 

Seek Read Write Release 

45 3 

1 1 

o 15 

Table 3-7. RD-10, DD-39, 

Seek Read Write Release 

63 140 63 63 

15 15 15 15 

15 15 15 15 

15 

15 15 15 

15 15 15 

15 15 15 

15 15 15 

15 15 15 

15 15 

45 3 

1 1 

0 15 

Description 

ECC, ID not found, and 
synchronization time-out 
(retries per offset position) 

Initial Local Memory Address 
(LMA) echo error 

Final LMA echo error 

and DD-40 Error Retry Limits 

Description 

Maximum retries available 

Time-out 

Not ready 

Busy response 

Input parity error 

Command error; sequencer 
function or bus-out parity. 

Sequence option in progress 

Catastrophic drive error 

Seek fault 

Overrun/underrun 

ECC, 10 not found, and 
synchronization time-out 
(retries per offset position) 

Initial LMA echo error 

Final LMA echo error 

3-31 



I 

I 

I 
I 

I 

I 

I 

I 

I 
I 

A description of each overlay in the recovery activity follows. 

3-32 

Overlay 

04ERRI 
040ERRI 
03ERR 

04ECCI 
040ECCI 
03ECC 

04IORI 
040IORI 
03IORI 
OlOIOR 

04LOGI 
03LOG 

04MSGI 
03MSG 

04RES 

04RLRI 
03RLR 

04SKRI 
03SKR 

Function 

This overlay is the initial and controlling overlay for 
the error recovery activity. It determines the major 
error type, sets up recovery tables, and calls the 
appropriate overlay to process the error. At the 
completion of the recovery process, 04ERR (00-49), 040ERR 
(00-40), or 03ERR (RO-10 and 00-39) prepares the disk 
channel for subsequent requests and activates 040EM to 
continue normal 1/0 processing. 

This overlay performs error correction code for read data 
errors. It is called by 04IOR (00-49), 040IOR (00-40), 
03IOR (00-39), or OlOIOR (RO-10) when a read data error 
is determined to be a good candidate for correction. The 
040ECC overlay performs error correction for RO-10s. 

This overlay processes errors that occur during the Head 
Select-LMA Select-Read or the Head Select-LMA 
Select-Write disk functions. It is called by 04ERR 
(00-49), 040ERR (00-40), or 03ERR (RO-10 and 00-39). 

This overlay reports the OCU-5 Disk Error Message to the 
mainframe for logging in the System Log. It also 
displays a message on the lOP Kernel console if an 
unrecoverable disk error occurs. The overlay is called 
by 04ERR (00-49), 040ERR (00-40), or 03ERR (RO-10 and 
00-39) at the completion of the recovery process. 

This overlay reports a message to the lOP Kernel console 
informing the operator of a disk error that may require 
manual intervention. It can be called by 04SLR or 04SKR 
(00-49), or by 03SLR or 03SKR (RO-10, 00-39, and 00-40). 

The 04RES overlay performs either the clear faults or the 
reset disk function for OCU-5 type disk devices. It may 
be called by any other error recovery overlay. 

This overlay processes errors that occur on the Unit 
Release disk function. It is called by 04ERR (00-49), 
040ERR (00-40), or 03ERR (RO-10 and 00-39). 

This overlay processes errors that occur on the Cylinder 
Select disk function. When a Cylinder Select error is 
detected by the interrupt handler, this overlay is called 
directly by 04ERR (00-49), 040ERR (00-40), or 03ERR 
(RO-IO and DD-39) to process the error. However, 
04SKR/03SKR may also be called by 
04IOR/040IOR/03IOR/010IOR when a Cylinder Select error is 
detected during the Read or Write recovery process. 

SM-0046 G 



I 

Overlay Function 

D4SLRI 
D3SLR 

This overlay processes errors occurring on the Unit Select 
disk function. It is called by 04ERR (00-49), 040ERR 
(00-40), or 03ERR (RO-10 and 00-39). 

04STAT The D4STAT overlay obtains either Orive General Status or 
any of the Selected Statuses the caller specifies. It 
may be called by any other error recovery overlay. 
04STAT serves all OCU-5 error recovery activities. 

3.5.2 ERROR RECOVERY PROCESS 

Each major recovery process proceeds according to the following four 
rules: 

• The clear faults and reset functions are retried a limited number 
of times on each call to 04RES. If the retry limit is reached with 
no success in performing the specified function, the error is 
considered unrecoverable and the entire recovery process is 
terminated. 

• The function to obtain Drive General Status or a Selected Status is 
also retried a limited number of times in D4STAT before a bad 
status is returned to the caller. This is not considered a fatal 
condition, however, and the calling overlay may continue with the 
recovery process. 

• A successful read or write process is considered to include the 
head select, LMA select, and read or write functions. If an error 
is detected on any of these functions, the process is retried 
starting with the head select. 

• If the ON flag is not set when expected, or if the BZ and ON flags 
cannot be cleared with the channel clear function, the error is 
considered unrecoverable and the recovery process is terminated. 

The following subsections describe the recovery process for each major 
error type. 

3.5.2.1 Unit select process 

The following are conditions for unit select process error recovery. 

3.5.2.1.1 Software detected errors: if a software time-out has 
occurred, call 04RES to reset the drive and retry the select. 

SM-0046 G 3-33 



3.5.2.1.2 Status register 0 errors: if the drive is not ready, delay 
and check repeatedly until the drive becomes ready or a retry limit is 
reached. If an input parity error is detected, retry the select. 

3.5.2.1.3 00-49 drive general status errors: if a 
sequence-operation-in-progress is detected, delay and check repeatedly 
until the sequence operation is complete or a retry limit is reached. If 
a catastrophic drive error is detected, inform the operator through 04MSG 
that manual intervention may be required (see subsection 3.5.3, Operator 
Messages, for more information). If the operator indicates a retry 
should be performed, retry the select. 

I 3.5.2.1.4 RO-10, 00-39, and 00-40 drive general status errors: if a 
catastrophic drive error is detected, inform the operator through 03MSG 
that manual intervention may be required (see subsection 3.5.3, Operator 
Messages, for more information). If the operator indicates a retry 
should be performed, retry the select. 

If none of the above conditions are found, call D4RES to reset the drive 
and retry the select. 

3.5.2.2 Cylinder select process 

The following are conditions for cylinder select process error recovery: 

3.5.2.2.1 Software detected errors: if a software time-out has 
occurred, call 04RES to reset the drive and retry the seek. 

3.5.2.2.2 Status register 0 errors: if the drive is not ready, delay 
and check repeatedly until the drive becomes ready or a retry limit is 
reached. If an input parity error is detected, call 04RES to reset the 
drive and retry the seek. 

3.5.2.2.3 DD-49 drive general status errors: if a 
sequence-operation-in-progress is detected, delay and check repeatedly 
until the sequence operation is complete or a retry limit is reached. If 
an invalid option, invalid command, function parity error, Bus-out parity 
error, or function lost is detected, call 04RES to clear faults. If a 
catastrophic drive error is detected, inform the operator through D4MSG 
that manual intervention may be required. If the operator indicates a 
retry should be performed, retry the seek. 

I 3.5.2.2.4 RO-10, 00-39, and 00-40 drive general status errors: if a 
catastrophic drive error is detected, inform the operator through D3MSG 
that manual intervention may be required. If the operator indicates a 
retry should be performed, retry the seek. If it is a function parity 
error or Bus-out parity error, call D4RES to clear faults. If it is a 
command error or sequence parity error, call 04RES to reset the drive. 

3-34 SM-0046 G 



If none of the preceding conditions are found, call 04RES to reset the 
drive and retry the seek. 

3.5.2.3 Head select-LMA select-read process 

The following are conditions for head select-LMA select-read processing. 

3.5.2.3.1 Software detected errors: if an initial LMA echo error has 
occurred, reload the Local Memory address into the LMA register in error 
until the load is successful or a retry limit is reached. If a final LMA 
echo error has occurred, the error is unrecoverable. If a software 
time-out has occurred, call 04RES to reset the drive and retry the read 
process. 

3.5.2.3.2 Status register 0 errors: if the drive is not ready, delay and 
check repeatedly until the drive becomes ready or a retry limit is 
reached. If an input parity error is detected, retry the read process. 

3.5.2.3.3 00-49 drive general status errors: if a 
sequence-operation-in-progress is detected, delay and check repeatedly 
until the sequence operation is complete or a retry limit is reached. If 
an invalid option, invalid command, function parity error, Bus-out parity 
error, or function lost is detected, call 04RES to clear faults. If a 
seek error is detected, call 04SKR to perform seek error recovery. If an 
overflow is detected, call 04RES to clear faults. If an ID-not-found or 
Synchronization time-out is detected, 
offset algorithm that follows below. 
D4SKR to perform seek error recovery. 
attempt error correction according to 
follows. 

execute retries according to the 
If a drive error is detected, call 
If an ECC error is detected, 

the correction algorithm that 

I 3.5.2.3.4 RO-IO, 00-39, and DO-40 drive general status errors: if Unit 
Ready is not set, call D3SKR to perform seek error recovery. If it is a 
function parity error or Bus-out parity error, call 04RES to clear 

I 

faults. If it it a command error or sequence parity error, call D4RES to 
reset the drive. If a seek error is detected, call D3SKR to perform seek 
error recovery. If an overflow is detected, call D4RES to clear faults. 
If an IO-not-found or Synchronization time-out is detected, execute 
retries according to the offset algorithm below. If a drive fault is 
detected, call 03SKR to perform seek error recovery. If an interface 
logic fault is detected, call D3SKR to perform seek error recovery. If an 
ECC error is detected, attempt error correction according to the following 
correction algorithm. 

The offset algorithm is as follows: 

• Call D4RES to clear faults and retry the read until a limit is 
reached. 

• If IO-not-found error, call D4SKR (DD-49) or D3SKR (RO-IO, DD-39, 
and 00-40) to perform seek error recovery and retry the read once 
more. 

SM-0046 G 3-35 



I 

The 

• Offset actuator or actuators in error toward spindle. 

• Retry the read until a limit is reached. 

• Offset actuator or actuators in error away from spindle. 

• Retry the read until a limit is reached. 

correction algorithm is as follows: 

This algorithm is superimposed on the offset algorithm. It is 
executed following each read retry yielding an ECC error. Compute and 
transfer the correction vectors for this read attempt. Compare the 
correction offsets from this read with those from the previous read. 

If the error offsets are consistent (within 1 parcel) on all channels, 
call D4ECC (DD-49), D40ECC (RD-10 and DD-40), or D3ECC (DD-39) to 
correct the last read data. 

If none of the preceding conditions are found, retry the read process. 

3.5.2.4 Head select-LMA select-write process 

The following are conditions for head select-LMA select-write processing: 

3.5.2.4.1 Software detected errors: if an initial LMA echo error has 
occurred, reload the Local Memory address into the LMA register in error 
until the load is successful or a retry limit is reached. If a final LMA 
echo error has occurred, retry the write process. If a software time-out 
has occurred, call D4RES to reset the drive and retry the write process. 

3.5.2.4.2 Status register 0 errors: if the drive is not ready, delay and 
check repeatedly until the drive becomes ready or a retry limit is 
reached. If an input parity error is detected, retry the write process. 

3.5.2.4.3 DD-49 drive general status errors: if a 
sequence-operation-in-progress is detected, delay and check again until 
the sequence operation is complete or a retry limit is reached. If an 
invalid option, invalid command, function parity error, Bus-out parity 
error, or function lost is detected, call D4RES to clear the faults. If a 
seek error is detected, call D4SKR to perform seek error recovery. If an 
underflow is detected, call D4RES to clear faults. If an ID-not-found or 
synchronization time-out is detected, call D4RES to clear faults and retry 
the write process. If the retry limit is reached for ID-not-found, call 
D4SKR to perform seek error recovery and retry the write process one more 
time. If drive error is detected, call D4SKR to perform seek error 
recovery. 

3-36 SM-0046 G 



I 3.5.2.4.4 RO-10, 00-39, and 00-40 drive general status errors: if Unit 
Ready is not set, call 03SKR to perform seek error recovery. If it is a 
function parity error or Bus-out parity error, call D4RES to clear 
faults. If command error or sequencer parity error, call D4RES to reset 
the drive. If a seek error is detected, call 04SKR to perform seek error 
recovery. If an underflow is detected, call 04RES to clear faults. If 
an IO-not-found or Synchronization time-out is detected, call D4RES to 
clear faults and retry the write process. If the retry limit is reached 
for IO-not-found, call 03SKR to perform seek error recovery and retry the 
write process one more time. If drive error or interface logic error is 
detected, call 03SKR to perform seek error recovery. 

If none of the preceding conditions are found, retry the write process. 

3.5.2.5 Unit release process 

The following are conditions for unit release processing. 

3.5.2.5.1 Software detected errors: if a software time-out has 
occurred, call 04RES to reset the drive and retry the release. 

3.5.2.5.2 Status register 0 errors: if the drive is not ready, delay 
and check repeatedly until the drive becomes ready or a retry limit is 
reached. If any other error is detected, call D4RES to reset the drive; 
reselect the unit, then retry the release. 

3.5.2.5.3 DD-49 drive qeneral status errors: if any error is detected 
in drive general status, call 04RES to reset the drive and end error 
recovery. 

• 3.5.2.5.4 RO-10, 00-39, and 00-40 drive general status errors: if any 
error is detected in drive general status, end error recovery. 

I 

If none of the preceding conditions are found, reselect the unit and 
retry the release. 

3.5.3 OPERATOR MESSAGES 

If a catastrophic drive error is detected during RO-IO, 00-39, 00-40, or 
00-49 error recovery, a message is displayed on the lOP Kernel console 
informing the operator that manual intervention may be required. 

The format of the message for the 00-49 is as follows: 

hh:mm:ss 0049 CH ch FATAL ermsg ERROR. RETRY? ('Y' or 'N') 

SM-0046 G 3-37 



hh:mm:ss Time of error 

ch lOP channel 

ermsg Message describing the catastrophic drive status; ermsg 
is one of the following: 

• BLOWER AIR 

• OVERTEMP 

• RIW LOGIC POWER 

• RUN SWITCH 

• SPINDLE POWER 

• SPINOLE SPEEO 

• WRITE PROTECT 

I The format of the message for an RD-10, 00-39, or OD-40 is as follows: 

I hh:mm:ss DDxx CH ch UNT un FATAL ermsg ERROR. RETRY? ('Y' or 'N') 

I 

I 

hh:mm:ss Time of error 

xx 

ch 

un 

ermsg 

oisk type: 
10 RD-10 
39 DO-39 
40 00-40 

lOP channel 

Unit number 

Message describing the catastrophic drive status; ermsg is 
one of the following: 

• OE SEQUENCE CHECK 
• UNIT READY 
• WRITE PROTECT (00-10/00-40) 
• STATUS UNAVAILABLE (OD-40) 

Typing Y in response to this message causes error recovery to execute 
more retries. Typing N causes error recovery to terminate with an 
unreco~erable error status. A field engineer can perform any necessary 
recovery actions and indicate whether or not more retries are to be 
executed. 

The installation parameter I@MSGRD4 defined in $APTEXT allows a site to 
disable disk error messages requ1r1ng a response. If disk error messages 
are disabled, only the information portion of the message is displayed, 
and error recovery immediately terminates the disk request as unrecovered. 

3-38 SM-0046 G 



I 

I 

I 
I 

I 

3.5.4 ERROR REPORTING 

When a OCU-5 disk error occurs, the lOS sends a disk error packet to the 
mainframe for logging in the System Log. The error packet contains 
detailed error information that can be formatted at a later time for 
printer output by the EXTRACT utility. For more information about 
EXTRACT, see the Operational Aids Reference Manual, publication SM-0044. 

For the formats of the 00-49 Disk Error Packet (EM@), the DO-40 Disk 
Error Packet (DM@, XM@, and T@), the DO-39 Disk Error Packet (DM@), or 
the RO-IO Oisk Error Packet (DM@, XM@, and T@) see the 105 Table 
Descriptions Internal Reference Manual, publication SM-0007. This error 
packet is created in the lOP with the disk in error. Overlay D4LOG 
(DD-49) or D3LOG (RD-10, DD-39, and DD-40) writes the packet to Buffer 
Memory and then requests ICOM in MIOP to send it to the mainframe. ICOM 
reads the packet in from Buffer Memory, breaks it into 6-word segments, 
and sends each segment over the 6-Mbyte channel. All segments for one 
error packet are sent with lOP system interrupts disabled, ensuring that 
no other MIOP-mainframe communication interrupts the sequence. 

The final error status is also returned along with the successful word 
transfer length in the DAL that made the original request. Valid error 
statuses that may be returned in field DA@RC of the DAL are: 

Status 

DAR$OK 
DAR$REC 
OAR$COR 
OAR$UNC 
OAR$UNR 

Description 

No error encountered 
Recovered error 
Corrected data error 
Uncorrected data error 
Unrecovered error 

If an uncorrected or unrecovered error occurs in the DD-49, D4LOG 
displays an error message at the lOP Kernel console in the following 
format: 

hh:mm:ss 0049 ERROR CH chan CYL cyl HD hd CTL ctl GEN gen type 

If an uncorrected or unrecovered error occurs in an RD-10, 00-39, or 
DD-40, D3LOG displays an error message with the following format: 

hh:mm:ss DDxx ERROR CH chan UN un CYL cyl HD hd CTL ctl GEN gen type 

hh:mm:ss Time of error 

xx Disk type: 
10 RD-10 
39 OD-39 
40 DO-40 

SM-0046 G 3-39 



I 

I 

chan 

un 

cyl 

hd 

ctl 

gen 

type 

lOP disk channel in error 

Unit number in error 

Cylinder in error 

Head group in error 

Controller status 

Drive General status 

Major error categories are as follows: 

• 
• 
• 
• 
• 

REAO 
RLSE 
SEEK 
SLCT 
WRITE 

Read sector process 
Unit release 
Cylinder select 
Unit select 
Write sector process 

3.6 STRIPED DISK GROUPS 

A striped disk group is a set of physical disk units treated logically as 
a single device. Requests to move data to or from such a device are 
broken up into pieces that are handled in parallel by the physical units 
in the group. 

The lOS supports the configuration of one or more striped disk groups, 
each consisting of two to seven physical units. The maximum number of 
physical units is based on the track size of the unit (RO-10, OD-19, 
00-29, DD-39, DD-40, or OD-49). This number is limited by the largest 
sector number that can fit in the request field DA@SEC. See the COS 
Operational Procedures Reference Manual, publication SM-0043, or the 
UNICOS System Administrator's Guide for CRAY Y-MP, CRAY X-MP, and CRAY-1 
Computer Systems, publication SG-2018, for more information about 
configuring a striped disk group. 

From the mainframe, a striped disk group looks like a single device with 
tracks containing two through seven times the number of sectors found on 
a single physical unit, depending on the number of units in the group. 

Requests to a striped disk group are processed in the MIOP. The request 
packet is identical to other disk requests except that the target lOP 
(DA@IOP) is the MIOP. The request is mapped onto the physical units that 
constitutes the striped group. Individual requests are then spawned to 
the physical units attached to the BIOP or DIOP. The MIOP collects 
responses from the physical devices. When all devices have responded, a 
single response for the request to the striped group is returned to the 
mainframe. 

3-40 SM-0046 G 



3.6.1 LOGICAL TO PHYSICAL ADDRESS MAPPING 

Each disk unit in a striped group is numbered, based on its relative 
position in the group, from 0 to n-1; n is the number of units in the 
group. The order of the units is determined by the order in which the 
units are specified at the time of configuration. 

The logical head and cylinder numbers map 1-to-1 to the physical head and 
cylinder numbers, since widening the tracks of the striped group does not 
affect the actual number of tracks. 

Figure 3-1 shows a configured striped-disk group. 

Request 

Mainframe Response 

Brop Drop 

------------------------------------------------------ -~ 
~ 

Logical Unit 
-------------------------------------------------------~ 

1868 

Figure 3-1. Striped Group (Six Physical Units Constituting 
One Logical Unit) 

The logical sector number is used to determine the physical unit and the 
physical sector on that unit. The logical sector number is divided by 
the number of units in the group (logical sector/number of units = 
physical sector + physical unit number). 

SM-0046 G 3-41 



The quotient is the physical sector: 

The physical sector is from 0 to sees-I; sees is the number of 
physical sectors per track on a unit. 

The remainder is the physical unit number: 

The physical unit number is from 0 to n-1; n is the number of 
units in the group. 

In summary, all logical sectors that reside on a physical unit are 
equivalent MOD n; n is the number of units in the group. 

Example (a three-unit striped group): 

Logical Sectors Physical Sector Unit 

37=3 x 12 + 1 12 1 
38=3 x 12 + 2 12 2 
39=3 x 13 + 0 13 0 
40=3 x 13 + 1 13 1 
41=3 x 13 + 2 13 2 
42=3 x 14 + 0 14 0 

3.6.2 STEPFLOW FOR A REQUEST TO A STRIPED GROUP 

A request to a striped group is received by the MIOP, then handled by 
BIOP or DIOP, and finally, dispatched by the MIOP, as follows: 

• MIOP 

When the MIOP receives a request, the CD EM demon overlay becomes 
active, as follows: 

1. A request packet is received with the destination ID 
(DA@DID) specifying disk (RQ$DISK). The request is passed 
to the CDEM overlay for processing. 

2. CDEM detects that the target lOP for the request (DA@IOP) is 
the MIOP. CDEM locates the table for the device using the 
logical channel number (DA@CHN) as an index into the look-up 
table DCCB. These tables are built at initialization time 
using the configuration information in AMAP. 

3. CD EM maps the logical request into physical requests to the 
units in the group and sends the requests to the appropriate 
lOPs for processing. 

3-42 SM-0046 G 



I 

• BlOP/DlOP 

BlOP or DlOP request processing for striped disk groups 
essentially means determining the target memory address that 
corresponds to a disk sector for a request. 

4. Requests received for liD to a unit within a striped group 
are handled the same as for 1/0 to an individual disk unit. 
The only distinguishable difference is in the value 
contained in the request field DA@UNS. This field specifies 
the number of units in the group for which this unit is a 
member. The value in DA@UNS is used to map the target 
memory (DA@TMO/TMl) to sequential sectors of the request 
(DA@SEC). The target memory address (Ml) that corresponds 
to a disk sector for a request is determined according to 
the following algorithm: 

(SI - SO) x 0'512 x U + MO = Ml 

The difference between the current sector (SI) and the 
base sector DA@SEC (SO) is multiplied times the sector 
size (0'512), which is then multiplied by the number of 
units in the group OA@UNS (U); and finally, this number is 
added to the target memory base address DA@TMO/TMI (MO). 

For a single device, DA@UNS contains a 1, which maps 
sequential sectors in memory to sequential sectors on 
disk, as figure 3-2 shows. Figure 3-3 shows memory mapping 
for a two-unit group. 

5. A response is sent to the MIOP for each unit as 1/0 
completes. 

• MlOP 

The last steps in the flow for striped disk request processing 
involve sending a single request response to the mainframe. 

6. Responses received for each unit are in the demon overlay 
ACOM for OCU-4 type disk units, or ICOM for DCU-5 type disk 
units. Based on the value in field LCH being nonzero, the 
responses are passed on to the AMSG overlay for processing. 

7. When 1/0 is complete, AMSG collects the responses from each 
unit in the group. When all have responded, a single 
response is returned to the mainframe. 

SM-0046 G 3-43 



Disk 
Group 

Memory Sector Sector Sector Sector 
0 1 2 3 

.4~ ~~ 4~ ~~ 

~, 

" " " 

Disk Sector Sector Sector Sector 
0 1 2 3 

1864 

Figure 3-2. Target Memory Mapping for a Single Device 

Memo ry Sector Sector Sector Sector 

0 1 2 3 

~~ t ~~ 4~ 

. - -------- ------------------ - -------- - - ---
" + " " 

Sector Sector Sector Sector 
0 1 0 1 

Disk 0 Disk 1 

1866 

Figure 3-3. Target Memory Mapping for a Two-unit Group 

3-44 SM-0046 G 



I 

-. 

3.7 KERNEL INTERNAL DISK 1/0 

Some Kernel routines must transfer data to or from disk. (For example, 
the DKDMP routine dumps disk data directly to the IDS Peripheral Expander 
printer.) Two Kernel overlays, DISKIO and DKIOEX, furnish these routines 
with the ability to reference disk space through normal disk protocol. 

The overlay that requires disk 1/0 calls the DISKIO overlay and specifies 
the necessary parameters. If the 1/0 occurs in a different lOP, DISKIO 
uses the AWAKE and ALERT function requests to activate overlay DKlOEX in 
the relevant lOP. DISKIO then waits for the response that signals 
completion of the request. 

The following sequence in the caller's overlay calls the internal disk 
1/0 mechanism. 

ILocation IResult I Operand 

I I 
I I CALL 

I 
IDISKIO,(RDIWRT,iop,chnl,unit,cyl,head,sector, 

I I 

RD 
WRT 

iop 

chnl 

unit 

cyl 

head 

sector 

length 

mosu 

mosl 

SM-0046 G 

Ilength,mosu,mosl) 

Direction of disk 1/0: 

RD = 1 Read from disk 
WRT = 2 Write to disk 

Number of the lOP to perform the 1/0; 1 through 3 are legal. 

Channel number; 20 through 378 are legal. 

Unit number; 0 through 2 are legal for DD-39 disks and 0 
through 1 are legal for OD-40 disks. The parameter should 
be 0 for all other device types. 

Cylinder number 

Head number 

Sector number 

Length (in words) of data to be transferred 

High-order bits of Buffer Memory address into which or from 
which data is to be transferred 

Low-order bits of Buffer Memory address into which or from 
which data is to be transferred 

3-45 



DISKIO returns one of the following statuses to the caller in the A 
register: 

3-46 

Status 

o 
1 
2 
3 

Description 

Normal completion 
Bad parameter supplied by caller 
Bad disk status; unable to complete I/O. 
Resources unavailable; I/O not done. 

SM-0046 G 



I 

4. TAPE EXEC 

The Tape Exec software (TEX) is composed of activities necessary to 
accomplish the following: 

• Route messages between 1/0 processors 
• Process mainframe requests 
• Format and move tape data 
• Recover from hardware and software errors 

4.1 ARCHITECTURE 

The Tape Exec portion of the tape subsystem executes in the Master 1/0 
processor (MIOP), the Buffer 1/0 processor (BIOP), and the Auxiliary 1/0 
processor (XIOP). 

The MIOP is responsible for routing tape requests and responses between 
the mainframe tape software driver and the XIOP. 

The BIOP is responsible for moving tape data between Central Memory and 
Buffer Memory over the lOO-Mbyte data channel. Tape Exec routines in the 
BIOP perform their function based on requests from the XIOP. Each 
request from the XIOP to the BIOP refers to a Data Stream Control (DSC) 
table in Buffer Memory. A DSC is used to hold data that is in transit 
between Central Memory and a tape device. See the 1/0 Subsystem (lOS) 
Table Descriptions Internal Reference Manual, publication SM-0007, for 
details of the DSe. 

The XIOP is responsible for processing tape requests received from the 
mainframe software driver and generating appropriate responses. Tape 
Exec software uses the Block Multiplexer Channel (BMX) subsystem to issue 
physical device commands and manage tables associated with the tape 
subsystem. See section 5 for a description of the BMX subsystem. The 
XIOP uses the Tape Exec software in BIOP to move data to and from Central 
Memory in the mainframe. It communicates with the BIOP via request 
packets and shared DSC tables in Buffer Memory. Tape Exec software in 
XIOP also provides error recovery routines for handling software or 
hardware errors encountered by the tape subsystem. 

SM-0046 G 4-1 



I 

4.1.1 TAPE EXEC ACTIVITY 

Each tape device is controlled by a unique Tape Exec activity (TEX) 
created when the device is opened. Each TEX activity executes in the 
XIOP and controls most of the request processing for the device. A TEX 
activity terminates when a close request has been processed for its 
associated tape device. Each TEX activity allocates a data structure in 
Local Memory called a Tape Control Block (TCB) associated with the 
device. The TCB holds information about the device and contains queues 
for communicating with other activities in the tape subsystem. See 1/0 
Subsystem (IDS) Table Descriptions Internal Reference Manual, publication 
SM-0007, for details of the TCB. 

4.1.2 BYPASS ACTIVITY 

The request interface with the mainframe driver allows for two separate 
types of lID to be active simultaneously. The mainframe may request that 
data be moved between Central Memory and Buffer Memory in 512-word sector 
units. At the same time, the mainframe may request that data be moved 
between Buffer Memory and the tape device in block size units. The 
mainframe specifies the block size on each request. This overlap of the 
two types of data movement allows the mainframe to use the 100-Mbyte data 
channel of the BIOP for fast access to buffered data, while the XIOP 
handles movement to and from the slower tape devices. The mainframe 
attempts to stay ahead of user requests for data by building a read-ahead 
area in Buffer Memory for each tape device being read. In a similar 
fashion, the mainframe attempts to off-load data to a write-behind data 
area in Buffer Memory for each device being written. The mainframe 
driver controls the size of each of these areas by the frequency and size 
of data transfer and block lID requests. 

The BYPASS activity in the XIOP has primary responsibility for handling 
IIO requests from the mainframe. It executes as a single activity and 
processes lID requests for all devices. BYPASS examines each request for 
data transfer or block I/O. If sectors of data are to be transferred 
between Central Memory and Buffer Memory, BYPASS calls the data transfer 
activity in the BIOP. If block IIO is requested, BYPASS activates the 
appropriate TEX activity, if not already active. The BYPASS activity 
handles Buffer Memory allocation for data transfer and block I/O by 
calling the BUFMAN routine. 

4-2 SM-0046 G 



I 

4.1.3 DATA STREAM CONTROL TABLE 

The read-ahead and write-behind data areas in Buffer Memory are 
controlled by a DSC for each active device. A DSC is created in Buffer 
Memory at device open time by the SMXTPO routine calling the DSCGET 
routine. Each DSC table is a Buffer-Memory-resident data structure 
shared between the various components of the tape subsystem executing in 
the BlOP and the XlOP. The mainframe interface allows the stream of 
requests for user data to be interrupted for processing of label data, or 
user job special end of volume processing. When this occurs, the primary 
data stream is held and a secondary DSC is allocated for the new data 
stream. The BYPASS activity controls the stacking and popping of primary 
and secondary DSC tables by calling the DSCGET routine for each request 
requiring a change of data stream. The mainframe request interface also 
allows for discarding data in either the primary or secondary data 
stream. The DSC table is retained when discarding of data is requested. 
All DSC tables for a device are deallocated by TEX calling DSCGET at 
device close time. 

A DSC table consists of a header area and a number of buffer descriptor 
entries. The header area is divided into two sections, one for the XIOP 
parameters used for moving data between Buffer Memory and the device, the 
other for the SlOP parameters used for moving data between the Buffer and 
Central Memories. In general, each lOP references only its own section 
of the DSC header. The XlOP tape software references its section of the 
DSC header so often that a copy is kept in Local Memory in each TCB. 
This minimizes the number of Buffer Memory reads and writes needed to 
maintain the XIOP header section. 

The BIOP does not need to reference its section of the DSC header as 
often, so it uses Buffer Memory 1/0. Local Memory is also much scarcer 
in the BIOP due to the need for a large number of disk buffers. This 
prevents allocating any TCB type tables for device information storage. 

When a DSC is allocated, the DSCGET routine computes the number of 64-bit 
buffer descriptor entries needed by using the installation maximum block 
size parameter. Each descriptor entry can describe a 512-word sector of 
data. A DSC is allocated to hold the header plus enough descriptor 
entries for at least two maximum sized data blocks. The DSC buffer 
descriptor entries are used in a circular fashion to identify the start 
and length of Buffer Memory data blocks. Pointers are kept in the XIOP 
DSC header that demark the range of active buffer descriptor entries. A 
limit value is also kept in the DSC header to describe the physical size 
of the DSC table. The BUFMAN routine in the XIOP has primary 
responsibility for maintaining the DSC pointers and circular list of 
descriptor entries. 

SM-0046 G 4-3 



I 

4.1.4 TDEM1 ACTIVITY 

The TDEM1 activity in the BIOP has primary responsibility for moving data 
between the Buffer and Central Memories. It executes as a single 
activity and processes data transfer requests for all devices. TDEM1 
receives requests from the BYPASS activity and the TAPEIO routine of each 
of the TEX device activities in the XIOP. Requests to TDEM1 contain the 
number of 512-word sectors of data to be transferred along with the 
Buffer Memory address of the DSC table for the requested device. TDEM1 
supports three data formats used by the mainframe: Transparent format, 
Interchange format, and List I/O format. 

Transparent data format is used to transfer blocks of data between the 
Central and Buffer Memories based on the block size specified in the 
request, without any internal or external control word structures. 
Transparent format is used by both the COS and UNICOS operating systems. 

Interchange format is used only by COS to allow common library and system 
I/O routines for tape and disk data. The data format uses an internal 
control word structure to mark the end of tape blocks. Each control word 
is 64 bits. Control words are added to the data by TDEM1 as data is 
transferred from Buffer to Central Memory. Control words are removed 
when data is transferred from Central to Buffer Memory. 

List I/O format is used exclusively by UNICOS to transfer blocks of tape 
data between the Central and Buffer Memories. Block length is 
communicated in a list structure external to the actual data. TDEM1 
builds this list structure and passes it to the mainframe on each read 
data transfer. TDEM1 reads and decodes the contents of the list 
structure on each write data transfer. 

4.1.5 TAPE ERROR RECOVERY ACTIVITIES 

Each TEX device activity initiates error recovery by calling the TAPERR 
routine. TAPERR determines the type of device in error and creates an 
appropriate error recovery activity. The TCART overlay is the highest 
level routine in the error recovery activity for cartridge devices. The 
TERROR overlay is called for noncartridge devices. A new error recovery 
activity is created each time a new error is encountered while attempting 
recovery of an earlier error. This mechanism prevents overflow of the 
Kernel SMOD structure associated with an activity in situations where 
multiple errors are present. 

Error conditions may include software generated errors, BMX channel 
errors, and device/control unit errors. The error recovery activity 
attempts recovery and reports ending status to the calling TEX device 
activity, or calling error recovery activity. An error message is 
formatted and displayed on the XIOP Kernel console. An error response 
packet is generated and sent to the mainframe to be included in the 
system log file. 

4-4 SM-0046 G 



I 

4.2 REQUEST AND RESPONSE PACKET ROUTING 

Tape request packets are six words in length. Each request packet is 
received from the mainframe by the MIOP over the 6-Mbyte low-speed 
channel. All tape response packets are sent to the mainframe by the MIOP 
over the 6-Mbyte low-speed channel. Each request packet contains a 
source and destination ID field (TQ@SID, TQ@DID). The source ID for 
request packets reflects the mainframe ID, normally Cl. The destination 
ID field contains either an ASCII G or D. Initial configuration 
information is passed to the MIOP in a request G-packet. All other tape 
requests contain a D in the destination ID field. Response packets to 
the mainframe reverse the values of source and destination IDs. 

The CDEM routine in the MIOP and BCOM routines (BCOMa, BCOM!, and BCOM3) 
handle interprocessor routing of tape packets. CDEM and the BCOM 
routines use the Kernel A-to-A message passing software for communicating 
between processors via the MBAO, MBBQ, and MBDO tables in the respective 
Kernels. 

The CDEM routine in the MIOP passes requests from the mainframe to the 
XIOP. BCOMO in the MIOP passes responses from XIOP back to the 
mainframe. It handles D-packet responses as well as error response 
E-packets to be sent to the mainframe system log. BCOMa ensures that 
multiple packet error responses are sent in consecutive order to the 
mainframe. 

BCOM! executes in the BIOP to handle requests from XIOP for data transfer 
over the lOO-Mbyte channel. The actual data transfer is done by the 
TDEM! routine. BCOM! queues A-to-A messages directly to TDEM! using the 
BXQQ table in the BlOP Kernel. 

BCOM3 executes in the XIOP to handle requests from MIOP and responses 
from BIOP. Requests from MIOP are routed to the appropriate portion of 
Tape Exec software for processing. Responses from BIOP are routed to the 
mainframe via the MIOP. 

Most of the Tape Exec routines send response packets directly to the MIOP 
for routing to the mainframe. 

4.3 REQUEST PROCESSING 

BCOM3 handles initiation of processing for tape request packets received 
from the mainframe. Each tape request packet contains an ordinal 
(TQ@DVN) by which the associated device is known to the mainframe and the 
tape subsystem. Device ordinals start at a and are unique for each 
device. The XDEVMAX entry in the XIOP Kernel table area specifies the 
number of devices configured. Each tape request packet contains a 
function code (TQ@FCN) along with parameters needed for processing the 
specific request. 

SM-0046 G 4-5 



I 

4.3.1 CONFIGURATION CHANGE REQUEST (FC$CHNGE) 

Configuration change requests are processed by BCOM3 creating the CONMAN 
routine. CONMAN calls the BMX routines BMXCPU or BMXCON to perform the 
actual device functions and configuration changes to the tape subsystem 
tables. Pointers to the channel table list (XCHT), the device table list 
(XDEV), the control unit bank tables list (XCBT), and the device bank 
tables list (XDBT) are in the XIOP Kernel table. 

BCOM3 recognizes the FC$CHNGE request and creates CONMAN activity to 
process it. If the activity cannot be created, a protocol error response 
is returned to the mainframe. 

CONMAN examines the packet for type of configuration change (TQ@TYP). If 
it is the initial mainframe request to configure the entire tape 
subsystem, CONMAN does a Goto BMXCPU. A response is not sent to the 
mainframe on the initial configuration request. 

If the request is for an individual component of the subsystem (channel, 
control unit, or device), CONMAN validates the request parameters. Only 
one component may be changed per request. A protocol error will be 
returned to the mainframe if more than one component (TQ@CHN, TQ@CNT, 
TQ@DEV) is specified. A channel or control unit may be configured 
on-line or off-line (TQ@OPC). A device may be configured on-line or 
off-line (TQ@NAV) and up or down (TQ@OPC). CONMAN calls BMXCON to make 
the requested change. BMXCON returns the status of the request to 
CONMAN, which sends a response to the mainframe. (Section 5 describes 
the BMXCON and BMXCPU routines.) 

Figure 4-1 shows the processing of configuration change requests. 

4.3.2 MOUNT REQUEST (FC$MOUNT) 

Mount requests are handled by BCOM3 creating the BMXOPE routine to 
perform the open for a tape device. BMXOPE does a Goto to BMXTPO for the 
actual mount processing. BMXTPO in turn does a Goto to the Tape Exec 
routine TEX to become the device activity for the mounted drive. 

Figure 4-2 shows the processing of mount requests. 

BCOM3 

4-6 

- Validates the requested device ordinal (TQ@DVN) to see if 
it is in range (0 to XDEVMAX-1). If not, a protocol error 
response is sent to the mainframe. 

BCOM3 checks the Device Table Open flag (BDV@OP) to see if 
a TEX activity exists for the requested device. If not 
open, the BMXOPE activity is created to process the 
request. If the activity cannot be created, a protocol 
error response is sent to the mainframe. 

SM-0046 G 



I 

FC$CHNGE 

"0" 
Goto for "G" packet 

Response to CPU 

1503 

Figure 4-1. Processing of Configuration Change Requests 

BMXOPE - When the requested device has not been opened, BCOM3 always 
assumes the requested function is FC$MOUNT. If it is not, 
BMXOPE will return a protocol error to the mainframe. 
BMXOPE checks to see if a device activity currently owns 
the device (BDV@AI). This can occur if a configuration 
change is taking place on the device. If a device activity 
exists, BMXOPE waits for it to release the device, and then 
assigns itself as the device activity (BMXOPE will 
eventually become the TEX activity). BMXOPE marks the 
device open (BDV@OP) and does a Goto to the BMXTPO routine 
for mount processing. 

SM-0046 G 4-7 



I 4-8 

FC$MOUNT 

Call/Return r-----..., 
L--.,r--....,...-.,........ ~ DSCGET 

Call/Return 

BMXSIO 
Initial/final 

response to CPU 

Goto 

1504 

Figure 4-2. Processing of Mount Requests 

BMXTPO - Allocates control tables for the TEX activity. A TCB table 
is allocated (DC@) which contains the Command Parameter 
Block (CPB@) used to interface to the BMX 1/0 subsystem. A 
DSC table (CU@, NX@, BF@) is allocated in Buffer Memory by 
a call to DSCGET. 

BMXTPO arms the drive for load point. If the drive is not 
ready with a mounted tape at load point, an initial 
response indicating the not ready status is returned to the 
mainframe (ST@RDY). When the drive is ready with a tape at 
load point, final status is sent to the mainframe (ST@BOT) 
along with any appropriate write protect status (ST@NRW). 
BMXTPO does a Goto to TEX. 

TEX - Waits for the next mainframe request (DC@MSG) by pushing on 
the request queue (DC@QUA) in the TCB. 

SM-0046 G 



I 

4.3.3 READ REQUEST (FC$READ) 

Read 1/0 requests are passed by BCOM3 to the BYPASS activity for 
processing through the DATQU queue in the XIOP Kernel. BYPASS handles 
initiation of any data transfer by sending a request to TDEMI in the 
BlOP. The BYPASS activity queues requests for tape blocks to be read to 
the appropriate TEX activity for the requested device. BYPASS handles 
stacking of the user and label DSC, tables by calling the DSCGET routine. 
BYPASS handles Buffer Memory allocation for the user and label DSC tables 
by calling the BUFMAN routine. 

Figure 4-3 shows the processing of read requests. 

FC$READ 

Data transfer request 

A to A 

Error message to XIOP console. 

Block transfer 
response to CPU 1505 

Figure 4-3. Processing of Read Requests 

SM-0046 G 4-9 



I 4-10 

BCOM3 - Checks for a TCB present for the requested device (BDV@CP). 
If not present, a protocol error response is sent to the 
mainframe. BCOM3 queues the request to the BYPASS activity 
on the DATQU in the Kernel. BYPASS is activated, if 
waiting, by popping the TIMQU in the Kernel. 

BYPASS - Dequeues the next request from DATQU and locates the TCB 
for the requested device. The Hold Data flag (DD@HLD) in 
the request is examined. If set, and the user DSC table 
has not been saved, DSCGET is called. If the Hold Data 
flag is not set and the user DSC table is being held 
(DC@DHU, DC@DHL), DSCGET is called to restore the stacked 
DSC table (DC@DSU, DC@DSL). 

A read request from the mainframe may include a request for 
sectors of data (TQ@RSC) to be transferred from Buffer 
Memory to Central Memory, a request for data blocks 
(TQ@RBC) to be read from tape, or both. 

BYPASS assumes that the mainframe has only one request for 
data sectors outstanding at a time to the lOS. 

The transfer of a data sector may be truncated by the 
mainframe setting the Partial Sector flag in the request 
(DD@PCW). The number of words to transfer (TQ@PWC) 
indicates that the mainframe buffer is less than a full 
512-word sector. This mechanism is typically used for 
reading label data. BYPASS ensures that a single sector of 
data is being requested. Otherwise, a protocol error is 
returned. 

BYPASS validates list parameters if the data format is List 
I/O. 

The number of sectors of data requested is compared to the 
number of sectors of read-ahead stored in Buffer Memory. 
The sectors of read-ahead (CU@VMS) is kept in the Local 
Memory copy of the DSC header (DC@DSC) in the TCB. If any 
read-ahead sectors are present, a request is sent to TDEM1 
in BIOP to transfer the lesser of the request size and 
read-ahead size. The Central Memory address (DA@HSU, 
DA@HSL) and address of the DSC (DA@DSU, DA@DSL) are 
included in the request. 

If the request size is larger than the read-ahead size, the 
excess requested sectors are saved in the TCB (DC@RSC) and 
will be processed by TAPEIO as blocks are read from tape. 
The Central Memory address is also adjusted and saved 
(DC@HSU, DC@HSL). 

SM-0046 G 



I 

BYPASS - The mainframe request may also contain a requested block 
(continued) count to cause blocks to be read from tape. The interface 

to the mainframe allows multiple block requests to be 
outstanding. This creates a synchronization problem when 
the lOS encounters an error or tape mark while reading. 
The mechanism used to get the mainframe and the lOS back 
in sync is the Next Valid Packet flag (DD@NVP) in the 
request. This signals the lOS that the mainframe has 
received a previous error or tape mark response and wishes 
to resume processing. Read block requests received between 
the time of the error and receipt of the request with next 
valid packet set are discarded by BYPASS. Requests for 
transfer of data sectors are not affected by this mechanism. 

BYPASS calls BUFMAN to allocate Buffer Memory for the 
requested number of blocks. 

BUFMAN - The mainframe directs Buffer Memory allocation by the lOS 
based on the total available Buffer Memory size parameter 
returned in all responses (TQ@MOS). It uses this value to 
determine how many new blocks may be requested for each 
active device. 

SM-0046 G 

BUFMAN allocates read-ahead buffers for all devices. The 
DSC structure contains a header area and descriptors for 
each Buffer Memory buffer allocated. The window of active 
buffers is described by a top (CU@TOP) and bottom (CU@BTM) 
pointer in the XIOP section of the DSC header. These 
pointers are the word offset in the DSC of the descriptor 
for the first buffer in the window and the next to be 
allocated, respectively. Buffers are allocated at the 
bottom of the window and deallocated from the top. A limit 
value (CU@LIM) identifies the physical end of the 
descriptor list in the DSC. The DSC may be multiple 
512-word sectors. The DSCGET routine allocates the needed 
size at mount time based on the lOS installation maximum 
block size parameter (MBS$MAX). MBS$MAX is used to create 
a DSC large enough to hold a minimum of two blocks of data 
plus the DSC header. 

Before allocating buffers for the request, BUFMAN 
deallocates buffers that have been transferred to the 
mainframe. The top and BIOP (NX@PTR) pointers mark this 
range of descriptors. After deallocation, The top pointer 
is adjusted to equal the BIOP pointer. Deallocation does 
not clear descriptors in the Buffer Memory DSC in order to 
minimize Buffer Memory accesses. Excess Buffer Memory 
accesses by BUFMAN could delay the processing of tape 
channel interrupts and cause software overrun errors. 

4-11 



I 

BUFMAN - BUFMAN computes the number of buffers to allocate based on 
(continued) the number of blocks requested and the actual maximum block 

size in the request (TQ@MBU, TQ@MBL). Buffers previously 
allocated at the bottom of the list that are not in use are 
subtracted from the allocation count. This ~ange is marked 
by the XIOP (CU@PTR) and bottom pointers. Not-in-use 
buffers result from the actual tape block size being less 
than the maximum block size specified in previous 

4-12 

requests. A calculation is performed to determine if 
descriptors for the allocation count will fit in the DSC. 
If not, an error code (1) is returned to BYPASS. If the 
descriptors will fit, allocation is performed. 

BUFMAN checks for high priority activities waiting to 
execute before starting allocation. It yields the 
processor to any such waiting activities in order to allow 
I/O to proceed on active devices. This minimizes the 
possibility of software overrun errors. 

Allocation of buffers is done by calls to the Kernel 
GETDISK routine. If buffer space is not available, an 
error code (2) is returned to BYPASS, and any buffers 
allocated are released. The maximum allocation count is 
requested on the first call to the GETDISK routine. 
GETDISK may return fewer than the number requested. By 
repeated requests the allocation count will eventually be 
satisfied. Buffers allocated on each request to GETDISK 
are at contiguous addresses in Buffer Memory. BUFMAN 
builds a descriptor for each 512-word buffer allocated in 
its Local Memory copy of the DSC. Each descriptor contains 
a count (BF@CTG) of the number of buffers with increasing 
address that are contiguous. This value is used 
extensively by the TDEM and TDEM1 routines to minimize 
Buffer Memory accesses for descriptors and data. Portions 
of the DSC are moved to and from Local Memory using a 
paging mechanism to minimize Buffer Memory accesses. 

BYPASS - Sends a protocol error response to the mainframe if Buffer 
Memory is not available to satisfy the request or the DSC 
cannot hold enough descriptors for the increased read-ahead 
area. 

Block I/O is sustained by the outstanding block count in 
the TCB (DC@RBC) being nonzero. BYPASS adds the new 
requested block count to this field. If the TEX activity 
is not executing, BYPASS will activate it by popping DC@QUA 
and placing the mainframe request on the DC@MSG queue. 

SM-0046 G 



I 

BYPASS - BYPASS uses the 1/0 Active Control flag (DC@IOF) to 
(continued) determine if the TAPEIO routine of the TEX activity is 

still checking for new requested blocks to read (DC@RBC). 
BYPASS considers the device inactive if the control flag is 
not set and activates the TEX activity. If TEX is 
executing, the added block count will sustain 1/0. 

BCOM1 

TDEMl 

SM-0046 G 

BYPASS processes all requests queued to it by BCOM3 and 
waits on TIMQU when finished. 

At this point, a data transfer or block 1/0 may be in 
progress for each active mainframe read request. 

- Data transfer requests are received in BIOP via the A-to-A 
message mechanism of the Kernel. BCOMl receives messages 
from XIOP sent by BYPASS or TAPEIO. It queues the A-to-A 
message to the TDEMl routine on BXQQ queue for processing. 
TDEM1 is activated, if waiting, by BCOM1 popping the TDMO 
queue in the Kernel. BCOMl does not read the request from 
Buffer Memory to minimize the number of packet areas in use 
in BIOP. 

- TDEM1 handles all data transfer to and from Central Memory 
in the mainframe for the tape subsystem. It allocates a 
static area in Local Memory for the request and the DSC 
header. It dynamically allocates a Local Memory buffer for 
each request processed. TDEM1 begins by reading the 
request from Buffer Memory sent by XIOP and the shared DSC 
header structure. 

TDEMl checks the data format (DD@FMT) in the request. The 
three formats supported include: Transparent (FM$TRNS), 
List 1/0 (FM$LIST), and Interchange (FM$BLKD). The 
appropriate read subroutine is called for processing. 

TDEM1 read subroutine processing is driven by the requested 
sector count specified by the XIOP. The requested sector 
count is always less than or equal to the number of data 
sectors in the read-ahead area. Data sectors in the 
read-ahead area are always part of completed tape blocks. 
The BIOP (NX@PTR) and XIOP (CU@PTR) DSC header pointers 
define the range of the read-ahead data area. As a result, 
the BIOP pointer always trails the XIOP pointer in the 
circular descriptor list for reads. Each read routine uses 
a common set of routines for reading and updating DSC 
descriptor entries. 

4-13 



I 

TDEMl - TDEMl processes requests to move data between the Buffer 
(continued) and Central Memory by interpreting the contents of the 

buffer descriptor entries built by XIOP for each tape 
block. Each descriptor entry contains a status field 
(BF@STA). A value of MD$BOR indicates that the descriptor 
refers to the first sector of a tape data block. 

4-14 

Subsequent sectors in the block have a zero in the status 
field of their descriptors. Special values of MO$EOV, 
MD$EOF, and MD$EOD in the status field are used by the 
Interchange data format read routine discussed below. Each 
descriptor entry also contains a count of the number of 
contiguous Buffer Memory buffers that follow the buffer 
referred to by the descriptor (BF@CTG). TDEMl attempts to 
minimize the Buffer Memory I/O involved in reading and 
updating descriptor entries by using this field to predict 
the contents of successive descriptor entries. In this 
way, the address field (BF@ADU, BF@ADL) of successive 
entries can be produced in Local Memory without reading the 
Buffer Memory DSe. Each descriptor with a status field 
value of MD$BOR contains the length of the associated tape 
block in bytes (BF@RLU, BF@RLL). All other descriptor 
entries contain zero in the length field. 

TDEMl also attempts to use the bypass data transfer 
hardware between Buffer and Central Memory, available on 
the lOS Model C, for transfers larger than one sector. The 
current transfer limit is eight sectors to prevent tying up 
the high speed and Buffer Memory channels. This limit 
prevents impact on disk and front-end data traffic. TDEMl 
will yield the processor to high priority activities after 
each data transfer to allow prompt serv1c1ng of disk 
channels and transfer of front-end data. 

The Transparent format read routine begins by assuming that 
the maximum limit of eight sectors can be transferred to 
Central Memory. If the descriptor for the next sector to 
be moved (NX@SCT) indicates the number of contiguous data 
sectors is less than eight, the contiguous count becomes 
the maximum transfer size. If the next sector to be moved 
is part of a block of data with an unrecovered read error 
(BF@DBF), the maximum transfer size is limited to a single 
sector. The Partial Sector flag (DD@PCW) in the request is 
checked next. If set, the transfer is limited to the 
number of words specified in the request (DA@PWC); 
otherwise, full sectors are assumed. The current size is 
compared with the remaining number of sectors in the 
Central Memory buffer. The smaller of these two becomes 
the transfer size. Finally, the transfer size is compared 
to the number of bytes left in the current tape block. The 
smaller of these two values is used as the final transfer 

SM-0046 G 



--

. -
I 

TDEM1 - size. After the transfer completes, the next sector to be 
(continued) moved pointer (NX@SCT) is incremented. If the transfer 

completed the current tape block, the BlOP block pointer 

SM-0046 G 

(NX@PTR) is updated. Finally, the Central Memory buffer 
address is updated in anticipation of the next transfer. 
The above sequence is repeated until the requested sector 
count has been satisfied, or a sector of bad data has been 
transferred. A transfer of bad data causes the flag 
(DA@DBF) to be set in the response packet sent to BCOM3 in 
the XIOP. 

Transparent read processing completes by computing the 
number of words transferred in the last sector (DA@PWC), 
and the number of unused bits in the last word transferred 
(DA@UBC). Both values are returned in the response. The 
number of sectors (DA@TSC) and number of blocks (DA@TBC) 
transferred are also returned, along with the data transfer 
status bit (ST@DTR), in the response. 

The List 1/0 format read routine attempts to transfer 
complete tape blocks to Central Memory (DA@HSU, DA@HSL). 
The mainframe supplies the address in Central Memory of the 
list structure (DA@LSU, DA@LSL). The list is a table of 
64-bit words where each word is used to describe one tape 
block (TL@). The list size (DA@LSS) may be from 1 to 512 
words. 

Each time a mainframe data transfer request is received, a 
new list address is supplied. As blocks of data are moved 
to Central Memory to satisfy the request, successive 
entries in the list are filled in by TDEM1. TDEM1 keeps a 
pointer to the next position in the list (NX@LPT) in the 
DSC header. TDEM1 cannot tell when an entire request has 
been processed because it can receive a request from BYPASS 
and mUltiple requests from TAPEIO for the same mainframe 
request. BYPASS and TAPEIO set the New List Received flag 
(DA@LSR) for the first request to TDEM1 of each new 
mainframe request. This enables TDEM1 to know when to 
reset NX@LPT to the beginning of a new list. 

The processing loop begins by comparing the number of bytes 
(BF@RLU, BF@RLL) in the next data block to be moved to the 
space remaining in the Central Memory buffer. If the next 
tape block will not fit, the transfer request is terminated 
and the status (ST@LSE) is set in the response packet. 
This implies that the Central Memory buffer must be large 
enough (DA@MBU, DA@MBL) to hold at least one tape block . 

4-15 



I 

TDEM1 - If the next data block will fit in the Central Memory 
(continued) buffer, the list entry describing the block is built. The 

status (TL@FMT) and block length (TL@BCU, TL@BCL) are set 
in the entry. If the block to be transferred contains 
unrecovered data, the Bad Data flag (TL$DBF) is also set in 
the list entry and in the response packet (DA@DBF). The 
transfer request terminates after moving a bad data block. 

4-16 

The data transfer portion of the List I/O processing loop 
begins by assuming the limit of eight sectors can be moved 
to Central Memory. If the descriptor for the next sector 
to be moved (NX@SCT) indicates the number of contiguous 
data sectors is less than eight, the contiguous count 
becomes the current transfer size. This value is compared 
to the number of bytes left in the tape block to be moved. 
The smaller of these two values is used as the final 
transfer size. After the transfer completes, the Next 
Sector To Be Moved pointer (NX@SCT) is incremented. The 
Central Memory buffer address is updated in anticipation of 
the next transfer. The BIOP pointer (NX@PTR) is updated 
when the entire tape block has been transferred. The loop 
above is repeated until the next tape block does not fit in 
the remaining Central Memory buffer area, or until a block 
of bad data has been transferred. 

The List I/O format read routine completes by terminating 
the list structure with a zero entry, unless the list size 
limit (DA@LSS) has been reached. The list is written to 
Central Memory (DA@LSU, DA@LSL) and the list pointer 
(NX@PTR) is updated in the BIOP DSC header. The number of 
sectors (DA@TSC) and number of blocks (DA@TBC) transferred 
are returned, along with the data transfer status bit 
(ST@DTR), in the response to BCOM3. 

The Interchange format read routine converts tape data to 
COS Interchange format when transferring data to Central 
Memory by inserting control words into each sector moved. 

Each sector of data begins with a block control word 
(BCW). Tape blocks are terminated with a record control 
word (RCW). Files and datasets are terminated with 
end-of-file and end-of-data control words (RCW), 
respectively. See I/O Subsystem (lOS) Table Descriptions 
Internal Reference Manual, publication SM-0007, for the 
description of block and record control words. 

The insertion of control words in each sector of data 
limits the maximum transfer size per Kernel TRANSFER 
request to one sector. Each sector must be constructed in 
a Local Memory buffer before being sent to Central Memory. 

SM-0046 G 



I 

TDEMI - The transfer loop begins by building a BCW in the first 
(continued) word of the Local Memory buffer. Each sector contains just 

one BCW. This allows a maximum of 511 words of data and 
control words to be included in each sector. 

SM-0046 G 

The sector is filled based on the status field (BF@STA) of 
the current (NX@PTR) DSC buffer descriptor entry. 

A value of MD$BOR or MD$EOV indicates that part of a data 
block is to be moved to the sector in the Local Memory 
buffer. If all data in the tape block has been moved, an 
end of record RCW is generated at the next position in the 
sector. 

If the status value is MD$EOV, and the sector is not full, 
the Null flag (CW@NUL) is set in the RCW to indicate that 
the remainder of the sector is empty. The descriptors 
containing the MD$EOV values are modified by the TAPEND 
routine in XIOP when a mainframe FC$EORR request is 
processed. The mainframe uses this request to read a 
partial sector of data at end-of-volume processing. 

An MD$EOF descriptor status indicates that an end of file 
RCW is to be added to the Local Memory buffer. If the 
sector is not full, the Null flag (CW@NUL) is set to 
indicate that the remainder of the sector is empty. The 
descriptor entry containing the MD$EOF value is built by 
the TAP END routine in XIOP when a mainframe FC$EOFR request 
is processed. The mainframe uses the FC$EOFR request to 
insert control words into the data stream corresponding to 
embedded tape marks read in a multiple file tape dataset. 

The MD$EOD status indicates that an end-of-file RCW and an 
end-of-data RCW are to be added to the Local Memory buffer. 
If both control words will not fit in the current sector, 
the NX@MOD value in the BIOP DSC header is set to indicate 
that only the end-of-file control word was generated. The 
next request for data transfer will cause TDEM1 to 
recognize that an end-of-data control word is still 
needed. If the sector is not full after both control words 
have been generated, the Null flag (CW@NUL) is set to 
indicate that the remainder of the sector is empty. The 
descriptor containing the MD$EOD value is built by the 
TAP END routine in XIOP when a mainframe FC$EODR request is 
processed. The mainframe uses the FC$EODR request to 
terminate user and label data streams with the end-of-file 
and end-of-data control words. 

4-17 



I 

TDEM1 - Each tape block is moved to the Local Memory buffer 
(continued) following the end of record RCW for the previous block. 

4-18 

The Buffer Memory address of the data is computed from the 
current sector pointer (NX@SCT) and word offset (NX@WRD) in 
the sector. The length to be moved may include data from 
the next sector of Buffer Memory. Because the next sector 
of data might not be physically contiguous in Buffer 
Memory, two partial moves may be required. The contiguous 
count field (BF@CTG) in the descriptor is used to determine 
the number of moves required. The smaller of the contiguous 
data, the remaining data in the tape block, and the 
remaining space in the Local Memory buffer is moved. 

The forward word index (CW@FWI) in the control word 
preceding the data just moved or control word just 
generated is updated. The forward word index links BCW and 
RCW control words for the library routines in the 
mainframe. The Bad Data flag (CW@DBF) is also set in the 
preceding control word, if the data just moved was part of 
a block containing unrecovered tape data. The Bad Data 
flag allows the library routines in the mainframe to skip 
bad tape blocks, if requested by the user job. 

The above loop continues, adding data and control words, 
until the sector is complete. Before the sector is sent to 
Central Memory (DA@HSU, DA@HSL), the Partial Sector 
Transfer flag is examined in the packet (DD@PCW). If set, 
the transfer size is limited to DA@PCW words, else the full 
sector is transferred on the 100-Mbyte data channel from 
Local to Central Memory. 

Each sector requested by XlOP is constructed and 
transferred by the above loop, until requested sector count 
has been satisfied, or a sector of bad data has been 
transferred. A transfer of bad data causes the flag 
(DA@DBF) to be set in the response packet sent to BCOM3 in 
the XIOP. The number of sectors (DA@TSC) and number of 
blocks (DA@TBC) transferred are also returned, along with 
the data transfer status bit (ST@DTR), in the response. 

The BlOP section of the Buffer Memory DSC is updated with 
current values for the device when the the response is sent 
to BCOM3 in the XIOP. TDEMl continues processing new 
requests from BXQQ queue and waits on TDMQ queue when 
finished. 

SM-0046 G 



I 

BCOM3 - BCOM3 in the XIOP receives the read data transfer res~onse 
packet from TDEM1. It subtracts the transferred sectpr 
count (DA@TSC) from the count of read-ahead data sectprs in 
Buffer Memory (CU@VMS). The updated total of data sectors 
is placed in the response packet (TQ@VMS). The number of 
unallocated sectors of Buffer Memory is computed and also 
placed in the packet (TQ@MOS). The data transfer response 
is sent to the mainframe through the MIOP. . 

BCOM3 checks for error conditions (no ST@DTR, TQ@DBF, 
ST@LSE) that terminate any additional sector transfers for 
the request. If an error occurred, the residual sector 
count (DC@RSC) in the TCB is cleared to prevent TAPEIO from 
initiating any new requests to TDEMI in the BIOP. 

Finally, BCOM3 activates any activities waiting for the 
data transfer response by popping the BIOP wait queue 
(DC@QUB) in the TCB and decrementing the count of 
outstanding requests to BIOP (DC@BRQ). 

This concludes the description of the read data transfer proces~ing 
initiated by BYPASS. 

TEX The TEX activity is activated by BYPASS when all previous 
read block requests from the mainframe have been satisfied. 
TEX dequeues the new request from DC@MSG. 

If an error terminated a previous read block request, the 
Next Valid Packet flag (DD@NVP) is checked in the request. 
The mainframe signals that it received the previous error 
status by setting the Next Valid Packet flag to resume 
processing. The error flag (DC@ERR) is cleared when next 
valid packet is recognized by TEX. Read block request 
packets received without Next Valid Packet flag set are 
ignored by TEX when the error flag is set in the TCB. 

TEX allocates two Local Memory buffers for reading tape 
data and saves their addresses in the TCB (DC@BFA, 
DC@BFB). If two buffers are not available, TEX allocates 
none and waits on the TXBQU queue in the Kernel. Other 
activities releasing Local Memory buffers will Pop this 
queue. 

TEX calls the TAPEIO routine to initiate read processing 
for the device. 

TAPEIO - Provides the data 1/0 interface to the driver software in 
the BMX subsystem for the TEX activity. The interface uses 
the Command Parameter Block (CPB@) in the TCB and calls to 
the BMXSIO routine. The CPB contains the device command 
and response parameters that describe the 1/0 state during 
device processing. 

SM-0046 G 4-19 



I 

TAPEIO - TAPEIO processes read block I/O requests until the 
(continued) outstanding block count (DC@RBC) in the TCB is satisfied, 

or an error occurs. 

4-20 

TAPEIO attempts to build multiple read commands for the BMX 
subsystem when possible. The chaining of commands allows 
the BMX driver to sustain data I/O transfer at the rate of 
the device. Each command in the chain represents a request 
to read one block from the device. TAPEIO limits command 
chains to ten blocks in order to allow other devices to 
access the BMX channels and control units. This allows a 
fair distribution of I/O among active devices, without a 
significant loss in transfer rate on any particular device. 

Each command to the BMX subsystem is stored in a Channel 
Program Word (CPW@) structure in the CPB. TAPEIO uses 
three CPW structures in a circular fashion for command 
chaining. Each CPW contains a flag (CPW@CC) to indicate 
whether the command is chained to the next command. TAPEIO 
builds a CPW for each block to be read (up to three) and 
calls BMXSIO to initiate the read command chain. 

TAPEIO checks the operation status (CPB@OS) and count of 
commands complete (CPB@CD) when BMXSIO returns. Normally, 
BMXSIO returns one command complete for each call by 
TAPEIO. If the data blocks are small, or activity on other 
devices is heavy, more than one command may complete before 
BMXSIO can return to TAPEIO. The Return Kernel service 
function can allow another activity to gain control of the 
processor, which can delay the return to TAPEIO. In this 
case, the operation status (OS$) applies to the last 
command of the count completed. 

TAPEIO processes each tape block just read. For each 
block, the descriptor in the DSC referred to by the current 
block pointer (CU@PTR) is updated with MD$BOR status 
(BF@STA) and the block length (BF@RLU, BF@RLL) in bytes 
from the CPW for the block read. The completed CPW is 
rebuilt if a command chain is active. The current block 
pointer (CU@PTR) is advanced to refer to the descriptor for 
the next block to be read. The outstanding block request 
count (DC@RBC) in the TCB is decremented. The count of 
sectors of data in the Buffer Memory read-ahead area is 
incremented by the size of the block just read. If the 
data format is Interchange, the number of control words to 
be added by TDEMl will be included in the calculation. If 
a request for transfer of read-ahead sectors (DC@RSC) is 
present in the TeB, a request will be generated and sent to 
TDEMl in BIOP for the number of sectors now available. 

SM-0046 G 



I 

TAPEIO - This allows data to move to the mainframe as quickly as 
(continued) possible. Finally, a block finished response is generated 

with status (ST@BTR) and sent to the mainframe through ~he 
MIOP. The number of data sectors in the read-ahead area 
(TQ@VMS) and the total number of Buffer Memory sectors 
available for allocation (TQ@MOS) are included in the 
response. 

SM-0046 G 

An operation status of OS$RT indicates that the device 
command should be retried. This typically occurs when 
Channel Command Retry status is detected by the BMX 
subsystem. TAPEIO rebuilds the command chain and calls 
BMXSIO to initiate 1/0. 

An operation status of OS$BZ implies that the command chain 
is continuing. TAPEIO calls BMXSIO to wait for the next 
command to complete. 

A status of OS$DN implies that all commands in the chain 
are done. TAPEIO checks for new block requests added by 
BYPASS (DC@RBC). If a requested block count is present, 
TAPEIO builds a new CPW list and initiates 1/0 by calling 
BMXSIO again. If no new block requests have been received, 
TAPEIO clears the 1/0 Active flag (DC@IOF) and returns to 
TEX. 

OS$HD status indicates that the mainframe has issued an 
FC$FREE request to halt all processing on the device. 
BMXSIO will detect this condition and terminate any active 
command chain in progress. TAPEIO clears the 1/0 Active 
flag (DC@IOF) and returns to TEX. 

Finally, an operation status of OS$ER indicates that the 
BMX subsystem detected an error on the last command in the 
count completed. The error may be related to a hardware 
condition (channel error, unit check, unit exception, 
mid-block CCR), or a software detected condition (overrun, 
large block). 

TAPEIO detects the unit exception condition encountered by 
examining the Tape Mark Read flag (CPB@TE). An end-of-file 
status (ST@EOF) is returned, along with block finished 
status (ST@BTR), in the mainframe response for the 
command. The End-of-file Detected flag (DC@EOF) is set in 
the TCB. TAPEIO clears the 1/0 Active flag and returns to 
TEX. TEX will wait for the next mainframe request with 
Next Valid Packet flag (DD@NVP) set before processing is 
resumed. 

4-21 



I 

TAPEIO - If no other errors are present, TAPEIO checks for a large 
(continued) block error by examining the Length Error flag (CPB@LE). 

4-22 

The large block condition is detected by the BMX subsystem 
when a tape block larger than the specified maximum block 
size (TQ@MBU, TQ@MBL) is read. Data beyond the block size 
limit is discarded. TAPEIO responds with the large block 
status (ST@BIG), along with block finished (ST@BTR), in the 
mainframe response for the command. TAPEIO clears the 1/0 
Active flag and returns to TEX. TEX will wait for the next 
mainframe request with Next Valid Packet flag (DD@NVP) set 
before processing is resumed. 

Channel errors and software errors are detected when the 
CPB@EC field is nonzero. A unit check error is present if 
the Device Detected error flag (CPB@DD) is set. If either 
type of error is present, TAPEIO calls TAPERR to create an 
error recovery activity to retry the failed command. 

TAPERR returns the status of the recovery attempt. A 
status of zero indicates the command was recovered 
successfully. Normal end-of-command processing is 
performed, and 1/0 continues. 

TAPERR may also return an unrecovered data check status 
(ST@URE) to indicate that the data in the tape block could 
not be read. The tape is still positioned properly, as if 
the block had been read. In this case, TAPEIO will set the 
Bad Data flag (BF@DBF) in all descriptor entries in the DSC 
for the failed block. If no data was recovered, a 
descriptor entry is still reserved for the empty block and 
a byte length of one (BF@RLU, BF@RLL) is set to prevent the 
software from dealing with blocks of zero length. TAPEIO 
performs normal end-of-command processing and 1/0 continues. 

Any other status returned by TAPERR is considered 
unrecovered and is returned to the mainframe in the 
response packet (TQ@STS). TAPEIO clears the 1/0 Active 
flag and returns to TEX. TEX will wait for the next 
mainframe request with Next Valid Packet flag (DD@NVP) set 
before processing is resumed. 

TEX - The return from TAPEIO causes TEX to release the two Local 
Memory buffers (DC@BFA, DC@BFB). If an error response was 
returned, the TCB error flag (DC@ERR) is set. The error 
flag invokes the next valid packet mechanism for checking 
mainframe requests. If an error is noted, the BUFMAN 
routine is called to deallocate Buffer Memory buffers for 
requested blocks that were not used by TAPEIO. 

SM-0046 G 



I 

BUFMAN - BUFMAN is called to deallocate unneeded read buffers from 
the bottom (CU@BTM) of the circular descriptor list. The 
area between the XIOP block pointer (CU@PTR) and the bottom 
of the list defines the range of buffers to release. After 
deal location, the bottom pointer is adjusted to equal the 
XIOP block pointer. This is the only instance where a 
descriptor entry pointer moves in a backward direction. 

Descriptor entries between the top pointer (CU@TOP) and new 
bottom pointer may still contain references to the buffers 
just deallocated in their contiguous count fields (BF@CTG). 
The BF@CTG field is adjusted in all active descriptor 
entries in the list to reflect the deallocation. 

TEX - Waits for the next mainframe request (DC@MSG) by pushing on 
the request queue (DC@OUA) in the TCB. 

4.3.4 WRITE REQUEST (FC$WRITE) 

Write IIO requests are passed by BCOM3 to the BYPASS activity for 
processing through the DATOU queue in the XIOP Kernel. BYPASS handles 
initiation of any data transfer by sending a request to TDEMl in the 
BIOP. The BYPASS activity queues requests for tape blocks to be written 
to the appropriate TEX activity for the requested device. BYPASS handles 
stacking of the user and label DSC tables by calling the DSCGET routine. 
BYPASS handles Buffer Memory allocation for the user and label DSC tables 
by calling the BUFMAN routine. 

Figure 4-4 shows the processing of a write request. 

BCOM3 - Checks for a TCB present for the requested device (BDV@CP). 
If not present, a protocol error response is sent to the 
mainframe. BCOM3 queues the request to the BYPASS activity 
on the DATQU in the Kernel. BYPASS is activated, if 
waiting, by popping the TIMQU in the Kernel. 

BYPASS - Dequeues the next request from DATQU and locates the TCB 
for the requested device. The Hold Data flag (DD@HLD) in 
the request is examined. If the Hold Data flag is set and 
the user DSC table has not been saved, then DSCGET is 
called. If the Hold Data flag is not set and the user DSC 
table is being held (DC@DHU, DC@DHL), DSCGET is called to 
restore the stacked DSC table (DC@DSU, DC@DSL). 

SM-0046 G 

A write request from the mainframe may include a request 
for sectors of data (TQ@RSC) to be transferred from Central 
Memory to Buffer Memory, a request for data blocks (TO@RBC) 
to be written to tape, or both. 

4-23 



I 

FC$WRITE 

Call/Return 
DSCGET 

Data transfer request 

Write block 

TDEM1 

A to A 

Data transfer 
Response to CPU 

Error response to CPU. 
Error message to XIOP console. 

Block transfer 
response to CPU 

Figure 4-4. Processing of Write Requests 

1506 

BYPASS - BYPASS assumes that the mainframe has only one outstanding 
(continued) request at a time to the lOS for data sectors. 

4-24 

BYPASS validates list parameters if the data format is List 
I/O. 

The mainframe can request that data sectors (TQ@RSC) be 
transferred to the Buffer Memory write-behind area. Any 
tape blocks ending in these data sectors must be indicated 
in the request (TQ@RBC). The absence of a block request 
count indicates that the data sectors all belong to the 
current block being assembled in the write-behind area. 

SM-0046 G 



I 

BYPASS - BYPASS attempts to minimize the number of calls to BUFMAN 
(continued) for allocation by only making requests as new blocks are 

transferred from the mainframe. This presents a problem on 
the first data transfer request when the write-behind area 
is empty. BYPASS solves the problem by making an extra 
call to BUFMAN in this situation to allocate an extra 
buffer of maximum block size (TQ@MBU, TQ@MBL). This extra 
buffer allows BYPASS to always stay one buffer ahead of 
mainframe data transfer requests. 

BYPASS must also make a special call to BUFMAN to adjust 
the size of the extra buffer when the mainframe increases 
the maximum block size on a request without a block count. 
BYPASS detects this increase by saving the maximum block 
size from each data transfer request in the TCB (DC@MBU, 
DC@MBL). The saved value is compared to the block size in 
each new request to see if the mainframe has increased it. 
BUFMAN adjusts the size of the extra buffer based on the 
new block size value. 

BYPASS calls BUFMAN to allocate Buffer Memory for the 
requested number of blocks. 

BUFMAN - The mainframe directs Buffer Memory allocation by the lOS 
based on the total available Buffer Memory size parameter 
returned in all responses (TQ@MOS). It uses this value to 
determine how many new blocks may be requested for each 
active device. 

SM-0046 G 

BUFMAN allocates write-behind buffers for all devices. The 
DSC structure contains a header area and descriptors for 
each Buffer Memory buffer allocated. The window of active 
buffers is described by a top (CU@TOP) and bottom (CU@BTM) 
pointer in the XIOP section of the DSC header. These 
pointers are the word offset in the DSC of the descriptor 
for the first buffer in the window (CU@TOP) and the next 
buffer to be allocated (CU@BTM). Buffers are allocated at 
the bottom of the window and deallocated at the top. A 
limit value (CU@LIM) identifies the physical end of the 
descriptor list in the DSC. The DSC may be multiple 
512-word sectors. The DSCGET routine allocates the needed 
size at mount time based on the lOS installation maximum 
block size parameter (MBS$MAX). MBS$MAX is used to create 
a DSC large enough to hold a minimum of two blocks of data 
plus the DSC header. 

4-25 



I 

BUFMAN - Before allocating buffers for the request, BUFMAN 
(continued) deallocates buffers that have been written to tape by 

TAPEIO. The top and XIOP (CU@PTR) pointers mark this range 
of descriptors. After deallocation, the top pointer is 
adjusted to equal the XIOP pointer. To minimize Buffer 
Memory accesses, deallocation does not clear descriptors in 
the Buffer Memory DSC. Excess Buffer Memory accesses by 
BUFMAN could delay the processing of tape channel 
interrupts and cause software overrun errors. 

4-26 

BUFMAN computes the number of buffers to allocate based on 
the number of blocks requested and the actual maximum block 
size in the request (TQ@MBU, TQ@MBL). Buffers previously 
allocated at the bottom of the list that are not in use are 
subtracted from the allocation count. This range is marked 
by the BIOP (NX@PTR) and bottom pointers. Not in use 
buffers result from the actual tape block size being less 
than the maximum block size specified in previous 
requests. A calculation is performed to determine if 
descriptors for the allocation count will fit in the DSC. 
If not, an error code (1) is returned to BYPASS. If the 
descriptors will fit, allocation is performed. 

BUFMAN checks for high priority activities waiting to 
execute before starting allocation. It yields the 
processor to any such activities in order to allow IIO to 
proceed on active devices. This minimizes the possibility 
of software overrun errors. 

Allocation of buffers is done by calls to the Kernel 
GETDISK routine. If buffer space is not available, an 
error code (2) is returned to BYPASS, and any buffers 
allocated are released. The maximum allocation count is 
requested on the first call to the GETDISK routine. 
GETDISK may return fewer than the number requested. By 
repeated requests, the allocation count will eventually be 
satisfied. Buffers allocated on each request to GETDISK 
are at contiguous addresses in Buffer Memory. BUFMAN 
builds a descriptor for each 512-word buffer allocated in 
its Local Memory copy of the DSC. Each descriptor contains 
a count (BF@CTG) of the number of buffers with increasing 
addresses that are contiguous. This value is used 
extensively by the TDEM and TDEM1 routines to minimize 
Buffer Memory accesses for descriptors and data. Portions 
of the DSC are moved to and from Local Memory using a 
paging mechanism to minimize Buffer Memory accesses. 

BYPASS - BYPASS sends a protocol error response to the mainframe if 
Buffer Memory is not available to satisfy the request or if 
the DSC cannot hold enough descriptors for the increased 
write-behind area. 

SM-0046 G 



I 

BYPASS - BYPASS checks the mainframe request for the special Last 
(continued) Block Write flag (DD@LBW) used for Transparent format data. 

BCOMl 

TDEMl 

SM-0046 G 

The last block write request is used to force a data block 
in the write-behind area that is less than maximum block 
size to be considered a full block. No data transfer takes 
place for the request in TDEMl in the BlOP. 

BYPASS generates a request to TDEMl in the BIOP to move the 
requested data sectors to the write-behind area, or process 
the Last Block Write flag, if set. 

Another special flag in the mainframe request indicates 
whether blocks moved to the write-behind area are to be 
written to tape. If set, the No Write flag (DD@NWR) causes 
BYPASS not to activate the TEX activity. 

Block lID is sustained while the count of blocks (CU@VMS) 
in the write-behind area is nonzero. BCOM3 adds to this 
field on data transfer responses from TDEMl in BIOP as 
blocks are transferred to the write-behind area. 

BYPASS will activate the TEX activity by popping DC@QUA and 
placing the mainframe request on the DC@MSG queue. BYPASS 
uses the lID Active Control flag (DC@IOF) to determine if 
the TAPEIO routine of the TEX activity is still checking 
for new requested blocks to write (CU@VMS). BYPASS 
considers the device inactive if the control flag is not 
set, and activates the TEX activity. If TEX is executing, 
the added block count will sustain lID. 

BYPASS processes all requests queued to it by BCOM3 and 
waits on TIMQU when finished. 

At this point, a data transfer or block 1/0 may be in 
progress for each active mainframe write request. 

- Data transfer requests are received in BIOP through the 
A-to-A message mechanism of the Kernel. BCOMl receives 
messages from XIOP sent by BYPASS or TAPEIO. It queues the 
A-to-A message to the TDEMl routine on BXQQ queue for 
processing. TDEMl is activated, if waiting, by BCOMl 
popping the TDMQ queue in the Kernel. BCOMl does not read 
the request from Buffer Memory to minimize the number of 
packet areas in use in BIOP. 

- TDEMl handles all data transfer to and from Central Memory 
in the mainframe for the tape subsystem. It allocates a 
static area in Local Memory for the request and the DSC 
header. It dynamically allocates a Local Memory buffer for 
each request processed. TDEMl begins by reading the 
request from Buffer Memory sent by XIOP and the shared DSC 
header structure. 

4-27 



I 

TDEMl - TDEMl checks the data format (DD@FMT) in the request. The 
(continued) three formats supported include: Transparent (FM$TRNS), 

List IIO (FM$LIST), and Interchange (FM$BLKD). The 
appropriate write subroutine is called for processing. 

4-28 

TDEMl write subroutine processing is driven by the 
requested sector count specified by the XIOP. The 
write-behind area in Buffer Memory is described by the BIOP 
(NX@PTR) and XIOP (CU@PTR) DSC header pointers. As a 
result, the XIOP pointer always trails the BIOP pointer in 
the circular descriptor list for writes. Each write 
routine uses a common set of routines for reading and 
updating DSC descriptor entries. 

TDEMl processes requests to move data between the Central 
and Buffer Memories by generating buffer descriptor entries 
for each tape block moved. 

Each descriptor entry contains a status field (BF@STA). A 
value of MD$BOR indicates that the descriptor refers to the 
first sector of a tape data block. Subsequent sectors in 
the block have a zero in the status field of their 
descriptors. A special value of MD$EOF in the status field 
is used by the Interchange and List IIO data formats to 
indicate an end-of-file mark is to be written to tape. 

Each descriptor entry also contains a count of the number 
of contiguous Buffer Memory buffers that follow the buffer 
referred to by the descriptor (BF@CTG). TDEMl attempts to 
minimize the Buffer Memory IIO involved in reading and 
updating descriptor entries by using this field to predict 
the contents of successive descriptor entries. In this 
way, the address field (BF@ADU, BF@ADL) of successive 
entries can be produced in Local Memory without reading the 
Buffer Memory DSC. Each descriptor with a status field 
value of MD$BOR contains the length of the associated tape 
block in bytes (BF@RLU, BF@RLL). All other descriptor 
entries contain zero in the length field. 

TDEMl also attempts to use the bypass data transfer 
hardware between Buffer and Central Memory (available on 
the Model C lOS) for transfers larger than one sector. The 
current transfer limit is eight sectors to prevent tying up 
the high-speed and Buffer Memory channels. This limit 
prevents impact on disk and front-end data traffic. TDEMl 
will yield the processor to high priority activities after 
each data transfer to allow prompt serv1c1ng of disk 
channels and transfer of front-end data. 

SM-0046 G 



I 

TDEM1 - The Transparent format write routine begins by checking 
(continued) that the length of the current block being assembled is 

within maximum block size (DA@MBU, DA@MBL). If the block 
size has been exceeded, the Large Block Status flag 
(ST@BIG) is set in the response to BCOM3 in XIOP. 

SM-0046 G 

The data transfer loop begins by assuming that the maximum 
limit of eight sectors can be transferred to Buffer 
Memory. If the descrietor for the next sector to be filled 
(NX@SCT) indicates the number of contiguous buffers is less 
than eight, the contiguous count becomes the current 
transfer size. The current size is compared with the 
remaining number of data sectors in the Central Memory 
buffer. The transfer size becomes the smaller of the two. 
Finally, the transfer size is compared to the number of 
bytes needed to fill the current tape block. The smaller 
of these values is used as the final transfer size. After 
the transfer completes, the next sector to be filled 
pointer (NX@SCT) is incremented. If the transfer completed 
the current tape block, the descriptor for the first sector 
of the block is marked with MD$BOR status and the block 
length in bytes (BF@RLU, BF@RLL). The BIOP block pointer 
(NX@PTR) is updated. Finally, the Central Memory buffer 
address is adjusted in anticipation of the next transfer. 
This sequence is repeated until all requested sectors have 
been moved. 

Transparent write processing completes by checking for the 
Last Block Write flag (DD@LBW) set in the request. If set, 
any partial tape block is marked with the MD$BOR status and 
the number of bytes in the block (BF@RLU, BF@RLL). The 
BIOP block pointer (NX@PTR) is adjusted. The request may 
also contain the Sync Request flag (DD@SNC). This causes 
any partial data block to be discarded, if set. The BIOP 
sector pointer (NX@SCT) is reset to the beginning of the 
block. The word offset pointer (NX@WRD) and the current 
record length are reset to O. 

The number of sectors (DA@TSC) and number of blocks 
(DA@TBC) transferred are returned in the response to 
BCOM3. If no errors are being reported, the data 
transferred status bit (ST@DTR) is also set. 

The List 1/0 format write routine attempts to transfer 
complete tape blocks from Central Memory (DA@HSU, DA@HSL). 
The mainframe supplies the address in Central Memory of the 
list structure (DA@LSU, DA@LSL). The list is a table of 
64-bit words where each word is used to describe one tape 
block (TL@). The list size (DA@LSS) may be from 1 to 512 
words. Each time a mainframe data transfer request is 
received, a new list address is supplied. 

4-29 



I 

TDEMl - The List IIO write routine begins by reading the list into 
(continued) a Local Memory buffer from Central Memory. Successive 

entries in the list are decoded by TDEMl as blocks of data 
are moved to Buffer Memory to satisfy the request. 

4-30 

The processing loop begins by examining the status field 
(TL@FMT) of the list entry. 

A value of TL$EOR indicates a data block is to be moved to 
Buffer Memory. If the block length (TL@BCU, TL@BCL) is 0, 
a write format error status (ST@WFE) is returned to BCOM3 
in the XIOP. 

The block length is then validated against the maximum 
block size (DA@MBU, DA@MBL) specified in the request. If 
the maximum is exceeded, a large block error status 
(ST@BIG) is returned to BCOM3 in the XIOP. 

The List IIO transfer loop begins by assuming the limit of 
eight sectors can be transferred to Buffer Memory. If the 
descriptor for the next sector to be filled (NX@SCT) 
indicates the number of contiguous data sectors is less 
than eight, the contiguous count becomes the current 
transfer size. The current transfer size is compared to 
the number of bytes left to be moved in the tape block. 
The smaller of these two values is used as the final 
transfer size. After the transfer completes, the next 
sector to be filled pointer (NX@SCT) is incremented. The 
Central Memory buffer address is updated in anticipation'of 
the next transfer. The descriptor for the beginning of the 
block is marked with MD$BOR status and the block length 
field (BF@RLU, BF@RLL). The BIOP block pointer (NX@PTR) is 
updated when the entire tape block has been transferred. 

If the list entry status is TL$EOF, the descriptor for the 
beginning of block is marked with MD$EOF status, the block 
length field is set to 0, and the BIOP block pointer is 
updated. If the list entry status is neither TL$EOR or 
TL$EOF, the write format error status (ST@WFE) is set in 
the response packet returned to BCOM3 in XIOP. 

The loop above is repeated until all requested sectors have 
been transferred to Buffer Memory as complete blocks. 

The number of sectors (DA@TSC) and number of blocks 
(DA@TBC) transferred are returned in the response to 
BCOM3. If no errors are being reported, the data 
transferred status bit (ST@DTR) is also set. 

SM-0046 G 



I 

TDEMl - The Interchange format write routine converts COS 
(continued) Interchange format to raw tape blocks when transferring 

data to Buffer Memory by removing control words from each 
sector moved. 

SM-0046 G 

Each sector of data begins with a block control word (BCW). 
Tape blocks are terminated with a record control word 
(RCW). Files and datasets are terminated with end-of-file 
and end-of-data control words (RCW), respectively. See the 
IIO Subsystem (lOS) Table Descriptions Internal Reference 
Manual, publication SM-0007, for the description of block 
and record control words. 

The appearance of control words in each sector of data 
limits the maximum transfer size per Kernel TRANSFER 
request to one sector. Each sector must be deblocked in a 
Local Memory buffer before being sent to Buffer Memory. 

The transfer loop begins by reading the next sector from 
the Central Memory buffer into Local Memory. The first 
word of the sector is validated as a block control word 
(BCW). If a BCW (CW@MOD) is not present, the write format 
error status (ST@WFE) is returned to BCOM3 in XIOP. 

The forward word index (CW@FWI) in the BCW describes the 
number of words of data between the BCW and next control 
word. 

If data is present, the EOF Pending flag (NX@EFP) is 
checked in the DSC header. When an end-of-file record 
control word (RCW) is encountered during the deblocking of 
a sector of data, its interpretation is not clear until it 
is known what follows it in the data stream. An 
end-of-file RCW followed by data or another EOF RCW should 
be treated as a tape block. However, an EOF RCW followed 
by an end-of-data RCW is not considered a tape block. It 
just marks the end of the dataset. At times, this 
ambiguity cannot be resolved until the next sector of data 
is transferred from Central Memory. This occurs when the 
EOF RCW is the last word of data in a sector. In the worst 
case, the next sector is not available until the next 
mainframe data transfer request is made. The NX@EFP flag 
in the DSC header allows TDEM1 to remember that an EOF RCW 
was encountered and that its interpretation is pending. If 
the pending EOF RCW is followed by data, the descriptor 
entry for the current block in Buffer Memory is marked with 
the MD$EOF status. The BIOP block pointer (NX@PTR) is 
updated, and the NX@EFP flag is cleared. 

4-31 



I 

TDEMl - The data is next moved from the Local Memory buffer to 
(continued) Buffer Memory at location NX@SCT, NX@WRD. The contiguous 

count field (BF@CTG) in the descriptor for the sector 
determines whether one or two moves are needed. 

4-32 

If the entire Local Memory sector has not been deblocked, 
the next word to be examined must be a control word. If 
not a control word (CW@MOD), the Write Format Error Status 
flag (ST@WFE) is set in the response packet to BCOM3 in 
XIOP. 

If the control word is an end-of-record control word, a 
nonzero length tape block should have just been moved to 
Buffer Memory, else a Write Format Error Status (ST@WFE) is 
returned to BCOM3. 

The number of unused bits in the last word of the block is 
checked by examining the count (CW@UBC) in the control 
word. For tape data, the count must always be a byte 
multiple, else the Write Format Error Status flag (ST@WFE) 
is returned to BCOM3. 

The number of unused bytes in the last word is subtracted 
from the length of the current block. The result is 
validated against the maximum block size (DA@MBU, DA@MBL) 
specified in the request. If the maximum size is exceeded, 
the large block error status (ST@BIG) is returned to BCOM3. 

If the block length is valid, the descriptor entry for the 
beginning of the block in Buffer Memory is marked with 
MD$BOR status and the block length (BF@RLU, BF@RLL). The 
BIOP block pointer (NX@PTR) is updated. 

If the control word is an EOF RCW, a check is made to 
ensure that a data block has not just been moved to Buffer 
Memory. Data blocks must be terminated with an 
end-of-record control word. If the end-of-record control 
word is missing, a write format error status (ST@WFE) is 
returned to BCOM3. 

If the control word is a legitimate end-of-file, the NX@EFP 
flag is checked to see if the previous control word was 
also an EOF RCW. If so, the previous EOF RCW is treated as 
a tape block and marked in the Buffer Memory descriptor as 
such, and the NX@EFP flag is set to indicate that 
interpretation of the new EOF RCW is pending. 

If the control word is an end-of-data RCW, the NX@EFP flag 
from the DSC header is checked. It should be set, because 
datasets are terminated with both end-of-file and 
end-of-data control words. If not set, the Write Format 
Error Status flag (ST@WFE) is returned to BCOM3. 

SM-0046 G 



I 

TDEMl - The above loop continues until the requested sector count 
(continued) is moved from Central Memory to Buffer Memory, an error is 

encountered, or an EOD RCW is processed. 

BCOM3 

Finally, the Sync Request flag (DD@SNC) is checked in the 
request. If set, this flag causes any partial block to be 
discarded. The BIOP sector pointer (NX@SCT) is reset to 
the beginning of block and the word offset pointer (NX@WRD) 
and the current record length are reset to zero. 

The number of sectors (DA@TSC) and number of blocks 
(DA@TBC) transferred are returned in the response to 
BCOM3. If no errors are being reported, the data 
transferred status bit (ST@DTR) is also set. 

The BIOP section of the Buffer Memory DSC is updated with 
current values for the device when the the response is sent 
to BCOM3 in the XIOP. TDEMI continues processing new 
requests from BXQO queue and waits for TDMQ queue when 
finished. 

BCOM3 in the XIOP receives the write data transfer response 
packet from TDEM1. It adds the transferred block count 
(DA@TBC) to the count of write-behind data blocks stored in 
Buffer Memory (CU@VMS). The updated total of data blocks 
is placed in the response packet (TQ@VMS). The number of 
unallocated sectors of Buffer Memory is computed and also 
placed in the packet (TQ@MOS). The data transfer response 
is sent to the mainframe through the MlOP. 

BCOM3 activates any activities waiting for the data 
transfer response by popping the BIOP wait queue (DC@QUB) 
in the TCB and decrementing the count of outstanding 
requests to BlOP (DC@BRQ). 

This concludes the description of the write data transfer processing 
initiated by BYPASS. 

TEX The TEX activity is activated by BYPASS when all previous 
write block requests from the mainframe have been 
satisfied. TEX dequeues the new request from DC@MSG. If 
an error terminated a previous write block request, the 
Next Valid Packet flag (DD@NVP) is checked in the request. 
The mainframe signals that it received the previous error 
status by setting the Next Valid Packet flag to resume 
processing. The error flag (DC@ERR) is cleared when next 
valid packet is recognized by TEX. Write block request 
packets received without Next Valid Packet flag set are 
ignored by TEX when the error flag is set in the TCB. 

SM-0046 G 4-33 



I 

TEX - TEX allocates two Local Memory buffers for writing tape 
(continued) data and saves their addresses in the TCB (DC@BFA, 

DC@BFB). If two buffers are not available, TEX allocates 
none and waits for the TXBQU queue in the Kernel. Other 
activities releasing Local Memory buffers will Pop this 
queue. 

4-34 

TEX calls the TAPEIO routine to initiate write processing 
for the device. 

TAPEIO' - TAPEIO provides the data 1/0 interface to the driver 
software in the BMX subsystem for the TEX activity. The 
interface uses the Command Parameter Block (CPB@) in the 
TCB and calls to the BMXSIO routine. The CPB contains the 
device command and response parameters that describe the 
1/0 state during device processing. 

TAPEIO processes write block 1/0 requests until the 
outstanding block count (CU@VMS) in the DSC is satisfied or 
an error occurs. 

TAPEIO attempts to build multiple write commands for the 
BMX subsystem when possible. The chaining of commands 
allows the BMX driver to sustain data 1/0 transfer at the 
rate of the device. Each command in the chain represents a 
request to write one block to the device. TAPEIO limits 
command chains to ten blocks in order to allow other 
devices to access the BMX channels and control units. This 
allows a fair distribution of 1/0 among active devices, 
without a significant loss in transfer rate on any 
particular device. 

Each command to the BMX subsystem is stored in a Channel 
Program Word (CPW@) structure in the CPB. TAPEIO uses 
three CPW structures in a circular fashion for command 
chaining. Each CPW contains a flag (CPW@CC) to indicate 
whether or not the command is chained to the next command. 

TAPEIO builds a CPW for each block (up to three) to be 
written by examining the descriptor entries for the next 
three blocks in Buffer Memory. The location of the 
descriptor for the first block (CU@PTR) is known. The 
location of the descriptors for the next two blocks is 
computed from the block length (BF@RLU, BF@RLL) of prior 
entries. The status (BF@STA) in each descriptor is checked 
for an end-of-file (MD$EOF). If present, TAPEIO will write 
to tape any blocks preceding the EOF, and then generate a 
response to the mainframe with the' End-of-file Status flag 
(ST@EOF) set. TAPEIO will return to TEX. This allows the 
mainframe to request that a tape mark be written. 

SM-0046 G 



I 

TAPEIO - The length of each block is set in each CPW (CPW@BU, 
(continued) CPW@BL). TAPEIO activates the TDEM activity to preload the 

first sector of the first block in the chain to Local 
Memory. TAPEIO calls BMXSIO to initiate the write command 
chain. 

SM-0046 G 

TAPEIO checks the operation status (CPB@OS) and count of 
commands complete (CPB@CD) when BMXSIO returns. Normally, 
BMXSIO returns one command complete for each call by 
TAPEIO. If the data blocks are small or activity on other 
devices is heavy, more than one command may complete before 
BMXSIO can return to TAPEIO. The Return Kernel service 
function can allow another activity to gain control of the 
processor, which can delay the return to TAPEIO. In this 
case, the operation status (OS$) applies to the last 
command of the count complete. 

TAPEIO processes each tape block just written. The XIOP 
block pointer (CU@PTR) is updated to point to the 
descriptor for the next block to be written to tape. If a 
command chain is active, the completed CPW is rebuilt. The 
outstanding block request count (CU@VMS) in the DSC is 
decremented. A block finished response is generated with 
status (ST@BTR) and sent to the mainframe via the MIOP. 
The number of data blocks in the write-behind area (TQ@VMS) 
and the total number of Buffer Memory sectors available for 
allocation (TQ@MOS) are included in the response. 

An operation status of OS$RT indicates that the device 
command should be retried. This typically occurs when 
Channel Command Retry status is detected by the BMX 
subsystem. TAPEIO rebuilds the command chain and calls 
BMXSIO to initiate 1/0. 

An operation status of OS$BZ implies that the command chain 
is continuing. TAPEIO calls BMXSIO to wait for the next 
command to complete. 

A status of OS$DN implies that all commands in the chain 
are done. TAPEIO checks for new block requests added by 
BCOM3 (CU@VMS). If the write-behind area is empty but a 
block is currently being moved to Buffer Memory by BIOP, 
TAPEIO waits for the move to complete by pushing on DC@QUB 
in the TCB. TAPEIO builds a new CPW list and initiates 1/0 
by calling BMXSIO again. If no new block requests have 
been received, and none are in process, TAPEIO clears the 
1/0 Active flag (DC@IOF) and returns to TEX. 

OS$HD status indicates that the mainframe has issued an 
FC$FREE request to halt all processing on the device. 
BMXSIO will detect this condition and terminate any active 

4-35 



I 

TAPEIO - command chain in progress. TAPEIO clears the 1/0 Active 
(continued) flag (DC@IOF) and returns to TEX. 

4-36 

TAPEIO detects the unit exception condition encountered by 
examining the End-of-tape flag (CPB@TE). If the flag is 
set, TAPEIO will backspace over the last block written to 
leave room for end-of-volume labels. When processing label 
data, the Block Finished flag (ST@BTR) is set along with 
the End-of-tape flag (ST@EOT). If user data is being 
written to tape, just the End-of-tape flag (ST@EOT) is set 
in the mainframe response for the command. TAPEIO clears 
the I/O Active flag and returns to TEX. TEX will wait for 
the next mainframe request with Next Valid Packet flag 
(DD@NVP) set before processing is resumed. 

Finally, an operation status of OS$ER indicates that the 
BMX subsystem detected an error on the last command in 
count complete. The error may be related to a hardware 
condition (channel error, unit check, unit exception, 
mid-block ccr) or a software detected condition (overrun). 

Channel errors and software errors are detected when the 
CPB@EC field is nonzero. A unit check error is present if 
the Device Detected error flag (CPB@DD) is set. If either 
type of error. is present, TAPEIO calls TAPERR to create an 
error recovery activity to retry the failed command. 

TAPERR returns the status of the recovery attempt. A zero 
status indicates the command was recovered successfully. 
Normal end-of-command processing is performed, and I/O 
continues. 

TAPERR may also return an end-of-tape encountered status 
(ST@EOT). The above procedure for unit exception 
processing is invoked. 

Any other status returned by TAPERR is considered 
unrecovered and is returned to the mainframe in the 
response packet (TQ@STS). TAPEIO clears the I/O Active 
flag and returns to TEX. TEX will wait for the next 
mainframe request with Next Valid Packet flag (DD@NVP) set 
before processing is resumed. 

TEX - The return from TAPEIO causes TEX to release the two Local 
Memory buffers (DC@BFA, DC@BFB). If an error response was 
returned, the TCB error flag (DC@ERR) is set. The error 
flag invokes the next valid packet mechanism for checking 
mainframe requests. 

TEX waits for the next mainframe request (DC@MSG) by 
pushing on the request queue (DC@QUA) in the TCB. 

SM-0046 G 



I 

4.3.5 END READ REQUESTS (FC$EOFR, FC$EORR, FC$EODR) 

End read requests are issued by the mainframe tape driver to terminate 
Interchange format data with appropriate end-of-file, end-of-record, or 
end-of-data control words. 

The end-of-file read request (FC$EOFR) is issued when a tape mark has 
been encountered that is not followed by a label on a multiple file tape 
dataset. An end-of-file record control word will be generated by TDEMI 
to complete any partial sector of data residing in the Buffer Memory 
read-ahead area. 

The end-of-record read request (FC$EORR) is issued 
end-of-volume processing by a mainframe user job. 
will be generated by TDEMl to complete any partial 
residing in the Buffer Memory read-ahead area. 

during special 
An end-of-record RCW 
sector of data 

The end-of-data read request (FC$EODR) is issued to generate the 
end-of-file and end-of-data RCWs that terminate a user dataset or label 
data stream. 

End read requests are passed by BCOM3 to the BYPASS activity for 
processing on the DATQU queue in the XIOP Kernel. BYPASS queues the 
request to the appropriate TEX activity for the requested device. BYPASS 
handles stacking of the user and label DSC tables by calling the DSCGET 
routine. TEX calls the TAPEND routine for the end read processing. 

Figure 4-5 shows the processing of end read requests. 

BCOM3 - Checks for a TCB present for the requested device 
(BDV@CP). If it is not present, a protocol error response 
is sent to the mainframe. BCOM3 queues the request to the 
BYPASS activity on the DATQU in the Kernel. BYPASS is 
activated, if waiting, by popping the TIMQU in the Kernel. 

BYPASS - Dequeues the next request from DATQU and locates the TCB 
for the requested device. The Hold Data flag (DD@HLD) in 
the request is examined. If it is set and the user DSC 
table has not been saved, DSCGET is called. Likewise, if 
the Hold Data flag is not set and the user DSC table is 
being held (DC@DHU, DC@DHL), DSCGET is called to restore 
the stacked DSC table (DC@DSU, DC@DSL). 

SM-0046 G 4-37 



I 

FC$EOFR 
FC$EORR 
FC$EODR 

" 
I BCOM3 J 

Pop 

" 
I BYPASS L.. Call/Return ... .1 

DSCGET I I I 

Pop 

" 

I TEX I 
A~ 

Call/Return 

" 
I TAP END '. Call/Return ~ BUFMAN I 

, 
response to CPU 1507 

Figure 4-5. Processing of End Read Requests 

BYPASS - An End Read request from the mainframe may include a 
(continued) request to append (DD@APP) the contents of a held data 

stream (DD@HLD) to the active data stream. If BYPASS finds 
no hold data stream (DC@DHU, DC@DHL), a protocol error 
response is returned to the mainframe. 

4-38 

BYPASS activates the TEX activity by popping DC@QUA and 
placing the mainframe request on the DC@MSG queue. 

BYPASS processes all requests queued to it by BCOM3 and 
waits on TIMQU when finished. 

TEX - Calls the TAPEND routine to initiate End Read processing 
for the request. 

TAP END - Begins processing by checking the Append Data flag (DD@APP) 
in the request. If it is set, the write-behind data 
described by the held DSC (DC@DHU,DC@DHL) is appended to 
the active read data stream (DC@DSU, DC@DSL). 

SM-0046 G 



I 

TAP END - Write-behind data is appended by copying the range of 
(continued) buffer descriptor entries described by the XIOP block 

pointer (CU@PTR) and the BIOP block pointer (NX@PTR) in the 
held DSC header to the active DSC at the bottom pointer 
(CU@BTM). A protocol error check is made to ensure that 
all descriptors copied from the held DSC will fit in the 
active read DSC. The count of data sectors in the 
read-ahead area (CU@VMS) is adjusted by the amount of data 
appended, plus any control words that will be added by 
TDEM1 when the data is moved to Central Memory. 

After any append processing is complete, TAP END checks the 
function code in the request for an end-of-file or 
end-of-data read. If either is requested, a call to BUFMAN 
is made to allocate a buffer descriptor entry for the EOF 
or EOD block to be added. 

BUFMAN - Before allocating a buffer for the request, BUFMAN 
deal locates buffers for any data previously transferred to 
the mainframe. The top and BIOP (NX@PTR) pointers mark 
this range of descriptors. After deallocation, the top 
pointer is adjusted to equal the BIOP pointer. 

BUFMAN allocates a single buffer, based on the function 
code in the request being other than read or write. A 
check is made to determine if the descriptor for the buffer 
will fit in the OSC. If not, an error code (1) is returned 
to TAPEND. If a single buffer is not available, an error 
code (2) is returned to TAPENO. 

TAPEND - Returns a protocol error to the mainframe if an error 
status is returned from BUFMAN. 

SM-0046 G 

If allocation was successful, the descriptor for the buffer 
just allocated is marked with the appropriate status 
(BF@STA) for end-of-file (MD$EOF) or end-of-data (MD$EOO). 
The count of sectors in the read-ahead area (CU@VMS) is 
adjusted to include the control words to be added by TDEMl 
when the data is transferred to Central Memory. 

If an end-of-record read is requested instead of EOF or 
EOD, the last partial block, if any, in the read-ahead area 
is to be completed. A call to BUFMAN is not needed because 
the descriptors for the partial block are already present 
in the OSC. The status field (BF@STA) for each descriptor 
of the partial block is marked with the end-of-record 
(MD$EOV) status. This causes TOEM1 in the BIOP to set the 
Null flag in the end of record control word for the block 
when the partial sector containing the end of the block is 
transferred to Central Memory. 

4-39 



I 

TAPEND - TAPEND generates a response containing the count of data 
(continued) sectors in the read-ahead area (TQ@VMS) and the number of 

unallocated buffers in Buffer Memory (TQ@MOS), and sends it 
to the mainframe before returning to TEX. 

TEX Waits for the next mainframe request (DC@MSG) by pushing on 
the request queue (DC@QUA) in the TCB. 

4.3.6 NO-OP REQUEST (FC$NOOP) 

The No-op request is issued by the mainframe tape driver to guarantee 
that all outstanding mainframe requests have been processed by the tape 
subsystem. The request is typically used to clear any outstanding data 
transfer requests after an error or end-of-file condition is reported. 

No-op requests are passed by BCOM3 to the BYPASS activity for processing 
on the DATQU queue in the XIOP Kernel. BYPASS queues the request to the 
appropriate TEX activity for the requested device. BYPASS handles 
stacking of the user and label DSC tables by calling the DSCGET routine. 
TEX handles discarding of data in the user and label DSC tables by 
calling TAPDIS. 

Figure 4-6 shows the processing of a no-op request. 

FC$NOOP 

Call/Return 
DSCGET 

'----r-----'. call/Return.j TAPDIS I. call/Return.1 BUFMAN 

response to CPU 1508 

Figure 4-6. Processing of No-op Requests 

4-40 SM-0046 G 



I 

BCOM3 - Checks for a TCB present for the requested device 
(BDV@CP). If no TCB is present, a protocol error response 
is sent to the mainframe. BCOM3 queues the request to the 
BYPASS activity on the DATQU in the Kernel. BYPASS is 
activated, if waiting, by popping the TIMQU in the Kernel. 

BYPASS - Dequeues the next request from DATQU and locates the TCB 
for the requested device. The Hold Data flag (DD@HLD) in 
the request is examined. If it is set and the user DSC 
table has not been saved, DSCGET is called. If the Hold 
Data flag is not set and the user DSC table is being held 
(DC@DHU, DC@DHL), DSCGET is called to restore the stacked 
DSC table (DC@DSU, DC@DSL). 

The residual sector count (DC@RSC) in the TCB is cleared to 
prevent any new data transfer requests to TDEMI by TAPEIO. 

BYPASS activates the TEX activity by popping DC@QUA and 
placing the mainframe request on the DC@MSG queue. 

BYPASS processes all requests queued to it by BCOM3 and 
waits on TIMQU when finished. 

TEX - Calls the TAPDIS routine to deallocate buffers for the 
active or held DSCs if the Discard User Data flag (DD@DUD), 
or Discard Label Data flag (DD@DLD) is set in the request. 
TEX waits for all data transfers in progress to complete 
before calling TAPDIS by pushing on the DC@QUB queue in the 
TCB. 

TAPDlS - Calls BUFMAN to discard the data buffers for the user data 
DSC and label DSC. The user data DSC may be the active DSC 
or the held DSC. TAPDlS determines where the user DSC can 
be found and passes the appropriate parameter (FN$DlSC, 
FN$DISCH) to BUFMAN. The label DSC can only be present 
when a user DSC is being held. 

BUFMAN - Deallocates all buffers described by the range of 
descriptors between the top (CU@TOP) and bottom (CU@BTM) 
pointers in the XIOP DSC header. After deallocation, the 
top, XlOP (CU@PTR), and BIOP (NX@PTR) pointers are adjusted 
to equal the bottom pointer. The remainder of the XIOP and 
BlOP sections of the DSC header are cleared. 

TEX - Generates a response with a 0 status field (TQ@STS) and 

SM-0046 G 

sends it to the mainframe. 

TEX waits for the next mainframe request (DC@MSG) by 
pushing on the request queue (DC@QUA) in the TCB. 

4-41 



I 

4.3.7 POSITIONING REQUESTS (FC$FWFIL, FC$FWSPC, FC$BKFIL, FC$BKSPC) 

The mainframe driver may issue tape positioning requests to the tape 
subsystem to forward or backward space some number of files or blocks on 
the tape. Tape marks delimit file boundaries during positioning. 

Positioning requests are passed by BCOM3 to the appropriate TEX activity 
for processing on the DC@MSG queue in the TCB for the requested device. 
BCOM3 pops the TEX activity waiting on the DC@QUA queue in the TCB. TEX 
handles discarding of data in the user and/or label DSC tables by calling 
TAPDIS. TEX calls TAPMOV to process the position request. 

Figure 4-7 shows the processing of positioning requests. 

FC$FWFIL 
FC$FWSPC 
FC$BKFIL 
FC$BKSPC 

Call/Return 

Call/Return 
on error 

Error response to CPU 
Error message to XIOP console 

Call/Return 
BUFMAN 

response(s) to CPU 1509 

Figure 4-7. Processing of Positioning Requests 

4-42 SM-0046 G 



I 

BCOM3 - Checks for a TCB present for the requested device (BDV@CP). 
If not present, a protocol error response is sent to the 
mainframe. BCOM3 queues the request to the TEX activity on 
DC@MSG queue in the TCB. TEX is activated, if waiting, by 
popping the DC@QUA queue in the TCB. 

TEX - If the Discard User Data flag (DD@DUD) or Discard Label 
Data flag (DD@DLD) is set in the request, TEX calls the 
TAPDIS routine to deallocate buffers for the active or held 
DSCs. TEX waits for all data transfers in progress to 
complete before calling TAPDIS by pushing on the DC@QUB 
queue in the TCB. 

TAPDIS - Calls BUFMAN to discard the data buffers for the user data 
DSC and label DSC. The user data DSC may be the active DSC 
or the held DSC. TAPDIS determines where the user DSC can 
be found and passes the appropriate parameter (FN$DISC, 
FN$DISCH) to BUFMAN. The label DSC can only be present 
when a user DSC is being held. 

BUFMAN - Deallocates all buffers described by the range of 
descriptors between the top (CU@TOP) and bottom (CU@BTM) 
pointers in the XIOP DSC header. After deallocation, the 
top, XIOP (CU@PTR), and BlOP (NX@PTR) pointers are adjusted 
to equal the bottom pointer. The remainder of the XIOP and 
BlOP sections of the DSC header are cleared. 

TEX Calls TAPMOV to process the positioning request. 

TAPMOV - Provides the nondata 1/0 interface to the driver software 
in the BMX subsystem for the TEX activity. The interface 
uses the Command Parameter Block (CPB@) in the TCB and 
calls to the BMXSIO routine. The CPB contains the device 
command and response parameters that describe the I/O state 
during device processing. 

SM-0046 G 

TAPMOV uses the requested block count (TQ@RBC) in the 
packet to determine the number of blocks or files to be 
skipped. 

TAPMOV builds single positioning commands for the BMX 
subsystem. Each command is stored in a Channel Program 
Word (CPW@) structure in the CPB. TAPMOV calls BMXSIO once 
for each block or file to be skipped. 

TAPMOV checks the operation status (OS$) when BMXSIO 
returns. 

An operation status of OS$RT indicates that the device 
command should be retried. This typically occurs when 
Channel Command Retry status is detected by the BMX 
subsystem. TAPMOV calls BMXSIO to restart the 1/0. 

4-43 



I 

TAPMOV - An operation status of OS$IP implies that the command is 
(continued) not complete. The control unit normally presents an 

initial status to the BMX subsystem on positioning commands 
that may take a long timd to complete. The initial status 
indicates that the control unit has disconnected from the 
channel and will present ending status when the command is 
complete. This initial channel end status is reflected 
back to TAPMOV as an OS$IP operation status. TAPMOV calls 
BMXSIO to wait for the ending status of the command. 

4-44 

A status of OS$DN implies that the ~ommand completed 
successfully. TAPMOV checks for additional blocks or files 
to skip. If the requested count is not exhausted, TAPMOV 
calls BMXSIO to repeat the command. If the request is 
complete, TAPMOV generates a final response to the 
mainframe and returns to TEX. 

OS$HD status indicates that the mainframe has issued an 
FC$FREE request to halt all processing on the device. 
BMXSIO will detect this condition and terminate any active 
command in progress. TAPMOV generates a response to the 
mainframe with the not ready status bit (ST@RDY) set and 
returns to TEX. 

Finally, an operation status of OS$ER indicates that the 
BMX subsystem detected an error on the last position 
command. The error must be related to a hardware condition 
(channel error, unit check, unit exception) because no data 
I/O is active. 

TAPMOV detects the unit exception condition encountered by 
examining the ending device status (CPB@DS) for the unit 
exception status bit (ST$UE). An end-of-file ~tatus 
(ST@EOF) is returned in the mainframe response if a space 
block function was requested. TAPMOV returns to TEX in 
this case. 

The unit exception condition is normal status for file 
positioning functions. Processing continues if additional 
files are to be skipped. 

Channel errors and software errors are detected when the 
CPB@EC field is nonzero. A unit check error is present if 
the ending device status (CPB@DS) has the unit check status 
bit (ST$UC) set. If either type of error is present, 
TAPMOV calls TAPERR to create an error recovery activity to 
retry the failed command. 

TAPERR returns the status of the recovery attempt. A zero 
status indicates the command was recovered successfully. 

SM-0046 G 



I 

TAPMOV - Any other status returned by TAPERR is considered 
(continued) unrecovered and is returned to the mainframe in the 

response packet (TQ@STS). TAPMOV returns to TEX. 

TEX - If TAPMOV detected an error, TEX sets the error flag 
(DC@ERR) to invoke the next valid packet mechanism. 

TEX waits for the next mainframe request (DC@MSG) by 
pushing on the request queue (DC@QUA) in the TCB. 

4.3.8 LOAD DISPLAY REQUEST (FC$DSP) 

The mainframe driver issues the load display request to the tape 
subsystem to display a volume serial number (VSN) on the display panel of 
a cartridge type tape device. The load display request can also be used 
to clear a previous VSN shown on the display. 

Load display requests are passed by BCOM3 to the appropriate TEX activity 
for processing on the DC@MSG queue in the TCB for the requested device. 
BCOM3 pops the TEX activity waiting on the DC@QUA queue in the TCB. TEX 
handles discarding of data in the user and label DSC tables by calling 
TAPDIS. TAPMOV is called to process the display request. 

Figure 4-8 shows the processing of a display request. 

BCOM3 Checks for a TCB present for the requested device (BDV@CP). 
If not present, a protocol error response is sent to the 
mainframe. BCOM3 queues the request to the TEX activity on 
DC@MSG queue in the TCB. TEX is activated, if waiting, by 
popping the DC@QUA queue in the TCB. 

TEX - If the Discard User Data flag (DD@DUD) or Discard Label 
Data flag (DD@DLD) is set in the request, TEX calls the 
TAPDIS routine to deallocate buffers for the active or held 
DSCs. TEX waits for all data transfers in progress to 
complete before calling TAPDIS by pushing on the DC@QUB 
queue in the TCB. 

TAPDIS - Calls BUFMAN to discard the data buffers for the user data 
DSC and label DSC. The user data DSC may be the active DSC 
or the held DSC. TAPDIS determines where the user DSC can 
be found and passes the appropriate parameter (FN$DISC, 
FN$DISCH) to BUFMAN. The label DSC can only be present 
when a user DSC is being held. 

SM-0046 G 4-45 



I 4-46 

FC$DSP 

Call/Return 

Call/Return 
on error 

Error response to CPU 

TAPDIS 

Error message to XIOP console 

Call/Return 
BUFMAN 

response to CPU 1510 

Figure 4-8. Processing of Display Requests 

BUFMAN - Deallocates all buffers described by the range of 
descriptors between the top (CU@TOP) and bottom (CU@BTM) 
pointers in the XIOP DSC header. After deallocation, the 
top, XIOP (CU@PTR), and BIOP (NX@PTR) pointers are adjusted 
to equal the bottom pointer. The remainder of the XIOP and 
BIOP sections of the DSC header are cleared. 

TEX - Ensures that the type of the requested device is a 
cartridge tape unit. If not, a protocol error response is 
returned to the mainframe. 

TEX calls TAPMOV to process the display request. 

TAPMOV - Provides the nondata I/O interface to the driver software 
in the BMX subsystem for the TEX activity. The interface 
uses the Command Parameter Block (CPB@) in the TCB and 
calls to the BMXSIO routine. The CPB contains the device 
command and response parameters that describe the I/O state 
during device processing. 

SM-0046 G 



I 

TAPMOV - TAPMOV copies the display data from the request packet to a 
(continued) Local Memory scratch buffer. Up to 16 bytes of data, 

preceded by a function code byte, may be displayed. 

SM-0046 G 

TAPMOV builds a single load display command for the BMX 
subsystem. The command is stored in a Channel Program Word 
(CPW@) structure in the CPB. TAPMOV calls BMX5IO to issue 
the device command. 

TAPMOV checks the operation status (05$) w~en BMXSIO 
returns. 

An operation status of OS$RT indicates that the device 
command should be retried. This typically occurs when 
Channel Command Retry status is detected by the BMX 
subsystem. TAPMOV calls BMXSIO to restart the 1/0. 

An operation status of OS$IP or OS$BZ implies that the 
command is not complete. TAPMOV calls BMXSIO to wait for 
the ending status of the command. 

A status of OS$DN implies that the display command 
completed successfully. TAPMOV sends a response packet to 
the mainframe and returns to TEX. 

OS$HD status indicates that the mainframe has issued an 
FC$FREE request to halt all processing on the device. 
BMXSIO will detect this condition and terminate any active 
command in progress. TAPMOV generates a response to the 
mainframe with the not ready status bit (ST@RDY) set and 
returns to TEX. 

Finally, an operation status of OS$ER indicates that the 
BMX subsystem detected an error on the load display 
command. The error must be related to a hardware condition 
(channel error, unit check, unit exception) because no data 
1/0 is active. 

Channel errors and software errors are detected when the 
CPB@EC field is nonzero. A unit check error is present if 
the ending device status (CPB@DS) has the unit check status 
bit (ST$UC) set. If either type of error is present, 
TAPMOV calls TAPERR to create an error recovery activity to 
retry the failed command. 

TAPERR returns the status of the recovery attempt. A 
status of 0 indicates that the command was recovered 
successfully. Any other status returned by TAPERR is 
considered unrecovered and is returned to the mainframe in 
the response packet (TQ@STS). TAPMOV returns to TEX. 

4-47 



I 

TEX - Waits for the next mainframe request (DC@MSG) by pushing on 
the request queue (DC@QUA) in the TCB. 

4.3.9 REMOUNT REQUEST (FC$RMNT) 

The mainframe driver issues the remount request to the tape subsystem 
when the end-of-volume, in a multiple volume dataset, is encountered. A 
remount request is also issued when an unrecovered write,error forces 
premature termination of a tape volume. The remount request differs from 
the mount request in that the data streams associated with the original 
device are car~ied over to the new device. 

Remount requests are passed by BCOM3 to the appropriate TEX activity for 
processing on the DC@MSG queue in the TCB for the requested device. 
BCOM3 pops the TEX activity waiting on the DC@QUA queue in the TCB. TEX 
calls the BMXOPE routine in the BMX subsystem to process the request. 
BMXOPE calls BMXTPO for the actual mount processing. 

Figure 4-9 shows the processing of a remount request to the same device. 
Figure 4-10 shows the processing of a remount request to a new device. 

4-48 

BCOM3 - BCOM3 checks the Device Table Open flag (BDV@OP) to see if 
a TEX activity exists for the requested device. If not 
open, the BMXOPE activity is created to process the 
request. If the activity cannot be created, a protocol 
error response is sent to the mainframe. 

If the requested device is open, BCOM3 checks for a TCB 
present (BDV@CP). If not present, a protocol error 
response is sent to the mainframe. BCOM3 queues the 
request to the TEX activity on DC@MSG queue in the TCB. 
TEX is activated, if waiting, by popping the DC@QUA queue 
in the TCB. 

TEX - TEX calls the BMXOPE routine to process the request to 
remount to the original device. 

BMXOPE - BMXOPE examines the previous device ordinal (TQ@PDV) in the 
request to determine if a remount is requested on the 
original device or a new device. 

If a new device is requested, BMXOPE checks to see if a 
device activity currently owns the device (BDV@AI). This 
can occur if a configuration change is taking place on the 
device. If a device activity exists, BMXOPE waits for it 
to release the device, and assigns itself as the new device 
activity. 

BMXOPE marks the device open (BDV@OP) and does a Goto to 
the BMXTPO routine for mount processing. 

SM-0046 G 



I 

4 Call/Return .J 
~ ~ DSCGET 

~~~~~ ~------~ 

Call/Return 

BMXSIO 
Initial/final 

response to CPU 

Return 

1511 

Figure 4-9. Processing of a Remount Request to the Same Device 

BMXTPO - If a remount to a new device is requested, BMXTPO allocates 
control tables for the TEX activity. A TCB table is 
allocated (DC@) which contains the Command Parameter Block 
(CPB@) used to interface to the BMX subsystem. If Data 
Stream Control tables (DSCs) are present for the original 
device, their addresses are moved to the new TCB. 

SM-0046 G 

Otherwise, a new DSC table is allocated by a call to DSCGET. 

If a remount to the original device is requested, the TCB 
associated with the original device is reused. A new DSC 
is allocated by a call to DSCGET, if one is not already 
present for the device. 

4-49 



I 

Create 

4 Call/Return .J 
~ ~ DSCGET 

~r-~--~ ~------~ 

Call/Return 

BMXSIO 
Initial/final 

response to CPU 

Goto 

1512 

Figure 4-10. Processing of a Remount Request to a New Device 

BMXTPO - BMXTPO arms the drive for load point. If the drive is not 
(continued) ready with a mounted tape at load point, an initial 

response indicating the not ready status (ST@RDY) is 
returned to the mainframe. When the drive is ready with a 
tape at load point, final status (ST@BOT) is sent to the 
mainframe along with write protect status (ST@NRW). 

4-50 

If the remount is to the original device, BMXTPO returns to 
the original TEX activity. Otherwise, BMXTPO does a Goto 
TEX to become the activity for the new device. 

TEX - Waits for the next mainframe request (DC@MSG) by pushing on 
the request queue (DC@QUA) in the TCB. 

SM-0046 G 



I 

4.3.10 REWIND REQUESTS (FC$REWND, FC$RWND1, FC$RWND2) 

The mainframe driver issues rewind requests to the tape subsystem to 
cause a mounted tape to be rewound to load point. The FC$RWND1 and 
FC$RWND2 functions specify that one or two tapemarks should be written 
before the rewind. 

Rewind requests are passed by BCaM3 to the appropriate TEX activity for 
processing on the DC@MSG queue in the TCB for the requested device. 
BCaM3 pops the TEX activity waiting on the DC@QUA queue ~n the TCB. TEX 
handles discarding of data in the user and label DSC tables by calling 
TAPDIS. TAPMOV is called to process the position request. 

Figure 4-11 shows the processing of rewind requests. 

BCOM3 

SM-0046 G 

FC$REWND 
FC$RWND1 
FC$RWND2 

Call/Return 

Call/Return 
on error 

Error response to CPU 
Error message to XIOP console 

Call/Return 

response(s) to CPU 1513 

Figure 4-11. Processing of Rewind Requests 

- Checks for a TCB present for the requested device (BDV@CP). 
If it is not present, a protocol error response is sent to 
the mainframe. BCaM3 queues the request to the TEX 
activity on DC@MSG queue in the TCB. TEX is activated, if 
waiting, by popping the DC@QUA queue in the TCB. 

4-51 



I 4-52 

TEX - If the Discard User Data flag (DD@DUD) or Discard Label 
Data flag (DD@DLD) is set in the request, TEX calls the 
TAPDIS routine to deallocate buffers for the active or held 
DSCs. TEX waits for all data transfers in progress to 
complete before calling TAPDIS by pushing on the DC@QUB 
queue in the TCB. 

TAPDIS - TAPDIS calls BUFMAN to discard the data buffers for the 
user data DSC and label DSC. The user data DSC may be the 
active DSC or the held DSC. TAPDIS deter~ines where the 
user DSC can be found and passes the appropriate parameter 
(FN$DISC, FN$DISCH) to BUFMAN. The label DSC can only be 
present when a user DSC is being held. 

BUFMAN - BUFMAN deal locates all buffers described by the range of 
descriptors between the top (CU@TOP) and bottom (CU@BTM) 
pointers in the XIOP DSC header. After deallocation, the 
top, XIOP (CU@PTR), and BIOP (NX@PTR) pointers are adjusted 
to equal the bottom pointer. The remainder of the XIOP and 
BIOP sections of the DSC header are cleared. 

TEX - TEX calls TAPMOV to process the rewind request. 

TAPMOV - TAPMOV provides the nondata I/O interface to the driver 
software in the BMX subsystem for the TEX activity. The 
interface uses the Command Parameter Block (CPB@) in the 
TCB and calls to the BMXSIO routine. The CPB contains the 
device command and response parameters that describe the 
I/O state during device processing. 

TAPMOV writes zero, one, or two tape marks before 
rewinding, based on the function requested. 

TAPMOV builds write tape mark and rewind commands for the 
BMX subsystem. Each command is stored in a Channel Program 
Word (CPW@) structure in the CPB. TAPMOV calls BMXSIO once 
for each tape mark to be written and once for the rewind 
command. 

TAPMOV checks the operation status (OS$) when BMXSIO 
returns. 

An operation status of OS$RT indicates that the device 
command should be retried. This typically occurs when 
Channel Command Retry status is detected by the BMX 
subsystem. TAPMOV calls BMXSIO to restart the I/O. 

SM-0046 G 



I 

TAPMOV - An operation status of OS$IP implies that the command is 
(continued) not complete. The control unit normally presents an 

initial status to the BMX subsystem on rewind commands that 
may take a long time to complete. The initial status 
indicates that the control unit has disconnected from the 
channel and will present ending status when the command is 
complete. This initial channel end status is reflected 
back to TAPMOV as an OS$IP operation status. 

SM-0046 G 

TAPMOV generates an initial response pack~t to the 
mainframe with the Beginning-of-tape flag (ST@BOT) 
cleared. TAPMOV calls BMXSIO to wait for the ending status 
of the command. 

A status of OS$DN implies that the device command completed 
successfully. For rewind commands, OS$DN status may 
instead indicate that the tape drive was manually reset and 
later made ready again. 

TAPMOV returns a response to the mainframe containing the 
block finished status bit (ST@BTR) and EOF status bit 
(ST@EOF) for each tape mark written. 

On completion of a rewind command, TAPMOV reads the sense 
bytes from the device to check that the tape is really at 
load point (SB$LPT). If the tape has not reached load 
point, TAPERR is called to determine and report the cause 
of the failure. If the rewind completes successfully, the 
beginning of tape status bit (ST@BOT) is returned to the 
mainframe. Otherwise, the error status from TAPERR is 
returned. TAPMOV returns to TEX. 

OS$HD status indicates that the mainframe has issued an 
FC$FREE request to halt all processing on the device. 
BMXSIO will detect this condition and terminate any active 
command in progress. TAPMOV generates a response to the 
mainframe with the not ready status bit (ST@RDY) set and 
returns to TEX. 

Finally, an operation status of OS$ER indicates that the 
BMX subsystem detected an error on a write tape mark or 
rewind command. The error must be related to a hardware 
condition (channel error, unit check, unit exception), 
because no data IIO is active. 

Channel errors and software errors are detected when the 
CPB@EC field is nonzero. A unit check error is present if 
the ending device status (CPB@DS) has the unit check status 
bit (ST$UC) set. If either type of error is present, 
TAPMOV calls TAPERR to create an error recovery activity to 
retry the failed command. 

4-53 



I 

TAPMOV - TAPERR returns the status of the recovery attempt. A 
(continued) status of 0 indicates that the command was recovered 

successfully. 

Any other status returned by TAPERR is considered 
unrecovered and is returned to the mainframe in the 
response packet (TQ@STS). TAPMOV returns to TEX. 

TEX - If TAPMOV detected an error, TEX sets the error flag 
(DC@ERR) to invoke the next valid packet ~echanism. TEX 
waits for the next mainframe request (DC@MSG) by pushing on 
the request queue (DC@QUA) in the TCB. 

4.3.11 UNLOAD REQUESTS (FC$UNLD, FC$UNLD1, FC$UNLD2) 

The mainframe driver issues unload requests to the tape subsystem to 
cause a mounted tape to be rewound and unloaded. The FC$UNLD1 and 
FC$UNLD2 functions specify that one or two tapemarks should be written 
before the rewind and unload. 

Unload requests are passed by BCOM3 to the appropriate TEX activity for 
processing on the DC@MSG queue in the TCB for the requested device. 
BCOM3 pops the TEX activity waiting on the DC@QUA queue in the TCB. TEX 
handles discarding of data in the user and label DSC tables by calling 
TAPDIS. TAPMOV is called to process the unload request. 

Figure 4-12 shows the processing of unload requests. 

4-54 

BCOM3 - Checks for a TCB present for the requested device 
(BDV@CP). If it is not present, a protocol error response 
is sent to the mainframe. BCOM3 queues the request to the 
TEX activity on DC@MSG queue in the TCB. TEX is activated, 
if waiting, by popping the DC@QUA queue in the TCB. 

TEX - If the Discard User Data flag (DD@DUD) or Discard Label 
Data flag (DD@DLD) is set in the request, TEX calls the 
TAPDIS routine to deallocate buffers for the active or held 
DSCs. TEX waits for all data transfers in progress to 
complete before calling TAPDIS by pushing on the DC@QUB 
queue in the TCB. 

TAPDIS - Calls BUFMAN to discard the data buffers for the user data 
DSC and label DSC. The user data DSC may be the active DSC 
or the held DSC. TAPDIS determines where the user DSC can 
be found and passes the appropriate parameter (FN$DISC, 
FN$DISCH) to BUFMAN. The label DSC can only be present 
when a user DSC is being held. 

SM-0046 G 



I 

FC$UNLD 
FC$UNLDl 
FC$UNLD2 

Call/Return 

Call/Return 
on error 

Error response to CPU 

Error message to XIOP console 

Call/Return 
BUFMAN 

response(s) to CPU 1514 

Figure 4-12. Processing of Unload Requests 

BUFMAN - Deallocates all buffers described by the range of 
descriptors between the top (CU@TOP) and bottom (CU@BTM) 
pointers in the XIOP DSC header. After deallocation, the 
top, XIOP (CU@PTR), and BIOP (NX@PTR) pointers are adjusted 
to equal the bottom pointer. The remainder of the XIOP and 
BIOP sections of the DSC header are cleared. 

TEX - Calls TAPMOV to process the unload request. 

TAPMOV - Provides the nondata I/O interface to the driver software 
in the BMX subsystem for the TEX activity. The interface 
uses the Command Parameter Block (CPB@) in the TCB and 
calls to the BMXSIO routine. The CPB contains the device 
command and response parameters that describe the I/O state 
during device processing. 

SM-0046 G 

TAPMOV writes zero, one, or two tape marks before 
unloading, based on the function requested. 

4-55 



I 

TAPMOV - TAPMOV builds write tape mark and unload commands for the 
(continued) BMX subsystem. Each command is stored in a Channel Program 

Word (CPW@) structure in the CPB. TAPMOV calls BMXSIO once 
for each tape mark to be written and once for the unload 
command. 

4-56 

TAPMOV checks the operation status (OS$) when BMXSIO 
returns. 

An operation status of OS$RT indicates thqt the device 
command should be retried. This typically occurs when 
Channel Command Retry status is detected by the BMX 
subsystem. TAPMOV calls BMXSIO to restart the I/O. 

An operation status of OS$IP implies that the command is 
not complete. The control unit normally presents an 
initial status to the BMX subsystem on unload commands that 
may take a long time to complete. The initial status 
indicates that the control unit has disconnected from the 
channel and will present ending status when the command is 
complete. This initial channel end status is reflected 
back to TAPMOV as an OS$IP operation status. 

TAPMOV generates an initial response packet to the 
mainframe with the Not Ready status flag (ST@RDY) cleared. 
TAPMOV calls BMXSIO to wait for the ending status of the 
command. 

A status of OS$DN implies that the command completed 
successfully. For unload commands, OS$DN status may 
instead indicate that the tape drive was manually reset and 
later made ready again. 

TAPMOV returns a response to the mainframe containing the 
block finished status bit (ST@BTR) and EOF status bit 
(ST@EOF) for each tape mark written. 

OS$HD status indicates that the mainframe has issued an 
FC$FREE request to halt all processing on the device. 
BMXSIO will detect this condition and terminate any active 
command in progress. TAPMOV generates a response to the 
mainframe with the Not Ready status flag (ST@RDY) set and 
returns to TEX. 

Finally, an operation status of OS$ER is reported by the 
BMX subsystem when an error occurs on a write tape mark 
command or as normal ending status for an unload command. 
(A unit check condition is reported by the device at 
completion of an unload.) 

SM-0046 G 



I 

TAPMOV - Channel errors and software errors are detected when the 
(continued) CPB@EC field is nonzero. A unit check error is present if 

the ending device status (CPB@DS) has the unit check status 
bit (ST$UC) set. If either type of error is present for a 
write tape mark command, TAPMOV calls TAPERR to create an 
error recovery activity to retry the failed command. 

The interpretation of error status for an unload command is 
a bit more complicated. TAPERR is called to handle any 
channel errors or software errors. A unit check error on 
initial status from the device is considered an error 
condition. TAPERR is called to determine and report the 
cause of the error. If a unit check error is presented by 
the device on ending status, TAPMOV reads the sense bytes 
for the device to check the Intervention Required sense bit 
(SB$IVR). If the bit is set, the unload completed 
successfully. The Not Ready status flag (ST@RDY) is set in 
the response packet and sent to the mainframe to indicate 
the unload request is complete. If the Intervention 
Required sense bit is not set, the unload may not have 
completed successfully. In this case, TAPERR is called to 
determine the cause and report the error. 

TAPERR returns the status of the recovery attempt. A zero 
status indicates the command was recovered successfully. 

Any other status returned by TAPERR is considered 
unrecovered and is returned to the mainframe in the 
response packet (TQ@STS). TAPMOV returns to TEX. 

TEX - TEX sets the error flag (DC@ERR) to invoke the next valid 
packet mechanism if TAPMOV detected an error. 

TEX waits for the next mainframe request (DC@MSG) by 
pushing on the request queue (DC@QUA) in the TCB. 

4.3.12 FREE REQUEST (FC$FREE) 

The Free request is issued by the mainframe tape driver to terminate 
processing and close a device. All resources allocated at mount time are 
released at close. 

Free requests are passed by BCOM3 to the BYPASS activity for processing 
on the DATQU queue in the XIOP Kernel. BYPASS queues the request to the 
appropriate TEX activity for the requested device. BYPASS handles 
stacking of the user and label DSC tables by calling the DSCGET routine. 
TEX handles discarding of data in the user and/or label DSC tables by 
calling TAPDIS. TEX calls BMXOPE for close processing. 

SM-0046 G 4-57 



I 

Figure 4-13 shows the processing of free requests. 

BCOM3 

4-58 

Pop 

Call/Return 'I 
.... DSCGET 
~-----' 

Call/Return Call/Return 

Call/Return 

response to CPU 
1515 

Figure 4-13. Processing of Free Requests 

- Checks for a TCB present for the requested device (BDV@CP). 
If it is not present, a protocol error response is sent to 
the mainframe. 

Some routine of the Tape Exec activity for the device may 
be waiting for a prior IIO or mount request to complete. 
In this case, the Tape Exec activity will be pushed on the 
task wait queue (BDV@TO) of the device table. BCOM3 pops 
the Tape Exec activity, if waiting. The Free Pending flag 
(CPB@FP) is set in the CPB section of the TCB to signal 
that processing should terminate. 

BCOM3 queues the request to the BYPASS activity on the 
DATQU in the Kernel. BYPASS is activated, if waiting, by 
popping the TIMOU in the Kernel. 

SM-0046 G 



I 

BYPASS - Dequeues the next request from DATQU and locates the Tca 
for the requested device. The Hold Data flag (DD@HLD) in 
the request is examined. If the flag is set and the user 
DSC table has not been saved, DSCGET is called. If the 
Hold Data flag is not set and the user DSC table is being 
held (DC@DHU, DC@DHL), DSCGET is called to restore the 
stacked DSC table (DC@DSU, DC@DSL). 

The residual sector count (DC@RSC) in the Tca is cleared to 
prevent any new data transfer requests to TDEMl by TAPEIO. 

BYPASS activates the TEX activity by popping DC@QUA and 
placing the mainframe request on the DC@MSG queue. 

BYPASS processes all requests queued to it by BCOM3 and 
waits on TIMQU when finished. 

TEX - Calls DSCGET to deallocate any active or held DSC present 
in the TCB. TEX waits for all data transfers in progress 
to complete before calling DSCGET by pushing on the DC@QUB 
queue in the TCB. 

DSCGET - Calls BUFMAN to release all buffers for the DSC (DC@DSU, 
DC@DSL). DSCGET then releases the Buffer Memory for the 
DSC. 

BUFMAN - Deallocates all buffers described by the range of 
descriptors between the top (CU@TOP) and bottom (CU@BTM) 
pointers in the XIOP DSC header. After deallocation, the 
top, XIOP (CU@PTR), and BIOP (NX@PTR) pointers are adjusted 
to equal the bottom pointer. The remainder of the XIOP and 
BIOP sections of the DSC header are cleared. 

TEX - Clears the Free Pending flag (CPB@FP) in the CPB section of 
the TCB. TEX does a Goto BMXOPE to close the device. 

BMXOPE - Reads the sense bytes for the device to relieve any 
contingent connection caused by an earlier unit check. The 
cartridge display panel is cleared, if appropriate. A 
selective reset command is issued for the device by a call 
to BMXAIO. BMXOPE releases the Local Memory for the TCB 
associated with the device, and sends a response to the 
mainframe for the free request. 

The Tape Exec activity terminates. 

SM-0046 G 4-59 



I 

4.4 ERROR RECOVERY PROCESSING 

Each device activity initiates error recovery by calling the TAPERR 
overlay. Error recovery may also be called recursively when new errors 
are encountered during recovery. Alternating or cyclic errors could 
cause an indefinite number of error recovery activities to be created. 
Kernel SMOD storage for activities would quickly be exhausted in such a 
situation. The RCV$MAX parameter in APTEXT is used to limit the number 
of recursive calls during error recovery. TAPERR returns the 
nonoperational status (ST@NOP) when this limit is reache~. The count of 
error recovery levels in progress is stored in the TCB (DC@LEV). The 
calling device activity and each subsequent level of error recovery wait 
for a response on the DC@QUC queue in the TCB. Activities are queued in 
LIFO order. 

4.4.1 TAPERR ROUTINE 

The TAPERR routine handles creation of error recovery activities. It 
enforces the maximum level of recovery allowed. TAPERR returns the 
ending recovery status to the calling routine. The TERROR or TCART 
routine is created as the first overlay of each error recovery activity 
based on the type of device in error. TCART is used for cartridge 
devices and TERROR is used for noncartridge devices. 

4.4.2 TERROR ROUTINE 

The TERROR routine controls noncartridge device recovery. It is 
responsible for decoding the type of error encountered, calling the 
appropriate error subroutine, calling the TRTELL routine to display an 
error message on the XIOP console, and creating an error packet to be 
sent to the mainframe system log file. 

TERROR begins by checking for a channel error or software error (CPB@EC). 
A software overrun error may have occurred on a device command that is 
still active. TERROR calls BMXAIO to halt any device command that may be 
in progress. 

The ending device status is then examined for a unit check error (ST$UC). 
If a unit check error is present, it mayor may not be accompanied by the 
device end status (ST$DE). The lack of device end status occurs when a 
device has gone not ready, typically during a positioning or control 
command. The absence of the device end status indicates that the device 
will present ending status when readied. TERROR signals the BMX 
subsystem to throwaway the device ready status by clearing the 
Request-in Expected flag (BDV@RI) in the device table. This prevents the 
BMX subsystem from reassigning ownership of a control unit path to the 
device, because the device activity may terminate before the unit is 
readied. 

4-60 SM-0046 G 



I 

If not presented by the calling routine, the sense bytes for the device 
are read. Each sense bit is checked in priority order by TERROR. The 
sense bits are listed below in priority order along with the routine that 
handles recovery for the error. 

Sense Bit 

Equipment check 
Bus out check 
Intervention required 
Command reject 
Hardware overrun 
Load point detected 
Data check 
Data security erase 
Data converter check 
Not capable 
Id burst check 

Routine 

TREQC 
TRBOC 
TRINR 
TERROR 
TRORN 
TERROR 
TRDCK 
TERROR 
TERROR 
TERROR 
TRIDB 

If none of the device detected errors above are present, the TRCER 
routine is called for recovery of timeouts, software, or channel errors. 

4.4.3 TeART ROUTINE 

The TeART routine controls cartridge device recovery. It is responsible 
for decoding the type of error encountered, retrying the device command 
in error, calling the TCTELL routine to display an error message on the 
XIOP console, and creating multiple error packets to be sent to the 
mainframe system log file. Multiple error packets are needed because the 
sense bytes for cartridge devices will not fit in a single packet. 

TCART begins by checking for a channel error or software error (CPB@EC). 
A software overrun error may have occurred on a device command that is 
still active. TeART calls BMXAIO to halt any device command that may be 
in progress. 

If not presented by the calling routine, the sense bytes for the device 
are read. Sense byte 3 specifies the error recovery procedure (ERP) to 
be used. Based on the ERP code and command, retries may be attempted by 
calling the error recovery I/O routines (TRWRT, TRRDF, TRRDB, or TAPFUN). 

If no device-detected errors are specified by the ERP code, the TRCER 
routine is called for recovery of timeouts, software, or channel errors. 

SM-0046 G 4-61 



I 

4.4.4 RECOVERY SUBROUTINES 

The following subsections describe the subroutines called by TERROR or 
TCART to perform specific error recovery tasks. 

4.4.4.1 Equipment check (noncartridge device only) 

Equipment checks are unrecoverable. They generally point to a mechanical 
problem that prevents tape motion. 

TERROR calls TREQC. If Device End is not set, control returns 
immediately with a status telling TERROR to ignore the equipment check 
and go on to the next sense bit. If device end is set, TREOC checks the 
sense bytes to see if reset was hit or if tape indicate is set. A reset 
hit is reported by the ST@RST status. Tape indicate is reported as a 
tape off the end of its reel (ST@LST). If neither is set, nonoperational 
status (ST@NOP) is returned. 

4.4.4.2 Bus-out check (noncartridqe device only) 

Bus out checks refer to parity errors between the channel and the control 
unit. If device end is set and the command is a write, the tape is 
backspaced to the start of record (TAPFUN). Recovery is attempted by 
retrying the command six times before returning a nonoperational (ST@NOP) 
status. Retry is accomplished by calling the subroutine responsible for 
the failing command as follows: 

Command 

Read forward 
Read reverse 
Write 
Others 

Subroutine 

TRRDF 
TRRDB 
TRWRT 
TAPFUN 

4.4.4.3 Intervention required (noncartridge device only) 

Intervention required means manual intervention is required to correct 
the condition. 

TERROR calls TRINR for processing. TRINR checks for device end; if set, 
the return status tells TERROR to keep checking sense bytes. If the 
current function is a rewind (CM$RWD) or unload (CM$RWU), intervention 
required is ignored. Otherwise, TRINR checks to see if reset was hit or 
if the tape went off the end of the reel, and it sets the appropriate 
status. 

4-62 SM-0046 G 



I 

4.4.4.4 Command reject, data converter check, and not capable 

Command reject, data converter check, and not capable errors are all 
unrecoverable. TERROR or TCART determines the appropriate status to 
return. Command reject errors are checked for the presence of a write 
ring during a write. If the write ring is missing, a ST@NRW status is 
returned; otherwise, nonoperational (ST@NOP) is returned. Data converter 
checks are returned as nonoperational (ST@NOP). Not capable is returned 
as ST@NCP. 

4.4.4.5 Data overrun (noncartridge device only) 

Data overrun occurs when the channel cannot keep up with data flow to or 
from the control unit. Recovery consists of retrying the IIO six times 
before returning unrecoverable error status. Retries are accomplished by 
repositioning the tape (TAPFUN) and calling the appropriate subroutine 
based on the command that failed. 

4.4.4.6 Load point 

Load point is set when a load point marker is sensed on the tape. TERROR 
or TCART returns load point status (ST@BOT), unless load point was 
encountered during an error recovery command. 

4.4.4.7 Data check 

Data check is set when an error is detected on the data being written to 
or read from the tape. Recovery depends on the command in effect. 

Write (noncartridge device only) - Write recovery consists of 
repositioning the tape (TAPFUN), issuing an erase (TAPFUN), and retrying 
the write (TRWRT). Fifteen attempts are made before returning an 
unrecovered error. 

Read (noncartridge device only) - Read recovery consists of repositioning 
the tape (TAPFUN) and retrying the read (TRRDF). The read is retried 41 
times with a tape cleaner sequence (TRCLN) issued after every fourth 
retry. The tape cleaner sequence consists of moving the tape back over 
the tape cleaner and then repositioning for the next retry. If the error 
persists, read reverse recovery (TRRDB) is given 41 retries before 
unrecovered error status is returned. 

4.4.4.8 Data security erase 

TERROR or TCART returns unrecoverable status (ST@NOP). 

SM-0046 G 4-63 



I 

4.4.4.9 ID burst check (noncartridge device only) 

ID burst check is set when an error occurs while writing the ID burst off 
load point. Recovery consist~ of issuing a rewind (TAPFUN) and retrying 
the command. Write commands are retried 15 times. Write tapemark and 
erase commands are retried 16 times. 

4.4.5 ERROR DISPLAY 

After the error recovery subroutine returns to TERROR or TCART, TERROR or 
TCART calls the TRTELL or TCTELL overlay to record the error recovery 
information in Buffer Memory and display a message on the XIOP Kernel 
console. The message is in the following format: 

4-64 

hh:mm:ss err cmd rtc chn dev sta 

hh:mm:ss Time when error occurred 

err Type of error. See the list of tape device error messages 
in the lOS operator's guides. 

cmd Command in effect when error was detected. (See the list 
of commands for tape device error messages in the lOS 
operator's guides.) 

rtc Number of retries issued to recover the error (decimal) 

chn Channel on which the error was detected (octal) 

dev Control-unit/device address at which the error was detected 

sta Ending status: 
RECOVERED 
UNRECOVERED 

SM-0046 G 



I 

I 

5. BLOCK MULTIPLEXER CHANNEL INTERFACE 

5.1 lOS BLOCK MUX (BMX) SUBSYSTEM OVERVIEW 

The lOS Block Mux (BMX) subsystem is composed of the fOllowing software 
routines, which are necessary to support the connection of IBM-compatible 
devices to Cray computer systems: 

Routine 

BMXSIO 

BMXDEM 

IBMX 

BMXCPU 

BMXCON 

BMXOPE 

SM-0046 G 

Description 

The BMXSIO overlay is the device driver. It is the 
interface between device activities and the BMX channel 
driver (see figure 5-1). It is responsible for: 

• Assigning the device path 
• Initiating I/O for the device 
• Returning status to the device activity 

The BMXDEM overlay is a demon activity responsible for 
all I/O between the channel and the device; see figure 
5-1. 

The IBMX routine is the Kernel-resident interrupt handler 
for all BMX channel interrupts; see figure 5-1. 

The BMXCPU overlay is responsible for the BMX table 
structure and device configuration (see figures 5-2 and 
5-3). These configurations are based on information in 
the Configuration Table (CNT) passed to the lOS by the 
CPU at startup time. See the COS Table Descriptions 
Internal Reference Manual, publication SM-0045, for a 
description of CNT. 

The BMXCON overlay is responsible for configuring 
individual BMX device components up or down. The 
components include: 

• BMX channels 
• Attached control units 
• Attached devices 

The BMXOPE overlay is responsible for opening and closing 
devices attached to the BMX subsystem. 

5-1 



I BMXTPO The BMXTPO overlay is responsible for 
completing the open (tape mount) function. 

These routines are described in more detail later in this section. 

Dev 0 
Activity 

" 
BMXSIO 

A~ 
1------

" 

BMXDEM 

. + 
, 
'---------

'--------------

Legend 

Dev 1 
Activity 

U 

BMXSIO 

_____ t ______ 

IBMX 
Interrupt 
Handler 

Data 
Handler 

---I.~ Linkage set up at configuration 

Dev 2 
Activity 

BMXSIO 

______________ t 

Controller 

..... ...= Linkage set up at device path assignment 

Figure 5-1. BMX Overview 

1849 

5-2 SM-0046 G 



5.2 BMX CONFIGURATION 

The table structure that describes the BMX subsystem reflects the 
hardware configuration. There is a table for each component attached to 
the BMX subsystem, and, as shown in the following figures, the way the 
tables are structured corresponds to the interlinkages between the 
hardware components. 

I Three basic structures can be configured in a BMX subsystem, as follows: 

• Multiple paths to a single bank 
• Single path to multiple banks 
• Multiple paths to multiple banks 

A path is the channel/control-unit pair used to issue I/O to a device. 

A bank is the set of control units all having access to the same set of 
devices. A bank with four control units that all access the same eight 
devices is represented as a 4-by-8 bank or configuration (4 control 
units, 8 devices). 

The total BMX configuration may be a combination of one or more 
multiple-path, single-bank structures, along with one or more 
single-path, multiple-bank structures, or multiple-path, multiple-bank 
structures. 

In figures 5-2, 5-3, and 5-4, the table structure diagrams represent the 
three basic structures that can be configured. In each figure, the 
hardware configuration is shown along with the table structure 
representing it. The solid lines in the table structure diagrams show 
the linkage that would be set up at configuration time; the broken lines 
show linkage set up at the time of path assignment to a device. 

5.3 BMX TABLES 

All BMX tables are allocated and set up by BMXCPU based on information in 
the CNT (Configuration Table) that is received from COS at startup. (See 
the COS Table Descriptions Internal Reference Manual, publication 
SM-0045, for a description of CNT.) The CNT contains one entry per 
device and one subentry for each path to that device. 

SM-0046 G 5-3 



I 5-4 

Hardware 

Table Structure 
CHT@ 

r-- Channel 20 r--

CUT@ t 
4- ................................ ~ 

Controller O~ f4-

BDV@ .,.. 
Device 0 -

4~ 

I-r-~ 

-CHT@ Channel Table 

CUT@ - Control-unit Table 

BDV@ - Device Table 

CBT@ - Control Unit Bank 

DBT@ - Device Bank 

-

.... 

. , 

, 

:..---

~ 
~ 

. .. 
~ 

CBT@ ,p 

....... -
-

Bank 0 

DBT@ .... --
Bank 0 

CHT@ 

Channel 21 

t CUT@ 

Controller 1 

BDV@ 

Device 1 

4~ 

1118 

Figure 5-2. A 2-by-2 Configuration (Multiple Path, Single Bank) 

SM-0046 G 



Figure 5-3. 

I SM-0046 G 

CHT@ 

..... 
r-- Channel 20 

CUT@ 

~ .... 
Controller 0 -

~ .. 
: 
: 

BDV@ 
: 

Device O-F :. 
CUT@ 

4 ..... Controller 1 

..... 

BDV@ 

Device O-F 

~ 

.... ..... 

..... -

.... ..... 

.... -

Hardware 

Controller 

~ 
~ 

Table Structure 

CBT@ 
-A. -... - Bank 0 

DBT@ 

... Bank 0 -

CBT@ .. .. .. 
Bank 1 

DBT@ 

.. - Bank 1 

1119 

Two l-by-l Configurations (Single Path, Multiple Bank) 

5-5 



Hardware 

Bank 0 

Bank 1 

Table Structure 

CHT@ 
~.~ 

CHT@ 

.... ..... 
Channel 21 I--

~ Channel 20 

CUT@ CBT@ CUT@ 

4 ... .... ~ .....-...• ... ..... ,......- Controller O~' Controller 0 Bank 0 ,.--
~ 

~ - ~: •• 
BDV@ DBT@ BDV@ 

Ccvice O-F .. Bank 0 ~ Device O-F ...... ~ 

' .. ~ - .. , .. 
CUT@ CBT@ CUT@ 

~ -r ~ ~ 
.....-

l~" ...• Controller 1 Bank 1 Controller .... .. . ... 

BDV@ DBT@ BDV@ 

... ..... 
Device O-F Device O-F .. Bank 1 ~ :. ~ .. f4: .. 

1811 

Figure 5-4. A 2-by-l Configuration (Multiple Path, Multiple Bank) 

I 5-6 SM-0046 G 



Pointers to lists of tables in the Kernel table area are as follows: 

Pointer 

XCHT 

XDEV 

XCBT 

XDBT 

Description 

Points to a list of Channel Tables (CHT@) for all 
configured channels. The list is ordered by each 
channel's offset from channel 208 (see figure 5-5). 

Points to a list of Device Tables (BDV@) for all 
configured devices. The list is ordere4 by each device's 
logical ordinal number (see figure 5-6). 

Points to a list of Control-unit Bank Tables (CBT@) for 
all configured control units. The list is ordered by 
logical bank numbers. 

Points to a list of Device Bank Tables (DBT@) for all 
configured devices. The list is ordered by logical bank 
numbers. 

Channel Table List 

20 CHT@ 

XCHT 
21 

37 

1850 

Figure 5-5. Pointer to Channel Tables for Each Configured Channel 

SM-0046 G 5-7 



BDV Tables List 
(by ordinal number) 

o 

XDEV ~------__ ~ 

n 

BDV@ 

1851 

Figure 5-6. Pointer to Device Table for Each Configured Device 

The following list briefly describes the BMX tables set up by BMXCPU 
(tables with a single use are described more fully here than the 
mUltipurpose tables). For field definitions and descriptions, see the 
lOS Table Descriptions Internal Reference Manual, publication SM-0007. 

Table 

BDV@ 

CBT@ 

CHT@ 

CPB@ 

CUT@ 

5-8 

Description 

Device Table; each configured device has a BMX Device Table 
associated with it. 

Control-unit Bank Table; each configured control-unit bank 
has a Control-unit Bank Table used for path assignment. 
This table is composed of a header followed by a list of 
pointers to all Control Unit Tables (CUT@) included in the 
bank. 

Channel Table; each channel configured has a Channel Table 
associated with it. 

Command Parameter Block. Each open device has a Command 
Parameter Block associated with it. Where CPB@@LE 
specifies the number of parcels, the CPB is the first 
CPB@@LE parcels of the Tape Control Block allocated by a 
device activity when the device is opened. 

Control Unit Table; each configured control unit has a 
Control Unit Table. 

SM-0046 G 



DBT@ Device Bank Table; each Control-unit Bank Table has a 
corresponding Device Bank Table. This table is used by 
BMXDEM to find the Device Table corresponding to 
asynchronous (request-in) interrupts received. The table 
is composed of a header followed by a list of pointers to 
the Device Tables (BDV@) representing all devices in the 
bank. 

5.4 CHANNEL PROGRAM WORD (CPW) 

The CPW is the structure that conveys 
device activity to the BMX software. 
lists, called command chains, and are 
depending on the command requirements: 

individual device commands from a 
CPWs are issued singularly or in 
classified into three types 

• Control commands that do not transfer any data to or from the 
device. 

• Data transfer commands that use Local Memory only for data. 

• Data transfer commands that use both Local Memory and Buffer 
Memory for data. 

When a device activity calls the BMX device driver to issue commands, it 
stores the address of the first, or only, CPW in the Command Parameter 
Block (CPB) at CPB@CC. 

CPW classification is accomplished by the device activity setting 
particular CPW flags. The following subsections describe these 
classifications and data required for each. 

5.4.1 NONDATA TRANSFER COMMANDS 

Nondata transfer commands are all control commands (although some control 
commands require data transfer, such as Load Display). The only data 
required in the CPW for these commands is the channel command and the 
flag CPW@DT set to zero. Command chaining is supported for these 
commands but is not used. 

SM-0046 G 5-9 



I 

5.4.2 LOCAL MEMORY DATA TRANSFER COMMANDS 

Local Memory data transfer commands transfer data to or from the device, 
but the data is not copied to or from Buffer Memory. The only two 
commands currently in this class are the Sense and Load Display 
commands. For these commands the following data is required: 

• Field CPW@CM must contain the channel command. 

• Flag CPW@DT must be set to 1 (indicating the commpnd transfers 
data). 

• Flag CPW@IN must be set to 1 for transfers from (Sense) or 0 for 
transfers to (Load Display) the device. 

• Flag CPW@MS must be set to 0 (indicating Buffer Memory, MOS, is 
not used). 

• Field CPW@DA must contain the address of the Local Memory data 
buffer (must be aligned on a word boundary). 

• Field CPW@BL must contain the number of bytes to transfer. If the 
command transfers from the device, upon completion this field will 
contain the number of bytes actually transferred. 

Command chaining is supported for these commands but is not used. 

5.4.3 BUFFER MEMORY DATA TRANSFER COMMANDS 

Buffer Memory data transfer commands are used to transfer tape blocks to 
or from the device. For reads (Read Forward and Read Backward), data 
transferred into Local Memory from the device is copied to preallocated 
Buffer Memory data buffers. For writes (Write), data is loaded from 
prefilled Buffer Memory data buffers into Local Memory for transfer to 
the device. The BMX software transfers the data between Local Memory and 
Buffer Memory as the data is being transferred to or from the device. A 
double-buffering scheme is used. 

For these commands, the following data is required in the CPW: 

5-10 

• Field CPW@CM must contain the channel command. 

• Flag CPW@DT must be set to 1 (indicating the command transfers 
data). 

• Flag CPW@IN must be set to 1 for transfers from the device and set 
to 0 for transfers to the device. 

SM-0046 G 



I 

• Flag CPW@MS must be set to 1 (indicating Buffer Memory, MOS, is to 
be used). 

• For reads, fields CPW@BU and CPW@BL must be o. When the command 
is complete, these two fields will contain the number of bytes 
actually transferred. 

• For writes, fields CPW@BU and CPW@BL must contain the number of 
bytes to transfer to the device. 

These commands also require the following data in the CPB: 

• The DSC Buffer Descriptor Entry for the first sector of the first 
or only block must be placed in CPB@DE. 

• The DSC's Buffer Memory address must be in CPB@DU and CPB@DL. 

• The size of the DSC must be in CPB@LI. 

• The offset of the above Buffer Descriptor Entry must be in CPB@PT. 

• CPB@BO and CPB@B1 must contain the addresses of two Local Memory 
data buffers. 

• CPB@BP, CPB@OR, CPB@lR must be set properly for writes. Whichever 
buffer CPB@BP points to must be filled with the data for the first 
segment of the first block and its ready flag must be set (CPB@OR 
or CPB@lR). 

• For reads, the maximum block size (CPB@MU and CPB@ML) must be set. 

• Field CPB@PR must address an initialized PRW. 

Command chaining by the TAPEIO overlay is usually used for these 
commands. Error Recovery never command chains its block I/O. 

5.4.4 COMMAND CHAINING (CPW@CC) 

Command chaining provides the most efficient method of issuing multiple 
commands to the same device. With command chaining, the BMX software 
does not reassign an lID path for each command, thus minimizing channel 
and control unit overhead. 

Command chaining requires an array, called a CPW list, of at least two 
CPWs. The boundaries of the list must be set in the fields CPB@CB and 
CPB@CE. Additionally, all CPWs but the last one to be processed must 
have the flag CPW@CC set to one. 

SM-0046 G 5-11 



I 

I 

The BMX software processes the list in a circular fashion. The first CPW 
executed is the one pointed to by CPB@CC, the next is the one with an 
address 4 parcels greater. List wrapping occurs when the CPW just 
completed has an address equal to CPB@CE; the CPW addressed by CPB@CB is 
then executed. The field CPB@CC is always updated to reflect the CPW 
currently being executed. 

Command chaining continues until the CPW just completed has the CPW@CC 
flag set to 0, an exceptional status is presented by the device, or the 
BMX software detects some kind of overrun condition. 

As each CPW is completed, the BMX software returns to the caller with an 
Operation Status (CPB@OS) equal to OS$BZ. This allows the caller to 
rebuild the CPW just processed. Specifically, the caller must clear the 
flag CPW@DN (which is set by the BMX software) as an indication that the 
caller's processing is in synchronization with the command chain. 
Additionally, the caller must not clear the flag CPW@CC in CPWs still 
pending execution (as opposed to those with the CPW@DN flag set), since, 
in certain time-dependent situations, the device may still be command 
chaining. 

5.5 DESCRIPTION OF ROUTINES 

The following subsections describe the BMX channel interface routines in 
detail. 

5.5.1 BMXCON 

BMXCON configures the subsystem components up or down. 

Format: 

ILocation IResult I Operand 

em 

eh 

5-12 

I 
I CALL 

I 
IBMXCON,(em,eh,eu,dv,of,dw) 

Component: 
CON$CHN 
CON$CTU 
CON$DEV 

Configure channel 
Configure control unit 
Configure device 

Channel number. Required if configuring either channel or 
control unit. 

SM-0046 G 



cu 

dv 

of 

Control unit 10. Physical address. Required if 
configuring control unit. 

Device ordinal. Logical device ordinal associated with the 
device. Required if configuring device. 

Component Off-line flag: 
CON$ON Configure specified component on-line 

(available) 
CON$OFF Configure specified component. off-line (not 

available) 

dw Device Down flag: 
CON$UP Configure device up 
CON$DOWN Configure device down 

5.5.1.1 Channel configuration (CON$CHN) 

I If configuring the channel down, the flag CHT@OF is set in the Channel 
Table to indicate that the channel is configured down. All control units 
attached to the channel are marked in the associated Control Unit Tables 
as not available for assignment (CUT@NA). Current I/O is allowed to 
complete normally. 

I If configuring the channel up, the CHT@OF flag is cleared in the Channel 
Table and all attached control units are marked as available (CUT@NA 
clear). If the channel had previously been down, BMXCON issues a System 
Reset channel function and turns various data patterns around through the 
channel registers as a minimal checkout before configuring the channel up. 

5.5.1.2 Control unit configuration (CON$CUT) 

I If configuring the control unit down, the flag CUT@OF in the Control Unit 
Table is set to indicate that the control unit is down. Current I/O is 
allowed to complete normally. 

I If configuring the control unit up, the CUT@OF flag in the Control Unit 
Table is cleared. If the control unit is not currently in use (CUT@CO 
clear) and a channel is on-line and free, a TEST-I/O command is issued. 
The resultant input tags are checked for select-in tag (IT$SLI). 
Select-in is set to indicate that the addressed control unit cannot be 
found and the control unit is then left down. 

SM-0046 G 5-13 



I 

5.5.1.3 Device configuration (CON$DEV) 

Unlike channels and control units there are two states defined for 
devices: on-line/off-line and up/down. A drive that is off-line is 
simply that. A drive that is on-line may be either up or down. All 
configuration requests contain values for both states. 

If configuring the device off-line, the flags SDV@DW and BDV@OF in the 
Device Table are set (a drive cannot be both off-line and up). If 
configuring the device on-line, the flag BDV@OF is clear~d. If 
configuring the device down, the flag BDV@DW is set. 

When configuring the device up when it had previously been down, a check 
is made to determine if any paths are configured on-line; if not, the 
request is rejected. If at least one path is on-line, a Selective Reset 
is issued. The device is then queried for ready status, indicating the 
presence of a tape mounted and in ready state. If the device is found to 
be ready, a rewind-unload is issued. The flag BDV@DW is then cleared. 

5.5.1.4 BMXCON messages 

BMXCON displays a message to the Auxiliary I/O Processor (XIOP) console 
for each configuration request received. There are three types of 
messages corresponding to three component types: device, channel, and 
channel/control unit. 

The information each message provides is as follows: 

Information 

Time 

Component 
type 

Status 

Description 

Time of day that message issued 

Channel, device, or channel/control unit and address 
of component 

Status of component. The Data Expected and Data 
Received information is part of the Data/Byte/Status 
register error information. 

The format for each type of message follows. In these descriptions x 
is the physical address of the device or control unit in hexadecimal, 
nn is the bank number in octal, 00 is the channel number in octal, 
and 111111 and mmmmmm are octal values. 

5-14 SM-0046 G 



I 

I 

I 

Device message format: 

Component Type 

time device (x) bank (nn) 

Channel/control unit message format: 

Time Component Type 

time channel(oo)/control unit(x) 

Channel message format: 

Time Component Type 

time channel (00) 

5.5.2 BMXCPU 

Status 

One of the following: 
-off-line 
-on-line/up 
-on-line/down 
-not available 
-not conf i.gured 

Status 

One of the following: 
-off-line 
-on-line 
-not configured 
-not available 
-time-out 

Status 

One of the following: 
-off-line 
-on-line 
-not configured 
-not available 
-time-out 

and in addition, any of the 
following: 

-data register error 
-byte register error 
-status register error 

plus: 
- Data Expected: 111111 
- Data Received: mmmmmm 

BMXCPU allocates and builds all tables used by the BMX subsystem through 
information in the CNT received from the mainframe. See the COS Table 
Descriptions Internal Reference Manual, publication SM-0045, for more 
information on CNT. 

SM-0046 G 5-15 



I 

Format: 

ILocation !Result 
I I 
I I CALL 

!Operand 
I 
IBMXCPU,(dal) 

dal Address of DAL 

BMXCPU first scans the CNT for the number of BMX device entries present. 
The CNT is then processed, one entry at a time. There is one subentry 
for each path available to the device. These subentries contain the 
necessary information to build the Channel (CHT@), the Control Unit 
(CUT@), the Bank (CBT@, DBT@) Tables, and the Device (BDV@) Tables. 

5.5.3 BMXSIO 

BMXSIO serves as the interface between each device activity and the BMX 
channel driver (BMXDEM). It is referred to as the BMX device driver. 

Format: 

ILocation !Result !Operand 

En 

I I 
I CALL IBMXSIO, (fn,cpb,dvn) 

Function code: 
RO$SIO Start 1/0 to a device 
RO$WIO Wait for 1/0 to complete on a device 
All other values are passed to BMXAIO (this interface is 
not currently used). 

cpb CPB address. The CPB is the BMX communication area for the 
device activity. (See the lOS Table Descriptions Internal 
Reference Manual, publication SM-0007, for more 
information.) 

dvn Device ordinal. Logical device address. 

5.5.3.1 Start 1/0 (RO$SIO) 

The Start 1/0 sequence is requested by the device activity to issue 1/0 
to a BMX device. 

5-16 SM-0046 G 

~- --~- ---



I 

Assign device path - BMXSIO begins the Start I/O sequence by assigning to 
the device a path composed of a channel/control-unit pair. 

BMXSIO accomplishes path assignment through the use of the Control-unit 
Bank Table (CBT@) associated with the device. This table is found in the 
Device Table (BDV@CB) associated with the device. 

The Control-unit Bank Table (CBT@) contains a list of pointers to all 
Control-unit Tables (CUT@) for the control units that have access to the 
device. The search begins with the value of pointer BDV~LC as the most 
likely path to be available, since it was the last one used. 

BMXSIO searches the Control-unit Bank Table list for a control unit that 
is both free (CUT@CO = 0) and available (CUT@FL = 0). If no control 
units are available, the device activity is suspended by a PUSH onto the 
control-unit bank queue (CBT@QU). The control-unit bank queue is 
serviced by each device activity when the path assignment for the device 
is released. 

When a control unit is found, the channel number in the Control Unit 
Table (CUT@CN) is used to locate the attached channel. If the channel is 
available, indicated by a zero in field CHT@CO, that channel/control unit 
path is selected. If the channel is not available, the device activity 
is suspended by a PUSH onto the channel resource queue (CHT@QU). The 
channel resource queue is also serviced by each device activity when the 
path assignment for the device is released. Also, it is serviced by 
asynchronous (Request-in) interrupt processing of the BMX channel 
driver. Once the device activity is resumed from the channel resource 
queue, device path assignment starts allover again (by searching for the 
next available control unit). This is necessary because the available 
control unit and/or channel may have been assigned by another device 
activity while this one was suspended. 

When a control unit and channel are found, the Device Table address is 
entered in the Control Unit Table (CUT@CO), which marks the control unit 
as assigned. The current pointer into the Bank Table (CBT@) is saved in 
the Device Table (BDV@LC) for subsequent assignments. Entry of the 
Control Unit Table address in the Channel Table (CHT@CO) assigns the 
channel. 

Finally, the physical path address is formed by combining the 
control-unit address (CUT@CA) with the device address (BDV@UN) and 
storing it back in the Device Table (BDV@UN). This address, along with 
the channel number, is used by the driver to issue I/O instructions to 
the device. 

SM-0046 G 5-17 



I 

There are three special cases related to device path assignment as 
follows: 

• Contingent connection 

A device error is detected by the presence of unit check (ST$UC) 
in the device status (BDV@DS). BMXSIO sets the Error flag 
(BDV@ER) to indicate that a contingent connection exists. 

When a unit check is received in the ending statu~, a contingent 
connection exists between the control unit and the device. This 
condition remains in effect until sense information related to the 
unit check is taken from the control unit. BMXSIO detects this 
condition by reading the flag BDV@ER from the Device Table. If 
the flag is set, BMXSIO only assigns the last path used (BDV@LC) 
to the device. In addition, BMXSIO validates that the command in 
the CPW to be issued is a Sense 1/0 (CM$SNS) command. 

• Control-unit assign 

BMXSIO detects control-unit assign when either of the CPB flags 
CPB@PA or CPB@TA are set, which indicate that the last path used 
by the device (BDV@LC) is to be assigned. The flags are set by 
the device activity, either for on-line diagnostics (CPB@PA) or 
error recovery (CPB@TA). The flags remain set until cleared by 
the calling routine. 

• Path already assigned 

It is possible, because of time-dependent situations involved with 
asynchronous (Request-in) processing, that a path is already 
assigned to the device. In this case, that path is reused. 

Once a device path has been determined, the request is sent to BMXDEM for 
processing. This is accomplished by entering the Start Command sequence 
(KIC$SC) into the assigned Channel Table (CHT@NP) and placing the Channel 
Table on a queue (XCIQ) for BMXDEM. BMXDEM is then activated (see BMXDEM 
in this section). 

BMXSIO suspends the device activity on the Device Table queue (BDV@TQ) 
and remains there until activated by BMXDEM or as a result of a device 
time-out. 

Device time-out - Usually BMXSIO uses the TPUSH (timed push) mechanism to 
suspend the device activity on the device queue. If control is returned 
to BMXSIO with the time-out count exhausted (BDV$TMO), an error (ES$DTO) 
is put into the CPB (CPB@EC) and an error operation status (OS$ER) is 
returned to the caller. 

5-18 SM-0046 G 



I 

BMXSIO uses the PUSH (untimed push) mechanism to suspend the device 
activity if the Device Not-ready flag (BDV@NR) is set. This flag is set 
by the device driver when an interrupt is expected only after manual 
intervention such as a tape being mounted. 

Control-unit busy - Control-unit busy is indicated by the presence of 
Busy (ST$BZ) along with Status Modifier (ST$MD) in the device status 
(BDV@DS). Control-unit busy means that the selected control unit is not 
in a state where it can accept commands from the attached channel. 
BMXSIO marks the control-unit busy in the Control Unit ~able (CUT@BZ) and 
selects a new path for the device. The 1/0 request is then reissued to 
BMXDEM. The Control-unit Busy flag is cleared when the control unit 
presents control unit end status (ST$CUE) through asynchronous 
(Request-in) interrupt. 

Device busy - Device busy is indicated by the presence of Busy (ST$BZ) 
without Status Modifier (ST$MD) in the device status (BDV@DS). Device 
busy means that the selected device is not in a state where it can accept 
commands from the selected control unit. The defined BMX channel 
protocol requires the device to present an asynchronous (Request-in) 
interrupt with a Device End (ST$DE) in the device status (BDV@DS). 
BMXSIO marks the Device Table as pending CPW restart from a busy 
(BDV@RS), waiting Device End (BDV@WE) and Request-in (BDV@RI), and 
suspends the device activity on the device queue. When the Request-in 
interrupt is received from the device, BMXDEM will resume the device 
activity and BMXSIO reissues the request to BMXDEM. 

Channel Command Retry - Channel Command Retry is indicated by the 
presence of Status Modifier (ST$MD), Channel End (ST$CE), and Unit Check 
(ST$UC) in the device status (BDV@DS). Channel Command Retry means that 
the selected control unit must perform some internal operation before the 
command can be accepted. The device status may contain Device End 
(ST$DE) also. If it does, the command may be reissued immediately; if it 
does not, the defined BMX channel protocol requires the device to present 
an asynchronous (Request-in) interrupt with a Device End (ST$DE) in the 
device status (BDV@DS). 

In the case where Device End is not present, BMXSIO marks the Device 
Table as waiting Device End (BDV@WE) and Request-in (BDV@RI) and suspends 
the device activity on the device queue. When the Request-in interrupt 
is received from the device, BMXDEM will resume the device activity and 
BMXSIO then returns to the caller with an Operation Status of OS$RT. 

In the case where Device End is present, BMXSIO immediately returns to 
the caller with an Operation Status of OS$RT. 

SM-0046 G 5-19 



I 

I 

I 

I 

I 

I 

5.5.3.2 Wait 1/0 (RQ$WIO) 

The wait 1/0 (RQ$WIO) request is made by the device driver when awaiting 
ending status from a device used in a previously initiated 1/0 operation 
or for another command to complete when command chaining. BMXSIO 
determines whether the device is busy (OS$BZ or OS$IP). If it is, BMXSIO 
suspends the activity on the device wait queue (BDV@TQ). 

When reactivated after suspension on the device wait queue, BMXSIO 
determines the current status and takes appropriate actlon. 

5.5.3.3 Return to caller 

Before returning to the caller, BMXSIO determines whether or not to 
release the device path. The device path is released if ending status 
has been received and if no error has occurred. 

Releasing the device path consists of clearing channel ownership (CHT@CO) 
and control unit ownership (CUT@CO), enabling request-in interrupts, and 
servicing the Control Unit Block Queue (CBT@QU) and the Channel Resource 
Queue (CHT@QU). Request-in interrupts always remain enabled when the 
device path is not assigned. 

5.5.4 BMXAIO 

BMXAIO handles auxiliary functions for the BMX subsystem. These are 
functions that are not frequently used. 

Format: 

ILocation IResult I Operand 
I I I 
I I CALL IBMXAIO, (fn,PO,Pl,P2) 

fn 

Po 

Function code: 
RQ$HIO Halt 1/0 
RQ$APTH Assign Path (DIA task only) 
RQ$RPTH Release Path (DIA task only) 
RQ$RSET Reset channel/device 

CPB address if fn = RQ$HIO or RQ$RSET 
Channel number if fn = RQ$APTH or RQ$RPTH 

Device ordinal 

Control unit address if fn = RQ$APTH or RQ$RPTH 
.BMA:l accumulator value (reset type) if fn = RQ$RSET 

5-20 SM-0046 G 



5.5.4.1 Halt IIO (RQ$HIO) 

This function requests that BMXAIO terminate I/O to the device indicated 
I by the CPB address and device ordinal. 

I If the channel (CPB@CN) is currently busy, BMXAIO issues an interface 
disconnect to the channel, terminating all 1/0 to the device and freeing 
the device path. 

I 

I 

BMXAIO then releases the device path, which involves cl~aring CHT@CO, 
clearing CUT@CO, and enabling request-in interrupts. A status of OS$HD 
is returned to the caller. 

5.5.4.~ Assign device path (RQ$APTH) 

This function is used by on-line BMX diagnostics to assign a device path 
and allows a diagnostic to do its own 1/0 concurrent with the system. 

The on-line diagnostic request DIA sets a diagnostic request bit in the 
packet. BMXAIO uses logic similar to BMXSIO to assign the path (see 
above). 

BMXAIO returns a status (0) indicating successful assignment: otherwise a 
protocol error is returned. 

5.5.4.3 Release device path (RQ$RPTH) 

This call is made to release a path previously assigned by the RQ$RPTH 
request. 

BMXAIO releases the device path by clearing all previously assigned 
tables, reinitializes the channel, and returns to the caller. If the 
device is not active, a protocol error is returned. 

5.5.4.4 Request reset (RQ$RSET) 

BMXAIO finds a path and issues a selective reset or channel reset 
depending on the caller's parameters. 

5.5.5 BMXDEM 

BMXDEM is the BMX subsystem channel driver. It is responsible for the 
initiation and control of all liD to a BMX device through the assigned 
channel and control unit. 

SM-0046 G 5-21 



I 

BMXDEM receives all of its requests from the channel queue (XCIQ), where 
the address of the Channel Table (CHT@) corresponding to the assigned 
channel is placed. 

BMXDEM is activated by BMXSIO, to initiate IIO, and the BMX channel 
interrupt handler, IBMX, which processes interrupts. 

BMXDEM is driven by the sequence code stored in the Channel Table 
(CHT@NP). All necessary tables can be located by BMXDEM using the 
Channel Table, as shown in figure 5-7. 

CHT@CO ---~"~CUT@ 
CUT@CO----~ .. ·BDV@ 

BDV@CP----~ •• CPB@ (CPB Address) 

Figure 5-7. BMXDEM's Usage of the Channel Table 

5.5.5.1 Start command sequence (KIC$SC) 

The Start command sequence initiates 1/0 to the specified device 
(BDV@UN), beginning with the CPW addressed by CPB@CC. 

BMXDEM determines from the command (CPW@DT) whether or not a data 
transfer is indicated. If a data transfer is indicated, the following 
additional processing is done. 

Data transfer - To accomplish a data transfer, the channel data buffer 
and byte-count registers must be set. The channel hardware contains two 
data-buffer and two byte-count registers to provide data chaining 
capability. Data chaining allows for data transfers too large to be 
contained in a single Local Memory data buffer and is used only if Buffer 
Memory is to be used for the command (CPW@MS set to one). 

The data address word entered into the channel data address registers 
contains two flags, in the low-order 2 bits, which control hardware data 
chaining. The format for the word is as follows: 

DC 

5-22 

Buffer Address DC SP 

Description 

Data chain; if this bit is set, the channel hardware 
automatically switches to the buffer address in the other 
buffer register. The switch occurs when the byte counter 
decrements to O. The byte-count register is updated from 
the auxiliary byte-count register. The hardware returns an 

SM-0046 G 



I 

DC 
(continued) 

BP 

interrupt when the switch occurs to allow the software to 
process the completed buffer and reset the buffer address 
register and byte count if the data chain continues. 

Buffer register pointer; indicates which of the two 
registers the buffer address applies to. 

If data chaining will not be used for the command, BMXDEM sets both 
buffer addresses and the first byte count from the current CPW (CPW@DA, 
CPW@BL). The second byte count is set to one. 

If data chaining is to be used, the first address is set from whichever 
buffer pointer is pointed to by CPB@BP (CPB@BO or CPB@Bl). The second 
address is set to the other pointer. For transfers from the device, the 
two byte-count registers are set to 4096 bytes and the data chain bit is 
set in both buffer address registers. For transfers to the device, if 
the transfer length in the CPW (CPW@BU and CPW@BL) is less than 8192 
bytes, then the two byte-count registers are set to the transfer length; 
otherwise, the two byte-count registers are set to 4096. The data chain 
bits in the buffer address registers are set appropriately. 

Issuing the command - Before actually issuing the command, the device 
address/mode word must be sent to the channel. The format for this word 
is as follows: 

Field 

CM 

Description 

Channel mode. This field indicates which of the following 
interface protocols is to be used between the channel and 
the control unit: 

• DC Interlock or Offset Interlock 
• 4.5 MByte/second Data Streaming 
• 3.0 MByte/second Data Streaming 

BMXDEM obtains the value for this field from BDV@CM. 

IM Interrupt mode. This field indicates the conditions under 
which the hardware will generate an interrupt to the 
system. When issuing commands, this field is always set to 
zero, causing the hardware only to generate an interrupt 
when ending status is received or when the byte counter 
decrements to 0 during a data transfer. 

CCM Command chain mode. This field indicates the condition on 
which the control unit is to chain. BMXDEM sets command 
chain on Device End if indicated in the CPW (CPW@CC). This 
mode leaves the device connected to the device path after 
the current operation completes, if no abnormal status 
conditions exist. The next command can then be issued 
immediately. 

SM-0046 G 5-23 



I 

Field 

STK 

SK 

DA 

Description 

Stack Status; this flag tells the control unit to hold any 
pending status until the channel is ready for it. This 
flag is never set by BMXDEM. 

Skip Data Transfer; this flag tells the channel not to 
transfer any data on a data transfer. This flag is never 
set by BMXDEM. 

Device address; this field contains the physical address of 
the device. It consists of control-unit address in the 
high-order 4 bits (0 through F) and the device address 
(0 through F) in the low-order 4 bits. BMXDEM obtains the 
device address from the Device Table (BDV@UN) and then 
issues the command from the CPW (CPW@CM) to the channel. 

If the command issued was a data transfer to the device, BMXDEM activates 
the data handler pointed to by the PRW address from the CPB (CPB@PR). 
The next Local Memory buffer can then be filled with data while the 
current one is being sent to the device. 

Channel time-out - After issuing the command, BMXDEM calls the QTIME 
routine, with the channel timer address (CHT@TO) and timer value 
(CHT$TMO), for placement on the event timer queue. The time-out handler 
address (IBMXTO) is entered into TMR@RT of each channel's timer entry 
(CHT@TO) at initialization time. 

If a channel time-out occurs (the count for a channel that is being timed 
decrements to 0), IBMXTO is activated. IBMXTO disables interrupts on the 
timed out channel, enters an error code (ES$CTO) in the Channel Table 
(CHT@EC), and activates BMXDEM. BMXDEM returns the error to the device 
activity via BMXSIO by resuming it. 

Sequence code update - Finally, BMXDEM updates the sequence code. If the 
command was for a data transfer, the sequence code is set to Advance Data 
(KIC$AD). Otherwise, the code is set to Advance command (KIC$AC). The 
code is saved in the Channel Table (CHT@NP) and is processed on the next 
call to BMXDEM for the channel. 

5.5.5.2 Advance command sequence (KIC$AC) 

The Advance command sequence is entered after the completion of current 
1/0. Completion is indicated when the Channel Done flag is set. 

BMXDEM always activates the device activity upon entering the Advance 
command sequence. BMXDEM then determines from the ending status (CHT@DS) 
whether or not to continue processing. Ending status can be as follows. 

5-24 SM-0046 G 



I 

Interrupt pending - If Device End (ST$DE) is not set in the device 
status, BMXDEM sets the operational status (BDV@OS) to interrupt pending 
(OS$IP) and terminates processing on this device. Interrupt pending 
indicates that the paths (channel and control unit) to the device are 
free to be reassigned, but that the device is still busy processing the 
command. Device end is reported through the asynchronous (request-in) 
mechanism when the device has completed the command. 

Unit check/unit exception - Unit check (ST$UC) or unit exception (ST$UE) 
in the device status indicates an abnormal condition. B~EM returns an 
error status (OS$ER) in the operational status word (BDV@OS) and 
terminates processing on the device. 

If no abnormal condition exists, BMXDEM checks the CPW (CPW@CC) for 
command chaining. If set, BMXDEM advances to the next CPW in the list. 
Processing from this point is the same as for the Start command sequence 
described previously. 

5.5.5.3 Advance data sequence (KIC$AD) 

The Advance data sequence is used when processing a Data Transfer command 
and is responsible for sustaining the data transfer until ending status 
is received. Ending status is indicated if the Channel Done flag 
(CHT@DN) is set. 

The Advance Data sequence is activated by the channel interrupt handler 
(IBMX) each time an interrupt is received, indicating that the channel 
has switched data buffers. The software can then process one buffer 
while data is transferring between the other buffer and the device. 

BMXDEM determines the byte count transferred on the completed buffer and, 
if a transfer from the device, increments the count in the associated CPW 
(CPW@BU and/or CPW@BL). The data handler is then activated via the PRW 
pointed to by the CPB. 

Once a data transfer begins, the interrupt handler and, on writes, the 
data handler, are responsible for sustaining the channel data transfer by 
setting new channel address and byte-count registers. 

With data transfer still going, BMXDEM resets the channel time-out count 
and terminates. When the data transfer has completed, BMXDEM sets the 
sequence code to Advance command (KIC$AC) and processes that sequence. 

5.5.5.4 Request-in sequence (KIC$ER) 

The request-in sequence is used to process status presented 
asynchronously from the control unit or device. BMXDEM receives the 
ending status and device address from the interrupt handler (IBMX) in the 
Channel Table (CHT@DS and CHT@RA, respectively). 

SM-0046 G 5-25 



I 

BMXDEM uses the device address to search for the Device Table associated 
with the device presenting status (see figure 5-8). 

CHT@ 
CUT @ 

.. DBT@ 
CHT@SC - .. BDV@ 

CUT@DB -
CUT@CA DEV 0 

~ -
DEV 1 

BDV@UN 

1853 

Figure 5-8. Location of BDV@UN 

If the Device Table is found and the device is waiting for pending status 
(BDV@RI), BMXDEM resumes the waiting device activity (BDV@TO). If the 
device is not waiting for pending status or if no Device Table exists for 
the device address presented, BMXDEM checks the ending status for 
control-unit end (ST$CUE). This condition indicates that the status is 
being presented as a result of a previous control-unit busy condition. 
BMXDEM clears control-unit busy (CUT@BZ) in the Control Unit Table and 
checks the control-unit bank queue (CBT@QU) for suspended device 
activities. If there are any, BMXDEM activates the first one queued. 

BMXDEM locates the Device Table first by finding the Control Unit Table 
that has a control-unit address (CUT@CA) matching the one received. Once 
the Control Unit Table is found, the Device Table is found by indexing 
into the Device Bank Table (DBT@) associated with the control unit 
(CUT@DB). The index used is the device address within the field CHT@RA. 

5.5.6 BMX INTERRUPT HANDLER (IBMX) 

The BMX interrupt handler is responsible for handling all interrupts 
received on channels assigned to BMX interfaces. IBMX is activated by the 
Kernel interrupt handler using the Interrupt Jump Table (EITB). 

IBMX disables interrupts for the channel and then locates the associated 
Channel Table (CHT@), using the BMX Channel Look-up Table (XCHT). 

The channel timer entry (CHT@TO) is passed to DQTIME to remove the entry 
from the timer queue. Input tags, device status, and channel flags are 
saved in the Channel Table for use by the BMX driver (BMXDEM). 

5-26 SM-0046 G 



I 

IBMX uses the sequence code (CHT@NP) to determine how to process the 
interrupt. 

5.5.6.1 Immediate return (KIC$IR) 

This sequence code indicates that the channel is assigned to an activity 
that is doing its own I/O (BMXAIO or BMXCON). IBMX activates the task 
(if there is one) waiting on the channel function queue (CHT@CF). No 
further processing is done for the interrupt. 

5.5.6.2 Advance data (KIC$AD) 

If the Channel Done flag is set, IBMX activates BMXDEM to process ending 
status on the data transfer. 

If the Channel Done flag is not set, the channel has switched data 
buffers to sustain a chained data transfer. IBMX uses the data buffer 
pointer present in the channel input tags register to identify which 
Local Memory data buffer address (CPB@BO or CPB@Bl) to use to reset the 
channel in preparation for the next buffer switch. In the case of 
transfers from the device, data chaining is always indicated to the 
channel and a new byte-count register value of 4096 is set. 

In the case of transfers to the device, data chaining is set only if the 
CPB indicates more than a sector remains to be transferred from Buffer 
Memory (fields CPB@BU and CPB@BL are greater than 4096). A new 
byte-count register value is never set, deferring that to the data 
handler. This ensures that the Local Memory buffer is reloaded before 
the channel switches to it. 

IBMX checks the respective buffer ready flag in the CPB (CPB@OR or 
CPB@lR) to see if the new buffer is ready for I/O. If the flag is not 
set, a software overrun error (ES$SOR) is set into the Channel Table 
error code (CHT@EC). BMXDEM is activated to process the completed buffer 
of data and prepare for the next interrupt or to process the error. 

5.5.6.3 Start request-in (KIC$SR) 

IBMX marks the channel in use by entering the request-in process as the 
channel owner (CHT@CO = CO$RI). IBMX then issues a channel function to 
read in the device address associated with the request-in. The sequence 
code is set to continue request-in (KIC$CR) and IBMX terminates 
processing until the next channel interrupt occurs. 

SM-0046 G 5-27 



I 

5.5.6.4 Continue request-in (KIC$CR) 

The Continue Request-in sequence saves the device address received from 
the previous sequence in CHT@RA and issues a channel function to read in 
the status from the interrupting device. The sequence code (CHT@NP) is 
updated to End Request-in (KIC$ER), and IBMX terminates until the next 
interrupt occurs. 

5.5.6.5 End request-in (KIC$ER) 

The End Request-in sequence saves the device status in CHT@DS, activates 
BMXDEM, and terminates. 

5.5.7 BMXOPE 

BMXOPE is called to open or close a BMX device for a device activity. 
Processing is based on the function code (TQ@FCN) and the device ordinal 
(TQ@DVN) • 

Format: 

ILocation !Result 
I I 
I I CALL 

!Operand 
I 
IBMXOPE,(dal) 

!Comment 

dal Address of a formatted mainframe request 

5.5.7.1 Open (FC$MOUNT/FC$REMOUNT) 

BMXOPE opens a device by placing the Activity Descriptor (AD) address of 
the activity into the Device Table (BDV@AI) based on the device ordinal. 
If the device is already open, BMXOPE returns a protocol error (ST@DAL) 

I in the packet (TQ@STS). BMXOPE then passes the request on to BMXTPO for 
device-dependent processing. 

5.5.7.2 Close (FC$FREE) 

BMXOPE closes a device by performing the following steps: 

1. Issuing a Sense command 

2. Clearing the operator display on cartridge-type devices 

3. Issuing a selective reset 

5-28 SM-0046 G 



I 

4. Clearing device ownership (BDV@AI) 

5. Releasing the device table space (CPB/TCB) addressed by BOV@CP 

6. If a OIA task, calling BMXAIO to release any path assignment 
(RQ$RPTH) 

5.5.8 BMXTPO 

BMXTPO is called to complete the open of a BMX tape device. 

Format: 

ILocation IResult I Operand 

I I 
I I CALL 

I 
IBMXTPO,(dal,dvn,fn,sid,pdv) 

dal Address of a formatted mainframe request. 

dvn Device ordinal. Logical device address. 

En Function code: 
FC$MOUNT Mount a tape on the device 
FC$RMNT Remount a tape on a new device 

sid Sender ID: 
RQ$CPU Request is from mainframe. 
Otherwise request is internal. 

pdv Previous device ordinal. FC$RMNT only. 

The difference between FC$MOUNT and FC$RMNT is that any data associated 
with the previous device is copied to the new one for remounts. 

BMXTPO performs the following functions: 

1. If the function is FC$MOUNT or FC$RMNT to a different device, a 
Tape Control Block (TCB) is allocated. 

2. If a Datastream Control Table does not exists, DSCGET is called 
to allocate one. 

3. If the request is from the DIA (BMX on-line diagnostics) task, 
BMXAIO is called to assign the path (RQ$APTH). 

4. If the device is of cartridge type and there is a Display Control 
Byte (TQ@BCS) in the DAL, a Load Display command is issued to the 
device. 

SM-0046 G 5-29 



I 5-30 

5. The device is then armed. This involves issuing a No-op command 
to the device. The only acceptable states for the drive are to 
be ready at load point or not ready (unloaded). If the device 
has a tape mounted but it is not at load point, it is unloaded 
and the arm is retried. If the device is not ready, the device 
activity waits for tape to be loaded. 

6. If a tape is successfully loaded, control is either passed to TEX 
to process further mainframe requests, if the request is from the 
mainframe, or returned to the caller. 

SM-0046 G 



6. 1/0 SUBSYSTEM STATION 

The IIO Subsystem (lOS) station is a collection of closely associated 
tasks executing in the Master IIO Processor (MIOP)t that provide 
operator command and display facilities and dataset staging capabilities 
independent of any front-end computers. 

The clo~e association among the tasks is maintained through communication 
areas and shared data areas allocated in Local Memory. 

The station operates under the control of the Kernel. All station code 
exists in the form of overlays stored in Buffer Memory. The Kernel 
manages the scheduling of the station tasks and the loading of overlays 
into Local Memory. A station task interfaces with other tasks and the 
Kernel through the standard Kernel service requests. 

6.1 STATION TASKS 

Table 6-1 lists the station tasks and describes the function of each. 
Each task name is also the name of the initial overlay or the controlling 
overlay for that task. 

The station is initiated by entering the STATION command at an MIOP 
Kernel console. Multiple stations may be executing provided that 
resources, including a dedicated console for each, are available. 

The STATION command initiates one set of the console handling routines: 
KEYBD, CLI, and DISPLAY. A set of these routines is also initiated to 
handle each console added to the station through the CONSOLE command. 
The tasks terminate when an END command is issued at the corresponding 
console. 

Only one PROTOCOL task can exist at a time. It is created by the LOGON 
command and endures as long as communications with the mainframe are 
maintained. Communications are terminated explicitly by the LOGOFF 
command or automatically if the task encounters communication errors. 

t A task in the Buffer IIO Processor (BIOP) is required to move messages 
between Buffer Memory and Central Memory. This task is not unique to 
the station in that it services all active stations and concentrators. 
This task is discussed in the section describing the concentrator. 

SM-0046 G 6-1 



Table 6-1. Station Tasks 

Task Function 

CLI 

DISPLAY 

KEYBD 

PROTOCOL 

STAGEIN 

STAGEOUT 

Interprets and executes the operator commands 

Formats the operator displays 

Receives characters entered at the console keyboard 

Manages communications between the station and the 
mainframe 

Stages a dataset from an lOS input device to the 
mainframe 

Stages a dataset from the mainframe to an lOS output 
device 

A STAGEIN task is started by the PROTOCOL task for each input dataset 
staging operation; a STAGEOUT task is started for each output dataset 
staging operation. The tasks terminate when the staging operation 
completes or is aborted. The number of staging tasks simultaneously 
active is governed by protocol parameters assembled in the STATINIT 
overlay: the maximum input stream count (IST), the maximum output stream 
count (OST), and the maximum active stream count (AST). 

6.2 STATION STORAGE 

The station tasks allocate storage in Local Memory and Buffer Memory. 
Some of these storage areas are accessible by more than one task; the 
area contains shared data and intertask communication areas. 

Pointers to the shared memory are maintained in global registers, 
allowing access by called overlays without requiring that the address be 
passed as a parameter. Table 6-2 indicates the tasks that access each 
shared memory area. The lOS Table Descriptions Internal Reference Manual 
contains detailed descriptions of the shared memory areas. 

6-2 SM-0046 G 



Table 6-2. Shared Memory Access 

Task 
Register 

KEYBD CLI DISPLAY 
I 
I PROTOCOL 
I 

STAGEIN 
I 
ISTAGEOUT 
I 

I I 
~STAT x x I x x I x 
~CLI x x I I 
~STCON x x x I I 
'\,PROT xt I x I xt 

I I 
t The reference is through a pa ameter rather than a direct reference 

using the global register. 

The shared memory areas are as follows: 

Register 

~STAT 

~CLI 

'\,STCON 

%PROT 

Area Name 

Station shared Local 
Memory (SS@) 

Console support tasks 
shared memory 

Console Driver 
Table (C$) 

PROTOCOL task Local 
Memory (PT@) 

Contents 

Station parameters and queued 
dataset information 

Console display parameters 

Console parameters 

Addresses and IIO Stream 
Control Tables used by PROTOCOL 
task 

All task interaction occurs using the shared memory areas. This 
interaction takes two forms: 

• Modifying parameters used by another task. This may be viewed as 
indirect interaction, because it does not directly affect task 
scheduling. 

• Interfacing with another task through the Kernel service calls 
PUSH, POP, and TPUSH, all of which require Local Memory queue 
cells. 

The two types of interaction are often used in conjunction. For 
instance, the LOCK, UNLOCK, WATCH, and SIGNAL macros require both a data 
parcel and a queue used by one of the PUSH, POP, or TPUSH service calls. 

SM-0046 G 6-3 



The individual tasks also allocate unshared storage areas. The Local 
Memory stack areas reserved by the CLI, DISPLAY, and PROTOCOL tasks allow 
the tasks to allocate and release small, variable size buffers through 
the GETSTACK and FRESTACK macros, respectively. This mechanism 
guarantees that a memory buffer is available when required and eliminates 
the overhead involved in GETMEM and RELMEM Kernel service calls. 
However, a memory buffer large enough to contain all simultaneously 
allocated buffers (for that task) must be reserved for the stack. 

A stack (see figure 6-1) consists of a Local Memory buffpr and two global 
registers: 'STACK, which points to the next available location, and 
'LIMIT, which points to the end of the stack buffer. 'STACK and 'LIMIT 
are initialized by the INSTACK macro after the Local Memory buffer has 
been reserved. 

a 

Link 

GETSTACK Buffer 

GETSTACK Buffer 

%STACK ~ 

%LIMIT ~ 

1857 

Figure 6-1. Local Memory Stack Area 

6-4 SM-0046 G 



Fill uses between 0 and 3 parcels, enabling all buffers to begin on a 
word boundary. 

6.3 TASK FLOW AND INTERACTION 

This subsection describes the general flow of the station tasks and the 
interaction between them. In the task flow descriptions, the overlays 
responsible for the function cited are listed on the right. Diagrams 
show the hierarchy of the overlays and the areas of interaction with the 
other tasks. 

6.3.1 STATION INITIALIZATION 

The station is initiated with the STATION command, which is entered at an 
MIOP Kernel console. The station initialization routines allocate and 
initialize buffers and create the triad of tasks KEYBD, CLI, and 
DISPLAY. If any aspect of initialization fails, all resources are 
released, and an explanatory error message is generated. 

Station initialization is shown in figure 6-2. Its flow is as follows: 

Step Function 

1. Validate the station console number 

2. Allocate and initialize shared Local 
Memory buffer (~STAT) and a shared buffer 
in Buffer Memory 

3. Usurp station console and allocate console 
support buffer (~STCON) 

4. Allocate and initialize shared memory 
buffer (%CLI) 

5. Set up stack (%STACK and %LIMIT) and 
create DISPLAY task 

6. Create KEYBD task 

7. Write title line to console 

8. Set up stack and create CLI task 

9. Output error message (if necessary) 

SM-0046 G 

Overlay 

STATION 

STATINIT 

USURP 
ICONSL 

CLINIT 

CLINIT 

CLINIT 

CONSL 

CLINIT 

STATION 

6-5 



---<::) 
-- CALL, RB'l'URN, GOTO 
--- - Data path 

c=J OVerlay 

1126 

Figure 6-2. Station Initialization Flow 

6.3.2 KEYBD TASK 

The KEYBD task receives input from the console keyboard and passes it to 
the CLI task for interpretation. Because the character processing is 
negligible, the task is always available to receive input. Thus, the 
operator is able to type ahead; that is, key in commands before CLI has 
completed processing the previous command. The interaction areas for 
KEYBD are described in table 6-3. 

The KEYBD task is shown in figure 6-3. Its task flow is as follows: 

Step Function 

6-6 

1. Check for termination request. If 
posted, respond to the CLI task and 
terminate. The KEYBD task is not 
responsible for releasing any resources. 

2. Receive next character 

3. Translate the character using the table 
appropriate to the console type. 
Characters requiring special hand1ing by 
CLI (such as the carriage return) are 
translated to special codes. If the 
character is illegal, ring the console bell. 

4. Store character in the circular buffer 
and activate the CLI task (if necessary) 

Overlay 

KEYBD 

KEYBD 

KEYBD 
CONSL 

KEYBD 

SM-0046 G 



Table 6-3. KEYBD Task Interaction Areas 

Register Field or Table Use 

~CLI $R@CLI 

~CLI $T@KEY 

C$LOCK 

Keyboard input circular buffer. The KEYBD 
task stores characters and updates the in 
pointer; the CLI task removes characters 
and updates the out pointer. 

CLI activation area. When CLI is idle 
waiting for the next command to be entered, 
it suspends by watching this area (through 
the WATCH macro). KEYBD, upon receiving 
input, activates CLI with the SIGNAL macro. 

Termination communications area. The KEYBD 
task monitors this area for a termination 
request. CLI, as part of END command 
processing, posts a message then suspends 
(using the same area), awaiting an 
acknowledgment from the KEYBD task. 

Interlock that controls access to the 
display. This is used when the KEYBD task 
must ring the console bell. 

[:;::J --_IL..}..,...-_KE_Y_:,...D_-,H,-_-CO_N_S_L-:._.-,~ --~ . . ~ 
/.. .. 

/ .. 
/ (,_C~$_LOC_K_~) 

/ • • ••• i i •• / 8: ..... 8· / . 
"'-C-ir-C-U-la-r""I-""" _ CLI DISPLAY 

Buffer 

----CALL, RETURN, GOTO 
C ) 

Areas of interaction (PUSH, 
, " POP LOCK, UNLOCK, WATCH, 
----..... and SIGNAL) 

- - - - - Data Path 

•• •••• Shared Memory Access Path o Task 

1127 

Figure 6-3. KEYBD Task Flow and Interaction 

SM-0046 G 6-7 



6.3.3 DISPLAY TASK 

The DISPLAY task generates the operator and debug displays. It is 
responsible for acquiring and formatting the data and sending it to the 
console. The DISPLAY task execution is based on parameters stored in 
shared areas. These parameters, indicating display type, refresh rate, 
and so on, are set by the CLI task and are described in the task 
interaction areas table. 

The DISPLAY task also interacts with other tasks and with the Kernel in 
the sense that it taps various tables for data used in the displays. The 
partial list of tables in table 6-4 includes shared memory areas ('STAT 
and 'CLI), the I/O stream control tables, the expander device control 
tables, and the Kernel error logging table. 

Table 6-4. DISPLAY Task Interaction Areas 

Register Field or Table 

$R@DIS 

$T@DIS 

$L@DIS 

$D@INT 

$F@FLG 

6-8 

Use 

DISPLAY task activation area. When the 
task is idle, it suspends the use of this 
area through a timed WATCH request. The 
task is reactivated either when the timer 
(the display refresh interval) expires or 
when CLI signals a display refresh due to 
a change of state (new display, LOGON or 
LOGOFF, and so on). 

Termination communications area. See 
KEYBD task $T@KEY. 

Interlock controlling access to the display 
parameters that follow. Its use prohibits 
the CLI task from altering the display 
parameters while the DISPLAY task is 
generating a display. 

The following are parameters controlling 
the DISPLAY task and describing the active 
display: 

Interval between display refreshes, in 
tenths of a second, if automatic refresh 
is enabled 

Flag bit FLG$REF indicates whether 
automatic refresh is enabled. 

SM-0046 G 



Table 6-4. DISPLAY Task Interaction Areas (continued) 

Register Field or Table 

$D@TYP 

$D@OVL 

$D@PAR 

$D@FRM 

$D@QUE 

$D@DEB 

$D@LFT 

$D@RGT 

$D@MOD 

$D@TSK 

$D@JOB 

~STCON C$LOCK 

SM-0046 G 

Use 

Display type: none, operator, or debug 

Number of overlay controlling display 
generation: 

DISPOl Operator displays 
DISP02 Debug displays 

Parameter defining operator display type 
(for instance, STATUS). The parameters 
for the various displays (DP$type) are 
generated by the DISPARS macro. 

Frame number for the LINK, STATUS, and 
STORAGE displays 

Queue flags for the STATUS display 

Display descriptors: one descriptor for 
each debug display (A-Z) 

Address of the debug display descriptor 
for the left debug display 

Address of the debug display descriptor 
for the right debug display. If the 
right display is inactive, the address 
is o. 

Mode of the debug display (for instance, 
COS EXEC) if the mode is not defined in 
the display descriptor 

COS task number used if the display mode 
is TASK and the number is not specified 
in the display descriptor 

COS job sequence number used if the 
display mode is JOB and the JSQ is not 
specified in the display descriptor 

Interlock controlling access to the console 

6-9 



Table 6-4. DISPLAY Task Interaction Areas (continued) 

Register Field or Table Use 

~STAT SS@OP Interlock controlling access to the 
Operator Stream Control Table 

~STAT SS@TAB Operator Stream Control Tab~e; it exchanges 
message request and response information 
between the DISPLAY and PROTOCOL tasks. 

SS@REQ PROTOCOL task activation word. PROTOCOL 
task is activated, if necessary, after 
message information is stored in the 
Operator Stream Control Table. 

The DISPLAY task flow and interaction on operator displays are 
illustrated in figure 6-4. The following steps are performed by the task: 

Step Function 

1. Suspend, waiting for a display refresh 
request or the expiration of the automatic 
refresh interval. 

2. Check for termination request; if posted, 
respond to the CLI task and terminate. 
The DISPLAY task is not responsible for 
releasing any resources. 

3. Set the display interlock ($L@DIS). 

4. If a display is active, do the following: 

a. Toggle the display refresh indicator. 
b. Call DISPOI to process an operator 

display. 
c. Call DISP02 to process a debug 

display. 

5. Clear the display interlock. 

Overlay 

DISPLAY 

DISPLAY 

DISPLAY 

DISPLAY, CONSL 
DISPOI 

DISP02 

DISPLAY 

The DISP01 routine acquires the data for a display and calls an overlay 
to perform the formatting. In the cases of the LINK, STATUS, and STORAGE 
displays, the information is acquired from the mainframe through normal 
protocol messages. The DISPLAY task calls the POST overlay to send a 
message to the mainframe and to receive a response message. In fact, 
this overlay interfaces with the PROTOCOL task, which controls all 
protocol messages. 

6-10 SM-0046 G 



L---....,....---J - - - - GiSPla
y 

.. . . . . 
~r------~ ~._.~.~ __ ~ 

° ~!~;:~!rs ----8 ~oo ) 
b ~ ~ sseop J ° ° POST ° ° -C SS@REQ)"O 0 0 0 0 ° P~:"" S°I!YBD v· ... · .. · · .. · · · · · · · ... · .. · · · · · ..... · · · · · .. 

--- CALL, RETURN, GOTO 
- - - - - Data Path 
• • • • • Shared Memory Access Path 

t Accessed by several of the overlays diagrammed 1128 

Figure 6-4. DISPLAY Task Flow and Interaction Operator Displayst 

6.3.4 CLI TASK 

The eLI task manages the operator interface; it interprets, executes, and 
responds to the station commands. 

Other tasks can be directly involved in the processing of a command. For 
example, the commands that require communications with COS involve the 
PROTOCOL task. The END command requires termination processing by the 
KEYBD and DISPLAY tasks and possibly the PROTOCOL task (and thus, the 
STAGEIN and STAGEOUT tasks). 

t Does not include MULTIPLY, DIVIDE, BTO, and BTD overlays 

SM-0046 G 6-11 



The tasks can also be affected by a particular command. For example, the 
REFRESH and LINK commands affect the DISPLAY task environment. The SAVE 
and SUBMIT commands queue a dataset for staging to the mainframe, 
impacting the PROTOCOL task and implying the creation of a STAGEIN task. 

The validation of the command keyword is performed by the overlay CLI. 
Once the command type is established, an overlay is called to validate the 
remaining input parameters and execute the command. The overlays used to 
process commands have names of the form COMMnn; n is a decimal digit. 
The association between command keyword and the proper CpMMnn overlay is 
made using the parameters CV$command, a unique index associated with the 
command. CV$command and CP$command are external symbols defined in 
the OVLNUM overlay using the COMPARS macro and referenced in the CLI 
overlay using the CMD macro. 

The general flow of the CLI task follows. Examples of the processing of 
several commands are also included. The STATUS command is representative 
of the display commands, while the DROP command is typical of those 
requiring communication with COS. Except where indicated on figure 6-5, 
the areas of interaction are not enumerated; see the KEYBD, DISPLAY, and 
PROTOCOL task descriptions in this section. The task flow for CLI is as 
follows: 

Step Function 

1. If reading from the console, input the 
characters from the keyboard circular 
buffer. Echo the character to the console 
or perform editing functions as required. 
Continue until an entire station command 
is accumulated. 

If reading commands from a command 
file, read the next command line and 
display it on the console screen. 

Overlay 

READ 

CFREAD 

2. Validate the command. A valid command is CLI 

6-12 

indicated by a special initial character 
or command keyword delimiter (for instance, 
+ to roll the display) or by a command 
keyword that matches an entry in the 
command table. 

3. If the command is not recognized, output 
an error message and go to step 1. 

4. Call the overlay that processes the given 
command. 

ERROR 
MESSAGE 
CONSL 

COMMnn 

SM-0046 G 



For commands that may have parameters, perform steps 5 through 8. 

Step Function 

5. Locate the table that describes the 
parameters. 

6. Build a table of information describing 
the parameters. Validate them using 
entries in the parameter descriptor 
tables. Convert parameters to an internal 
format if required (for instance, decimal 
to binary conversion). 

7. If a required parameter is invalid or 
missing, output an error message and 
return an error response. 

8. Perform remainder of processing for the 
particular command. 

/ 
/ 

r-----------------l 
t. OVerlays to Implement the Caamand I / L _________________ J 

Overlay 

DESCRIBE 

DECODE 
DECOD2 

ERROR 
MESSAGE 
CONSL 

COMMnn 

. \ 

C$LOCK )..: \ ~ 

. ... \~ 
\ .:-----., 

\ ( $R@CXLI ). , .. 

-- CALL, RETURN, GOTO 
- - - - - Data Path 

\ 
\ 

••••• Shared Memory Access Path 

. . 
r.::< -0· 

. . e ·8 
1131 

Figure 6-5. CLI Task Flow and Interaction (Does not include 
decimal to binary (DTB) and octal to decimal (OTB) 
overlays) 

SM-0046 G 6-13 



The flow of the STATUS command is given in figure 6-6 and the following 
stepflow. 

Step Function 

1. Set the display interlock. 

2. Save display parameters: 
$D@QUE Queue flags (from parameters 

on command) 
$D@FRM Display frame number (0) 
$D@TYP Display type (operator) 
$D@OVL Overlay number (DISPOl) 
$D@PAR Display parameter (STATUS) 

3. Activate the DISPLAY task. 

4. Release the display interlock. 

·80MMOl 
• • • •• 

• • • • • • • I • 

•• I •• 

• I • 

Overlay 

COMMOI 

COMMOI 

COMMOI 

COMMOI 

• • . ~ . 
• y • . ----.-~-----

( $L@D.IS)DisPlay ( $R@?IS) 
Parameters • • • • • • • • • • • 

- - - - - - Data Path 

• • • • 

I 

•••••• Shared Memory Access Path 

• • • • • • 

• • • 
• • 

• • 
• • 

Figure 6-6. STATUS Command Flow and Interaction 

1132 

6-14 SM-0046 G 



The flow of the DROP command is given in figure 6-7 and the following 
stepflow: 

Step Function 

1. Construct an operator function request 
message segment, inserting the job sequence 
number specified as a parameter. 

2. If not logged on, return an error response. 
Send the operator function request to the 
mainframe and receive a response. 

3. If an error response has been returned, 
output an error message. 

MESSAGE 

COMM06 CONSL 

• 
• 
• . 
C$LOCK 

Overlay 

COMM06 

POST 

COMM06 

ERROR 
MESSAGE 
CONSL 

• • 

• 

I 
I 
I 
I 

t 

• • • 
)·8 ( .. 8 • .. ( ) • : : : : : DISPLAY SS@OP 

• • • • • • • • 

Operator 
Stream 
Control 
Table 

A 
• I 

--------CALL, RETURN, GOTO 
- - - - - - Data Path ····E~~ •••••• Shared Memory Access Path 

1133 

Figure 6-7. DROP Command Flow 

SM-0046 G 6-15 



6.3.5 PROTOCOL TASK 

The PROTOCOL task controls the message interface between the lOS station 
and the mainframe. In general, the PROTOCOL task has the following 
responsibilities: 

• Generates messages sent to the mainframe 

• Validates the mainframe response messages 

• Maintains the input and output stream states 

• Creates tasks to manage input and output dataset transfers 

• Monitors Operator Stream Control Table for message requests 

• Monitors I/O stream control tables for message requests and stream 
state changes 

• Schedules messages for transmission to the mainframe 

• Distributes mainframe response messages 

The PROTOCOL task is initiated by the LOGON command and exists as long as 
communications with the mainframe are maintained. Task termination may 
be triggered externally, by the LOGOFF command, or internally, by a 
breakdown in communications with the mainframe. 

Table 6-5 describes the interaction areas for the PROTOCOL task. 

Table 6-5. PROTOCOL Task Interaction Areas 

Register Field or Table 

~STAT SS@PRO 

~STAT SS@REQ 

~STAT SS@1D 

6-16 

Use 

Activation and termination communications 
area. The CLI, after creating the PROTOCOL 
task, pushes itself on the queue while 
awaiting a response from the PROTOCOL task 
initialization. For a LOGOFF command, CLI 
posts a termination request and 
discontinues its wait for an acknowledgment. 

PROTOCOL task activation area. When the 
task is idle, it suspends by watching this 
area (using the WATCH macro). 

Station logon 10 

SM-0046 G 



Table 6-5. PROTOCOL Task Interaction Areas (continued) 

Register Field or Table 

'STAT SS@TID 

'STAT SS@POL 

'STAT SS@IN 

'STAT SS@OUT 

'STAT SS@FLG 

'STAT SS@TAB 

'PROT PT@TAB 

Use 

Station logon terminal identifier 

Interval between CONTROL messages, in 
tenths of a second, for an idle system 

Address of the first Input Stream Control 
Table 

Address of the first Output Stream Control 
Table 

The STA$LOG flag indicates whether the 
station is logged on to the mainframe. 
The STA$STG flag indicates whether dataset 
staging is enabled. 

Operator Stream Control Table; used to 
exchange message and response information 
between the CLI and PROTOCOL or between 
DISPLAY and PROTOCOL. 

Input and output stream control tables; 
used to exchange information between the 
STAGEIN and PROTOCOL tasks or between 
STAGEOUT and PROTOCOL tasks. 

Acquire request response area. A message 
is posted to PT@XAN by a STAGEIN task 
after it processes an acquired dataset. 

Queued input dataset information: 

'STAT SS@IQ Queueing Enabled flag 

'STAT SS@QST Queue Status flag 

'STAT SS@QHI High-order bits of Buffer Memory address 
of dataset header segment 

'STAT SS@QLO Low-order bits of Buffer Memory address of 
dataset header segment 

'STAT SS@QTB Device control table address 

SM-0046 G 6-17 



Table 6-5. PROTOCOL Task Interaction Areas (continued) 

Register Field or Table Use 

'STAT SS@QAQ Acquire flag 

'STAT SS@QDV Input device 

'STAT SS@QBK Blocking flag 

'STAT SS@QFL Tape file number 

'STAT SS@QCC Blocking control character 

The initialization sequence for the PROTOCOL task is illustrated in 
figure 6-8. The ~teps followed in initialization are as follows: 

Step Function 

1. Allocate and initialize Local Memory 
('PROT) and the task stack area ('STACK 
and 'LIMIT). Initialize the I/O Stream 
Control Tables. 

2. Initialize the I/O descriptor table and 
the stream descriptor tables in Buffer 
Memory. Identify the station to the 
channel driver. 

3. Format and send a LOGON message. Validate 
the START response message. 

4. If successful, set the Logged-on flag 
(STA$LOG) • 

5. Respond to the CLI task, popping it from 
the response queue. 

6. Go to PROTOCOL. 

If initialization fails, all resources are released, 
sent to CLI, and the PROTOCOL task terminates. 

an 

Overlay 

PROTINIT 

ONLINE 
ENTRID 

LOGON 
LCP 
CRAYIO 

LOGON 

PROTINIT 

PROTINIT 

error response is 

6-18 SM-0046 G 



t 

Buffer 
Memory 

. 

8 
- - - "L...-_~_:s_s_a_::_d---,. - - J::::\epYu-l 

_ Segments -\J 
I • 
.. I 

Shared 
parameterstt 

---CALL, RETURN, GO'l'O 

- - - - - Data Path 
••••• Shared Memory Access Path 

f The lowest level communication routines are documented with the 
concentrator and are not included in subsequent diagrams. 

ff Accessed by several of the overlays shown 

Figure 6-8. PROTOCOL Task Flow (Initialization) 

1134 

The PROTOCOL task flow and interaction (for the main body of the task) 
are illustrated in figure 6-9. The steps followed by the main body of 
the PROTOCOL task are as follows: 

Step Function 

1. Suspend waiting for a request from 
another task or the expiration of the 
poll interval. 

2. Go to PROTINIT for task termination if 
CLI has posted a termination request. 

3. If the Request-pending flag is set in a 
received LCP, return a control LCP. 

SM-0046 G 

Overlay 

PROTOCOL 

PROTOCOL 

PROTOCOL 

6-19 



• 

· • 

• 
• • 
• 

• 
• 

r-------------------------------------------r-_-_-_-_-L-____ ~ 

UPDATE 

STREAMS 

ACQUIRE 

LCP 

CRAYIO 

1/0 Stream 
control 
Tables 

Input Queue 
Parameters 

Acquire 
Parameters 

:-----------BTAGBOU'l' · · 
~~~ . 

~~~ . 
~~ . 

, ""'STAGRlII) 
" . " . ",,' . 

" " . 
'C' • ", " . 

""" ""O~I · ~ 
", : 

" 

" " 
" " • 

• 
Operator " 

Control • 

" 
" 

" " 

Stream e: 
L--T_a_b_l_e ___ -.J .------------ DISPLAY .~ 

" " " 
" "" .... ( SS@REQ ) ••••••••••••••••••••• : 

----------------------,,' ..... . · .. • •••••••••••••••••••• 

Figure 6-9. 

~ Intertask data path 
--- CALL, RETURN, GOTO 
------ Data Path 
• • • • • Shared Memory Access Path 

PROTOCOL Task Flow and Interaction (Main Body) 

1135 

Step Function Overlay 

6-20 

4. Schedule a dataset transfer reply message 
if a response has been posted (PT@PAN or 
PT@XAN) • 

5. If a message is not scheduled and a 
request has been posted in the Operator 
Stream Control Table, schedule the 
operator message. 

ACQUIRE 

PROTOCOL 

SM-0046 G 



Step Function 

6. For each input stream, update the 
stream state if a request is posted in the 
corresponding I/O Stream Control Table. If 
the stream has data to send, the mainframe is 
ready to accept it, and no other message is 
scheduled, schedule the dataset header or 
dataset segment message for that stream. 

7. For each output stream, update the stream 
state if a request is posted in the stream 
control table. 

8. Activate an input stream if the following 
conditions are met: 

• A dataset is queued for staging. 
• An input stream is available. 
• Staging is enabled. 
• The input stream and total stream 

maximums have not been reached. 

If all conditions are met, a STAGEIN task is 
created and supplied with the input queue 
parameters. The stream is flagged as active, 
and the queue status is changed to empty. 

9. Activate an output stream if the following 
conditions are met: 

• The mainframe wishes to initiate staging 
on a stream. 

• Staging is enabled. 
• The output stream and total stream maximums 

have not been reached. 

If all conditions are met, a STAGEOUT task is 
created, and the stream is flagged as active. 

10. Clear queueing flag if all input streams 
are active. This prevents datasets from 
being queued by a SAVE or SUBMIT command 
or a dataset transfer request. 

11. Save the stream control byte (SCB) for 
each defined input and output stream in 
the LCP. The SCB is based on the stream 
state. 

SM-0046 G 

Overlay 

STREAMS 

STREAMS 

STREAMS 

STREAMS 

STREAMS 

STREAMS 

6-21 



Step Function 

12. If no other message is scheduled, schedule 
a CONTROL message. 

13. Generate the message LCP. Send the message 
to the mainframe and receive the response 
message. 

14. Perform processing per the message type, 
one of those defined below. 

For operator response message: 

15. Validate the response message. If 
invalid, go to PROTINIT to handle the 
task termination. 

16. Save response parameters in the Operator 
Stream Control Table and activate the 
suspended task. 

For dataset header or dataset segment message: 

17. Validate the response message. If 
invalid, go to PROTINIT for task 
termination. 

18. Store response parameters in the 1/0 
Stream Control Table and activate the 
STAGEOUT task. 

For CONTROL message: 

19. Validate the response message. If 
invalid, go to PROTINIT for task 
termination. 

For dataset transfer request message: 

20. Validate the response message. If 
invalid, go to PROTINIT for task 
termination. 

21. Schedule a postpone response message if 
another request is being processed or if 
the input queue is in use. Otherwise, 
save parameters for the input stream 
activation. 

6-22 

Overlay 

PROTOCOL 

LCP 
CRAYIO 

PROTOCOL . 

LCP 

PROTOCOL 

LCP 

PROTOCOL 

LCP 

LCP 

ACQUIRE 
QUEUE 

SM-0046 G 



For restart or message error message: 

Step Function 

22. Go to PROTINIT for task termination. 

23. Generate a new state based on the previous 
state and the response SCB for each input 
and output stream. Store a response in the 
Stream Control Table and activate the 
corresponding STAGEIN or STAGEOUT task if 
so indicated by the new state. 

For station message: 

24. When a station message is received, call 
overlay with pointers to the LCP and 
segment. If PROTOCOL gets a nonzero return 
from STMSG, a message response has been 
built. Send it immediately to SCPo 

Overlay 

LCP 

UPDATE 

STMSG 

PROTOCOL task termination is initiated by either a LOGOFF command, in 
which case CLI posts a message in SS@PRO, or an unrecoverable error in 
communications. In either case, PROTOCOL enters the overlay PROTINIT to 
process the task termination. Note that the overlays used for 
termination processing are those used for initialization. Parameters 
provided on the call select the desired function. 

The task flow for PROTOCOL termination is illustrated in figure 6-10. 
The steps in termination are as follows: 

Step Function 

1. Send a logoff message to the mainframe if 
termination was initiated with the LOGOFF 
command. 

2. Terminate input and output dataset 
transfers. Wait until all IIO Stream 
Control Tables are idle. 

3. Disable queueing of input datasets. 
Release buffers reserved by queued input 
datasets and queued dataset transfer 
requests. 

4. Remove station ID for the Channel Driver 
Table. 

SM-0046 G 

Overlay 

LOGON 
LCP 
CRAYIO 

PROTINIT 

PROTINIT 

ONLINE 

6-23 



Step Function 

5. Release Local Memory. 

6. Clear to Logged-on flag (STA$LOG). 

7. Check the Operator Stream Control Table. 
Send an abort response if a request is 
outstanding. 

8. Send a response to the CLI task through 
the communications area SS@PRO. 

9. Terminate the task. 

PROTOCOL PROTINIT 

• • • 
• • 

(--S-S@ ..... RE-O-)tSS@PRO) 

• • I • 
t I 

LCP 

CRAYIO 

Overlay 

PROTINIT 

PROTINIT 

PROTINIT 

PROTINIT 

PROTINIT 

CALL, RETURN, GOTO Shared 
Parameterst ------Data Path 

• • • • • Shared Memory Access Path 

t Accessed by several overlays shown 1136 

Figure 6-10. PROTOCOL Task Flow (Termination) 

6-24 SM-0046 G 



6.3.6 STAGEIN TASK 

A STAGEIN task stages a dataset from the lOS to the mainframe; one task 
exists for each active staging operation. The STAGEIN task is created by 
the PROTOCOL task when a staging request is received. The request may 
originate from a SAVE or SUBMIT command or from an ACQUIRE or FETCH 
message from the mainframe. Table 6-6 describes the task interaction 
areas for STAGEIN. 

Table 6-6. STAGEIN Task Interaction Areas 

Register Field or Table Use 

Stream 
Control 
Table 

Exchanges protocol message request and 
response information between the STAGEIN 
and PROTOCOL tasks. The PROTOCOL task 
passes the address as a parameter when it 
creates the STAGEIN task. 

~STAT SS@REQ 

~PROT PT@XAN 

PROTOCOL task activation area 

Response word for acquire requests. The 
address of this word is a parameter 
supplied by the PROTOCOL task at STAGEIN 
creation. 

The task flow for STAGEIN is given in figure 6-11 and in the following 
stepflow: 

Step Function 

1. Open the stream and send the dataset 
header to the mainframe. The Buffer 
Memory address of the dataset header is 
one of the parameters supplied by 
PROTOCOL at creation. 

2. Initialize the Stream Control Table, then 
go to the overlay controlling input 
staging; the name of the overlay is 
dictated by the acquisition code: 

SM-0046 G 

MT STTAPI 
ST STXDKI 

Expander tape 
Expander disk 

Overlay 

STAGEIN 
STIO 

STAGEIN 

6-25 



----CALL, RETURN, GOTO 

- - -- - -Data Path 
••••• Shared Memory Access Path 

STIO 

• 
• • • • • • . 

, , 

( SS@REQ 

• 
• 
• 

, , , , , 
" , 

) ''.4 

1f 
/ 

Figure 6-11. STAGEIN Task Flow and Interaction 

Stream 
control 
table 

1137 

For tape input, the STAGEIN task opens the device, which generates a tape 
mount request on the MIOP Kernel console. The STAGEIN task reads a block 
of data from tape into Local Memory, writes the data to a buffer in 
Buffer Memory, and sends it to the mainframe. 

For disk input, the STAGEIN task opens the device, which generates a disk 
mount request on the MIOP Kernel console if the requested volume is not 
mounted. The STAGEIN task then reads a block of data from disk into 
Local Memory, writes the data to a buffer in Buffer Memory, and sends it 
to the mainframe. 

When the end of the input file is encountered or if an error occurs 
during the staging process (for instance, an abort response from the 
PROTOCOL task or an error on a read operation), all resources allocated 
by the task must be released. Any or all of the following operations may 
be required. 

• Release Local Memory buffer 
• Release Buffer Memory buffer 
• Post a response to the acquire request 

6-26 SM-0046 G 



• Free the input stream 
• Release the Stream Control Table 
• Terminate the STAGEIN task 

6.3.7 STAGEOUT TASK 

The STAGEOUT task stages a dataset from the mainframe to the lOS; one 
task exists for each active staging operation. The STAGEOUT task is 
created by the PROTOCOL task when the mainframe initiates staging on an 
output stream. Table 6-7 describes the task interaction areas of 
STAGEOUT. 

Table 6-7. STAGEOUT Task Interaction Areas 

Register Field or Table Use 

Stream Used for STAGEOUT-PROTOCOL task 
Control information interchange. The PROTOCOL task 
Table passes the address as a parameter when it 

creates the STAGEOUT task. 

~STAT SS@REQ PROTOCOL task activation area 

The task flow and interaction for STAGEOUT is shown in figure 6-12. The 
steps in the task flow are as follows: 

Step Function 

1. Open the stream and read the dataset 
header. 

2. Initialize the Stream Control Table. 

3. Go to the overlay controlling output 
staging; the name of the overlay is 
dictated by the disposition code: 

SM-0046 G 

MT STTAPO 
PR STUBPR 
PT STPLOT 
ST STXDKO 

Expander tape 
Expander printer 
Expander plotter 
Expander disk 

Overlay 

STAGEOUT 

STAGEOUT 

STAGEOUT 

6-27 



TURNPG 

UNBLK 

---CALL, RETURN, GOTO 
- - - - - Data Path 
••••• Shared Memory Access Path 

• 
• • 

SS@REQ ) 
• • • • 

STIO 

Stream 
Control 
Table 

Figure 6-12. STAGEOUT Task Flow and Interaction 

1138 

For tape output, the STAGEOUT task opens the device, which generates a 
tape mount request on the MIOP Kernel console. The STAGEOUT task then 
receives a segment of data, copies the data into Local Memory from 
Buffer Memory, releases the Buffer Memory block, and writes the data to 
tape. 

For disk output, the STAGEOUT task opens the device, which generates a 
disk mount request on the MIOP Kernel console if the requested volume is 
not mounted. The STAGEOUT task then receives a segment of data, copies 
the data into Local Memory from Buffer Memory, releases the Buffer 
Memory block, and writes the data to disk. 

For printed output, STAGEOUT generates a header page for the listing. 
It prints each segment of data received from the mainframe. Each line 
contained in the segment is copied to Local Memory, deblocked, and 
printed before the Buffer Memory block is released. If data is to be 

6-28 SM-0046 G 



printed in document format, each line is written to Buffer Memory instead 
of to the printer. When a full page has been gathered, the TURNPG 
routine is called to format and print the page. 

Plot output is handled like the printed output except that a header page 
is not produced and deblocking of the output is not required. 

At the conclusion of the transfer or if an error is encountered (for 
instance, an abort response from PROTOCOL or an error during a write 
operation), some or all of the following functions must be performed: 

• Release Local Memory buffer 
• Release Buffer Memory buffer 
• Close the device 
• Free the stream 
• Release the Stream Control Table 
• Terminate the STAGEOUT task 

6.3.8 STIO OVERLAY 

The STAGEIN and STAGEOUT tasks communicate with the PROTOCOL task using 
the 1/0 Stream Control Tables (SCTs). An 1/0 task stores stream state 
and message control parameters in its SCT. The PROTOCOL task uses this 
information to generate messages for the mainframe and to validate 
response messages. When appropriate, it stores response parameters in 
the SCT and reactivates the controlling 1/0 task. The 1/0 tasks use the 
STIO overlay to interface with the PROTOCOL task. For a STAGEIN task, 
STIO is activated with a CALL service request of the following format: 

ILocation IResult 

I I 
I I CALL 

I Operand 

I 
ISTIO,(fcode,table,sgn,sgbc,segu,segl) 

fcode Function code, as follows: 

ISF$WRIT Send dataset header message to mainframe if 
sgn=O. 
Send dataset segment message to mainframe if 
sgn~O. 

ISF$END Send END SCB, release SCT, and terminate task. 

ISF$CAN Send CAN SCB, release SCT, and terminate task. 

ISF$PPN Send PPN SCB, release SCT, and terminate task. 

ISF$DONE Release SCT and terminate task. 

SM-0046 G 6-29 



table SCT address 

sgn Stream segment number 

sgbc Segment bit count 

segu High-order bits of Buffer Memory address of message segment 

segl Low-order bits of Buffer Memory address of message segment 

sgn, sgbc, segu, and segl are meaningful only if fcode is ISF$WRIT. 
If the function code is ISF$WRIT, STIO stores sgn, sgbc, segu, and 
segl in the appropriate SCT fields. It also stores a message 
descriptor in the SCT (dataset header message descriptor if sgn=O; 
otherwise, dataset segment message descriptor). STIO then stores a 
function code in the SCT, activates the PROTOCOL task if necessary, and 
stops, waiting for a response. Because of the asynchronous nature of the 
tasks and the fact that state changes may be initiated by the mainframe 
(for instance, postponing the transfer) or the PROTOCOL task (for 
instance, postponing because of a logoff), the SCT may already contain a 
response. 

The PROTOCOL task, which monitors the SCTs for requests, ultimately 
schedules and sends the requested message to the mainframe. A response 
code is stored in the SCT, and the STAGEIN task is reactivated. The STIO 
overlay returns the response to the calling overlay in the A register. 
The responses and their significance are as follows: 

Response 

ISR$OK 

ISR$PPN 

ISR$CAN 

Meaning 

OK; proceed with next request. 

Postpone the dataset transfer; the next function must be 
ISF$DONE. 

Cancel the dataset transfer; the next function must be 
ISF$DONE. 

For function codes ISF$END, ISF$CAN, and ISF$PPN, STIO stores only the 
function code in the SCT for processing by the PROTOCOL task. These 
functions cause PROTOCOL to send the appropriate sca to the mainframe. 
When a response is received, the SCT is released and the task 
terminated. No response is possible; the calling overlay is required to 
release all resources before issuing these functions. 

Function ISF$DONE causes STIO to release the SCT and terminate the task. 
No communication with the PROTOCOL task is performed. 

6-30 SM-0046 G 



For a STAGEOUT task, a call to STIO takes the following form: 

ILocation !Result !Operand 

I I I 
I 
I 

Ecode 

table 

sgn 

RO=sgbc 

RO=segu 

RO=segl 

I CALL 
I 

ISTIO,(fcode,table,sgn,RO=sgbc,RO=segu, 
I RO=segl) 

Function code, as follows: 
OSF$READ Read dataset header (sgn=O). 
OSF$SVD Send SVD SCB, release SCT, and terminate task. 
OSF$PPN Send PPN SCB, release SCT, and terminate task. 
OSF$CAN Send CAN SCB, release SCT, and terminate task. 
OSF$DONE Release SCT and terminate task. 

SCT address 

Expected segment number 

Register in which segment bit count is returned 

Register in which the high-order bits of the Buffer Memory 
address of the message segment are returned 

Register in which the low-order bits of the Buffer Memory 
address of the message segment are returned 

Parameters sgn, sgbc, segu, and segl are meaningful only if the function 
code is OSF$READ. If the function code is OSF$READ, STIO stores a 
message descriptor in the SCT (dataset header descriptor if sgn=O; 
otherwise, dataset segment descriptor), posts a read function code, 
activates the PROTOCOL task, and waits for a response. 

The PROTOCOL task informs the mainframe that data can be sent on the 
output stream (an RCV SCB is posted). When the mainframe responds with 
data for the stream, the PROTOCOL task validates the message using the 
descriptor in the SCT. The PROTOCOL task stores the message segment bit 
count, segment address, and a response code in the SCT and reactivates 
the STAGEOUT task. STIO loads the returned parameters from the SCT and 
returns them to the calling overlay. The response code, which is 
returned in the A register, may be one of the following: 

Response 

OSR$OK 

OSR$END 

OSR$CAN 

SM-0046 G 

Meaning 

OK; proceed with the next request. 

END SCB received; the next function must be OSF$SVD, 
OSF$PPN, or OSF$CAN. 

CAN SCB received; the next function must be OSF$DONE. 

6-31 



Functions OSF$SVD, OSF$PPN, and OSF$CAN send a function to the PROTOCOL 
task. After the function is performed, the task is terminated. An 
OSF$DONE function terminates the task immediately. 

6.3.9 POST OVERLAY 

The CLI and DISPLAY tasks communicate with the PROTOCOL task through the 
Operator Stream Control Table. The interlock SS@OP is associated with 
the table to prevent both CLI and DISPLAY from accessing the table 
simultaneously. The CALL macro for the POST overlay takes the following 
form: 

ILocation IResult I Operand 
I I I 
I I CALL I POST, (glcp,segment,sgbc,vlcp,Elags, 
I I 

glcp 

segment 

sgbc 

vlcp 

flags 

RO=upper 

RO=lower 

RO=rbc 

I RO=upper,RO=lower, RO=rbc) 

Message descriptor controlling the LCP format 

Local Memory address of message segment 

Segment bit count 

Response message descriptor 

POS$NO; release response message segment. 

Register to receive the high-order bits of the Buffer 
Memory address of the response message segment 

Register to receive the low-order bits of the Buffer 
Memory address of the response message segment 

Register to receive the response message segment bit 
count 

If flags=POS$NO, upper, lower, and rbc are used. 

The POST overlay stores the output message parameters (glcp, the 
address of the segment written to Buffer Memory, sgbc, and vlcp), sets a 
flag to request processing, activates the PROTOCOL task, and suspends 
itself. 

The PROTOCOL task ultimately schedules the message for output; it uses 
the message descriptor to generate the LCP. When a response message is 
received, the PROTOCOL task validates it using the response message 

6-32 SM-0046 G 



descriptor. It stores the segment address and bit count in the Stream 
Control Table, activates the CLI or DISPLAY task, and returns a response 
code to that task. 

The POST routine loads parameters from the Operator Stream Control Table 
and releases the segment or saves the parameters, depending on the 
flags specification. It returns to the calling overlay, returning the 
response code in the A register. 

6.4 GLOBAL SYMBOLS 

A partial list of the types of global symbols is as follows: 

~ Definition and Use 

Function code An overlay may provide more than one function. A 
function code, passed as a parameter, selects the 
function to be performed. For example, CLINIT 
performs both initialization and termination 
processing for the CLI task. The function is 
selected by the function code CLI$INIT or 
CLI$TERM. 

Error code An error code is generated by the ERCODE macro. 
The error code includes overlay number and 
message offset information that allows the 
MESSAGE overlay to access message text and 
formatting data. Error codes are defined in the 
SYSTEXT overlay. 

LCP descriptors LCP descriptors are pointers to LCP Descriptor 
Tables in the LCP overlay. The descriptors are 
generated by the LCP macro. The LCP overlay uses 
the descriptors to construct or validate message 
LCPs. 

Display parameters The display parameters, DP$disp and DV$disp, 
identify the display type and the overlay that 
initiates the display. The parameters are 
defined by the DISPARS macro in the OVLNUM 
overlay. 

Command parameters The command parameters, CP$comm and CV$comm, 
identify the command type and the overlay that 
processes the command. The parameters are 
defined by the COMPARS macro in the OVLNUM 
overlay. 

SM-0046 G 6-33 



Stream states 

Definition and Use 

The input and output stream states are defined in 
the UPDATE overlay by the STATE macro. The 
symbol defines the stream state and includes the 
following information: 

• SCB to send in next message 
• Stream available for assignment 
• Stream ready to send or receive data 
• State transition table address 

The state transition table address is an offset 
into the UPDATE overlay. It points to a table 
used to validate the SCB in the response LCP and 
identify the succeeding stream state. 

Parameter descriptors 

6.5 CONSOLE OUTPUT 

The parameter descriptors are offsets into the 
SYNTAX overlay that are generated by the PARAMS 
macro. The descriptors reference a table 
describing the parameters associated with a 
particular command. 

The CONSL overlay is called to handle all console output and special 
functions (for instance, ring console bell or scroll the screen). The 
output is not formatted for a particular device type; it must be 
translated to the codes and control characters used for a specific 
console. Currently, the station supports the AMPEX Dialogue 80, the 
SOROC IQ-120, and the TEC 455 consoles. The AMPEX, SOROC, and TEC455 
overlays handle the output translation for the respective devices. 

6.6 SCREEN IMAGE 

The station maintains an image of the console screen in Buffer Memory. 
Output destined for a particular location on the screen is compared to 
the existing data and, in general, is not output if it is unchanged. 
Pressing the ESCAPE key at the station causes the entire screen to be 
rewritten from the image buffer. The image buffer is also used for the 
SNAP command, which prints an image of the station screen. 

6-34 SM-0046 G 



7. FRONT-END CONCENTRATOR 

The IIO Subsystem (lOS) concentrator relieves the mainframe from the 
burden of handling the interrupts for each subsegment of messages 
transferred between the mainframe and attached front-ends. The 
concentrator looks exactly like a Cray channel pair to a front-end, so no 
changes are necessary in existing front-end stations. The concentrator 
can handle data from multiple IDs through one channel. Any front-end IO 
may send subsegments of variable lengths to the concentrator. All 
segment buffers are allocated dynamically. (This connection is used only 
by the COS operating system and supports only the Station Call Processor 
(SCP) protocol.) Refer to section 11, Front-End Interface Logical Path 
Activity, for information on the UNICOS operating system. 

The concentrator software will support the receiving of additional input 
data, from the station during subsegment transfers, beyond what was 
expected. This allows stations, whose channel width is not the same as 
the lOP channel width, to use segment sizes that are not multiples of the 
two channel widths. This feature is controlled with the $APTEXT 
parameter I@XTRA. The value of I@XTRA is the number of additional 
parcels of input data that may be received beyond the segment size and 
not be considered an error. Only valid data in the segment will be 
transferred to the mainframe. 

Figure 7-1 shows the structure of the concentrator software • 

CONC - .. - CONCID 

-... ..... - CONCIO --
ENDCONC ~ ... CONCERR ... 

1856 

Figure 7-1. Tree Structure of Concentrator Software 

SM-0046 G 7-1 



7.1 CONC OVERLAY DESCRIPTION (CONCENTRATOR INITIALIZATION) 

Overlay CONC is activated by the Kernel command CONC or by a master 
operator entering a CHANNEL ON command that specifies an I/O Processor 
(lOP) concentrator. The Kernel console output contains descriptive 
messages that indicate successful or unsuccessful completion of the 
concentrator initialization. A flow description follows: 

Call CRAY overlay to ensure IOP/Cray are linked 
Determine the channel ordinal of requested concentrator 
Locate the Front-end Interface (FEI) table entry for this ordinal 
Validate the requested ordinal. For example, check the channel type, 

current status. 
Clear the lOP channel pair 
Set hold disconnect on the output channel 
Get Local Memory for the concentrator table 
Empty the input channel of any residual data 
Do a Port Select function is it is a VAX interface 
Set flags indicating that this FEI is initialized and active 
Create CONCIO activity 
Send console message detailing the fate of the initialization 

procedure 
Terminate 

7.2 CONCIO ACTIVITY DESCRIPTION 

Upon entry, the CONCIO global register (LOCAL) points to the Local Memory 
table for this concentrator. Registers LCPO and LCP1 point to the LCP 
Buffer Memory address. Register CHAN contains the associated input 
channel number. Register MCO is the channel ordinal, and register FEI 
points to the proper FEI table entry. 

Physical I/O requests are asynchronous and are executed in the overlay 
code itself. The activity does not surrender control when initiating 
I/O. Upon an interrupt, the Kernel SIGNALS an I/O queue determined from 
the associated FEI table entry. A flow description follows: 

7-2 

Get addresses of input and output LCPs from the concentrator 
table (CT@ILC, CT@OLC). Also get concentrator's address 
of the I/O queue (CT@IOQ). 

Initialize flags. 
Send a restart LCP to the front-end station (FE). 

RESTRT program label 
Open the input channel for a logon-LCP (6 words) from the front 

end. 

SM-0046 G 



I 

WATCH program label 
Store "waiting for input" in the concentrator's status field 

(CT@ST) • 
UNTIL "input" is signaled on the concentrator's 1/0 queue (100): 

WATCH the IOQ; time-out value equals approximately three 
seconds. 
Get the value of the front end interface termination flag 

(FEI@TM). 
IF FEI@TM is nonzero, GOTO program label TERMIN. 

ENOTIL 

INPUT program label 
Store "inputting" in the concentrator table's status field (CT@ST). 
RETURN-JUMP to program label CHKIO. 
IF CHKIO returned an error status, GOTO program label ERROR. 
CALL CONCIO to find the entry in the concentrator 10 table. 
IF CONCIO returns an error code, GOTO program label ERROR. 
Get the Channel Extension Table(CXT) address from the 

concentrator 10 table (CE@CXT). 
IF use of link trailer packets (LTPs) is flagged for this FE 

(CE@LTP), THEN get the address of where to put LTPs for this 
concentrator (CT@LTP). 

Get the variable subsegment sizes flag (CE@VSS). 
IF the station accepts variable subsegment sizes THEN 

IF this is a logon-LCP THEN 
Set subsegment size to 6 words. 

ELSE 
get the size out of the LCP's segment bit count (LC@BCU & 

LC@BCL) . 
ENOIF 

ELSE 
get the size from the concentrator 10 table (CE@SGZ). 

ENOIF 
Get the number of subsegments out of the input-LCP (LC@NSS). 
IF there is a data segment or an LTP to follow this input LCP 

(ILCPP),THEN 
Using the number of subsegments, the LTP flag (1 or 0), the 
subsegment size, and the maximum amount of extra input likely 
to be received, allocate the appropriate number of 1/0 buffers 
(maximum of 2). Oetermine the amount of the next transfer by 
executing a RETURN-JUMP to program label SETXLEN. Start the 
read from the station. 

ENOIF 
Get the Cray's ILCP address from the CXT table (CXCILO & CXCILl). 
IF there is no ILCP address or this is a logon segment, THEN 

SM-0046 G 

Poll the Cray for the ILCP address. 
IF a poll error occurred, THEN 

GOTO program label ERROR. 
ELSE 

Copy the DAL to the CXT and release the DAL. 

7-3 



I 

7-4 

ENDIF 
Clear the logon and type flags of the CXT (CXLOG & CXTYPE). 
Get the new Cray ILCP address from the CXT (CXCILO & CXCIL1). 

ENDIF 
Write the ILCP to the Crayon the high-speed channel. 
Get the Cray's input segment address from the CXT (CXISGO & 

CXISG1) • 
UNTIL this segment is all read in from the station : 

WATCH the 100 for a completion signal from the previous 1/0; 
this watch times-out after ten seconds. 

IF the channel times-out, GOTO program label ERROR. 
RETURN JUMP to program label CHKIO. 
IF CHKIO returns an error status, GOTO program label ERROR. 
IF this is a logon segment, THEN 

Get the subsegment size from the logon message segment 
(LM@SSG), convert to parcel size,& store in the concentrator 
ID table (CE@SGZ). Get the variable subsegment size flag out 
of the logon message segment (LM@VSS) and store in the conc. 
ID table (CE@VSS). If the checksum enabled flag in the logon 
message segment (LM@CKZ) is set, THEN set the LTP flag in the 
concentrator ID table (CE@LTP) and get from the concentrator 
table the address in which to read LTPs (CT@LTP). 

ENDIF 
Switch to the local memory buffer least recently used. 
IF there are more subsegments to transfer, THEN 

IF the current subsegment has been completely transferred, 
THEN Decrement the number of segments left to transfer. 

ENDIF 
ELSE 

Get the Cray LTP address out of the CXT (CXILTO & CXILT1). 
ENDIF 
IF there is more data or an LTP to be transferred, THEN 

Determine the next 1/0 length. 
Input the determined amount from the FE. 
Write the information to the Cray over the high-speed channel. 

ENDIF 
IF there is more data to transfer, THEN increment the Cray 

segment address by the length of the last transfer. 
ENDTIL 
Store "waiting for output" in the concentrator table's status 

field (CT@ST). 
Poll the Cray for a new CXT. 
IF a poll error, THEN 

GOTO program label ERROR. 
ELSE 

Copy the DAL to the CXT and release the DAL. 
ENDIF 
Get the number of subsegments out of the CXT (CXTNSS). 
IF the variable subsegment size flag is set, THEN 

IF the number of subsegments is nonzero, set it to one. 
Get the Cray subsegment size from the eXT (eXLSEG)& convert to 

parcels. 

SM-0046 G 



ENDIF 
Using the number of subsegments and the subsegment size, allocate 

the appropriate number of liD buffers (maximum of two). 
IF an LTP is expected by the FE, THEN get the concentrator table's 

address of where to put the LTP (CT@LTP). 
Store "outputting" in the concentrator table's status field 

(CT@ST) . 
Get the Cray's output-LCP (OLCP) address from the CXT (CXCOLO & 

CXCOLl) • 
Read the OLCP from the Crayon the high-speed channel. 
Open the 1/0 channel for an ILCP from the FE. 
Send the Cray's OLCP to the FE. 
Get the Cray's output segment address from the CXT (CXOSGO & 

CXOSGl) • 
UNTIL there is no more data to write to the FE 

SM-0046 G 

IF there is more subsegment data or an LTP, THEN 
IF there is subsegrnent data, THEN 

Determine the next 1/0 length. 
Set flag to send a channel disconnect if this transfer is 

the last for this subsegment. 
ELSE 

Get the Cray's address of the LTP from the CXT (CXOLTO & 
CXOLTl) • 

Set flag to send a channel disconnect. 
ENDIF 

Read the segment data/LTP from the Crayon the high-speed 
channel. 

Flag that there is data ready to be written to the FE. 
Increment the Cray's segment address pointer by the length 

of the last transfer. 
ENDIF 
WATCH the IOQ for completion of the last 1/0 to the FE; this 
WATCH times-out after three seconds. 
IF the WATCH timed-out, THEN 

GOTO program label ERROR. 
ELSEIF the previous 1/0 returned an error status, THEN 

GOTO program label ERROR. 
ELSEIF the WATCH returned a status indicating that the 

concentrator has been sent input from the FE, THEN 
Prepare to verify the input interrupt. 
GOTO program label INPUT. 

ELSEIF the WATCH returned a status indicating both output and 
input interrupts have arrived, THEN 
Save output channel's address and transfer length; re-open 
the input channel; restore output channel's parameter's so 
that the output transfer may be verified. 

ENDIF 
GOTO program label CHKIO. 
IF CHKIO returned an error status, go to program label ERROR. 
IF have just finished transferring a complete subsegment and 

there are more subsegments to transfer, decrement the 
subsegment count. 

7-5 



7-6 

IF there is data ready to be written to the FE, THEN 
Clear the data ready flag. 
Write the data to the FE. 

ENDIF 
ENDTIL 
Get the acknowledgment flag out of the CXT (CXACK). 
IF the acknowledgment flag is set, THEN 

Poll the Cray with the done flag set in the CXT & without 
activating the SCP task in cos. 

IF there was a poll error, THEN 
GOTO program label ERROR. 

ELSE 
Copy the DAL to the CXT and release the DAL. 

ENDIF 
ENDIF 

TERMIN program label 
Release any IIO buffers that were acquired. 
If this ID is being terminated, THEN 

CALL CONCID to terminate this ID's concentrator ID table entry. 
Release the concentrator table's memory. 
Clear the table address, terminating flag, and active flag in 

the FEI table (FEI@TB, FEI@TM, FEI@AC). 
ENDIF 
Prepare to read in another ILCP. 
GOTO program label WATCH. 

ISSUE program label 
Store the "hold channel disconnect" flag for the KERNEL (CT@HLD). 
Function the channel for the transfer (input or output) to the FE. 

CHKIO program label 
IF there is no IIO error currently detected, THEN 

Compare the actual channel address to that expected following 
the last transfer. 

IF there is a mismatch in addresses, THEN set the error code. 
ENDIF 

DISC program label 
Send a single disconnect on the output channel. 

ERROR program label 
Get the current concentrator state out of the conc. table (CT@ST). 
CALL CONCERR to display the error message. 
IF the current concentrator state equals "outputting", and no poll 

error is present, THEN 
RETURN jump to program label DISC. 

GOTO program label RESTRT. 

SM-0046 G 



7.3 CONCID OVERLAY DESCRIPTION 

The CaNCIO activity calls overlay CaNCIO to locate IO-based table 
entries. It links new entries, unlinks logged-off entries, and issues 
LOGOFF LCP requests to the Cray mainframe upon concentrator termination. 
The Kernel console receives descriptive messages on a LOGON/LOGOFF 
request and a concentrator termination. A flow description follows: 

Initialize registers 
IF registering/deregistering an ID, THEN 

UNTIL all ID entries have been searched, or the selected entry has 
been found •.. 

Get current entry pointer 
IF Log Off Requested flag set, THEN 

Unchain this entry from the ID entry chain 
Release this entry's memory space 

ENDIF 
ENDTIL 
IF a LOGON request, THEN 

IF the entry table is not found, THEN 
Get memory for a new entry table 
Store ID in the new entry table 
Link new entry to chain of entries 

ELSE 
Clear flags in the entry table 

ENDIF 
Store logon segment size in entry 
Flag concentrator activity that this is a logon request 
Initialize the CXT 

ELSE 
Set logged-off flag in entry table 

ENDIF 
ELSE 

Send LOGOFF LCPs to mainframe for each entry 
Unqueue entry table and release memory 
Send logged-off message for each 10 to the Kernel console 

ENDIF 
Send Kernel console message 
Retrun entry address and logon-request flag if appropriate 

7.4 CONCERR OVERLAY DESCRIPTION 

The CONCERR overlay handles concentrator errors. A flow description 
follows: 

Empty and clear the lOP channel pair if non-NSC channels 
Issue a Port-Select function if this is a VAX interface 
Issue a descriptive error message to the Kernel console 
Return 

SM-0046 G 7-7 



7.5 ENDCONC OVERLAY DESCRIPTION 

The ENDCONC overlay initiates concentrator termination. The Kernel 
console receives a descriptive message if ENDCONC cannot process the 
termination request. 

7-8 

Determine the specified concentrator channel ordinal 
Locate the FEI table entry for this channel ordinal 
Validate the specified channel ordinal 
Set the Termination flag in the FEI entry 
Terminate 

SM-0046 G 



8. INTERACTIVE STATION 

The interactive station is a set of tasks running in the Master 1/0 
Processor (MIOP) that permits consoles connected directly to the MIOP to 
become attached to mainframe jobs. A job is created in the mainframe 
when an interactive console logs on. 

This station is composed of two parts: the interactive concentrator and 
the interactive console. The interactive concentrator gathers messages 
from the consoles, sends them to the mainframe, receives responses, and 
distributes them to the console routines. The interactive console 
routines handle the input and output to and from the consoles and prepare 
messages to be sent to the mainframe through the interactive concentrator. 

The structure of the interactive concentrator is illustrated in figure 
8-1. Figure 8-2 defines the structure of the interactive console 
routines. 

The commands described in this section must be followed by a carriage 
return. 

8.1 INTERACTIVE CONCENTRATOR OVERLAYS 

The overlays described in the following subsections constitute the 
interactive concentrator. 

8.1.1 IAIOP OVERLAY 

The IAIOP overlay initializes the interactive concentrator and processes 
commands for it. IAIOP creates the task IAIOP1, which is the control 
overlay for the interactive concentrator. 

The interactive concentrator supports the following commands: LOG, 
LOGOFF, POLL, and END. Each command is preceded by IAIOP. 

The LOG command logs on the interactive concentrator and initializes it 
if it is not already initialized. This command is entered at the Kernel 
console. 

SM-0046 G 8-1 



lAlOP 

Queue 

lAMSG CRAYlO 

CRAYlO ENTRlD REMVlD 

1854 

Figure 8-1. Structure of Interactive Concentrator Software 

USURP lCONSL lACON! KEYBD IAOUT 

READ CONSL 

ERROR ICONSL USURP 

1855 

Figure 8-2. Structure of Interactive Console Software 

8-2 SM-0046 G 



Format: 

IAIOP LOG rid] [tid] 

id Optional 2-character identifier used by the mainframe to 
associate messages and data with this console; the default 
is II. 

tid Optional 8-character operator station identifier; this 
parameter has a default of O. 

By default, each console's message buffer is checked every tenth of a 
second to see if it has a line of input ready to be transferred to the 
mainframe. The length of time between checks can be changed with the 
POLL command. 

Format: 

IAIOP POLL nn 

nn Interval, in decimal tenths of a second, between checks for 
input 

The LOGOFF command logs off the interactive concentrator. The END 
command logs off the interactive concentrator if it has not already been 
logged off and terminates it. 

Formats: 

IAIOP LOGOFF 
IAIOP END 

SM-0046 G 

NOTE 

The interactive concentrator must be initialized to 
bring up an interactive console, and all interactive 
consoles must be terminated to terminate the 
interactive concentrator. 

8-3 



8.1.2 IAIOP1 OVERLAY 

IAIOP1 is the main control overlay of the interactive concentrator. The 
following stepflow describes its processes: 

1. Wait for poll interval to expire or for a command function from 
IAIOP. 

2. If it is a command function, call IAFUNC to process it. 

3. If not logged on, go to step 1. 

4. Begin the main body, checking each interactive console for a 
message to send to the mainframe. 

5. Move each message bound for the mainframe from the interactive 
console buffers to a segment in Buffer Memory. 

6. Reactivate the interactive console processes to interpret the 
next line of input. 

7. Go to step 4 until all consoles are processed or until the 
segment is full. 

8. Build the segment descriptor and write it to Buffer Memory. 

9. Call the CRAYIO overlay to send the message to the mainframe and 
get a response. 

10. Update the message counter. 

11. Read the response LCP from Buffer Memory. If a segment is 
present, call IAMSG overlay to distribute the segment to the 
console tasks. 

12. Go to step 1. 

8.1.3 IAFUNC OVERLAY 

Overlay IAFUNC processes three commands: LOG, LOGOFF, and END. 

The stepflow for processing a LOG command is as follows: 

1. Get a Buffer Memory buffer for use by the interactive 
concentrator while it is logged on. 

2. Build the logon segment and write it to Buffer Memory. 

8-4 SM-0046 G 



3. Build the Descriptor Table for this 10 and write it to Buffer 
Memory. 

4. Build the logon LCP and write it to Buffer Memory. 

5. Call CRAYIO overlay to send the logon message to the mainframe. 

6. Prepare the LCP for interactive requests. 

7. Write a message to the Kernel console confirming the logon. 

The following stepflow details 1AFUNC processing of a LOGOFF command. 

1. Build a logoff message LCP. 

2. Call CRAYIO overlay to send the message to the mainframe. 

3. Release the Buffer Memory buffer used while logged on. 

4. Clear the Logged On flags for all active consoles. 

5. Write a message to the Kernel console confirming the logoff. 

END command processing involves the following stepflow: 

1. Perform all logoff processing. 

2. Check all interactive consoles. If any are still active, write 
an error message to the Kernel console and return. 

3. Release Local Memory used by the interactive concentrator and 
terminate the task. 

8.1.4 IAMSG OVERLAY 

The IAMSG overlay distributes the segment from an Interactive Reply 
message among the interactive consoles. The stepflow for this overlay is 
as follows: 

1. Read the stream descriptor from Buffer Memory and get the segment 
address from it. 

2. Begin the main loop, consisting of reading and distributing the 
messages. 

3. Read one message from Buffer Memory. 

SM-0046 G 8-5 



4. If the message is a Start message, determine the corresponding 
console from the job name. Enter the process number in a map for 
finding the corresponding console on later messages and set the 
Logged On flag for the console. Go to step 2. 

5. If the message is not a Start message, find the corresponding 
console from the process number. 

6. Move the message for this console to its circular output buffer 
in Buffer Memory and update the IN pointer. 

7. If the output buffer is more than three-fourths full, set the 
Suspend flag in this console's terminal header and set a flag to 
force an interactive control for the terminal. 

8. Go to step 2 for all messages in the segment. Return to caller 
when done. 

8.2 INTERACTIVE CONSOLE OVERLAYS 

The overlays in the following subsections constitute the interactive 
console. 

8.2.1 lACON OVERLAY 

lACON overlay initiates an interactive console. Its stepflow is as 
follows: 

1. Allocate Local Memory for use by the console. 

2. Check to ensure the interactive concentrator is initialized. If 
it is not, write an error message and return. 

3. Allocate a Buffer Memory buffer to hold output. 

4. Enter this console into a table of consoles in the concentrator's 
Local Memory area. 

5. Initialize local buffer addresses for this console. 

6. Allocate the console to this task. 

7. Create the KEYBD task to read from the keyboard. 

8-6 SM-0046 G 



8. Create the IAOUT task to move output from the Buffer Memory 
output area to the screen. 

9. Go to IACONI overlay, which is the interactive console control 
routine. 

8.2.2 IACONI OVERLAY 

IACONI overlay is the control task for the interactive console. It reads 
input from the keyboard buffer, processes it, and informs the interactive 
concentrator that the input is ready. The stepflow for IACONI is as 
follows: 

1. Call READ overlay to get a line of input. 

2. If the first character is the current control character, call 
IACMD overlay to process the command. 

3. Build the block control word (BCW) for the message. 

4. Build the record control word (RCW) for the message. 

5. If the console is not logged on, write an error message and go to 
step 1. 

6. If the interactive concentrator is not logged on, write an error 
message and go to step 1. 

7. Set flag for the interactive concentrator. A message is ready to 
go out. 

8. Wait on queue until the interactive concentrator has sent the 
message in. 

9. Go to step 1. 

8.2.3 IACMD OVERLAY 

IACMD overlay processes commands to the interactive console. All 
commands must be preceded by the command control character, which is a 
slash by default. 

SM-0046 G 8-7 



The following commands are available. The shortest unique string of 
each, underlined below, may be entered as follows. 

Command 

ABORT 

ATTENTION 

BYE 

CHANGE C 

COMMENT 

EOF 

LOGOFF 

LOGON 

STATUS 

Action 

Sends an abort status to the interactive job 

Sends an attention status to the interactive job. (An 
attention status may also be sent by pressing the break 
key.) 

Terminates the interactive console 

Changes the command control character; c, which can 
be any character, becomes the new control character. 

Allows comments 

Sends an end-of-file on the $IN dataset 

Logs off the interactive console 

Logs on the interactive console 

Requests Cray job status 

8.2.4 IAOUT OVERLAY 

Overlay IAOUT moves data from the interactive console's output buffer to 
the screen. It suspends output while the user is typing at the keyboard 
until a carriage return is entered. It also forces a resume output 
status to be sent to the interactive job when the output buffer becomes 
less than 25~ full. 

The stepflow for IAOUT is as follows: 

1. Push onto OUTQ2 for 1 second or until output is received. 

2. Check the Termination flag; if it is set, terminate. 

3. Check the Hold flag; if it is set, the user is typing a line. 
Push onto OUTQ1 until a carriage return. 

4. Check to see whether any output is ready; if not, go to step 1. 

8-8 SM-0046 G 



5. Read the next message from the Buffer Memory output buffer to 
Local Memory, unless more records exist from the previous message. 

6. Reset OUT pointer for this circular buffer. 

7. If Buffer Memory buffer is now less than 25' full and output is 
suspended, set flag to resume output. 

8. Call CONSL overlay to write one record to the display. 

9. Go to step 2. 

SM-0046 G 8-9 





9. USER CHANNEL 1/0 

User Channel software provides the following capabilities for connecting 
new devices or mainframes to the I/O Subsystem (lOS): 

• Enables COS jobs executing on the mainframe to transfer data to 
and from user-channels connected to the lOS 

• Provides easy development of software channel drivers in the lOS 
for networking or communications applications by site personnel 

• Supports full duplex communication on lOS user-channels 

User Channel software is protocol-independent and supports standard OPEN, 
CLOSE, READ, and WRITE operations. Special operations that are required 
by specific applications can be easily added to the standard set. 

User Channel software resides in the Master I/O Processor (MIOP) on the 
lOS. It consists of the User Channel shell software supplied by Cray 
Research, Inc. (CRI) and various User Channel drivers. 

The shell is responsible for handling requests from and responses to 
Central Memory, transferring data between Central Memory and channel 
driver, allocating all lOS resources for channel drivers, and processing 
hardware interrupts for user-channels. 

9.1 USER CHANNEL REQUESTS 

This subsection describes the processing of User Channel requests. The 
function codes, which begin with CR$, are received from Central Memory in 
F-packets on the MIOP. 

9.1.1 OPEN REQUEST (CR$OPN) 

CR$OPN must be the first request made for the input or output side of a 
user-channel. The open request names the driver overlay to be invoked 
for the channel. 

SM-0046 G 9-1 



9.1.2 READ REQUEST (CR$RD) 

CR$RD transfers data from the input side of a user-channel to Central 
Memory. If data is already present in Buffer Memory as the result of a 
previous Read-Hold request, the data in Buffer Memory is transferred to 
Central Memory. If data is not present in Buffer Memory, the channel 
driver activity is called to read data from the channel. When the read 
completes, the data is sent to Central Memory. The response to the 
mainframe is then sent after the data transfer to Central Memory. 

9.1.3 READ-HOLD REQUEST (CR$RDH) 

CR$RDH transfers data from the input side of a user-channel to Central 
Memory. An additional read operation is performed on the channel with 
the data held in Buffer Memory. As in the Read function, any data 
present in Buffer Memory from a previous Read-Hold request is transferred 
to Central Memory first. 

The channel driver is called if data is not present in Buffer Memory to 
satisfy the first half of the Read-Hold request. The response to the 
Read-Hold request is sent to the mainframe immediately after data has 
been transferred to Central Memory. The channel driver is then called to 
read data from the channel for the second half of the request. The 
second data is held in Buffer Memory. In this way, processing of the 
first data may be overlapped with the next channel read on the lOS. 

9.1.4 READ-READ REQUEST (CR$RD2) 

CR$RD2 transfers two data buffers to Central Memory from the input side 
of a user-channel. The Read-Read function is similar to the Read-Hold 
function except that the second data read from the channel is sent to 
Central Memory rather than held in Buffer Memory. In addition, the 
response to the mainframe is delayed until the second data buffer has 
been transferred. The Read-Read request does not allow the overlap of 
processing and lID activity obtained by the Read-Hold request; however, 
the Read-Read request does reduce by 50~ the interrupt overhead on the 
mainframe because two data reads are performed with each request. 

9.1.5 WRITE REQUEST (CR$WRT) 

CR$WRT transfers data to the output side of a user-channel. If data is 
already present in Buffer Memory as the result of a previous Write-Hold 
request, the data in Buffer Memory is transferred to the channel by the 

9-2 SM-0046 G 



driver. If data is not present in Buffer Memory, data from Central 
Memory is transferred to the channel by the driver. The response is sent 
to the mainframe after the data transfer to the user-channel is complete. 

9.1.6 WRITE-HOLD REQUEST (CR$WRTH) 

CR$WRTH transfers data to the output side of a user-channel. An 
additional buffer of data is transferred from Central Memory and held in 
Buffer Memory. As in the above CR$WRT function, any data present in 
Buffer Memory from a previous Write-Hold request is transferred to the 
user-channel first. If data is not present in Buffer Memory, data from 
Central Memory is transferred to the channel by the driver to satisfy the 
first half of the Write-Hold request. The second buffer of data is then 
transferred from Central Memory and held in Buffer Memory. The response 
to the Write-Hold function is then sent to the mainframe. The Write-Hold 

without function allows buffer space in the mainframe to be freed up 
waiting for the data to actually be sent out on the channel. 
an important consideration if buffer space is limited, or is 
for input and output on a group of channels. 

This may be 
being shared 

9.1.7 WRITE-WRITE REQUEST (CR$WRT2) 

CR$WRT2 transfers two data buffers to the output side of a user-channel. 
The Write-Write function is similar to the Write-Hold function with the 
second data from Central Memory being sent to the channel instead of held 
in Buffer Memory. Also, the response to the mainframe is delayed until 
the second data buffer has been transferred. The Write-Write function 
halves the interrupt overhead on the mainframe because two data writes 
are performed with each request. 

9.1.8 DRIVER REQUEST (CR$DRV) 

CR$DRV causes the channel driver to take special action that is typically 
protocol dependent. No data transfer is associated with the request. 
The response is sent to the mainframe when the channel driver has 
completed the request. 

9.1.9 CLOSE REQUEST (CR$CLS) 

CR$CLS must be the last request made for the input or output side of a 
user-channel. The channel driver usually terminates when a Close 
function is received. 

SM-0046 G 9-3 



9.2 SHELL ARCHITECTURE 

Each user-channel pair on the MIOP is controlled by two independent shell 
activities, one for the input and one for the output side of the 
channel. Each shell activity has a corresponding driver activity created 
when a request is made to open a user-channel. Associated with each 
shell and driver activity pair is a data structure User-Channel Table 
(UCT) containing information needed to control the channel. 

A data handling routine in the Buffer lID Processor (BIOP) is responsible 
for moving data between Central Memory and Buffer Memory. 

An interrupt handling routine is resident in the MIOP Kernel for 
processing hardware interrupts on User Channels. 

Figure 9-1 shows shell architecture. 

Central 
Memory 

Mainframe 

BIOP Data Handler MIOP Message Handler 

Buffer 
Memory 

Local 
Memory 
(UCT) 

Shell 
Activity 
(IN) 

Driver 
Activity 
(IN) 

User 
Channel 
(IN) 

! 
Interrupt 
Handler 

Shell 
Activity 
(OUT) 

Driver 
Activity 
(OUT) 

User 
Channel 
(OUT) 

Figure 9-1. Shell Architecture 

1129 

9-4 SM-0046 G 



9.2.1 USER CHANNEL TABLE 

The User Channel shells and channel drivers share a common data structure 
in MIOP Local Memory. The User Channel Table (UCT) contains a header 
allocated at system initialization and entries, one per input or output 
side of a user-channel, allocated and deallocated dynamically as channels 
are opened and closed. Each table entry is divided into four sections; 
identification and linkage information, storage used by the shell, 
storage used by both the shell and driver, and finally, information used 
by the channel driver. Use of specific fields within the UCT entry will 
be described in the following routines. 

9.2.2 USER CHANNEL MESSAGE HANDLER 

F-packet requests arriving in the MIOP Kernel are queued to the common 
packet handling demon (ADEM). ADEM attempts to locate the entry in the 
UCT referred to in the F-packet. A table entry is allocated and a shell 
activity created, if necessary, and the request queued to the UCSHL 
routine. 

F-packet responses are sent to the mainframe through the SEND Kernel 
service request by the shell. 

9.2.3 USER CHANNEL SHELL (UCSHL) 

The UCSHL routine handles F-packet requests one at a time. The requested 
function is validated against the channel state (for example, Reads and 
Writes are legal only on open channels) and calls the appropriate shell 
subroutine for processing. 

9.2.3.1 UCSHL open subroutine (UCOPN) 

UCOPN saves information from the F-packet in the UCT entry for the 
channel being opened. The overlay specified by the driver name in the 
request is located and a driver activity created. The driver activity is 
invoked to perform any open processing required. The response to the 
F-packet is then returned to the mainframe. 

UCOPN creates a data transfer activity in BlOP (UCXFR) and allocates a 
buffer descriptor table in Buffer Memory for transferring data. 

SM-0046 G 9-5 



9.2.3.2 UCSHL close subroutine (UCCLS) 

UCCLS calls the driver activity to perform any close processing 
required. The response to the F-packet is then returned to the mainframe. 

UCCLS terminates the data transfer activity in BIOP (UCXFR) and 
deallocates the Buffer Descriptor Table and any buffers containing 
unprocessed data in Buffer Memory. 

9.2.3.3 UCSHL read subroutine (UCRD) 

UCRD handles the Read, Read-Hold, and Read-Read F-packet requests. UCRD 
checks for data present in Buffer Memory from a prior Read-Hold 
function. If present, the data is transferred to Central Memory at the 
first address specified in the F-packet by calling UCXFR in BIOP. Excess 
data is truncated to the length requested in the F-packet. If data is 
not present in Buffer Memory, the channel driver activity is called to 
read data from the channel for the first length specified in the 
F-packet. The data is transferred to Central Memory at the first address 
specified in the F-packet by calling UCXFR in BIOP. 

If the F-packet request was a simple Read or a Read-Hold, the length of 
data transferred to Central Memory is entered into the response packet 
and the response is sent to the mainframe. 

If the F-packet request was a Read-Hold or Read-Read, the channel driver 
activity is called to read additional data from the channel for the 
second length specified in the F-packet. If the data is to be 
transferred to Central Memory (Read-Read), the UCXFR routine is called to 
send the data to the second address included in the F-packet. The length 
of the second data transferred to Central Memory (Read-Read) is entered 
into the response packet and the response is sent to the mainframe. 

9.2.3.4 UCSHL write subroutine (UCWRT) 

UCWRT handles the Write, Write-Hold, and Write-Write F-packet requests. 
UCWRT checks for data present in Buffer Memory from a prior Write-Hold 
function. If data is not present in Buffer Memory, it is transferred 
from Central Memory to Buffer Memory from the first address for the 
length specified in the F-packet by calling UCXFR in BIOP. The channel 
driver activity is then called to write the data to the channel. 

If the F-packet request was a simple Write, the value for length of data 
transferred to the channel is entered into the response packet and the 
response is sent to the mainframe. 

9-6 SM-0046 G 



If the F-packet request was Write-Hold or Write-Write, the UCXFR routine 
in BIOP is called to transfer data from the second address and length in 
Central Memory to Buffer Memory. If the F-packet request was a 
Write-Hold, the response packet is then returned to the mainframe. 

If the F-packet request was a Write-Write, the channel driver activity is 
called to write the data to the channel. The length of the second data 
transferred is entered into the response packet and the response is sent 
to the mainframe. 

9.2.3.5 UCSHL driver subroutine (UCDRV) 

UCDRV handles all nonstandard F-packet requests. It calls the channel 
driver activity to process the function and returns the response to the 
F-packet to the mainframe. 

9.2.4 USER CHANNEL SHELL DATA HANDLER (UCXFR) 

The UCXFR routine handles data transfers between Central Memory and 
Buffer Memory over the high-speed channel. It is called by the MIOP 
shell activity with a direction, Central Memory address, length, and list 
of Buffer Memory buffers to supply or receive data. 

9.3 SHELL AND DRIVER INTERFACE 

Reference was made previously in the description of the UCSHL subroutines 
to calling the driver activity. This subsection details the calling 
mechanism and parameters passed. 

9.3.1 SIGNAL AND WATCH MACROS 

Because the shell and driver are separate activities, the overlay CALL 
mechanism cannot be used for communication between them. Instead, the 
SIGNAL and WATCH macros are used. This implies a high degree of 
synchronization between the shell and driver. The shell accepts F-packet 
requests from the mainframe and signals the driver activity, which should 
be suspended watching for the next request. When the driver has 
completed a request it signals the shell, which has been watching for a 
response from the driver activity. 

SM-0046 G 9-7 



Several fields are allocated in the UCT entry for communication between 
the shell and driver activities. The SIGNAL and WATCH functions require 
3 parcels of storage for queuing requests between activities. The UC@SDR 
and UC@SDQ fields are used for communication when the shell activity is 
to signal a request to a watching driver. Similarly, the UC@DSR and 
UC@DSQ fields are used by a driver to signal a response to the watching 
shell. The address of the UCT entry for the channel is passed as a 
parameter to the driver when the driver activity is created. 

9.3.2 SHELL REQUESTS 

The request codes signaled from the shell to the driver are as follows: 

Code 

UC$OPN 

UC$CLS 

UC$RD 

UC$RDL 

UC$WRT 

UC$WRTL 

UC$DRV 

Function 

Perform driver open processing 

Perform driver close processing 

Read requested number of bytes from channel into supplied 
buffer 

Read last requested number of bytes from channel into 
supplied buffer. Driver should terminate read from channel 
after data has been read. 

Write requested number of bytes from supplied buffer to 
channel 

Write last requested number of bytes from supplied buffer 
to channel. Driver should terminate write to channel after 
data has been written. 

Perform nonstandard driver processing 

. Additional driver-dependent parameters may be contained in the F-packet 
request. The original request may be referenced by the driver by using 
the address contained in the UC@REQ field of the UCT entry. 

9-8 SM-0046 G 



9.3.3 DRIVER RESPONSES 

The response codes signaled from the driver to the shell are as follows: 

Code 

UC$CMPT 

UC$CONT 

UC$NOOP 

UC$ERR 

Function 

The driver has successfully completed the shell request 

The driver has successfully completed the UC$RD or UC$WRT 
request. The driver is still expecting a UC$RDL or UC$WRTL 
request from the shell. 

The driver has accepted the supplied buffer and length 
parameters. This is the first response to a UC$RD or 
UC$WRT request when the driver is double buffering. 

Response codes equal to or greater than this value indicate 
that the driver has detected an error in processing the 
request. The shell terminates the F-packet request 
processing and returns the response code to the mainframe. 

9.3.4 BUFFERING 

The shell performs all resource management of Local and Buffer Memory 
buffers. A single Local Memory buffer is always allocated for use by the 
channel driver on Open, Close, and Driver functions. 

The shell has the ability to support either single or double buffering of 
data on Read and Write functions. Double buffering allows the shell to 
overlap movement of data to or from Buffer Memory with channel I/O by the 
driver because they are separate activities. The shell assumes single 
buffering mode unless the driver sets the UC@XBF (extra buffer) field in 
the UCT to 1. Typically, the buffering mode should be selected during 
driver open processing and should not be changed later. 

Because Local Memory buffers in the lOS are 4096 bytes in length, 
requests to read or write large data buffers are split by the shell into 
several subrequests for the driver. The shell supplies a Local Memory 
Buffer address and length (in bytes) in the UC@SDB and UC@SDZ fields of 
the UCT when signaling the driver with a request. Similarly, the driver 
responds with a buffer address and length (in bytes) in the UC@DSB and 
UC@DSZ fields of the UCT when signaling the shell with a response. 

SM-0046 G 9-9 



9.3.5 INTERRUPT PROCESSING 

The shell performs interrupt handling on user-channels in the MIOP Kernel 
routine lUCID. The channel driver activity is responsible for initiating 
physical 110 on the channel. The driver initiates the 1/0 and then 
pushes itself onto a wait queue, UC@IWQ, in the UCT entry, by calling the 
TPUSH Kernel service request. A time-out should be supplied with the 
TPUSH call. The UC@TMO field in the UCT contains a time-out value 
supplied in the F-packet open request by the controlling mainframe task. 
The driver may use this value, if appropriate. The Interrupt Pending 
flag, UC@IPN, in the UCT entry should be set before the TPUSH call. 

When the interrupt occurs, the IUCIO routine is entered in the Kernel. 
The routine locates the UCT entry corresponding to the interrupting 
channel. The interrupt status is read from the channel and saved in 
UC@IST of the UCT entry. The ending buffer address of the 1/0 is read 
and saved in UC@IBF, the Interrupt Pending flag is cleared, and the 
Interrupt Returned flag, UC@IRT, is set. The channel driver activity is 
then placed on the processor queue for execution. 

The channel driver should check for a time-out by examining the result 
returned from the TPUSH for a value of EC$TIME. The Interrupt Returned 
flag, UC@IRT, should be cleared. If a time-out did not occur, the 
interrupt status, UC@IST, and ending buffer address, UC@IBF, should be 
examined for errors. Error recovery processing is the responsibility of 
the channel driver activity. 

9.3.6 USER CHANNEL CONFIGURATION 

User-channels on the lOS must be designated as type UC in the MIOP 
channel declaration section of the AMAP overlay. Such channels appear as 
type UCHN on the MIOP Kernel console CONFIG display. 

9.3.7 DRIVER INSTALLATION 

New drivers may be added to the lOS by replacing dummy driver overlays 
named UCDRVO through UCDRV9 in the OVLNUM overlay. Driver names are 
limited to a maximum of 8 alphanumeric characters. The new driver 
overlay should then be assembled with APML and the resulting code file 
copied to the library of the lOS routines. New Kernel and overlay 
binaries should then be produced with the BIND utility. 

9-10 SM-0046 G 



10. HSC BYPERchannel 

The IIO Subsystem (lOS) Network System Corporation (NSC) multipoint 
driver links a Cray mainframe and a front-end station through the NSC 
HYPERchannel. This driver allows multiple front-end computers to be 
connected through an NSC A130 adapter to one physical Master I/O 
Processor (MIOP) channel pair. The A130 adapter is shared by both 
Station Call Processor (SCP) and other protocols. 

The protocol-independent interface can buffer a maximum of n messages 
with associated data on a logical path basis. This number n is defined 
at system generation time and has a default value of 4. Because there 
are limitations to IIO Subsystem (lOS) resources, caution must be used 
when the default value is exceeded. It should be noted that after the 
logical path buffering capability has been exhausted, any incoming 
messages will be discarded. 

One NSC activity is associated with each physical lOP channel connected 
to an NSC adapter (SCP and others) and acts as an interface between the 
relatively complicated NSC protocol and multiple modified versions of the 
lOP concentrator. Because two-way alternate protocol is not enforced for 
each front-end station, one concentrator is set up for each logical ID 
connected through the NSC channel. It handles data transmission on a 
synchronous, point-to-point basis, which is typical of Cray protocol. 
The special requirement of the NSC multipoint driver is that the channel 
always be open for more input data, because multiple front ends can be 
attached to the channel. 

10.1 NSC ACTIVITY INITIALIZATION 

The NSC activity is initialized either by the ADEM overlay, because of a 
request from the mainframe, or through a command keyed at the MIOP Kernel 
console (refer to the I/O Subsystem (IDS) Operator's Guide for COS, 
pUblication SG-0051, or the IIO Subsystem (lOS) Operator's Guide for 
UNICOS, pUblication SG-2005). 

NSC locates the Front-end Interface (FEI) Table for the ordinal 
specified. If it cannot find the table, it posts an error message. 
(The IDS operator's guides describe the NSC messages). 

SM-0046 G 10-1 



I 

I 

Next, NSC verifies that the ordinal is of the correct channel type 
(FEI@CT=CH$NS) and is not in one of the following states: 

• Initializing (FEI@II=l) 
• Terminating (FEI@TM=l) 
• Active (FEI@AC=l) 

If any of the preceding conditions are true, NSC posts an error message 
and then clears the channel pair (FEI@CH), clears the adapter, and gets 
the current adapter status. If the status is abnormal, an error message 
is posted. 

NSC allocates the NIO Table for the initializing ordinal and saves the 
address of the NIO Table in the FEI Table (FEI@TB). The NSCIO activity 
is created and a completion message is posted. 

10.2 NSCIO ACTIVITY 

NSCIO sets the activity to active (FEI@AC=l) and locates all of the NIO 
buffers and queues used for accomplishing 1/0. Then NSCIO allocates 
table space for its NIO (front-end 10) Tables and enters its idle loop. 

10.2.1 NSCIO IDLE LOOP 

The NSCIO idle loop is as follows: 

10-2 

1. NSCIO issues a wait-for-message function (NFB$WFM) to the adapter 
attached to its channel pair. This function sets the adapter to 
return an interrupt when an inbound message arrives at the A130 
adapter. 

2. NSCIO checks each of the following queues for requests: 

• FEI@TM~O indicates that NSCEND has begun termination of 
the NSC activity for the current ordinal. NSCIO calls 
NIOENO to terminate all active station IDs on the attached 
adapter. In addition, TERMNSC is activated to terminate 
protocols other than SCP. When both NIOEND and TERMNSC are 
complete, the NSC activity terminates. 

• The input interrupt handler sets the message cell of the 
wait-for-message queue (NIO@MQ) to NSC$SR in response to an 
interrupt following issue of a wait-for-message function 
(NFB$WFM). This indicates that an input message is 
pending. NSCIO then enters its read sequence. 

SM-0046 G 



• The concentrator or a logical path write activity links a 
write packet to the write request queue (NIO@WC) to indicate 
that a write to a write request is pending. NSCIO enters 
its write sequence. 

3. NSCIO suspends itself on its wait-for-message queue and waits to 
be signaled by either an input interrupt or a write request from 
a concentrator or logical path connection. When signaled, NSCIO 
jumps back to step 2 of this process to check any requests. 

10.2.2 WRITE SEQUENCE FOR THE PROTOCOL-INDEPENDENT INTERFACE 

A typical write sequence for protocols other than SCP is as follows: 

1. FNSC creates the NSCRW write activity during the assign logical 
path sequence. 

2. After initialization, NSCRW waits for a write request from the 
ADEM activity. 

3. When the request is received, NSCRW allocates a write request 
packet in Local Memory. The message is then transferred from 
Central Memory to MIOP Local Memory. Buffer Memory buffers are 
allocated, and the associated data is moved from Central Memory 
to Buffer Memory. 

4. NSCRW puts the write request packet in the NSCIO write chain 
queue and signals the NSCIO overlay to execute the request. The 
write activity then pushes itself on a queue to wait for the 
write operation to be completed. 

5. NSCIO completes the write operation and deallocates the buffers 
in Buffer Memory. NSCIO notifies NSCRW, through a pop Kernel 
call, that the write operation is completed. 

6. NSCRW returns the ending status in the N-packet to Central 
Memory, releases the write request packet, and waits for the next 
request. 

10.2.3 READ SEQUENCE FOR THE PROTOCOL-INDEPENDENT INTERFACE 

A typical read sequence for protocols other than SCP is as follows: 

1. FNSC creates the NSCRW read activity during the assign logical 
path sequence. FNSC passes parameters specifying the number of 
messages to buffer and their maximum data length. 

SM-0046 G 10-3 



2. After NSCRW initialization, a read request packet is put in the 
NSCIO queue. NSCRW then waits on a push queue for one of the 
following to occur: 

• NSCIO receives a message to satisfy the read request, and 
the following sequence occurs: 

The NSCIO activity pops NSCRW. 

NSCRW immediately allocates an additional read 
request packet and puts it in the NSCIO read chain 
queue. 
If a CPU read request is outstanding, the driver 
copies the message and associated data to Central 
Memory, deal locates Local and Buffer Memory, and 
returns an ending status in the N-packet. Otherwise, 
NSCRW buffers the message/data (if space is 
available) or discards it if space is unavailable. 

• A read request is received from ADEM, and the following 
sequence occurs: 

NSCRW checks to see whether any messages/data are 
currently being buffered for the specific logical 
path. 

If messages/data are being buffered, the oldest 
message/data is transferred to Central Memory. 

If no messages/data are being buffered, the driver 
waits for an inbound message to arrive, or an 
indication of a read time-out. Should a time-out 
occur, an error status is returned in the N-packet. 

10.2.4 SCP INTERFACE LOGON SEQUENCE 

The SCP interface uses a typical read/write/read operation for a logon 
sequence. For additional information, refer to the Front-end Protocol 
Internal Reference Manual, publication SM-0042. 

The first read operation for the logon sequence is as follows: 

1. NSCIO reads an inbound message link control package (LCP) from 
the NSC adapter and calls NSCID to determine the destination 
protocol. 

2. NSCID examines the LCP content to verify that the message is for 
SCPo SCP requires a destination logical path of 0 and a logon 
message code with the appropriate segment bit count. 

10-4 SM-0046 G 



3. NSCID allocates Local Memory for the Front-end Station Table and 
its associated read/write packet. NSCID creates SCPID to handle 
all communication between Central Memory and the front-end 
station. 

4. SCPID initializes and enters a queue that is waiting to be 
activated by NSCIO when the read operation is completed. 

5. Before returning the read/write packet address to NSCID and 
terminating, NSCID verifies that SCPIO was successfully created. 

6. NSCID puts the message in the read/write packet and reads any 
associated data from the adapter into Buffer Memory (the 
read/write packet contains pointers to all buffers containing 
data). NSCIO then pops SCPIO to signal the completion of the 
read operation. 

7. SCPID polls Central Memory with a B-packet.t SCPID then 
completes the inbound data transfer. 

The write operation for the logon sequence is as follows: 

1. SCPID reads the B-packet in Central Memory to obtain the address 
of the outbound message and associated data. SCPID then puts the 
information in the read/write packet. 

2. SCPIO links the read/write packet to the end of the NSCIO write 
chain and NSCID begins the write operation. SCPID enters a queue 
to wait for NSCIO to complete the write operation. 

3. NSCIO completes the write operation and pops SCPID to set up for 
a read. 

For any subsequent read operations, SCPIO links a read/write packet to 
the NSCIO read chain and then enters a queue to wait for the next inbound 
message. 

SCPID has a maximum subsegment length defined by the lOS installation 
parameter NSCBFC, which must match the value of the CDS installation 
parameter I@NSCBFC. SCPID will truncate any transfers that exceed this 
maximum length. NSCBFC is equal to 128 kbytes by default, and it is 
described further in the COS Operational Procedures Reference Manual, 
publication SM-0043. 

t The B-packet specifies the location in Central Memory in which the 
message and associated data are to be placed. 

SM-0046 G 10-5 



10.3 NSC ACTIVITY TERMINATION 

NSC activity termination is accomplished by the NSCEND activity. NSCEND 
is created either by ADEM, in response to a CHANNEL OFF command, or 
through a command keyed in at the MIOP Kernel console (refer to the 
appropriate lOS operator's guide). 

NSCEND searches for an FEI Table that corresponds to the ordinal being 
terminated. If no match is found, an error message is posted and NSCEND 
terminates. 

NSCEND sets the Termination In Progress flag (FEI@TM) and waits until 
NSCIO responds by clearing the Active flag (FEI@AC). NSCEND then sends a 
clear-adapter function (NFB$CA) to the adapter. Finally, NSCEND releases 
the NIO Table space, posts a completion message, and terminates. 

10.4 OVERLAYS 

The following overlays are associated with the NSC activity. Figure 10-1 
shows the NSC HYPERchannel driver overlay connections. 

10.4.1 ADEM OVERLAY 

The ADEM overlay routes N-packets 
puts a read or write request in a 
associated with the logical path. 
queue to be processed by the FNSC 

received from Central Memory. ADEM 
queue to be processed by the NSCRW job 

ADEM puts all other requests in a 
job. 

10.4.2 FNSC OVERLAY 

The FNSC overlay performs processing functions based on the type of the 
N-packet, as follows: 

N-packet 

Open 

10-6 

FNSC Processing Functions 

If necessary, FNSC creates a channel table for the 
channel specified in the packet and links the table to 
the channel table chain. FNSC also allocates an open 
table and links it to the open table chain for the 
channel. 

SM-0046 G 



ADEM 
Overlay 

FNSC 
--------~.~ Overlay 

NSCRW NSCRW 
Overlay Overlay 

Read 

NSCEND TERMNSC 
Overlay Overlay 

NSC .. NSCIO NSCID SCPIO 
A130 Channel Overlay ( ) Overlay • Overlay 

Adapter pair. 

" / 
NIDEND 

Overlay 

------~.. Create 

...... I---t> Push/Pop 

< ) Call 1576 

Figure 10-1. NSC HYPERchannel Driver Overlay Connections 

N-packet 

Assign 
Logical 
Path 

SM-0046 G 

FNSC Processing Functions 

FNSC creates logical path tables for input and output 
and links them to the logical path chain for the channel 
number and Owner identification in the packet. FNSC 
creates two NSCRW jobs; one to process input and one to 
process output. 

10-7 



N-packet 

Release 
Logical 
Path 

Close 

FNSC Processing Functions 

FNSC terminates the NSCRW jobs associated with the path 
input and output and then releases the logical path 
tables. 

FNSC releases all logical paths associated with the 
channel number and owner identification specified in the 
packet. It also releases the open table and then the 
channel table (if there are no open tables linked to it). 

After processing a request, FNSC returns the status in the N-packet to 
Central Memory. The status is one of the following: 

Response Codet 

0 
3 
4 
5 
6 
7 

10 
11 
36 
37 
40 
41 
42 
43 
44 
45 
46 
47 
50 
51 
52 
53 
54 
55 

56 
57 
60 
61 
62 

Description 

Operation completed with no errors 
Protocol error 
Illegal channel number 
Illegal function 
Illegal driver 
Data address error 
Data length error 
lOS resources not available 
Logical path not available 
Local adapter not available 
Message proper length error 
Read time-out 
Read error 
Write time-out 
Write error 
No corresponding read on a loop-back write 
Transfer length error 
Release logical path error 
Function code error 
Trunk address not specified 
Internal resource allocation error 
Remote adapter not available 
Driver termination in progress 
Requested read length greater than initialized 
value 
Invalid transfer length specified (write) 
Insufficient space allocated (read) 
Loop-back write error (read buffers exhausted) 
Residual data present after end-of-transfer 
Bad CPU address 

t Response codes are in octal. 

10-8 SM-0046 G 



10.4.3 NIOENO OVERLAY 

The NIDEND overlay is created by NSCIO. NIDEND terminates the NSC 
concentrator associated with a specific station 10, releases buffer 
space, and issues a LOGOFF message to the Cray mainframe. 

10.4.4 NSC OVERLAY 

The Kernel creates the NSC overlay during initialization or when the NSC 
command is entered at the MIOP Kernel console. NSC creates the NSCIO 
table. 

10.4.5 NSCENO OVERLAY 

NSCIO calls the NSCENO overlay to terminate all NSC activity. All 
concentrators are terminated, all buffers are released, and the 1/0 
channel is master cleared. 

10.4.6 NSCID OVERLAY 

NSCIO calls NSCIO to locate the readlwrite request packet associated with 
an incoming message and any associated data. For SCP protocol, the 
search is based on the station 10. For non-SCP protocol, the search is 
based on the logical path in the message proper. NSCIO handles the logon 
LCP from the front-end station. 

10.4.7 NSCIO OVERLAY 

The NSCIO overlay is created by NSC. NSCIO issues 1/0 requests to the 
NSC channel pair; it also issues functions to the adapter using the A130 
protocol. The NSCIO, SCPIO, and NSCRW overlays coordinate network 
activity. 

10.4.8 NSCMSG OVERLAY 

The NSCMSG routine is called by all NSC routines that require the display 
of a message on the MIOP Kernel console. All NSC messages consist of two 
lines of information. The first identifies the NSC element to which the 
message applies. The second contains the message. 

SM-0046 G 10-9 



Format: 

hh:mm:ss NSC: CONCENTRATOR x [ORDINAL y] 
message 

hh:mm:ss Time in hours, minutes, and seconds 

x NSC concentrator ordinal number in octal 

y Front-end ordinal number in octal 

message See the appropriate lOS operator's guide for a list of 
NSC messages 

10.4.9 NSCRW OVERLAY 

FNSC creates the NSCRW overlay to handle any non-SCP protocol. The NSCRW 
read activity buffers incoming messages and data. Hooks are provided to 
run adapter diagnostics. 

10.4.10 SCPIO OVERLAY 

NSCIO creates the SCPIO overlay to process network messages and 
associated data through the SCP protocol handler for the front-end 
stations. NSCIO creates an SCPIO activity for each unique station 10. 

10.4.11 TERMNSC OVERLAY 

The TERMNSC overlay terminates all logical path connections. 

10.5 ERROR RECOVERY 

Separate error recovery schemes exist for SCP protocol and for the 
protocol-independent portion of the driver. 

10-10 SM-0046 G 



10.5.1 ERROR RECOVERY FOR SCP PROTOCOL 

The error recovery scheme for SCP protocol consists of the following: 

• Driver input/read operations 
• Driver output/write operations 

The HYPERchannel driver does not generate front-end driver (FED) error 
codes, so the front-end stations do not receive FED error codes 330, 331, 
332, and 333.t In addition, the driver does not return an FED error 
code of 307 to SCP when a write error occurs. 

10.5.1.1 Driver input/read operations 

The driver input/read operations are as follows: 

• Error recovery is not invoked. 

• The driver does not send an error code to SCP or to the front-end 
station; instead, it waits for the next inbound message. 

• The front-end station detects the error as a software time-out. 
For information on error recovery, refer to the Front-end Protocol 
Internal Reference Manual, publication SM-0042. 

10.5.1.2 Driver output/write operations 

The driver output/write operations are as follows: 

• The device tries to execute each write request for a period of 30 
seconds before aborting. Each attempt to complete a write request 
consists of two retries, separated by a short time delay. If both 
retries are unsuccessful, the write request is requeued at the end 
of the NSCIO write chain. Further attempts will be made after 
other requests have had an opportunity to complete. 

• If the write operation is not completed, SCP is not notified, and 
the front-end station detects this as a software time-out.t 

t The FED error codes are in octal. For additional information, refer 
to the Front-end Protocol Internal Reference Manual, publication 
SM-0042. 

SM-0046 G 10-11 



I 

I 

10.5.2 ERROR RECOVERY FOR THE PROTOCOL-INDEPENDENT INTERFACE 

The error recovery scheme for the protocol-independent interface consists 
of the following: 

• Driver input/read operations 
• Driver output/write operations 

10.5.2.1 Driver input/read operations 

The driver input/read operations are as follows: 

• Error recovery is not invoked. 
• Error status is returned. 

10.5.2.2 Driver output/write operations 

The driver output/write operations are as follows: 

• Each attempt to complete a write request consists of two retries, 
separated by a short time delay. If both retries are 
unsuccessful, the write request is requeued at the end of the 
write chain. Further attempts are made after other write requests 
have had a chance to complete. A write request returns an error 
if the operation has not completed and the write timer has 
expired. (Timer value is set by the Assign Logical Path command). 

NOTE 

The driver returns an error immediately on any 
unrecoverable conditions, such as an attempt to send a 
message to a nonexistent adapter. 

10.6 CHANNEL/ID ORDINAL DESCRIPTION 

Any lOP station, concentrator, or front-end station activity known to COS 
has a corresponding Channel Extension Table (CXT) entry in the COS 
Executive. Front-end station activities are those that handle station 
IDs logged on to COS over an FEI, NSC, or VMEbus connection (for more 
information on the VMEbus driver, refer to section 13, VMEbus (FEI) 
Driver). 

10-12 SM-0046 G 



I 
I 

See the COS Table Descriptions Internal Reference Manual, pUblication 
SM-0045, for information about the CXT. A CXT entry is directly related 
to the channel ordinal number assigned to its activity on the rOPe For 
example, if the rop station is assigned to ordinal 1, the first eXT entry 
is used. 

Any master operator station logged on to COS can initiate the 
concentrator or front-end station on the lOP by turning on its associated 
CXT entry. For example, if a front-end station activity is assigned to 
ordinal 5, the master operator station command CHANNEL 4,5 ON initiates 
that lOP front-end station activity. The lOP is on the mainframe's 
physical channel 4, and 5 is the requested ordinal. 

Likewise, any master operator station can terminate a particular ID that 
is logged on through an lOP front-end station activity, using the same 
command: CHANNEL 1,ordinal OFF (ordinal is the ordinal number 
assigned to the activity). Ordinals assigned to a front-end activity 
such as a concentrator, VMEbus driver, or NSC driver can be determined by 
an examination of the MIOP CONFIG display. Ordinals assigned to a 
logged-on ID can be determined by an examination of the master operator 
station's LINK display. 

Only channel ordinals assigned directly to a front-end activity 
(currently only the concentrator, VMEbus activity, and an NSC activity) 
can be initiated or terminated by the CHANNEL command. The interactive 
station and operator station on the lOP require the respective Kernel or 
station commands. 

If a channel ordinal is turned off, communication between the mainframe 
and the lOP associated with that CXT ordinal is disabled. It can be 
reenabled with the CHANNEL ON command. 

Two Kernel commands control the initiation or termination of NSC-related 
activities: NSC ordinal and NSCEND ordinal. NSC ordinal initiates 
the NSC activity on the lOP channel associated with the specified 
ordinal; NSCEND ordinal terminates it. 

Two Kernel commands control initiation or termination of VMEbus-related 
activities: VME channel mode and VMEND channel (channel is the 
physical input channel number of the low-speed channel pair connecting 
the lOS to the VMEbus that is to be initiated. mode is the mode of 
execution; graphics and networking are the valid modes). VME channel 
mode initiates the VMEbus driver activity on channel. The activity is 
brought up in mode. VMEND channel terminates the VMEbus (FEI) Driver 
activity on channel. 

SM-0046 G 10-13 



I 

I 

The following are the default channel ordinal assignments in the lOP; 
they can be changed to fit the needs of individual systems. 

Ordinal 

1 
2 
3 
4 
5 
6 
7 

Descriptor 

lOP station 0 
lOP station 1 
Concentrator O(CONC) 
Concentrator l(CONC) 
Interactive concentrator 
VMEbus activity 
NSC activity 

Ordinal assignments to IDs begin with ordinal number 8 by default. The 
number of CXT entries equals 7 plus the number of logical IDs coming over 
the NSC and VMEbus channels combined. The number of ordinals available 
for assignment is directly related to the number of CXT entries 
configured on the Cray operating system; that is, the number of CXTs 
equals the number of channel ordinals configured. 

10-14 SM-0046 G 



I 

I 

11. FRONT-END INTERFACE LOGICAL PATH ACTIVITY 

The Front-end Interface (FEI) logical path driver provides an FEI 
connection for UNICOS. This connection parallels the NSC logical path 
connection by making use of the FIN-packet as defined in the COS Table 
Internal Reference Manual, publication SM-0045. It allows front-end 
stations to communicate with the UNICOS Station Call Processor (USCP) 
under UNICOS by using the SCP protocol. 

Two FEI logical path activities, FEIR and FEIW, are associated with each 
physical lOP channel pair connected to an FEI device. Only one logical 
path per channel pair is supported. 

11.1 FEI LOGICAL PATH ACTIVITY INITIALIZATION 

The FEI logical path activity is initialized (or created) when an Assign 
Logical Path command is processed by FNSC. At this point, FNSC verifies 
that the channel pair is connected to the FEI device, and that this 
device is not being used by COS in the Guest Operating System (GOS) 
environment. Equally important, the activity ensures that the channel 
type is correct. If any of these conditions are not correct, an error 
message is posted. 

The FEI logical path activity allocates the FIN table and saves the 
address in the FEI table (FEI@TB). The FEIR and FEIW overlays are 
created, and a completion message is posted. 

Currently, this connection is used solely by USCP. Refer to the 
Front-end Protocol Internal Reference Manual, publication SM-0042, for 
more protocol information. 

11.2 FEI LOGICAL PATH ACTIVITY TERMINATION 

The FEI logical path activity is terminated when FNSC receives a Release 
Logical Path command from the CPU. 

SM-0046 G 11-1 



11.3 OVERLAYS 

The following overlays are associated with the FE! logical path 
activity. Refer to figure 11-1 for the FE! logical path driver overlay 
connections. 

ADEM 

Overlay 

Overlay 

(Write 
Activity) 

IOP 
Output 
Channel 

----t.~ Create 

...... t---C> Push/Pop 

FEIMSG 

Overlay 

FEI 

Device 

FNSC 
Overlay 

FEIR 

Overlay 

(Read 

Activity) 

IOP 

Input 
Channel 

1812 

Figure 11-1. FEI Logical Path Overlay Connections 

11.3.1 ADEM OVERLAY 

The ADEM overlay routes N-packets received from the CPU. ADEM puts a 
read or write request in a queue to be processed by the FEIR and FEIW 
activities associated with the logical path. ADEM puts all other 
requests in a queue to be processed by the FNSC activity. 

11-2 SM-0046 G 



11.3.2 FNSC OVERLAY 

The FNSC overlay performs processing functions based on the type of the 
N-packet, as follows: 

N-packet 

Open 

Assign 
Logical 
Path 

Release 
Logical 
Path 

Close 

FNSC Processing Functions 

If necessary, FNSC creates a channel table for the 
channel specified in the packet and links the table to 
the channel table chain. FNSC also allocates an open 
table and links it to the open table chain for the 
channel. 

FNSC creates logical path tables for input and output 
and links them to the logical path chain for the channel 
number and owner identification in the packet. FNSC 
creates FEIR to process input and FEIW to process output. 

FNSC terminates the FEIR and FEIW jobs associated with 
the path input and output and then releases the logical 
path tables. 

FNSC releases all logical paths associated with the 
channel number and owner identification specified in the 
packet. It also releases the open table and then the 
channel table (if there are no open tables linked to it). 

After processing a request, FNSC returns a status in the N-packet to 
Central Memory. 

11.3.3 FEIR OVERLAY 

The FEIR overlay processes the read requests from ADEM and controls the 
input channel of the FEI device. FEIR sends data to Central Memory 
location and responds to all N-packet read requests. 

11.3.4 FEIW OVERLAY 

The FEIW overlay processes the write requests from ADEM and control the 
output channel of the FEI device. FEIW reads data from Central Memory 
and responds to all N-packet write requests. 

11.3.5 FEIMSG OVERLAY 

The FEIMSG overlay generates the FEI logical path information messages 
for the MIOP console. It is created by FEIW. 

SM-0046 G 11-3 





I 

12. HSX CHANNEL INTERFACE 

The I/O Subsystem (IDS) HSX channel driver software provides the 
following capabilities to support the CRI HSX High-speed External 
Communications Channel: 

• Provides a protocol-independent driver for HSX channels connected 
to the IDS 

• Supports full-duplex communication on HSX channels (enabling 
loop-back testing) 

• Allows data transfer between HSX channels and any of three target 
memories: Central Memory, SSD Memory (through the IDS backdoor), 
and the Buffer Memory Resident (BMR) portion of Buffer Memory 

The driver provides the ability to read or write discontiguous target 
memory buffers in the same HSX data block by giving the mainframe control 
of the End-of-block channel signal. The driver software supports the 
configuration of an HSX channel on a Buffer I/O Processor (BIOP), Disk 
I/O Processor (DIOP), or an Auxiliary I/O Processor (XIOP). The IDS HSX 
driver requires a standard Cray 100-Mbyte channel connecting the IDS to 
the desired target memory on the same lOP as the HSX channel. If SSD 
Memory is chosen as the target memory, the SSD I/O buffers must begin on 
a 64-word boundary, and they must be an integral multiple of 64 words in 
length. 

The HSX driver software can coexist with other channel drivers in the 
same lOP, including the on-line tape and disk drivers; however, 
performance drops on all channels when the HSX channel and other channel 
types are active simultaneously. 

12.1 HSX CHANNEL REQUESTS 

This subsection describes the processing of HSX channel requests. The 
function codes, which begin with HSF$, are received from the mainframe in 
H-packets (destination ID of RQ$HSX). See subsection 2.14, 
MIOP-mainframe Communication Channel, for more information about packet 
disposition. See the IDS Table Descriptions Internal Reference Manual, 
publication SM-0007, for a description of the HSX request packet. 

SM-0046 G 12-1 



I 

The lOS HSX driver supports OPEN, READ, WRITE, CONTROL, and CLOSE 
requests from the mainframe. At the completion of each request, the 
driver returns status information to the mainframe in the original 
H-packet. 

12.1.1 OPEN REQUEST (HSF$OPEN) 

HSF$OPEN must be the first request made for the input or output side of 
the HSX channel. Each side of the channel must be opened by a separate 
request. The OPEN request causes the HSX driver to load the input or 
output interrupt handler into Local Memory, and to allocate Local Memory 
I/O buffers for the duration of the time the channel is open. 

12.1.2 READ REQUEST (HSF$READ) 

HSF$READ transfers data from the input side of the HSX channel to the 
target memory address specified in the request. One or two target memory 
buffers may be supplied in the request. The response to the mainframe is 
sent after all the data is transferred to the target memory buffer(s). 

12.1.3 WRITE REQUEST (HSF$WRIT) 

HSF$WRIT transfers data from the target memory address specified in the 
request to the output side of the HSX channel. One or two target memory 
buffers may be supplied in the request. The response to the mainframe is 
sent after all the data is transferred from the target memory buffer(s) 
to the channel. 

12.1.4 CONTROL REQUEST (HSF$CNTL) 

HSF$CNTL causes the HSX driver to take special action regarding HSX 
channel control. No data transfer is associated with the request. 
Subfunction codes that begin with HSS$ specify the necessary action. 

12.1.4.1 Set parameters (HSS$SET) 

HSS$SET causes the HSX driver to set software execution control 
parameters in the HSX control table. The parameters that may be 
specified are a software channel time-out value in tenths of a second, 
and a debug mode flag. If no HSS$SET request is issued, or if a 0 
time-out value is set in an HSS$SET request, the IDS driver default value 
is used. Setting the debug mode flag causes the HSX driver to allocate a 

12-2 SM-0046 G 



I 

Buffer Memory buffer used to simulate HSX channel 1/0 on subsequent 
requests. Clearing the debug mode flag causes the HSX driver to release 
the Buffer Memory buffer. See subsection 12.3, Debug Mode, for more 
information about the debug mode. 

12.1.4.2 Send interrupt (HSS$SNDI) 

HSS$SNDI causes the HSX driver to send either a clear pulse signal on the 
output side of the channel or an exception signal on the input side of 
the channel. These signals may be used as part of a user-defined 
protocol. 

12.1.4.3 Receive interrupt (HSS$RECI) 

HSS$RECI causes the HSX driver to wait for either a clear pulse signal on 
the input side of the channel or an exception signal on the output side 
of the channel. These signals may be used as part of a user-defined 
protocol. 

12.1.5 CLOSE REQUEST (HSF$CLOS) 

HSF$CLOS must be the last request made for the input or output side of 
the HSX channel. A close request causes the HSX driver to unload the 
input or output interrupt handler, and to release the Local Memory 1/0 
buffers allocated when the channel was opened. 

12.2 HSX DRIVER ARCHITECTURE 

The HSX driver software consists of one demon overlay (HCOM) and two 
interrupt handler routines; one for the input side (HSXI) and another for 
the output side (HSXO) of the channel. A common data structure called 
the HSX Control Block (HCB) is shared by all of these routines. Refer to 
the lOS Table Descriptions Internal Reference Manual, publication 
SM-0007, for a description of the HCB. 

12.2.1 HSX DEMON OVERLAY (HCOM) 

HCOM is responsible for all activities related to the HSX channel, except 
for the handling of hardware interrupts. These activities include 
receiving and processing HSX requests from the mainframe, starting 
channel 1/0, and restarting channel 1/0 if the interrupt handler 
temporarily halts 1/0 for any reason. 

SM-0046 G 12-3 



I 

12.2.2 HSX INPUT INTERRUPT HANDLER (HSXI) 

HSXI is the heart of the HSX read activity. After HCOM starts the 
channel input, HSXI performs all necessary actions to keep I/O 
functioning until the request is completed. 

When an interrupt is detected on the HSX input channel, HSXI checks for 
errors, restarts channel input to the next Local Memory buffer, and 
starts the high-speed channel write to transfer the data just received to 
the target memory. HSXI sends the response to the mainframe after 
waiting for the completion of the last data transfer to the target memory. 

If HSXI detects that other software activities are waiting, it 
temporarily suspends HSX I/O to allow those routines to perform their 
tasks and it activates HCOM to restart the channel. 

12.2.3 HSX OUTPUT INTERRUPT HANDLER (HSXO) 

HSXO is the heart of the HSX write activity. After HCOM starts the 
channel output, HSXO performs all necessary actions to keep I/O 
functioning until the request is completed. 

When an interrupt is detected on the HSX output channel, HSXO checks for 
errors, restarts channel output from the next Local Memory buffer, and 
starts the high-speed channel read to transfer the next data from the 
target memory to Local Memory. HSXO sends the response to the mainframe 
when the last data has been written to the channel. 

If HSXO detects that other software activities are waiting, it 
temporarily suspends HSX I/O to allow those routines to perform their 
tasks and it activates HCOM to restart the channel. 

12.2.4 BUFFERING 

HCOM performs all resource management of Local Memory buffers for the HSX 
driver. At channel open time, HCOM allocates two Local Memory buffers of 
equal length to support the input or output channel activity. Double 
buffering allows the driver to overlap channel I/O with data movement 
between the target memory and Local Memory. 

Because requests for the HSX channel are typically for data blocks larger 
than the Local Memory buffer size, the driver must split the 1/0 into 
several smaller requests to the channel; therefore, the size of the Local 
Memory buffers directly affects HSX channel performance. The larger the 
buffers, the less interrupt overhead and the better the performance; 
therefore, HCOM attempts to allocate buffers that are larger than normal. 

12-4 SM-0046 G 



I 

Local Memory buffers in the lOS are normally 4096 bytes in length. HCOM 
tries to find an integral number of these buffers that are contiguous. 
The number of 4096-byte buffers to allocate is controlled by $APTEXT, 
which defines a minimum and maximum buffer size. The minimum size is 
specified by HSX$IBMN for the input channel and HSX$OBMN for the output 
channel. The maximum size is specified by HSX$IBMX and HSX$OBMX for the 
input and output channels, respectively. 

If the maximum number of contiguous buffers cannot be found, HCOM accepts 
a smaller number. If the minimum number cannot be found, an error 
response is sent to the mainframe indicating insufficient resources to 
open the channel. 

12.3 DEBUG MODE 

A debug mode is provided to facilitate software testing when no HSX 
channel hardware is available. In debug mode, the lOS reads or writes 
data to a Buffer Memory buffer instead of the HSX channel. Debug mode 
does not support loop-back testing; that is, data is not preserved in 
Buffer Memory from a write request to a read request. Debug mode does, 
however, allow either read or write performance testing. 

Debug mode may be enabled for only one side of the channel at a time. 
This is because the Buffer Memory channel is a half-duplex channel and 
there is no way to distinguish an input interrupt from an output 
interrupt. Debug mode is controlled by a flag in the HSR$CNTL request 
packet with a subfunction code of HSS$SET. 

12.4 OVERLAY LISTING 

The HSX channel overlays are grouped together with the APML list 
identifier of $HSX. 

12.5 ERROR PROCEDURES 

The error procedures performed by the lOS HSX driver are intended to be 
very simple so that a variety of protocols can use the same hardware 
driver. Each separate protocol may implement additional error procedures 
(such as retries) as needed at the protocol level of the software. 

SM-0046 G 12-5 



I 

12.5.1 INPUT ERRORS 

The following error procedures are performed by the lOS when unusual 
conditions are detected during HSX input channel activation. 

12.5.1.1 Clear pulse received (HST$CLR) 

When a clear pulse is received, the lOS performs the following command 
sequence: 

1. Reset input channel control logic. 

2. Wait 250 ns as required by hardware-defined protocol. 

3. Send exception pulse to transmitting device. 

4. Return status and transfer length to mainframe. 

12.5.1.2 Multiple bit error (HST$DATA) 

When a multiple bit error is received, the lOS performs the following 
command sequence: 

1. Continue reading until end-of-block. 

2. Send exception pulse to transmitting device (before clearing 
enable block hardware signal). 

3. Wait 250 ns as required by hardware-defined protocol. 

4. Reset input channel control logic (clearing enable block signal). 

5. Return status and transfer length to mainframe. 

12.5.1.3 Data overrun error (HST$OVER) 

When a data overrun error is received, the IDS performs the following 
command sequence: 

1. Continue reading until end-of-block. 

2. Send exception pulse to transmitting device (before clearing 
enable block hardware signal). 

3. Wait 250 ns as required by hardware-defined protocol. 

4. Reset input channel control logic (clearing enable block signal). 

5. Return status and transfer length to mainframe. 

12-6 SM-0046 G 



I 

12.5.1.4 Long block error (HST$LONG) 

When a long block error is detected, the lOS performs the following 
command sequence: 

1. Return status and transfer length to the mainframe. 

2. If indicated in the mainframe request, continue to read until 
end-of-block and throwaway the data to drain the channel. 

12.5.1.5 Software time-out (HST$TMO) 

When a software time-out is detected, the lOS performs the following 
command sequence: 

1. Reset input channel control logic. 

2. Return status and transfer length to mainframe. 

12.5.1.6 Device not present (HST$NDEV) 

When an error is received because a device is not present, the lOS 
performs the following command sequence: 

1. Reset input channel control logic. 

2. Return status and transfer length to mainframe. 

12.5.1.7 Short block error (HST$SHRT) 

When an unexpected end-of-block signal is received (indicating a short 
block), the lOS returns the status and transfer length to the mainframe. 

12.5.2 OUTPUT ERRORS 

The following error procedures are performed by the lOS when unusual 
conditions are detected during HSX output channel activation. 

SM-0046 G 12-7 



I 

12.5.2.1 Exception pulse received during transfer (HST$XDT) 

When an exception pulse is received during a transfer, the lOS performs 
the following command sequence: 

1. Continue writing until end-of-block. 

2. Reset output channel control logic. 

3. Return status and transfer length to mainframe. 

12.5.2.2 Exception pulse received while channel idle (HST$XFT) 

When an exception pulse is received while the channel is idle, the lOS 
performs the following command sequence: 

1. Reset output channel control logic. 

2. Return status and transfer length to mainframe. 

12.5.2.3 Receiving device aborted (HST$ABRT) 

When a device has aborted, the IDS performs the following command 
sequence: 

1. Reset output channel control logic. 

2. Return status and transfer length to mainframe. 

12.5.2.4 Software time-out (HST$TMO) 

When a software time-out occurs, the IDS performs the following command 
sequence: 

1. Reset output channel control logic. 

2. Return status and transfer length to mainframe. 

12.5.2.5 Device not present (HST$NDEV) 

When an error is received because a device is not present, the lOS 
performs the following command sequence: 

1. Reset output channel control logic. 

2. Return status and transfer length to mainframe. 

12-8 SM-0046 G 



I 

12.6 SPECIAL SEQUENCES 

Special command sequences performed by the lOS HSX driver are described 
in this subsection. Each separate protocol may use the special sequences 
as appropriate for its communication needs. 

12.6.1 INPUT SEQUENCES 

The following command sequences are defined to allow special control of 
the HSX input channel. 

12.6.1.1 Send exception pulse (HSS$SNDI) 

When an exception pulse is sent, the lOS performs the following command 
sequence: 

1. Reset input channel control logic. 

2. Send exception pulse to transmitting device. 

3. Return status to mainframe. 

12.6.1.2 Wait for clear pulse (HSS$RECI) 

Waiting for a clear pulse causes the lOS to perform the following command 
sequence: 

1. Wait for clear pulse from transmitting device. 

2. Reset input channel control logic. 

3. Wait 250 ns as required by hardware-defined protocol. 

4. Send exception pulse to transmitting device. 

5. Return status to mainframe. 

12.6.2 OUTPUT SEQUENCES 

The following command sequences are defined to allow special control of 
the HSX output channel. 

SM-0046 G 12-9 



I 

12.6.2.1 Send clear pulse (HSS$SNDI) 

When a clear pulse is sent, the lOS performs the following command 
sequence: 

1. Reset output channel control logic. 

2. Send clear pulse to receiving device. 

3. Wait for exception pulse to be returned. 

4. Reset output channel control logic. 

5. Return status to mainframe. 

12.6.2.2 Wait for exception pulse (HSS$RECI) 

Waiting for an exception pulse causes the lOS to perform the following 
command sequence: 

1. Wait for exception pulse from receiving device. 

2. Reset output channel control logic. 

3. Return status to mainframe. 

12-10 SM-0046 G 



I 

13. VMEBUS (FEI-3) DRIVER 

The IIO Subsystem (lOS) VMEbus (also called the FEI-3) driver allows a 
VMEbus-based front-end processor connected to a CRI VMEbus interface to 
communicate with a Cray computer system through the lOS. The lOS is 
physically connected to the remote VMEbus interface board by a CRI 
low-speed channel operating in either 6-Mbyte or 12-Mbyte mode. 

The VMEbus driver allows the simultaneous use of multiple application 
protocols, and it uses the same mechanism for routing traffic between the 
Cray computer system and multiple remote addresses, as does the lOS NSC 
driver. Routing is done on a logical path basis, where multiple logical 
paths may be assigned for each physical low-speed channel. 

The interface used between the lOS and UNICOS is the N-packet: the 
interface to COS is the B-packet for the SCP protocol and the F-packet 
for other protocols. 

Because of the nature of the low-speed channel and the software running 
in both the lOS and the Cray computer system, applications using the 
VMEbus interface must transfer data lengths that are multiples of a Cray 
word (64 bits). 

13.1 N-PACKET INTERFACE 

The N-packet interface provides the following capabilities for support of 
the VMEbus driver interface: 

• Provides full-duplex access to an lOS low-speed channel 

• Shares one lOS low-speed channel for use among multiple Cray jobs 
running different applications and protocols 

• Allows one Cray job to access multiple lOS low-speed channels 

• Allows one Cray job to assign multiple logical paths on one lOS 
low-speed channel 

• Queues mUltiple read and write requests generated by a Cray job 

• Buffers incoming messages in the lOS until read by a Cray job 

SM-0046 G 13-1 



I 

The N-packet interface restricts a VMEbus driver interface by allowing a 
maximum transfer length of 16,384 Cray words (131,072 bytes). This value 
can be changed by using the IDS configuration parameter NSCBFC and the 
COS configuration parameter I@NSCBFC (on COS systems only) The same 
value is used for both NSC and VMEbus interfaces operating concurrently 
in a single IDS. 

For detailed information on the N-packet, see the IDS Table Descriptions 
Internal Reference Manual, publication SM-0007. 

13.2 DRIVER OVERLAYS 

Figure 13-1 shows the relationship of overlays and the lOS Kernel in the 
VMEbus driver. In the figure, all overlays above and including the NSCRW 
and SCPIO overlays, constitute the N-packet and B-packet interface 
portion of the driver. These overlays are used in the VMEbus and the NSC 
HYPERchannel interface software. Those below the NSCRW and SCPIO 
overlays constitute the portion of the VMEbus driver software that is 
specific to the functioning of a low-speed channel. 

The following overlays are associated with the IDS VMEbus driver. See 
figure 13-1 for overlay connections. 

13.2.1 ADEM OVERLAY 

The ADEM overlay routes all N-packets received from Central Memory. 
F-packets received from COS that have the proper value (CR$NSC) in the 
lOP field of the packet will be handled as N-packets from this point on 
in the driver. ADEM puts a read or write request N-packet in a queue to 
be processed by the NSCRW activity associated with the logical path. 
ADEM places all other N-packet request types (Open, Assign Logical Path, 
Release Logical Path, and Close) in a queue to be processed by the FNSC 
activity. 

13.2.2 FNSC OVERLAY 

The FNSC overlay performs functions based on the type of the N-packet, as 
described below. After the function is attempted, the status is returned 
to Central Memory. 

Open 

13-2 

Function 

If necessary, FNSC creates a channel table for the channel 
specified in the N-packet and links this table to the 
channel table chain. FNSC also allocates an open table and 
links it to the open table chain for the specified channel. 

SM-0046 G 



I 

Assign 
Logical 
Path 

Release 
Logical 
Path 

Close 

SM-0046 G 

Function 

FNSC creates two logical path tables (one for input and one 
for output) and links them to the logical path chain for 
the channel number and owner identification given in the 
N-packet. FNSC creates two NSCRW activities; one to 
process input and communicate with the VMERD activity, and 
one to process output and communicate with the VMEWT 
activity. 

FNSC terminates the NSCRW activities associated with the 
specified path and then releases the related logical path 
tables. 

FNSC releases all logical paths associated with the channel 
number and owner identification specified in the N-packet, 
and FNSC releases the open table. Then, if there are no 
more open tables linked to this channel table, the channel 
table is released. 

VME 

CPU Responses 

(N -Packets) 

Input 

_______ Create 

+-I> Push/Pop 

~ Call 

----U>- Poll 

Low-speed channel 

CPU Requests CPU Responses CPU Requests and Responses 

(N-Packets) (Ii-Packets) (B-Packets) 

I 

1829 

Figure 13-1. VMEbus Driver Overlay Connections 

13-3 



I 

13.2.3 NSCRW OVERLAY 

FNSC creates the NSCRW overlay to handle the routing of messages and data 
for a given logical path. There are actually two activities created, 
each one an identical copy of the NSCRW overlay. One copy handles 
strictly input traffic and buffers incoming messages and data. The other 
copy handles strictly output traffic. 

13.2.4 VME OVERLAY 

The VME overlay is created when the VME command is entered at the Master 
1/0 Processor (MIOP) Kernel console. This command must be entered before 
any VMEbus interface traffic is begun. VME performs channel pair 
initialization and creates the two activities that physically drive the 
channels, VMERD and VMEWT. A message relaying the status of the 
initialization attempt is sent to the MIOP Kernel console. 

13.2.5 VMEND OVERLAY 

The VMEND overlay is created when the VMEND command is entered at the 
MIOP Kernel console. It may also be created by VMERD or VMEWT if a 
catastrophic error occurs. VMEND terminates all driver software for the 
VMEbus interface. A message relaying the status of the termination 
attempt is sent to the MIOP Kernel console. 

13.2.6 FEIMSG OVERLAY 

The FEIMSG overlay is created by either VME or VMEND to display an MIOP 
Kernel console message, and it is used by the FEI-Iogical path interface 
software. FEIMSG terminates itself after the message is displayed. 

13.2.7 VMERD OVERLAY 

VMERD physically controls the low-speed input channel. It passes the 
received messages and data to the NSCRW activity responsible for the 
logical path on which the input was received. A status of the attempted 
read is also returned to the NSCRW activity. 

13-4 SM-0046 G 



I 

13.2.8 VMEWT OVERLAY 

This overlay physically controls the low-speed output channel. It 
receives output from the various NSCRW activities and returns a status to 
a NSCRW activity after it has attempted the requested write. 

13.2.9 TERMVME OVERLAY 

This overlay is called by VMERD to terminate all logical paths on the 
given channel pair. 

13.2.10 TERMNSC OVERLAY 

This overlay is called by TERMVME to terminate the NSCRW activities 
responsible for the logical paths on the given channel pair. 

13.2.11 NSCID OVERLAY 

NSCIO calls the NSCID overlay to locate the Read/Write Packet associated 
with an incoming message and any associated data. For the SCP protocol, 
the search is based on the station ID in the LCP. NSCID processes the 
Logon LCP from the front-end station and creates an SCPIO activity to 
process future LCPs for that station. For other protocols, the search is 
based on the destination logical path in the message proper. 

13.2.12 SCPIO OVERLAY 

The SCPIO overlay processes the messages (LCPs) and data involved with 
one station ID. NSCID creates an SCPIO overlay for each unique station 
ID that logs on to COS through the SCP protocol. 

13.3 READ AND WRITE REQUESTS FLOW DESCRIPTIONS 

The VMEbus driver is told how many sectors (51210 Cray words) of 
associated data follow an input Message Proper by a count field in the 
Message Proper. Likewise, the VMEbus driver will set this field in all 
output Message Propers for the remote driver's use. This field is 
currently necessary to run the interface over 6-Mbyte low-speed 
channels. This subsection provides the stepflow for read and write 
requests. 

SM-0046 G 13-5 



I 

13.3.1 READ REQUEST SEQUENCE 

A typical read sequence is as follows. All references to NSCRW pertain 
only to the "read" copy of this overlay. 

13-6 

1. NSC«W has initially issued a read request RWP packet to VMERD; 
this is the idle state of the driver. 

2. NSCRW waits on a push queue for one of the following to occur: 

• VMERD receives a message to satisfy the read request and the 
following occurs: 

VMERD pops NSCRW into activation. 

NSCRW immediately initiates another read RWP request 
packet and puts it on VMERD's read chain queue. 

If a read request N-packet from the Cray mainframe is 
outstanding, NSCRW copies the message proper and 
associated data to the Cray mainframe, deallocates 
Local and Buffer Memory resources, and returns the 
ending status in the N-packet to the mainframe. 
Otherwise, NSCRW buffers the message and data (if space 
is available), 'or discards the message and data (if 
space is not available). 

• A read request N-packet is received from ADEM and the 
following occurs: 

NSCRW checks to see whether any messages are currently 
being buffered for the specified path. 

If messages (and associated data, if applicable) are 
currently buffered, the oldest message (and its data) 
is transferred to Central Memory. 

If no messages are buffered, NSCRW waits for a 
specified period of time for an indication from VMERD 
that an appropriate message has arrived. If an 
appropriate message does arrive, it (and its data) is 
transferred to the mainframe with the read operation's 
ending status also returned in the N-packet. 
Otherwise, a time-out error status is returned to the 
mainframe in the N-packet. 

3. NSCRW returns to step 2. 

SM-0046 G 



I 

13.3.2 WRITE REQUEST SEQUENCE 

A typical write sequence is as follows. All references to NSCRW pertain 
only to the "write" copy of this overlay. 

1. NSCRW waits for a write request from the ADEM activity. 

2. When the request is received, NSCRW allocates a write request 
packet in MIOP Local Memory. The message proper is then 
transferred from Central Memory to Local Memory. Buffer Memory 
buffers are allocated, and the associated data is transferred 
from Central Memory to these buffers. 

3. NSCRW puts the write request packet (RWP) on the VMEWT write 
chain queue and signals the VMEWT activity to execute the 
request. The NSCRW write activity then waits on a push queue for 
the write operation to be completed or to time-out. 

4. VMEWT receives the write request and controls the low-speed 
channel to transfer the data, in multiples of 512 words or less 
at a time. An M10P Local Memory double buffering mechanism is 
used to write data to the low-speed channel concurrently with the 
transferring of the next sector of output data from the Buffer 
Memory buffers to the MIOP Local Memory. 

5. VMEWT either completes the write or aborts it on an error and 
sets the status of the write for NSCRW. VMEWT then reactivates 
NSCRW with the information on the write request it just processed. 

6. NSCRW deallocates the Buffer Memory buffers used in the request, 
returns the ending status in the N-packet to the mainframe, 
releases the RWP packet, and returns to step 1. 

13.4 FLOW DESCRIPTION FOR SCP PROTOCOL 

The following list describes the logon sequence for a station ID. 

1. The driver activity (VMERD or NSC10) calls NSCID to locate the 
Read/Write Packet (RWP) corresponding to an incoming message. 

2. NSC10 determines that the message is for the SCP protocol and 
checks that there is not an existing RWP on the driver activity's 
read chain for the station IO in the received message. NSC10 
confirms that this is a valid logon attempt. 

3. NSCIO allocates Local Memory for the Front-end Station Table 
(NT@) and for a RWP. 

4. NSCID creates an SCPIO activity to handle communication between 
this station 10 and COS/SCPo 

SM-0046 G 13-7 



I 

5. SCPID initializes and pushes itself, waiting to be activated by 
the driver activity when the read is complete. 

6. After NSCID is notified that the SCPID activity is in the wait 
state, it returns to the driver activity and to the address of 
the RWP it created for this station. NSCID returns execution to 
the driver activity. 

7. The driver activity finishes reading any associated data and 
places information about the read operation in the RWP that NSCID 
returned to it. The driver activity then pops the SCPID 
activity, signaling completion of the read. 

8. SCPIO polls COS for a B-packet, which contains Cray Central 
Memory addresses for the incoming message and data, and then 
writes the message and any data to these addresses. 

9. SCPID waits for a response B-packet from CDS. When it arrives, 
SCPIO reads the outgoing message and any data from the Cray 
Central Memory addresses specified in the response B-packet. 
Information about the outgoing message and possible data is put 
into the RWP. 

10. SCPID links the RWP to the end of the driver activity's write 
chain and pushes itself, waiting to be notified that the write is 
complete. 

11. The driver activity takes the RWP off of its write chain, 
attempts the physical write (from information supplied in the 
RWP), and pops SCPID with status of the attempt. 

12. SCPID queues another RWP on the driver activity's read chain and 
pushes itself, waiting for the driver activity to process a read 
for that RWP. 

All future non-logon processing proceeds in a loop from step 12 to 
step 7, and then through step 12 again. For non-logon messages, NSCID 
returns to the driver activity, the address of RWP on the driver's read 
chain that has a station ID matching that of the incoming message. That 
RWP is the one that was placed on the read chain in step 12. 

13.5 INTERRUPT HANDLING 

The interrupt handling routine, IVME, resides in the Kernel. It places 
the ending channel address and ending channel status in the VMEbus driver 
table (input or output) relevant to the interrupted channel. The only 
error that the Kernel interrupt handler checks for is an output sequence 
error. The interrupt handler communicates with the driver read and write 
activities through the VR@KQ and VW@KQ queues, respectively. 

13-8 SM-0046 G 



14. PROGRAM LIBRARY AND MACROS 

This section describes the 1/0 Subsystem (lOS) software program library 
(PL) and its structure. It also describes a set of macro instructions 
defined in $APTEXT. The process of adding an overlay, discussed at the 
end of this section, requires both the use of macros and modifications to 
the program library. The program library can be modified using the 
UPDATE program, described in the UPDATE Reference Manual, publication 
SR-OOl3. 

14.1 PL STRUCTURE 

The program library for the lOS software, IOPPL, has the following 
structure: 

Deck 

Common decks 
AT 
eof 
K 
AMAP 
Overlay decks 
TAPE LOAD 
DISKLOAD 
DUMP 
eof 
CAL overlays 
eof 

Contents 

System text, $APTEXT 
Deck containing *WEOF directive 
Kernel 
Configuration overlay 

Peripheral Expander tape deadstart program 
Peripheral Expander disk deadstart program 
Dump program 

The configuration AMAP overlay must be the first overlay. 

The location of an overlay relative to others is based on the following 
considerations: 

• Overlays are grouped by function (for instance, the station 
function) . 

• Within a group, overlays are alphabetized. 

SM-0046 G 14-1 



14.1.1 COMMON DECK STRUCTURE 

The first and last statements in a common deck are comments indicating 
the scope of the common deck. Following the initial comment and 
preceding the final comment are list statements controlling the APML 
listing output. For example, the common deck DEB has the fo~lowing 
structure: 

I Location 
I 
1* 
I 
IDEB 
I 
I 
I 
IDEB 
IDEB 
1* 

Result 

Start of 
LIST 
LIST 

LIST 
LIST 

I Operand 
I 

common deck DEB 
10FF,NXRF 
10N,XRF 
I 
I 
I 
I * 
I * 

End of common deck DEB 

14.1.2 ADDING AN OVERLAY 

Adding an overlay to the lOS software requires the following: 

• Inserting a deck containing the overlay into IOPPL. The location 
of the deck on the program library is dictated by considerations 
discussed in this section under the PL Structure heading. 

• Defining the overlay number in deck OVLNUM. Overlay numbers have 
the form O$name; name is the overlay and overlay deck name. 
The overlay numbers in OVLNUM reflect the order of the decks on 
IOPPL, although it is not required that they do so. 

The following example adds an overlay after the MULTIPLY overlay, 
assuming the overlay number for MULTIPLY is defined on line OVLNUM.157. 
The overlay expects two parameters. The overlay is in the grouping for 
overlays with the identifier $KOVL. (For descriptions of the OVERLAY and 
REGDEFS macros presented in the following example, see subsection 14.2.5, 
Overlay and Register Definition Macros.) 

14-2 SM-0046 G 



I 

Location IResult 
I 

*10 NEWDK,DC=OVLNUM 
*1 OVLNUM.lS7 
NEWOVL IOVNM 

I 
*DK NEWOVL 

ILIST 
ILISTOP 
I OVERLAY 

I 
I 
I 
IREGDEFS 
I 
I 
I 
lEND 

Operand 

OFF,NXRF 
(NEWOVL,$KOVL) 
NEWOVL 

Comment 

New overlay 

Description of overlay 
function and parameters 

,(PARl,PAR2),(REG1,REGl,REG3) 
IBody of overlay 

I 
I 

*MOVEDK NEWOVL:MULT1PLY 
I 
I 

To obtain a listing of the overlay, specify the following on the 
appropriate APML statement: 

L1ST=NEWOVL 

The overlay listing is included in the listing when specifying the 
following: 

LIST=$KOVL 

The groupings of overlays have the following identifiers that specify the 
group to be listed: 

Overlay 

$BMX 
$CONC 
$COVL 
$UNICOS 
$D1AG 
$DSK 
$EXP 
$FE1 
$FILE 
$HSX 
$INTER 
$KOVL 
$NSC 
$SDMP 

SM-0046 G 

Description 

Block multiplexer channel driver overlays 
Concentrator overlays 
CAL overlays 
UNICOS support overlays 
Diagnostic and test overlays 
Disk driving overlays 
Expander device driving overlays 
FEI logical path overlays 
Minieditor and file system overlays 
HSX channel overlays 
Interactive station overlays 
Kernel overlays 
NSC concentrator overlays 
System dump and restart overlays 

14-3 



I 
I 

Overlay Description 

$STAT Station overlays 
$TAPE On-line tape overlays 
$TAPEIO On-line tape overlays (I/O portion) 
$TAPERR On-line tape overlays (error recovery portion) 
$UCHN User Channel shell overlays 
$VME VMEbus interface overlays 

14.2 MACROS 

A set of macros is defined in the system text file, $APTEXT, for use in 
the lOS software. 

Macros have been defined for sets of widely used functions, including the 
following: 

• Exit stack access 
• Execution control 
• Table access 
• Overlay and register definition 

If used consistently, the macros make the lOS code more reliable, 
readable, and maintainable. 

A macro may require a subset of the scratch registers ~T1 through ~T6. 
For overlays, these registers are allocated by the REGDEFS definition. 

In general, unless otherwise specified, the operands for macros in this 
section can be the following: 

• Constants 
• Registers specified by the R! format 
• Registers specified by the (symbol) format 

The (symbol) format will often require an additional set of parentheses 
around the (symbol), such as «symbol». The extra outer set is 
necessary because parameters may be grouped with parentheses that are 
later stripped off by the macro processor. 

Additional macros are defined in $APTEXT and the individual overlays. 
Table 14-1 summarizes the macros in alphabetical order. The Kernel 
service requests are also in this list; refer to subsection 2.9.3, I/O 
Operations, for more information on these requests. 

14-4 SM-0046 G 



Name 

A13001 

ADDRESS 

ALERT 

ASLEEP 

AWAKE 

CALL 

CLEAR 

COpy 

CREATE 

EDECR 

EGET 

EINCR 

EPUT 

EXSGET 

EXSPUT 

FIELD 

I SM-0046 G 

Table 14-1. Summary of Macros 

Type 

Kernel service request 

Data access macro 

Kernel service request 

Kernel service request 

Kernel service request 

Kernel service request 

Memory macro 

Memory macro 

Kernel service request 

Exit stack macro 

Exit stack macro 

Exit stack macro 

Exit stack macro 

Exit stack macro 

Exit stack macro 

Data definition 
macro 

Function 

Performs front-end I/O on 
an NSC channel 

Generates parcel address 
of a field 

Creates an activity in 
another lOP 

Suspends activity until an 
AWAKE message is received 

Activates an activity in 
another lOP 

Calls another overlay to 
perform a function 

Zeros out area of Local 
Memory 

Copies data from one 
memory location to another 

Creates a new activity in 
the system 

Decrements exit stack 
pointer E by 1 

Reads exit stack pointer E 

Increments exit stack 
pointer E by 1 

Sets exit stack pointer E 

Reads exit stack address 
(E) 

Stores exit stack address 
(E) 

Generates a set of symbols 
that define data field 
characteristics 

14-5 



I 

Name 

FIND 

FLDADD 

FLDSUB 

FLUSH 

GET 

GIVEUP 

GOTO 

$GOTO 

$IF 
$ELSEIF 
$ELSE 
$ENDIF 

ISFIELD 

LOAD 

MSG 

14-6 

Table 14-1. Summary of Macros (continued) 

Type 

Kernel service request 

Data access macro 

Data access macro 

Kernel service request 

Data access macro 

Kernel service request 

Kernel service request 

Execution control 
macro 

Execution control 
macro 

Data definition 
macro 

Data access macro 

Kernel service request 

Function 

Returns the Buffer Memory 
address and length 
of an overlay 

Adds to the contents 
of a field 

Subtracts from the 
contents of a field 

Releases all overlays in 
Local Memory 

Fetches contents of a 
field 

Reschedules activity 

Calls another overlay but 
does not save return 
information; does not 
return to caller of this 
overlay. 

Allows branching based 
on index value 

These associated macros 
allow for conditional 
execution, loop control, 
and indexed branching 

Allows a new field to 
assume characteristics of 
the previous field 

Uses TABLE and FIELD 
definitions to generate 
tables at assembly time 

Sends message to Kernel 
console 

SM-0046 G 



Name 

MSGR 

OUTCALL 

OUTPUT 

OVERLAY 

PAUSE 

POP 

$PUNTIF 

PUSH 

PUT 

RECEIVE 

REGDEFS 

REGISTER 

RESPOND 

I SM-0046 G 

Table 14-1. Summary of Macros (continued) 

Type 

Kernel service request 

Kernel service request 

Kernel service request 

Overlay and register 
definition macro 

Kernel service request 

Kernel service request 

Execution control 
macro 

Kernel service request 

Data access macro 

Kernel service request 

Overlay and register 
definition macro 

Overlay and register 
definition macro 

Kernel service request 

Function 

Sends message to Kernel 
console and waits for 
operator response 

Calls (through the CREATE 
function) an overlay in 
another lOP 

Sends message to 
controlled CRT 

Defines start of new 
overlay 

Suspends activity for 
specified tenths of a 
second 

Reactivates pushed activity 

Provides conditional 
branch to Kernel halt 
routine 

Deactivates activity until 
popped 

Sets the contents of 
a field in a table 

Waits for a character to 
be entered from a CRT 
controlled by USURP overlay 

Defines overlay registers 

Associates names with 
particular operand register 

Sends message response to 
an activity in another lOP 

14-7 



Table 14-1. Summary of Macros (continued) 

Name 

RETREG 

RETURN 

RGET 

RPUT 

RSTORE 

TABLE 

TERM 

TPUSH 

$UNTIL 
$ENDTIL 

Type 

Overlay and register 
definition macro 

Kernel service request 

Data access macro 

Data access macro 

Data access macro 

Data definition 
macro 

Kernel service request 

Kernel service request 

Execution control 
macro 

14.2.1 EXIT STACK MACROS 

Function 

Provides mechanism for 
returning value to a 
calling routine 

Returns to caller of the 
overlay; if none, 
terminates activity. 

Fetches the contents of 
a field 

Sets the contents of 
a field 

Stores the contents of 
a field 

Generates parameters for 
constructing tables 

Terminates activity 

Pushes activity until 
popped or time expires 

These associated macros 
provide loop control 
facility 

The exit stack macros access the exit stack pointer (E) and the exit 
stack address (E). The macros altering the stack pointer or address 
provide the delay required to ensure that the Program Exit Stack channel 
transfer is complete. (See the Program Exit Stack channel description in 
the lOS hardware reference manual for your site.) 

Interrupts must be disabled when executing the exit stack macros. 

14-8 SM-0046 G 



14.2.1.1 EGET macro 

The EGET macro reads the exit stack pointer (E). 

Format: 

/Location !Result 
/ / 

/ /EGET 

!Operand 
/ 
/dest 

dest Register or memory location to receive the exit stack 
pointer value 

The A register also receives the exit stack pointer value. EGET 
references the symbol @EGET. The cross-reference readily identifies exit 
stack pointer reads. 

14.2.1.2 EPUT macro 

The EPUT macro sets the exit stack pointer (E). 

Format: 

/Locatiqn !Result !Operand 
/ / / 
/ /EPUT /source 

source Register or memory location containing the new exit stack 
pointer value 

The A register receives the new exit pointer value. EPUT references the 
symbol @EPUT. 

14.2.1.3 EINCR macro 

The EINCR macro increments the exit stack pointer (E) by 1. 

Format: 

/Location !Result !Operand 

/ / 

/ / EINCR 

The A register receives the new exit pointer value. EINCR references the 
symbol @EPUT. 

SM-0046 G 14-9 



14.2.1.4 EDECR macro 

The EDECR macro decrements the exit stack pointer (E) by 1. 

Format: 

ILocation !Result 
I 
IEDECR 

!Operand 

The A register receives the new exit stack pointer value. EDECR 
references the symbol @EPUT. 

14.2.1.5 EXSGET macro 

The EXSGET macro reads the exit stack address (E). 

Format: 

ILocation !Result 
I I 
I I EXSGET 

!Operand 
I 
Idest 

dest Register or memory location to receive the exit stack 
address 

The A register also receives the exit stack address. EXSGET references 
the symbol @EXSGET. 

14.2.1.6 EXSPUT macro 

The EXSPUT macro stores the exit stack address. 

Format: 

ILocation !Result !Operand 
I I I 
I I EXSPUT I source 

source Register or memory location for storing the exit stack 
address 

EXSPUT references the symbol @EXSPUT. 

14-10 SM-0046 G 



Example: 

The following example illustrates the use of the exit stack macros. 

ILocation IResult I Operand I Comment 
11 110 120 135 

1 I 
1* Subroutine to save exit stack entries (entries 1 through n-l) 
1* Enter: R=SAVEXST 
1* Inputs: R!REGO holds Local Memory address at which to begin storing 
ISAVEXST * I 
I EGET IA 
I R!REG1 A - 1 
I R!REG2 = R!REGO + R!REG1 
I EPUT 10 
I $UNTIL (R!REGO = R!REG2) 
I EINCR I 
I EXSGET IA 
I 
I 
I 
I 
I 

(R!REGO) 
R!REGO = 
$ENDTIL 
EINCR 
EXIT 

= A 
R!REGO 

I 
I 
I 

+ 1 

14.2.2 EXECUTION CONTROL MACROS 

• Get depth of exit stack 
Don't count this subroutine call 
Starting address for stack save 

• Clear stack pointer 
· All entries saved? 
• Increment stack pointer 
· Get stack entry 

Save exit stack absolute address 
· Next storage location 

· Get back to current subr call 

The execution control macros define the path of execution through the 
code. Macros for conditional execution, loop control, and indexed 
branching are available. The macros reduce the number of explicitly 
defined labels required for a particular code sequence and improve the 
readability of the code. 

14.2.2.1 $IF macro 

The $IF macro, and the associated $ELSEIF, $ELSE, and $ENDIF macros, 
allow conditional execution of code in the manner of an if-then-else 
construct. 

SM-0046 G 14-11 



Format: 

Location Result Operand Comment 
1 10 

$IF 

$ELSEIF 

$ELSE 

$ENDIF 

20 

condition 

condition 

35 

Execute if condition 
is true. 

Execute if preceding 
conditions are false and 
this condition is true. 

Execute if all of the 
above conditions 
are false. 

condition 
An expression taking one of the following forms where 
condi is any expression that is a legal condition on an 
APML instruction: 

(cond1 ) True if cond1 is true 

(cond 1 ), OR, (cond 2 ) True if either cond1 or cond2 is 
true 

(cond1 ), AND, (cond 2 ) True if both cond1 and cond2 are 
true 

The $ELSEIF and $ELSE macros are optional. Only one $ELSE macro is 
allowed. Multiple $ELSEIF macros are allowed, but they must precede the 
$ELSE macro. 

$IF structures can be nested up to 10 levels. 

Example: 

I Location 

14-12 

IResult 

I 
I$IF 

I 
I$ELSE 

I 
I$ENDIF 

I Operand 

I 
I(P1>P2) 
IR!MAX=Pl 
I 
IR!MAX=P2 
I 

SM-0046 G 



14.2.2.2 $UNTIL macro 

The $UNTIL macro and the associated $ENDTIL macro provide a loop control 
facility. 

Format: 

I Location 
11 

IResult 
110 

I 
I$UNTIL 

I · 
I · 
I • 
I$ENDTIL 

I Operand 
120 

I 
I condition 
I 
I 
I 
I 

I Comment 
135 

I 
I 
IExecute if condition is 
Ifalse. 
I 
I 

condition Loop termination condition. It is an expression taking 
one of the following forms, where condi is any 
expression that is a legal condition on an APML instruction: 

(cond1 ) True if cond1 is true 

(cond 1 ), OR, (cond 2 ) True if either cond1 or cond2 is 
true 

(cond1 ), AND, (cond 2 ) True if both cond1 and cond2 are 
true 

The code between the $UNTIL and $ENDTIL is executed until the condition 
becomes true, at which time execution resumes immediately following the 
$ENDTIL. 

$UNTIL loops can be nested up to 10 levels. 

Normally, the body of the loop is modifying some resource used in the 
loop condition. 

Example: 

I Location 
11 

SM-0046 G 

IResult 
lio 
I 
IB=O 
I$UNTIL 
I lOB: 0 
I B=B+1 
I$ENDTIL 

I Operand 
120 

I 
I 
I (B=O' 50) 

I 
I 
I 

I Comment 
135 

I 
I 
IFor channels 0 to 47 
IClear channel done and busy. 
I 
I 

14-13 



14.2.2.3 $GOTO macro 

The $GOTO macro allows branching based on an index value. 

Format: 

ILocation IResult 1 Operand 
I I I 
I I$GOTO I (labelO,label1' •.• ,labeln ), 
I I 

index 

lindex[,BASE=basereg] 

Branch address, relative to the base address in 
basereg. A null label indicates a fall-through condition. 

Index used to select a branch address (0 through n). An 
index greater than n is a fall-through condition. 

BASE=basereg 
Base to be added to the branch address. If not specified, 
the contents of operand register ~B, which is the overlay 
base address register, are used. 

Indexing begins with 0, not 1. 

Example: 

Location Result I Operand I Comment 
1 10 120 135 

I I 

* Branch per function code in FC 

* I I 
$GOTO I (,OPEN"CLOSE),FC 

* I I 

* Here, if FC = 0, FC = 2, or FC > 3 
I I 
I I 
I I 

OPEN * I I. FC = 1 

I I 
I I 
I I 

CLOSE * I I·FC = 3 

14-14 SM-0046 G 



14.2.2.4 $PUNTIF macro 

The $PUNTIF macro provides a conditional branch to the Kernel halt 
routine. 

Format: 

ILocation IResult 1 Operand 

I I 
I I$PUNTIF 

I 
Icondit~on,[CODE=code] 

condition An expression taking one of the following forms, where 
condi is any expression that is a legal condition on an 
APML instruction: 

code 

Example 1: 

ILocation 
11 

SM-0046 G 

(cond 1 ) True if cond1 is true 

(cond1 ), OR, (cond 2 ) True if either cond1 or cond2 is 
true 

(cond1), AND, (cond2) True if both cond1 and cond2 are 
true 

Error code to be output with the Kernel halt message. The 
code must be less than 1000S . If no code is specified, 0 
is used. The Kernel error codes are listed in subsection 
15.5, LISTP Overlay. 

Result 
10 

IOR:I0 
IA = A 
IC = EITB + 

I Operand 
120 

I 
I 
I 
IA 

Comment 
35 

• Get interrupting channel number 
Save the number 
Index into the interrupt handler 

I • address jump table by channel no 
IC = (IC) I Get interrupt handler address 

I • for this channel 
P = IC, A # 0 • Jump to this routine if it 

I • exists 
$PUNTIF ICODE=PT$UXINT. PUNT unconditionally if the 

I . routine does not exist for this 
I • unexpected channel interrupt 

14-15 



Example 2: 

Location IResult I Qperand I Comment 
1 110 120 135 

I I I 
* High-speed channel I/O routine I 
* Moves data between Local Memory and target memory 
* Target memory must be the SSD or Cray Central Memory 
* Maximum data length is 512 64-bit words 
* Inputs: R!TR4 = length in words I 
* R!TRO = target memory type 
* Now, check inputs I 

I$PUNTIF I(R!TRO # F$CMEM) AND (R!TRO # FS$SSD), 
I ICODE=PT$BADTMI· PUNT if target memory is not 
I I I. SSD or Cray Central Memory 
I$PUNTIF I(R!TR4) 1000), CODE=PT$IOLEN 
I I I. PUNT if requested length is 
I I I. too long 

14.2.3 DATA DEFINITION MACROS 

The data definition macros define tables and fields to be used later by 
the access macros. 

14.2.3.1 FIELD macro 

The FIELD macro generates a set of symbols that define the 
characteristics of a data field. 

Format: 

ILocation IResult 

I I 
I name IFIELD 

I Operand 

I 
Iparcel,sbit,width[,L=length] 

name Field name; 1 to 6 characters. 

parcel Relative parcel within the table or table entry in which 
the field resides. If *, name@P is not defined. 

* Suppresses the definition of name@p 

14-16 SM-0046 G 



sbit 

width 

$ Indicates that the current parcel (the last explicitly 
given parcel, or the last parcel number generated by a 
FIELD or TABLE macro), is to be used. This format is 
useful when new fields are added to the middle of a 
large table. 

+ Indicates that the current parcel +1 is to be used 

Leftmost bit number of the field within the parcel. Bit 0 
is the leftmost bit. * suppresses the name@S and 
name@N definitions; width must be omitted if * is used. 

Number of bits in the field. This parameter is not 
required if sbit is *. If not specified, 1610 is 
assumed and name@M and name@X are not defined. The sum 
of sbit and width must not exceed 1610; that is, a 
field must not cross a parcel boundary. 

L=length Optional parcel length of the field. If specified, 
length is added to parcel to form a new current parcel 
number for the next FIELD macro. 

Parameters parcel, sbit, width, and length are assumed to be 
decimal unless otherwise indicated. 

The FIELD macro generates a subset of the following set of symbols: 

Symbol 

name@P 
name@S 
name@N 
name@M 
name@X 

14.2.3.2 

Value 

Parcel offset 
Starting bit number 
Bit width 
Mask for the field, right-justified 
Mask, the ones complement of name@M 

ISFIELD macro 

The ISFIELD macro allows a newly defined field definition to assume the 
same characteristics as a previously defined field. 

Format: 

ILocation IResult !Operand 
I I I 
I symbol IISFIELD I previous 

symbol Name of a new field 

previous Name of a previously defined field 

SM-0046 G 14-17 



I 

Example: 

Location 
1 

* 
DA@ 

* 
DA@LNK 
DA@IFC 

DA@MES 

DA@QUE 
DA@NUM 
DS@IND 
DA@SID 

DA@LOC 

* 
DE@ 
* 
DE@DID 
DE@SID 

DE@CV 

Result I Operand Comment 
10 120 35 

DAL Description 
TABLE ILH=8,LE=24 · DALs are 32 parcels 

I • 24 parcel entry is the 
I • Cray to lOS communication 
I • packet 

Header Description 
FIELD 0 • Link cell 
FIELD 1 · lOP function code 

FIELD 5 • Message for accumulator 

· channel 
FIELD 5,0,4 • Message queue (includes IOPt) 
FIELD 5,2,2 · lOP number 
FIELD 5,4,12 • MOS message in 
FIELD 9 · Source ID 

FIELD 31 • Local Buffer address 

Disk Error Packet Description 
TABLE ILH=8,LE=24 I 
FIELD 10 I 
ISFIELD IDA@DID I. Destination ID 
ISFIELD 10A@SID I. Source 10 

I I 
I I 
1 1 

FIELD 124,* I. Beginning of correction vector 
1 I. buffer within the packet (does 
I I. not generate the definition 
I I. DE@CV@P 

14.2.3.3 TABLE macro 

The TABLE macro initializes the parcel designator for subsequent FIELD 
macros and generates a set of symbols that define the characteristics of 
a table. 

14-18 SM-0046 G 



Format: 

ILocation !Result !Operand 

I I I 
I name I TABLE 

I 
I [LH=header] [,LE=entry] [,NE=number] 

I I [,Sz=size] 

name Name of the table 

LH=header Length of the table header 

LE=entry Length of the table entry 

NE=number Number of entries in the table 

SZ=size Size of the complete table 

The TABLE macro generates a subset of the following set of symbols, which 
correspond to the parameters in the call: 

Symbol Description 

name@LH Header length 

name@LE Entry length 

name@NE Number of entries 

name@SZ Size of the table; if SZ=* is specified on the call, this 
is equal to (name@LE * name@NE) + name@LH. 

14.2.4 DATA ACCESS MACROS 

The data access macros manipulate tables and fields defined by the data 
definition macros. 

14.2.4.1 ADDRESS macro 

The ADDRESS macro calculates the parcel address of a field. 

Format: 

ILocation IResult 

I I 
I I ADDRESS 

SM-0046 G 

I Operand 

I 
Iresult,field,base 

14-19 



result Register or memory location to receive the address 

field Field name 

base Table or entry base address; base can be an operand 
register, memory address, or the contents of a memory 
location. 

14.2.4.2 GET macro 

The GET macro fetches the contents of a field. 

Format: 

ILocation !Result 
I I 
I IGET 

!Operand 
I 
Idest,field,base 

dest Register or memory location to receive the field contents 

field Field name 

base Base address 

The A register also receives the contents of a field. 

14.2.4.3 LOAD macro 

The LOAD macro creates a table, a field, or both in place at assembly 
time from the TABLE and FIELD definitions. 

Format: 

ILocation !Result !Operand 
I I I 
I [type] I LOAD I [name] [, value] 

type One of the following types of load to perform: 

14-20 SM-0046 G 



name 

value 

Example: 

Location 
1 

CPW@ 
CPW@FL 
CPW@CM 
CPW@DA 

I CPW@BU 
CPW@BL 

* 
* 
* 

TABLE 

I 

ENTRY 

ENTRY 

SM-0046 G 

TABLE 

Function 

Creates a table from the symbols specified in a 
previously defined TABLE macro. If name is not 
supplied, no table is created. If name is 
supplied and the symbol name@SZ is defined, a 
complete table is created. If name is supplied 
but name@SZ is not defined, a table is created 
using the name@LH, name@LE, and name@NE 
symbols or by using value. (value contains 
the number of entries when used with TABLE.) The 
table is zero-filled. 

HEADER Generates a header for a table with the table 
name of name 

ENTRY 

FIELD 

Generates one table entry with the table name of 
name 

Creates one field with the name of name and the 
contents of value; this is the default. 

Name assigned in a previously defined TABLE macro 

Either the contents of the field when used with the FIELD 
type or the number of entries when used with the TABLE type 

Result 
10 

TABLE 
FIELD 
FIELD 
FIELD 
FIELD 
FIELD 

Generate a 

LOAD 
LOAD 
LOAD 
LOAD 
LOAD 
LOAD 
LOAD 
LOAD 

Operand 
20 

LE=4 
0,0,8 
0,8,8 
1,* 
2,* 
3,* 

predefined CPW 

I 
I 
I 
ICPW@FL,CPW$CC 
ICPW@CM,CM$SNS 
ICPW@DA,BA 
ICPW@BL,24 
ICPW@ 
ICPW@CM,X'7 
ICPW@ 

Comment 
35 

.Chaining 

.Sense 

.Data address 

.Byte length 

.Complete entry 

.Rewind 

.Complete entry 

14-21 



14.2.4.4 PUT macro 

The PUT macro sets the contents of a field. The PUT macro cannot be used 
to store a constant; see the STORE macro for that function. 

Format: 

ILocation !Result 
I I 
I I PUT 

!Operand 
I 
Isource,Eield,base 

source Register or memory location containing value to be stored 

Eield Field name 

base Base address 

The source field is updated with the logical product of the value and the 
field mask. 

14.2.4.5 STORE macro 

The STORE macro stores a constant in a field. 

Format: 

ILocation !Result 
I I 
I I STORE 

!Operand 
I 
Iconstant,Eield,base 

constant Value to be stored in the field 

Eield Field name 

base Base address 

14.2.4.6 RGET macro 

The RGET macro fetches the contents of a field. The parcel containing 
the field is contained in an operand register or a particular memory 
location and, unlike the GET macro, is not loaded from a table. 

14-22 SM-0046 G 



Format: 

ILocation !Result 

I I 
I IRGET 

!Operand 

I 
Idest,field,parcel 

dest Register or memory location to receive the field contents 

field Field name 

parcel Operand register or memory location containing the parcel 
holding the field 

The A register also receives the contents of a field. 

14.2.4.7 RPUT macro 

The RPUT macro sets the contents of a field. The parcel containing the 
field is contained in an operand register or a particular memory location 
and, unlike the PUT macro, is not stored into a table. The RPUT macro 
cannot be used to store a constant; see the RSTORE macro for that 
function. 

Format: 

ILocation !Result 

I I 
I I RPUT 

!Operand 

I 
Isource,field,parcel 

source Register or memory location containing value to be stored. 
It is updated with the logical product of the value and the 
field mask. 

field Field name 

parcel Operand register or memory location containing the parcel 
holding the field 

14.2.4.8 RSTORE macro 

The RSTORE macro stores a constant in a field. The parcel containing the 
field is contained in an operand register or a particular memory location 
and, unlike the STORE macro, is not stored into a table. 

SM-0046 G 14-23 



Format: 

ILocation !Result 

I I 
I I RSTORE 

!Operand 

I 
Iconstant,field,parcel 

constant Value to be stored in a field 

field Field name 

parcel Operand register or memory location containing the parcel 
holding the field 

Example: 

Location Result Operand Comment 
1 10 20 35 

DH@JOB FIELD 4,* Job name 
DH@DC FIELD 10 Disposition code 
DH@ED FIELD 47,4,12 Edition number 

* Operand reg~ster SEG contains table address. 
* Operand register DC contains disposition code. 

* 

IO@STA 
IOS@SB 
IOS@IO 

* 
* 
* 

14-24 

PUT 
STORE 
ADDRESS 

FIELD 
FIELD 
FIELD 

R!DC,DH@DC,R!SEG 
O,DH@ED,R!SEG I 
R!~W1,DH@JOB,R!SEG 

8 
*,0,4 
*,4,1 

Enter job name at this address 

Stream state 
Stream control byte 
Send/receive 
Message flag 

Operand reg~ster STATE contains the table entry address 

RGET 
RGET 

IGET IR!~Wl,IO@STA,R!STATE 

IR!SCB,IOS@SB,R!~Wl 

IR!FLAG,IOS@IO,R!~Wl 

SM-0046 G 



14.2.4.9 FLDADD macro 

I The FLDADD macro adds to the contents of a field. 

Format: 

/Location IResult I Operand 

/ / / 
/number,field,base / /FLDADD 

number 

field 

base 

Number or location of the number to be added to the 
contents of the field 

Field name 

Base address 

The A register receives the updated contents of the field. 

Example: 

Location IResult I Operand I Comment 
1 110 120 135 

• R!DQ has the executable DAL address I 
• R!MDAL has the master DAL address I 

IGET /R!%W1,DA@WBH,R!MDAL 
I I /. Next write-behind sector 
IGET IR!%W2,DA@SEQ,R!DQ 
I I I· Sector just moved 
/$IF I(R!%W1 = R!%W2)1. If same sector 
IFLADD 11,DA@WBH,R!MDALI. Advance the write-behind 
I$ENDIF I I 

14.2.4.10 FLDSUB macro 

I The FLDSUB macro subtracts from the contents of a field. 

Format: 

ILocation !Result 

I I 
I IFLDSUB 

SM-0046 G 

!Operand 

I 
Inumber,field,base 

14-25 



number 

field 

base 

Number or location of the number to be subtracted from the 
contents of the field 

Field name 

Base address 

The A register receives the updated contents of the field .. 

14.2.5 OVERLAY AND REGISTER DEFINITION MACROS 

The overlay and register definition macros define the environment but do 
not generate code. 

14.2.5.1 OVERLAY macro 

The OVERLAY macro identifies the beginning of an overlay and generates an 
overlay header containing the overlay name, number, type, and input 
parameter register information. By default, this macro expects decimal 
values for parameters. 

Format: 

ILocation !Result !Operand 

I I I 
I I OVERLAY Iname[,TYPE=type] [,EXTN=extn] 

name 

type 

extn 

14-26 

Overlay name 

Overlay type; the default is lOP. 

lOP 

DATA 

Function 

The overlay is executable through a Kernel 
CREATE, CALL, or GOTO function. ~B is defined 
as the base register. Input parameter 
registers must be defined within the overlay 
through the REGDEFS macro. 

The overlay is not executable under Kernel 
control. 

CAL The overlay is coded in CAL. 

This option is for use in the overlay OVLNUM in which the 
overlay numbers are defined. Specify NO if the overlay 
number is not to be declared as an external. 

SM-0046 G 



I 

I 

The overlay number O$name must be defined before the OVERLAY statement 
is encountered. O$$OVL is equated to the overlay number. 

OVERLAY sets the numeric base to octal. 

14.2.5.2 REGDEFS macro 

The REGDEFS macro defines the operand registers for an overlay. The 
macro generates the symbol ~P, which is the register number of the next 
available register to follow ~W5. It also generates the symbol ~NP, 
which is the number of parameter registers. 

Format: 

ILocation IResult I Operand 
I I I 
Istart IREGDEFS I (global), (param), (local) 

start 

global 

param 

SM-0046 G 

Starting register number; the default is the $APTEXT 
parameter ~GBLREG. 

List of names to associate with the global registers. The 
global registers are saved and restored on a task-by-task 
basis, not on an overlay-by-overlay basis. The registers 
are automatically passed to a called overlay. Any 
modifications performed by the called overlay are reflected 
on return to the calling overlay. The maximum number of 
global registers is defined by the $APTEXT parameter 
~GBLNUM. The beginning global register number is defined 
by the $APTEXT parameter ~GBLREG. 

List of names to associate with the operand registers 
containing input parameters. Parameters are passed to the 
overlay in the registers named by paramo The number of 
parameters specified on the call do not need to match the 
number of parameter registers defined by paramo The 
symbol ~P is equated to the first entry in the list (even 
if null) and ~NP is set to the number of entries in the 
list. These symbols are used by the OVERLAY macro to 
generate the overlay header. Within the overlay and during 
Kernel service requests, the parameter registers are 
treated like the local registers. 

14-27 



I 

local List of names associated with operand registers used within 
the overlay. When the overlay is entered, the contents of 
the local registers are undefined. The local registers 
(and parameter registers) are preserved across a Kernel 
service request (including a call to another overlay) 
unless the register is designated on the request as a 
receptacle for returned information. 

In any of the lists, a register can be assigned without an associated 
name by specifying * as the parameter. Null arguments in the list are 
ignored. 

In addition to the explicitly listed registers, the REGDEFS macro 
automatically assigns names to other operand registers as follows: 

Name 

~Sl through ~S5 

~T1 through ~T6 

~W1 through ~W5 

14.2.5.3 REGISTER macro 

Use 

Scratch registers used for temporary storage by 
APML. The overlay code should never directly 
reference these registers. 

Scratch registers used by macros. When writing 
macros, the following procedures should be noted: 

• Macro registers are generally not saved 
across Kernel service requests. 

• Nested macros must use disjoint sets of 
scratch registers. 

Scratch registers that can be used explicitly 
within the overlay. These registers are not, 
however, preserved across Kernel service requests. 

The REGISTER macro associates names with particular operand registers. 
The macro generates the symbol $REGORG, which is the value of the next 
available register. 

Format: 

ILocation IResult 

I I 
/first /REGISTER 

14-28 

I Operand 

/ 
/(list) 

SM-0046 G 



first 

list 

Example: 

1 Location 
11 
1 
1200 
I 
I 

Operand register to associate with the first name in list. 
If first is not specified, operand register allocation 
proceeds where the previous REGISTER definition left off. 
It must be used the first time the REGISTER macro is 
encountered ~n a program module. 

List of names to associate with the successive operand 
registers. A null argument in the list does not cause a 
register to be assigned. A register can be assigned 
without an associated name by specifying an asterisk (*) as 
the parameter. 

IResult IO:eerand 1 Comment 
11Q 12Q IJ5 
I I I 
1 REGISTER 1 (DA,DB,DC,DD) IDisk interrupt answering 

I I I 
I REGISTER I(DE,DF) IDisk interrupt answering 

The following operand registers are associated with the names indicated 
(register numbers are in octal): 

Operand Register Name 

200 DA 
201 DB 
202 DC 
203 DD 
204 DE 
205 DF 

14.2.5.4 RETREG macro 

The RETREG macro provides a mechanism for returning a value to a calling 
routine. The value is stored in the SMOD of the caller. When a RETURN 
is executed, the caller's registers and any returned parameters are 
loaded. 

SM-0046 G 14-29 



Format: 

ILocation !Result !Operand 

I I I 
Ivalue,dest I IRETREG 

value 

dest 

Example: 

Constant or register containing the value to be returned to 
the caller 

Caller's register designator: 

A = A register 
B = B register 
C = Carry bit 

offset = Register containing an offset designating one of 
the caller's operand registers. Normally, this 
offset is provided as an RO=reg parameter on 
the CALL statement (see the CALL function 
description in section 2). 

Location IResult I Operand I Comment 
1 110 120 !35 

I OVERLAY I BMXCON I 
* BMXCON is called to vary the status of a block mux component 
* Inputs: component type I 
* channel number I 
* control unit address I 
* device ordinal I 
* up/down indicator I 

IREGDEFS I,(TYPE,CHN,CTU,DVN,STATE),(CHT,RCD,CUT,DVT,CRW) 
I I I. Registers 430 through 434 
I I I. are parameter registers; 
I I I. registers 435 through 441 
I I I. are local registers. 
I I I. ~P=430, ~NP=5 
I . I I 
I • I I 
I· I I 

* Exit point I I 
* A device status must be returned I 
* 0 means operational device, nonzero means nonoperational device 

IRETREG IR!~W5,A I. Send status back to the field 
I I I. that holds the accumulator 
I I I. value in the previous SMOD; 
I I I. that is, the SMOD of the 
I I I. caller. 

14-30 SM-0046 G 



I 

I 

14.2.6 MEMORY MACROS 

Memory macros clear Local Memory areas or copy data from one memory 
location to another. 

14.2.6.1 CLEAR macro 

The CLEAR macro is used to zero out an area of Local Memory. 

Format: 

/Location IResult 

I I 
I I CLEAR 

I Operand 

I 
ISTART=expl,COUNT=exp2[,BLANKS=NOIYES] 

expl An expression that evaluates to the starting address for 
clearing 

exp2 

BLANKS 

An expression that evaluates to the number of parcels to 
clear 

NO is the default and causes zeros to be used to clear the 
area. YES can be specified to cause ASClt blanks to fill 
the area. 

14.2.6.2 COPY macro 

The COpy macro copies data from one memory location to another. 

Format: 

/Location IResult I Operand 

I I I 
/ I COpy I from, to, length 

from Source address 

to Destination address 

length Number of data parcels 

SM-0046 G 14-31 



Example: 

Location IResult I Operand I Comment 
1 110 120 135 

I I I 
• Send a message to the console I 

IR!LEN = 40 I I. Message is 40 parcels 
I I I. or 80 ASCII characters 
I CLEAR I START=R! BUF,COUNT=R!LEN 
I I I. Clear buffer to zeros 
I COpy IR!MES+R!~B,R!BUF,R!LEN 

I I I. Copy message data from the 
I • I I. overlay to buffer 
IMSG IR!BUF I. Output the message 

I 14-32 SM-0046 G 



15. DEBUGGING TOOLS 

This section describes tools for debugging and maintaining I/O Subsystem 
(IDS) software. See the COS Operational Procedures Reference Manual, 
publication SM-0043, for station debugging commands. 

The history trace and the debugger provide on-line access to the inner 
workings of the code. Also, the debugger permits the modification of 
registers and memory on an on-line basis. 

The PATCH overlay allows a location within an overlay or within the 
Kernel to be displayed and modified. 

The LISTO overlay prints the names and numbers of all overlays defined in 
the Kernel. It includes information such as the Buffer Memory address 
and length for each overlay. 

15.1 SUMMARY UTILITY 

The SUMMARY utility provides a display (see figure 15-1) of the dynamic 
characteristics for a specified I/O Processor (lOP). The display is 
available on any station console. The command format and display field 
descriptions follow. 

SUMMARY is meant to be used as a tool to examine the characteristics of 
an lOP while it is running. It can also provide information on how 
modifications to the system affect the overall behavior. 

Format: 

SUMMARY,iop (defaults to 0) 

iop Number of the lOP for which the display is active 

The interval for which percentages and counts are displayed is determined 
by the refresh rate of the station console on which the display is being 
viewed. 

SM-0046 G 15-1 



NOTE 

The SUMMARY display uses a significant proportion of 
lOP resources when active. It should not be left 
running during normal operation. 

lOS SUMMARY DISPLAY lOP: 0 'IDLE: 99 'SYS: 8 FRAME: 0 

OVERLAYS INTERRUPTS KERNEL CALLS 

NAME ,TIn NUM Tus K-C INT CH ,TIn NUM Tus NAME NUM Tus INT 

CLOCK 1 6 17 0 0 4 1 6059 9 PUSH 1 10 0 
CRTDEM 4 39 15 0 3 17 0 43 27 POP 2 12 0 
DEVICE 0 2 28 2 0 40 0 1 9 DLAY 1 5 0 
SUMDAY 1 2 32 3 0 41 0 32 9 TPSH 43 14 0 
TSTASH 0 2 22 2 0 OUTP 6 12 0 
XPRINT 25 82 50 82 10 RCVE 6 12 0 
XPRNTA 2 7 40 7 1 MGET 1 13 0 
CONSL 7 9 122 21 1 MOSR 29 17 0 
DISP01 0 2 27 2 0 MOSW 7 17 0 
COMM04 1 2 27 3 0 CALL 63 15 0 
AMPEX 3 11 43 11 0 RTRN 61 9 0 
CLI 2 2 150 2 1 

Figure 15-1. The SUMMARY Display 

Fields displayed in figure 15-1: 

'IDLE 

FRAME 

15-2 

Percent of time during the last interval spent in the idle 
loop 

Percent of nonidle time spent in activity swapping, 
including SMOD maintenance and overlay loading 

Current frame number. 
reverses the frame.) 

(+ advances the frame and a -
The maximum frame number is 7. 

SM-0046 G 



15.1.1 OVERLAYS 

Only overlays that were active over the last interval are displayed as 
follows: 

Heading 

NAME 

NOM 

Tus 

Description 

First 6 ASCII characters of the overlay name 

Percent of activity time (nonidle and non-sys) spent in 
the displayed overlay 

Number of times over the last interval that the displayed 
overlay was activated 

Maximum interval, in microseconds, for which the overlay 
was in control 

NOTE 

An interval is terminated by either a 
voluntary termination by the overlay or 
an interrupt. 

K-C Number of service requests made by the overlay 

INT Number of interrupts that occurred while the overlay was in 
control 

15.1.2 INTERRUPTS 

Only channels that interrupted over the interval are displayed. Their 
descriptions are as follows: 

Heading 

CH 

%Tm 

NUM 

Tus 

SM-0046 G 

Description 

Channel number (in octal) of the interrupting channel 

Percent of activity time (nonidle) for which the 
interrupt handling for the displayed channel was in 
control 

Number of interrupts received from the displayed channel 

Maximum time spent in the interrupt handler over the last 
interval 

15-3 



15.1.3 KERNEL CALLS 

Only kernel calls (service requests) that were active over the last 
interval are displayed. Their descriptions are as follows: 

Heading 

NAME 

NUM 

Tus 

INT 

Description 

A 4-character ASCII description of the service request 

Number of calls made to the displayed service request 
over the last interval 

Maximum interval (in microseconds) for which the 
displayed service request was in control 

Number of interrupts that has occurred while the 
displayed service request was in control 

15.2 HISTORY TRACE 

The lOS history trace stores in a buffer pertinent data relating to 
selected events (for instance, a Kernel service call). This data can be 
examined at any time. The TLOC pointer in the Kernel table area points 
to the beginning of the Local Memory trace buffer. TPTRL points to the 
location within the Local Memory Buffer where the next trace entry will 
be tabled. Each lOP configured maintains its own history trace buffer. 
The buffer includes a small Local Memory buffer that, when filled, is 
dumped to a large circular buffer in Buffer Memory. 

Trace buffers can be examined on-line using the TRACE call or off-line 
with a dump command. Subsection 15.2.1 discusses the use of TRACE 
on-line to examine trace buffers and subsection 15.2.2 discusses the COS 
and UNICOS dump commands used to examine trace buffers off-line. 
Subsection 15.2.3 provides tables of the event codes, subcodes, and 
parameters used in traces and dumps. 

I 15.2.1 EXAMINING TRACE BUFFERS ON-LINE 

The TRACE command gives the user control of the trace mechanism. Event 
codes can be selectively enabled and disabled, and a formatted listing of 
the current trace buffer can be obtained. A command in the following 
format, entered at any Kernel console, allows the selection of individual 
events to be recorded or bypassed, depending on whether ON or OFF is 
selected: 

15-4 SM-0046 G 



TRACE ONIOFF event[/subcode] 

ONIOFF 

event 

/subcode 

Enables or disables the trace for the event specified 

Octal code associated with the event recorded (see table 
15-1) 

Code used with events TF$CHN(4) (channel interrupts) and 
TF$FCT(5) (Kernel functions). The subcode for a channel 
interrupt is the octal channel number itself. The 
subcode for a Kernel function is its function code (see 
table 15-2 for a listing of the function codes that are 
supported). If the subcode is omitted, the associated 
subevents are all affected by the call. The subcode is 
entered as parameter 1 on trace output. 

Only one event code can be specified in a single TRACE command. However, 
the following command affects all events: 

TRACE ONIOFF ALL 

The following command specifies whether to dump the local trace buffer to 
the circular buffer in Buffer Memory: 

TRACE ONIOFF MOS 

The following command causes either the Local or Buffer Memory (MOS) 
buffer to be formatted and output to the expander printer (entries are 
formatted from most recent to least recent): 

TRACE DUMP LOCALIMOS 

SM-0046 G 15-5 



Each trace entry is 8 parcels long and is formatted as follows: 

event 

event 

time 

overlay 

time overlay pars 

Octal code associated with the recorded event (see table 
15-1). The octal code appears in a new or unformatted 
octal dump. When using TRACE or dump formatting commands 
however, the octal code is replaced by a mnemonic. 

Low-order 16 bits of real-time clock at time of recording 
(in millisecond increments) 

Number of the overlay whose Local Memory base address was 
in the Kernel operand register ~B at the time of the 
recording. Number 1777778 represents the Kernel. 

Selected parameter recorded with event. 
the parameters recorded for each event. 

Table 15-2 lists 

Figure 15-2 shows a sample page of formatted output from the history 
trace operating in the Master I/O Processor (MIOP). 

IOP-.o TRACE BUFH,R 

EVENT RTC-L OVL-# PAR-I PAR-2 PAR-3 PAR-4 PAR-5 

TASK IIBIH6 BBB6BI B46744 BgBgg6 gBg6Bl Ig163.9' 16BBBB7 
OVL-LD IIBB76 gBB6BI BBB6BI B467H B9IBgI4 BBBBBI B54514 
MEM-IO IIBB76 BI!1B6B2 BBBBBI BBB0BI 1!117756 B46744 BBB2B4 
K-FNCT IIB976 BBB6162 CALL B66726 I'IBB6161 BI2B54 BB643B 
K-CALL IlBB76 BB9692 CALL BBB7B4 g6664g lBI63B gBB5B2 
TASK IIB976 BBB6B2 B552316 BB247B BBB6B2 IBI63B BBBBB7 
INTRPT 119B76 177777 PI.C'JBIJ34 BI4422 BBBIJBB BBBB72 112415 
K-FNCT IIBB76 BBB6B2 NSC 10 IBI53B BBBBB4 IBI534 BBBIBI 
K-CALL IIBB76 BBB6B2 NSCIO BB247B B6664B IBI63B BBB5B2 
TASK IIBB76 BBg6B2 B5523g BB3B77 BBB6B2 lBI63B BBBBB7 
I NTRPT IIBB76 177777 BBB934 BI4422 BBIJ9IPlg BBBg72 111761 
K-FNCT 111!1876 8886P12 NSCIO IBI548 8B81!148 181534 BB8845 
K -CAL L IIB876 BB8682 NSCIO 8g3077 B6664g IBI638 BBB5B2 
TASK IIB875 BB86g2 95523B BfJB562 BBB6B2 Igl63B BBBBB7 
OVL -LD IIBg75 BBg6g2 BBB6B2 g5523g !lagBl3 BBBgBI B54513 
MEM- 10 IlBg75 177777 BBPlBBI BBBIJBI IJ2BI62 B5523B BBB716 
MEM- 10 IIBB75 177777 BBB9IJI BBBBB2 1256BB B6664B BBBB2B 
MEM-IO IIBB75 177777 BBBBB4 BBIJDB2 1216BB B6664B BBBBII 
I NTRPT IIIJB75 177777 BBBB34 .0'1 ~4 22 BBgBBB BIJBB72 IB7247 
K-FNCT IIBB67 BBBUB PUSH D77324 B77324 B76BB6 BBBBBB 
K-CALL IlBPl67 BBBUB TPUSH BI1BB7B B6664B 977324 BB9445 
TASK IIB0'67 9BB44B 94541B BBI21g BBBHB B77324 BBBBB7 
K -CAL L IIflD67 BBg436 RETURN BBBB73 B66671 B77324 BBB46B 
TASK IIBfl67 BBB436 B6g73B BB2731 gBB436 B77324 BBBgB7 
K-FNCT IIBfl67 BBB436 MPUT BBgBBI 12U1BB BBBBBI BBBBBB 
K -CAL L IIBB67 .0'0'0'~36 MPUT BB2731 B66671 B77324 BBB46B 
TASK IIB967 B.rt9l~36 0611739 91!12174 991!1436 B77324 1!1161!116B7 
K-CALL IIB0'67 990'551 RETURN I6161B45 966735 B77324 BB16457 
TASK 1191'167 B91655 I 952674 I'Igl257 g16B551 977324 9B9!9B7 
K-CALL IlB967 9916425 RETURN Bf'rfJ7fJI fl67BBI 1677324 999455 
TASK 119967 999425 933614 90'10'72 fJ0'9425 977324 9B9997 
MEM- 10 119967 B91H25 PI.f'rBfJB2 9169Pgl 0'365B3 B75414 B16B92 I 
K-CALL 1191667 99B~25 MOSR IJI11IJ72 9!67f!161 B77324 161616455 
TASK 119967 169B425 933614 9fJIJlJ96 JJI116425 B77324 g99097 
K-FNCT 1191!167 1!11!11!155 I CALL 9671!191 fJI!19425 Bll174 BB643B 
K-CALL IIBfJ67 BBJJ55 I CALL 1!1/l'1257 /l'66735 B77324 BBB4S7 
TASK 111!11667 BBI!155 I 1!152674 BI!11257 IJ0055 I B77324 BI!101!11!17 
K -CAL L 111!11!167 1!191!1425 RETURN BBB791 116716.1 1677324 161616455 
TASK IIB1667 9916425 B33614 fJfJIB72 900'425 B77324 99191'('17 
HEM-IO 119967 99B425 BfHJBB2 B9BIHl'l 936462 975414 9g91321 
K-CALL 119967 161616~25 MOSR 161611672 166716161 1677324 161616455 
TASK 1116067 16160425 IJ33614 I616B16166 16.1316425 1677324 1616161197 
K-FNCT IU967 I!11!1B55 I CAll B6701!11 I!11!1B425 1!111174 1!11!16431!1 

1813 

Figure 15-2. History Trace Sample Output 

15-6 SM-0046 G 



I 

15.2.2 EXAMINING TRACE BUFFERS OFF-LINE 

Trace buffers can be examined off-line by issuing a dump command. The 
command used depends on the operating system running on the mainframe. 

The COS dump command for examining trace buffers is FDUMP. See 
Operational Aids Reference Manual, publication SM-0044, for a complete 
description of FDUMP. 

Figure 15-3 shows an example of the output from FDUMP. 

DMEM, I Yl'l = 101'11, 11411' 0, I 1411= I 77 77 7, R. , DUI1P 1.16 11/16/67 15:'16: 10 PAGE 
OXI R I YI'I = 101'11 SYSDUMP W>/07/67 10: 33: 06 

EVI N I H IC-I OVI PIIH-l PAR-2 I'AR-3 PAR-'I PAR-5 

IASI( 1'1 I 711 CR I lll~' flASi: -ADD (1'1321 '1 P-RE l. (I(IIloll6 OVL.H (lllII023 ACI.ADD 0/2760 MOS-LOCL 000000 
I NIHI'l 1,,1711 KlHN[ I. CIIANNrt# IIIIUU'II P.AllOH 01'1'111 flASl/OVL 000000 IDLE-III flUIl006 IDLE-LO 17'17111 
IASK 1'11710 CH I lJl~1 BIISl-IIOO 1)'132111 P-IH.t UIHIllll6 OVL.H 001)1)23 ACT .AIlO 072760 110S-LOCL 000000 
I N I HI' r 1111710 CI)[ ~1 CIIANN£ I # 111100'11 P.ADI1R n l l16112 llASE/OVL UII15511 lUI E-III OOUOO6 10LE-LO 163067 
I N I RI'I 1,,1/111 CIl! I,' CIIIINNELH IHJflOll P. AOOR 0'116'12 IIIISE/OVL 0'11554 I OLf -III 000006 IULE-LO 163067 
IIISI( "llll!! ell[ 1·1 IIASf -AIJIl 0'11 c,5'1 P-flU 011111166 UVL.# 000u16 ACT. AUO 073020 MOS- LOCL 000000 
K-CAI L 1',1710 CIlI ~I IUNCI RrLOAl I'-HEL (l01lo66 SI·IOIl.ADO 0730114 ACT. ADO 073020 B. HEG. 0001156 
A-IO-A 1111711l CIlII·I CIIANNF 1# 1111111111 MlSSAGE 1111111116 CODE.# unOOOI IOP/CIiAN 016U26 R/W. CODE OUOIIOO 
~I[M- 10 1111710 CI1[1·1 INC T. CI1E 01l(JOU3 ~IEM IJ Irs lll)()IlOIl NlM BITS 011707 MEM-lOC 070311/1 LNGlll-WO 000010 
II1SK "117111 CIJ1I1 IIASI -ADO 0'1155'1 p-Rrl 01llHln6 OVL.# 000016 ACT .Aoo 0730;>0 ~10S- LOCL 000000 
I N I RPT 1'11710 KfHNEL CIIANNElH lJIIOlJ20 P.IIOIlR 0)/1'116 BASE/OVL 000000 IDLE-III 000006 10LE-LO 163067 
1-III1ND )/,1710 1\1 HNll. CHANH IN (1(10020 SIAIlJS OOllllllll DAL AOOR 0703 11/1 CIIANNELN 070110'1 OEST I N 000101 
I N I RrT )/117 III Kf.HNfl CIIANNEI H lIlHIO;>1 I'.AIlIlH 0)/1 ,,12 IIASE/OVL 000000 I ULE-ill 000006 10LE-LO 1622116 
ICOM 1'11710 I C0I1 COilE 1l1l001l1 DAL .ADoH 117030'1 ~lrSSAGE 1'100;>6 10P/CII# Oll2lJ26 R/W CODE 000001 
IASK 1'117111 I C0I1 BAS[ -AIlO 11',631'1 I'-HlL 1111111.,6 OVL.# 000132 ACT. ADO 11731611 ~IOS- LOCL 000000 
ME1~- 10 1 '11710 I C01·1 fNCT.cor 000002 NrM BITS OilIJUlliJ NlM BllS 011507 MEM-LOC 0703011 LNGTft-WO 000010 
K-CAII 11111111 I COI-l I UNCI ~IOSH P-HEL (1111) 1 ')6 S,.,OIl • ADO () 7 3 2(111 ACT .ADo 073160 !l. REG. 0001f71 
TASK 1 '11710 I CO,., BIIS[ -AIlO 05631 11 P-HEL UlllIlI.,;> nvl..# 000132 ACT. ADD 073160 ~IOS- LOCL 000000 
K-CALI 1'11710 ICOI-I IUNCT GE TOAI "-REL 0011115;> SI·IOIl.AOO 0732U" ACT. ADO 073160 B. REG. 0001.71 
]ASK l'IITIO ICOI·I BASE -ADD 1l'j63)/1 l'-n[L 000006 OVL.# 000132 ACT. AUD 073160 ~IOS- LOCL 000000 
IN IRPT )/117111 K[llN[ I CIIANNII # 1100010 P.IIDIlR 0111,,11 BASE/OVL 000000 lOLE-11I 0001106 IOLE-1.0 162230 
I -III1NIl 11117111 KI.HNII 101'.CIINII (JlllJ011l mSSfI(;[ 1'1l1ll;'6 I Nl HHI'I S JUOO'I5 OIlLS- LOC (lOO1J57 MOS-LOC oouooo 
TASK )/117111 en 1111 ~1 IlASI -ADD 0 /13;> III P-HlL OllllOU6 OVL.# oono;>3 ACT .AIlO 072760 110S- LOCL 000000 
INIRl'r )/117111 K[ HNf I CIIANNEl /I OIJOO'II P.AIlDI1 01'1'111 IlAS( 10VL 000000 I DLE-It I 0000116 10LE-LO 153000 
IN 1 RPI 1'1170-' CIlU-l CIIANNU # OlJ(IO 11 1'.ADIlH 0'11611;> BIIS[fOVL 0'1155'1 IDLE-It I OOO()06 10L[-LO 1,.6111111 
IASK )/lllo7 elll,., IlIISf.-AllIl 0 /11.,5'1 P-Ill!. 00110(,6 OVI.H 000016 ACT .AIlD 0731120 MOS- LOCL 000000 
K-CAI L 11117117 CIJUI IIINCI flElOAL P-HEL 0llu066 S~IOIl. ADO 073IJ'I" ACT .AOO 073020 1J.I1EG. 0001.56 
A- lO-A )/11/1l7 elll M CIlIINNU II 1I11l11J11 NlSSAGE )//1111'1') COIJI.# Ol)OOOI lOP/CIIAN 0160;>'1 H/W. CODE 000'/1)0 
'·1L ~I- 10 )/1170 I CDlf.l , IIC r . CD! 00nOD3 MlN BI TS Ollll II II 0 11LM BITS 011677 MEM-LOC 06670'1 LNGTII-WO 000010 
lASK )/117117 ClJlJ.l BIISI -III)D "'1155'1 r-HU 1I1l1l11116 OVL.H UIJOO16 ACT .AoO n73020 NOS-LOCL 1I00000 
I NIRrT )/117111 K[ HNEI CIIIINNfl # 1l01l1l20 P. AllDH 01'1'116 IlASl/OVL (l0(l000 IDLE-III 1I01l006 10LE-LO 1/1611011 
1-III1NO 1111707 KflWEI. CIIAII# IN 11llllll2U S 1/1 IUS OIHIIII"1 DAL IIIlDR 0667011 CIIANNEL# 066711/1 DESTIN 000101 
I Nl RPI )/11707 1([HNEl CIlIINNEI # 01l1l1l21 I'.AOOH 01"'11C, BASE/OVL 0110000 IDLE-III 000006 10LE-LO 1455511 
I COI·I 1111707 ICOJ.l CODE (1110001 IlAl.AIlDR 06(,?'I'1 mSSAGE 1 '10036 10P/CII# 0020211 R/W CODE 000001 
lASK )/117111 Icm, IlASI-ADIl 11563)/1 I'-H[ L OOlll.,(, lIVL.# 000132 ACI • AOO 0/3160 ~'OS- LOCL oonooo 
Mr~l- 10 11117117 Icml f NCI . CDE 00lHH1? ~'[M nITs (JOOIIl'" mM niTS 011607 1-1HI-LOC 066;>1,4 LNGTft-WO 000010 

125 

1517 

Figure 15-3. FDUMP Sample Output 

The UNICOS dump command for examining trace buffers is fdmp(lM). See 
the UNICOS System Administrator's Guide, publication SR-2022, for a 
complete description of fdmp. 

SM-0046 G 15-7 



Figure 15-4 shows an example of the output from fdmp. 

$ /ete/fdmp -m iopO -t -T 10 eore/eore.xxxx 

/ete/fdmp: iopO memory from file eore/eore.xxxx Dump date: 07/16/88 

13:12:44 Page 1 
Sysdump: iop-3 halt 000 

Event Cloek Overly Ent-1 Ent-2 Ent-3 Ent-4 Ent-5 

Chanio 015037 177777 000012 177000 160252 000112 000006 

Task 015036 Bcom 045364 000275 000151 101244 000006 

Memio 015036 Beom 000002 000000 013020 074114 000010 

K-call 015036 Bcom Mosr 000275 101270 101244 000473 

Task 015036 Bcom 045364 000275 000151 101244 000006 

Memio 015036 Bcom 000002 000000 013010 072214 000010 

K-call 015036 Bcom Mosr 000275 101270 101244 000473 

Intrpt 015036 Beom 000012 045372 045364 000062 071726 

Chanio 015036 Bcom 000012 040126 160251 000112 000006 
Task 015036 Bcom 045364 000006 000151 101244 000006 

****************** Dump completed 
1518 

Figure 15-4. fdmp Sample Output 

15.2.3 TRACE EVENT CODES, SUBCODES, AND PARAMETERS 

Table 15-1 contains trace event codes, and table 15-2 adds subcodes and 
parameters to the Trace Event Codes in table 15-1. 

Event 

INTRPTt 
Intrpttt 

K-CALLt 
K-calltt 

TASKt 
Tasktt 

Table 15-1. Trace Event Codes 

Code 

TF$INT (1) 

TF$CALL (2) 

TF$TSK (3) 

Description 

Exit from common interrupt handler (ICHK) 

Entrance to Kernel function processor 
(SERVICE) 

Exit from activity dispatching (ELDP) 

t Mnemonic used by on-line TRACE and off-line COS FDUMP command. 
tt Mnemonic used by off-line UNICOS fdmp. 

15-8 SM-0046 G 



I 

Event 

I-HANDt 
Chaniott 

K-FNCTt 
K-functt 

SEEKt 
D2seektt 

DK-IOt 
D2sti ott 

DK-ERRt 
D2 errtt 

OVL-LDt 
Ldovlytt 

A-TO-At 
A-Asndtt 

ACOMt 
Acomsgtt 

DK-MMt 
D2mi crtt 

DK-LOGt 
D2elogtt 

CRTOUTt 
Ochartt 

BMXOt 
Bmx-intt 

BMX1t 
Bmx-iott 

BMX2t 
Bmx-adtt 

Table 15-1. Trace Event Codes (continued) 

Code 

TF$CHN (4) 

TF$FCT (5) 

TF$SEK (6) 

TF$DSK (7) 

TF$DSKER (10) 

TF$OLAY (12) 

TF$ATA (13) 

TF$ACOM (14) 

TF$DKMM (15) 

TF$DKLOG (16) 

TF$CHAR (17) 

TF$BMXO (20) 

TF$BMX1 (21) 

TF$BMX2 (22) 

Description 

Individual interrupt handlers (IIAP, IEXP, 
and ICRI) 

Individual Kernel function processor 

Disk seek routine (SEEK) 

Disk read/write processor (DDRF) 

Entry to disk error recovery (ERRECK 
overlay) 

Overlay loading (EIAK) 

Send messages to other lOPs (EMSGIOP) 

Receive messages from other lOPs (MEMX 
in ACOM overlay) 

Disk error recovery retries; usually micro 
positioning attempts (ERRECK overlay). 

Disk error logging; signals the end of 
recovery processing for a disk error 
(REPORT overlay). 

CRT output character (CRTDEM) 

BMXDEM - Entrance 

BMXDEM - Start I/O 

BMXDEM - Advance data 

t Mnemonic used by on-line TRACE and off-line COS FDUMP command. 
tt Mnemonic used by off-line UNICOS fdrnp. 

SM-0046 G 15-9 



I 

Event 

BMX3t 
Bmx-sitt 

BMX4t 
Bmx-aptt 

TEXOt 
Bcomsgtt 

TEX1t 
Bcm-rstt 

TEX2t 
Bfm-intt 

TEX3t 
Bfm-dntt 

TEX4t 
Tpi-rstt 

TEX5t 
Tdm-intt 

TEX6t 
Tdm-dntt 

TEX7t 
TdO-intt 

TExat 
TdO-dntt 

TEX9t 
000041tt 

TEXAt 
000042tt 

BYPIOt 
000046tt 

Table 15-1. Trace Event Codes (continued) 

Code 

TF$BMX3 (23) 

TF$BMX4 (24) 

TF$TEXO (30) 

TF$TEX1 (31) 

TF$TEX2 (32) 

TF$TEX3 (33) 

TF$TEX4 (34) 

TF$TEX5 (35) 

TF$TEX6 (36) 

TF$TEX7 (37) 

TF$TEXa (40) 

TF$TEX9 (41) 

TF$TEXA (42) 

TF$BYPIO (46) 

Description 

BMXSIO - Entrance 

BMXSIO - Path assignment 

BCOM3 - CPU request 

BCOM3 - BIOP response 

BUFMAN - Entrance 

BUFMAN - Exit 

TAPEIO - BMX response 

TDEM - Entrance 

TDEM - Exit 

TEDM1 - Entrance 

TDEM1 - Exit 

TAPEIO - CPU response 

TAPEIO - DSC Buffer Descriptor Entry read 

Issue IIO between Buffer Memory and a 
target memory by using the high-speed 
bypas schanne 1 . 

t Mnemonic used by on-line TRACE and off-line COS FDUMP command. 
tt Mnemonic used by off-line UNICOS fdmp. 

15-10 SM-0046 G 



I 

Event 

TMOUTt 
Evtouttt 

MEM-IOt 
Memiott 

ICOMt 
Icomsgtt 

D4-SEKt 
D4seektt 

D4-HEDt 
D4headtt 

D4-IOt 
D4sti ott 

D4-ERRt 
D4errtt 

UCHOt 
Sh-enttt 

UCH1t 
Sh-exitt 

UCH2t 
Sh-siott 

UCH3t 
Sh-iodtt 

UCH4t 
Sh-reqtt 

UCH5t 
Sh-restt 

SCPIOt 
000070tt 

Table 15-1. Trace Event Codes (continued) 

Code 

TF$TOUT (47) 

TF$COMIO (50) 

TF$ICOM (51) 

TF$D4SK (52) 

TF$D4HD (53) 

• 
TF$D4IO (54) 

TF$D4ER (56) 

TF$UCHO (60) 

TF$UCH1 (61) 

TF$UCH2 (62) 

TF$UCH3 (63) 

TF$UCH4 (64) 

TF$UCH5 (65) 

TF$SCPl (70) 

Description 

Clock-event time-out 

Issue 1/0 to Buffer Memory and a Target 
Memory 

Receive messages from other lOPs (ICOM) 

DCU-5 type disk seek routine (D4DEM) 

DCU-5 type disk head select routine 
(D4DEM) 

DCU-5 type disk read/write routine (D4DEM 
and 0049) 

DCU-5 type disk error recovery retry 
(D3ERR and D4ERR) 

UCSHL - Entrance 

UCSHL - Exit 

UCRD/UCWRT - Entrance 

UCRD/UCWRT - Exit 

Driver call - Entrance 

Driver call - Exit 

Concentrator status 

t Mnemonic used by on-line TRACE and off-line COS FDUMP command. 
tt Mnemonic used by off-line UNICOS tdmp. 

SM-0046 G 15-11 



I 

I 

I 

I 

I 

I 
I 

Table 15-1. Trace Event Codes (continued) 

Event Code Description 

I~==~==~==========~================================== 
I 
I 
I 
I 
I 
I 

NSCRwt TF$LPH1 (71) 
000071tt 

FEIW/FEIRt TF$LPH@ (72) 
000072tt 

NSC logical path driver request status 

FEI logical path driver request status 

I _________ ~------------~--------------------------------------
t Mnemonic used by on-line TRACE and off-line COS FDUMP command. 

tt Mnemonic used by off-line UNICOS fdmp. 

Table 15-2. Trace Event Parameters 

Event Parameters 

INTRPT or Intrpt 
TF$INT (1) 
Exit from common 
interrupt handler 

K-CALL or K-call 
TF$CALL (2) 
Entrance to Kernel 
function processor 

TASK or Task 
TF$TSK (3) 
Exit from activity 
dispatching 

I-HAND or Chanio 
TF$CHN (4) 
Input A-A channel 
interrupt handlers 

I-HAND or Chanio 
TF$CHN (4) 
Expander channel 
interrupt 

15-12 

P1 = Channel number 
P2 = P address 
P3 = Base address of overlay 
P4 = Idle time (lOP) high-order bits 
PS = Idle time (lOP) low-order bits 

P1 = Function 
P2 = Address relative to the base address 
P3 = SMOD address 
P4 = Activity Descriptor address 
P5 = B register 

P1 = Base address 
P2 = Address relative to the base address 
P3 = Overlay number 
P4 = Activity Descriptor address 
P5 = Number of available local buffers 

P1 = lOP input channel number 
P2 = Message (see table 2-4) 
P3 = Interrupt count 
P4 = Number of available local DALS 
PS = Number of available local buffers 

P1 = Expander channel number 
P2 = Status 
P3 = Device status 
P4 = Address of first entry on PUSH queue 
P5 = Address of last entry on PUSH queue 

SM-0046 G 



I 

I 

I 

I 

I 

I 

I 

Table 15-2. Trace Event Parameters (continued) 

Event Parameters 

I-HAND or Chanio 
TF$CHN (4) 
Input channel from 
mainframe interrupt 

K-FNCT or K-func 
TF$FCT (5) 
Individual Kernel 
function processor 
(PUSH) 
Deactivates 
activity until popped 

K-FNCT or K-func 
(POP) 
Reactivates 
pushed activity 

K-FNCT or K-func 
(ALERT) 
Creates an activity 
in another lOP 

K-FNCT or K-func 
(AWAKE) 
Activates an activity 
in another lOP 

K-FNCT or K-func 
(RESPOND) 
Sends message 
response to 
activity in 
another lOP 

K-FNCT or K-func 
(NSCIO) 
Initiate I/O to A130 
NSC device 

SM-0046 G 

P1 = Input channel number 
P2 = Status 
P3 = Address of DAL 
P4 = Current channel address 
P5 = Destination ID (DA@DID) 

P1 = Function 1 = PUSH 
P2 = First entry on linked list 
P3 = Last entry on linked list 
P4 = Queue address 
P5 = 0 

P1 = Function 2 = POp· 
P2 Linked activity 
P3 = Queue address 
P4 = 0 
P5 = 0 

P1 Function 15 = ALERT 
P2 = lOP number (0 through 3) 
P3 Number of created overlay 
P4 = DAL address high-order bits 
P5 = DAL address low-order bits 

P1 = Function 16 = AWAKE 
P2 = lOP number (0 through 3) 
P3 = Popcell address 
P4 = DAL address high-order bits 
P5 = DAL address low-order bits 

P1 Function 17 = RESPOND 
P2 = Address of DAL 
P3 = Response 
P4 = Destination lOP (0 through 3) 
P5 = 0 

P1 = Function 24 = NSCIO 
P2 Input address 
P3 = Input length 
P4 Output address 
P5 = A130 function or output length 

15-13 



I 

I 

I 

I 

I 

I 

I 

Table 1S-2. Trace Event Parameters (continued) 

Event Parameters 

K-FNCT or K-func 
(GETMEM) 
Allocates Local 
Memory in multiples 
of 4 

K-FNCT or K-func 
(RELMEM) 
Releases memory to 
free pool 

K-FNCT or K-func 
(SEND) 
Initiates output to 
mainframe through 
6 Mbyte channel 

K-FNCT or K-func 
(MGET) 
Gets Buffer Memory 
from buffer pool 

K-FNCT or K-func 
(MPUT) 
Return Buffer Memory 
to free pool 

K-FNCT or K-func 
(POLL) 
OUT-Cl - Initiates 
output to main
frame through 
6 Mbyte channel 

K-FNCT or K-func 
(CALL) 
Calls another 
overlay to perform 
a function 

1S-14 

P1 = Function 30 = GETMEM 
P2 = Length in parcels 
P3 = Address 
P4 = 0 
PS = 0 

P1 = Function 31 = RELMEM 
P2 = Length in parcels 
P3 = Address 
P4 = a 
PS = a 

P1 = Function 34 = SEND 
P2 = Address of DAL 
P3 = a 
P4 = a 
PS = a 

P1 = Function 3S = MGET 
P2 = Buffer Memory address high-order bits 
P3 = Buffer Memory address low-order bits 
P4 = Number of buffers allocated 
PS = a 

P1 = Function 36 = MPUT 
P2 = Buffer Memory address high-order bits 
P3 = Buffer Memory address low-order bits 
P4 = Number of buffers to return 
PS = a 

P1 = Function 44 = POLL, also tagged OUT-C1 
some places 

P2 = Address of DAL 
P3 = a 
P4 = a 
PS = a 

P1 = Function SO = CALL 
P2 = SMOD address 
P3 = Overlay number 
P4 = Address of entry 
PS = Registers saved. 

in overlay table 

the number saved; 
identify first to 

Bits a through 6 give 
bits 7 through 1S 
be saved. 

SM-0046 G 



I 

I 

I 

I 

I 

I 

Table 15-2. Trace Event Parameters (continued) 

Event Parameters 

K-FNCT or K-func 
(CREATE) 
Creates a new 
activity in the 
system 

SEEK or D2seek 
TF$SEK (6) 
Disk seek routine 

DK-IO or D2stio 
TF$DSK (7) 
Disk read/write 
processor 

DK-ERR or D2err 
TF$DSKER (10) 
Disk error handler 

OVL-LD or Ldovly 
TF$OLAY (12) 
Overlay loading 

A-TO-A or A-Asnd 
TF$ATA (13) 
Send messages to 
other lOPs 

SM-0046 G 

PI = Function 55 = CREATE 
P2 = Overlay number 
P3 = Activity Descriptor address 
P4 = SMOD address 
P5 = SMOD size 

PI = Channel number 
P2 = Old cylinder number 
P3 = New cylinder number 
P4 = lOP idle time high-order bits 
P5 = lOP idle time low-order bits 

PI = Function code in first 7 bits, channel 
number in last 9 

P2 = Cylinder number in first 11 bits, head in 
last 5 

P3 Sector number 
P4 = Local Buffer address 
P5 Caller's return address 

PI = Channel number 
P2 = Error type 
P3 Channel activity flags 
P4 = Address of current executable DAL 
P5 Disk Control Block address 

PI = Overlay number 
P2 = Base address 
P3 Number of overlays in Local Memory 
P4 = High-order bits of total number of loads 

for all overlays 
P5 = Low-order bits of total number of loads 

for all overlays 

PI Channel number 
P2 = Message (see table 2-4) 
P3 = Internal function code (see following) 
P4 = lOP number in first 7 bits, channel number 

in last 9 
P5 = Read/write function code (DAF$) 

15-15 



I 

I 

I 

I 

I 

I 

Table 15-2. Trace Event Parameters (continued) 

Event Parameters 

A-TO-A or A-Asnd 
(continued) 

ACOM or Acomsg 
TF$ACOM (14) 
Receives messages 
from other lOPs 
(in overlay ACOM) 

DK-MM or D2micr 
TF$DKMM (15) 
Disk ERRECK Disk 
retries 

DK-LOG or D2elog 
TF$DKLOG (16) 
Disk error logging 

CRTOUT or Ochar 
TF$CHAR (17) 
CRT output character 

BMXO or Bmx-in 
TF$BMXO (20) 
BMXDEM - ENTRANCE 

15-16 

CODE 1 = Initiate disk I/O 
2 = Release DAL space 
3 = Transfer data from Central Memory 

to Buffer Memory (BIOP receives) 
4 = Transfer data from Buffer Memory 

to Central Memory (BIOP receives) 
5 = Send status to COS (MIOP receives) 
6 = Transfer from mainframe to Buffer 

Memory complete (DIOP receives) 
7 = Transfer from Buffer Memory to 

mainframe complete (DIOP receives) 

P1 = Code (see code meanings immediately 
preceding) 

P2 = DAL address 
P3 = Message (see table 2-4) 
P4 = First 4 bits contain the device type; 

last 3 bits contain the lOP number. 
P5 = Cylinder number in first 11 bits, head 

number in last 5 

P1 = Channel number 
P2 = Cylinder number first 11 bits, head 

number error recovery in last 5 
P3 = Sector number 
P4 Type of error 
P5 = Retry count 

P1 = Channel number 
P2 = Type of error 
P3 = Recovered/unrecovered status 
P4 = Disk Control Block address 

P1 = Channel number 
P2 = Character (octal representation of ASCII) 
P3 = Address of local buffer 
P4 = Activity Descriptor address 
P5 = 0 

Pl = Device ordinal 
P2 = Channel number 
P3 = Channel input tags 
P4 = Device status 
P5 = Sequence code (KIC$) 

SM-0046 G 



I 

I 
I 

I 

I 

I 

I 

I 

I 

I 

Table 15-2. Trace Event Parameters (continued) 

Event Parameters 

BMX1 or Bmx-io 
TF$BMX1 (21) 
BMXDEM - START liD 

BMX2 or Bmx-ad 
TF$BMX2 (22) 
BMXDEM - ADVANCE 
DATA 

BMX3 or Bmx-si 
TF$BMX3 (23) 
BMXSIO - ENTRANCE 

BMX4 or Bmx-ap 
TF$BMX4 (24) 
BMXSIO - PATH 
ASSIGNMENT 

TEXO or Bcomsg 
TF$TEXO (30) 
BCOM3 - CPU REQUEST 

TEX1 or Bcm-rs 
TF$TEX1 (31) 
BCOM3 

BIOP RESPONSE 

TEX2 or Bfm-in 
TF$TEX2 (32) 
BUFMAN - ENTRANCE 

SM-0046 G 

P1 = Current CPW address 
P2 = Device command 
P3 = CPW flags 
P4 Device path 
P5 = CPB flags (CPB@FL) 

P1 = Device ordinal 
P2 = Current CPW address 
P3 = CPB flags (CPB@FL) 
P4 Data buffer address 
P5 = Data byte count 

P1 = Device ordinal 
P2 = Request code (RQ$) 
P3 = CPB address 
P4 = 0 
P5 = 0 

P1 = Device table address 
P2 = Channel table address 
P3 = Control unit table address 
P4 = Channel number 
P5 = Device path 

P1 = Device ordinal 
P2 = Function (FC$) 
P3 = Requested block count 
P4 = Requested sector count 
P5 = Dataset description flags 

P1 = Device ordinal 
P2 = Transferred block count 
P3 
P4 
P5 

Transferred sector count 
Valid Buffer Memory sectorlblock count 
Status (TQ@STS) 

P1 Device ordinal 
P2 = Pointer to top of DSC list 
P3 = Pointer to bottom of DSC list 
P4 XIOP pointer into DSC list 
P5 = BIOP pointer into DSC list 

15-17 



I 

Table 15-2. Trace Event Parameters (continued) 

Event Parameters 

TEX3 or Bfm-dn 
TF$TEX3 (33) 
BUFMAN - EXIT 

TEX4 or Tpi-rs 
TF$TEX4 (34) 
TAPEIO - BMX RESPONSE 

TEX5 or Tdm-in 
TF$TEX5 (35) 
TDEM - ENTRANCE 

TEX6 or Tdm-dn 
TF$TEX6 (36) 
TDEM - EXIT 

TEX7 or TdO-in 
TF$TEX7 (37) 
TDEM1 - ENTRANCE 

TEX8 or TdO-dn 
TF$TEX8 (40) 
TDEM1 - EXIT 

15-18 

P1 = 
P2 = 
P3 = 
P4 = 
P5 = 

P1 = 
P2 = 
P3 = 
P4 = 
P5 = 

P1 = 
P2 = 
P3 = 
P4 = 
P5 = 

P1 = 
P2 = 

P3 = 

P4 = 
P5 = 

P1 = 
P2 = 
P3 = 
P4 = 
P5 = 

P1 = 
P2 = 
P3 = 
P4 = 
P5 = 

Device ordinal 
Pointer to top of DSC list 
Pointer to bottom of DSC list 
XIOP pointer into DSC list 
BlOP pointer into DSC list 

Device ordinal 
Operation status (OS$) 
CPB error flags (CPB@EF) 
Block done count 
Blocks left in command chain 

Device ordinal 
Operation status (OS$) 
CPB error flags (CPB@EF) 
Pointer into DSC list for current segment 
CPB address 

Device ordinal 
Bytes transferred to or from Buffer Memory 
for current command (high-order bits) 
Bytes transferred to or from Buffer Memory 
for current command (low-order bits) 
Current CPU address 
CPB flags and DSC Buffer Descriptor Entry 
status. Flags are bits 0-11. The status 
is valid only on write operations. 

Device ordinal 
Requested sector count 
BIOP pointer into DSC list 
Pointer into current sector for next word 
Pointer into current word for next byte 

Transferred block count 
Transferred sector count 
BIOP pointer into DSC list 
Pointer into current sector for next word 
Pointer into current word for next byte 

SM-0046 G 



I 

I 

Table 15-2. Trace Event Parameters (continued) 

Event Parameters 

TEX9 or 000041 
TF$TEX9 (41) 
TAPEIO - CPU RESPONSE 

TEXA or 000042 
TF$TEXA (42) -

DSCREAD 

BYPIO or 000046 
TF$BYPIO (46) 
Issue I/O between 
Buffer Memory and 
a target memory on 
bypass channel 

TMOUT or Evtout 
TF$TOUT (47) 
Clock-event time-out 

MEM-IO or Memio 
TF$COMIO (50) 
Issue I/O between 
Local Memory and a 
Target Memory 

SM-0046 G 

P1 = Status (TQ@STS) 
P2 = Blocks/sectors in Buffer Memory 
P3 = Maximum block size; high-order bits 
P4 = Maximum block size; low-order bits 
P5 = 0 

P1 = Pointer into DSC list 
P2 = DSC Buffer Descriptor Entry status 
P3 = Contiguous sector count 
P4 = Record length; high-order bits 
P5 Record length; low-order bits 

PI = Function code in upper 2 bits, target 
memory type in next 2 bits, word length 
in last 12 bits 

P2 = High-order bits of target memory address 
P3 = Low-order bits of target memory address 
P4 = High-order bits of Buffer Memory address 
P5 = Low-order bits of Buffer Memory address 

PI = Timer entry link address 
P2 = Time-out routine address 
P3 = 0 
P4 0 
P5 = 0 

PI = Function code (see following) 
P2 = High-order bits of a target memory address 
P3 = Low-order bits of a target memory address 
P4 = Local Memory address 
P5 = Word length 

15-19 



I 

I 

I 

I 

Table 15-2. Trace Event Parameters (continued) 

Event Parameters 

MEM-IO or Memio 
(continued) 

ICOM or Icomsg 
TF$ICOM (51) 
Receive messages 
from other lOP for 
DCU-5 type disks 
(overlay ICOM) 

D4-SEK or D4seek 
TF$D4SK (52) 
DCU-5 seek routine 
(overlay D4DEM) 

D4-HEO or D4head 
TF$D4HD (53) 
OCU-5 head select 
(overlay D4DEM) 

04-10 or D4stio 
TF$04IO (54) 
DCU-5 sector I/O 
(overlays 0049 and 
D4DEM) 

15-20 

Function 
1 = Buffer Memory read, wait until done 
2 = Buffer Memory read, do not wait until done 
3 = Buffer Memory write, wait until done 
4 = Buffer Memory write, do not wait until 

done 
5 = Central Memory read, wait until done 
6 = Central Memory read, do not wait until 

done 
7 = Central Memory write, wait until done 

10 = Central Memory write, do not wait until 
done 

11 = SSO Memory read, wait until done 
12 = SSD Memory read, do not wait until done 
13 = SSO Memory write, wait until done· 
14 = SSD Memory write, do not wait until done 

P1 = Internal function code (IM$) 
P2 = OAL address 
P3 = Accumulator message (see table 2-4) 
P4 = lOP number in first 4 bits, unit number in 

next 3 bits, and channel in last 9 bits 
P5 = Read/write code (OAF$) 

P1 = Channel 
P2 = Old cylinder 
P3 = New cylinder 
P4 = DCB address 
P5 = 0 

P1 = Channel 
P2 = Old head group 
P3 = New head group 
P4 = DCB address 
P5 = 0 

P1 = Read/write code in first 10 bits, channel 
in last 6 bits 

P2 = Unit number in first 4 bits, cylinder 
number in last 12 bits 

P3 = Head group 
P4 Sector 
P5 = Local Memory buffer 

SM-0046 G 



I 

I 

I 

I 

I 

I 

I 

Table 15-2. Trace Event Parameters (continued) 

Event Parameters 

D4-ERR or D4err 
TF$D4ER (56) 
DCU-5 error retry 

UCHO or Sh-ent" 
TF$UCHO (60) 
UCSHL - ENTRANCE 

UCH1 or Sh-exi 
TF$UCH1 (61) 
UCSHL - EXIT 

UCH2 or Sh-sio 
TF$UCH2 (62) 
UCRD/UCWRT - ENTRANCE 

UCH3 or Sh-iod 
TF$UCH3 (63) 
UCRD/UCWRT - EXIT 

UCH4 or Sh-req 
TF$UCH4 (64) 
Driver call 

ENTRANCE 

UCH5 or Sh-res 
TF$UCH5 (65) 
Driver call -

EXIT 

SM-0046 G 

PI = Unit number in first 4 bits, channel in 
last 12 bits 

P2 = Channel activity flags at time of error 
P3 = Error type (IE$) 
P4 = Current error status code (S$) 
PS = Retry count 

P1 = Channel number 
P2 = User Channel Table address 
P3 = User Channel state 
P4 = F-packet request address 
P5 = Function code 

PI = Channel number 
P2 = User Channel Table address 
P3 = User Channel state 
P4 = F-packet request address 
P5 = Response status 

P1 = Channel number 
P2 = High-order bits of Data Length 1 
P3 = Low-order bits of Data Length 1 
P4 = High-order bits of Data Length 2 
P5 = Low-order bits of Data Length 2 

P1 = Channel number 
P2 High-order bits of Transfer Length 1 
P3 = Low-order bits of Transfer Length 1 
P4 High-order bits of Transfer Length 2 
P5 = Low-order bits of Transfer Length 2 

P1 = Channel number 
P2 User Channel Table address 
P3 = Command code 
P4 = Local buffer address 
P5 = lID size in bytes 

P1 = Channel number 
P2 = 
P3 

User Channel Table address 
Response code 

P4 = Local buffer address 
P5 lID size in bytes 

15-21 



I 

I 
I 

Table 15-2. Trace Event Parameters (continued) 

Event Parameters 

SCPIO or 000070 
TF$SCP1 (70) 
Concentrator status 

NSCRW or 000071 
TF$LPH1 (71) 
Status of NSC logical 
path driver request 

FEIW/FEIR or 000072 
TF$LPH2 (72) 
Status of FEI logical 
path driver request 

15.3 DEBUGGER 

P1 = State of concentrator 
P2 Front-end table address 
P3 = Packet address 
P4 = Error register 
P5 = Station ID 

P1 = Logical path 
P2 = Function/subfunction code 
P3 = Status 
P4 = Request address 
P5 = Logical path table address 

P1 = Channel number 
P2 = Address of request packet 
P3 = Status of input operation 
P4 = Front-end interface table address 
P5 = 0 

The lOS debugging utility has the following capabilities: 

• Sets up to four breakpoints 
• Executes IIO instructions 
• Examines and modifies the following: 

Operand registers 
Operand pointer (B register) 
Accumulator (A register) 
Carry bit (C) 
Exit stack (E register) 
Local Memory 
Buffer Memory 

The debugger is composed of two common decks assembled with the Kernel: 
DEBUGTOO and DEBUGGER. Deck DEBUGTOO contains resident routines and 
debugger data areas. Deck DEBUGGER contains the bulk of the debugger 
code. This code is relocatable and must be less than 511 words in 
length. The relocatable code is allocated to Local Memory in an lOP when 
the debugger is entered during initialization or when called through the 
DEBUG command. The Local Memory is released when the BUGOFF command is 
entered. 

15-22 SM-0046 G 



To enter the debugger during initialization perform the following steps: 

1. When deadstarting the lOP, respond to the loader prompt message 
(FILE @MTO: or FILE @DKO:) with a CONTROL-D. The loader returns 
the message DEBUG and reissues the prompt message. Respond with 
the appropriate tape file number or disk file name. 

2. The loader reads in the Kernel and passes control to it. In the 
MlOP, the debugger gains control. To stop in the debugger in 
another lOP during initialization, set the appropriate bit in the 
cell DEBUG before proceeding: 

Bit lOP 

14 aIOP 
13 IOP-2 
12 IOP-3 

If the debugger is entered during initialization, breakpoints can be 
set in both initialization and post-initialization code. Breakpoints 
set in the MIOP during initialization do not cause breakpoints to be 
set in the other lOPs. 

NOTE 

Breakpoints set in code executed prior to debugger 
initialization cause unpredictable results in the other 
lOPs. 

After initialization, the DEBUG and BUGOFF commands control the debugger. 

Enter the DEBUG command at the console attached to the lOP in which the 
debugger is to be used. The command loads the debugger into Local Memory 
(if it is not already loaded) and sets the debug base register to the 
Local Memory address. The debugger is then given control and accepts 
commands. Once the DEBUG command is entered, the debugger remains in 
Local Memory until the BUGOFF command is entered. 

Format: 

DEBUG 

SM-0046 G 15-23 



The BUGOFF command clears all breakpoints, returns the Local Memory 
buffer allocated for the debugger, and sets the debug base register to 
O. Before entering the BUGOFF command, enter the X command first (as 
described later in this section). 

Format: 

BUGOFF 

The following subsections describe the debug commands. The formats for 
these commands show a slash following the command if the response is 
displayed before a carriage return is entered. If there is no slash 
following the command, a carriage return must follow the command. 

15.3.1 DISPLAY ACCUMULATOR COMMAND 

This command has the following format: 

Type A to display the accumulator. The debugger responds with a slash 
and the current accumulator contents (con1). The accumulator 
contents can be modified by immediately typing the new value (con2> 
followed by a carriage return. If the accumulator is not to be changed, 
enter a carriage return only. 

15.3.2 DISPLAY B REGISTER COMMAND 

This command has the following format: 

Type B to display the B register. The debugger responds with a slash and 
the current B register contents (con1). The B register contents can 
be modified by typing the new value (con2> followed by a carriage 
return. If the B register is not to be changed, enter a carriage return 
only. 

15-24 SM-0046 G 



15.3.3 DISPLAY CARRY REGISTER COMMAND 

This command has the following format: 

Type C to display the carry register. The debugger responds with a slash 
and the current carry register contents (con1)' The carry register 
contents can be modified by typing the new value (con2> followed by a 
carriage return. If the carry register is not to be changed, enter a 
carriage return only. 

15.3.4 DISPLAY CHANNEL STATUS COMMAND 

This command has the following format: 

1 
I nI I 
1 __ 1 

The status of channel n is displayed. 

15.3.5 ISSUE A FUNCTION ON A CHANNEL COMMAND 

This command has the following format: 

nIfc 

The function fc is issued on channel n with the A register's initial 
value O. The status of the channel is displayed after the function is 
issued. 

Format: 

nIfc/xxxxxx 

SM-0046 G 15-25 



The contents of the A register (xxxxxx) resulting from the function 
(fc) are displayed along with the status of the n channel done and 
busy flags. If a carriage return terminates this command, the operation 
is performed once. If a line feed terminates the command, the same 
operation is performed for each line feed entered. 

15.3.6 DISPLAY EXIT STACK COMMAND 

This command has the following format: 

Type E to display the E register, the exit stack pointer. Type the exit 
stack entry index (n) followed by E to display the contents of the exit 
stack at position n (default is 0). The debugger responds with a slash 
and the current register contents (con1). The register contents -may 
be modified by immediately typing the new value (con2) followed by a 
carriage return. If the register is not to be changed, enter a carriage 
return only. Typing a line feed instead of a carriage return completes 
processing of the specified entry and displays the next exit stack entry 
and contents for possible modification. 

15.3.7 DISPLAY OPERAND REGISTER COMMAND 

This command has the following format: 

Type the operand register number (n) followed by R to display the 
contents of operand register n. The debugger responds with a slash and 
the current operand register contents (con1). The operand register 
contents can be modified by immediately typing the new value (con2) 
followed by a carriage return. If the operand register is not to be 
changed, enter a carriage return only. Entering a line feed instead of a 
carriage return completes the processing of the specified register and 
then displays the next operand register and its contents for possible 
modification. Typing a slash instead of a carriage return completes 
processing of the specified register and then displays the contents of 
storage at the location specified by the register contents; storage can 
be modified by entering the new value followed by a carriage return. If 
storage is not to be changed, enter a carriage return only. 

15-26 SM-0046 G 



15.3.8 TOGGLE DISPLAY MODE COMMAND 

This command has the following format: 

I 
I = I 
1--_1 

Type = to toggle the default display mode between absolute and 
overlay-relative. The default mode setting on each entry into the 
debugger is absolute. The overlay selected is the last one referenced 
either implicitly (by occurrence of a breakpoint) or explicitly (by 
setting a breakpoint in an overlay). Toggling to overlay-relative mode 
is not allowed if the overlay is not in Local Memory. The default 
display mode affects Local Memory and P register displays. 

15.3.9 DISPLAY LOCAL MEMORY COMMAND 

This command has the following format: 

addr[:name]/con1 [con2] 

Type the address followed by a slash to display Local Memory. If :name 
is included, the contents of location addr of overlay name are 
displayed. The debugger responds with the current contents (con1). 
The contents can be modified by immediately typing the new value 
(con2) followed by a carriage return. If the contents are not to be 
changed, enter a carriage return only. 

Typing a line feed instead of a carriage return completes the processing 
of the current Local Memory location and then displays the next address 
and contents for possible modification. Entering a slash instead of a 
carriage return completes the processing of the current location and then 
displays the contents of the location specified by the current location 
contents. Local Memory can be modified by entering the new value 
followed by a carriage return. If it is not to be changed, enter a 
carriage return only. 

SM-0046 G 15-27 



15.3.10 DISPLAY P REGISTER COMMAND 

This command has the following format: 

Type P to display the P register. The absolute P address or the 
overlay-relative P address is displayed. The debugger responds with a 
slash and the current P register contents (con1)' The P register 
contents can be modified immediately by typing the new value (con2) 
followed by a carriage return. If the P register is not to be modified, 
enter a carriage return only. 

15.3.11 SET SINGLE BREAKPOINT COMMAND 

This command has the following format: 

addr SIT [:name] 

Type the breakpoint address followed by S or T to set a breakpoint. An S 
specifies that the breakpoint address is in noninterruptible code; the T 
specifies interruptible code. If :name is included, the breakpoint is 
set at location addr of overlay name. A maximum of four breakpoints 
can be active simultaneously. The first available breakpoint number is 
assigned to the breakpoint. A breakpoint cannot be set at address O. A 
single breakpoint is cleared when the breakpoint is encountered. 

15.3.12 SET DOUBLE BREAKPOINT COMMAND 

This command has the following format: 

addrl SIT addr2[:name] 

15-28 SM-0046 G 



Type the primary breakpoint address (addrl) followed by S or T, 
followed by the alternate breakpoint address (addr2) to set a double 
breakpoint. An S specifies that the breakpoint address is in 
noninterruptible code; the T specifies interruptible code. If :name is 
included, the breakpoints are set in overlay name. A double breakpoint 
stops at the primary breakpoint when it is first encountered and stops 
each subsequent time that the primary breakpoint is encountered after 
encountering the alternate breakpoint. A double breakpoint is cleared 
only by the nO or 0 command. 

15.3.13 DISPLAY BREAKPOINTS COMMAND 

This command has the following format: 

SIT 

Type S or T to display all active breakpoints. 

15.3.14 DELETE BREAKPOINTS COMMAND 

This command has the following format: 

[n]D 

Type D to delete all breakpoints. Type the breakpoint number followed by 
o to delete breakpoint n. 

15.3.15 SET COUNT REGISTER AND PROCEED FROM BREAKPOINT COMMAND 

This command has the following format: 

I 
I X I 
I_I 

SM-0046 G 15-29 



Type X to start execution at the current value of the P register; that 
is, to proceed with program execution. Execution continues until another 
breakpoint is encountered. (This command need not be followed by a 
carriage return.) 

15.3.16 DISPLAY BUFFER MEMORY COMMAND 

The debugger can also reference and modify Buffer Memory. The following 
command references a word of Buffer Memory. 

Format: 

Maddrlcon1 

Type M followed by a Buffer Memory address (up to 8 digits), followed by 
a slash to display one 64-bit Buffer Memory word. A line feed displays 
the next sequential word. 

A second form permits 16 words of Buffer Memory to be accessed at a time. 

Format: 

Maddr +1-

Type M followed by a Buffer Memory address (up to 8 digits). If this is 
followed by a plus sign, the debugger displays the next sequential 16 
words. Typing a minus displays the previous 16 words. Subsequently, + 
or - can be typed alone to scan memory in either direction. A carriage 
return or a line feed terminates the command. 

Buffer Memory may also be accessed by the parcel. 

Format: 

Type M followed by a Buffer Memory address (up to 8 digits), followed by 
an A, B, C. or D to display 1 parcel of the specified address. The 
contents are modified by typing in the new value (con2). A carriage 
return terminates the command. A line feed displays the next sequential 
parcel. 

15-30 SM-0046 G 



15.3.17 DISPLAY HIGH-SPEED CHANNEL COMMAND 

The debugger can be used to reference and modify memory attached to any 
100-Mbyte channel connected to the rOPe The console used must be 
attached to the lOP with the high-speed channel to be referenced. The 
commands are the same as those used by the Buffer Memory display 
commands, except that they are prefaced by an 'H' instead of an 'M'. 

Formats: 

Haddr/con1 

Type H followed by the high-speed address to be displayed. The full 
64-bit word is displayed in parcel format. A line-feed displays the next 
sequential word. A carriage return terminates the command. 

Haddr +1-

Type H followed by a starting high-speed address. If followed by a +, 16 
words beginning at the specified address are displayed. A - causes the 
previous 16 words to be displayed. Subsequently, + or - may be typed 
alone to scan memory in either direction. A carriage return terminates 
the command. 

If the address is followed by an A, B, C, or D, the specified parcel is 
displayed. At this time, the parcel displayed can be modified by typing 
the new parcel in. A line feed displays the next sequential parcel. A 
carriage return terminates the command. 

15.3.18 PROCESSING OF CHANNELS USED BY THE DEBUGGER COMMAND 

The debugger preserves the state of the Done flag for the real-time 
clock, Buffer Memory, and console input channels. For a system being 
debugged, time effectively stands still while in the debugger, since the 
real-time clock interrupts are ignored. 

SM-0046 G 15-31 



15.4 PATCH OVERLAY 

The overlay PATCH displays and/or modifies the value of a parcel in an 
overlay or in Kernel-resident code. 

PATCH is activated by entering the following command at any Kernel 
console. 

Format: 

PATCH ovllKERN addr [value] 

ovl Name of the overlay to be displayed or modified 

KERN Kernel code will be displayed or modified 

addr Parcel address, in octal, relative to the beginning of the 
overlay or of Kernel code 

value Optional octal value to enter into the specified address 

If the optional value is not entered, PATCH displays the current contents 
of the specified location on the console screen, along with the name of 
the overlay (or KERN) and the address. If the optional value is entered, 
the new value is displayed. 

In the following example, italic type represents the information 
displayed by PATCH: 

PATCH ACOM 122 
ACOM 000122 000027 

PATCH ACOM 122 0 
ACOM 000122 000000 

When an overlay is specified, PATCH searches the overlay area of Buffer 
Memory and displays or modifies the content of the address as directed. 
All overlays are released from Local Memory to ensure that the modified 
copy of an overlay is loaded from Buffer Memory the next time it is 
called. 

If the Kernel is specified, PATCH searches the area of Local Memory 
containing the Kernel code. 

15-32 SM-0046 G 



15.5 LISTP OVERLAY 

The LISTP overlay prints a listing of assigned $PUNTIF Kernel halt codes 
(in octal) and their definitions. LISTP is a Kernel overlay activated by 
entering the LISTP command at the MIOP console. 

Format: 

1 
. I LISTP 
1 __ -

The following is an example of the output produced by LISTP. 

000 
001 
002 
003 
004 
005 
006 
007 
010 
011 
012 
013 
014 
015 
016 
017 
020 
021 
022 
023 
024 
025 
026 
040 
041 
042 
044 
050 
051 
052 
053 
054 

SM-0046 G 

KERNEL HALT (PUNT) CODES 

Meaning 

No error code specified on $PUNTIF macro 
Local Memory error (always hardware) 
Buffer Memory error on deadstart (always hardware) 
Buffer Memory error (always hardware) 
High-speed channel error (always hardware) 
Invalid message received from CPU 
Invalid parameter in disk request from CPU 
Program was executing at location 0 
Local Memory location 0 was overwritten 
Undefined message received on lOP communication channel 
Overlay does not exist 
Station stack overflow or underflow 
Local Memory buffer not available 
Buffer Memory disk buffer not available 
Invalid local buffer release call 
Buffer Memory incorrectly configured 
lOP message channels incorrectly configured 
SMOD is too large for area in Buffer Memory 
Invalid Local Memory address 
Illegal interrupt program sequence code 
Stop request received from CPU 
Low-speed channel error (always hardware) 
Block number validation trap 
Block multiplexer interrupt processor error 
Bad CRW address in Device Table 
Block multiplexer start IIO error 
Block multiplexer configuration error 
DD-49 disk software 
Debugger was not loaded 
Bad Buffer Memory allocation request 
Bad Local Memory address on high-speed IIO call 
Invalid 1/0 length specified 

15-33 



Code 

055 
056 
057 
060 
061 
062 
063 
064 
065 
066 
067 
070 
071 
072 
073 
074 
075 
076 
077 
100 
101 
102 
103 
104 
105 
106 
111 
112 
113 

Meaning 

No high-speed channel configured for request 
Illegal activity activation requested 
Buffer Memory DAL queue exhausted 
Illegal Demon call 
Undefined Kernel service request 
Illegal Kernel service request 
Bad Kernel service request parameter 
Requested device not configured 
Illegal lOP requested on Kernel service request 
Requested queue full 
Illegal I/O address specified 
SMOD error 
Local Memory space exhausted 
Illegal overlay load requested 
Corrupted Local Memory chain 
Bad Local Memory release 
Bad I/O parameter 
Unexpected interrupt received 
Disk error 
AMAP not available for system initialization 
Illegal overlay number read during initialization 
lOP initialization error 
Buffer Memory configuration error 
Overlay too large for loading 
Premature tape end-of-file (EOF) encountered 
Exit stack fault 
Channel or buffer not configured 
Path to memory not configured 
Target memory not legal value 

15.6 LISTO OVERLAY 

LISTO is a Kernel overlay activated by entering the LISTO command at the 
MIOP console. 

Format: 

LISTO 

15-34 SM-0046 G 



The overlay prints information on each overlay defined within the Kernel 
system. The information includes the following: 

• Overlay number in octal 
• Overlay name 
• Size of the overlay specified in the octal number of parcels 
• Octal address in Buffer Memory where the overlay is stored 

Figure 15-3 shows an example of the output produced by LISTO. 

No Ov i Name Size 
(3454 
rl374 
0234 
0744 
0470 
0220 
0410 
0430 
0700 
16W 
0544 
0404 
0510 
1330 
0364 
1230 
0214 
0564 
0250 
0400 
0660 

BM-Upr BM-LlJJr t~ Ov 1 Name Size 
c~000 

0414 
1100 
'1360 
0170 
1704 
1020 

Et'l-Upr Bf"l-Lwr 
£10 017572 
00 020462 
00 021101 
00 0217t;~. 

00 022537 
00 022720 
00 024006 
00 02443':) 
00 D."47/>7 
00 0;:'S633 
00 026470 
013 025771 
1]0 030075 
013 0010751 
0(1 031132: 
00 l1,,:Z110 
00 03"''4E;5 
00 [1:327.::2 
00 00133+3 
00 l·t'3370S 
00 034226 
00 035444 
0[1 0~:6005 

Of] l:J3E277 
00 037146 
013 0J7701 
DO 040667 
DO 041423 
DO '=1417,::04 
UO 1-142 "a:IO 

00 043002 
00 04359; 

No Ov 1 Name Size 
0744 
1224 
1254 
1600 
0274 
1520 
0454 
03~'4 

0744 
0760 
0444 
0164 
15(Ki 
0140 
2134 
[1334 
1211f,4 
15=:0 
0764 
0240 

BM-Upr BM-Lo;r 
00 AI'1AP 
03 E:MAGET 
[16 CAPD 
11 ,:PA'{ 
14 DI:=,hIO 
17 D~~ETO 
, . .,. FMGET 

25 I1ASTEP 
30 ,)BIT 
33 ':;TARTO 
,,:6 ':;TART3 
41 51'3GET 
44 TAPE 
47 TRACE 
52 >~CPD 

55 SDMP1 
61.1 SDMPS 
E-:O <:.Dt1P8 
66 BTD 
71 DEUIC£ 
,'4 LI':;TO 
77 MULTIPLY 

0102 
0105 
0110 
0113 
0116 
0121 
0124 
0127 

PLOTIT 
TlliE 
>(':ARD 
><PM'INT 
:-Tt=PEA 
E.DH6T 
EDREPL 
LINPUT 

01:::2 U)P'{(l 
0135 FDU~1P0 

0140 F'STFtT 
0143 ~-ILFtC': 

0146 FILDEL 
0151 FILP()P 
01 54 RS1 RTCJ 
01'':;7 ·=.Dt-1P::: 
OlE,'=: (1~lr'II=I~1 

I3lf?5 El1D(':'tIC 
0170 L':"~':'FF 
01-;- 3 L'-'I(,I)t'jC 

13176 CHrc'31'1'~' 

0201 W,.I~I11 

0204 ':;PCHID 
'21207 CONSL 
0212 L')I~Or~ 

0ZJ5 PRe'TlNIT 
CC20 HU}TPI'I 
[1::::':::':3 DI ';PD:~ 
121221". ':')1'11103 
C1231 f~U·1t10,=. 

02~:4 '~or'11'109 

C.::::~' ((\1'11'11? 

0.?42 HI',F'E: 
(l2·1~, (~I~Ir--1B:) 

02'c.<) DE" ,:.eIE 
8,:;",.:: DE')DAT 
[CSf. EFPD J Co. 

CC51 1DEBU'-, 
CCI~.,: I Fr;:r1T 
CC'~:;-- Ur~r 

Ct'·~'.2 11'c. ru l·c. 
IJ':~". F'EHD 
1.J:::(1U ':,I)F'I~I( 

SM-0046 G 

64 
0724 
0510 
0560 
0750 
1224 
059j 
0120 
0660 
1144 
1]304 
1804 
0374 
0414 
02-;-4 
0744 
0220 
12cu3 
0574 
0240 
0310 
01'?0 
[1",20 
0104 
1224 
1204 
077-+ 

':,4 

00 01745'( 
00 020353 
00 0211332 
<'10 0'21574 
130 l12242 1 
130 0226S4 
00 023704 
13C1 0Z4~25 

00 024547 
00 025271 
00 02E.337 
00 026570 
00 02775:::: 
00 0304133 
00 031036 
00 031642 
1210 k.132423 
00 032575 
00 0332b7 
00 033605 
00 034052 
00 035-127 
00 0~:S620 

00 036155 
(Xl 037012 
00 037505 
130 040422 
DO 0412,'1 
00 041740 
08 042124 
00 8425':.1 
DO 043475 
B(~ 044125 
00 0445=:0 
DO 044777 
00 02::E,'::'0; 
00 045+17 
00 041".110 
00 ::::14711.:' 
00 0.474[.':: 
013 047'(3"1 
00 1350215 
00 050374 
00 050,:.:::5 
00 13512Dl 
013 135152S 
:]0 05244~ 

OC1 13':.31 ::3 
00 05401f. 
en] (je,4.377 

DO l3"","-:',' 2 
OLI 0,:.U374 
lJO L1'=,E:;r::'4-1 

'-JO or::.i'E.04 
00 [1f.04S3 
00 0614S7 
OU 01".1711 
0[1 1]6243:" 
l:UJ CJF:, ::on-;-
CI(1 0E-]4>1 
CIO 06·1::H 
no m)':.I~A 

UO Of.6Cj 13 
00 [1t.f.7[1~: 

,]1.1 (:)67704 

131 FtC OM 
04 Bt'lGET 
iJ,' (DEM 
12 DBGET 
IS Dk:IOEX 
20 EPRECK 
23 HDRPAG 
26 t'lSTNEW 
31 PATCH 
34 START1 
37 ·::.TART4 
42 SYSS 
45 TCOM 
'013 -rPAO< 
53 :xPPT 
56 ·=.[It1P2 

':;U~lP5 

64 Bf:f~m 

61 

57 BT') 
72 [lII-'IDE 
7<; 

£1100 
0103 
01OE. 
0111 
0114 
0117 
0122 
0125 
0130 
0133 

1'1:::.GH~m 

('TB 
PRNT 
UBTAPE 
><'=AF'Dfi 
'<F-H~rH 
-;THP~B 

EDPFti"S 
UJr-r'F'E 
'~LEAF' 
EDIl 

013E Fl.l'HD 
0141 F'UP'T 
014·1 rIL'=LS 
014-,' ~-JUTT 

0152 F1LFUr 
01 c.r:; P::.TF·T 1 
01 EU (~e'II,.: 

Ole::: '-('11'= I 
01t,t. DITPID 
[11','1 L("~':'IIc1 

01','4 ~Lr;'EHD 

0177 ':H~'3MI 

0202 r·IC:.'~('UT 
0205 TE:-:1 
0218 ':LWIT 
0213 ,:,IjUI IE 
rl::-15 ·':.,lHA:-
[C."l 1'1,' (,1.1 I [.'·E 
0224 ,=,'_,f1MO1 
132.c~' U'M~I04 

0232 '~I=fr'1f10';'" 

cc:::s l=I~lr'1MI0 

02-10 ':':'t1t'1l::: 
Ij:>I~: ~:FtF'DI·:=. 

'J24E. 'YU(:'r:T 
02r::,1 [tE(I.~(D:~ 

025-1 DJo::PLl'N 
02'0:,' EPF'O:P 
02[.2 1DL':'ET 
02CS J·=.THT 
[C70 11E";'3A,';E 
0273 ':'FF'MT 
0::76 '3TMS':; 
121301 ·.oT1'1D1S 

Figure 15-3. 

64 
0644 
1440 
0334 
3524 
0230 
0164 
0300 
1120 
0250 

34 
0224 
03EA 
1014 
0150 
0204 
1524 
07313 
1400 
JE:iO 
D7:::4 
0234 
CC~:O 

HEo4 
C13EO 
D4Eo4 
OlEA 
0330 
0410 
0454 
0-;"1-:.[1 
lE.30 
OJ. 14 
0300 
r)240 
0240 
EC14 
07r=.4 
1304 
04f.O 
ZOc:CI 
D3E.C1 
1200 
C';"""~,4 

O~A4 

It=.SD 
IJ774 
1700 
0114 
050(1 
06101 
ceCil 
[1440 
1750 
0520 
0720 
1614 
1704, 

~JCl 04432E 
DO 1]-14527 
00 0451CC~ 

00 04~.'::~'E 

00 04':.640 
DC! 1341".1 ~."'I 
IJO 04C5"14 
0[1 [14~'fO.':·.l 

00 050LlD·l 
CH=l ;~1':-;D27~,1 

('1(1 05D4~:':: 

UC' US07" 1 
en] [1S122.2 
00 051772 
00 U52710 
IlO 0C;l3:':~ 

1-11] Cl'OA[n 1 
C~] 0".4'=£,4 
DO IJ'::5444 
CICj OSlO. 1 ,'C; 

01] ClS-;-C1bl1 
DO 0",.7710,2 
00 ObOE;OS 
OIJ [11=.150'=. 
DlJ Of,.:::'::SS 
131] Df.25f.2 
DO 1::IE.=:315 
00 Clt=.3641 
00 Df,4441 
DO 055374 
00 Of.62~.4 

00 Of,721S 
00 l:cmXHE. 

02 AMSG 
05 CALL 
10 CONFIG 
13 DISK 
16 DKSET 
21 ERRDMP 
24 HPLOAD 
27 HSPGET 
32 START 
35 STARTZ 
40 <:;TARTS 
43 SYSTC(T 
4E; TDUMP 
51 USURP 
54 '3DMPO 
<'7 ',:;UMP4 

62 SDI1P~' 

E.5 BLOCI< 
70 CHnTST 
73 DTB 
76 HF'DATA 

121101 PLOT 
01[14 TE~;T 

0107 UnBLK 
0112 >(CAPDB 
0J 15 :'<TAPE 
0120 EDDELE 
0123 [[lPPNT 
OEE LWGET 
01 =:1 C,:,p'{ 
0134 FDUMP 
0137 FLOFtDO 
01';;:: [1'::.":1':' 
0145 FILCRE 
0150 FILNI T 
01~.3 FIL'::,TT 
0155 RSTRT2 
OJ 1".1 CC'~KEr;'R 

01134 CRH'lll~;G 

01t.~' FPEEBlJF'S 
01~'2 IJ,GOI''B 
131',S FU'JRIT 
0200 M·::.I;E, 
02CU F~EI'll'ID 
[120E. UPDATE 
0211 LCP 
0214 P("3T 
1321~' C'UEUE 
0222 nr::'.POl 
[122'=. ':')~111CC 

D230 ,:(,r'1MCI5 
02:::::: ':':oJ'1M[l8 
OZ,~:5 U'11Ml.l 
0241 BABEL 
0244 ':LI 
rJ24'.' ':PA'fI" 
02~.2 m:·::.CPJBE 

0255 mDI':=' 
O.:t'.() I'-OHc:L 
OZfd HIR':l 
02f,f, f· E"'ED 
0271 1'1'3 TAT 
0274 PF'('T,:,f:OL 
Cl27~' =.I~HP 

03(12 :::.THGUN 

LISTO Sample Output 

.:::770 
13510 
')434 
OT~O 

0644 
1104 
121120 
OS:::O 
0344 
1014 
1170 
1254 
0324 
0454 
04311 
0234 
0564 
U7t=.0 

0+10 
0340 
0544 
0124 
0154 

74 
0430 
0760 
13434 
13270 
12S0 
1230 
lUA 
0770 
06'=.[1 

1-::':::.0 
13'::0 
0704 
01E4 
0'.:310 
027[1 
lE.14 
0504 
1514 
1.::.14 
0520 
1144 

00 12120172 
(,J0 12120565 
00 021321 
00 02201:-'>1 
00 0;:-:2575 
00 023301 
00 024212 
00 0244<.:.0 
L10 O;'SJiJO 
0CI 13,,£143 
00 (VE}.o~:.'(' 

'JO 0/,'715 
ell] OJOJ 43 
[U] Ij310CJ5 
1~1(1 0312!=: 
00 032334 
00 0325"10 
00 1332",7·'1 
00 033410 
00 034002 
00 034431 
0[1 13354,'6 
00 O:O:{3(H£. 
C10 036E,::::4 
[10 03~~3:::4 

00 0402,]1 
00 041245 
00 041612 
DO 042033 
[1(1 042346 
00 043237 
013 04365:~ 

00 044443 
00 044554 
00 0451"0 
013 045400 
00 0457S3 
00 0463<;0 
00 04735':::' 
00 047f.-H 
00 09JO,,-"1 
00 [1~,D,=,4~' 

80 13'00502 
O£1 OS 11 b'::' 
00 13S1.41 r 
00 052253 
00 0~,3024 

0» Or:; 3740 
00 OS'lLS 
llO 0';50?4 
00 Clc.r,~f:'.':7 
0[1 C1l~.F:,=-:4E; 

CllJ ~~J~,~~4 ~:~ .. 

:Xl Ubn1~.J 

[In Of.lIre.'. 
Oll Ol~. J 0::. ,-.(1 

~!10 l16,~ =r,~t ~ 

00 OfO;'7,·:'·. 
0(1 IX.:::3'·f_ 
00 Ur=:.:::7'-;1 
00 OfO.':..I]~: 3 
00 I]f-"'~S'-:'O 

00 1]1.:.1'A·40 
1]0 <-'C.~-':.I.,U 

~:-llJ U,~U::f,":" 

1574 

15-35 



15.7 DKDMP OVERLAY 

DKOMP is a Kernel overlay that dumps a selected portion of the disk 
directly to the lOS printer or Kernel console. The overlay is activated 

y entering the OKOMP command at the MIOP Kernel console. 

Format: 

DKDMP 

OKOMP issues a sequence of messages requiring response. The following 
chronological list summarizes these messages and the required actions. 

Message 

-ENTER A TO REQUEST ABORT 

-ALL ENTRIES ARE IN OCTAL 

Response/Action 

Informative; typing an A in response to 
any of the following prompts terminates 
the disk dump operation. 

Informative; all responses to the 
following requests must be entered in 
octal. 

PARCEL OR WORD FORMAT (P OR W)? Enter "P" for parcel format, or "W" for 
word format; then press RETURN. 

PRINTER OR DISPLAY (P OR O)? 

lOP? 

CHANNEL? 

UNIT? 

CYLINDER? 

HEAO? 

15-36 

Enter "P" to send the dump to the lOS 
printer, or "0" to send it to the 
Kernel console; then press RETURN. 

Enter the I/O Processor number to which 
the desired disk is attached and press 
RETURN. 

Enter the desired channel number and 
press RETURN. 

Enter the desired unit number and press 
RETURN. This message is only displayed 
when dumping data from a 00-39 or 00-40 
disk unit. A response of 0 through 2 
is legal for 00-39. A response of 0 or 
1 is legal for 00-40. 

Enter the desired cylinder number and 
press RETURN. 

Enter the desired head number and press 
RETURN. 

SM-0046 G 



Message 

STARTING SECTOR? 

NUMBER OF SECTORS? 

CONTINUE (Y OR N)? 

-DISK DUMP COMPLETE 

-CHANNEL nn EMPTY 

-DISK DUMP ABORTED 

-DISK ERROR 

-INPUT PARAMETER ERROR 

-PRINTER ERROR 

SM-0046 G 

Response/Action 

Enter the sector number at which to 
begin the dump and press RETURN. 

Enter the total number of contiguous 
sectors to dump and press RETURN. The 
maximum number of sectors allowed is 
1777778. This message is only issued 
if the output is to the lOS printer. 

Enter "Y to view the next sector, or 
"N" to terminate. This message is only 
issued if the output is to the Kernel 
console. 

Informative; this message is displayed 
once all sectors are successfully 
dumped to the printer. 

Informative; this message is displayed 
when DKDMP determines that no disk is 
connected to channel nne (This 
message is followed by the CHANNEL? 
request. ) 

Informative; this message is displayed 
when the program terminates early, 
either from an operator request (by 
entering an A) or from a disk or 
printer error. 

Informative; a disk read error has 
occurred. DKDMP aborts. 

Informative; this message is displayed 
when the program detects an invalid 
operator response. This message is 
followed by another request for the 
parameter in which the error was 
detected. For example: 

INPUT PARAMETER ERROR 
CYLINDER? 

Informative; either the printer is not 
available or an error has occurred 
while the printer was trying to print a 
line. DKDMP aborts. 

15-37 





APPENDIX SECTION 





-
A. DUMP ANALYSIS 

This appendix describes some procedures used in analyzing IIO Subsystem 
(lOS) dumps: 

• Record any operator interactions with the Kernel for later 
reference. Record the time and the date the dump was taken. 

• Examine the punt code in the message. Get the meaning of coded 
dumps from LISTP (key-in) or from section 11, Debugging Tools. 

• Take the dump according to CRI systems analyst specifications as 
follows: 

Dump Kernel tables, DALS, non-Kernel tables and free memory, 
and Disk Control Blocks (DCBs). 

It is advisable to take SYSDUMP and print the IIO Processor 
(lOP) that crashed. Other lOPs memories are then available 
if needed. 

• Make sure the listing matches the dump. The assembly date in the 
listing should match date in Deadstart Done message. If they do 
not match, the approximate difference in the Kernel can be 
determined from the dump by finding the label INTERRUPT in the 
listing and comparing it to the first entry in the exit stack. 

• Determine the overlay base address from operand register 3 (%B). 
If zero, the halt occurred within the Kernel-resident area. 

• Determine the overlay number currently running from operand 
register 63 (%OVLNUM). 

• Determine the overlay from the LISTO listing or by exam~n~ng the 
address in operand register 3. (The first 8 characters in an 
overlay are its name in ASCII.) 

• Get the 
a label 
format 

Bits 

0 
I 

SM-0046 G 

exit stack (E) pointer from location EXSAVE+3. EXSAVE is 
in the Kernel immediately after the Kernel tables. Its 

is as follows: 

Description 

Contents of A at halt 
Carry (C) 

A-I 



Bits Description 

2 B register 
3 
4-23 
24-163 

Exit Stack pointer (E) 
Exit Stack 
DN + BZ (done and busy status) of all channels at halt 

• Get P from EXSAVE+4+E-1. P is the address of a return jump or 
point in code when an interrupt occurred. 

• If P is in an overlay, determine relative P by subtracting the 
base address (~B). (P is in an overlay if P is greater than ~B.) 

• Once the appropriate $PUNTIF macro is found in the listing, use 
the trace dump to determine the sequence of events leading up to 
halt (section 11, Debugging Tools, describes trace entries). 

• Examine the following information in history traces: 

The time of the trace entry in millisecond increments is 
saved, which gives a useful impression of the length-of time 
between events. 

The overlay in control at the time of the trace is always 
saved. If the Kernel is in control (usually in the idle 
loop), the overlay number is 177777. 

On task activation traces ('TASK' - type 3), the address of 
the Activity Descriptor is saved. This information is useful 
to find which of the activities in the system is doing what 
and to analyze activity conflicts and possible timing 
problems. 

Service requests to the Kernel are always traced and are 
usually helpful to understand the sequence of an activity's 
functions. In FDUMPs, they are printed as K-FNCT (in raw 
dumps they are type 5). 

• If you suspect what is causing a halt (for example, A RELMEM), but 
you cannot find it in the trace (it may have happened too far in 
the past), try to re-create the halt, but with only one or two 
specific trace events enabled. 

• Look for a pattern in the trace dump that would indicate that the 
system is looping through a group of overlays repeatedly. Try to 
isolate the reason for the loop. 

• If the Kernel does not halt but seems to hang up and you are 
unable to access the system through the Kernel CRT, there may be 
an infinite loop in an overlay. 

A-2 SM-0046 G 



Find the overlay in register 3 (~B). 

Examine the operand registers to determine the extent and 
reason for the lOOp. 

• Although the done (ON) and busy (BZ) states of all channels are 
saved in the dump immediately after the exit stack and normally 
printed by FDUMP, you must know the following information when 
reading a raw dump: 

If the channel is DN, the first parcel of the 2 parcels for 
this channel is set to 1. 

If the channel is BZ, the second parcel is set to 1. 

Accumulator channels from the lOPs for communication usually 
have the input channel busy (BZ). 

The command channel for input from the Cray mainframe is 
normally awaiting input and is busy (BZ). 

The CRT input channels are usually waiting for characters to 
be entered from the keyboard and thus are busy (BZ). 

• Examine dedicated Kernel registers (described in table A-I) for 
irregularities. 

Register Value 

AA 0 

AB,AC 1,2 

~B 3 

~ACTIVE 6 

~SMOO 7 

%OVLNUM 63 

SM-0046 G 

Table A-I. Kernel Registers 

Description 

Base address of the Kernel; always set to O. 

APML scratch registers 

Base address of the overlay; 0 if none. 

Current Activity Descriptor, one in control; 
177777 if none. 

Address of SMOO currently being run; 177777 
if none. 

Pointer to current overlay number; 177777 
if none. 

A-3 



Table A-1. Kernel Registers (continued) 

Register Value Description 

Address of Punt routine entrance 

RD,RE 100,101 E at last interrupt; (E) at interrupt point 
where Kernel was last interrupted. 

A-4 

Kernel real-time clock (retained in 
milliseconds) 

106 Channel of last interrupt; zero if all 
interrupts processed. 

161 Channel number of high-speed (100- Mbyte) 
channel; zero if not present. 

• Examine Activity Descriptors (AD) to see whether information in 
them is meaningful. The last AD activated has its address in 
~ACTlVE (operand register 6) if it is active. All ADs in the lOP 
are linked together through parcell (AD@AL) of the ADs. The 
chain begins at EACT+1. 

• Examine SMOD area in Local Memory to find registers at time of 
last service request to Kernel. Address of SMOD area is found in 
location ESMD in the Kernel tables. There is one SMOD area for 
each lOP, used only when an activity is active. If an activity is 
active, the address of the SMOD is located in ~SMOD (operand 
register 7). Other SMODs are saved in Buffer Memory at an address 
found in the AD at location AD@MSU (parcels 3 and 4). 

• Examine the following items in SMOD for good clues to problems: 

AD address in Local Memory 

Size of SMOD entry 

Overlay table address of overlay making last call 

A, B, C, and E registers 

Exit stack 

Operand registers saved on last CALL 

Global registers if SMOD just read into memory 

SM-0046 G 



• For disk-related problems, examine Disk Control Blocks (DCBs) to 
see if any irregularities are evident. Note the following items: 

SM-0046 G 

Pointers to DCBs are found in Kernel tables DCCB through 
DCCB+17. (The last DCU-4 DCB to have any processing done is 
often in register DA. The last DCU-S DCB to have any 
processing done is often in register DDCB defined in overlay 
OD49.) 

DCU-4 channels that are being used have a nonzero value in 
parcel 0 (DB@FLG) and addresses of executable DALs are in 
parcel 2 (DB@EDL). 

DCU-5 channels that are being used have a nonzero value in 
parcel 0 (DK@ACT). 

The DCB contains a count of recovered and unrecovered errors 
on the channel and saved information about the last 
unrecovered error (such as cylinder, head, and sector). 

A-5 





I B. lOS CONFIDENCE UTILITIES 

I 1/0 Subsystem (lOS) confidence utilities perform confidence tests on 
hardware elements of the lOS and report any errors. MOSTEST and HSPTEST 
take control of the lOS and cannot be run concurrently with other 
software. This appendix describes the commands in alphabetic order. 

The following diagnostic commands can be entered at the Kernel console on 
any lOP: 

Command Description 

CHNTEST Tests 50-Mbit channels in loop-back mode 

STOP Halts execution of a test program 

The following commands can be entered only at the MIOP Kernel console: 

Command Description 

ECHOCP Echoes data between the MIOP and the mainframe 

HSPTEST Tests 100-Mbyte channels 

MOSTEST Tests Buffer Memory 

SSDTEST Tests SSD Memory 

XDK Tests Peripheral Expander disk unit 

XMT Tests Peripheral Expander tape unit 

XPR Tests Peripheral Expander printer unit 

The following command can be entered only at the XIOP Kernel console: 

Command 

CPTEST 

SM-0046 G 

Description 

Tests on-line tape devices connected to the Block 
Multiplexer 

B-1 



B.l CHNTEST COMMAND 

The CHNTEST command initiates a basic channel loop back test to verify 
the reliable transfer of data on a 50-Mbit channel pair. The input 
channel must be cross-cabled to the output channel of the pair being 
tested. 

CHNTEST is initiated by entering the CHNTEST command and channel number, 
followed by a carriage return, at the Kernel console of the lOP with the 
channels. 

CHNTEST chn 

chn Channel number of the input channel of the pair 

CHNTEST runs continuously until terminated by a channel error, data 
validation error or until the STOP CHNTEST command is entered at ·the 
Kernel console. 

The Kernel console displays the following informational messages: 

Message 

CHNTEST: INPUT ERROR - STATUS: xxx 

CHNTEST: INPUT ERROR - TIME-OUT 

CHNTEST: INPUT ERROR - NO READY/WAITING 

CHNTEST: OUTPUT ERROR - STATUS: xxx 

CHNTEST: OUTPUT ERROR - TIME-OUT 

CHNTEST: DATA EXPECTED: yyy 

B-2 

Description 

An input channel error was 
detected. Channel status 
was xxx. 

An input channel time-out 
error was detected. 

An input channel error was 
detected. Ready/Waiting 
is not present. 

An output channel error 
was detected. Channel 
status was xxx. 

An output channel time-out 
error was detected. 

A write data error was 
detected. Actual data was 
written to a 50-Mbit 
channel. 

SM-0046 G 



Message 

CHNTEST: DATA RECEIVED: zzz 

CHNTEST: TERMINATED 

B.2 CPTEST COMMAND 

Description 

A read data error was 
detected. Actual data was 
read from a SO-Mbit 
channel. 

This is displayed when 
CHNTEST terminates 

CPTEST performs a minimum reliability test to on-line tape devices 
connected to the lOP Block Multiplexer. It writes a file to tape and 
reads it back using both read forward and read reverse. CPTEST performs 
no error correction and terminates on any error encountered. 

CPTEST is initiated by entering the CPTEST command and parameters, 
followed by a carriage return, at the XIOP Kernel console. 

CPTEST Uo U1 • . . Un 

Un List of ordinals of devices to be tested 

The devices should be configured with DOWN status. See the CONFIG 
command in the 1/0 Subsystem (lOS) Operator's Guide for COS, publication 
SG-00S1 or the 1/0 Subsystem (lOS) Operator's Guide for UNICOS, 
publication SG-200S. 

The XIOP Kernel console displays the following informational messages: 

Message 

BAD DEVICE REQUEST 

READIWRITE ERROR 

CONTROL FUNCTION ERROR 

MOUNT FAILURE 

SM-0046 G 

Description 

The device is already open 
or the device ordinal is 
invalid. 

An 1/0 error occurred 

An 1/0 error occurred on a 
Write Tape Mark, Rewind, 
or Backspace File command. 

The tape failed to become 
ready on the requested 
drive. 

B-3 



Message 

NO WRITE RING 

READING 

WRITING 

REVERSE READING 

CPTEST ABORTED 

OPEN FAILED 

CPTEST COMPLETE 

B.3 ECHOCP COMMAND 

Description 

The tape is file protected 

A tape is being read 
(forward direction) 

A tape is being written 

A tape is being read 
(reverse direction) 

Displayed after another 
error message 

An unusual condition 
caused the tape mount to 
fail 

Displayed if all functions 
were successful 

The ECHOCP command initiates a test that echoes data between the MIOP and 
. the Cray mainframe across the 50-Mhit channel, and validates data. The 
Cray operating system COS must be executing to run the test. 

ECHOCP is initiated by entering the ECHOCP command, followed by a 
carriage return, at the MIOP Kernel console. 

ECHOCP 

ECHOCP runs continuously until terminated by a data validation error or 
until the STOP ECHOCP command is entered at the MIOP Kernel console. 

The MIOP Kernel console displays the following informational messages: 

Message 

ECHOCP: CPU NOT RESPONDING - RETRY? 

B-4 

Description 

The mainframe is not 
responding. Type Y to 
retry or N to terminate 
the test. 

SM-0046 G 



Message 

ECHOCP: DATA EXPECTED: yyy 

ECHOCP: DATA RECEIVED: zzz 

ECHOCP: CONTINUE? 

ECHOCP: TERMINATED 

B.4 HSPTEST COMMAND 

Description 

A write data error was 
detected. Actual data 
written to the mainframe. 

A read data error was 
detected. Actual data 
read from the mainframe. 

Type Y to continue the 
test; N to terminate 
ECHOCP. 

This is displayed when 
ECHOCP terminates 

The HSPTEST command initiates a test that generates a high level of 
100-Mbyte channel activity on each lOP with an attached 100-Mbyte channel 
to Central Memory. The option to validate data is available at the cost 
of reduced channel activity. 

HSPTEST is initiated by entering the HSPTEST command, followed by a 
carriage return, at the MIOP Kernel console. 

HSPTEST 

Each MIOP Kernel console with an 100-Mbyte channel attached to Central 
Memory display the following prompting messages: 

Message 

HSPTEST: 

HSPTEST: 
HSPTEST: 
HSPTEST: 
HSPTEST: 

HSPTEST: 

SM-0046 G 

(1) READ/WRITE/VERIFY 

(2) READ/WRITE 
( 3 ) READ 
(4) WRITE 
(5) QUIT 

SELECT 1-5 

Description 

Read, write, and verify 
data. 
Read and write data. 
Read data only. 
Write data only. 
Terminate HSPTEST. 

Enter a number between 1 
and 5 designating the type 
of channel activity. 

B-5 



Message 

HSPTEST: ENTER ADDRESS RANGE IN OCTAL 

HSPTEST: (S)INGLE PASS OR (L)OOP 

Description 

Enter a starting address 
followed by an ending 
address. The two 
addresses must be 
separated by at least one 
character that is not an 
octal digit. Addresses 
are checked to ensure that 
they are within the range 
of the configured memory 
size of Central Memory. 

Type S for one pass, L for 
continuous execution. 

HSPTEST: (B) LOCK OR (W)ORD INCREMENTAL TRANSFERS 

HSPTEST: STOP ON ERROR? (Y)ES OR (N)O 

Type B for one sector 
transfers (maximum channel 
rates), W for word 
incremental (address 
testing). 

Type Y if test is to stop 
on error, N if test 
reports error and 
continues. 

HSPTEST runs continuously until terminated by a STOP HSPTEST command 
entered at the lOP Kernel console or until an error is encountered during 
verification (if the stop on error option was selected). Progress of 
HSPTEST can be monitored on the station MONITOR HSPIO display. 

The Kernel console displays following informational messages: 

Message 

HSPTEST: DATA ADDRESS: xxx 

HSPTEST: DATA EXPECTED: yyy 

HSPTEST: DATA RECEIVED: zzz 

B-6 

Description 

A data error was 
detected. Central Memory 
address was xxx. 

A write data error was 
detected. Actual data was 
written to Central Memory. 

A read data error was 
detected. Actual data was 
read from Central Memory. 

SM-0046 G 



Message 

HSPTEST: CONTINUE? 

HSPTEST: NO HIGH-SPEED ON THIS lOP 

HSPTEST: TERMINATED 

B.5 MOSTEST COMMAND 

Description 

This is displayed if the 
stop on error option was 
selected. Type Y to 
continue, N to terminate 
HSPTEST. 

This is displayed if the 
lOO-Mbyte channel to 
Central Memory is not 
configured on this lOP. 

Displayed when HSPTEST 
terminates 

The MOSTEST command initiates a test that generates a high level of 
Buffer Memory I/O activity from configured lOP. The option to validate 
data is available at the cost of reduced channel activity. 

MOSTEST is initiated by entering the MOSTEST command, followed by a 
carriage return, at the MIOP Kernel console. 

MOSTEST 

Each configured lOP Kernel console displays the following prompting 
messages: 

Message 

MOSTEST: 

MOSTEST: 
MOSTEST: 
MOSTEST: 
MOSTEST: 

MOSTEST: 

SM-0046 G 

( 1) READ/WRITE/VERIFY 

(2) READ/WRITE 
( 3 ) READ 
(4) WRITE 
( 5) QUIT 

SELECT 1-5 

Description 

Read, write, and verify 
data. 
Read and write data. 
Read data only. 
Write data only. 
Terminate MOSTEST. 

Enter a number between 1 
and 5 designating the type 
of Buffer Memory I/O 
activity. 

B-7 



Message Description 

MOSTEST: (B) LOCK OR (W)ORD INCREMENTAL TRANSFERS 

MOSTEST: STOP ON ERROR? (Y)ES OR (N)O 

Type B for one sector 
transfers (maximum channel 
rates), W for word 
incremental (address 
testing). 

Type Y if test is to stop 
on error, N if test 
reports error and 
continues. 

MOSTEST runs continuously until terminated by a STOP MOSTEST command 
entered at the lOP Kernel console or until an error is encountered during 
verification (if the stop on error option was selected). Progress of 
MOSTEST can be monitored on the station MONITOR BMIO display. 

The Kernel console displays the following informational messages: 

Message 

MOSTEST: DATA ADDRESS: xxx 

MOSTEST: DATA EXPECTED: yyy 

MOSTEST: DATA RECEIVED: .zzz 

MOSTEST: CONTINUE? 

MOSTEST: TERMINATED 

B-8 

Description 

A data error was 
detected. Buffer Memory 
address was xxx. 

A write data error was 
detected. Actual data was 
written to Buffer Memory. 

A read data error was 
detected. Actual data was 
read from Buffer Memory. 

This is displayed if the 
stop on error option was 
selected. Type Y to 
continue, N to terminate 
MOSTEST. 

This is displayed when 
MOSTEST terminates. 

SM-0046 G 



B.6 SSDTEST COMMAND 

The SSDTEST command initiates a test that generates a high level of 
100-Mbyte channel activity on each rop with an attached 100-Mbyte channel 
to SSD Memory. The option to validate data is available at the cost of 
reduced channel activity. 

SSDTEST is initiated by entering the SSDTEST command, followed by a 
carriage return, at the MIOP Kernel console. 

SSDTEST 

The Kernel console with an attached 100-Mbyte channel to SSD Memory 
displays the following prompting messages: 

Message 

SSDTEST: (1) READ/WRITE/VERIFY 

SSDTEST: (2) READ/WRITE 
SSDTEST: (3) READ 
SSDTEST: (4) WRITE 
SSDTEST: (5) QUIT 

SSDTEST: SELECT 1-5 

SSDTEST: ENTER ADDRESS RANGE IN OCTAL 

SM-0046 G 

Description 

Read, write, and verify 
data. 
Read and write data. 
Read data only. 
Write data only. 
Terminate SSDTEST. 

Enter a number between 1 
and 5 designating the type 
of channel activity. 

Enter a starting address 
followed by an ending 
address. The two 
addresses must be 
separated by at least 1 
character that is not an 
octal digit. Addresses 
are checked to ensure that 
they are within the range 
of the configured SSD 
Memory size. The starting 
address must be on a 
lOOOa word boundary. 
The ending address must be 
the last word of a lOOOa 
word block. 

B-9 



Message 

SSDTEST: (S)INGLE PASS OR (L)OOP 

SSDTEST: STOP ON ERROR? (Y)ES OR (N)O 

Description 

Type S for one pass; L for 
continuous execution. 

Type Y if the test is to 
stop on error; N if the 
test is to report errors 
and continue. 

SSDTEST runs continuously until terminated by a STOP SSDTEST command 
entered at the lOP Kernel console, or until an error is encountered 
during validation (if the stop on error option was selected). Progress 
of SSDTEST can be monitored on the station MONITOR SSDIO display. 

The Kernel console displays the following informational messages: 

Message 

SSDTEST: DATA ADDRESS: xxx 

SSDTEST: DATA EXPECTED: yyy 

SSDTEST: DATA RECEIVED: zzz 

SSDTEST: CONTINUE? 

SSDTEST: NO HIGH-SPEED ON THIS lOP 

SSDTEST: TERMINATED 

B-10 

Description 

A data error was 
detected. SSD Memory 
address was xxx. 

A write data error was 
detected. Actual data 
written to SSD Memory. 

A read data error was 
detected. Actual data 
read from SSD Memory. 

This is displayed if the 
stop on error option was 
selected. Type Y to 
continue, N to terminate 
SSDTEST. 

This is displayed if a 
100-Mbyte channel to SSD 
Memory is not configured 
on this lOP. 

This is displayed when 
SSDTEST terminates 

SM-0046 G 



B.7 STOP COMMAND 

The STOP command terminates an on-line test. It must be entered in the 
following format at the Kernel console of each lOP in which the test is 
active: 

STOP test 

test On-line test name 

B.B XDK COMMAND 

The XDK command initiates a confidence test on the Peripheral Expander 
disk unit. It writes, reads and compares data over the entire disk 
surface. Make sure that a scratch pack is mounted. 

XDK is initiated by entering the XDK command, followed by a carriage 
return, at the MIOP Kernel console. 

XDK 

The test begins with the following query: 

THIS TEST WRITES OVER THE ENTIRE DISK - CONTINUE? 

A response of Y resumes the test. 

XDK runs continuously until terminated by a STOP XDK command entered at 
the MIOP Kernel console or until an error is encountered during 
validation. 

The Kernel console displays the following informational messages: 

Message 

XDK: DATA EXPECTED: yyy 

XDK: DATA RECEIVED: zzz 

SM-0046 G 

Description 

A write data error was 
detected. Actual data 
written to disk. 

A read data error was 
detected. Actual data 
read from disk. 

B-11 



Message 

XDK: CONTINUE? 

XDK: TERMINATED 

B.9 XMT COMMAND 

Description 

To continue type Y, N to 
terminate XDK. 

This is displayed when XDK 
terminates 

The XMT command performs a confidence test on the Peripheral Expander 
tape unit. It writes multiple files containing various data patterns, 
then reads back and compares data. 

XMT is initiated by entering the XMT command, followed by a carriage 
return, at the MIOP Kernel console. 

XMT 

XMT runs continuously until terminated by a STOP XMT command entered at 
the MIOP Kernel console or until an error is encountered during 
validation. 

The Kernel console displays the following informational messages: 

Message 

XMT: DATA EXPECTED: yyy 

XMT: DATA RECEIVED: zzz 

XMT: CONTINUE? 

XMT: TERMINATED 

B-12 

Description 

A write data error was 
detected. Actual data was 
written to tape. 

A read data error was 
detected. Actual data was 
read from tape. 

To continue type Y, N to 
terminate XMT. 

This is displayed when XMT 
terminates. 

SM-0046 G 



B.10 XPR COMMAND 

The XPR command performs a confidence test on the Peripheral Expander 
printer unit. It writes alternate pages in alpha and plot mode, using 
various data patterns, and compares data. 

XPR is initiated by entering the XPR command, followed by a carriage 
return, at the MIOP Kernel console. 

XPR 

XPR runs continuously until terminated by a STOP XPR command entered at 
the MIOP Kernel console or until an error is encountered. 

The Kernel console displays the following informational message: 

Message 

XPR: TERMINATED 

SM-0046 G 

Description 

Displayed when XPR 
terminates 

B-13 





c. SYSDUMP 

SYSDUMP is the activity that is invoked to dump selected areas of the 
system to disk for examination. 

SYSDUMP operates with few dependencies on the 1/0 Subsystem (lOS). 
However, SYSDUMP operation requires that the following be intact: 

• The routine in Master 1/0 Processor (MIOP) that initializes SYSDUMP 
• SYSDUMP routines (must be in Buffer Memory) 
• Overlay tables 
• The pointer to the Overlay Table 

C.l OPERATIONAL DESCRIPTION 

In this subsection, SYSDUMP routines (SDMPO-SDMP10) are discussed in 
operational sequence as follows. 

Routine 

SDMPO 

Operational Sequence 

1. CONTROL-D is sensed by the keyboard interrupt 
handler; otherwise, a PUNT (system-controlled 
crash) occurs. 

2. A, C, B, E, and the exit stack, as well as the 
Channel Done and Busy flags, are saved. 

3. A routine is called, within the operating system, 
which loads SDMPO overlay into MIOP Local Memory 
above the register save area. 

4. SDMPO displays the default parameter list and 
queries for changes. Once the parameters have 
been established, they are written out to Buffer 
Memory. SDMPO then loads SDMP1 into MIOP Local 
Memory at the same starting address of SDMPO and 
passes it control. (SDMPl is shorter in length 
than SDMPO so that the overlay load routine at the 
end of SDMPO can complete successfully.) 

SM-0046 G C-l 



Routine Operational Sequence 

SDMP1 

o 

1. SDMP1 sends a message to the IIO Processor (lOP) 
that has the master disk attached to it, informing 
that lOP of the SYSDUMP. (SYSDUMP currently 
supports the master disk attached to BIOP only.) 

2. The lOP receiving the message saves its registers 
as did MIOP. 

3. The lOP loads in SDMP2 above the register save 
area and passes control to SDMP2. Figure C-1 
shows the memory map during SYSDUMP of the lOP 
that has the master disk attached to it. (IOP-1 
or -2, depending on number of lOPs attached). 

A, C, B, E, Stack, Channels (SDMP1, Step 1) 

SDMP2 (SDMP1, Step 2) 

Parameters (SDMP2, Step 2) 

SDMP3 (SDMP2, Step 1; SDMP2, Step 3) 

SDMP4-SDMP10 (SDMP2, Step 1; SDMP2, Step 4) 

AI List (SDMP2, Step 1; SDMP2, Step 3) 

Data Buffer (SDMP2, Step 1) 

Figure C-1. SYSDUMP Memory Map of lOP with Master Disk 
Attached 

C-2 SM-0046 G 



Routine 

SDMP2 
(SlOP) 

Operational Sequence 

1. SDMP2 sets up four areas in its lOP, one for each 
of the following: 

• The disk driver; SOMP3 for 00-19 or 00-29 
disks, SOMP3A for 00-39 and 00-49 disks. 

• SOMP4-S0MPIO, which are loaded one at a time 
to dump various areas of the system 

• A buffer used to contain the AI list (see 
figure C-2) read in from the master device. 
This list describes the sectors on the master 
device that have been reserved for the dump. 

• A data buffer, which is loaded by the various 
dump routines to be written out to disk 

2. SOMP2 reads in the parameter list from Buffer 
Memory. 

3. SOMP2 loads in the disk driver and searches for 
the label on the master device. Once found, it 
uses the AI in the label to find the start of the 
SYSOUMP area. The first sector of this area 
contains a list of all Als reserved for SYSOUMP. 

Each AI points to a physical track on the disk. 
The AI is decoded by dividing the AI by the number 
of heads in a cylinder. The quotient is the 
physical cylinder number and the remainder is the 
physical head number. 

The first AI in the list always points to the 
track that contains the AI list itself. The 
SYSOUMP always begins on sector 1 of the first 
AI. The AI list is terminated by a binary o. 

O ____________ ~1~5~1~6 __________ ~3~1~3~2~ __________ 4~7~4~8~ ________ ~6~3 

o AIO 

777 SYS PROC 

Figure C-2. AI List 

SM-0046 G C-3 



Routine Operational Sequence 

The last word of the AI list is used to describe 
the dump to COS startup. This information is 
transcribed into a dump header attached to the new 
version of the permanent dataset 'CRAY1SYSTEMDUMP' 
(see FDUMP in the Operational Aids Reference 
Manual, publication SM-0044). 

The header area for SYSDUMP, when running under 
UNICOS, contains an ASCII ID followed by a list of 
partitions relative to the starting cylinder. 
Each partition consists of a starting block number 
and a count of blocks in that partition. A zero 
in the partition count field terminates the list. 
The last word of the header is formatted as it is 
for COS (figure C-3). 

O __________________ 1~5~1~6 ______________ ~3~1_3~2~ _______________ 4~7~4~8~ ____________ 6~3 

o UNICOS DUMP 

Start Block Number of Blocks 

o o 
777 SYS PROC NUM 

Figure C-3. Head Format for OS = UNICOS 

The format of the dump header is as follows: 

0 15 16 31 32 47 48 63 
I I I I I 
I I Number of I I Number of I 
I System I Processors I Unused I Areas Dumped I 
I I I I I 

Bits Description 

0-15 System type: 
0 SYS$S CRAY-1 S or CRAY-l M 
1 SYS$X CRAY X-MP 
3 SYS$YX CRAY X-MP EA 
4 SYS$Y CRAY Y-MP 

C-4 SM-0046 G 



I 

I 

I 

I 
I 

Routine 

SDMP4 
(Central 
Memory and 
Registers) 

SM-0046 G 

Operational Sequence 

Description 

16-31 Number of processors in system 

32-47 Unused 

48-63 Number of areas dumped (number of control 
words) 

4. SDMP2 loads in each of the dump routines 
SDMP4-SDMPIO to dump its portion of the system. 

SDMP4 dumps Central Memory and the CPU registers as 
follows: 

1. A message is sent to SDMP1 in the MIOP requesting 
that the Exchange Packages in each processor be 
saved in a fixed area of memory so that they can 
later be found by dump formatting routines. SDMP1 
then loads a routine (SDMPA for the CRAY X-MP, 
CRAY-1 S, or CRAY-1 M computer systems; SDMPYA for 
the CRAY X-MP EA or CRAY Y-MP computer systems) 
into Central Memory to save the Exchange Packages. 

2. SDMP4 moves the specified areas of memory across 
the high-speed (100-Mbyte) channel to Buffer I/O 
Processor (BIOP) Local Memory, from where it is 
written to disk. 

3. SDMP4 sends a request to SDMPl that CPU registers 
be moved to fixed locations in Central Memory. 
SDMPl then loads a routine (SDMPB for the 
CRAY X-MP, CRAY-1 S, or CRAY~l M computer systems; 
SDMPYB for the CRAY X-MP EA or CRAY Y-MP computer 
systems) into Central Memory to save the CPU 
registers. 

4. SDMP4 moves the registers across the high-speed 
channel and writes them to disk. 

5. SDMP4 moves specified areas of system and user 
memory across the high-speed channel to BlOP Local 
Memory from where it is written to disk. 

C-5 



Routine 

SDMP5 
(Buffer 
Memory) 

SDMP6 - IOP-O 
(MIOP) 

SDMP7 - IOP-1 
(BIOP) 

Operational Sequence 

Dumping of these areas is controlled by the TABLE 
MEMORY dump parameter. If the parameter is YES, 
location 2018 is Central Memory is expected to 
contain a pointer to a table of memory addresses 
and lengths of areas to be dumped. 

The pointer is one word. The high-order 32 bits 
are the address of the table; the low-order 32 
bits are the number of entries in the table. 

Each table entry is one word. The high-order 32 
bits are the address of an area to be dumped; the 
low-order 32 bits are the number of words to dump. 

If the length of any entry is 0, the corresponding 
area is skipped. Each area is dumped as Central 
Memory type (MM$CRAY). 

SDMP5 dumps the selected areas of Buffer Memory 
to disk. The selected areas are read from Buffer 
Memory to Local Memory, from where they are written to 
disk. 

SDMP6 dumps IOP-O (MIOP) along with its registers to 
disk as follows: 

1. SDMP6 sends a request to SDMP1. As a result, 
SDMP1 writes out the entire MlOP followed by its 
registers to Buffer Memory. 

2. SDMP6 moves this data from MOS to its Local 
Memory, from where it is written to disk. 

SDMP7 dumps lOP-1 (BlOP) and its registers to disk as 
follows: 

1. SDMP7 writes Local Memory directly to disk. 

2. It then records the registers in memory and writes 
them to disk. 

C-6 SM-0046 G 



I 

I 

I 

Routine 

SDMP8-l0P-2 
IIOP-3(DIOP) 
I(XIOP) 

SDMP9 - SSD 

SDMP10 -
Cluster Sets 

SM-0046 G 

Operational Sequence 

SDMP8 dumps lOP-2 (DlOP) and lOP-3 (XlOP) to disk as 
follows: 

1. SDMP8 dead dumps the lOPs to Buffer Memory, where 
they can then be read into BIOP Local Memory and 
be written to disk. 

2. SDMP8 loads a routine into each of the two lOPs, 
causing them to record their registers to Local 
Memory and then write them out to Buffer Memory. 

3. SDMP8 then reads these registers in from Buffer 
Memory and writes them to disk. 

SDMP9 dumps the selected areas of the SSD to disk as 
follows: 

1. 

2. 

3. 

A request is sent to SDMP1 in the MlOP to 'have the 
CPU move a 40K block of the SSD to Central 
Memory. SDMP9 writes the starting address of the 
40K block to Buffer Memory. 

SDMPl reads in the address and passes it to a 
routine (SDMPD for the CRAY-1 S or CRAY-1 M 
computer system, SDMPE for the CRAY X-MP computer 
system, or SDMPYD for the CRAY X-MP EA or 
CRAY Y-MP computer systems) that is loaded into 
Central Memory so that it can execute in the CPU. 

SDMP9 then moves the SSD data across the 
high-speed channel to Local Memory, from where it 
is written to disk. 

SDMP10 dumps the cluster register sets to disk as 
described below. Discussion of cluster registers 
applies only to the CRAY X-MP or CRAY Y-MP computer 
systems. The number of cluster register sets is the 
number of processors plus 1. 

1. SDMP10 sends a request to SDMP1 in the MIOP to 
move the cluster register sets into Central Memory. 

2. SDMP10 loads a routine (SDMPC for the CRAY-1 S, 
CRAY-1 M, or CRAY X-MP computer systems; SDMPYC 
for the CRAY X-MP EA or CRAY Y-MP computer 
systems) into Central Memory so that it can 
execute in the CPU. 

C-7 



Routine 

C.2 DUMP FORMAT 

Operational Sequence 

3. SDMP10 reads the cluster registers in across the 
high-speed channel and writes them to disk. 

Each area dumped begins on a sector boundary. The first word of each 
area dumped is a dump control word (DCW). 

Format: 

0 15 16 
I I I 
ICI TYPE I FWA 
I I I 

Field Word Bits 

C 0 0 

TYPE 0 1-15 

FWA o 16-39 

C-8 

39 40 63 
I 
I LWA 
I 

Description 

Compressed code; always O. 

Type of area dumped is as follows: 

Central Memory (MM$CRAY) 
Buffer Memory (MM$MOS) 

I 
I 
I 

o 
1 
2 
3 
4 
5 
6 

Cray registers-CPUO (MM$CREG) 
IOP-O (MM$AO) 
IOP-1 (MM$A1) 
IOP-2 (MM$A2) 
IOP-3 (MM$A3) 

30-37 SSD (MM$SSD) 
41-57 Cray registers-CPU1 

(MM$CREG1) 
100-137 Cluster registers (MM$CLUS) 

First word address; dependent on 
type (see LWA). 

SM-0046 G 



Field Word Bits 

LWA o 40-63 

Description 

Last word address; dependent on 

type, is as follows: 

TYPE FWA LWA 

0,1 First word Last 
2-6, 

41-57, Number of words 0 
100-137 

30-37 First 512-word Last 

word 

block 512-word 
block 

Areas of system lost due to SYSDUMP processing areas follows: 

Buffer Memory: o through 10,000 
CPU: o through 100 plus 20 words per processor 

SM-0046 G C-9 





D. ISP CHANNEL DRIVER 

This appendix describes the structure of the Integrated Support Processor 
(ISP) channel driver (ISPDRV). ISPDRV is a driver overlay, callable by 
the User Channel shell in response to F-packet requests from the CPU. 
ISPDRV drives Cray Front-end Interface (FEI) devices on Master I/O 
Processor (MIOP) low-speed channels for 1/0 to the ISP. See section 9, 
User-channel I/O, for more information on the User Channel Shell. The 
ISP is an IBM or IBM-compatible mainframe with peripheral devices that 
can be accessed directly by COS jobs. ISPDRV requests originate in STP 
task IQM. 

The ISP channel driver is a single, self-contained overlay which relies 
on the UCSHL overlay for all its functions except actual I/O to the FEI 
device. 

0.1 MAIN LOOP 

The ISPDRV main loop executes until operand register R!END is nonzero. 
This is set during the processing of a Driver Close request, so the life 
of the main loop is from open to close. The overlay ends with a TERM 
request at the end of the main loop. 

The loop begins with a WATCH macro that gets the next command code in 
register CMD from the shell. At the bottom of the loop, it performs a 
SIGNAL to send the driver status code (R!UST) back to the shell. 

Between the WATCH and the SIGNAL, the main loop examines the command code 
(R!CMD) and calls a subroutine to process it. 

D.2 OPEN PROCESSING 

Driver Open commands are handled by subroutine DOOPN, which is called by 
the main loop. The Driver Open command is always the first one given to 
the overlay by the shell. DOOPN initializes operand registers, 
master-clears the FEI device, and saves the Double-buffer flag from the 
request packet from the CPU. 

SM-0046 G D-1 



0.3 CLOSE PROCESSING 

Driver close is always the last command sent to the overlay by the shell 
because ISPDRV terminates if and only if it receives a Driver Close 
command. Close processing consists only of setting the status complete 
(R!UST = UC$CMPT) and setting R!END nonzero to force termination by the 
main loop. This is done by subroutine DOCLS. 

0.4 lID REQUEST PROCESSING 

All lID commands (UC$RD, UC$RDL, UC$WRT, and UC$WRTL) are handled by 
subroutine 0010, called by the main loop. 0010 consists of two 
subloops: one for single-buffered lID and one for double-buffered lID. 
The double-buffer loop is at label XIO; the single-buffered loop is at 
label SIO. 0010 enters one or the other based on the value of the 
Double-buffer flag saved from the Driver Open request. The two loops 
contain the same basic steps, but in a different order, as table 0-1 
shows. 

Table 0-1. Stepflow for 0010 Buffered Loops 

XIO SIO 

R = STARTIO .START 1/0 R = STARTIO .START lID 

SIGNAL .RETURN STATUS R = WAITIO .WAIT DONE 
OF LAST REQ 

WATCH .PREFETCH NEXT SIGNAL .RETURN STATUS 
REQUEST OF THIS REQ 

R WAITIO .WAIT DONE WATCH .GET NEXT REQ 

XIO signals a dummy status code (UC$NOOP) on the first pass to get the 
next request from the shell without waiting for the first block of 1/0 to 
complete. On subsequent passes, XIO fetches shell requests without 
waiting for 1/0 completion. It does not have to wait for the Shell 
before starting the next I/O. This can be done in double-buffered mode 
because the shell can transfer one buffer's contents to or from the CPU 
while the driver is using the other CPU for I/O. 

SIO handles I/O commands synchronously, starting and waiting for 
completion of each 1/0 before signaling the shell for another. 

0-2 SM-0046 G 



Both loops terminate when either STARTIO or WAITIO puts an ending status 
code in R!UST. The loops exit before the SIGNAL request, and the main 
loop signals the final status to the shell. 

0.5 STARTIO SUBROUTINE 

STARTIO is responsible for beginning 1/0 operation on the FEI device, and 
holding the disconnect on all but the last block on output. 

STARTIO also does some special processing for output channels if the last 
write resulted in a time-out. In this case, it checks the channel status 
register and waits for the Sequence Error flag (indicating that ISP has a 
Read request ready on this channel) before starting 1/0. If the Sequence 
Error flag is not raised during the time-out interval, STARTIO generates 
time-out status (R!UST = IE$TMO). STARTIO waits with PAUSE requests to 
the Kernel. 

The purpose of this wait for Sequence Error is to clean up the FEl device 
after an output time-out without generating unsolicited interrupt signals 
to the IBM channel. After an output time-out, buffers in the FEI contain 
a fragment of data which is read by the ISP the next time it reads the 
channel. The ISP must discard this fragment and reissue the Read request 
in order to recover from the time-out. Before restarting output, STARTlO 
sends a master clear signal to the FEI after every time-out. This causes 
the FEl to give unit check status to the IBM channel. The wait for 
Sequence Error makes the unit check appear while the ISP is reading the 
channel, and the interrupt is not unsolicited. Unsolicited interrupts 
are processed by MVS, which does not know what to do with this foreign 
device, and it hangs the IBM CPU until the operator clears the channel. 

0.6 WAITlO SUBROUTINE 

WAlTlO performs two functions: waiting for the current 1/0 to complete, 
and processing the completion. 

WAITlO waits with a TPUSH request to the Kernel, if an interrupt from the 
channel is not already pending; the UC@IRT flag in the UCT tells it if it 
is pending. WAITlO regains control if the Kernel receives an interrupt 
on the channel or if the timer interval expires (time-out). 

When the 1/0 is complete, WAlTlO checks it for errors and determines the 
length of the data transfer. 

SM-0046 G 0-3 



If the IIO times out (UC@IRT = 0 after the TPUSH), WAITIO checks to see 
whether data has begun moving by reading the current channel address. If 
it has, it pauses 100 ms more to allow the transfer to complete. This 
pause avoids false time-outs which would interrupt a transmission in the 
middle. On a time-out, WAITIO sets error status (R!UST = IE$TMO) which 
forces the IIO loop to terminate. 

0.7 GETL SUBROUTINE 

Subroutine GETL contains the only code in ISPORV that is dependent on the 
ISP channel protocol. It is necessary because the protocol allows for 
variable-length blocks of data on the channel. The CPU issues read 
requests for the maximum amount of data it expects to receive; the actual 
length is generally less, and it is the job of ISPORV to detect the end 
of the block and tell the CPU the actual length. 

Due to the low-speed channel architecture, it is impossible for ISPDRV to 
detect the end of a block that is an exact multiple of its buffe~ size 
(512 Cray words, a very common size in ISP transmissions). If an 
incoming block ends at the same time the buffer is filled, ISPORV would 
continue reading, receiving the next block as part of the current one, if 
it did not otherwise know how much data to expect. For this reason, 
subroutine GETL is included in the driver. 

GETL examines input blocks when channel headers are expected, and saves 
the block length fields from the header. Based on these fields, WAITIO 
can return completion status to the shell when the block actually ends. 
A certain amount of validation in GETL is necessary to ensure that it is 
actually looking at a channel header; this validation is limited to 
verifying that the 16-bit checksum of the first 48 bytes is 0 (a 
convention of the ISP protocol) and that the channel header length field 
contains the correct value of 48 bytes. 

D-4 SM-0046 G 



INDEX 





INDEX 

$APTEXT constants, 3-9 
$B@CB, 6-7 
$ELSE macro, 14-12 
$ELSEIF macro, 14-12 
$ENDTIL macro, 14-13 
$GOTO macro, 14-14 
$IF macro, 14-11 
$PUNTIF macro, 14-15 
$R@CLI, 6-7 
$T@KEY, 6-7 
$UNTIL macro, 14-13 
B operand register, 15-6 
~CLI register, 6-3 
~EX operand register, 2-13 
~LIMIT global registers, 6-4 
~MSEC (interval counter), 2-49 
~PROT, 6-3 
~STACK global register, 6-4 
~STAT register, 6-3 
~STCON register, 6-3 
~TENTHS (l-second interval counter), 2-50 
OOOOnn trace event parameter, 15-10 to 

15-12, 15-19, 15-22 
1-second interval counter (~TENTHS), 2-50 
177nnn accumulator message, 2-54 
100 Mbyte channel 

channel test, B-5, B-9 
definition, 1-7 
specified, 1-3 

50-Mbit channel pair loop back test, B-2, 
B-4 

6 Mbyte channel 
specified, 1-3 
definition, 1-7 

A register (accumulator), 1-2 
A-Asnd trace event parameter, 15-9, 15-15 

to 15-16 
A-to-A message passing, 4-5 
A-TO-A trace event parameter, 15-9, 15-15, 

15-16 
A130 adapter, 10-1 
A13001 function, 2-21 
ABORT interactive command, 8-8 
Abort Transfer Request (ATR), 3-23 
Accumulator (A register), 1-2 

177nnn message, 2-54 
ACOM 

overlay, 3-2 through 3-8 
trace event parameter, 15-16 

Acomsg trace event parameter, 15-9, 5-16 

SM-0046 G 

Activate 
activity in another lOP, 15-13 
overlay (GOTO), 2-29 

Active overlays displayed by SUMMARY 
utility, 15-3 

Active stream count (AST), 6-2 
Activity 

Descriptor (AD), 2-7 
dispatching 

exit from, 15-8 
parameters, 2-1 

software stacking, 2-7 
termination, 1-7 
vs task, 1-7 

AD (Activity Descriptor), 2-7 
AD@P1, use with CREATE function, 2-24 
Adding an overlay, 14-2 
ADDRESS macro, 14-19 
ADEM, 10-1 

common packet handling demon, 9-5 
FEI logical path overlay, 11-1 
NSC overlay, 10-6 
VMEbus overlay, 13-2 

Advance 
command (KIC$AC), 5-24 
data (KIC$AD), 5-25 

AI list, C-3 
ALERT 

function, 2-16 
stepflow, 2-16 
trace event parameter, 15-13 

Allocate 
DAL, 2-27 
Local Memory, 2-1, 2-27, 15-14 

Allocation/deallocation, memory, 2-12 
Allow overlay to send message packet, 2-45 
AMAP overlay 

channel declaration, 9-10 
memory parameters in, 2-1, 2-10 

$APTEXT constants, 3-9 
AR@, 3-23 
ASLEEP function, 2-18 
Assign 

control-unit, 5-18 
device path by BMXAIO, 5-21 
device path by BMXSIO, 5-17 

Assignments, register, 1-6 
ATR (Abort Transfer Request), 3-23 
ATTENTION interactive command, 8-8 
AWAKE function 

description, 2-19 
stepflow, 2-19 

Index-l 



AWAKE function (continued) 
trace event parameters, 15-13 
used with ALERT, 2-16 

$B@CB, 6-7 
B-packet, 10-5 
Backspace record (FC$BKSPC), 4-42 
Backward space file (FC$BKFIL), 4-42 
Bank, 5-3 
BCOM trace event parameter, 15-17 
BCOMO 

description, 4-5 
BCOM1 

description, 4-5 
in read requests, 4-13 
in write requests, 4-27 

BCOM3 
description, 4-5 
in end read requests, 4-37 
in free requets, 4-59 
in load display requests, 4-45 
in mount requests, 4-6 
in no-op requests, 4-41 
in positioning requests, 4-43 
in read requests, 4-10, 4-19 
in remount requests, 4-48 
in request and response routing, 4-5 
in rewind requests, 4-51 
in unload requests, 4-54 
in write requests, 4-23, 4-33 

Bcm-rs trace event parameter, 15-10, 15-17 
Bcomsg trace event parameter, 15-10, 15-17 
BDV@ Device Table, 5-7, 5-9 
Bfm-dn trace event parameter, 15-10, 15-18 
Bfm-in trace event parameter, 15-10, 15-17 
BGET function, 2-22 
BIOP responsibilities, 1-5 

(or DIOP) data handler (TDEM1), 4-19 
Block Multiplexer (BMX) subsystem, 4-1, 

section 5 (See also BMX) 
interface software, 1-2 
interface, 5-1 
interface routines, 5-12 

Blower air operator message, 3-38 
BMX (lOS Block Mux subsystem), section 5 

channel driver, 5-1, 5-21 
Channel Look-up Table (XCHT), 5-26 
channel program word, 5-9 

buffer memory transfer, 5-10 
command chaining, 5-11 
local memory, 5-10 
nondata transfer, 5-9 

configuration, 5-3 
interrupt handler (IBMX), 5-26 
overview, 5-2 
routines, 5-12 

BMXCON, 5-12 
BMXCPU, 5-15 
BMXSIO, 5-16 
BMXAIO, 5-20 
BMXDEM, 5-21 

Index-2 

routines (continued) 
IBMX" 5-26 
BMXOPE, 5-28 

tables, 5-3, 5-8 
BMXn trace event parameters, 15-9 to 

15-10, 15-16 to 15-17 
Bmx-nn trace event parameters, 15-9 to 

15-10, 15-16 to 15-17 

BMXAIO, 5-20 
assign device path, 5-21 
halt I/O, 5-21 
release device path, 5-21 
request reset, 5-21 

BMXCON 
channel configuration, 5-13 
control unit configuration, 5-13 
description, 5-13 
device configuration, 5-14 
messages, 5-14 to 5-15 
overlay, 5-1 
states, 5-12 

BMXCPU overlay, 5-1 
BMXDEM 

advance command sequence, 5-24 
advance data sequence, 5-25 
description, 5-21 
overlay, 5-1 
request-in sequence, 5-25 
start command sequence, 5-22 
trace event parameter, 11-16, 11-17 

BMXOPE overlay, 5-1 
in free requests, 4-59 
in mount requests, 4-7 
in remount requests, 4-48 
open, 5-28 
close, 5-28 

BMXSIO 
overlay, 5-1 
return to caller, 5-20 
start I/O, 5-16 
trace event parameter, 15-17 
wait I/O, 5-20 

BMXTPO 
description, 5-2, 5-29 
in mount requests, 4-8 
in remount requests, 4-49 

Breakpoints, 15-22 
BRET function, 2-23 
Buffer 1/0 Processor, 6-1 
Buffer Memory 

addresses requirements , 2-3 
Control Block (MCB), 3-23 
data transfer commands, 5-10 
1/0 activity test, B-7 
management, 3-24 
meaning, 1-7 
organization, 2-4 
resident datasets, 2-6 
return to pool, 2-36 
usage, 2-3 

Buffering, shell, 9-9 

SM-0046 G 



Buffers 
disk, 3-1 
1/0, 2-1 

BUFMAN routine 
description, 4-2, 4-3 
in end read requests, 4-39 
in free requests, 4-59 
in load display requests, 4-46 
in no-op requests, 4-41 
in positioning requests, 4-43 
in read requests, 4-11 to 4-12, 4-23 
in rewind requests, 4-52 
in unload requests, 4-55 
in write requests, 4-25 to 4-26 
trace event parameter, 15-17, 15-18 

BUGOFF command, 15-22 
Bus-out check, 4-62 
BYE interactive command, 8-8 
Bypass 

channel, issue 1/0 on, 15-19 
mode, 1-3 

BYPASS activity 
description, 4-2 
in end read requests, 4-37 to 4-38 
in free requests, 4-59 
in no-op requests, 4-41 
in read requests, 4-10 to 4-11, 4-12 to 

4-13 
in write requests, 4-23 to 4-25, 

4-26 to 4-27 
BYPIO trace event parameter, 15-10, 15-19 

C$LOCK, 6-7 
CALL 

function, 2-23 
trace event parameter, 15-14 

Call overlay (OUTCALL), 2-38 
to perform a function, 15-14 

Carriage return, 1-8 
CB@, 3-23 
CBT@ (Control-unit Bank Table), 5-8, 5-15 
CDEM overlay, 3-3, 4-5 
Central Memory 

meaning, 1-7 
Chain, free memory, 2-12 
Chaining 

command, 5-11 to 5-12 
sector, 3-24, 3-26 

Chains, Local Memory, 2-12 
CHANGE interactive command, 8-8 
Chan-io trace event parameter, 15-9, 15-12 

to 15-13 
Channel 

configuration (CON$CHN), 5-13 
control unit message format, 5-14 
driver, BMX subsystem, 5-21 
Extension Table, 10-12 
ID ordinal description (NSC 

activity), 10-12 
interrupts displayed, 15-3 
message format, 5-14 

SM-0046 G 

Channel (continued) 
mode, 5-23 
Program Word (CPW), 5-9 
queue (XCIQ), 5-22 
table list, 5-8 
Tables (CHT@), 5-8 
tables for each configured channel, 

pointer to, 5-7 
time-out, 5-24 

CHT@ Channel Table, 5-8 
CLEAR macro, 14-31 
CLI task, 6-11 

interaction, 6-13 
CLOCK demon, 2-49 
Clock-event time-out, 15-19 
Close 

HSX request, 12-3 
processing, ISP, D-2 
request (CR$CLS), 9-3 
subroutine, UCSHL, 9-6 

CNT (Configuration Table), 5-1, 5-3 
Command 

buffer memory data transfer, 5-10 
chain mode, 5-23 
chaining, 5-11 to 5-12 
local memory transfer, 5-10 
nonlocal data transfer, 5-9 
sequences for HSX, 12-9 to 12-10 
skip data transfer, 5-24 
parameters global symbol, 6-33 

Commands 
ABORT, 8-8 
ATTENTION, 8-8 
BUGOFF, 15-22 
BYE, 8-8 
CHANGE, 8-8 
COMMENT, 8-8 
END, 8-3 
EOL 8-8 
ERRDMP, 2-59 
LOG, 8-1 
LOGOFF, 8-3 
LOGOFF, 8-8 
LOGON, 8-8 
POLL, 8-3 
STATUS, 8-8 
TEST-I/O, 5-13 
debugger, 15-22 
interactive, section 8 
on-line TRACE, 15-4 

COMMENT interactive command, 8-8 
Common 

deck structure, 14-2 
decks, 14-1 
interrupt handler, exit from, 15-8 
packet handling demon (ADEM), 9-5 

Communication 
among lOPs, 2-52 
channel, MIOP-mainframe, 2-53 
errors, 6-1 
initialization, MIOP-mainframe, 2-55 
packets (DALs), 2-1 

Index-3 



Computation section, lOP, 1-3 
Computer 

maintenance, 2-59 
front-end, 1-2 

CON$, 5-12 
CONC overlay description, 7-2 
Concentrator 

errors, 7-7 
initialization, 7-2 
interactive, 8-1 
overlays, interactive, 8-1 
software, 1-2 

tree structure, 7-1 
status, 15-11, 15-22 
termination, 7-8 

CONCERR overlay description, 7-7 
CONCID overlay description, 7-7 
CONCIO activity description, 7-2 
Concurrent disk 1/0 requests, 3-1 
Confidence utilities, appendix B 
Configuration 

block mux, 5-2 
change request (FC$CHANGE), 4-6 
device, 5-14 
1/0 Subsystem, 1-2 
maps, 2-1 
states (CON$), 5-12 
Table (CNT), 5-1, 5-3 
User Channel, 9-10 

CONMAN activity in configuration change 
requests, 4-6 

CONSOLE command, 6-1 
Console 

interactive, 8-1 
output, 6-34 
overlays, interactive, 8-6 

Contents, System Directory, 2-3 
Contingent connection, 5-18 
Continue Request-in (KIC$CR), 5-28 
Control 

logic, 1-2 
request for HSX channel, 12-2 
section (lOP), 1-3 
unit configuration (CON$CUT), 5-13 
Unit Tables (CUT@), 5-8 
words, 4-4 

Control-unit 
assign, 5-18 
Bank Tables (CBT@), 5-8, 5-17 
busy, 5-19 
path already assigned, 5-18 

Controlling disk software 
DD-19 and DD-29, 3-2 
RD-10, DD-39, DD-40 and DD-49, 3-21 

Conventions, formal syntax, 1-8 
COPY macro, 14-31 
Correction 

algori thm, 3-36 
code, 3-13, 3-28 

COS dataset storage, 2-6 
CPB@ (Command Parameter Block), 5-8 
CPI@ (Input channel table), 2-55 

Index-4 

CPO@ (Output channel table), 2-56 
CPW (see Channel Program Word) 
CRAY X-MP Computer System, 1-1 
CRAYIO, 8-4 
CREATE 

function, 2-24 
trace event parameter, 15-15 

Create 
activity in another lOP, 15-13 
new activity in the system, 15-15 

Creating 
demon activities, 2-8 
overlay table, 2-9 

CRT output character, 15-16 
CRTOUT trace event parameter, 15-9, 15-16 
CRW (see Channel Response Word) 
CUT@ (Control Unit Tables), 5-8, 5-15 
CV$, 6-12 
CXT, 10-12 
Cylinder select process (DCU-5), 3-34 

D$name pointer, 2-8 
D2elog trace event parameter, 15-9, 15-16 
D2err trace event parameter, t5-9, 15-15 
D2micr trace event parameter, 15-9, 15-16 
D2seek trace event parameter, 15-9, 15-15 
D2stio trace event parameter, 15-9, 15-15 
D4xxx/D3xxx overlays 3-32 
D4-nnn trace event parameter, 15-11, 

15-20 to 15-21 
D4DEM overlay, 3-22, 3-29 
D-packet, 4-5 
DACT Kernel subroutine, 2-9 
DAL (Disk Activity Link), 2-1, 2-19 

entry (DA@@LE), 2-54 

Data 

header (DA@@LH), 2-54 
pool, 2-13 

access macros, 14-19 
address word, 5-22 
cache, 3-2 
Chain flag (CPW@CC), 5-11 
definition macros, 14-16 
errors, 3-15 
formats, 4-4 

Interchange format, 4-4 
List I/O format, 4-4 
Transparent format, 4-4 

formatting tape, 1-2 
handler for User Channel shell, 9-7 
movement, 1-1 
streams, 3-1 
Stream Control Table (DSC), 4-1, 4-3 
streaming, 3-2 

between mainframe and tape device, 
4-1, 4-3 

transfer, 5-22 
chained, 5-23 
command, 5-23 
Request (DTR), 3-23 

Dataset 
Buffer Memory resident, 2-6 

SM-0046 G 



Dataset (continued) 
staging, 1-2, 6-2 
storage, COS, 2-6 

DB@, 3-9 
DBT@ (Device Bank Tables), 5-9 
DBUD subroutine, 3-5 
DCB (Disk Control Block), 3-6, 3-9, 3-22 

done queue, 3-3 
DCU-4, 3-1 

controlling software, 3-2 
disk error recovery, 3-13 
read-ahead, 3-9 
read request stepflow, 3-6 
software overlays, 3-2 
tables and packet structure, 3-4 
write request stepflow, 3-4 

disk controller 
controlling software, 3-2 
error recovery, 3-13 
error message, 3-21 
read ahead, 3-9 
software overlays, 3-2 
tables and packet structure, 3-4 

DCU-5, 3-11, 15-11, 15-20 
controlling software, 3-21 

software components, 3-22 
tables and packet structure, 3-22 
resource management, 3-23 
read request stepflow, 3-24 
write request stepflow, 3-25 
read ahead, 3-26 
write behind, 3-27 
spiral formatting, 3-28 
on-line disk diagnostic requests, 

3-28 
disk error recovery, 3-29 
error message, 3-37 
error reporting, 3-39 
striped disk groups, 3-40 

disk controller, 3-21 
controlling software, 3-21 
driver tables and packets, 3-22 
error 

message, 3-37 
recovery, 3-29 
retry, 11-17 
retry limits, 3-30 

head select, 15-20 
read 

ahead and write behind, 3-26 
request stepflow, 3-24 

resource management, 3-23 
sector I/O, 15-20 

seek routine, 15-20 
software components, 3-22 
write 

behind, 3-27 
request stepflow, 3-25 

DD-19 and DD-29 disk 
controlling software, 3-2 
error recovery, 3-13 
error message, 3-21 
read ahead, 3-9 
software overlays, 3-2 
tables and packet structure, 3-4 

SM-0046 G 

DD-39, DD-40, and DD-49 disk 
controlling software, 3-21 
driver tables and packets, 3-22 
error 

message, 3-37 
recovery, 3-29 
retry, 15-21 
retry limits, 3-30 

head select, 15-20 
read 

ahead and write behind, 3-26 
request stepflow, 3-24 

resource management, 3-23 
sector I/O, 15-20 
seek routine, 15-20 
software components, 3-22 
write 

behind, 3-27 
request stepflow, 3-25 

DD49, 3-21 
disk interrupt handler, 3-29 

DE sequence check, 3-38 
Deactivate activity until popped, 15-13 
Deadstart 

and restart parameter files, 1-5 
I/O Processor, 2-51 
Kernel operation at, 2-1 
MIOP role, 1-5 
overlay space, 2-9 
package, 1-1, 2-3 

Deallocate memory segment from pool 
(RELMEM), 2-44 

Deallocation and allocation of memory, 2-12 
Debug 

displays, 6-8 
mode for HSX channel software, 12-5 
package registers, 1-6 

DEBUGGER deck, 15-22 
Debugger, 15-22 

interactive, 15-1 
DEBUGTOO deck, 15-22 
Decks, common, 14-2 
Delete breakpoint command, 15-29 
Demon activities, 2-8, 2-12 
Destination 10 (DA@DID), 2-55 
Device 

address/mode word, 5-22 
Bank Tables (DBT@), 5-3 
configuration (CON$DEV), 5-14 
message format, 5-15 
Not-ready flag (BDV@NR), 5-19 
ordinal (TQ@DVN), 4-5 
Parameter Table (OPT), 3-23 
table for each configured device, 

pointer to, 5-7 
time-out, 5-18 

Diagnostic 
on-line system, B-1 
request processing, 3-13, 3-28 
scratch area, 3-1 
system files, 3-1 

DIOP responsibilities, 1-5 

Index-5 



Oisable disk error messages requiring a 
response, 3-37 

Oisk 
Activity Link (OAL) pool, 2-13, 2-19 
allocation, 3-1 
buffers, 3-2 
cache, 3-2, 3-26 
control, 3-1 
Control Block (OCB), 3-6, 3-9, 3-22 

done queue, 3-3 
controller, 3-1 

software, 00-19/00-29, 3-2 
software, 00-39/00-49, 3-21 

Oemon read-ahead 
input/output, 3-12 
process, 3-11 

devices, 3-1 
drivers, 3-1 
driver tables and packets 

OCU-4, 3-4 
DeU-5, 3-22 

driving subroutines (00-19/00-29), 3-4 
ERRECK disk retries, 15-16 
error 

handler, 15-15 
information in OAL, 3-20 
logging, 15-16 
message, 00-19/00-29, 3-20 
message, 00-49/00-39, 3-37 
recovery, 00-19/00-29, 3-13 
recovery, OD-39/00-49, 3-29 

groups, striped, 3-40 
I/O requests, concurrent, 3-1 
I/O, kernel internal, 3-45 
input/output, 3-1 
input/output (I/O) software, 1-2 
interlock, 3-14, 3-16 
interrupt 

answering subroutine (00-19/00-29), 
3-4 

handler (00-39/00-49), 3-29 
queues, local handling of, 3-8 
read ahead control, 3-9 
read request 

stepflow for 00-19/00-29, 3-6 
stepflow for 00-39/00-49, 3-24 

read/write processor, 15-15 
requests, 2-6 

processing, 3-2 
Request Packet OAL, 3-22 
seek routine, 15-15 
software validation, 3-2 
storage units (OSUs), maximum, 3-1 
write (DCU-4), 3-13 
write request 

stepflow for 00-19/00-29, 3-4 
stepflow for 00-39/00-49, 3-25 

OISK overlay, 3-2, 3-3 
OISKIO, 3-45 
OISP01 routine, 6-10 
Oisplay 

accumulator command, 15-24 
B register command, 15-24 

Index-6 

Oisplay 
breakpoint command, 15-28 
buffer memory command, 15-30 
carry register command, 15-25 
channel status command, 15-25 
facilities, 6-1 
exit stack command, 15-26 
high-speed channel command, 15-31 
Local Memory command, 15-27 
operand register command, 15-26 
P register command, 15-28 
parameters global symbol, 6-33 

OISPLAY task, 6-8 
interaction areas, 6-8 thru 6-10 

OK-ERR trace event parameter, 15-9, 15-15 
OK-IO trace event parameter, 15-9, 15-15 
OK-LOG trace event parameter, 15-9, 15-16 
OK-MM trace event parameter, 15-9, 15-16 
OK@, 3-22 
OKOMP overlay, 15-36 
OKIOEX overlay, 3-44 
OL@, 3-22 
Oone queue (OB@ONO), 3-11 
OP@, 3-23 
OPT (Oevice Parameter Table), 3-23 
OOTIME, 2-51, 3-18 
Oriver 

block multiplexer, 4-1 
BMX channel, 5-1 
BMX subsystem channel, 5-21 
call, trace event parameter, 15-21 
disk, 3-1 
dummy, 9-10 
HSX channel, 12-1 
installation, 9-10 
request (CR$ORV), 9-3 
responses, 9-9 
subroutine, UCSHL, 9-7 
User Channel, 9-1 

OROP command flow, 6-15 
OSC, 4-1, 4-3 
OSCGET routine 

description, 4-3 
in free requests, 4-59 

OSUs (see Oisk storage units) 
OTR (Oata Transfer Request), 3-23 
Oummy drivers, 9-10 
Oump 

analysis, A-I 
format, C-7 

E-OALs, 3-11 
EC$, 2-22 
ECL technology and Local Memory, 2-2 
EOECR macro, 14-10 
EGET macro, 14-9 
EINCR macro, 14-9 
EITB (Interrupt Jump Table), 5-26 
$ELSE macro, 14-12 
$ELSEIF macro, 14-12 

SM-0046 G 



End 
processing, signal, 2-46 
read requests, tape, 4-37 to 4-40 
Request-in (KIC$ER), 5-28 

END command, 6-1 
format, interactive, 8-3 
stepflow, 8-5 

End-of-data tape request, 4-37 
End-of-File tape request, 4-37 
End-of-Record tape request, 4-37 
End read tape requests, 4-37 to 4-40 
ENOCONC overlay description, 7-8 
$ENOTIL macro, 14-13 
Entrance to Kernel function processor, 15-12 
EOF interactive command, 8-8 
EPUT macro, 14-9 
Equipment check, 4-62 
ERRDMP command, 2-59 
ERRECK overlay, 3-2, 3-4, 3-13 
Error 

channel processing (lOS serial no. 21 
and below), 2-57 

code global symbol, 6-33 
conditions 

DD-19/DD-29, 3-14 
interlock, 3-17 
miscellaneous, 3-17 
in Local Memory, 2-2 

disk recovery 
OD-19/DD-29 disk, 3-13 
00-39/00-49 disk, 3-29 
reporting (DCU-5), 3-39 
retry limits (DCU-5), 3-30 
retry (DCU-5), 15-21 
statuses 

DCU-4, 3-20 
OCU-5, 3-39 

summary (DCU-4), 3-18 
display, tape, 4-64 
handler, disk, 15-15 
log, 2-58 
logging 

disk, 15-16 
lOS serial no. 21 and up, 2-59 

message 
OCU-4, 3-21 
DCU-5, 3-37 

messages requiring a response, 
disable disk, 3-37 

multiplex, 2-59 
NSC activity recovery, 10-10 
procedures, HSX, 12-5 to 12-8 
processing, lOS, 2-57 
reporting (DCU-5), 3-39 
status, 3-20 
tape recovery processing, 4-4, 4-60 to 

4-64 
ERROR, 2-59 
errpt utility, 2-59 
Event timer, system, 2-50 
Evtout trace event parameter, 15-11, 15-19 
Execution control macros, 14-11 

SM-0046 G 

Exit from 
activity dispatching, 15-12 
common interrupt handler, 15-12 

Exit stack access and macros, 14-8 
Expander 

channel interrupt, 15-12 
device control tables, 6-8 

EXSGET macro, 14-10 
EXSPUT macro, 14-10 
EXTRACT utility, 3-39 

F-packets, 9-1 
requests, 9-5 

FC$BKFIL, tape positioning request, 4-42 to 
4-45 

processing of, 4-42 
FC$BKSPC, tape positioning request, 4-42 to 

4-45 
processing of, 4-42 

FC$CHNGE, tape configuration change 
request, 4-6 

processing of, 4-7 
FC$OSP, tape load display request, 4-45 to 

4-48 
processing of, 4-46 

FC$EOOR, tape end-of-data read request, 4-37 
processing of, 4-38 

FC$EOFR, tape end-of-file read request, ~-37 

processing of, 4-38 
FC$EORR, end-of-record read request, 4-37 

processing of, 4-38 
FC$FREE, tape free request, 4-57 to 4-59 

processing of, 4-58 
FC$FWFIL, tape positioning request, 4-42 to 

4-45 
processing of, 4-42 

FC$FWSPC, tape positioning request, 4-42 to 
4-45 

processing of, 4-42 
FC$MOUNT, tape mount request, 4-6 to 4-8 

processing of, 4-8 
FC$NOOP, tape no-op request, 4-40 to 4-41 

processing of, 4-40 
FC$READ, tape read request, 4-9 to 4-23 

processing of, 4-9 
FC$REWNO, tape rewind request, 4-51 to 4-54 

processing of, 4-51 
FC$RMNT, remount request, 4-48 to 4-50 

processing of, 4-49, 4-50 
FC$RWND1, tape rewind request, 4-51 to 4-54 

processing of, 4-51 
FC$RWND2, tape rewind request, 4-51 to 4-54 

processing of, 4-51 
FC$UNLD, tape unload request, 4-54 to 4-57 

processing of, 4-55 
FC$UNLD1, tape unload request, 4-54 to 4-57 

processing of, 4-55 
FC$UNLD2, tape unload request, 4-54 to 4-57 

processing of, 4-55 
FC$WRITE, tape write request, 4-23 to 4-36 

processing of, 4-24 

Index-7 



FEI logical path 
activity, 11-1 

initialization, 11-1 
termination, 11-1 

driver, 1-2 
overlay connections, 11-2 
overlays 

ADEM, 11-2 
FNSC, 11-3 
FEIR, 11-3 
FEIW, 11-3 
FEIWMSG, 11-3 

status, 15-22 
FEI-3, see VMEbus 
FEIMSG overlay 

FEI logical path, 11-3 
VMEbus, 13-4 

FEIR 
overlay, 11-3, 
trace event parameter, 15-12, 15-22 

FEIW 
overlay, 11-3, 
trace event parameter, 15-12, 11-22 

FIELD macro, 14-16 
FIND function, 2-26 
FIRECODE, 3-15 
Fixed-size 

Local Memory buffer, 2-22 
pool, 2-12 

FLDADD macro, 14-25 
FLDSUB, 14-25 
FLUSH 

function, 2-26 
Kernel call, 2-3 

FNSC overlay 
FEI logical path, 11-3 
NSC, 10-6 
VMEbus, 13-2 

Formatting 
disk spiral, 3-28 
tape data, 1-2 

Forward space file and record, 4-42 to 4-45 
FRAME, 15-2 
Free 

memory, 2-1 
memory chain, 2-12 
tape request (FC$FREE), 4-57 to 4-59 

FRESTACK macro, 6-4 
Front end 

computers, 1-2 
readlwrite operation to, 2-21 

Front-end concentrator, section 7 
CONC overlay description, 7-2 
CONCERR overlay description, 7-7 
CONCID overlay description, 7-7 
CONCIO activity description, 7-2 
ENDCONC overlay description, 7-8 

Function descriptions, 2-16 
Functions 

A1300I, 2-21 
ALERT, 2-16 
ASLEEP, 2-18 
AWAKE, 2-19 

Index-8 

Functions (continued) 
BGET, 2-22 
BRET, 2-23 
CALL, 2-23 
CREATE, 2-24 
FIND, 2-26 
FLUSH, 2-26 
GETDAL, 2-27 
GETMEM, 2-27 
GIVEUP, 2-28 
GOTO, 2-29 
HSPR, 2-30 
HSPW, 2-32 
MGET, 2-33 
MOSR, 2-34 
MOSW, 2-35 
MPUT, 2-36 
MSG, 2-37 
MSGR, 2-37 
OUTCALL, 2-38 
OUTPUT, 2-39 
PAUSE, 2-40 
POLL, 2-40 
POP, 2-41 
PUSH, 2-42 
RECEIVE, 2-43 
RELDAL, 2-43 
RELMEM, 2-44 
RESPOND, 2-44 
RETURN, 2-45 
SEND, 2-45 
TERM, 2-46 
TPUSH, 2-46 
TRANSFER, 2-47 

G-packet, 4-5 
General service functions, 2-12 
GET macro, 14-20 
GETDAL function, 2-27 
GETL subroutine, ISP, D-4 
GETMEM 

function, 2-27 
trace event parameter, 15-14 

GETSTACK macro, 6-4 
GIVEUP function, 2-28 
Global 

register, 6-2, 6-4, 7-2 
symbols, 6-33 

$GOTO macro, 14-14 
GOTO function, 2-29 

H-packets, 12-1 
HALT (PUNT) codes, Kernel, 15-33 
Halt 1/0 (RQ$HIO), 5-21 
Handling of disk queues, 3-8 
Hardware specifications, 1-2 
HCOM demon, 12-3 
Head select 

DD-39 and DD-49, 15-20 
-LMA select-read and write 

process, 3-29, 3-35, 3-36 

SM-0046 G 



High-speed External Communications channel, 
see HSX channel interface 

History trace, 15-1, 15-4 
information buffer, 2-7 
sample output, 15-6 

HSF$CLOS, 12-3 
HSF$CNTL, 12-2 
HSF$OPEN, 12-2 
HSF$READ, 12-2 
HSF$WRIT, 12-2 
HSPR function, 2-30 
HSPW function, 2-32 
HSS$RECI, 12-3, 12-9, 12-10 
HSS$SET, 12-2 
HSS$SNDI, 12-3, 12-9, 12-10 
HST$ errors, 12-6 to 12-8 
HSX channel interface, section 12 

buffering, 12-4 
channel requests, 12-1 to 12-3 
debug mode, 12-5 
driver architecture, 12-3 to 12-5 
error procedures, 12-5to 12-8 
interrupt handler, 12-4 
overlays, 12-5 

HSXI interrupt handler, 12-4 
HSXO interrupt handler, 12-4 

I-HAND trace event parameter, 15-9, 15-12, 
15-13 

IACMD overlay, 8-7 
lACON overlay, 8-6 
IACONI overlay, 8-7 
IAFUNC overlay, 8-4 
IAIOP overlay, 8-1 
IAIOP1 overlay, 8-4 
IAMSG overlay, 8-5 
IAOUT overlay, 8-8 
IBM-compatible devices, connection, 5-1 
IBMX (BMX interrupt handler), 5-26 

advance data, 5-27 
continue request-in, 5-28 
end request-in, 5-28 
immediate return, 5-27 
routine, 5-1 
start request-in, 5-27 

ICOM 
overlay, 3-22, 3-24 
trace event parameter, 15-11, 15-20 

Icomsg trace event parameter, 15-11, 15-20 
10 

-based table entries, 7-7 
errors, 3-16 

IDKTOUT routine, 3-18 
$IF macro, 14-11 
Immediate return (KIC$IR), 5-27 
Independent activities, 2-1 
Initialization 

FEI logical path activity, 11-1 
MIOP-mainframe communication, 2-54 
NSC activity , 10-1 

SM-0046 G 

Initiate 
IIO to A130 NSC device, 15-13 
output to mainframe through 6 Mbyte 

channel, 15-13 
Input 

A-A channel interrupt handlers, 15-12 
channel 

from the mainframe, 2-55 
from mainframe interrupt, 15-13 
table (CPI@), 2-55 

errors, HSX, 12-6 to 12-7 
message packet disposition, 2-56 
loutput 

disk, 3-1 
operations, 2-13 

stream count (IST), 6-2 
INSTACK macro, 6-4 
Instruction stack, 1-2 
Integrated Support Processor (ISP) channel 

driver (ISPDRV), 0-1 
Interactive 

concentrator 
overlays, 8-1 
software, structure of, 8-2 

console 
overlays, 8-6 
software, structure of, 8-2 

debugger, 15-1 
Reply message, 8-5 
station, 1-2, 8-1 

Interchange format, 4-4 
Intercommunication function codes, I/O 

Processor, 2-53 
Interface 

block multiplexer channel, 5-1 
routines, block multiplexer channel, 

5-12 
shell and driver, 9-7 
software, block multiplexer channel, 1-2 

Interlock 
error conditions, 3-17 
status, 3-16 

Interrupt, 2-1 
answering, error channel, 2-58 
expander channel, 15-12 
handler 

DCU-5, 3-26 
real-time clock, 2-49 
HSX channel, 12-4 
input A-A channel, 15-12 
overlay registers, 1-6 

input channel from mainframe, 15-13 
Jump Table (EITB), 5-26 
mode, 5-23 
occurs due to read ahead, 3-10 
pending, 5-25 
processing, 2-11, 9-10 

Interval counter (%MSEC), 2-49 
Intervention required recovery, 4-62 
Introduction to disk controlling software, 

3-1 
INTRPT trace event parameter, 15-8, 15-12 

Index-9 



I/O 
buffers, 2-1 

allocation, 2-1 
pool, 2-12 

disk input/output software, 1-1 
request 

for tape, 4-5 to 4-59 
from mainframe, 4-2 
processing, ISP, D-2 
received during read ahead, 3-11 

software, User Channel, 1-2 
time-out, 3-18 
User Channel, 9-1 

I/O Processor (lOP) 
central processor queueing and activity 

dispatching, 2-12 
communication, 2-52 
computation section, 1-2 
deadstart, 2-51 
description, 1-2 
intercommunication function codes, 2-53 
message handling, 3-3 

1/0 stream control tables, 6-8 
1/0 Subsystem, 1-1 

Block Mux (BMX) subsystem overview, 5-1 
confidence utilities, B-1 
configuration, 1-3 
debugging, 15-22 
editor, 1-5 
error processing, 2-57 
history trace, 15-4 
mainframe communication, 2-54 
model B, 1-3 
model C, 1-3 
operating system, 1-1 
responsibilities, 1-3 
real-time clock, 2-49 
software, parts of, 1-1 
station, section 6 

storage, 6-2 
tasks, 6-1 
task flow and interaction, 6-5 

CLI task, 6-11 
console output, 6-34 
DISPLAY task, 6-8 
global symbols, 6-33 
KEYBD task, 6-6 
POST overlay, 6-32 
PROTOCOL task, 6-16 
screen image, 6-34 
STAGEIN task, 6-25 
STAGEOUT task, 6-27 
station initialization, 6-5 
STIO overlay, 6-29 

lOP (see 1/0 Processor) 
IOPPL, 14-1 
lOS (see 1/0 Subsystem) 
ISFIELD macro, 14-17 
ISP channel driver, D-1 
ISR$OSR$, 6-31 
Issue a function on a channel command, 15-25 
Issue 1/0 between Buffer Memory and Target 

Memory, 15-19 

Index-10 

K-CALL trace event parameter, 15-8, 15-12 
K-FNCT trace event paramter, 15-9, 15-13 

to 15-15 
K-func trace event parameter, 15-9, 15-13 

to 15-15 
Kernel 

active calls, 15-4 
console, send message to, 2-37 
definition 2-1 
description, 1-1 
error logging table, 6-8 
function processor, entrance to, 15-8 
functions, 2-1 
HALT (PUNT) codes, 15-33 
internal disk 1/0, 3-45 
operation at deadstart, 2-1 
request destination ID, 2-56 
service calls, 6-3, 6-4 
service request 1/0 functions, 2-6 
service requests, 2-12 
storage areas, 2-6 
subroutine, DACT, 2-9 

KEYBD task, 6-6 
interaction areas, 6-7 

KIC$, 5-22, 5-24, 5-25, 5-27,.5-28 
KIC$IR (immediate return), 5-27 

LB@, 3-22 
LCP 

descriptors global symbol, 6-33 
requests, 7-7 

Ldovly trace event parameter, 15-9, 15-15 
List of BDV tables by ordinal number, 5-8 
List 1/0 format, 4-4 
LISTO overlay, 15-1, 15-34 
LISTP overlay, 15-33 
Load display tape request, 4-45 to 4-48 
LOAD macro, 14-20 
Local buffer entry, 3-22 
Local handling of disk queues, 3-8 
Local Memory 

allocate, 2-27 
buffer control, 3-23 
buffer, fixed-size, 2-22 
chains, 2-12 
data transfer commands, 5-10 
definition, 1-7 
error correction in, 2-2 
management, 3-24 
refresh, 2-3 
scrubbing, 2-2 
stack area, 6-4 
structure, 2-2 
usage, 2-1 

LOCK macro, 6-3 
LOG interactive command, 8-1, 8-4 
Logical ordinal number, 5-7 
Logical to physical address mapping, 

striped disk group, 3-41 
LOGOFF command, 6-1 
LOGOFF interactive command, 8-3, 8-5, 8-8 
LOGON interactive command, 8-8 

SM-0046 G 



Lost data errors, 3-14, 3-16 

Macro 
data access, 14-19 
data definition, 14-16 
execution control, 14-11 
exit stack, 14-8 
general information 14-4 
memory, 14-31 
overlay and register definition, 

14-26 
program library (PL) and, 14-1 
service request, 2-13 
summary, 14-5 to 14-8 

Macros 
ADDRESS, 14-19 
CLEAR, 14-31 
COPY, 14-31 
EDECR, 14-10 
EGET, 14-9 
EINCR, 14-9 
$ELSE, 14-12 
$ELSEIF, 14-12 
$ENDTIL, 14-13 
EPUT, 14-9 
EXSGET, 14-10 
EXSPUT, 14-10 
FIELD, 14-11 
FLDADD, 14-25 
FLDSUB, 14-25 
GET, 14-20 
$GOTO, 14-14 
$IF, 14-11 
ISFIELD, 14-17 
LOAD, 14-20 
OVERLAY, 14-26 
$ PUNT IF , 14-15 
PUT, 14-22 
REGDEFS, 14-27 
REGISTER, 14-28 
RETREG, 14-29 
RGET, 14-22 
RPUT, 14-23 
RSTORE, 14-23 
SIGNAL, 9-7 
STORE, 14-22 
TABLE, 14-18 
$UNTIL, 14-13 
WATCH, 9-7 

Main loop, ISP, D-1 
Mainframe channels, 2-55 
Maintenance computer, 2-57 
Manual intervention messages, 3-37 
Master DAL, 3-4 
Master 1/0 Processor, 6-1 

responsibilities, 1-5 
mainframe communication channel, 2-54 

MCB (Buffer Memory Control Block), 3-23 
MEM-IO trace event parameter, 15-11, 15-19 

to 15-20 
MEM@, 3-23 
MEMIO Queue Table, 3-23 

SM-0046 G 

Memio trace event parameter, 15-11, 15-19 
to 15-20 

Memory 
allocating, 2-1 
and deal location, 2-12 
error correction, 2-2 
errors, soft, 2-2 
free, 2-1 
macros, 14-31 
modification of, 15-22 
search list, 2-10 
type (defined by $APTEXT), 2-6 

Message 
areas, 2-5 
formats, 5-14 
handler, User Channel, 9-5 
handling, lOP, 3-3 
Interactive Reply, 8-5 
packet 

allow overlay to send, 2-45 
send B or S type, 2-40 

start, 8-6 
Messages, BMX, 5-14 to 5-15 
MGET function, 2-33 
MGET trace event parameter, 15-14 
MIOP (see Master 1/0 Processor) 
Miscellaneous error conditions, 3-18 
Modification of 

memory, 15-22 
registers, 15-22 

Modification, program library, 14-1 
MOSR function, 2-34 
MOSW function, 2-35 
Mount request (FC$MOUNT), 4-6 to 4-8 

processing flow for, 4-8 
Move data between Buffer Memory and Central 

Memory, 2-47 
MPUT function, 2-36 
MPUT trace event parameter, 15-14 
MSG function, 2-37 
MSGR function, 2-37 
Multiple-path to multiple-ban linkage, 5-3 

N-packets, 10-3, 10-4, 13-1 
NIDEND (NSC) overlay, 10-9 
NIO Table, 10-2 
Nondata transfer commands, 5-9 
No-op tape request (FC$NOOP), 4-40 to 4-41 
Not capable recovery subroutine, 4-63 
NSC A130 adapter, 2-21 
NSC 

activity, 10-1 
channel/ID ordinal description, 10-12 
error recovery, 10-10 
initialization, 10-1 
overlays, 10-6 
termination, 10-11 

error recovery, 10-11 
SCP protocol, 10-11 
protocol independent interface, 10-12 

HYPERchannel, 1-2, 10-1 
logical path status, 15-12, 15-22 
messages, 10-9 

Index-ll 



NSC overlay, 10-9 
NSCEND overlay, 10-9 
NSCID overlay 

NSC HYPERchannel, 10-9 
VMEbus, 13-5 

NSCIO activity, 10-9 
idle loop, 10-2 
read sequence (protocol-indendent 

interface), 10-3 
SCP interface logon sequence, 10-4 
write sequence (protocol-indendent 

interface), 10-3 
NSCIO overlay, 10-9 
NSCIO trace event parameter, 15-13 
NSCMSG overlay, 10-9 
NSCRW trace event parameter, 15-12, 15-22 
NSCRW overlay 

NSC HYPERchannel, 10-10 
VMEbus, 13-4 

NUM, SUMMARY utility, 15-3 

O$$OVL, 14-27 
Ochar trace event parameter, 15-9, 15-16 
Offset algorithm, 3-35 
On-line 

access, 15-1 
diagnostic requests 

DCU-4, 3-13 
DCU-5, 3-28 

system diagnostics, B-1 
tape device (thru Block Multiplexer) 

test, B-3 
TRACE commands, 15-4 

On-line system diagnostics, appendix B 
CHNTEST, B-2 
CPTEST, B-3 
ECHOCP, B-4 
HSPTEST, B-5 
MOSTEST, B-7 
SSDTEST, B-9 
STOP, B-ll 
XDK, B-11 
XMT, B-12 
XPR, B-13 

Open 
HSX channel (HSF$OPEN), 12-2 
processing, ISP, D-1 
request (CR$OPN), 9-1 
subroutine, UCSHL, 9-5 

Operand register 
assignments, 1-6 
,\B, 15-6 
,\EX, 2-13 

Operating system, lOS, 1-1 
Operational description, SYSDUMP, C-1 
Operator 

commands, 1-1, 6-1 
displays, 6-8 

Ordinal number list of BDV tables by, 5-7 
Organization, Buffer Memory, 2-4 
OUTCALL function, 2-38 

Index-12 

Output 
channel table (CPO@), 2-56 
channel to the mainframe, 2-56 
errors, HSX, 12-7 to 12-8 

OUTPUT function, 2-39 
Output stream count (OST), 6-2 
Overlay 

activate, 2-29 
adding, 14-2 
allocation, user, 2-33 
areas, 2-1 
call, 2-38 
data areas, 2-10 
format, 2-11 
index, 2-9 
load, 2-10 
loading, 15-15 
general information, 2-9 
groupings of, 14-3 
interactive console, 8-6 
interrupt handling, 1-6 
registers, 1-6 

definition, 14-26 
macros, 14-26 

release all, 2-26 
Table, creation, 2-9 

OVERLAY macro, 14-26 
Overlays 

FEI logical path activity, 11-2 
NSC activity, 10-6 
ACOM, 3-3 
ADEM, 10-6, 11-1, 13-2 
AMAP, 2-1, 2-10, 9-10 
BMXCON, 5-1 
BMXCPU, 4-15, 5-1 
BMXDEM, 5-1 
BMXSIO, 5-1 
CDEM, 3-3 
D4DEM, 3-22 
DD49, 3-22 
DISK demon, 3-6 
DISK, 3-3 
DKDMP, 15-36 
ERRECK, 3-4 
FEIMSG, 11-3 
FEIR, 11-3 
FEIW, 11-3 
FNSC, 11-3, 13-2 
IACMD, 8-7 
lACON, 8-6 
lACON!, 8-7 
IAFUNC, 8-4 
IAIOP, 8-1 
IAIOP1, 8-4 
IAMSG, 8-5 
IAOUT, 8-8 
ICOM, 3-22 
LISTO, 15-1, 15-34 
LISTP, 15-33 
NIDEND, 10-9 
NSC, 10-9 
NSCEND, 10-9 
NSCID, 10-9, 13-5 

SM-0046 G 



Overlays (continued) 
NSCMSG, 10-9 
NSC, 10-9 
NSCRW, 10-10, 13-4 
OVLNUM, 9-10 
PATCH, 15-1, 15-32 
REPORT, 3-20 
SCPIO, 10-10, 13-5 
TERMNSC, 13-5 
TERMVME, 13-5 
TERNSC, 10-10 
TRANSFR, 3-22 
VME, 13-4 
VMEND, 13-4 
VMERD, 13-4 
VMEWT, 13-4 

Overtemp operator message, 3-38 
OVL-LD trace event parameter, 15-9, 15-15 
OVLNUM overlay, 9-10, 10-20 

Parameter 
descriptors global symbol, 3-34 
files, deadstart/restart, 1-5 
table, trace event, 15-12 

Parcel, 1-7 
PATCH overlay, 15-1, 15-32 
Path, 5-3 
PAUSE function, 2-40 
Peripheral Expander 

confidence tests, B-11 thru B-13 
disk unit, B-l1 
tape unit, B-12 
printer unit, B-13 

tape/disk, deadstart, 2-51 
PL (Program library), 14-1 
Pointer 

POLL 

to channell device tables for each 
configured channel, 5-7 

command, 8-3 
function, 2-40 
trace event parameter, 15-14 

Pool 

POP 

deallocate memory segment from, 2-44 
disk Activity Link (DAL), 2-13 
fixed-size, 2-12 
I/O buffer, 2-12 

function, 2-41 
trace event parameter, 15-13 

Popcell, 2 -18 
Popping/pushing SMODs, 2-7 
position tape requests, 4-42 to 4-45 
POST overlay, 6-32 
Priority 

demon activity, 2-12 
scheme, 2-12 

Processing flow for tape requests 
configuration change request, 4-7 
end read request, 4-38 
free request, 4-13 
load display request, 4-46 

SM-0046 G 

Processing flow for tape requests 
mount request, 4-8 
no-op request, 4-40 
positioning request, 4-31 
read request, 4-9 
remount request, 4-49, 4-50 
rewind request, 4-51 
unload request, 4-55 
write request, 4-24 

Processing of 
channels used by the debugger command, 

15-31 
tape requests, 4-5 to 4-59 

Processor queueing and activity 
dispatching, lOP, 2-12 

Program 
exit stack, 1-3 
library (PL) and macros, 14-1 

Protocol independent interface error 
recovery, 10-12 

PROTOCOL task, 6-16 
flow 

initialization, 6-19 
interaction (main body), 6-20 
termination, 6-24 

PUNT codes, 15-33 
$PUNTIF macro, 14-15 
PUSH 

function, 2-42 
trace event parameter, 15-13 

Pushing/popping SMODs, 2-7 
PUT macro, 14-22 

QTIME routine, 2-51, 3-18, 5-24 
Queued input dataset information, 6-17 

$R@CLI, 6-7 
R/W logic power message, 3-38 
RD-10 disk 

controlling software, 3-21 
driver tables and packets, 3-22 
error 

message, 3-37 
recovery, 3-29 
retry, 15-21 
retry limits, 3-30 

head select, 15-20 
read 

ahead and write behind, 3-26 
request stepflow, 3-24 

resource management, 3-23 
sector I/O, 15-20 
seek routine, 15-20 
software components, 3-22 
write 

behind, 3-27 
request stepflow, 3-25 

Reactivate 
activity, 2-41 
pushed activity, 15-13 

Index-13 



Read 
ahead, 3-2 

Abort flag, 3-11, 3-26 
and write behind (DCU-5), 3-27 
control, disk, 3-9 
Control Table, 3-9, 3-12 
DCU-4, 3-9 
DCU-5, 3-26 
interrupt occurs due to, 3-10 
I/O request received during, 3-11 
process, disk Demon, 3-11 
sequence, 3 -10 
steal, 3-11 
tape, 4-2 

data 
from Buffer Memory to Local Memory, 

2-34 
from Target Memory to Local Memory, 

2-30 
function (FC$READ), 4-15 
request 

HSX channel, 12-2 
tape, 4-9 to 4-23 
User channel I/O, (CR$RO) 9-2 

request stepflow 
DCU-4. 3-6 
DCU-5, 3-24 

subroutine, UCSHL, 9-6 
tape request (FC$REAO), 4-9 to 4-23 

Read-Hold request (CR$RDH), 9-2 
Read/write operation to front end, 2-21 
Real-time clock, I/O Subsystem, 2-49 
RECEIVE function, 2-43 
Receive information from keyboard, 2-43 
Receive messages from other lOPs, 15-16, 

15-20 
Recovery for data errors on read/write 

operations, 3-15 
Recovery subroutines for tape, 4-62 to 4-64 
REGDEFS 

definition, 14-7 
macro, 14-27 

Register 
and overlay definition, 14-26 
assignments, 1-6 
R!EH, 2-51 
modification of, 15-1 

REGISTER macro, 14-28 
RELDAL function. 2-43 
Release 

all overlays, 2-26 
device path (RQ$RPTH), 5-21 
memory to free pool, 15-14 
message space & reactivate activity, 

2-44 
process, 3-29 

Relinquish control, 2-28 
RELMEM function, 2-44 
RELMEM trace event parameter, 15-14 
Remount 

tape request (FC$RMNT), 4-48 to 4-51 
tape request processing flow, 4-49, 4-·50 

Index-14 

REPORT overlay, 3-20 
Request 

packet, 3-2 
processing disk, 3-2 
User Channel, 9-1 

Request-in sequence (KIC$ER), 5-25 
Resource management (DCU-5), 3-23 
RESPOND 

function, 2-44 
trace event parameter, 15-13 

Response codes (N-packet), 10-6 
RETREG macro, 14-29 
Retrieving error log information, 2-59 
Return 

Buffer Memory to pool, 2-35, 15-14 
control to previous call, 2-45 
DAL to OAL pool, 2-43 
to caller, 5-20 

RETURN function, 2-45 
Rewind 

tape request, 4-51 to 4-54 
tape request processing flow, 4-51 

RGET macro, 14-22 
Routines 

BUFMAN, 4-3 
IBMX, 5-1 
IDKTOUT, 3-18 
QTIME, 3-18, 5-23 
SCRUB, 2-3 

RPUT macro, 14-23 
RQ$, 5-16, 5-20, 5-21 
RSTORE macro, 14-23 
RTCQUE (timer queue), 2-51 
Run switch operator message, 3-38 

SCP, 10-11 
protocol error recovery, 10-11 

SCPIO trace event parameter, 15-11, 15-22 
SCPIO overlay 

NSC, 10-10 
VMEbus, 13 - 5 

Scratch 
area, diagnostics, 3-1 
registers, 14-4, 14-28 

Screen image, 6-34 
SCRUB routine, 2-3 
SOMPO-SDMP1, C-1 
SECDED, 2-2 
Sector 

chaining, 3-24, 3-26 
I/O, DD-39/DD-49, 15-20 

Security erase, data, 4-63 
Seek 

errors, 3-14, 3-16 
routine, OD-39 and DO-49, 15-20 

SEEK trace event parameter, 15-9, 15-15 
Select-in tag (IT$SLI), 5-13 
SEND 

function, 2-45 
Kernel service, 9-5 
trace event parameter, 15-14 

SM-0046 G 



Send 
B or S type message packet, 2-40 
characters to the screen, 2-39 
message 

response to activity in another lOP, 
15-13 

to Kernel console, 2-37 
to other lOPs, 15-15 

receive message from Kernel console, 
2-37 

Sense bit, tape device, 4-61 
Sequence code update, 5-24 
Service 

Set 

functions 
general, 2-12 
summary of, 2-14 

request 
kernel, 2-12 
macro, 2-13 

count register and proceed from 
breakpoint command, 15-28 

breakpoint commands, 15-28 
Sh-nnn trace event parameter, 15-11, 15-21 
Shared memory access, 6-3 
Shell 

and driver interface, 9-7 
architecture, 9-4 
buffering, 9-9 
requests, 9-8 
User Channel, 9-1 

Signal end of processing, 2-46 
SIGNAL macro, 6-3, 9-7 
Skip Data Transfer flag, 5-24 
SMOD (storage module) creation, 2-7 
SNAP command, 6-34 
Soft memory errors, 2-2 
Software 

overlays 
DCU-4, 3-2 
DCU-5, 3-21 

stack, 2-7 
Solid state storage device, 1-1 
Specifications, hardware, 1-2 
Spindle power/speed) 3-38 
Spiral formatting (DCU-5), 3-28 
SSD 100-Mbyte channel test, B-9 
SSD Memory, 1-1, 1-3, 1-5, 1-6, 1-7 
Stack Status flag, 5-24 
STAGEIN task, 6-25, 6-27 
STAGEOUT task, 6-27 
Staging, dataset, 1-2 
Start 

command sequence (KIC$SC), 5-22 
I/O (RQ$SIO), 5-16 
message, 8-6 
Request-in (KIC$SR), 5-27 

STARTIO subroutine, ISP, 0-3 
STATINIT overlay, 6-2 
Station 

destination IO, 2-56 
interactive, 8-1 
lOS, 6-1 

initialization, 6-5 

SM-0046 G 

Station (continued) 
storage, 6-2 
tasks, 6-1 

STATION command, 6-1, 6-5 
Statistics, 2-52 

destination lD, 2-56 
STATUS 

command flow, 6-14 
interactive command, 8-8 

STlO overlay, 6-29 
Storage module (SMOO), 2-7 
STORE macro, 14-22 
Stream state global symbol, 6-34 
Streams, data, 3-1 
Striped disk groups (OCU-5), 3-40 
Structure of 

interactive console software, 8-2 
Local Memory, 2-2 

Subroutines, tape recovery, 4-62 to 4-64 
Subsystem overview, lOS Block Mux (BMX), 5-1 
Summary of service functions, 2-14 
SUMMARY display, 15-2 
SUMMARY utility, 15-1 
SYSOUMP, C-l 
System 

configuration, 1-3 
Directory, 2-3 
Directory contents, 2-5 
event timer, 2-50 
Log, 3-39, 4-4 

$T@KEY, 6-7 
Table 

access, 14-4 
area contents, 2-1 
area, TCB, 4-2 
and packet structure 

DCU-4, 3-4 
DCU-5, 3-22 

trace event codes, 15-8 
TABLE macro, 14-18 
TAPOIS 

in load display requests, 4-45 
in no-op requests, 4-41 
in positioning requests, 4-43 
in rewind requests, 4-52 
in unload requests, 4-54 

Tape, section 4 
configuration change request 

(FC$CHNGE), 4-6 
control block, 4-2 
end read requests, 4-37 to 4-40 
error 

data security erase, 4-63 
display, 4-64 
equipment check, 4-62 
IO burst check, 4-64 
intervention required, 4-62 
load point, 4-63 
not capable, 4-63 
recovery activities, 4-4 
recovery processing, 4-60 to 4-64 
response packet, 4-4 

Index-15 



Tape, (continued) 
Exec, section 4 

activity, 4-2 
bus-out check, 4-62 
command reject, 4-63 
conditions, 4-4, 4-62 to 4-64 
data check, 4-63 
data converter check, 4-63 
data overrun, 4-63 

free request (FC$FREE), 4-57 to 4-59 
load display request (FC$DSP), 4-4S to 

4-48 
mount request (FC$MOUNT), 4-6 to 4-8 
no-op request (FC$NOOP), 4-40 to 4-41 
packets, 4-S 

interprocessor routing of, 4-S 
request, 4-5 
response, 4-S 

positioning requests, 4-42 to 4-45 
read request (FC$READ), 4-9 to 4-23 
read-ahead data area, 4-2, 4-3 
remount request (FC$RMNT), 4-48 to 4-S0 
request packets, 4-5 
request processing, 4-5 
response packets, 4-5 
rewind requests, 4-51 to 4-S4 
sense bits, 4-61 
unload requests, 4-S4 to 4-S7 
write-behind data area, 4-3, 4-3 
write request (FC$WRITE), 4-23 to 4-36 

TAPEIO routine 
in read requests, 4-19 to 4-22 
in write requests, 4-34 to 4-36 

TAP END routine 
in end read requests, 4-38 to 4-40 

TAPERR routine, 4-4, 4-60 
TAPMOV routine 

in load display requests, 4-46 
in positioning requests, 4-43 to 4-45 
in rewind requests, 4-S2 to 4-S4 
in unload requests, 4-55 to 4-57 

Target Memory, 1-7, 2-6, 2-47, lS-10, 15-19 
Control Block (TMCB), 2-6 
Control Table, 2-6 
mapping, 3-44 
Processor, 1-7, 2-6, 2-47 
type, 2-6, 2-48 

Task, 1-7 
console output, 6-34 
flow and interaction, 6-S 
global symbols, 6-33 
interaction, 6-3 
screen image, 6-34 
station initialization, 6-S 
trace event parameter, 15-8, 15-12 
CLI task, 6-11 
DISPLAY task, 6-8 
KEYBD task, 6-6 
POST overlay, 6-32 
PROTOCOL task, 6-16 
STAGEIN task, 6-25 
STAGEOUT task, 6-27 
STIO overlay, 6-29 

Index-16 

TASK trace event parameter, 15-8, 15-12 
TCART overlay, 4-4, 4-61 
TCB (tape control block), 4-2 
TDEM1 activity 

description, 4-4 
in read requests, 4-13 to 4-18 
in write requests, 4-27 to 4-33 

TdO-dn trace event parameter, lS-10, lS-18 
TdO-in trace event parameter, 15-10, 15-18 
Tdm-dn trace event parameter, 15-10, 15-18 
Tdm-in trace event parameter, lS-10, lS-18 
TERM function, 2-46 
Termination 

FEI logical path activity, 11-1 
NSC activity, 10-6 

Terminology, 1-7 
TERMNSC (NSC) overlay, 10-10, 13-5 
TERMVME overlay, 13-5 
TERROR overlay, 4-4, 4-60 to 4-61 
TEST-I/O command, 5-13 
TEX routine 

in end read requests, 4-38, 4-40 
in free requests, 4-59 
in load display requests, 4-45, 4-46, 

4-48 
in mount requests, 4-8 
in no-op requests, 4-41 
in positioning requests, 4-43, 4-45 
in read requests, 4-19, 4-22, 4-23 
in remount requests, 4-48 to 4-50 
in rewind requests, 4-S2, 4-S4 
in unload requests, 4-S4, 4-55, 4-57 
in write requests, 4-33 to 4-34, 4-36 

TEXn, trace event parameters, lS-10, lS-17 
to lS-19 

TF$, lS-8 
Time-out 

channel, 5-24 
clock-event, 15-19 
device, S-18 
1/0, 3-18 

Timer 
entry, 2-S1 
queue (RTCQUE), 2-51 

TLOC pointer, lS-4 
TM$, 2-6 
TM@, 2-6 
TMOUT trace event parameter, IS-II, 15-19 
TMR@TM, 2-49 
Toggle display mode command, 15-27 
Tpi-rs trace event parameter, 15-10, 15-18 
TPTRL pointer, 15-4 
TPUSH 

function, 2-46 
Kernel call, 2-3 
Kernel service request, 9-10 

TR@, 3-23 
TRACE call, 15-4 
Trace event 

codes table, 15-8 
parameters table, 15-12 

Transfer commands, 5-9 to S-ll 
TRANSFER function, 2-47 
TRANSFR overlay, 3-22 

SM-0046 G 



Transparent format, 4-4 
Two one-by-one configurations (single path, 

multiple bank), 5-5 
Two-by-one configuration (multiple-path, 

multiple-bank), 5-6 
Two-by-two configuration (multiple path, 

single bank), 5-4 

UC$, 9-8 
UC@REQ field, 9-8 
UCDRVO through UCDRV9, 9-10 
UCHn trace event parameter, 15-11, 15-21 
UCRD/UCWRT trace event parameter, 15-21 
UCSHL (User Channel shell), 9-5 

close subroutine (UCCLS), 9-6 
driver subroutine (UCDRV), 9-7 
open subroutine (UCOPN), 9-5 
read subroutine (UCRD), 9-6 
trace event parameter, 11-17 
write subroutine (UCWRT), 9-6 

UCT (User Channel Table), 9-4 
UCXFR, 9-6 
UNICOS FEI connection, 11-1 
Unit 

checklunit exception, 5-25 
ready operator message, 3-38 
release process, 3-37 
select process, 3-33 

UNLOCK macro. 6-3 
Unload tape requests, 4-54 to 4-57 
$UNTIL macro, 14-3 
USCP (UNICOS Station Call Processor), 11-1 
User Channel 

configuration, 9-10 
drivers, 9-1 
1/0 software, 1-2 
1/0, 9-1 
message handler, 9-5 
requests, 9-1 
shell (UCSHL), 9-1, 9-5 
shell data handler (UCXFR), 9-7 
Table (UCT), 9-4 

User overlay allocation, 2-33 
Utilities 

EXTRACT, 3-39 
SUMMARY, 15-1 

VME overlay, 10-13, 13-4 
VMEbus, section 13 

description, 1-2 
interrupt handling, 13-8 
N-packet interface, 13-1 
Overlay connections, 13-1 
Overlays, 13-2 to 13-5 
Read and write requests, 13-5 to 13-7 
SCP protocol, 13-7 to 13-8 

VMEND overlay, 10-13, 13-4 
VMERD overlay, 13-4 
VMEWT overlay, 13-4 

Wait 1/0 (RQ$WIO), 5-20 
WAITIO subroutine, ISP, D-3 
WATCH macro, 6-3, 9-7 
Word, 1-7 
Write 

behind 
DCU-4, 3-6, 3-12 
DCU-5, 3-27 
tape, 4-2 

data 
from Local Memory to Target Memory, 

2-32 
to Buffer Memory from Local Memory, 

2-35 
FC$WRITE, 4-23 to 4-36 
-Hold request (CR$WRTH), 9-3 
interchange format, 4-4 
protect operator message, 3-38 
request 

HSX channel, 12-2 
tape (FC$WRITE), 4-23 to 4-36 
user channel (CR$WRT), 9-2 

request stepflow 
DCU-4, 3-4 
DCU-5, 3-25 

ring status, 4-63 
subroutine, UCSHL, 9-6 
-Write request (CR$WRT2), 9-3 

XCBT pointer, 5-7 
XCHT pointer, 5-7 
XDBT pointer, 5-7 
XDEV pointer, 5-7 
XDEVMAX entry, 4-5 
XIOP 

in tape processing, 4-1 
responsibilities, 1-6 

SM-0046 G Index-17 





READER'S COMMENT FORM 

lOS Software Internal Reference Manual SM-0046 G 

Your reactions to this manual will help us provide you with better documentation. Please take a moment to 
check the spaces below, and use the blank space for additional comments. 

1) Your experience with computers: __ 0-1 year __ 1-5 years __ 5+ years 
2) Your experience with Cray computer systems: __ 0-1 year __ 1-5 years __ 5+ years 
3) Your occupation: __ computer programmer __ non-computer professional 

__ other (please specify): ___________ _ 
4) How you used this manual: __ in a class __ as a tutorial or introduction __ as a reference guide 

__ for troubleshooting 

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria: 

5) Accuracy __ 8) Physical qualities (binding, printing) __ 
6) Completeness __ 9) Readability __ 
7) Organization __ 10) Amount and quality of examples __ 

Please use the space below, and an additional sheet if necessary, for your other comments about this 
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which 
the problem occurred. We promise a quick reply to your comments and questions. 

Name Address ------------------------ -----------------
Title ------------------ City __________ _ 
Company __________________ __ State/ Country ______ _ 
Telephone _______ _ Zip Code ________ _ 
Today's Date _______ _ 



FOLD 

('") 
C 
-t 
» 
r o 
z 
Gl 
-t 
:J: 
Ui 
r 

I~ 
I 
I 
I 
I 
I 

-----------------------------------------------~ 

""" 
BUSINESS REPLY CARD 
FIRST CLASS PERMIT NO 6184 ST PAUL, MN 

POSTAGE Will BE PAID BY ADDRESSEE 

RESEARCH, INC. 

Attention: PUBLICATIONS 
1345 Northland Drive 
Mendota Heights, MN 55120 

NO POSTAGE 
NECESSARY 
IF MAilED 

IN THE 
UNITED STATES 

-----------------------------------------------~ 
FOLD 

STAPLE 



READER'S COMMENT FORM 

lOS Software Internal Reference Manual SM-0046 G 

Your reactions to this manual will help us provide you with better documentation. Please take a moment to 
check the spaces below, and use the blank space for additional comments. 

1) Your experience with computers: __ 0-1 year __ 1-5 years __ 5+ years 
2) Your experience with Cray computer systems: __ 0-1 year __ 1-5 years __ 5+ years 
3) Your occupation: __ computer programmer __ non-computer professional 

__ other (please specify): ___________ _ 
4) How you used this manual: __ in a class __ as a tutorial or introduction __ as a reference guide 

__ for troubleshooting 

USing a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria: 

5) Accuracy __ 8) Physical qualities (binding, printing) __ 
6) Completeness __ 9) Readability __ 
7) Organization __ 10) Amount and quality of examples __ 

Please use the space below, and an additional sheet if necessary, for your other comments about this 
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which 
the problem occurred. We promise a quick reply to your comments and questions. 

Name Address --------------------- ----------------------Title ___________ _ City __________________ _ 
Company ________________ _ State/ Country ______ _ 
Telephone _______ _ Zip Code ________ _ 
Today's Date ______ _ 



FOLD 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
12 
I~ 
15 
I~ 
I~ 
I~ 
1* 
1 

1 

I 
I 
I 

-----------------------------------------------~ 

III It! 
BUSINESS REPLY CARD 
FIRST CLASS PERMIT NO 6184 ST PAUL, MN 

POSTAGE WILL BE PAID BY ADDRESSEE 

RESEARCH, INC. 

Attention: PUBLICATIONS 
1345 Northland Drive 
Mendota Heights, MN 55120 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

.-----------------------------------------------~ 
FOLD 

STAPLE 


