
CRAY-1®
COMPUTER SYSTEMS

HARDWARE REFERENCE MANUAL

HR-0004

c:
RESEARCH, INC.

CRAY-1®
COMPUTER SYSTEMS

,

HARDWARE REFERENCE MANUAL

HR-0004

Copyright© 1976, 1977, 1978, 1979, 1980, 1982 by
CRAY RESEARCH, INC. This manual or parts thereof
may not be reproduced in any form without permission
of CRAY RESEARCH, INC.

RECORD OF REVISION RESEARCH. INC. PUBLICATION NUMBER HR-0004

Each time this manual is revised and reprinted, all chan~es issued against the previous version in the form of change packets are
incorporated into the new version and the new version IS assigned an alphabetic level. Between reprints, changes may be issued
against the current version in the form of change packets. Each change packet is assigned a numeric designator, starting with
01 for the first change packet of each revision level.

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner. Changes to part of a page are noted by a change bar along the margin of the page. A change bar in the margin opposite
the page number indicates that the entire page is new; a dot in the same place indicates that information has been moved from
one page to another, but has not otherwise changed.

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to:

CRAY RESEARCH, INC.,
1440 Northland Drive,
Mendota Heights, Minnesota 55120

Revision Description

January 1976 - Original printing

A r,1ay 1976 - Repri nt wi th revi s i on

A-01 September 1976 - Corrections to pages 3-20, 3-27, 4-9, 4-10,
4-28, 4-36, 4-43, 4-55, and 4-57.

B October 1976 - Reprint vlith reV1Slon. Addition of floating
point range error detection, vector floating point error, and
error correction.

8-01 February 1977 - Changes to exchange pckage, additions to
instructions 152 and 153, corrections to syndrom bit
description, corrections to instruction summary, appendix D.

8-02 July 1977 - Corrections and changes to pages xi, 2-3, 3-19
through 3-28.1, 3-31, 3-34, 3-36, 3-38, 4-14 through 4-17, 4-54,
4-68,5-1, 5-3,5-4,5-6,6-2, A-4, D-1 through D-4.

C November 1977 - This printing obsol~tes revision B. Features
added include 8-bank phasing and I/O master clear procedure.
Chart tape reflects only changes introduced with this revision.

C-01 April 1978 - This change packet changes the nomenclature for two
flags in the exchange package (page 3-37) and corrects technical
errors on pages 2-11, 4-71, 5-6, 6-5, and A-3.

C-02 July 1978 - This change packet documents changes to the physical
description of the CRAY-l Computer System. Changes are all in
section 2.

D August 1978 - This printing is exactly the same as revision C
with change packets C-01 and C-02 incorporated.

HR-0004 i i F

Revision Description

E May 15, 1979 - Reprint with reV1Slon. This printing corrects
the description of the multiply algorithm and adds descriptions
of various standard options (i.e., vector population
instructions, programmable clock interrupt, and monitor mode
interruptl. In addition, sections 5 and 6 have been rewritten.
Revision E obsoletes versions C and 0 of this publication.

E-01 May, 1980 - This change packet documents changes to the multiply
functional unit that supports symmetrical multiply, documents
CAL instruction changes, and corrects miscellaneous technical
errors. Changes are noted by change bars.

F May, 1982 - This reprint with revision incorporates revision E
with E-Ol. With this printing, the publication number has been
changed to HR-0004. No other changes have been made.

HR-0004 i i • i

I

CONTENTS

1. INTRODUCTION

COMPUTATION SECTION
MEMORY SECTION
INPUT/OUTPUT SECTION .
VECTOR PROCESSING . .

2. PHYSICAL ORGANIZATION

INTRODUCTION .
MA I NFRA}1E . .

Modules

Clock ..
Power supplies

PRIMARY POWER SYSTEM .
COOLING
MAINTENANCE CONTROL UNIT .
FRONT-END COMPUTER . . .
EXTERNAL INTERFACE . .
MASS STORAGE SUBSYSTEM .

3. COMPUTATION SECTION

INTRODUCTION

REGISTER CONVENTIONS
OPERATING REGISTERS

V registers
V register reservations ..

Vector control registers

VL register

2240004

VM register

S registers
T registers

A registers
B registers

iii

· . 1-1

· 1-4
1-5

1-5

· . 1-6

2-1

· 2-1
2-1

2-1

2-4
2-5

2-5

· 2-6

· 2-6
2-7

· 2-7
· . 2-8

· 3-1

· 3-1

3-3
· . 3-3
· . 3-4

· . 3-5

· . 3-6

3-6

· 3-6

· . 3-7

3-8

· 3-8

. . . . 3-9

E

I

FUNCTIONAL UNITS 0 0 .' 0 If •• • ••• o 3-10

3-11
3-11
3-11

Address functional units
Addres~ add unit 0 0

Address multiply unit,

Scalar functional units
Scalar add ~nit 0 0, 0

Scalar shift unit

..... '. o 0 0 3-12
'0

0
• 0 3-12

o 3-12
Scalar logical unit 3~13

Population/leading zero count unit 0 • 3-13
Vector functional units . 0 0 0 0 0 0 •• 0 0 3-13

Vector functional unit reservation 0 • 0 • •• 00' '3-13
'Recursive characteristic of vector functional units o. 3-14
Vector add unit 0 0 • 0 • 0 0 0 0 0 3-17

Vector shift unit 0 0 0 0 • 3-17
Vector logical unit 0 0

Vector population count unit.
Floating point functional units.

Floating point add unit
Floating point multiply unit.
Reciprocal approximation unit

. '. .
· 3-17

3-18

· 3-18
o 3-18

· 3-19
o 0 0 3-19

ARITHMETIC OPERATIONS 3-20
. 3-20
. 3-21

Integer arithmetic '. . .
Floating point arithmetic 0 0

Normalized floating point . 0 •••••• 0 • 3-22

Floating point range errors 0 • • • 0 3-22

Floating point add unit . 0 • 3-23
Floating point multiply unit 0 • • 0 •• 0 • 3-23
Floating point reciprocal approximation unit 0 0 • 3-23

Double precision numbers 0 • • • • • 3-24

Addi t i on algor; thm 0 0 • 0 • 3-24

Multiplication algorithm 0 • '. • 3-25

Division algorithm o 3-30

LOGICAL OPERATIONS o 3-31

2240004 iv E

4.

INSTRUCTION ISSUE AND CONTROL
P register .
CIP register
NIP register
LIP register
Instruction buffers

EXCHANGE MECHANISM
XA register.
M register .
F register .
Exchange package

Memory error data
Active exchange package

Exchange sequence
Initiated by dead start sequence .
Initiated by interrupt flag set
Initiated by program exit
Exchange sequence issue conditions ...

Exchange package management

MEMORY FIELD PROTECTION
BA regi ster . .
LA register

DEAD START SEQUENCE

INSTRUCTIONS . . .

INSTRUCTION FORMAT .

.

Arithmetic, logical format
Shift, mask format
Immediate constant format
Memory trans fer format
Branch format

SPECIAL REGISTER VALUES

2240004 v

3-32

· . 3-32

· . 3-33

· . 3-33

· . 3-34

3-34

3-37

· . 3-37

· . 3-37

· . 3-39

· 3-40

· . 3-41

· . 3-42

· 3-42

· 3-43

· . 3-43

· . 3-43

3-44

3-45

... 3-46

· . 3-47

3-47

· . 3-47

· . 4-1

· . 4-1

· 4-1

4-2

· . 4-2

· 4-3

. . . . 4-4

4-5

E

I

I

INSTRUCTION ISSUE . . .

INSTRUCTION DESCRIPTIONS .

4-5

· 4-6
4-7

2240004

000000
001 i j k
0014j k

0020xk

0021xx

0022xx
003xjx

004xxx
005xjk
006ijkm
007ijkm
010i j km
011 i jkm
012ijkm
013ijkm
014ijkm
015ijkm
016ijkm
017ijkm
020ijkm
021 ijkm
022i j k
023ijx

024ijk
025i j k
026i j 0
026i j 1
027ijx
030i j k
031 i jk .

032i j k
033i j k

Error ex; t . .

Monitor functions
Programmable clock interrupt functions .
Transmit (Ak) to VL

Set floating point mode flag in M register.

· . 4-8

· . . 4-10
· . . 4-12

· 4-13
Clear floating point mode flag in M register ... 4-13
Transmit (Sj) to vector mask .. 4-14
Normal exit 4-15

Branch to (Bj k)
Branch to ijkm ..
Return jump to ijkm; set Boo to (P)

Branch to ijkm if (Ao) = 0 .
Branch to i j km if (Ao) ~ 0 .
Branch to i j km if (Ao) positive

Branch to i j km if (Ao) negative

Branch to i j km if (So) = 0 .
Branch to i j km if (So) ~ 0 .
Branch to ijkm if (So) positive

Branch to ijkm if (So) negative

Transmit jkm to Ai
Transmit complement of jkm to Ai
Transmit jk to Ai
Transmit (Sj) to Ai
Transmit (Bjk) to Ai
Transmit (Ai) to Bjk
Population count of (Sj) to Ai
Population count parity of (Sj) to Ai
Leading zero count of (Sj) to Ai
Integer sum of (Aj) and (Ak) to Ai
Integer difference of (Aj) and (Ak) to Ai
Integer product of (Aj) and (Ak) to Ai

Transmit I/O status to Ai

vi

.

. .

· 4-16
· . 4-17

· 4-18

· 4-19
· . 4-19

· . 4-19
· .. 4-19

· . 4-20
· 4-20

· . 4-20
· 4':'20

· 4-21
· 4-21
· 4-22

4-23

· 4-24

· 4-24
· 4-25
· 4-25
· 4-26
· 4-27
· 4-27
· 4-28

4-29

E

2240004

034i j k

035i j k

036i j k

037ijk

040ijkm
041 i j km
042ijk
043i j k
044i j k
045ijk
046ijk
047i j k

050i j k

051ijk

052i j k

053i j k
054i j k
055i j k
056i j k
057ijk
060i j k
061 i j k
062i j k
063i j k
064i j k

065ijk

066i j k
067i j k
070ijx

Block transfer (Ai) words from memory starting at
address (Ao) to B registers starting at register jk 4-31
Block transfer (Ai) words from B registers starting
at register jk to memory starting at address (Ao) 4-31
Block transfer (Ai) words from memory starting at
address (Ao) to T registers starting at register jk 4-31
Block transfer (Ai) words from T registers starting
at register jk to memory starting at address (Ao) 4-31

Transmit jkm to Si · 4-33
Transmit complement of jkm to Si · 4-33
Form 64 - jk bits of one's mask in Si from right . 4-34
Form jk bits of one's mask in Si from left 4-34
Logical product, of (Sj) to (Sk) to Si 4-35
Logical product of (Sj) and complement of (Sk) to Si 4-35
Logical difference of (Sj) and (Sk) to Si . . 4-35
Logical equivalence of (5k) and co~plement of (5k)
to Si
Scalar merge
Logical sum 'of (Sj) and (Sk) to Si

Shift (Si) left jk places to So

Shift (Si) right 64 - jk places' to S

Shift (Si) left jk places to Si

4-35

. . . 4-35

· 4-35
· 4-38

· . 4-38
· . 4-38

Shift (Si) right 64 - jk places to Si .. 4-38
Shift (Si) and (Sj) left by (Ak) places to Si ... 4-39
Shift (Sj) and (5i) right by (Ak) places to Si .. 4-39
Integer sum of (Sj) and (Sk) to Si
Integer difference of (Sj) and (Sk) to Si .
Floating sum of (Sj) and (Sk) to Si ..
Floating difference of (Sj) and (Sk) to Si
Floating product of (Sj) and (Sk) to Si ..

· . 4-40

· 4-40
4-41

· . 4-41
· . 4-42

Half-precision rounded floating product of (Sj) and
(Sk) to Si 4-42
Rounded floating product of (Sj) 'and (Sk) to Si .. 4-42

Reciprocal iteration; 2 - (Sj) * (Sk) to Si 4-42
Floating reciprocal approximation of (Sj) to Si .. 4-44

vii E

2240004

071 i j k

072ixx
073ixx
074i j k
075i j k
076i j k
077i j k
10hijkm
Ilhijkm
12hi j km
13hijkm
140i j k

141 ijk

142i j k

143ijk

144ijk

145ijk

146i j k

147ijk

150ijk

151ijk

152i j k

153i j k

154i j k
155i j k

Transmit (Ak) or normalized floating point constant
to Si 4-45
Transmit (RTC) to Si 4-47
Transmi t (VM) to Si . .
Transmit (Tjk) to Si
Transmit (Si) to Tjk
Transmit (Vj element (Ak)) to Si
Transmit (Sj) to Vi element (Ak)
Read from ((Ah) + jkm) to Ai
Store (Ai) to (Ah) + jkm ..
Read from ((Ah) + jkm) to Si
Store (Si) to (Ah) + jkm ..
Logical products of (Sj) and (Vk elements) to
Vi elements '

. . . 4-47
4-47

· 4-47
· 4-48

.. 4-48

· 4-49
· 4-49

.. 4-49

4-49

· 4-51
Logical products of (Vj elements) and (Vk elements)
to Vi elements 4-51
Logical sums of (Sj) and (Vk elements) to Vi
elements 4-51
Logi ca 1 sums of (V j elements) and (Vk elements) 'to
Vie 1 eme n t s 4 - 51
Logical differences of (Sj) and (Vk elements) to
Vi elements 4-51

Logical differences of (Vj element~) and (Vk
elements to Vi elements 4-51
If VM bit = 1, transmit (Sj) to Vi elements
If VN bit = 0, transmit (Vk elements) to Vi elements4-51
If VM bit = 1, transmit (Vj elements) to Vi elements
If VM bit = 0, transmit (Vk elements) to Vi elements4-51
Single shifts of (Vj elements) left by (Ak) places
to Vi elements 4-55
Single shifts of (Vj elements) right by (Ak) places
to Vi elements 4-55
Double shifts of (Vj elements) left by (Ak) places
to Vi elements 4-56
Double shifts of (Vj elements) right by (Ak) places
to Vi elements•......... 4-56
Integer sums (Sj) and (Vk elements) to Vi elements. 4-61
Integer sums (Vj elements) and (Vk elements) to
Vi elements 4-61

viii E

156i j k

157ijk

160i j k

161 i j k

162i j k

163i j k

164 i j k

165i j k

166i j k

167i j k

170i j k

171ijk

172ijk

173ijk

174ijO

I 174ij1

174ij2

175xj k

176ixk

177xj k

2240004

Integer differences of (Sj) and (Vk elements) to
Vi elements.4-61
Integer differences of (Vj elements) and (Vk
elements) to Vi elements
Floating products of (Sj) and (Vk elements)
Vi elements ... '
Floating products of (Vj elements) and (Vk
elements) to Vi elements
Half-precision rounded floating products of
and (Vk elements) to Vi elements

to

(Sj)

Half-precision rounded floating products of (Vj

· 4-61

· 4-63

. · 4-63

· 4-63

elements) and (Vk elements) to Vi elements . 4-63
Rounded floating products of(Sj) and (Vk elements
to Vi 'elements 4-63
Rounded fl oati ng products 0 f (V j elements) and
(Vk elements) to Vi elements 4-63
Reciprocal iterations; 2 - (Sj) * (Vk elements) to
Vi elements 4-63
Reciprocal iterations; 2 - (Vj elements) * (Vk
elements) to Vi elements 4-63
Floating sums of (Sj) and (Vk elements) to Vi
elements 4-66

Floating sums of (Vj elements) and (Vk elements)
to Vi elements 4-66

Floating differences of (Sj) and (Vk elements) to
Vi elements 4-66

Floating differences of (Vj elements) and (Vk
elements) to Vi elements . • 4-66
Floating point reciprocal approximations of
(Vj elements) to Vi elements 4-68
Population counts of (Vj elements) to Vi elements

Population count parities of (Vj elements) to Vi
elements 4-70

Test (Vj elements) and enter test results into VM;
the type of test made is defined by k 4-71
Transmit (VL) words from memory to Vi elements
starting at memory address (Ao) and incrementing
by (Ak) for successive addresses 4-73

Transmit (VL) words from Vj elements to memory
starting at memory address (Ao) and incrementing
by (Ak) for successive addresses 4-73

i x E

I

I

I

5. MEMORY SECTION ...
INTRODUCTION • . .
MEMORY CYCLE TIME
MEMORY ACCESS . . .
MEMORY ORGANIZATION
MEMORY ADDRESSING ..
SPEED CONTROL . . .
8-BANK PHASING OPTION
MEMORY PARITY ERROR CORRECTION .

6. INPUT/OUTPUT SECTION.
I/O CHANNELS

I/O instructions

Basic channel operation.
Input channel programming
Output channel programming

16-bit asynchronous channels
Input channels

Output channels
16-bit high-speed asynchronous channels

Input channe 1 s
Output channels

16-bit synchronous channels ..
Input channels
Output channels

PROGRAMMED MASTER CLEAR TO EXTERNAL
MEMORY ACCESS .

I/O lockout •.....
Memory bank conflicts ..
I/O memory conflicts
I/O memory request conditions .
I/O memory addressing

REAL-TIME CLOCK
PROGRAMMABLE CLOCK OPTION

2240004 x

5-1

5-1

5-1
5 ... 1

5-3

5-4
5-4

5-5

5-5

6-1

6-1

6-1

6-2
6-3

6-7

6-7

6-7

6-9

6-10

6-10
6-12
6-13

6-13

6-15

6-17

6-19

6-21
6-21
6-21
6-22

6-22
6-22

6-23

E

, Interrupt interval register. · 6-23

Interrupt countdown counter . . . · 6-24

Clear programmable clock interrupt request 6-24

APPENDIXES

A SUMMARY OF TIMING INFORMATION A-1

8 MODULE TYPES . 8-1

C SOFTWARE CONSIDERATIONS · C-1

D INSTRUCTION SUMMARY . D-1

2240004 xi E

FIGURES

1-1
2-1
2-2
2-3
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
4-1
LJ(-2

4-3
4-4
4-5

4-6

I 5-1
5-2

I 5-3
6-1
6-2

2240004

Basic computer system
Physical organization of the mainframe
General chassis layout
Clock pulse waveform
Computation section ..
Integer data formats
Floating point data format
49-bit floating point addition
Floating point multiply pyramid

· . 1-2
· ... 2-2

. 2-3

· ... 2-7
· 3-2

· . . . 3-20
. 3- 21

· 3-24
· 3-26

Relationship of instruction buffers and registers .. · . 3-32
Instruction buffers
Exchange package
General format for instructions .
Format for arithmetic and logical instructions
Format for shift and mask instructions
Format for immediate constant instructions
Format for memory transfer instructions .

Two-parcel format for branch instructions ..
Memory address; 16 banks
Memory data path with SECDED
Error correction matrix

· . 3-34
· 3-38

· . . . 4-1

· 4-2
· 4-2

. 4-3
4-4

. .. 4~4

· 5-4
..... 5-6

· . 5-7
Basic I/O program flow chart · 6-4

6-20 Channel I/O control

xii E

TABLES

1-1 Characteristics of CRAY-1 Computer System

2-1 Characteristics of a 00-19 Disk Storage Unit

5-1 Vector Memory rate * 80 x 106 references per second .
6-1 Channel word assembly/disassembly

6-2 16-bit asynchronous input channel
signa 1 exchange .

6-3 16-bit asynchronous output channel
signal exchange

6-4 16-bit high-speed asynchronous input
channel signal exchange

6-5 16-bit high-speed asynchronous output
channel signal exchange

6-6 16-bit synchronous input channel
signal exchange

6-7 16-bit synchronous output channel
signal exchange

2240004 xiii

1-3

2-13

5-4
6-2

6-8

6-9

6-11

6-12

6-14

6-16

E

SECTION 1

INTRODUCTION

INTRODUCTION 1

The CRAY-1 Computer System is a powerful general-purpose computer capable

of extremely high processing rates. These rates are achieved by combining
scalar and vector capabilities into a single central processor which is

joined to a large, fast, bi-polar memory. Vector processing by performing
iterative operations on sets of ordered data provide results at rates

greatly exceeding result rates of conventional scalar processing. Scalar

operations complement the vector capability by providing solutions to
problems not readily adapted to vector techniques.

Figure 1-1 represents the basic organization of a CRAY-1 system. The

central processor unit (CPU) is a single integrated processing unit

consisting of a computation section, a memory section, and an input/
output section. The memory is expandable from 0.25 million 64-bit words

to a maximum of 1.0 million words. The 12 input channels and 12
output channels in the input/output section connect to a maintenance
control unit (MCU), a mass storage subsystem, and a variety of front-end
systems or peripheral equipment. The MCU provides for system initializa

tion and for monitoring system performance. The mass storage subsystem

provides secondary storage and consists of one to eleven Cray Research
OCU-2 Disk Controllers, each with one to four 00-19 Disk Storage Units.

Each 00-19 has a capacity of 2.424 x 109 bits.

I/O channels can be connected to independent processors referred to as

front-end computers or I/O stations or can be connected to peripheral
equipment according to the requirements of the individual installation.

At least one front-end system is considered standard to collect data
and present it to the CRAY-1 for processing and to receive output from

the CRAY-1 for distribution to slower devices.

Table 1-1 summarizes the characteristics of the system. The following
paragraphs provide an additional introduction to the three sections of
the CPU; later sections of this manual describe the features in detail.

2240004 1-1 E

r--- - - ---- - --- -- -- - -- -- --~- - - ---- - --1 ,
I

COMPUTATION SECTION

• Registers
• Functional units
• Instruction buffers

MEMORY SECTION

0.25 M or 0.5 M or 1 M
64-bit bi-polar words

I/O SECTION
• 12 input channels
• 12 output channels

I / If, t 1 \ \ \ \ '\ CPU
II .\ \ \ \\ ...J L _ _ _ _ _ _ _ _ _/-1-1 -1- - - - + ,... .,... \" " - ~ - - - - --

MCU

2240004

/'1 I 1\ \ ,\\ \

#
/' //11 1\\\\\\

1/ I 1\\ \ \ \ \
/ / Ii 1\ \ \ \ \ \

/ I 1\\ \ \ \ \
/ / I I 1\\ \ \ \ \

/1 /1 /: , I, \ \ \ " \\.

MASS STORAGE SUBSYSTEM, FRONT-END COMPUTERS,
I/O STATIONS, AND PERIPHERAL EQUIPMENT

Figure 1-1. Basic computer system

1-2 E

I

Table 1-1. Characteristics of the CRAY-l Computer System

COMPUTATION SECTION

• 64-bit word
• 12.5 nanosecond clock period

• 2 1 s complement arithmetic
• Scalar and vector processing modes,
• Twelve fully segmented functional units

• Ei~ht 24-bit address (A) registers
• Sixty-four 24-bit intermediate address (B) registers

• Eight 64-bit scalar (5) registers
• Sixty-four 64-bit intermediate scalar (T) registers
• Eight 64-element vector (V) registers, 64-bits per element

• Four instruction buffers of 64 16-bit parcels each

• Integer and floating point arithmetic

• 128 instruction codes

MEMORY SECTION

• Up to 1,048,576 words of bi-po1ar memory
, (64 data bits and eight error correction bits)

• . Eight or sixteen banks

• Four-c1ock-period bank cycle time
• One word per clock period transfer rate toB~ T, and V registers
• One word per two clock periods transfer rate to A and S registers
• Four words per clock period transfer rate to instruction buffers
• Single error correction - double error detection (SEeDED)

INPUT/OUTPUT SECTION

• Twelve input channels and twelve output chann,els
• Channel groups contain either six input or six output channels

• Channel groups served equally by memory (scanned every four
clock periods)

• Channel priority resolved within channel groups , Sixteen data bits, three control bits per channel, four
parity bits, and an external master clear

• Lost data detection

2240004 1-3 E

COMPUTATION SECTION

The computation section contains instruction buffers, reqisters and
functional units which operate together to execute a program of
instructions stored in memo~y.

Arithmetic operations are either integer or floating point. Inteqer
arithmetic is performed in two's complement mode. Floating point
quantities have signed-magnitude representation.

The CRAY-1 executes 128 operation codes as either 16-bit (one parcel) or
32-bit (two-parcel) instructions. Operation codes provide for both
scalar and vector processing.

Floating point instructions provide for addition, subtraction, multi
plication, and reciprocal approximation. The reciprocal approximation
instruction allows for the computation of a floating divide operation
using a multiple instruction sequence.

Integer or fixed point operations are provided as follows: integer
addition, integer subtraction, and integer multiplication. An integer
multiply operation produces a 24-bit result; additions and subtractions
produce either 24-bit or 64-bit results. No integer divide instruction
is provided and the operation is accomplished through a software
algorithm using floating point hardware.

The instruction set includes Boolean operations for OR, AND, and exclusive
OR and for a mask-controlled merqe operation. Shift operations allow the
manipulation of either 64-bit or 128-bit operands to produce 64-bit
results. With the exception .of 24-bit integer arithmetic, all operations
are implemented in vector as well as scalar instructions. The inteqer
product is a scalar instruction designed for index calculation. Full
indexing capability allows the proqrammer to index throughout memory in
either scalar or vector modes. The index may be positive or negative in
either mode. This allows matrix operations in vector mode to be performed
on rows or the diagonal as well as conventional column-oriented operations.

Each functional unit implements an algorithm or a portion of the instruction
set. Units are independent and are fully segmented. This means that a new
set of operands for unrelated computation may enter a functional unit each
clock period.
2240004 1-4 E

I

I

MEMORY SECTION

The memory for the CRAY-l normally consists of 16 bank~' of bi-polar
LSI memory. Three memory size options are available: 262,144 words,
524,288 words, or 1,048,576 words. Each word is 72 bits long and consists

of 64 data bits and 8 check bits. The banks are independent of each other.

Sequentially addressed words reside in sequential banks. The memory cycle
time is four clock periods (50 nsec). The :access time, that is, the time
required to fetch an operand from memory to a scalar register is 11 clock
periods (137.5 nsec).

The maximum transfer rate for B, T, and V registers is one word per
clock period. For A and S registers, it is one word per two clock
periods. Transfers of instructions to the instruction buffers occur
at a rate of 16 parcels (four words) per clock period.

Thus, the high speed of memory supports the requirements of scientific
applications while its low cycle time is well suited to random access
applications. The phased memory banks allow high communication rates
through the I/O section and provide low read/store times for vector
registers.

INPUT/OUTPUT SECTION

Input and output communication with the CRAY-l is over 12 full duplex
16-bit channels. Associated with each channel are control lines that
indicate the presence of data on the channel (ready), data received
(resume), or transfer complete (disconnect).

The channels are divided into four channel groups. A channel group
consists of either six input paths or six output paths. The four
channel groups are scanned sequentially for I/O requests at a rate of
one channel group per clock period. The channel group will be reinterrogated
four clock periods later whether any I/O request is pending in the channel
or not. If more than one channel of the channel group is active, the
requests are resolved on a priority basis. The request from the lowest
numbered channel is serviced first.

t See 8-Bank Phasing Option, section 5.
2240004 1-5 E

VECTOR PROCESSING

All operands processed by the CRAY-1 are held in registers prior to their
being processed by the functional units and are received by registers
after processing. In general, the sequence of operations is to load one
or more vector r~gisters from memory and pass them to functional units.
Results from this operation are received by another vector register and
may be processed additionally in another operation or returned to memory
if the results are to be retained.

The contents of a V register are transferred to or from memory by
specifying a first word address in memory, an increment for the memory
address, and a length. The transfer proceeds beginning with the first
element of the V register and incrementing by one in the V register at
a rate of up to one word per clock period depending on memory conflicts.

A result may be received by a V register and re-entered as an operand to
another vector computation in the same clock period. This mechanism
allows for "chaining" two or more vector operations together. Chain
operation allows the CRAY-l to produce more than one result per clock
period. Chain operation is detected automatically by the CRAY-1 and
is not explicitly specified by the programmer, although the programmer
may reorder certain code segments in order to enable chain operation.

There may be a conflict between scalar and vector operations only for the
floating point operations and storage access. With the exception of these
operations, the functional units are always available for scalar operations.
A vector operation will occupy the selected functional unit until the

vector has been processed.

Parallel vector operations may be processed in two ways:
1. Using different functional units and all different V registers.
2. Chain mode, using the result stream from one vector register

simultaneously as the operand to another operation using a
different functional unit.

Parallel operations on vectors allow the generation of two or more results
per clock period. Most vector operations use two vector registers as

2240004 1-6 E

operands or one scalar and one vector register as operands. Exceptions are
vector shifts, vector reciprocal, and the load or store instructions.

Since many vectors exceed 64 elements, a long vector is processed as one
or more 64-element segments and a possible remainder of less than 64
elements. Generally, it is convenient to compute the remainder and process
this short segment before processing the remaining number of 64-element
segments; however, a programmer may choose to construct the vector loop
code in any of a number of ways. The processing of long vectors in FORTRAN
is handled by the compiler and is transparent to the programmer.

2240004 1-7 E

SECTION 2

PHYSICAL ORGANIZATION

PHYSICAL ORGANIZATION

INTRODUCTION

The CRAY-1 computer system consists of the following:
- The CPU mainframe
- A power cabinet

- A condensing unit
- Two motor generators and control cabinets
- A maintenance control unit (MCU)
- One or more disk systems, and

- Optional interfaces to one or more front-end comouter systems.

~1AINFRAME

2

The CRAY-1 mainframe, figure 2-1, is composed of 24 logic chassis. The
chassis are arranged two per column in a 2700 arc which ;s about five feet
in diameter. The twelve columns are about 6 1/2 ft tall. At the base of
the col umns, 1 1/2 ft hi gh and extendi ng . outward about 2 1/2 ft, are
cabinets for power supplies and cooling distribution systems.

Viewing the cabinet from the top, the chassis of the upper circle are labeled
A through L proceeding in a counter-clockwise direction from the opening.
The chassis of the lower circle are labeled M through X. The assignment
of modules to chassis is illustrated in figure 2-2.

MODULES
The CRAY-1 computer system uses only one basic module construction through
out the entire machine. The module consists of two 6 x 8 inch printed
circuit boards mounted on opposite sides of a heavy copper heat transfer
plate. Each printed circuit board has capacity for a maximum of 144
integrated circuit (IC) packages and approximately 300 resistor packages.

2240004 :2-1 E

I'

IIII1I I
II

- Dimensions

Base - approximately 9 ft diameter by 1 1/2 ft high
Columns - approximately 5 ft diameter by 6 1/2 ft high including

height of base
- 24 chassis arranged two per column in 12 columns
- Approximately 1700 modules (16 banks); approx. 115 standard module types

Each module contains up to 288 IC packages per module
Power consumption approximately 118 kw input for maximum memory size

- Refrigerant-22 cooled with refrigerant/water heat exchange

- Three memory options
- Weight 10,500 lbs (maximum memory size)
- Three basic chip types

5/4 NAND gates
Memory chips
Register chips

Figure 2-1. Physical organization of mainframe

2240004 2-2 E

1

4

6

48

0

32

24

16

16

24

32

40

48

56

64

71

I 2240004

ABC o
:

~

!
I

I

!

,

STORAGE
!
!

CLOCK A:>;[

ADJlRESS

FA)/OUT

I

I

I
I ; I

! t-i ----t--- ---t--
I !

Q1EClI B ITS I

I
I

Q1ECK BITS I
I I

-~r--

i
STORAGE

I
CLOCK ANI:

ADDRESS

FANOUT

M N 0 P

E F
CLK OSC

v pop

CLOCK
FANOlrr

FLOATING

I
~IULTIPLY

SCALAR

ADD

G

FLOATING

ADD

I
SCALAR

I
REGISTERS

SECDED
ADDRESS

REGISTERS

COtITROL
SCALAR

SHIFTS I.OGIC ADDR

ADDERS

VECTOR

SHIFT

CONTROL
NIP

I~STR.

CONTROL BUFFERS

SECDED VECTOR
ADD XP DATA

H
I

!
I

RECIP.

APPROX.

SEeDED

ADDRESS

~ruLTIPLY

S POP
It

VECTOR

LOGICAL

CONTROL

SECDED

\'j TO VECTOR I VECTOR SIIIFT STOR. -----r-------l- r

Vj 'V1 TO ruTO<AC °T ____ _
DATA TO \'ECTOR REGISTERS

I I I

I i I ADDR

___ ~DDR rN0~~ __ 1 i FANOUT

i i

I ':0
I

---- CLOCKF~~KOUT--- ----

L LINE

ADPTR

a R 5

L LINE
ADPTR

T

Figure 2-2. General chassis layout

2-3

J K L
71

64

56

48

40

STORAGE

I I
32

CLOCK ANDI

ADDRESS .

FANOUT 24

I'

I

16

GlEC1 BITS

I
Q1ECK BITS

I

16

STORAGE

I I
24

CLOCK AND

ADDRESS

FANOUT
3

4

4

5

6

71

u v w x

E

I

~

There are 1662 modules in a CRAY-1 with a standard 16-bank' memory. Modules

are arranged 72 per chassis as illustrated in figure 2-2. There are over

115 module types. Usage varies from 1 to over 700 modules per type. Module
type and usage is summarized in Appendix B. Each module type is identified
by two letters. The first indicates the module series (A, D, F, G, H, J, M,

R, S, T, V, X, and Z). The second letter identifies types of modules within

a series.

The computation and I/O modules are on the eight chassis forming the center
four columns. Each of the eight chassis on either side of the four center

columns contains one of the 16 memory banks.

Modules are cooled by transferring heat via the heat transfer plate to

cooling bars which in turn transfer the heat to a refrigerant-22. Power
dissipation depends on module density. The average module dissipation by
usage is approximately 50 watts.

Two supply voltages are used for each module: -5.2 volts for IC power;
-2.0 volts for line termination.

Each module has 96 pin pairs available for interconnecting to other modules.

All interconnections are via twisted pair wire. The average utilization of
pins is approximately 60 percent.

Each module has 144 available test points that can be used for trouble

shooting. Test points are driven by circuits that do not drive other loads.

CLOCK
All timing within the mainframe cabinet is controlled by a single phase

synchronous clock network. This clock has a period of 12.5 nsec. The

lines that carry the clock signal from the central clock source to the
individual modules of the CPU are all made of uniform length so that
the leading edge of a clock signal arrives at all parts of the CPU
cabinet at the same time. A three nanosecond pulse (figure 2-3) is
formed on each module.

2240004 2-4 E

I----12.5 ns-----~.[

--II~I ____ ~~I ~ __ __
~3 ns ~

Figure 2-3. Clock pulse waveform

References to clock periods in this manual are often given in the form
CPn where n indicates the number of the clock period during which an
event occurs. Clock periods are numbered beginning with CPO. Thus, the
third clock period would be referred to as CP2.

PO~JER SU PPL I ES

Thirty-six power supplies are used for the CRAY-l computer system. There
are twenty -5.2 volt supplies and sixteen -2.0 volt supplies. The supplies
are divided into twelve groups of three. Each group supplies one column.

The power supply design assumes a constant load. The power supplies do not
have internal regulation but depend on the motor-generator to isolate and
regulate incoming power. The power supplies use a twelve-phase transformer,
silicon diodes, balancing coil, and a filter choke to supply low ripple
DC voltages. The entire supply is mounted on a refrigerant-22 cooled heat
sink. Power is distributed via bus bars to the load.

PRIMARY POWER SYSTEM

The primary power system consists of a pair of 150 KW motor generators,
motor-generator control cabinets, and a power distribution cabinet. The
motor generators supply 208 V, 400 cycle, three-phase power to the power
distribution cabinet, which the power distribution cabinet supplies via a
variac to each power supply. The power distribution cabinet also contains
voltage and temperature monitoring equipment to detect power and cooling

malfunctions.

2240004 2-5 E

I

COOLING

Modules in the CRAY-l computer system are cooled by the exchange of heat
from the module heat sink to a refrigerant-cooled cold bar. The module
heat sink is wedged along both B-inch edges to a cold bar. Cold bars are
arranged in vertical columns, with each column having capacity for 144
modules. The cold bar is a cast aluminum bar containing a stainless steel
refrigerant tube.

MAINTENANCE CONTROL UNIT

The CRAY-1 computer s¥stem is equipped with a 16-bit minicomputer system
that serves as a maintenance tool and provides control for the system
initialization. After the CRAY-l operating system has been initialized
and is operational, communication with the MCU is via a software protocol.
The MCU is connected to a CRAY-l channel pair with additional control
signals for execution of the master clear operation, I/O master clear
operation, dead dump operation, and sample parity error operation.
The maintenance control unit (MCU) includes:
1. A Data General ECLIPSE minicomputer or equivalent with

32K words of 16-bit memory
2. An BO-column card reader
3. A 132-column 1ine'printer
4. An BOO bpi 9-track tape unit
5. Two display terminals
6. A moving head disk drive

Included in the MCU system is a software packaqe that enables it to

serve as a local batch station during production hours. Asa local
station, diagnostic routines may be submitted for execution along with
other batch jobs. These diagnostics are typically stored on the local

disk and are submitted to the CRAY-l by operator command.

The system initialization procedure is referred to in this manual as
the dead start sequence. This sequence is described in detail in
Section 3.

Detailed information about the MCU is presented in separate publications.

2240004 2-6 E

FRONT-END COMPUTER

The CRAY-l computer system may be equipped with one or more front-end
computer systems that provide input data to the CRAY-l computer system
and receive output from the CRAY-l to be distributed to a variety of
slow-speed peripheral equipments. A front-end computer system is a self
contained system that executes under the control of its own operating
system. Peripheral equipment attached to the front-end computer will
vary depending on the use to which the system is put.

A front-end computer may service the CRAY-l in the following ways:

• As a local operator station

• As a local batch entry station
• As a data concentrator for multiplexing several other stations

into a single CRAY-l channel

• As a remote batch entry station

Detailed information about the front-end system is presented in

separate publications.

EXTERNAL INTERFACE

The CRAY-l may be interfaced to front-end systems through special interface
controllers that compensate for differences in channel widths, machine word
sizes, electrical logic levels, and control protocols. An interface is a

Cray Research product and is contained in a small air-cooled stand-alone
cabinet located near the front-end computer system. A primary goal of the
interface is to maximize the utility of the front-end channel connected
to the CRAY-l. Such a channel is generally slower than CRAY-l channels.

The CRAY-l may be separ~ted from the interface cabinet by up to 320 ft
of cable with no degradation to its effective transfer rate. f1aximum
separation of the interface cabinet from the host processor is determined
by the channel characteristics of the front-end machine. If site condi
tions require that the interconnected systems be physically located a
considerable distance apart, the effective transmission rate may be degraded.

2240004 2-7 E

MASS STORAGE SUBSYSTEM

Mass storage for the CRAY-1 computer system consists of one or more Cray
Research, Inc. OCU-2 Disk Controllers and multiple 00-19 Disk Storage Units.
The disk controller is a Cray Research, Inc. product and is implemented in
flat-pack ECl logic similar to that used in the CRAY-1 mainframe. The con
troller operates synchronously with the mainframe over a 16-bit full-duplex

channel. The controller is in a OCC-1 refrigerant-cooled cabinet located
near the mainframe. Up to four controllers may be contained in a cabinet.
The cabinet requires about 5 sq. ft. of floor space and is 49 inches high.

Each controller may nave from one to four 00-19 disk storage units attached
to it. Data passes tnrough the controller to or from one disk storage unit
at a time. The controller may be connected to a 16-bit minicomputer station
in addition to the CRAY-l. If this additional connection is made, the station
and mainframe may share the controller operation. Either, but not both, can
have an operation in progress at one time; software interlocks must be provided
to avoid conflicts.

Each of the 00-19 disk storage units has two ports for controllers. A second
independent data path may exi'st to each disk storage unit through another
Cray Research controller. Reservation logic is provided to control access
to each disk storage unit.

Operational characteristics of the 00-19 Disk Storage Units are summarized
in Table 2-1. Further informati'on about the mass storage subsystem is
presented in separate publications.

Ta~le 2-1. Characteristics of a 00-19 Disk Storage Unit

Bit capacity per drive 2.424 x 109 Latency 16.6 msec
Tracks per surface 411 Access time 15 - 80 msec
Sectors per track 18 Data transfer rate
Bits per sector 32,768 (average bits per sec.) 35.4 x 106

Number of head groups 10 Total bits that can be
streamed to a unit

Recording surfaces (disk cylinder capacity) 5.9 x 106

per drive 40

2240004 2-8 E

SECTION 3

COMPUTATION SECTION

COMPUTATION SECTION

INTRODUCTION

The computation section (figure 3-1) consists of an instruction control
network, operating registers, and functional units. The instruction
control network performs all decisions related to instruction issue and
coordinates the activities for the three types of processing, vector,
scalar, and address. Associated with each type of processing are
registers and functional units that support the processing mode. For
vector processing, there are: a set of 64-bit 64-element registers,

3

three functional units dedicated solely to vector applications, and three
floating point functional units supporting both scalar and vector operations.
For scalar processing, there are two levels of 64-bit scalar registers and
four functional units dedicated solely to scalar processing in addition
to the three floating point units shared with the vector operations. For
address processing, there are two levels of 24-bit registers and two
integer arithmetic functional units.

Vector and scalar processing is performed on data as opposed to address
processing which operates on internal control information such as addresses
and indexes. The flow of data in the computation section is generally from
memory to registers and from registers to functional units. The flow of
results is from functional units to registers and from registers to memory
or back to functional units. Data flows along either the scalar or vector
path depending on the mode of processing it is undergoing. An e~ception is
that scalar registers can provide one of the operands required for vector
operations performed in the vector functional units.

The flow of address information is from memory or from control registers to
address registers. Information in the address registers can then be distribute
to various parts of the control network for use in controlling the scalar,
vector, and I/O operations. The address registers can also supply operands
to two integer functional units. The units generate address and index
information and return the result to the address registers. Address
information can also be transmitted to memory from the address registers.

2240004 3-1 E

Vector Registe s r
V7

V6
i V5 I Pop t

((AO)+(Ak)
V4

Shift

£
V3

f Logical

I
V?

VI Add

VO Vector
Functional

Sj Units r-
f- Vj l- Ak

I = Ij Vk ~

l- I/ Vi t-

~
I-

Vj
I- Reclp. Appr

I Multiply
L. Add 77 Vector J'1..

Con~rol ~ Floating
i S.i Si

VECTOR MASK r Point
,

Functional Memory Sj Si Units
REAL- TIME CLOCK ~ Sk
PROG. CLOCK INT. i·pi ~ l-I I f--T77 I-

IUJ
Scalar Registers

.......--J
S57 W (AO) , I~ 5i ~ f Poo/LZ

"" f Shift I·t-

v~ ¥----' f I no; rill sf- 5j
Add I TOO ;1- ~ Sk 5 'l" <;i

SO ((Ahj + jkm) Scalar

Ak

Exchange Functional
Control Units

I I XA I Vector I B77

rr1 Address Registers Con~rol

(.; A~ [VECTOR I Ai (AO) I LENGTH _ - - ~7i A6 Ak , Mult;Ql wr Bjk 7/-;:::1 A5
I BOO ~.A _ Add

A3 l__ Aj
A2 rj Ak

((Ah) + jkm) ~_ Al I/. Ai 1
Address AO

Ak l i Ak _ i Functional
J =,,11 I~ 31 8 Units
f P

L+IJ
II :4 , \11 I' I

11\\ I' I r I I I
3 I

JI
II11

I
1\\\ " I 2 I I CA CL I 2 I 1 I

00 i i 0 I I i
I i I/O i

r-- - t control
,

I
I - -

G
H I - t NIP crp

i
L ___

Execution
f-- LIP ------- -~

'--

17 Instruction -r Optional
Buffers

Figure 3-1. Computation section

I 2240004 3-2 E

REGISTER CONVENTIONS

Frequent use is made in this manual of parenthesized register names.
This is shorthand notation for the expression lithe contents of register

II For example, "Branch to (P) means "Branch to the address indicated
by the contents of the program parcel counter, P.II

Extensive use is also made of subscripted designations for the A, B, S,
T, and V registers. For example, "Transmit (Tjk) to Si" means "Transmit
the contents of the T register specified by the jk designators to the S
register specified by the i designator. II

In this manual, register bit positions are numbered from left to right
starting with bit O. Bit 63 of an S, V, or T register value represents
the least significant bit in the operand. Bit 23 of an A or B register
value represents the least significant bit in the operand. When a power
of two is meant rather than a bit position, it is referred to as 2n,
where n is the power of two.

OPERATING REGISTERS

Operating registers are a primary programmable resource of the CRAY-I.
They enhance the speed of the system by satisfying the heavy demands for
data that are made by the functional units. A single functional unit may
require one to three operands per clock period and may deliver results at
a rate of one per clock period. Moreover, multiple functional units can
be in use concurrently. To meet these requirements, the CRAY-l has five
sets of registers; three primary sets and two intermediate sets. The
three primary sets of registers are vector, scalar, and address designated
in this manual as V, S, and A, respectively. These registers are considered
primary because functional units can access them directly. For the scalar
and address registers, an intermediate level of registers exists which is
not accessible to the functional units. These registers act as buffers
for the primary registers. Block transfers are possible between these
registers and memory so that the number of memory references required for
scalar and address operands is greatly reduced. The intermediate registers
that support scalar registers are referred to as T registers. The inter
mediate registers that support the address registers are referred to as B
registers.
2240004 3-3 E

I

I

V REGISTERS

Eight V registers, each with 64 elements are the major computational
registers of the CRAY-I. Each element of a V register has 64 bits.
When associated data is grouped into successive elements of a V register,
the register quantity may be considered a vector. Examples of vector
quantities are rows or columns of a matrix or elements of a table.

Computational efficiency is achieved by processing each element of a
vector identically. Vector instructions provide for the iterative
processing of successive vector register elements. A vector operation
begins by obtaining operands from the first element of one or more V
registers and delivering the result to the first element of a V register.
Successive elements are provided each clock period and as each operation
is performed, the result is delivered to successive elements of the
result V register. The vector operation continues until the number of
operations performed by the instruction equals a count specified by the
contents of the vector length (VL) register. Vectors having lengths
exceeding 64 are handled under program control in groups of 64 and a
remainder.

A result may be received by a V register and retransmitted as an operand
to a subsequent operation in the same clock period. This use of a register
as both a result and operand register allows for the "chaining" of two or
more vector operations together. In this mode, two or more results may be
produced per clock period.

The contents of a V register are transferred to or from memory in a block
mode by specifying a first word address in memory, a positive or negative
increment for computing memory addresses, and a vector length. The trans
fer then proceeds beginning with the first element of the V register at a
maximum rate of one word per clock period, depending on bank conflicts.

Single-word data transfers are possible between an S register and an element
of a V register.

In this manual, the V registers are individually referred to by the letter
V and a numeric suffix in the range 0 through 7. Vector instructions
reference V registers by allowing specification of the suffix as the i, j,

or k designator as described in section 4 of this manual.

2240004 3-4 E

I
Individual elements of a V register are designated in this manual by deci
mal numbers in the range 00 through 63. These appear as subscripts to
vector register references. For example, V629 refers to element 29 of
vector register 6.

V register reservations
The term "reservation" describes the register condition when a register
is in use and therefore not available for use as a result or as an operand
register for another operation. During execution of a vector instruction,
reservations are placed on the operand V registers and on the result V
register. These reservations are placed on the registers themselves, not
on individual elements of the V register.

A reservation for a result register is lifted during "chain slot". time.
Chain slot time is the clock period that occurs at functional unit time
plus two clock periods. During this clock period, the result is
available for use as an operand in another vector operation. Chain slot
time has no effect on the reservation placed on operand V registers.
A V register may serve only one vector operation as the source of one or
both operands.
No reservation is placed on the VL register during vector processing. If
a vector instruction employs an S register, no reservation is placed on
the S register. It may be modified in the next instruction after vector
issue without affecting the vector operation. The length and scalar operand
(if appropriate) of each vector operation is maintained apart from the VL
register. Vector operations employing different lengths may proceed con
currently; however, the vector length should not be changed between opera
tions that chain because chaining implies operations of the same length.

The Ao and Ak registers in a vector memory reference are treated in a
similar fashion. They are available for modification immediately after use.

The vector store instruction (177) is blocked from chain slot execution.

The vector read instruction (176) is blocked from chain slot execution if

the memory increment is a multiple of eight on a 16-bank machine or is a
multiple of four on an 8-bank machine. A vector read cannot chain if
speed control is in effect. Speed control is caused by bank cohflicts;due
to the increment, which varies between 8 and 16 bank machines.

2240004 3-5 E

VECTOR CONTROL REGISTERS

Two registers are associated with vector registers and provide control
information needed in the performance of vector operations. They are
the vector length (VL) register and the vector mask (VM) register.

-VL register

The 7-bit vector length register can be set to 0 through 100s and specifies
the length of all vector operations performed by vector instructions and
the length of the vectors held by the V registers. It controls the number
of operations performed for instructions 140 through 177. The VL register
may be set to an A register value through use of the 0020 instruction.

Cray Research cautions users against changing VL between operations that
may chain together. In code sequences where the vector length is increased,
unexpected results may occur.

Suppose, for example, that during a vector sequence the contents of VL are
changed to a larger value and a second operation is initiated to chain to
the first operation. The user may expect that the second operation will

use the results of the first operation and the operands in the register
unaltered by the first operation. However, when the instructions chain
together, the second instruction does not receive the anticipated operands
beyond the VL specified for the first operation. The user who intends to
use the system in this manner must take care to avoid chained operations.
Although there may be applications of the characteristic produced by
chained operations with different contents for VL, Cray Research takes no
responsibility for its use. Chained operation cannot be assured since I/O
interrupts may IIbreak" the chain.

VM register

The vector mask register has 64 bits, each of which corresponds to a word
element in a vector register. Bit 0 corresponds to element 0, bit 63 to
element 63. The mask is used in conjunction with vector merge and test
instructions to allow operations to be performed on individual vector

elements.

The vector mask register may be set from an S register through the 003
instruction or may be created by testing a vector register for condition
using the 175 instruction. The mask controls element selection in the
vector merge instructions (146 and 147).

2240004 3-6 E

S· REGISTERS

The eight 64-bit S registers are the principal scalar registers for the
CPU. These registers serve as the source and destination for operands
in the execution of scalar arithmetic and logical instructions. The
related functional units perform both integer and floating point arith
metic operations.

S registers may furnish one operand in vector instructions. Single-word
transmissions of data between an S register and an element of a V register
are also possible.

Data can move directly between memory and S reqisters or can be placed in
T registers as an intermediate step. This allows buffering of scalar
operands between S registers and memory.

Data can also be transferred between A and S registers.

Another use of the S registers is for setting or reading the vector mask
,(VM) register or the real-time clock register.

At most, one S register can be entered with data during each clock period.
Issue of an instruction is delayed if it would cause data to arrive at the
S registers at the same time as data already being processed which is
scheduled to arrive from another source.

When an instruction issues that will deliver new data to an S register, a
reservation is set for that register to prevent issue of instructions that
read the register until the new data has been delivered.

In this manual, the S registers are individually referred to by the letter
S and a numeric subscript in the range 0 through 7. Instructions reference
S registers by allowing specification of the subscript as the i, j, or k
designator as described in section 4 of this manual. The only register to
which an implicit reference is made is the So register. The use of this
register is implied in the following branch instructions:

014 through 017.

Refer to section 4 for additional information concerning the use of S
registers by instructions.

2240004 3-7 E

T REGISTERS

There are sixty-four 64-bit T registers in the computation section. The
T registers are used as intermediate storage for the S registers.

Data may be transferred bidirectionally between T and S registers and
between T registers and memory. The transfer of a value between a T
register and an S register requires only one clock period. T registers
reference memory through block read and block write in~tructions. Block
transfers occur at a maximum rate of one word per clock period. No
reservations are made for T registers and no instructions can issue during
block transfers to and from T registers.

In this manual, T registers are referred to by the letterT and a 2-digit
octal subscript in the range 00 through 77·. Instructions reference T
registers by allowing specification of the octal subscript as the jk
designator as described in section 4 of this manual.

A REGISTERS

The eight 24-bit A registers serve a variety of applications. They are
primarily used as address registers for memory references and as index
registers but also are used to provide values for shift counts, loop
control, and channel I/O operations. In address applications, they are
used to index the base address for scalar memory references and for
providing both a base address and an index address for vector memory
references.

The address functional units support address and index generation by
performing 24-bit integer arithmetic on operands obtained from A registers
and delivering the results to A registers.

Data can move directly between memory and A registers or can be placed in
B registers as an intermediate step. This allows buffering of the data
between A registers and memory.

Data can also be transferred between A and S registers.

The vector length register is set by transmitting a value to it from an
A register.

2240004 3-8 E

At most, one A register can be entered with data during each clock period.
Issue of an instruction is delayed if it would cause data to arrive at the
A registers at the same time as data already being processed which is
scheduled to arrive from another source.

When an instruction issues that will deliver new data to an A register, a
reservation is set for that register to prevent issue of instructions that
read the register until the new data has been delivered.

In this manual, the A registers are individually referred to by the letter
A and a numeric subscript in the range 0 through 7. Instructions reference
A registers by allowing specification of the subscript as the h, i, j, or k
designator as described in section 4 of this manual. The only register to
which an implicit reference is made is the Ao register. The use of this
register is implied in the following instructions:

010 through 013
034 through 037
176 and 177

Refer to section 4 for additional information concerning the use of A
registers by instructions.

B REGISTERS

There are sixty-four 24-bit B registers in the computation section. The B
registers are used as intermediate storage for the A registers. Typically,
the B registers will contain data to be referenced repeatedly over a
sufficiently long span that it would not be desirable to retain the data
in either A registers or in memory. Examples of uses are loop counts,
variable array base addresses, and dimensions.

The transfer of a value between an A register and a B register requires
only one clock period. A block of B registers may be transferred to or
from memory at the maximum rate of one 24-bit value per clock period.
No reservations are made for B registers and no instructions can issue
during block transfers to and from B registers.

2240004 3-9 E

In this manual, B registers are individually referred to by the letter B
and a 2-digit octal subscript in the range 00 through 77. Instructions
reference B registers by allowing specification of the octal subscript as
the jk designator as described in section 4 of this manual. The only B

register to which an implicit reference is made is the Boo register. On
execution of the return jump instruction (007), register Boo is set to
the next instruction parcel address and a branch to an address specified
by ijkm occurs. Upon receiving control, the called routine will con
ventionally save (Boo) so that the Boo register will be free for the
called routine to initiate return jumps of its own. When a called routine
wishes to return to its caller, it restores the saved address and executes
a 005 instruction. This instruction, which is a branch to (Bjk),.causes
the address saved in Bjk to be entered into P as the address of the next
instruction parcel to be executed.

FUNCTIONAL UNITS

Instructions other than simple transmits or control operations are
performed by hardware organizations known as functional units. Each unit
implements an algorithm or a portion of the instruction set. Units are
independent; a number of functional units can be in operation at the same
time.

A functional unit receives operands from registers and delivers the result
to a register when the function has been performed. The units operate
essentially in three-address mode with source and destination addressing
limited to register designators.

All functional units perform their algorithms in a fixed amount of time;
no delays are possible once the operands have been delivered to the unit.
The amount of time required from delivery of the operands to the unit to
the completion of the calculation is termed the "functional unit time" and
is measured in 12.5 nsec clock periods.

The functional units are fully segmented. This means that a new set
of operands for any computation may enter a functional unit each

2240004 3-10 E

I

clock period even though the functional unit time may be more than one
clock period. This segmentation is made possible by capturing and holding
the information arriving at the unit or moving within the unit at the end
of every clock period.

Twelve functional units are identified in this manual and are arbitrarily
described in four groups: address, scalar, vector, and floating point.
The first three groups each act in conjunction with one of the three
primary register types, A, S, and V, to support the address, scalar, and
vector modes of processing available in the CRAY-l. The fourth group,
floating point, can support either scalar or vector operations and will
accept operands from or deliver results to S or V registers accordingly.

ADDRESS FUNCTIONAL UNITS

The address functional units perform 24-bit integer arithmetic on operands
obtained from A registers and deliver the results to an A register. The
arithmetic is two1s complement.

Address add unit
The address add unit performs 24-bit integer addition and subtraction.· The
unit executes instructions 030 and 031. The addition and subtraction are
performed in a similar manner. However, the two1s complement subtraction
for the 031 instruction occurs as follows. The one's complement of the Ak
operand is added to the Aj operand. Then a one is added in the low order
bit position of the result.

No overflow is detected in the functional unit.

The functional unit time is two clock periods.

Address multiply unit

The address multiply unit executes instruction 032, which forms a 24-bit
integer product from two 24-bit operands. No rounding is performed. The
result consists of the 24 least significant bits of the product.

The functional unit does not detect overflow of the product.

The function unit time is six clock periods.

2240004 3-11 E

SCALAR FUNCTIONAL UNITS

The scalar functional units perform operations on 64-bit operands obtained
from S registers and in most cases deliver the 64-bit results to an S
register. The exception is the population/leading zero count unit which
delivers its 7-bit result to an A register.

Four functional units are exclusively associated with scalar operations
and are described here. Three functional units are used for both scalar
and vector operations and are described under the section entitled
Floating Point Functional Units.

Scalar add unit

The scalar add unit performs 64-bit integer addition and subtraction. It
implements instructions 060 and 061. The addition and sUbtraction are per
formed in a similar manner. However, the two's complement subtraction
for the 061 instruction occurs as follows. The one's complement of the Sk
operand is added to the Sj operand. Then a one is added in the low order

bit position of the result.

No overflow is detected in the unit.

The functional unit time is three clock periods.

Scalar shift unit
The scalar shift unit shifts the entire 64-bit contents of an S register
or shifts the double 128-bit contents of two concatenated S registers.
Shift counts are obtained from an A register or from the jk portion of
the instruction. Shifts are end off with zero fill. For a double shift,
a circular shift is effected if the shift count does not exceed 64 and
the i and j designators are equal and non-zero.

The scalar shift unit implements instructions 052 through 057. Single

register shift instructions, 052 through 055, are executed in two clock
periods. Double-register shift instructions, 056 and 057, are executed
in three clock periods.

2240004 3-12 E

Scalar lo~ical unit
The scalar logical unit performs bit-by-bit manipulation of 64-bit

quantities obtained from S registers. It implements instructions 042

through 051, the mask and Boolean instructions. An operation requires
only one clock period.

Population/leading zero count unit

This functional unit implements instructions 026 and 027. The 026
instruction, which counts the number of bits having a value of one in the
operand, executes in four clock periods. The 027 instruction, which
counts the number of bits of zero preceding a one bit in the operand,

executes in three clock periods. For either instruction, the 64-bit

operand is obtained from an S register and the 7-bit result is delivered
to an A register.

When the Vector Population Instructions Option is installed, this unit

also recognizes an additional instruction, the 026ijl instruction, which

returns a one-bit population count parity (even) of an S register's

contents to an A register.

VECTOR FUNCTIONAL UNITS
Most vector functional units perform operations on operands obtained from
one or two V registers or from a V register and an S register. The
reciprocal unit, which requires only one operand, is an exception. Results

from a vector functional unit are delivered to a V register.

Successive operand pairs are transmitted to a functional unit each clock

period. The corresponding result emerges from the functional unit n clock

periods later where n is the functional unit time and is constant for a
given functional unit. The vector length determines the number of operand

pairs to be processed by a functional unit.

2240004 3-13 E

Three functional units are exclusively associated with vector operations
and are described in this subsection. Three functional units are associated
with both vector operations and scalar operations and are described in the
subsection entitled Floating Point Functional Units. When a floating point
unit is used for a vector operation, the general description of vector
functional units given in this subsection applies.

Vector functional unit reservation
A functional unit engaged in a vector operation remains busy during each
clock period and may not participate in other operations. In this state,

the functional unit is said to be reserved. Other instructions that
require the same functional unit will not issue until the previous
operation is completed. Only one functional unit of each type is
available to the vector instruction hardware. When the vector operation
completes, the reservation is dropped and the functional unit is then
available for another operation.

Recursive characteristic of vector functional units
In a vector operation, the result register (designated by i in the
instruction) is not normally the same V register as the source of either
of the operands (designated by j or k). However, turning the output
stream of a vector functional unit back into the input stream by setting
i to the same register designator as j or k may be desirable under certain
circumstances since it provides a facility for reducing 64 elements down
to just a few. The number of terms generated by the partial reduction is
determined by the number of values that can be in process in a functional
unit at one time (i.e., functional unit time + 2CP).

When the i designator is the same as the j or k designator, a recursive
characteristic is introduced into the vector processing because of the
way in which element counters are handled. At the beginning of an operation
for which i is the same as j or k, the element counters for both the operand
register and the operand/result register are set to zero. The element
counter for the operand/result register is held at zero and does not begin

2240004 3-14 E

incrementing until the first result arrives from the functional unit at
functional unit time + 2 CPo This counter then begins to advance by one
each clock period. Note that until f.u. + 2, the initial contents of
element zero of the operand/result register are repeatedly sent to the
functional unit. The element counter for the other o~erand register,
however, immediately begins advancing by one on each successive clock period

thus sending the contents of elements 0, 1,2, ... on successive clock
periods. Thus, the first f.u. + 2 elements of the operand/result register
contain results based on .the contents of element 0 of the operand/result
register and on successive elements of the other operand register. These
f.u. + 2 elements then provide one of the operands used in calculating
the results for the next f.u. + 2 elements. The third group of f.u. + 2
elements of the operand/result register contains results based on the
results delivered to the second group of f.u. + 2 elements, and so on until
the final group of f.u. + 2 elements is generated as determined by the
vector length.

As an example, consider the summation of a vector of floating point numbers
where the initial conditions for the vector operation are the following:

- All elements of register VI contain floating point values.
- Register V2 will provide one set of operands and will receive

the results. Element 0 of this register contains a 0 value.
- The vector length register (VL) contains 64.

A floating point add instruction (171212) is then executed using register
VI for one operand and using register V2 as an operand/result register.
This instruction uses the floating point add unit which has a functional
unit time of 6 CP causing sums to be generated in groups of eight (f.u. +
2 = 8). The final eight partial sums of the 64 elements of VI are contained
in elements 56 through 63 of V2. Specifically, elements of V2 contain the
following sums:

(V2 00) = (V2 00) + (VI oa)
(V2 01) = (V2 oo) + (VIOl)
(V2 02) = (V2 00) + (VI 02)

(V2 03) = (V2 oo) + (VI 03)

(V2 04) = (V2 00) + (VI 04)

2240004 3-15 E

(contents of register V2, continued)

(V2 os) = (V2 oo1 + (VI os)
(V2 06) = (V2 oo) + (VI 06)

new (V2 oo) (V2 07) = (V2 oo) + (Vl o7) . ,
(V2os) = (V2 oo) + (Vlos) = (V2 oo) + (Vl oo) + (Vlos)
(V2 09) = (V2 01) + (VI 09) = (V2 oo) + (VIOl) + (VI o9)
(V2 10) = (V2 02) + (VI IO) = (V2 oo) + (Vl o2) + (VI IO)
(V2 11) = (V2 03) + (VIII) = (V2 oo) + (Vl o3) + (VIII)
(V2 12) = (V2 04) + (VI 12) = (V2 oo) + (Vl o4) + (VI 12)
(V2 13) = (V2 os) + (V1 13) = (V2 oo) + (Vl os) + (V1 13)
(V2 14) = (V2 0s) + (VI 14) = (V2 0c) + (Vl 06) + (VI 14)
(V2 1S) = (V2 07) + (VIIS) = (V2 oo) + (VI o7) + (VIIS)
(V2 16) = (V2 oa) + {VI 16) = (V2 oo) + (VI oo) + (Vlos) + (VIIS)

(V2 S6) = (V2 4S) + (VI S6) = (V2 oo) + (Vl oo) + (Vlos) + (VI 16)
(V2 S7) = (V2 49) + (VI s7) = (V2 oo) + (VIOl) + (VI og) + (VI 17)
(V2 ss) = (V2 so) + (VI ss) = (V2 oo) + (Vl o2) + (VI IO) + (VIIS)
(V2 S9) = (V2 SI) + (VI s9) = (V2 oo) + (VI 03) + (VIII) + (VI 19)
(V2 60) = (V2 S2) + (VI 6o) = (V2 oo) + (Vl o4) + (VI 12) + (VI 2o)
(V2 61) = (V2 S3) + (VI 61) = (V2 oo) + (Vl os) + (V113) + (VI 21)
(V2 62) = (V2 S4) + (VI 62) = (V2 oo) + (Vlos) + (VI14) + (VI 22)
(V2 63) ,= (V2 ss) + (Vl S3) = (V2 oo) + (VI 07) + (VIIS) + (V1 23)

..• + (Vl S6)

... + (Vl S7)
•.• + (Vl ss)

+ (Vl S9)
+ (V1 60)
+ (V1 61)
+ (V1 62)

.•. + (V1 63)

Note that if an integer summation were performed instead of a floating
point summation, five partial sums would be generated and placed in
elements 59 through 63 since the functional unit time for the integer add
unit is 3 CP. Assuming that the same registers are used as for the previous
example but that the registers now contain integer values, the last five
elements of V2 would contain the following values:

(V2S9) = (V2 oo) + (V1 04) + (V1 09) + (VlI4)
(V2 60) = (V2 oo) + (Vloo) + (VI os) + (V1IO)
(V2 61) = (V2 oo) + (V10l) + (V1 06) + (VIII)
(V2 62) = (V2 oo) + (VIo2) + (V1 07) + (V l 12)
(V2 63) = (V2 oo) + (VI03) + (Vlos) + (V113)

2240004 3-16

+ (V1S9)
+ (Vlss) + (VI60)
+ (VlS6) + (VI 61)
+ (Vls7) + (V I 62)
+ (V1ss) + (V1 63)

E

This recursive characteristic of vector processing is applicable to any
vector operation, arithmetic or logical. The value initially placed in
element 0 of the operand/result register will depend on the operation
being performed. For example, when using the floating point multiply
unit, element 0 of the operand/result register will usually be set to an
initial value of 1.0.

Vector add unit
The vector add unit performs 64-bit integer addition and subtraction for
a vector operation and delivers the results to elements of a V register.

The unit implements instructions 154 through 157. The addition and sub
traction are performed in a similar manner. However, for the subtraction
operations, 156 and 157, the Vk operand is complemented prior to addition
and during the addition a one is added into the low order bit position of
the result.
No overflow is detected by the unit.

The functional unit time for the vector add unit is three clock periods.

Vector shift unit
The vector shift unit shifts the entire 64-bit contents of a V register
element or the 128-bit value formed from two consecutive elements of a
V register. Shift counts are obtained from an A registe~ Shtfts are
end-off with zero fill.

The vector shift unit implements instructions 150 through 153. Functional
unit time is four clock periods.

Vector logical unit
The vector logical unit performs bit-by-bit manipulation of 64-bit
quantities for instructions 140 through 147. The unit also performs the
logical operations associated with the vector mask instruction, 175.
Because the 175 instruction uses the same functional unit as instructions
140 through 147, it cannot be chained with these logical operations.

Functional unit time is two clock periods.

2240004 3-17 E

Vector population count unit

Although the CRAY-1 does not include a vector population unit as a standard
feature, such a unit is present when the Vector Population Instructions
Option is installed. The vector population count unit recognizes the
vector population count instruction, 174ij1 and the vector population
count parity instruction, 174ij2. Because implementation of these instruc
tions requires modifications to the format of the vector reciprocal
approximation instruction, some of the restrictions for the reciprocal
approximation unit hold true for the vector population instructions.

FLOATING POINT FUNCTIONAL UNITS

The three floating point functional units perform floating point arithmetic

for both scalar and vector operations. When executing a scalar instruction,
operands are obtained from S registers and the result is delivered to an S
register. When executing most vector instructions, operands are obtained
from pairs of V registers or from a V register and an S register and the
results are delivered to a V register. The reciprocal instruction, which
has only one input operand, is an exception.

A floating point unit is reserved during execution of a vector instruction.

Information on floating point out-of-range conditions is contained in the

subsection entitled Floating Point Arithmetic.

Floating point add unit
The floating point add unit performs addition or subtraction of 64-bit
operands in floating point format. The unit implements instructions 062,

063, and 170 through 173. Functional unit time is six clock periods.

A result is normalized even if the operands are unnormalized.

Out-of-range exponents are detected as described under Floating Point

Arithmetic.

2240004 3-18 E

Floating point multiply unit
The floating point multiply unit executes instructions 064 through 067
and 160 through 167. These instructions provide for full and half
precision multiplication of 64-bit operands in floating point format and
for computing two minus a floating point product for reciprocal iterations.

The half-precision product is rounded; the full-precision product is
either rounded or unrounded.

Input operands are assumed to be normalized. The unit delivers a
normalized result except that the result is not guaranteed to be

I correct if the input operands are not normalized.

I

Out-of-range exponents are detected as described under Floating Point
Arithmetic. However, if both operands have zero exponents, the result
is considered as an integer product and is not normalized.

Functional unit time is seven clock periods.

Reciprocal approximation unit
The reciprocal approximation unit finds the approximate reciprocal of a
64-bit operand in floating point format. The unit executes instructions

070 and 174. If the Vector Population Instructions Option is installed,
the k field must be 0 for the reciprocal approximation instruction, 174,
to be recognized. Functional unit time is 14 clock periods.

The result is normalized. The input operand is assumed to be normalized;
the uppermost bit of the coefficient is not tested but is assumed to be
set in the computation.

2240004 3-19 E

ARITHMETIC OPERATIONS,

Functional units in the CRAY-l either perform two's complement integer
arithmetic or perform floating point arithmetic.

INTEGER ARITHMETIC

All integer arithmetic, whether 24 bits or 64 bits, is two's complement
and is so represented in the registers as illustrated in figure 3-2.
The address add unit and address multiply unit perform 24-bit arithmetic.
The scalar add unit and the vector add unit perform 64-bit arithmetic.

o 23

I I I
SIGN

2', COMPLEMENT INT EGER (24 BITS)

o 63

I I I
SIGN

2', COMPLEMENT INTEGER (64 SITS)

Figure 3-2. Integer data formats

I Multiplication of two integer operands may be accomplished using the

floating point multiply instruction. The floating point multiply unit
recognizes the conditions where both operands have zero exponents as a
special case and returns the upper 48 bits of the product of the
coefficients as the coefficient of the result and leaves the exponent
field zero.

Division of integers would require that they first be converted to
floating point format and then divided using the floating point units.

2240004 3-20 E-01

FLOATING POINT ARITHMETIC

Floating point numbers are represented in a standard format throughout
the CPU. This format is a packed representation of a binary coefficient
and an exponent or power of two. The coefficient is a 48-bit signed
fraction. The sign of the coefficient is separated from the rest of
the coefficient as shown in figure 3-3. Since the coefficient is signed
magnitude, it is not complemented for negative values.

BINARY POINT

• o IS 16

I I I
SIGN EXPONENT COEF FIC lENT

Figure 3-3. Floating point data format

63

I

The exponent portion of the floating point format is represented as a
biased integer in bits 1 through 15. The bias that is added to the
exponents is 400008' The positive range of exponents is 40000 8 through
57777 8, The negative range of exponents is 377778 through 20000 8, Thus,
the unbiased range of exponents is the following:

2-200008 through 2+177778

In terms of decimal values, the floating point format of the CRAY-lallows
the expression of numbers accurate to about 15 decimal digits in the

I approximate decimal range of 10-2466 through 10+2466
•

A zero value or an underflow result is not biased and is represented as a
word of all zeros.

A negative zero is not generated by any functional unit.

2240004 3-21 E

I

Normalized floating point

A non-zero floating point number in packed format is normalized if the
most significant bit of the coefficient is non-zero. This condition
implies that the coefficient has been shifted to the left as far as
possible and therefore the floating point number has no leading zeros in
the coefficient.

When a floating point number has been created by inserting an exponent
of 40060 8 into a word containing a 48-bit integer, the result should be

normalized before being used in a floating point operation. Normalization
is accomplished by adding the unnormalized floating point operand to zero.
Since So provides a 64-bit zero when used in the Sj field of an instruction,
a normalize of an operand in Sk can be performed using the following
instruction:

062iOk

Si cont&ins the normalized result.

Floating point range errors

Overflow of the floating point range is indicated by an exponent value of
600008 or greater in packed format. Underflow is indicated by an exponent
value of 177778 or less in packed format. Detection of the overflow
condition will initiate an interrupt if the floating point mode flag is

set in the mode register and monitor mode one is not in effect. The

floating point mode flag can be set or cleared by an object program.

Detection of floating point range error conditions by the floating point
units is described in the following paragraphs.

2240004 3-22 E

Floating point add unit - A floating point add range error condition is
generated for scalar operands when the larger incoming exponent is greater
than or equal to 600008. The floating point error flag is set and an
exponent of 600008 is sent to the result register along with the computed
coefficient, as in the following example:

60000.4 Range error

+ 57777.4

60000.6 Result register.

Floating point multiply unit - In the floating point multiply unit, if

the exponent of either operand is greater than or equal to 600008 or if
the sum of the two exponents is greater than or equal to 600008, the

floating point error flag is set and an exponent of 600008 is sent to
the result register along wi'th the computed coefficient.

An underflow condition is detected when the sum of the exponents is less
than or equal to 177778 and causes an all zero exponent and coefficient
to be returned to the result register. However, if the sum of the

exponents is 200008 and a normalizing left shift occurs, an exponent of
177778 is sent to the result register along with the computed coefficient.

Underflow is also generated when either, but not both, of the incoming

exponents is zero. Both exponents equal to zero is treated as an integer

multiply and the result is treated normally with no normalization shift
of the result allowed. The result is a 48-bit quantity starting with bit

16. When using this feature, consider the operands as 24-bit integers

in bits 16 through 39 even though they are actually fractions with the
binary point between bits 15 and 16. In the following example, operand

1 is 4 and operand 2 is 5 to produce a 48-bit result of 24.

2240004 3-23 E

0 16 40 63
Operand 1 L o --- 0 I 4~

Operand 2 I o --- 0 , 5

Result o .. -- 0 241

Floati'ng point reciprocal approxTmatton unit - For the floating point
reciproca 1 approximatton unit, an i'ncomi'ng operand wi th an exponent 1 ess
than or equal to 200018 or greater than or equal to 600008 causes a
floattng point range error. The error flag is set and an exponent of
600008 i's sent to the result regtster along with the computed coefficient.

Double precision numbers

The CRAY-1 does not provide special hardware for performing double or
multiple precision operations. Double precision computations with 95-bit
accuracy are available through software routines provided by Cray Research.

Addition algorithm

Floating point addition or sUbtraction is performed in a 49-bit register.
Trial sUbtraction of the exponents occurs to select the operand to be
shifted down for aligning the operands. The larger exponent operand
carries the sign and the shift is always to the right. Bits shifted
out of the register are lost; no round-up takes place.

0.~1 ______ ~-4-8 ________ ~ discarded

~

•

Figure 3-4. 49-bit floating point addition

2240004 3-24 E

I

Multiplication algorithm

The floating-point multiply unit in the CPU has an input of 48 bits of

coefficient into a multiply pyramid (figure 3-5). The pyramid truncates

part of the lower bits of the 96-bit product. To adjust for this trun

cation, a constant is unconditionally added above the truncation. The

value determined by summing all carries produced by all possible com

binations that could be truncated, and dividing the sum by the number of

possible combinations. This averages to nine carries which are injected
at the 2- 56 positton.

The errors due to this truncation and rounding are in the range:

-0.23 x 2-48 to +0.57 x 2-48

or -8.17 x 10-16 to +20.25 x 10-16 .

-48 The effect of this error is at most a round up of bit 2 of the result.

2240004 3-25 E-01

I

2-1

j (MULTIPLICAND)

2-21 \.

Ir-------~~------------~------~--------~------~

k b"
(MULTIPLIER)

1 h = 1 for half-precision round

2 f = 1 for full-precision round

3 Truncation constant

hh

(0

A-OI03A

Figure 3-5. F.P. multiply partial product sums pyramid

The multiplication is commutative, that is, A times B equals B times A.

In a full-precision rounded multiply, 2 round bits are entered into the
·d t b·t ·t· 2-50 d 2-51 d 11 d t t th pyraml a 1 POSl lon an an a owe 0 propaga e up e

pyramid.

For a half preclslon multiply, round bits are entered into the pyramid at
-32 -31 bit positions 2 and 2 . A carry resulting from this entry is allowed

(-1 -30) to propagate up and a 3~-bit result 2 to 2 is transmitted back.

2240004 3-26 through 3-29 E-01

Division algorithm

The CRAY-l performs floating point division by the method of reciprocal
approximation. This facilitates the hardware implementation of a fully
segmented functional unit. Operands may enter the reciprocal unit each
clock period because of this segmentation. In vector mode, results are
produced at a one clock period rate. These results may be used in other
vector operations during chaining because all functional units in the
CRAY-l have the same result rate.

The division algorithm that computes 51 /'52 to full precision requires
four operations:

1. 53 = 1/52
2. 54 = (2 53
3. 55 = 51 * 5 3

4. 56 = 54 * 55

* 52)

Reciprocal approximation
Reciprocal iteration
Numerator * approximation
Half-precision quotient * correction factor

The approximation is based on Newton's method. The reciprocal approxima
tion at step 1 is correct to 30 bits. The additional Newton iteration at
step 2 increases this accuracy to 47 bits. This iteration is applied as
a correction factor with a full-precision multiply operation.

Where 31 bits of accuracy is sufficient, the reciprocal approximation
instruction may be used with the half-precision multiply to produce a
half-precision quotient.

The 18 low-order bits of the half-precision results are returned as zeros
with a round applied to the low-order bit of the 3D-bit result.

A scalar quotient is computed in 29 clock periods since operations 2 and
3 issue in successive clock periods.

A vector quotient requires effectively three vector times since operations
1 and 3 are chained together. This hides one of the multiply operations.
A vector time is one clock period for each element in the vector.

For example, two 50-element vectors are divided in about 3 * 50 clock
periods. This estimate does not include overhead associated with the
functional units.

2240004 . 3-30 E

LOGICAL OPERATIONS

The scalar and vector logical units perform bit-by-bit manipulation
of 64-bit quantities. Operations provide for forming logical products,
differences, sums and merges.
A logical product is the AND function:

operand one
operand two
result

1 0 1 0
1 100

100 0

A logical difference is the exclusive OR function:

operand one
operand two
result

1 0 1 0
1 100

o 1 1 0

A logical sum is the inclusive OR function:

operand one
operand two
result

2240004

1 0 1 0

1 100

1 1 1 0

3-31

•• '!

E

INSTRUCTION ISSUE AND CONTROL

This section describes the instruction buffers and registers involved
with instruction issue and control. Fi9ure 3-6 illustrates the general
flow of instruction parcels through the registers and buffers.

r
I

3 I
I 2 I

I 1 I
00 .a J

I
I
I

+
1 NIP H __ C,...; p_----J

L __ ~.

Y
Execution

17

P REGISTER

- LIP -.
Instruction

Buffers

Figure 3-6. Relationship of instruction buffers
and registers

The P regist~r is a 22-bit register which indicates the next parcel
of program code to enter the next instruction parcel (NIP) register
in a linear program sequence. The upper 20 bits of the P register
indicate the \Alord address for the program word in memory. The lower
two bi ts i ndi cate the parce 1 wi thi n the word. The content of the P .

register is normally advanced as each parcel successfully enters the
NIP register. The value in the P register normally corresponds to the
parcel address for the parcel currently moving to the NIP register.

2240004 3-32 E

The P register is entered with new data on an instruction branch or
on an exchange sequence. It is then advanced sequentially until the
next branch or exchange sequence. The value in the P register is
stored directly into the terminating exchange package during an
exchange sequence.

The P register is not master cleared. An undetermined value is stored in
the terminating exchange package at address zero during the dead start
sequence.

CIP REGISTER
The CIP (current instruction parcel) register is a I6-bit register
which holds the instruction waiting to issue. If this instruction
is a two-parcel instruction, the CIP register holds the upper half
of the instruction and the LIP holds the lower half. Once an
instruction enters the CIP register, it must issue. Issue may be
delayed until previous operations have been completed but then the
current instruction waiting for issue must proceed. Data arrives
at the CIP register from the NIP register. The indicators which make
up the instruction are distributed to all modules which have mode
selection requirements when the instruction issues.

The control flags associated with the eIP register are generally master
cleared. The register itself is not and an undetermined instruction will
issue during the master clear sequence.

NIP REGISTER
The NIP (next instruction parcel) register is a IE-bit register
which holds a parcel of program code prior to entering the CIP
register. A parcel of program code which has entered the NIP
register must be executed. There;s no mechanism to discard it.

2240004 3-33 E

The NIP register is not master cleared. An undetermined instruction may
issue during the master clear interval before the interrupt condition
blocks data entry into the NIP register.

LIP REGISTER

The LIP (lower instruction parcel) register is a 16-bit register which
holds the lower half of a two-parcel instruction at the time the two
parcel instruction issues from the CIP register.

INSTRUCTION BUFFERS

There are four instruction buffers in the CRAY-1, each of which holds 64
consecutive 16-bit instruction parcels (figure 3-7). Instruction parcels
are held in the buffers prior to being delivered to the NIP or LIP registers.

Bank 0
1 4 -.§.-- 6 _I_ --- ---
2 10 __ _ 11 __ 12 __ _13_
3 14 _15 __ 16 __ _ 17_ ---
4 ,£0 __ _£1 __ 22 __ _ £3_
5 ,£4 __ _ ,£5 __ 26 ___ _ £7_
6 30 31 32 33 - --
7 34 35 36 37 --- ---- --- ---

lOe 40 41 42 43 --- ----

lIe 44 45 46 47 --- ---- --- ---
128 50 51 52 53 --- ---- --- ---
13e 54 55 56 57 --- ----
14e 60 61 62 63 Buffer 3

--- ---- --- ---
15e 64 65 66 67 Buffer 2

--- ----

16e 70 71 72 73 Buffer 1 --- ---- --- ---
17e 74 75 76 77 Buffer 0

Figure 3-7 Instruction buffers

2240004 3-34 E

The beginning instruction parcel in a buffer always has a parcel address
that is an even multiple of 100s. This allows the entire range of
addresses for instructions in a buffer to be defined by the high-order 16
bits of the beginning parcel address. For each buffer, there is a 16-bit
beginning address register that contains this value.

The beginning address registers are scanned each clock period. If the
high-order 18 bits of the P register match one of the beginning addresses,
an in-buffer condition exists and the proper instruction parcel is
selected from the instruction buffer. An instruction parcel to be
executed is normally sent to the NIP. However, the second half of a
two-parcel instruction is blocked from entering the NIP and is sent to
the LIP, instead, ,and is available when the upper half issues from the
CIP. At the same time, a blank parcel is entered into the NIP.

On an in-buffer condition, if the instruction is in a different buffer
than the previous instruction, a change of buffers occurs necessitating a

two clock period delay of issue.

An out-of-buffer condition exists when the high-order 18 bits of the P

register do not match any instruction buffer beginning address. When
this condition occurs, instructions must be loaded into one of the
instruction buffers from memory before execution can continue. The
instruction buffer that receives the instructions is determined by a two-
bit counter. Each occurrence of an out-of-buffer condition causes the
counter to be incremented by one so that the buffers are selected in
rotation.

Buffers are loaded from memory four words per clock period, an operation
that fully occupies memory. The first group of 16 parcels delivered to
the buffer always contains the instruction required for execution. For
this reason, the branch out of buffer time is a constant 14 clock periods~
The remaining groups arrive at a rate of 16 parcels per clock period and
circularly fill the buffer.

t Refer to 8 Bank Ph~sing Option, section 5.

2240004 3-35 E

An instruction buffer is loaded with one word of instructions from each
of the 16 memory banks! The first four instruction parcels residing in
an'instruction buffer are always from bank O. Figure 3-7 illustrates
the organization of parcels and words in an instruction buffer.

An exchange sequence voids the instruction buffers by setting their
beginning address registers to all ones. This prevents a match with the

, P register and causes one of the buffers to be loaded.

Both forward and backward branching is possible within the buffers. A
branch does not cause reloading of an instruction buffer if the instruc-
tion being branched to is within one of the buffers. Multiple copies of
instruction parcels cannot occur in the instruction buffers. Because
instructions are held in instruction buffers prior to issue, no attempt
should be made to dynamically modify instruction sequences. As long as
the unmodified instruction is in an instruction buffer, the modified
instruction in memory will not be loaded into an instruction buffer.

Although optimization of code segment lengths for instruction buffers is
not a prime consideration when programming the CRAY-I, the number and
size of the buffers and the capability for both forward and backward
branching can be used to good advantage. Large loops containing up to 256

consecutive instruction parcels can be maintained in the four buffers or as
an alternative, one could have a main program sequence in one or two of the
buffers which makes repeated calls to short subroutines maintained in the
other buffers. The program and subroutines remain in the buffers undisturbed
as long as no out-of-buffer condition causes a buffer to be reloaded.

t Refer to 8-bank phasing option, section 5.

2240004 3-36 E

EXCHANGE MECHANISM

Exchange mechanism refers to the technique employed in the CRAY-l for
switching instruction execution from program to program. This technique
involves the use of blocks or program parameters known as exchange packages
and a CPU operation referred to as an exchange sequence. Three special
registers are instrumental in the exchange mechanism. These are the exchange
address (XA) register, the mode (M) register, and the flag (F) register.

XA REGISTER

The XA (exchange address) register specifies the first word address of a
16-word exchange package loaded by an exchange operation. The register
contains the upper eight bits of a 12-bit field that specifies the address.
The lower bits of the field are always zero; an exchange package must begin
on a 16-word boundary. The 12-bit limit requires that the absolute address
be in the lower 4096 words of memory.

When an execution interval terminates, the exchange sequence exchanges the
contents of the registers with the contents of the exchange package at
(XA)*16 in memory.

M REGISTER

The M (mode) register is a five-bit register that contains part of the
exchange package for a currently active program. The five bits are
selectively set during an exchange sequence. Bits are assigned in words
n+l and n+2 of the exchange package, figure 3-8~: as follows:

n+l Bit 39

2240004

Interrupt monitor mode select. This bit is significant
only when it is set and the Monitor Mode Interrupt
option is present.

If Bit 39 of n+2 is set and this bit is clear, monitor
mode 1 is selected and only the memory parity error
interrupt flag can be set while in monitor mode.
If Bit 39 of n+2 and this bit are both set, monitor
mode 2 is in effect and the PC interrupt, MCU inter
rupt, I/O interrupt, and normal exit flags cannot be
set.

3-37 E

I

I

n

n .. 1

n+2

n+ 3

n + 4

n+ S

n + 6

n + 7

n + 8

o 2 10 12 16 18 24 31 36 4Q 63

p AO

AI

A2

A3

A4

A6

A7

50

5 I
n+9

52
n+IO ~--------------------~~---------------------1

S3
ntll

54 n+12 ~ ____ ~ ______________________________________ ~

55
0+13 ~------~--------------------------'-----------1

56 n+14 ~ __ ~

57
n+15 L-__ ~

Registe!,s
S Syndrome bits

RAB Read address for error
(where B is bank)

M - Modes
I n+l 39 Interrupt monitor modet

n+2 36 Interrupt on correctable
memory error

P Program address
BA Base,address

n+2 37 Interrupt on floating point
error

LA Limit address
XA Exchange address
VL Vector length

n+2 38 Interrupt on uncorrectable
memory error

n+2 39 Monitor mode

F - Flags
L:-___ Et:.t:Q.!': typ~._ .. (!?_t~.~ _ _.9_'_.L of .!!)

10 Uncorrectable memory
n+3 31 Programmable clock interrupttt
n+3 32 MCU interrupt

01 Correctable memory

~~~g ... _'!1Q.Q~._.tR.it?_JQ.~!I __ 9_fJl) 
00 Scalar 
01 I/O 
10 Vector' 
11 Fetch 

n+3 33 Floating point error 
n+3 34 Operand range error 
n+3 35 Program range error 
n+3 36 Memory error 
n+3 37 I/O interrupt 
n+3 38 Error exit 
n+3 39 Normal exit 

t Supports Monitor Mode Interrupt option. 
tt Supports Programmable Clock option. 

Figure 3-8. Exchange package 

2240004 3-38 E 



I 

n+2 Bit 36 

n+2 Bit 37 

n+2 Bit 38 

Correctable memory error mode flag. When this bit is 
set, interrupts on correctable errors'are enabled. 

Floating point error mode flag. When this bit is set, 
interrupts on floating point errors are enabled. 
Uncorrectable memory error mode flag. When this bit 
is set, interrupts on uncorrectable memory errors are 
enabled. 

n+2 Bit 39 Monitor mode flag. When this bit is set and the Monitor 
Mode Interrupt Option is not present, all interrupts 
other than memory errors are inhibited. When the Moni
tor Mode Interrupt Option is present, this bit serves 
as the monitor mode select flag. When it is set, 
monitor mode 1 or monitor mode 2 is selected depending 
on the state of the interrupt monitor mode select bit 
(Bit 39 of n+1). The interrupt monitor mode select 
bit determines which interrupt flags can be set while 
the CPU is in monitor mode. 

Bit 37 of n+2, the floating point error mode select, can be set or cleared 
during the execution interval for a program through use of the 0021 and 
0022 instructions, respectively. Bits 38 and 39 of n+2 are not altered 
during the execution interval for the exchange package. Either of these 

bits can be altered only when the exchange package is inactive in memory. 

F REGISTER 

The F (flag) register is a nine-bit register that contains part of the 
exchange package for the currently active program. This register contains 
nine flags which are individually identified with the exchange package in 
figure 3-8. Setting any of these flags causes interruption of the program 
execution. When one or more flags are set, a request interrupt signal is 
sent to initiate an exchange sequence. The content of the F register is 
stored along with the rest of the exchange package and the monitor program 
can analyze the nine flags for the cause of the interruption. Before the 
monitor program exchanges back to the package, it may clear the flags in 
the F register area of the package. If any of the flag bits is set during 
the transfer of the exchange package to the CPU, another exchange will 

occur immediately. 

2240004 3-39 E 



I Moni tor m2-c!.~_J.D_~errupt opti on not present 

Any flag other than the memory error flag, can be set in the F register 
only if the currently active exchange package is not in monitor mode. 

This means that these flags will set only if the highest order bit of 

the M register is zero. With the exception of the memory error flag, if 

the program is in monitor mode and the conditions for setting an F register 
flag are otherwise present, the flag remains cleared and no exchange 

sequence is initiated. 

Moni tor mQ.d~ .. _.tt:lj~r.Y.:'_l!E~_~p"~ion present 

If the monitor mode interrupt option is present and the currently active 

exchange package is not in monitor mode (Bit 39 of n+2 of the M register 

is zero), any of the nine F register flags can be set provided that all 
interrupts are enabled. 

If the program is in monitor mode 1 (Bit 39 of n+2 of the M register is 
set and Bit 39 of n+1 of the M register is zero), the memory error flag is 
the only one of the nine F register flags that can be set. The memory 

error flag can be set while in monitor mode 1 if either of the two memory 
parity error mode bits (Bits 36 and 38 of the t1 register) is also set. 
When in monitor mode 1, none of the F register flags can be set but an 
exchange sequence can be initiated by a 000 or a 004 instruction even 

though the associated error exit flag or normal exit flag is not set. 

If the program is in monitor mode 2 (Bits 39 of both n+l and n+2 of the r1 

register are both set), all F register flags other than the PC interrupt, 

MCU interrupt, I/O interrupt, and normal exit flags can be set and an 

exchange sequence will be initiated. 

EXCHANGE PACKAGE 

An exchange package is a 16-word block of data in memory which is associated 

with a particular computer program. It contains the basic parameters 
necessary to provide continuity from one execution interval for the program 

to the next. These parameters consist of the following: 

Program address register (P) - 22 bits 
Base address register (BA) - 18 bits 
Limit address register (LA) - 18 bits 

2240004 3-40 E 



I Mode register (M) - 4 bits without MMI option; 5 bits with option 

Exchange address register (XA) - 8 bits 
Vector length register (VL) - 7 bits 
Flag register (F) - 9 bits 
Current contents of the eight A registers 
Current contents of the eight S registers 

The exchange package contents are arranged in a 16-word block as shown 
in figure 3-8. Data is swapped from memory to the computer operating 
registers and back to memory by the exchange sequence. This sequence 
exchanges the data in a currently active exchange package, which is 
residing in the operating registers, with an inactive exchange package 
in memory. The XA address of the currently active exchange package 
specifies the address of the inactive exchange package to be used in 
the swap. The data ;s exchanged and a new program execution interval 
is initiated by the exchange sequence. 

The B register, T register, and V register contents are not swapped in 
the exchange sequence. The data in these registers must be stored and 
replaced as required by specific coding in the monitor program which 
supervises the object program execution. 

Memory error data 

Two bits in the Mode (M) register determine whether or not the exchange 
package contains data relevant to a memory error if one occurs prior 
to an exchange sequence. These are bit 36, the "Interrupt on correctable 
memory error bit" and bit 38, the "Interrupt on uncorrectable memory 

'error bit". The error data, consisting of four fields of information, 
appears in the exchange package if bit 38 is set and an uncorrectable 
memory error is detected or if bit 36 is set and correctable memory error 

is encountered. 

Error type (E) - The type of error encountered, uncorrectable or 
correctable, is indicated in bits 0 and 1 of the first word of the 
exchange package. Bit Ois set for an uncorrectable memory error; bit 1 

is set for a correctable memory error. 

2240004 3-41 E 



Syndrome (S) - The eight syndrome bits used in detecting the ~rror are 
returned in bits 2 through 9 of the first word of the exchange package. 
Refer to section 5 for additional information. 

Read mode (R) - This field indicates the read mode in progress when the 
error occurred and consists of bits 10 and 11 of the first word of the 
exchange package. These bits assume the following values: 

00 Scalar 
01 I/O 
10 Vector 
11 Instruction fetch 

Read address (RAB) -The RAB field contains the address at which the error 
occurred. Bits 12 through 15 (B) of the first word of the exchange package 
contain bits 23 through 2° of the address and may be considered as the bank 
address; bits 0 through 15 (RA) of the second word of the exchange package 
contain bits 219 through 24 of the address. 

Active exchange package 
An active exchange package is an exchange package which is currently 
residing in the computer operating registers. The interval of time in 
which the exchange package is active is called the execution interval for 
the exchange package and also for the program with which it is associated. 
The execution interval begins with an exchange sequence in which the 
subject exchange package moves from memory to the operating regi sters. 
The exp.cution interval ends as the exchange package moves back to 
memory in a subsequent exchange sequence. 

EXCHANGE SEQUENCE 

The exchange sequence is the vehicle for moving an inactive exchange 
package from memory into the operating registers and at the same time 
moving the currently active exchange package from the operating registers 
back into memory. This swapping operation is done in a fixed sequence 
when all computational activity associated with the currently active 

2240004 3-42 E 



exchange package has stopped. The same 16-word block of memory is used 
as the source of the inactive exchange package and the destination of the 
currently active exchange package. The location of this block is 
specified by the content of the exchange address register and is-a part of 

the currently active exchange package. The exchange sequence may be 
initiated in three different ways. 

1. Dead start sequence 
2. Interrupt flag set 
3. Program exit 

Initiated by dead start sequence 
The dead start sequence forces the exchange address register content to 
zero and also forces a 000 code in the NIP register. These two actions 
cause the execution of a program error exit using memory address zero 
as the location of the exchange package. The inactive exchange package 
at address zero is then moved into the operating registers and a program 
is initiated using these parameters. The exchange package stored at 
address zero is largely noise as a result of the dead start operation 

and should be discarded by the subsequent entry of new data at these 
storage addresses. 

Initiated by interrupt flag set 
An exchange sequence can be initiated by setting anyone of the nine 
interrupt flags in the F register. One or more flags set result in a 
request interrupt signal which initiates an exchange sequence. 

Initiated by program exit 
There are two program exit instructions that cause the initiation of an 
exchange sequence. The timing of the instruction execution (50 CPs) is 
the same in either case and consists of an exchange sequence and a fetch 
operation. They differ only in which of the two flags in the F register 
is set. The two instructions are: 

Program code 000 - Error exit 
Program code 004 - Normal exit 

2240004 3-43 E 



I 

The two exit~ provide a means for a program to request its own~~rmination. 
A non-monitor (object) program will usually use the normal exit .. jnstruction. 
to exchange back to the monitor program. The error exit allows for 
termination of 'an object program that has branched into an unused area of 
memory or into a data area. The exchange address selected is the same as 
for a normal exit. 

There is a flag in the F register for each of these instructions. The 
appropriate flag ;s set providing the currently active exchange package 
is not in monitor mode. The inactive exchange package called in this 
case is normally one that executes tn monitor mode and the flags are read 
from memory for evaluation of the cause of program termination. 

The monitor program selects an inactive exchange package for activation 
by setting the address of the inactive exchange package into the XA 
register and then executing a normal exit instruction. 

Exchange sequence issue conditions 
An exchange sequence initiated by other than a 000 or 004 instruction has 
the followtng hold issue conditions, execution time, and special cases. 
The corresponding information for the 000 and 004 instructions is provided 
with the instruction descriptions in Section 4 of this manual. 
Hold issue conditions: 

Instruction buffer data invalid 
NIP not blank 
Wait exchange flag not set 
S, V, or A registers busy 

Execution time: 49 CPs; consists of an exchange sequence and a fetch 
operation. 

Special cases: 
Block instruction issue 
Block I/O references 
Block fetch 

2240004 3-44 E 



EXCHANGE PACKAGE MANAGEMENT 

Each 16-word exchange package resides in an area defined during system 
dead start that must lie within the lower 4096 words of memory. The 
package at address 0 is that of the monitor program. Other packages 
provide for object programs and monitor tasks. These packages lie 
outside of the field lengths for the programs they represent as 
determined by the base and limit addresses for the programs. Only the 
monitor program has a field defined so that it can access all of memory 
including the exchange package areas. This allows the monitor program 
to define or alter all exchange packages other than its own when it is 
the currently active exchange package. 

Proper management of exchange packages dictates that a non-monitor 
program always exchange back to the monitor program that exchanged to 
it. This assures that the program information is always swapped back 
into its proper exchange package. 

Consider the case where exchange packages exist for programs A, B, and C. 
Program A is the monitor program, program B is a user program, and program 
C is an interrupt processing program. 

The monitor program, A, begins an execution interval following dead start. 
No interrupts can terminate its execution interval since it is in monitor 

I mode t . The monitor program voluntarily exits by issuing a 004 exit 
instruction. Before doing so, however, it sets the contents of the XA 
register to point to Bls exchange package so that B will be the next 
program to execute and it sets the exit address in 8 1 s exchange package 
to point back to the monitor. 

I 

The exchange sequence to B causes the exit address from Bls exchange 
package to be entered in the XA register. At the same time, the exchange 
address in the XA register goes to Bls exchange package area along with all 
other program parameters for the monitor program. When the exchange is 
complete, program B begins its execution interval. 

t Assumes Monitor Mode Interrupt Option is n0t present. Refer to descrip
tion of M register. 

2240004 3-45 E 



Suppose further that while B is executing, an interrupt flag sets 
initiating an exchan~e sequence. Since B cannot alter the XA r~gister, 

the exi tis back to the moni tor program. Program B I S pa rameters s'tJap back 
into Bls"exchange package area; the monitor program parameters held in 
Bls package during the execution interval swap back into the operating 
registers. 

The monitor, upon resuming execution, determines that an" interrupt has 
caused the exchange and sets the XA register to call the proper interrupt 
processor into execution. It does this by setting XA to point to the 
exchange package for program C. Then, it clears the interrupt and 
initiates execution of C by executing a 004 exit instruction. Depending 
on the design of the operating system, the interrupt processor program 
could execute in monitor mode or in user mode. 

MEMORY FIELD PROTECTION 

Each object program at execution time has a designated field of memory 
holding instructions and data. The field limits are specified by the 
monitor program when the object program is loaded and initiated. The 
field may begin at any word address that is a multiple of 16 and may 
continue to another address that is also a multiple of 16. The field 
limits are contained in two registers, the base address register (BA) 
and the limit address register (LA), which are described later in this 
subsection. 

All memory addresses contained in the object program code are relative 
to the base address which begins the defined field. It is, therefore, 
not possible for an object program to read or alter any memory location 
with a lower absolute address than the base address. Each object program 
reference to memory is also checked against the limit address to determine 
if the address is within the bounds assigned. A memory reference beyond 
the assigned field limit is prevented from reading or altering the memory 
content and for a non-monitor mode program, creates an error condition that 
terminates program execution. The program or operand range flag is set 

2240004 3-46 E 



to indicate the error correction. The monitor program upon resuming 
execution determines the cause of the interrupt and takes appropriate 
action, perhaps terminating the user program. 

BA REGISTER 

The I8-bit BA register holds the base address of the user field during 
the execution interval for each exchange package. The contents of this 
register are interpreted as the upper 18 bits of a 22-bit memory address. 
The lower four bits of the address are assumed zero. Absolute memory 
addresses are formed by adding (BA) * 16 to the relative address specified 
by the CPU instructions. The BA register always indicates a bank 0 
memory address. 

LA REGISTER 

The I8-bit LA register holds the limit address of the user field during 
the execution interval for each exchange package. The contents of LA 
are interpreted as the upper 18 bits of a 22-bit memory address. The 
lower four bits of the address are assumed zero. The LA register always 
indicates a bank 0 memory address. 

The final address that can be executed or referenced by a program is at 
[(LA) x 24J - 1. Note that the (LA) is absolute, not relative; it is not 
added to (BA). 

DEAD START SEQUENCE 

The dead start sequence is that sequence of operations required to start 
a program running in the CPU after power has been turned off and then 
turned on again. All registers in the machine, all control latches, 

and all words in memory are assumed to be invalid after power has been 
turned on. The sequence of operations required to begin a program is 
initiated by the maintenance control unit. This unit sequences the 
following operations: 

1. Turns on master clear signal. 
2. Turns on I/O clear signal. 

2240004 3-47 E 



I 

3. Turns aff I/O clear signal. 
4. Loads memory via MCU channel. 
5. Turns off master clear signal. 

The master clear signal stops all internal computation and forces the 
critical control latches to predetermined states. The I/O clear signal 
clears the input channel address register of the channel connected to the 
MCU and activates the input channel conected to the MCU subsystem. All 
other input channels remain inactive. The maintenance control unit then 
loads an initial exchange package and monitor program. The exchange 
package must be located at address zero in memory. Turning off the master 

clear signal initiates the exchange sequence to read this package and to 
begin execution of the monitor program. Subsequent actions are dictated 
by the design of the operating system. 

2240004 3-48 E 



· SECTION 4 

INSTRUCTIONS 





INSTRUCTIONS 

INSTRUCTION FORMAT 

Each instruction is either a one-parcel (16-bit) instruction or a two
parcel (32-bit) instruction. Instructions are packed four parcels per 
word. Parcels in a word are numbered from left to right as 0 through 3 
and can be addressed in branch instructions. A two-parcel instruction 
may begin in any parcel of a word and may span a word boundary. A two
parcel instruction that begins in the fourth parcel of a word ends in 
the first parcel of the next word. No padding to word boundaries is 
required. 

Instructions have the following general form: 

g h i j k m 

~First parcel~Second parcel~ 

Figure 4-1. General format for instructions 

Five variants of this general format use the fields in different ways. 
Two of these variant forms are two-parcel formats, two are one-parcel 
formats, and one is either a one-parcel or a two-parcel format. 

ARITHMETIC, LOGICAL FORMAT 

For arithmetic and logical instructions, a 7-bit operation code (gh) is 
followed by three 3-bit address fields. The first field, i, designates 
the result register. The j and k fields designate the two operand 
registers or are combined to designate a 6-bit B or T register address. 
This format is illustrated in figure 4-2. 

2240004 4-1 E 

4 



, 
OPERATION 

COOE 

J 

RESULT 
REG. 

OPERAND 
REG. 

OPERAND 
REG. 

18 BITS 

ARITHMETIC, LOGICAL 

Figure 4-2. Format for arithmetic and 
logical instructions 

SHIFT, MASK FORMAT 

The shift and mask instructions consist of a 7-bit operation code (gh) 
followed by a 3-bit field and a 6-bit field. The 3-bit i field desig
nates the result and operand registers. The 6-bit combined jk field 
specifies a shift or mask count. This format is illustrated in figure 4-3. 

1 
OPERATION 

CODE 
OPERAND AND 
RESULT REG. 

j k 

6 

SHIFT, MASK COUNT 

16 BITS 

SHIFT, MASK 

Figure 4-3. Format for shift and mask 
instructions 

IMMEDIATE CONSTANT FORMAT 

The instructions that enter immediate constants into A registers have 
either a one-parcel or a two-parcel form. Only the two-parcel form exists 
for entering immediate constants into S registers. For the one-parcel 
form, the j and k fields are combined to give a 6-bit quantity. For the 

2240004 4-2 E 



two-parcel form, the j, k, and m fields are combined to give a 22-bit 
quantity. In either form, a 7-bit operation code (gh) and a 3-bit 
result field designating a res~lt ~egister precede. the immedlate constant. 
Figure 4-4 illustrates the instruction format for immediate constant 
instructions. 

, 
OPERATION 

CODE 

j k 

6 

RESULT CONST ANT 
REG. 

16 BITS 

CONSTANT -+A 

m 

, 
OPERATION 

CODE 

J 

22 32 BITS 
CONSTANT ..... ,. 

CONST ANT --.. ~ 

RESULT CONSTANT 

REG. 

Figure 4-4. Format for immediate constant instructions 

MEMORY TRANSFER FORMAT 

Instructions that transfer data between the A or S registers and memory 
require a 32-bit format. For these instructions, a 4-bit operation code 
(g) is followed by two 3-bit fields and a 22-bit field. The first 3-bit 
field (h) designates an index (A) register. 

When the h field is zero, the special value of zero is considered to be 
the address index. Contents of Ah are not affected. The second 3-bit 
field (i) designates a result or source register. The 22-bit field formed 
by j, k, and m, specifies a memory word address. The upper two bits of 
the j field are unused. An operand range error occurs if either bit is set. 

Figure 4-5 illustrates the format of memory transfer instructions. 

2240004 4-3 E 



I 

1ft 

22 
32 BITS 

OPERATION 
CODE 

A ....... MEMORY 

S~MEMORY 

~ 

ADDRESS 
INDEX REG. 

RESULT (OR SOURCE) 
REG. 

ADDRESS 

Figure 4-5. Format for memory transfer instructions 

BRANCH FORMAT 

In general, the branch instructions are two-parcel instructions. A 7-bit 
operation code (gh) is followed by a 25-bit field formed by combining i, j, 

k, and m. The 25-bit field contains a parcel address and allows branching 
to a quarter-word boundary. The 3-bit i field is unused. A program range 
error occurs if either of the two low-order bits of i is set; the high
order bit of i is ignored. 

Figure 4-6 illustrates the two-parcel format for branch instructions. 

9 h k m 
4 I 3 ! l3 2 I 32 BITS 

1 1 
BRANCH , 

OPERATION 
CODE 

ADDRESS PARCEL 
SELECT 

Figure 4-6. Two-parcel format for branch instructions 

2240004 4-4 E 



The unconditional branch to (Bjk) instruction requires only one parcel. 
For this instruction, there is a 7-bit operation code (gh) followed by 
a null i field and a combined jk field which specifies a B register that 
contains a parcel address. The format is not illustrated. 

SPECIAL REGISTER VALUES 

The So and A 0 registers provide special values when referenced in the j 

or k fields of an instruction. In these cases, the special value is used 
as the operand and the actual value of the So or Ao register is ignored. 
Such a use does not alter the actual value of the So or Ao register. If 
So or Ao is used in the i field: the actual value of the register is 
provided as the operand. 

Field Operand·value 
Ai, i = a (Ao) 
Aj, j = 0 a 
Ak, k = a 1 

Si , i = a (So) 
Sj, j = a a 
Sk, k = a 263 

Ah, h = a a 
INSTRUCTION ISSUE 

Instructions are read a parcel at a time from the instruction buffers and 
delivered to the NIP register. The instruction issues and is passed to 
the CIP register when the conditions in the functional unit and registers 
are such that the functions required for execution may be performed with
out conflicting with a previously issued instruction. Instruction parcels 
may issue at a maximum rate of one per clock period. Once an instruction 
has been delivered to the CIP it is considered as issued and it must be 
completed in a fixed time frame following its final clock period in the CIP 
register. No delays nre allowed from issue to delivery of data to the 
destination operating registers. 

Entry to the NIP is blocked for the second half of a two-parcel instruction. 
The parcel is delivered to the LIP register, instead. The blank NIP for 
the second parcel is issued as a do-nothing instruction in the CIP. 

2240004 4-5 E 



INSTRUCTION DESCRIPTIONS 

This section contains detailed information about individual instructions 
or groups of related instructions. Descriptions are presented in the 
octal code sequence defined by the gh fields. Each subsection begins 
with boxed information consisting of the format and a brief summary of 
each instruction described in the subsection. The appearance of an m 
in a format designates that the instruction consists of two parcels. 
An x in the format signifies that the field containing the x is ignored 
during instruction execution. 

Following the header information is a more detailed description of the 
instruction or instructions, including a list of hold issue 
conditions, execution time, and special cases. Hold issue conditions 
refer to those conditions that delay issue of an instruction until the 
conditions are met. 

Instruction issue time assumes that if an instruction issues at clock 
period n, the next instruction will issue at clock period n + issue time 
if its issue conditions have been met. 

2240004 4-6 E 



I 

r--------------------------------------------------------------------, I 
I 
I OOOxxx Error exit 
I I 

---~----~-------------------------~-----------------------------------

This instruction is treated as an error condition and an exchange 
sequence occurs. The content of the instruction buffers is voided 
by the exchange sequence. If monitor mode is not in effect, the 
error exit flag in the F register is set. All instructions issued 
prior to this instruction are run to completion. When the results 
of previously issued instructions have arrived at the operating 
registers, an exchange occurs to the exchange package designated by 
the contents of the XA register. The program address stored in the 
exchange package on the terminating exchange sequence is advanced by 
one count from the address of the error exit instruction. The error 
exit instruction is not generally used in program code. Its purpose 
is to halt execution of an incorrectly coded program that branches 
into an unused area of memory or into a data area. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 

Execution time 
Instruction issue 50 CPs; this time includes an exchange sequence 
(36 CPs) and a fetch operation (14 CPs). 

SPeciaJ cases 
None 

2240004 4-7 E 



001ijk . Monitor functions 

I This instruction is privileged to monitor mode and performs specialized 
functions useful to the operating system. Functions are selected through 
the i designator. The instruction is treated as a pass instruction if the 
monitor mode bit is not set or if the i designator is 5, 6, or 7. 

Subfunctions defined by the i designator are as follows: 

OOlOjk 

0011j k 

0012jx 

0013jx 
0014jx 

Set the current address (CA) register for thech~nnel 
indicated by (Aj) to (Ak) and activate the channel 
Set the limit address (Cl) register for the channel 
indicated by (Aj) to (Ak) 
Clear the interrupt flag and error flag for the 
channel indicated by (Aj) and/or deactivate the channel 
Enter the XA register with (Aj) 
Enter the real-time clock register with (Sj) 

When the i designator is 0, 1, or 2, the instruction controls the 
operation of the I/O channels. Each channel has two registers that 
direct the channel activity. The CA register for a channel contains 
the address of the current channel word. The Cl register specifies 
the limit address. In programming the channel, the Cl register is 
initialized and setting CA activates the channel. As the transfer 
continues, CA is incremented toward Cl. When (CA) = (Cl), the 

transfer is complete for words at initial (CA) through (Cl)~l. 

When the j designator is 0 or when the content of Aj is less than 2 
or greater than 25, the functions are executed as pass instructions. 
When the k designator is 0, CA or Cl is set to 1. 

When the i designator is 3, the instruction transmits bits 211 through 
24 of (Aj) to the exchange address (XA) register. When the j designator 
is 0, the XA register is cleared. 

2240004 4-8 E 



I 

When the i designator is 4, the instruction transmits the contents of Sj 
to the real-time clock register. When the j designator is 0, the real
time clock is cleared. 

If the Programmable Clock Interrupt (PCI) Option is installed, the content 
of the k field is relevant for this instruction. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 

For 0010, 0011, 0012, 0013, and 0014, Aj or Sj or Ak Reserved 

Execution time 
Instruction issue 1 CP 

Special cases 
If the program is not in monitor mode, instruction becomes a 
no-op although all hold issue conditions remain effective. 

For 0010, 0011, and 0012: 
, If j = 0, instruction is a no-op 

If (Aj) < 2 or (Aj)~318' instruction is a no-op 
If k = 0, CA or CL is set to 1 

For 0013: 
If j = 0, XA register is cleared 

For 0014: 
If j = 0, RTC register is cleared 

Correct priority interrupting channel number can be read (via 
033 instruction) 2 CP after issue of 0012 instruction. 

2240004 4-9 E 



I 

~------------------------------------------------------------------~-----. 
I 
I ,,0014j k Progr;ammab le clock interrupt functions 
I 
I ._~ ___ ~~ ______________________________________________ -------------- ______ 1 

When the Programmable Clock Interrupt Option is installed, subfunctions 

9f the 0014 monitor mode instruction defined by the k designator are 
recognized. When the Programmable Clock Option is not installed, none of 
these subfunctions is recognized and the instruction is always interpreted 
as an enter real-time clock register instruction. 

The following subfunctions are defined by the k designator: 

0014jO 
0014j4 
0014j5 
0014j6 
0014j7 

Enter the real-time clock register with (Sj) 
Enter interrupt interval (II) register with (Sj) 
Clear the programmable clock interrupt request 
Enable programmable clock interrupt request 

Disable programmable clock interrupt requests 

When the k designator is 0, this instruction loads the contents of the Sj 

register into the real-time clock (RTC) register. When the j designator 

is 0, the real-time clock register is cleared. 

When the k designator is 4, this instructi~n loads the lower 32 bits 
from the Sj register into both the Interrupt Interval (II) register and 

the Interrupt Countdown (ICD) counter .. 

When the k designator is 5, this instruction clears the programmable clock 

interrupt request if the request was previously set by an interrupt count 

down to zero. 

When the k designator is 6, this instruction enables repeated programmable 
clock interrupt requests at a repetition rate determined by the value 
stored in the Interrupt Interval (II) register. 

When the k designator is 7, this instruction disables repeated programmable 
clock interrupt requests until a 0014j6 instruction is executed to enable 

the requests. 

Refer to section 6 for additional information about the Programmable Clock 
Interrupt Option. 

2240004 4-10 E 



I 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
For 0014, Aj or Sj or Ak reserved 

Execution time 
Instruction issue 1 CP 

Special case 
For 0014jk: 

2240004 

If the program is not in monitor mode, instruction becomes a 
no-op but all hold issue conditions remain effective. 

E 



,-----------------------------------------------------------------~--, 
, I 

: 0020xk Transmit (Ak) to VL : , , 
,--------------------------------------------------------------------, 

This instruction enters the vector length (VL) register with a value 
determined by the contents of Ak. The low order seven bits of (Ak) 
are entered into the VL register. The number of operations performed is 
determined by first subtracting one from the contents of VL and then 
adding one to the low-order six bits of the result. For example, if 
(VL) = 100St then 100-1 = 77 and 77+1= 100. However, if (VL) = 0, 
then 0-1 = 177 and 77+1 = 100. Thus, the number of vector operations is 
64 when the content of Ak is 0 or 64 before executing the 0020 instruction. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
Ak reserved 

Execution time 

Instruction issue 1 CP 
VL register ready 1 CP 

Special cases 
Maximum vector length is 64 
(Ak) = 1 if k = 0 
(VL) = 0 if k ~ 0 and (Ak) = 0 

2240004 4-12 E 



, 

�---------------------------------------------------------------, 1 

0021xx Set floating point mode flag inM register : 
0022xx Clear fioatingpoint mode flag in M register : 

1 1 

1 ______ ----------------------------------------------- _______ ~---I 

These instructions set (0021xx) or clear (0022xx) the fl'oating point 
mode flag in the M register. 'They do not check the previous state of 
the flag (there is no way of testing the flag). 

When set, the floating point mode flag enables interrupts on floating 
point overflow errors as described in Section 3. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
Ak reserved 

Execution time 
Instruction issue 1 CP 

Special cases 
None 

2240004 4-13 E 



003xjx Transmit (Sj) to. vector mask 

This instruction enters the vector mask (VM) register with the contents 
of Sj. The VM register is cle~red if the j designator is zero. This 
i nstructi on is used in conj uncti on wj th the, vector merge i nstructi ons 
(146 and 147) in which an operation is performed depending on the 

contents of VM. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
Sj reserved 
003 in process - unit busy 3 CPs 

14x in process - unit busy (VL) + 4 CPs 

175 in process - unit busy (VL) + 4 CPs 

Execution time 
Instruction issue 1 CP 
VM ready in 3 CPs except for use in 073 instruction 
For 073 instruction, VM ready in 6 CPs 

Special cases 
(Sj) = 0 if j = 0 

2240004 4-14 E 



I 

r-------------------------------------------------------------------I I 

: 004xxx Normal exit : 
I I 
I I 

This instruction causes an exchange sequence. The contents of the 
instruction buffers are voided by the exchange sequence. If monitor 
mode is not in effect, the normal exit flag in the F register is set. 
All instructions issued prior to this instruction are run to completion. 
When all results have arrived at the operating registers as a result 
of previously issued instructions, an exchange sequence occurs to the 
exchange package designated by the contents of the XA reqister. The 
program address stored in the exchange package is advanced one count 
from the address of the normal exit instruction. This instruction is 
used to issue a monitor request from· a user program. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 

Execution time 
Instruction issue 50 CPs; this time includes an exchange sequence 

(36 CPs) and a fetch operation (14 CPs). 

Special cases 

2240004 

Block instruction issue 
Begin exchange sequence 

4-15 E 



r-----------------------------------------------------------------I I 

: 005xjk Branch to (Bjk) : 
I I 
I I 

-----------------------------------------------------------------~ 

This instruction sets the P register to, the parcel address specified 
by the contents of Bjk causing execution to continue at that address. 
The instruction is used to return from a subroutine. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 

Execution time 
Instruction issue: 

Both parcels of branch in a buffer and branch address in a 
buffer 7 CF'S 

Both parcels of branch in a buffer and branch address not 
ina buffer 16 CPS 
Second parcel of branch not in a buffer and branch address 
in a buffer 16 CPs 
Second parcel of branch not in a buffer and branch address 
not in a buffer 25 CPs 

Special cases 
The parcel following an 005 instruction is not used for branching; 
however, it can cause a delay of the 005 instruction if it is 
out of buffer. See execution times. 

2240004 4-16 



,----------------------------------------------------- ~------------
I 
: 006ijkm Branch to ijkm 
I 

This two-parcel instruction sets the P register to the parcel address 
specified by the low order 22 bits of the ijkm field. Execution 
continues at that address. The high order bit of theijkm field is 
ignored. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 

Execution time 

Instruction issue: 
Both parcels of branch in the same buffer and branch address 
in a buffer 5 CPs 
Both parcels of branch in the same buffer and branch address 
not in a buffer 14 CPs 
Both parcels of branch in different buffers and branch 
address in a buffer 7 CPs 
Both parcels of branch in different buffers and branch 
address not in a buffer 16 CPs 
Second parcel of branch not in a buffer and branch address 
in a buffer 16 CPs 
Second parcel of branch not in a buffer and branch address 
not in a buffer 25 CPs 

Special cases 
None 

2240004 4-17 E 



007ijkm Return jurrp to ijkm; set Boo to (P) 

This two-parcel instruction sets register Boo to the address of the 
follo~ing parcel. The P register is then set to the parcel addre~s 

specified by the low order 22 bits of the ijkm field. Execution 
continues at that address. The high order bit of the ijkm field is 
ignored. The purpose of this instruction is to provide a return 
linkage for subroutine calls. The subroutine is entered via a 
return jump. The subroutine returns to the caller at the instruction 
following the call by executing a branch to the contents of a 
B register. 

He 1 d is sue cond i ti.9.!2§.. 
034 - 037 in process 
Exchange in process 

Execution time 
Instruction issue: 

Both parcels of branch in the same buffer and branch address 
in a buffer 5 CPs 

Both parcels of branch in the same buffer and branch address 
not in a buffer 14 CPs 
Both parcels of branch in different buffers and branch 
address in a buffer 7 CPs 

Both parcels of branch in different buffers and branch 
address not in a buffer 16 CPs 

Second parcel of branch not in a buffer and branch address 
in a buffer 16 CPs 

Second parcel of branch not in a buffer and branch address 
not in a buffer 25 CPs 

Special cases 
None 

2240004 4-18 E 



r------------------------------------------~-~-------- --------------

010ijkm Branch to ijkm if (A 0) = 0 
011 ij km Branch to ijkm if (Ao) t- O 

012i j km Branch to ijkm if (P, 0) positive 
013ijkm Branch to ijkm if (Ao) negative 

These two-parcel, instructions test the contents of Ao for the 
condition specified by the h field. If the condition is satisfied, 
the P register is set to the parcel address specified by the low order 
22 bits of the ijkm field and execution continues at that address. 
The high order bit of the ijkm field is ignored. If the condition is 
not satisfied, execution continues with the instruction following the 

branch instruction. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
Ao busy in last 2 CPs 

Execution time 
Instructibn issue: 

Both parcels of branch in the same buffer and branch address 
in a buffer 5 CPs 
Both parcels of branch in the same buffer and branch address 
not in a buffer 14 CPs 
Both parcels of branch in different buffers and branch 
address in a buffer 7 CPs 
Both parcels of branch in different buffers and branch 
address not in a buffer 16 CPs 
Second parcel of branch not in a buffer and branch address 
in a buffer 16 CPs 
Second parcel of branch not in a buffer and branch address 
not in a buffer 25 CPs 
Both parcels of branch in the same buffer and branch not taken 2 CP~ 
Both parcels of branch in different buffers and branch not taken 4 ( 
Second parcel of branch not in a buffer and branch not taken 13 CPs 

Special cases 
(Ao) = a is considered a positive condition 

2240004 
4-19 E 



014ijkm Branch to ijkm if (So) = 0 

o 15i j km Branch to ;j km if (So) ., 0 

016ijkm Branch to i j km if (So) positive 

017i j km Branch to i j kir: if (So) negative 

These two~parcel instructions test the contents of So for the condition 

specified by the h field. If the condition is satisfied, the P reqister 

is set to the parcel address specified by the low order 22 bits of the 

ijkm field and execution continues at that address. The high order bit 

of the ijkm field is ignored. If the condition is not satisfied, 

execution continues with the instruction following the branch instruction. 

Hold issue conditions 

034 - 037 in process 

Exchange in process 

So busy in last 2 CPs 

Execution time 

Instruction issue: 

Both parcels of branch in the same buffer and branch address 
in a buffer 5 CPs 

Both parcels of branch in the same buffer and branch address 
not in a buffer 14 CPs 

Both parcels of branch in different buffers and branch 
address in a buffer 7 CPs 

Btith parcels of branch in different buffers and branch 
address not in a buffer 16 CPs 

Second parcel of branch not in a buffer and branch address 
in a buffer 16 CPs 

Second parcel of branch not in a buffer and branch address 
not in a buffer 25 CPs 

Both parcels of branch in the same buffer and branch not taken 2 CP~ 

Both parcels of branch in different buffers and branch not taken 4 CF 

Second parcel of branch not in a buffer and branch not taken 13 CPs 

Special cases 

(So) = a is considered a positive condition 

2240004 4-20 E 



020ijkm Transmit jkm to Ai 
021ijkm Transmit complement of jkm to Ai 

The 020 instruction enters into Ai a 24-bit value that is composed of 
the 22-bit jkm field and two upper bits of zero. 

The 021 instruction enters into Ai a 24-bit value that is the complement 
of a value formed by the 22-bit jkm field and two upper bits of zero. The 
complement is formed by changing all one bits to zero and all zero bits to 
one. Thus, for the 021 instruction, the upper two bits of Ai are set to one 
and the instruction provides a means of entering a negative value into Ai. 

The instructions are both two-parcel instructions. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
A register access conflict 

Ai reserved 

Execution time 
Instruction issue: 

Both parcels in same buffer 2 CPs 
Parcels in different buffers 4 CPs 
Second parcel not in a buffer 13 CPs 

Ai ready 1 CP 

Special cases 
None 

2240004 4-21 E 



~----------------------------------------------------------------------, 
I I 

: 022ijk Transmit jk to Ai : 
I I 
~ _________________________________________________________ ~~_~ _________ J 

This one-parcel instruction enters the 6-bit quantity from the jk field 
into the low order 6 bits of Ai. The upper 18 bits of Ai are zeroed. 
No sign extension occurs. 

Hold isssue conditions 
034 - 037 in process 
Exchange in process 
A register access conflict 

Ai reserved 

Execution time 
Instruction issue 1 CP 
Ai ready 1 CP 

Special cases 
None 

2240004 4-22 E 



T------------------------------------------------------------------~--, 
I I 

: 023ijx Transmit (Sj) to Ai : 
I I 1 _____________________________________________________ ________________ J 

This instruction enters the low order 24 bits of (Sj) into Ai. The 
high order bits of (Sj) are ignored. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
A register access conflict 
P, i reserved 
Sj reserved 

Execution time 
Instruction issue 1 CP 
Ai ready 1 CP 

Special cases 
(Sj) = 0 if j = 0 

2240004 4-23 E 



T----------------------------------------------------------------------, 
I I 

: 024ijk Transmit (Bjk) to Ai : 
I I 

: 025ijk Transmit (Ai) to Bjk : 
I I ~ _____________________________________________________ _________________ l 

The 024 instruction enters the contents of Bjk into'Ai. 

The 025 instruction enters the contents of Ai into Bjk. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
A register access conflict (024 only) 
Ai reserved 

Execution time 
For 024, Ai ready 1 CP 
Instruction issue for 024 or 025 1 CP 

Special cases 
None 

2240004 4-24 E 



r------------------------------------------------------------------------I' 1 

: 026ijO Population count of (Sj) to Ai l 
1 

: 026ij1 Population count parity of (Sj) to Ai; requires presence: 
: of Vector Population Instructions Option. : 
~ _____________________________________________________ ------------- ______ 1 

The 026ijO instruction counts the number of bits set to one in (Sj) and 
enters the result into the low order 7 bits of Ai. The upper 17 bits of 
Ai are zeroed. 

The 026ij1 instruction counts the number of bits set to one in (Sj). 
Then, the least significant bit, which shows the odd/even state of the 

I result is transferred to the least significant bit position of the Ai 
register. The actual population count is not transferred. This instruc
tion is recognized only when the Vector Population Instructions Option is 
installed; otherwise it operates as a 026ijO instruction. 

The instructions are executed in the population/leading zero count unit. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
A register access conflict 
Ai reserved 
Sj reserved 

Execution time 
Instruction issue 1 CP 
Ai ready 4 CPs 

Special cases 
(Ai) = a if j = 0 

2240004 4-25 [-01 



. , .-------------------------------------------------------------------, 
027i j X Leading zero count of (Sj) to Ai · , • • • _____ ~ __________ ~~ ________________________________________ --- ______ 2 

This instruction counts the number of leading zeros in Sj and enters 
. the result into the low order seven bits of Ai. The upper 17 bits of 

Ai are zeroed. 
The instruction is executed in the population/leading zero count unit. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
A register access conflict 

A.i reserved 
Sj reserved 

Execution time 
Instruction issue 1 CP 
Ai ready 3 CPs 

Special cases 
(Ai) = 64 if j = 0 
(Ai) = 0 if (Sj) is negative 

2240004 4-26 E 



--------------------------------------------------------------------1 
1 

: 030ijk Integer sum of (Aj) and (Ak) to Ai 
1 

: 031ijk Integer difference (Aj) and (Ak) to Ai 1 

1 1 
1 ______ ----------------------------------------------- ______________ _ 

These instructions are executed in the address add unit. 

The 030 instruction forms the integer sum of (Aj) and (Ak) and enters 
the result into Ai. No overflow is detected. 

The 031 instruction forms the integer difference of (Aj) and (Ak) and 
enters the result into Ai. No overflow is detected. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
A register access conflict 
Ai, Aj, or Ak reserved 

Execution time 

Instruction issue 1 CP 
Ai ready 2 CPs 

S~ecial cases 
For 030: 

(Ai)= (Ak) if j = 0 and k t- 0 
(A i) = 1 if j = 0 and k = 0 
(Ai) = (Plj )+1 if j t- 0 and k = 0 

For 031: 
( Ai) = - (Ak) if j = 0 and k t- 0 
(Ai)=-1 if j = 0 and k = 0 
( Ai) = (Aj) -1 if j t- 0 and k = 0 . 

2240004 4-27 E 



r-~------~-----------~---~------~---~------------------------------~ 
I I 

: 032ijk Integer product of (Aj) and (Ak) to Pi : 
I I I _______________________________ ~ _________ ~ ____________________ ~----J 

This instruction forms the integer product of (Aj) and (Ak) and 
enters the low order 24 bits of the result into Ai. No overflow 
is detected. 

This instruction is executed in the address multiply unit. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
A register access conflict 
Ai, Aj, or Ak reserved 

Execution time 
Instruction issue 1 CP 

fl.i ready 6 CPs 

Special cases 
(Ai) and (Aj) = 0 if j = 0 
( A k) = 1 and ( Ai) = (Aj) i f k = 0 and j i 0 

2240004 4-28 E 



~--------------------------------------------------------------------, I I 

: 033ijk Transmit I/O status to Ai : 
I I 
I I 

~----------------------------------------------------- ---------------, 

This instruction enters channel status information into Ai. The j 
and k designators and the contents of Aj define the desired information. 

033iOx Channel number of highest priority interrupt request 
to Ai 

033ijO Current address of channel (Aj) to Ai 
033ij1 Error flag of channel (Aj) to Ai 

The channel number of the highest priority interrupt request is entered 
into Ai when the j designator is zero. The contents of Aj specifies a 
channel number when the j designator is nonzero. The value of the 
current address (CA) register for the channel is entered into Ai when 
the k designator is an even number. The error flag for the channel is 
entered into the low order bit of Ai when the k designator is an odd 
number. The high-order bits of Ai are cleared. The error flag can be 
cleared only in monitor mode using the 0012 instruction. 

The 033 instruction does not interfere with channel operation and is 
not protected from user execution. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
A register access conf1ict 

Ai reserved 
Aj reserved 

Execution time 
Instruction issue 1 CP 
Ai ready 4 CPs 

2240004 4-29 E 



Special cases 
(Ai) = highest priority channel causing interrupt if (,L\j) = 0 
(Ai) = current address of channel (Aj) if (Aj) ~ 0 and k = 0,2,4,6 
(Ai) = I/O error flag of channel (Aj) if (Aj) ~ 0 and k = 1,3~5,7 
(Ai) = 0 if (Aj) = 1 

2240004 

2 CPs must elapse after an 0012xx instruction issue before issuing 
an 033iOO instruction~ 

4-30 E 



----------------------------------------------------------------------, 
034ijk 

035ijk 

03Eijk 

037ijk 

Block transfer (Ai) words from memory starting at 
address (Ao) to B registers starting at register jk. 
Block transfer (Ai) words from B registers starting 
at register jk to memory starting at address (Ao) 
Block transfer (Ai) words from memory starting at 
address (Ao) to T registers starting at register jk 
Block transfer (Ai) words from T registers starting 
at register jk to memory starting at address (Ao) 

These instructions perform block transfers between memory and B or T 
registers. 

In all of the instructions, the amount of data transferred is specified 

by the lower seven bits of (Ai). See special cases for details. 

The first register involved in the transfer is specified by jk. Successive 
transfers involve successive B or T registers until B77 or T77 is reached. 
Since processing of the registers is circular, Boo will be processed 
after B77 and T~o will be processed after T77 if the count in (Ai) is 
not exhausted. 

The first memo~y location referenced by the transfer instruction is 
specified by (Ao). The Ao register contents are not altered by 
execution of the instruction. Memory references are incremented by one 
for successive transfers. 

For transfers of B registers to memory, each 24-bit value is right adj~gted 
in the word; the upper 40 bits are zeroed. When transferring from memory 
to B registers, only the low order 24 bits are transmitted; the upper 40 
bits are ignored. 

2240004 4-31 E 



Hold issue conditions 
Ao reserved 
Ai reserved 
Block sequence flag set (034 - 037, 176, 177) 
034 - 037 in process 
Exchange in process 
Scalar reference in CP2 
Rank B data valid 
Fetch request in last clock period 
I/O memory request 

Execution time 
For 034, 036: 

Instruction issue 14 CPs + (Ai) if (Ai) r 0; 5 CPs if (Ai) = 0 

For 035, 037: 
Instruction issue 6 CPs + (Ai) if (Ai) r 0; 7 CPs if (Ai) = 0 

Special cases 
1. Block all issues when in process. 
2. Block all I/O references. 
3. An out-of-range memory reference will cause an interrupt condition 

to occur. For 034, 036, the interrupt will occur in 2 CP + 2 issues, 
For 035, 037, the interrupt will occur in 0 to 2 CP + 2 issues. 

4. For 034, 036, memory reference out of limits will allow two 
parcels to issue. For 035, 037, two to four parcels will issue. 

5. An uncorrected memory parity error will allow a minimum of 2 
issues and a maximum of 7 CPs + 2 issues. 

6. (Ai) = 0 causes a zero block transfer. 
200 8 > (Ai) > 100 causes a wrap-around condition 
(Ai) > 177 8 , bits 27 through 223 are truncated. The block 
transfer is equal to the value of 20 through 26. 

7. (Ao) is used as the block length if i = o. 

2240004 4-32 E 



�---------------------------------------------------------~----------I 1 1 

: 040ijkm Transmit jkm to Si : 
1 1 

: 041ijkm Transmit complement of jkm to Si : 
1 1 
1 1 --------------------------------------------------------------------

These two-parcel instructions provide for entering immediate values 
into an S register. 
The 040 instruction enters into Si a 64-bit value that is composed 
of the 22-bit jkm field and 42 upper bits of zero. 

The 041 instruction enters into Si a,64-bit value that is the complement 
of a value formed by the 22-bit jkm field and 42 upper bits of zero. The 
complement is formed by changing all one bits to zero and all zero bits 
to one. Thus, for the 041 instruction, the upper 42 bits of Si are 
set to one and the instruction provides for entering a negative value 
into Si. 

Hold issue conditions 
034 ~ 037 in process 

Exchange in process 
S register access conflict 

S1 reserved 

Execution time 
Instruction issue 

Both parcels in same buffer 2 CPs 
Both parcels in different buffers 4 CPs 
Second parcel not in a buffer 13 CPs 

Si ready 1 CP 

Special cases 
None 

2240004 4-33 E 



I-~----------~-------------~---------~------------------------------, 
I I 

: 042ijk Form 64 - jk bits of one's mask in Si from right : 
I I 

: 043ijk Form jk bits'of cine's mask in Si from left : , , , _____________________________________________________ ________ ------J 

The 042 inst~uction generates a m~sk of 64-jk ones from right to left 
in Si. Thus, for example, if jk = 0, Si contains all one bits and if 
jk = 77'8' Si contains zeros in all but the lowest order bit. 

The 043 instruction generates a mask of jk ones from left to right in 
Si. Thus, for exampl~, if jk = 0, Si contains all zeroed bits and if 
jk = 77 , Si contains ones in all but the lowest order bit. 

. 8" 

These i~structions are execu~ed ir t~e scalar 10nical ('nit. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
S register access conflict 

Si reserved 

Execution time 
Instruction issue 1 CP 
Si ready 1 CP 

Special cases 
None 

2240004 4-34 E 



1----·---------------------------------------------------------------~ 

044ijk 
045ijk 
046ijk 
047ijk 
050ijk 
051ijk 

Logical product of (Sj) and (Sk) to Si 
Logical product of (Sj) and complement of (Sk) to Si 
Logical difference of (Sj) and (Sk) to Si 
Logical equivalence of (Sk) and (Sj) to Si 
Scalar merge 

Lo~ical sum of (Sj) and (Sk) to Si 

I 
I 
I 
I 
I 
I 
I 
I 
I ___________________________________________________ ~ _______________ J 

These instructions are executed in the scalar logical unit. 

The 044 instruction forms the logical product (AND) of (Sj) and (Sk) 
and enters the result into Si. Bits of Si are set to one when the 

corresponding bits of (Sj) and (Sk) are one as in the following example: 
(Sj) = 1 1 0 0 
(Sk) = 1 0 1 0 

(Si) = 1 000 
(Sj) is transmitted to Si if the j and k designators have the same non
zero value. Si is cleared if the j designator is zero. The sign bit 
of (Sj) is extracted into Si if the j designator ;s nonzero and the k 
designator is zero. 

The 045 instruction forms the logical product (AND) of (Sj) and the 
complement of (Sk) and enters the result into Si. Bits of Si are set 
to one when the corresponding bits of (Sj) and the complement of (Sk) 
are one as in the following example: 

(Sj) = 1 1 0 0 

(Sk) = 1 0 1 0 

(Si) = 0 1 0 0 
S; ;s cleared if the j and k designators have the same value or if the 
j designator is zero. (Sj) with the sign bit cleared is transmitted 
to Si if the j designator is non-zero and the k designator is zero. 

2240004 4-35 E 



The 046 instruction forms the logical difference (exclusive OR) of 
(Sj) and (Sk) and enters the result into Si. Bits of Si are set to 
one when th~ corresponding bits of (Sj) and (Sk) are different as in 
the following example: 

(Sj) = 1 1 0 0 

(Sk) = 1 0 1 0 

(Si) = 0 1 1 0 

Si is cleared if the j and k designators have the same nonzero value. 
~Sk) is transmitted to Si if the j designator is zero and the k 
designator is nonzero. The sign bit of (Sj) is complemented and the 
result is transmitted to Si if the j designator ;s nonzero and the 
k designator is zero. 

The 047 instruction forms the logical equivalence of (Sj) and (Sk), and 
enters the result into Si. Bits of Si are set to one when the 
corresponding bits of (Sj) and (Sk) are the same as in the 
following example: 

(Sj) = 1 100 

(Sk) = 1 C 1 0 
(S; ) = 100 1 

Si is set to all ones if the j and k designators have the same nonzero 
value. The complement of (Sk) is transmitted to Si if the j designator 
is zero and the k designator is nonzero. All bits except the sign bit: 
of (Sj) are complemented and the result is transmitted to Si if the j 

designator is nonzero and the k designator is zero. 

The 050 instruction merges the contents of (Sj) with (Si) depending 
on the ones mask in Sk. The result is defined by the Boolean equation 
(Si) = (Sj)(Sk) + (Si)(Sk) as illustrated in the following example: 

2240004 

(Sk) = 1 1 1 1 0 0 0 0 
(Si) = 1 1 0 0 1 100 
(Sj) = 1 0 1 0 1 0 1 0 

(Si) = 1 0 1 0 1 1 0 0 

4-36 E 



The 050 instruction is intended for merging portions of 64-bit words 
into a composite word. Bits of Si are cleared when the corresponding 
bits of Sk are one if the j designator is zero and the k designator is 
nonzero. The sign bit of (Sj) replaces the sign bit of Si if the j 
designator is nonzero and the k designator is zero. The sign bit of 
Si is cleared if the j and k designators are both zero. 

The 051 instruction forms the logical sum (inclusive OR) of (Sj) and 
(Sk) and enters the result into Si. Bits of Si are set when one of 
the corresponding bits of (Sj) and (Sk) is set as in the following example: 

(Sj) = 1 1 0 0 
(Sk) = 1 0 1 0 

(Si) = 111 0 

(Sj) is transmitted to Si if the j and k designators have the same 
nonzero value. (Sk) is transmitted to Si if the j designator is zero 
and the k designator is nonzero. (Sj) with the sign bit set to one 
is transmitted to Si if the j designator is nonzero and the k designator 
is zero. A ones mask consisting of only the sign bit is entered into 
Si if the j and k designators are both zero. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
S register access conflict 

, Si, Sj, and Sk reserved 

Execution time 
Si ready 1 CP 
Instruction issue 1 CP 

Special cases 
(Sj) = 0 if j = 0 

(Sk) = 263 if k = 0 

2240004 4-37 E 



r------------------------------------------------------------------
052ijk 
053i j k 
054ijk 

Shift (Si) left jk places to So 
Shift (Si) right 64 - jk places to So 
Shift (Si) left jk places to Si 

·055ijk Shift (Si) right 64 - jk places to Si 

These instructions are executed in the scalar shift unit. They 
shift values in an Sregister by an amount specified by jk. All 
shifts are end off with zero fill. 

The 052 instruction shifts (Si) left. jk places and enters the result 
into So. 
The 053 instruction shifts (Si) right by 64-jk places and enters the 
result into So. 
The 054 instruction shifts (Si) left jk places and enters the result 
intoS;. 
The 055 instruction shifts (Si) right by 64-jk places and enters the 
result into $i. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
S register access conflict 
S i .. res erved 
So reserved (052 and 053 only) 

Execution time 
For 052, 053, So ready 2 CPs 
For 054, 055, Si ready 2 CPs 
Instruction issue 1 CP 

Special cases 
None 

2240004 4-38 E 



i-------------~----~~--~-~~-------------~------------------~------~--I 
: 056ijk Shift (Si) and (Sj) left by (Ak) places to Si : 
I I 

: 057ijk Shift (Sj) and (S1) right by (Ak) places to Si : 
I I L _____________ ~ _______ -_~ ______ ~_~- __ ~~ __ p ______ ~_~ ___ _______________ 1 

These instructions are executed in the scalar shift unit. They shift 

128-bit values fromed by logically joining two S registers. Shift counts 
are obtained from register Ak. A shift of one place occurs if the k 
designator is zero. 

All shifts are end-off with zero fill. The shift is effectively a 
circular shift if the shift count does not exceed 64 and the i and j 
designators are equal and nonzero. For both the 056 and 057 instructions~ 

(Sj) are unchanged. 

The 056 instruction performs left shifts of (Si) and (Sj) with (Si) 
initially the most significant bits of the double register. The high
order 64 bits of the result are transmitted to Si. Si is cleared if the 
shift count exceeds 127. The 056 instruction produces the same result 
as the 054 instruction if the shift count does not exceed 63 and the j 
designator is zero. 

The 057 instruction performs right shifts of (Sj) and (Si) with (Sj) 
initially the most significant bits of the double register~ The low-order 
64 bits of the result are transmitted to Si. Si is cleared if the shift 
count exceeds 127. The 057 instruction produces the same result as the 
055 instruction if the shift count does not exceed 63 and the j designator 

is zero. 
Hold issue conditions 

034 - 037 in process 
Exchange in process 

S register access conflict 
Si~ Sj~ or Ak reserved 

Execution time 
Si ready 3 CPs 
Instruction issue 1 CP 

Special cases 
(Sj) = 0 if j = 0 

(Ak) = 1 if k = 0 

2240004 4-39 E 



r---------------------------------------------~--~~--~--------~-----I . : 

060ijk 
061 ijk 

Integer sum of (Sj) and ($k) to 5i 
Integer difference of (Sj) and (Sk) toSi 

I 
I 
I 
I 
I 

I I 

_~--~-----------------~-----~-------------~------------------- ______ 1 

These instructions are executed in the scalar add unit. 

The 060 instruction forms the integer sum of (Sj) and (Sk) arid enters 
the result into Si. No overflow is detected. 

The 061 instruction forms the integer difference of (Sj) and (Sk) and 
enters the result into Si. No overflow is detected. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
S register access conflict 
Si, Sj, or Sk reserved 

Execution time 
Si ready 3 CPs 
Instruction issue 1 CP 

Special cases 
For 060: 

(S1) = (Sk) if j = 0 and k ; 0 
(S1) = 263 if j = 0 and k = 0 
(Si) = (Sj) with 2 63 complemented if j ~ 0 and k = 0 

For 061: 
(51) = -(Sk) if j = 0 and k ; 0 

(Si) = (Sj) with 263 complemented if j ~ 0 and k = a 

2240004 4-40 E 



.---------------------------------------------------------------------i 
I 

062ijk Floating sum of (Sj) and (Sk) to Si : 
I 

063ijk Floating difference of (Sj) and (Sk) to Si : 
I I 

~---------------------------------------------------------------------~ 

These instructions are performed by the floatinq point add unit. 
Operands are assumed to be in floating point format. The result is 
normalized even if the operands are unnormalized. Underflow and 
overflow conditions are described in Section 3. 

The 062 instruction forms the sum of the floating point quantities 
in Sj and Sk and enters the normalized result into Si. 

The 063 instruction forms the difference of the floating point 
quantities in Sj and Sk and enters the normalized result into Si. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
Si register access conflict 
Si, Sj, or Sk reserved 
170 - 173 in process; unit busy (VL) + 4 CPs 

Execution time 
Si ready 6 CPs 
Instruction issue 1 CP 

Special cases 
For 062: 

(Si) = (Sk) normalized if j = 0 and k ~ 0 
(Si) = (Sj) normalized if (Sj) exponent is valid, j ~ 0 and k = 0 

For 063: 
(Si) = -(Sk) normalized if j = 0 and k ~ 0 
(Si) = (Sj) normalized if (Sj) exponent is valid, j ~ 0 and k = 0 

Arithmetic error allows 0 to 9 CPs + 2 parcels to issue before 
interrupt occurs if f.p. error flag is set. 

2240004 4-41 E 



r-------------------------------------------------------------------
064ijk 
065ijk 

Floating product of (Sj) and (Sk) to Si 
Half-precision rounded floating product of (Sj) and 
(Sk) to Si 

066ijk 
067ijk 

Rounded floating product of (Sj) and (Sk) to 5i 
Reciprocal iteration; 2 - (Sj) * (Sk) to Si 

These instructions are executed by the floating point multiply unit. 
Operands are assumed to be in floating point format. The result is 
not guaranteed to be normalized if the operands are unnormalized. 

The 064 instruction forms the product of the floating point quantities 
in Sj and Sk and enters the result into Si. 

The 065 instruction forms the half-precision rounded product of the 
floating point quantities in Sj and Sk and enters the result into Si. 
The low order 18 bits of the result are cleared. 

The 066 instruction forms the rounded product of the floating point 
quantities in Sj and Sk and enters the result into Si. 

The 067 instruction forms two minus the product of the floating point 
quantities in Sj and Sk and enters the result into Si. This instruction 
is used in the divide sequence as described in Section 3 under Floating 
Point Arithmetic. 

Hold issue conditions 
034 ~ 031 in process 
Exchange in process 
S register access conflict 
Si, Sj, or Sk reserved 
160 - 167 in process; unit busy (VL) + 4 CPs 

2240004 4-42 E 



I 

Execution time 
Instruction issue 1 CP 
Si ready 7 CPs 

Special cases 
(Sj) = 0 if j = 0 

(Sk) = 26 3 if k = 0 

Arithmetic error allows 9 CP + 2 parcels to issue before interrupt 

occurs if f.p. error flag is set. 

2240004 4-43 E 



I--------~------------------------------------------~- ---------------

070ijx Floating reciprocal approximation of (Sj) toSi 

.-------------------~----------------~--------------------------~----

This instruction is executed in the reciprocal approximation l~nit. 

The instruction forms an approximation to the reciprocal of the normalized 
floating point quantity in Sj and enters the result into This 
instruction occurs in the divide sequence to compute the quotient!of 
two floating point ~uantities as described in Section 3 under Floating 
Point Arith~etic. 

The reciprocal approximation instruction produces a result that is 
I accurate to 30 bits. A second approximation may be generated to 

extend the accuracy to 47 bits using the reciprocal iteration instruction. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
Si or Sj reserved 
174 in process; unit busy (Vl) + 4 CPs 

Execution time 
Si ready 14· CPs 
Instructior issue 1 CP 

Special cases 

2240004 

An arithmetic error allows 17 CPs + 2 parcels to issue if the 
f.p. error flag is set. 

(Si) is meaningless if (Sj) ;s not normalized; the unit assumes 
that bit 247 of (Sj) = 1; no test is made of this bit. 

(Sj) = 0 produces a range error; the result is meaningless. 

(Sj) = a if j = O. 

4-44 E 



r-------------------------------------------------------------------. 
• • : 071ijk Trans~it (Ak) or normalized floating point constant: 
• • : to Si 
• • L _____________________________________________________ ______________ ~ 

This instruction performs one of several functions depending on the 
value of the j designator. The functions are concerned with trans
mitting information from an A register to an S register and with 
generating frequently used floating point constants. 

071iOk Transmit (Ak) to <::: • ... 1 with no sign extension 
071i1k Transmit (Ak) to <::: • ..... , with sign extension 
071i2k Transmit U\k) to Si as unnormalized floating point 

number 
071 i 3 k Transmit constant 0.75 x 248 to 5i 
071 i 4 k Transmit constant 0.5 to Si 
071 i 5k Transmit constant 1.0 to Si 
071 i 6 k Transmit constant 2.0 to 5i 
071 i 7 k Transmit constant 4.0 to Si 

When the j designator is 0, the 24-bit value in Ak is transmitted to 
Si. The value is treated as an unsigned integer. The high-order bits 
of 5i are cleared. 

When the j designator is 1, the 24-bit value in Ak is transmitted to 
Si. The value is treated as a signed integer. The sign bit of Ak is 
extended to the high order bit of Si. 

When the j designator is 2, the 24-bit value in Ak is transmitted to 
Si as an unnormalized floating point quantity. The result can then 
be added to zero to normalize. For this instruction, the exponent in 
bits 1 through 15 is set to 40060 8 • The sign of the coefficient is 
set according to the sign of Ak. If the sign bit of Ak is set, the 
two's complement of Ak is entered into Si as the magnitude of the 
coefficient and bit 0 of Si is set for the sign of the coefficient. 

2240004 4-45 E 



When the j designator is 3, the constant 0.75 x 2
48 

is entered into 
Si. 

When the j designator is 4, 5, 6, or 7, the normalized floating point 
constant 0.5, 1.0, 2.0, or 4.0, respectively is transmitted to Si. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
Si register access conflict 
5i reserved 

Ak reserved (all instructions) 

Execution time 
Si ready 2 CPs 
Instruction issue 1 CP 

S~ecial cases 
(Ao) = 1 if k = 0 
(Si) = (,A.k) if j = 0 

(Si) = (Ak) sign extended if j = 1 
(S i ) = (Ak) unnormalized if j = 2 

(Si) = 0.6 X 260 (octal) ; f j = 3 

(Si) = 0.4 x 20 (octal) if j ::; 4 

(S i ) = 0.4 X 21 (octal) ; f j = 5 

(Si) = 0.4 x 22 (octal) if j = 6 

(Si) = 0.4 x 23 (octal) if j = 7 

2240004 4-46 E 



r----------------------------------------------------------------------
072ixx 
073ixx 
074ijk 
075ijk 

Transmit (RTC) to Si 
Transmit (VM) to Si 
Transmit (Tjk) to Si 
Transmit (Si) to Tjk 

These instructions transmit register values to Si except for instruction 
075 which transmits (Si) to Tjk. 

The 072 instruction enters the 64-bit value of the real-time clock into 
Si. The clock is incremented by one each clock period. The real-time 
clock is cleared by the operating system at system initialization and 
can be reset only by the monitor through use of the 0014 instruction. 

The 073 instruction enters the 64-bit value of the vector mask (VM) 
register into Si. The VM register is usually read after having been set 
by the 175 instruction. 

The 074 instruction enters the contents of Tjk into Si. 

The 075 instruction enters the contents of Si into Tjk. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
Si register access conflict (072, 073, and 074 only) 
Si reserved 

For 073 only: 
175 in process, unit busy (VL) + 6 CPs 
003 in process, unit busy 6 CPs 

Execution time 
Instruction issue 1 CP 
For 072 through 074, Si ready 1 CP 
For 075, Tjk ready 1 CP 

Special cases 
None 

2240004 4-47 E 



076ijk 
077ijk 

Transmit (Vj element (Ak)) to Si 
Transmit (Sj) to Vi element (Ak) 

These instructions transmit a €4-bitquantity between a V register 
element and an S register. 

The 076 instruction transmits the contents of an element of register 
Vj to Si. 
The 077 instruction transmits the contents of register Sj to an element 
of register Vi. 
The low-order six bits of (Ak) determine the vector element for either 
instruction. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
Ak reserved 
Si register access conflict (076 only) 
For 076, Si and Vj reserved 
For 077, Vi and Sj reserved 

Execution time 
Instruction issue 1 CP 
For 076, Si ready 5 CPs 
For 077, Vi ready 3 CPs 

Special cases 

2240004 

(Sj) = a if j = a 
(Ak) = 1 if k = 0 

4-48 E 



10hi jkm 
Ilhijkm 
12 hijkm 
13hi j km 

Read from ((Ah) + jkm) to Ai 
Store (Ai) to (Ah) + jkm 
Read from ((Ah) + jkm) to Si 
Store (Si) to (Ah) + jkm 

1-----------------------------------------------------------------------1 

These two parcel instructions transmit data between memory and an fl. 

register or an S register. The content of Ah is added to the signed 
integer in the jkm field to determine the memory address. If h is 0, 
(Ah) is 0 and only the jkm field is used for the address. The address 
arithmetic is performed by an address adder similar to but separate 
from the address add unit. 

The 10h and Ilh instructions transmit 24-bit quantities to or from 
A registers. When transmitting data from memory to an fl. register, the 
upper 40 bits of the memory word are ignored. On a store from Ai into 
mewory, the upper 40 bits of the memory word are zeroed. 

ihe 12h and 13h instructions transmit 64-bit quantities to or from 
register Si. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
Rank A conflict and unit busy 3 CPs 
Rank B conflict and unit busy 2 CPs 
Rank C conflict and unit busy 1 CP 
Storage hold continuation 
Ah reserved 
For 10h and Ilh only, Ai reserved 
For 12h and 13h only, Si reserved 
For 12h only, Si register access conflict 
Fetch request in last clock period 

2240004 4-49 E 



Execution time 
Instruction issue: 

Both parcels in same b~ffer 
Parcels in different buffers 
Second parcel not in a buffer 

10h only, Ai ready 11 CPs 
12h only, Si ready 11 CPs 

2 CPs 
4 CPs 

13 CPs 

Memory ready for next scalar read or store 4 CPs 

Special cases 
Rank A conflict, 3 CPs delay before Si ready 
Rank B conflict, 2 CPs delay before Si ready 
Rank C conflict, 1 CP delay before Si ready 
Hold storage, 1 CP delay if 070 access conflict occurs 
An uncorrected memory parity error will allow 14 CP + 2 parcels 
to issue 
An out of range error will allow 5 CP + 2 parcels to issue 
(Ah) = 0 if h = 0 

2240004 4-50 E 



140ij k 

141ijk 

142ijk 
143ijk 

144ijk 

145i jk 

146ijk 

147ijk 

Logical products of (Sj) and (Vk elements) to Vi 
elements 
Logical products of (Vj elements) and (Vk elements) 
to Vi elements 
Logical sums of (Sj) and (Vk elements) to Vi elements 
Logical sums of (Vj elements) and (Vk elements) to 
Vi elements 
Logical differences of (Sj) and (Vk elements) to 
Vi elements 
Logical differences of (Vj elements) and (Vk elements) 
to Vi elements 
If VM bit = 1, transmit (Sj) to Vi elements 
If VM bit = 0, transmit (Vk elements) to Vi elements 
If VM bit = 1, transmit (Vj elements) to Vi elements 
If VM bit = 0, transmit (Vk elements) to Vi elements 

, _______________________________________________________________________ J 

These instructions are executed by the vector logical unit. The number 
of operations performed is determined by the contents of the VL register. 
All operations start with element zero of the Vi, Vj, or Vk register and 
increment the element number by one for each operation performed. All 
results are delivered to Vi. 

For instructions 140, 142, 144, and 146, the content of Sj;s delivered, 
to the functional unit for each operation as one of the operands. For 
instructions 141, 143, 145, and 147, all operands are obtained from V 
registers. 

Instructions 140 and 141 form the logical products (AND) of pairs of 
operands and enter the result into Vi. Bits of an element of Vi are set 
to one when the corresponding bits of (Sj) or (Vj element) and (Vk 

element) are one as in the following: 

2240004 4-51 E 



(Sj) or (Vj element) = 1 1 0 0 
(Vk element) = 1 01 0 
(Vi element) = 100 0 

The 142 and 143 instructions form the logical sums (inclusive OR) of 
pairs of operands and deliver the results to Vi. Bits of an element 
of Vi are set to one when on~ of the correspondirig bits of (Sj) or 
(Vj element) and (Vk element) is one as in the following: 

(Sj) or (Vj element) 
(Vk ,element) 
(Vi element) 

= 
= 
= 

1 

1. 

1 

1 0 C 

0 1 0 

1 1 0 

The 144 and 145 instructions form the logical differences (exclusive 
OR) of pairs of operands and deliver the results to Vi. Bits of an 
element are set to one when the corresponding bit of (Sj) or (Vj 
element) are different from (Vk.element) as in the following: 

(Sj) or (Vj element) = 1 1 0 0 
(Vk element) = 1 0 1 0 
(Vi element) = 0 lIe 

The 146 and 147 instructions transmit operands to Vi depending on the 
contents of the vector mask register (VM). Bit a of the mask 
corresponds to element a of a V register. Bit 63 corresponds to 
element 63. Operand pairs used for the selection depend on the 
instruction. For the 146 instructions, the first operand is always 
(Sj), the second operand is (Vk element). For the 147 instruction, 
the first operand is (Vj element) and the second operand is (Vk 
element). If bit n of the vector mask is one, the first operand is 
trans~itted; if bit n of the mask is zero, the second operand (Vk 
element) is selected. 

2240004 4-52 E 



Examples 
1. Suppose that a 146 instruction is to be executed and the following 

register conditions exist: 
(VL) = 4 
(VM) = 0 60000 0000 0000 0000 0000 
(S2) = -1 

(Element 0) of V6 = 1 
(Element 1) of V6 = 2 
(Element 2) of V6 = 3 
(Element 3) of V6 = 4 

Instruction 146726 is executed and following execution, the first four 
elements of V7 contain the following values: 

(Element 0) of V7 = 1 
(Element 1) of V7 = -1 
(Element 2) of V7 = -1 
(Element 3) of V7 = 4 

The remaining elements of V7 are unaltered. 

2. Suppose that a 147 instruction is to be executed and the following 
register conditions exist: 

(VL) = 4 
(VM) = a 600000 0000 0000 0000 0000 

(Element 0) of V2 = 1 
(Element 1) of V2 = 2 
(Element 2) of V3 = 3 
(Element 3) of V4 = 4 

(Element 0) of V3 = -1 
(Element 1) of V3 = -2 
(Element 2) of V3 = -3 
(Element 3) of V3 = -4 

Instruction 147123 is executed and following execution, the first four 
elements of VI contain the following values: 

(Element 0) of VI = -1 
(Element 1) of VI = 2 
(Element 2) of VI = 3 
(Element 3) of VI = -4 

The remaining elements of VI are unaltered. 

2240004 4-53 E 



Hold issue conditions 
034 - D37 in process 
Exchange in process 
Vi or Vk reserved 
14x in process, unit busy (VL) + 4 CPs 
175 in process, unit busy (VL) + 4 CPs 
003 in process, unit busy 3 CPs 
For 140, 142, 144, 146 only, Sj reserved 
For 141, 143, 145, 147 only,· Vj reserved 

Execution time 
Instruction issue 1 CP 
Vi ready 9 CPs if (VL) ~ 5 
Vi ready (VL) + 4 CPs if (VL) > 5 
Vj or Vk ready 5 CPs if (VL) ~ 5 
V j 0 r V k re a dy ( V L) CPs i f ( V L) > 5 

Unit ready (VL) + 4 CPs 
Chain slot ready 4 CPs 

Special cases 
( Sj) = 0 i f j = 0 

2240004 4-54 E 



~----------------------------------------------------------------------

150ijk 

151ijk 

Single shift of (Vj elements) left by (Ak) places to 
Vi elements 
Single shift of (Vj elements) right by (Ak) places to 
Vi elements 

~----------------------------------------------------- -----------------

These instructions are executed in the vector shift unit. The number 
of operations performed is determined by the contents of the VL register. 
Operations start with element 0 of the Vi and Vj registers and end with 

I elements specified by the contents of VL-l. 

All shifts are end-off with zero fill. The shift count is obtained 
from (Ak) and elements of Vi are cleared if the shift count exceeds 63. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
Vi or Vj reserved 
Ak reserved 
150 - 153 in process, unit busy (VL) + 4 CPs 

Execution time 
Instruction issue 1 CP 
Vi ready 11 CPs if (VL) ~ 5 
Vi ready (VL) + 6 CPs if (VL) > 5 
Vj ready 5 CPs if (VL) ~ 5 
Vj ready (VL) CPs if (VL) > 5 
Unit ready (VL) + 4 CPs 
Chain slot ready 6 CPs 

Special cases 
(Ak) = 1 if k = 0 

2240004 4-55 E-01 



---------------------------------------------~---------------~--~----- , 

152i j k Double shifts of (Vj elements) left (Ak) places'to 
Vi elements 

153ijk Double shifts of (Vj elements) right (Ak) places to 
Vi elements 

-------------------------------------------------------------~--~-----

These instructions are executed in the vector shift unit. They shift 
128-bit values formed by logically joining the contents of two elements 
of the Vj register. The direction of the shift determines whether the 
upper bits or the lower bits of the result are sent to Vi. Shift counts 

are obtained from reqister Ak. 

All shifts are end-off with zero fill. 

The number of operations is determined by the contents of the VL register. 

The 152 instruction performs left shifts. In the general case, element 
o of Vj is joined with element 1 and the 128-bit quantity is shifted left 
by the amount specified by (Ak). The 64 high order bits of the result 
are transmitted to element 0 of Vi. The figure below illustrates this 
operation. 

(Element 0) of Vj (Element 1) of Vj 

(Element 0) -+- (Ak) 

End off 64-bit result to element 0 of Vi 

If (VL) were 1, element 0 would have been joined with 64 bits of zero and 
only the one operation would be performed. If (VL) > 2, the operation 
continues by joining element 1 with element 2 and transmitting the 64-bit 
result to element 1 of Vi. This is illustrated as follows: 

(Element 1) of Vj (Element 2) of Vj 

(Element 1) of Vj ~(Ak) 

End off 64-bit result to element of Vi 

2240004 4-56 E 



If (VL) were 2, however, element 1 would have been joined with 64 bits of 
zero and only two operations would be performed. Thus, the last element 
of Vj as determined by (VL) is joined with 64 bits of zeros. The following 
figure illustrates this operation. 

I {Element (VL)-1) of Vj 000.0 ....... 0 

..•. 0 -+- (Ak) 

.. 
End off 64-bit result to element (VL)-l of Vj 

If (Ak) > 128, the result is all zeros. If (Ak) > 64, the result register 
contains (Ak) - 64 zeros. 

Example: 

Suppose that a 152 instruction is to be executed and th.e follo\AJing 
register conditions exist: 

(VL) = 4 
(AI) = 3 

(E1 ement ,0) of V '+ = a 00000 0000 0000 0000 0007 
(E1 ement 1) of V '+ = a 60000 0000 0000 0000 0005 
(Element 2) of V,+= 1 00000 0000 0000 0000 0006 

(Element 3) of v,+ = 1 60000 0000 0000 0000 0007 

Instruction 152541 is executed and following execution, the first four 
elements of Vs contain the following values: 

2240004 

(Element 0) of V 5 = a OOOOC 0000 0000 0000 0073 
(E1 ement 1) of V 5 = 0 OOOOC 0000 0000 0000 0054 
(Element 2) of Vs = a 00000 0000 0000 0000 0067 
(Element 3) of Vs = 0 00000 0000 0000 0000 0070 

4-57 E 



The 153 instruction 'performs right shifts~ Element 0 of Vj is joined 
with 64 low-order bits of zero and the 128 bit quantity is shifted 
right by the amount specified by (Ak). The 64 low-order bits of the 
result are transmitted to element 0 of Vi. The figure below illustrates 
this operation. 

I 000 ......... 0 

000 ....... . 

(Ele~ent 0) of Vj 

64-bit result to 
element 0 of Vi 

--.--
End off 

If (VL) = 1, only the one operation is performed. In the general case, 

however, instruction execution continues by joining element 0 with 
element 1, shifting the 128-bit quantity by the amount specified by (Ak), 
and transmitting the result to element 1 of Vi. This operation is shown 
below. 

(Element 0) of Vj 

(Ak) -+- (Element 

(Element 1) of Vj 

64-bit result to 
element 1 of Vj 

1) of V j 

-...--
End off 

The last operation performed by the instruction joins the .last element 
of Vj as determined by (VL) with the preceding element. The following 
figure illustrates this operation. 

(Element (VL)-2) of Vj 

(Ak) --.. (Element 

2240004 

(El ement (VL) -1) of Vj 

64-bit result to 
element (VL)-l of Vj 

4-58 

L)-l) of V 

. 
End off 

E 



If (Ak) > 128, the result is all zeros. If (Ak) > 64, the result register 
contains (Ak) - 64 zeros. 

Example: 

Suppose that a 153 instruction is to be executed and the following 
register conditions exist: 

(VL) = 4 
(A6) = 3 

(Element 0) of V2 = a 00000 0000 0000 0000 0017 

(Element 1) of V2 = a 60000 0000 0000 0000 0006 
(Element 2) of V2 = 1 00000 0000 0000 0000 0006 

(Element 3) of V2 = 1 60000 0000 0000 0000 0007 

Instruction 153026 is executed and following execution, register Vo 
contains the following values: 

(Element 0) of Vo = a 00000 0000 0000 0000 0001 
(Element 1) of Vo = 1 66000 0000 0000 0000 0000 
(Element 2) of Vo = 1 50000 0000 0000 0000 0000 

(Element 3) of Vo = 1 56000 0000 0000 0000 0000 

The remaining elements of Vo are unaltered. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
Vi or Vj reserved 
Ak reserved 
150 - 153 in process, unit busy (VL) + 4 CPs 

Execution time 
Instruction issue 1 CP 
Vi ready 11 CPs if (VL) ~ 5 
Vi ready (VL) + 6 CPs if (VL) > 5 

2240004 4-59 



Execution time (continued) 
Vj ready 5 CPs if (VL) ~ 5 
Vj ready (VL) CPs if (VL) > 5 

Unit ready (VL) + 4 CPs 
Chain slot ready 6 CPs 

Special cases 
(Ak) = 1 if k = 0 

2240004 4-60 E 



154ijk 
155ijk 

156ijk 

157ijk 

Integer sums of (Sj) and (Vk elements) to Vi elements 
Integer sums of (Vj elements) and (Vk elements) to 
Vi elements 
Integer differences of (Sj) and (Vk elements) to 
Vi elements 
Integer differences of (Vj elements) and (Vk elements) 
to Vi elements 

These instructions are executed by the vector add unit. 

Instructions 154 and 156 perform integer addition. Instructions 155 
and 157 perform integer subtraction. The number of additions or 
subtrastions performed is determined by the contents of the VL register. 
All operations start with element zero of the V registers and increment 
the element number by one for each operation performed. All results 
are delivered to elements of Vi. No overflow is detected. 

Instructions 154 and 156 deliver (Sj) to the functional unit as one 
of the operands for each operation. The other operand is an element 
of Vk. For instructions 155 and 157, both operands are obtained from 
V registers. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
Vi or Vk reserved 
154 - 157 in process, unit busy (VL) + 4 CPs 
For 154 and 156 only, Sj reserved 
For 155 and 157 only, Vj reserved 

2240004 4-61 E 



Execution time 
Instruction issue 1 CP 
Vi ready 10 CPs if (VL) ~ 5 
Vi ready (VL) + 5 CPs if (VL) > 5 
Vj or Vk ready 5 CPs if (VL) ~ 5 
Vj or Vk-ready (VL) CPs if (VL) > 5 
Unit ready (VL) + 4 CPs 
Chain slot ready 5 CPs 

Special cases 
For 154, if j = 0, then (Sj) = 0 and (Vi element) = (Vk element) 

" 

For 156, if j = 0, then. (Sj) = 0 and (Vi element) = -(Vk element) 

2240004 4-62 E 



160ijk 

161ijk 

162ijk 

163ijk 

164ijk 

165ijk 

166ijk 

167ijk 

Floating products of (Sj) and (Vk elements) to Vi 
elements 
Floating products of (Vj elements) and (Vk elements) 
to Vi elements 
Half-precision rounded floating products of (Sj) 
and (Vk elements) to Vi elements 
Half-precision rounded floating products of (Vj 
elements) and (Vk elements) to Vi elements 
Rounded floating products of (Sj) and (Vk elements) 
to Vi elements 
Rounded floating products of (Vj elements) and (Vk 
elements) to Vi elements 
Reciprocal iterations; 2 - (Sj) * (Vk elements) to 
Vi elements 
Reciprocal iterations; 2 - (Vj elements) * (Vk 
elements) to Vi elements 

~----------------------------------------------------- ----------------

These instructions are executed in the floating point multiply unit. 
The number of operations performed by an instruction is determined by 
the contents of the VL register. All operations start with element 
zero of the V registers and increment the element number by one for 
each success operation. 
Operands are assumed to be in floating point format. Even-numbered 
instructions in the group deliver (Sj) to the functional unit for each 
operation as one of the operands. The other operand is an element of 
Vk. For odd-numbered instructions in the group, both operands are 
obtained from V registers. 

All results are delivered to elements of Vi. If the operands are 
unnormalized t there is no guarantee that the products will be normalized. 

Out of range conditions are described in Section 3. 

2240004 4-63 E 



The 160 instruction forms the products of the floating point quantity 
in Sj and the floating point quantities in elements of Vk and enters 
the results into Vi. 

The 161 instruction forms the products of the floating point quantities 
in elements of Vj and Vk and enters the results into Vi. 

The 162 instruction forms the half-precision rounded products of the 
floating point quantity in Sj and the floating point quantities in 
elements of Vk and enters the results into Vi. The low order 18 bits 
of the result elements are zeroed~ 

The 163 instruction forms the half-precision rounded products of the 
floating point quantities in elements of Vj and Vk and enters the 
results into Vi. The low order 18 bits of the result elements are 
zeroed. 

The 164 instruction forms the rounded products cf the floating point 
quantity in Sj and the floating point quantities in elements of Vk 
and enters the results into Vi. 

The 165 instruction forms the rounded products of the floating point 
quantities in elements of Vj and Vk and enters the results into Vi. 

The 166 instruction forms for each element, two minus the product of 
the floating point quantity in Sj and the floating point quantity in 
elements of Vk. It then enters the results into Vi. 

The 167 instruction forms for each element pair, two minus the product 
of the floating point quantities in elements of Vj and Vk and enters 
the results into Vi. 

2240004 4-64 E 



Hold issue conditions 
034 - 037 in process 
Exchange in process 
Vi or Vk reserved 
16x in process, unit busy (VL) + 4 CPs 
For 160, 162, 164, and 166: 

Sj reserved 
For 161, 163, 165, and 167: 

Vj reserved 

Execution time 
Instruction issue 1 CP 
Vi ready 14 CPs if (VL) ~ 5 
Vi ready (VL) + 9 CPs if (VL) > 5 
Vj or Vk ready 5 CPS if (VL) s 5 
Vj or Vk ready (VL) CPs if (VL) > 5 
Unit ready (VL) + 4 CPs 
Chain slot ready 9 CPs 

Special cases 
(5j) = 0 if j = 0 

Arithmetic error allows a minimum of 21 CP + 2 parcels 
and a maximum of (VL) + 20 CP + 2 parcels to issue 
before interrupt occurs if floating point error flag set. 

2240004 4-65 E 



170ij k 

171 ijk 

172ijk 

173ijk 

Floating sums of (Sj) and (Vk elements) to Vi 
elements 
Floating sums of (Vj elements) and (Vk elements) to 
Vi elements 
Floating differences of (Sj) and (Vk elements) to 
Vi elements 
Floating differences of (Vj elements) and (Vk 
elements) to Vi elements 

1----------------------------------------------------------------------
These instructions are executed by the floating point add unit. 
Instructions 170 and 171 perform floating point addition; instructions 
172 and 173 perform floating point subtraction. The number of additions 
or subtractions performed by an instruction is determined by the contents 
of the VL register. All operations start with element zero of the V 
registers and increment the element number by one for each operation 
performed. All results are delivered to Vi. The results are normalized 
even if the operands are unnormalized. 

Instructions 170 and 172 deliver (Sj) to the functional unit for each 
operation as one of the operands. The other operand is an element of 
Vk. For instructions 171 and 173, both operands are obtained from V 
registers. 

Out of range conditions are described in Section 3. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
Vi or Vk reserved 

170 - 173 in process, unit busy (VL) + 4 CPs 
For 170, 172: 

Sj reserved 
For 171, 173: 

Vj reserved 

2240004 4-66 E 



Execution time 
Instruction issue 1 CP 
Vi ready 13 CPs if (VL) ~ 5 
Vi ready (VL) + 8 CPs if (VL) > 5 

Vj and'Vk ree.dy 5 CPs if (VL)~5 
Vj and Vk ready (VL) CPs if (VL) > 5 
Unit ready (VL) + 4 CPs 
Chain slot ready 8 CPs 

Special cases 
(Sj) = 0 if j = 0 

Arithmetic error allows a minimum of 13 CP + 2 parcels and 
a maximum of (VL) + 12 CP + 2 parcels to issue before 
interrupt occurs if f.p. error flag set. 

2240004 4-67 E 



174ijO Floating point reciprocal approximations of (Vj 
elements) to Vi elements 

This instruction is executed in the reciprocal approximation unit. 

The instruction forms an approximate value of the reciprocal of the 
normalized floating point quantity in each element of Vj and enters 
the result into elements of Vi. The number of elements for which 
approximations are found is determined by the contents of the VL 
register. 

The 174 instruction occurs in the divide sequence to compute the 
quotients of floating point quantities as described in Section 3 
under Floating Point Arithmetic. 

The reciprocal approximation instruction produces results that are 
accurate to 30 bits. A second approximation may be generated to 
extend the accuracy to 47 bits using the reciprocal iteration 
instruction. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
Vi or Vj reserved 
174 in process, unit busy for (VL) + 4 CPs 

Execution time 
Instruction issue 1 CP 
Vi ready 21 CPs if (VL) ~ 5 
Vi ready (VL) + 16 CPs if (VL) > 5 

I Vj ready 5 CPs if (VL) ~ 5 
Vj ready (VL) CPs if (VL) > 5 

Unit ready (VL) + 4 CPs 
Chain slot ready 16 CPs 

2240004 '4-68 E-01 



Special cases 
(Vi element) is meaningless if (Vj element) is not normalized; 
the unit assumes that bit 247 of (Vj element) is one; no test 

of this bit is made. 

Arithmetic error allows a minimum of 21 CP + 2 parcels and 
a maximum of (VL) + 20 CP + 2 parcels to issue before 
interrupt occurs if f.p. error flag set. 

If the Vector Population Instructions Option is installed, the k 
field becomes relevant and allows recognition of the 174ij1 and 
174ij2 instructions. When this option is installed, the k field 
must be 0 for the floating point reciprocal approximation instruc
tion. 

2240004 4-69 E 



I 

,-------------------------------------------------------------------------. . , 
: 174ij1 Population counts of (Vj elements) to Vi elements : . , 
: 174ij2 Population count parities of (Vj elements) to Vi elements: 
.---------------~-------~---~--------------------------~-----------------~ 

These instructions require the presence of the Vector Population Instruc
tions Option. If this option is not installed, these instructions are 
executed as vector reciprocal approximation instructions. 

The 174ij1 instruction counts the number of bits set to one in each 
element of Vj and enters the results into corresponding elements of Vi. 
The results are entered into the low order 7 bits of each Vi element; 
the remaining higher order bits of each Vi element are zeroed. 

The 174ij2 instruction counts the number of bits set to one in each 
element of Vj. The least significant bit of each element result shows 
whether the result is an odd or even number. Only the least significant 
bit of each element is transferred to the least significant bit position 
of the corresponding element of register Vi. The actual population count 
results are not transferred. 
These instructions are implemented in the vector population count functional 
unit which requires the presence of the Vector Population Instructions Option. 

Hold issue conditions 
034-037 in process 
Exchange in process 
Vi reserved 
Vk reserved 
174 in process; unit busy for (VL) + 4 CPs 

Execution time 
Instruction issue 1 CP 
Vi ready 13 CPS if (VL) < 5 

Vi ready (VL) + 8CPs if (VL) > 5 

Vj ready 5 CPs if (VL) ~ 5 
Vj ready (VL) CPs if (VL) > 5 

Unit ready (VL) + 4 CPs 
Chain slot ready 8 CPs 

2240004 4-70 E-01 



----------------------------------------------------------------------, 
1 

175xjk Test (Vj elements) and enter test results : 
1 

into VM; the type of tes t made is defi ned by k : 
I I 1-----------------------------------------------------_________________ ' 

This instruction creates a vector mask in VM based on the results of 
testing the contents of the elements of register Vj. Each bit of VM 

corresponds to an element of Vj. Pit 0 corresponds to element 0; 

bit 63 corresponds to element 63. 

The type of test made by the instruction depends on the lower two bits 
of the k designator. The upper bit of the k designator is not 
interpreted. 
If the k designator is 0, the VM bit is set to one when (Vj element) 
is zero and is set to zero when (Vj element) is nonzero. 

If the k designator is 1, the VM bit is set to one when (Vj element) 
is nonzero and is set to zero when (Vj element) is zero. 

If the k designator is 2, the VM bit is set to one when (Vj element) 
is positive and is set to zero when (Vj element) is negative. A zero 
value is considered positive. 

If the k designator is 3, the VM bit is set to one when (Vj element) 
is negative and is set to zero when (Vj element) is positive. A zero 
value is considered positive. 

The number of elements tested is determined by the contents of the VL 
register. V~1 bits corresponding to untested elements of Vj are zeroed. 

The 175 vector mask instruction provides a vector counterpart to the 
scalar conditional branch instructions. 

The 175 vector mask instruction uses the vector logical unit. 

2240004 4-71 E 



Hold issue conditions 
034 - 037 in process 
Exchange in process 
Vj reserved 
14x in process, unit busy (V~) + 4 CPs 
003 in process, unit busy 3 CPs 
175 in process, unit busy (VL) + 4 CPs 

Execution time 
Instruction issue 1 CP 
Vj ready 5 CPs if (VL) ~ 5 
V j ready (VL) CPs if (VL) > 5 

Unit ready except for 073 instruction (VL) + 4 CPs 
Unit ready for 073 instruction (VL) + 6 CPs 

Seecial cases 
k = 0 or 4, V~:1 bit xx = 1 if (Vj element xx) = 0 
k = 1 or 5, VM bit xx = 1 if (Vj element xx) t- 0 
k = 2 or 6, VM bit xx = 1 if (Vj element xx) is positive 
k = 3 or 7, VM bit xx = 1 if (Vj element xx) is negative 

2240004 4-72 E 



r----------------------------------------------------- --~--------------, 

176ixk 

177xjk 

Transmit (VL) words from memory to Vi elements 
starting at memory address (Ao) and incrementing 
by (Ak) for successive addresses 
Transmit (VL) words from Vj elements to memory 
starting at memory address (Ao) and incrementing 
by (Ak) for successive addresses 

L __________________________________________________________________ ~ ___ _ 

These instructions transfer blocks of data between V registers and memory. 
The 176 instruction transfers data from memory to elements of register Vi. 
The 177 instruction transfers data from elements of register Vj to memory. 
Register elements begin with zero and are incremented by one for each 
transfer. Memory addresses begin with (Ao) and. are incremented by the 
contents of Ak. Ak contains a signed integer which is added to the 
address of the current word to obtain the address of the next word. Ak 
may specify either a positive or negative increment allowing both forwarr 
and backward streams of reference. 

The number of words transferred is determined by the contents of the VL 
register. 

Hold issue conditions 
034 - 037 in process 
Exchange in process 
Ao reserved 
Ak reserved where k = 1 through 7 
Block sequence flag set (034 - 037, 176, 177) 
Scalar reference 
Rank B data valid 
Fetch request in last clock period 
For 176, vector register i reserved 
For 177, vector register j reserved 
I/O memory request 

2240004 4-73 E 



Execution time 

For 176: 

Instruction issue except for 034-037, 100-137, 176, 177: 1 CP 
Instruction issue for above exceptions: (VL) + 4 CPs' 

Vi ready 14 CPs if (VL) ~ 5 
Vi read.y (VL) + 9 CPs if (VL) > 5 

For 177: 
Instruction issue except for 034-037, 100-137, 176, 177; 1 CP 
Ins tructi on issue for above excepti ons: (VL) + 5 CPs 
Vj ready 5 CPs if (VL) ~ 5 
Vj ready (VL) CPs if (VL0 > E 

Special cases 

T~e increment, (Ao), = 1 if k = 0 
Chain slot issue ;s 9 CPs if full speed for 176, blocked for 177 

Block I/O references 
Block 034 - 037, 100 - 137, 176, 177 
(Ak) determines speed control. There are 16 memory banks; 
successive addresses are located in successive banks. References 
to the samp bank can be made every 4 CPs or more. Incrementing 
(Ak) by 16t places successive memory references in the same bank, 
so a word is transferred every 4 CPs. If (Ak) is incremented 
by 8,tt every other reference is to the same bank and words can 
transfer every 2 CPs. With any address incrementing that allows 
4 CPs before addressing the same bank, the words can transfer 
each CPo 
Memory reference out of limits will allow 6 CPs + 2 parcels to issue. 
For 176, a parity error will allow a minimum of 16 CPs + 2 parcels 
to issue and a maximum of (VL) + 15 CPs + 2 parcels to issue. 

t 8 places for 8-bank memory option. Refer to section 5. 
tt 4 places for 8-bank memory option. Refer to section 5. 

2240004 4-74 E 



SECTION 5 

MEMORY SECTION 





MEMORY SECTION 5 

INTRODUCTION -.. ~-- .. - .. ,---.-

.1. 

The memory for the CRAY-1 normally consists of 16 banksl of bi-polar LSI 
memory. Three memory sizes are available: 

262,144 words, 
524,288 words, or 

1,048,576 words. 

The banks are independent of each other. 

MEMORY CYCLE TIME ---_ .. -_ .. _-----------

The memory cycle time is four clock periods (50 nsec). The access time, 
that is, the time required to fetch an operand from memory to an opera
tional register is 11 clock periods (127.5 nsec). 

MEMORY ACCESS 

The memory of the CRAY-l Computer System is shared by the computation 
section and the I/O section. A single port access is provided. 

Because of the interleaving scheme used to address the independent banks, 
it is possible to reference memory every clock period with a new request. 
It is not possible, however, to reference anyone bank sooner than its 
4 CP cycle time. Trying to reference a bank more often than every 4 CPs 
causes memory conflicts. These conflicts are handled in an orderly, pre
dictable manner. 

All block transfers require memory to be quiet before issuing. Once 
issued, they block all other memory requests. Multiple block transfers 
cannot issue without allowing one waiting I/O reference to complete. The 
maximum duration of a lockout caused by block transfers is one block length. 

Vector block transfers may conflict with themselves. Therefore, the vector 
logic provides for identifying these conditions (speed control) and for 
-.-.-.... - ... -- .. -.-
t See eight-bank phasing. 

2240004 5-1 E 



, 

slowing or disallowing the vector operations that would be affected by the 
slowed memory referencing rate. The vector logic identifies 1/4 speed 
(4 CP), 1/2 speed (2 CP), and full speed (ICP) data rates from memory. 

Fetch operations require memory to be quiet before referencing memory. 
Once the fetch request is honored, all other memory references are blocked. 

Exchange operations require memory to be quiet before referencing memory. 
After the exchange has issued, all other memory references'are blocked. 

Scalar and I/O memory references are examined in three registers for 
possible memory conflicts. These three registers contain the lower 4 bitst 
of each of the referenced memory addresses. These registers plus the ad
dress register represent the 4 CPs between referencing anyone bank. The 
first bank is rank A, the second is rank B, and the third is rank C. At 

each clock, the contents of the registers are shifted down one rank until 
they are discarded unless a conflict arises, in which case the conflicting 
address is held in rank B until the conflict is resolved. 

I/O requests are tested against ranks A, B, and C. Coincidence with rank 

A, B, or C disallows the request. An I/O request that is disallowed must 
wait eight clock periods before it can request again. 

The following conditions must be present for an I/O memory request to be 
processed: 

1. I/O request 
2. No coincidence in rank A, B, or C 
3. No scalar memory reference instruction in clock period two of 

its sequence (scalar priority over I/O) 
4. No fetch request 
5. No 176, 177, or 034 through 037 instruction in progress. 
6. No exchange sequence 
7. No 033 request (not a memory conflict) 

Scalar instruction memory requests are tested in ranks A, B, and C for 
memory conflicts. Scalar instructions have priority over I/O requests 
arriving at memory in the same clock period. 

t See eight-bank phasing. 

2240004 5-2 E 



I 

A scalar conflict in rank A (CP 2 of a scalar instruction) causes a hold 
storage on this instruction for three clock periods. At the same time, 
a hold issue signal blocks the issue of-another scalar reference instruc
tion. The only memory conflict that may occur in rank A is a scalar ref
erence conflicting with a previous I/O reference. It is not possible for 
a scalar to conflict with a scalar in rank A because it takes two clock 
periods to issue a scalar reference instruction. 

J, scalar conflict in rank B (CP 3) causes a hold storage on this instruc
tion for two clock periods. Also, a hold issue signal ;blocks issue of 
another scalar reference instruction. 

A scalar conflict in rank C (CP 4) causes a hold storage on this instruc
tion for one clock period. There is also a hold issue signal, which 
blocks issue of another scalar reference instruction. 

Under normal operating conditions on codes performing a mix of vector and 
scalar instructions, the memory access will support four disk and three 
interface channels without degrading the CPU computation rate. However, 
a single program requiring memory access continuously will be measurably 
degraded by maximum I/O transfer conditions. This is caused by the delays 
imposed on the issue of vector memory instructions because block transfers 
require memory quiet before issue. 

MEMORY OR~ANIZAI.ION 

The memory is organized into 8 or 16 interleaved banks to minimize memory 
conflicts and to exploit the speed of the memory chip. Each bank occupies 
a chassis and contains 72 modules. Each module contributes one data or 
check bit to each 72-bit word in the bank; a memory word consists of 64 
data bits and 8 check bits. 

The 16-bank phasing is standard on the CRAY-1; 8-bank phasing, allowing 
a maximum memory size of 1/2 million owrds, can be accomplished by replac
ing two modules and setting the bank select switch to the left or the 
right banks. This option is available on any 16-bank memory machine. 

2240004 5-3 E 



I 

· MEMORY ADDRESSING 

A word in a 16-bank memory is addressed in 20 bits as shown in figure 5-1. 

The low order four bits specify one of the 16 banks. 

The next field specifies an address within the chip. 

The upper bits specify one of the chips on the module. 

Figure 5-1. Memory address; 16 banks 

A word in a 1/2 million word 8-bank memory is addressed in 19 bits (not 

shown) : 
The low order three bits specify one of the 8 banks 

The next field specifies an address within the chip 

The upper bits specify one of the chips on the module. 

Addressing a full million words with 8-bank phasing is possible .. In this 
case, the right/left bank select switch determines only whether the lower 

half of memory or the upper half is selected first in the addressing scheme 

by inverting or not inverting bit 219. Under program control, bit 219 

selects the lower or upper half of memory because the bit is injected at 

bit 21 of the memory address. 

SPEED CONTROL 

For 176 and 177 instructions, (Ak) determines speed control (table 5-1). 

Table 5-1. Vector memory rate * 80 x 10 5 references per second 

Phasing Increment or multiple 

1-3 4 5-7 8 9-11 12 13-15 16 

8-bank 1 1/2 1 1/4 1 1/2 1 1/4 

16-bank 1 1 1 1/2 1 1 1 1/4 ' 

2240004 5-4 E 



For eight banks, incrementing 8 places causes successive references in the 
same bank so that a word is transferred every 4 CPs. If (Ak) is incremented 
by 4, an 8-bank memory transfers words every 2 CPs. 

8-BANK PHASING OPTION 

The 8-bank phasing option makes possible a system consisting of one-half 
million words arranged in only eight banks. Any 16-bank system can exercise 
the option by replacing two modules and setting the bank select switch to 
the left or right banks. A system constructed with only eight banks of 
modules but with all 12 of its columns can be upgraded to a 16-bank full 
million words by completing the remaining banks. 

The effect of 8-bank phasing on instruction fetches is a predictable 
increase of 4 clock periods for filling an instruction buffer. Otherwise, 
the amount of performance degradation for 8 banks as compared with 16 
banks is not readily predictable since it largely results from an increase 

of memory conflicts for vector memory references. 

For other differences, refer to the preceding paragraphs on MEMORY ADDRESS
ING and SPEED CONTROL. 

MEMORY PARITY ERROR CORRECTION 

An error correction and detection network between the CPU and memory 
assures that the data written into memory can be returned to the CPU 
with consistent precision. (Refer to figure 5-2.) 

The network operates on the basis of single error correction, double error 
detection (SECDED). If one bit of a data word is altered, the single 
error alteration is automatically corrected before passing the data word 
to the computer. If two bits of the same data word are altered, the double 

error is detected but not corrected. In either case, the CPU may be inter
rupted depending on interrupt options selected to prevent incorrect data 

I from contaminating a job. For three or more bits in error, results are 

ambiguous. 

2240004 5-5 E 



0 

I "ERROR CORRECT 
- MEMORY DATA MERGE .. 

& DATA FANOUT r 

~ 
I 

63 J 

of 
. DATA BITS~ 

CHECK aITS 
~4 ... ERROR DETECT 
" 71 

Figure 5-2. Memory data path with SECDED 

The SECDED error processing scheme is based on error detection and 
correction codes devised by R. W. Hammingt. An 8-bit check byte is 
appended to the 64-bit data word before the data is written in memory. 
The eight check bits are each generated as even parity bits for a 
specific group of data bits. Figure 5-3 shows the bits of the data 
word used to determine the state of each check bit. An X in the 

horizontal row indicates that data bit contributes to the generation 
of that check bit. Thus, check bit number 0 (bit 264 ) is the bit making 
group parity even for the group of bits 21,23,25,27,29,211,213,215, 
217,219,221,223, 225,227,229, and 231 through 255. 

The eight check bits are stored in memory at the same location as the 
data word. When read from memory, the same 72-bit matrix of figure 5-3 
is used to generate a new set of parity bits, which are even parity bits 
of the data word and the old check bits. The resulting eight parity bits 
are called syndrome bits, shown as bits 64 through 71 in figure 5-3. 

t Hammi~g, R.W., "Error Detection and Correcting Codes". Bell System 
Technlcal Journal, 29, No., 2,147-160 (April, 1950). 

2240004 5-6 E 

CPU 



BYTE 0 BYTE 1 BYTE 2 BYTE 3 
,...--.---,---...A--__ -, ---A-- , r-----A--.----, 

,---_----A. ______ , 

0 1 2 3 4 5 6 7 8 9 10 1'1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
x x x x x x x x 

x x x x x x x x 
x x x x x x x x 

x x x x x x x x 
x x x x x x x x x x x x x x x x 
x x x x x x x x x x x x x x x x 
x x x x x x x x 

x x x x x x x x 

BYTE 4 BYTE 5 

x x x 
x x x x 

x x x x 
x x x x 

x x x x x x x x 

x x x x x x x x 
x x x x x x x x 

BYTE 6 

x 
X 

x X 

x x x 
X x x 
x x x 

x X x 
x x x 

x x x x 
x x 

x x x x x 
x x x x x 
X x x x x 

BYTE 7 
r~-----"---~ (-----.----~---, ,,----- .../'----------, ~----_.../'~------~ 

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 
x x x x x x x x x x x x x x x x x x x x x x X x 
x x x x x x x x x X y. X X X X X x x x x x x x x 
x x x x x x x x x x x x x x x x x x x x x x x x 

X X X X X X X X x x x x X x x x x x x x x x x x 
x x x x X X X X x x x x x x x 

x x x x X X X X x x x x x x x x 
x x x x X X X X x x x x x x x x 

x x x x X X X X x x x x x x x x 

CHECK BYTE 
,~----~------~ 
64 65 66 67 68 69 70 71 
x 

x 
x 

x 
x 

x 
x 

x 

Figure 5-3. Error correction matrix 

The states of these "S" bits are all symptoms of any error that occurred. 

The matrix is designed so that any change of state of one data bit will 
change an odd number of syndrome bits. An error in two columns changes 
the parity states of an even number of bit groups. Therefore, a double 
error appears as an even number of syndrome bits set to 1. 

The matrix is designed so that SEeDED decodes the syndrome bits and 
determines the error condition using the following 

1. If all syndrome bits are 0, no error occurred. 
2. If only one syndrome bit is 1, the associated check bit 

is in error. 

2240004 5-7 E 

So 
S1 
S2 
S3 
S4 
S5 
$6 
S7 



, 

I 

3~ If more than one syndrome bit is 1 and the parity of 
all syndrome bits 50 through 57 is even, then a double' 

error occurred within the data bits or check bits. 

4. If more than one syndrome bit is 1 and the parity of all 
syndrome bits is odd, then a single and correctable error 

is assumed to have occurred. The syndrome bits can be 

decoded to identify the bit in error. 

5. Results are ambiguous for three or more bits in error. 

2240004 5-8 E 



SECTION 6 

INPUT/OUTPUT SECTION 





I 

INPUT /OUTPUT SECTION 6 

I/O CHANNELS 

The Input/Output section of the CRAY-l contains 24 I/O channels of which 
twelve are input channels and twelve are output channels. The channels 
are assigned the numbers 2 through 31 8 • 

Three basic types of control logic for I/O channels are available: 

1. 16-bit asynchronous, for which three versions exist and are 
identified by their module types, as follows: 

a. OJ/OK module, used for MCU interface only 
b. OU/OK module, used for interfacing other devices (normal) 
c. OV/OK module, used for interfacing other devices (special) 

2. 16-bit high-speed asynchronous 
3. 16-bit synchronous (disk channel) 

Each type of channel has the same electrical interface to the I/O cable 
but differs in timing, protocol, and data rates. 

CHANNEL GROUPS 

Channels are divided into four groups, as follows: 

Group 1 Input channels 2, 6, 12, 16, 22, 26 
Group 2 Output channels 3, 7 , 13, 17, 23, 27 
Group 3 Input channel s 4, 10, 14, 20, 24, 30 
Group 4 Output channels 5, 11, 15, 21, 25, 31 

I/O INSTRUCTIONS 

The instructions used with I/O channels are: 

0010j k 

0011j k 

0012jx 

0033i j k 

2240004 

Set the current address (CA) register for the channel 
indicated by (Aj) to (Ak) and activate the channel 
Set the limit address (CL) register for the channel 
indicated by (Aj) to (Ak) 

Clear the interrupt flag and error flag for the channel 
indicated by (Aj) 

Transmit I/O status to Ai 

6-1 E 



I 

BASIC CHANNEL OPERATION 

Each input or each output channel directly accesses the CRAY-1 memory. 
Input channels store external data in memory and output channels read 
data from memory. A primary task of a channel is to convert 64-bit memory 

words into 16-bit parcels or 16-bit parcels into 64-bit memory words. Four 
parcels make up one memory word, with bits of the parcels assigned to 
memory bit positions as shown in table 6-1. In both input and output 
operations, parcel 0 is always transferred first. 

Each channel consists of a data channel (4 parity bits, 16 data bits, and 

3 control lines), a 64-bit assembly or disassembly register, a current 
address register, and a limit address register. 

The three control signals are: ready, resume, and disconnect. These 

control signals coordinate the transfer of parcels over the channels. 
The method of coordination varies among the types of channel; the dif
ferent methods are explained later. 

In addition to the three control signals, some channels have a master clear 
line. The DJ, DU, and DV module input channels (asynchronous) have master 
clear lines. The DO module output channel (high-speed asynchronous) has a 
master clear line. The SI module output channel (synchronous) has a mas
ter clear line. 

Table 6-1. Channel word assembly/disassembly 

Characteristic Bit position Number of bits Comment 

Channel data bits 215 - 2 0 16 Four 4-bit groups 
Channel parity bits 4 One per 4-bit group 
CRAY-1 word 2 63 _ 2° 64 

Pa rce 1 0 263 
- 2 48 16 First in or out 

Parcel 1 247 _ 2 32 16 Second in or out 
Parcel 2 31 . 2 - 2 16 16 Third in or out 
Parcel 3 2 15 _ 2 0 16 Fourth in or out 

2240004 6-2 E 



I 

I/O interrupts can be caused by the following: 

I On all output channels, if (CA) becomes equal to (CL), then 
for each of the module types on the transmission of the last 
four parcels: 

OK module - Resume for last parcel sets interrupt 
DO module - Resume for last word sets interrupt 
SI module - Interrupt sets when last Ready is sent. 

I (CA) becomes equal to (CL) on OV input module. 

I External device disconnect received on any input channel. 
I Channel error condition (described later in this section). 

The number of the channel causing an interrupt can be determined by the 
use of a 033 instruction which reads to Ai the highest priority channel 
number requesting an interrupt. The lowest numbered channel has the high
est priority. The interrupt request continues until cleared by the monitor 
program at which time an interrupt from the next highest priority channel, 
if present, may be sensed. 

INPUT CHANNEL PROGRAMMING 

To start an input operation, the CRAY-l program must perform the following 
steps~ 

1. Set the channel limit address to the last word address+l (LWA+l). 
See figure 6-1. 

2. Set the channel current address to the first word address (FWA). 

Setting the current address causes the channel active flag to be set and 
the channel is then ready to receive data. When a 4-parcel word is 

assembled, the word is stored in memory at the address contained in the 
channel current address register. When the word is accepted by memory, 
the current address is advanced by 1. 

The external transmitting device sends a disconnect pulse to indicate 
the end of the transfer. When the disconnect is received, the channel 
interrupt flag sets and·a test is performed to check for a partially 

2240004 6-3 E 



I 

CLEAR 
INTERRUPT 

FLAG 

NO 

SET 
CHANNEL 

LIMIT 

GET 
CHANNEL 

INTERRUPT NO. 

DETERMINE 
NUMBER OF WORDS 

TRANSFERRED 

CLEAR 
INT. ERROR 

FLAGS 

Figure 6-1. Basic I/O program flow chart 

assembled word. If a partial word is found, the valid portion of the word 
is stored in memory and the unreceived, lower-order parcels are stored as 
zeros. For the OV module, (CA) = (CL) causes the I/O interrupt request 
unless the disconnect is received before the word count is exhausted. 

The interrupt flag sets when a disconnect pulse is received or when an 
error condition is detected. Setting the interrupt flag deactivates the 

input channel. 

Input channel error conditions 

1. Parity error 

2240004 

,OJ/OK asynchronous channel (MCU channel) - The parcel in which 
the error occurs will immediately set the channel error flag~ 
deactivate the channel and generate an I/O interrupt request. 
If the error occurred in parcel 0, 1, or 2, the last 64-bit 
word is not stored. All input ready pulses received after 
the channel is deactivated are resumed but the data parcels 
are discarded. 

6-4 E 



I 

SH/SI synchronous channel (disk channel) - The parcel in which the 
error occurs causes a parity fault flag to set. When parcel 3 
arrives. or if parcel 3 is in error, a memory reference is initi
ated and the parity fault flag causes the channel error flag to 
set which in turn generates an I/O interrupt request. The channel 
error flag also deactivates the channel. Data parcels received 
after the parcel in error are not sampled. Parcels received up to 
and including the parcel in error are stored in memory. Any un
sampled lower-order parcels are stored as zeros. Once the channel 
is deactivated, no more resume pulses are sent to the DCU to request 
the remainder of the data block. 

All_Qtlt~_~channels - The channel samples and stores the data until 
the parcel containing the error is received. At this time, the 
channel error flag is set and the data transfer proceeds as if no 
error had occurred. The transfer continues until the disconnect 
occurs or until (CA) = (Cl) for a DV module channel. The inter
rupt is then generated and the channel is deactivated. 

2. Unexpected ready pulse 

DU Module 

DV/DK asynchronous channel - Data is held and the resume occurs 
when the channel is reactivated. No error interrupt is generated. 

SH/SI synchronous channel (disk channel) - The data is resumed 
and thrown away. An error interrupt is generated. This channel 
uses this method to flag fire code errors. 

All other channels - The data is resumed and thrown away. An 
error interrupt is generated. 

The input channel control logic for the DU module differs from the OJ module 
in two respects. 

1. When a parity error is detected, the condition is noted and saved 
but the Channel Error Flag (CE) is not set until the Input Dis
connect pulse arrives. This change prevents an error interrupt 
request from occurring and no data is lost. The only interrupt 
request that occurs in this situation is the normal one at dis
connect time, even though the Channel Error Flag is set at this 
time to indicate the parity fault condition. 

2. For the DU module, the input channel is not forced active by the 
clear I/O signal. If, however, the channel is already active, 
it remains active. 

2240004 6-5 E 



I 

DV module 

The input channel control logic for the DV module differs from that for 
the OJ module in six respects. 

1. When a parity error is detected, the condition is noted and saved 
but the Channel Error Flag (CE) is not set until the Input Dis
connect pulse arrives. This change prevents an error interrupt 
request from occurring and no data is lost. The only interrupt 
request that occurs in this situation is the normal one at dis
connect time, even though the Channel Error Flag is set at this 
time to indicate the parity fault condition. 

2. For the DV module, the input channel is not forced active by the 
Clear I/O signal. If, however, the channel is already active, it 
remains active. 

3. In an Input Ready pulse is received while the input channel is not 
active, even if (CA) = (CL), the ready.is held until the channel 
goes active or until a Master Clear is received, (i.e., a Clear 
I/O signal is generated by the MCU or a Programmed I/O Master 
Clear sequence is performed). No error interrupt request is made. 

4. If the channel address (CA) equals the limit address (CL) and the 
input channel is active, an interrupt request is generated and the 
input channel goes inactive without receiving an Input Disconnect 
pulse. When the Disconnect pulse is received after (CA) = (CL), 
it is ignored since the interrupt request has already been generated. 

5. The only conditions that cause the Channel Error (CE) flag to set are: 

a. Input Ready and Reference; double Ready condition 
b. Input Ready and Active and (CA) = (CL); double Ready conditio 

c. Parity Fault Flag set and Disconnect 
d. Parity Fault Flag set and Active and (CA) = (CL) 

6. The Clear I/O signal clears the Parity Fault flag. 

2240004 6-6 E 



I 

OUTPUT CHANNEL PROGRAMMING 

To start an output operation, the CRAY-l program must: 

1. Set the channel limit address to the last word address + 1 (LWA+l) 

2. Set the channel current address to the first word address (FWA). 

Setting the current address causes the channel active flag to be set. The 
channel reads the first word from memory addressed by the contents of the 
channel's current address register. When the word is received from memory, 

the channel advances the current address by one and starts the data transfer. 

After each word is read from memory and the current address is advanced, a 
limit test is made. The test compares the contents of the channel's current 
address register and the channel's limit address re9ister. If they are 
equal, the transfer is completed as soon as the present word is transferred. 

Then, a disconnect pulse is sent to indicate the end of the transfer. 

When the disconnect pulse is sent, the channel is deactivated and an I/O 
interrupt request is generated by the channel. 

Output channel error condition 

The interrupt flag also sets if an error is detected. The only error that 
an output channel detects is a resume pulse received when the channel is 
not active. 

16-BIT ASYNCHRONOUS CHANNELS 

Input channels 

Table 6-2 illustrates a general view of an input signal sequence. 

Data Bits 2° throuah 215 - Data Bits 20, 21 , ••• ,215 are signals 
carrying a 16-bit parcel of data from the external device to the 
CRAY-l. They must all be valid within 80 nanoseconds after the 
leading edge of the Ready signal. Data Bit signals must remain 
unchanged on the lines until the corresponding resume is received 
by the external device. Normally, data is sent coincident with 
the Ready pulse and is held until the subsequent Ready pulse. 

2240004 6-7 E 



I 

, 1. 

2. 

3. 

4. 

Table 6-2 l6-bit asynchronous input channel signal exchange 

(OJ, DU, or DV modules) 

CRAY-l Externa 1 

Activate channel (Set CL and CA). 
Data 263 _248 with Ready 

Resume • 
... Data 247 _2 32 with Ready 

5. Resume ~ 

6. 

7. 

8. 

9. 

Data 231 _216 with Ready 

Resume • 
~ Data 215 _2° with Ready 

Write word to memory and advance current address, 
lOa. Resume • 
lab. For DV only, if (CA) = (CL), go to 13. 
11. If more data, go to 2. 

Disconnect 12. .... 

13. Set interrupt and deactivate channel. 

Parity Bits 0 through 3 - Parity Bits a through 3 are each assigned 
to a 4-bit group of data bits. The parity bits are set or cleared to 
give the bit group odd parity. Bit assignments are as follows: 

Parity Bit 0 Data Bits 20 - 23 

Parity Bit 1 Data Bits 24 - 27 

Parity Bit 2 

Parity Bit 3 

Data Bits 28 - 211 

Data Bits 212 - 215 

Parity bits are sent from the external device to the CRAY-l at the 
same time as the data bits. They are held stable in the same way as 
are the data bits. 

Ready - The Ready signal sent to the CRAY-l indicates that a parcel 
of data is being sent to the CRAY-1 input channel and may be sampled. 
The Ready signal is a pulse 50 + 10 nanoseconds wide (at 50% voltage 
points). The leading edge of Ready at the CRAY-1 begins the timing 
for sampling the data bits. 

Resume - Resume is sent from the CRAY-l to the external device to show 
that the parcel was received and that the CRAY-l is ready for the next 
data transmission. Resume is a pulse 50 ± 3 nanoseconds wide (at 50% 
voltage points). 

2240004 6-8 E 



I 

Disconnect - This signal is sent from the external device to the 
CRAY-1 and means that the transmission from the external device is 
complete. It is sent after the Resume is received for the last Ready. 
Disconnect is a pulse 50 ± 10 nanoseconds wide (at the 50% voltage 
points). 

Channel Master Clear - This signal may be programmed (see description 
of Programmed Master Clear later in this section) or may result from 
a Clear I/O Signal. 

Output channels 

Table 6-3 illustrates a general view of an output signal sequence. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 

8. 

9. 

10. 
11. 
12. 
13. 

Table 6-3. 16-bit asynchronous output channel signal exchange 
(DK module) 

CRAY-1 Externa 1 

Activate channel (set CL and CA) 
Read word from memory and advance current address 
Data 263 _2 48 with Ready .. 

.. Resume 
Data 247 _2 32 \IIi th Ready .. 

... Resume 
Data 231 _2 16 with Ready .. 

.. Resume 
Data 215 _2° with Ready .. 

... Resume 
If (CA) f (CL), go to 2. 
Disconnect .. 
Set interrupt and deactivate channel. 

Data Bits 20 through 215 - Data Bits 20, 21 , ••. , 215 are signals 
carrying a 16-bit parcel of data from the CRAY-1 to an external 
device. They are all sent at the same time, within 5 nanoseconds 
of the leading edge of the Ready pulse. Data Bit signals remain 
steady on the lines until the next parcel is sent. 

2240004 6-9 E 



I 

Parity Bits 0 through 3 - Parity Bits 0, 1, 2, and 3 are each assigned 
to a 4-bit group of data bits. The parity bits are set or cleared to 
give the bit broup odd parity. Bit assignments are as follows: 

Parity Bit 0 Data Bits 20 - 23 

Parity Bit 1 Data Bits 24 - 27 
Parity Bit 2 Data Bits 28 - 211 
Parity Bit 3 Data Bits 212 - 215 

Parity bits are sent from the CRAY-l to the external device at the 
same time as the data bits. They are held stable in the same way as 
are the data bits. 

Ready - The Ready signal sent from the CRAY-l to the external device 
indicates that the data is present and may be sampled. The Ready 
signal is a pulse 50 ± 3 nanoseconds wide (at 50% voltage points). 
The leading edge of Ready may be used to time data sampling in the 
external device. 

Resume - Resume is sent from the external device to the CRAY-l to 
show that the parcel was received and that the external device is 
ready for the next parcel transmission. Resume is a pulse 50 ± 10 
nanoseconds wide (at 50% voltage points). 

Disconnect - Disconnect is a signal sent from the CRAY-l to the 
external device that means the transmission from the CRAY-l is 
complete. It is sent after the CRAY-l has received the Resume 
from the last Ready. The Disconnect is a pulse 50 ± 3 nanoseconds 
wide (at 50% voltage points). 

16-BIT HIGH-SPEED ASYNCHRONOUS CHANNELS 

Input channels 

Table 6-4 illustrates a general view of an input signal sequence. 

Data Bits 2° through 215 - Data Bits 2°, 21, ... ,215 are signals 
carrying a 16-bit parcel of data from the external device to the 
CRAY-l. The data lines must be stable no later than 80 nanoseconds 
after the leading edge of the associated Ready pulse and must be 
held stable until at least 120 nanoseconds after the leading edge 
of the same Ready. Note that if the device is transmitting at the 
maximum allowable rate, it is normal for a data parcel to overlap 
the subsequent Ready pulse. Typically, data is transmitted 50 nsec 
after the leading edge of Ready and held until 50 nsec after the 
leading edge of the followi~g Ready pulse. 

Parity Bits 0 through 3 - Parity Bits 0, 1, 2, and 3 are each a 
parity bit assigned to a 4-bit group of data bits. The parit.Y 
bits are set or cleared to give the bit group odd parity. 

2240004 6-10 E 



I 

Table 6-4. 16-bit high-speed asynchronous input channel signal exchange 
(ON module) 

1. 

2. 
3. 

4. 
5. 

6. 

7. 

Activate 
Resume 
Resume 

Resume 
Resume 

CRAY-l 

channel 

• .. 
.. 
.. 

(set CL and CA) 

External 

If done, go to 11 . 
Data 
Data 
Data 
Data 

263 _ 

247_ 
231 _ 

215 _ 

248 with Ready 
232 with Ready 

11. .....P---- Disconnect 
12. Set interrupt and deactivate channel. 

Bit assignments are as follows: 

Pari ty Bit 0 Data Bi ts 20 - 23 

Parity Bit 1 'Data Bi ts 24 - 27 

Parity Bit 2 Data Bits 28 - 211 

Parity Bit 3 Data Bi ts 212 - 215 

Parity bits are sent from the external device to the CRAY-l at the 
same time as the data- bits. They are held stable in the same way as 
are the data bits. 

Ready - The Ready signal sent to the CRAY-l indicates that data will 
soon be sent to the CRAY-l input channel and may be sampled. The 
Ready signal is a pulse 50 ± 10 nanoseconds wide (at the 50% voltage 
points) sent in groups of four. The leading edge of Ready at the 
CRAY-l begins the timing for sampling the data bits. 

The time from the leading edge of one Ready pulse to the leading edge 
of the following Ready pulse in the same group must be greater than 
90 nsec. The first Ready pulse of a group may be transmitted by the 
device as soon as it detects the leading edge of the first Resume 
pulse for that group. 

2240004 6-11 E 



I 

Resume - This signal is sent to the external device to show that the 
CRAY-l is ready for the next data transmission. Resume is a pulse 
50 ± 3 nanoseconds wide (at the 50% voltage points) sent in groups 
of four. 

For any group of Resume pulses, the time from the leading edge of 
one Resume to the leading edge of the next Resume is 100 ± 3 nsec. 

Disconnect - This signal is sent from the external device to the 
CRAY-l and indicates that the transmission from the external device 
is complete. It is sent after the last Ready. The Input Dis
connect pulse must be transmitted no earlier than 20 nsec after 
the leading edge of the final Ready pulse. Disconnect is a pulse 
50 ~ 10 nanoseconds wide (at the 50% voltage points). 

Output channels 

Table 6-5 illustrates a general view of an output signal sequence. 

Table 6-5. 16-bit high-speed asynchronous output channel signal exchange 

(DO module) 

CRAV-l Externa 1 

1. Activate channel (set CL and CA). 
2. Read word from memory and advance current address. 
3. Data 263 _2 48 with Ready • 
4. Data 247 _2 32 with Ready • 
5. Data 231 _2 16 with Ready • 
6. Data 215 _2° with Ready • 

(with Disconnect if this is the last word) 
7. .... .. ~--- Resume 

8. If (CA) 1 (CL), go to 2. 
9. Set interrupt and deactivate channel. 

Data Bits 2° through 215 - Data Bits 2°, 21 , ••• ,215 are signals 
carrying a 16-bit parcel of data from the CRAY-l to an external 
device. They are all sent at the same time, within 5 nanoseconds 
of the leading edge of the Ready pulse. Data Bit signals remain 
steady on the lines until the next parcel is sent. 

2240004 6-12 E 



I 

Parity Bits 0 through 3 - Parity Bits 0, 1, 2, and 3 are each assigned 
to a 4-bit group of data bits. The parity bits are set or cleared to 
give the bit group odd parity. Bit assignments are as follows: 

Parity Bit 0 Data Bits 20 - 23 

Parity Bit 1 Data Bits 24 - 27 

Parity Bit 2 Data Bits 28 - 211 
Parity Bit 3 Data Bits 212 - 215 

Parity bits are sent from the CRAY-1 to the external device at the 
same time as the data bits. They are held stable in the same way as 
are the data bits. 

Channel Master Clear - The Channel Master Clear may be programmed 
(see description of Programmed Master Clear later in this section) 
or may the result of a Clear I/O signal. The Master Clear signal may 
be used by the external devices for control purposes or may be ignored. 

Ready - The Ready signal sent from the CRAY-1 to the external device 
indicates that the data is present and may be sampled. The Ready 
signal is a pulse 50 ± 3 nanoseconds wide (at the 50% voltage points) 
sent in groups of four. For any group of Ready pulses, the time 
from the leading edge of one Ready to the leading edge of the 
next Ready is 100 ± 3 nanoseconds. The leading edge of Ready 
may be used to time data sampling in the external device. 

Resume - Resume is sent from the external device to the CRAY-1 to 
show that the 64-bit word of four parcels was received and that the 
external device is ready for the next word (four parcels). Resume 
is a pulse 50 ± 10 nanoseconds wide (at the 50% voltage points). The 
pulse must be received at the CRAY-1 no earlier than 230 nanoseconds 
after the leading edge of the first Ready pulse is transmitted. 

Disconnect - Disconnect is a signal sent from the CRAY-1 to the 
external device that means the transmission from the CRAY-1 is 
complete. It is sent with the last Ready ± 3 nanoseconds. The 
Disconnect pulse is 50 ± 3 nanoseconds wide (at the 50% voltage points). 

16-BIT SYNCHRONOUS CHANNELS 

Input channels 

Table 6-6 illustrates a general view of an input signal sequence. 

Data Bits 20 through 215 - Data Bits 20, 21 , ... ,215 are signals 
carrying a 16-bit parcel of data from the external device to the 
CRAY-1. They are all valid within 5 nanoseconds of each other. 
Data Bit signals must remain unchanged on the lines until the next 
parcel is sent. 

2240004 6-13 E 



I 

1. 
2. 
3. 

4. 
5. 
6. 

7. 
8. 

9. 

10. 

11. 
12. 

13. 

14. 
15. 
16. 

17. 

Table 6-6. 16-bit synchronous input channel signal exchange 

(SH module) 

CRAY-l Externa 1 

Activate channel (set CL and CA) . 
Resume • 

..... Data 263 _248 with Ready 
Resume • 

} Resume 150 nsec 
'II Data 247_ 232 , Ready • pulse no 

Resume .. .. Data 231 _ 216 , no Ready 

.. Data 215 _ 2° , no Ready 
Write word to memory; advance current address. 
If last word, go to 16. 
Resume • 
Resume .. ... Data 263 _248 , no Ready 1200 nsec 
Resume • . pulse .... Data 247 _2 32 , no Ready 
Resume • 'II Data 231 _2 16 , no Ready 

.... Data 215 _2° , no Ready 
Go to 8. 

Wait for Disconnect. .... If last word, Disconnect . 
Set interrupt and deactivate channel. 

Parity Bits 0 through 3 - Parity Bits 0, 1, 2, and 3 are each assigne9 
to a 4-bit group of data bits. The parity bits are set or cleared to 
give the bit group odd parity. Bit assignments are as follows: 

Parity Bit 0 Data Bits 20 - 23 

Parity Bit 1 Data Bits 24 - 27 

Parity Bit 2 Data Bits 28 - 211 
Parity Bit 3 Data Bits 212 - 215 

Parity bits are sent from the external device to the CRAY-l at the 
same time as the data bits. They are held stable in the same way as 
are the data bits. 

2240004 6-14 E 



I 

Ready - The Ready signal is a block ready in response to the first 
resume of a block. The Ready signal is a pulse 50 ± 10 nanoseconds 
wide (at the 50% voltage points). It is sent from the external device 
to the CRAY-l. 

Resume - Resume is sent from the CRAY-l to the external device to 
initiate the synchronous data transfer and to time the sending of 
data at the CRAY-l. The Resume pulse is 50"± 3 nanoseconds wide 
(at the 50% voltage points). Following the first resume, which 
awaits a ready response, the signal is sent in one group of three 
resumes followed by as many groups of four resumes as required to 
complete the block transfer. 

Disconnect - Disconnect is a signal sent from the external device 
to the CRAY-l indicating that transmission from the external device 
is complete. It is sent with parcel 2 of the last data word or at 
any later time. Disconnect is a pulse 50 ± 10 nanoseconds wide (at 
the 50% voltage points). 

Block length restrictions - The input channel has no restrictions on 
block length. The mass storage controller, which is the only device 
connected to this type of channel, has rigid restrictions on its 
block lengths. Input transmissions are limited to 1 or 4 or 512 
64-bit words. 

Cabling restrictions - The synchronous channels use a fixed length 
cable providing constant propagation time for the signals. This 
cable delay is designed into the control logic; therefore, the cable 
length and propagation speed cannot be changed. The total cable 
length between the CRAY-l and the external device is 17 feet (518 cm). 
The cable run for a synchronous channel uses one 10 foot (305 cm) 
drop cable at the CRAY-l and one 7 foot (213 cm) length of data cable 
at the external device. 

Clock - A clock signal is supplied over a separate cable (one per 
DCU cabinet) to the external device from the CRAY-l. This clock 
signal synchronizes signals at the external device interface connector. 

Output channels 

Table 6-7 illustrates a general view of an output signal sequence. 

Data Bits 2° through 215 - Data Bits 2°, 21 , •.. ,215 are signals 
carrying a 16-bit parcel of data from the CRAY-l to the external 
device. They are sent with the leading edge of the Ready pulse 
+ 5 nsec. Data Bit signals remain unchanged on the lines until 
the next parcel is sent. 
Parity Bits 0 through 3 - Parity Bits 0, 1, 2, and 3 are each assigned 
to a 4-bit group of data bits. The parity bits are set or cleared to 

2240004 6-15 E 



I 

Table 6-7. 16-bit synchronous output channel signal exchange 

(SI module) 

CRAY-I Externa 1 

1. Activate channel (set CL and CA). 

2. Read word from memory and advance current address. 
3. Data 263 _248 with Ready • 

(With Disconnect if last word) 
4. ... Resume 
5. Da ta 247 -2 3 2 wi th Ready --...... 

} 6. Data 231 _2 16 with Ready ----~.~ 150 nsec 
pulse 

Ready 

7. Data 215 _2° with Ready ----~ •• 
8. If (CA) = (CL), go to 15. 

9. 

10. 

II. 

12. 

13. 

14. 

15. 

Read word from memory and advance current address. 
Data 263 _248 with Ready • 
(With Disconnect if (CA) = (CL)) 
Data 247 _2 32 

Data 23 1 - 21 6 

Data 215 _2° 

If (CA) 1 (CL), go to 9. 

Set interrupt and deactivate channel. 

200 nsec 

'pul se 

Ready 

give the bit group odd parity. Bit assignments are as follows: 

Parity Bit 0 Data Bits 20 - 23 

Parity Bit 1 Data Bits 24 - 27 

Parity Bit 2 Data Bits 28 - 211 

Parity Bit 3 Data Bits 212_ 215 

Parity bits are sent from the CRAY-l to the external device at the 
same time as the data bits. They are held stable in the same way 
as are the data bits. 

Channel Master Clear - The Channel Master Clear may be programmed 
(see description of Programmed Master Clear later in this section) 
or may be the result of a Clear I/O signal. The programmed Master 
Clear to external is a static signal sent from the CRAY-I to an 
external device. The Master Clear signal may be used by the external 
device for control purposes or it may be ignored. 

2240004 6-16 E 



I 

Ready - The Ready signal is sent from the CRAY-l to the external 
device to indicate that the data is valid. The first Ready signal 
is a pulse 50 ± 3 nanoseconds wide (at the 50% voltage points) .. 
Following the first ready, which awaits a resume response, the signal 
is sent in one group of three readies followed by as many groups 
of four readies as required to complete the block transfer. 

Resume - Resume is sent from the external device to the CRAY-l in 
response to the first Ready signal. The Resume pulse is 50 ± 10 
nanoseconds wide (at the 50% voltage points). 

Disconnect - Disconnect is a signal sent from the CRAY-l to the 
external device indicating that the transmission from the CRAY-l 
is complete. It is sent with parcel 0 of the last 64-bit data word. 
Disconnect is a pulse 50 + 3 nanoseconds wide (at the 50% voltage 
points). . -

Block length restrictions - The output channel has no restrictions 
on block length. The mass storage controller, which is the only 
device connected to this type of channel, has rigid restrictions on 
its block lengths. Output transmissions are limited to 1 or 512 
64-bit words. 

Cabling restrictions - The synchronous channels use a fixed length 
cable providing a constant propagation time for the signals. This 
cable delay is designed into the control logic; therefore, the cable 
length and propagation speed cannot be changed. The total cable length 
between the CRAY-l and the external device is 17 feet (518 cm). The 
cable run for a synchronous channel uses one 10 foot (305 cm) drop 
cable at the CRAY-l and one 7 foot (213 cm) length of data cable at 
the external device. 

Clock - A clock signal is supplied over a separate cable (one per 
DCU cabinet) to the external device from the CRAY-l. This clock 
signal synchronizes signals at the external device interface connector. 

PROGRAMMED MASTER CLEAR TO EXTERNAL 

The CRAY-l contains a mechanism for sending a Master Clear signal to an 

external device. 

Seguence for normal-speed channels 

For the normal-speed asynchronous channels (OJ/OK, OU/OK, OV/OK), delays 
1 and 2 are device dependent. For CRI interfaces, they sould be at least 

1 microsecond. 

2240004 6-17 E 



I 

External Master 

1. 0012 jk 

2. 0012 j k 

3. 0011jk 

4. 0010 j k 

5. 0012jk 

6. Delay 1 

7. OOlljk 

8. Delay 2 

Clear sequence for 16-bit normal-speed asynchronous channel: 

Clear output channel to insure CRAY-1 activity on the 
channel pair has stopped. 

Clear input channel to insure external activity on the 
channel pair has stopped. 

Set the input channel limit to an arbitrary value. 

Set the input channel current address equal to the same 
value. This initiates the Master Clear signal. 

Clear the input channel. This stops the input channel 
activity just initiated. 

Device dependent - this determines the duration of the 
Master Clear signal. 

Set the input channel limit. This value may be the same 
value as used in steps 3 and 4. This turns off the Master 
Cl ear si gnal . 

Device dependent - this allows time for initialization 
activities in the attached device to complete. 

Sequence for high-speed channels 

For the high-speed synchronous channel (SH/SI), delay 1 should be a 

minimum of 1 clock period and delay 2 a minimum of 20 clock periods. 

External Master Clear sequence for high-speed synchronous and asynchronous 

(ON/DO) channels: 

1. 0012 j k 

2. 0012 j k 

3. 0011jk 

2240004 

Clear output channel interrupt to assure that CRAY-l 
activity on the channel pair has stopped. 

Clear input channel interrupt to assure that external 
activity on the channel pair has stopped. 

Set the output channel limit to an arbitrary value. 

6-18 E 



I 

4. 0010 jk 

5. 0012 jk 

6. Delay 1 

7 . 0011 jk 

8. Delay 2 

9. 

MEMORY ACCESS 

Set the output channel current address equal to, the same 
value. This initiates the Master Clear signal. 

Clear the output channel. This stops the output channel 
activity just initiated. 

Device dependent - this determines the duration of the 
Master Clear signal. 

Set the output channel limit. This value may be the same 
value as used in steps 3 and 4. This turns off the Master 
Clear signal. 

Device dependent - this allows time for initialization 
activities in the attac~ed device to complete. 

Read disk subsystem status (high-speed synchronous channel 
only). A subsystem status should be taken and discarded 
to remove any false st~tus left by the Master Clear 
sequence. 

Each of the four channel groups is assigned a time slot (figure 6-2), 
which is scanned once every four clock periods for a memory request. The 
lowest-numbered channel in the group has the highest priority. A memory 
request, whether accepted or rejected, causes the requesting channel to 
miss the next time slot. Therefore, any given channel can request a 
memory reference only every eight clock periods. However, another channel 
in the same group as a channel that has just made a memory request can 
cause a memory request four clock periods later. During the next three 
clock periods, the scanner will allow requests from the other three 
channel groups. Therefore, it is possible to have an I/O memory request 
every clock period. 

2240004 6-19 E 



INPUT ASSEMBLY REG. 

~~T~T~ {Ii .. IC_H_._ .... -_2t;4 
12 CHANNELS ....... 1 __ ..... 

--1 .. ___ 3..,0..,1 

16 BITS ... 
DATA OUT { 

12 CHANNELS 

INPUT 
READY 

INPUT 
RESUME 

OUTPUT 
READY 

INPUT 
READY 

INPUT 
RESUME 

OUTPUT 
READY 

OUTPUT DISASSEMBLY 

I CH. 
:::::I 3b 

I 

~ 
I 

CHANNEL CONTROL 

INPUT ADDRESS REG. 

Ak -"CH 2 h::6 
ADV. ADDR~--'''' ---:::;!.J 

I 
I 

OUTPUT 

REG. 

31 I 

I/O DATA 

FAN IN 

rio DATA 

FAN OUT 

I/O ADDR. 

FAN IN 

Figure 6-2. Channel I/O control 

2240004 6-20 

NO 

NO 

NO 

NO 

NO 

GO I/O 

MEMORY 

DATA MERGE 

MEMORY 

DATA DISTR. 

SCALAR REF. 

BLOCK MODE 

EXCH. SEQ. 

FETCH 

MEMORY CONFLICT 

MEMORY 

ACCESS CONTR. 

MEMORY 

ADDR. REG. 

MEMORY 

MEMORY 

MEMORY 

E 



I 

I/O LOCKOUT 

An I/O memory request can be locked out by a block transfer. Multiple 

block transfers cannot issue without allowing one waiting I/O reference to 
complete. The maximum duration of a lockout caused by block transfers is 

one block length. 

Exchange sequences and instruction fetch sequences can also cause lockouts. 

MEMORY BANK CONFLICTS 

Memory bank conflicts are tested for CPU scalar references and I/O memory 
references. All other memory references (block transfers, exchange 
sequences, instruction fetch sequences) wait issue until all memory banks 
are quiet. When a block transfer, exchange sequence, or instruction fetch 
sequence has issued, all other memory references are locked out. 

Each memory bank can accept a new request every four clock periods. To 
test for a memory bank conflict, the lower four bitst of the memory address 
move through three I-clock-period registers. The first register is rank A, 
the second is rank B, and the third is rank C. On the fourth clock, the 
address is placed in the memory address register. 

I/O MEMORY CONFLICTS 

Before coincidence can be tested, a check is made to insure that no block 
transfer, exchange sequence, instruction fetch sequence, or scalar CP2 is 
in progress. If so, the I/O request is blocked and must be resubmitted 

.t. 

eight clock periods later. The lower four bits l of an I/O reference are 
tested against ranks A, B, and C. Coincidence with rank A, B, or C dis

allows the I/O request. These ranks may be holding previous scalar or I/O 
memory requests. An I/O request that is disallowed must wait eight clock 
periods before it can request again. 

t Three bits for 8-bank phasing; see description in section 5. 

2240004 6-21 E 



I 

I/O MEMORY REQUEST CONDITIONS 

The following conditions must be present for a memory request to be 
processed: 

1. I/O request 

2. No coincidence in rank A, B, or C 

3. No scalar instruction in clock period two of a scalar sequence 

4. No fetch request 

5. No 176, 177, or 034 through 037 process 

6. No exchange sequence 

7. No 033 request 

I/O MEMORY ADDRESSING 

All I/O memory references are absolute. The current and limit registers 
are 20 bits, allowing I/O access to all of memory. Setting of the current 

and limit registers is limited to monitor mode. 

REAL-TIME CLOCK 

Programs can be timed precisely by using the clock period counter. This 
counter is advanced one count each clock period of 12.5 nanoseconds. Since 
the clock is advanced synchronously with program execution, it may be used 
to time the program to an exact number of clock periods. 

Instructions used with the real-time clock are: 
0014jO Enter the real-time clock register with (Sj) 
072ixx Transmit (RTC) to Si 

The clock period counter is a 64-bit counter that can be read by a pro9ram 
through the use of the 072 instruction and can be reset only by the 0014jO 
monitor instruction. 

2240004 6-22 E 



PROGRAMMABLE CLOCK OPTION 

Cray Research provides as a standard option a programmable clock thay may 
be used to measure the duration of intervals accurately. A periodic inter-

I rupt can be generated with intervals selected under monitor program control. 
The clock frequency is 80 Mhz. Intervals from 12.5 nanoseconds to 
53.7 seconds are possible; however, intervals shorter than about 100 

microseconds are not practical due to the monitor overhead involved in 
processing the interrupt. 

INSTRUCTIONS 

Provided with the clock are four additional instructions made possible by 
redefining the k designator for the 0014 instruction. The option also 
makes available two additonal registers: the interrupt interval register 
(II) and the interrupt countdown counter (ICD). 

0014j4 
0014j5 
0014j6 
0014j7 

Enter interrupt interval (II) register with (Sj) 
Clear the programmable clock interrupt request 

Enable the programmable clock interrupt request 
Disable the programmable clock interrupt requests 

INTERRUPT INTERVAL REGISTER 
The interrupt interval (II) register is a 32-bit register that can be 
loaded with a binary value equal to the number of clock periods that are 
to elapse between programmable clock interrupt requests. The interrupt 
interval is transferred from the lower 32 bits of the Sj register into 
both the interrupt interval register and the interrupt countdown (lCD) 
counter when the 0014j4 instruction is executed. This interval value is 
held in the register and repeatedly sampled by the interrupt countdown 
counter until another 0014j4 instruction is received to change the interval 
value. 

2240004 6-23 E-01 



INTERRUPT COUi~TDo\~N COUNTER 
The interrupt countdown (ICD) counter is a 32-bit counter that is preset 
to the contents of the interrupt interval register when the 0014j4 instruc
tion is executed. This counter runs continuously but counts down, decrement
ing by one each clock period until the contents of the counter are zero. At 
this time, it sets the programmable clock interrupt request. The counter 

then samples the interval value held in the interrupt interval register and 

repeats the countdown to zero cycle, setting the programmable clock 

interrupt request at regular intervals determined by the interval value. 
When the programmable clock interrupt request is set, it remains set 
until a 0014j5 instruction, clear programmable clock interrupt request, 

is executed. A programmable clock interrupt request can be set only after 
I the 0014j6 instruction has been executed to enable the interrupt. A pro

grammable clock interrupt request only causes an interrupt when not in 

monitor mode; a request set in monitor mode is held until the system 
switches to user mode. 

CLEAR PROGRAMMABLE CLOCK INTERRUPT REQUEST 
Following a program interrupt interval, an active programmable clock 
interrupt request may be cleared by executing the 0014j5 clear program
mable clock interrupt instruction. 

Following any deadstart, the monitor program should insure the state of 
the programmable clock interrupt by clearing programmable clock interrupt 
requests (0014j5) and disabling programmable clock interrupt requests (0014j7), 

2240004 6-24 E-01 



APPENDIX SECTION 





SUMMARY OF TIMING INFORMATION A 

When issue conditions are satisfied an instruction completes in a fixed 
amount of time. Instruction issue may cause reservations to be placed 
on a functional unit or registers. Knowledge of the issue conditions~ 
instruction execution times and reservations permit accurate timing of 
code sequences. Memory bank conflicts due to I/O activity are the only 
element of unpredictability. 

SCALAR INSTRUCTIONS 

Four conditions must be satisfied for issue of a scalar instruction: 

1. The functional unit must be free. No conflicts can arise with other 
scalar instructions; however, vector floating point instructions 
reserve the floating point units. Memory references may be delayed 
due to conflicts. 

2. The result register must be free. 

3. The operand register must be free. 

4. Issue;s delayed 1 clock period if a result register group input path 
conflict would exist with a previously issued instruction. One input 
path exists for each of the four register groups (A, B, Sand T). 

Scalar instructions place reservations only on result registers. A result 
register is reserved for the execution time of the instruction. No 
reservations are placed on the functional unit or operand registers. 

I A transmit vector mask to Si (073) instruction is delayed by (VL) + 6 
clock periods from the issue of a previous vector mask (175) instruction 
and is delayed by 6 clock periods from the issue of a preceding transmit 
(Sj) to VM (003) instruction. 

2240004 A-I E 



Execution times in c~ock periods are given below. 

(A=A register, M=~1emory, B=B register, S=S register, I=Immediate, C=Channel) 

24~bit results: 
A-+-M 
M-+-A 
A-+-B 
B-+-A 
A-+-S 
A-+- 1 

64-bit results: 
S..-M 
M~S 
S -+-T 
T -+-S 
S -+-1 
S -+-S(1og.)S 
S -+-S(shift)I 
S -+- S(shi ft)A 
S -+- S(mask) I 

RTC -+-S 

11* 
1* 
1 
1 
1 
1 

11* 
1* 
1 . 
1 
1 
1 
2 
3 
1 
1 

A-+- C 
A-+- A+A 
A"-AxA 
A-+- pop(S) 
A -+-lzc (S) 

VL -+-A 

4 
2 
6 
4 
3 
1 

S-+-S+S 3 
S-+-S(f.add)S 6* 
S -+-S( f .mul t)S 7* 
S-+-S(r.a.) 14* 
S -+-V 5 
V-+-S 3 
S-+-VM 1 
S-+-RTC 1 
S-+-A 2 

VM-+-S 3 
* Issue may be delayed because of a functional unit reservation by a 

vector instruction. Memory may be considered a functional unit for 
timing considerations. 

VECTOR INSTRUCTIONS 

Four conditions must be satisfied for issue of a vector instruction: 
1. The functional unit must be free. (Conflicts may occur with vector 

operations.) 
2. The result register must be free. (Conflicts may occur with vector 

operations.) 
3. The operand registers must be free or at chain slot time. 
4. Memory must be quiet if the instruction references memory. 

Vector instructions place reservations on functional units and registers 
for the duration of execution. 

1. Functional units are reserved for VL+4 clock periods. Memory is 
reserved for VL+5 clock periods on a write operation, VL+4 clock 
periods on a read operation. 

2240004 A-2 E 



2. The result register is reserved for the functional unit time 
+(VL+2) clock periods. The result register is reserved for the 
functional unit +7 clock periods if the vector length is less than 
5. At functional unit time +2 (chain slot time) a subsequent 

instruction, which has met all other issue conditions, may issue. This 
process is called "chaining." Several instructions using different 
functional units may be chained in this manner to attain a significant 
enhancement of processing speed. 

3. Vector operand registers are reserved for VL clock periods. Vector 
operand registers are reserved for 5 clock periods if the vector 
length is less than 5. The vector register used in a block store to 
memory (177 instruction) is reserved for VL clock periods. Scalar 
operand registers are not reserved. 

Vector instructions produce one result per clock period. The functional 
unit times are given below. The vector read and write instructions 
(176, 177) produce results more slowly if bank conflicts arise due, to 

+ ' 
the increment value (Ak) being a multiple of 8~ Chaining cannot occur 
for the vector read operation in this case. 

If (Ak) is an odd multiple of 8t results are produced every 2 clock 
periods. 

If (Ak) is an even multiple of 8t results are produced every 4 clock 
periods. 

Funct i ana 1 un i' t 
Logical 
Shift 
Integer add 
Floating add 
Fl oati ng mul ti'ply 
Reciprocal approximation 
~1emory 

Time (c. p.) 
2 

4 

3 

6 

7 

14 
7 

t Multiple of 4 for 8-bank phasing; refer to section 5. 

2240004 A-3 E 



Memory must be quiet before issue of the Band T register block copy 
instructions (034-037). Subsequent instructions may not issue for 14+ (Ai) 
clock periods if (Ai)iO and 5 clock periods if (Ai)=O when reading 
data to the Band T registers (034,036). They may not issue for 6+(Ai) 
clock periods when storing data (035,037). 

The Band T register block read (034,036) instructions require that there 
be no register reservation on the A and S registers, respectively, before. 
issue. 

Branch instructions cannot issue until an AO or SO operand register has 

been free for one clock period. Fall-through in buffer requires two 
clock periods. Branch-in-buffer requires five clock periods. When an 
"out of buffer" condition occurs the execution time for a branch 
instruction is 14 clock periods; 

A two parcel instruction takes two clock periods to issue. 

Instruction issue is delayed 2 clock periods when the next instruction 
parcel is in a different instruction parcel buffer. Instruction issue is 
delayed 14 clock periods if the next instruction parcel is not in an 
instruction parcel buffer. 

HOLD MEMORY 

A delay of 1, 2, or 3 CP will be added to a scalar memory read if a bank 
conflict occurs with rank C, B, or A, respectively, of the memory access 
network. A conflict occurs if the address is in the same bank as the 
address in rank C, B, or A. Conflicts can occur only with scalar or I/O 
references. The scalar instruction senses the conflict condition at 
issue time + 1 CPo The scalar instruction address enters rank A of the 
memory access network at issue time + 1 CPo The scalar instruction 
address enters rank B at issue + 2 CPo The scalar instruction address 
enters rank C at issue + 3 CPo 

t 18 clock periods for 8-bank phasing option; refer to section 5. 

2240004 A-4 E 



Scalar instruction timing (no conflict): 

CP n Issue, reserve register 
CP n+1 Address rank A, sense conflict 
CP n+2 Address rank B 
CP n+3 Address rank C 

CP n+9 Clear register reservation 
CP n+10 Issue 

HOLD ISSUE 

A delay of issue results if a 100 - 137 instruction is in the NIP register 
and a hold memory condition exists. The delay will depend on the hold 
memory delay. 

A delay of issue results if a 100 - 137 instruction is in the NIP register 
and a 100 - 137 instruction in process senses a conflict with rank A, B, 
or C. 

An additional 1 CP delay is added to a hold memory condition if a 070 
I instruction destination register conflict is sensed. 

2240004 A-5 E 





MODULE TYPES 

Alpha No. Alpha No. 
Code A~~lication Used Code Application Used 

A SERIES MODULES G SERIES MODULES 
AA Address adder GA Scalar single shift 4 
AB Storage block address GB Scalar double shift (front half) 4 
AC Vector storage control GC Scalar double shift (back half) 4 
AD Storage address distribution GO Data A k to Si extended 
AE Band T storage control GE Scalar add (front half) 4 

AF Address multiply levels 1 and 2 GF Scalar add (back balf) 2 
AG Address multiply level 2 GG Constant to Si 
AH Address multiply upper level 3 GH Pop and zero count to Ai 
AI Address multiply lower level GI Real time clock 2 
AJ Address multiply level 4 

I GJ* RTC/PCI (lower bits) 
AR Address registers 12 GK* RTC/PCI (upper bits) 

I o SERIES MODULES GR Scalar registers 32 

DE Address merge fanout 10 H SERIES MODULES 
OF Channel reference control HA Program branch control 
DG Channel interrupt control HB Next instruction parcel 4 
DH Channel address control HC Lower program address 1 
01 Synchronizing circuits 3 HD Upper program address 2 

I OJ Input channel control 16-bit -'-+ HE Program parameter data 4 
OK Output channel control 16-bit tt HF Fetch sequence control 1 
DL Input data assembly 16-bit 12 I HS Instruction buffers 8 
OM Output data disassembly 16-bit 12 HX Exchange sequence control 
ON Input channel control tt 

J SERIES MODULES 
DO Output channel control tt JA CIP fanout to AR modules 
DU Input channel control 

JB CIP fanout to GR modules 10 
DV Input channel control 

JC Select vector data paths 1 
DZ Unused I/O channel termination tt 

JD Vector function issue control 
F SERIES MODULES JE Floating point issue control 

FA Floating add exponent input JF Vector register issue control 
operands JG Scalar register issue control 

FB Floating add exponent input 
JH Address register issue control operands 

FC Floating add coefficient input JI Storage access issue control 
operands 4 JJ Hold storage issue control 

FD Floating add coefficient alignment 4 JK Address access control 
FE Floating add coefficient add JL Scalar access control 

(front half) 
FF Floating add coefficient add 

(back half) 3 

FG Floating add coefficient result 2 

FH Floating add coefficient result 
FI Floating add exponent data 
FJ Floating add exponent result 

* When the Programmable Clock Option is installed, a GJ module and a 
GK module replace the two GI modules. 

B 

t DU, DV modules are used to communicate with various CRr interfaces. The 
number of modules varies with the system configuration. 

tt The number of modules depends on the configuration. 

2240004 8-1 E 



Alpha No. Alpha No, 
Code A[![!1ication Used Code Application Used 

M SERIES MODULES T SERIES MODULES 

MA First level product 24 TC Clock fanout 9 
MB Second level product 10 I TO Master clock I 
MC Third level product 8 TX** l6-bank phasing 2 
MD Fourth level product 3 TV** 8-bank phasing 
ME Fifth level product 3 I TZ Master clock fanout 
MF First level ends 2 V SERIES MODULES 
MG First section exponents 
MH Last section exponents VA Data to vector registers 32 

VB Vector data to jk functions 32 
R SERIES MODULES VC Vector data to j functions 16 

RA Table for Ao VD Vector length control 
RB Table for Ao2 1 VE Vector write control 1 
RC Form Al 3 VF Front half vector shift 4 

RD Form Al VG Back half vector shift 4 

RE Form Al VH Front half vector add 4 

RF Form Al VI Back half vector add 
RG Form Al VJ Vector logical data 4 

RH Form A 2 VK Vector logical control I 

RI Form AI
Z 

VL Vector Pop Count Option It 

RJ Form A12 1 VR Vector registers 32 
RK Form Al2 2 

RL Form A/ Z SERIES MODULES*** 

RM Form A2 10 ZS Storage w/memory data buffers 288 

RN Form A2 2 ZC Storage with clock fanout 36 

RO Form A2 ZD Storage R/W control I 

RP Form A2 ZE Storage section control 2 
RQ Form A2 ZF Storage with address fanout 120 
RR Form A2 ZG Check bit generation 2 
RS Reciprocal coefficient 2 ZI Corrective storage 
RT Reciprocal coefficient 2 ZK Syndrome generation and error 
RU Operand delay 9 correction 32 

RV Result exponent I ZV Storage module 120 
ZZ Storage module w/address fan-

S SERIES MODULES out 588 

SH* 16-bit synchronous 
input data assembly 

SI* I6-bit synchronous 
output data assembly 

I * One 5H, 5I module pair interfaces to each CRI disk controller. The 
number depends on the system configuration. 

** For 8-bank phasing, TV modules are substituted for TX modules. 

*** Figures are for 16-bank memory. 

I t Included when Vector Population Count Option is present. 

2240004 B-2 E 



I 

SOFTWARE CONSIDERATIONS C 

References to software in this publication are limited to those features 
of the hardware that provide for software or take it into consideration. 

SYSTEM MONITOR 
A monitor program is loaded at system dead start and remains in memory 
for as long as the system is used. Only the monitor program executes 
in monitor mode and can execute monitor instructions. A program 
executing in monitor mode cannot be interrupted unless the t~on1tor ~1ode 

Interrupt (MMI) option is present. A monitor program is designed to 
reference all of memory. 

OBJECT PROGRAM 
An object program as referred to in this publication means any program 
other than the monitor program. Generally, the term describes a job
oriented program but may also describe an operating system task that does 
not execute in monitor mode. An object program may be a machine' language 
program such as a FORTRAN compiler or it may be a program resulting from 
compilation of FORTRAN statements by the compiler. 

OPERATING SYSTEM 

The operating system consists of a monitor program, object programs that 
perform system-related functions, compilers, assemblers, and various 
utility programs. The operating system is loaded into memory and possibly 
onto mass storage during system dead start. Features of the operating system 
system and organization of storage, which is a function of the operating 
system, will be described in the operating system reference manual. 

SYSTEM OPERATION 

System operation begins at CPU dead start. Dead start is that sequence of 
operations required to start a program running in the computer after power 
has been turned off and then turned on again. 

2240004 C-1 E 



The dead start sequence is initiated from the maintenance control unit 
(MCU). The sequence is described in detail in Section 3. During the 
dead start sequence, the MCU loads a program containing an exchange 
package~at absolute:address zero in the CRAY-l memory. A signal from 
the MCU causes the CRAY-l to begin execution of the program pointed to by 
the exchange package. 

FLOATING POINT RANGE ERRORS 

Detection of the floating point range error initiates an interrupt if the 
floating point mode flag is set in the mode register and monitor mode is 

not in effect. The programmer has the capability via the 0022 instruction 

to clear the floating point mode flag so that results going out of range 

are prevented from interrupting. This is especially useful for operations 

such as the vector merge instruction usage in subroutines such as SINE and 

COSINE, where some results may be known to go out of range. At the end 

of the code sequence, the programmer normally resets the floating point 

mode via a OOZI instruction. 

2240004 C-2 E 



, 

I 

INSTRUCTION SUMMARY 

~ 
OOOxxx 

tOOOijk 

ttoo 1 OJ k 

ttOOlljk 

tt0012jx 

tt0013jx 

tt0014jO 

tt§ 0014j4 
tt § 0014 j 5 

tt§0014j6 

tt§ 0014j 7 
0020xk 

t0020xO 

ERR 

ERR 

CA,Aj 

CL ,Aj 

CI,Aj 
XA 

RT 

PCI 
CCI 

ECI 

DCI 
VL 

VL 
0021xx EFI 

0022xx DFI 

003xjx VM 
t003xOx VH 

004xxx EX 

t004ijk EX 

005xjk J 

006ijkm J 

007ijkm R 

010ijkm JAZ 
Ollij km JAN 

012ijkm JAP 

013ijkm JAM 

014ijkm JSZ 

015ijkm JSN 
016ijkm JSP 

017ijkm JSM 
. 020ij km 

02lijkmtAi 

022ijk ~ 
023ijx Ai 

024ijk Ai 

025ijk Bjk 

026ijO Ai 

§§026ijl Ai 

027ijx Ai 

030ijk Ai 

t030iOk Ai 

t030ijO Ai 

031ijk Ai 

exp 

Ak 

Ak 

Aj 

Sj 

Sj 

Ak 

1 

Sj 

o 

exp 

Bj k 

exp 

exp 

exp 

exp 

exp 

exp 

exp 
exp 

exp 

exp 

exp 

Sj 
Bjk 

Ai 

PSj 

QSj 

ZSj 

Aj+Ak 

Ak 

Aj+l 

Aj-Ak 

t Special syntax form 

PAGE 

4 -7 

4"7 
4-8 

4-8 

4" 8 

4-8 

4-10 

4-10 

4-10 

4-10 

4-10 
4-12 

4-12 

4-13 
4-13 

4-14 

4-14 

4-15 
4-15 

4-16 

4-17 

4-18 

4-19 

4-19 
4-19 

4-19 

4-20 

4-20 

4-20 

4-20 
4-21 

4-21 

4-22 

4-23 

4-24 

4-24 

4-25 
4-25 

4-26 

4 -27 

4-27 

4-27 

4-27 

tt Privileged to monitor mode 

Ppp/LZ 

Pop/LZ 

Pop/LZ 
A Int Add 

A Int Add 

A Int Add 

A Int Add 

§ Programmable Clock Option only 
§§ Vector Population Count Option only 

2240004 0-1 

DESCRTPTlON 

Error exit 

Error exit 

Set the channel (Aj) current address to 
(Ak) and begin the I/O sequence 

Set the channel (Aj) limit address to (Ak) 

Clear channel (Aj) interrupt flag 

Enter XA register with (Aj) 

Ent~r RTC register with (Sj) 

Enter interval register with (Sj) 
Clear PCI request 

Enable PCI request 

Disable PCI request 

Transmit (Ak) to VL register 
Transmit 1 to VL register 

Enable interrupt on floating point error 
Disable interrupt on floating point error 

Transmit (Sj) to VM register 

Clear VM register 

Normal exit 
Normal exit 

Jump to (Bjk) 

Jump to exp 
Return jump to exp; set BOO to P 

Branch to exp if (AO) 0 
Branch to exp if (AO) 1 0 

Branch to exp if (AO) positive 

Branch to exp if (AO) negative 

Branch to exp if (SO) = 0 
Branch to exp if (SO) ; 0 
Branch to exp if (SO) positive 

Branch to exp if (SO) negative 
Transmit exp jkrn to Ai 

Transmit exp 
of jkm to Ai 

l's complement 

Transmit exp jk to Ai 

Transmit (Sj) to Ai 

Transmit (Bjk) to Ai 

Transmit (Ai) to Bjk 

Population count of (Sj) to Ai 
Population count parity of (Sj) to Ai 

Leading zero count of (Sj) to Ai 
Integer sum of (Aj) and (Ak) to Ai 

Transmit (Ak) to Ai 

Integer sum of (Aj) and 1 to Ai 

Integer difference of (Aj) less (Ak) to Ai 

D 

E 



~ CAL 
t031iOO Ai -1 
t031iOk 

i031ijO 

032ijk 
033iOx 

033ijO 

033ij1 

034ijk 
+034ijk 

035ijk 

t035ijk 

036ijk 

t036ijk 

Ai 

Ai 
Ai 
Ai 

Ai 

Ai 

Bjk,Ai 

Bjk,Ai 

,AO 
O,AO 

Tjk,Ai 

Tjk,Ai 

037ijk ,AO 
t037ijk O,AO 

040ijkml 
~ Si 

04lijkm f 
042ijk 

t042i77 
t042iOO 

043ijk 

t043iOO 

044ijk 
t044ijO 

t044ijO 

045ijk 

t045ij 0 

046ijk 

t046ijO 

t046ij 0 

047ijk 

t047iOk 

t047ijO 

t047ijO 

t047iOO 

050ijk 

t050ijO 

05lijk 

t05liOk 

t05lij 0 
t051ijO 

t05liOO 

052ijk 

053ijk 

054ijk 
055ijk 

056ijk 

r056ij 0 

t056iOk 

Si 
Si 

Si 
Si 

Si 
Si 

Si 

Si 
Si 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

Si 

SO 

SO 

Si 

Si 

Si 

Si 

Si 

-Ak 

Aj-1 

Aj*Ak 
CI 
CA,Aj 

CE,Aj 

,AO 

O,AO 

Bjl: ,Ai 
Bjk,Ai 

,AO 
o ,AO 

Tjk,Ai 

Tjk,Ai 

exp 

<exp 
#>exp 

1 

-1 

>exp 
#<exp 

o 
Sj&Sk 
Sj&SB 

SB&Sj 

#Sk&Sj 

#SB&Sj 

Sj\Sk 

Sj\SB 
SB\Sj 

#Sj\Sk 
#Sk 

#Sj\SB 

#SB\ Sj 

#SB 

Sj!Si&Sk 

Sj!Si&SB 

Sj!Sk 

Sk 

Sj!SB 

SB!Sj 

SB 

Si<exp 

Si>exp 

Si<exp 
Si>exp 
Si,Sj<Ak 

Si,Sj<l 

Si<Ak 

t Special syntax form 

2240004 

PAGE 
4-27 

4-27 

4-27 

4-28 
4-29 

4-29 

4-29 

4-31 

4-31 
4 - 31 

4-31 

4-31 

4 - 3] 

4d1 

4 - 31 

4-33 

4-33 

4-34 

4-34 

4-34 

4-34 

4-34 

4-34 

4-35 

4-35 

4-35 

4-35 

4-35 

4-35 
4-35 

4-35 
4-35 

4-35 

4-35 

4-35 

4-35 

4-35 

4-35 

4-35 

4-35 

4-35 

4-35 

4-35 

4-38 

4-38 

4-38 

4-38 

4-39 

4-39 

4-39 

ut\ IT DESCR I PTI ON 

A Int Add Tr~nsmit -1 to Ai 
A Int Add 

A Int Add 
A Int Mult 

Memory 

Memory 

Memory 
Memory 

Memory 

Memory 

Memory 

Memory 

S Logical 

S Logical 
S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 
S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 

S Logical 
S Logical 

S Logical 

S Shift 

S Shift 

S Shift 
S Shift 

S Shift 

S Shift 

S Shift 

0-2 

Transmit the negative of (Ak) to Ai 

ILteger difference of (Aj) less 1 to Ai 
Integer product of (Aj) and (Ak) to Ai 
Channel number to Ai (j=O) 

Address of channel (Aj) to Ai (jrO; k=O) 

Error flag of channel (Aj) to Ai (jrO; k=l) 

Read (Ai) words to B register jk from (AD) 

Read (Ai) words to B register jk from (AD) 

Store (Ai) words at B register jk to (AO) 
Store (Ai) words at B register jk to (AD) 

Read (Ai) words to T register jk from (AD) 
Read (Ai) words to T register jk from (AO) 

Store (Ai)-words at T register jk to (AD) 

Store (Ai) words at T register jk to (AD) 

Transmit jkm to Si 

Transmit exp = l's complement of jkm to Si 

Form l's mask cxp = 64-jk bits in Si from 
the right 

Enter 1 into Si 

Enter -1 into Si 

Form l's mask exp 
the left 
Clear Si 

jk bits in Si from 

Logical product of (Sj) and (Sk) to Si 
Sign bit of (Sj) to Si 

Sign bit of (Sj) to Si (j#O) 

Logical product qf (Sj) and l's 
complement of (Sk) to Si 

(Sj) with sign bit cleared to Si 

Logical difference of (Sj) and (Sk) to Si 

Toggle sign bit of Sj, then enter into Si 

Toggle sign bit of Sj, then enter into Si (j/O) 
Logical equivalence of (Sk) and (Sj) to Si 

Transmit l's complement of (Sk) to Si 

Logical equivalence of (Sj) and sign 
bit to Si 
Logical equivalence of (Sj) and sign 
bit to Si (j#O) 
Enter l's complement of sign bit into Si 

Logical product of (Si) and (Sk) complement 
ORed with logical product of (Sj) and (Sk) to Si 

Scalar merge of (Si) and sign bit of (Sj) 
to Si 

Logical sum of (Sj) and (Sk) to Si 
Transmit (Sk) to Si 

Logical sum of (Sj) and sign bit to Si 
Logical sum of (Sj) and sign bit to Si (jIO) 
Enter sign bit into Si 

Shift (Si) left exp = jk places to SO 

Shift (Si) right exp - 64-jk places to SO 
Shift (Si) left exp = jk places 
Shift (Si) right exp = 64-jk places 
Shift (Si and Sj) left (Ak) places to Si 

Shift (Si and Sj) left one place to Si 

Shift (Si) left (Ak) places to Si 

E 



I 

~ 
057ijk 

t057 ij 0 
t057 i Ok 
060ijk 
061ijk 

t06liOk 
062ijk 

t062 iOk 
063ijk 

t06 3 i Ok 
064ijk 
065ijk 

066ijk 

067ijk 
070ijx 

071iOk 
071ilk 
071i2k 

071i3x 

Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 

Si 
Si 
Si 

Si 

Si 

Si 

Si 
Si 
Si 

Si 

071i4x Si 
07li5x Si 
07li6x Si 
07li7x Si 
072ixx Si 
073ixx Si 
074ijk Si 
075ijk Tjk 
076ijk 
077ijk 

t077iOk 

Si 
Vi ,Ak 

Vi,Ak 
10hijkm Ai 

t100ijkm Ai 
t100ijkm Ai 
tlOhiOOO Ai 
llhijkm exp,Ah 

tllOijkm 
tl10ij km 
tllhiOOO 

exp,O 
exp, 
,Ah 

l2hijkm Si 
t120ijkm Si 
t1Z Oij km Si 
t12hiOOO Si 
l3hijkm exp,Ah 

t130ijkm 
t130ij km 
t13hiOOO 
l40ijj< 

14lijk 
1-1.2 i j k 

t142iOk 

exp,O 
exp, 
,Ah 
Vi 

Vi 
Vi 

Vi 

Sj,Si:-Ak 
Sj ,Si>l 
Si>Ak 
Sj+Sk 
Sj-Sk 
-Sk 
Sj+FSk 
+FSk 

Sj-FSk 
-FSk 

Sj*FSk 
Sj"'HSk 

Sj*RSk 

Sj*ISk 
/HSj 

Ak 
+Ak 
+FAk 

0.6 

0.4 
1. 

2. 

4. 

RT 
VM 
Tjk 
Si 
Vj ,Ak 

Sj 
o 
exp,Ah 
exp,O 
exp, 
,Ah 
Ai 
Ai 
Ai 
Ai 
exp,Ah 
exp,O 
exp, 
,Ah 
Si 
Si 
Si 
Si 
Sj&Vk 

Vj&Vk 
Sj!Vk 
Vk 

t Special syntax form 

2240004 

£.ill 
4-39 
4-39 
4-39 
4-40 
4-40 
4-40 
4-41 
4-41 
4-41 
4-41 

4-42 
4-42 

4-42 

4-45 
4-45 
4-45 

4-45 
4-45 
4-45 
4-45 
4-45 
4-47 
4-47 
4-47 
4-47 
4-48 

4-48 
4-48 
4-49 
4-49 
4-49 

4-49 
4-49 

4-49 
4-49 

4-49 

4-49 

4-49 

4-49 

4-49 
4-49 
4-49 

4-49 
4-49 
4-51 

4-51 
4 - 5 L 

4-51 

!llilI 
S Shift 
S Shift 
S Shift 
S Int Add 
S Int Add 
S Int Add 
F. P. Add. 
F.P. Add 
F.P. Add 
F.P. Add 
F.P. Mu1t 
F.P. Mult 

F. P. Mult 

F. P. Mult 
F.P. Rcpl 

Memory 
Memory 
Memory 
Memory 
Memory 
Memory 
Memory 
Memory 
Memory 
Memory 
Memory 
Memory 
Memory 
Memory 
Memory 
Memory 
V Logical 

V Logical 
V Logical 
V Logical 

D-3 

DESCRIPTION 

Shift (Sj and Si) right (Ak) places to Si 
Shift (Sj and Si) right on~ place to Si 
Shift (Si) right (Ak) places to Si 
Integer sum of (Sj) and (Sk) to Si 
Integer difference of (Sj) and (Sk) to Si 
Transmit negative of (Sk) to Si 
Floating sum of (Sj) and (Sk) to Si 
Normalize (Sk) to Si 
Floating difference of (Sj) and (Sk) to Si 
Transmit normali~ed negative of (Sk) ~o Si 
Floating product of (Sj) and (Sk) to Si 
Half precision rounded floating pro~u~t 
of (Sj) and (Sk) to Si 
Full precision rounded floating product 
of (Sj) and (Sk) to Si 
2 - Floating product of (Sj) and (Sk) to Si 
Floating reciprocal approximatio~ of 
(Sj) to Si 
Transmit (Ak) to Si with no sign extension 
Transmit (Ak) to Si with sign extension 
Transmit (Ak) to Si as unnormalized 
floating point number 
Transmit constant 0.75*2**48 to Si 

Transmit constant 0.5 to Si 
Transmit constant 1.0 to Si 
Transmit constant 2.0 to Si 
Transmit constant 4.0 to Si 
Transmit (RTC) to Si 
Transmit (VM) to Si 
Transmit (Tjk) to Si 
Transmit (Si) to Tjk 
Transmit (Vj, element (Ak)) to Si 
Transmit (Sj) to Vi element (Ak) 

Clear Vi element (Ak) 
Read from ((Ah) + exp) to Ai (AO=O) 
Read from (exp) to Ai 
Read from (exp) to Ai 
Read from (Ah) to Ai 
Store (Ai) to (Ah) + exp (AO=O) 
Store (Ai) to exp 
Store (Ai) to exp 
Store (Ai) to (Ah) 
Read from ((Ah) + exp) to Si (AO=O) 

Read from (exp) to Si 
Read from (exp) to Si 
Read from (Ah) to Si 
Store (Si) to (Ah) + exp (AO=O) 
Store (Si) to exp 
Store (Si) to exp 
Store (Si) to (Ah) 
Logical products of (Sj) and (Vk) to yi 
Logical products of (Vj) and (Vk) to Vi 
Logical sums of (Sj) and (Vk) to Vi 
Transmit eVk) to Vi 

E-Ol 



I 

~ 
143ijk 
144ijk 
145ijk 

t14Siii 

l46ijk 

t146iOk 
l47ijk 

l50ijk 
t150ijO 

l5lijk 
tIS lij 0 
l52ijk 

tl52ijO 
l53ijk 
l53ij 0 
154ijk 
l55ijk 
l56ijk 

t156iOk 
l57ijk 
l60ijk 
16lijk 
l62ijk 

l63ijk 

l64ijk 

l65ijk 

l66ijk 

l67ijk 

l70ijk 
t170iOk 
l71ijk 
l72ijk 

tl72iOk 
l73ijk 

174ijO 

§§174ijl 
§§ 174ij2 

175xjO 
l75xjl 
175xj2 
l7Sxj3 
l76hk 

t176ixO 

l77xjk 

t177xjO 

ill 
Vi Vj !Vk 
Vi Sj\Vk 
Vi Vj\ Vk 

Vi 0 

Vi Sj:Vk&VM 

Vi 
Vi 

Vi 
Vi 
Vi 
Vi 
Vi 
Vi 
Vi 
Vi 
Vi 
Vi 
Vi 
Vi 
Vi 
Vi 
Vi 
Vi 

Vi 

Vi 

Vi 

Vi 

Vi 

Vi 
Vi 
Vi 
Vi 
Vi 
Vi 

Vi 

Vi 
VI 
VM 
VM 
VM 
VM 
Vi 

Vi 

,AO,Ak 

,AO,l 

#VM&Vk 
Vj:Vk&VM 

Vj<Ak 
Vj<l 

Vj>Ak 
Vj>1 
Vj,Vj<Ak 
Vj,Vj<l 

Vj ,Vj>Ak 
Vj, Vj>1 
Sj+Vk 
Vj+Vk 
Sj-Vk 
-Vk 
Vj-Vk 

Sj*FVk 
Vj*FVk 
Sj*HVk 

Sj*RVk 

Vj*RVk 

Sj*IVk 

Vj*IVk 

Sj+FVk 
+FVk 
Vj+FVk 
Sj-FVk 
-FVk 
Vj-FVk 

/HVj 

PVi 
QVi 
Vj ,Z 

Vj,N 
Vj ,P 

Vj ,H 
,AO,Ak 

,AO,l 

Vj 

Vj 

t Special syntax form 

~ 
4-51 
4-Sl 
4-51 

4-51 

4-51 

4-S1 
4-51 

4-55 
4-55 

4-55 

4-55 
4-56 
4-56 
4-56 
4-56 
4-61 

4-61 

4-61 

4-61 
4-61 

4-63 

4-63 
4-63 

4-63 

4-63 

4-63 

4-63 

4-66 
4-66 
4-66 
4-66 
4-66 
4-66 

4-68 

4-70 
4-70 
4-71 
4-71 
4-71 
4-71 

4-73 

4-73 

4-73 

4-73 

!lliI1 DESCRIPTION 
V Logical Logical sums of (Vj) and (Vk) to Vi 
V Logical Logical differences of (Sj) and (Vk) to Vi 
V Logical Logical differences of (Vj) and (Vk) to Vi 

V Logical Clear Vi 

V Logical Transmit (Sj) if VM bit • 1; (Vk) if 
VM bit • 0 to Vi 

V Logical 
V Logical 

V Shift 
V Shift 
V Shift 
V Shift 
V Shift 

V Shift 
V Shift 
V Shift 
V Int Add 
V Int Add 
V Int Add 
V Int Add 
V Int Add 
F, P. Mult 
F. P. Mult 
F.P. Mult 

F. P. Mult 

F.P. Mult 

F. P. Mult 

F.P. Mult 

F. P. Mult 

F.P. Add 
F.P. Add 
F.P. Add 
F.P. Add 
F.P. Add 
F.P. Add 

F.P. Rcpl 

F.P. Rcpl 
F.P. Rcpl 
V Logical 
V Logical 
V Logical 
V Logical 
Memory 

Memory 

Memory 

Memory 

Vector merge of eVk) and 0 to Vi 
Transmit (Vj) if VM bi t = 1; (Vk) if 
VM bit = 0 to Vi 
Shift (Vj) left (Ak) places to Vi 
Shift (Vj) left one place to Vi 
Shift (Vj) right (Ak) places to Vi 
Shift (Vj) right one place to Vi 
Double shift (Vj) left (Ak) places to Vi 
Double shift (Vj) left one place to Vi 
Double shift (Vj) right (Ak) places to Vi 
Double shift (Vj) right one place to Vi 
Integer sums of (Sj) and (Vk) to Vi 
Integer sums of (Vj) and (Vk) to Vi 
Integer differences of (Sj) and (Vk) to Vi 
Transmit negative of (Vk) to Vi 
Integer differences of (Vj) and (Vk) to Vi 
Floating products of (Sj) and (Vk) to Vi 
Floating products of (Vj) and (Vk) to Vi 
Half precision rounded floating products 
of (Sj) and (Vk) to Vi 
Half precision rounded floating products 
of (Vj) and (Vk) to Vi 

Rounded floating products of (Sj) and 
eVk) to Vi 
Rounded floating products of eVj) and 
eVk) to Vi 
2 - floating products of (Sj) and 
(Vk) to Vi 
2 - floating products of (Vj) and 
(Vk) to Vi 
Floating sums of (Sj) and (Vk) to Vi 
Normalize (Vk) to Vi 
Floating sums of (Vj) and CVk) to Vi 
Floating differences of (Sj) and (Vk) to Vi 
Transmit normalized negatives of (Vk) to Vi 
Floating differences of (Vj) and (Vk) to Vi 

Floating reciprocal approximations of 
(Vj) to Vi 
Population counts of (Vj) to Vi 
Population count parities of (Vj) to Vi 
VM=1 where (Vj) = 0 
VM=1 where (Vj) , 0 
VM=1 where (Vj) positive 
VM=l where (Vj) negative 
Read (VL) words to Vi from (AO) 
incremented by CAk) 
Read (VL) words to Vi from (AO) 
incremented by 1 
Store (VL) words from Vj to (AO) 
incremented by (Ak) 
Store (VL) words from Vj to (AO) 
incremented by 1 

§§ Vector Population Count Option only 

2240004 D-4 E-01 



READERS COMMENT FORM 

CRAY-l Hardware Reference Manual HR-0004 F 

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided 
below to share with us your comments. When possible, please give specific page and paragraph references. 

NAME __________________________ ~-----------

JOB TITLE ______________________________ _ 

FIRM ______________________________________________________ __ 
RESEARCH. INC. 

ADDRESS ___________________________________ __ 

CITY ___________ STATE _____ ZIP ___ _ 



Attention: 
PUBLICATIONS 

111111 

BUSINESS REPLY CARD 
HRST CLASS PERMIT NO 6184 ST PAUl. MN 

POSTAGE Will BE PAID BY AnORESSEE 

RESEARCH, INC. 

1440 Northland Drive 
Mendota Heights, MN 55120 
U.S.A. 

--- -----~ 
I NO POSTAGE 1 

~
ECESSARY 

IF MAILED I 
IN THE I 

UNITED STATES t 

------------------------------------, 

STAPLE 

() 

C 
-i 
> r-o 
Z 
C') 

-i 
J: 
Cii 
!: 
z 
m 


