
CRAY-1®
COMPUTER SYSTEMS

CRAY-OS VERSION 1
REFERENCE MANUAL

SR-0011

c:
RESEARCH, INC.

CRAY-1®
COMPUTER SYSTEMS

CRAY-OS VERSION 1
REFERENCE MANUAL

SR-0011

Copyright© 1976,1977,1978,1979,1980,1981,1982 by
CRAY RESEARCH, INC. This manual or parts thereof
may not be reproduced in any form without permission of
CRAY RESEARCH, INC.

RECORD OF REVISION RESEARCH. INC. PUBLICATION NUMBER SR-OOll

Each time this manual is revised and reprinted, all chan~es issued against the previous version in the form of change packets are
incorporated into the new version and the new version IS assigned an alphabetic level. Between reprints, changes may be issued
against the current version in the form of change packets. Each change packet is assigned a numeric designator, starting with
01 for the first change packet of each revision level.

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner. Changes to part of a page are noted by a change bar along the margin of the page. A change bar in the margin opposite
the page number indicates that the entire page is new; a dot in the same place indicates that information has been moved from
one page to another, but has not otherwise changed.

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to:

CRAY RESEARCH, INC.,
1440 Northland Drive,
Mendota Heights, Minnesota 55120

Revision

A

B

C

C-Ol

D

D-Ol

SR-OOll

Description

June 1976 - First printing

September 1976 - General technical changes1 changes to JOB,
MODE, RFL, and DMP statements1 names of DS and RETURN changed
to ASSIGN and RELEASE. STAGEI deleted, STAGEO replaced by
DISPOSE. RECALL macro added and expansions provided for all
logical I/O macros. RELEASE, DUMPDS, and LOADPDS renamed to
DELETE, PDSDUMP, and PDSLOAD. Detailed description of BUILD
added (formerly LIB). EDIT renamed to UPDATE.

February 1977 - Addition of Overlay Loader1 deletion of Loader
Tables (information now documented in CRI publication
SR-0012) 1 deletion of UPDATE (information now documented in
CRI publication SR-0013) 1 changes to reflect current
implementation.

July 1977 - Addition of BKSPF, GETPOS, and POSITION logical
I/O macros and $BKSPF, $GPOS, and $SPOS routines. Addition of
random I/O. Changes to dataset structure, JOB, ASSIGN, MODE,
and DUMP statements1 BUILD 1 logical I/O and system action
macro expansions. General technical changes to reflect
current implementation.

January 1978 - Correction to DISPOSE and LDR control statement
documentation, addition of description of $WWDS write routine,
miscellaneous changes to bring documentation into agreement
with January 1978 released version of the operating system.

February 1978 - Reprint with revision. This printing is
exactly the same as revision C with the C-Ol change packet
added.

April 1978 - Change packet includes the addition of the ADJUST
control statement1 MODE and SWITCH macrOS1 and PDD, ACCESS,
SAVE DELETE, and ADJUST permanent dataset macros.
Miscellaneous changes to bring documentation into agreement
with released system, version 1.01.

ii J

Revision

E

E-Ol

F

F-Ol

F-02

G

G-Ol

SR-OOll

Description

July 1978 - Represents a complete rewrite of this manual.
Changes are not marked .by change bars. New features for
version 1.02 of the operating system that are documented
in this revision include: addition of the MODIFY control
statement and the DSP, SYSID, and DISPOSE macros; the
addition of parameters to some control statements, the
implementation of BUILD. The POSITION macro has been
renamed SETPOS. Other changes to bring documentation into
agreement with released version 1.02 of the operating
system.

October 1978 - Change packet includes the implementation
of ACQUIRE and COMPARE control statements; changes to the
AUDIT and LDR control statements; changes to the MODE
control statement and macro; the addition of control
statement continuation, GETPARAM, and the GETMODE macro;
and other minor changes to bring documentation into
agreement with the released version 1.03 of the operating
system.

December 1978 - Revision F is the same as revision E with
change packet E-Ol added. No additional changes have been
made.

January 1979 - Change packet includes implementation of
some features of BUILD; the addition of the BUFIN, BUFINP,
BUFOUT, BUFOUTP, BUFEOF, and BUFEOD macros and other minor
changes to bring documentation into agreement with the
released version 1.04 of the operating system.

April 1979 - Change packet includes the implementation of
the DEBUG, RERUN, and NO RERUN control statements, the
RERUN, NORERUN, anq BUFCHECK macros; changes to DUMP,
DSDUMP, AUDIT, and ASSIGN control statements;
implementation of job rerun and memory resident datasets.
Other minor changes were made to bring documentation into
agreement with the released version 1.05 of the operating
system.

July 1979 - Reprint with reV1Slon. This printing
obsoletes all previous versions. Changes are marked with
change bars. The changes bring this documentation into
agreement with the released version 1.06 of the operating
system.

December 1979 - Change packet includes the implementation
of the WAIT and NOWAIT options on the DISPOSE control
statement; the addition of a new DUMP format and CFT
Linkage Macros; and other minor changes to bring
documentation into agreement with the released version
1.07 of the operating system.

iii I

Revision

H

I

1-01

SR-OOll

Description

January 1980 - Revision H is the same as revision G with
change packet G-Ol added. No additional changes have been
made.

April 1980 - Revision I is a complete reprint of this
manual. All changes are marked by change bars. New
features for version 1.08 of the operating system that are
documented in this revision include: the addition of the
CALL and RETURN control statements, job classes, the NA
parameter on permanent dataset management control
statements, the NRLS parameter on the DISPOSE control
statement and PDD macro, and the CW parameter on the
COMPARE control statement. Changes to the LDR control
statement include the addition of the LLD, NA, USA, and I
parameters and the new selective load directives. New
documentation has been added for unblocked I/O, including
descriptions of the READU and WRITEU macros. Other new
macros include ENDRPV, DUMPJOB and the debugging aids
SNAP, DUMP, INPUT, OUTPUT, FREAD, FWRITE, UFREAD, UFWRI'JlE,
SAVEREGS, and LOADREGS. Documentation on CRAY-l
interactive capabilities and changes to reflect the CRAY-l
S Series have also been added. Other changes were made to
bring documentation into agreement with released Version
1.08 of the operating system.

With this revision, the publication number has been
changed from 2240011 to SR-OOll.

October 1980 - Changeypacket includes the implementation
of the IOAREA, SETRPV, ROLL, and INSFUN macros and the
IOAREA control statement; the addition of execute-only
data sets including adding the EXO parameter to the SAVE
and MODIFY control statements and the PDD macro; the
lengthening of the TEXT parameter field; the addition of
the DEB parameter to the LDR control statement; and a
change to the formats of the UFREAD and UFWRITE macros.
The DEBUG option allowing conditional execution of the
SNAP, DUMP, INPUT, and OUTPUT macros has been
implemented. Other minor changes were made to bring
documentation into agreement with the released version
1.09 of the operating system.

iv 1-01

Revision

1-02

J

J-Ol

K

SR-OOll

Description

July 1981 - This change packet includes changes to Job Control
Language syntax1 the addition of JCL block control statements
for procedure definition (PROC, ENDPROC, &DATA, and prototype
statement), conditional processing (IF, ELSE, ELSEIF, and
ENDIF), and iterative processing (LOOP, EXITLOOP, and
ENDLOOP)1 the addition of ROLLJOB, SET, LIBRARY, ECHO, PRINT,
FLODUMP, and SYSREF control statements1 the addition of CSECHO
macr01 the addition of CNS parameter to CALL statement,
REPLACE parameter to BUILD statement, ARGSIZE parameter to
ENTER macro, KEEP parameter to EXIT macro, USE parameter to
ARGADD macro; the addition of the two JCL tables JBI and JST.
Other minor changes were made to bring the documentation into
agreement with the released version of 1.10 of the operating
system.

February 1982 - Reprint. This reprint incorporates revision I
with change packets 1-01 and 1-02. No other changes have been
made.

June 1982 - This change packet includes the following
additions: magnetic tape characteristics, temporary and local
dataset clarification, mass storage permanent datasets,
magnetic tape permanent datasets, tape I/O formats,
interchange format, transparent format, new accounting
information, *gn=np parameter, several CHARGES parameters,
the OPTION control statement, procedure definition, HOLD
parameter, new information to the ACCESS control statement,
new tape dataset parameters, tape dataset conversion
parameters, SUBMIT job control statement, PDSDUMP and PDSLOAD
sample listings, SID parameter on the LDR control statement,
new loader errors, relocatable overlays, CONTPRV macro, SUBMIT
macro, unrecovered data error information, POSITION macro, new
PDD macro parameters, the LDT macro, and new glossary terms.
The information formerly in Appendix C is now in the COS
EXEC/STP/CSP Internal Reference Manual, publication SM-0040.
Other miscellaneous technical and editorial changes were made
to bring the documentation into agreement with version 1.11 of
the operating system.

July 1982 - Reprint. This reprint incorporates revision J
with change packet J-Ol. No other changes have been made.

v K

PREFACE

This manual describes the external features of the CRAY-l Operating
System (COS). The manual consists of three parts:

PART 1

PART 2

SYSTEM DESCRIPTION

This part describes the system components, storage of
information on the CRAY-l, and job processing. An
introduction to job control language is also included.

JOB CONTROL LANGUAGE

In this part, the format of each COS control statement is
given, along with an explanation of the function of each.

PART 3 MACRO INSTRUCTIONS

In part 3, CAL language macro instructions are described
and in some cases examples are provided.

Other CRI publications that may be of interest to the reader are:

• CRAY-l Hardware Reference Manual, publication 2240004

• CRAY-l S Series Hardware Reference Manual, publication HR-0808

• CRAY-l FORTRAN (CFT) Reference Manual, publication SR-0009

SR-OOll vii 1-02

I

I

I

I

CONTENTS

PREFACE

PART 1 SYSTEM DESCRIPTION

1.

2.

INTRODUCTION •

HARDWARE REQUIREMENTS
SYSTEM INITIALIZATION
CENTRAL MEMORY ASSIGNMENT AND CHARACTERISTICS

Memory resident COS •
User area of memory •

Job Table Area JTA
User field •

MASS STORAGE CHARACTERISTICS •
MAGNETIC TAPE CHARACTERISTICS.

DATASETS •

DATASET TYPES
Temporary datasets
Local datasets
Mass storage permanent data sets •
Magnetic tape datasets

EXECUTE-ONLY DATASETS
MEMORY-RESIDENT DATASETS •
INTERACTIVE DATASETS •
DATASET NAMING CONVENTIONS •
DATASET FORMATS

Blocked format
Block Control Word •
Record Control Word
Blank compression

Interactive format
Unblocked format

TAPE I/O FORMATS •
Interchange format
Transparent format

USER LOGICAL I/O INTERFACES
DATASET DISPOSITION CODES

SR-0011 ix

vii

1-1

1-1
1-2
1-2
1-4
1-4
1-5
1-5
1-5
1-8

2-1

2-1
2-1
2-1
2-2
2-2
2-3
2-4
2-4
2-5
2-5
2-5
2-6
2-7
2-10
2-10
2-10
2-11
2-11
2-13
2-13
2-15

J-01

I

3.

4.

DECK STRUCTURE AND JOB PROCESSING

JOB DECK STRUCTURE •
GENERAL DESCRIPTION OF JOB FLOW

Job entry.
Job initiation
Job advancement •
Job termination •

JOB RERUN
REPRIEVE PROCESSING
JOB LOGFILE AND ACCOUNTING INFORMATION •

JOB CONTROL LANGUAGE •

SYNTAX VIOLATIONS
VERBS

System verbs
Local dataset name verbs
Library-defined verbs •
System dataset name verbs •
Verb search order •

SEPARATORS •
PARAMETERS •

Positional parameters •
Keyword parameters
JCL parameter expressions •

Operands •
Operators
Expression evaluation

Parameter interpretation
STRINGS

String construction rules •
Apostrophes and parentheses in JCL

block control statement

PART 2 JCL CONTROL STATEMENTS

1. INTRODUCTION AND JOB DEFINITION

INTRODUCTION
JOB DEFINITION •
JOB - JOB IDENTIFICATION •
MODE SET OPERATING MODE
EXIT EXIT PROCESSING •
RFL - REQUEST FIELD LENGTH •
SWITCH - SET OR CLEAR SENSE SWITCH •
* - COMMENT STATEMENT
NORERUN - CONTROL DETECTION OF NONRERUNNABLE FUNCTIONS •

SR-0011 x

3-1

3-1
3-2
3-2
3-2
3-3
3-4
3-5
3-6
3-6

4-1

4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-6
4-7
4-7
4-8
4-11
4-11
4-11
4-12

4-13

1-1

1-1
1-2
1-3
1-4.1
1-5
1-5
1-6
1-6
1-6

J-01

I

I

INTRODUCTION AND JOB DEFINITION (continued)
RERUN - UNCONDITIONALLY SET JOB RERUNNABILITY • • • •
IOAREA - CONTROL USER'S ACCESS TO I/O AREA ••••••
CALL - READ CONTROL STATEMENTS FROM ALTERNATE DATASET
RETURN - RETURN CONTROL TO CALLER
ACCOUNT - VALIDATE USER ACCOUNT
CHARGES - JOB STEP ACCOUNTING
ROLLJOB - ROLL A USER JOB TO DISK
SET - CHANGE SYMBOL VALUE •• • •
ECHO - Enable or suppress logfile messages •
LIBRARY - List and/or change library searchlist

2. JCL CONTROL STATEMENTS BLOCKS

3.

PROCEDURE DEFINITION • • • • • • •
Procedure definition format

PROC - Begin procedure definition • • ••••
Prototype statement - Introduce a procedure
Procedure definition body • • • •
&DATA - Procedure data • • • • • • • •
ENDPROC - End procedure definition

Substitution parameters • • •••
Value substitution
Positional parameters • • • • • •

Keyword parameters • • • • • •
Positional and keyword parameters
Apostrophes and parentheses • • •

Examples •• • • • • • • • • • • •
CONDITIONAL CONTROL STATEMENT PROCESSING

Conditional block • • • • • • • • •
IF - Begin conditional block • •
ENDIF - End conditional block

Conditional block with ELSE ••••••••
ELSE - Define alternate condition

Conditional block with ELSEIF • • • • • • •
ELSEIF - Define alternate condition

Conditional block with ELSE and ELSEIF
ITERATIVE CONTROL STATEMENT PROCESSING • • • • •

LOOP - Begin iterative block •••
ENDLOOP - End iterative block •
EXITLOOP - End iteration

DATASET DEFINITION AND CONTROL • • • • •

ASSIGN - ASSIGN MASS STORAGE OR MAGNETIC TAPE DATASET
CHARACTERISTICS • • • • • • • • • • • • • •

RELEASE - RELEASE DATASET. • • • • • • •

SR-0011 xi

. .

1-7
1-8
1-8
1-9
1-10
1-11
1-12
1-12
1-13
1-14

2-1

2-1
2-2
2-3
2-3
2-4
2-4
2-5
2-5
2-6
2-6
2-6
2-7
2-7
2-7
2-13
2-13
2-14
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-22

3-1

3-1
3-4

J-01

4. PERMANENT DATASET MANAGEMENT • · · · · 4-1

SAVE - SAVE PERMANENT DATASET 4-2
ACCESS - ACCESS PERMANENT DATASET · · · · 4-4

I Tape dataset parameters · · · · · · · 4-6
Tape dataset conversion parameters · · 4-8

ADJUST - ADJUST PERMANENT DATASET · · · · 4-9
MODIFY - MODIFY PERMANENT DATASET · · · · · · · 4-9
DELETE - DELETE PERMANENT DATASET · · · · · · · · 4-11

5. DATASET STAGING CONTROL · · · · · · · 5-1

ACQUIRE - ACQUIRE PERMANENT DATASET 5-1
DISPOSE - DISPOSE DATASET · · · · · · · · · · · · · · 5-4

I SUBMIT - SUBMIT DATASET · · · · · · · · · · · 5-9

6. DATASET UTILITIES 6-1

COPYR - COpy RECORDS · 6-1
COPYF - COpy FILES . · · · · · 6-2
COPYD - COPY DATASET • · · · · · · · 6-3
SKIPR - SKIP RECORDS · · · · · · · · · · · · · · · 6-3
SKIPF - SKIP FILES . · · · · 6-4
SKIPD - SKIP DATASET 6-5
REWIND - REWIND DATASET · · · · · · · · · · 6-5
WRITEDS - WRITE RANDOM OR SEQUENTIAL DATASET • 6-6

7. PERMANENT DATASET UTILITIES · · · · 7-1

PDSDUMP - DUMP PERMANENT DATASET • · · · · · · · · · 7-1
PDSLOAD - LOAD PERMANENT DATASET · · · · 7-4
AUDIT - AUDIT PERMANENT DATASET · · · · · · · · · · · · · 7-6

8. ANALYTICAL AIDS . . · · · · · · · · · · · · 8-1

DUMPJOB - CREATE $DUMP • · · · · · · · · · 8-1
DUMP - DUMP REGISTERS AND MEMORY · 8-2
DEBUG - PRODUCE SYMBOLIC DUMP · · · · · · · · · · · · · · 8-6
DSDUMP - DUMP DATASET · · · · · · 8-8
COMPARE - COMPARE DATASETS · · · · · · · · · · · · 8-11
PRINT - WRITE VALUE OF EXPRESSION TO LOGFILE · · · · · · · 8-13
FLODUMP - FLOW TRACE RECOVERY DUMP · · · · · · · · · 8-14
SYSREF - GENERATE GLOBAL CROSS-REFERENCE LISTING • 8-16

Use of SYSREF • · · · · · · · · · · · · · · · · · · 8-16
Global cross-reference listing format · · · · · 8-17

SR-0011 xii J-01

9. RELOCATABLE LOADER • • , .
. . . . LDR CONTROL STATEMENT

LOADER ERRORS
LOAD MAP •••••••
SELECTIVE LOAD • • •
RELOCATABLE OVERLAYS

·
Generation of re1ocatab1e overlays
Memory layout when re1ocatab1e overlays exist •
Memory layout of a re1ocatab1e overlay image
Address relocation • • • • • • • • • • • • • •

· .

10. OVERLAY LOADING

INTRODUCTION • •
OVERLAY GENERATION ••• . . . Overlay directives

FILE directive
OVLDN directive
SBCA directive •

TYPE 1 overlay structure •• •

· .
· .

Type 1 overlay generation directives ••••• •
Rules for Type 1 overlay generation • • •
Example of Type 1 overlay generation directives
Execution of Type 1 overlays • • • • •
Type 1 overlay calls • • • • • • • • •
FORTRAN language call • • • • • • • • • •
CAL language call • • • •
Log of Type 1 overlay generation • • • • •

Type 2 overlay structure • • • • • • • • • • •
Type 2 overlay generation directive • • •
Rules for Type 2 overlay generation

· . .
· . .

Example of Type 2 overlay generation directives • •
Execution of Type 2 overlays •
Type 2 overlay calls • • • • • • •
FORTRAN language call
CAL language call • • • • • • •

· . . . · .
· .

Log of Type 2 overlay generation • • • • • • • • • •

11. BUILD .
INTRODUCTION

Program module names
Program module groups
Program module ranges • •
File output sequence
File searching method • •

BUILD CONTROL STATEMENT

SR-0011

· . .
· · ·

·

xiii

9-1

9-1
9-7
9-9
9-11
9-13
9-13
9-14
9-15
9-16

10-1

10-1
10-1
10-2
10-2
10-2
10-3
10-3
10-4
10-7
10-·7
10-8
10-9
10-9
10-10
10-11
10-11
10-11
10-14
10-15
10-16
10-16
10-16
10-17
10-18

11-1

11-1
11-1
11-1
11-2
11-2
11-2
11-3

J-01

I

I

BUILD (continued)
BUILD DIRECTIVES

FROM directive
OMIT directive
COpy directives
LIST directive

EXAMPLES • • • • • •

PART 3 MACRO INSTRUCTIONS

.
11-5
11-6
11-7
11-7
11-9
11-9

1. INTRODUCTION......................... 1-1

2. SYSTEM ACTION REQUEST MACROS
JOB CONTROL

MEMORY - Request memory • • • • • • • • • • • •
MESSAGE - Enter message in logfile •• •
CSECHO - Echo a control statement to the logfile ••••
MODE - Set operating mode • • • • • • • • • • •
SWITCH - Set or clear sense switch • • • • • • • • •
JTlME - Request accumulated CPU time for job
RECALL - Recall job upon I/O request completion •
DELAY - Delay job processing • • •
ABORT - Abort program • • • • • • • • • • • • •
SETRPV - Set job step reprieve ••••••
CONTRPV - Continue from reprieve condition
ENDRPV - End reprieve processing • • • •
ROLL - Roll a job • • • • •

. . . .

ENDP - End program • • • • • • • • • • • • •
NORERUN - Control detection of nonrerunnable functions
RERUN - Unconditionally set job rerunnability •
IOAREA - Control user access to I/O area
DUMPJOB - Dump job image

DATASET MANAGEMENT • • • • • • • • •
DSP - Create Dataset Parameter Area •
OPEN - Open dataset • • • • • • • • •
CLOSE - Close dataset • • • • • • •
RELEASE - Release dataset to system •
DISPOSE - Dispose dataset •
SUBMIT - Submit dataset ••••••

TIME AND DATE REQUESTS ••••
TIME - Get current time •
DATE - Get current date • • • • • •
JDATE - Return Julian date

DEBUGGING AIDS • • • • • • • • • •
SNAP - Take snapshot of selected registers
DUMP - Dump selected areas of memory • •
INPUT - Read data • • • • • • • • • • • • •

SR-OOll xiv

2-1

2-1
2-2
2-3
2-4
2-4.1
2-4.1
2-5
2-5
2-6
2-6
2-7
2-9
2-10
2-10
2-10
2-11
2-11
2-12
2-13
2-13
2-13
2-15
2-17
2-17
2-18
2-18.1
2-19
2-19
2-19
2-20
2-21
2-21
2-22
2-24

J-Ol

•

2. SYSTEM ACTION REQUEST MACROS (continued)

OUTPUT - Write data •
FREAD - Read data •
FWRITE- write data •
UFREAD - Unformatted read •
UFWRITE - Unformatted write •
SAVEREGS - Save all registers • • • • •
LOADREGS - Restore all registers • • • •

MISCELLANEOUS •••• • • • • • • • • •
SYSID - Request system identification
GETMODE - Get mode setting •• • • •
GE~SWS - Get switch setting • • • • • • • •••
INSFUN - Call installation-defined subfunction

3. LOGICAL I/O MACROS •••

2-27
2-32
2-33
2-35
2-36
2-37
2-38
2-39
2-39
2-39
2-40
2-40

3-1

SYNCHRONOUS READ/WRITE • • • • • • • 3-1
READ/READP - Read words • • • • • • • • 3-1
READC/READCP - Read characters 3-4
WRITE/WRITEP - write words • • • • • • • • 3-5
WRITEC/WRITECP - Write characters • 3-6
WRITEF - Write end of file 3-7
WRITED - write end of data • • • • •• • • 3-8

ASYNCHRONOUS READ/WRITE • • •• •••• 3-9
BUFIN/BUFINP - Transfer data from dataset to user record

area • • • • • • • •
BUFOUT/BUFOUTP - Transfer data from user record area to

dataset • • • • • • • • • • • •
BUFEOF - Write end of file on dataset • •
BUFEOD - Write end of data on dataset • •
BUFCHECK - Check buffered I/O completion

UNBLOCKED READ/WRITE • • • • • • • • • • • • •
READU - Transfer data from dataset to user's area
WRITEU - Transfer data from user's area to dataset

POSITIONING • • • • • • • • •

SR-OOll

REWIND - Rewind dataset •
BKSP - Backspace record • • • • • •
BKSPF - Backspace file •••••
GETPOS - Get current dataset position
SETPOS - Position dataset •
POSITION - Position tape ••••••

xv

3-9

3-10
3-12
3-12
3-13
3-14
3-14
3-15
3-16
3-16
3-17
3-18
3-18
3-20
3-21

J-Ol

I

4 • PERMANENT DATASET MACROS • • •
PERMANENT DATASET DEFINITION •

PDD - Create Permanent Dataset Definition Table •
LDT - Create Label Definition Table ••

PERMANENT DATASET MANAGEMENT • • • • • •
ACCESS - Access permanent dataset •
SAVE - Save permanent dataset • • •
DELETE - Delete permanent dataset •
ADJUST - Adjust permanent dataset

5. CFT LINKAGE MACROS • • •

CALL EXTERNAL ROUTINES •
CALL - Call external routine using call-by-address

convention • • • • • • • • • • • • • •
CALLV - Call external routine using call-by-value

convention • • •
ENTER AND EXIT • • • • • •

ENTER - Form a CFT callable entry • •
EXIT - Return from a routine • • •

REGISTER ASSIGNMENT • • • • • • • • • •
BREG - Assign symbols for B register names • •
TREG - Assign symbols for T register names •••••

F ETCH ARGUMENT ADDRESS • • • • • • • • • • •
ARGADD - Fetch argument address • • • • • • • •

APPENDIX SECTION

A. JOB USER AREA

JOB TABLE AREA - JTA
JOB COMMUNICATION BLOCK - JCB
LOGICAL FILE TABLE - LFT • • •
DATASET PARAMETER AREA - DSP •
PERMANENT DATASET DEFINITION TABLE - PDD
BEGIN CODE EXECUTION TABLE - BGN
DATASET DEFINITION LIST - DDL
OPEN DATASET NAME TABLE - ODN
JCL BLOCK INFORMATION TABLE - JBI
JCL SYMBOL TABLE - JST • • • • • • •
Label Definition Table - LDT

B • CHARACTER SET

SR-OOll xvi

.

4-1

4-1
4-1
4-7
4-9
4-9
4-9
4-10
4-10

5-1

5-1

5-1

5-2
5-2
5-2
5-4
5-5
5-5
5-6
5-6
5-6

A-I

A-2
A-2
A-6
A-7
A-12
A-17
A-IS
A-20
A-2l
A-22
A-23

B-1

J-Ol

I

APPENDIX (continued)

C. FUNCTION CODES.

D. LOGICAL I/O ROUTINES •

LOGICAL RECORD I/O ROUTINES
Read routines •
Write routines
Positioning routines

FORTRAN LEVEL I/O

.
Formatted and unformatted I/O routines
Buffered I/O routines • • • • •
Positioning and control I/O routines

E. EXCHANGE PACKAGE

.

.

.
F. ERROR AND STATUS CODES

SYSTEM ERROR CODES •
PERMANENT DATASET STATUS CODES •

GLOSSARY

INDEX

SUMMARY

SR-0011 xvii

C-1

D-1

D-1
D-1
0-6.1
0-11
D-1S
D-1S
D-26
D-27

E-1

F-1

F-1
F-4

J-01

PART 1

SYSTEM DESCRIPTION

I

I

I

I

CONTENTS
PART 1 SYSTEM DESCRIPTION

1. INTRODUCTION • • • • • •

HARDWARE REQUIREMENTS • • • • • • •
SYSTEM INITIALIZATION
CENTRAL MEMORY ASSIGNMENT AND CHARACTERISTICS

Memory resident COS •
User area of memory •

Job Table Area - JTA
User field • • •

MASS STORAGE CHARACTERISTICS • • •
MAGNETIC TAPE CHARACTERISTICS

2. DATASETS •••

DATASET TYPES
Temporary datasets
Local datasets
Mass storage permanent datasets •
Magnetic tape datasets • • • • • •

EXECUTE-ONLY DATASETS
MEMORY-RESIDENT DATASETS •
INTERACTIVE DATASETS • • • •
DATASET NAMING CONVENTIONS •
DATASET FORMATS • • • • • • • • •

Blocked format. • • • •
Block Control Word •
Record Control Word
Blank compression

Interactive format • • • • •
Unblocked format • • • • • •

TAPE I/O FORMATS • • • • • • • • •
Interchange format • • • • •
Transparent format • • • • •

USER LOGICAL I/O INTERFACES
DATASET DISPOSITION CODES • • • •

SR-0011
Part 1

iii

1-1

1-1
1-2
1-2
1-4
1-4
1-5
1-5
1-5
1-8

2-1

2-1
2-1
2-1
2-2
2-2
2-3
2-4
2-4
2-5
2-5
2-5
2-6
2-7
2-10
2-10
2-10
2-11
2-11
2-13
2-13
2-15

J-01

3.

4.

DECK STRUCTURE AND JOB PROCESSING

JOB DECK STRUCTURE •
GENERAL DESCRIPTION OF JOB FLOW

Job entry •
Job initiation
Job advancement •
Job termination •

JOB RERUN
REPRIEVE PROCESSING
JOB LOGFILE AND ACCOUNTING INFORMATION •

JOB CONTROL LANGUAGE •

SYNTAX VIOLATIONS
VERBS

System verbs
Local dataset name verbs
Library-defined verbs •
System dataset name verbs •
Verb search order

SEPARATORS •
PARAMETERS

Positional parameters •
Keyword parameters
JCL parameter expressions •

Operands •
Operators
Expression evaluation

Parameter interpretation
STRINGS

String construction rules •
Apostrophes and parentheses in JCL

block control statements •

SR-OOll
Part 1

iv

3-1

3-1
3-2
3-2
3-2
3-3
3-4
3-5
3-6
3-6

4-1

4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-6
4-7
4-7
4-8
4-11
4-11
4-11
4-12

4-13

J-Ol

I

I

FIGURES

1-1 CRAY-l system configuration · · · . . · · · · 1-2 Memory assignment . . . · · · · . · · · · · · 2-1 Data hierarchy within a dataset · · · · · 2-2 Format of a block control word
2-3 Format of a record control word · 2-4 Example of dataset control words · · · 2-5 Interchange-format tape dataset · 2-6 Relationship of levels of user I/O · · · 3-1 Basic job deck · · 3-2 Example of a job logfile · · · · .
TABLES

1-1 Physical characteristics of disk storage units · 1-2 Physical characteristics of 200 ips,
4-1 Control statement separators
4-2 Symbolic variable table · · 4-3 Expression operator table ·

SR-OOll

·

Part 1
v

9-track tape

· · · · · ·

· · · · · 1-3

· · · · · 1-4

· · · · 2-6

· · · · 2-6
2-7

· · · · · 2-9
2-12

· · · · · 2-14
3-1

· · · · · 3-7

· · · · · 1-6
devices · 1-8

· · 4-5

· · · · · 4-9
4-10

J-Ol

I

I

INTRODUCTION

The CRAY-l Operating System (COS) is a multiprogramming operating system
for CRAY-l Computer Systems. The ope~ting system provides for
efficient use of system resources by monitoring and controlling the flow
of work presented to the system in the form of jobs. The operating
system optimizes resource usage and resolves conflicts when more than one
job is in need of resources.

COS is a collection of programs residing in CRAY-l CPU memory or on
system mass storage following sta~tup of the system. (Startup is the
process of bringing the CRAY-l and the operating system to an operational
state.)

Jobs are presented to the CRAY-l by one or more computers referred to as
f~ont-end oompute~s (also referred to as stations in Cray manuals).
A front-end computer may be any of a variety of computer systems. Since
a front-end computer system operates asynchronously under control of its
own operating system, software execution on the front-end computer system
is beyond the scope of this publication.

COS includes linkages providing for the initiation and control of
interactive jobs and data transfers between the CRAY-l and front-end
terminals. These features are available only where supported by the
front-end system.

The FORTRAN compiler (CFT) , library routines, the CAL assembler, and the
UPDATE source maintenance program are described in separate publications.

HARDWARE REQUIREMENTS

The CRAY-l Operating System executes on the basic configuration of the
CRAY-l Computer System. A CRAY-l models A, B, S/500 or S/lOOO consists
of a Central Processing Unit (CPU), a minicomputer-based Maintenance
Control Unit (MCU) , and a mass storage subsystem.

A CRAY-l Model S/1200 through S/4400 consists of a CPU, an I/O Subsystem
with a mass storage subsystem and an optional IBM-compatible tape
subsystem.

1

SR-OOll
Part 1
1-1 J-Ol

I cos operates with any of four central memory size options: one-half
million, one million, two million, and four million words.

I

The mass storage for Models S/500 through S/lOOO is a mass storage
subsystem consisting of two or more disk storage units. The mass storage
for Models S/1200 through S/4400 is conventionally composed of disk
storage units on the I/O Subsystem but can optionally include a mass
storage subsystem.

The I/O Subsystem consists of from two to four I/O processors and
one-half, one, four, or eight million words of shared Buffer Memory. The
optional tape subsystem is composed of at least one block multiplexer
channel, one tape controller, and two tape units. The tape units
supported are IBM-compatible 9-track, 200 ips, 1600/6250 bpi devices.

Figure 1-1 illustrates a basic system configuration. For more information
about CRAY-l hardware characteristics, refer to the CRAY-l Hardware
Reference Manual, Models A and B, publication HR-0004 and to the CRAY-l S
Series Hardware Reference Manual, publication HR-0808.

SYSTEM INITIALIZATION

COS is loaded into memory (deadstapted) and activated through a system
startup procedure performed at the MCU or I/O Subsystem. At startup,
permanent datasets are re-established on mass storage. (Permanent
datasets survive deadstart, the user can always assume that they are
present. See part 1, section 2 of this manual for more information on
datasets.)

CENTRAL MEMORY ASSIGNMENT AND CHARACTERISTICS

Memory is shared by COS, jobs running on the CRAY-l, dataset I/O buffers,
and system tables associated with those jobs. COS allocates resources to
each job as needed as these resources become available. As a job
progresses, information is transferred between memory and mass storage.
These transfers can be initiated by either the job or by COS.

Figure 1-2 illustrates the assignment of memory to COS and to jobs.

SR-OOll
Part 1
1-2 J-Ol

LOCAL OR
REMOTE

INTERACTIVE "
TERMINALS ~

LOCAL OR

REMOTE

JOB ENTRY

STATIONS

SR-0011

DISPLA YS
MAGNETIC TAPE

SUBSYSTEM
OPTION

FRONT-END CRAY-1

COMPUTER COMPUTER

SYSTEMS SYSTEM

PERIPHERALS MASS STORAGE

Figure 1-1. CRAY-1 system configuration

Part 1
1-3 J-01

•

o

MAXIMUM
MEMORY

MEMORY-RESIDENT COS

User areal

User area2

User area3

User area n

Figure 1-2. Memory assignment

COS occupies two areas of memory. The memory resident portion of the
operating system occupying lower memory consists of exchange packages,
the System Executive (EXEC), the System Task Processor (STP), and the
Control Statement Processor (CSP). The memory resident portion of the
operating system occupying extreme upper memory contains station I/O
buffers and space for the system log and dataset buffer.

USER AREA OF MEMORY

COS assigns every job a U8e~ a~ea in memory. The user area consists
of a Job Table Area (JTA) and a user field.

SR-OOll
Part 1

1-4 J-Ol

Job Table Area - JTA

For each job, the operating system maintains an area in memory that
contains the parameters and information required for monitoring and
managing the job. This area is called the Job Table Area (JTA). Each
active job has a separate Job Table Area adjacent to the job's user
field. The Job Table Area is not accessible to the user, although it may
be dumped for analysis (see part 2, section a).

User field

The U8ep field for a job is a block of memory immediately following the
job's JTA. The user field is always a multiple of 512 words. The
beginning or Ba8e Addpe88 (BA) and the end or Limit Addpe88 (LA) are
set by the operating system. The Limit Address is specified by a
parameter on one of the job control statements (see part 2) or by
default. A user can request changes in field size during the course of a
job.

Compilers, assemblers, system utility programs, and user programs are
loaded from mass storage into the user field and are executed in response
to control statements in the job deck. Each load and execution of a
program may be referred to as a job step.

A detailed description of the contents of the user field is given in
Appendix A. Briefly, however, the first 200 a words of the user field
are reserved for an operating system/job communication area known as the
Job Communication Block (JCB). Programs are loaded starting at BA+200a
and reside in the lower portion of the user field. The upper portion of
the user field contains tables and dataset I/O buffers. The user field
limit is equal to LA-I.

Memory addresses for instructions and operands are relative to BA., The
CRAY-l hardware adds the contents of BA to the address specified by a
memory reference instruction to form an absolute address. A user cannot
reference memory outside of the user field as defined by the BA and LA
register contents; LA-l is the user limit. (Refer to the CRAY-l Hardware
Reference Manual or to the CRAY-l S Series Hardware Reference Manual for
more information.)

MASS STORAGE CHARACTERISTICS

Mass storage for the CRAY-l/A and CRAY-l/B consists of one to thirty-two
00-19 or 00-29 Oisk Storage Units (OSUs). Mass storage for CRAY-l Models

I S/500 or S/lOOO consists of two to thirty-two 00-29 OSUs. Mass storage

SR-OOll
Part I

1-5 J-Ol

I

for CRAY-l Models S/1200 through S/4400 consists of two to forty-eight
00-29 OSUs, depending on the number of I/O Processors in the I/O
Subsystem. These devices are physically non-removable.

All information maintained on mass storage by the CRAY-l Operating System
is organized into quantities of information known as datasets. In
general, the user need not be concerned with the physical transfer of
data between the disks and memory nor with the exact location and
physical form in which datasets are maintained on mass storage. COS
translates the user's logical requests for data input and output into
disk controller functions automatically. For the orientation of the user
the physical characteristics of disk storage units are summarized in
table 1-1.

Table 1-1. Physical characteristics of disk storage units

Feature

Word capacity per drive

Word capacity per cylinder

Bit capacity per drive

Tracks per surface or
cylinders per drive

Sectors per track

Bits per sector

Number of head groups

Latency (revolution time)

Access time

Oata transfer rate (average
bits per second)

Longest continuous transfer
per request

Total bits that can be
streamed to a unit (disk
cylinder capacity)

SR-OOll

00-19

3.723 x 10 7

92,160

2.424 x 109

411

18

32,768

10

16.7 ms

15 - 80 ms

35.4 x 106

92,160 words
(1 cylinder)

5.9 x 10 6

Part 1
1-6

00-29

7.483 x 107

92,160

4.789 x 109

823

18

32,768

10

16.7 ms

15 - 80 ros

35.4 x 106

92,160 words
(1 cylinder)

5.9 x 106

J-Ol

Each disk storage unit contains a device label, datasets, and unused space
to be allocated to datasets. The device label notes usable (unflawed)
space on the disk unit and designates one of the devices as the Master
Device. The Mastep Device is the disk stopage unit DSU containing a
table known as the Dataset Catalog (DS~, which contains information
for maintaining permanent datasets.

I To the user, mass storage pePimanent datasets are those datasets that may
be assumed always present and available on mass storage. This permanence
is achieved through techniques permitting the datasets noted in the DSC to
be recovered or re-established in the event of system failures. Portions
of COS, such as the loader, utility programs, the compiler, the assembler,
and library maintenance and generation routines, reside in permanent
datasets accessible by user jobs at any time.

Datasets containing job input decks and output from jobs already
terminated also reside on mass storage, and because they are listed in the
Dataset Catalog are regarded as permanent. This designation is somewhat
misleading since their permanence is by definition rather than by tenure
in the system. That is, the input dataset is permanent from the time it
is staged from the front-end system to the CRAY-l until the job
terminates. Output datasets being disposed to a front end are permanent
from job termination until the disposition is completed. The permanence
of these system-defined datasets allows them to be recovered along with
other permanent datasets after a system failure.

I Any user job can create a mass storage permanent dataset that can be
subsequently accessed, modified, or deleted by any other job producing the
correct permission control words when attempting to associate it with a
job. These permission control words are defined at the time the dataset
is designated as permanent (that is, saved).

I

A permanent dataset ceases to exist when a user with the correct
permission control word deletes it. This deletion notifies COS that the
space occupied by the dataset is no longer permanent. However, the space
is still reserved by the dataset until it is released by the user (see
part 2 sections 3 and 5, respectively, for information on the RELEASE and
DISPOSE control statements.)

In addition to the various permanent datasets, mass storage is used for
temporary datasets. A tempopapy dataset is created by the job using it
and remains temporary unless it is designated as permanent or disposed to
a front end by the job. A temporary dataset neither saved as permanent
nor disposed of is termed a scpatch dataset and ceases to exist when the
job terminates.

SR-OOll
Part 1
1-7 J-Ol

I

COS allocates space to datasets by sectors as space is needed. storage
assigned to a single dataset can be noncontiguous and can even be on
multiple disk units. Default and maximum sizes for datasets are defined
by system parameters. The user has limited control over the allocation of
storage to a dataset through the ASSIGN control statement.

MAGNETIC TAPE CHARACTERISTICS

An I/O Subsystem can include an Auxiliary I/O Processor (XIOP) with the
capability of addressing up to 16 block multiplexer channels of tape
units. Each block multiplexer channel can be attached to IBM-compatible
control units and tape units in a variety of configurations. The block
multiplexer channels communicate with the control units and tape units to
allow reading and writing data that can also be read and written on
IBM-compatible CPUs.

Density
(bits/inch)

6250
1600

Table 1-2. Physical characteristics of 200 ips,
9-track tape devices

Transfer rate Data/2400 ft. reel % of reel
(kilo bytes/sec) (mega bytes) containing

data

1170 168 94
300 43 94

Block size
(bytes)§

32768
16384

§ The block sizes in this table are used by the COS tape system for
transparent-format tape datasets.

SR-OOll
Part 1
1-8 J-Ol

DATASETS

All information maintained by the CRAY-l Operating System is organized
into quantities of information known as datasets. Each dataset is
identified by a symbolic name called a dataset name (dn). A dataset
can be local to a job or permanent and available to the system and other
jobs.

DATASET TYPES

I Datasets are of two types: temporary and permanent.

I

I

TEMPORARY DATASETS

A tempo~~y dataset is available only to the job that created it.
Temporary datasets can be created in two ways: either explicitly by use
of the ASSIGN control statement, or implicitly upon first reference to a
dataset by name or unit number on an I/O request (CFT) or an OPEN macro
call (CAL) (see part 3, section 2) •

A temporary mass storage dataset is empty until written on. Rewind or
backspace of the dataset is necessary before it can be read. A temporary
dataset can be made permanent by use of the SAVE control statement. If
the dataset is not made permanent, it will be released at job termination
and its mass storage made available to the system.

LOCAL DATASET S

A dataset where a job has access is a looal dataset. A local dataset
can be temporary or permanent. Permanent datasets are made local with
the ACCESS control statement or the ACCESS library subroutine.

Tape datasets can be made local to a job with the ACCESS control
statement or the ACCESS library subroutine (described in the Library
Reference Manual, CRI publication SR-0014). The device resource must
also be specified on the JOB control statement.

SR-OOll
Part 1
2-1 J-Ol

2

I

MASS STORAGE PERMANENT DATASETS

A peP.manent dataset is available to the system and to other jobs and is
maintained across system startups. Permanent datasets are of two types:
those created by SAVE requests made by the user or front-end system (user
permanent datasets), and input, output, or COS internal datasets (system
permanent datasets) •

Usep pep,manent datasets are maintained for as long as the user or
installation desires. They are protected from unauthorized access by use
of permission control words.

When a user permanent dataset is accessed via an ACCESS control statement
(see part 2, section 4), it is treated as a local dataset by the job
requesting access. However, it still exists as a permanent dataset on
the system and may be used by other jobs unless unique access to that
dataset was granted.

System pep,manent datasets relate to particular jobs or reflect the
current operational state of COS. A job's input dataset is made
permanent when the job is received by the CRAY-l and is deleted when the
job terminates. Output datasets local to the job can be disposed while
the job is running or can be made permanent when the job terminates and
then deleted from the CRAY-l after being sent to the front-end system for
processing. An example of a COS intePnal dataset is the system log.

MAGNETIC TAPE DATASETS

A magnetic tape dataset is available to any job declaring tape resource
requirements on the JOB statement and specifying the appropriate
information on its ACCESS request.

A magnetic tape dataset can be nonlabeled (NL) , ANSI-labeled (AL) , or IBM
standard labeled (SL) , and can be recorded or read at either 1600 or 6250
bits per inch (bpi). To gain access to an existing tape dataset for
reading and/or rewriting, a volume identifier list, the correct file
identifier (permanent dataset name), and the desired device type must be
specified. The volume identifier list can consist of 1 to 255 volume
identifiers. If the PDN is omitted from the ACCESS request, the local
dataset name is used as the file identifier.

To gain access to a tape dataset for creating, the file identifier,
desired device type, and the NEW parameter option must be specified. If
no file identifier is present the local dataset name is used. If the
volume identifier list is missing from the access request, it is called a
non-speoifio volume sopatoh. A speoifio volume sopatoh occurs when
the volume identifier list is present at the time of the access request.
New tape datasets must be written to before a read is allowed.

SR-OOll
Part I
2-2 J-Ol

Other options describing the tape dataset are available from the access
request. Refer to the ACCESS control statement (part 2, section 4) for
more details. Using other parameter options allows more efficient tape
dataset descriptions.

COS automatically switches volumes during dataset processing and returns
to the first volume of a multivolume dataset in response to a REWIND
command. If a permanent write error occurs when trying to write a tape
block for the user, COS automatically attempts to close the current
volume and continues to the next volume.

The COS tape system uses Buffer Memory as a tape block buffering area so
having a COS memory circular buffer as large as or larger than a tape
block is unnecessary. This technique can result in significant memory
savings whenever large tape blocks are being processed and in increased
transfer rates whenever smaller blocks are being processed. The only
real advantage in having a large COS buffer is a reduction in the packet
traffic (overhead) in the tape subsystem. The smallest circular buffer
for tape datasets is 512 words (inefficient) while a buffer size greater
than 8192 words (16 sectors) results in little performance improvement.

EXECUTE-ONLY DATASETS

An exeoute-onLy dataset is a user permanent dataset for which all
unauthorized forms of examination and modification are prohibited. An
execute-only dataset is loaded by the Control Statement Processor (CSP)
for execution. It differs in usage from other user permanent datasets in
several ways:

• The accessor of the dataset cannot open the dataset for reading or
writing.

• While an execute-only dataset is loaded in memory, no DUMPJOB
requests are honored.

• The dataset cannot be staged via a DISPOSE request.

• The dataset must be loaded by a dataset name call rather than by
the LDR control statement.

• The dataset cannot be dumped via PDSDUMP for archiving purposes.

Because execute-only is a dataset state rather than a permission mode, it
is advisable to set at minimum a maintenance permission control word to
disallow modification or deletion of the secure dataset.

I A tape dataset cannot be made an execute-only dataset.

SR-OOll
Part 1

2-3 J-Ol

MEMORY-RESIDENT DATASETS

Some datasets may be specified by the user as memory resident datasets.
A memopy pesident dataset is wholly contained within one buffer (see BS
parameter on the ASSIGN control statement) and remains in memory at all
times. Such a dataset ordinarily occupies no mass storage space. A
memory resident dataset is normally a local dataset; however, a permanent
dataset can sometimes be declared memory resident.

A dataset can be declared memory resident to reduce the number of I/O
requests and disk blocks transferred. This is particularly useful for
intermediate datasets not intended to be saved or disposed to another
mainframe. In this case, all I/O performed on the dataset takes place in
the dataset buffers in memory and the contents of the buffers are not
ordinarily written to mass storage. Such a dataset cannot be made
permanent, nor may it be disposed to another mainframe.

Normally, a memory resident dataset is empty until written on. If an
existing dataset is declared memory resident, it is loaded when the first
read occurs. A user attempting to write to a memory resident dataset
must have write permission. However, as long as the buffer does not
appear full, no actual write to mass storage ever occurs. Therefore,
changes made to an existing dataset declared memory resident are not
reflected on the mass storage copy of the dataset.

A memory resident dataset must be defined through an ASSIGN control
statement containing the MR parameter or through an F$DNT call to the
system. If the F$DNT call is used, the Dataset Definition List (DDL)
supplied should specify DDMR=l. (See the description of the ASSIGN
control statement or refer to the system calls in Appendix C for more
information about formats.) In addition, the buffer size parameter
should specify a buffer large enough to contain the entire dataset plus
one block.

If at any time the system I/O routines are called to write to the dataset
and the buffer appears to be full, the dataset ceases to be treated as
memory resident, the buffer is flushed to mass storage, and all memory
resident indicators for the dataset are cleared.

I A magnetic tape dataset cannot be declared memory resident.

INTERACTIVE DATASETS

A dataset can be specified as interactive by a logged-on user provided
that this feature is supported by the front end. Batch users cannot
create interactive datasets. An interactive dataset differs from a local
dataset in that a disk image of the dataset is not maintained. Instead,
records are transmitted to and from a terminal attached to a front-end

SR-OOll
Part 1

2-4 J-Ol

I

I

station. Record positioning (for example, REWIND or BACKSPACE) is not
possible.

Interactive datasets can be created in two ways: by interactive users
through the use of the ASSIGN control statement or through an F$DNT
system call.

DATASET NAMING CONVENTIONS

The user assigns a symbolic name to each user dataset. This name, the
loeal dataset name, is one through seven characters, the first of which
can be A-Z, $, @, or %; remaining characters can also be numeric.
However, a permanent dataset name does not have this restriction; all
characters in a permanent dataset name may be alphanumeric. Certain
language processors may place further restrictions on dataset names.

All datasets defined by the operating system are assigned names of the
form $dn. Since datasets whose names begin with a $ may receive
special handling by the system, the user should refrain from using this
format when naming datasets.

DATASET FORMATS

Three dataset formats are supported for CRAY-l: blocked, interactive,
and unblocked.

BLOCKED FORMAT

Blocked format is required for external types of datasets, such as user
input and output datasets. The blocked format adds control words to the
data to allow for processing of variable-length records and to allow for
delimiting of levels of data within a dataset. Figure 2-1 illustrates
the data hierarchy within a dataset. A blocked dataset can be composed
of one or more files, which are, in turn, composed of one or more records.

SR-OOll
Part 1
2-5 J-Ol

I

I

Dataset

Record 2

Figure 2-1. Data hierarchy within a dataset

The data in a blocked dataset can be either coded or binary. Each block
consists of 512 words. There are two types of control words in a blocked
dataset: block and record.

Block control word

The block control word (BCW) is the first word of every 5l2-word block.
The format of a block control word is depicted in figure 2-2.

Field

M

BDF

BN

SR-OOll

o 8 16 24 32 40 48 56 63

MIIIIIIIIIIIIIII ~IIIIIIIIIIIIIIIIIIIIIIII BN I FWI I
SDF

Figure 2-2. Format of a block control word

Bits

0-3

11

31-54

Description

Mode indicator (for block control word, M=O)

Bad data flag: indicates the following data, up
to the next control word, is bad. This flag is
set by the I/O Subsystem for magnetic tape
datasets in interchange format.

Block number. Designates the number of the
current data block. The first block in a
dataset is block O.

Part 1
2-6 J-Ol

I

Field

FWI 55-63

Record control word

Description

Forward index. Designates the number of words
(starting with 0) to the next record control
word or block control word.

A record control word (RCW) occurs at the end of each record, file, or
dataset. The format of a record control word is illustrated in figure
2-3.

Field

M

SR-OOll

BDF
o 8 24 32 40 48 56 63

MI UBC I PFI PFI FWI

Figure 2-3. Format of a record control word

0-3

Description

Mode indicator: 108 End-of-record
168 End-of-file
178 End-of-data

Disregarding block control words occurring at
5l2-word intervals in a dataset, RCWs have the
following logical relationship in a dataset.

An end-of-record RCW immediately follows the
data for the record it terminates. If the
record is null, that is, if it contains no data,
an end-of-record RCW can immediately follow an
end-of-record or end-of-file RCW or can be the
first word of the dataset.

An end-of-file RCW immediately follows the
end-of-record RCW for the final record in a
file. If the file is null, that is, if it
contains no records, the end-of-file RCW can
immediately follow an end-of-file RCW or can be
the first word of the dataset.

An end-of-data RCW immediately follows the
end-of-file RCW for the final file in the
dataset. If the dataset is null, the
end-of-data RCW can be the first word on the
dataset.

Part 1
2-7 J-Ol

I

I

I

Field Bits

UBC 4-9

TRAN 10

BDF 11

PFI 20-39

PRI 40-54

FWI 55-63

Description

Unused bit count. For end-of-record, UBC
designates the number of unused low-order bits
in the last data word of the record terminated
by the end-of-record. For end-of-file and
end-of-data RCWs, this field is o. The data
area protected by UBC must be zero-filled.

Transparent record field. Used for an
interactive output dataset only. If set,
substitution of line feed for end-of-record RCWS
is suppressed.

Bad data flag; indicates the following data, up
to the next control word, is bad. This flag is
set by the I/O Subsystem for magnetic tape
datasets in interchange format. If flag is set,
indicates when data was read from the device; an
irrecoverable error was encountered in following
data.

Previous file index. This field contains an
index modulo 2**20 (20,000,0008) to the
beginning of the file. The index is relative to
the current block such that if the beginning of
the file is in the same block as this RCW, the
PFI is O.

Previous record (RCW) index. This field
contains an index modulo 2**15 (100,0008) to
the block where the current record starts. The
index is relative to the current block such that
if the first word of data in this record is in
the same block as this RCW, PRI is O.

Forward word index. This field points to the
next control word (RCW or BCW) and consists of a
count of the number of data words up to the
control word (that is, if the next word is an
RCW or BCW, FWI is 0).

The typical dataset has many end-of-record RCWs per block. An example of
dataset control words is illustrated in figure 2-4.

SR-OOll
Part 1
2-8 J-Ol

Dataset

• SR-OOll

Fl

R5 :

L
R6(null)

F2 I
R7

L

F3 (null)

IT
F4 R8

11
Figure 2-4. Example of dataset control words

(octal values shown)

Part 1
2-9

Bew

EOR

EOR

EOR

Bew

EOR

EOF

EOR

EOR

EOR

BeW
EOF

EOF

Bew

EOR

EOF

EOD

J-Ol

Blank compression

Blank fields may be compressed for blocked coded files. Blank field
compression is indicated by a blank field initiator code followed by a
count. The default blank field initiator code is the installation
parameter I@BFI which is either an ASCII code or 7778 indicating that
blank compression will not be done. Blank compression may be inhibited
using an ASSIGN statement parameter or a FSDNT system
call. A blank field of 3 through 96 characters is compressed to a
2-character field. The count is biased by 368; the actual count
character is limited to 418 ~ ehapaetep eount ~ 1768 (the ASCII
graphics) •

INTERACTIVE FORMAT

Interactive format closely resembles blocked format; however, each buffer
begins with a block zero ROW. Each record transmitted to or from COS by
an FSRDC or an F$WDC call must contain a single record consisting of a
BCW, data, and an end-of-record ROW.

Two formats for interactive output can be assigned at creation time:
character blocked and transparent. Character blocked mode is the
default. In character blocked mode, an end-of-record ROW is interpreted
as a line feed or a carriage return. In transparent mode, the
end-of-record ROW is ignored and the user is responsible for supplying
carriage control characters.

UNBLOCKED FORMAT

Dataset I/O can also be performed using unblocked datasets. Any dataset
not in COS blocked format is considered unblocked. The data stream for
unblocked datasets does not contain CRAY-l Operating System ROWS or BOWs.

The system does not allocate buffers in the job's I/O buffer area for
unblocked datasets; the user must specify an area for data transfer.
When a read or write is performed on an unblocked dataset, the data goes
directly to or from the user data area without passing through an I/O
buffer. The word count of data to be transferred must be a multiple of
512.

I Unblocked I/O cannot be performed on an interchange format tape dataset.

SR-OOll
Part 1
2~O J-Ol

•

TAPE I/O FORMATS

Tape datasets are written and read on tape volumes. A tape volume is a
reel of tape, also known as a section of the dataset (for example, in
FSEC= on the ACCESS statement). Data is read or written in tape blocks.
A tape ,blo~k is a unit of data recorded on magnetic tape between two
consecutive interblock gaps.

The size of tape blocks can vary up to a maximum of one million bytes.

Tape datasets can be read or written using two different formats:
intep~hange or tpanspapent. Tape datasets can be labeled or
unlabeled.

INTERCHANGE FORMAT

Interchange format facilitates reading and writing tapes that are also to
be read or written on other vendors' systems. In intep~hange fOPmat
each tape block of data corresponds to a single logical record in COS
blocked format.

In interchange format, tape block lengths can vary up to an
installation-defined maximum of 1,048,576 bytes (131,072 64-bit words) •
It is recommended the maximum blocksize not exceed 100 to 200 kilobytes.
Blocks exceeding this size may require special operational procedures
(such as the use of special prepared tape volumes having an extended
length of tape following the EOT reflective marker) and yield little
increase in transfer rates or storage capacity.

When a tape dataset is read in interchange mode, physical tape blocks are
represented in the user's I/O buffer with block control words (BCWs) and
record control words (RCWs) added by COS. The data in each tape block is
terminated by an RCW. The unused bit count field in the RCW indicates
the amount of data in the last word of the tape block that is not valid
data. A BCW is inserted before every 511 words of data, including the
RCWs. The formats of RCWs and BCWs are described previously in this
section. Figure 2-5 depicts a tape dataset in interchange mode. Tape
blocks within tape label groups are not included in this format. The end
of the dataset is represented by an end-of-file (EOF) RCW followed by an
end-of-data (EOD) RCW.

When a tape dataset is written in interchange mode, the data must be in
the I/O buffer in the user field in COS blocked format. The data in each
logical record is written as a single tape block. BCWs and RCWs are not
recorded on tape: block control words (BCWS) within a record are
discarded; and the unused bits and terminating record control word (RCW)
are also discarded. The unused bit count must be a multiple of 8. Tape
datasets written in interchange mode must consist of a single file
(single EOF RCW). Multiple-file tape datasets are not supported in
interchange mode.

SR-OOll
Part 1
2-11 J-Ol

I

TAPE DATA AS IT APPEARS IN I/O
BUFFER (IN 5l2-WORD UNITS)

BCW

EOR 10

EaR 10

BCW

EaR 10

DATA IN TAPE BLOCKS

VaLl

HDRl

HDR2

* (Tapemark)

Header Label
Group (if labeled)

block 0

block 1

block 2

BCI'l last

EaR 10 60

EOF 16 00

EOD 17 no

unused

Figure 2-5.

SR-OOll

* (Tapemark)

EOFI

EOF2

*

data

block

End of Data

Label Group

(if labeled)

OR

End of Volume

Label

Group

(if labeled)

Interchange-format tape dataset
(octal values shown)

Part 1
2-12

* (Tapemark)

EOVI

EOV2

J-Ol

I

I

TRANSPARENT FORMAT

In t~n8papent fo~at (disk image), each tape block is a fixed multiple
of 4096 bytes (512 words) based on the dataset density (that is, 16384
bytes at 1600 BPI and 32768 bytes at 6250 BPI). The data in the tape
block is transferred unaltered between the tape and the I/O buffer in the
user field; no control words are added on reading or discarded on
writing. In transparent mode, the data can be in COS blocked format or
COS unblocked format.

USER LOGICAL I/O INTERFACES

When using logical I/O, the user is never directly concerned with the
actual transfer of data between the devices and the system buffers.
Figure 2-6 illustrates the relationship of different levels of user
logical I/O interfaces and routines. Figure 2-6 summarizes the request
levels and routine calls without going into detail on the movement of
data between the system buffers and user program areas. For details, see
Logical I/O Macros in part 3, section 3 of this publication.

The highest level of user interface is FORTRAN I/O statements; the lowest
level is in the form of specially formatted requests called Exchange
Processor requests.

FORTRAN statements fall into two categories: formatted/unformatted and
buffered. The formatted/unformatted statements result in calls to
library routines $RFI through $WUF. If the dataset is blocked, these
routines call the logical record I/O routines. The logical record I/O
routines perform blocking and deblocking. The logical record I/O
routines communicate with COS through the Exchange Processor F$RDC and
FSWDC requests.

If the dataset is unblocked, $RUA or $WUA calls the unblocked dataset
routine $RLB or $WLB. These routines do no blocking or unblocking of
data. The unblocked I/O routines communicate with the system through the
F$RDC and F$WDC Exchange Processor calls.

Buffered I/O takes a different path from formatted/unformatted I/O.
These routines interface (through an F$BIO Exchange Processor request) to
routines in COS that normally perform logical I/O for system tasks.
These routines, called TASK I/O or TIO, closely resemble the logical
record I/O routines. TIO and the logical record I/O routines make
similar requests of circular I/O routines in COS although the mechanism
for making these requests is different.

SR-OOll
Part 1

2-13 J-Ol

•

!lsynchronous I/o

CAL 8UFFERED

I/O MACROS

BUFIN BUFOUT BUFEOF

BUF INP BUFOUTP I3UFEOD

BUFCHECK

CAL BUFFERED I/O

INTERFACE

$CBIO

F$BIO

It

TIO

$RWDR $WWDR $WEOF

$RWDP $WWDP $WEOD

$WWDS $REWD

CF r l3UFFERED I/O
STATEMENTS

GUFFER IN

BUFFER OUT

BUFFERED I/O

$RB

$WB

CAL UNBLOCKED

I/O MACROS

READU

WRITEU

UNBLOCKED DATASETS

$RLB

$WLB

...
~

Synchronous I/c)

CFT FORMATTED/
UNFORMATTED STATEMENTS

READ

PRINT

PUNCH

WRI TE

$RFI $WFI $RUI $WUI

$RFA $WFA $RUA $WUA

$R FV $WFV $RUV $WUV

$RFF $WFF $RUF $WUF

F$RDC

F$WDC

"
CIO

RDCS

WDCS

CIOS

user
interface

CAL I3LOCKED I/O MACROS

READ WR ITE

READP WR ITE P

WR ITEF

WRITED

BKSP

BKSPF

GETPOS

SETPOS

REWIND

READC WR ITEC

READCP WRlTECP

.,

library
routines

LOGICAL RECORD I/O

$RWDR $WWDR

$RWDP $WWDP

$RCHR $WCHR

$RCHP $WCHP

$WWDS

$WEOF

$WEOD

$REWD

$BKSP

$BKSPF

$GPOS

$SPOS

system
calls

USER
SYSTEM

Figure 2-6. Relationship of levels of user I/O

SR-OOll
Part 1
2-14 J-Ol

I

Circular I/O routines (CIO) are the focal point for all logical I/O
generated by COS. CIO communicates its needs for physical I/O to the
Disk Queue Manager or Tape Queue Manager.

A FORTRAN buffered I/O request issued for an unblocked dataset results in
the buffered I/O routines calling the unblocked dataset routines $RLB and
$WLB, which then process these requests. These requests are processed
the same as formatted/unformatted requests except that buffered I/O
requests return control to the user after initiating I/O rather than
waiting for completion of the I/O request. For a CAL buffered I/O
request, $CBIO is called to route the request to either the blocked or
unblocked I/O processing routines.

CRAY Assembly Language (CAL) I/O macros are described in part 3, section
3 of this manual. Logical Record I/O routines and FORTRAN I/O routines
are described in Appendix D of this manual. Refer to the FORTRAN (CFT)
Reference Manual, CRI publication SR-0009, for a description of FORTRAN
statements.

DATASET DISPOSITION CODES

Each dataset is assigned a disposition aode telling the operating
system the disposition to be made of the dataset when the job is
terminated or the dataset is released. The disposition code is one of
the parameters of the DISPOSE and ASSIGN control statements (see part 2).

Each disposition code is a 2-character alpha code describing the
destination of the dataset. The default disposition code for a dataset
is SC (scratch) when a dataset is opened, unless the dataset is named
$OUT. By default, COS assigns the disposition code PR (print) to $OUT
when the dataset is created. No DISPOSE statement is required for $OUT~
it is automatically routed back to the designated mainframe to be printed
on a front-end designated printer.

SR-OOll
Part 1
2-15 J-Ol

DECK STRUCTURE AND JOB PROCESSING

A job is a unit of work submitted to the CRAY-l computing system. It
consists of one or more files of card images contained in a job deck
dataset. Each job passes through several stages from job entry
through job termination.

JOB DECK STRUCTURE

A job originates as a card deck (or its equivalent) at a front-end
computer system. Card images in the job deck dataset are organized
into one or more files. Figure 3-1 illustrates a typical job deck
consisting of a control statement file, a source file, and a data
file. (The physical card forms for end-of-fiLe and end-of-data are
defined by the front-end system.)

SR-OOll

Figure 3-1. Basic job deck

Part 1
3-1

3

I

I

The first (or only) file of the job deck must contain the job control
language (JCL) control statements that specify the job processing
requirements. Each job begins with a JOB statement, identifying the
job to the system. If accounting is mandatory in the user's system,
the ACCOUNT statement must immediately follow the JOB statement. All
other control statements follow the JOB statement. Control statements
may also be grouped into control statement blocks as decribed in part
2, section 2. The end of the control statement file is designated by
an end-of-file (or an end-of-data if the job consists of a control
statement file only).

Files following the control statement file may contain source code or
data. These files are handled according to instructions given in the
control statement file.

The final card in a job deck must be an end-oi-data.

GENERAL DESCRIPTION OF JOB FLOW

A job passes through the following stages from the time it is read by
the front-end computer system until it completes:

• Entry

• Initiation

• Advancement

• Termination

JOB ENTRY

A job can enter the system in the form of a job deck submitted to a
front-end computer system or a local or remote job entry station. The
job is transferred to CRAY-I mass storage, where it resides until it
is scheduled to begin processing. An entry is made in the system
tables for the job thus making the job input dataset permanent until
it is deleted at the completion of the job.

JOB INITIATION

The operating system examines the parameters on the JOB control
statement to determine the resources needed. When system resources
required for initiation are available, the job is initiated (scheduled
to begin processing).

SR-OOll
Part 1
3-2 1-02

Initiation of a job includes preparing a Job Table Area (JTA) and user
field, positioning the input dataset for the first job step, and
placing the job in a waiting queue for the CPU.

When the CRAY-l Operating System (COS) schedules the job for
processing, it creates four datasets: $CS, $IN, $OUT, and $LOG.

• $CS is a copy of the job's control statement file from $IN and
is used only by the system; the user cannot access $CS by
name. This dataset is used to read job control statements.
The disposition code for $CS is SC (scratch).

• $IN is the job input dataset. It is identified at the
front-end computer system by a dataset name assigned by the
user. The job itself can access the input dataset, with read
only permission, by its local name, $IN, or as FORTRAN unit 5.

• $OUT is the job output dataset. The job can access this
dataset by name or as FORTRAN unit 6. The disposition code for
$OUT is PR (print).

• The job's logfile ($LOG) contains a history of the job. This
dataset is known only to the operating system and is not
accessible by the user. User messages can be added to the
job's logfile with the MESSAGE system action request macro (see
part 3) or the REMARK, REMARK2, or REMARKF subroutines in
$FTLIB.

JOB ADVANCEMENT

Job advancement is the processing of a job according to the
instructions in a control statement file. Advancement occurs as a
normal advance or as an abort advance.

A normal advance causes COS to interpret the next control statement in
the job's control statement file.

An abort advance occurs if the operating system detects an error or if
the user requests that the job abort. An abort advance causes the
operating system to search for and interpret the first control
statement following the next valid EXIT control statement in the
control statement file. EXIT statements that are within control
statement blocks (in-line procedure, conditional, or iterative) that
have not yet been invoked are ignored during the search for the next
EXIT statement.

SR-OOll
Part 1
3-3 I-02

I

If the block currently being processed is a conditional block, only
the group of control statements preceding the next conditional
statement in the block is evaluated. For example, in the following
sample control statement sequence, an abort advance occurs at the
control statement THIS IS A JOB STEP ABORT CONDITION because it does
not begin with a valid verb. Control statement interpretation resumes
with the control statement: * RESUME HERE. The EXIT statements
that are included in the conditional block are ignored because they
reside in blocks that are not executed.

SET,Jl=O.
IF(Jl.EQ.O}

THIS IS A JOB STEP ABORT CONDITION.
ELSEIF (Jl.EQ.l)

EXIT.
ELSE.

EXIT.
ENDIF.

EXIT.
* RESUME HERE

JOB TERMINATION

Output from a job is placed on system mass storage. At completion of a
job, the operating system appends $LOG to $OUT and makes $OUT permanent.
$IN, $CS, and $LOG are released. $OUT is renamed jobname (from the IN
parameter value of the JOB control statement) and is directed to the
output queue for staging to the specified front-end computer system.
When the front end has received the entire contents of $ OUT , the system
table entries for the dataset are deleted, and the output dataset itself
is deleted from CRAY-l mass storage.

The front-end computer processes $OUT as specified by the dataset
disposition code.

SR-OOll
Part 1
3-4 1-02

I If, for any reason, $OUT does not exist, $LOG is the only output returned
at job termination.

JOB RERUN

Under certain circumstances, restarting of a job from its beginning may
become necessary or desirable. This is referred to as rerunning a job.
Conditions causing the system to attempt to rerun a job are:

• Operator command

• Uncorrectable memory error

• Uncorrectable error reading the mass storage image of a job that
has been rolled out. Rolling out occurs because of system or user
initiation.

• System restart

A user job may perform certain functions that normally make rerunning of
a job impossible. These functions are considered nonrerunnable because
they produce results that might cause the job to run differently if it
were rerun. These functions include:

• Writing to a permanent dataset

• Saving, deleting, adjusting, or modifying a permanent dataset

• Acquiring a dataset from a front-end system

Ordinarily, when a job becomes nonrerunnable, it remains so. However,
the user may specify in the program that the job is rerunnable. The user
should do this only when changes in job results due to execution of
nonrerunnable functions are acceptable. COS never makes a job rerunnable
automatically.

The user may also override system monitoring of a job rerunnability,
regardless of what functions the job performs. This ordinarily is done
only if the job is structured to run correctly regardless of whether
nonrerunnable functions are performed.

SR-OOll
Part 1
3-5 1-02

REPRIEVE PROCESSING

Normally, when a j~b step abort error occurs, control passes to the EXIT
control statement and exit processing begins. Reprieve processing,
however, allows the user to attempt recovery from many of the job step
abort errors or to perform clean-up functions before continuing with the
abort.

Reprieve processing may also be used during the normal termination of a
job step. In this case, control transfers to the user's reprieve code
instead of to the next normal job step.

Two types of error conditions are related to a job step: non-fatal and
fatal. Non-fatal error conditions may be reprieved any number of times
per job step by the user. Fatal error conditions can be reprieved only
once for each type per job step.

When requesting reprieve processing, the user selects the error
conditions to be reprieved by setting a mask in the SETRPV subroutine or
macro call. If a selected error condition occurs during job processing,
the user's current job step maintains control. The user's exchange
package, vector mask register, error code, and error class are saved and
control passes to the user's reprieve code. (Refer to the F$RPV
processing description in Appendix C and to Appendix F for error codes.
Also, see description of SETRPV macro for mask values.)

JOB LOGFILE AND ACCOUNTING INFORMATION

For each job run, the system produces a logfile--an abbreviated history
of the progress of the job through the system. The logfile for a job
appears at the end of the job output and consists of a list of comments.
Each job control statement is listed sequentially, followed by any
messages associated with the job step. Clock time, accumulated CPU time,
and COS information are also given for each job step. A logfile usually
consists of the items illustrated in figure 3-2. Item 6 illustrates the
accounting information given to the user.

SR-OOIl
Part 1

3-6 1-01

CD

13 41 01
1:3: 41· 01
13:4101
13 41 01
13:41:01
13:41'01
1:3:41:01
13:41:01
1:3: 41: 01
1:3: 41' 01
1341:01
13: 41'01
13:4102
13:41:02
13:41:02
13:41:02
13:4102
13:4102
13:4102
13:41:02
13:41:02
13:41'02
13:4102
1341:02
13:41:02
1:3 41' 02
1341'02
13:4102
13:41 02
13:41'02
13:41:02
13:41:02
13:41:02
13:41' 02
13:41'02
13:4102
13:41'02
13: 41: 02
13:41:02
13:41'02
13:41 02
1341: 02
13: 41' 02
L=::: 41 02
13:41:02

0.0008
8.0000
0.0000
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0012.17
0.0014
0.0014
0.0014
0.0014
0.0018
0.0018
0.0029
0.0121;,:'9
0.0031
0.0031
0.0031
0.0031
0.0031
0.0033
0.0033
0.0833
0.0034
0.0034
0.012134
0.0034
0.0035
0.0035
0.0035
0.0035
o 0035
0.0035
0.0035
0.0035
O. 003~,
0.00:::6
0.0036
O. (2)036

0.0036

CSP {syste~ st.tus i~f~rft.tio"1
CSP ~7 ••••••••••••••••••••••••••
CSP \.!J
CSP ~ ~o "e~s is ~o~d new ••

cSP 1 CRAY-I SEF<~IAL -25/IOP MENDOTA HEIGHTS 06/14/82
CSP
CSP S5
CSP . CRAY-1 OPERATING SYSTEM COS 1 11 ASSmBLY DATE 08/05/82
csp 2
(SP
(SF' f'4"JOB, Jt~=SAt,lPJOB, US=PROJECT2013, T=1,
(SP \..:!.)ACCOUt~T ,
EXP *
EXP * . #GEt JERATE A PERt'lAt~ENT DATASt:i.
D<P *.
CSF' COPYF (O=PERt'lDS)
U'::,[R FTE148 - COpy OF 8 RECORDS FILES Cot'1PLETED
CSP COP'r'F,O=PERMDS
USER FT048 - COPY OF' 72 RECORDS 1 FILES Cot1PLETED
CSP fc\ SA')E (Dt~=PERt'1DS, ID'=P2013)
PD1'1~PD001 - Sm.lE PERMDS ED=0001 COMPLETE
CSP EXIT.
CSF' END OF JOB
CSP
C:SP
USER
U'::;[R
USER
USER
U~:;[R

USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
U?ER
USER
USER
U'::,[R

JOR NAt'lE -

CD
USER t'lUMBER -

6 TH1E EXECUTING IN CPU -
TIt1E l>IAITING TO EXECUTE -
TIt1E IllAITING FOR I/O -

SA~1PJOB

PROJECT2013
0000: 00: 00, 0~j33
000000·01.0236
0000: 00: ~30, 5720
000000: 00,0001 TIME WAITING IN INPUT QUEUE -"

MEMORY * CPU TIt1E (t'·lWDS*SE:.:C) ""
MEli0RY * I/O j,IAIT nt1E (MI·o./OS*SEC) _.
MH-lIr'1Ut1 t'010RY WORm:; USED -

1Z1.lZn3018
0.D3136

54784
t'lAXIt'lUt1 MH10R'l WORDS USED - 54784
DISK SECTORS MO~)ED - 198
USER I/O REOUE'::;TS - 14
OPEr~ CALLS - 9
CLOSE CALLS - 7
t1Eti0R'Y RESrnHn DATASETS-- 0
TEMPORARY DATASET SECTORS USED "- 0
PERMANENT DATA~3ET SECTORS ACCESSED - :20
PERMANENT DATASET SECTORS SAVED - 1
SECTORS RECEIVED F"ROM FRONT nlD .- 0
SECTORS QUEUED TO FRONT END - [J

Figure 3-2. Example of a job logfile

First header line: Installation-defined message, usually
identifying the site and date the job was run.

Second header line: Installation-defined message, usually
identifying the operating system, its current revision level, and
the date of the last revision.

Columns: The leftmost column identifies the wallclock time for
each job step and the middle column identifies the accumulated CPU
time for the job. The rightmost column identifies a system module
or the user as the originator of the message. All times are in
decimal. Entries commonly noted include the following:

CSP
PDM
EXP
ABORT
USER

Control Statement Processor
Permanent Dataset Manager
Exchange Processor
Abort Message
Program in user field

SR-OOlI
Part I
3-7 J-Ol

I

o

Control statements: Control statements are listed in the logfile
as they are processed if requested with the ECHO statement
described in part 2, section 1.' When the job terminates, the last
control statement processed is the last control statement printed.
Control statements are not listed if JCL message class is disabled.

Logfile messages: Any messages related to control statement
processing are shown below the statement.

Accounting information: When a job reaches completion, COS writes
a summary of basic accounting data onto the logfile for the job.
All times given are in hours, minutes, and seconds (to the nearest
ten-thousandth of a second). The following accounting information
is provided (in decimal) :

• Job name and user number

• CPU time used by the job

• Time waiting to execute

• Time waiting for I/O

• Time waiting in input queue

• Memory usage based on the execution and I/O wait time in million
word-seconds

• Minimum and maximum number of memory words used

• Number of 5l2-word disk blocks (sectors) moved

• Number of user I/O requests made by the job

• Open and close calls

• Memory-resident datasets

• Number of 5l2-word disk blocks (sectors) used for temporary
datasets

• Number of 5l2-word disk blocks (sectors) accessed and saved for
permanent datasets

• Number of 5l2-word disk blocks (sectors) received from and
queued to the front end

• Number of tape devices reserved1 message issued only if magnetic
tape datasets have been processed.

SR-OOll
Part 1
3-8 J-Ol

I

• Number of tape volumes mountedJ message issued only if magnetic
tape datasets have been processed.

• Amount of tape data moved, expressed as a multiple of 512 wordsJ
message issued only if magnetic tape datasets have been
processed. Each CRAY-1 disk sector consists of 512 words, and
in COS blocked format each block consists of 512 words.

• Number of tape blocks movedJ message issued only if magnetic
tape datasets have been processed.

System Bulletin: The system bulletin allows the installation to
print messages in the logfi1e, usually about the status of the
system environment. It is an installation-maintained message
dataset.

SR-0011
Part 1
3-9 J-01

I

I

I

JOB CONTROL LANGUAGE

The job control language of the CRAY-l Operating System (COS) allows the
user to present a job to the CRAY-l, define and control execution of
programs within the job, and manipulate datasets associated with a job.

The job control language is composed of cont~l statements with each
control statement containing information for a job step. COS initially
creates a cont~ol statement dataset, $CS, to hold job control
statements. Additional control statement datasets can be created via
procedure definition (part 2, section 2) or the CALL control statement
(part 2, section 1).

All control statements must adhere to a set of general syntax rules.

The syntax of a control statement is:

ve~b sePl papaml sep2 pamm2 ... sePn pa~n te~m comments

Every control statement consists of a verb and a terminator (te~m) as a
minimum, except for the comment control statement (*) which does not
require a terminator. Additionally, most control statements require
parameters (pammi) and separators (sePi) between the verb and
the terminator. The maximum number of parameters (zero, one, or more)
depends on the verb.

The continuation separator (the caret symbol) allows a control statement
to consist of more than one line image (80 characters). The JOB,
ACCOUNT, DUMPJOB, EXIT, and comment control statements cannot be
continued. All other control statements may have any number of
continuation card images, subject to restriction by the verb. A caret
occurring within a literal string has no special significance.

A comment is an optional annotation to a control statement and can be a
string of any ASCII graphic characters. The comment follows the line
image terminator. The control statement interpreter ignores comments.
All comments appear in the logfile.

Blanks are ignored unless they are embedded in a literal string. Blanks
cannot precede the verb on the JOB control statement.

4

SR-OOll
Part 1

4-1 J-Ol

I

I

I

SYNTAX VIOLATIONS

COS notes syntax violations in the system and user logfiles. If the JOB
control statement is in error, processing of the job terminates
immediately. If accounting is mandatory, ACCOUNT statement errors also
cause job termination. All other syntax errors cause a job step abo~t
condition, which causes the system to search for an EXIT control
statement. A successful s~arch resumes control statement processing with
the job step following EXIT. If no such job step exists or if an EXIT
statement is not found, the job is terminated. Job step abort may also
direct control to a user-specified routine (see description of Reprieve
processing in part 1, section 3 of this publication) •

VERBS

A cont~ot statement ve~b is the first nonblank field of a control
statement specifying the action to be taken by COS during control
statement processing. COS recognizes three types of control statement
verbs: system vepbs, dataset name vepbs (tocat and system), and
tib~~y-defined vepbs. A control statement verb cannot be continued
across a card boundary.

SYSTEM VERBS

A system verb consists of an alphabetic character which can be followed by
one through six alphanumeric characters.§ The verb requests that COS
perform the indicated function. The system verbs are:

* DELETE EXIT NORERUN RFL
ACCESS DISPOSE EXITLooP OPTION ROLLJOB
ACCOUNT ECHO IF PRINT SAVE
ACQUIRE ELSE IOAREA PROC SET
ADJUST ELSEIF LIBRARY RELEASE SIMABORT
ASSIGN ENDIF LOOP RERUN SUBMIT
CALL ENDLOOP MODE REWIND SWITCH

ENDPROC MODIFY RETURN

§ Alphabetic characters include $, %, @, and the 26 uppercase letters A
through Z. Alphanumeric characters include all the alphabetic
characters and the digits 0 through 9.

SR-OOll
Part 1

4-2 J-Ol

I

LOCAL DATASET NAME VERBS

A verb that is the name of a local dataset consists of an alphabetic
character followed by one through six alphanumeric characters.§ This
verb requests that COS load and execute an absolute binary program from
the first record of the named dataset. If the user job has a dataset with
the indicated name, COS loads and executes the program from that dataset.

LIBRARY-DEFINED VERBS

A library-defined verb consists of one through eight characters. The
library-defined verb is either a program§§ or procedure definition
residing in a library that is a part of the current libpa~y 8eap~hli8t.
(The library searchlist is the order in which the content of the library
is searched by COS. This order may be specified with the LIBRARY
statement described in part 2, section 1.) A program in a library is an
absolute binary program to be loaded and executed. A procedure definition
is a group of control statements and/or data to be processed (see part 2,
section 2).

SYSTEM DATASET NAME VERBS

COS searches for a verb that is the name of a system-defined dataset in
the System Directory Table (SDR). A system-defined dataset name verb
consists of an alphabetic character which can be followed by one through
six alphanumeric characters.§ The System Directory Table is a list of
common language processors and utilities known to the system and made
available to users at startup. The name of the program (for example, CAL,
CFT, or DUMP) is also the name of the dataset containing the absolute
binary of the program.

VERB SEARCH ORDER

When COS encounters a verb in a control statement file, it searches for a
match to that verb in the following order:

1. System verbs
2. Local dataset name verbs
3. Library-defined verbs
4. System dataset name verbs

§ Alphabetic characters include $, %, @, and the 26 uppercase letters A
through Z. Alphanumeric characters include all the alphabetic
characters and the digits 0 through 9.

§§ Deferred implementation

SR-OOll
Part 1
4-3 I-02

COS first searches the list of system verbs for a match. If the verb is
not a system verb, COS searches for a local dataset name that might match
the verb. If the verb is not the name of a local dataset, COS searches
each library in the library searchlist for a match. If it does not find
a library entry that matches the verb, it searches the System Directory
Table (SDR) for a matching system dataset name. If a match for the verb
is not found under any of these categories, COS issues a control statement
error.

SEPARATORS

A sepapatop is a character used as a delimiter in a control statement. It
separates the verb from the first parameter, separates parameters from
one another, delimits subparameters, terminates verbs and parameters, and
separates a keyword from its value in parameters having keyword form.

The control statement separators allowed by COS are given in table 4-1.

PARAMETERS

A papametep is a control statement argument, the exact requirements of
which are defined by the verb. Parameters are used in control statements
to specify information to be used by the verb-defined process. Parameters
that can be used with COS control statements are either positionat
or keywopd. For certain verbs, a parameter value can be an expression.
Detailed information on the use of expressions is presented later in this
section. Parameters are separated by commas.

POSITIONAL PARAMETERS

A positional parameter has a precise position relative to the separators
in the control statement. Even a null positional parameter must be
delimited from the verb or other parameters by a separator.

The format for a positional parameter is:

vatue
or

vatue l :vatue 2:···:vatuen

where each vatuei is a string of alphanumeric characters, a literal
string, or a null string. All positional parameters are required to be
represented by at least one vatue, although the value may be null. Rules
for strings are given later in this section.

SR-OOll
Part 1

4-4 1-02

Table 4-1. Control statement separators

Function

Initial separator (comma or open
parenthesis)S - Separates the
verb from the first parameter

Statement terminator (period if
initial separator is comma; close
parenthesis if initial separator
is open parenthesis)S - Signifies
end of control statement

Parameter separator (comma) -
Indicates the end of one parameter
and the beginning of the next

Equivalence separator (equal sign) -
Delimits a parameter keyword from the
first parameter value for that key
word. Adjacent equivalence separa-
tors are illegal.

Concatenation separator (colon) -
Separates multiple parameter values
in a keyword parameter from each
other

Continuation character (caret) -
Indicates that the control statement
consists of more than one aD-character
card; may appear anywhere after the
initial separator

Literal delimiters (apostrophes) -
Identify the beginning and end of a
literal string

Character

, ,
(...)

Parenthesis delimiters (open and close (•••)
parentheses) - Indicate a group of
characters to be treated as one value

Examples

VERB,papametep.
VERB (papametep)

VERB.
VERB,papametep.
VERB (papametep)

VERB (papametep,papametep)

VERB (keywopd=Value)

VERB(•.. papameteps .•• A
pa~meteps)

VERB(.•. 'stping' ••.)

VERB,keywopd=(value:value) .

§ By convention in this manual, the comma and period are used as initial
and terminator separators for all control statements except for the
JCL block control statements (procedure definition, iterative, and
conditional) where paired parentheses are advisable.

SR-OOII
Part I
4-5 1-02

•

Examples of positional parameters:

••• ,ABCDE, ••• Parameter value is ABCDE •

· .. , , ... The adjacent parameter separators
indicate a null positional parameter.

• •• ,PI:P2:P3, ••• The parameter consists of multiple values.

VERB() or VERB,. Positional parameter I is null

KEYWORD PARAMETERS

A keyword parameter is identified by its form rather than by its position
in the control statement. The keyword is a string of one to eight
alphanumeric characters uniquely identifying the parameter. Parameters
of this type can occur in any order but must be placed after all of the
positional parameters for the control statement; or they can be omitted.

The format of a keyword parameter is:

keywopd
or

keywopd=vaZue
or

keywopd=vaZue l :vaZue 2:···:vaZuen

where keywopd is an alphanumeric string that depends on the requirements
of the verb, and vaZuei is the value associated with the keyword. A
keyword parameter can occur anywhere in the control statement after all
positional parameters are specified. Whether or not a keyword parameter
is required depends on the verb's requirements. If the keyword is not
included in the control statement, a default value can be assigned by the
prototype statement.

Examples of keyword parameters:

••• ,DN=FILEI,... Parameter consists of keyword and value •

••• ,UQ,... Parameter consists of keyword only •

••• ,DN=FILEI:FILE2:FILE3, ••• Parameter consists of keyword and list of
values.

• •• ,DN=,... Null parameter value, as if omitted from
the statement •

••• ,DN=A:::B,... A, B, and two null parameter values are
listed.

SR-OOII
Part I

4-6 1-02

I

JCL PARAMETER EXPRESSIONS

The JCL block control statements described in part 2, section 2 require a
parameter value known as a JCL papametep exppession. Others, such as the
prototype statement and the definition calling statement can include
expressions.

An expression consists of opepands and opepatops. Parentheses should be
used to delimit expressions. See the description later in this section
on the use of apostrophes and parentheses in JCL block control statements.

Operands

Expression opepands are of four types: integer constants, literal
constants, symbolic values, and subexpressions.

Integer constants - An integep constant is a character string of the form:

{.±}ddd . ..
where d is a decimal digit, or

nnn •• • B

where n is an octal digit.

An integer constant has an approximate decimal range 0~III~lOl9. Range
overflow is not detected and overflow results may be unpredictable.

Literal constants - A ZitepaZ constant is a string of one to eight
characters of the form:

'eee .•. 'L
'eee . •. 'R

'eee . .. 'H

where e is a character code with an ordinal number in the range 0408
through 1768. The value of a character constant corresponds to the
ASCII character codes positioned within a 64-bit word. Alignment is
indicated by the following suffixes:

L Left-adjusted, zero-filled
R Right-adjusted, zero-filled
H Left-adjusted, space-filled

If no suffix is supplied, H is assumed.

SR-OOll
Part 1
4-7 I-02

I

Symbolic variable - A symbolio vapiable is a string of one to eight
alphanumeric characters, beginning with an alpha character, of the form:

000 •••

always has an associated value that is either
job is

A symbolic variable
constant or varies.
initiated. Symbols
user. The user may
through COS control

COS defines a set of symbols when the
are mnemonics for values maintained by
manipulate the group of symbols listed
statements or through system requests.

COS and/or the
in table 4-2

Certain symbols allow communication between COS and the job being
processed. Used in the JCL block control statements defined in part 2,
section 2, they provide the user with powerful tools for analyzing the
progress of a job. For example, a job can request the reason for an
abort situation and proceed, based on the reply from COS, through the use
of conditional control statements. Symbols that are preserved over
subprocedure calls are called looal to a procedure; they are saved when a
subprocedure is called. Those that are not preserved are global over all
procedures and can be altered by any procedure. Constants are symbols
that are never altered.

Information on predefined symbols is summarized in table 4-2.

Subexpressions - A subexpression is an expression that is evaluated so
that its result becomes an operand.

Operators

Expression opepatops are of three types: arithmetic, relational, and
logical. These operators are used in the FORTRAN sense. The expression
operators are detailed in table 4-3.

Arithmetic Operators - All apithmetio opepations are performed on 64-bit
integer quantities. Care must be used with arithmetic operators because:

• Multiplication/division underflow or overflow of the result is not
detected,

• Division by zero produces a zero result.

• Intermediate and final results are truncated. For example,
2*(13/2) yields 12 whereas (2*13)/2 yields 13.

Relational Operators - Relational opepations return a -1 value for a TRUE
result and a 0 value for a FALSE result. A value produced by arithmetic
or logical operation is considered TRUE if it is a negative value.

SR-OOll
Part 1
4-8 1-02

Symbol

JO-J7

GO-G7

JSR

FL

FLM

SYSID

SS\<h

ABTCODE

TRUE

FALSE

TIME

DATE

TIMELEFT

PDMFC

PDMST

Table 4.2 Symbolic variable table

Set by Range Description

U Any 64-bit value Job pseudo-registers; represent
user-alterable data local to a
procedure. Each procedure level
can be considered to have its
own set of J registers.

U

U

S

I

I

S

S

I

I

S

S

S

S

S

Any 64-bit value Global job pseudo-registers;
represent user-alterable data global
over all procedure levels. Data can
be passed into or returned from
procedures with the G registers.

Any 64-bit value Job status register; previous
job step completion code
(normally 0)

0-777777778 Current job field length; can
be set with RFL statement.

0-777777778 Maximum job field length

Literal value COS system level of the form
'COS x.xx'

(~~6) Job pseudo sense switch
settings; can be set with the
SWITCH statement

System error codes COS job abort code; abort code
(See Appendix F) corresponding to the last job
O-nnn step abort. The abort code

corresponds to the abort message
number (the nnn in ABnnn)

-1

o

Literal value

Literal value

64-bit integer

64-bit value

64-bit value

issued by COS.

True value

False value

Time of day in the form:
hh:rrun:ss

Date in the form: rrun/ddlyy

Job time remaining in milli
seconds as an integer value

Most recent user-issued Perm
anent Dataset Manager request.
See Appendix C.

Status of most recent Perm
anent Dataset Manager request.
See Appendix F.

U Alterable by user
S Set by COS
I System constant

SR-OOll
Part 1
4-9

Local/Global

LOCAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

1-02

I

Table 4-3. Expression operator table

Type Function

A Addition

A Unary plus

A Subtraction

A Unary minus

A Multiplication

A Division

R Equal

R Not equal

R Less than

R Greater than

R Less than or
equal

R Greater than or
equal

L Inclusive OR

L Intersection

L Exclusive OR

L Unary complement

A Arithmetic
R Relational
L Logical

SR-OOll

Symbol Results

+ 64-bit sum of operands

+ Following integer operand is positive.

- 64-bit difference of operands

- Following integer operand is negative.

* 64-bit product of operands

/ 64-bit quotient of operands

.EQ. True/false

.NE. True/false

.LT. True/false

.GT. True/false

.LE. True/false

.GE. True/false

.OR. A 1 bit in either operand sets
corresponding bit in the result •

• AND. A 1 bit in both operands sets
corresponding bit in the result •

• XOR. A 1 bit is set in the result if
either (but not both) corresponding
bit in the operands is 1 .

• NOT. A 1 bit (or 0) is set in the result
if the corresponding operand bit is 0
(or 1).

Part 1
4-10 1-02

I

Logical Operators - Logicat opepations return a 64-bit result. Their
functions are performed on a bit-by-bit basis.

Expression Evaluation

Expressions are evaluated from left to right, honoring nested
parentheses. The operator hierarchy is:

1. Multiplication and division
2. Addition, subtraction, and negation
3. Relational operation
4. Complement (.NOT.)
5. Intersection (.AND.)
6. Inclusive OR (.OR.)
7. Exclusive OR (.XOR.)

Parentheses can be used to change the order of evaluation. For example,
2+3*4 is evaluated as 14 whereas (2+3)*4 is evaluated as 20.

CAUTION

Because COS does not check for type, the results of
expression evaluation may not be as expected. For
example, although both Jl=l and J2=2 are TRUE, (Jl
.AND. J2) is FALSE.

PARAMETER INTERPRETATION

The cracking and interpretation of control statement parameters is
performed by $CCS and GETPARAM. These processes are described in the
Library Reference Manual, CRI publication SR-0014.

STRINGS

A stping is a group of characters, delimited with either apostrophes or
open and close parentheses, which is to be taken literally as a parameter
value.

Strings are normally delimited with apostrophes, in which case they are
referred to as tite~t stPings. Strings delimited with parentheses are
called papenthetic stpings. Parentheses are advised to delimit strings
in JCL block statements. See the description later in this section
concerning the use of apostrophes and parentheses in JCL block control
statements.

SR-OOll
Part 1
4-11 1-02

I

Characters in a string can be any ASCII graphic characters (codes 040
through 176). Characters otherwise recognized as separator characters
are not evaluated as such when part of a string.

'SEPARATORS IN STRING,.=()'

(ABC=DEF)

STRING CONSTRUCTION RULES

The literal string contains
separator characters which are not
interpreted as such.

The parenthetic string contains an
equal sign which is not interpreted
as a separator.

Apostrophes are never treated as part of a literal string during
evaluation except when doubled (see below). The outermost parentheses of
a parenthetic string are not treated as part of the string during
parameter evaluation if preceded by the initial, parameter, equivalence,
or concatenation separators.

KEYWORD=(ABC.DEF)

'ABC.DEF'

ABC.DEF is the value assigned to
KEYWORD.

ABC.DEF is the string value.

To continue literal strings across card images, place an apostrophe
followed by a continuation character at the end of the line, and place
the remainder of the string on the next card image preceded by an
apostrophe. To continue parenthetic strings, place a continuation
character at the end of the line and the remainder of the string on the
next card image. A string can be any length, depending upon the control
statement parameter requirements •

••• 'LITERAL STRING CONTINUED' A
'ACROSS CARD IMAGES'

This is the format for continuing
literal strings across card images.

••• (PARENTHETIC STRING CON
TINUED ACROSS CARD IMAGES)

This is the format for continuing
parenthetic strings across card
images.

Two adjacent literal delimiters are interpreted as a null string.

, , or ()

SR-OOll

Both are null strings.

Part 1
4-12 1-02

I

The continuation and literal string delimiters are interpreted when
included in a parenthetic string •

••• : (STRING WITH 'EXTRA CLOSE PAREN) ') •••

••• =(STRING CONTINUED ACROSS A
CARD IMAGES) •••

STRING WITH EXTRA CLOSE PAREN) is
the value of the string following
the concatenation separator •

STRING CONTINUED ACROSS CARD IMAGES
is the value of the string
following the equivalence separator.

An apostrophe within the string is indicated by doubling it.

'DON"T' The literal string is interpreted
as DON'T.

APOSTROPHES AND PARENTHESES IN JCL BLOCK CONTROL STATEMENTS

The IF, ELSEIF, EXITLOOP, PRINT, SET, procedure definition prototype, and
definition calling statements described in part 2, section 2 can include
expressions. Since an expression can include a literal constant which is
delimited with apostrophes, values delimited with apostrophes in these
statements are always treated as literal constants. Therefore,
apostrophes should only be used to delimit literal constants, and
parentheses should be used to delimit strings. Apostrophes in these
statements are retained as part of the value during statement cracking,
parameter substrition, and parameter evaluation. Also use parentheses as
the initial and terminator separators instead of the usual comma and
period to allow the period to be treated as an expression operator
instead of a control statement terminator.

I F (GO • NE. 'YES' L)

IF,GO.NE.' 'YES'fL.

IF, 'GO. NE. ' 'YES' 'L' •

SR-OOll

Creates value with a literal
constant: protects the expression
characters during statement
cracking so that periods are
evaluated as expression operators
instead of statement terminators
and apostrophes are evaluated as
part of literal constant instead of
being treated as string delimiters.

ERROR. First period processed as
statement terminator; expression
not evaluated.

ERROR. GO.NE."YES"L is the single
literal constant which is created.

Part 1
4-13 1-02

I

More specific information about how to use apostrophes and parentheses in
procedure definition and calling statements is presented in part 2,
section 2, Procedure Definition.

SR-OOll
Part 1
4-14 1-02

PART 2

JOB CONTROL LANGUAGE

I

I

I

CONTENTS
PART 2 JCL CONTROL STATEMENTS

1.

2.

INTRODUCTION AND JOB DEFINITION ·
INTRODUCTION
JOB DEFINITION
JOB - JOB IDENTIFICATION •
MODE - SET OPERATING MODE
EXIT - EXIT PROCESSING • • •
RFL - REQUEST FIELD LENGTH •
SWITCH - SET OR CLEAR SENSE SWITCH •

. . .

· . .
* - COMMENT STATEMENT •• • • • • • • • •
NORERUN - CONTROL DETECTION OF NONRERUNNABLE FUNCTIONS •
RERUN - UNCONDITIONALLY SET JOB RERUNNABILITY ••••
IOAREA - CONTROL USER'S ACCESS TO I/O AREA ••••••
CALL - READ CONTROL STATEMENTS FROM ALTERNATE D1\TASET •••
RETURN - RETURN CONTROL TO CALLER
ACCOUNT - VALIDATE USER ACCOUNT
CHARGES - JOB STEP ACCOUNTING • • • • • • • • •
ROLLJOB - ROLL A USER JOB TO DISK •••••••••••
SET - CHANGE SYMBOL VALUE ••• • • • • • • • • • • •

· . . . ECHO - Enable or suppress logfi1e messages •
LIBRARY - List and/or change library search1ist
OPTION - Set user-defined options ••••••• . .
JCL CONTROL STATEMENTS BLOCKS · . .
PROCEDURE DEFINITION • · . . · . .

Procedure definition format • • • • · . .
PROC - Begin procedure definition •
Prototype statement - Introduce a procedure • • • •
Procedure definition body • • • • •
&DATA - Procedure data •••••••
ENDPROC - End procedure definition •• •

Substitution parameters • • • • • •
Value substitution • • • • •

positional parameters •
Keyword parameters
Positional and keyword parameters
Apostrophes and parentheses •

.
· . . . ·

Examples • • • • • • • • • • • • • • • • · . .

SR-0011
Part 2
iii

1-1

1-1
1-2
1-3
1-5
1-5
1-6
1-6
1-6.1
1-6.1
1-7
1-8
1-8
1-9
1-10
1-11
1-12
1-12
1-13
1-14
1-15

2-1

2-1
2-2
2-3
2-3
2-4
2-4
2-5
2-5
2-6
2-6
2-6
2-7
2-7
2-7

J-01

I

I

3.

4.

5.

6.

CONDITIONAL CONTROL STATEMENT PROCESSING •
Conditional block ••••••••

IF - Begin conditional block • • • •
ENDIF - End conditional block • • • • • • • • •

Condi tional block with ELSE • • • • • • •
ELSE - Define alternate condition • • • • • •

Conditional block with ELSEIF • • • • • • • • • • •
ELSEIF - Define alternate condition •

Conditional block with ELSE and ELSEIF •
ITERATIVE CONTROL STATEMENT PROCESSING •

LOOP - Begin iterative block
ENDLOOP - End iterative block
EXITLooP - End iteration ••••

DATASET DEFINITION AND CONTROL • • • • • ·
ASSIGN - ASSIGN MASS STORAGE OR MAGNETIC TAPE DATASET

CHARACTERISTICS • • • • • • • • • • •
RELEASE - RELEASE DATASET ·

PERMANENT DATASET MANAGEMENT • · · · · · ·
SAVE - SAVE PERMANENT DATASET · · · · · ACCESS - ACCESS PERMANENT DATASET
ADJUST - ADJUST PERMANENT DATASET · · · · · · MODIFY - MODIFY PERMANENT DATASET · · · · · · · · DELETE - DELETE FERMANENT DATASET · · · ·
DATASET STAGING CONTROL . · · · · · · · · · · · ·
ACQUIRE - ACQUIRE PERMANENT DATASET · · · · · · · DISPOSE - DISPOSE DATASET · · · · · · · • · · · · SUBMIT - SUBMIT JOB DATASET · · · · · · · · · • · · · ·
DATASET UTILITIES · · · · · · · ·
COPYR - COPY RECORDS · · · · · · · · COPYF - COpy FILES . · . . · · · · · •
COPYD - COpy DATASET · · · · · · · · · · SKIPR - SKIP RECORDS · · · · · · · · SKIPF - SKIP FILES . · . · · · · · · · · · · · · · SKIPD - SKIP DATASET · · · · · · · · · · · REWIND - REWIND DATASET · · · • · · · · · · · · WRITEDS - WRITE RANDOM OR SEQUENTIAL DATASET · · · · · ·

SR-OOll
Part 2

iv

2-13
2-13
2-14
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-22

3-1

3-1
3-4

4-1

4-2
4-4
4-9
4-9
4-11

5-1

5-1
5-4
5-9

6-1

6-1
6-2
6-3
6-3
6-4
6-5
6-5
6-6

J-Ol

I

7.

8.

9.

PERMANENT DATASET UTILITIES

PDSDUMP - DUMP PERMANENT DATASET •
PDSLOAD - LOAD PERMANENT DATASET ••
AUDIT - AUDIT PERMANENT DATASET

ANALYTICAL AIDS · · · ·
DUMPJOB - CREATE $DUMP · · · · DUMP - DUMP REGISTERS AND MEMORY · DEBUG - PRODUCE SYMBOLIC DUMP · · · DSDUMP - DUMP DATASET . . . · · · COMPARE - COMPARE DATASETS • • • •

· · · · ·
· · · · · · · · · · . . · ·

PRINT - WRITE VALUE OF EXPRESSION TO LOGFILE •
FLODUMP - FLOW TRACE RECOVERY DUMP • • • •• • •
SYSREF - GENERATE GLOBAL CROSS-REFERENCE LISTING • •

Use of SYSREF
Global cross-reference listing format

RELOCATABLE LOADER • •

LDR CONTROL STATEMENT
LOADER ERRORS
LOAD MAP • • • • • • •
SELECTIVE LOAD • • •
RELOCATABLE OVERLAYS

. . .

. .

. .

Generation of relocatable overlays • • • • • • •
Memory layout when relocatable overlays exist • • •

. .

. .

Memory layout of a relocatable overlay image ••••
Address relocation • • • • • • • • • • • • • • •

10. OVERLAY LOADING

INTRODUCTION • • •
OVERLAY GENERATION •

SR-OOll

Overlay directives •
FILE directive
OVLDN directive • •
SBCA directive

TYPE 1 overlay structure • • • • • •
Type 1 overlay generation directives
Rules for Type 1 overlay generation • • • • • •
Example of Type 1 overlay generation directives • •
Execution of Type 1 overlays • • • •
Type 1 overlay calls ••••• • • • •
FORTRAN language call • • • • • • • •
CAL language call • • • • • • • • • • • • • •
Log of Type 1 overlay generation • • • • • • •

Part 2
v

7-1

7-1
7-4
7-6

8-1

8-1
8-2
8-6
8-8
8-11
8-13
8-14
8-16
8-16
8-17

9-1

9-1
9-7
9-9
9-11
9-13
9-13
9-14
9-15
9-16

10-1

10-1
10-1
10-2
10-2
10-2
10-3
10-3
10-4
10-7
10-7
10-8
10-9
10-9
10-10
10-11

J-Ol

OVERLAY LOADING (continued)

Type 2 overlay structure • • • • • • • •
Type 2 overlay generation directive • • • • • •
Rules for Type 2 overlay generation
Example of Type 2 overlay generation directives • •
Execution of Type 2 overlays • • • • • •
Type 2 overlay calls • • • • • • • • •
FORTRAN language call • • • • • • •
CAL language call • • • • • •
Log of Type 2 overlay generation • • • •

11. BUILD

INTRODUCTION •
Program module names • • • • • • • • • •
Program module groups • • • • • • • • •
Program module ranges

· . .
~File output sequence • • " . .
File searching method • • • •

BUILD CONTROL STATEMENT ••••••••••
BUILD DIRECTIVES •

FROM directive • •
OMIT directive • •
COpy directives
LIST directive

EXAMPLES • • •••••

FIGURES

2-1 Procedure definition deck structure · 2-2 Basic conditional block structure · · 2-3 Conditional block structure including ELSE
2-4 Conditional block structure including ELSEIF

· . .
·

. .
·

· • · · · •

· · · · · · · · . •

2-5 Conditional block structure including ELSE and ELSE IF · 2-6 Iterative block structure . . . · · · 8-1 Example of
8-2 Example of
9-1 Example of

10-1 Example of
10-2 Example of

SR-OOll

a flow trace summary · · · a flow trace recovery dump
a load
a Type
Type 2

map · · 1 overlay loading
overlay loading

Part 2
vi

·
· · ·

. . . . · · · · · · · · · · · · · · · ·

10-11
10-11
10-14
10-15
10-16
10-16
10-16
10-17
10-18

11-1

11-1
11-1
11-1
11-2
11-2
11-2
11-3
11-5
11-6
11-7
11-7
11-9
11-9

2-2.1
2-14
2-16
2-17
2-19
2-21
8-15
8-15
9-10
10-5
10-12

J-Ol

I

INTRODUCTION AND JOB DEFINITION

INTRODUCTION

Job control statements identify a job to the system, define operating
characteristics for the job, manipulate datasets, call for the loading
and execution of user programs, call programs that perform a number of
utility functions for the user, and define and manipulate control
statements themselves. The first file of a job dataset contains control
statements that are read, interpreted, and processed.

Information on the general syntax rules and conventions for control
statements is presented in part 1, section 4. This part describes COS
control statements individually and gives examples in some cases. The
control statements have been divided into the categories listed below.
The Job Definition statements are described in this section1 the other
categories are defined in the remaining sections in part 2.

• Job Definition and Control - JOB, MODE, EXIT, RFL, SWITCH, *,
NORERUN, RERUN, IOAREA, CALL, RETURN, ACCOUNT, CHARGES, ROLLJOB,
SET, ECHO, LIBRARY, and OPTION

• Control Statement Blocks - In-line procedure definition,
conditional control statement processing, and iterative control
statement processing

• Dataset Definition and Control - ASSIGN and RELEASE

• Permanent Dataset Management - SAVE, ACCESS, ADJUST, MODIFY, and
DELETE

I • Dataset Staging Control - ACQUIRE, DISPOSE, and SUBMIT

• Dataset Utilities - COPYR, COPYF, COPYD, SKIPR, SKIPF, SKIPD,
REWIND, and WRlTEDS

• Permanent Dqtaset Utilities - PDSDUMP, PDSLOAD, and AUDIT

• Analytical Aids - DUMPJOB, DUMP, DEBUG, DSDUMP, and COMPARE,
FLODUMP, PRINT, and SYSREF

The relocatable and overlay loader (LDR) and the BUILD utility are also
described in part 2.

SR-OOll
Part 2

1-1 J-Ol

1

I

JOB DEFINITION

Several control statements allow the user to specify job processing
requirements. Control statements defining a job and its operating
characteristics to the operating system include the following:

• JOB defines the job to the operating system and sets
characteristics such as size, time limit, and priority levels.

• MODE allows the user to set or clear the floating-point error
interrupt flag.

• EXIT indicates the point in a series of control statements at
which processing of control statements resumes following a job
step abort from a program or indicates the end of control
statement processing.

• RFL allows the user to request a new field length.

• SWITCH allows the user to turn on or turn off pseudo sense
switches.

• * allows the user to annotate control statements with comments.

• RERUN and NORERUN allow the user to set job rerunnability.

• IOAREA denies or allows access to the user's I/O area.

• CALL and RETURN allow the user to manipulate control statement
files.

• ACCOUNT validates the user's account number and optional password.

• CHARGES allows the user to obtain partial or total resource
reporting for a job.

• ROLLJOB allows the user to protect a job by writing it to disk.

• SET allows the user to change the value of a job control language
(JCL) expression.

• ECHO allows the user to control the message classes to be written
to the user's logfile.

• LIBRARY allows the user to specify the library datasets to be
searched for defined procedures during job processing and in
which order.

• OPTION allows the user to specify user-defined options, such as
the format of the job's listing.

SR-001l
Part 2

1-2 J-Ol

I

JOB - JOB IDENTIFICATION

The JOB control statement defines the job to the operating system. It
must be the first statement in a control statement file. The JOB
control statement cannot be continued to subsequent cards. No leading
blanks are allowed on the JOB statement. JOB is a system verb.

Format:

JOB,JN=jn,M=fZ,T=tZ,P=p,US=U8,OLM=oZm,CL=j~n,*gn=np.

Parameters are in keyword form; the only required parameter is IN.

IN=jn Job name. 1-7 alphanumeric characters. This name
identifies the job and its subsequent output. JN is a
required parameter.

Memory field length. fZ specifies an octal count of
1000ij-word (51210) blocks of memory to be assigned to
the Job. The limit address is a function of the base
address and requested field length:
(LA)=(BA)+fZ*10008·

If this parameter is omitted, the field length is set by
the system to a value determined by an installation
parameter.§

If M is present without a value, the field size is the
maximum amount that can be assigned. The maximum amount
allowed is either the total amount of memory available
after the operating system is initialized or is an
installation-defined maximum job field length whichever is
smaller.

Time limit in decimal seconds after which the job is
terminated by the system. If this parameter is omitted,
the time limit is set to a value determined by an
installation parameter. If T is present without a value,
a maximum of 16,777,215 seconds (approximately 194 days)
is allowed.

§ The fZ parameter on the JOB statement does not include the job's
Job Table Area (JTA); space for the JTA is added by the system. The
installation parameter, however, does include the JTA.

SR-OOll
Part 2

1-3 J-Ol

P=p

US=US

OLM=ol.m

CL=jen

*gn=np

Priority level at which the job enters the system. This
parameter may assume the values of 0-15 decimal. If P is
0, the job will not be initiated. If omitted, a value
specified by the installation is assumed.

User number. 1-15 alphanumeric characters. The default
is no user number. This parameter identifies the user
submitting the job. The user number feature is provided
for installation accounting; specific application is
installation-defined.

Size of $OUT. ol.m specifies a decimal count of S12-word
blocks. A block holds about 45 print lines. The default
and maximum values for ol.m are defined by the
installation.

Name of the installation-defined job class where this job
is to be placed. 1 to 7 alphanumeric characters. The job
is aborted if it does not fit the requirements of the
indicated class or if the indicated class does not exist.
The default is that the job is placed in the highest rank
class in which it fits.

Type and number of dedicated resources required by a
job. Dedicated resource requirements are specified with
gn and np.

*gn is a generic name of 1 through 7 alphanumeric
characters. A genepie name (or its installation-defined
synonym) corresponds to a device type. For example, the
generic name is *1600 if the job requires a tape unit
capable of 1600 bpi.

np is a positive integer; the default is O. The job is
aborted if it requests more resources than are dedicated
on the JOB statement.

Generic Name

*6250

* 1600§

Example:

Synonym

*TAPE

Significance

Device capable of 6250 bpi
or 1600 bpi
Device capable of 1600 bpi

*TAPE=2 requests two 62S0-bpi devices for use by the job.

I § Deferred implementation

SR-OOll
Part 2

1-4 J-Ol

•

MODE - SET OPERATING MODE

The MODE control statement allows the user to set or clear the
floating-point error interrupt flag in the mode (M) register in the
exchange package for the job. This flag controls whether or not a
floating-point error will cause an interrupt flag to be set in the flags
(F) register. If a floating-point error condition occurs, an exit from
the program occurs only if the floating-point error flag is set in the
mode register.

Format:

MODE,M~ode.

Parameters:

M~ode Operating mode. May be any of the following:
DFI, 1, or 2 Disable floating-point error interrupt
EFI, 3, or 4 Enable floating-point error interrupt

EXIT - EXIT PROCESSING

An EXIT control statement indicates the point in the control statement
file where processing of control statements resumes following a job step
abort from a program. If no job step abort occurs, the EXIT control
statement indicates the end of the control statement processing. EXIT
is a system verb.

Format:

Parameters: none

SR-OOll
Part 2

1-5 J-Ol

RFL - REQUEST FIELD LENGTH

The RFL control statement allows the user to request a new field
length. RFL is a system verb.

Format:

Parameters:

M=fZ New field length which is the octal number of 1000s-word
(51210) blocks of memory to be assigned to the job,
excluding the Job Table Area. M is a required parameter.
If M is present without a value, the field length is the
maximum that can be assigned to the job. The maximum is
either the total memory available after the operating
system is initialized or is an installation-defined
maximum job field length, whichever is smaller.

SWITCH - SET OR CLEAR SENSE SWITCH

The SWITCH control statement allows a user to turn on or turn off pseudo
sense switches. SWITCH is a system verb.

Format:

SWITCH,n=:c.

Parameters:

n

SR-0011

Number of switch (1-6) to be set or cleared

Switch position
ON Switch n is turned on~ set to 1
OFF Switch n is turned off~ set to 0

Part 2
1-6 J

I

I

* - COMMENT STATEMENT

The comment control statement allows the user to annotate job control
statements with comments. A period is not required on a comment control
statement. * is a system verb.

Format:

I *
aomment text

Parameters: none

NORERUN - CONTROL DETECTION OF NONRERUNNABLE FUNCTIONS

The NORERUN control statement allows the user to specify whether the
operating system is to recognize functions that would make a job
rerunnable. The current rerunnability of the job is not affected.
NORERUN is a system verb.

SR-OOll
Part 2
1-6.1 J-Ol

•

Format:

NORERUN{,ENABLE }.
DISABLE

The keywords ENABLE and DISABLE are mutually exclusive. The default for
the system as released is NORERUN,ENABLEi however, this is an
installation option.

Selecting ENABLE instructs the system to begin monitoring functions
performed by the job and to declare the job nonrerunnable if any of the
nonrerunnable functions are performed.

Selecting DISABLE instructs the system to stop monitoring functions for
nonrerunnable operations. If a job has already been declared to be
nonrerunnable, specifying DISABLE does not make the job rerunnable again.

RERUN - UNCONDITIONALLY SET JOB RERUNNABILITY

The RERUN control statement allows the user to unconditionally declare a
job to be either rerunnable or nonrerunnable. If RERUN is used to
declare a job rerunnable, the subsequent execution of a nonrerunnable
function may cause the system to declare the job nonrerunnable,
depending on whether a NORERUN control statement or macro is also
present. RERUN is a system verb.

Format:

RERUN{,ENABLE }.
DISABLE

The keywords ENABLE and DISABLE are mutually exclusive. If no
parameter is specified on the control statement, installation option
determines if the job is to be rerunnable or not; the default for the
system as released is RERUN, ENABLE.

If ENABLE is selected, the system is instructed to consider the job to
be rerunnable, regardless of what functions have been executed
previously.

If DISABLE is selected, the system marks the job not rerunnable
regardless of what functions have been executed previously.

SR-OOll
Part 2
1-7 1-02

•

The RERUN control statement in no way affects the monitoring of the
user job for nonrerunnable functions.

IOAREA - CONTROL USER'S ACCESS TO I/O AREA

The IOAREA control statement locks (denies the user access to) or
unlocks (gives the user access to) that portion of the user field
containing the user's Dataset Parameter Area (DSP) and I/O buffers.
This area follows the High Limit Memory address (HLM) of the user
field if locked. IOAREA is a system verb.

Format:

IOAREA {, LOCK }.
UNLOCK

The keywords LOCK and UNLOCK are mutually exclusive. A parameter must
be specified on the control statement. When the control statement is
not used, the user's I/O area is assumed to be unlocked.

If LOCK is selected, the system sets the limit address to the base of
the DSPs, thereby denying direct access to the user's DSP area and I/O
buffers. When the I/O area is locked, the library I/O routines make a
system request to gain access to the I/O area. This introduces
additional overhead in job processing but should prevent accidental
destruction of the I/O area.

If UNLOCK is selected, the system sets the limit address to the value
specified in JCFL, allowing access to the user's DSP area and I/O
buffers.

CALL - READ CONTROL STATEMENTS FROM ALTERNATE DATASET

The CALL control statement instructs COS to begin reading control
statements from the first file of the indicated dataset. CALL may
appear anywhere in the control statement file. Nesting of CALL
statements is allowed to seven levels. COS reads and processes the
control statements from the indicated dataset until it encounters an
end-of-file or a RETURN statement. Control then reverts to the
previous control statement dataset; the named dataset is closed prior

SR-OOll
Part 2
1-8 1-02

I

to the invocation of the procedure. The CALL statement can also
specify values to be substituted in the procedure body. CALL is a
system verb.

Format:

CALL,DN=dn,CNS.

Parameters are in keyword form.

DN=dn

~S

Name of dataset from which to begin reading control
statements. This is a required parameter.

If specified, the control statement that follows is a
p~ocedu~e calling statement containing parameters for
procedure string substitution. The format of the
procedure calling statement depends upOn the format of
the prototype statement. The prototype statement format
is described in part 2, section 2. If CNS is omitted,
no sUbstitution is performed. eNS (Crack Next
Statement) cannot be equated.

RETURN - RETURN CONTROL TO CALLER

The RETURN control statement returns control to the caller. The
caller can be a procedure or the job's control statement file.
Processing resumes with the caller's next control statement. A RETURN
control statement may be embedded anywhere within the called
procedure. However, it is not necessary to place a RETURN control
statement at the end of the procedure because an end-of-file is
interpreted as the control statement sequence of an EXIT, RETURN, and
RETURN,ABORT. A RETURN encountered in the primary control statement
file is ignored. RETURN is a system verb.

Format:

RETURN,ABORT.

SR-0011
Part 2

1-9 J-01

I

Parameter:

ABORT After returning to the previous control statement level,
ABORT causes COS to issue a job step abort. ABORT is an
optional parameter.

ACCOUNT - VALIDATE USER ACCOUNT

The ACCOUNT control statement validates the user's account number and
optional password. A job is processed only if the account number and
password (if specified) are valid.

The ACCOUNT statement declares the user's account number to COS. It
must immediately follow the JOB control statement if the installation
has defined accounting as mandatory. Only one ACCOUNT statement is
allowed per job. The ACCOUNT control statement cannot be continued to
subsequent cards. ACCOUNT is a system verb.

Format:

NOTE

The ACCOUNT control statement parameters do not appear
with the ACCOUNT control statement in the job logfile.

ACCOUNT,AC=aC,PW=pW.

Parameters are in keyword form. The only required parameter is AC; the
installation defines whether a password is needed.

AC=ac

PW=pW

SR-OOll

Account number. 1-15 alphanumeric characters assigned to
the user. This number identifies the user for accounting
purposes, and is a required parameter. The account number
is not the same as the user number on the JOB control
statement, unless the site chooses to use the same
characters for both numbers.

Password. 1-15 alphanumeric characters. A password must
be specified if the installation has made it mandatory by
installation parameter.

Part 2
1-10 J-Ol

CHARGES - JOB STEP ACCOUNTING

The CHARGES control statement allows the user to monitor a job's usage of
computer resources up to a specific point in a job. Hence, CHARGES can
be used for either partial or total resource reporting.

Partial reporting occurs when parameters are specified on the control
statement. In this case, usage statistics for the computer resources
specified on the CHARGES statement are obtained for the job steps
preceding the CHARGES statement. The summary is placed in the user log
and the system log.

Total reporting occurs when usage statistics are obtained for all the
resources in all the available resource groups. The summary is placed in
the user log and the system log.

A CHARGES statement may be placed in a job deck any number of times. If
no CHARGES control statements are used in a job deck, computer resource
usage statistics are gathered only upon job termination and placed in the

I user log.

I

I

Format:

CHARGES,SR=options.

Parameters are in keyword form.

SR=options

SR-OOll

System resources used. Anyone or more of the following
groups of resources can be specified. Options are
separated by colons. The default is a listing of the job's
usage of resources in all of the following groups:

JNU Job name and user number

DS Permanent dataset space accessed, permanent dataset
space saved, temporary dataset space used, 5l2-word
disk blocks (sectors) moved, user I/O requests,
memory resident datasets used, number of OPEN calls
and number of CLOSE calls

WT I/O wait time, time waiting to execute and time
waiting for a JXT

MM Minimum job size (words), maximum job size (words),
execution-time memory integral, I/O wait-time
memory integral, maximum field length used (words),
minimum field length used (words), maximum JTA used
(words), and minimum JTA used (words)

Part 2
1-11 J-Ol

CPU Time executing in CPU

NBF Number of 5l2-word blocks (sectors) received from a
front end and number of 5l2-word blocks (sectors)
queued to a front end

TPS Number of tape devices reserved, number of tape
volumes mounted, amount of tape data moved
(expressed as a multiple of 512 words) and number
of tape blocks moved

ROLLJOB - ROLL A USER JOB TO DISK

The ROLLJOB control statement allows the user to protect a job by writing
it to disk so that it can be recovered in case a system interruption
occurs. ROLLJOB is a system verb.

Format:

I ROLLJOB·I

Parameters: none

SET - CHANGE SYMBOL VALUE

The SET control statement changes the value of a specified valid job
control language symbol. Valid symbols are those classified as alterable
by the user (U) in table 4-2 in part 1. A job step abort occurs if a
symbol included in a SET control statement is unknown to the system, can
be set only by COS, or is a constant. SET is a system verb.

Format:

SET (symbol.=exppession)

Parameters:

symbol. A valid user-alterable symbo11 symbol. is a required
parameter.

exppession

SR-OOll

A valid arithmetic, logical, or literal assignment
expression. It may be delimited with parentheses to
simplify interpretation during control statement
evaluation. exppession is a required parameter.

Part 2
1-12 J-Ol

I

Examples:

SET (Jl=Jl+l)

This example increments the procedure-local register Jl by 1.

SET{Gl={SYSID.AND.177777B))

The global register Gl is given an ASCII value which is the low-order
two characters from the current system revision level (COS X.XX).

SET(G3=({ABTCODE.EQ.74).AND.(G2.EQ.0)))

The global register G3 is assigned a value, depending upon the current
values of ABTCODE and G2.

ECHO - ENABLE OR SUPPRESS LOGFILE MESSAGES

The ECHO control statement allows the user to control the message
classes to be written to the user's logfile by turning the classes ON or
OFF. ECHO can be used more than once during a job to toggle the
printing/suppression of message classes. ECHO is a system verb.

Format:

Parameters are in keyword form.

SR-OOll

Only the messages in the classes specified are written to
the user's logfile. If only the keyword ON or ON=ALL is
specified, all messages are written to the logfile.

JCL is the currently available message class. If the JCL
message class is enabled (ON), the JCL control statements
are echoed on the user's logfilei if it is disabled, the
JCL control statements are not listed on the logfile.

Part 2
1-13 1-02

•

OFF=classi
The messages in the classes specified are not written to
the user's logfile. If only the keyword OFF or OFF=ALL is
specified, all messages in defined classes are suppressed.
OFF=JCL suppresses echoing of JCL control statements to
logfilei however, output resulting from the execution of
the control statements will appear.

The keywords ON and OFF can be used in any combination: both, either, or
neither. However, a particular class should not be included in both
ON~lassi and OFF~lassi' nor should both defaults (ON and OFF) be
included. When the ECHO statement is not used, all messages are written
to the user's logfile.

Specify each class to be written or not written instead of using the
defaults (ON and OFF) because additional classes may be added.

When a job calls a procedure, the echo state of the job is the same upon
return from the procedure as before, even though the procedure may use a
different echo state. The following occurs when ECHO is used in
conjunction with CALL and PROC: (1) The echo state of the caller (a job
or another procedure) is saved so that on return to the caller the same
state is in effect as before the call, and (2) When the procedure is
called, a new echo state is created that affects only the procedure. If
the procedure does not include an ECHO statement, the echo state of the
caller is in effect. The echo state of the procedure can be changed
during the procedure's execution.

LIBRARY - LIST AND/OR CHANGE LIBRARY SEARCHLIST

The LIBRARY control statement allows the user to specify the library
defined dataset names that are to be searched during the processing of
control statement verbs. It also allows the user to list the current or
new searchlist to the logfile for verification.

When modifying the searchlist, the current members of the searchlist may
be retained in the new searchlist by including an asterisk in the LIBRARY
control statement. The asterisk corresponds to all members of the
current searchlist in their present order. If the asterisk is omitted,
the new searchlist contains only the library dataset names identified on
the LIBRARY control statement. LIBRARY is a system verb.

The default library searchlist upon job initiation consists of the single
library dataset $PROC.

SR-OOll
Part 2
1-14 1-02

Format:

v

Library dataset names to become members of the new
library searchlist. A maximum of 64 names (separated by
colons) may be specified. The order in which they appear
is the order in which they are searched. An asterisk
included in the list means that the current searchlist
members are to be part of the new searchlist in their
current order.

List the current library searchlist on the logfile for
verification. When specified along with the new
searchlist, the new searchlist is listed.

OPTION - SET USER-DEFINED OPTIONS

The OPTION control statement allows the user to specify the user-defined
options, such as the format of the job's listing. OPTION is a system
verb.

Format:

OPTION,LPp=n,STAT={ON }.
OFF

Parameters:

LPP=n Number of lines per page; a decimal number from 0 through
255. If 0 is specified, the current number of lines per
page is not changed. The default is an installation
parameter.

STAT={ON }STAT=ON causes dataset I/O statistics for each job to
OFF be printed in the user logfile whenever a dataset is

released. The statistics include dataset name, device
name, dataset size, number of user I/O requests, number of
512-word blocks transferred, and total time blocked for I/O
for the dataset. No statistics are printed if STAT=OFF,
which is the default condition.

SR-OOll
Part 2

1-15 J-Ol

JCL CONTROL STATEMENTS BLOCKS

Certain control statements are grouped in the control statement file to
create a contpoL statement bLock. The concepts and techniques for
using control statement blocks assume that the reader is familiar with
the control statements described in part 2, section 1 and has some
experience with running simple jobs under COS control.

2

Control statement blocks provide the user with the following capabilities:

• ppocedupe definition. The user can request that a series of
control statements and/or data be written to a library and called
for processing at a later time. Parameters within this procedure
can be substituted during processing.

• ConditionaL ~ontpoL statement ppocessing. The user can identify
control statements that are to be processed only if certain
conditions are met.

• ItePative contpoZ statement ppocessing. The user can identify
control statements to be processed repetitively.

Parentheses are advised as initial and terminator separators in the JCL
block control statements to avoid possible errors during processing
resulting from the unique treatment of apostrophes and parentheses in
these statements. See part 1, section 4 for a general description of the
use apostrophes and parentheses in the JCL block control statements.

PROCEDURE DEFINITION

A ppocedupe is a sequence of control statements and/or data that has
been saved for processing at a later time. Procedures have two formats.

The simpLe ppocedupe format consists of only the control statement body.

The weLL defined ppocedupe format consists of a prototype definition
statement, control statement body, and optional data. It provides the
capability of replacing values within the procedure body with values
supplied from the procedure call. These values are called substitution
pa~eteps and are governed by the prototype statement of the procedure.

SR-OOl1
Part 2

2-1 J-Ol

A well defined procedure can reside in a library or non-library dataset.
A simple procedure can only reside in a non-library dataset because a
simple procedure has no name associated with it.

Processing (invocation) of procedures can be initiated by a procedure
name call or with the CALL control statement (see part 2, section 1). A
simple procedure, because it does not have a name, must be invoked with
the CALL control statement without the CNS parameter. A well defined
procedure can also be invoked with the CALL statement but the CNS
parameter must be included. The presence of CNS on a CALL statement
indicates that the procedure to be called has a prototype statement and
that it should be processed as such.

Well defined procedures can be defined within the control statement
stream (in-Zine definition) or as input to the BUILD utility§. When
an in-line procedure definition is encountered in the JCL control
statement file, it is processed and written to the system default library
$PROC. See example 8 in this section for an example of how to create a
user permanent procedure library.

PRODCEDURE DEFINITION FORMAT

I A simple procedure format consists of only the control statement body.
The format of an in-line procedure is shown in figure 2-1. The first
control statement in an in-line procedure is PROC1 the last is ENDPROC.
A prototype statement follows PROC; it provides the name of the procedure
and optionally a list of parameters that identify the substitution values
within the definition body. In addition to defining the values to be
substituted, the prototype statement parameters control the selection or
omission of the parameters and define the default value assignments. The
control statements and data to be processed are contained in the
definition body. The control statements are grouped in a sequence.

If data is included in a procedure, the data is preceded by an &DATA
statement and follows the control statement sequence. The &DATA
statement also includes the name of the dataset to which the data is to
be written after processing so that programs can use the data as source
data.

I § BUILD currently does not suppport procedure entries in libraries.

SR-OOll
Part 2

2-2 J-Ol

•

A definition can be placed within a definition; such nesting can occur to
any level. However, nested definitions are not defined until the
outermost procedure is invoked.

ENDPROC.

definition body

prototype statement

PROC.

COS control
statements

Figure 2-1. Procedure definition deck structure

SR-OOll
Part 2
2-2.1 J-Ol

I

PROC - Begin procedure definition

The PROC control statement defines the beginning of an in-line procedure
definition block. PROC is a system verb.

Format:

EJ
Parameters: none

Prototype statement - Introduce a procedure

The prototype control statement has two functions: (1) to specify the
name of the procedure and (2) to provide the fopmaZ papametep
specifications that define where sUbstitution is to occur within the
definition body. Value sUbstitution is described later in this section.

Format:

name

SR-OOll

Procedure name; 1 through 8 alphanumeric characters.

Formal parameter specifications, using one of the formats
listed below. A formal parameter identifies a character
string within the definition body. All formal positional
parameters must precede all formal keyword parameters; if
not, the procedure definition is in error and the job
aborts.

Positional formal parameter specification, or

keYi={dvaZue}:{kvaZue}
Keyword formal parameter specification as
follows:

Part 2
2-3 1-02

I

Procedure definition body

keYi

dvalue

kvalue

Formal keyword parameter

Optional default value; this
value is substituted if entire
keyword parameter is omitted from
the calling statement.

Optional keyed default value;
this value is sUbstituted if the
keyword is present but no value
is specified.

Special cases:

Provides no default values and
requires the caller to provide a
non-null value.

Provides no default values, but
allows the user to
specify keYi= or just keYi.

The procedure definition body consists of a sequence of COS control
statements processed as part of the current control statement file when
the procedure is called. (It can optionally include lines of text data
preceded in the definition body by an &DATA control statement. See
&DATA below.)

The prototype statement identifies character strings within the
procedure that are to be substituted when the procedure is called. COS
uses values supplied with the procedure call and default parameter
values from the prototype statement to replace these strings.

An ampersand (&) must precede each parameter to be substituted
(substitution papametep) within the definition body. If a parameter
appears in the prototype but is not preceded by an ampersand in the
body, substitution does not occur.

&DATA - Procedure data

Data may be included within the procedure definition body after the
procedure data card.

SR-OOll
Part 2

2-4 1-02

I

The dn parameter creates a temporary dataset composed of the data
identified in the procedure, including any sUbstitutions resulting from
the call. This temporary dataset allows programs such as CAL or CFT to
use it as source data.

Format:

&DATA,dn.

dn Name of dataset to contain the data that follows; this is
a required parameter.

The initial separator for an &DATA statement can be a blank, comma, or
an open parenthesis; the statement terminator can be a blank, period, or
a close parenthesis.

An &DATA specification cannot be continued to subsequent cards. All
card images following an &DATA card up to the next &DATA card are
written to the specified dataset after string substitution is
performed. See example 7 later in this section.

ENDPROC - End procedure definition

The ENDPROC control statement indicates the end of an in-line procedure
definition block. ENDPROC is a system verb.

Format:

I ENDPROC·I

Parameters: none

SUBSTITUTION PARAMETERS

A character string that is eligible for substitution is listed in the
prototype statement as a fopmal papametep specification. This name,
when preceded by an ampersand in the definition body, indicates that a
value is to be substituted during procedure invocation.

SR-OOII
Part 2
2-5 1-02

I

COS replaces the ampersand and parameter name with its selected value.
If the parameter listed in the prototype statement is not preceded by an
ampersand in the body, sUbstitution does not occur. If two ampersands
precede the string, one is removed and substitution is inhibited.

Any string consisting of one through eight characters may be selected
for substitution. Character strings to be substituted are delimited by
any character other than numerals, alphabetics, commercial at (@),
dollar sign ($), and the percent sign (%). An ASCII underline is used
as a string delimiter when the next character is one of these
characters. See example 3 later in this section. COS deletes the
underline after evaluating the string it delimits. Thus, the underline
concatenates the strings it delimits.

VALUE SUBSTITUTION

When a statement in the current control statement file calls a
procedure, COS searches the definition body for the character strings
preceded by ampersands. For each occurrence, it sUbstitutes the values
supplied by either the calling statement or the prototype statement.

In the prototype statement, parameters may be in positional or keyword
format.

Positional parameters

PositionaL fopmaL papameteps allow the user to list the strings within
the body that can be substituted. The calling statement lists values to
be sUbstituted for these strings in the same order in which they are
listed in the prototype statement. The value supplied with the calling
statement is sUbstituted for every occurrence of the corresponding
formal positional parameter within the definition body. If the caller
passes too few positional parameters, null strings are sUbstituted for
the remaining formal positional parameters. If too many positional
parameters are passed, the procedure call is in error and the job aborts.

Keyword parameters

Keywopd fopmaL papameteps are listed in any order after all positional
parameters are given on the prototype statement and the calling
statement. A keyword formal parameter allows the user to specify
substitution values on the prototype statement that are to be used when
one is not given on the calling statement.

SR-OOII
Part 2
2-6 1-02

I

If the keyword formal parameter is included in the calling statement
with a value, that value is sUbstituted. If the entire keyword formal
parameter is omitted from the calling statement, the defauLt vaLue on
the prototype statement is substituted. If a default value is not
provided on the prototype statement, the character string within the
body corresponding to that formal parameter is not included in the
procedure expansion.

If only the keyword portion of the keyword formal parameter (the
character string itself) is included in the calling statement, without a
value assigned to it, then a keyed defauLt vaLue from the prototype
statement is sUbstituted. If a keyed default value is not provided on
the prototype statement, again the character string within the body
corresponding to that formal parameter is not included in the procedure
expansion.

A keyword parameter enclosed in apostrophes ('KEY'=vaLue) is considered
a positional parameter.

Positional and keyword parameters

When supplying both positional and keyword parameters, all positional
parameters must precede all keyword parameters; COS evaluates the callis
positional parameters first. The end of the caller's list of positional
parameters is signaled by the appearance of a keyword parameter,
statement terminator, or by specifying all positionals.

Apostrophes and parentheses

Sometimes parameter values in a procedure definition or a procedure
calling statement require a special format. If a literal string (a
string delimited with apostrophes) appears in either of these
statements, it is processed as though it were a literal constant. That
is, all apostrophes in the value remain when the value is sUbstituted.
See example 5 later in this section.

To avoid any possibility of erroneous processing, use parentheses as
string delimiters in these statements. Outermost parentheses preceded
by the initial, parameter, equivalence, or concatenation separators are
removed during value substitution which delays processing of any
separator characters in the string until the statement itself, with
sUbstituted values, is processed.

This delay is also required when specifying multiple values for the
default value and/or keyed default value parameters on a procedure
definition statement. See examples 1, 2, 4, and 6. Parentheses are
advised in the procedure calling statement when the use of the value in
the procedure statements is unknown. See examples 4, 5, and 6 later in
this section.

SR-OOll
Part 2

2-7 1-02

I

EXAMPLES

The following examples explain the COS control statement procedure
substitution process.

Example 1:

Consider a single statement procedure called LOAD which is defined as
follows:

Definition

PROC.
LOAD,NOGO=:NX,LIBRARY=($FTLIB:$SYSLIB):MYLIB.
LDR,&NOGO,LIB=&LIBRARY.
ENDPROC.

Ppototype statement
Definition body

The prototype statement in this example defines two formal parameters,
both of which are in keyword format. The keyword NOGO has a null value
when omitted from the calling statement and a value of NX when included
on the calling statement in keyword-only format. The keyword LIBRARY
has the default value of $FTLIB:$SYSLIB. When LIBRARY is used in the
calling statement without a value, the keyed default value, MYLIB, is
substituted.

When the LOAD procedure is invoked, it expands to a single statement
whose form depends on the choice of parameters:

Invocation

LOAD, NOGO.
LOAD.
LOAD,LIBRARY=THISLIB.
LOAD, LIBRARY, NOGO.

Expansion

LDR,NX,LIB=$FTLIB:$SYSLIB.
LDR"LIB=$FTLIB:$SYSLIB.
LDR"LIB=THISLIB.
LDR,NX,LIB=MYLIB.

SR-OOll
Part 2
2-8 1-02

I

Example 2:

The following in-line procedure definition creates a procedure called
BLDABS.

Definition

PROC.
BLDABS,SOURCE,LIST,GO='NO':'YES',LIB= A

: ($SYSLIB:$FTLIB) ,MAP=FULL:PART.
REWIND,DN=$BLD:&SOURCE.
CAL,I=&SOURCE,L=&LIST,ABORT.
LDR,NX,LIB=&LIB,MAP=&MAP,L=&LIST.
REWIND,DN=$ABD:&LIST.
SAVE,DN=$ABD,PDN=MYPROGRAM.
IF (&GO.EQ. 'YES')
$ABD.
ENDIF.
ENDPROC.

Invocation

BLDABS,WORK"GO,LIB=VLIB2.

Expansion

REWIND,DN=$BLD:WORK.
CAL,I=WORK,L=,ABORT.
LDR,NX,LIB=VLIB2,MAP=FULL,L=.
REWIND,DN=$ABD:.
SAVE,DN=$ABD,PDN=MYPROGRAM.
IF ('YES' • EQ. 'YES')
$ABD.
ENDIF.

Example 3:

Ppototype statement

Definition body

This procedure exemplies the proper use of the underscore character for
the definition of a formal parameter. It creates a procedure called
AUDJCL.

Definition

PROC.
AUDJCL,DN,LEVEL,L=$OUT:AUDLST.
AUDIT,PDN=&DN&LEVEL_JCL,ID=JCL,L=&L.
ENDPROC.

Invocation Expansion

Ppototype statement
Definition body

AUDJCL,-,05. AUDIT,PDN=-OSJCL,ID=JCL,L=$OUT.

SR-OOll
Part 2

2-9 1-02

I

Example 4:

Parentheses are required when specifying multiple values for a single
parameter value on a procedure definition prototype statement or on a
calling statement. In these cases, the colon is used to separate default
and Boolean values in a keyword parameter. For example:

Procedure-definition prototype statement:

MYPROC,POSl,KEY=(DEFl:DEF2):(BOOl:B002) •

Invocation:

MYPROC,(POSIA:POSIB) •

When substitution occurs duri~g this call, POSIA:POSIB replaces all POSl
occurrences within the definition body. Both values (POSIA and POSIB)
are evaluated separately during control statement evaluation. If
apostrophes are on the call, 'POSIA:POSIB' is evaluated as one literal
string.

Example 5:

The following procedure definition exemplifies the use of literal strings
instead of parenthetical strings.

Definition

PROC.
PURGER,PDN,ID,ED,M. Ppototype
ACCESS,DN=$PURGE,PDN=&PDN,ID=&ID,ED=&ED,M=&M,UQ,NA.}
DELETE,DN=$PURGE,NA. Definition body
ENDPROC.

Invocation

PURGER,'SOURCE.MAIN',PROJECT.

Expansion

ACCESS,DN=$PURGE,PDN='SOURCE.MAIN',ID=PROJECT,ED=,M=,UQ,NA.
DELETE,DN=$PURGE,NA.

SR-OOll
Part 2
2-10 1-02

I

The apostrophes remain as part of the string in the expansion. If
parentheses had been used in the invocation instead of apostrophes for
the permanent dataset name, (SOURCE.MAIN), the value when the ACCESS
statement is evaluated would be SOURCE.MAIN because the outermost
parentheses are removed when preceded by a valid separator. This action
would cause an error because the period in SOURCE.MAIN would be evaluated
as a statement terminator during evaluation.

Example 6:

The following example illustrates the use of parenthetical strings
instead of literal strings in a procedure definition.

Definition

PROC.
LGO,CALSORC,ABS,NLIB=$SCILIB:($SCILIB: A

$SYSLIB:$FTLIB) •
CAL,I=&CALSORC.
LDR,NX,AB=&ABS,NOLIB=&NLIB.
ENDPROC.

Ppototype

Definition body

Invocation

LGO",NLIB.

Expansion

CAL,I=.
LDR,NX,AB=,NOLIB=$SCILIB:$SYSLIB:$FTLIB.

Parentheses were not included for the expansion of the NLIB keyed default
value because parentheses are removed during processing when preceded by
the concatenation delimiter (:).

If apostrophes had been used instead of parentheses for the NLIB
parameter value, the colons would have been ignored as separators during
expansion. Also, apostrophes are treated as part of the value when
included in a procedure definition prototype statement or a calling
statement. Therefore, if apostrophes had been used, the following
expansion would have occurred.

CAL,I=.
LDR,NX,AB=,NOLIB='$SCILIB:$SYSLIB:$FTLIB'.

When the LDR statement is executed, the value assigned to the NOLIB
parameter would be the literal string $SCILIB:$SYSLIB:$FTLIB which
violates the syntax for the NOLIB parameter.

SR-OOll
Part 2
2-11 1-02

I

Example 7:

Consider the following procedure definition. This procedure is used to
retrieve specified source decks from an UPDATE program library by the use
of the &DATA option.

PROC.
FETCH,PLNAME,MASTERCH,DECKRNGE. Ppototype statement
ACCESS,DN=&PLNAME. I
UPDATE,I=QZRRZQ2,Q,C=0,S,P=&PLNAME.
RELEASE,DN=QZRRZQ2:&PLNAME. Definition body
&DATA QZRRZQ2
&MASTERCH_COMPILE &DECKRNGE
ENDPROC.

Two sample invocations and their expansions follow:

Invocation

FETCH,COSPL,*,(ST,CT).

FETCH,FTLIBPL,*,(COS.RFD) •

SR-OOll

Expansion

ACCESS,DN=COSPL.
UPDATE,I=QZRRZQ2,Q,C=0,S,P=COSPL.
RELEASE,DN=QZRRZQ2:COSPL.

(Dataset QZRRZQ2 contains:
*COMPILE ST,CT)

ACCESS,DN=FTLIBPL.
UPDATE,1=QZRRZQ2,Q,C=0,S,P=FTLIBPL.
RELEASE,DN=QZRRZQ2:FTL1BPL.

(Dataset QZRRZQ2 contains:
*COMP1LE COS.RFD)

Part 2
2-12 1-02

I

Example 8:

Ths example illustrates one mechanism for defining and maintaining user
procedure libraries.

ACCESS,DN=GENLIB.
CALL,DN=GENLIB.

The permanent dataset GENLIB contains:

ECHO,OFF.
RELEASE,DN=SPROC.
*
*
*

Define procedure for ACCESS of commonly used ID.

PROC.
UQ,DN,ED=:l,PDN=:GENLIB,R=:READCW,W=:WRITECW,M=:MAINCW,NA=:NA.
ACCESS,DN=&DN,ID=MYUID,PDN=&PDN,ED=&ED,R=&R,W=&W,M=&M,NA=&NA.
RETURN.
EXIT.
RETURN ,ABORT.
ENDPROC.
*
*
*

Edit a local dataset.

PROC.
ED,DN,AC=:'ACCESS'.
IF ('&AC' .EQ. 'ACCESS')

UQ,&DN.
ENDIF
TEDI ,DN=&DN.
RETURN.
EXIT.
RETURN, ABORT.
ENDPROC.

*
*
*

End of definitions

UQ,PROCLIB,NA.
SAVE,DN=SPROC,PDN=PROCLIB,ID=MYUID.
DELETE ,DN=PROCLIB ,NA.
RELEASE,DN=SPROC.
ACCESS,DN=PROCLIB,ID=MYUID.
LIBRARY,DN=*:PROCLIB.
ECHO,ON.

SR-OOll
Part 2
2-12.1 J-Ol

I

CONDITIONAL CONTROL STATEMENT PROCESSING

The control statements IF, ELSE, ELSEIF, and ENDIF allow control
statements to be placed in a conditional block structure. A conditional
block must begin with an IF statement and conclude with an ENDIF
statement. In addition to these two statements, it contains a control
statement sequence that is processed only if the IF expression is true.

Optional control statement sequences can be included within a
conditional block using the ELSEIF and ELSE statements. If the result
of an IF or ELSEIF expression evaluation is true, the control statement
sequence that follows is processed and subsequent ELSE or ELSEIF
conditions, even if true, are not processed. If the expression
evaluates as false, the control statement sequence that follows is
skipped. If all such sequences are skipped (all expression evaluations
yield false), the sequence following the ELSE statement (if it exists)
is processed.

The conditional block is first scanned to verify the validity of the
block's syntax. If there are any syntax errors, the block is skipped
without being evaluated and a job step abort error occurs. This means
that any EXIT control statements within the conditional block are
ignored when there is a syntax error in that conditional block. This
validation occurs when the control statement file in which it is
contained i9 invoked.

ELSEIF and ELSE sequences are optional. Within a conditional block,
only one ELSE sequence is permitted and it must be the last one in the
block. There is no limit to the number of ELSEIF sequences that may be
used in a conditional block.

Null blocks (for example, an ELSE statement immediately following an
ELSEIF) are ignored without comment.

Conditional blocks can be constructed in the following ways:

• Conditional block

• Conditional block with ELSE

• Conditional block with ELSEIF(s)

• Conditional block with ELSE and ELSEIF(s)

CONDITIONAL BLOCK

The basic format of a conditional block, figure 2-2, begins with an IF
statement and ends with an ENDIF statement. When the IF statement
expression is true, the control statement sequence that follows is
processed. If the expression is false, the control statement sequence
is not processed.

SR-OOll
Part 2

2-13 1-02

I

ENDIF.

~- ---~
..... 11:11 control s ta tement ~

(II sequence

II IF(expression) "-
\11
~ -

Figure 2-2. Basic conditional block structure

IF - Begin conditional block

The IF control statement defines the beginning of a conditional block.
Each IF control statement must have a corresponding ENDIF control
statement. IF is a system verb.

Format:

IF (exp'Pession)

Parameters:

exp'Pession
A valid JCL expression (part 1, section 4). This parameter
is required.

ENDIF - End conditional block

The ENDIF control statement defines the end of a conditional block.
ENDIF is a system verb.

SR-OOll
Part 2

2-14 1-02

I

Format:

Parameters: none

Example:

Following is an example of the conditional block structure.

ACCESS,DN=MYPROG.
MYPROG.
EXIT.
IF{ABTCODE.NE.21)

*
* UNEXPECTED JOB STEP ABORT ERROR

*
EXIT.

ENDIF.

In this example, if the ACCESS request or execution of MYPROG fails, the
conditional block after the EXIT control statement is processed. The
conditional block determines if the job step abort occurred because a
dataset was not found, in which case the processing of control
statements resumes after the ENDIF control statement. If this is not
the reason for the abort, the job terminates with the EXIT control
statement.

CONDITIONAL BLOCK WITH ELSE

The second conditional block structure includes the ELSE control
statement. The control statement sequence is processed if the
expression on the IF statement is true. If the expression is not true,
the sequence following the ELSE statement is processed. The block
structure is illustrated in figure 2-3.

SR-OOll
Part 2

2-15 1-02

I

ENOl F.

II --====-~===,
1,,1

1
contra 1 sta tement

IIII1 s equ enc e
IF(expression)

Figure 2-3. Conditional block structure including ELSE

ELSE - Define alternate condition

The ELSE control statement is used to define an alternate condition. An
IF statement, as well as any ELSEIF statements (see Conditional Block
with ELSE and ELSEIF), must precede the ELSE control statement. If all
conditions specified by the IF and ELSEIF statements that precede the
ELSE in the conditional block test as false, then the sequence of
statements that follow the ELSE statement is executed. ELSE is a system
verb.

Format:

I ELSE. I

Parameters: none

SR-OOll
Part 2
2-16 1-02

I

Example:

An example of a conditional block structure using the ELSE statement
follows.

ACCESS,DN=INITJCL.
ACCESS,DN=MYPROG.
ACCESS,DN=PROG.
PREPROG.
IF(JSR.NE.O)

CALL,DN=INITJCL.
SWITCH,l=ON.

ELSE.
SWITCH,l=OFF.

ENDIF.
PROG.

After PREPROG is executed, the conditional block determines if PREPROG
has successfully executed (by its setting of JSR). The procedure
INITJCL is executed and a sense switch is set if the status was bad; the
sense switch is cleared if PREPROG executed properly.

CONDITIONAL BLOCK WITH ELSEIF

The third conditional block structure, shown in figure 2-4, includes one
or more ELSEIF statements. Each logical expression on the IF and ELSEIF
statements is tested in sequence until a true condition is found; then
the corresponding control statement sequence is processed.

SR-OOll

ENDIF.

IF(expression

Figure 2-4. Conditional block structure including ELSEIF

Part 2
2-17 1-02

I

ELSEIF - Define alternate condition

The ELSEIF control statement defines an alternate condition to test if
the previous one tested was false. The sequence of statements following
the ELSEIF statement is executed when the ELSEIF expression is true.
All ELSEIF control statements must precede the optional ELSE control
statement for a conditional block. An ELSEIF statement without a
previously processed IF statement results in a job step abort. ELSEIF
is a system verb.

Format:

ELSEIF(exppession)

Parameters:

exppession
Any valid JCL expression (part 1, section 4). This
parameter is required.

A conditional block can contain any number of ELSEIF control statements.
The block of control statements following an ELSEIF statement is
processed under the following conditions:

• The expression for the IF statement is false,

• All preceding ELSEIF statement expressions are false, and

• The ELSEIF expression is true.

Example:

An example of a deck including the ELSEIF statement is:

IF(SYSID.EQ.'COS 1.07')
ACCESS,DN=$FTLIB,ID=Vl07.

ELSE1F(SYSID.EQ.'COS 1.08')
ACCESS,DN=$FTLIB,ID=Vl08.

ELSEIF(SYSID.EQ.'COS 1.09')
ACCESS,DN=$FTLIB,ID=Vl09.

ENDIF.
LDR,NOLIB,LIB=$FTLIB.

This conditional block tries to access the correct version of the FORTRAN
library, $FTLIB, for the execution of the loader that follows the
conditional block.

SR-OOII
Part 2

2-18 1-02

I

CONDITIONAL BLOCK WITH ELSE AND ELSEIF

The conditional block structure in figure 2-5 uses ELSEIF and the ELSE
statements. A block can contain any number of ELSEIF statements but can
contain orily one ELSE, which must be the last conditional statement
before the ENDIF.

ENDIF.

'I ---=-~~===~
1)1 contra 1 statement

I sequence
ELSEIF(expression)

- --==----====----

control statement
sequence

IF(expression)

Figure 2-5. Conditional block structure including ELSEIF and ELSE

The ELSE control statement sequence in this case is processed only if:

• The expression on the IF statement is false, and

• All ELSEIF statement expressions are also false.

SR-OOll
Part 2

2-19 1-02

I

Example:

An example of this type of conditional block structure follows.

IF (TIMELEFT.GT.175)
IF(SYSID.EQ.'COS 1.08')

ACCESS,DN=$FTLIB,ID=Vl08.
ELSEIF(SYSID.EQ.'COS 1.09')

ACCESS,DN=$FTLIB,ID=Vl09.
ELSE.

*
* CURRENT SYSTEM LEVEL NOT RECENT ENOUGH

*
EXIT.

ENDIF.
LDR,NOLIB,LIB=$FTLIB.
SET,Jl='YES'L.

ELSE.
SET,Jl='NOTIME'L.

ENDIF.
IF(Jl.EQ.'YES'L)

DISPOSE,DN=RESULTS,DC=ST.
ELSE.

*
* JOB DID NOT RUN TO NORMAL COMPLETION

ENDIF.
EXIT.

This example is an expansion of the example for the third format and
allows execution of the compiled program if there is enough time left and
if the correct library is accessible. On a successful run, the dataset
called RESULTS is disposed as a staged dataset.

ITERATIVE CONTROL STATEMENT PROCESSING

An iterative block, figure 2-6, contains a control statement sequence
that is to be processed more than once during the processing of a
job. It includes the LOOP, EXITLOOP, and ENDLOOP statements. Nesting
can occur to any level. The EXITLOOP statement indicates the normal
exit condition for the loop. If its expression is true, the loop is
exited; if it is false, loop execution continues with the subsequent
statements. Control returns to the beginning of the loop when the
ENDLOOP statement is encountered.

SR-OOll
Part 2
.2-20 1-02

I

ENDLOOP.

Figure 2-6. Iterative block structure

Iterative blocks are prescanned for syntax errors before actual
processing begins. Any errors in the block structure cause a skipping
of that block followed by a job step abort. If an iterative block is
included within a conditional block, it must be totally contained
within that block.

LOOP - BEGIN ITERATIVE BLOCK

The LOOP control statement is required to define the beginning of an
iterative block. An ENDLOOP control statement is required in the same
procedure dataset to terminate the iterative block. LOOP is a system
verb.

Format:

I Loop·i

Parameters: none

SR-OOll
Part 2
2-21 1-02

I

ENDLOOP - END ITERATIVE BLOCK

The ENDLOOP control statement terminates an iterative control
statement block. If an ENDLOOP control statement occurs in a
procedure dataset without a preceding LOOP statement, a job step abort
occurs. Execution of the ENDLOOP statement results in control being
passed to the preceding LOOP statement which begins another iteration
of the loop.

Format:

I ENDLOOP·i

Parameters: none

EXITLOOP - END ITERATION

The EXITLOOP control statement defines the condition(s) under which
the control statement block iteration is to end. If its expression is
true, the loop is exited; if it is false,' the control statements which
follow are executed.

An EXITLOOP statement that appears outside of an iterative block
causes a job step abort. When nesting iterative control statement
blocks, the EXITLOOP control statement defines the exit conditions for
only the most immediate iterative block. EXITLOOP is a system verb.

Format:

EXITLOOP.

or

EXITLOOP{eXp~e88ion)

Parameters:

exp~e88ion

SR-OOll

Optional valid JCL expression (part 1, section 4). If
omitted, an unconditional exit from the iterative block
occurs.

Part 2
2-22 1-02

I

Example:

The following example merges the two datasets DS1Nl and DS1N2 for 60
records.

SET,Jl=O.
SET,J2=60.
LOOP.

EX1TLOOP(J2.EQ.0)
1F(Jl.EQ.O)

COPYR,1=DS1Nl,O=OUTDS.
SET,Jl=l.

ELSE.
COPYR,1=DS1N2,O=OUTDS.
SET,Jl=O.

END1F.
SET,J2=J2-l.

ENDLOOP.
REW1ND,DN=DS1Nl:DS1N2:0UTDS.

SR-OOll
Part 2

2-23 1-02

I
I

I
I

I

DATASET DEFINITION AND CONTROL

Datasets can be defined and managed by the user via three dataset control
statements: ASSIGN, ACCESS, and RELEASE.

• ASSIGN creates a dataset on mass storage and assigns dataset
characteristics for tape and disk.

• ACCESS (defined in part 2, section 4) makes an existing disk or
tape permanent dataset local to a job or can be used to create a
dataset on magnetic tape1 ASSIGN assigns tape dataset
characteristics.

• RELEASE relinquishes access to the named dataset for the job.

ASSIGN - ASSIGN MASS STORAGE OR MAGNETIC TAPE DATASET CHARACTERISTICS

The ASSIGN control statement creates a mass storage dataset and assigns
dataset characteristics for tape and mass storage. If an ASSIGN is used
for dataset creation, it must appear prior to the first reference to the
dataset1 otherwise, the characteristics are defined at the first
reference. If an ASSIGN is used for a tape dataset, it must follow the
tape ACCESS request. ASSIGNS is a system verb.

Format:

ASSIGN,DN=dn,S=size,BS=blk,DV=ldv,DT=dt,DF=df,

RDM,U,MR,LM=lm,Dc=dc,BFI=bfi,A=un.

Parameters are in keyword form. The only required parameter is DN.

DN=dn Local dataset name. 1-7 alphanumeric characters, the first
of which is A-Z, $, %, or @1 remaining characters may also
be numeric. ON is a required parameter.

§ ASSIGN does not create a dataset which the CFT 1.10 OPEN statement
recognizes as existing.

3

SR-OOll
Part 2

3-1 J-01

s=size

I
Bs=btk

Dv=tdv

I
DT=dt

I
I

DF=df

RDM

I
U

I

SR-OOll

Dataset size. Octal number of sectors (IOOOa-word
blocks) to be reserved for the dataset. If the dataset
size is not given, the disk space for the dataset is
dynamically allocated as needed. This parameter applies to
mass storage datasets only and is ignored when used for
magnetic tape datasets.

Buffer size. Number of IOOOa-word blocks to be reserved
for user buffer. The default number of blocks is set by an
installation parameter. BS generates an error if the U
parameter is specified (indicating unblocked dataset
structure) •

Logical device on which dataset is to begin. If a logical
device name is not given, one is chosen by the system.
Consult the on-site analyst for possible logical device
names. This parameter applies to mass storage datasets
only and is ignored when used for magnetic tape datasets.

Device type. The allowable device types are CRT and MS.
MS is the default. This parameter applies to mass storage
datasets only and is ignored when used for magnetic tape
datasets.

Dataset format. This parameter is used only on output1 it
is valid only when DT=CRT. This parameter applies to mass
storage datasets only and is ignored when used for magnetic
tape datasets. Two formats are supported:

CB Character blocked. End-of-record RCWs are converted
to line feeds. This is the default.

TR Transparent. End-of-record RCWs are not converted
to line feeds. The user is responsible for
inserting line feeds.

Random dataset. If the RDM parameter is present, the
dataset is to be accessed randomly. If the RDM parameter
is not specified, the dataset is accessed sequentially.
This parameter applies to mass storage datasets only and is
invalid for magnetic tape datasets.

Unblocked dataset structure. If the U parameter is
present, the dataset is not in COS-defined blocked format.
If the U parameter is absent, the dataset is a COS blocked
dataset. (See part 1, section 2 for information on
unblocked dataset format.) This parameter is invalid for
interchange format tape datasets.

Part 2
3-2 J-Ol

MR

I
LM=lm

I
DC=da

I

I

BFI=bfi

SR-OOl1

Memory resident dataset. If this parameter is present, the
system I/O routines write the buffers to the disk only if
they become full. If the MR parameter is absent, the
dataset is not a memory resident dataset. MR generates an
error if the U parameter is specified. This parameter
applies to mass storage datasets only and is invalid for
magnetic tape datasets.

Maximum size limit for this dataset. lm specifies a
decimal count of 512-word blocks. The job step will be
aborted if this size is exceeded. The default and maximum
dataset size limits are set by an installation parameter.
This parameter applies to mass storage datasets only and is
ignored for magnetic tape datasets.

Disposition code. Disposition to be made of the dataset at
job termination. This parameter applies to mass storage
datasets only and is ignored for tape datasets. The
default is SC.

da is a 2-character alpha code describing the destination
of the dataset as follows:

IN The dataset is placed in the input queue of the
default destination station.

ST Stage to mainframe. Dataset is made permanent at
the mainframe of job origin.

SC Scratch dataset. Dataset is deleted.

PR Print dataset. Dataset is printed on printer at the
mainframe of job origin.

PU Punch dataset. Dataset is punched on any card punch
available at the mainframe of job origin.

PT Plot dataset. Dataset is plotted on any available
plotter at the mainframe of job origin.

MT Magnetic tape. Dataset is written on magnetic tape
at the mainframe of job origin.

Blank field initiation. Octal representation of ASCII code
which indicates the beginning of a sequence of blanks.
BFI=OFF means that blank compression is inhibited. The
default code is 338 (ASCII ESC code) but may be changed
by an installation parameter.

Part 2
3-3 J-OI

I

I

A=un Unit name. Unit names allow the user to refer to a dataset
from a FORTRAN program. Each unit name is 4 characters in
the form FTxx, where xx is the unit number specified. The
unit number is an integer value in the range 0-102.
However, because unit numbers 100, 101, and 102 are
reserved for system use, a user may designate unit numbers
0-99.

Use of this parameter associates the designated unit with
the dataset specified by the DN parameter. At job
initiation, unit FTOS is associated with dataset $IN and
unit FT06 is associated with dataset $OUT. Unit names
should not be used as dataset names.

NOTE

If a dataset is used in place of a unit name or
vice versa, FORTRAN '77 auxiliary statements
(that is, OPEN, CLOSE, and INQUIRE) may produce
unpredictable results.

RELEASE - RELEASE DATASET

The RELEASE control statement relinquishes access to the named data sets
for the job. If a dataset is not permanent and its disposition code is
SC (scratch), the mass storage assigned to the dataset is released to the
system. If the dataset is to be staged, the dataset is entered in the
output queue for staging to the default destination station. An
end-of-data is written to a permanent dataset when it is released if the
dataset is blocked sequential and the previous operation was a write.

Format:

I § Deferred implementation

SR-OOll
Part 2

3-4 J-Ol

I

Parameters:

DN=dn· 1,

HOLD§

Name of dataset to be released. A maximum of eight
datasets may be specified.

Hold generic device; do not return it to the system pool.
This parameter applies to magnetic tape datasets only and
is ignored for mass storage datasets.

I § Deferred implementation

SR-OOll
Part 2

3-5

I

I
I
I
I

I
I

PERMANENT DATASET MANAGEMENT

Permanent dataset management provides methods for creating, protecting,
and accessing datasets assigned permanently to mass storage or magnetic
tape. Such datasets cannot be destroyed by normal system activity,
deadstarting, restarting, or engineering maintenance.

The user can manage user permanent datasets only~ system permanent
datasets are not directly accessible by the user. (See part 1, section 2
for a description of the types of datasets.)

The user manages user mass storage and magnetic tape permanent datasets
by sending requests to the system through the control statements
described below. Mass storage datasets are controlled by the Permanent
Dataset Manager using the CRAY-l resident Dataset Catalog (DSC) ~ magnetic
tape datasets are processed by the Tape Queue Manager (TQM).

• SAVE enters a dataset's identification and location in a
systemrmaintained Dataset Catalog. Datasets recorded in the
Dataset Catalog via a user SAVE request are user permanent
datasets and are recoverable at deadstart. SAVE applies to mass
storage datasets only~ it is ignored for tape datasets.

• ACCESS causes a user permanent dataset to be assigned (made local)
to a job. The usage (reading or writing, for example) of a
dataset is determined by permissions granted when the dataset is
accessed. ACCESS is also used to create a dataset on magnetic
tape or to obtain an existing one.

• ADJUST changes the size of a user permanent dataset in the Dataset
Catalog. ADJUST applies to mass storage datasets only~ it is
ignored for tape datasets since their size is automatically
changed when the output tape dataset is closed.

• MODIFY changes established information for an existing user
permanent dataset in the Dataset Catalog. MODIFY applies to mass
storage datasets only~ it is ignored for tape datasets.

• DELETE causes removal of a saved dataset from the Dataset Catalog.

4

SR-OOll
Part 2

4-1 J-Ol

I

SAVE - SAVE PERMANENT DATASET

The SAVE control statement makes a local dataset permanent. Saving a
dataset consists of making an entry in the DSC. A permanent dataset is
uniquely identified by permanent dataset name, user identification, and
edition number. SAVE is a system verb. The SAVE statement is ignored
when used for magnetic tape datasets.

SAVE has a twofold function:

• Creation of an initial edition of a permanent dataset
• Creation of an additional edition of a permanent dataset

A maintenance control word controls the creation of additional
editions of an existing permanent dataset. Thus, to create a
subsequent edition of an existing permanent dataset, the user must
match the maintenance control word of the oldest existing edition.
Read and write control words specified on the oldest existing edition
of a permanent dataset apply to all subsequent editions of that
dataset.

Under the appropriate conditions, SAVE forces any unwritten data to
disk to ensure that all of the dataset is made permanent. Since this
situation occurs when the dataset has been recently written to but not
yet closed, SAVE will attempt to close the dataset. The specific
conditions which the dataset must meet are described under the SAVE
macro (part 3, section 4) •

Format:

~
SAVE,DN=dn,PDN=pdn,ID=uid,ED=ed,RT=Pt,R=pd,w=wt,~

?

M=mn,UQ,NA,EXO{=ON }.
OFF

Parameters are in keyword form~ the only required parameter is DN.

DN=dn Name of a dataset that is local to the job. This dataset
may be closed before the dataset is made permanent.

PDN=pdn

SR-OOll

Permanent dataset name. 1-15 characters assigned by the
dataset creator. This is the name that is saved by the
system. Default value is dn.

Part 2
4-2 J-Ol

I

ID=uid User identification. 1-8 alphanumeric characters assigned
by the dataset creator. The default is no user ID.

ED=ed Edition number. A value from 1-4095 assigned by the dataset
creator. The default value is:

• One, if a permanent dataset with the same PDN and ID
does not exist, or

• The current highest edition number plus one, if a
permanent dataset with the same PDN and ID does exist.

RT=pt Retention period. User-defined value from 0-4095 specifying
the number of days a permanent dataset is to be retained by
the system. The default value is an installation-defined
parameter.

w~t

M=mn

UQ

NA

Read control word. 1-8 alphanumeric characters assigned by
the dataset creator. The read control word of the oldest
existing edition of a permanent dataset applies to all
subsequent editions of that dataset. The default is no read
control word.

write control word. 1-8 alphanumeric characters assigned by
the dataset creator. The write control word of the oldest
existing edition of a permanent dataset applies to all
subsequent editions of that dataset. To obtain write
permission, the user must also have unique access (UQ) to
that dataset. The default is no write control word.

Maintenance control word. 1-8 alphanumeric characters. The
maintenance control word must be specified if a subsequent
edition of the same permanent dataset is saved. The default
is no maintenance control word.

Unique access. If the UQ parameter is specified, only this
job may access the permanent dataset at the completion of
the SAVE function. Otherwise, multiuser access to the
permanent dataset is granted.

No abort. If this parameter is omitted, an error causes the
job to abort.

EXO{=ON I Execute-only dataset. This parameter sets or clears the
OFF execute-only status of the dataset. EXO only or EXO=ON

causes the dataset to be saved as execute-only. EXO=OFF or
omission of this parameter causes the dataset to be saved as
a non-execute-only dataset.

SR-OOll
Part 2
4-3 J-Ol

I

I

I

I

NOTE

When processing for the SAVE request is
complete, all forms of examination of this
dataset are prohibited if EXO=ON.

ACCESS - ACCESS PERMANENT DATASET

The ACCESS control statement makes an existing permanent dataset local to
a job and can be used to create a tape dataset. Following the ACCESS
statement, all references to the permanent dataset must be by the local
dataset name specified by the DN parameter. ACCESS assures that the user
is authorized to use the permanent dataset. The ACCESS control statement
must precede the ASSIGN control statement or the open call for the
dataset. ACCESS is a system verb.

The user need not access a permanent dataset entered into the System
Directory (SDR). A tape dataset cannot reside in the SDR. A basic set of
datasets is entered into the System Directory when the operating system is
installed. These datasets include the loader, the CFT compiler, the CAL
assembler, UPDATE, BUILD, and system utility programs such as copies and
dumps. Other datasets can be entered into the System Directory according
to site requirements.

Format:

ACCESS,DN=dn,PDN=pdn,ID=uid,ED=ed,R=pd,w~t,M=mn,UQ,LE,NA,

SR-OOII

CS=CS,DF=df,DT=dt,FSEC=fsec,LB=tb,MBS=mbs,NEW,XDT=yyddd,

Part 2
4-4 J-OI

I

Parameters are in keyword form~ DN is the only required parameter for mass
storage datasets to make an existing permanent dataset local to a job.

DN=dn Local dataset name by which the permanent dataset is to be
known. This is a required parameter.

PDN=pdn Name of a permanent dataset being accessed and already
existing in the system. The default value is dn. The
name can be 1-15 characters for mass storage datasets~ it

. can be 1-44 characters for tape datasets. For a labeled
tape dataset, the right-most 17 characters of the PDN must
match the file identification field of the HDRl label.

ID=uid User identification. 1-8 alphanumeric characters. If uid
was specified at SAVE time, the ID parameter must be
specified on the ACCESS control statement. The default is
no user ID. This parameter applies to mass storage datasets
only 1 it is ignored for magnetic tape datasets.

ED=ed Edition number of permanent dataset being accessed~ a value
from 1-4095 was assigned by the dataset creator. If the ED
parameter is not specified, the default is the highest
edition number known to the system (for this permanent
dataset). This parameter applies to mass storage datasets
only~ it is ignored for magnetic tape datasets.

R=pd Read control word as specified at SAVE time. 1-8
alphanumeric characters assigned by the dataset creator.

w=wt

SR-OOll

The read control word of the oldest existing edition of a
permanent dataset applies to all subsequent editions of that
dataset. The default is no read control word. To obtain
read permission, this parameter must be specified on the
ACCESS control statement if a read parameter was specified
when the dataset was saved. This parameter applies to mass
storage datasets only~ it is ignored for magnetic tape
datasets.

write control word as specified at SAVE time. To obtain
write permission, this parameter must be specified in
conjunction with a UQ parameter on the ACCESS control
statement if a W parameter was specified when the dataset
was saved. This parameter is required prior to an ADJUST
and applies to mass storage datasets onlY1 it is ignored for
magnetic tape datasets.

Part 2
4-5 J-Ol

I

M=mn Maintenance control word as specified at SAVE time. This
parameter is specified in conjunction with a UQ parameter on
an ACCESS control statement if the dataset is to be
subsequently deleted. That is, maintenance permission is
required to delete a dataset. This parameter applies to
mass storage datasets only; it is ignored when used for
magnetic tape datasets.

UQ Unique access. If the UQ parameter is specified and the
appropriate write or maintenance control words are
specified, then write, maintenance, and/or read permission
may be granted. If UQ is not specified, then multiuser read
access is granted by default (if at a minimum, the read
control word is specified). UQ is required to delete a
permanent dataset using the DELETE control statement. This
parameter applies to mass storage datasets only; it is
ignored for magnetic tape datasets.

LE§ Lowest edition number. If the LE parameter is specified,
the lowest edition number known to the system for this
dataset is accessed. LE must not be equated with a value
and cannot be specified in conjunction with the ED
parameter. This parameter applies to mass storage datasets
only; it is ignored when used for magnetic tape datasets.

NA No abort. If this parameter is omitted, an error causes the
job to abort.

CS=cs

DF=~

Character set of tape dataset, for data only. This
parameter applies only to tape datasets; it is ignored when
used for mass storage datasets.

AS ASCII; default.
SL EBCDIC

Tape dataset format. This parameter applies only to tape
datasets; it is ignored when used for mass storage datasets.

IC Interchange format
TR Transparent format; default.

§ Deferred implementation

SR-OOll
Part 2

4-6 J-Ol

I

DT=dt Tape dataset generic device name or synonym. This parameter
is required for tape datasets.

Generic Name
*6250
*1600

Synonym
* TAPE

Significance
Device capable of 6250 bpi
Device capable of 1600 bpi1
also used to declare density
when writing

FSEC=fse~ File section number1 a numeric field from 1 through 9999
that specifies the volume in the tape dataset. The first
section (or volume) of a tape datatset is numbered 0001.
The default is 1. For example, to access a tape dataset
starting with the eighth section, specify FSEC=8 on the
ACCESS call. This parameter applies only to tape datasets1
it is ignored when used for mass storage datasets.

LB=Zb Tape dataset label type. This parameter applies only to
tape datasets1 it is ignored when used for mass storage
datasets.

BLP Bypass label processing§
SL IBM standard-labeled tapes
NL Non labeled tapes1 default
AL ANSI standard labeled tapes

MBS=mbs Maximum tape block size1 that is, the number of bytes in the
largest tape blocks to be read or written. The maximum size
allowed at the installation and the default are specified as
installation parameters. This parameter applies only to
tape datasets1 it is ignored when used for mass storage
datasets.

NEW Tape dataset is to be created1 the dataset must be written
starting at the beginning of information. This parameter
applies only to tape datasets1 it is ignored when used for
mass storage datasets.

XDT=yyddd Expiration date. Indicates the date on which this tape
dataset may be overwritten. yy specifies the year and is
a number from 0-99. ddd specifies the day in the year and
is a number from 001 through 366. This parameter applies
only to tape datasets1 it is ignored when used for mass
storage datasets.

§ Deferred implementation

SR-OOll
Part 2

4-7 J-Ol

I

RT=rat§

VOL=vo"li

Retention period. User-defined value from 1 through
4095 specifying the number of days a permanent dataset is
to be retained by the system. Similar to the XDT parameter
but allows the user to specify relative expiration date.
The default value is an installation-defined parameter.

Volume identifierJ a list of6-character alphanumeric
volume identifiers comprising the tape dataset. The
maximum number of volume identifiers per dataset is an
installation parameter.

The following tape dataset parameters specify that record and data format
conversion are to be performed at run time on the tape dataset.

CT=ct§

RS=rae

Tape dataset conversion type. ct is a 3-character code
describing the machine internal data representation.

IBM IBM 370 and compatible internal data representation

This parameter is required if run-time record and data
format conversion are performedJ default is no conversion.
This parameter applies only to tape datasetsJ it is ignored
when used for mass storage datasets. Specifying this
parameter converts data on the tape from 32-bit IBM
internal representation to 64-bit internal CRAY-1
representation. Real numbers and integers are converted.

Tape dataset record format. raf is a 1- to
8-character code describing the record type.

U IBM U (undefined) formatJ default if CT=IBM
F IBM F (fixed) format
FB IBM FB (fixed block) format
V IBM V (variable) format
VB IBM VB (variable block) format
VBS IBM VBS (variable blocked spanned) format

Tape dataset record size. rae is the decimal length of
the record expressed in units depending upon the conversion
typeJ if CT=IBM, rae is the record size expressed as a
decimal number of 8-bit byte units. If the raf parameter
is F or FB, the RSparameter is requiredJ if raf is V, VB,
or VBS, the RS parameter is optionalJ if raf is U, the RS
parameter is not pertinent as the U record format does not
contain records.

§ Deferred implementation

SR-001l
Part 2

4-8 J-01

ADJUST - ADJUST PERMANENT DATASET

I The ADJUST control statement changes the size of a mass storage permanent
dataset~ that is, it redefines the size of the dataset. When a permanent
dataset is overwritten, and the dataset size changes, issuing an ADJUST
statement informs the system of the dataset's new size. An ADJUST of a
permanent dataset may be issued if the dataset has been previously
accessed within the job with write permission. ADJUST is a system verb.

Under the appropriate conditions, ADJUST forces any unwritten data to
disk to ensure that all of the dataset is made permanent. Since this
situation occurs when the dataset has been recently written to but not
yet closed, ADJUST will attempt to close the dataset. The specific
conditions that the dataset must meet are described under the ADJUST
macro (see part 3).

I The ADJUST statement is ignored when used with magnetic tape datasets.

I

Format:

ADJUST,DN=dn,NA.

Parameters:

DN=dn

NA

Local dataset name of a permanent dataset that has been
accessed with write permission. This dataset may be closed
before the ADJUST statement is processed.

No abort. If this parameter is omitted, an error causes the
job to abort.

MODIFY - MODIFY PERMANENT DATASET

The MODIFY control statement changes permanent dataset information
established by the SAVE function or a previously executed MODIFY
function. A permanent dataset must be accessed with unique access (UQ)
and all permissions before a MODIFY of a permanent dataset can be issued.
MODIFY is a system verb.

Once a permanent dataset exists, the read, write, and maintenance control
words apply to subsequent editions of that permanent dataset. Therefore,
permission control words can be modified only for a permanent dataset
having a single edition. MODIFY applies to mass storage datasets only~ it
is ignored for tape datasets.

SR-OOll
Part 2

4-9 J-OI

•

Format:

MODIFY,DN=dn,PDN=pdn,ID=uid,ED=ed,RT=pt,R=pd,

W=wt,M=mn,NA,Exof=ON j. l OFF

Parameters are in keyword form; the only required parameter is DN.

DN=dn Local dataset name of a permanent dataset that has been
accessed with all permissions. DN is a required parameter.

PDN=pdn New permanent dataset name to be applied to the existing
dataset. If this parameter is omitted, the existing
permanent dataset name is retained.

ID=uid New user identification, to be applied to the existing
permanent dataset. 1-8 alphanumeric characters. If this
parameter is omitted, the existing user ID is retained. If
this parameter is present without a value, user
identification is established as binary zeros.

ED=ed New edition number to be applied to the existing permanent
dataset. If this parameter is omitted, the existing edition
number is retained.

RT=pt New retention period to be applied to the existing permanent
dataset. If this parameter is omitted, the current
retention period is retained. If this parameter is present
without a value, the retention period is set to the
installation-defined value.

R=pd New read permission control word to be applied to the
existing permanent dataset. If this parameter is omitted,
the existing read permission is retained. If R is present
without a value, read permission is established as binary
zeros.

w=wt

SR-OOll

New write permission control word to be applied to the
existing permanent dataset. If this parameter is omitted,
the existing write permission is retained. If W is present
without a value, write permission is established as binary
zeros.

Part 2
4-10 J-Ol

I

I

M=mn

NA

New maintenance permission control word to be applied to the
existing permanent dataset. If this parameter is omitted,
the existing maintenance permission is retained. If M is
present without a value, maintenance permission is
established as binary zeros.

No abort. If this parameter is omitted, an error causes the
job to abort.

EXOJ=ON} Execute-only dataset. This parameter sets or clears
1 OFF the execute-only status of a dataset. EXO only or

EXO=ON causes the dataset to be modified to execute-only.
EXO=OFF causes the dataset to be modified to a
non-execute-only dataset. If this parameter is omitted, the
execute-only status of a dataset is unchanged.

NOTE

When processing for the MODIFY request is
complete, all forms of examination of this
dataset are prohibited if EXO=ON.

DELETE - DELETE PERMANENT DATASET

The DELETE control statement removes a mass storage permanent dataset from
the Dataset Catalog (DSC). To issue a DELETE of a dataset, the job must
have previously accessed the dataset with maintenance permission, if
specified on the SAVE control statement, and unique access (UQ). The
dataset remains a local dataset after DELETE until job termination.
DELETE is a system verb.

Format:

DELETE,DN=dn,NA.

Parameters:

DN=dn

NA

SR-OOll

Local dataset name of a permanent dataset accessed with
maintenance permission and unique access

No abort. If this parameter is omitted, a fatal error
causes the job to abort.

Part 2
4-11 J-Ol

I

I

I

I

DATASET STAGING CONTROL

Two control statements support staging datasets between the CRAY-I and a
front-end system: ACQUIRE and DISPOSE. Another control statement,
SUBMIT, directs datasets to the CRAY input queue.

• ACQUIRE obtains a front-end resident dataset, stages it to the
CRAY-I, and makes it permanent and accessible to the job making
the request. Alternatively, if the dataset is already permanent
on CRAY-I mass storage, ACQUIRE allows dataset access to the job
making the request.

• DISPOSE directs a dataset to the specified queue for staging to a
front-end system. DISPOSE can also be used to release a local
dataset or to change dataset disposition characteristics.

• SUBMIT directs a dataset on CRAY-I mass storage local to the
submitting job to the CRAY-I input queue.

Dataset control information such as save or access codes (required by a
front-end system for management of its own files) can be sent by the
CRAY-I user to the front-end system through the use of TEXT, a special
parameter of the ACQUIRE and DISPOSE statements. The contents of the
character string provided with the TEXT parameter are defined by the
front-end system.

ACQUIRE and DISPOSE are invalid with tape datasets because these two
statements apply only to the staging of datasets between a front-end
computer system and the Cray computer. No interface exists between the
Station Call Processor (SCP) and the Tape Queue Manager (TQM). The tape
subsystem is online to the CRAY-l computer.

ACQUIRE - ACQUIRE PERMANENT DATASET

5

The ACQUIRE control statement allows the user to make a dataset permanent
and accessible to the job making the request. ACQUIRE is a system verb.

When an ACQUIRE control statement is issued, COS determines if the
requested dataset is front-end resident or permanently resident on CRAY-l
mass storage.

SR-OOll
Part 2

5-1 J-Ol

•

If the CRAY-l Operating System determines that the requested dataset is
already permanently resident on CRAY-l mass storage, dataset access is
granted to the job making the request.

If the requested dataset is not a CRAY-l permanent dataset, the request
for the dataset is sent to the front-end system. The front-end system
stages the dataset to the CRAY-l. COS then makes the dataset permanent
and grants dataset access to the job making the request. Until the
dataset is made permanent, processing of the job making the request is
delayed.

Format:

ACQUIRE,DN=dn,PDN=pdn,ID=uid,ED=ed,RT=pt,R=pd,w=wt,M=mn,

UQ,TEXT=te~t,MF=mf,TID=tid,DF=df.

Parameters are in keyword form; the only required parameter is DN.

DN=dn Local dataset name by which the permanent dataset is to be
known. 1-7 alphanumeric characters, the first of which is
A-Z, $, @, or %; remaining characters may also be numeric.
DN is a required parameter.

PDN=pdn Name of COS permanent dataset to be accessed or staged
from a front-end system, saved, and accessed. This is the
name that is saved by the system if the dataset is staged.
pdn is 1-15 alphanumeric characters assigned by the
dataset creator. The default for pdn is dn.

ID=uid User identification. 1-8 alphanumeric characters assigned
by the dataset creator. The default is no user ID.

ED=ed Edition number. A value from 1 through 4095 assigned by
the dataset creator. The default value is:

SR-OOll

• One, if a permanent dataset with the same PDN and 1D
does not currently exist, or

• The current highest edition number of that dataset
if the permanent dataset with the specified PDN and
1D does exist.

Part 2
5-2 J-Ol

•

RT=pt

w=wt

M=rrm

UQ

TEXT=text

Retention period. User-defined value from 0-4095
specifying the number of days that a permanent dataset is
to be retained by the system. The default value is an
installation-defined parameter.

Read control word. 1-8 alphanumeric characters assigned by
the dataset creator. The default is no read control word.

write control word. 1-8 alphanumeric characters assigned
by the dataset creator. The default is no write control
word.

Maintenance control word. 1-8 alphanumeric characters
assigned by the dataset creator. The control word must be
specified if a subsequent edition of the permanent dataset
is saved. If no staging occurs, and the dataset is to be
subsequently deleted, this parameter may be specified in
conjunction with the UQ parameter (that is, maintenance
permission is required to delete a dataset) •

Unique access. If specified, the job is granted unique
access to the permanent dataset; otherwise, multiaccess to
the permanent dataset is granted. If no staging is
performed because the dataset already exists, write,
maintenance, and/or read permission may be granted if the
appropriate write or maintenance control words are
specified.

Text to be passed to the front-end system requesting
transfer of the dataset. The format for TEXT is defined by
the front-end system for managing its own datasets or
files. Typically, text is in the form of one or more
control statements for the front-end system~ these
statements must contain their own terminator for the front
end. Any COS record control words are extracted from the
text string before it is passed to the front end. text
cannot exceed 240 characters.

MF=mf Mainframe identifier for the front-end computer. Two
alphanumeric characters. The default is the mainframe of
job origin.

TID=tid Terminal identifier. 1-8 alphanumeric characters
identifying destination terminal. The default is terminal
of job origin.

DF=df Dataset format. This parameter defines whether a dataset
is to be presented to the CRAY-l in COS blocked format and
whether the front-end system is to perform character
conversion. The default is CB.

SR-OOll
Part 2

5-3 J-Ol

I

I

For example, a user may wish to acquire a dataset from
magnetic tape in blocked binary as it appears at the
front-end system. In this case, BB is specified.

4f is a 2-character alpha code defined for use on the
front-end system. The default is CB. Cray Research
suggests support of the following codes:

CD Character deblocked. The front-end system performs
character conversion to 8-bit ASCII, if necessary.

CB Character blocked. The front-end system blocks the
dataset prior to staging and performs character
conversion to a-bit ASCII, if necessary.

BD Binary deblocked. The front-end system-does not
perform character conversion. For ACQUIRE, BD is the
same as TR.

BB Binary blocked. The front-end system blocks the
dataset prior to staging but does not do character
conversion.

TR Transparent. No blocking/deblocking or character
conversion is performed.

DISPOSE - DISPOSE DATASET

The DISPOSE control statement directs a dataset to the CRAY-I output
queue for staging to a specified front-end computer system (mainframe).
DISPOSE can also be used to alter dataset disposition characteristics or
to release a dataset.

Defining the DISPOSE characteristics can be done before the actual
staging via the DEFER parameter. The DEFER parameter saves all selected
dispose parameters for use when the dataset is released, which is when
the actual staging is initiated. DISPOSE is a system verb.

SR-OOlI
Part 2

5-4 J-OI

I

Format:

DISPOSE,DN=dn,SDN=sdn,DC=dc,DF=df,MF=mf,SF=sf,ID=uid,TID=tid,

ED=ed,RT=~t,R=~d,w=Wt,M=mn,TEXT=text,wAIT,NOWAIT,DEFER,NRLS.

Parameters are in keyword form, the only required parameter is DN.

DN=dn Local dataset name. Name by which the dataset is known at
the CRAY-l. DN is a required parameter.

SDN=sdn Staged dataset name. 1-15 character name by which the
dataset will be known at destination mainframe. The
default for sdn is dn.

Dc=dc Disposition code. Disposition to be made of the dataset.

SR-OOll

The default is PR when the DC parameter is omitted.

de is a 2-character alpha code describing the destination
of the dataset as follows:

IN Input (job) dataset. Dataset is queued as a job on
the mainframe specified with the MF parameter.

ST Stage to mainframe. Dataset is made permanent at the
mainframe designated by the MF parameter.

SC Scratch dataset. Dataset is released.

PR Print dataset. Dataset is printed on a printer
available at the mainframe designated by the MF
parameter.

PU Punch dataset. Dataset is punched on any card punch
available at the mainframe designated by the MF
parameter.

PT Plot dataset. Dataset is plotted on any available
plotter at the mainframe designated by the MF
parameter.

Part 2
5-5 J-Ol

DF=df

MF=mf

SR-OOII

MT Write dataset on magnetic tape at the mainframe
designated by the MF parameter.

Dataset format. This parameter defines whether a dataset
is sent from the CRAY-l in COS blocked format and whether
the front-end system is to perform character conversion.
The default is CB.

For example, a user may wish to save a dataset on magnetic
tape in blocked binary as it appears at the CRAY-l. In
this case, BB is specified. A user who wants a dataset
printed will specify CB if the front-end computer handles
deblocking.

df is a 2-character alpha code defined for use on the
front-end system. Cray Research suggests support of the
following codes:

CD Character deblocked. The front-end system performs
character conversion from 8-bit ASCII, if necessary.

CB Character blocked. No deblocking is performed at the
CRAY-I prior to staging. The front-end system
performs character conversion from 8-bit ASCII, if
necessary.

BD Binary deblocked. The front-end system does not
perform character conversion.

BB Binary blocked. The front-end system does not
perform character conversion. The CRAY-I does not
perform deblocking prior to staging. For DISPOSE, BB
is the same as TR.

TR Transparent. No blocking/deblocking or character
conversion is performed.

Other codes may be added by the local site. Undefined
pairs of characters may be passed but will be treated as
transparent mode by the CRAY-I.

Mainframe computer identifier. Two alphanumeric
characters. Identifies the front-end station where the
dataset is to be staged. If omitted, the mainframe where
the issuing job originated is used. If MF is given a value
of a CRAY-I ID and DC=IN, the dataset is disposed to the
CRAY-I input queue after issuing a warning message (see
note) •

Part 2
5-6 J-Ol

NOTE

In future versions of COS, the SUBMIT control statement
will be the only way to place datasets into the CRAY-1
job input queue. Therefore, it is advisable to use
SUBMIT instead of DISPOSE to dispose datasets to the
CRAY-1 input queue. If DISPOSE is used to submit a job
to the CRAY-1 input queue, the following informative
message is printed in the logfile: SY004 - USE SUBMIT
TO PLACE JOBS IN CRAY INPUT QUEUE.

SF=S! Special form information to be passed to the front-end
system. 1-8 alphanumeric characters. SF is defined by the
needs of the front-end system.

ID=uid User identification. 1-8 alphanumeric characters assigned
by the dataset creator. The default is no user ID.

TID=tid Terminal identifier. 1-8 alphanumeric characters
identifying destination terminal. The default is terminal
of job origin, where applicable.

ED=ed Edition number, meaningful only if DC=ST. A user-defined
value from 1 through 4095. The default value depends on
the destination mainframe.

RT=pt Retention period, meaningful only if DC=ST. A user-defined
value from 0 through 4095 specifying the number of days a
dataset is to be retained by the destination mainframe.
The default value depends on the destination mainframe.

R=pd Read control word, meaningful only if DC=ST. 1-8
alphanumeric characters. The default is no read control
word.

w=wt Write control word, meaningful only if DC=ST. 1-8
alphanumeric characters. The default is no write control
word.

M=mn Maintenance control word, meaningful only if DC=ST. 1-8
alphanumeric characters. The default is no maintenance
control word.

SR-0011
Part 2

5-7 J-01

TEXT=text

WAIT

I
NOWAIT

I
DEFER

N~S

I

SR-OOll

Text to be passed to the front-end system requesting
transfer of a dataset. The format for TEXT is defined by
the front-end system for managing its own datasets or
files. Typically, text is in the form of one or more
control statements for the front-end system: these
statements must contain their own terminator for the front
end. Any COS record control words are extracted from the
text string before it is passed to the front end. text
cannot exceed 240 characters.

Job wait. When this parameter is specified, the job does
not resume processing until the disposed dataset has been
staged to the front-end system. If the front-end system
cancels the transfer, the waiting job is aborted.
Processing then resumes after the next EXIT statement, if
one is present. If WAIT is not specified, processing
resumes immediately upon issue of the DISPOSE, depending
upon an installation option. The WAIT parameter is useful
in detecting unsuccessful transfers.

Job no wait. When this parameter is specified, the job
will not wait until the dataset has been staged to the
front-end system but resumes processing immediately. If
the front-end system cancels the transfer, no special
action is taken, that is, the job is not aborted. If
NOWAIT is not specified, processing resumes immediately
upon issue of the DISPOSE, depending upon an installation
option.

When this parameter is specified, the disposition occurs
when the dataset is released either by a RELEASE request or
job termination. The dispose characteristics are saved and
used when the dataset is released.

No release. When this parameter is specified, the dataset
remains local to the job after the DISPOSE request has been
processed. When N~S is specified on a DISPOSE control
statement, the dataset cannot be written to, until the
transfer to the specified front-end is completed.
Therefore, it is advisable to use WAIT with N~S.

Part 2
5-8 J-Ol

I

SUBMIT - SUBMIT JOB DATASET

With SUBMIT, a job running on the CRAY-l can direct another dataset
(which must also be a job) to the CRAY-l input queue. The job that is
submitted executes independently of the submitting job. SUBMIT is a
system verb.

Format:

SUBMIT,DN=dn,SID~,DID=mf,TID=tid,DEFER,NRLS.

Parameters are in keyword format1 the only required parameter is DN.

DN=dn Local dataset name. A valid local dataset name. DN is a
required parameter and must be given a value.

SID=mf Default source front-end system identifier. Two
alphanumeric characters. If an MF parameter is not
specified in an ACQUIRE control statement for the submitted
job, the SID parameter defines the default source front-end
system for the dataset to be acquired. If the MF parameter
as well as the SID are omitted, the default source
identifier of the submitting job is used.

DID9mf Default destination mainframe identifier. Two alphanumeric
characters. If an MF parameter is not specified in a
DISPOSE control statement for the submitted job, the DID
parameter defines the default destination front-end system
for the dataset to be acquired. If the MF parameter as
well as the DID are omitted, the default destination
identifier of the submitting job is used.

TID=tid Default terminal identifier. 1-8 alphanumeric character
identifier which defines the default terminal ID for the
submitted job. If omitted, then the terminal ID of the
submitting job is used.

DEFER Deferred submit. Selection of this parameter causes the
SUBMIT characteristics to be defined, with a release of the
dataset actually initiating the submit of the dataset. If
omitted, the SUBMIT occurs immediately.

SR-OOll
Part 2

5-9 J-Ol

NRLS

I SR-0011

No release. This parameter indicates if the dataset is to
remain local to the job after SUBMIT has been processed.
If omitted, the dataset is released after the SUBMIT. If
selected, the dataset remains local to the job after the
SUBMIT. If the dataset is not released, it is available
for reading only. When NRLS is specified on a SUBMIT
control statement, the dataset cannot be written to, until
the transfer to the specified front-end is completed.

Part 2
5-10 J-01

OAT ASET UTILITIES 6

Utility control statements provide the user with a convenient means of
copying, positioning, or dumping datasets. The following utilities
are available to the user:

• COPYR, COPYF, and COPYD allow the user to copy records, files,
or datasets, respectively.

• SKIPR, SKIPF, and SKIPD allow the user to skip records, files,
or datasets, respectively.

• REWIND positions a dataset at the beginning of data, that is,
prior to the first block control word of the dataset.

• WRITEDS is intended for initializing a random dataset but may
also initialize a sequential dataset.

All parameters are in keyword form and have default values.

COPYR - COpy RECORDS

The COPYR statement copies a specified number of records from one
dataset to another starting at the current dataset position.
Following the copy, the datasets are positioned after the
end-of-record for the last record copied.

Format:

COPYR,I=idn,O=odn,NR=n.

SR-OOll
Part 2
6-1 I

Parameters are in keyword form.

I=idn

o=odn

NR=n

Name of dataset to be copied. The default is $IN.

Name of dataset to receive the copy. The default is
$OUT.

Decimal number of records to copy. The default is 1.
If the dataset contains fewer than n records, the copy
prematurely terminates on the next end-of-file.
End-of-file or end-of-data is not written. If the
keyword NR is specified without a value, the copy
terminates at the next end-of-file. If the input
dataset is positioned midrecord, the partial record is
counted as one record.

COPYF - COpy FILES

The COPYF statement copies a specified number of files from one
dataset to another starting at the current dataset position.
Following the copy, the datasets are positioned after the end-of-file
for the last file copied.

Format:

COPYF, I~dn , O=odn , NF=n •

Parameters are in keyword form.

I=idn

o=odn

NF=n

SR-OOll

Name of dataset to be copied. The default is $IN.

Name of dataset to receive the copy. The default is
$OUT.

Decimal number of files to copy. The default is 1. If
the dataset contains fewer than n files, the copy
prematurely terminates on end-of-data. End-of-data is
not written. If the keyword NF is specified without a
value, the copy terminates at the end-of-data. If the
input dataset is positioned midfile, the partial file
counts as one file.

Part 2
6-2 I

I

COPYD - COpy DATASET

The COPYD statement copies one dataset to another starting at their
current positions. Following the copy, both datasets are positioned
after the end-of-file of the last file copied. The end-of-data is not
written to the output dataset. Both input and output datasets must be
blocked.

Format:

COPYD,I=idn,O=odn.

Parameters are in keyword form.

I=idn Name of dataset to be copied. The default is $IN.

O=odn Name of dataset to receive the copy. The default is $OUT.

SKIPR - SKIP RECORDS

The SKIPR control statement directs the system to bypass a specified
number of records from the current position of the named dataset.

Format:

SKIPR,DN=dn,NR=n.

Parameters are in keyword form.

DN=dn Name of dataset to be bypassed. The default is $IN.

NR=n Decimal number of records to skip. The default is 1. If
the keyword NR is specified without a value, the system
positions dn after the last end-of-record of the current
file. If n is negative, SKIPR skips backward on dn.

SR-OOll
Part 2

6-3 J-Ol

I

I

SKIPR does not bypass an end-of-file or beginning-
of-data. If an end-of-file or beginning-of-data is
encountered before n records have been bypassed when
skipping backward, the dataset is positioned after the
end-of-file or beginning-of-data: when skipping forward,
the dataset is positioned after the last end-of-record of
the current file. This statement is available for use with
online tapes except that a negative value cannot be used
for NR.

SKIPF - SKIP FILES

The SKIPF control statement directs the system to bypass a specified
number of files from the current position of the named dataset.

Format:

SKIPF,DN=dn,NF=n.

Parameters are in keyword form.

DN=dn

NF=n

SR-OOll

Name of dataset to be bypassed. The default is $IN.

Decimal number of files to bypass. The default is 1. If
the keyword NF is specified without a value, the system
positions dn after the last end-of-file of the dataset.
If n is negative, SKIPF skips backward on dn.

If dn is positioned midfile, the partial file skipped
counts as one file.

SKIPF does not bypass an end-of-data or beginning-of-data.
If beginning-of-data is encountered before n files have
been bypassed when skipping backward, the dataset is
positioned after the beginning-of-data: when skipping
forward, the dataset is positioned before the end-of-data
of the current file. This statement is available for use
with online tapes except that a negative value cannot be
used for NF: for interchange format tapes (DF=IC), NF can
only be 1.

Part 2
6-4 J-Ol

For example, if dn is positioned just after an
end-of-file, the following control statement will position
dn after the previous end-of-file. If dn is positioned
midfile, dn will be positioned at the beginning of that
file.

SKIPF,DN=dn,NF=-l.

SKIPD - SKIP DATASET

The SKIPD control statement directs the system to position a dataset at
end-of-data, that is, after the last end-of-file of the dataset. It has
the same effect as the following statement:

SKIPF,DN=dn,NF.

If the specified dataset is empty or already at end-of-data, the
statement has no effect.

Format:

SKIPD,DN=dn.

The parameter is ,in keyword form.

DN=dn Name of dataset to be skipped. The default is $IN.

REWIND - REWIND DATASET

The REWIND control statement positions the named datasets at the
beginning-of-data, that is, prior to the first block control word of the
dataset. The $IN dataset represents an exception. After REWIND, $IN is
positioned after the control statement file. If any of the named
datasets is not open, REWIND opens it. REWIND is a system verb.

SR-OOll
Part 2

6-5 J

I

I

REWIND causes an end-of-data to be written to the dataset if the previous
operation was a write or if the dataset is null. If the dataset is not
memory resident, the buffers are flushed to mass storage when REWIND
follows a write operation. If the dataset is memory resident, the
end-of-data is still placed in the buffer, but the buffer is not
flushed. For an online magnetic tape dataset, REWIND positions the tape
dataset to the beginning of the first volume accessed by the user.

Format:

Parameters are in keyword form.

DN=dn.
~

Names of datasets to be rewound. A maximum of eight
datasets can be specified, separated by colons.

WRITEDS - WRITE RANDOM OR SEQUENTIAL DATASET

The WRITEDS control statement is intended for initializing a blocked
dataset. It writes a dataset containing a single file consisting of a
specified number of records of a specified length. This utility is
especially useful for random datasets because a record written on a
random dataset must end on a pre-existing record boundary. Direct-access
datasets, implemented in eFT as defined by the ANSI x3.9-1978 FORTRAN
standard, can be initialized (and even extended) without the help of
WRITEDS.

WRITEDS can also be used to write a sequential dataset.

Format:

WRITEDS,DN=dn,NR=np,RL=p~.

Parameters are in keyword form; the only required parameters are DN and
NR.

DN=dn Name of dataset to be written. DN is a required parameter.

Part 2
SR-OOll 6-6 J-OI

NR=nra

RL=ral.

I

SR-OOll

Decimal number of records to be written. NR is a required
parameter. Set to the largest value that may be needed,
since a dataset cannot be extended when it is in random
(ROM) mode.

Decimal record length, that is, the number of words in each
record. The default is zero words, which generates a null
record.

If the record length is 1 or greater, the first word of
each record is the record number as a binary integer
starting with 1.

Part 2
6-7 J-Ol

PERMANENT DATASET UTILITIES

The following utility routines are provided for permanent datasets:

• PDSDUMP dumps all specified permanent datasets to a
user-specified dataset. Input and output datasets may be
included in the dump.

• PDSLOAD loads permanent datasets that have been dumped by
PDSDUMP and updates or regenerates the Dataset Catalog. Input
and output datasets are also loaded via PDSLOAD.

• AUDIT produces a report containing status information for each
permanent dataset. AUDIT does not include input or output
datasets.

PDSDUMP - DUMP PERMANENT DATASET

PDSDUMP dumps specified permanent datasets to a dataset, which may
then be saved or staged to a station as desired. Conditions that
cause a dataset to be omitted from dumping include:

• The dataset is execute-only,
• There are dataset allocation conflicts,
• The dataset has catastrophic errors,
• Inconsistent allocation has occurred,
• The dataset resides on a down device, or
• The dataset has an inactive entry in the system's Queued

Dataset Table (QDT).

Format:

PDSDUMP,DN=dn,DV=Zdv,PDS=pds,cw=cW,

SR-OOII

ID=uid,Us=usn,ED=ed,x,C,D,I,O,S.

Part 2
7-1

7

J

I

I

I

All parameters are in keyword form. Optional parameters establish
criteria for datasets being dumped.

DN=dn

Dv=Zdv

PDs=pds

CW=aw

ID=uid

US=usn

ED=ed

x

C

D

I

o

S

Name of dataset where dump is written. The default is
$PDS. Multiple dumps to a dataset are possible; if the
dataset specified already exists, the dump is appended to
it.

Dump all datasets residing on logical device Zdv.
Currently only one Zdv can be specified.§

Dump all editions of the specified permanent dataset.
Editions may be limited by ED parameter.§

Installation-defined control word regulating use of
PDSDUMP. If the user number is specified on the JOB
control statement, the CW parameter is not usually
required; only the datasets with that user number are
selected. If the CW parameter is omitted, only the
datasets belonging to the user number as specified on the
JOB control statement can be dumped. If the CW parameter
is present and the correct control word is used, any
dataset can be dumped. If an invalid control word is .
given, the job is aborted. When the user number is omitted
from the JOB control statement, CW is a required parameter.

Dump all datasets with user identification as specified.§
If ID is specified without a value, all datasets which meet
the rest of the criteria and have a null id are dumped.

Dump all datasets with specified user number.§

Edition number of permanent dataset dumped; meaningful only
if PDS parameter is specified.§

Dump expired datasets.

Dump selected datasets never dumped or datasets modified
since the last dump of the dataset.

Delete datasets that are dumped.

Dump system input datasets.

I Dump system output datasets. See note

Dump user permanent datasets.

§ By default, all permanent datasets specified by the parameters are
dumped.

SR-OOll
Part 2

7-2 J-Ol

NOTE

If none of these parameters is specified, the input,
output, and user permanent datasets are all dumped.
If any of these parameters is specified, only those
datasets of the type specified are dumped.

Multiple calls to PDSDUMP may be made if the dump dataset is to include
several permanent datasets requiring specification of different
parameters.

Example:

PDSDUMP,DN=DUMPA,PDS=LIBI.
PDSDUMP,DN=DUMPA,PDS=LIB2.

This example results in a dataset DUMPA that contains all editions of
LIBI and all editions of LIB2.

PDSDUMP produces a listing (figure 7-1) on $OUT identifying the datasets
dumped or bypassed and summarizing the dump run. The date and time in
the heading line refer to the time when the dump run started. The
permanent dataset name, edition number, ID, and user number are extracted
from the DSC entry for each dataset selected. Each message is followed
by the notation DUMPED or NOT DUMPED. The notation NOT DUMPED indicates
the dataset was selected but could not be accessed for dumping. A user
logfile message further explains the problem encountered.

When dumping to a tape dataset, the recording format for the tape dataset
must be transparent (for example, DF=TR on ACCESS statement). If the
dataset is recorded in interchange format loading, using the dump dataset
leads to unsuccessful results.

SR-OOll
Part 2

7-3 J-Ol

I

PDSDUMP - PERMANENT DATASET DUMP UTILITY DUMP ON 01/07/82 AT 14:50:44
AUDPL ED=OOOl ID=QITTYQAT USR=SYSTEM
AUDPL ED=0002 ID=QITTYQAT USR=SYSTEM
DSCED ED=OOOl ID=QITTYQAT USR=SYSTEM
DSCED ED=0002 ID=QITTYQAT USR=SYSTEM
TXBUILD ED=OOOl ID=QITTYQAT USR=SYSTEM
TXBUILD ED=0002 ID=QITTYQAT USR=SYSTEM
TXBUILD ED=0003 ID=QITTYQAT USR=SYSTEM
LONGDATASETNAME ED=OOOl ID=QITTYQAT USR=SYSTEM
LONGDATASETNAME ED=0002 ID=QITTYQAT USR=SYSTEM
LONGDATASETNAME ED=0003 ID=QITTYQATUSR=SYSTEM
LONGDATASETNAME ED=0004 ID=QITTYQAT USR=SYSTEM
DSBUILD ED=OOOl ID=QITTYQAT USR=SYSTEM
DSBUILD ED=0002 ID=QITTYQAT USR=SYSTEM
DSBUILD ED=0003 ID=QITTYQAT USR=SYSTEM
DSBUILD ED=0004 ID=QITTYQAT USR=SYSTEM
AUDPL ED=0003 ID=QITTYQAT USR=SYSTEM
DSCED ED=0003 ID=QITTYQAT USR=SYSTEM
TXBUILD ED=0004 ID=QITTYQAT USR=SYSTEM
AUDPL ED=0004 ID=QITTYQAT USR=SYSTEM
DSCED ED=0004 ID=QITTYQAT USR=SYSTEM

20 DATASETS SELECTED FOR DUMPING

Figure 7-1. PDSDUMP listing

PDSLOAD - LOAD PERMANENT DATASET

DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED

PDSLOAD loads permanent datasets from a dataset created by PDSDUMP. If
the dataset already exists, it is not reloaded.

Format:

PDSLOAD,DN=dn,PDS=pds,cw=Cw,ID=uid,US=usn,ED=ed,Dv=dvn,A,I,O,S,NA.

All parameters are in keyword form. Optional parameters establish
criteria for datasets being loaded.

DN=dn

PDS=pds

Name of dataset from which permanent dataset is to be
loaded. The default is $PDS.

Load all editions of the specified permanent dataset.
Editions may be limited by the ED parameter.§

§ By default, all permanent datasets that are specified by the
parameters are loaded.

SR-OOll
Part 2

7-4 J-Ol

I

I

CW=CW

ID=uid

US=usn

ED=ed

DV=dvn

A

I

o

S

NA

Installation-defined control word to regulate the use of
PDSLOAD. The CW parameter is usually not required. If the
CW parameter is used when the user number is specified, the
datasets with the user number are searched. If the OW
parameter is omitted when the user number is specified,
only the datasets belonging to that user number may be
loaded.

When the user number is omitted from the JOB control
statement, CW is a required parameter. When the CW
parameter is specified on the PDSLOAD control statement,
the user can load any datasets with the correct control
word. If an invalid control word is given, the job is
aborted.

Load all data sets with user identification as specified.

Load all datasets with specified user number.§

Edition number of dataset to be 10adedJ meaningful only if
PDS parameter is specified.§

The name of a logical device where the output dataset is
assigned before it is opened. If omitted, COS assigns a
device at open time. If specified, the supplied device
name is built into the DNT entry for the output dataset
(the one being loaded). Note that COS can choose not to
honor this assignment. This parameter is not involved in
any way in the selection of a dataset for loading.

Load only active datasetsJ that is, do not load expired
datasets.

Load input datasets. I
Load output datasets.

Load saved datasets.

See note following.

Do not abort if there is not a dataset matching the
specifications to load on the $PDS dataset. This parameter
applies only to this situation. It does not prevent any
other abort condition from occurring or offer reprieve
processing of any kind.

§ By default, all permanent datasets that are specified by the parameters
are loaded.

SR-OOII
Part 2

7-5 J-OI

I

NOTE

If none of these parameters is specified, the
input, output, and saved datasets are loaded.
If any of these parameters is specified, only
those datasets of the type specified are loaded.

PDSLOAD produces a listing on $OUT identifying the datasets loaded or
bypassed and summarizing the load run. The date and time in the heading
line refer to the time when the load run started. The permanent dataset
name, edition number, ID, and user number are extracted from the PDD for
each dataset selected and successfully loaded. Each message is followed
by the notation LOADED or NOT LOADED. The notation NOT LOADED indicates
the dataset was selected but not loaded. A user logfile message further
explains the problem encountered.

PDSLOAD -
ENTIT
DSBUILD
TXBUILD
AUDPL
DSCED

PERMANENT DATASET RESTORE UTILITY LOAD ON 01/07/82 AT 17:13:47
ED=OOOI ID=TAQI USR=SYSTEM LOADED
ED=OOOI ID=TAQI USR=SYSTEM LOADED
ED=OOOI ID=TAQI USR=SYSTEM
ED=OOOI ID=TAQI USR=SYSTEM
ED=OOOI ID=TAQI USR=SYSTEM

5 DATASETS SELECTED FOR LOADING

AUDIT - AUDIT PERMANENT DATASETS

LOADED
LOADED
LOADED

The AUDIT utility provides reports on the status of each permanent dataset
known to the system. If the user number for the job is SYSTEM, AUDIT reports
on all permanent datasets. Otherwise, AUDIT only reports on those permanent
datasets whose user number matches the user number for the job. AUDIT does
not include input and output datasets.

If more than one parameter is selected, only those datasets which meet all
criteria are listed. Parameter values can be selected that conflict with each
other, such as PDN and PREFIX. For example, requesting that permanent dataset
names that begin with ABC (PDN=ABC-) and whose prefix characters are BOT
(PREFIX=BOT) would result in no permanent datasets being listed.

AUDIT supplies the following information on the listing:

Permanent dataset name
Edition number
User identifications
Dataset size in words
Retention time in decimal
Number of accesses in decimal
Total block count in decimal

SR-OOll

Creation date/time
Last dump date/time
Last access date/time
Last modification date/time
Logical device name
Number of datasets selected

Part 2
7-6 J-Ol

•

Format:

AUDIT,L=Zdn,B=bdn,PDN=pdn, ID=uid,PREFIX=pfx, Dv=dvn,

sz=dsz,X=.mm/dd/yy:'hh:mm:ss',TCR=.mm/dd/yy:'hh:mm:ss',

TLA=.mm/dd/yy:'hh:mm:ss',TLM=mm/dd/yy:'hh:mm:ss'.

Parameters are in keyword form.

L=Zdn List dataset name. The default is $OUT.

B=bdn Specifies dataset to receive the binary output. If B is
specified alone, the dataset is $BINAUD. If the B parameter
is omitted, no binary output is written. For a description
of the binary output format, refer to the COS Product Set
Internal Reference Manual, eRI publication SM-004l.

PDN=pdn Name of permanent dataset or datasets to be listed. Up to
15 alphanumeric characters may be specified. A shorthand
notation may be used where a dash represents any number of
characters or no characters and an asterisk represents any
one character.

SR-OOII

Examples:

PDN=ABC- List all permanent dataset names beginning
with ABC.

PDN=A*** List all 4-character permanent dataset names
beginning with A.

PDN=-A*- List all permanent dataset names containing
the letter A followed by one or more other
characters.

PDN=- List all names.

PDN=***- List all names having three or more
characters.

Part 2
7-7 J-Ol

I
ID=uid List all permanent datasets with the specified user

identification. The default is to list all IDs. If ID is
present without an equated value, datasets having a null id
are selected.

PREFIX=pf~

Dv=dvn

sZ=dsz

List all permanent datasets whose names begin with the
specified prefix. pf~ is 1-8 characters. The default is
no prefix specified.

List all permanent datasets on the specified logical
device. The default is to list permanent datasts on all
devices.

List all permanent datasets greater than or equal to the
specified size. Size is specified in words. The default is
to list all sizes.

X=mm/dd/yy:'hh:mm:ss'
List all permanent datasets that are expired as of the
specified mm/dd/yy:'hh:mm:ss'. mmfdd/yy
may be specified alone. The default expiration date and
time are "now" if only X is specified.

TCR=mm/dd/yy: 'hh:mm:ss'
List all permanent datasets that have been created since the
specified mm/dd/yy:'hh:mm:ss'. The keyword
cannot be specified alone; however, TCR=mmVddlyy is
sufficient.

TLA=mm/ddlyy:'hh:mm:ss'
List all permanent datasets that have not been accessed
since the specified mm/dd/yy:'hh:mm:ss'. The
keyword cannot be specified alone; however,
TLA=mm/dd/yy is sufficient.

TLM=mm/dd/yy:'hh:mm:ss'

SR-OOll

List all permanent datasets that have been modified since
the specified mrnVdd/yy:'hh:mm:ss'. The keyword
cannot be specified alone; however, TLM=mmVddlyy is
sufficient.

Part 2
7-8 J-Ol

I

I

ANALYTICAL AIDS

The following control statements provide analytical aids to the
programmer:

• DUMPJOB and DUMP are generally used together to examine the
contents of registers and memory as they were at a specific time
during job processing. DUMPJOB captures the information so that
DUMP can later format selected parts of it.

• DEBUG produces a symbolic dump.

• DSDUMP dumps all or part of a dataset to another dataset in one of
two formats: blocked or unblocked.

• COMPARE compares two nearly identical datasets and lists all
differences.

• FLODUMP dumps flowtrace tables when a program aborts with
flowtrace active.

• PRINT writes the value of an expression to the logfile.

• SYSREF generates a global cross-reference listing for a group of
CAL or APML programs.

DUMPJOB - CREATE $DUMP

The DUMPJOB control statement causes creation of the local dataset $DUMP,
if not already existent. $DUMP receives an image of the memory assigned
to the job (JTA and user field) when the DUMPJOB statement is
encountered. If DUMPJOB is placed after a system verb (excluding the
comment and EXIT statements), the dump is of the Control Statement
Processor (CSP). A DUMPJOB statement is not honored if an execute-only
dataset is loaded in memory; a DUMPJOB to an execute-only dataset is
rejected.

If $DUMP already exists, it is overwritten each time a DUMP JOB control
statement is processed. If $DUMP is permanent and the job does not have
write permission, DUMPJOB aborts. If $DUMP is permanent and the job has
write permission, the dataset is overwritten.

8

SR-OOll
Part 2

8-1 J-Ol

I
If the DUMPJOB/DUMP sequence fails because of such situations as
destroyed system-managed DSPs, assign $DUMP and save it with unique
access. DUMPJOB writes to $DUMP, and job termination automatically
adjusts $DUMP. $DUMP can then be inspected in a separate job.

$DUMP is created as an unblocked dataset by DUMPJOB for use by DUMP.
DUMPJOB is a system verb and cannot be continued to subsequent cards.

Format:

Parameters: none

DUMP - DUMP REGISTERS AND MEMORY

DUMP reads and formats selected parts of the memory image contained in
$DUMP and writes the information onto another dataset. The DUMP
statement can be placed anywhere in the control statement file after
$DUMP has been created by the DUMPJOB control statement.

Placing the DUMP JOB and DUMP statements after an EXIT statement is
conventional and provides the advantage of giving the dump regardless of
which part of the job causes an error exit. The usage of DUMP and
DUMPJOB, however, is not restricted to this purpose.

DUMP can be called any number of times within a job. This might be done
to dump selected portions of memory from a single $DUMP dataset or it
might be done if $DUMP has been created more than once in a single job.

Format:

DUMP ,I=idn,O=odn,FW=!wa,LW=l:wa,JTA,NXP,V ,DSP , FORMAT=! ,CENTER.

Parameters are in keyword form.

I=idn

O=odn

SR-OOll

Name of the dataset containing the memory image. The
dataset $DUMP is created by DUMPJOB and is the default, but
any dataset in the $DUMP (unblocked) format is acceptable.

Name of the dataset to receive the dump; default is $OUT.

Part 2
8-2 J-Ol

FW=fUJa Octal fir st word addr ess of memory to dump. The de'faul t
is o.

LW=z'UJa octal last word address+l of memory to dump. The
default is 20°8. Specifying the keyword LW without a
value causes the limit address to be used.

JTA Job Table Area to be dumped. The default is no dump.

NXP No exchange package, B registers, or T registers
dumped. The default causes exchange package, B
registers, and T registers to be dumped.

v Vector registers to be dumped. The default is no dump
of V registers.

DSP Logical File Tables (LFTs) and Dataset Parameter Areas (DSPs)
to be dumped. The default is to not dump LFTs and DSPs.

FORMAT=f Format for the part of memory selected by FW and LW.

CENTER

SR-OOll

The options are:

a Octal integer and ASCII character. This is
the default.

D Decimal integer and ASCII character

X Hexadecimal integer and ASCII character

G Floating point or exponential (depending on
the value of the number) and ASCII character

P 16-bit parcel (4-word boundaries are forced
for FW and LW)

M Mixed hexadecimal and octal written in ASCII.
Each 16-bit parcel is represented as five
characters: the first is a hexadecimal digit
representing the upper 4 bits and the next
four are octal characters representing the
lower 12 bits.

Dump 1008 words on each side of the address contained
in the P register of the exchange package. The format
is P.

Part 2
8-3 I

Examples:

The following example is a portion of the dump obtained using format
0, the default format type:

JOP-1935 1849::S

0000100 0451172043047114632400 0000000000022000137000 00{'004001170000e111'3600 0000070000000000116S6.'? ~1()1I19C1S

0('001. 04 0000000000000000000000 1 (~0()('0(100eOOO0l~ 00000000\:'00I:,'0OOL'00l'000 00000000\hl\:"\ooOOt..~'I()
0-J.)(1110 ()0(\00000000000000~)0 0000000000000~:l<*-"OOooe-.) ~)00000000\?I000000 ~0~

-tt1.t..J:
o '(", J'4 C:"~'000~X'00()("0000 0<'~00000Q('00V)00I"00 0::l007U:'l(-;3I:"461 L163-3471 (']047(\1~,'J2(\71 H;43t4GS ('g/l V~~lr 4<:',35
(":', '0 1 >'0 (1<~l00O(l00<."0I.-,c?{'t00l)I"OOO() 0000I:'C"0(lOO('I)('I('IX'0l\('lc)l.-:"I,' \)('If't('I\~\'''('t('11('I('(X"0('001)0000 ~)OO(1000("'~'I.'0("-'l:"('t('('t(?!O
00')01;'4 0<¥10I~0000t~~OO(XM 0:·1~07'1 J -*,J04f~I1:#;~n1/1 W*"P(I\l:'<13?IVl 1(.;431-1(.5 {Xl\X"000(X'0(l(X~'IXX'I(I(I('I.' O~l/11/;'91S 49 :~
00I)'-';~'(l'1' 04?1,'S;'3?S00402144;l5;-:;-' 04(;:.eV':;4"\2~11?<1?82S0t0'; p~; l'I01-J0(,I000000('I0000(IOO l)301~?11 :<GJ04G11 :.l(;J347\ DlII-P F~'io'\T TYPE<: ('\<.V\ 1,';'9
OO()0,:'('-1 0j04'~0164]?0~'1 1643t4f1~; 000i'l0("l(10,('li'I'II-)0I·I('CI0(.l0I"0I' 1 T' /771, ':'7~' l:'?17'J?J777 1234':.G,701234!:.G7('I1234~~; 18 49, JS
00'~~"?t0 C'113Cll.,I(;::t14R3146314F;)14':; 01044;'I"l'H -)21?!,/c']I-)'H?'., 1.401-;"', 7,:;143'-A::X'~2,~112}4 C'l377124('00001-~00(~) 7
0000<~14 0M;OOC10000110(,ZOOOO203 ~)<\00(~?000t'l00('1X'6-1\)10~) (1(lIV\HC',~0\.""-"1000\)()(,\,X)00 004000?7t'44S1('12;::24411 \ @I I!~ @II ~ I!' HIHIHI

tH FND OF DUMP :tn

A portion of the dump in format 0:

JOB193S USER FIELD (FORMf:~T=D) DUMP X, 07 79254 0'3/ 11/79 1S 4935

0000100
0000104-
0000110

0000164
000017121
OO~"(}174
00(''1';,'00
0:";)0,->04
(",':1,\,:10
00'~0::'<1

53'""..>4571261.147297024 2,tt'.;:)r,774-1
(l '-92;~~::1]7?'036~,S47l~_;g08

o 0

121

'" o
4 C),,':l926774 1 3370GS78
3<..i4664870a;27091509
7T'869?G29(~8332064~;

461168G028095~r:;8?5'_;

:t:U: E~1I.l OF DUMP t**

(I

o
34'~',t860,t7S~':181<?'J20'.l

!~5i3r)82:H 12?:F4f::;:'?U:;

" 1?:34[;I:FB901'~J4'.:,r:;?8'-)

S7R;31.1.?lti1,I?i31 'I?(~:'

112698511715:-'12
()

o

34/M~('047SBlS12g?09

(}

J<.;4f~I-;4~7025.~:'091 ')1'9
S~18(\':';~(B~'51 ,t8~' 1 Ft;8~

-1
- ,1',;9f-;~1()9J(153?143'LH0

:111,634940:1;:S71:'(;24

A portion of the same dump specifying format X:

(1\:M0100
C'0(l0t~)4

000011.0

0('<)01(,4
0WX~1/('\

0"n~~t,"1

0('\'I(X-:C'",
(}1)00(~r-l4

0000?10
0000214

-nnt:

4A4F 4?31393:r.T.:>OO
OO000OO000OOOOO
00000000000000O

~
00<'('l,XJ()('l,,"', 'Il'!'l~"":'"
~l0('I0(",)

44~)S<1D':;O?'0<1G'lFr;;~

31383A34193A33:-l<,j
G66t;666G6f'"~666GS

4000000240400081
n* END OF DUMP ***

SR-OOll

~pr0l:'

80<~OOOOI*X'll:)

000I?II~;'(~0000

~~"'\)(I('I~"O('I<.,

('\(I('I('00C)l1i'l'"1(1('I(''I'''

-)\)")'),'131,11;'1"·1,"'3"

4D41.~A21",,4!;')I;(}lr,

000:-'(~0000001-)(:1()()1'

1 E2tl'lF 4;OC9~1J S
('800, ~000000J<1I~'l')

0004009EOO0OOOO0
~1()eJ00I,)00

00000Ic'l00l."~

1o~,n.'r':11, H,J-T'~

'''''')\''1'.11)(\ 1\ Ii"'" '<"Xl
ll.::~ t,y"l·l'.I' 'C1!)Y1. ,I': ..

I; :!)~'OI)IX")i.X)()(')(Xl
Ff-TFrTFFF rTFFFFF
Cl:1]"}DG'3r. t (.I8D 129(:
('0840800<11'1000000

Part 2
8-4

1:'7032483;;"1;'14398 JOB 1 "l~
o
111

354!'G48."0?:,z7('l91509 ~/1 V;:og18 , 49' 35

'" o 09/11/7918 49 3S
3474SCO<PS818129209 [U,.p FQRt.~~T TYPES ~/11/79

-6J99'331e-t 179("","'611(174 18 49' 3S
t~S9GG2?10.?1?J3678Q\8 7'~

S7GS4023188::,?981S3 @ ~ ~ ~~ ! HIHIHI

00A70000000reIPZ ~t()B 1935
00()0(X'~~

0I:~

31 ::t33A)4X~:1A1:T,~;
""'-1(\I')'<X'QI. '('<X'l(K~O

\''''X\C'OO~'C:X'l('C'\'O('''''' (1<'1,'11 /':'91P 4<:1 ~~

31.'(~9~~F JDI2FJ-':-l8 DUMP FORI-1tn T'r'Pt5 l'Yl1/'9
A;.'2EEO"~72EEOA?2E 18 49, 35
3FCA800OOI."l)00('IOO -;>

0801)484948494849 f! ~ ~ "@l ~ HIHIHI

I

Format G specified on the same dump portion:

-XlB193S

0000100
0000104
0000110

0.67?213'39799at-;;:>g4

"'. 000000000000
'" . 000000000000

tn:n

0.~
0.~~\~~

0~

0. 000000000000
0. 0t~~'000000
0. 0000El0000000

1849-:35

-XlBl935

OOM1h4
0I'.MI.;'·"
""'~\-\1 :'4
oooo;:c-~

€,t"",;'I.'4
00002 H)
0000214

0.~

'" . OO(:\<}OO(XlI"OOC)
0~)

~,~)('.K'I()('I

o ~"OO\l(~'
o 2';43~72Q.~!~-t?11;
o . (\(".~"~'IeI'.lOO0

0.181f'~,r-3.:;g-11:U ~"1 1/7'Q1R 4~:3S
o . 00\ 'Il'0(I0OIJl'OO

0. rr ;'1J7.;l?l~o.~;· 1?1f::
0. s:lj ~B3W!~~J' ,.?~ 10:'1
o O(\0(~·!0C.}0
0.(~

0.~~~'

~ lHJb19~'r,fi:-~8-11:~
o ('('<~"'100

~.e«'C.~~ ""cv1V~184'? ~
o 2100..?8?4790;!~J~~

0.181E.:3906636S·11:l9
R

0.343471770172[-04

" ?S4]'·'(;·'2Ge8l;-121{; DLW F"~n TYI'f.S <":1,'1 V~
R

-0. 301503151 l.geIE+17
0. 00000e,000000

-l' .1S8()0830.~P-l~12 HI 49 .3S
o . 2?75557S6156E -16 7

o . 0I?IOO0Q000(X)() @ @II! e @tit , HI H 1 H I
Ut END OF J:ll,M=> ***

The same portion of the dump in format P:

~,.oo 045117 041061 034463 032400
00<'01 04 ~~" 000000 00001.'0 l'00000
000J(l\ 110 000000 000000 000000 000000

ttt:t:t
0000164 ~ 000000 000000 00000\'
0~t :/'0 00e'0<X" 000000 000000 0000<'0
~174 (J00eI"'" 000000 {'\OOQI00 (.'(J0(X)0

e("()(n~' 01?1<5 0<16~o2t~ 0?011:W'l 047",;,:2
~)4),~~ Qn0470 0~-l'-;0(... l 0:''''14;l(~ (','H.1(;';
00()('1;'10 06314(; 0G3146 06314G 083145
0(,'00214 0400~ 000002 040100 000;'03

nt Et~D OF D\..M' ***

0<.'eIOO0 000000 1100t"0 137OO1?1
100001) 00l:100fc'I OIeX'l0\.10 l~)0
00000(l 000()('0 000000 ('0(1000

0()000;~ 00('10('10 ~ ~

0000("'.' ~)(Ol(10 ("('~,)0(lO I~

0.10071. ~~?'''4q ('X'l4~;;" r(~J471

0",-,r.,('\1 ('Sr',),H' O',.?.I:11 \I' ,C'HV,;
(\I'(\O('\(~ (\0("'0<' 4)("0IX10 00(14()('O

01044;~ Ot(~:'IC4 (Y:>(>'~;1 1')~l42S

~400<~ 04(~0(\<~ ~"X'0' '3 ("10101'

The same portion of the dump in format M:

-XlB1935 USER FIELD (FORMAT~)

0000('14 ('1{'102:::l6 0<"0000 116600
00l'1000 ('1<.'0('100 ~ 000000
000('('10 ~ 00000o 0<."0000

03('1071 027461 ~3('1457 033471
000I.'lOO 0000(\0 000000 ~
0;::1('470 03S064 03447 2 0:'1146<;
0S1,tOO (~00000 ()''0000 l'<'C'II)OO
177/,// L'??;'; .I 7;'1:'7 1: .. ,?~·7
140(,)67 153073 015215 011234
000204 004000 (),10000 0(\~

~?~~11E562
000000 0000\.'!0 {'I('IL~ 000I.X'10
00000o 0000l'I0 ~ ('100.."('100

030470 n3S064 034472 031465
0001."<'0 0I~1O 0L'-~~ Nk,,,,,-,,(,
~ (X~) '-'."I:'I(X"0 ('1('11 '\('1('1

l'~?1 ~'27461 ('1.3\"\45':' (':;t)4."1
1234~,6 \';(\2,P 0."-<40 12"1"'~
t)3.:'712 1 (,('1('01.'0 ('II,,"00\." ('1('\("1.''''''
00400l' N4.111 0·~4.111 ~4111

0000100 4511741061 344633<'400 ~ 9OOO<'Ifl"0C1I0 t'OO04002313 OOoc'0096I"..oo N'IOOi'00000 ~~.(32 ~IOB1935
~104 000'~~)0 8~"0 (\I.l()\.""''l0I.~) OCl\:X"I1I(\('(-\(.l\:' 00''II.~ ~,,~ ~""~"'O
0000110 0000000000 000000000(~ 0e'OOl"l\.~ ~ 00('!OOt.'XIOO,,) 00,'0000000 ('I(AA'000000 OOO(~

'UtU
000011.)4 0000000000 0000000000 ~~'10 01"'I00I~ 30071Z~J461 304S73..14?1 ~,104703';')64 344??314f'S ~~vll/?91~49'3S
E'0"'01 ,'0 0000000000 0000000000 0000I1I000\.'0 ~»" ~,..'X'~ ~~ooo ~"OO0('(.)OO OOO("(,X'<X'O
0')0I.~·!.?4 ~ 0000000000 :"100/127461 304S?:n4/1 3('·170!9'64 3o~4:'2]J4GS 00<Xl00(X~00 ~ ~:Vll,791B 4?· 35
~~"0 4?lc'S46r-20 2e10647522 4GS01~·.20<1') S2L:l1SC)I0S 5140Q1(10(1()0 000~~)0O(I :·OO712:'4G1 304~;?33471 rUF FC1f;.H'lT TYPC~ ~'Yl1-"'9

0e00:~N ~J0J5064 :;14472314()5 000(:\(~()A('0 ~.~ F)/?7I. 7;'71 f7J7/'F"J/,77 A34S6F.C)247 2734003456 18 4~ 3S
00002.10 61146G3146 631466314S 1044?.I~·\lG4 7C;/':,lg'~·1-c,::; C00(-;71\1(r"3 15<:1511?34 :'P?128(I\.'I0O (1000~"0 7 ';'
0000214 4000000002 401000A203 040004~J000 0000340100 OO;'04(H000 4000000000 0400044111 4411144111 @ ~ @ @@ @ HIHtHI

*** END OF DUMP ***

SR-OOll
Part 2

8-5 J

DEBUG - PRODUCE SYMBOLIC DUMP

The symbolic debug utility routine, DEBUG, provides a means of dumping
portions of memory and interprets the dump in terms of FORTRAN or CAL
symbols. DEBUG Is normally used when a job aborts after an EXIT,
DUMPJOB sequence, however it may be used anywhere provided that a
valid version of $DUMP exists.

To be useful, both CFT and CAL must write special tables, which the
loader (LDR) augments with a version of the load map. The loader
writes this information on a dataset called $DEBUG, which gives the
FORTRAN or CAL symbol names associated with memory addresses. This is
initiated by specifying the ON=Z option for CFT or the SYM option for
CAL. DEBUG reads SDEBUG and SDUMP and prints out variable names and
values in a format appropriate for the variable type.

The following example shows the conventional use of DEBUG:

JOB, ••••
CFT,ON=Z.
LDR.
EXIT.
DUMPJOB.
DEBUG.

The library routine SYMDEBUG may be called from either FORTRAN or CAL
with one argument, which is a Hollerith string containing any of the
DEBUG parameters. SYMDEBUG produces output similar to that produced

I by DUMP but interprets the memory of the running program rather than
$DUMP.

Format:

DEBUG, I=idn,O=odn,DUMP=ddn,TRACE=n, SYMS=sym,NOTSYMS=nysm,

)
> MAXDIM=dim,BLOCKS=blk,NOTBLKS=nblk,PAGES=np,COMMENTS='stPingI.

l

SR-OOll
Part 2

8-6 J-Ol

I

Parameters are in keyword form.

I=idn Name of dataset containing debug symbol tables. The
default is $DEBUG, which is created by the loader from the
symbol tables produced by eFT and CAL.

O=oan Name of dataset to receive the listing output from the
symbolic debug routine. The default is $OUT.

DUMP=ddn Name of dataset containing the dump of the user field.

TRACE=n

This dataset is created by the DUMPJOB control
statement. ddn is used when the symbolic debug routine is
invoked after an abort. The default is $DUMP.

Number of routine levels to be looked at in symbolic dump.
DEBUG traces back through the active subprograms the number
of levels specified by n. If this parameter is omitted or
if TRACE is specified without a value, the default is 50.

SYMs=sym List of symbols to be dumped by DEBUG. Up to 20 symbols
may be specified; symbols are separated by a colon. A
shorthand notation as described in the AUDIT statement may
be used; thus, a dash represents any character or
characters or no character, and an asterisk represents any
single character. For example:

,SYMS=ABC:X-:B**, •••

requests a dump of the symbol ABC, all symbols that start
with X, and all 3-character symbols beginning with B. This
parameter applies to all blocks dumped. The default is all
symbols.

NOTSYMS=nsym
List of symbols to be skipped. Up to 20 symbols may be
specified; symbols are separated by a colon. The shorthand
notation as described under the SYMS parameter may be
used. This parameter applies to all blocks dumped. The
default is that no symbols are to be skipped. This
parameter takes precedence over the SYMS parameter.

MAXDIM=dim

SR-OOll

Maximum number of each dimension of the arrays to be
dumped. This parameter allows the user to sample the
contents of arrays without creating huge amounts of
output. For example:

,MAXDIM=3:2:3,

Part 2
8-7 1-01

I

causes the following elements to be dumped from an array
dimensioned as A(10,3,6):

A (1, 1, 1) A(2, 1, 1) A(3, 1, 1) A(l, 2, 1) A(2, 2, 1)
A (3, 2, 1) A(l, 1, 2) A(2, 1, 2) A(3, 1, 2) A(l, 2, 2)
A(2, 2, 2) A(3, 2, 2) A(l, 1, 3) A(2, 1, 3)
A (3, 1, 3) A(l, 2, 3) A(2, 2, 3) A(3, 2, 3)

This parameter applies to all blocks dumped. The default
is MAXDIM=20:5:2:l:l:l:l. The arrays are dumped in storage
order.

BLOCKS=blk
List of common blocks to be included in the symbolic dump.
A maximum of 20 blocks may be specified. The shorthand
notation as described under the SYMS parameter may be
used. All symbols (qualified by the SYMS and NOTSYMS
parameters) in the blocks named here are to be dumped. If
BLOCKS is specified without a value" all common blocks are
dumped.

NOTBLKS=nblk
List of common blocks to be excluded from the symbolic
dump. A maximum of 20 blocks may be specified. The
shorthand notation as described under the SYMS parameter
may be used. The default is to exclude no blocks. NOTBLKS
specified without a value excludes all but the subprogram
block. This parameter takes precedence over the BLOCKS
parameter.

PAGES=np Page limit for the symbolic debug routine. The default is
70 pages.

COMMENT='stping'
Identifier to be printed on the DEBUG output title line.
Up to 8 ASCII characters may be specified.

DSDUMP - DUMP DATASET

The DSDUMP control statement dumps specified portions of a dataset to
another dataset. The dump may be made in one of two formats: blocked or
unblocked.

In the blocked format, a group of words within a record, a group of
records within a file, and a group of files within a dataset may be
selected. Initial word number, initial record number, and initial file
number begin with 1 and are relative to the current dataset position.
Specifying an initial number greater than one causes words,

SR-OOll
Part 2

8-8 1-01

I

records, or files to be skipped starting from the current position.
Since the initial word, record, or file number is relative to the current
position of the dataset, the dataset must be positioned properly prior to
calling DSDUMP. A rewind of the dataset prior to calling DSDUMP makes
the initial word, record, and file numbers relative to the beginning of
the dataset. When DSDUMP is completed, the input dataset is positioned
after the last record dumped.

The unblocked format is used for dumping a dataset without regard to
whether it is blocked. It is possible to dump a blocked dataset in
unblocked format (by sectors). A group of sectors within the dataset or
a group of words within each sector may be selected. The initial word
and initial sector numbers begin with one and are always relative to the
beginning of the dataset. Specifying an initial sector greater than 1
causes sectors to be skipped from the beginning of the dataset;
specifying an initial word greater than one causes words to be skipped
from the beginning of each sector. Following a dump in unblocked format,
the dataset is closed.

Format:

DSDUMP, 1=idn ,O=odn , DF=df , IW=n, NW=n, IR=n ,NR=n, IF=n, NF=n , IS=n ,NS=n •

Parameters are in keyword form; the only required parameter is I.

I=idn (or DN=idn)
Name of dataset to be dumped. This is a required parameter.

o=odn (or L=odn)

DF=df

IW=n

NW=n

SR-OOll

Name of dataset to receive the dump. The default is $OUT.

Dump format. The default is B.
B Blocked
U Unblocked

Decimal number m) of initial word for each record/sector
on idn. The default is 1.

Decimal number (n) of words per record/sector to dump.
Specifying NW without a value dumps all words to the end of
a record/sector. The default is 1.

Part 2
8-9 1-02

IR=n Decimal number ~) of initial record for each file
on idn. Applicable only if DF=B. The default is 1.

NR=n Decimal number (n) of records per file to dump.
Specifying NR without a value dumps all records to the
end of the file. Applicable only if DF=B. The default
is 1.

IF=n Decimal number ~) of initial file for dataset on idn.
Applicable only if DF=B. The default is 1.

NF=n Decimal number (n) of files on idn to dump. Specifying
NF without a value dumps all files to the end of the
dataset. Applicable only if DF=B. The default is 1.

IS=n Decimal number (n) of initial sector on idn. Applicable
only if DF=U. The default is 1.

NS=n Decimal number (n) of sectors to dump. Specifying NS
without a value dumps all sectors to the end of the
dataset. Applicable only if DF=U. The default is 1.

For blocked format, each record from idn dumped to odn is preceded by
a header specifying the file and record number. For unblocked format,
each sector is preceded by a header specifying the sector number.

Format of each dump record:

Octal interpretation Character interpretation
Word count of four words of four words

A row of five asterisks indicates that one or more groups of four
words has not been formatted because they are identical to the
previous four. Only the first group is formatted. The number of
words not formatted can be determined from the word counts of the
formatted lines before and after the asterisks. The final group of
four or less words is always formatted.

SR-OOll
Part 2

8-10 I

I

COMPARE - COMPARE DATASETS

The COMPARE control statement compares two blocked datasets and lists all
differences found. The output consists of a listing of the location of
each discrepancy, the contents of the differing portions of the datasets,
and a message indicating the number of discrepancies. Refer to the
CRAY-OS Message Manual, publication SR-0039.

Keyword parameters allow the user to specify the maximum number of errors
and the amount of context to be listed.

If only parts of two datasets are being compared, the parts must first be
copied before using a COMPARE statement7 COMPARE compares complete
datasets only.

COMPARE rewinds both input datasets before and after the comparison.

Format:

COMPARE ,A=adn,B=bdn, L=Zdn,DF=df,ME=maxe ,CP=cpn,

Parameters are in keyword form7 both A and B must be specified.

A=adn and B=bdn

L=Zdn

DF=df

SR-OOll

Input dataset names. If a~bdn, an error message is
issued and the job is aborted. A and B are required
parameters.

Dataset name for list of discrepancies. Zdn must be
different from adn and bdn. The default is $OUT.

Input dataset format. The default is T.

df is a I-character alpha code as follows:

B Binary. The input datasets are compared logically
to verify that they are identical. If they are not
identical, the differing words are printed in octal
and as ASCII characters. The location printed is a
word count in decimal. The first word of each
dataset is called word 1.

Part 2
8-11 J-Ol

T Text. The input datasets are compared to see if
they are equivalent as text. For example, a
blank-compressed record and its expansion are
considered equivalent. If the two datasets are
not equivalent, the differing records are printed
as text. The location is printed as a record
count in decimal. The first record of each
dataset is called record 1.

ME=maxe Maximum number of differences printed. The default is
100.

CP=opn

CS=osn

Amount of context printed. opn records to either side
of a difference are printed. The CP parameter applies
only if DF=T~ if DF=B and CP are specified, an error
message is generated. The default is o.

Amount of context scanned. osn records to either side
of a discrepancy are scanned for a match. The CS
parameter applies only if DF=T~ if DF=B and CS are
specified, an error message is generated. The default
is O.

If a match is found within the defined range, subsequent
comparisons are made at the same interval. That is, if
record 275 of dataset A is equivalent to record 277 of
dataset B, the next comparison is between record 276 of
dataset A and record 278 of dataset B.

NOTE

If identical records occur within osn
records of each other, the pairing is
ambiguous and COMPARE may match the wrong
pair.

CW=o~ or CW=o~1:o~2

SR-OOll

Compare width. If CW=o~ is specified, columns 1
through o~ are compared. If Cw=o~l:o~ is
specified, columns o~l through o~2 are
compared. Specifying CW without a value is not
permitted. The default is to compare columns 1 through
133, but this can be changed by installation option.
The CW parameter applies only if DF=T~ if DF=B and CW
are specified, an error message is generated.

Part 2
8-12 J

I

ABORT=aa If aa or more differences are found, the job step aborts.
Specifying ABORT alone is equivalent to ABORT=l and causes
an abort if any differences are found. Specifying ABORT
does not prevent the listing of up to maxe differences.

PRINT - WRITE VALUE OF EXPRESSION TO LOGFILE

The PRINT control statement writes the value of an expression on the
logfile. The value of the expression is written in three different
formats: as a decimal integer, as a 22-digit octal value, and as an
ASCII string. PRINT is a system verb.

Format:

PRINT (expression)

Parameters:

expression
Any JCL expression (part 1, section 4). This parameter is
required.

Format in the logfile:

FT060 deaimat oatat ASCII

FT060

decimat

oatat

ASCII

SR-OOll

Message code indicating origin is PRINT statement

l6-digit decimal representation of evaluated expression

22-digit octal representation of evaluated expression

8-character ASCII representation of evaluated expression

Part 2
8-13 1-02

I

FLODUMP - FLOW TRACE RECOVERY DUMP

The FLODUMP control statement recovers and dumps flow trace tables when a
program aborts w.ith flow tracing active. The flow trace tables are
dumped in the FORTRAN flow trace format.

FLODUMP is invoked by specifying the F option on the CFT control
statement and including the FLODUMP control statement in the COS control
statement file. (Refer to the CRAY-l FORTRAN (CFT) Reference Manual,
pUblication SR-0009, for more information on the F option.)

Format:

Parameters: none

The following example illustrates the use of the FLODUMP control
statement.

JOB, ••••
CFT, ON=F.
LDR.
EXIT.
DUMPJOB.
FLODUMP.

A flow trace summary is illustrated in figure 8-li a flow trace recovery
dump is shown in figure 8-2.

The examples in figures 8-1 and 8-2 show that the total time reported for
the main program, ONF, is larger for the flow trace recovery dump than
for the flow trace summary. This difference is because the time reported
with FLODUMP includes the main program's execution time, the time
required to abort the program, and the time required to recover the flow
trace tables.

SR-OOll
Part 2
8-14 1-02

I

FLOW TRACE --- SUMMARY
ROUTINE TIME % CALLED AVERAGE T

1 ONF 0.000053 5.42

2 SUB1 0.000323 32.80

3 SUB2 0.000322 32.75

4 SUB3 0.000286 29.04
*** TarAL 0.000985
*** OVERHEAD 0.000712

SUBROUTINE LINKAGE OVERHEAD SUMMARY

MINIMUM MAXIMUM AVERAGE
T REGISTERS 1 2 2.0
B REGISTERS 2 3 3.0

ARGUMENTS 0 0 0.0
TOTAL

MAXIMUM SUBROUTINE DEPTH = 4

1

9

9

9

0.000053
CALLS SUB1

0.000036 CALLED BY ONF
CALLS SUB2

0.000036 CALLED BY SUB1
CALLS SUB3

0.000032 CALLED BY SUB2

28 CALLS

CYCLES SECONDS
838 1.05E-05
894 1.12E-05

0 O.OOE+OO
1732 2.17E-05

%
1.0640
1.1351
0.0000
2.1991

Figure 8-1. Example of a flow trace summary

FLOW TRACE RECOVERY DUMP
FLOW TRACE --- SUMMARY

ROUTINE TIME

1 ONFDMP 0.000328

RECOVER WITH ONFDMP ACTIVE

% CALLED AVERAGE T

26.04 1 0.000328
CALLS SUB1

2 SUB1 0.000323 25.64 9 0.000036 CALLED BY
CALLS

3 SUB2 0.000322 25.61 9 0.000036 CALLED BY
CALLS

4 SUB3 0.000286 22.70 9 0.000032 CALLED BY
*** TarAL 0.001259
*** OVERHEAD 0.000712

SUBROUTINE LINKAGE OVERHEAD SUMMARY 28 CALLS

MINIMUM MAXIMUM AVERAGE CYCLES SECONDS
T REGISTERS 1 2 2.0 838 1.05E-05
B REGISTERS 2 3 3.0 894 1.12E-05

ARGUMENTS 0 0 0.0 0 O.OOE+OO
TOTAL 1732 2.17E-05

MAXIMUM SUBROUTINE DEPTH = 4

Figure 8-2. Example of a flow trace recovery dump

SR-0011
Part 2

8-15

ONFDMP
SUB2
SUB1
SUB3
SUB2

0.83
0.88
0.00
1.71

I-02

I

SYSREF - GENERATE GLOBAL CROSS-REFERENCE LISTING

The SYSREF utility generates a global cross-reference listing for a group
of CAL or APML programs. The number of CAL or APML programs that can be
included in such a group is limited by the amount of CRAY-l memory
allocated to a user.

SYSREF reads special binary symbol tables written by CAL or APML and
produces a single cross-reference listing for the program modules
represented in the tables. When the X parameter appears on a CAL or APML
statement, a record is written for each program unit assembled. The
records are written to a dataset specified by the X parameter ($XRF by
default if X appears alone). Each record has a header containing the
name of the program unit. The rest of the record consists of
cross-reference information for every global symbol used in that program.

Format:

SYSREF,x~dn,L=ldn.

Parameters:

L=ldn

USE OF SYSREF

Name of dataset whose first file (normally the only file)
contains one or more symbol records written by CAL and/or
APML. The default is $XRF.

Name of output dataset. The default is $OUT.

SYSREF is usually used to process symbol records written by CAL and/or
APML earlier in the same job. To do so, add X parameters to each CAL or
APML control statement and follow them with a SYSREF control statement:

CAL,X.
APML,X.
CAL,X.
SYSREF,L=XROUT.

SR-OOll
Part 2
8-16 1-02

I

$XRF is used as default in all cases.

To process symbol records written in an earlier job, the following
sequence is used:

The first job:
CAL,X.
APML,X.
SAVE,DN=$XRF,ID=XX.

The second job:
ACCESS,DN=$XRF,ID=XX,UQ.
DELETE,DN=$XRF.
SYSREF,L=XROUT.

To add more symbol records before invoking SYSREF, use:

ACCESS,DN=$XRF,ID=XX,UQ.
DELETE,DN=$XRF.
SKIPR,DN=$XRF,NR.
CAL,X.
SYSREF

The format above has the same effect as if the CAL step had been done
before the SAVE step.

GLOBAL CROSS-REFERENCE LISTING FORMAT

The global cross-reference listing contains only global symbols. A
symbol is global if it is anyone of the following:

• Named in an ENTRY or EXTERNAL statement
• Defined before an IDENT statement and after the preceding END

statement
• Defined within a system text such as $SYSTXT
• Defined within a section of source code bracketed by TEXT and

ENDTEXT pseudo instructions

The order of the symbols in the global cross-reference listing is
lexicographic, based first on the symbol name and then (within each
symbol name) on the module name. An exception to the order is made for
symbol names beginning with N@, S@, or W@. These symbol names are sorted
as if @ is the most significant (leftmost) character and the N, S, or W
is the least significant character. The listing displays the symbol name
correctly. The effect is a grouping of all the N@, S@, and W@ symbols
that refer to the same field in a table.

SR-OOIl
Part 2

8-17 1-02

I

The global cross-reference listing consists of 13 columns:

Column

1
2
3

4

5-13

Heading

Value
Symbol
Origin

Module

References

Contents

The symbol's value
The symbol's name
The IDENT of the system text in which the symbol
is defined; or the label of the TEXT block in
which the symbol is defined; or *GLOBAL*, if the
symbol is defined outside any program unit; or
blank.
The IDENT of the moaule within or before which
the symbol is defined or referenced
A list of the lines on which the symbol is
defined or referenced

The symbol's name, value, and references appear in the same format as in
a CAL or APML listing. The page number in each reference is a local page
number which starts at 1 for each module. In a CAL or APML listing, this
is the page number that appears in parentheses to the right of the second
title line on each page.

SR-OOll
Part 2

8-18 1-02

I

I

RELOCATABLE LOADER

The COS re10catab1e loader is a utility program that executes within
the user field and provides the loading and linking in memory of
re1ocatab1e modules from datasets on mass storage.

The re10catab1e loader is called through the LDR control statement
when a user requires loading of a program in re1ocatab1e format.
Absolute load modules can also be loaded. The design of the COS
loader tables and re1ocatab1e loader allows program modules to be
loaded, relocated, and linked to externals in a single pass over the
dataset being loaded. This minimizes the time spent in loading
activities on the CRAY-1. The loader allows the immediate execution
of the object module or the creation of an absolute binary image of
the object module on a specified dataset. Loader features are
governed by parameters of the LDR control statement.

The relocatable loader can also generate a partially relocated
module. This module is referred to as a re1ocatab1e overlay and is
described at the end of this section.

LDR CONTROL STATEMENT

The loader is called into execution by the LDR control statement.
Parameters of the control statement determine the functions to be
performed by the loader.

Format:

LDR,DN=dn,LIB=tdn,NOLIB=tdn,LLD,AB=adn,MAP=op,SID='stPing',T=t~a,

NX,DEB=t,c,OVL=di~,CNS,NA,USA,L=tdn,SET=vat,E=n,I=sdi~.

9

SR-0011
Part 2

9-1 J-Ol

Parameters are in keyword form.

DN=dn Dataset containing modules to be loaded. The default is
$BLD. Loading continues until an end-of-file is
reached. Modules are loaded according to block name as
determined by a CAL IDENT card or a CFT PROGRAM,
SUBROUTINE, BLOCK DATA, or FUNCTION statement. Duplicate
blocks are skipped and an informative message is issued.

Multiple files from the same dataset may be loaded by
specifying the dataset name multiple times separated by
colons. A maximum of eight files may be indicated.

Datasets specified by the DN parameter are closed at the
end of the load process. Closing a dataset has the
effect of rewinding the dataset and releasing I/O tables
and buffers.

Modules to be loaded may be relocatable or absolute.
However, the two types of modules may not be mixed.

For example,

DN=LOAD1:LOAD2:$BLD

causes the loading of all modules in the first file of
datasets LOAD1, then LOAD2, and then $BLD.

Normally the dataset is rewound before loading: however,
consecutive occurrences of a dataset name inhibit
subsequent rewind operations. Therefore, the statement

DN=LOAD3:LOAD3

causes the loading of all modules in the first two files
of dataset LOAD3.

The DN parameter takes on a special quality when OVL is
specified: only one dn may be specified. The dataset
named will be the initial LOAD file used by the overlay
loader. (See the description of the overlay loader, part
2, section 10 for more information.)

LIB=~dn The LIB parameter names the dataset from which
unsatisfied externals are loaded. A maximum of eight
datasets can be named, with the dataset names separated
by colons. All datasets listed are automatically
accessed if not already local: therefore, no ACCESS
statement is required.

SR-OOII
Part 2

9-2 J

I

NOLIB=Ldn

LLD

AB=adn

SR-OOII

Any default libraries are automatically included in the
library list unless the NOLIB parameter is specified.
The loader accesses the default libraries if they are
not local to the job~ no ACCESS statement is required.

Datasets specified by the LIB parameter are closed at
the end of the load process. Closing a dataset has the
effect of rewinding the dataset and releasing I/O tables
and buffers.

NOTE

These datasets should be generated using the
BUILD utilities to prevent unnecessary
overhead in the loader.

The libraries cannot be tape resident.

The NOLIB parameter value names the specific default
library to be excluded from the load. Selecting NOLIB
with no value specifies the exclusion of all default
system libraries. If NOLIB is not specified, any
default libraries that a site has are automatically
included in the library list, along with any libraries
specified on the LIB parameter.

Specifying the LLD parameter causes any libraries
included in the load to be retained as local datasets at
load completion. These local datasets remain open. If
the LLD parameter is not specified, the loader closes
all libraries at load completion. Datasets
automatically accessed are not released at load
completion.

Absolute binary Object module generation. Use of this
parameter causes an absolute binary object module to be
written to the named dataset after the load process is
completed. Selecting AB does not imply NX (no
execution). Unless NX is also selected, the loaded
program begins execution after the binary is generated.
Specifying AB without adn causes the module to be
written on a dataset named $ABD, the default dataset.
Some other dataset may be specified by AB=adn. The
dataset is not rewound before or after the file is
written.

Part 2
9-3 J-OI

MAP=op

If the AB parameter is omitted, no binary generation
occurs.

If OVL is specified on the loader statement, the OVLDN
directive replaces AB1 any value specified for AB is
ignored in overlay mode. (See part 2 section 10 for a
detailed description.)

Map control. The MAP parameter causes the loader to
produce a map of the loaded program on the specified
dataset. MAP can take any of the following values:

ON Produces a block list and an entry list
including all cross references to each entry.

FULL Same as MAP=ON.

OFF No map is produced. MAP=OFF is the default.

PART Produces a block list only. Equivalent to MAP
with no value specified.

SID='stnng'

T=traa

SR-OOll

Debug routine loading. The SID parameter indicates the
system debugging routines (SID) are to be loaded with
the code. These routines comprise an additional binary
dataset loaded after all DN specified datasets and
before any libraries.

The 'stnng', if provided, is passed to SID for
evaluation as a control statement. The verb and initial
separator are not required. For example,
SID='I=IN,ECH=ELIST.' is a proper string specification
(the period is a required terminator). For a complete
description of SID parameters, see the Symbolic
Interactive Debugger (SID) User's Guide, CRI publication
SG-0056. If only SID is specified, all keyed default
SID control statement parameter values are used.

Transfer name. The T parameter allows specification of
an entry name where the loader transfers control at
completion of the load. The T parameter also specifies
the entry included in absolute binary object modules.

The entry name is a maximum of eight characters. If no
T parameter is specified, the loader begins object
program execution at either the entry specified by the
first encountered START pseudo from a CAL routine or at
the entry of the first main program in CFT compiled
routines. If no START entries are encountered, a
warning message is issued and the first entry of the
first relocatable or absolute module is used.

Part 2
9-4 J-Ol

NOTE

When the SID parameter is used, the load transfer is to
the system debugger~ the T parameter is ignored and a
warning message is issued to the user logfi1e.

NX No execution. Inclusion of this parameter inhibits
execution of the loaded program.

DEB=Z Job Communication Block (JCB) length. The default
length is 200S• Specifying DEB without a value
changes the JCB length to 3000S.

C Compressed load. This parameter causes loading of each
module to begin at the next available location after the
previous module. If this parameter is omitted, loading
of modules begins on 20S-word boundaries only
(optional load) •

OVL=dip Overlay load. The OVL parameter indicates an overlay
load sequence is specified on dip. (See part 2
section 10 for a detailed description of the overlay
load.) If the OVL keyword is specified without a value,
the loader examines the next file of SIN for an overlay
load sequence. The default is no overlay load.
Selecting OVL implies NX (no execution) •

CNS Crack next control statement record image. This feature
allows the loader to pass parameters on to the loaded
program for analysis and use during execution of the
loaded program. The control statement cracked follows
the LDR control statement and is not available for
processing by the Control Statement Processor (CSP)
after processing by the loaded program.

SR-00l1

NOTE

When the SID parameter is specified, the CNS parameter
is ignored and a warning message is written to the user
logfi1e. SID prompts for the control statement for the
code being debugged.

Part 2
9-5 J-01

•

NA No abort. If this parameter is omitted, a caution or
higher level loader error causes the job to abort.

USA Unsatisfied external abort. When USA is specified, the
loader aborts at the end if it finds one or more
unsatisfied externals. A load map listing all
unsatisfied externals is produced, if called for.

L=tdn Listing output. This parameter allows the user to
specify the name of the dataset to receive the map
output. If L=O, all output is suppressed. The default
is $OUT.

SET=vat Memory initialization. Variables, named and blank
common blocks, and storage areas defined by DIMENSION
statements are set to 0, -1, or an out-of-range
floating-point value during loading. The default is an
installation option.

SR-OOll

SET=ZERO Memory is set to binary zeros.

SET=ONES Memory is set to -1 (all bits set in word).

SET=INDEF Memory is set to a value that causes an
out-of-range error if the word is referenced
as a floating-point operand. The l's
complement of each memory address is placed in
the lower 24 bits of the respective word to
aid in reading register and memory dumps. An
example, in octal, of the value loaded into
memory word 13216 is: 0605050037740177764561.

Part 2
9-6 J-Ol

•

E=n Lists error messages. This parameter indicates which
level of loader-produced error messages are not to be
listed. The user may specify one of five levels of
severity, where n is the highest level to be
suppressed. The default for this parameter is E=2.

I=sdira

LOADER ERRORS

Level

1 COMMENT

2 NOTE

3 CAUTION

4 WARNING

5 FATAL

Example:

Description

Error does not hinder program
execution.

Error probably hinders program
execution.

Job aborts when load process
completes unless NA is selected1
program might not execute properly.

Job aborts when load process
completes unless NX is selected1
program execution is not possible.

Job aborts immediately.

E=2 suppresses COMMENT and NOTE messages and allows
CAUTION, WARNING, and FATAL messages to appear. FATAL
messages are never suppressed.

Selective load. Modules from other datasets may be
loaded according to a set of directives. sdira
indicates the dataset containing the directives. If the
I keyword is specified without a value, the directives
are taken from the next file of $IN. The selective load
directives are described later in this section.

Following is a list of the errors encountered by the loader. The
errors are listed by class.

Comment:

SR-OOll

Blank common redefined
Named common redefined smaller
Generating BUILD directory for Library

Part 2
9-7 J-Ol

I
Note:

I

Caution:

I
Warning:

I
Fatal:

I

SR-OOll

All files searched
Name included before
Name excluded before

Overlay member not found
Multiple load datasets ignored in overlay mode
Illegal map value
No start address found - first entry used
Duplicate entry loaded and ignored
Duplicate program block name encountered and skipped
Bad directory format on library dataset
Unsatisfied external
Disabled parameter selected and ignored
Dataset replaced by file DN
Invalid read, try again
No selective modules from dataset
Skip dataset included before
Invalid selective file

Blank cornmon address not large enough
Dataset name too long
Named cornmon defined larger
Relocatable load module in absolute mode
Member error
Directive error
Illegal character in overlay directive
Compile error
Transfer is to SID1 T parameter ignored
SID loaded1 CNS parameter ignored.
Absolute load module in relocatable load

Start entry not found
Bad XI field in External Relocation Table (XRT) table

More than one internal relocation block
Invalid table type
Unable to open specified dataset
Null file or abnormal table found
Invalid program block name
Initial table not Program Description Table (PDT)

Part 2
9-8 J-OI

•

LOAD MAP

Each time the loader is called, the user has the option of requesting
a listing that describes where each module is loaded and what entry
points and external symbols were used for loading. This listing is
called a load map.

The user may specify the contents of the map or the dataset to receive
the map by setting parameters of the LDR control statement to the
desired values. The MAP parameter of the LDR control statement allows
the user to specify the contents of the map requested. MAP=ON or
MAP=FULL produces a block list and an entry list. The block list
gives the names, beginning addresses and lengths of the program and
subroutines loaded on this loader cal11 the entry list includes all
cross references to each entry. MAP=PART supplies a partial map, that
is, the block map only.

The load map is printed when requested even if fatal errors abort the
load. In this case, the map contains only those modules loaded up to
the point where the fatal load error occurred.

Figure 9-1 illustrates the load map generated by the following LDR
statement:

LDR,DN=$BLD: LOAD 2 ,LIB=MYLIB:$FTLIB,MAP=FULL.

The block list consists of items 1-16 in figure 9-11 the entry list
includes items 17-21.

1. Job name from the JOB control statement

2. Loader level and Julian date of assembly of the loader

3. Date and time of loader execution

4. Page number

5. Load type1 either relocatable, absolute, or overlay

6. Entry name to which initial transfer is given

7. Entry address where initial transfer is made

8. Name of load or library dataset containing modules to be
loaded

9. Names of blocks loaded from the named dataset. These are
common blocks (identified by the slashes around their names,
for example, /LABEL/) or are names of program blocks.

SR-OOll
Part 2

9-9 J-Ol

•

SAMPL

CD

*SYSTEM is always the first block listed in a relocatable
load. It consists of the first 2008 words of the user
field, which is reserved for the Job Communication Block
(JCB). For an absolute load, *SYSTEM is not allocated.
Therefore, the CAL user must set the origin to 2008 via an
ORG pseudo instruction to allow space for the JCB. If this
is not done, the job will abort.

Blank common, indicated as II, is allocated last and appears
at the end of the list (if it has been defined).

RElJJCATABLE I .oAT) ®
LDR.1 1,32 ,173 07/13/78 14:58:05

~0 '0""""
LOAD TRANSFER IS TO ® AT (CD)
® ® ® ®

DATASET BLOCK ADDRESS LENGTH

lIESYSTEM 1,3 200
$BLD MAINPRG 360 1030

/GLOBAL / 200 144
SUB01 15611 60
/LABEL / 1410 146
FUN 1 1 1640 25

LOAD2 SUBS 1700 1
MYLIB SUB11 1720 43

SUBf,d3 2000 42
$FTLIB $END 2060 25

$EXIT 2120 16
-~-------.

$RCW
//

®
BLOCK NAt'E

MAINPRG
SUB01
FLlN11
SUBS
SUB 11
SUB03
$END

$EXIT

$RCW

®
r: LOAD FL - 22332

5400
5657

@
ENTRIES

MAINPRG
SUB01
FLlNll
SUB02
SUB11
SUB03
$END
END$
$lEVI
$LEV2

$lOCA
$LOCB
EXIT

$RCHP
$RCHR
$RI·oJDP
$RWDR

267
144

B\FFERS -

@
DATE

07/13/78

121'('/13/78

07/13/78
07/13/78
07/13/('8
121'//13/78
06/22/78
06/22/78

OS/22/78

@
ENTRY IJALUE

13710
15650
16450
17000
17250
20120
20S=~0

20630
2100
2101

2103
2104
21230

5441b
S442a
5551b
55520

40000

@ ® @ ®
OS REl) PROC. UERl COMMENT

07/1~/78 CFT 1. 02 06/22/78

07/12/78 CFT 1 02 06/22/78

07/12j78 eFT 1 02 136/22/78
07/12/78 CAL 1 02 78173
07/12/78 CFT 1 02 06/;.·.:::2/78
0'1/12/78 CFT 1 02 06/22/78
OS/24/78 CAL 1 01 78104
~5/24/78 CAL 1 01 78104 -
OS/24/78 CAL 1. 01 78104

@
ABSOLUTE REFERENCES

1374d
16210 1621c 1622b
1375c
16140
1376b
1403b 1631a 16600 17530 2033b

LOR 1 1212 78173 07/13/78 14: 58:05

1402c

42560
LFT/DSPS - 424 ~ TOT'R.. FL - 62756.

Figure 9-1. Example of a load map

PAGE 1

0

PAGE 2

SR-0011
Part 2

9-10 J-01

•

10. Octal starting address of the block

11. Octal word length of the block

12. Date the object module was generated

13. Operating system revision date at the time the object module
was generated

14. Name and revision level of the processor that generated the
object module

15. Revision date of the processor that generated the object
module

16. comment (if any) from CAL COMMENT pseudo included in the load
module

17. Name of program block referenced

18. Entry points in the program block

19. Word address, parcel address, or value of each entry point

20. Absolute parcel addresses of references to each entry point.
Eight references are listed per line; some entry points have
no references.

21. Size of loaded binary, amount of memory used for I/O buffers,
amount of memory used for LFTs and DSPs, and total amount of
memory used. Total is the minimum amount of memory needed
for the program.

SELECTIVE LOAD

If the I keyword is present on the LDR control statement, one or more
INCLUDE and/or EXCLUDE directives are examined in the specified
dataset.

SR-0011
Part 2

9-11 J-01

•

Formats:

INCLUDE,SDN=sdn,FN=fn,MOD=mdl,:md2:···:mdsO·

EXCLUDE,SDN=sdn,FN=fn,MOD=mdl:md2:···:mdsO·

Parameters are in keyword form.

SDN=sdn Name of dataset containing modules to be selectively
loaded. If SDN is specified without a value, the first
dataset specified on the DN parameter of the LDR
statement is the default. If the SDN parameter is
omitted, an error message results, and the directive is
skipped: the load does not abort. The SDN and FN
parameters must refer to the same dataset.

FN=fn File number of the specified dataset. A number from 0
through 7. fn refers to the file by its numerical
position in SDN or in the DN parameter of the LDR
statement.

For example, if DN=Dl:Dl:D2, the first file of Dl has an
fn of 0, and the second file of Dl has an fn value

MOD=md

of 1. If FN is specified without a value, the default
is O. If FN is omitted, the whole of sdn is searched
for the correct module: a message is issued for a
complete sdn search. The SDN and FN parameters must
refer to the same dataset.

To load a module from the first file of Dl, the
directive may include the parameter FN=O: however, if FN
is specified without a value, the default is to load a
module from the first file.

Module name or entry point to a module to be included or
excluded from the load. Up to 50 modules can be
specified: the modules must be separated by colons. If
the MOD parameter is omitted, an error message results,
and the directive is skipped.

Exarrple: Given the LDR statement

LDR,DN=Dl:Dl:D2, •••

SR-OOll
Part 2

9-12 J-Ol

I

A directive to load a module from the second file of dataset Dl would
include the following directive in the next file of $IN:

INCLUDE,SDN=Dl,FN=l,MOD= ••••

Selective load messages are never suppressed.

RELOCATABLE OVERLAYS

When a binary module is defined as a relocatable overlay, the loader
can generate an image of the module that has been only partially
relocated. The image of the binary module contains sufficient
information for a user program to relocate all address references
within the module program block according to the actual address at
which the user program determines that the module should be executed.

The relocatable overlay is useful because program modules are
generated in such a way that a cornmon memory pool can execute the
overlay and also any of several overlays can execute at any address
within the pool.

GENERATION OF RELOCATABLE OVERLAYS

The CAL assembler defines a module as a relocatable overlay at
assembly time with the MODULE pseudo-oPe

Format:

Location Result
ignored MODULE

Parameters:

type A keyword parameter identifying the type of module being
defined. RELOCOVL is the only type currently available.

When the relocatable overlay is defined by the assembler, COS sets a
special flag in the Program Descriptor Table (PDT) for use by the
relocatable loader.

SR-OOll
Part 2

9-13 J-Ol

I

The loader, recognlzlng that the current module being loaded is a
relocatable overlay, performs limited relocation of the address
references in the module. That is, all references to labeled COMMON
blocks and all references to entry points defined within other modules
are adjusted ~ccording to the address at which the other module
resides in the memory image being constructed. References to blank
COMMON are illegal. It is also illegal for any other module to make
any reference to any entry point which is defined to be within the
relocatable overlay module. References from within the module to
addresses within the module are not adjusted at this time. Instead, a
copy of the necessary Block Relocation Table (BRT) entries is included
in the memory image of the module. All BRT entries not needed for
satisfying internal references are deleted.

The absolute memory image of the program constructed by the loader
will contain the loaded programs, including all relocatable overlay
modules.

The relocatable overlays are physically located at the end of the
memory image: all nonrelocatable overlay modules are loaded
contiguously in the order in which they are encountered. Relocatable
overlay modules can appear at any point in the load sequence and can
be contained in libraries. The loader moves modules in memory as
required to order the relocatable overlays at the end of the image.
This placement of the overlays makes it possible for a user program to
locate the images of each overlay and to copy the overlays to mass
storage, if it is desired, in order to make the memory space used by
the overlay images available for use by the program.)

MEMORY LAYOUT WHEN RELOCATABLE OVERLAYS EXIST

When the loader has detected the existence of one or more relocatable
overlays, memory is laid out in the following manner.

1. All nonrelocatable modules, in the order they were encountered
on load datasets or in libraries

2. Labeled COMMON blocks interspersed among the nonrelocatable
modules so that a labeled COMMON block precedes the absolute
image of the first block encountered which defines the block

3. All labeled COMMON blocks which are first defined within a
relocatable overlay module and which are not defined within
any other type of module

4. The images of all relocatable overlays in the order in which
they are encountered on load datasets or in libraries

SR-OOll
Part 2

9-14 J-Ol

I

5. Unsatified external (USX) program which is the loader's
internal program for processing unsatisfied external references

6. Blank COMMON if defined by any program module

Note that the placement of USX and blank COMMON can defeat the purpose
of relocatable overlays, since the overlay images must remain
reserved. with proper care, the program can use the space occupied by
the overlay images for internal tables and other data with
nonallocated space.

MEMORY LAYOUT OF A RELOCATABLE OVERLAY IMAGE

When the loader completes constructing the image of the complete
program being loaded, the relocatable overlay portions have a
different structure than do the nonrelocatable overlay portions.
Normal modules are loaded as an absolute image with all loader-related
tables removed. A~l address references, both internal to the module
and to other modules, are adjusted so that the code executes
correctly. If the C parameter is specified when the loader is called
into execution, individual modules may begin immediately after the
previous moduie, or they may begin at the next l6-word (decimal)
boundary.

Because relocatable overlay modules are expected by the loader to be
moved to a different address for execution, the C specification has no
meaning to a relocatable overlay module, and the first and subsequent
such modules begin immediately after the last word of the previous
module.

Relocatable overlay module images also contain loader-relocated
tables. These tables are required so that the user program can a~just
address references within a relocatable overlay when it has determined
the address at which the overlay will execute. The tables are:

• Program Description Table (PDT)
• Text Table (TXT)
• Block Relocation Table (BRT)

The PDT contains information regarding the number of entry points
defined and the number of blocks and external references. The TXT
contains a count of the words in the actual image of the code,
followed by the semi-absolute image of the code. The BRT contains
information necessary for adjusting address references within the
module. If the user program wants to write the overlays to mass
storage, the information in the PDT can be used to construct a
directory or similar table for locating specific overlays or entry
points, and then can be discarded. TXT and BRT must be retained in
the mass storage copy for future relocation of address references.

SR-OOll
Part 2

9-15 J-Ol

I

ADDRESS RELOCATION

When a relocatable overlay has been loaded into the desired execution
area, the BRT information must be used to locate all address
references within the overlay. Information in the BRT includes a
header with a word count and a number of words containing two
relocation specifiers. Some words may contain only one specifier
which must be in the left position because of the way in which the
loader gathers references for the image.

The format of the header follows:

0 4 28 63

I 15 I we 1//////////////////////////// I

Field Bits Description

0-3 Table type1 IS-block relocation table.

we 4-27 Number of words in the table, including the header

There are we-l words of relocation specifiers. Each relocation
specifier word contains two 32-bit values, the format of which is:

o 8

Field Bits

q 7

qwa 8-31

SR-OOll

32 63

qwa 1////////////////////////////////1 I

Description

Relocation mode:
o Reference requires a word address value
1 Reference requires a parcel address value

Quarter word address1 indicates the parcel
address of a field relative to the beginning of
the overlay code image which must be modified.

It consists of a 22-bit word address and a 2-bit
field specifying the parcel within the word.
Parcels are located within words as follows:

Part 2
9-16 J-Ol

Field Bits

I SR-OOll

Description

Parcel Word Addr Parcel Location

0 0-1 ----- ----- ---**
0 *****

1 0 ---** *****
2 0 ---** *****
3 0 ---** *****

Relocation is 22-bits wide, and occurs across a
word boundary if the parcel number is o.

Part 2
9-17 J-Ol

I

OVERLAY LOADING

INTRODUCTION

Very large programs may not fit in the available user memory space or
may not use large portions of memory while other parts of the program
are in execution. For such programs, the COS relocatable loader
includes the ability to define and generate ove~lay8 -- separate
modules that the user creates and then calls and executes as necessary.

Two types of overlays are available to the user, classified as either
Type I or Type 2 depending on the directives used. Type 1 ove~lay8
are generated by using the generation directives ROOT, POVL, and
SOVL. Two levels of overlays in addition to the root overlay are
allowed with calls to a maximum of 999 adjacent overlays. Type 2
ove~lay8 are generated by using the generation directive OVLL. Ten
levels of overlays in addition to the root overlay are allowed with
calls to a maximum of 63 adjacent overlays.

The overlay loader can also generate a partially relocated module.
This module is referred to as a relocatable overlay. It is described
in part 2, section 9.

The overlay structure, rules for overlay generation and overlay calls
for both types are described in this section. The control statements
used to generate the overlay and the directives common to both types
of overlays are described first. Specific rules for generation of
Type 1 and Type 2 overlays are described separately in the following
sUbsections.

OVERLAY GENERATION

Overlay generation consists of a load operation in which the loader
performs relocatable loading and writes the resulting binary image to
disk. One named absolute binary record is written per root and each
overlay.

If the LDR control statement (part 2, section 9) has the parameter
OVL=di~, the loader finds the overlay generation directives on the
named dataset, di~. If no dataset is given (that is, OVL), then the
loader reads overlay generation directives from $IN.

10

SR-OOll
Part 2

10-1 J-OI

The format of the control statement is:

LDR, ••• ,OVL=di~, ••••

OVERLAY DIRECTIVES

An overlay directive consists of a keyword and a parameter. A blank,
comma, or open parenthesis must separate the keyword from the
parameter. A period, closed parenthesis, or two consecutive blanks
serve as the terminator. A caret () at the end of the directive line
indicates that the next line is a continuation of the current
directive. The caret cannot be preceded by a blank~ it must immediately
follow the last character of the line.

FILE directive

The FILE directive indicates the dataset, dn, containing the routines
to be loaded. This directive's function is similar to that of the DN
parameter on the LDR control statement. It is generally the first
directive on the directives dataset but may appear at any time and as
often as necessary thereafter. If no FILE directive appears, the
loading proceeds from the dataset specified on the DN parameter of the
LDR control statement (see part 2, section 9). If that, too, has been
omitted, loading initially occurs from $BLD. This directive is common
to both overlay types.

Format:

OVLDN directive

The function of this directive is similar to that of the AB parameter on
the LDR control statement. This directive names the dataset, dn, on
which overlays are written. The dn parameter must be present. If no
OVLDN directive is present, the default overlay binary dataset ($OBD) is
assigned. All overlays generated following an OVLDN directive reside as
separate binary records on dataset dn. OVLDN directives may appear as
often as desired. This directive is common to both overlay types.

SR-OOll
Part 2

10-2 J

Format:

OVLDN,dn.

SBCA directive

The SBCA directive sets the blank common starting address to the
specified address. This directive allows the user to place blank common
after all load modules in the current overlay structure. The address
specified must be larger than any address used in the overlay
structure. This directive must appear before any overlay generation
directive, such as ROOT or OVLL.

Format:

SBCA,address.

where address is the octal address assigned to blank common.

TYPE 1 OVERLAY STRUCTURE

Each Type 1 overlay is identified by a pair of decimal numbers, each
from 0 through 999. There must be one and only one root overlay: its
level numbers are (0,0). This root remains in memory throughout program
execution. Primary overlays all have level numbers (n,o) where n is in
the range 1 through 999.

Primary overlays are called at various times by the root and are loaded
at the same address immediately following the root. A secondary overlay
is associated with a specific primary overlay. The secondary level
numbers are (n,m), where n is the primary level, and m is in the
range 1 through 999. All secondary overlays associated with a given
primary (i.e., the same n) are loaded at the same address immediately
following that primary.

Only the root, one primary overlay, and one secondary overlay can be in
memory at one time.

SR-OOll
Part 2

10-3 I

Figure 10-1 is a diagram of a sample Type 1 overlay loading. The
primary and secondary overlays are shown in time sequence. The sequence
of generation does not imply that the programs are loaded into memory in
the same sequence or that they remain in memory for a set period of time
when they are executed.

All external references must be directed toward an overlay nearer to the
root. For example, overlay (1,0) may contain references to the root
(O,O) but not to overlay (l,l). OVerlay (l,l) may contain references to
bo th (I, 0) and (O, 0) •

The loader places named common prior to the routine that first
references it. All named common references must be directed toward a
lower level routine. The lowest level routine with a named common block
must contain data statements for that block.

For example, in figure 10-1,

MAIN can reference named common A only

SUBI and SUB2 can reference named common A and B only

TEST can reference named common A, B, and C

The loader allocates blank common immediately after the first overlay in
which it is declared. If blank common is declared in the root overlay
(O,O), it is allocated at the highest address of the root overlay and is
accessible to all overlays. If blank common is first declared in
primary overlay (1,0) and not declared in the root (O,O), then it is
accessible only to the (l,x) overlays. Allocation and placement of
blank common may also be manipulated by the user through the SBCA
director.

JCHLM is set to the highest address of the root overlay prior to
loading. If a subsequent overlay module requires additional memory, JCHL
is reset to the highest address of that module

Type 1 overlay generation directives

The overlay generation directives define the structure of the overlay.
Included in this class are the ROOT, POVL, and SOVL directives.

ROOT directive - This directive defines programs, subroutines, and/or
entry points comprising the load from dn. For programs written in CAL,
list each entry referenced. FORTRAN programs need the program name
only. All members for this directive reside on the same dataset, dn, as
defined by the FILE directive.

SR-OOll
Part 2

10-4 I

0··>· , ... / ... / .. .

200S

>
I...
o
E
Q)
E

JCHLM

NAMED COMMON A
PROGRAM MAIN

NAMED COMMON B
SUBROUTINE SUB1

SUBROUTINE SUB2

BLANK COMMON

NAMED COMMON C
PRIMARY

(1 ,0)
PROGRAM TEST

PROGRAM
ALPHA

(2,0)
1--------::1,----,,.-----1 SUB RO UT I N E

PROGRAM
NEW1

SECONDARY
(1 , 1)

(1 ,2)

"'--___ a.-................

BETA

PROGRAM
DELTA

(2,1)

ROOT (0,0)

(3,0)

(5,0)

(5,1) (5,2) (5,3)

______ • ________ c __ ._ ---L. __10.-__ ---1--__ ~

SR-OOll

time ---~)

Figure 10-1. Example of Type 1 overlay loading

Part 2
10-5

(2,0)

(2,3)

I

Format:

POVL directive - This directive causes relocatable loading of the named
blocks to the primary overlay with the name pZevel:OOO. The size of the
root determines the base location. All members for this directive
reside on the same dataset, dn. The first member in the list is the one
that receives control when the overlay is loaOed. For programs written
in CAL, the first entry point of the first routine receives control.

Format:

POVL,pZeveZ, memberl,member2 , •.• ,membern •

where pZeveZ is between I and 999.

SOVL directive - This directive causes relocatable loading of the named
blocks to the secondary overlay with the name pZeveZ:sZeveZ. The length
of POVL (pZeveZ:OOO) determines the base location. All members for this
directive reside on the same dataset, dn. The first member in the list
is the one that receives control when the overlay is loaded. For
programs written in CAL, the first entry point of the first routine
receives control.

Forma t:

where sZeveZ is between 1 and 999.

SR-OOIl
Part 2

10-6 I

Rules for Type 1 overlay generation

1. Overlay members are loaded from datasets named in FILE
directives. Members are searched for in the most recently
mentioned dataset only. In the absence of a FILE directive,
members are loaded from the dataset specified on the LOR control
statement. If that is also omitted, loading will initially occur
from $BLO. Currently, the relocatable modules of all members for
any overlay level must reside on the same file.

2. The overlays are generated in the order of the directives.

3. There must be one and only one root.

4. Level hierarchy must be maintained. The ROOT overlay must be
generated first; hence the ROOT directives appear first.
Following the ROOT generation, a primary overlay (POVL) is
generated. No limitation is placed on which primary overlay
number (plevel) is generated; however, all secondary overlays
(SOVL) associated with the plevel must follow. The secondary
overlay slevels may be generated in any order following their
respective primary level.

5. An end-of-file in the directives file ends the input of overlay
directives; hence overlay generation.

6. Any directive other than FILE, OVLDN, SBCA, ROOT, POVL, or SOVL
causes a fatal error.

7. The list of members may be continued to another line by using a
caret (A) immediately following the last character at the end of
the directive line (that is, no blanks). The A does not replace
a separator and must not appear within a member name.

8. Any number of lines may be used to name the members of an overlay.

Example of Type 1 overlay generation directives

In the following example,

OSETI contains routines THETA, TEST, GAMMA, SUB1, MAIN, SUB2.

OSET2 contains routines NEW2, ALPHA, OVER, NEW1, DELTA, EPSILON,
SIGMA, BETA.

Format of the control statement that initializes overlay generation:

LOR, ••• ,OVL=OVLIN, ••••

SR-OOll
Part 2

10-7 I

Dataset OVLIN contains the following directives:

FILE,DSETI. Loader selectively loads from dataset DSETI.

OVLDN,LEVOO. The following overlay modules are written to the
da taset LEVOO.

ROOT ,MAIN, SUBI
, SUB2.

POVL,l, TEST.

FILE, DSET2.

SOVL,l,NEWl.

OVLDN, LEV12.

SOVL , 2 , NEW 2 •

The absolute binary of MAIN,SUBl,SUB2 is
written as the first record on dataset LEVOO.

The binary of TEST is named 001:000 and is
binary record 2 on dataset LEVOO.

Loader selectively loads from dataset DSET2.

The binary of NEWI is named 001:001 and is
binary record 3 on dataset LEVOO.

The subsequent overlay modules are written to
the dataset LEV12.

The binary of NEW2 is named 001:002 and is
binary record 1 on dataset LEV12.

POVL,2,ALPHA,BETA. The binary of ALPHA,BETA is named 002:000 and is
record 2 on dataset LEV12.

<eof> End of overlay load sequence

Execution of Type 1 overlays

A control statement call of the dataset containing the ROOT overlay
initiates its loading and execution. If no OVLDN directives are used
before generating the ROOT, the dataset $DBD will contain the ROOT
over lay.

The following sequence executes the root overlay after generation:

LDR, ••• ,OVL=dir, ••••
$OBD.

SR-OOll
Part 2

10-8 I

I

Our ing over lay gener a ticm the member s ar e loaded fr om the FILE da taset
in the order they appear on the dataset, regardless of their order of
appearance in the members list. The entry for POVL and SOVL overlays is
defined by the first member listed on the generation directive. Control
is transferred to this address after loading by the $OVERLAY routine
during program execution. The ROOT entry may be named using the T
parameter on the LOR control statement (see part 2, section 9).

Type 1 overlay calls

The user calls for the loading of overlays from within the program, and
the method by which they are called depends on the program language in
use (FORTRAN or CAL). OVERLAY is a subroutine of the root overlay and
is loaded into memory with the root.

FORTRAN Language Call

A FORTRAN program calls for the loading of overlays as follows:

n

L

dn

levell

level2

r

Number of characters in the name

Left-adjusted; zero filled

Name of the dataset on which this overlay resides

Primary level number of the overlay

Secondary level number of the overlay

An optional recall parameter. If the user wishes to
re-execute an overlay without reloading it, 6LRECALL may
be entered. If it is not currently loaded, it will be
loaded.

Part 2
10-9 I

CAL Language Call

A sample call sequence from a CAL program is as follows:

Locatfon

DVLDN
PLEV
:>LEV

Result

EXT

51
52
53
W.OVERLAY-l,O
W.OVERLAY-2,O
W.OVERlAY-3,O
R

CON
CON
CON

Operand

OVERLAY

OVLDN
PLEV
5LEV
51
52
53
OVERLAY

A' LEV12 I L
2

°
where OVLDN is the address of the dataset name, PLEV is the address of
the primary level, and SLEV is the address of the secondary level. If
recall is desired, the address of the literal RECALL is transmitted to
W. OVERLAY - 4.

Example:

Location Result Operand

54 ='RECALL'L
W.OVERLAY-4,O 54

For both FORTRAN and CAL language calls, during execution of the
ROOT(O,O) program MAIN, the statement

CALL OVERLAY{5LLEV12,2,0) or the above CAL sample call

causes OVERLAY to search dataset LEV12 for the absolute binary named
002:000. OVERLAY positions the dataset LEV12 to the location of the
absolute binary named 002:000 using information supplied by the loader,
loads the overlay, and transfers control to the first member specified
on the POVL or SOVL directive. After execution of the overlay, control

SR-OOll
Part 2

10-10 I

returns to the statement in MAIN immediately following the CALL
statement. Following the load, dataset LEV12 is positioned immediately
after the end of record for the overlay (2,0). If overlay (2,0) is not
on dataset LEV12, a fatal error results.

Placing a call for a secondary overlay for·which the corresponding
primary overlay is not already loaded causes OVERLAY to load both
overlays. Control transfers to the secondary after both overlays are in
memory. A fatal error results if the primary and secondary overlays are
not both on the named ovldn. If the overlays reside on different
datasets, the user must place separate calls to load the overlays in the
correct order.

Log of Type 1 overlay generation

When MAP is specified on the LOR control statement, a listing is
generated that describes where each module is loaded and what entry
points and external symbols were used for loading. This listing is an
overlay load map and is similar to the map of a non-overlay load (part
2, section 9). A log of the directives used follows the map of the last
overlay generated. If overlay loading aborts, the directives are not
listed.

TYPE 2 OVERLAY STRUCTURE

A Type 2 overlay is identified by a pair of decimal numbers that
indicate the overlay level and the number of the overlay within that
level. The overlay notation is of the form (level,number) where the
value of level is in the range 1 through 10 and the value of number is
in the range 1 through 63. Only one root overlay exists: its level
number is O. The root overlay remains in memory during the entire
program execution and may call only level one overlays.

Level one overlays are called at various times by the root overlay; each
call loads the named overlay at the same address, which is immediately
following the location of the root. The first level overlay must be
called by the root: each upper level over lay may be called by the
associated overlay at the adjacent lower level. A hierarchy exists
among overlay levels: an upper level overlay is subordinate to the
proximate lower level overlay. An upper level overlay associated with
overlay (2,1) might be (3,2), (3,3) or (3,4).

SR-OOll
Part 2

10-11 I

o

200S

NAMED COMMON A

PROGRAM MAiN

NAMED COMMON B
SUBROUTINE SUBl

SUBROUTINE SUB2

>-
~ BLANK COMMON
E
Q)

E NAMED COMMON C
LEVEL
(1 , 1)

PROGRAM TEST

PROGRAM
NEW1

PROGRAM
ALPHA

LEVEL

PROGRAM
BETA
(3,2)

JCHLM (3,1)

L ______ _

JOB COMMUNICATION i f ••• ~ ••••••••••••••••••••• ! .•••••••••••••••••••••• : BLOCK .••••••••.•••

PROGRAM
NEW2

(2,2)

(1 ,5)

(2, 1)

: unused

LEVEL (0)
(ROOT)

(1 ,2)

(2, 1) (2,4)

(3, 1)

(4,1) (4,2)

time----~>

(1 73)

Figure 10-2. Example of Type 2 overlay loading

SR-OOll
Part 2

10-12

(1 ,4)

(2, 1)

I

An overlay can call into memory any overlay in the next higher level; it
cannot call an overlay more than one level above it in the hierarchy.
For example, overlay (2,1) can call (3,1) through (3,63), but it cannot
call (4,1). Each call for an overlay loads the named overlay at the
same address location, which immediately follows the location of the
calling overlay. Only the root and one overlay at each level can be in
memory concurrently.

All external references must be directed toward an overlay nearer the
root overlay. Overlay (1,1) may contain references to the root overlay
but not to overlay (1,2) or overlay (2,1). The (2,1) overlay may
reference externals in both the (1,1) overlay and the root overlay.

The loader places named common blocks prior to the routine that first
references it. All named common references must be directed toward a
lower level routine (toward the root overlay). If blank common is
declared in the root overlay, it is allocated at the highest address of
the root and is accessible to all overlays. If blank common is declared
first in a level one overlay, for example, and is not declared in the
root overlay, it is accessible only to level one and upper level
overlays.

JCHLM is set to the highest address of the root overlay prior to
loading. If a subsequent overlay module requires additional memory,
JCHLM is reset to the highest address of that module.

Figure 10-2 shows a sample Type 2 overlay loading diagram. The overlays
are shown in time sequence. The sequence of generation does not imply
that the programs are loaded into memory in the same sequence or that
they remain in memory for a set period of time when they are executed.

Type 2 overlay generation directive

The Type 2 overlay directive defines the structure of the overlay within
the directive format.

OVLL directive - This directive causes relocatable loading of the named
blocks of an overlay. The size of the lower level overlays in the group
determines the base location. All members for this directive reside on
the same dataset, dn, specified by the FILE directive. The first member
in the list is the one that receives control when the overlay is
loaded. For programs written in CAL, the first entry point of the first
routine receives control.

SR-OOll
Part 2

10-13 I

Format:

OVLL,level ,nwnber ,memberl ,member2 , ••• ,membern •

level

nwnber

member

Level number of the over lay (1 < leve 1 < 10).
If level is 0, the root phase is generated and
the number must be omitted.

Number of the overlay within the level
(l < nWllber < 63).

Module names for the individual overlays

Rules for Type 2 overlay generation

1. Overlay members are loaded from datasets named in FILE
directives. Members are searched for in the most recently
mentioned dataset only. In the absence of a FILE directive,
members are loaded from the dataset specified on the LDR control
statement. If that is also omitted, loading initially occurs
from $BLD.

2. The overlays are generated in the order of the directives.

3. There must be one and only one root per dataset.

4. Level hierarchy must be mai tained. The root overlay must be
generated first. Following the root generation, a first level
overlay is generated. No limitation is placed on which overlay
number is generated; however, all overlays associated with that
first level overlay must follow. The overlays may be generated
in any order; the same restrictions apply for all levels of
overlays (1 through 10).

5. An end-of-file ends the input of overlay directives.

6. Any directive other than FILE, OVLDN, SBCA or OVLL causes a fatal
error.

SR-OOll
Part 2

10-14 I

7. The list of members can be continued to another line by using a
caret (A) immediately following the last character at the end of
the directive line (that is, no blanks). The A does not replace
a separator and must not appear within a member name.

8. Any number of lines can be used to name the members of an overlay.

Example of Type 2 overlay generation directives

In the following example,

DSETI contains routines THETA, TEST, GAMMA, SUBl, MAIN, SUB2.

DSET2 contains routines NEW2, ALPHA, OVER, NEWl, DELTA, EPSILON,
SIGMA, BETA.

Format of the control statement that initializes overlay generation:

LDR, ••• ,OVL=OVLIN, •••

Dataset OVLIN contains the following directives:

FILE, DSET1.

OVLDN,LEVOO.

OVLL,0,MAIN,SUB1,
SUB2.

OVLL,l,l,TEST.

FILE,DSET2.

OVLL,2,1,NEWl.

OVLDN, LEV12 •

OVLL,2,2,NEW2.

OVLL,3,1,ALPHA.

SR-OOll

Loader selectively loads from dataset DSETl.

The following overlay modules are written to
the dataset LEVOO.

The absolute binary of MAIN,SUB1,SUB2
is named 0 and is the first record on dataset
LEVOO.

The binary of TEST is named 1 and is binary
record 2 on dataset LEVOO.

Loader selectively loads from dataset DSET2.

The binary of NEWI is named 1018 and is
binary record 3 on dataset LEVOO.

The subsequent overlay modules are written to
the dataset LEV12.

The binary of NEW2 is named 2018 and is
binary record 1 on dataset LEV12.

The binary of ALPHA is named 102018 and is
binary record 2 on dataset LEV12.

Part 2
10-15 I

OVLL,3,2,BETA.

<eo!>

The binary of BETA is named 202018 and i~
binary record 3 on dataset LEV12.

End of overlay load sequence.

Execution of Type 2 overlays

A control statement call of the dataset containing the root overlay
initiates its loading and execution. If no OVLON directives are used
before generating the root, the dataset $OBO will contain the root
overlay. All overlays reside on the datasets specified on the overlay
directives. The entry for higher level overlays is defined by the first
member lis ted on the genera tion directive. Control is tr ansferred to
this address after loading by the $OVERLAY routine during program
execution. The root entry may be named using the T parameter on the LOR
control statement (see part 2, section 9).

The following sequence executes the root overlay after generation:

LOR, ••• , OVL= dir, ••••
$OBO.

When the program is to be executed, the root overlay is brought into
memory as a result of a control statement call in the job deck.
Thereafter, additional overlays are called into memory by the executing
program. Overlay loading allows any overlay to call for the loading of
an adjacent upper level overlay.

Type 2 overlay calls

The user calls for the loading of Type 2 overlays from within the
program, and the method by which they are called depends on the program
language in use (FORTRAN or CAL). OVERLAY is a subroutine of the root
overlay and is loaded into memory with the root.

FORTRAN Language Call

A FORTRAN program calls for the loading of Type 2 overlays as follows:

CALL OVERLAY(nLdn,ZeveZ,number,r)

SR-OOll
Part 2

10-16 I

I

n

L

dn

ZeveZ

nwnber

Number of characters in the name

Left-adjusted, zero filled

Name of the dataset on which this overlay resides

Level number of the overlay

Number of the overlay within the level

Optional recall parameter. If the user wishes to
re-execute an overlay without reloading it, 6LRECALL may
be entered. If it is not currently loaded, it will be
loaded.

CAL Language Call

Location Result Operand

EXT OVERLAY

51 OVLDN
52 LEVEL
53 NUMBER
rw. OVERLAY-1 ,0 51
~.OVERLAY-2,O 52
W.OVERLAY-3,O 53
R OVERLAY

OVLDN CON A' LEV12 I L
,LEVEL CON 1
NUMBER ~ON 2

where OVLDN is the address of the dataset name, LEVEL is the address of
the overlay level, and NUMBER is the address of the number within the
level. If recall is desired, the address of the literal RECALL is
transmitted to W.OVERLAY-4.

SR-OOll
Part 2

10-17 I

Example:

Location Result Operand

54 ='RECALL'L
W.OVERLAY-4,O 54

For both FORTRAN and CAL language calls, during execution of the ROOT
program MAIN, the statement

CALL OVERLAY(SLLEV12,1,2), or above CAL sample call

causes OVERLAY to search dataset ~V12 for the absolute binary named 2.
OVERLAY positions the dataset LEV12 to the location of the absolute
binary named 2 using information supplied by the loader, loads the
overlay, and transfers control to the first member specified on the OVLL
directive. After execution of the overlay, control returns to the
statement in MAIN immediately following the CALL statement. Following
the load, dataset LEV12 is pOSitioned immediately after the end of
record for the overlay 2. If overlay 2 is not on dataset LEV12, a fatal
error results.

Log of Type 2 overlay generation

When MAP is specified on the LDR control statement, a listing is
obtained that describes where each module is loaded and what entry
points and external symbols were used for loading. This listing is an
overlay load map and is similar to the map of a non-overlay load (part
2, section 9). A log of the directives used will follow the map of the
last overlay generated. If overlay loading aborts, the directives are
not listed.

SR-OOll
Part 2

10-18 I

I

BUILD

INTRODUCTION

BUILD is an operating system utility program for generating and
maintaining library datasets. A library dataset is a dataset
containing a program file followed by a directory file. Library
datasets are designed primarily to provide the loader with a means of
rapidly locating and accessing program modules. The program file is
composed of loader tables for one or more absolute or relocatable
program modules. The directory file contains an entry for each

11

program. The entry contains the name of the program module; the
relative location of the program module in the dataset; and block names,
entry names, and external names.

The BUILD program constructs a library from one or more input datasets
named by the user when BUILD is called. A library dataset created by a
BUILD run may be used as input to a subsequent BUILD run. Through BUILD
directives, the user designates the program modules to be copied from
the input datasets to the new library and the order in which they are to
be placed in the library. However, no directives or control statement
parameters are needed for the most frequent application of BUILD, which
is to add new binaries from $BLD to an existing library of binary
programs, replacing the old binaries where necessary.

PROGRAM MODULE NAMES

BUILD directives refer to program modules by their names as given in the
directory or, if the directory is missing or is unreadable, by the names
given in the program modules.

PROGRAM MODULE GROUPS

In the COpy and OMIT directives, program modules whose names contain one
or more identical groups of characters may be specified together, with
the variable parts of each name relaced by one or more hyphens. For
example, XYZ- represents all names beginning with XYZ, including XYZ
itself. In the extreme case, a name consisting of only a hyphen
represents all possible names.

SR-OOll
Part 2
11-1 1-01

I
I

In addition, up to eight asterisks may be used anywhere in a name as
wild characters matching any character other than a blank. For
example, GE* specifies a group of modules having three-character names
including GET and GEM but not GE or GEMS.

PROGRAM MODULE RANGES

In order to facilitate the copying of large numbers of contiguous
program modules, the COpy directive allows a range specifier to be
used instead of a single name or group specifier. The range specifier
has the general form:

(fipst,Zast)

which means: skip to the first module and then copy all modules from
that first one up to and including the last module.

FILE OUTPUT SEQUENCE

If the SORT parameter appears in the BUILD control statement, all
modules are copied alphabetically according to their new names. In
tne absence of a SORT parameter, modules are written in the order in
which they are read originally from the input datasets.

The order of the entries in the directory is always the same as the
order of the modules themselves.

FILE SEARCHING METHOD

The user need not be aware of the order of modules in the input
dataset unless (1) there are two or more modules with the same name or
(2) a range is specified in a COpy directive.

If two or more modules with the same name are in the input datasets,
the last of the modules read is the one that survives, unless the user
specifically omits that last module while its original dataset is the
currently active input dataset.

SR-OOll
Part 2

11-2 1-01

I

The concept of cuppent position in the input file is used to interpret
range specifiers in which the first name is omitted as in (,) or
(,). In such cases, the current position is defined to be either
immediately after the last module copied or at the beginning of the
dataset if no modules have yet been copied.

BUILD CONTROL STATEMENT

Format:

BUILD,I9idn,L=ldn,OBL=odn,B=bdn,NBL=ndn,SORT,NODIR,REPLACE.

Parameters are in keyword form.

I=idn

L=ldn

SR-OOll

Name of dataset containing BUILD directives, if any.
Directives may be included in the $IN dataset, or they may
be submitted in a separate dataset.

If the I parameter appears alone or is omitted, all
directives are taken from the $IN dataset, starting at its
current position and stopping when an end-of-file is read.

If I=ddn, all directives are taken from the specified
dataset, ddn, stopping when an end-of-file is read.

If 1=0, no directives are read. The most common condition
is to merge the modules from odn (the OBL dataset) with
those from bdn (the B dataset), replacing OBL modules with
B modules whenever the names conflict, and to write the
output to ndn (the NBL dataset). Note that the input
dataset specified by the B parameter corresponds to the
binary output from CAL and CFT, also designated by B.

Name of list output dataset.

If the L keyword appears alone or is omitted, list output
is written to $OUT.

If L=ldn, list output is written to ldn.

If L=O, no list output is written.

Part 2
11-3 1-02

OBL=odn

B=bdn

NBL=ndn

SORT

NODIR

SR-OOll

Name of the first input dataset, which is usually a
previously created program library.

If the OBL parameter is omitted or appears alone, the
first dataset read is $OBL.

If OBL=odn, the first dataset read is odn.

If OBL=O, no old binary library exists. This is a
creation run.

Name of the second input dataset, whose modules will be
added to or will replace the modules in the first
dataset.

If the B parameter appears alone or is omitted, the
second dataset read is $BLD.

If B=bdn, the second dataset read is bdn, which is read
to the first end-of-file.

If B=O, no modules are being added. This run edits an
old library.

BUILD stops at end-of-file; bdn is not required.

Name of the output dataset, which is usually considered
to be a new program library.

If the NBL parameter appears alone or is omitted, output
i p written to $NBL.

If NBL=ndn, output is written to ndn.

If NBL=O, no output is written. This usage is intended
for checking out BUILD directives.

Specifies that all modules are to be listed
alphabetically according to their new names. The
default is to list the modules in the order they were
first read.

Specifies that no directory is to be appended to the
output dataset, resulting in an ordinary sequential
dataset like $BLD. The default is to append the
directory.

Part 2
11-4 1-01

I
REPLACE Specifies that the output library is to contain modules in

the same order as the old library. If omitted, the new
library contains modules from the old library which were
not replaced by modules from the input binary dataset,
followed by modules from the input dataset.

Any of the following errors causes BUILD to abort:

• A module specified explicitly in a COpy or OMIT directive is
not in the current input dataset.

• A module specified explicitly in a COpy directive has already
been selected for output.

• Improper syntax is used in the BUILD control statement or in
the directive dataset.

• An unrecognized directive or control statement keyword is used.

• A dataset name or module name is too long or contains illegal
characters.

BUILD DIRECTIVES

BUILD is controlled through directives in a dataset defined by the I
parameter on the BUILD control statement. A directive consists of a
keyword and, if the keyword requires it, a list of dataset names or
module names. When names are required, the keyword must be separated
from the first name by a blank; subsequent names (if any) in the list
are separated from each other by commas. Extra blanks are optional
except within the keyword.

A line can contain more than one directive; periods or semicolons are
used to separate directives on the same line from each other. A
directive cannot be continued from one directive line to the next.

Examples of directives:

OMIT ENCODE,DECODE

COpy **CODE.

Examples of multiple directives on one line:

FROM OLDLIB; LIST; OMIT ENCODE,DECODE,XLATE

FROM $BLD. LIST.

SR-0011
Part 2
11-5 1-02

FROM DIRECTIVE

A FROM directive may name a single dataset, which is thus established
as the input dataset for succeeding COPY, OMIT, and LIST directives,
or it may list several datasets that (except for the last dataset in
the list) are to be copied in their entirety to the output dataset
($NBL). The last dataset in the list is established as the current
input dataset, just as if it were specified alone in the FROM
directive. If no COpy or OMIT directive follows, the last dataset is
also copied in its entirety to the output dataset.

An input dataset may be a library (with a directory) or an ordinary
sequential dataset (such as $BLD). BUILD always determines whether a
directory is present at the end of the dataset and attempts to use it
if it is there. A library dataset is treated as sequential if its
directory file is unreadable for any reason.

Format:

FROM dn 1 ,dn 2' ••• ,dnn

The following general rule allows the user to copy several datasets
from one FROM directive or to omit COpy (which means "copy all") when
it would be the only directive (except for OMIT directives) in the
range of a particular FROM directive:

If any dataset named on a FROM directive are not acted on by any
LIST or COpy directive, then BUILD copies all of the modules
belonging to that dataset. BUILD takes this action when it
encounters the next FROM dataset name or the end of the directive
file, whichever comes first.

If there are two input datasets to be read as soon as BUILD begins to
execute (that is, if neither OBL=O nor B=O is specified), the modules
from these two datasets are treated as if they belong to a single
dataset as far as the OMIT, COPY, and LIST directives are concerned.
However, if either of them is named in a FROM directive, it is treated
as a separate dataset and OMIT, COPY, and LIST directives apply only
to whichever is the current input dataset.

SR-OOll
Part 2

11-6 I

OMIT DIRECTIVE

The OMIT directive allows a user to specify that certain modules
otherwise included in a group be omitted from the group on subsequent
copy operations. An OMIT affects modules on the current input dataset
only; its effect ends when a FROM directive is encountered.

Format:

Each fni may be one of the following:

• A single name, such as $AB@CDEF or CAB22 , by which binary
records can be explicitly prevented from being copied

• A group name, such as F$- or *AB**, by which binary records are
prevented from being copied unless they are specified
explicitly (i.e., singly) in a COpy directive (see AUDIT
statement for description of * and -)

If an fn parameter specifies a module not in the input dataset or a
group of modules having no representatives in the input dataset, a
diagnostic message is included in the list output and BUILD aborts.

COpy DIRECTIVES

COpy directives cause BUILD to select the specified modules for
copying from current input dataset to .the output dataset. The user
may specify single modules, groups of modules, or ranges of modules to
be copied. If the user specifies a module that is not in the current
input dataset, a diagnostic message is included in the list output and
BUILD aborts.

Format:

SR-OOll
Part 2
11-7 I

Each fn. may be either of the two forms that are valid in OMIT
d ' ,~ 1rect1ves:

• A single module name, by which modules are explicitly selected
for copying, even if they belong to a group named in a previous
OMIT directive

• A group specifier, by which all the modules in the group are
selected for copying unless they were specified either
explicitly or implicitly in a previous OMIT directive

In addition, two special forms are allowed for each fni in COpy
directives:

• A form to rename a single module whose old name is specified
explicitly; for example, OLDNAME=NEWNAME. (The name is changed
both in the output directory and in the PDT.)

• A form to copy an inclusive range, as in (FIRST,LAST), by which
all the modules in the range are selected for copying unless
they were specified either explicitly or implicitly in a
previous OMIT directive.

These two forms are mutually exclusive. A module copied by being
included in a range cannot at the same time be renamed. Nor can
either form accept a hyphen or asterisk specifying a group of modules.

Examples:

BUG=ROACH

(LOKI, THOR)

(THOTH,)

(,ISIS)

(,)

Copies BUG, renaming it to ROACH

Copies all modules from LOKI through THOR

Copies all modules from THOTH to the end of the
input dataset

Copies all modules from the current dataset
position through ISIS

Copies all modules from the current dataset
position to the end of the input dataset

The current dataset position is defined as the beginning of the input
dataset if no modules have been selected for copying yet, or else as
the beginning of the record immediately after the last module that has
been selected for copying.

SR-OOII
Part 2

11-8 I

I

I

LIST DIRECTIVE

The LIST directive tells BUILD to list the characteristics of the
modules in the current input dataset. Its effect is immediate.
(BUILD's standard list output describes the contents of the output
dataset and is produced at the end of the run so as not to interfere
with output triggered by LIST directives.)

Format:

EXAMPLES

The following are examples of various uses of the BUILD program:

• Creating a new library dataset, using as input whatever binary
modules have been written out to $BLD by CAL and/or CFT.

Control statements:

BUILD,OBL=O,I=O.
SAVE,DN=$NBL,PDN=MLIB.

• Adding one or more modules to an already existing library
dataset, again taking the input from $BLD.

SR-OOll

Control statements:

ACCESS,DN=$OBL,PDN=MYLIB.
BUILD,I=O.
SAVE ,DN=$NBL, PDN=MYLIB.

Any modules whose names were already in the directory of MYLIB
are replaced by the new binaries from $BLD in the new edition
of MYLIB that is created by BUILD and saved by the SAVE control
statement.

Part 2
11-9 1-01

• Merging several libraries.

Control statements:

ACCESS,DN=LIBONE,PDN=HERLIB.
ACCESS,DN=LIBTWO,PDN=HISLIB.
ACCESS,DN=ANOTHER,PDN=ITSLIB.
ACCESS ,DN=LASTONE , PDN=MYLIB.
BUILD,I,OBL=O,B=O.
SAVE,DN=$NBL,PDN=NEWLIB.

Directives:

FROM LIBTWO ,ANOTHER,LIBONE ,LAS'rONE

The order of the dataset names in the FROM directives, not the
order of the ACCESS control statements, determines the order of
processing. If two datasets contain modules of the same name,
the surviving module is the one in the dataset whose name
occurs later in the FROM directive. (Any module could be
renamed before input from a succeeding dataset is begun, in
order to prevent it from being discarded.)

• Deleting a program module from a library.

Control statements:

ACCESS , DN=$OBL,PDN=MYLIB.
BUILD ,B=O.
SAVE ,DN=$NBL ,PDN=MYLIB.

Directive:

OMIT BADPROG

• Extracting a program module from a library for input to the
system loader, using the local dataset name $BLD as the
intermediate file.

Control statements:

ACCESS ,DN=XXX ,PDN=MYLIB.
BUILD,I,OBL=XXX,B=O,NBL=$BLD,NODIR.

Directive:

COpy RUNPROG

SR-OOll
Part 2
11-10 I

PART 3

MACRO INSTRUCTIONS

I

I

CONTENTS
PART 3 MACRO INSTRUCTIONS

1. INTRODUCTION........................ 1-1

2. SYSTEM ACTION REQUEST MACROS •

JOB CONTROL
MEMORY - Request memory • • • • • • •• • • •
MESSAGE - Enter message in logfile • • • • • • • •
CSECHO - Echo a control statement to the logfile
MODE - Set operating mode • • • • • • • • • •
SWITCH - Set or clear sense switch •• • • • •
JTlME - Request accumulated CPU time for job
RECALL - Recall job upon I/O request completion • •
DELAY - Delay job processing • • • • •
ABORT - Abort program • • • • • • • • • • • •
SETRPV - Set job step reprieve • • • • • • • • • • • •
CONTRPV - Continue from reprieve condition • • ••
ENDRPV - End reprieve processing
ROLL - Roll a job • • • • • • • • • • • • • •
ENDP - End program • • • • • • • • • • • • • • • • • •
NORERUN - Control detection of nonrerunnable functions
RERUN - Unconditionally set job rerunnability
IOAREA - Control user access to I/O area • • • • •
DUMPJOB - Dump job image • • • • • • • • • • •

DATASET MANAGEMENT • • • • • • • • • • • • • • • • •
DSP - Create Dataset Parameter Area • •
OPEN - Open dataset • • • • • • • •
CLOSE - Close dataset • • • • • • •
RELEASE - Release dataset to system • •
DISPOSE - Dispose dataset •
SUBMIT - Submit dataset •

TIME AND DATE REQUESTS •••
TIME - Get current time •
DATE - Get current date •
JDATE - Return Julian date ••••••

DEBUGGING AIDS • • • • • • • • • • • • • •

SR-OOll

SNAP - Take snapshot of selected registers • • • •
DUMP - Dump selected areas of memory • • • • • • • • •
INPUT - Read data • • • • • • • • • • •
OUTPUT - write data
FREAD - Read data •
FWRITE - Write data • •
UFREAD - Unformatted read •
UFWRITE - Unformatted write • •

Part 3
iii

.

2-1

2-1
2-2
2-3
2-4
2-4.1
2-4.1
2-5
2-5
2-6
2-6
2-7
2-9
2-10
2-10
2-10
2-11
2-11
2-12
2-13
2-13
2-13
2-15
2-17
2-17
2-18
2-18
2-19
2-19
2-19
2-20
2-21
2-21
2-22
2-24
2-27
2-32
2-33
2-35
2-36

J-Ol

I

I

2. SYSTEM ACTION REQUEST MACROS (continued)

SAVEREGS - Save all registers • •
LOADREGS - Restore all registers

MISCELLANEOUS
SYSID - Request system identification • •• • •
GETMODE - Get mode setting ••• • • • • • • • • • • •
GETSWS - Get switch setting • • • • • • • • • • • • • •
INSFUN - Call installation-defined subfunction

3. LOGICAL I/O MACROS ••••

4.

SYNCHRONOUS READ/WRITE
READ/READP - Read words •
READC/READCP - Read characters • • • • •
WRITE/WRITEP - Write words
WRITEC/WRITECP - Write characters •
WRITEF - Write end of file ••••
WRITED - Write end of data

ASYNCHRONOUS READ/WRITE • • • • • • • • •
BUFIN/BUFINP - Transfer data from dataset to user record

area • • • • • • • •
BUFOUT/BUFOUTP - Transfer data from user record area to

dataset • • • • • • • • • • • • •
BUFEOF - Write end of file on dataset • • • • • • •
BUFEOD - write end of data on dataset • • • • • • •
BUFCHECK - Check buffered I/O completion • • • •

UNBLOCKED READ/WRITE • • • • • • • • • • • • • • • • • •
READU - Transfer data from dataset to user's area.
WRITEU - Transfer data from user's area to dataset

POSITIONING • • • • • • • • • • • • • • • • •
REWIND - Rewind dataset •
BKSP - Backspace record
BKSPF - Backspace file • • • • •
GETPOS - Get current dataset position •
SETPOS - position dataset •
POSITION - position tape

PERMANENT DATASET MACROS • •

PERMANENT DATASET DEFINITION
PDD - Create Permanent Dataset Definition Table • •
LDT - Create Label Definition Table

PERMANENT DATASET MANAGEMENT • • • • •
ACCESS - Access permanent dataset
SAVE - Save permanent dataset • • • • • • • • • • •
DELETE - Delete permanent dataset •
ADJUST - Adjust permanent dataset • • • • •

SR-OOll
Part 3

iv

2-37
2-38
2-39
2-39
2-39
2-40
2-40

3-1

3-1
3-1
3-4
3-5
3-6
3-7
3-8
3-8

3-9

3-10
3-11
3-12
3-13
3-13
3-14
3-15
3-15
3-16
3-16
3-17
3-18
3-19
3-20

4-1

4-1
4-1
4-7
4-9
4-9
4-9
4-10
4-10

J-Ol

5. CFT LINKAGE MACROS • • • •

CALL EXTERNAL ROUTINES
CALL - Call external routine using call-by-address

convention • • • • • • • • • • • • • •
CALLV - Call external routine using call-by-value

convention • • •
ENTER AND EXIT • • • • • •

ENTER - Form a CFT callable entry
EXIT - Return from a routine

REGISTER ASSIGNMENT • • • •
BREG - Assign symbols for B register names
TREG - Assign symbols for T register names

FETCH ARGUMENT ADDRESS • • • • • • •

SR-OOI1

ARGADD - Fetch argument address • • • • • • •

Part 3
v

5-1

5-1

5-1

5-2
5-2
5-2
5-4
5-5
5-5
5-6
5-6
5-6

J-01

INTRODUCTION

Included with the CRAY-l Operating System is a set of macro
instructions that provide the user with a means of communicating with
COS. These macro instructions are available only when programming in
the CAL assembler language and are processed by the assembler using
macro definitions defined in the system text, $SYSTXT. The code
generated by the macros represents a call to a system task or a
system-provided subroutine, or it generates a table.

The format for a macro instruction is:

Location Result Operand

Z,oc name

Z,oc

name

j'·=b.
J J

{ }

Location field argument. Certain macros require an entry
in this field. For other macros, Z,oc is an optional
symbolic program address. Macros that generate a table
are assigned a word address; macros that generate
executable code are assigned a parcel address.

Name of macro as given in system text

Actual argument string corresponding to positional
parameter in prototype. Two consecutive commas indicate a
null string.

Keyword and actual argument; these entries can be in any
order. A space or comma following the equal sign
indicates a null string.

Stacked items within braces signify that one and only one
of the listed items must be entered.

A parameter shown in all UPPERCASE letters must be coded literally as
shown. A parameter presented in itaZ,ics must be supplied with a value, a
symbol, an expression, or a register designator as indicated in the text
following the format for each macro.

SR-OOll
Part 3
1-1 1-01

1

A macro can be coded through column 72 of a line. It can be continued on
the next line by placing a comma in column 1 of the next line and resuming
the parameter list in column 2, with no intervening blanks at the end of
the first line.

SR-OOll

NOTE

Use the AO and SO registers as parameters with care.
When a macro that includes AO or SO as a parameter is
expanded, special syntax values are used rather than
the value of the contents of AO or SO.

Part 3
1-2 I-02

I

SYSTEM ACTION REQUEST MACROS

The system action request macros are a subset of the system function
requests. Each macro generates a function code that is a call to the
operating system. The octal function value is stored in register SO;
Sl and S2 provide additional arguments for some requests. The
function is enabled when the program exit instruction is executed.
The contents of the registers used are not restored after the call is
completed.

See the COS EXEC/STP/CSP Internal Reference Manual, CRI publication
SM-0040 for more information on system function codes.

The system action request macros can be divided into five main
classes: those involved in job control, those related to dataset
management, those representing requests for time or date, those that
are debugging aids, and miscellaneous. Any macro that generates
executable code can have a label.

JOB CONTROL

Several system action request macros allow the user to set operating
characteristics and control job processing. These include MEMORY,
MESSAGE, CSECHO, MODE, SWITCH, JTIME' RECALL, DELAY, ABORT, SETRPV,
ENDRPV, ROLL, ENDP, NORERUN, RERUN, IOAREA, and DUMPJOB.

SR-OOll
Part 3

2-1

2

J-Ol

MEMORY - REQUEST MEMORY

The amount of memory assigned to the job may be determined or changed
by the memory request. If the user area is expanded, the additional
memory is set to an installation-defined value before control returns
to the user. The job is aborted if filling the request would exceed
the maximum a1iowab1e memory for the job.

Format:

Location Result Operand

MEMORY add'P8SS

add'P8SS A symbol or an A, S, or T register (except AO or SO) that
contains the request word address

The format of the word at location add'P8ss is as follows:

Field

M

L

T

SR-0011

o 2 7 16 40 63

o

2

7

DEL we

Descript,ion

Maximum memory flag. If set by the caller, the
system returns in we the maximum allowable
amount of memory (in words) not including the
Job Table Area (JTA). No memory is allocated.

Limit flag. The system sets this flag when the
job has received the maximum allowable amount of
memory.

Total flag. If T is set, we represents the
total memory requested (excluding the JTA)
rather than an increment or decrement. If T is
specified, DEL is ignored.

Part 3
2-2 J

Field

DEL 16-39

WC 40-63

Description

Deletion pointer. If the caller wants an
increase in memory, DEL must equal O. If the
caller wants a decrease in memory, DEL must
contain the address relative to the user's base
address of the beginning of the area to be
deleted.

Word count. Here, if T=O, the caller must
supply the absolute number of words to be added
to or deleted from the user area. If T=l, the
caller must supply the total field length
desired. If T=O and WC=O, no action is taken
other than to return the user's field length as
described below.

In the memory request word, L may be set by the
system as described above. When WC and T equal
0, the system sets WC to the current total
number of words in the user's field length. The
total number of words in the user's field length
does not include the Job Table Area but does
include the I/O buffers and tables.

MESSAGE - ENTER MESSAGE IN LOGFILE

The printable ASCII message at the location specified in the macro call
is entered in the job and system logfile. The message must be 1-80
characters terminated by a zero byte. A flag, Zoe, indicates the
destination for the message.

Format:

Location Result Operand

MESSAGE

addpe88 A symbol or an A, S, or T register (except AO, SO, and 82)
that contains the starting address of the ASCII message

SR-OOll
Part 3

2-3 J

to~ Destination for message. Can be any of the following:

U User logfile only
S System logfile only
US User and system logfiles~ default if to~ is blank

to~ can be a symbol or an A, S, or T register (except AO,
SO, S3, or S4) •

m8g~ta88 Class where the message is to be assigned. Only current
class is JCLMSG. m8g~ta88 can be a symbol or an A, S, or
T register (except AO, SO, S2, S3, or S4) containing the
message class.

oveppide Message suppression override flag~ if present message is
to go to $LOG regardless of ECHO status.

CSECHO - ECHO A CONTROL STATEMENT TO THE LOGFILE

The control statement at the specified location is entered into the
system log and user logfile. This macro will not echo the control
statement to the user logfile if the statement originated as terminal
input from an interactive job. Echoing is also governed by the current
ECHO state for JCL statements. (See part 2, section 2, ECHO control
statement.)

Format:

Location

SR-OOll

Result Operand

CSECHO

A symbol or an A, S, or T register (except SO, Sl, S2) that
contains the base address of the control statement image.
This is a required parameter.

Part 3
2-4 J-Ol

•

MODE - SET OPERATING MODE

The MODE macro sets the floating-point error flag in the M register of
the job's exchange package. This flag controls whether or not a
floating-point error will cause an interrupt flag to be set in the
Flags (F) register. An exit from the program occurs on a
floating-point error only when the floating-point error flag has been
set.

Format:

L Location I Result

I MODE

Operand

M=mode

M=mode Operating mode. May be any of the following:

DFI, 1, or 2
EFI, 3, or 4

Disable floating-point interrupt
Enable floating-point interrupt

SWITCH - SET OR CLEAR SENSE SWITCH

The SWITCH macro allows a user to turn on (set) or turn off (clear) pseudo
sense switches.

Format:

LLocation I Result

I SWITCH

SR-OOll

n,x

Operand

Part 3
2-4.1 1-02

n Number of switch (l-6) to be set or cleared

x Switch position

ON Switch n is turned on; set to I
OFF Switch n is turned off; set to 0

JTIME - REQUEST ACCUMULATED CPU TIME FOR JOB

The accumulated CPU time for the job is returned at the location
specified in the macro call. The time in seconds is expressed in
floating-point form.

Format:

Location Result Operand

JTIME address

address A symbol or an A, S, or T register that contains the
address at which to return the accumulated CPU time

RECALL - RECALL JOB UPON I/O REQUEST COMPLETION

This function removes a job from processing. The job does not become
a candidate for processing until the previously issued I/O request for
the specified dataset is completed or partially completed, that is,
the job is resumed when another block of data is transferred to or
from the user's buffer or when the I/O request is completed.

Format:

Location Result

RECALL

SR-OOll

add'Pess

Operand

Part 3
2-5 I

address Symbolic address of the Open Dataset Name Table (ODN) or
Dataset Parameter Area (DSP) for this dataset or an A,
S, or T register containing the ODN or DSP address. See
description of OPEN macro (this section) and DSP table
(Appendix A) .

DELAY - DELAY JOB PROCESSING

This function removes a job from execution and delays the job from
becoming a candidate for processing until the number of milliseconds
(specified in the word at the given address) has elapsed.

Format:

Location Result

DELAY
I

Operand

address A symbol or an A, S, or T register containing the
address of the word that contains the number of
milliseconds to delay

ABORT - ABORT PROGRAM

The ABORT request provides for abnormal termination of the current
program. Processing resumes with the first job control statement
following the next EXIT statement unless reprieve processing is
enabled. If no such statement exists, the job is terminated.

Format:

Location

SR-OOll

Result

ABORT
Operand

Part 3
2-6 I

I SETRPV - SET JOB STEP REPRIEVE

I

The SETRPV request enables the user's current job step to maintain
control when a job step abort error condition occurs or upon normal
termination of the job step. Once enabled by the user, reprieve
processing remains in effect until the job step terminates, a selected
error condition occurs, or the user clears the reprieve processing
capability.

If a selected error condition occurs, the user is reprieved from the
normal or abnormal job step termination. The reprieve processing code
that is given control may attempt a recovery or continue with the
normal or abort termination.

I/O errors from $SYSLIB or $FTLIB are not readily recognizable or
correctable. At the $FTLIB level, FORTRAN I/O usually involves three
steps: initialization, transfer, and termination. I/O errors almost
always occur at the transfer stage; because termination does not occur
in this case, any further attempts at initialization fail, thus
hampering correction. Any errors reported by the logical I/O routines
look like user-requested aborts.

Two types of error conditions are related to a job step: nonfatal and
fatal. Nonfatal error conditions may be reprieved any number of times
per job step by the user. Each fatal error condition may be reprieved
only once per job step. The second occurrence of the same fatal error
condition results in an immediate termination of the job step.

Refer to Appendix F for system error codes and the mask value for each
code.

Format:

Location Result

SETRPV

SR-OOll

Operand

entry~xpsave~mask

Part 3
2-7 1-01

ent'Py

xpsave

mask

SR-OOll

Address to which control is passed if reprieve
processing is selected for the respective error
conditions.

First word address (FWA) of the area into which the
system copies the user's exchange package when control
is passed to the user's reprieve processing code. This
area is formatted as follows, and the contents are those
at the time of the error.

1

16
17

18

19

20

40

XP

VMR

SEC

Reserved for system use

XP User exchange package (refer to Appendix E)

VMR User vector mask register

ESW Error status word. Contains the octal value
of the error category reprieved (refer to
description of mask).

SEC Actual system error code (refer to Appendix F)

Address of a user specified octal value indicating the
class(es} of error condition(s) for which to enable
reprieve processing. Any number of classes may be
specified by combining the appropriate octal mask values.

Part 3
2-8 I

Class
(Octal mask value) Reprievable Error Condition

o
1
2
4

Disable user reprieve processing
Normal job step termination
User requested abort

10
20
40

100
200
400

1000
2000
4000

10000

System abort
Oper ator DROP
Operator RERUN
Memory error
Floating point error
Time limit
Mass storage limit exceeded
Memory limit exceeded
Link transfer error
Security violation
Interactive console 'attention'
interrupt

NOTE

The system disables reprieve processing once
the user's reprieve processing code gains
control. To be reprieved from future error
conditions the user must issue another
SETRPV request.

CONTRPV - CONTINUE FROM REPRIEVE CONDITION

The CONTRPV macro continues normal job processing from within a
reprieve subroutine. The program address to continue processing and
all A, S, and VL register values are taken from the user-supplied
exchange package.

Format:

I ~ocation I Result

SR-OOll

I Operand

XP

Part 3
2-9 J-Ol

•

ENDRPV - END REPRIEVE PROCESSING

The ENDRPV request is used to return to job step termination processing. If
the step completed normally, normal termination is completed. If the step
aborted, abort processing is resumed.

Format:

Location I Result Operand

ENDRPV

ROLL - ROLL A JOB

A user can protect a job against system interruption via the ROLL
request. Rolling a job causes it to be written to disk so that the job at
that point in time can be recovered in the event of a system
interruption. Once a job has been rolled, it remains recoverable unless
it loses the recoverable status (by altering a permanent dataset, for
example). Once a job loses its recoverable status, the user may request
another ROLL to continue to protect the job against system interruption.

Format:

I Location I Result Operand

ROLL

ENDP - END PROGRAM

The ENDP request is used for normal termination of the current program.
Processing resumes with the next job control statement if reprieve
processing is not enabled for normal job step termination. If no such
statement exists, the job is terminated.

Format:

I Location I Result

ENDP

SR-OOll

Operand

Part 3
2-10 J-Ol

•

NORERUN - CONTROL DETECTION OF NONRERUNNABLE FUNCTIONS

The NORERUN request instructs the system to begin or cease monitoring of
user operations for nonrerunnable functions. This request determines
whether execution of such functions will make the job become nonrerunnable
but does not affect the current rerunnability of the job.

Format:

Location Result Operand

NORERUN parameter

parameter
ENABLE causes the system to begin (or continue) monitoring
user functions for nonrerunnable operations

DISABLE causes the system to stop monitoring user operations
for nonrerunnable functions

A symbol identifying a location or an A, S, or T register
containing the address of a location which contains either a
o for ENABLE or a 1 for DISABLE.

RERUN - UNCONDITIONALLY SET JOB RERUNNABILITY

The RERUN request instructs the system to mark the job as either
rerunnable or nonrerunnable regardless of functions previously performed.
The future declaration of nonrerunnability is not affected.

Format:

Location Result Operand

RERUN parameter

parameter

SR-OOll

ENABLE causes the system to mark the job rerunnable

DISABLE causes the system to mark the job not rerunnable

Part 3
2-11 1-01

A symbol identifying a location or an A, S, or T register
containing the address of a location which contains either a
o for ENABLE or a 1 for DISABLE.

IOAREA - CONTROL USER ACCESS TO I/O AREA

The IOAREA request instructs the system to either allow or deny access to
the user's I/O and Dataset Parameter Area (DSP) areas. This request can
also be used to restore the status of these areas to. their initial
status. Initially, the user I/O area is assumed to be unlocked.

Format:

Location Result Operand

IOAREA key, save

key May equal any of the following:

save

SR-OOll

LOCK Denies access to the user's I/O buffers and nsp
area. The Limit Address is set to the address
specified in JCDSP. (All user logical I/O calls
which require access to the DSP area or I/O buffers
involve an exchange to the operating system before
and after I/O processing.)

UNLOCK Gives full access to the user's I/O buffers and DSP
area. The Limit Address is set to the value
specified in JCFL.

RESTORE Reserved for use by the FORTRAN library. If UNLOCK
was used previously to unlock the I/O area, then
RESTORE locks the area.

Symbolic address where lock status is to be stored; required
only if RESTORE is to be used. The current status of key
is stored in one word.

Part 3
2-12 1-01

I

DUMPJOB - DUMP JOB IMAGE

The DUMPJOB request causes the current job image (including the Job
Table Area) to be written to a specified local dataset. If the
dataset already exists, it is rewound7 otherwise, a new dataset is
created for the dump. The dump is formatted as suitable for the dump
utility.

Format:

I Location I Result I
DUMPJOB DN=dn

Operand

DN=dn A symbol or an A, S, or T register (not AO or SO) containing
the address of a dataset name. If dn is not specified,
$DUMP is assumed. If location dn is not defined, the
DUMPJOB macro generates the symbolic location.

DATASET MANAGEMENT

The system action request macros involved with dataset management allow
the user to open datasets7 set up tab1es7 and close, release, or dispose
datasets. System action request macros available include DSP, OPEN,

I CLOSE, RELEASE, DISPOSE, and SUBMIT.

DSP - CREATE DATASET PARAMETER AREA

The DSP macro creates a table in the user field called the Dataset
Parameter Area (DSP). This table holds information concerning the status
of the named dataset and the location of the I/O buffer for the dataset.
The DSP is illustrated in Appendix A of this manual.

The DSP macro should be used only when the user needs the DSP and I/O
buffer in the user-managed memory portion of the job. Normally a DSP and
buffer for a dataset are created in the high end of the job's memory
(above JCHLM) by execution of an OPEN macro.

SR-0011
Part 3

2-13 J-01

When using the DSP macro, the user must also set up a two-word Open
Dataset Name Table (ODN). This ODN must be defined before using an OPEN
macro specifying this dataset.

The DSP macro is not executable; it merely sets up a DSP table with the
dataset name, first, in, out, and limit fields initialized. An OPEN macro
must be executed to make the DSP known to the system.

Format:

Location Result Operand

loc DSP dn,firast,nb

loc

dn

nb

Example:

Locatior
1

x
ODN

SR-OOll

Symbolic address of DSP. If loc is not specified, the
address of the dataset name is generated.

Dataset name

Address of the first word of the user-allocated buffer for
this dataset

Number of S12-word blocks in the dataset buffer

Result
10

DSP
CON
CON

· · · OPEN

Operand
20

XFIL,BUF,l
'XFIL'L
XFIL@

ODN, I

Part 3
2-14

Comment
35

ASCII name
Address of DSP

J

OPEN - OPEN DATASET

The OPEN macro prepares a dataset for processing. When an OPEN macro is
executed, the dataset is made known to the system if it is not an existing
dataset. I/O tables are created in the high end of the job's memory;
included are the Dataset Parameter Area (DSP) and the Logical File Table
(LFT). An I/O buffer is created if the dataset is COS blocked format, but
not for an unblocked dataset. The address or offset of the DSP table is
returned to the user.

An OPEN macro may be executed on a dataset that is already open.

Format:

Location Result Operand

I OPEN dn,pd, Z,dt

I

I

I

dn Dataset name. The OPEN macro generates a 2-word Open
Dataset Name Table (ODN) the first time an OPEN of the
dataset is encountered, unless the user has previously
generated an ODN for the dataset. (The ODN is illustrated
in Appendix A.) The dn becomes the symbolic address of
the ODN. It is used in all references to the dataset in
other I/O requests.

pd

Z,dt

SR-OOll

As an alternative, dn may be an A, S, or T register (not
AO, SO, or S2) containing the ODN address.

Processing direction. May be any of the following:

I Dataset opened for input
o Dataset opened for output
10 Dataset opened for input/output (default)

pd may alternatively be an S or T register (but not an A
register) with bit 0 set for input and/or bit· 1 set for
output.

Label Definition Table (LDT); an optional parameter that is
the name of a previously defined LDT for tape processing.
The pointer to this field will be placed in the ODN built by
the macro. The parameter applies to tape datasets only.

Part 3
2-15 J-01

If the nsp pointer in the ODN is negative or zero, the OPEN call returns
the negative DSP offset in the DSP field of the ODN. The actual DSP
address is equal to (JCDSP) - negative DSP offset, where (JCDSP) is the
value of the JCDSP field of the Job Communication Block. The negative DSP
offset of a dataset does not change when a job's field length changes or
as additional datasets are opened or closed.

If the DSP pointer in the ODN is positive and greater than zero, OPEN
assumes the DSP field contains the address of the user's own DSP in the
user field between the Job Communication Block and (JCHLM) (the value in
the JCHLM field of the JCB). The system uses the DSP indicated and does
not allocate an additional DSP or buffer in the job's I/O table area. The
DSP indicated must already contain the buffer pointers and must indicate a
buffer also within the user field. If the dataset is memory resident,
this buffer should be large enough to contain the entire dataset plus one
block.

Examples:

1. In the following example, the OPEN generates an ODN for dataset
DSETONE unless one has been previously generated for that dataset.
The dataset is opened for input/output processing.

Location Result Operand Comment
1 10 20 35

L OPEN DSETONE,IO I .
2. In this example, the address of the ODN generated by this OPEN call is

passed via register Sl; S2 contains processing direction information.

Location Result Operand Comment
1 tlo 20 35 -

OPEN Sl,S2

3. In this example, the dataset ATAPE is opened for output with LABELX as
the Label Definition Table. An ODN for ATAPE has not yet been defined.

Location Result
1 10

OPEN

SR-OOll

Operand
20

ATAPE,O,LABELX

Part 3
2-16

Comment
35 -=

J-Ol

I

CLOSE - CLOSE DATASET

CLOSE releases the buffer and the Dataset Parameter Area (DSP) for a
COS-managed dataset. Disk space is not released and the dataset remains
attached to the job.

The buffers are flushed if all of the following conditions are true for
the dataset:

1. The dataset is currently opened for output.
2. No end-of-data is written.
3. The dataset is being written sequentially.
4. The dataset's DSP i3 managed by COS.
5. It has COS blocked dataset structure.
6. It is not memory resident.

Format:

I Location I Result I

CLOSE dn

Operand

dn Dataset name. Symbolic address of the Open Dataset Name
Table (ODN) for this dataset or an A, S, or T (not AO or SO)
register containing the address of the ODN. See description
of OPEN macro.

RELEASE - RELEASE DATASET TO SYSTEM

The dataset whose Dataset Parameter Area (DSP) address is at the location
specified in the macro call is returned to the system. The dataset is
closed and the Dataset Name Table (DNT) entry is released. Additional
system action depends on the type of dataset. Output datasets are routed
to a front end. If a dataset is not a permanent dataset, the disk space
associated with that dataset is returned to the system. The dataset is no
longer attached to the job.

Format:

Location Result Operand

I RELEASE add:raeB B, HOLD

SR-OOll
Part 3

2-17 J-Ol

add:pe88

HOLD

Symbolic address of the Open Dataset Name Table (ODN) or
Dataset Parameter Area (DSP) for this dataset or an A, S, or
T register containing the ODN or DSP address. See
description of OPEN and DSP macros (this section) and of DSP
format (Appendix A) •

Hold generic device; optional parameter. If specified, the
generic system resource associated with this dataset will
not be made available to another job when the dataset is
released. This parameter is for tape datasets only and is
ignored for mass storage datasets.

DISPOSE - DISPOSE DATASET

The DISPOSE macro places a dataset in the appropriate queue as defined by
the PDD macro.

Format:

Location Result Operand

DISPOSE pddtag

pddtag Address of PDD macro call

SUBMIT - SUBMIT JOB DATASET

The SUBMIT macro places a job dataset into the CRAY-l job input queue.

Format:

Operand I Location I Result

I pddtag SUBMIT

pddtag Address of PDD macro call

SR-OOll
Part 3

2-18 J-Ol

•

TIME AND DATE REQUESTS

Several system action request macros inform the user of the current time
or date and the Julian date. These include TIME, DATE, and JDATE.

TIME - GET CURRENT TIME

The current time in ASCII is returned at the location specified in the
macro call. The format of the time is as follows:

a 15 23 39 47 63

h h m m s

Format:

Locat i'on Result Operand

TIME address

address A symbol or an A, S, or T register that contains the
destination address of the current time

DATE - GET CURRENT DATE

The current date in ASCII is returned at the location specified in
macro call. The format of the date is as follows:

0 1 5 23 39 47 63

1m m / d d / y yi

the

The order can be changed to day, month, and year (the European format)
through an installation parameter.

SR-OOll
Part 3

2-19 1-01

•

Format:

Location Result Operand

DATE address

address A symbol or an A, S, or T register that contains the
destination address of the current date

JDATE - RETURN JULIAN DATE

The current Julian date in ASCII is returned at the location spec~fied in
the macro call. The format of the date is as follows:

a 63

y d d d /\

Five ASCII characters are left-adjusted with blank fill in the reply
word. The first two characters are the year; the next three are the
number of the day in the year.

Format:

Location

address

SR-0011

Result Operand

JDATE addpess

A symbol or an A, S, or T register that contains the
destination address of the current Julian date

Part 3
2-20 1-01

DEBUGGING AIDS

The system action request macros in this category permit the user to
selectively read or write information during a program run to aid in the
debugging process. Included are the SNAP, DUMP, INPUT, OUTPUT, FREAD,
FWRITE, UFREAD, UFWRITE, SAVEREGS, and LOADREGS macros. The first four of
these macros can be made conditional using the label DEBUG.

SNAP - TAKE SNAPSHOT OF SELECTED REGISTERS

The SNAP macro writes the contents of selected registers under the control
of FORTRAN-style formats selected by the user.

The macro generates exactly three words of inline code; the rest of the
logic is in a unique subroutine created by the macro.

The DEBUG'option allows conditional execution of the SNAP macro. If the
label on the SNAP statement is DEBUG, no label is defined for the
generated code. Instead, unless the symbol DEBUG has been set to I by a
previously assembled SET or equate statement, code generation within the
macro is suppressed entirely.

Format:

Location Result

SNAP

Operand

(list) ,UNIT=unit,AF=fmt,BF=fmt,
SF~mt,TF=fmt,VF=fmt,VL=n

list A list of registers and register groups separated by
commas. The list need not be enclosed in parentheses if
it contains only one element. Within the list, null
elements are ignored so that each element can be
preceded and followed by blanks. However, an element
cannot contain embedded blanks. Each element of the
list that is not null must have one of the following
forms:

R

SR-OOII

Writes the contents of all R registers
(where R is A, B, S, T, or V)

Writes the contents of register Ri (for
example, A7)

Part 3
2-21 1-02

•

ROO or R",o-RJo -z..-J v

Writes the contents of registers Ri
through Rj (for example, AI-A4 or AI-4)

Each i or j must be either an octal number or
a previously defined register designator (for
example, B.SEP).

There is no limit to the number of elements in the list
or to the number of occurrences of a particular
register. If the list is empty, no output is produced
except for the usual header. The header, which is
always produced, shows the contents of P and BO as
parcel addresses.

UNIT=unit A local dataset name, an expression containing only
previously defined terms that resolves into a FORTRAN unit
number, or the previously defined label of a word
containing either a local dataset name or a FORTRAN unit
number. The default is $OUT.

AF=~fmt A register format in decimal; the default is (8(3X08»

BF=fmt B register format in decimal; the default is (8(3X08))

sF=fmt S register format in decimal: the default is (4025)

TF=fmt T register format in decimal; the default is (4025)

vF=fmt V register format in decimal; the default is (4025)

VL=n Number of V register elements to be snapped. The default
is VL=VL. The caller can also specify VL=VL+I or an
absolute expression. If VL is 0 or 64, then VL=VL+I means
64 rather than 65. The default radix of n is decimal
unless a BASE 0 or BASE M is in effect.

RETURN CONDITIONS:
All registers are saved, including the vector registers and VL.

DUMP - DUMP SELECTED AREAS OF MEMORY

The DUMP macro performs a formatted dump of selected memory areas.

The macro generates exactly three words of inline code; the rest of the
logic is in a unique subroutine created by the macro.

SR-OOII
Part 3

2-22 1-02

I

The DEBUG option allows conditional execution of the DUMP macro. If
the label on the DUMP statement is DEBUG, no label is defined for the
generated code. Instead, unless the symbol DEBUG has been set to 1 by
a previously assembled SET or equate statement, code generation within
the macro is suppressed entirely.

Format:

Location

list

SR-OOll

Result Operand

DUMP (list) ,UNIT=unit

A list of memory ranges separated by commas. The list
need not be enclosed in parentheses if it contains only
one range. There is no limit to the number of ranges in
the list. Within the list, null elements are ignored,
so that each memory range can be preceded and followed
by blanks. However, a memory range cannot contain
embedded blanks. Each non-null range must have one of
the following forms:

f··l Dump memory from address f to address l-l

f Dump memory word f

f(n) Dump n words starting at memory address f

f', l, or n can be numbers, labels, register names, or a
combination of labels and numbers. Indirect addressing,
using the at sign (@) as a prefix, is allowed. For
numbers, the default radix is decimal unless a BASE 0 or
BASE M is in effect.

Examples:

(0'200 •• 0'400)

(0(D'128»

(R.Al(R.A2»

(@R.Al(@R.A2»

Words 2008 through 3778

Words 0 through 1778 (the Job
Communication Block)

The starting address is given in Al and
the word count is given in A2

The starting address is given in the
memory word addressed by Al and the
word count is in the memory word
addressed by A2

Part 3
2-23 1-02

•

(R.AI •• R.A2) The address given in Al through the
address immediately before the address
given in A2

(@R.AI •• @R.A2) The address given in the memory word
addressed by Al through the address
immediately before the address given in
the memory word addressed by A2

(TABLE(R.A.BU» The first n words of TABLE, where n is
held in register A.BU

(TTT-I(@R.B77» The first n words following and
including TTT-I, where n is held in the
memory addressed by register B77

(@PTR(@LTH» The word addressed by PTR is the start,
and the word count is in the word
addressed by LTH

(@P •• @Q,@A(@L» Two ranges are dumped. The first range
is from the word addressed by P through
the word immediately before the word
addressed by Qi the second begins at
the word addressed by A and includes
the number of words given by the value
contained in the memory cell addressed
by L. Only the low-order 24 bits in P,
Q, A, and L are considered in
determining the addresses.

UNIT=unit A local dataset name, an expression containing only
previously defined terms that resolves into a FORTRAN unit
number, or the previously defined label of a word
containing either a local dataset name or a FORTRAN unit
number. The default is $OUT.

RETURN CONDITIONS:

INPUT - READ DATA

.AII registers are saved and restored,
including the vector registers and VL.

The INPUT macro reads data resident on a dataset or characters already
located in memory and assigns values to variables, words of an array,
or registers. Its syntax is as close as possible to the syntax of the
INPUT statement in SKOL.

SR-OOII
Part 3
2-24 1-02

I

The macro generates its code either inline or in a unique subroutine
created by the macro. In the latter case, exactly three words of code
are generated inline.

The DEBUG option allows conditional execution of the INPUT macro. If
the label on the INPUT statement is DEBUG, no label is defined for the
generated code. Instead, unless the symbol DEBUG has been set to 1 by
a previously assembled SET or equate statement, code generation within
the macro is suppressed entirely.

Format:

Location

List

SR-OOll

Result

INPUT

Operand

(List) ,sv={!~S},IN={~~S},UNIT=unit,
STRING=addp,LTH=length,END=addp,
ERR=addp

A list of input elements, each of which may include a
variable name, an array specifier, and a format item. The
list need not be enclosed in parentheses if it contains only
one element. If it consists of more than one element, the
elements are separated by commas. Null elements are
ignored, so that each list element may be preceded and
followed by blanks. However, an element cannot contain
embedded blanks. Each element non-null must have one of the
following forms:

:fmt

vap:fmt

A format item not associated with a variable,
such as :2x or :/

A variable name and the format used to read a
value into it

The format can contain any of the edit descriptors
available to the CRAY-l FORTRAN (CFT) user. The format
cannot contain commas unless the entire list item is
enclosed in parentheses.

The variable can refer to a single word, to an array, to a
single register, or to an array of registers, and can take
any of the following forms:

addp Change the contents of a single word (for
example, LABEL-2 or W.177

addp{count)
Read values for count words beginning at addp

Part 3
2-25 1-02

• SR-OOll

addp«(Jount!in(Jp)
Read values for (Jount words beginning at addp and
applying an increment of in(Jp after each word.
The default value for in(Jp is 1.

R.pn Change the contents of register pn (where P isA,
B, S, or T and n is an octal register number or a
register designator of the form .name.)

R.VL or R.VM
Change the current vector length or vector mask

R.pn«(Jount)
Change (Jount registers starting with pn, as in
R.Al(5)

R.Vn«(Jount)
Change the first (Jount elements of vn

R.vn+e Change the eth element in Vn

R.vn+e «(Jount)
Change (Jount elements, beginning at the eth
element in vn

In all of the above, n must be either an octal number or a
previously defined register designator. (Jount and e may be
represented by any absolute expression, in which the
default radix is determined by the calling program.

The variable can also refer indirectly to a word or to an
array, using a saved register or a word in memory as a
pointer. The forms begin with the at sign (@) and include:

@addp Modify the word addressed by addp

@addp «(Jount)
Modify (Jount words beginning with the word
addressed by addp

@addp«(Jount!in(Jp)

@R.pn

Modify (Jount words beginning with the word
addressed by addp, applying an increment of in(Jp
after each word

Modify the word addressed by register pn

@R.m«(Jount)
Modify (Jount words beginning with the word
addressed by register pn

Part 3
2-26 1-02

•

Save flag. If SV=NO, the SAVEREGS and LOADREGS macros
are not invoked, and registers cannot be used for input
values; IN=YES must also be specified when SV=NO. The
default is SV=YES, which saves and restores all registers.

Inline code flag. If IN=YES, all the code necessary to
perform the INPUT (except the standard subroutines called
by the SAVEREGS and LOADREGS macros) is generated inline.
The default is IN=NO, which causes 3 words of code to be
generated inline; the rest is contained in a subroutine
created by the macro.

UNIT=unit A local dataset name, an expression containing only
previously defined terms that resolves into a FORTRAN unit
number, or the previously defined label of a word
containing either a local dataset name or a FORTRAN unit
number. The default is $IN.

STRING=stping

LTH=length

Address of a packed character string that resides in
memory. When used in conjunction with the LTH parameter,
the STRING parameter allows input (decoding) from the
string. The END and ERR parameters cannot be used with
STRING and LTH.

Number of characters to be decoded from stping

END=addp Optional address to which a branch occurs if an end-of-file
is encountered

ERR9Xddp Optional address to which a branch occurs if an error is
encountered during the read

RETURN CONDITIONS:

OUTPUT - WRITE DATA

All registers, including the vector registers and
the vector length register, are saved and
restored when SV=YES (the default).

The OUTPUT macro transfers variable values and character strings from a
user's data area to a dataset or to an area in memory. Its syntax is as
close as possible to the syntax of the OUTPUT statement in SKOL.

The macro generates its code either inline or in a unique subroutine
created by the macro. In the latter case, exactly three words of code
are generated inline.

SR-OOII
Part 3
2-27 1-02

The DEBUG option allows conditional execution of the OUTPUT macro. If
the label on the OUTPUT statement is DEBUG, no label is defined for the
generated code. Instead, unless the symbol DEBUG has been set to 1 by a
previously assembled SET or equate statement, code generation within the
macro is suppressed entirely.

Format:

Location Result

OUTPUT

Operand

(list),SV={~~S},IN={~~S},UNIT=unit,

BUFFER~ddp,LTH=length

list A list of variable names, array names, format items, and
string constants separated by commas. The list need not be

SR-OOll

enclosed in parentheses if it contains only one element. If
it consists of more than one element, the elements are
separated by commas. Null elements are ignored, so that
each element can be preceded and followed by blanks.
However, an element cannot contain embedded blanks unless it
is enclosed in a second level of parentheses. Each non-null
element must have one of the following forms:

'stping' or *stping*

:fmt

Represents any character string. The list item
must be enclosed in parentheses if the string
contains any blanks or commas. If the string
is delimited by apostrophes, any inner
apostrophes must be doubled. If it is
delimited by asterisks, no inner asterisks are
allowed.

Represents a format item that is not associated
with any variable (for example, :2X, :/, or
::). The list item must be enclosed in
parentheses if fmt contains any commas or
blanks.

Part 3
2-28 1-02

• SR-OOll

$PAGE, $SKIP, and $LINE
These special format items do not require a
colon prefix. They generate FORTRAN-style
carriage control characters at the beginning
of a line. When $SKIP or $PAGE is the first
list element, the appropriate literal
character (0 or 1) becomes the first element
of the OUTPUT format. $LINE is assumed to be
present by default unless the first list
element is a format item (:fmt). If $LINE,
$SKIP, or $PAGE occurs later in the list, a
comma and a slash are inserted before the
carriage control literal in order to force a
new line.

vap:jmt Represents a variable name and the format to
be used for its output

vap::fmt The same as vap:fmt, except that the
variable's name and value are output together

vap The same as vap::022

vap(•••) The same as vap(•.•)::{4025)

The variable can refer to a single word, to an array, to
a single register, or to an array of registers and can
take any of the following forms:

addp Write the contents of a single word (for
example, LABEL-2 or W.177)

addp (count)
Write count words beginning at addp

addp (count)
Write count words beginning at addp

addp(count!incp)

R.Pn

Write count words beginning at addp and
applying an increment of incp after each
word. The default value for incp is 1.

Write the contents of register pn (where p is
A, B, S, or T and n is an octal register
number or a register designator of the form
• name)

R.VL or R.VM
Write the current vector length or vector mask

Part 3
2-29 1-01

• SR-OOll

R.'Pn(cOunt)
Write count registers starting with 'Pn, as in
R.Al(S)

R.vn(cOunt)
Write the first count elements of vn

R.Vn+e Write the eth element in Vn

R. vn+e (count)
write count elements, beginning at the eth
element in vn

In all of the above, n must be either an octal number or
a previously defined register designator. count and e
may be represented by any absolute expression.

The variable can also refer indirectly to a word or to
an array, using a saved register or a word in memory as
a pointer. The forms begin with the at sign (@) and
include:

@add'P Write the word addressed by add'P

@add'P (count)
Write count words beginning with the word
addressed by add'P

@add'P(count!inc'P)

@R.pn

Write count words beginning with the word
addressed by addp, applying an increment
of incp after each word

Write the word addressed by register -pn

@R.pn(COunt)
Write count words beginning with the word
addressed by register pn

Save flag. If SV=NO, the SAVEREGS and LOADREGS macros
are not invoked, and registers cannot be used for
output; IN=YES must also be specified if SV=NO. The
default is SV=YES, which saves and restores all
registers.

Inline code flag. If IN=YES, all the code necessary to
perform the OUTPUT (except the standard subroutines
called by the SAVEREGS and LOADREGS macros) is generated
inline. The default is IN=NO, which means that exactly
three words of code are generated inline; the rest is
contained in a subroutine created by the macro.

Part 3
2-30 1-01

I

UNIT=unit
A local dataset name, an expression containing only
previously defined terms that resolves into a FORTRAN
unit number, or the previously defined label of a word
containing either a local dataset name or a FORTRAN unit
number. The default is $OUT.

UNIT=$LOG is treated as a special parameter value rather
than as a dataset name. If UNIT=$LOG, the OUTPUT macro
automatically encodes the data (using its own buffer)
rather than writing it directly, and uses the MESSAGE
macro to write it to both the user log and the system
log.

OUTPUT looks at the first 8 characters of the formatted
line. The content of the first 8 characters of a
message ID is:

where is a space. If the first 8 characters do not
match the above, OUTPUT inserts the string:

BUFFER=addp

LTH=Length

Address of a packed character buffer used instead of an
external dataset to accept the output

Number of characters to be encoded (output) into the
buffer

RETURN CONDITIONS: All registers, including the vector registers
and the vector length register, are saved and
restored when SV=YES (the default).

SR-OOll
Part 3

2-31 1-01

I

FREAD - READ DATA

The FREAD macro permits a FORTRAN-like read statement that can make use
of a previously defined format.

Format:

Location Result

FREAD

Operand

jmt, (Zist) ,SV={~~S} ,UNIT=unit,:END=addr,

ERR=addr

fmt Format; takes one of the following forms:

(Zist)

SR-OOll

addr

((string>)

Address of a format, possibly defined with the
DATA pseudo instruction, as in:

DA'l'A I (FlO. 0) ,

A character string enclosed in a double set of
parentheses

The default is (5025).

List of addresses for which values are to be read. Even if
there is only one item, the list must be enclosed in
parentheses. Each item in the list specifies either the
address of a single word or the address of an array.

An array is handled by enclosing the array base address, the
word count, and an optional increment in an additional set
of parentheses. Examples: «A,lO» or «B,LTH,3»

The CAL statement
FREAD , «A,lO) , (B,LTH,3»

is equivalent to the FORTRAN statements
READ 20, (A(I), 1=1,10), (B(3*(I-l)+l), 1=1, LTH)

20 FORMAT (5025)

Part 3
2-32 1-01

•

UNIT=unit

An array or a single word described as a one-word array
can be addressed indirectly by using the at sign (@) and
the name of a variable containing the indirect address
instead of an array name. For example:

((@C, 10))

((@E, 1))

Reads values for the first 10 words of
an array beginning at an address held
in var iable C

Reads a value for the single word
specified by the address held in
variable E

To pass a numeric address, use a W prefix (for example,
W.177) •

Save flag. If SV=NO, the SAVE REGS and LOADREGS macros
are not invoked. If SV=YES, all registers are saved and
restored. The default is SV=NO.

A local dataset name, an expression containing only
previously defined terms that resolves into a FORTRAN
unit number, or the previously defined label of a word
containing either a local dataset name or a FORTRAN unit
number. The default is $IN.

END=addr Optional address to which a branch occurs if an
end-of-file is encountered

ERR=addr Optional address to which a branch occurs if an error is
encountered during the read

FWRITE - WRITE DATA

The FWRITE macro permits a FORTRAN-like write statement that can make
use of a previously defined format.

Format:

Location Result

FWRITE

SR-OOll

Operand

fmt,(Zist),SV={~6S},UNIT=unit

Part 3
2-33 I-Ol

I

fmt Format; takes one of the following forms:

(list)

SR-OOll

addp

((stping))

Address of a format, possibly defined with the
DATA pseudo instruction, as in:

DATA '(FIO.O,"TEXT")'

A character string enclosed in a double set of
parentheses (for example, «FIO.O,"TEXT"))

The default is (5025).

List of addresses whose contents are to be written. Even
if there is only one item, the list must be enclosed in
parentheses. Each item in the list specifies either the
address of a single word or the address of an array.

An array is handled by enclosing the array base address,
the word count, and an optional increment in an additional
set of parentheses. Examples: «A,lO» or «B,LTH,3)

The CAL statement
FWRITE ,«A,lO) ,(B,LTH,3»

is equivalent to the FORTRAN statements
PRINT 20, (A(I), 1=1,10), (B(3*(I-1)+1), 1=1, LTH)

20 FORMAT (5025)

An array or a single word described as a one-word array can
be addressed indirectly by using the at sign (@) and the
name of a variable containing the indirect address instead
of an array name. For example:

«@C,lO))

((@E, 1))

Reads values for the first 10 words of an
array beginning at an address held in
variable C

Reads a value for the single word
specified by the address held in variable E

To pass a numeric address, use a W prefix (for example,
W.177) •

Save flag. If SV=NO, the SAVEREGS and LOADREGS macros
are not invoked. If SV=YES, all registers are saved and
restored. The default is SV=NO.

Part 3
2-34 1-01

I

UNIT=unit
A local dataset name, an expression containing only
previously defined terms that resolves into a FORTRAN
unit number, or the previously defined label of a word
containing either a local dataset name or a FORTRAN unit
number. The default is $IN.

UFREAD - UNFORMATTED READ

'l'he UFREAD macro performs a FORTRAN-like unformatted read.

Format:

Location

unit

(list)

SR-OOll

Result

UFREAD

Operand

unit, (Zist),SV={~6S}'END=addr
ERR=addr

A local dataset name, an expression containing only
previously defined terms that resolves into a FORTRAN unit
number, or the previously defined label of a word containing
either a local dataset name or a FORTRAN unit number. There
is no default.

List of addresses for which values are read. Even if there
is only one item, the list must be enclosed in parentheses.
Each item in the list specifies either the address of a
single word or the address of an array.

An array is handled by enclosing' the array base address, the
word count, and an optional increment in an additional set
of parentheses. Examples: ((A,lO» or ((B,LTH,3»

The CAL statement
UFREAD ,((A,IO) ,(B,LTH,3»

is equivalent to the FORTRAN statement
READ (A(1), 1=1,10), (B(3*(1-l)+1) , 1=1, LTH)

An array or a single word described as a one-word array can
be addressed indirectly by using the at sign (@) and the
name of a variable containing the indirect address instead
of an array name. For example:

((@C,lO» Reads values for the first 10 words of an array
beginning at an address held in variable C

Part 3
2-35 1-01

I

END=addp

ERR=adap

((@E, 1)) Reads a value for the single word
specified by the address held in
variable E

To pass a numeric address, use a W prefix (for example,
W.177).

Save flag. If SV=NO, the SAVEREGS and LOADREGS macros
are not invoked. If SV=YES, all registers are saved and
restored. The default is SV=NO.

Optional address to which a branch occurs if an error is
encountered during the read

Optional address to which a branch occurs if an error is
encountered during the read

UFWRITE - UNFORMATTED WRITE

The UFWRITE macro performs a FORTRAN-like unformatted write of output
items separated by commas.

Format:

Locatron

unit

(Zist)

SR-OOll

Result Operand

UFWRITE unit, (list) ,sv={ ~6S I
A local dataset name, an expression containing only
previously defined terms that resolves into a FORTRAN unit
number, or the previously defined label of a word
containing either a local dataset name or a FORTRAN unit
number. There is no default value.

List of addresses whose contents are to be written. Even
if there is only one item, the list must be enclosed in
parentheses. Each item in the list specifies either the
address of a single word or the address of an array.

Part 3
2-36 1-01

I

An array is handled by enclosing the array base address,
the word count, and an optional increment in an
additional set of parentheses. Examples: «A,lO» or
«B,LTH,3»

The CAL statement
UFWRITE $OUT,«A,lO) ,(B,LTH,3»

is equivalent to the FORTRAN statement
PRINT (A(I), 1=1,10), (B(3*(I-l)+1), 1=1, LTH)

An array or a single word described as a one-word array
can be addressed indirectly by using the at sign (@) and
the name of a variable containing the indirect address
instead of an array name. For example:

((@C,lO))

((@E, 1))

Writes the first 10 words of an array
beginning at an address held in variable
C

Writes the single word specified by the
address held in variable E

To pass a numeric address, use a W prefix (for example,
W.177).

Save flag. If SV=NO, the SAVEREGS and LOADREGS macros
are not invoked. If SV=YES, all registers are saved and
restored. The default is SV=NO.

SAVEREGS - SAVE ALL REGISTERS

The SAVEREGS macro saves all of the A, B, S, T, V, VL, and VM
registers. Additionally, it sets up words containing VL+I, P/4,
parcel(P), BO/4, and.parcel(BO) so that SNAP can handle the VL=VL+l
option and so that SNAP, DUMP, and OUTPUT can output P and BO in
parcel-address format. (Here, parcel(x) means the 2 low-order bits of
x.)

Format:

Location Result

SAVEREGS

SR-OOll

Operand

Part 3
2-37 1-01

•

pegion Label of the first word of a region where registers are
to be saved. The default is QZH44HZQ. If the pegion is
defined, it must be with a BSS 0'1230; if it is not
defined, the SAVEREGS macro defines it. If SAVEREGS
requests are nested, each request must specify a
different pegion.

INLINE={~~S}
Inline code flag. If INLINE is omitted (as when SAVEREGS
is invoked directly), AO is saved in word 0'1200 and BO
is saved in word 0'1000 of the region. If INLINE=YES,
both AO and BO are lost. If INLINE=NO, BO is saved in
word 0'1223 of the region and AO is lost.

LOADREGS - RESTORE ALL REGISTERS

The LOADREGS macro restores the A, B, S, T, V, VL, and VM registers
that ~ere saved by a previously-executed SAVEREGS macro.

Format:

Location

peg ion

Result Operand

LOADREGS

The pegion used previously in a corresponding SAVEREGS. If
no value is specified, the default is QZH44HZQ. If the
region is defined, it must be with a BSS 0'1230; if it is
not defined, the LOADREGS macro defines it. If LOADREGS
requests are nested, each request must specify a
different pegion.

INLINE={~~S}

SR-OOll

Inline code flag. If INLINE is omitted (as when LOADREGS is
called by a user), AO and BO are restored from words 0'1200
and 0'1000 of the region. If INLINE=YES, both AO and BO are
lost. If INLINE=NO, BO is restored from 0'1223, but AO is
lost.

Part 3
2-38 1-01

I

MISCELLANEOUS

Macros that do not fit in the other categories are the SYSID, GETMODE,
GETSWS, and INSFUN macros.

SYSID - REQUEST SYSTEM IDENTIFICATION

The identification of the current system is returned at the location
specified in the macro call. The identification is returned as two
words 1 the first contains the COS revision level in ASCII and the
second contains the COS assembly date in ASCII.

Format:

Location Result Operand

SYSID addpe88

A symbol or an A, S, or T register (not AO or SO) containing
the address where the system ID is returned

GETMODE - GET MODE SETTING

The GETMODE macro obtains the mode setting from the user's exchange
package and returns it in the Sl register.

Format:

Location I Result

GETMODE

SR-OOll

Operand

Part 3
2-39 J-Ol

GETSWS - GET SWITCH SETTING

The GETSWS macro allows the user to determine whether a specified sense
switch number is set or not. GETSWS returns the setting of the switch
number specified in the Sl register. Sl=l if set: 0 if not set.

Format:

I Location I Result I
Operand

GETSWS n

n Number of the switch (1-6) to be tested

INSFUN - CALL INSTALLATION-DEFINED SUBFUNCTION

The INSFUN macro allows the user to call anyone of the
installation-defined subfunctions defined in a subfunction table
(INSTAB). Control is transferred to the indicated subfunction.

Format:

Location Result Operand

I INSFUN n,p

I n

I p

SR-OOll

A symbol or an A, S, or T register (not AO or SO) containing
the subfunction code

An optional symbol, A, S or T register (not' S2), containing
the address of a parameter list to be passed to the
installation-dependent subfunction.

Part 3
2-40 J-Ol

LOGICAL I/O MACROS

The logical I/O macros generate calls to I/O subroutines to be loaded
from the subroutine library and executed as part of the user program.

I The logical I/O macros apply only to blocked datasets. Datasets
referenced by these macros must have been opened previously by an OPEN
macro.

There are four main categories of logical I/O macros: synchronous
read/write, asynchronous (buffered) read/write, unblocked read/write, and
positioning.

SYNCHRONOUS READ/WRITE

The synchronous read/write logical I/O macros allow the user to read and
write words or characters and to write an end-of-file or an end-of-data.
Control does not return to the user program until all requested data
transfers are completed.

Upon termination of the READ/WRITE function, register contents are
modified as detailed under the description of each macro. A or S
registers not specifically mentioned should not be assumed to have any
meaningful contents, and will not contain the same values as before the
function request. Registers BO, B70-B77, and T70-T77 may be changed, as
well as VL, VM, VO, and VI. Other B, T, and V registers will not be
changed.

Issuing a synchronous I/O macro for an unblocked dataset produces an
error.

READ/READP - READ WORDS

The READ and READP macros transfer words of data that are resident on a
dataset into the user's data area. Blank compression characters are not
recognized, and the compressed blanks are not expanded (see part 1,
section 2) •

3

SR-OOll
Part 3

3-1 J-Ol

The READ macro generates a return jump to the $RWDR subroutine, thus
causing one record at a time to be processed. Each macro call causes the
dataset to be positioned after the end-of-record that terminated the read.

The READP macro generates a return jump to the $RWDP subroutine. Words
are transmitted to the user's data area as requested by the user. Each
call is terminated by reaching an end-of-record or by satisfying the word
count, whichever comes first.

I No blank decompression is performed.

When end-of-record is reached as a result of reading in word mode, the
unused bit count from the end-of-record RCW is placed in the field DPBUBC
of the Dataset Parameter Area (DSP). Also, the unused bits are zeroed in
the user's record area.

Unrecovered data errors do not abort the job; instead control is returned
to the caller. The caller can use the good data read, (A2) through
(A4)-1, and then abort. The caller can also skip or accept the bad
data.§ If the caller does nothing, the job aborts when the next read
request occurs. See the Library Reference Manual, CRI publication
SR-0014, for detailed descriptions of SKIPBAD and ACPTBAD.

When a READ or READP macro refers to a memory resident dataset, the first
such macro causes the dataset to be loaded into the buffer from mass
storage, if it exists there. If it does not exist on mass storage, the
system I/O routines set the DSP so that it appears that the buffer is
filled with data and no attempt is made to read data. Note that the I/O
routines cannot distinguish between the cases (1) an existing dataset is
declared memory resident, read in, modified in the buffer, rewound, and
read again, and (2) no modification of data in the buffer occurs. In
either case, the first read following a REWIND reads the unmodified data
from disk. If an existing dataset is declared memory resident and is to
be modified and reread, use backspace positioning macros rather than
REWIND to reposition to beginning-of-data to preserve the modifications.
This is necessary only when a memory resident dataset already exists on
mass storage.

Formats:

I Operand
dn,uda,at

Location I Result
READP

I Operand

I § Deferred implementation

SR-OOll
Part 3

3-2 J-Ol

I

I

I
I

dn Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset) or an A, B, or S register
(not AO or SO) containing the Dataset Parameter Area (DSP)
address or negative DSP offset relative to JCDSP

uda User data area first word address (FWA) or an A, B, or S
register (not Al) containing the uda address

ct Word count or an A, B, or S register (not Al or A2)
containing the number of words to be read

RETURN CONDITIONS: (Al) DSP address

(A2) FWA of user data area (uda)

(A3) Requested word count (ct)

(A4) Actual LWA+l of data transferred to uda.
A4=A2 if a null record was read.

(SO) Condition of termination

< 0 End of record encountered
= 0 Null record, end of file, end of data,

or unrecovered data error
encountered§

> 0 User-specified count (A3) exhausted
before end-of-record RCW is encountered

(Sl) Error status§

= 0 No errors encountered
= 1 Unrecovered data error encountered

(S6) Contents of the RCW if SO<O and Sl=O;
otherwise meaningless. Note that for
READ/READP, the unused bit count may also
be obtained from S6 if SO<O. Unused bits
are not meaningful for READC/READCP, since
the unused characters will be reflected in
the number of characters transferred
(A4-A2) •

I § Deferred implementation

SR-OOll
Part 3

3-3 J-Ol

READC/READCP - READ CHARACTERS

The READC and READCP macros transfer character data from a dataset into
I the user data area.

I

The READC macro generates a return jump to the $RCHR subroutine, thus
causing one record at a time to be processed. Each macro call causes the
dataset to be positioned after the end-of-record that terminated the read.

The READCP macro generates a return jump to the $RCHP subroutine.
Characters are transferred to the user data area as requested by the
user. Each call is terminated by reaching an end-of-record or by
satisfying the character count, whichever occurs first.

One character from the record is placed, right-adjusted, zero-filled, in
each word of the data area. Blank-compressed fields are recognized and
expanded, one blank per word.

Unrecovered data errors do not abort the job if the dataset is tape
resident1 instead control is returned to the caller. The caller can use
the good data read, (A2) through (A4)-I, and then abort. The user can
also skip or accept the bad data.§ If the caller does nothing, the job
aborts when the next read request occurs. See Library Reference Manual,
CRI publication SR-0014, for detailed descriptions of SKIPBAD and ACPTBAD.

Memory resident datasets are treated as described for READ/READP macro.

Formats:

I Location Result Operand
I READCP dn,uda,at

dn Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset) or an A, B, or S register
(not AO or SO) containing the Dataset Parameter Area (DSP)
address or negative DSP offset

uda User data area first word address (FWA) or an A, B, or S
register (not AI) containing the uda address

I § Deferred implementation

SR-OOII
Part 3

3-4 J-OI

•

et Character count or an A, S, or S register (not Al or A2)
containing the character count

RETURN CONDITIONS: Same as for READ/READP, except that the requested
count (A3) and data-transfer length (A4-A2) is in
characters rather than words

WRITE/WRITEP - WRITE WORDS

The WRITE macro generates a return jump to either the $WWDR or $WWDS
subroutine, depending on whether an unused bit count is specified. Words
are written from the user's data area. An end-of-record RCW is written
following each WRITE. The end-of-record RCW indicates how many bits in
the last words are unused, if any.

The WRITEP macro generates a return jump to the $WWDP subroutine.
are written from the user's data area as requested by the user.
end-of-record is written.

Words
No

No blank compression is performed.

If the dataset is memory resident and the WRITE or WRITEP causes the
buffer to become full, the memory resident flags are cleared and the
buffers are flushed to mass storage.

To write only an end-of-record RCW, the WRITE macro with word count of 0
is used.

Formats:

Location Result

WRITE
WRITE

Location Result

WRITEP

SR-OOII

Operand

dn,uda,et,ube
dn,uda,et

Operand

dn,uda,et

Part 3
3-5 J-OI

I
dn Dataset name (symbolic address of the Open Dataset Name

Table for this dataset) or an A, B, or 5 register (not AO
or 50) containing the Dataset Parameter Area (D5P) address
or negative D5P offset

uda User data area first word address (FWA) or an A,.B, or 5
register (not AI) containing the uda address

at Word count or an A, B, or 5 register (not Al or A2)
containing the word count

uba Unused bit count or an A, B, or S register (not AI, A2, or
A3) containing the unused bit count or null. If null,
record contains no unused bits.

RETURN CONDITIONS: (AI) DSP address

(A2) FWA of user data area (uda)

(A3) Requested word count (at)

WRITEC/WRITECP - WRITE CHARACTERS

The WRITEC and WRITECP macros transfer characters from the user's data
area to the dataset.

The WRITEC macro generates a return jump to the $WCHR subroutine, thus
causing one record at a time to be processed. An end-of-record RCW is
written following each WRITEC.

The WRITECP macro generates a return jump to the $WCHP subroutine.
Characters are written from the user's data area as requested by the
user. No end-of-record is written.

One character is taken from bits 56-63 of each word of the data area
and packed into the record, eight characters per word. Blank
compression (see part 1, section 2) occurs.

Memory resident datasets are handled as described for WRITE/WRITEP.

To write only an end-of-record RCW, the WRITEC macro with character
count of 0 is used.

5R-00ll
Part 3

3-6 J-Ol

I

I

Formats:

Location Result Operand

WRITEC dn,uda,et

Location Result Operand

WRITECP dn,uda,et

dn Dataset na~e (symbolic address of the Open Dataset Name
Table for this dataset) or an A, B, or S register (not AO
or SO) containing the Dataset Parameter Area (DSP) address
or negative DSP offset

uda User data area first word address (FWA) or an A, B, or S
register (not AI) containing the uda addresss

et Character count or an A, B, or S register (not Al or A2)
containing the character count

RETURN CONDITIONS: Same as for WRITE/WRITEP except that the
requested count (A3) is in characters rather
than words

WRITEF - WRITE END OF FILE

The WRITEF macro generates a return jump to the $WEOF subroutine,
causing an end-of-record RCW (if not previously written) and an
end-of-file RCW to be written.

If the WRITEF macro causes the buffer for a memory resident dataset to
be full, the memory resident flags are cleared and the buffers are
flushed to mass storage.

Format:

LLocation I Result

I WRITEF

SR-OOII

Operand

Part 3
3-7 J-OI

I

I

I

dn Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset) or an A, B, or S register
(not AO or SO) containing the Dataset Parameter Area (DSP)
address or negative DSP offset

RETURN CONDITIONS: (AI) DSP address

WRITED - WRITE END OF DATA

The WRITED macro generates a return jump to the $WEOD subroutine, causing
an end-of-record RCW (if not previously written), an end-of-file RCW (if
not previously written), and an end-of-data RCW to be written.

The WRITED macro causes buffers to be flushed. If the dataset is memory
resident, buffers are flushed to mass storage only if the end of data
occurs within the last block of the buffer: in this case the memory
resident flags will also be cleared.

Format:

rLocation\Result

WRITED

I Operand

dn

dn Dataset name (symbolic address of the Open Dataset Name
Table for this dataset) or an A, B, or S register (not AO
or SO) containing the Dataset Parameter Area (DSP) address
or negative DSP offset

RETURN CONDITIONS: (AI) DSP address

ASYNCHRONOUS READ/WRITE

The asynchronous read/write logical I/O macros allow the user to read and
write words and to write an end of file or an end of data. These macros
provide the CRAY Assembly Language (CAL) programmer with the same
capabilities as the FORTRAN BUFFER IN/BUFFER OUT statements.

Control returns to the user immediately. It is the user's responsibility
to ensure that requested data transfers are complete and error-free by
examining the DSP before attempting to process input data or requesting
additional writes. The macro BUFCHECK is provided to make the necessary
checks.

SR-OOII
Part 3

3-8 J-OI

I

All of the asynchronous blocked I/O macros use registers AO, AI, A2, SO,
Sl, and S2. Other A and S registers, and all B, T, and V registers
remain unchanged (except BO). Unblocked I/O processing also uses
registers A6, S3, and S4. In all cases, after the I/O function
completes, Al contains the DSP address. The other registers used are not
meaningful. All status responses must be obtained from the DSP.

Asynchronous requests for unblocked datasets require that the uda
parameter specify the address of an area in the user's program. Also,
the at parameter must be a value that is a multiple of 512.

Memory resident datasets are handled the same as for the synchronous
read/write macros. See the description of the READ, WRITE, WRITEF, and
WRITED macros for the handling of BUFIN(P), BUFOUT(P), BUFEOF, and BUFEOD
respectively.

BUFIN/BUFINP - TRANSFER DATA FROM DATASET TO USER RECORD AREA

The BUFIN and BUFINP macros transfer words of data from a dataset to a
user record area. Both macros generate a system call to $CBIO.

The BUFIN macro transfers data from the current position to end-of-record
or until the specified word count is exhausted. The dataset is
positioned after the end of the current record. Field DPBUBC indicates
the count of unused bits in the last word of the record. If the word
count is exhausted before end of record, the unused bit count is set to
zero.

The BUFINP macro transfers data from the current position to
end-of-record or until the specified word count is exhausted. The
dataset remains positioned midrecord if the word count is exhausted
before end-of-record is reached. The unused bit count is set in the same
way as for BUFIN.

In both cases, control returns to the user program immediately, giving
the user the responsibility of monitoring the proper DSP fields to
determine when the transfer is complete and whether any errors occurred.

If the dataset is unblocked, the specified word count is transferred.
RCWs and BCWs are ignored.

Formats:

Location Result

BUFIN

SR-OOll

Operand

Part 3
3-9 J-Ol

I

I

I

Location Result Operand

BUFINP

dn Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset). It is the Dataset Parameter
Area (DSP) address if and only if dn=Al. The ODN address
may be given in any other A register except AO, any 8
register except 80, Sl or S2, or any B register.

uda User's record area or A, S, or T register (not AO, SO, Sl,
or S2) containing the uda address

at Word count or A, S, or T register containing word count (not
Sl or S2)

~at Optional recall flag. If not null, the macro expansion
contains a RECALL loop until the I/O is completed.

Registers Sl and 82 are used to construct the parameter word (W@DPBIO) and
may not contain parameter address or values.

When I/O is completed, for both BUFIN and BUFINP, the actual number of
words transferred can be obtained from the DPBWC field of the DSP.

BUFOUT/BUFOUTP - TRANSFER DATA FROM USER RECORD AREA TO DATASET

The BUFOUT and BUFOUTP macros transfer data from a user's record area to a
dataset using the system F$BIO function.

The BUFOUT macro transfers the specified number of words and writes an
end-of-record RCW on the dataset. Optionally, an unused bit count may be
specified, giving the number of bits in the last word of data that are not
to be considered as part of the data. The end-of-record RCW will contain
this unused bit count.

The BUFOUTP macro transfers the specified number of words but does not
write an end-of-record RCW. Subsequent BUFOUTP macro calls continue to
construct the record. A subsequent BUFOUT macro terminates the record
with an end-of-record. Unused bits are meaningless for BUFOUTP.

In both cases, control returns to the user program immediately, giving the
user the responsibility of monitoring the proper DSP fields to determine
when the transfer is complete and whether any errors occurred.

If the dataset is unblocked, the specified word count is transferred.
RCWs and BCWs are ignored.

SR-OOll
Part 3
3~O J-Ol

I
I

I

I

Formats:

Location Result Operand

BUFOUT dn,uda,ct,ubc,pcl

Location Result Operand

dn

uda

ubc

BUFOUTP dn,uda,ct,ubc,pcl

Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset). It is the Dataset Parameter
Area (DSP) address if and only if dn=Al. The ODN address
may be given in any other A register except AO, any S
register except SO, Sl, or S2, or any B register.

User record area or A, S, or T register containing record
area address (not AO, SO, Sl, or S2)

Word count or A, S, or T register containing word count (not
AO, SO, Sl or S2)

Optional unused bit count or A, S, or T register containing
unused bit count (not AO, SO, or S2) or null. If null,
record contains no unused bits. This field is ignored for
BUFOUTP.

pcl Optional recall flag. If not null, the macro expansion
contains a RECALL loop until the I/O is completed.

Registers Sl and S2 are used to construct the parameter word (W@DPBIO) and
may not contain parameter addresses or values, except that Sl may contain
the unused bit count.

BUFEOF - WRITE END OF FILE ON DATASET

The BUFEOF macro is used to write an end-of-file on a dataset. Control
returns immediately to the user program, giving the user the
responsibility of monitoring the DPBIO field. An end-of-record is written
if the dataset is mid-record.

Issuing a BUFEOF macro for an unblocked dataset produces an error.

SR-OOll
Part 3
3~1 J-Ol

I

I

Format:

Location Result Operand

dn

BUFEOF dn,poZ

Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset). It is the Dataset Parameter
Area (DSP) address if and only if dn=Al. The ODN address
may be given in any other A register except AO, any S
register except SO, Sl, or S2, or any B register.

paZ Optional recall flag. If not null, the macro expansion
includes a RECALL loop until the I/O is completed.

BUFEOD - WRITE END OF DATA ON DATASET

The BUFEOD macro writes an end-of-data to a dataset. Control returns
immediately to the user and it is the user's responsibility to monitor the
DPBIO field. An end-of-record and an end-of-file will also be written, if
necessary.

Issuing a BUFEOD macro for an unblocked dataset produces an error.

Format:

Location Result Operand

dn

BUFEOD

Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset). It is the Dataset Parameter
Area (DSP) address if and only if dn=Al. The ODN address
may be given in any other A register except AO, any S
register except SO, Sl, or S2, or any B register.

paZ Optional recall flag. If not null, the macro expansion
includes a RECALL loop until the I/O is completed.

SR-OOll
Part 3
3~2 J-Ol

I

I

BUFCHECK - CHECK BUFFERED I/O COMPLETION

The BUFCHECK macro requests the system to wait until the buffered I/O on a
dataset has completed and, optionally, to go to an error address if the
DSP status contains any error flags when the I/O completes.

Format:

Location Result Operand

dn

BUFCHECK dn,e~~

Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset). It is the Dataset Parameter
Area (DSP) address if and only if dn=Al. The ODN address
may be given in any other A register except AO, any S
register except SO, Sl, or S2, or any B register.

e~~ Optional error address. If any error bits are set in the
DSP on completion of the I/O, control is transferred to
e~~, if specified. If e~~ is not specified, it is the
user's responsibility to detect any errors. Note that for
this purpose, DPEOI does not constitute an error bit.

RETURN CONDITIONS:

UNBLOCKED READ/WRITE

If e~~ is specified, 81 will contain the DSP
field DPERR, right-justified.

The unblocked dataset read and write macros allow the user to read and
write data directly into or from a buffer supplied by a program rather
than by the system. The system waits for I/O to complete.

The system does no blocking or deblocking of unblocked datasets.

Upon termination of the READ/WRITE function, register contents are
modified as detailed under the description of each macro. A or S
registers not specifically mentioned should not be assumed to have any
meaningful contents, and will not contain the same values as before the
function request. Registers BO, B70-B77, and T70-T77 may be changed, as
well as VL, VM, VO, and VI. Other B, T, and V registers will not be
changed.

SR-OOll
Part 3

3-13 J-Ol

I

I

I

I

READU - TRANSFER DATA FROM DATASET TO USER'S AREA

The READU macro transfers words of data from an unblocked dataset into an
area specified by the caller. The READU macro generates a return jump to
the SRLB subroutine.

Format:

Location Result Operand

dn

uda

ct

READU dn,uda,ct

Dataset name (symbolic address of the Open Dataset Name
Table for this dataset) or an A, B, or S register (except AO
or SO) containing the Dataset Parameter Area (DSP) address
or negative DSP offset

User data area first word address (FWA) or an A, B, or S
register (except AO, AI, or SO) containing the uda address

Word count or an A, B, or S register (except AO, AI, A2, or
SO) containing the number of words to be transferred. ct
must be a multiple of 512.

RETURN CONDITIONS: (AI) DSP address

(A2) FWA of user data area (uda)

(A3) Requested word count (at)

(A4) Actual LWA+l of data transferred

(SO) Completion status. One of the following:

-1.0
0.0

+1.0
+2.0

Operation complete, no errors
Attempt to read past allocated data
Parity errorS
Unrecovered hardware errorS

I S Deferred implementation

SR-OOll
Part 3

3-14 J-Ol

I

I

I

WRITEU - TRANSFER DATA FROM USER'S AREA TO DATASET

The WRITEU macro transfers data from the user's area to an unblocked
dataset. The WRITEU macro generates a return jump to the $WLB subroutine.

Format:

Location Result Operand

dn

uda

WRITEU dn,uda,et

Dataset name (symbolic address of the Open Dataset Name
Table for this dataset) or an A, B, or S register (not AO
or SO) containing the Dataset Parameter Area (DSP) address
or negative DSP offset

User data area first word address (FWA) or an A, B, or S
register (not AO, AI, or SO) containing the uda address

et Word count or an A, B, or S register (not Al or A2)
containing the number of words to be transferred. et must
be a multiple of 512.

RETURN CONDITIONS:

POSITIONING

(AI) DSP address

(A2) FWA of user data area (uda)

(A3) Requested word count (et)

(SO) Completion status. One of the following:

-1.0
0.0

+1.0
+2.0

Operation complete, no errors
Attempt to read past allocated data
Parity errorS
Unrecovered hardware errorS

The user can rewind datasets, backspace records or files, get the current
dataset position, and position datasets using the positioning logical I/O
macros. See each macro description for register contents on return.
Other registers mentioned as used by READ/WRITE will be meaningless on
return.

I S Deferred implementation

SR-OOll
Part 3
3~5 J-Ol

I

When a dataset is positioned backward and the last operation on the
dataset was a write operation, an end-of-data is written (and an
end-of-record and end-of-file, if necessary). (See the WRITE, WRITEF,
and WRITED macro descriptions for handling of memory resident datasets
during the end-of-data processing.) If the last operation was not a
write operation, backward positioning has no special effect on a dataset.

REWIND - REWIND DATASET

The REWIND macro generates a return jump to the $REWD subroutine causing
the dataset to be positioned at beginning-of-data.

The REWIND macro causes all buffer pointers in the DSP to be reset to
indicate an empty buffer. For memory resident datasets, the next read
will cause the pointers to be reset. If the memory resident dataset
previously existed on mass storage, any changes made to the contents of
the buffer prior to the rewind will be lost. This is because the disk
copy of the dataset is reread without the changes being flushed. If the
dataset did not previously exist on disk, any changes in the buffer
contents are preserved across the rewind and read sequence. To preserve
changed buffer contents for a memory resident dataset that previously
existed on disk, use BKSPF to reposition the dataset.

Format:

~LocationlResult
REWIND

I Operand

dn

dn Dataset name (symbolic address of the Open Dataset Name
Table for this dataset) or an A, B, or S register (not AO
or SO) containing the Dataset Parameter Area (DSP) address
or negative DSP offset

RETURN CONDITIONS: (AI) DSP address

BKSP - BACKSPACE RECORD

Th BKSP macro generates a return jump to the $BKSP subroutine. The
dataset is backspaced one record. If the dataset is at
beginning-of-data, no action occurs.

SR-OOll
Part 3

3-16 J-Ol

I

I

Because the backspace operation occurs within the buffer for memory
resident datasets, such datasets receive special handling only if an
end-of-data must be written. Changes made in the buffer contents are
preserved.

Issuing a BKSP macro for an unblocked dataset produces an error.

BKSP applies to mass storage datasets onlYJ it is illegal on tape
datasets.

Format:

rLocationlResult

BKSP

I Operand

dn

dn Dataset name (symbolic address of the Open Dataset Name
Table for this dataset) or an A, B, or S register
containing the Dataset Parameter Area (DSP) address or
negative DSP offset

RETURN CONDITIONS:

BKSPF - BACKSPACE FILE

(AI) DSP address

(S6) The RCW after which the dataset was
left-positionedJ equals 0 if
beginning-of-data is encountered.

The BKSPF macro generates a return jump to the $BKSPF subroutine. The
dataset is backspaced one file. If the dataset is at beginning-of-data,
no action occurs.

Because the backspace operation occurs within the buffer for memory
resident datasets, such datasets receive special handling only if an
end-of-data must be written. Changes made in the buffer contents are
preserved.

Issuing a BKSPF macro for an unblocked dataset produces an error. BKSPF
applies to mass storage datasets onlYJ it is illegal on tape datasets.

SR-OOll
Part 3

3-17 J-Ol

I

Format:

~LocationlResult
BKSPF

I Operand

dn

dn Dataset name (symbolic address of the Open Dataset Name
Table for this dataset) or an A, B, or S register
containing the Dataset Parameter Area (DSP) address or
negative DSP offset

RETURN CONDITIONS: Same as for BKSP

GETPOS - GET CURRENT DATASET POSITION

The GETPOS macro generates a return jump to the $GPOS subroutine. This
subroutine returns the current dataset position in Sl. The dataset
position is the number of words between the beginning-of-data and the
present position, not counting BOWs but including ROWs.

Format:

rLocation I Result

GETPOS

dn Dataset name (symbolic address of the Open Dataset Name
Table for this dataset) or an A, B, or S register (except
AO or SO) containing the Dataset Parameter Area (DSP)
address or negative DSP offset

RETURN CONDITIONS: (AI) DSP address

SR-OOll

(Sl) For a blocked dataset, Sl contains dataset
position flags. Bits 0-2 indicate position
within records or files, bits 31-63
indicate physical word address within the
file, including ROWs. At
beginning-of-data, Sl=O. Bit 0=1 if
dataset is positioned immediately following
a RCW. Bit 2=1 if the ROW is an
end-of-file ROW. If bit 0=0, bit 2 also

Part 3
3-18 J-Ol

I

I

will equal zero, and the dataset is
midrecord or at beginning-of-data. Bit 1
is unused.

For an unblocked dataset, Sl returns the
relative position of the current block
within the dataset.

(S2) For an unblocked dataset, S2 contains the
same address as is contained in bits 31-63
of Sl for blocked datasets.

For a blocked dataset, S2 contains the
physical word address relative to the
beginning of the dataset, including RCWs.

SETPOS - POSITION DATASET

The SETPOS macro generates a return jump to the $SPOS subroutine. The
dataset is positioned at the word indicated by the word offset specified,
which must be at a record boundary (at beginning-of-data, or following
end-of-record or end-of-file, or before end-of-data) •

For an unblocked dataset, the DSP is updated to reflect the specified
position within the dataset. No I/O request is actually issued. SETPOS
applies to mass storage datasets onlY1 it is illegal for tape datasets.

Format:

Location Result Operand

SETPOS dn ,pos

dn Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset) or an A, B, or S register
containing the Dataset Parameter Area (DSP) address or
negative DSP offset

pos Dataset position. May be any of the following:

SR-OOll

EOD Position the dataset preceding end-of-data

BOD Position the dataset at beginning-of-data

Sn or 1h
Position the dataset to the word address
contained in the specified S or T register. If
pos is not Sl, Sl is destroyed.

Part 3
3-19 J-Ol

I

RETURN CONDITIONS:

POSITION - POSITION TAPE

(Sl) Dataset position (See GETPOS for meaning of
flags)

(S6) Record control word after which dataset is
positioned, or 0 at beginning-of-data

The POSITION macro generates an F$POS call to position a tape dataset.

Format:

Location Result Operand

POSITION dn,8ubcode

dn Symbolic address of the ODN table for this dataset or an A,
S, or T register containing a pointer to the ODN table

8ubcode REWIND is the only 8ubcode currently supported.

RETURN CONDITIONS: None

SR-OOll
Part 3

3-20 J-Ol

I

I

PERMANENT DATASET MACROS

The permanent dataset macro instructions are a subset of the system
function requests. Each macro generates a function code that is a call
to cos. The function code octal value is stored in register SO~ Sl and
S2 provide optional arguments. The function code is enabled when the
program exit instruction is executed. (Note that the contents of the
registers used are not restored after the call is completed.) See
Appendix C for more information on system function codes.

The permanent dataset macro instructions are divided into two
categories: those that define and those that manage permanent datasets.

PERMANENT DATASET DEFINITION

4

The PDD macro generates a parameter table containing information about
the dataset. The ACCESS, SAVE, DELETE, ADJUST, DISPOSE, and SUBMIT
macros involved 'in permanent dataset management use the PDD table. Thus,
the PDD macro must accompany the use of the permanent dataset management
macros.

The LDT macro generates a table containing information required to
process labels for tape datasets. The LDT macro must accompany the PDD
and ACCESS macros in a program accessing a labeled tape dataset if label
processing is to occur.

PDD - CREATE PERMANENT DATASET DEFINITION TABLE

The PDD macro creates a parameter table called the Permanent Dataset
Definition Table (PDD). (See Appendix A for a description of the PDD
table.) This macro is non-executable and must accompany the use of the

I ACCESS, SAVE, DELETE, ADJUST, DISPOSE, or SUBMIT macros in a program.

SR-OOll
Part 3

4-1 J-Ol

Format:

Location Result

pddtag PDD

Ooerand

DN=dn,PDN=pdn,SDN=sdn,ID=uid,MF~f,TID=tid,

DF=df,DC=dc,SF=sf,RT=pt,ED=ed,RD=pd,WT=wt,

MN=mn,DT=dt,cs=CS,LB=Zb,LDT=Zdt,

NEW= f ON } MSG= f ON } UQ= fON } WAIT= f ON }
lOFF ' loFF ' loFF' loFF '

DEFER=foN },NRLS=foN },Exo=foN },SID=mf,DID=mf
loFF loFF loFF

pddtag Symbolic address of the PDD table

Parameters are in keyword form~ the only required parameter is DN.

DN=dn Dataset name. DN is a required parameter.

PDN=pdn Permanent dataset name. The default value is dn.

SDN=sdn Staged dataset name~ 1-15 alphanumeric character name by
which the dataset will be known at the destination
mainframe. The default is the local dataset name (DN) •

ID=uid User identification~ 1-8 alphanumeric characters assigned
by the dataset creator.

MF=mf Mainframe identifier~ 2 alphanumeric character

SR-OOll

identification. This parameter identifies the front-end
station to which the dataset is to be staged. If omitted,
the mainframe from which the issuing job originated is
used. If MF is given a value of CRAY id and DC=IN, the
dataset is disposed to the CRAY input queue, after first
issuing a warning message.

NOTE

If using the DISPOSE macro, see the description of the
DISPOSE control statement in part 2.

Part 3
4-2 J-Ol

I

I

TID=tid Terminal identifierJ 1-8 alphanumeric character identifier
for the destination terminal. The default is the terminal
of job origin.

DF=df Dataset format. This parameter defines whether the
destination computer is to perform character conversion.
The default is CB.

DC=de

SR-OOIl

df is a 2-character alpha code defined for use on the
front-end computer system. CRI suggests support of the
following codes:

CD Character/deblocked. The front-end system performs
character conversion from 8-bit ASCII, if necessary.

CB Character/blocked. No deblocking is performed at the
CRAY-I prior to staging. The front-end performs
character conversion from 8-bit ASCII, if necessary.

BD Binary/deblocked. The front-end system performs no
character conversion.

BB Binary/blocked. The front-end computer performs no
character conversion. No deblocking is performed at
the CRAY-I prior to staging.

TR Transparent. No blocking/deblocking or character
conversion is performed.

IC Interchange tape datasets only. In interchange format
each tape block of data corresponds to a single
logical record in COS blocked format.

Other codes may be added by the local site. Undefined
pairs of characters may be passed but will be treated as
transparent mode by the CRAY-I.

Disposition codeJ disposition to be made of the dataset.
The default is PR (print).

de is a 2-character alpha code which describes the
destination of the dataset as follows:

IN Input (job) dataset. The dataset is to be queued as a
job on the mainframe specified by the MF parameter.

ST Stage to mainframe. Dataset is made permanent at the
mainframe designated by the MF parameter.

SC Scratch dataset. Dataset is deleted.

Part 3
4-3 J-OI

SF=sf

RT=pt

ED=ed

MN=mn

DT~t

SR-OOll

PR Print dataset. Dataset is printed on any printer
available at the mainframe designated by the MF
parameter. PR is the default value.

PU Punch dataset. Dataset is punched on any card punch
available at the mainframe designated by the MF
parameter.

PT Plot dataset. Dataset is plotted on any available
plotter at the mainframe designated by the MF
parameter.

MT Write dataset on magnetic tape at the mainframe
designated by the MF parameter.

Special form information to be passed to the front-end
system~ 1-8 alphanumeric characters. SF is defined by the
needs of the front-end system. Consult on-site analyst for
options.

Retention period~ a value between 0 and 4095 specifying the
number of days a permanent dataset is to be retained by the
system. The default is an installation-defined value.

Edition number~ a value between 1 and 4095 assigned by the
dataset creator. The default is the highest edition number
known to the system.

Read control word~ 1-8 alphanumeric characters assigned by
the dataset creator. The default is no read control word.

Write control word~ 1-8 alphanumeric characters assigned by
the dataset creator. The default is no write control word.

Maintenance control word~ 1-8 alphanumeric characters
assigned by the dataset creator. The default is no
maintenance control word.

Tape dataset generic device name or synonym. This
parameter is required for tape datasets~ it is ignored when
used for mass storage datasets.

Generic Name

*6250
*1600

Synonym Significance

*TAPE Device capable of 6250 bpi
Device capable of 1600 bpi

Part 3
4-4 J-Ol

CS=C8

LB=lb

Character set of tape dataset, for data only. This
parameter applies only to tape datasets; it is ignored when
used for mass storage datasets.

AS ASCII; default.
EB EBCDIC

Tape dataset label processing option. This parameter
applies only to tape datasets; it is ignored when used for
mass storage datasets.

BLP By-pass label processing§
SL IBM standard-labeled tapes
NL Unlabeled tapes; default
AL ANSI standard-labeled tapes

LDT=ldt§ Label Definition Table (LDT). The name of the LDT for
tape processing. This parameter applies only to tape
datasets; it is ignored when used for mass storage
datasets. ltd is identical to ldttag on the LDT macro.

NEW={ON) Tape dataset is to be created; the dataset must be written
OFF starting at the beginning of information.

ON Tape dataset to be created
OFF Tape dataset not to be created; default.

MSG={ON) Normal completion message suppression indicator. The
OFF default is OFF.

UQ={ON)
OFF

WAIT={ON)
OFF

ON Indicator is set
OFF Indicator is cleared

Unique access. If UQ is specified, write maintenance
and/or read permission may be granted if the appropriate
write or maintenance control words are specified. The
default (OFF) is multiread access if the read control word
is specified.

Job wait/nowait. If WAIT=ON is specified, the job waits
for the dataset to be transferred to the front-end system.
If the transfer is canceled, the job is aborted. If
WAIT=OFF is specified, the job resumes immediately and does
not wait for the dataset to be transferred. If the
transfer is canceled, the job is not aborted. If the
parameter is omitted, an installation default parameter is
used.

§ Deferred implementation

SR-OOll
Part 3

4-5 J-Ol

DEFER={ON 1
OFF

Deferred disposition. When DEFER is specified, disposing
of the dataset is delayed until the dataset is released
either by a RELEASE request or by termination.

The default is OFF, in which case the dataset is disposed
immediately.

NRLS={ON 1
OFF

No release. When NRLS=ON is specified, the dataset remains
local to the job after a DISPOSE request has been
processed. The default is NRLS=OFF.

NOTE

The dataset is available only for reading when
NRLS=ON is specified.

EXO={ON 1 Execute-only dataset. EXO=ON sets the execute-only status
OFF of a dataset. EXO=OFF clears the execute-only status. If

omitted, the status is ignored.

SID~

DID=mf

Default source mainframe identifier. Two alphanumeric
characters. This parameter defines the source front-end
station where all staging to the CRAY-I mainframe will
default.

Default destination mainframe identifier. Two alphanumeric
characters. This parameter defines the destination
front-end station where all staging from the CRAY-l
mainframe will default.

NOTE

Use of the MF parameter with either SID or DID is not
allowed.

SR-OOll
Part 3

4-6 J-Ol

I

LDT - CREATE LABEL DEFINITION TABLE

The LDT macro creates a table called the Label Definition Table (LDT).
(See Appendix A for a description of the LDT table). This macro is
non-executable and may accompany the PDD and ACCESS macros in a program
accessing a labeled tape dataset.

Format:

Location Result Ooerand
ldttag LDT CT=et,VOL=(Vsnl,vsn2,···vsnn),FSEc=fsee,

FSEQ=fseq,GEN=gen,GVN=gvn,CDT=yyddd ,

ldttag

XDT=yyddd,RF=pf,MBs=mbs,RS=PS

Symbolic address of the LDT table; identical to ldt on
PDD macro.

Parameters are in keyword form.

CT=et§

VOL= (voli)

Tape dataset conversion type. Required if run-time
record and data format conversion is to be performed. The
default is no conversion. et is a 3-character code
describing the machine internal data representation.

IBM IBM 370 and compatible

Volume identifier list; a list of 6-character alphanumeric
volume identifiers, separated by commas, that comprise the
tape dataset. The maximum number of volume identifiers per
dataset is an installation parameter.

FSEC~see File section number; a number from 1 through 9999
specifying the volume in the dataset. The first section
(or volume) of a dataset is numbered 0001. The default is
1.

§ Deferred implementation

SR-OOll
Part 3

4-7 J-Ol

I

FSEQ=fseq§
File sequence number; a number from 1 through 9999
identifying this file among the files of this set. The
first file is numbered 0001. The default is 1.

GEN=gen§ Generation number; a number from 1 to 9999 that
distinguishes successive generations of the file. The
default is 1.

GVN=gvn§ Generation version number; a number from 1 to 9999 that
distinguishes among successive iterations of the same
generation. The default is o.

CDT=yyddd Creation date. yy specifies the year and is a number
from 0-99. ddd specifies the day within the year and is
a number from 001 to 366. It indicates the creation date
for this file.

XDT=yyddd Expiration date; same format as creation date. It
indicates the date on which this file may be overwritten.

RF=-t?f§

RS=ps

MBs=mbs

Tape dataset record format. pf is a 2- to
8-character code describing the record type.

IU
IF
IFB
IV
IVB
IVBS

IBM U (undefined) format; default if CT=IBM.
IBM F (fixed) format
IBM FB (fixed blocked) format
IBM V (variable) format
IBM VB (variable blocked) format
IBM VBS (variable blocked spanned) format

Record size. If CT=IBM, expressed in units of 8-bit bytes.

Maximum tape block size; that is, the number of bytes in
the largest tape block to be read or written. The maximum
size allowed .at the installation and the default are
specified as installation parameters.

§ Deferred implementation

SR-OOll
Part 3

4-8 J-Ol

PERMANENT DATASET MANAGEMENT

The user can access, save, adjust, and delete permanent datasets by use of
the permanent dataset management macros. All of these macros must be
accompanied by the PDD macro in the job.

ACCESS - ACCESS PERMANENT DATASET

The ACCESS macro associates an existing permanent dataset with a job and
assures that the user is authorized to use this dataset. ACCESS must
precede any logical I/O macros for the permanent dataset.

Format:

I LocationlResult
ACCESS

I Operand
pddtag

pddtag Address of PDD macro call

SAVE - SAVE PERMANENT DATASET

The SAVE macro enters a local dataset in the Dataset Catalog, making it
permanent. A permanent dataset is uniquely identified by permanent
dataset name, user identification, and edition number.

SAVE has a twofold function:

• Creation of an initial edition of a permanent dataset

• Creation of an additional edition of a permanent dataset

If all of the following conditions are true for the dataset, SAVE makes a
call to close the dataset and consequently to flush the buffer. This
assures that all the data is disk resident.

1. The dataset is currently opened for output only.
2. The dataset has not had an end-of-data written.
3. The dataset is being written sequentially.
4. The dataset has COS blocked dataset structure.
S. The dataset's DSP is managed by COS.

SAVE does not close the dataset unless all of these conditions are true.
I SAVE applies to mass storage datasets; it is ignored for tape datasets.

SR-OOll
Part 3

4-9 J-Ol

•

Format:

I Operand
pddtag

pddtag Address of PDD macro call

DELETE - DELETE PERMANENT DATASET

The DELETE macro removes a permanent dataset from the Dataset Catalog. A
dataset must be accessed within a job with the maintenance permission
control word and unique access before a DELETE may be issued.

Format:

DELETE pddtag

pddtag Address of PDD macro call

ADJUST - ADJUST PERMANENT DATASET

The ADJUST macro changes the size of a permanent dataset, that is,
redefines end-of-data for the dataset. A dataset must be accessed with
the write permission control word and unique access within a job before an
ADJUST may be issued.

If all of the following conditions are all true for the dataset, ADJUST
makes a call to close the dataset and consequently to flush the buffer.
This assures that all the data is disk resident.

1. The dataset is currently opened for output only.
2. The dataset has not had an end-of-data written.
3. The dataset is being written sequentially.
4. The dataset has COS blocked dataset structure.
S. The dataset's DSP is managed by COS.

ADJUST does not close the dataset unless all of these conditions are true.

SR-OOll
Part 3

4-10 J-01

I
ADJUST applies to mass storage datsets only~ it is ignored when used with
tape datasets.

Format:

pddtag

SR-0011

ADJUST
I Operand
pddtag

Address of PDD macro call

Part 3
4-11 J-01

eFT LINKAGE MACROS

The CFT linkage macros handle subroutine linkage between CFT-compiled
routines and CAL-assembled routines.

These macros perform the following functions:

• Generate code for calls, entries, and returns

• Assign Band T registers

• Fetch argument addresses

These macros should be used to maintain compatibility across the
various versions of CFT.

CALL EXTERNAL ROUTINES

The CALL and CALLV macros generate code to call external routines
using the call-by-address or call-by-value convention.

CALL - CALL EXTERNAL ROUTINE USING CALL-BY-ADDRESS CONVENTION

The CALL macro builds a list of addresses for a call-by-address
external routine. This first argument address is stored at entry
point minus one, the second at entry point minus two, etc of the
called routine. The total number of arguments is entered in A7.

Format:

Location Result

CALL

SR-OOll

Operand

name, (aragwnent 'list)

Part 3
5-1 I

5

I

name The name of the routine being called

apgument list
The list of arguments to be passed (lor more). If more
than one argument is passed, the arguments must be
separated by commas. Each argument may be a literal, a
word address symbol, or a register containing an address.

CALLV - CALL EXTERNAL ROUTINE USING CALL-BY-VALUE CONVENTION

The CALLV macro generates a call-by-value to an external routine. The
arguments are passed in registers Sl through S6 and must all be scalar
quantities. The first argument is placed in Sl, the second in S2, etc.

Format:

Location Result Operand

CALLV name, (apgument list)

name The name of the routine being called

apgument list

ENTER AND EXIT

The list of arguments to be passed (1-6). If more than one
argument is passed, the arguments must be separated by
commas. Each argument may be either a literal, a word
address symbol, or a register symbol. S registers are
loaded in numerical order.

The ENTER and EXIT macros generate code for entries and returns using the
call-by-address convention for normal CFT calls or call-by-value
convention for library routines.

EN'l'ER - FORM A CFT CALLABLE ENTRY

The ENTER macro generates code for a normal CFT call-by-address entry.
It reserves space for parameter addresses, saves Band T registers, and
sets up traceback linkage. As a option, it also sets up call-by-value
entries for library routines.

SR-OOll
Part 3
5-2 1-02

I

Format:

Location

name

name

NB=nb

NT=nt

NP=np

Result

ENTER

Operand

NB=nb,NT=nt,NP=np,MODE~ode,
TYPE=type,PRELOAD=nSV,COPYIN=COPY,
SHARED=shape,ARGSIZE=size

The name of the entry

The number of B registers explicitly used by the routine,
not including those that must be used by the calling
sequence/traceback linkage. The default is o.

The number of T registers explicitly used by the routine.
The default is o.

The number of parameters to the routine. The default is o.

MODE~ode The kind of entry (USER or LIBRARY). The default is USER.
LIBRARY mode is intended for special purpose use in $FTLIB
routines. In LIBRARY mode, NB and NT must both be O.

TYPE=type The kind of calling sequence used to call name. The
options are VALUE, ADDRESS, or BOTH. The default is
ADDRESS. If BOTH is specified, the call-by-address entry
precedes the call-by-value entry. If either BOTH or VALUE
is specified, name must be the call-by-address name. The
ENTER macro automatically appends a % to name for the
call-by-value entry. type can be specified only in a
LIBRARY mode entry.

PRELOAD=nsV

SR-OOll

The number of parameters to be loaded into the S or V
registers in a call-by-address entry. The default is np.
PRELOAD can be specified only in a LIBRARY mode entry. If
the first character of name is %, the arguments are loaded
into V registers. Otherwise, they are loaded into S
registers. V register arguments have two parts -- the
first is the base address of the argument, the second is
the address of the memory increment between argument values.

Part 3
5-3 1-02

COPYIN~opy

If future calling sequences pass argument addresses in a
different manner, COPYIN=ON will generate code to copy
the addresses into locations corresponding to the
current calling sequence conventions. The default is
COPYIN=OFF.

SHARED=shape
The name of a previous ENTER macro. If this parameter
is specified, the previous entry and the current entry
share storage space in which the Band T registers are
saved. SHARED is intended for routines such as SIN and
COS, which also share code sequences.

ARGSIZE=size
The size of the arguments. This parameter is only used
in LIBRARY mode. If ARGSIZE=ONEWORD is specified, each
argument is loaded into consecutive registers; that is,
argument 1 is loaded in Sl, argument 2 is loaded in S2,
etc. If ARGSIZE=TWOWORD is specified, each argument is
loaded into consecutive pairs of registers; that is, the
first and second words of argument 1 are loaded into Sl
and S2, the first and second words of argument 2 are
loaded into S3 and S4, etc. The default is
ARGSIZE=ONEWORD. Note that this parameter has meaning
only when used with TYPE=ADDRESS or TYPE=BOTH.

EXIT - RETURN FROM A ROUTINE

The EXIT macro generates code to return program control from a routine
to its caller. It restores those B or T registers used.

Format:

. Location Result

EXIT

Operand

NB=nb,NT=nt,NAME=name,MODE=mOde,KEEP={ON }
OFF

Normally EXIT without any parameters is sufficient. The values from the
most recently assembled (not necessarily executed) ENTER are used.

SR-OOll
Part 3

5-4 1-02

NB=nb The number of B registers to restore: not including those
used for call linkage

NT=nt The number of T registers to restore

NAME=name The name of the entry corresponding to this exit

MODE~ode The same mode as that of the corresponding entry. The
default is USER. If MODE=LIBRARY, EXIT assumes that (BO)
has not been changed since the entry and that (Bl) may be
restored from (AI).

KEEP={ON }
OFF

Requests that EXIT save and restore
used. The default is KEEP=OFF. If
is specified, any scratch registers
restored to their original values.
KEEP=NO) is specified, the original
restored.

REGISTER ASSIGNMENT

any scratch registers
KEEP=ON (or KEEP=YES)
used by EXIT are
If KEEP=OFF (or
values are not

The BREG and TREG macros assign values to symbols for use as Band T
register names.

BREG - ASSIGN SYMBOLS FOR B REGISTER NAMES

The BREG macro assigns numerical values to symbols for use as B register
names. It also checks that no more registers are used than are declared
on the ENTER macro. The register names are assigned after any registers
used in the call linkage. The first B register assigned is B2.

Format:

rLocation I Result Operand

SR-OOII

A symbolic name used to designate a B register as in B.BR.
BREG assigns bp a numerical value in sequence.

Part 3
5-5 1-01

TREG - ASSIGN SYMBOLS FOR T REGISTER NAMES

The TREG macro assigns numerical values to symbols for use as T register
names. It also checks to see that no more registers are used than are
declared on the ENTER macro. The register names are assigned after any
registers used in the call linkage. The first T register assigned is TO.

Format:

fLocation I Result

tp TREG

Operand

A symbolic name used to designate a T register, as in
T.TR. TREG assigns tp a numerical value in sequence.

FETCH ARGUMENT ADDRESS

ARGADD - FETCH ARGUMENT ADDRESS

The ARGADD macro fetches an argument address (not a value) and places it
in an A register. It is used only for call-by-address routines.

NOTE

The EXIT, BREG, TREG, and ARGADD macros can be used
only in conjunction with an ENTER macro.

Format:

Location Result

I ARGADD

SR-OOll

Operand

pe8u~t,n,USE=U8e

Part 3
5-6 1-02

P8SUl.t

n

USE=US8

I SR-OOll

The result register (A or S) to be loaded with the nth
argument address

Argument number

The intermediate register used if result register is an S
register

Part 3
5-7 1-02

APPENDIX SECTION

CONTENTS
APPENDIX SECTION

A. JOB USER AREA ••

JOB TABLE AREA - JTA
JOB COMMUNICATION BLOCK - JCB. • •
LOGICAL FILE TABLE - LFT • • •
DATASET PARAMETER AREA - DSP •
PERMANENT DATASET DEFINITION TABLE - POD
BEGIN CODE EXECUTION TABLE - BGN • •
DATASET DEFINITION LIST - DOL. • • •
OPEN DATASET NAME TABLE - ODN. • •
JCL BLOCK INFORMATION TABLE - JBI
JCL SYMBOL TABLE - JST •••••

B. CHARACTER SET ••

C. FUNCTION CODES

SYSTEM FUNCTION CODES • • • • • •
PERMANENT DATASET FUNCTION CODES •

D. LOGICAL I/O ROUTINES • • • • •

LOGICAL RECORD I/O ROUTINES. •
Read routines • • • • •
Wr i te rout ines. • • • •
Positioning routines •••••

FORTRAN LEVEL I/O. • • • • •
Formatted and unformatted I/O routines ••
Buffered I/O routines • ••••• •
Positioning and control I/O routines ••

E. EXCHANGE PACKAGE •••

F. ERROR AND STATUS CODES •

SYSTEM ERROR CODES • • • •
PERMANENT DATASET STATUS CODES •

GLOSSARY

INDEX

SUMMARY

SR-0011
Appendix

iii

A-I

A-2
A-2
A-6
A-7
A-12
A-17
A-18
A-20
A-2l
A-22

B-1

C-l

C-l
C-14

0-1

0-1
0-1
0-6
0-11
0-15
0-15
0-26
D-27

E-1

F-1

F-l
F-4

1-02

FIGURES

A-I User Area of memory for a job • • • • • •
A-2 Job Communication Block (JCB) • •
A-3 Logical File Table (LFT) entry ••
A-4 Dataset Parameter Area (DSP). • •
A-5 Permanent Dataset Definition Table (PDD) ••
A-6 Begin Code Execution Table (BGN).
A-7 Dataset Definition List (DDL) •••
A-8 Open Dataset Name Table (ODN) • •
A-9 JCL conditional block information
A-lO JCL interactive block information
A-II JCL symbol table • • • •
D-l Logical read. • • • • • • • • • •
D-2 Logical write ••••

TABLES

F-l Error codes for reprieve processing

SR-OOll
Appendix

iv

A-I
A-3
A-6
A-7
A-12
A-17
A-18
A-20
A-2l
A-2l
A-22
D-3
D-7

F-l

1-02

JOB USER AREA

The user area of memory is assigned to one or more jobs. Figure A-I
illustrates the user area of one job. The shaded area is not accessible
to the user.

n

o

Job Communication Block

128

user code

W@JCHLM

W@JCLFT

A

Logical File Tables user

W@JCDSP field

Dataset Parameter Area

W@JCBFB~~--'

I/O Buffers

W@JCFL

Figure A-I. User area of memory for a job

SR-OOll A-I J

JOB TABLE AREA - JTA

Each job has an area referred to as the Job Table Area (JTA) preceding
the field defined for the user. A JTA is accessible to the operating
system but not to the user. The format of a JTA is described in the COS
Table Descriptions Internal Reference Manual, CRI publication SM-0045.
The Job Table Area contains job-related information such as accounting
data; a JXT pointer; sense switches; an area for saving B, T, and V
register contents, control statement and logfile DSPs; a logfile buffer;
a copy of the user's LFTs; and a Dataset Name Table (DNT) for each
dataset used by the job.

JOB COMMUNICATION BLOCK - JCB

Following the JTA is a l28-word block referred to as the Job
I Communication Block (JCB). The user accessible JCB contains a copy of

the current control statement for the job and other job-related
information.

Figure A-2 illustrates an expansion of the JCB.

SR-OOll A-2 J-Ol

o 8 16 24 32 40 48 56 63
0

· (Available for scratch space)

· ·
5

· CCl

· ·
16

· CPR

· ·

64 IN 1/1///1/1

I 65 LPP 1////////1 HLM I FL

66 NPF I BFB I DSP

67 NLE 1////1/////1/////////1//1 LFT

68 flags 1///1/1/////1////1//////1/////11///11 PNST I STRM

I EFl ~ ~I~SBC///////////I///I/////////////I//II/I/////////////1////1/1
70 OVL CRL

71 ACNl

72 ACN2 1/////1/1

73 PWDl

74 PWD2

75 PROM

76 /1////////1////1 PLEV I I LEV I CLEV

· · ////////1//1//////1///1////////////////////////1//////1////1/1/1

102 LDR

I 103 ////////1///////////////////////////////1//11//1//////1///1//1//
· 1//1//////1//11/////1////////////1//1//////////1//1////////1/1/1 ·

Figure A-2. Job ~ommunication Block (JCB)

SR-OOll A-3 J-Ol

I
I

o 8 16 24 32 40 48 56 63

118 BDAT
~--~ 119 BTIM

120
DIG

l27~ __ ~

Field

JCCCI

JCCPR

JCJN

JCLPP

JCHLM

JCFL

JCNPF

JCBFB

JCDSP

JCNLE

JCLFT

Flags:
JCSIM
JCCSDB
JCBP
JCMRF

JCIOAC

SR-OOll

Figure A-2. Job Communication Block (JCB) (continued)

Word

5-15

16-63

64

65

65

65

66

66

66

67

67

68

Bits

0-63

0-63

0-55

0-7

16-39

40-63

0-15

16-39

40-63

0-15

40-63

0-12
o
1
2
3

4

Description

Control statement image packed 8
characters per word

Control statement parameters,
expanded to 2 words per parameter

Job name; bits 56-63 must be 0

Lines per page

High limit of user code

Current field length

Number of physical buffers and
data sets

Base address of I/O buffers

Base address of DSP area

Number of entries in LFT

Base of LFT

Simulator flag
CSP debug flag
JOB statement breakpoint (BP) flag
Memory request flag. If set, dynamic
field management by CAL, LDR, etc. is
not allowed.
I/O area current status flag:

A-4

o User's I/O area is unlocked
1 User's I/O area is locked

J-Ol

I

Field

Flags (continued):
JCIOAP 68

JCIA
JCCHG

JCJBS

JCCSIM

JCDLIT '

JCRPRN
JCVSEP

JCPNST

JCSTRM

JCEFI

JCOVL

JCSBC

JCCRL

JCCRLS

JCACN

JCACNl

JCACN2

JCPWD

JCPWDl
JCPWD2

SR-OOll

68

68

69

69

69

70

70

71-72

71

72

73-74

73
74

Bits

5

6
7

8

9

10

11
12

48-55

56-63

o

1

2

0-63

32-63

0-63

0-63

0-55

0-63

0-63
0-55

Description

I/O area previous status flag:
o User's I/O area is unlocked
1 User's I/O area is locked

Interactive flag
Execute CHARGES utility for trailer
message
JOB statement flag (if set, JOB
statement just processed)
Flag is set when CRAY-l simulator is
running.
Display literal delimiters in control
statement crack.
Retain level 1 parentheses
Last character was valid separator.

Parentheses nesting level for current
control statement

Statement termination for current
control statement

Enable floating interrupt flag, used
by $FTLIB math routines to reset
floating-point interrupt flag

Overlay flag

SBCA flag

COS revision level

COS revision number

1 through 15 character account number

Characters 1 through 8 of account
number
Characters 9 through 15 of account
number

1 through 15 character password

A-5

Characters 1 through 8 of password
Characters 9 through 15 of password

J-Ol

Field

JCPROM 75

JCPLEV 76

JCILEV 76

JCCLEV 76

JCLDR 102

JCBDAT 118

JCBTIM 119

JCDIG 120-127

LOGICAL FILE TABLE - LFT

Bits

0-63

16-31

32-47

48-63

0-63

0-63

0-63

0-63

Description

Current user job interactive prompt,
1-8 ASCII characters, left-justified,
zero-filled. 64 bits of binary
zeroes disables user job prompt. Set
to system default at beginning of
each job step.

Current procedure nesting level

Current iterative nesting level

Current conditional nesting level

unsatisfied externals

Date of absolute load module
generation

Time of absolute load module
generation

Reserved for diagnostics

The Logical File Table contains a 2-word entry for each dataset name and
each alias for a dataset. Each entry points to the DSP for a dataset.
Figure A-3 illustrates an LFT for a dataset.

o 8 16 24 32 40 48 56 63
o DN 1//////1
1 //1 DSP

Figure A-3. Logical File Table (LFT) entry

Field Description

LFDN o 0-55 Dataset name or alias

LFDSP 1 40-63 DSP address

SR-OOll A-6 J-Ol

I

DATASET PARAMETER AREA - DSP

Information concerning the status of a particular dataset and location of
the Ilo buffer for the dataset is maintained in the Dataset Parameter
Area (DSP) of the user field. The DSP is illustrated in figure A-4.

UEOF

BIO

TPD

TPF

Field

DPDN

DPBSY

0

1

2

3

~
5

6

7--",

8

· · ·
16

17
-
18

1 9

20

2 1

22

2 3

SR-OOll

o 8 16 24 32 40 48 56 63

~_SY STS DN 1/////11
/'

~ ERR 1'1 BFI 1111 flags I FRST

111111111I IPB I IBN I IN

III RBC I OBP I OBN I OUT

~/IIIIIIIIIIIIII TBN I LMT

flags I PFI I PRI I RCW

LPW

~il'1 BF I BUBCI BWC I BWA

\
BER TM

reserved
for use by

TIO

TPS I TPB I TPV

~~IIIIIIIIIIIII/IIIIIIIIIIIIIIIII//IIIIIIII/i/l MTF

CT I RF 11111 MBS I RS

BFBO I CS 1111/1 FBL I BFBA

LPBL 111111111/1/111111111111111/11111/11 BLBL

Reserved for logical I/O

EEC 111111111111111111111111111111111111/111/111111/111111
111111111111 flags I RECL I NXRC

Figure A-4. Dataset Parameter Area (DSP)

Word Bits Description

0 0-55 Dataset name

1 0 Busy flag, circular I/O:

0 Not busy
1 Busy

A-7 J-Ol

I

I
I

I

Field

DPERR

DPEOI

DPENX
DPEOP
DPEPD
DPEBN
DPEDE
DPEHE
DPERW

DPEPT
DPELE

DPEEP

DPSTS

DPBFI

Flags:
DPABD
DPBDF
DPTCS
DPTP
DPTRAN

DPIA
DPMEM
DPRDM

DPUDS

DPEND

DPFRST

DPIPB

SR-OOll

Word

1

1

1
1
1
1
1
1
1

1
1
1
1

1

1

1

1

2

Bits

1-12

1

2
3
4
5
6
7
8

9
10
11
12

14-15

16-24

28-39
28
29
30-31
32-33
34

35
36
37

38

39

40-63

10-15

Description

Error flags:

End of data on read: write past
allocated disk space on write
Dataset does not exist
Dataset not open
Invalid processing direction
Block number error
Unrecovered data error
Unrecovered hardware error
Attempted read after write or
past EOD
Dataset prematurely terminated
Unrecovered logical data error
Reserved
Extended error (see DPEEC)

Status:

00 Closed
01 Open for input (I)
10 Open for output (0)
11 Open for I/O

Blank compression character in ASCII
(BFI=7778 implies no compression)

Accept bad data flag
Bad data flag
Tape dataset character set
Tape dataset (online/staged)
Transparent mode for interactive
dataset
Dataset is interactive
Dataset is memory resident
Random dataset flag:

o Sequential dataset
1 Random dataset
Undefined dataset structure:
o COS blocked dataset structure
1 Undefined dataset structure
write end-of-data flag

Address of first word of buffer

Bit position in current input word
(character I/O only)

A-8 J-Ol

I

I

I
I

Field

DPIBN

DPIN

DPRBC

DPOBP

DPOBN

DPOUT

DPUEOF

DPTBN

DPLMT

Flags:
DPEOR
DPEOF
DPEOD
DPRW

DPPFI

DPPRI

DPRCW

SR-OOll

Word

2

2

3

3

3

3

4

4

4

5

5

5

5

Bits

16-39

40-63

3-9

10-15

16-39

40-63

o

16-39

40-63

0-4
o
2
3
4

5-24

25-39

40-63

Description

Block number, read request. System
reads from block number until buffer
is filled. DPIBN is then set to the
next block number.

Address of current input word

Remaining blank count

Bit position in current output word
(character I/O only)

Block number, write request. System
writes from block number until buffer
is empty. The next block number is
then in DPOBN.

Address of current output word

Uncleared end-of-file (EOF)

Temporary block number; used by
random I/O for last block read.

Address of last word+l of buffer.
LMT minus FRST defines buffer size.

EOR flag
EOF flag
EOD flag
Previous operation read/write flag:

o Read
1 write

Previous file index; backward index
to block containing previous EOF.

Previous record index; backward index
to block containing previous EOR.

Control word address:

A-9

Previous RCW address if in write
mode
Next RCW if in read mode

J-Ol

Field

DPLPW

DPBIO

DPBER

DPBF

DPBPD

DPBEO

DPBUBC

DPBWC

DPBWA

I
DPTM

SR-OOll

Word

6

7

7

7

7

7

7

7

7

8-15
8
9
10
10

Bits

0-63

o

1

2-9

4

6-9

10-15

16-39

40-63

0-63
0-63
0-63
16-39
40-63

Description

Last partial word; used for character
mode I/O.

Buffered I/O busy:

o Buffered I/O operation
complete

1 Buffered I/O operation
incomplete

Buffered I/O error flag

Function code:

000 Read partial
010 Read record
040 Write partial
050 Write record
052 Write end-of-file
056 Write end-of-data

Processing direction:

o Read
1 write

Termination condition:

00 Partial
10 Record
12 File, write only
16 Dataset, write only

Unused bit count; must be specified
on a write record request. Value
returned on a read request.

Word count; number of words at DPBWA
to read or write. Field contains
actual number of words read when
request is completed.

Word address of user data area

Used by TIO as follows:
Saved word W@DPPRI
Saved A2 in WB30
$RWDP/$WWDP return address
$RWDP/$WWDP' first word address (FWA)

A-lO J-Ol

I

Field Word

DPTM (continued)
11
11
12

DPTPS

DPTPB

DPTPV

DPTPD

DPTPF

DPMFT

DPCT

DPRF

DPMBS

DPRS

SR-OOll

12
12
12
13
13
13
14
14
14
15

16

16

16

17

17

17

IS

IS

IS

IS

Bits

16-39
40-63
0-7

S-15
16-39
40-63
16-39
40-63
0-63
0-15
16-39
40-63
0-63

0-15

16-39

40-63

0-1

4S-63

0-3

4-11

16-39

40-63

Description

WB30/$WEOF return address
$WEOD return address
JTA length/lOOOS when registers
are saved
Bits' 0-7 of RBLK/WBLK AS
(B.ZE)

RBLK/WBLK BO
DNT address
(A7) JXT address
RBLK/WBLK S5 during task recall
Bits S-23 of RBLK/WBLK AS
RBLK/WBLK A2
RBLK/WBLK A3
RBLK/WBLK S6

Online tape status

Tape maximum block size in bytes

Tape pointer to label definition table

Tape density

Tape format

Maintenance test field (used by DQM)

Conversion type; nonzero if run-time
data and record format conversion
selected.

DPCTNONE=O No conversion
DPCTIBM=l IBM format data

Record format (if QPCT nonzero)
DPRFNONE=O None
DPRFIU=l IBM undefined format
DPRFIF=2 IBM fixed for~at
DPRFIFB=3 IBM fixed blocked format
DPRFIV=4 IBM var iable forma,t
DPRFIVB=5 IBM variable blocked

format
DPRFIVBS=6 IBM variable block span

format

Maximum block size

Record length

A-II J-Ol

Field

DPBFBO

DPCS

DPBFBL

DPBFBA

DPLPBL

DPBLBL

Reserved

DPEEC

Flags:

DPDEL

DPBLNK

DPDIR
DPUFMT

DPRECL

DPNXRC

SR-OOll

Word

19

19

19

19

20

20

21

22

23

23

23

Bits

0-5

6-11

16-39

40-63

0-5

40-63

0-63

0-11

12-15

12

13

14
15

16-39

40-63

Description

User data area current bit offset

Character set (if DPCT nonzero):
DPCSA=O ASCII, 8 bits/character
DPCSE=l EBCDIC, 8 bits/character

User data area current bit length

User data area current address

Last partial word bit length

Current tape block bit length

Reserved for logical I/O

Error code if DPEEP is set;
correspond to EXP abort codes.

FORTRAN file status:
o Keep
1 Delete

FORTRAN numeric input blank
conversion:

o Null
1 Zero

FORTRAN direct access flag
FORTRAN unformatted I/O flag

FORTRAN direct access record length
(in number of characters)

FORTRAN direct access next record
number

A-12 J-Ol

I

I

I
I

PERMANENT DATASET DEFINITION TABLE - PDD

The PDD is a parameter list that gives input to the Permanent Dataset
Manager. The contents of PDD are illustrated in figure A-5.

0

1

2

3

4

5

6

7

8

9

10

UQ 11

~
13

14

15

16

17

18
D19"-
L-

TP

TP

TP M~
21

22

23

24

25

26

SR-OOll

flags DTR SMT
o L 8 "\ (16 24 32 40 48 ·56 63

~ I~I ~14~1~1 I I LSD I ST I FC

TP TCS EXO DN 111111111

PDNl
PDN2 111111111
ID

USR
111111111

TXT I FM I RT I ED

OJB 111111111
SID I DID I DC I JSQ

TID

IR SF
~

~I",I"'I TXL Iflagsl FL I TL I PR

ENT RD

WI'

MN

JCN 111111111
~YS CL 111111111

1 JSP ITPF JCR
;- I OLM I RJST I IJSP

~ I.)" I ""IIIIIII~ JPC TPB I TPV

,1 t~~ ~DCII
TPP TP£\TPH RGl

RG9

11111111111111111111111111111111111/1111111111111111111111111111
/11111111111111111111111111111111111 FPP I FEN

ACS I DSZ I OJSQ

CRT

Figure A-5. Permanent'Dataset Definition Table (PDD)

A-13 J-Ol

I

I

I

27

28

29

30

o

SSC I

Figure A-5.

Field Word

Flags: 0

PMSG

PMERR
PMWAIT
PMNRLS
PMAQR

PMTP 0

PMTCS 0

PMEXO 0

PMDTR 0

PMSMT 0

PMLSD 0

PMST 0

PMFC 0

PMDN 1

PMPDN 2-3

PMPDNI 2
PMPDN2 3

PMID 4

SR-OOll

8 16 24 32 40 48 56 63
ACT

TDM

MOD

TXC I MML 1/////////////////////////////////

Permanent Dataset Definition Table (PDD) (continued)

Bits DescriEtion

0-4

0 Normal completion message suppression
indicator

1 Error message suppression indicator
2 WAIT flag for a disposed dataset
3 No release of dataset on DISPOSE
4 Acquire flag for accounting

5-6 Tape dataset (online/staged)

7-8 Tape dataset character set

9-10 Execute only

11 Update dump-time on PDSDUMP access

12 Submit flag

16-39 Temporary SDT address for load
input/output

40-51 Return status; the codes are defined
in Appendix F.

52-63 Function code

0-55 Local dataset name

0-63 Permanent dataset name

0-63 Characters 1-8
0-55 Characters 9-15

0-63 User identification

A-14 J-Ol

I

I

I

I

Field

PMUSR

PMUSRI
PMUSR2

PMTXT

PMFM

PMRT

PMED

PMOJB

PMSID

PMDID

PMDC

PMJSQ

PMTID

PMSF

PMUQ

PMENT

PMIR

PMTXL

SR-00l1

Word

5-6

5
6

7

7

7

7

8

9

9

9

9

10

11

12

12

12

12

Bits

0-63

0-63
0-55

0-23

24-39

40-51

52-63

0-55

0-15

16-31

32-47

48-63

0-63

0-63

o

1

2

3-10

Description

User number

Characters 1-8
Characters 9-15

Address of optional text field

Format designator (two characters) :

FMCD=CD Character/deblocked
FMCB=CB Character/blocked
FMBD=BD Binary/deb1ocked
FMBB=BB Binary/blocked

Retention period; 0-4095 days

Edition number (0-4095)

Originating job name

Source 10; 2 characters.

Destination 10; 2 characters.

Disposition code; 2 characters.

DCIN=IN
DCST=ST
DCSC=SC
DCPR=PR
DCPU=PU
DCPT=PT
DCMT=MT

Job dataset
Dataset to be staged
Scratch dataset
Print dataset
Punch dataset
Plot dataset
Magnetic tape dataset

Job sequence number

Terminal 10; 1-8 characters.

Special forms

Unique access required

Enter in System Directory

Immediate reply requested

Number of words of text

A-15 J-01

Field Word

PMNRR 12

PMINIT 12

PMIA 12

PMDFR 12

PMNA 12

PMFL 12

PMTL 12

PMPR 12

PMRD 13

PMWT 14

PMMN 15

PMJCN 16

PMCL 17

PMSYS 18

PMJSP 18

PMJCR 18

PMOLM 18

PMRJST 18

I PMIJSP 18

PMTPD 19

PMTPL 19

I PMTPF 19

PMTPC 19

SR-OOll

Bits

11

12

13

14

15

16-31

32-55

56-63

0-63

0-63

0-63

0-55

0-55

o

1-8

9-24

25-48

49-55

56-63

0-1

2-4

5-6

15

Description

Job rerun flag1 set if job cannot be
rerun (input entries only).

Job initiate flag1 set if job has
been initiated.

Interactive flag

Deferred disposition indicator

No abort flag. If set, processing
continues even if an error is
encountered.

Field length/512 (input datasets only)

Time limit (input datasets)

Priority (input datasets)

Read permission control word

write permission control word

Maintenance permission control word

Job class name

CL parameter from JOB statement

System job

JOB statement priority

Job class rank

Size of $OUT in 512-word block

Job status flag

Original job card priority

Tape density

Tape label type

Tape format

Tape cataloged dataset

A-16 J-Ol

I

I

I

Field

PMTPB

PMTPV

PMTPM

PMTPP

PMTP2

PMTPH

PMIDC

PMRGI

PMRG9

PMFPE

PMFPP
PMFEN

PMACS

PMDSZ

PMOJSQ

PMCRT

PMACT

PMTDM

PMMOD

PMSSC

PMTXC

PMMML

SR-OOll

19

19

20

20

20

20

20

21

22

24

24
24

25

25

25

26

27

28

29

30

30

30

Bits

16-39

40-63

o

1-3

4

5

6-8

0-63

0-63

36-63

36-59
60-63

0-15

16-47

48-63

0-63

0-63

0-63

0-63

0-7

8-15

16-27

Description

Tape maximum block size in bytes

Tape pointer to label definition table

Tape online maintenance access

Tape parallel device count

Tape second device assignment

Tape hold assigned device

Tape initial desposition code

First word of resource generic names

Second word of resource generic names

First DSC page/entry for dataset

First DSC page for dataset
First entry for dataset

Number of accesses (load saved
datasets only)

Size of dataset as reflected by DSC
OAT bodies (used only when a pseudo
access is performed during the
recovery of rolled jobs)

Originating job sequence number

Creation time in cycles (load request
only)

Time of last access in cycles (load
request only)

Time of last dump in cycles (load
request only)

Time of last modification in cycles
(load request only)

Station slot word length

Text field word length

Interactive maximum message length

A-17 J-OI

BEGIN CODE EXECUTION TABLE - BGN

I The BGN table specifies necessary parameters to begin execution of code
loaded into the user area by the Control Statement Processor. Figure A-6
illustrates the BGN.

PSF
o 8 16 24 32 40 48 56 63 ---....

I
o ~//////////////I PRGL I PRWC

1 V///
P

2 ~I//////////////////////////////////////I ENT
B

Figure A-6. Begin Code Execution Table (BGN)

Field Word Bits Description

BGPSF 0 0 Preset value flag

BGPRGL 0 16-39 Total program length including blank
common

I
BGPRWC 0 40-63 Program word count

BGBP 2 0 Breakpoint flag

BGENT 2 40-63 Program entry point P-address

SR-001I A-18 J-OI

I

DATASET DEFINITION LIST - DOL

A Dataset Definition List in the user field must accompany any create DNT
(F$DNT) request. The DOL is illustrated in figure A-7.

Field

DDDN

o
1

2

3

4

5

DDLDV

Flags:
DDRDM

DOUDS

DDNFE

DDSTA'r

DDMR
001 A

DDTRAN

DDBFI

SR-OOll

o 8 16 24 32 40 48 56 63

ON 11/111/11
LDV

flagsl BFI 11/111111111111111111/111 SZ

VIIIIIIIIIIIIIII DNT 1111111111 BFZ (BSZ)

11/1111111111111//1/1/11111111111/11/1111111/111 DC

VI/II/III/IIIIIIIIII/IIIIIII/I/IIIII/III LM

Figure A-7. Dataset Definition List (DOL)

Word

0

1

2

2

Bits

0-55

0-63

0-6
0

1

2

3

4
5
6

7-15

Description

Dataset name

Logical device name

Random dataset flag:
o Sequential
1 Random

Undefined dataset structure:
I o COS blocked dataset structure

1 Undefined structure
Return error if dataset does not
exist. Register SO returned nonzero
if DNT does not existJ no DNT is
created.
Request dataset statisticsJ ignored
unless DDNFE=l (see DDDNT)
Dataset is to be memory resident
Interactive type dataset
Transparent mode for interactive
dataset

Blank field indicator for character
I/O

0008 BFI=I@BFI
< 4008 BFI=user specified ASCII

character
= 400 8 BFI=OOO
> 400 8 Blank compression

disabled

A-19 J-Ol

Field Word Bits

DDSZ 2 40-63

DDDNT 3 16-39

DDBFZ 3 49-63

DDBSZ 3 49-63

DDDC 4 4B-63

DDLM 5 40-63

• SR-OOll

Description

Dataset size in 5l2-word blocks

Address of DNT image returned by
F$DNT when DDNFE=l and DDSTAT=l

Buffer size in 5l2-word blocks

Alternate name for DDBFZ to match
$SYSTXT name

Disposition code (two characters) :

Job dataset DCIN=IN
DCST=ST
DCSC=SC
DCPR=PR
DCPT=PT
DCPU=PU
DCMT=MT

Staged permanent dataset
Scratch dataset
Print dataset
Plot dataset
Punch dataset
Magnetic tape dataset

Dataset size limit in 5l2-word blocks

A-20 J-Ol

I

OPEN DATASET NAME TABLE - ODN

A 2-word Open Dataset Name Table (ODN) is generated in the user field the
first time an OPEN of the specified dataset is encountered. Figure A-8
illustrates the ODN.

Field

ODDN

o

1

Flags:

ODV§
ODM§
ODS§
ODH§

ODDSP

o 8

~flrS

Word

o

1

1

1

16 24 32 40 48 56 63

IIIIIIII~ DN

1//1//1 LDT DSP

Figure A-8. Open Dataset Name Table (ODN)

Bits

0-55

1-4

1
2

3
4

8-32

40-63

Description

Dataset name

Close volume
Open for 'MOD'
Close/open with saved position
Hold resources

LDT address

DSP pointer:
Negative Negative offset from

beginning of DSPs
positive Offset from user base

address

I § Deferred implementation

SR-OOll A-2l J-Ol

I

OPTION TABLE - OPT

The Option Table (OPT) is used for F$OPT calls. Figure A-9 illustrates
the OPT.

o 8 16 24 32 40 48 56

o OPLPP
63

1 .1//

" OPSTAT

Figure A-9. Option Table (OPT)

Field Word Bits Description

OPLPP 0 0-63 Page length

OPSTAT 1 0 DSP address

SR-OOll A-22 J-Ol

•

JCL BLOCK INFORMATION TABLE - JBI

The I-word JCL Block Information Table (JBI) is generated in the user
field and has two formats: one for conditional information (figure A-lO)
and the other for interative information (figure A-II).

Conditional block information:

o 8 16 24 32 40 48 56 63

EXC -f I I I I I I I I I I I I I I I LLEV PLEV LEVL

Figure A-lO. JCL conditional block information

Field Bits Description

JBEXC 0 Conditional sequence is in execution

JBLLEV 16-31 Conditional is contained in this iterative
nesting level

JBPLEV 32-47 Conditional is contained in this procedure level

JBLEVL 48-63 Current conditional nesting level

Iterative block information:

0 8 16 24 32 40 48 56 63

VIIIIIII CNT I PLEV I LEVL I
Figure A-II. JCL iterative block information

Field Bits Description

JBCNT 8-31 Iteration count

JBPLEV 32-47 Iterative is contained in this procedure level

JBLEVL 48-63 Current iterative nesting level

SR-OOll A-23 J-Ol

•

JCL SYMBOL TABLE - JST

The 4-word JCL Symbol Table (JST) is generated in the user field and
contains information about system and user symbols. See figure A-12.

CRE 0

o
48 56 63 8 16 24 32 40

\~II11111111111

Field

JSCRE

JSSN

Flags:

1

2

3

JSLOC

JSCON

JSSRS

JSUSR

JSSYS

JSTYPE

JSLEVL

JSLEN

JSVAL

SR-OOll

SN

flags 1IIIIIII I TYPE 11111111111111111111 LEVL

VIIIIIIIIIIIIIIIII LEN 1111111 VAL

Figure A-12. JCL Symbol Table (JST)

Bits

o o

1 0-63

2 0-4

o

1

2

3

4

2 10-15

2 40-63

3 12-35

3 40-63

Description

Create if not found. Available only
for system use.

Symbol name

Local or global. If set, symbol is
procedure local.
Constant or variable. If set, symbol
is constant.
System reserved. If set, the symbol
name is reserved by the system.
User settable. If set, symbol may be
modified by the job.
System settable. If set, the symbol
may be modified by COS.

One of the following symbol types:

SYMTUDF
SYMTBOO
SYMTINT
SYMTLIT

00 Undefined - no type
01 Boolean - logical
02 Decimal integer
03 ASCII literal~ 1-8

characters.

Procedure definition level

Length of value

Base of value buffer

A-24 J-Ol

I

LABEL DEFINITION TABLE - LDT

The following conditions must be met for constructing a Label Definition
Table (LOT):

• The table order must include an LDT header, volume entry, header 1
entry, and header 2 entry.

• The length value for either header 1 or header 2 must be at least
the defined length of the respective entry.

• The length value for Volume 1 must be at least the length of the
entire first VSN.

Header:

o
1

2

3

Field

LDTN

LDTL

LDCT

LDDNT

LDVIB

LDHIB

LDH2B

SR-OOll

o 8 16 24 32 40 48 56 63
TN 1///////////////////////1 TL

CT 1///////////////////////////////////1 DNT

///////////////1 VIB I HIB

V//////////////I H2B 1////////////////////////

Figure A-13. LDT header

Bits

o 0-23

o 48-63

1 0-3

1 40-63

2 16-39

2 40-63

3 16-39

Description

Table name

Table length (variable)

Conversion type

Dataset name table (DNT) pointer

Offset of volume 1 entry, relative to
LDT base

Offset of header 1 entry, relative to
LDT base

Offset of header 2 entry, relative to
LDT base

A-25 J-Ol

I

Volume 1 entry:

o
1

2

Field

LDVOLI

LDVLlL

LDVSNL

LDCVN

LDVSNI

Header

o
1

2

3

4

5

6

7

8

9

10

11

12

13

SR-OOll

o 8

VSNL

Word

0

0

1

1

2

1 entry:

0 8

16 24 32 40 48 56 63
VOLI 1///////////////1 VLlL

I CVN 1////////////////////////////////

VSNI 1///////////////1

Figure A-14. LDT volume 1 entry

Bits Description

0-31 Volume 1 label identifier

48-63 Volume 1 length

0-15 Number of VSNs in list

16-31 Current VSN ordinal

0-47 Beginning VSN

16 24 32 40 48 56 63
HORI 1///////////////1 HRIL

FlOl

FlO2

FlO3

FlO4

FlOS

FlO6 1///////////////////////////////1

FSEC I CSEC

FSEQ 1////1//////////////////////////1

GEN 1//////////////1 GVN

CDT 1////////////////

XOT I ORT

BLK 1////////////////

SET 1////////////////

Figure A-IS. LOT header 1 entry

A-26 J-Ol

I

Field

LDHDRI

LDHRIL

LDFIDI

LDFID2

LDFID3

LDFID4

LDFIDS

LDFID6

LDFSEC

LDCSEC

LDFSEQ

LDGEN

LDGVN

LDCDT
LOCSP
LOCYR
LOCDY

LDXDT
LDXSP
LDXYR
LDXDY

LDRT

LDBLK

LDSET

SR-OOll

Word

o

o

1

2

3

4

5

6

7

7

8

9

9

10

11
11
11
11

11

12

13

Bits

0-31

48-63

0-63

0-63

0-63

0-63

0-63

0-31

0-31

32-63

0-31

0-31

48-63

0-47
0-7
8-23
24-47

0-47
0-7
8-23
24-47

48-63

0-47

0-47

Description

Header 1 label identifier

Header 1 length

Characters 1-8 of file identifier

Characters 9-16 of file identifier

Characters 17-24 of file identifier

Characters 25-32 of file identifier

Characters 33-40 of file identifier

Characters 41-44 of file identifier

File section number

Current file (volume) section number

File sequence number

Generation number

Generation version number

Creation date
Space
Year
Day

Expiration date
Space
Year
Day

Retention period

Block count

File set identifier

A-27 J-Ol

I

He ader 2 entry:

o
1

2

3

4

Field

LDHDR2

LDHR2L

LDFMT

LDBA

LDBFO

LDBL

LDRL

SR-OOll

o 8

FMT I

BFO

Word

0

0

1

1

2

3

4

16 24 32 40 48 56 63
HDR2 I HR2L

BA 1//

1//

BL 1////////////////////////

RL 1////////////////////////

Figure A-16. LDT header 2 entry

Bits Description

0-31 Header 2 label identifier

48-63 Header 2 length

0-7 Record format. Valid values:
F, V, U IBM label types
F, D, S ANSI label types

8-15 Block attributes, IBM standard label:
B Blocked records
S Spanned records
R Blocked and spanned records
• • No blocked or spanned records

0-15 Buffer offset

0-39 Block length in bytes

0-39 Record length in bytes

A-28 J-Ol

CHARACTER SET B

This appendix describes the 128 control and graphic characters comprising
the ASCII character set. Those numbers, letters, and special characters
that form the CRAY-l FORTRAN character set are identified by the appearance
of the letter C in the fourth column. All other characters are members of
the auxiliary character set. The letter A in the fourth column of the
table indicates those characters belonging to the ANSI FORTRAN character
set. Note that all control characters are grouped on the first page.

SR-OOll B-1 I

CONTROL
CHARACTER

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

OLE

DCl

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

DEL

ASCII ASCII FORTRAN
OCTAL PUNCHED-CARD (A=ANSI) DESCRIPTION
CODE CODE (C=CRAY)

000 12-0-9-8-1 Null

001 12-9-1 Start of heading (CC)

002 12-9-2 Start of text (CC)

003 12-9-3 End of text (CC)

004 9-7 End of transmission (CC)

005 0-9-8-5 Enquiry (CC)

006 0-9-8-6 Acknowledge (CC)

007 0-9-8-7 Bell (audible or attention signal)

010 11-9-6 Backspace (FE)

011 12 -·9 - 5 Horizontal tabulation (FE)

012 0-9-5 Line feed (FE)

013 12-9-8-3 Vertical tabulation (FE)

014 12-9-8-4 Form feed (FE)

015 12-9-8-5 Carriage return (FE)

016 12-9-8-6 Shift out

017 12-9-8-7 Shift in

020 12-11-9-8-1 Data link escape (CC)

021 11-9-1 Device control 1

022 11-9-2 Device control 2

023 11-9- 3 Device control 3

024 9-8-4 Device control 4 (s top)

025 9-8-5 Negative acknowledge (CC)

026 9-2 Synchronous idle (CC)

027 0-9-6 End of transmission block

030 11-9-8 Cancel

031 11-9-8-1 End of medium

032 9-8-7 Substitute

033 0-9-7 Escape

034 11-9-8-4 File separator (IS)

035 11-9-8-5 Group separator (IS)

036 11-9-8-6 Record separator (IS)

037 11-9-8-7 Unit separator (IS)

177 12-9-7 Delete

Legend: CC - Communication control
FE - Format effector
IS - Information separator

(CC)

I

SR-0011 B-2

GRAPHIC ASCII ASCII FORTRAN

HARACTER OCTAL PUNCHED-CARD (A=ANSI) DESCRIPTION
CODE CODE (C=CRAY)

(Space) 040 (None) A,C Space (blank)

041 12-8-7 Exclamation point
II 042 8-7 C Quotation marks (diaeresis)

* 043 8-3 Number sign

$ 044 11-8-3 A,C Dollar sign (currency symbol)

% 045 0-8-4 Percent

& 046 12 Ampersand

047 8-5 C, Apostrophe (closing single quotation mark)

050 12-8-5 A,C Opening (left) parenthesis

051 11-8-5 A,C Closing (right) parenthesis

* 052 11-8-4 A,C Asterisk

+ 053 12-8-6 A,C Plus

054 0-8-3 A,C Comma (cedilla)

055 11 A,C Minus (hyphen)

056 12-8-3 A,C Period (decimal point)

/ 057 0-1 A,C Slant (slash, virgule)

0 060 0 A,C Zero

1 061 1 A,C One

2 062 2 A,C Two

3 063 3 A,C Three

4 064 4 A,C Four

5 065 5 A,C Five

6 066 6 A,C Six

7 067 7 A,C Seven

8 070 8 A,C Eight

9 071 9 A,C Nine

072 8-2 C Colon

073 11-8-6 Semicolon

< 074 12-8-4 Less than

= 075 8-6 A,C Equal

> 076 0-8-6 Greater than

? 077 0-8-7 Question mark

SR-OOll B-3 I

GRAPHIC ASCII ASCII FORTRAN

CHARACTER OCTAL PUNCHED-CARD (A=ANS I) DESCRIPTION
CODE CODE (C=CRAY)

@ 100 8-4 Commercial at

A 101 12-1 A,C

B 102 12-2 A,C

C 103 12-3 A,C

D 104 12-4 A,C

E 105 12-5 A,C

F 106 12-6 A,C

G 107 12-7 A,C

H 110 12-8 A,C

I III 12-9 A,C

J 112 11-1 A,C

K 113 11-2 A,C

L 114 11-3 A,C

M 115 11-4 A,C
Upper-case letters

N 116 11-5 A,C

0 117 11-6 A,C

P 120 11-7 A,C

Q 121 11-8 A,C

R 122 11-9 A,C

S 123 0-2 A,C

T 124 0-3 A,C

U 125 0-4 A,C

V 126 0-5 A,C

W 127 0-6 A,C

X 130 0-7 A,C

Y 131 0-8 A,C

Z 132 0-9 A,C

[133 12-8-2 Opening (left) bracket

\ 134 0-8-2 Reverse slant (backs lash)

] 135 11-8-2 Closing (right) bracket

136 11-8-7 Circumflex

137 0-8-5 Underline

SR-QOll B-4 I

GRAPHIC
CHARACTER

,

a

b

c

d

e

f

g

h

i

j

k

1

m

n

o

p

q

r

s

t

u

v

w

x

y

z
{

}

SR-0011

ASCII
OCTAL
CODE

140

141

142

143

144

145

146

147

150

151

152

153

154

155

156

157

160

161

162

163

164

165

166

167

170

171

172

173

174

175

176

ASCII FORTRAN
PUNCHED-CARD (A=ANSI)

CODE (C=CRAY)

8-1

12-0-1

12-0-2

12-0-3

12-0-4

12-0-5

12-0-6

12-0-7

12-0-8

12-0-9

12-11-1

12-11-2

12-11-3

12-11-4

12-11-5

12-11-6

12-11-7

12-11-8

12-11-9

11-0-2

11-0-3

11-0-4

11-0-5

11-0-6

11-0-7

11-0-8

11-0-9

12-0

12-11

11-0

11-0-1

c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

B-5

DESCRIPTION

Grave accent (opening single quotation mark)

Lower-case letters

Opening (left) brace

Vertical line

Closing (right) brace

Over1ine (tilde, general accent)

1-01

I

FUNCTION CODES C

The system function codes and permanent dataset function codes are listed
in the COS EXEC/STP/CSP Internal Reference Manual, publication SM-0040.

SR-OOll C-l J-Ol

LOGICAL I/O ROUTINES

LOGICAL RECORD I/O ROUTINES

The logical record I/O routines are divided into three basic groups:
read routines, write routines, and positioning routines.

READ ROUTINES

The read routines transfer partial or full records of data from the I/O
buffer to the user data area. The data is placed in the user data area
one character per word or in full words depending on the read request
issued. Figure D-l provides an overview of the logical read operation.

$RWDP - Read words, partial mode

Words are transmitted from the I/O buffer defined by the Dataset
Parameter Area (DSP) to the area beginning at first word address (FWA)
until either the word count in A3 is satisfied or an end-of-record is
encountered.

Unrecovered data errors do not abort the job~ control is returned to the
caller instead. The caller can use the good data read, (A2) through
(A4)-1, and then abort. The user can also skip or accept the bad
data.§ If the caller does nothing, the job aborts when the next read
request occurs. See the Library Reference Manual, CRI publication
SR-0014, for detailed descriptions of SKIPBAD and ACPTBAD.

SUBROUTINE NAME:

ENTRY CONDITIONS:

$RWDP

(AI) Address of DSP or negative DSP offset
relative to DSP base (JCDSP), that is,
contents of second word of Open Dataset
Name Table (ODN)

(A2) FWA of user data area

(A3) word count. If count is 0, no data is
transferred

I § Deferred implementation

D

SR-OOll D-l J-Ol

• SR-OOll

(Al)gFIRNST}
OUT
LMT

DSP
(A2) --f-·

User
(A3) Data

Area . _ t __ ~-,;:::---~

mass
storage

Figur:e 0-1. Logical read

D-2

I/O BUFFER POINTERS

USER

SYSTEM

J-Ol

RETURN CONDITIONS:

I

REGISTERS MODIFIED:

Example:

A B C D E F

I J K L M N

Q R S T U V

Y Z /:). /:). /:). /:).

RCW

0 1 2 3 4 5

8 9 t. t. /:, t.

RCW

(AI) Address of DSP

(A2) FWA of user data area

(A3) Word coun t

(A4) Actual LWA+l (equals FWA if null record)

(SO) Termination mode

< 0 Read terminated by end-of-record
= 0 Null record, end-of-file,

end-of-data, or unrecovered data
error encounteredS

> 0 Read terminated by count. If count
is exhausted simultaneously with
reaching end-of-record, the
end-of-record takes precedence.

(Sl) Error statusS

= 0 No errors encountered
= 1 Unrecovered data error encountered

(S6) Contains ROW if (SO) < 0 and (Sl)=O

AO, AI, A4, AS, A6

B.ZA, B.ZB (within B70S ••• B77S)

SO, Sl, S2, S3, S4, SS, S6

T.ZA (within T70S ••• T77S),·VO, VI

G H

0 P
(

W X $RWDP
/:). t. ...

- A B C D E F G H

2 I J K L M N 0 P
-

User data area
6 7
/:, t.

Data in I/O buffer

I S Deferred implementation

SR-OOll D-3 J-Ol

$RWDR - Read words, record mode

This routine resembles $RWDP. However, following the read, the dataset
is positioned after the end-of-record that terminated the current record.

Unrecovered data errors cause control to return to the caller. The
caller can use the good data read, (A2) through (A4)-l, and then abort.
The user can also skip or accept the bad data.§ If the caller does
nothing, the job aborts when the next read request occurs. See the
Library Reference Manual, CRI publication SR-OOl4, for detailed
descriptions of SKIPBAD and ACPTBAD.

SUBROUTINE NAME: $RWDR

ENTRY CONDITIONS: Same as $RWDP

RETURN CONDITIONS: Same as $RWDP

REGISTERS MODIFIED: Same as $RWDP

$RCHP - Read characters, partial mode

The $RCHP routine unpacks characters from the I/O buffer defined by the
Dataset Parameter Area (DSP) and inserts them into the user data area
beginning at the first word address (FWA) specified by (A2) until either
the count is satisfied or an end-of-record is encountered. If an
end-of-record is encountered first, the remainder of the field specified
by the character count is filled with blanks.

Unrecovered data errors cause control to be returned to the caller. The
caller can use the good data read, (A2) through (A4)-l, and then abort.
The user can also skip or accept the bad data.§ If the caller does
nothing, the job aborts when the next read request occurs. See the
Library Reference Manual, CRI publication SR-OOl4, for detailed
descriptions of SKIPBAD and ACPTBAD.

I § Deferred implementation

SR-OOll D-4 J-Ol

SUBROUTINE NAME:

ENTRY CONDITIONS:

RETURN CONDITIONS:

I

REGISTERS MODIFIED:

$RCHP

(AI) Address of DSP or negative DSP offset
relative to DSP base (JCDSP), that is,
contents of second word of Open Dataset
Name Table (ODN)

(A2) FWA of user data area

(A3) Character count. If count is 0, no data is
transferred.

(AI) Address of DSP

(A2) FWA of user data area

(A3) Character count

(A4) Actual LWA+l (equals FWA if null record)

(SO) Termination mode

< 0 Read terminated by end-of-record
= 0 Null record, end-of-file,

end-of-data, or unrecovered data
error encounteredS

> ° Read terminated by count. If count
is exhausted simultaneously with
reaching end-of-record, the
end-of-record takes precedence

(Sl) Error statusS

= 0 No error encountered
= 1 Unrecovered data error encountered

(S6) Contains RCW if (SO) < 0 and (Sl)=O

AO, AI, A4, AS, A6

B.ZA, B.ZB (within B70a ••• B77a)

SO, 51, S2, 53, S4, S5, S6

T.ZA (within T70 a ••• T77 a)

I S Deferred implementation

D-5 J-Ol

Example:

(A2) _ ----
T

H

I
- r--

S

T H I S !J. I S !J. !J.

D A T A • !J. !J. !J.
$RCH~

I
--r--

-- -- - S

!J.
Data in I/O buffer

D .--
(A3)=16 A

T

A .-r--

!J.

!J.

-f:y,

User data area

$RCHR - Read characters, record mode

This routine resembles $RCHP. However, following the read, the dataset
is positioned after the end-of-record that terminates the current record.

Unrecovered data errors cause control to be returned to the caller. The
caller can use the good data read, (A2) through (A4)-1, and then abort,
skip the bad data,S or accept the bad data.§ If the caller does
nothing, the job aborts when the next read request occurs. See the
Library Reference Manual, SR-0014, for detailed descriptions of SKIPBAD
and ACPTBAD.

SUBROUTINE NAME: $ RCHR

ENTRY CONDITIONS: Same as for $RCHP

RETURN CONDITIONS: Same as for $RCHP

REGISTERS MODIFIED: Same as for $RCHP

I § Deferred implementation

SR-OOll D-6 J-Ol

•

WRITE ROUTINES

The write routines transfer partial or full records of data from the user
data area to the I/O buffer. The data is taken from the user data area
one character per word and packed eight per word or is transferred in
full words depending on the write operation requested. Figure D-2
provides an overview of the logical write operation.

SWWDP - write words, partial mode

The number of words specified by the count is transmitted from the area
beginning at first word address (FWA) and is written in the I/O buffer
defined by the Dataset Parameter Area (DSP).

SUBROUTINE NAME:

ENTRY CONDITIONS:

RETURN CONDITIONS:

REGISTERS MODIFIED:

SR-0011

$WWDP

(AI) Address of DSP or negative DSP offset
relative to DSP base (JCDSP), that is,
contents of second word of Open Dataset
Name Table (ODN)

(A2) FWA of user data area

(A3) Word count. If count is 0, no data is
transferred.

(AI) Address of DSP

(A2) FWA of user data area

(A3) Word count

(A4) LWA+l

AO, AI, A4, A5, A6

B.ZA, B.ZB (within B708 ••• B778)

SO, Sl, S2, S3, S4, S5, S6

T.ZA (within T708 ••• T778)

VO, VI

D-6.1 J-01

SR-OOll

(Al)~
_ FRST} IN

OUT
LMT

DSP
(A2) -l-

(A3) User
Data

_j __ ~~~A_r~e~a~~~~ __

FIRST

IN

OUT

LIMIT

mass
storage

Figure D-2. Logical write

D-7

I/O BUFFER POINTERS

USER

SYSTEM

I

Example:

A B C o E F G H

I J K L M N 0 P

Q R S T U V W X

y Z

User data area

$WWDR - write words, record mode

$WWDP
)t

~ ~

A B C 0 E F G H

I J K L M N 0 P

Q R S T U V w· X

y Z

I/O buffer

The $WWDR routine resembles $WWDP. However, an end-of-record ROW
terminating the record is inserted in the I/O buffer in the next word
following the data. To write simply an end-of-record, the user issues
a $WWDR with (A3)=O.

SUBROUTINE NAME: $WWDR

ENTRY CONDITIONS: Same as $WWDP

RETURN CONDITIONS: Same as $WWDP

REGISTERS MODIFIED: Same as $WWDP

$WWDS - write words, record mode with unused bit count

The $WWDS routine resembles $WWDR. However, the user may specify the
unused bit count in the last word of the record as an entry condition.

SUBROUTINE NAME:

ENTRY CONDITIONS:

RETURN CONDITIONS:

REGISTERS MODIFIED:

SR-OOll

$WWDS

Same as $WWDP with the addition of the
following:

(A4) Unused bit count in the last word of the
record; a value from 0 through 63.

Same as $WWDP

Same as $WWDP

0-8 I

$WCHP - write characters, partial mode

The $WCHP routine packs the number of characters specified by the
count from the user area defined at first word address (FWA) to the
I/O buffer for the dataset defined by the Dataset Parameter Area
(DSP). The number of characters specified by the count is packed from
the area beginning at FWA to the dataset defined by DSP.

SUBROUTINE NAME:

ENTRY CONDITIONS:

RETURN CONDITIONS:

REGISTERS MODIFIED:

Example:

(A2~_

(A3)=11

$WCHP

(AI) Address of DSP or negative DSP offset
relative to DSP base (JCDSP), that is,
contents of second word of ODN

(A2) FWA of user data area

(A3) Character count. If count is 0, no data
is tr ansferred.

(AI) Address of DSP

(A2) FWA of user data area

(A3) Character count

(A4) LWA+l

AO, AI, A4, A5, A6

B.ZA, B.ZB (within B708 ••• B778)

so, Sl, S2, S3, S4, S5, S6

0
---I--

U

'T

P $WCHP

U

T

~ .-- I/O buffer
0

A

T

A

User data area

SR-OOll 0-9 I

$WCHR - Write characters record mode

The $WCHR routine resem les $WCHP. However, an end-of-record RCW
terminating the record is inserted in the I/O buffer in the next full
word following the data. The unused bit count in the RCW specifies
the end of data in the previous word. To write an end-of-record, the
user issues a $WCHR with (A3)=0. The RCW is written in the next full
word.

SUBROUTINE NAME: $WCHR

ENTRY CONDITIONS: Same as $WCHP

RETURN CONDITIONS: Same as $WCHP

REGISTERS MODIFIED: Same as $WCHP

$WEOF - write end of file

This routine writes an end-of-file RCW preceded by an end-of-record
RCW if necessary as the next words in the I/O buffer. If the previous
operation was a call to $WCHP, then a call to $WCHR with (A3)=0 is
necessary to set the USC since $WEOF does not check for a partial
characte- write in progress.

SUBROUTINE NAME:

ENTRY CONDIT IONS:

RETURN CONDITIONS:

REGISTERS MODIFIED:

$WEOF

(AI) Address of Dataset Parameter Area (DSP)
or negative DSP offset relative to DSP
base (JCDSP), that is, contents of
second word of Open Dataset Name Table
(ODN)

(AI) Address of DSP

AO, AI, A2, A3, A4, A5, A6

B. ZC (within B70S ••• B77S)

so, Sl, S2, S3, S4, S5, S6

T.ZB (within T70S ••• T77S)

$WEOD - Write end of data

This routine writes an end-of-data RCW preceded by an end-of-file and
an end-of-record if necessary as the next words in the I/O block. If
the previous operation was a call to $WCHP, then a call to $WCHR with
(A3)=0 is necessary to set the USC since $WEOD does not check for a
partial character write in progress.

SR-OOll D-IO I

The $WEOD forces the final block of data to be written on the disk;
that is, it flushes the I/O buffer. The dataset is left positioned
before the end-of-data.

SUBROUTINE NAME:

ENTRY CONDIT IONS:

RETURN CONDITIONS:

REGISTERS MODIFIED:

POSITIONING ROUTINES

$WEOD

(AI) Address of Dataset Parameter Area (DSP)
or negative DSP offset relative to DSP
base (JCDSP), that is, contents of
second word of Open Dataset Name Table
(ODN)

(AI) Address of DSP

AO, AI, A2, A3, A4, A5, A6

B.ZD (within B70S ••• B77 S)

SO, Sl, S2, S3, S4, S5, S6

T.ZB (within T70 S ••• T77 a)

The positioning routines, except for $GPOS, set the current processing
direction to input (reading). If the processing direction was
previously output (writing), on a sequential dataset $WEOD is called
to write an end-of-data and the buffer is flushed. On a random
dataset, the buffer is flushed.

$REWD - Rewind dataset

The $REWD routine positions the dataset at beginning-of-data. It
functions as a no-op if the dataset is already posi tioned there.

SUBROUTINE NAME:

ENTRY CONDITIONS:

RETURN CONDITIONS:

REGISTERS MODIFIED:

SR-OOll

$REWD

(AI) Address of Dataset Parameter Area (DSP)
or negative DSP offset relative to DSP
base (JCDSP), that is, contents of
second word of Open Dataset Parameter
Area (ODN)

(AI) Address of DSP

AO, AI, A2, A3, A4, A5, A6

SO, Sl, S2, S3, S4, S5, S6

D-ll I

$BKSP - Backspace one record

The $BKSP routine positions the dataset after the previous
end-of-record RCW. If the dataset is positioned just after an
end-of-record RCW, $BKSP positions it just before the end-of-file RCW,
that is, $BKSP treats an end-of-file RCW as if it were a normal record.

SUBROUTINE NAME:

ENTRY CONDITIONS:

RETURN CONDITIONS:

REGISTERS MODIFIED:

$BKSP

(AI) Address of Dataset Parameter Area (DSP)
or negative DSP offset relative to DSP
base (JCDSP), that is, contents of
second word of Open Dataset Name Table
(ODN)

(AI) Address of DSP

(S6) RCW locationg after which dataset is
positioned; equals 0 if at
beginning-of-data

AO, AI, A2, A3, A4, A5, A6

so, Sl, S2, S3, S4, S5, S6

$BKSPF - Backspace one file

The $BKSPF routine positions a dataset after the previous end-of-file
RCW or at beginning-of-data if there is no previous end-of-file. The
function is a no-op if the dataset is at beginning-of-data.

SUBROUTiNE NAME: $BKSPF

ENTRY CONDITIONS: Same as $BKSP

RETURN CONDITIONS: Same as $BKSP

REGISTERS MODIFIED: Same as $BKSP

SR-OOll 0-12 I

$GPOS - Get current dataset position

The $GPOS routine returns the current dataset position, including the
current word address and flags that indicate whether the dataset is
positioned at a record, a file, or a dataset boundary.

This routine does not alter the dataset position.

SUBROUTINE NAME:

ENTRY CONDITIONS:

RETURN CONDITIONS:

REGISTERS MODIFIED:

SR-OOll

$GPOS

(AI) Address of Dataset Parameter Area (DSP)
or negative DSP offset relative to DSP
base (JCDSP), that is, contents of second
word of Open Dataset Name Table (ODN)

(AI) DSP address

(Sl) Dataset position

AO,

SO,

Flags - the upper 4 bits of Sl indicate
record, file, and dataset boundaries:

AI,

Sl,

bits
o

significance
End-of-record flag. 1 indicates
the dataset is positioned at a
record boundary, that is,
following a record control word.
o indicates the dataset is either
at beginning of data or in the
middle of a record.

1 Unused

2 End-of-file flag. 1 indicates the
dataset is at a file boundary,
that is, following the end of file
RCW.

3-30 Unused

31-63 Word address. This is the current
physical word address within the
dataset, including record control
words.

Note: The entire word in Sl is 0
at beginning-of-data.

A2, A3

S2, S3, S4

D-13 I

$SPOS - Set current dataset position

The $SPOS routine positions the dataset at the position specified.
The position must be at a record boundary, that is, at
beginning-of-data or following an end-of-record or end-of-file, or
before an end-of-data. A dataset cannot be positioned beyond the
current end-of-data.

SUBROUTINE NAME:

ENTRY CONDITIONS:

Special cases:

RETURN CONDITIONS:

REGISTERS MODIFIED:

SR-OOll

$SPOS

(Al) Address of Dataset Parameter Area (DSP)
or negative DSP offset relative to D8P
base (JCDSP), that is, contents of
second word of Open Dataset Name Table
(ODN)

(81) Dataset po~ition

bits
0-30

significance
Unused

31-63 Word address. The desired
physical word address within the
dataset, including record control
words

(Sl) = -1 , Denotes end-of-data. The dataset
is positioned at end-of-data,
that is ,before the end-of-data
record control word.

(81) = 0 Denotes beginning-of-data

(Al) D8P address

(Sl) Da taset pos i tion

(86) Contains RCW after which the dataset is
positioned; (S6)=0 if at
beginning-of-data

AO, Al, A2, A3, A4, A5, A6

SO, Sl, S2, S3, S4, 85, S6

D-14 I

FORTRAN LEVEL I/O

FORTRAN I/O consists of formatted and unformatted I/O routines,
buffered I/O routines, and positioning and control I/O routines.

Although they do not perform I/O in the strict sense, the
encode/decode routines are also described in this section.

FORMATTED AND UNFORMATTED I/O ROUTINES

These routines are divided into six basic groups: read formatted,
write formatted, read unformatted, write unformatted, encode, and
decode.

Routines in the four read and write groups transfer data between user
locations and the system I/O buffer area allocated to a dataset and
associated with a particular I/O unit. Routines in the encode and
decode groups transfer data to or from user locations and a
user-supplied buffer. The buffer contains eight characters per word
and has no I/O unit association. All dataset processing by these
routines is sequential.

Each of the six groups is accessed through a minimum of two calls:
the first to an initiation routine and the last to a termination
routine. Optionally, one or more calls may be made to either of two
transfer routines between initiation and termination routine calls.
The initiation routine name is identified by an I uffix, the
termination routine name by an F suffix.

Transfer routines are of two types: call by address and call by
value. Routine names are suffixed by an A if a call-by-address
routine or by a V if a call-by-value routine. Both types of routines
can be called within the same sequence.

These routines are named and their functions summarized in the chart
below:

" OPERATION READ WRITE READ WRITE DECODE
SEQUENCE """ FORMATTED FORMATTED UNFORMATTED UNFORMATTED

INITIATION $RFI $WFI $RUI $WUI $DFI ROUTINES
TRANSFER
ROUTINES $RFA $WFA $RUA $WUA $DFA

CALL SY-AODRESS
TRANSFER
ROUTINES $RFV $WFV $RUV $WUV $DFV

CALL-B? QALUE
TERMINATION $RFF $WFF $RUF $WUF $DFF ROUTINES

SR-OOll D-15 I

ENCODE

$EFI

$EFA

$EFV

$EFF

Type-checking entry points - Each transfer routine has six different
entry points. Each entry point corresponds to a particular type of data
to be processed and is specified as the name of the routine (xnam.) plus a
(Parcel) increment value. These entry points and the FORTRAN data types
they accommodate are:

Entr:i Point T:il2e 0 f da ta
xnam or Typeless (Boolean)
xnam + 0

xnam + 3 Integer

xnam + 6 Real

xnam + 9 Double precision

xnam + 12 Complex

xnam + 15 Logical

The increment entry point names are used by the FORTRAN run-time system
to verify the correspondence between variable types and format
speci fica tions.

In transfer routines that process formatted data, double-precision values
must be specified by using the xnam + 9 entry. All other types of values
may use the appropriately incremented entry or the mam entry. If the
xnam entry is used, typing is determined from format specification edit
descriptors. If the xnam + offset entry is used, the format
specification must be compatible with the type implied by the entry
offset. Transfer routines processing unformatted data must be entered at
xnam + 9 and xnam + 12 for double-precision and complex values. Values
of all other types may be processed by using the appropriately
incremented entry or the xnam entry.

Format specifications identified by initiation routines and used by
transfer routines are described in the CRAY-I (CFT) FORTRAN Reference
Manual.

If an end-of-file record is read, zeros or blanks are supplied in place
of valid values or characters. An optional end-of-file exit address may
be supplied to the read-initiation routine to suppress this action.
Acknowledgement of an end-of-file's record having been read must occur
before initiating another read operation at the same unit. This is done
by:

• Providing an end-of-file exit address to the read initiation
routine,

• Writing, rewinding, or backspacing the dataset, or

• Calling the utility procedure IEOF.

SR-OOll 0-16 I

Routine

Function

Type of call

Entry

Exit

Routine

Function

Type of call

Entry

Exit

Routine

Function

Type of call

Entry

Exit

SR-OOII

$DFI

Decode formatted initialize. Provides
arguments for subsequent $DFA and $DFV calls.

By address

(EP-l) = address of record length in characters

(EP-2) = address of FORMAT specification

(EP-3) = address of character string

No arguments returned

$DFA (type-checking entry points)

Decode formatted, call by address. Decodes
items in a packed character string, placing
results into an array.

By address

($DFA-l) = address of array

($DFA-2) = address of item count

($DFA-3) = address of item increment

Items are at user item addresses

$DFV (type-checking entry points)

Decode formatted, call by value. Decodes a
single item ina character string.

By value

No arguments required

Sl contains the decoded item

S2 contains the second word of the decoded
item, if required

0-17 I

Routine

Function

Type of call

Routine

Function

Type of call

Entry

Exit

Routine

Function

Type of call

Entry

Exit

SR-OOll

Decode formatted final. Terminates a decoding
sequence.

No arguments required

Encode. formatted initialize. Provides
arguments for subsequent $EFA and $EFV calls.

By address

(EP-l) = address of record length in characters

(EP-2) = address of FORMAT specification

(EP-3) = address of character string buffer

Content of character string buffer

$EFA (type-checking entry points)

Encode formatted, call by address. Encodes
items in an array, placing results in the
packed character str ing buffer.

By address

($EFA-l) = address of array

($EFA-2) = address of item count

($EFA-3) = address of item increment

Content of character string buffer

0-18 I

Routine

Function

Type of call

Entry

Exit

Routine

Function

Type of call

Routine

Function

Type of call

Entry

Exit

SR-OOll

$EFV (type-checking entry points)

Encode formatted, call by value. Encodes a value
and places the result in the character string
buffer.

By value

Sl contains the value to be encoded

S2 contains the second word of the value to be
encoded, if required

Content of character string buffer

Encode formatted final. Terminates an encoding
sequence.

No arguments required

Read formatted initialize. Provides arguments
for subsequent $RFA and $RFV calls

, By address

(EP-l) = address of unit name or number

(EP-2) = address of FORMAT specification

(EP-3) = address of error exit address (optional)

(EP-4) address of end-of-file exit address
(optional)

(EP-5) = address of status specifier (optional)

(EP-6) = address of record number for this
transfer; present if and only if unit is
connected for direct device

Status specifier provided in initialization call;
zero if no error, nonzero if error during
initialization, transfer, or finalization

0-19 1-01

Routine

Function

Type of call

Entry

Exit

I
Routine

Function

Type of call

Entry

Exit

I
Routine

Function

Type of call

I Exit

SR-OOll

$RFA (type-checking entry points)

Read formatted, call by address. Decodes and
moves the number of items specified by (EP-2) to
locations beginning at (EP-l) as incremented by
(EP-3) •

By address

($RFA-l) = Address of array

($RFA-2) = address of item count

($RFA-3) = address of array address increment

Decoded items are at user item addresses

Status specifier provided in initialization callf
zero if no error, nonzero if error during
initialization, transfer, or finalization

$RFV (type-checking entry points)

Read formatted, call by value. Decodes a single
item.

By value

No arguments required

Sl contains the decoded item

S2 contains the second word of the decoded item,
if required

Status specifier provided in initialization callf
zero if no error, nonzero if error during
initialization, transfer, or finalization

$RFF (type-checking entry points)

Read formatted final. Terminates a read
formatted sequence.

No arguments required

Status specifier provided in initialization cal11
zero if no error, nonzero if error during
initialization, transfer, or finalization

0-20 1-01

Routine

Function

Type of call

Entry

Exit

Routine

Function

Type of call

Entry

Exit

I

SR-OOll

Read unformatted initialize. Provides arguments
for subsequent $RUA and $RUV calls.

By address

(EP-l) = address of unit name or number

(EP-3) = address of error exit address (optional)

(EP-4) = address of end-of-file exit address
(optional)

(EP-5) = address of status specifier (optional)

(EP-6) = address of record number for this
transfer; present if and only if unit is
connected for direct device

Status specifier provided in initialization calli
zero if no error, nonzero if error during
initialization, transfer, or finalization

$RUA (type-checking entry points)

Read unformatted, call by address. Relocates the
number of words specified by (EP-2) from the I/O
buffer to locations beginning at (EP-l) as
incremented by (EP-3).

By address

($RUA-l) = address of array

($RUA-2) = address of word count

($RUA-3) = address of array address increment

Requested words are in the array

Status specifier provided in initialization call;
zero if no error, nonzero if error during
initialization, transfer, or finalization

D-2l 1-01

Routine

Function

Type of call

Entry

Exit

I
Routine

Function

Type of call

I
Exit

Routine

Function

Type of call

Entry

I
SR-OOll

$RUV (type-checking entry points)

Read unformatted, call by value. Moves a single
value from the I/O buffer.

By value

No arguments required

Sl contains the vequested word

S2 contains a second requested word, if required
(for two-word values)

Status specifier provided in initialization call;
zero if no error, nonzero if error during
initialization, transfer, or finalization

Read unformatted final. Terminates a read
unformatted sequence.

No arguments required

Status specifier provided in initialization call;
zero if no error, nonzero if error during
initialization, transfer, or finalization

write formatted initialize. Provides arguments
for subsequent $WFA and $WFV calls.

By address

(EP-l) = address of unit name or number

(EP-2) address of FORMAT specification

(EP-3) = address of error exit address (optional)

(EP-4) = address of end-of-file exit address
(optional)

(EP-S) = address of status specifier (optional)

(EP-6) = address of record number for this
transfer; present if and only if unit is
connected for direct device

D-22 I-Ol

Routine

Function

Type of call

Entry

Exit

I
Routine

Function

Type of call

Entry

Exit

I
Routine

Function

Type of call

I Exit

SR-OO~l

$WFA (type-checking entry points)

Write formatted, call by address. Encodes and
moves to the I/O buffer the number of items
specified by (EP-2) from locations beginning at
(EP-l) as incremented by (EP-3).

By address

($WFA-l) = address of array

($WFA-2) = address of item count

(SWFA-3) = address of array address increment

Encoded items are in the I/O buffer

Status specifier provided in initialization call;
zero if no error, nonzero if error during
initialization, transfer, or finalization

$WFV (type-checking entry points)

Write formatted, call by value. Encodes and
moves the word(s) provided into the I/O buffer.

By value

Sl contains the word to be encoded and moved

S2 contains a second word to be encoded and
moved, if required

Encoded item is in the I/O buffer

Status specifier provided in initialization calli
zero if no error, nonzero if error during
initialization, transfer, or finalization

Write formatted final. Terminates a write
formatted sequence.

No arguments required.

Status specifier provided in initialization call;
zero if no error, nonzero if error during
initialization, transfer, or finalization

0-23 1-01

Routine

Function

Type of call

Entry

Exit

Routine

Function

Type of call

Entry

I Exit

SR-OOll

write unformatted initialize. Provides arguments
for subsequent $WUA and $WUV calls.

By address

(EP-l) = address of unit name or number

(EP-3) = address of error exit address (optional)

. (EP-4) = address of end-of-file exit address
(optional)

(EP-S) = address of status specifier (optional)

(EP-6) = address of record number for this
transfer; present if and only if this
unit is connected for direct device

Status specifier provided in initialization call;
zero if no error, nonzero if error during
initialization, transfer, or finalization

$WUA (type-checking entry points)

Write unformatted, call by address. Transfers
the number of words specified by (EP-2) from the
locations beginning at (EP-l) as incremented by
(EP-3) •

By address

($WUA-l) = address of array

($WUA-2) = address of word count

($WUA-3) = address of array increment

Status specifier provided in initialization call;
zero if no error, nonzero if error during
initialization, transfer, or finalization

D-24 1-01

Routine

Function

rrype of call

Entry

I Exit

Routine

Function

Type of call

I
Exit

SR-OOll

$WUV (type-checking entry points)

write unformatted, call by value. Transfers the
word(s) provided into the I/O buffer.

By value

Sl contains the word to be transferred

S2 contains a second word to be transferred, if
required (for two-word values)

Status specifier provided in initialization call;
zero if no error, nonzero if error during
initialization, transfer, or finalization

write unformatted final. Terminates a write
unformatted sequence.

No arguments returned

Status specifier provided in initialization call;
zero if no error, nonzero if error during
initialization, transfer, or finalization

D-25 1-01

•

BUFFERED I/O ROUTINES

Buffered I/O routines perform operations on logical records. Control may
be returned to the calling program before the I/O transfer is complete.

Routine

Function

Type of call

Entry

Exit

SR-OOll

Read buffered. Reads (EP-4) - (EP-3) + 1 words
or until an end-of-record RCW is encountered,
whichever is first, from the I/O buffer to the
specified array locations. If (EP-2) < 0, a
partial record may be read with a subsequent read
capable of transferring all or part of the
remaining words in the record. If (EP-2) ~ 0, a
subsequent read transfers words from the next
record.

By address

(EP-l) = address of unit name or number

(EP-2) = address of mode specifier

(EP-3) = address of first word of array

(EP-4) = address of last word of array

No arguments returned

0-26 1-01

•

Routine

Function

Type of call

Entry

Exit

Write buffered. Writes (EP-4) + (EP-3) + 1
words to the I/O buffer from locations (EP-3)
through (EP-4) of the array. If (EP-2) < 0, a
partial record may be written with a
subsequent write capable of transferring all
or part of the remaining words to the same
record. If (EP-2) ~ 0, a subsequent write
transfers words to a new record. If (EP-4) is
set to (EP-3) - 1, the partial record being
written is terminated. Any attempt to write
past the end of the allocated area or after
encountering an end-of-data results in job
abortion.

By address

(EP-l) = address of unit name or number

(EP-2) = address of mode specifier

(EP-3) = address of first word of array

(EP-4) = address of last word of array

No arguments returned

POSITIONING AND CONTROL I/O ROUTINES

The FORTRAN I/O routines descibed below perform dataset positioning
and control operations:

Routine

Function

Type of call

Entry

Exit

SR-OOll

$EOFW

Write end-of-file. This function writes an
end-of-file record on the specified dataset.

By address

(EP-l) = address of unit name or number

No arguments returned

0-27 1-01

Routine

Function

Type of call

Entry

Exit

Routine

Function

Type of call

Entry

Exit

Routine

Function

Type of call

• SR-OOll

$BACK

Backspace record. Positions the dataset to
the start of the preceding record.

By address

(EP-I) = address of unit name or number

No arguments returned

$REWF

Rewind function. Rewinds the specified
dataset to the beginning-of-data point.

By address

(EP-I) = address of unit name or number

No arguments returned

$TRBK

Abort function. Makes the $FTLIB error
procedure available to user programs. Returns
to the error entrance to COS, not to the
calling program.

No arguments required

0-28 1-01

I

I

I

EXCHANGE PACKAGE E

o 2 10 12 14 16 18 24 31 63

n

n+1

n+2 ~~~~~~~~~ ____ ~ ____ ~~ __ ~ __ ~ __________________ ~

n+4 ~~~~~~~~~~~~~~~~~~~+-__________________ ~

n+5 ~~~~~~~~~~~~~~~~~~~4-------------------~
n+6 ~~~~~~~~~~~~~~~~~~~~ ________ ~ ________ ~
n+7 ~~~~~~~~~~~~~~~~~~~~ __________________ ~

n+8 ~ __ ~

n+9 ~ __ ~

n+IO~ __ ~

n+1I ~ __ ~

n+12~ __ ~

n+13~ __ ~

n+14~ __ ~
n+15~ __ ~~

Registers
S Syndrome bits

R'RAB Read address for error
(where B is bank)

H - Modes

n+1 39 Interrupt monitor modet

n+2 36 Interrupt on correctable
memory error

P Program address

BA Base address

n+2 37 Interrupt on floating point
error

LA Limit address

XA Exchange address

VL Vector length

E - Error type (bits 0,1 of n)

10 Uncorrectable memory

01 Correctable memory

R - Read mode (bits 10,11 of n)

00 Scalar

01 I/O

10 Vector

11 Fetch

n+2 38 Interrupt on uncorrectable
memory error

n+2 39 Monitor mode

F - Fl ags.
n+3 31 Programmable clock interrupttt

n+3 32 MCU interrupt

n+3 33 Floating point error

n+3 34 Operand range error

n+3 35 Program range error

n+3 36 Memory error

n+3 37 I/O interrupt

n+3 38 Error exit

n+3 39 Normal exit

t Supports Monitor Mode Interrupt option on CRAY-IA and CRAY-IB.

tt Supports Programmable Clock (optional on CRAY-IA and CRAY-lB; standard
on CRAY-l S Series computers)

SR-OOll E-l I

I

I

ERROR AND STATUS CODES

SYSTEM ERROR CODES

Table F-l describes the system error codes as released. Installation
differences can change data in this table. Consult the on-site
analyst for details. The CRAY-OS Message Manual, publication SR-0039,
also contains additional descripions of the abort codes and their
corresponding messages.

System
Error Code

ABOOI

AB002

AB003

AB004

AB005

AB006

AB007

Table F-l. Error codes for reprieve processing

Reprieve Error
Fatal/ Class (Octal

Non-fatal Mask Value) Description

NF 4 End-of-file on read

NF 4 Invalid LOCK or UNLOCK indicator

F 4 Device Allocation Table exhausted

NF 4 Dataset not open

NF 4 Invalid dataset open request

NF 4 No read permission

NF 4 No write permission

F

ABOOa

AB009

NF 4 Illegal bit set in RFL request word

ABOlO

ABOll

ABOl2

ABOl3

ABOl4

ABOl5

ABOl6

SR-OOll

NF 4 Attempt to delete memory outside
program area

F

F

NF

NF

NF

NF

NF

400

4000

4

4

4

2000

2000

F-l

No available disk space

System directory is full

Job Table Area overflow

More memory requested than
available

More memory requested than allowed

Unknown acquire error

Subdataset $IN cannot be disposed

1-02

I

I

Table F-l. Error codes for reprieve processing (continued)

System
Error Code

AB017

AB018

AB019

AB020

AB02l

AB022

AB023

AB024

AB025

AB026

AB027

AB028§

AB029

AB030

AB03l

AB032

AB033

AB034

AB035

AB036

AB037

AB038

AB039

AB040

AB04l

Reprieve Error
Fatal/ Class (Octal

Non-fatal Mask Value) DescriPtion

NF 4 Invalid dataset close request

NF 4 Dataset already opened

NOT REPRIEVABLE

NF

NF

NF

F

F

NF

NF

NF

NF
NF

NF

NF

NF

NF

NF

NF

NF

NF

4

4

4

200

10

2

4

4

4

4

4

4

4

4

4

4

4

NOT REPRIEVABLE

NF

NF

F

20

4

4000

Job Communication Block destroyed

Invalid system request parameter

Dataset not found

Invalid program load dataset

Job time limit exceeded

Operator dropped user job

User program requested abort

Invalid (undefined) user request

Call not between user BA and LA

XP errors (no message)
Logical device name not found

Block number error

Unrecoverable data error

Unrecoverable hardware error

Read after write or after EOD

Unknown error

Invalid processing direction

Dataset prematurely terminated

Dataset Parameter Table invalid

Operator killed user job

Operator reran the job

Invalid disposition code

"Enter" allowed on access only

§ The AB028 error code is set during abort processing when any Exchange
Package error flag is set. It does not represent a single reprievable
condition. One of the Exchange Package error codes (AB053 through
AB058) will be set later to indicate the appropriate error.

SR-OOll F-2 1-02

I

Table F-l. Error codes for reprieve processing (continued)

System
Error Code

AB043

AB044

AB045

AB046

AB047

AB048

AB049

AB051

AB052

AB053

AB054

AB055

AB056

AB057

AB058

AB061

AB062

AB063

AB064

AB066

AB067

AB068

AB070

AB071

AB072

AB073

SR-OOll

Reprieve Error
Fatal/ Class (Octal

Non-fatal Mask Value) Description

F 400 Allowable user log size exceeded

NF 4 Invalid dataset name

NF 400 Specified LM is too big

NF 400 Dataset size limit exceeded

NF 2000 Dataset not available from station

NF 2000 Dataset cannot be saved on a front
end

NF 4 Invalid LFTs in user area

F

NF

NF

NF

NF

NF

4

4

100

4

4

40

NOT REPRIEVABLE

F

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

4

4

4

4

4

4

4

4

10000

4

4

4

F-3

,

Invalid pointer to first JTA LFT

No user LFT DN matches JTA LFT

Floating-point error

Operand range error

Program range error

Uncorrected memory error

Interactive ABORT

Error exit

No invoke request provided

Invoke request abort pending

Invoke length not multiple of 512

Invoke length greater than maximum

Dataset has related disposes active

Invalid procedure dataset

Procedure nest level exceeded

An ATTENTION request command was
entered at an interactive terminal.

Bad class structure

DSP destroyed by user

Undefined function code in F$INS

1-02

I

Table F-l. Error codes for reprieve processing (continued)

System
Error Code

AB074

AB075

AB076

AB077

AB078

AB079

AB080

AB08l

AB082

AB083

Reprieve Error
Fatal/ Class (Octal

Non-fatal Mask Value)

NF 4000

NF 4000

NF 4

NOT REPRIEVABLE

NF

NF

NF

NF

NF

NF

4000

4

4

4

4

4

DescriPtion

DUMPJOB processing has been
inhibited

No permissions granted while
dataset is execute-only

Dataset is already accessed by the
job

CSP internal error

Privileged system request

Unassigned JCL symbol

Receive buffer too small

Undefined JCL symbol

JCL symbol cannot be modified

Invalid message class

PERMANENT DATASET STATUS CODES

The permanent dataset status octal codes are flagged in the PMST field of
the Permanent Dataset Definition Table (POD) which is presented in
Appendix A.

PMST

1

11

21

31

41

51

SR-OOll

Status

Complete; no error

A DNT cannot be found for the specified dataset.

Maintenance permission not granted

Edition already exists

DSC full

Function code out of range

F-4 1-02

•

PMST

61

71

101

III

121

131

141

151

161

171

201

211

221

231

241

251

261

271

301

311

331

341

351

361

371

421

441

SR-OOll

Status

The job has a dataset of the local name (DN) specified.

No permission granted

Delay and try again

DSC does not contain the requested dataset.

Edition does not exist

PDS full

Dataset not permanent

PDS entry not found

Continuation error

DAT full

DNT full

End of DSC

PDN already accessed by this job

Request to read zero pages

Invalid page number requested

No data has been written to disk

SDT does not exist

SDT not on input or output queue

Unable to queue SDT

Dataset name in PDD is 0

Multiple editions of the dataset exist, prohibiting changes
to the permission control words.

Unique access is not acceptable because the dataset is part
of the System Directory.

The PDD contains a text length without a text address, or a
text address without a length specified.

The text length specified exceeds the allowable maximum.

The device on which all or part of the dataset resides is down

Access is denied because crossed allocation unit exists.

The DSC entry was flagged by Startup as containing a fatal
error. Access is denied •

F-5 I-02

•

PMST Status

461 No available QDT entries exist to coordinate the dispose.

471 The dataset has outstanding disposes; do not deallocate disk
space.

501 Allocation of multitype dataset inconsistent with related
datasets

511 Multitype dataset has non-existent QDT entry.

521 Maximum edition reached

SR-OOll F-6 1-02

GLOSSARY

GLOSSARY

A

Abort - To terminate a program or job when a condition (hardware or
software) exists from which the program or computer cannot recover.

Absolute address - (1) An address that is permanently assigned by the
machine designator to a storage location. (2) A pattern of characters
that ~dentifies a unique storage location without further modification.
Synonymous with machine address.

Absolute block - Loader tables consisting of the image of a program in
memory. It can be saved on a dataset for subsequent reloading and
execution.

Address - (1) An identification, as represented by a name, label, or
number, for a register, location in storage, or any other data source or
destination such as the location of a station in a communication
network. (2) Any part of an instruction that specifies the location of
an operand for the instruction.

Allocate - To reserve an amount of some resource in a computing system
for a specific purpose (usually refers to a data storage medium) •

Alphabetic - A character set including, $, %, @, as well as the 26
uppercase letters A through Z.

Alphanumeric - A character set including all alphabetic characters and
the digits 0 through 9.

Arithmetic operator - Part of an expression that indicates action to be
performed during evaluation of expression~ can be symbolic character
representing addition, unary plus, subtraction, unary minus,
multiplication, or division.

Assemble - To prepare an object language program from a symbolic language
program by substituting machine operation codes for symbolic operation
codes and absolute or relocatable addresses for symbolic instructions.

B

Base address - The starting absolute address of the memory field length
assigned to the user's job. This address is maintained in the base
address (BA) register. The base address must be a multiple of 20 8•

SR-OOll Glossary-l J

I

$BLD - A dataset on which load modules are placed by a compiler or
assembler unless the user designates some other dataset.

Blank common block - A common block into which data cannot be stored at
load time. The first declaration need not be the largest. The blank
common block is allocated after all other blocks have been processed.

Block - (1) A tape block is a collection of characters written or read as
a unit. Blocks are separated by an interblock gap and may be from 1
through 1,048,576 bytes. A tape block and a physical record are
synonymous on magnetic tape. (2) In CRAY-l blocked format, a block is a
fixed number of contiguous characters preceded by a block control word as
the first word of the block. The internal block size for the CRAY-l is
512 words (one sector on disk). In CRAY-l manuals, the terms tape block
and 5l2-word block are consistently used to distinguish between the two
uses.

Block control word - A word occurring at the beginning of each block in
the CRAY-l blocked format that identifies the sequential position of the
block in the dataset and points forward to the next block control word.

BOT - Beginning of tape; the position of the beginning-of-tape reflective
marker.

~ - Beginning of volume. See BOT.

BPI - Bits per inch. COS supports the 1600 and 6250 bpi recording
densities.

Buffer - A storage device used to compensate for the difference in rate
of flow of data, or time of occurrence of events, when transmitting data
from one device to another. It is normally a block of memory used by the
system to transmit data from one place to another. Buffers are usually
associated with the I/O system.

Buffer Memory - A 64-bit memory in the I/O Subsystem common to all I/O
Processors.

C

Call - The transfer of control to a specified closed routine.

Card image - A one-to-one representation of the contents of a punched
card, for example, a matrix in which a 1 represents a punch and a 0
represents the absence of a punch. In CRAY-l blocked format, each card
image is a record.

SR-OOll Glossary-2 J-Ol

Catalog (noun) - A list or table of items with descriptive data, usually
arranged so that a specific kind of information can be readily located.

Channel - A path along which signals can be sent.

Character - A logical unit composed of bits representing alphabetic,
numeric, and special symbols. The CRAY-1 software processes 8-bit
characters in the ASCII character set.

Code - (1) A system of character and rules representing information in a
form understandable by a computer. (2) Translation of a problem into a
computer language.

Common block - A block that can be declared by more than one program
module during a load operation. More than one program module can specify
data for a cornmon block but if a conflict occurs, information from later
programs is loaded over previously loaded information. A program may
declare no cornmon blocks or as many as 125 common blocks. The two types
of cornmon blocks are labeled and blank.

Conditional control statement block - Defines the conditions under which
a group of control statements are to be processed. The statements which
define the block and conditions are: IF, ELSE, ELSEIF, and ENDIF.

Control statement - The format, consisting of a verb and its parameters,
used to control the operating system and access its products. Directives
are used to control products.

Control statement input file - A dataset containing valid control
statements as its first file.

$CS - A primary control statement input file.

D

~ - (1) Information manipulated by or produced by a computer program.
(2) Empirical numerical values and numerical constants used in arithmetic
calculation. Data is considered to be that which is transformed by a
process to produce the evidence of work. Parameters, device input, and
working storage are considered data.

SR-0011 G10ssary-3 J-01

I
Dataset - A quantity of information maintained on mass storage by the
CRAY-l Operating System. Each dataset is identified by a symbolic name
called a dataset name. Datasets are of two types: temporary and
permanent. A temporary dataset is available only to the job that created
it. A permanent dataset is available to the system and to other jobs and
is maintained across system deadstarts.

Dataset name verb - A verb that is the name of a dataset. See local or
system dataset name verb.

Deadstart - The process by which an inactive machine is brought up to an
operational condition ready to process jobs.

Debug - To detect, locate, and remove mistakes from a routine or
malfunction of a computer. Synonymous with troubleshoot.

Delimiter - A character that separates items in a control statement or a
directive; synonymous with separator.

Density - See tape density.

Device - A piece of equipment that mechanically contains and drives a
recording medium.

Directive - A command used to control a product, such as UPDATE.

Diagnostic - (1) Pertaining to the detection and isolation of a
malfunction or a mistake. (2) A message printed when an assembler or
compiler detects a program error.

Disposition code A code used in I/O processing to indicate the
disposition to be made of a dataset when its corresponding job is
terminated or the dataset is released.

Dump - (1) To copy the contents of all or part of a storage device,
usually from internal storage, at a given instant of time. (2) The
process of performing (1). (3) The document resulting from (1).

SR-OOll Glossary-4 J-Ol

E

End-of-data delimiter - Indicates the end of a dataset. In CRAY-l
blocked format, this is a record control word with a l7a in the mode
field.

End-of-file delimiter - Indicates the end of a file. (1) In CRAY-l
blocked format, this is a record control word with a l6 a in the mode
field. (2) On magnetic tape, this is a tapemark.

End-of-record delimiter - Indicates the end of a record. (1) In CRAY-l
blocked format, this is a record control word with a lOa in the mode
field. (2) In an ASCII punched deck, this is indicated by the end of
each card.

Entry point - A location within a block that can be referenced from
program blocks that do not declare the block. Each entry point has a
unique name associated with it. The loader is given a list of entry
points in a loader table. A block can contain any number of entry points.

An entry point name must be 1 to a characters and cannot contain the
characters blank, asterisk, or slash. Some language processors (i.e.,
FORTRAN) may produce entry point names under more restricted formats due
to their own requirements.

EOD - End-of-data on tape. The definition of EOD is a function of
whether the tape is labeled or nonlabeled and of the type of operation
being performed (input or output). When reading a labeled tape, EOD is
returned to the user when an EOFI trailer label is encountered. When
reading a nonlabeled tape, EOD is returned when a tapemark is read on the
last volume in the volume list for a particular dataset. When writing a
labeled or nonlabeled tape, EOD processing is initiated by a write EOD,
rewind, close, or release request.

EOI - End-of-information; see EOD.

EOT - End-of-tape; a status, set only on a write operation indicating
sensing of the end of the tape reflective marker.

EOV - End-of-volume. On output, EOV occurs when end-of-tape status is
returned on a write operation. This status occurs when the EOT
reflective marker is sensed by the tape device. For input of a labeled
tape dataset, EOV occurs when an EOVI trailer label is read; for input of
a nonlabeled dataset, EOV i~ returned when a tapemark is encountered and
the volume list is not exhausted.

Exchange package - A l6-word block of data in memory which is associated
with a particular computer program or memory field. It contains the
basic parameters necessary to provide continuity from one execution
interval for the program to the next.

SR-OOll Glossary-5 J-Ol

I

I

I

Expression (JCL parameter expression) - A series of characters grouped
into operands and operators which are computed as one value during
parameter evaluation; should be delimited by parentheses.

External reference - A reference in one program block to an entry point
in a block not declared by that program. Throughout the loading process,
externals are matched to entry points (this is also referred to as
satisfying externals); that is, addresses referencing externals are
supplied with the correct address.

F

File - A collection of records in a dataset. In CRAY-1 blocked format, a
file is terminated by a record control word with 16 8 in the mode field.

Fi1emark - Refer to tapemark.

Foreign label - A special condition that can occur during the label scan
at the beginning of a tape. If a NOT CAPABLE status is returned on a BOV
label scan, TQM declares the tape to be foreign labeled (FRN) which
protects a 7-track tape or a 9-track, 800 bpi tape from being accidently
destroyed.

Formal parameter specifications - Parameters in a procedure definition
which identify the character strings within the procedure body that can
be substituted during the procedure's evaluation.

Front-end processor - A computer connected to a CRAY-1 channel. The
front-end processor supplies data and jobs to the CRAY-1 and processes or
distributes the output from the jobs. Front end systems are also
referred to as stations in Cray publications.

G

Generic name - Tape resource requirements are expressed using generic
names or installation-defined synonyms. A generic name corresponds to a
device type. COS supports up to 16 generic names§. A generic name may
be represented by a synonym.

H

I HLM - High-level memory, the user's program and data area in memory.

I § Deferred implementation

SR-0011 G10ssary-6 J-01

I
I

$IN - A dataset containing the job control language statements as well as
the source input and data for compilers and assemblers, unless the user
designates some other dataset (FT05 for example).

In-line procedure - A procedure defined in a control statement file.

Input/Output - (1) Commonly called I/O. To communicate from external
equipment to the computer and vice versa. (2) The data involved in such
a communication. (3) Equipment used to communicate with a computer. (4)
The media carrying the data for input/output.

Integer constant - Specifies an octal value or a decimal value that can
be signed as positive or negative.

Interchange format - One of the two ways in which tape datasets can be
read or written. Each tape block of data corresponds to a single logical
record in COS blocked format. Interchange format is selected by setting
DF=IC when a tape dataset is accessed. As far as I/O routines in the
CRAY-l mainframe are concerned, interchange datasets must be in CRAY
blocked format because the CRAY blocked structure (BCW's and RCW's) is
used to describe each tape block read or written. This blocked structure
allows the user to write or read variable-length tape blocks at high
speed with data resolution to the 88-bit byte level of the tape device.
The record control word (RCW) is used to define the tape block length on
output and to describe the block length on input. No BCW or RCW ever
appears in the data written on the tape.

Interblock gaps - The physical separation between successive tape blocks
on magnetic tape.

I/O Subsystem - Part of a CRAY-l S Series Model S/1200 through S/4400
consisting of two to four I/O processors and one-half, one, four, or
eight million words of shared Buffer Memory. The optional tape subsystem
is composed of at least one block multiplexer channel, one tape
controller, and two tape units. The tape units supported are
IBM-compatible 9-track, 200 ips, 1600/6250 bpi devices.

Iterative control statement block - Defines the repeated execution of a
series of statements if a condition is satisfied

SR-OOll Glossary-7 J-Ol

•

J

JCL block control statement - A statement in the control statement file
that is part of a group of control statements called a block which
specifies an action to be taken by COS~ the three types of blocks are:
procedure defintion, conditional, and iterative.

Job - (1) An arbitrarily defined parcel of work submitted to a computing
system. (2) A collection of tasks submitted to the system and treated by
the system as an entity. A job is presented to the system as a formatted
dataset. with respect to a job, the system is parametrically controlled
by the content of the job dataset.

Job Communication Block - The first 200 8 words of the job memory
field. This area is used to hold the current control statement and
certain job-related parameters. The are~ is accessible to the user, the
operating system, and the loader for inter-phase job communication.

Job control statement - Any of the statements used to direct the
operating system in its functioning, as compared to data, programs, or
other information needed to process a job but not intended directly for
the operating system, itself. A control statement may be expressed in
card, card image, or user terminal keyboard entry medium.

Job deck - The physical representation of a job before processing either
as a deck of cards or as a group of records. The first file of the job
dataset contains the job statements and the job parameters which will be
used to control the job. Following files contain the program and data
which the job will require for the various job control statements. The
job deck is terminated by an end-of-data delimiter.

Job input dataset - A dataset named SIN on which the card images of the
job deck are maintained. This consists of programs and data referenced
by various job steps. The user can manipulate the dataset like any othr
dataset (excluding write operations).

Job output dataset - Any of a set of datasets recognized by the system by
a special dataset name (e.g., $OUT, $PLOT, and $PUNCH), which becomes a
system permanent dataset at job end and is automatically staged to a
front-end computer for processing.

Job step - A unit of work within a job, such as source language
compilation or object program execution.

K

Keyword parameter - A string of 1 to 8 alphanumeric characters that
consists of a keyword followed by one or more va1ues~ identified by its
form rather than by its position'in the control statement.

SR-0011 G1ossary-8 J-01

L

I $LOG - See logfile.

I

I

Labeled common - A common block into which data can be stored at load
time.

Library - A dataset composed of sequentially organized records and
files. The last file of the library contains a library directory. The
rest of the files and records, known as entries, can consist of processed
procedure definitions and/or relocatable modules. The directory gives a
listing of entry names with their associated characteristics.

Library-defined verb - A one through eight character name of a program or
procedure definition residing in a library that is a part of the current
library searchlist.

Limit address - The upper address of a memory field. This address is
maintained in the limit address (LA) register.

Literal - A symbol which names, describes, or defines itself and not
something else that it might represent.

Literal constant - A string of one through eight characters delimited
with apostrophes whose ordinal numbers are in the range 040 8 through
176 87 value of a character constant corresponds to the ASCII character
codes positioned within a 64-bit word7 alignment indicated can be left or
right adjusted and zero-filled or left-adjusted and space-filled7
apostrophes remain as part of value.

Literal string - A string delimited with apostrophes which are normally
not treated as part of the value, except with JCL block control
statements which treat the apostrophes as part of the string value.

Loader tables - The form in which code is presented to the loader. Loader
tables are generated by compilers and assemblers according to loader
requirements. The tables contain information required for loading such
as type of code, names, types and lengths of storage blocks, data to be
stored, etc.

Loading - The placement of instructions and data into memory so that it
is ready for execution. Loader input is obtained from one or more
datasets and/or libraries. Upon completion of loading, execution of the
program in the job's memory field is optionally initiated. Loading may
also involve the performance of load-related services such as generation
9f a loader map, presetting of unused memory to a user- specified value,
and generation of overlays.

Load point - See BOT.

Local dataset - A temporary or permanent dataset accessible by the user.

SR-OOll Glossary-9 J-Ol

•

Local dataset name verb - A verb that is the name of a local dataset
consisting of an alphabetic character followed by one through six
alphanumeric characters. Requests that COS load and execute an absolute
binary program from the first record of the named dataset.

Logfile - During the processing of the job, a special dataset named $LOG
is maintained. At job termination, this dataset is appended to the $OUT
file for the job. The job logfile serves as a time-ordered record of the
activities of the job -- all control statements processed by the job,
significant information such as dataset usage, all operator interactions
with a job, and errors detected during processing of the job.

Logical operator - Represents logical function performed on operands on a
bit-by-bit basis, returning a 64-bit result~ functions are: inclusive OR,
intersection, exclusive OR, unary complement.

M

Macro instruction - An instruction in a source language that is
equivalent to a specified sequence of machine instructions.

Magnetic tape - A tape with a magnetic surface on which data can be
stored by selective polarization of portions of that surface.

Mainframe - The central processor of the computer system. It contains
the arithmetic unit and special register groups. It does not include
input, output, or peripheral units and usually does not include internal
storage. Synonymous with central processing unit (CPU).

Mass storage - The storage of a large amount of data that is also readily
accessible to the central processing unit of a computer.

Memory field - A portion of memory containing instructions and data
usually defined for a specific job. Field limits are defined by the base
address and the limit address. A program in the memory field cannot
execute outside of the field nor refer to operands outside of the field.

Multiprocessing - Utilization of several computers to logically or
functionally divide jobs or processors, and to execute various programs
or segments asynchronously and simultaneously.

SR-OOll Glossary-IO J-Ol

Multiprogramming - A technique for handling multiple routines or programs
simultaneously by overlapping or interleaving their execution, that is,
permitting more than one program to time-share machine components.

N

Nesting - Including a block of statements of one kind into a larger
block of statements of the same kind, such as an iterative block within a
larger iterative block.

Not Capable - A tape status indicating the reel currently mounted cannot
be read by the control unit and drive. The Not Capable status would be
returned if an 800 bpi tape were mounted on a device that supported only
1600 and 6250 bpi, for example. Since it is not possible to read a Not
Capable tape to verify label type and contents, COS rejects (unloads) all
tapes that return a Not Capable status.

o

$OUT - A dataset that contains the list output from compilers and
assemblers unless the user designates some other dataset. At job end,
the job logfile is added to the $OUT dataset and the dataset is sent to a
front-end computer.

Operand - A character string in an expression that is operated on during
evaluation; types are integer constant, literal constant, symbolic
variable, and subexpresion.

Operating system - (1) The executive, monitor, utility, and any other
routines necessary for the performance of a computer system. (2) A
resident executive program that automates certain aspects of machine
operation, particularly as they relate to initiating and controlling the
processing of jobs.

Operator - A symbolic representation indicating the action to be
performed in an expression; types are arithmetic, relational, and logical
operators.

Overlaying - A technique for bringing routines into memory from some
other form of storage during processing so that several routines will
occupy the same storage locations at different times. Overlaying is used
when the total memory requirements for instructions exceeds the available
memory.

SR-OOll Glossary-II J-Ol

•

P

$PROe - A dataset to which in-line procedure definitions are written.

Parameter - A quantity in a control statement which may be given
different values when the control statement is used for a specific
purpose or process.

Parcel - A l6-bit portion of a word which is addressable for instruction
execution but not for operand references. An instruction occupies one or
two parcelsJ if it occupies two parcels, they may be in separate words.

Parenthetic string - A string delimited with parentheses instead of
apostrophesJ parentheses are treated as part of the string when eva1uted
except when preceded by an initial, parameter, equivalence, or
concatenation separator character.

Permanent dataset - A dataset known to the operating system as being
permanentJ the dataset survives deadstart.

Positional parameter - A parameter that must appear in a precise position
relative to the separators in the control statement.

Procedure - A named sequence of control statements and/or data that is
saved in a library for processing at a later time when activated by a
call to its name by a calling statementJ provides the capability of
replacing values within the procedure with other values.

Procedure defintion - The definition of a procedure that is saved in a
library to be called for processing at a later timeJ if defined in a job
control statement is called an in-line procedure definition.

Program - (1) A sequence of coded instructions that solves a problem.
(2) To plan the procedures for solving a problem. This may involve
analyzing the problem, preparing a flow diagram, providing details,
developing and testing subroutines, allocating storage, specifying I/O
formats, and incorporating a computer run into a complete data processing
system.

Program block - The block within a load module usually containing
executable code. It is automatically declared for each program (though
it may be zero-length). It is local to the modu1eJ that is, it can be
accessed from other load modules only through use of external symbols.
Data placed in a program block always comes from its own load module.

Program name - Also referred to as IDENT name or deck name, the name
contained in the loader PDT table at the beginning of each load module.

SR-OOl1 G1ossary-12 J-01

I
Program library - (PL) The base dataset used by the UPDATE utility. This
dataset consists of one or more specially formatted card image decks,
each separated by an end-of-file.

R

Record - A group of contiguous words or characters related to each other
by virtue of convention. A record may be fixed or variable length. (1)
In CRAY-l blocked format, a record ends with a record control word with
lOS in the mode field. (2) In an ASCII coded punched deck, each card
is a record. (3) For a listable dataset, each line is a rcord. (4) For
a binary load dataset, each module is a record.

Relational operator - An oprator that indicates the comparison to be
performed between the operands in an expression (-1 for a TRUE result and
o for a FALSE result); types are equal, not equal, less than, greater
than, less than or equal, and greater than or equal.

Relative address - An address defined by its relationship to a base
address (e.g., the (BA» such that the base address has a relative
address of O.

Relocatable address - An address presented to the loader in such a form
that it can be loaded anywhere in the memory field. A relocatable
address is defined as being relative to the beginning address of a load
module program block or common block.

Relocatable module - This is the basic program unit produced by a
compiler or assembler. CAL produces a relocatable module from source
statements delineated by IDENT and END. In FORTRAN, the corresponding
beginning statements are PROGRAM, SUBROUTINE, BLOCK DATA, or FUNCTION.
The corresponding end statement is END.

A relocatable module consists of several loader tables that define
blocks, their contents, and address relocation information.

Relocate - In programming, to move a routine from one portion of internal
storage to another and to adjust the necessary address references so that
the routine can be executed in its new location. Instruction addresses
are modified relative to a fixed point or origin. If the instruction is
modified using an address below the reference point, relocation is
negative. If addresses are above the reference point, relocation is
positive. Generally, a program is loaded using positive relocation.

SR-OOll Glossary-l 3 J-Ol

S

Sector - A physical area on disk equivalent to 512 CRAY-l words. In
CRAY-l blocked format, a block is also 512 contiguous words with a block
control word as the first word of the block. Therefore the internal
block size for the CRAY-l is equivalent to one CRAY-l disk sector. This
is the unit of data transfer between the CRAY-l mainframe and the I/O
Subsystem.

Separator - Synonym for delimiter.

String - A sequence of characters delimited by apostrophes or parentheses
which is to be taken literally as a parameter value~ see literal string
and parenthetic string.

Subexpression - An expression that is evaluated so that its result
becomes an operand.

Substitution parameters - Parameters on procedure definition prototype
statement or procedure calling statement which provide replacement values
to be substituted during evaluation for strings flagged within the
procedure body.

Symbolic variable - A string of one to eight alphanumeric characters,
beginning with an alpha character that represents values maintained by
COS and/or the user.

System dataset name verb - A verb that is the name of a systemrdefined
dataset in the System Directory Table (SDR); consists of an alphabetic
character which can be followed by one through six alphanumeric
characters.

I System logfile - A permanent dataset named $SYSTEMLOG.

I

System verb - Requests that COS perform a function~ consists of an
alphabetic character which can be followed by one through six
alphanumeric characters

T

Table - A collection of data, each item being uniquely identified either
by some label or by its relative position.

Tape block - A group of contiguous characters recorded on and read from
magnetic tape as a unit.

SR-OOll Glossary-14 J-Ol

Tape control unit - A piece of equipment connected to a block multiplexer
channel that provides the capability for controlling the operation of one
or more tape devices. Up to four control units may be combined to drive
a maximum of 16 tape devices. The control units are cross connected to
all devices. Such a configuration is called a 4x16 (four by sixteen).
If one control unit were to be connected to three devices, it would be
referred to as a lx3 configuration.

Tape density (bpi) - The number of bits per inch on magnetic tape. COS
supports 6250 bpi and 1600 bpi.

Tape format - The way tape datasets are read or written. In
intepchange fOPmat, each tape block of data corresponds to a single
logical record in COS blocked format. In tpanspapent fo~t, each tape
block is a fixed multiple of 512 words based on the density of the tape.

Tape volume - A reel of magnetic tape.

Tapemark - A special hardware bit configuration recorded on magnetic
tape. It indicates the boundary between combinations of datasets and
labels. It is sometimes called a filemark.

TDT - Tape Device Table entry. Contains one entry for each device in the
configuration. A TDT entry is used to control the activity associated
with a tape device and contains the six-word packet through which
requests to the I/O Subsystem are made.

Temporary dataset - A dataset which is not permanent and is available
only to the job that created it.

Time slice - The maximum amount of time during which the CPU can be
assigned to a job without re-evaluation as to which job should have the
CPU next.

Transparent format - One of two ways tape datasets are read or written.
Each tape block is a fixed multiple of 512 words. Transparent format is
the default tape dataset format and is designated by setting DF=TR when
accessing a tape dataset. This format produces a fixed-length block
dataset (16384 bytes at 1600 bpi or 32768 bytes at 6250 bpi) that may be
a CRAY blocked or unblocked dataset as far as any I/O routines are
concerned. The tape subsytem merely takes four (1600 bpi) or eight (6250
bpi) sectors and processes them as one physical tape block. When a short
block is read, it is considered to be EOD.

SR-OOll Glossary-IS J-Ol

I

U

Unit record device - A device such as a card reader, printer, or card
punch for which each unit of data to be processed is considered a record.

Unload - To remove a tape from ready status by rewinding beyond the load
point. The tape is then no longer under control of the computer.

Unsatisfied external - An external reference for which the loader has not
yet loaded a module containing the matching entry point.

User logfile - A dataset named $LOG created for a job when it is
initiated by the Job Scheduler.

v

Verb - The first nonblank field of a control statement; specifies the
action to be taken by COS during control statement evaluation.

Volume - A dismountable physical unit of storage media, for example, a
reel of magnetic tape.

Volume identifier - Up to six alphanumeric characters used to identify a
physical reel of tape. On labeled tapes, the volume identifier is
actually recorded on tape in the volume header label. Volume identifier
is synonomous with volume serial number.

VSN - Volume serial number. See volume identifier.

W

Word - A group of bits between boundaries imposed by the computer. Word
size must be considered in the implementation of logical divisions such
as character. The word size of the CRAY-l is 64-bits.

SR-OOll Glossary-l6 J-Ol

INDEX

INDEX

ABORT macro, (3)2-6
ACCESS control statement, (2)4-4
ACCESS macro, (3)4-9
ACCOUNT control statement, (2).1-10
ACQUIRE control statement, (2)5-1

Address relocation, (2)9-16
ADJUST control statement, (2)4-9
ADJUST macro, (3)4-10
Alphabetic characters, (1)4-3
Alphanumeric characters, (1)4-3
Analytical aids, (2)8-1
Apostrophes

in block control statements, (1)4-13
in procedure definitions, (2)2-7

ARGADD macro, (3)5-6
ASCII character set, B-1
ASSIGN control statement, (2)3-1
Asynchronous READ/WRITE, (3)3-8
AUDIT control statement, (2)7-6

Begin Code Execution Table, A-18
BGN (see Begin Code Execution Table)
BKSP macro, (3)3-16
BKSPF macro, (3)3-17
Blank common, (2)10-4,10-13
Blank compression, (1)2-10
Block control statements

parentheses, (1)4-11
Block control word (BCW), (1)2-6
Blocked datasets

blank compression, (1)2-6
block control word, (1)2-4.1
record control word, (1)2-5

Blocked format, (1)2-5
BREG macro, (3)5-5
BUFCHECK macro, (3)3-13
BUFEOD macro, (3)3-12
BUFEOF macro, (3)3-11
BUFIN macro, (3)3-9
BUFINP macro, (3)3-9
BUFOUT macro, (3)3-10
BUFOUTP macro, (3)3-10
BUILD statement, (2)11-3
BUILD directives

COpy directive, (2)11-7
FROM directive, (2)11-6
LIST directive, (2)11-9
OMIT directive, (2)11-7
examples, (2)11-9

Bulletin, system, (1)3-8

CALL control statement, (2)1-9
CALL macro, (3)5-1

SR-OOll Index-l

CALLV macro, (3)5-2
$CCS, (1)4-11
Central memory assignment and

characteristics, (1)1-2
Central Processing Unit, (1)1-1
CFT linkage macros, (3)5-1
Character set, B-1
CHARGES control statement, (2)1-11
CLOSE macro, (3)2-17
Comment (*) control statement, (2)1-6.1
COMPARE control statement, (2)8-11
Compression, blank, (1)2-10
Conditional control statements, (2)2-1,13

block with ELSE and ELSEIF, (2)2-19
conditional block, (2)2-13
ELSE control statement, (2)2-16
ELSEIF control statement, (2)2-18
ENDIF control statement, (2)2-14
IF control statement, (2)2-14
job advancement, (1)3-4
table entries, A-21

Constants
ingeger, (1) 4-7
literal, (1) 4-7

Control statements
blanks, (1)4-1
comments, (1)4-1
continuation, (1)4-1
dataset name verbs, (1)4-2, 3
echo macro, (3)2-4
file, (1) 3-1,4-1
library-defined verbs, (1)4-3
literal delimiter, (1)4-5
parameter, (1)4-4
separator, (1)4-4
syntax, (1) 4-1
syntax violations, (1)4-2
system verbs, (1)4-2
verb, (1)4-2
verb search order, (1)4-3

Control word
block, (1)2-6
record, (1) 2-7

CONTRPV macro, (3)2-9
COPYD control statement, (2)6-3
COPYF control statement, (2)6-2
COPYR control statement, (2)6-1
COS (see Operating System)
CPU (see Central Processing Unit)
Cracking, parameters, (1)4-11
CRAY-l configuration, (1)1-1
Cross-reference listing, (2)8-16
$CS , (1)3-3, 4, 4-1
CSECHO control macro, (3)2-4

J-Ol

$DUMP, (2) 8-1
&DATA control statement, (2)2-4
Dataset

accessing, (2)4-3,5-1
changing size of, (2)3-2
control, (2) 3-1
control statement, (1) 4-,1
creation and definition, (2)3-1
disposition codes, (1) 2-15, (2) 5-5
editions, (2)4-1,4-7
execute-only, (1)2-3
formats, (1)2-5
interactive, (1)2-4
maintenance control words, (2)4-2
memory resident, (1)2-4
name verb, (1)4-2
naming conventions, (1)2-5
size, (2)3-2
staging, (2)5-1
types, (1)2-1
user identification, (2)4-4,4-6
utilities, (2) 6-1

Dataset Catalog, (2)4-1
Dataset Definition List, A-19
Dataset management macros, (3)2-13
Dataset name verb, (1)4-2
Dataset Parameter Area, (3)2-13,A-7
Datasets

blocked, (1) 2-4
interactive, (1)2-4,2-7
local, (1) 1-6,2-1
magnetic tape, (1)2-2
memory resident, (1)2-4
permanent, (1)1-6,2-1
temporary, (1)2-1
unblocked, (1)2-7

DATE macro, (3)2-19
Date as symbol, (1)4-9
DDL (see Dataset Definition List)
DEBUG control statement, (2)8-6
Debugging macros, (3)2-21
Default value in procedure definition,

(2)2-7
DELAY macro, (3)2-6
DELETE control statement, (2)4-11
DELETE macro, (3)4-10
Disk storage units, (1)1-6,1-7
DISPOSE control statement, (2)5-4
DISPOSE macro, (3)2-18
Disposition codes, dataset, (1)2-15
DSC (see Dataset Catalog)
DSDUMP control statement, (2)8-8
DSP (see Dataset Parameter Area)
DSP macro, (3)2-13
DUMP control statement, (2)8-2
DUMP macro, (3)2-22
DUMPJOB control statement, (2)8-1
DUMPJOB macro, (3)2-13

ECHO control statement, (2)1-13
ELSE control statement, (2)2-16
ELSEIF control statement, (2)2-18
ENDIF control statement, (2)2-14

SR-OOll Index-2

ENDLOOP control statement, (2)2-22
ENDP macro, (3)2-10
ENDPROC control statement, (2)2-5
ENDRPV macro, (3)2-10
ENTER macro, (3)5-2
Error codes, F-1
Execute-only datasets, (1)2-3
Exchange package, E-1
EXIT control statement, (2)1-5
EXIT control statement macro, (3)5-4
EXITLOOP control state~ent, (2)2-22
Expression

definition and kinds, (1)4-7
evaluation, (1)4-11
operator table, (1)4-10
write value on logfi1e, (2)8-13

Field length, (2)1-5
FLODUMP control statement, (2)8-14
Flow trace tables, (2)8-14
Format

blocked, (1) 2-5
interactive, (1)2-10
interchange, (1)2-11
transparent, (1)2-13
unblocked, (1)2-10

Formats
dataset, (1)2-5
tape I/O, (1)2-11

FORTRAN I/O, (1)2-7,D-15
FORTRAN I/O routines

buffered, D-24.2
formatted, D-15
positioning, D-25
unformatted, D-15

FREAD macro, (3)2-32
Front-end computer, (1)1-1
Function codes, C-1
FWRITE macro, (3)2-33

GETMODE macro, (3)2-39
GETPARAM routine, (1)4-11
GETPOS macro, (3)3-18
GETSWS macro, (3)2-40

Hardware requirements, (1)1-1

IF control statement, (2)2-14
$IN , (1) 3-3, 4
In-line procedure, (2)2-1
INPUT macro, (3)2-24
INSFUN macro, (3)2-40
Integer constants, (1)4-7
Interactive

capabilities, (1)1-1
datasets, (1)2-4
format, (1)2-10

Interchange format, (1)2-11
Interfaces, user logical I/O, (1)2-13

J-Ol

I/O, (1) 2-7
IOAREA control statement, (2)1-8
IOAREA macro, (3)2-12
Iterative control statements, (2)2-1,21

ENDLOOP control statement, (2)2-22
EXITLOOP control statement, (2)2-22
LOOP control statement, (2)2-21
table entries, A-21

JBI (see JCL Block Information Table)
JCB (see Job Communication Block)
JCL Block Information Table, A-23
JCL parameter expressions, (1)4-7
JCL Symbol .Table, A-24
JDATE macro, (3)2-20
Job

accounting information, (1)3-8
class, (2) 1-4
definition to system, (1)2-2
field length as variable, (1)4-9
flow, (1) 3 - 2
identification, (2)1-3
logfile, (1) 3-7
memory field length, (2)1-3
name, (2) 1-3
priority, (2)1-4
processing requirements, (2)1-3
protect for recovery, (2)1-12
rerunnability, (2)1-7
resource accounting, (2)1-11
time as symbol, (1)4-9
time limit, (2)1-3
user area, A-I
user field, (1)1-4,A-l
user number, (2)1-4

Job Communication Block, (1)1-5,A-2
JOB control statement, (2)1-3(2)2-2
Job control statements, (1)4-1,(2)1-1
Job control language (see Control statements)
Job control macros, (3)2-1
Job deck dataset, (1)3-1
Job deck structure, (l)3-1
Job definition, (2)1-3
Job flow

advancement, (1)3-3
abort, (1)3-3
normal, (1) 3-3

entry, (1) 3-2
initiation, (1)3-2
reprieve processing, (1)3-6,(3)2-7
rerun, (1) 3-5
termination, (1)3-4

Job identification, (2)1-3
Job processing, (1)3-2
Job step abort, (1)4-1,(2)2-3
Job step accounting, (2)1-10
Job Table Area, (1)1-5, A-2
JST (see JCL Symbol Table)
JTA (see Job Table Area)
JTIME macro, (3)2-5

SR-OOll Index-3

Keyed default value in procedure definition,
(2)2-7

Keyword parameters, (1)4-6
in procedure definition, (2)2-6

Label Definition Table, A-25
LDR control statement, (2)9-1
LDT (see Label Definition Table)
LDT macro, (3)4-7
LFT (see Logical File Table)
Library datasets, (2)11-1
Library-defined verb, (1)4-2, 3
Library searchlist, (1)4-3

change, (2) 1-14
LIBRARY control statement, (2)1-14
Literal constants, (1)4-7
Literal string, (1)4-11
Loader

map control, (2)9-9
errors, (2) 9-7

Loader, Overlay (see Overlay Loader)
Loader, Relocatab1e (see Re1ocatab1e Loader)
Load map

block list, (2)9-9
description, (2)9-9
entry list, (2)9-11
example, (2)9-10

LOADREGS macro, (3)2-38
Local dataset name, (1)2-4
Local dataset name verb, (1)4-2, 3
Local datasets, (1)2-1
$LOG, (1)3-3, 4
Logfile

description, (1)3-6
example, (1)3-7
print JCL messages, (2)1-13

Logical File Table, A-6
Logical I/O, (1)2-7,D-l
Logical I/O macros, (3)3-1
~ asynchronous read/write, (3)3-8

positioning, (3)3-16
synchronous read/write, (3)3-1
unblocked read/write, (3)3-13

Logical I/O routines, (1)2-7,D-1
Logical operators, (1)4-11
Logical Record I/O

positioning routines, D-11
read routines, D-1
write routines, D-6.1

LOOP control statement, (2)2-21

Macro instructions, (3)1-1
Magnetic tape

characteristics, (1)1~8

datasets, (1)2-2
Maintenance Control Unit, (1)1-1
Management, permanent dataset, (3)4-9
Mass storage

subsystem, (1)1-1, 1-5
characteristics, (1)1-5
permanent datasets, (1)2-2

J-Ol

MCU. (see Maintenance Control Unit)
Memory

assignment, (1)1-2
field length, (2)1-5
operating system resident, (1)1-4
size, (1) 1-1
user area, (1)1-4, A-I

Memory-resident COS, (1)1-4
Memory resident datasets, (1)2-4
MEMORY macro, (3)2-2
MESSAGE macro, (3)2-3
MODE control statement, (2)1-5
MODE macro, (3)2-4.1
MODIFY control statement, (2)4-9

Named common, (2)10-4,10-13
Naming conventions, dataset, (1)2-5
NORERUN control statement, (2)1-6
NORERUN macro, (3)2-11

ODN (see Open Dataset Name Table)
Open Dataset Name Table, A-21
Operands, (1)4-7
Operating mode, (2)1-4
Operating system

description, (1)1-1
job processing, (1) 3-2
memory assignment to, (1)1-3
memory resident COS, (1)1-3

Operators, expression, (1)4-8
arithmetic, (1)4-8
relational, (1)4-8
logical, (1)4-11

OPEN macro, (3)2-15
examples, (3) 2-16

OPTION control statement, (2)1-15
OPTION Table, A-22
OPT (see OPTION Table)
$OUT, (1)3-3, 4
OUTPUT macro, (3)2-27
Overlay calls

FORTRAN, (2)10-9,10-16
CAL language, (2)10-10,10-17

Overlay directives
FILE directive, (2)10-2
OVLDN directive, (2)10-2
OVLL directive, (2)10-13
POVL directive, (2)10-6
ROOT directive, (2)10-4
SBCA directive, (2)10-3
SOVL directive, (2)10-6

Overlay generation
directives, (2)10-2,10-13
examples, (2)10-7,10-15
log, (2)10-11,10-18
rules, (2) 10-7,10-14

Overlays
execution of, (2)10-8
levels, (2)10-3
Type 1, (2)10-3
Type 2, (2)10-11

SR-OOll Index-4

Parameters
definition, (1)4-4
interpretation of, (1)4-11
keyword, (1) 4-6
positional, (1)4-4

Parentheses
in block control statements, (1)4-13
in procedure definitions, (2)2-7

PDD (see Permanent Dataset Definition Table)
PDD macro, (3)4-1
PDSDUMP control statement, (2)7-1
PDSLOAD control statement, (2)7-4
Permanent Dataset

Definition Table, (3)4-1,A-13
Permanent datasets

control statements, (2)4-1,7-1
definition, (3)4-1
macros, (3)4-1
management, (3)4-9
mass storage, (1)2-2
system, (1) 2-2
user, (1) 2-1
utilities, (2)7-1

POSITION macro, (3)3-20
Positional parameters, (1)4-4

in procedure definition, (2)2-6
PRINT control statement, (2)8-13
$PROC, (2) 1-14
PROC control statement, (2)2-3
Procedure definition, (2)2-1

apostrophes and parentheses, (2)2-7
&DATA control statement, (2)2-4
ENDPROC control statement, (2)2-5
examples, (2)2-8
format, (2) 2-2
PROC control statement, (2)2-3
Procedure definition body, (2)2-4
Prototype control statement, (2)2-3
Substitution parameters, (2)2-5

Procedure calling statement, (2)1-9
Program module groups, (2)11-1
pr.ogram modules, (2) 11-1
Program module names, (2)11-1
Program module ranges, (2)11-2
Prototype statement, (2)2-3

READ macro, (3)3-1
Read routines, D-l
READC macro, (3)3-4
READCP macro, (3)3-4
READP macro, (3)3-1
READU macro, (3)3-14
RECALL macro, (3)2-5
Record control word, (1)2-7
RELEASE control statement, (2)3-4
RELEASE macro, (3)2-17
Relocatable loader

features of, (2)9-1
LDR control statement, (2)9-1
load map, (2)9-7
map control, (2)9-4
selective load, (2)9~10

J-Ol

Relocatable overlays
address relocation, (2}9-16
description, (2}9-13
generation, (2}9-13
existing, memory layout, (2}9-14
image, memory layout, (2}9-15

Relocation, address, (2}9-16
Reprieve processing, (1}3-6

classes, (3) 2-9
error codes, F-l
mask values, (3}2-9

RERUN control statement, (2}1-7
RERUN macro, (3)2-11
Resource accounting, (2)1-10
RETURN control statement, (2)1-9
REWIND control statement, (2)6-5
REWIND macro, (3)3-16
RFL control statement, (2)1-6
ROLL macro, (3)2-10
ROLLJOB control statement, (2)1-12

SAVE control statement, (2)4-2
SAVE macro, (3)4-9
SAVEREGS macro, (3}2-37
SDR (see System Directory Table)
Selective load, (2)9-11
Selective load directives

EXCLUDE directive, (2)9-12
INCLUDE directive, (2)9-12

Sense switch as symbol, (1)4-9
Separators, (1}4-4,5
SET control statement, (2)1-12
SETPOS macro, (3)3-19
SETRPV macro, (3)2-7
SKIPD control statement, (2)6-5
SKIPF control statement, (2)6-4
SKIPR control statement, (2)6-3
SNAP macro, (3)2-21
Startup, system, (1)1-1,1-2
Status codes, F-4
Strings, (1)4-11

continuation, (1)4-12
length, (1) 4-12
literal, (1) 4-11
null, (1)4-12
parenthetic, (1)4-11

Subexpression, (1)4-8
SUBMIT control statement, (2)5-9
SUBMIT macro, (3)2-18
Substitution parameters, (2)2-1
SWITCH control statement, (2)1-6
SWITCH macro, (3)2-4.1
Symbolic dump, (2)8-6
Symbolic variable, (1)4-8

change value, (2)1-12
table of, (1}4-9

SYSTD macro, (3)2-39
SYSREF control statement, (2)8-16
System action request macros, (3)2-1
System bulletin, (1)3-8
System dataset name verb, (1)4-2, 3
System Directory Table, (1)4-3

SR-OOll Index-5

System error codes, F-l
in expression, (1)4-9

System initialization, (1)1-2
System level as symbol, (1)4-9
System permanent datasets, (1)2-2
System startup, (1)1-1
System verb, (1)4-2

Tape I/O formats, (1)2-11
Temporary datasets, (1)2-1
Terminator, (1)4-5
TIME macro, (3)2-19
Time as symbol, (1)4-9
Transparent format, (1)2-13
TREG macro, (3)5-5

UFREAD macro, (3)2-35
UFWRITE macro, (3)2-36
Unblocked

datasets, (1)2-7
format, (1)2-10
READ/WRITE, (3)3-13

User account number, (2)1-10
User area of memory, (1)1-3
User field, (1)1-5, A-I
User logical I/O interface, (1)2-13
User permanent datasets, (1)2-1

Verb
control statement, (1)4-2
search order, (1}4-3
types of, (1)4-2, 3

WRITE macro, (3)3-5
Write routines, D-6.1
WRITEC macro, (3}3-6
WRITECP macro, (3}3-6
WRITED macro, (3)3-8
WRITEDS control statement, (2)6-6
WRITEF macro, (3)3-7
WRITEP macro, (3)3-5
WRITEU macro, (3)3-15

J-Ol

COS

CONTROL STATEMENT

AND

MACRO SUMMARY

COS CONTROL STATEMENT
AND MACRO SUMMARY

This section summarizes all of the control statements in the COS job
control language and the macros included with cos.

Control statement section

A parameter shown in all UPPERCASE letters must be coded literally as
shown, while a value must be substituted for an italieized item. For
certain parameters, all possible values that can be taken are listed in
braces~ in these cases, the default value, if one exists, is underlined.

In the left margin is a reference to the location of additional
information on each control statement. In most cases, this reference is
to a page number in Part 2 of this manual. However, for those control
statements that are documented in other Cray Research publications, the
reference is to the corresponding publication number.

Macro instruction section

Detailed descriptions of each macro instruction provided with cos are
given in part 3 of this manual. Included here is a list of these macros
with references to their locations in part 3.

SR-OOII Summary-l J

I

CONTROL STATEMENTS

~

1-7

2-4

4-4

1-10

5-1

4-9

SM-0036

3-1

7-6

11-3

SR-OOOO

1-8

SR-0009

1-11

8-11

6-3

6-2

6-1

SM-0050

8-6

4-11

6-4

8-8

8-2

8-1

1-13

2-16

2-18

2-14

2-22

2-5

1-5

2-22

8-14

2-14

1-8

1-3

9-1

Control statement

* comment te:r:t

&DATA,dn.

ACCEss,DNmdn,PDN=pdn,ID=uid,ED=ed,R=Pd,w~t,M~,UQ,LE,NA,CS=C8,DF=df,DT=dt,FSEC~8ec,LB=Zb,MBs~bs,NEW,
XDT=yyddd,RT=7"t,VOL=VOZ1 :vo~: • •• voZn,CT=ct,RF=7"f,RS=7"s.

ACCOUNT,AC=aC,PW"'Pl".

ACQUIRE,DN=dn,PDN=pdn,ID=uid,ED=ed,RT=Pt,R=Pd,w~t,M~,UQ,TEXT=te:r:t,MF~f,TID=tid,DF=df.

ADJUST,DN=dn,NA.

APML, Imidn, L=Zdn, B=bdn, E=edn, ABORT, DEBUG ,options, LIST=name , s=sdn, sYM=sym, T=bst , x=a:dn.

ASSIGN,DN-dn,s-size,Bs=bZk,DV=Zdv,DT=dt,DF=df,RDM,U,MR,ut=Zm,Dc=dc,BFI=bfi,A=un.

AUDIT,L-Zdn,B=bdn,PDN=pdn, ID=uid,PREFIX=pf:r:,Dv=dvn,sz=dsz,x=7ml/dd/yy: 'hh:mm: ss' ,TCR=7ml/dd/yy: 'hh:mm: ss' ,
TLA=mm/dd/yy: 'hh:mm:ss' , Tut=7ml/dd/yy: 'hh:mm:ss'.

BUILD,IDidn,L=Zdn,OBL=odn,B=bdn,NBL=ndn,soRT,NODIR,REPLACE.

CAL,I-idn,L .. Zdn,B=bdn,E-edn,ABORT,DEBUG,options,LIST=name,s=sdn,SYM=8ym,T=bst,x=:r:dn.

CALL,DN .. dn,CNs.

CFT,I-idn,L=Zdn,B=bdn,c.cdn,E=n,ON=st7"ing,OFF=8t7'ing,TRUNC=nn,AIDs=aids,oPT=option.

CHARGES, SR-options.

COMPARE,A=adn,B-bdn,L=Zdn,DF=df,ME=ma:r:e,CP=cpn,Cs=csn,CW=cW:!. [:c"'21 ,ABORT=ac.

COPYD,I-idn,o .. odn.

COPYF, Imidn, o-odn ,NF=n.

COPYR, I "'idn, o=odn, NR=n.

CSIM,L-Zdn,I .. idn,LINEs=n,T=tZ,MAXBK=ms,VMEM=vm.

DEBUG, I=idn,o-odn,DUMP=ddn, TRACE-n, SYMS=sym,NOTSYMS=nsym,MAXDIM=dim, BLOCKS -bZk,NOTBLKS=nbZk,PAGES=np,COMMENT='st7"ing'.

DELETE ,DN=dn, NA.

DISPOSE, DN"Iin, SDN-sdn, DC=dc, DF=df ,MF=mf , SF=sf, ID=uid, TID=tid, ED=ed, RT=Pt, R=7"d, W=;vt ,M=mn, TEXT=te:r:t ,
WAIT,NOWAIT,DEFER,NRLS.

DSDUMP, I .. idn,ocodn,DF=df, IW=n,NW=n, IR"n,NR=n, IF=n,NF=n, IS=n,NS=n.

DUMP, Icidn,o=odn, JiW=ffA>a, LW=ZfA>a,JTA,NXP,V,DSP,FORMAT=f,CENTER.

DUMPJOB.

ECHO,ON=cZass1 :cZass2: • •• :cZassi,OFF=cZass1 :cZass2: ••• :cZassi·

ELSE.

ELSEIF (e:r:pr>ession)

ENDIF.

ENDLOOP.

ENDPROC.

EXIT.

EXITLOOP. or EXITLOOP (e:r:pr>ession)

FLODUMP.

IF (e:r:pr>ession)

IOAREA {, LOCK }.
UNLOCK

JOB,JN=jn,M=fZ ,T=tZ ,P=p,US=Us ,OLM-oZm,CL=jcn, *gn=nr>.

LDR,DN=dn, LIB=Zdn, NOLIB=Zdn, LLD,AB=adn,MAP=op,SID= I str>ing' ,T=troa,NX,DEB=Z,C ,oVL=dir>,CNS,NA,USA,L=Zdn,SET=vaZ ,E=n, I=sdir>.

SR-OOll Summary-2 J-Ol

I

1-14

2-21

1-5

4-9

1-7

1-15

7-1

7-4

a-13

2-3

3-4

1-7

1-9

6-5

1-6

1-12

4-12

1-12

6-5

6-4

6-3

SR-0033

5-9

1-6

a-16

Control statement

LOOP.

MODE,M=mode.

MODIFY, DN=dn, PDN=pdn, ID=uid, ED=ed, RT=pt, R=pd, w=wt, W=wt,M=mn, NA, EXO= {ON }.
OFF

NORERUN {, ENABLE }.
DISABLE

OPTION,LPp=n,STAT={ON }
OFF'

PDSDUMP, DN"<in, Dv=Ld v , PDS=pda , CW=cw , ID=uid, US=uan, ED=ed, X , C , D , I ,0, S •

PDSLOAD,DN=dn,PDs=pda ,cw=cw, ID=uid, US=uan, ED=ed, Dv=dvn,A, I,O,S,NA.

PRINT (expr>eaaionJ

PROC.

RELEASE,DN=dn1 :dn2:'" :dna,HOLD. §

RERUN {ENABLE }.
'DISABLE

RETURN,ABORT.

REWIND,DN"<in1:dn2:'" :dna·

RFL,M=f"L.

ROLLJOB.

SAVE,DN=dn,PDN=pdn, ID=uid,ED=ed,RT=pt, R=r>d,W=wt,M=mn,UQ,NA,EXO={ON }.
OFF

SET (aymbol.=expr>eaaion)

SKIPD ,DN=dn.

SKIPF ,DN=dn,NF=n.

SKIPR,DN=dn, NR=n.

SKOL, I=idn, L=l.dn,x=;xdn,E=edn,o=odn,M=mdn,VIEW ,LISTOFF.

SUBMIT, DN=dn, S ID=mf, DID=mf, TID=tid, DEFER, NRLS.

SWITCH, n=x.

SYSREF ,x=a:dn, L=l.dn.
F

SR-0013 UPDATE,p=pl.dn, I=idn,c=cpl.dn,N=npl.dn,L=l.dn,E=edn,s=adn, *=m,/=c,Dw=dw,DC=dc, [, Q=dk1 :dk2:" .dkn I, [optional.

6-6 WRITEDS,DN=dn,NR=nr>,RL=pl..

§ Deferred implementation

SR-OOll Summary-3 J-Ol

Page no. Page no.
Macro instruction Part 3 Macro instruction Part 3

ABORT 2-6 LDT 4-7

ACCESS 4-9 LOADREGS 2-38

ADJUST 4-10 MEMORY 2-2

ARGADD 5-6 MESSAGE 2-3

BKSP 3-17 MODE 2-4.1

BKSPF 3-18 NORERUN 2-11

BREG 5-5 OPEN 2-15

BUFCHECK 3-13 OUTPUT 2-27

BUFEOD 3-12 PDD 4-1

BUFEOF 3-11 POSITION 3-21

BUFIN 3-9 READ 3-1

BUFINP 3-9 READC 3-4

BUFOUT 3-10 READCP 3-4

BUFOUTP 3-10 READP 3-1

CALL 5-1 READU 3-14

CALLV 5-2 RECALL 2-5

CLOSE 2-17 RELEASE 2-17

CONTRPV 2-9 RERUN 2-11

CSECHO 2-4 REWIND 3-16

DATE 2-19 ROLL 2-10

DELAY 2-6 SAVE 4-9

DELETE 4-10 SAVEREGS 2-37

DISPOSE 2-18 SETPOS 3-19

DSP 2-13 SETRPV 2-7

DUMP 2-22 SNAP 2-21

DUMPJOB 2-13 SUBMIT 2-18.1

ENDP 2-10 SWITCH 2-4.1

ENDRPV 2-10 SYSID 2-39

ENTER 5-2 TIME 2-19

EXIT 5-4 TREG 5-5

FREAD 2-32 UFREAD 2-35

FWRITE 2-33 UFWRITE 2-36

GETMODE 2-39 WRITE 3-5

GETPOS 3-18 WRITEC 3-6

GETSWS 2-40 WRITECP 3-6

INPUT 2-24 WRITED 3-8

I NSFUN 2-40 WRITEF 3-7

IOAREA 2-12 WRITEP 3-5

JDATE 2-20 WRITEU 3-15

JTIME 2-5

SR-OOll Summary-4 J-Ol

READERS COMMENT FORM

CRAY-OS Version 1 Reference Manual SR-OOll K

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ____________________________________ __

JOB TITLE _________________ _

CII=littt":-r' FIRM _________________________________ __
RESEARCH, INC.

ADDRESS _________________________________ __

CITY ________________ STATE ___ ZI P ____ _

FOLD

FOLD

- -- - - - ---t

Attention:
PUBLICATIONS

111111

BUSINESS REPLY CARD
HRST CLASS PERMIT NO 61e4 ST PAUL. MN

POSTAGE WILL BE PAlO BY Ar10RESSEE

CC:=:li=li. a :-t'
RESEARCH. INC.

1440 Northland Drive
Mendota Heights, MN 55120
U.S.A.

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

---------------------------------------~

C')
c
~

> r o z
C)

~
:I:
Cii
C
Z
m

READERS COMMENT FORM

CRAY-OS Version 1 Reference Manual SR-OOll K

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ____________________________________ ___

JOB TITLE ____________________ _

FIRM __________________ ---------------------- RESEARCH, INC.
ADDRESS ____________________________ -------

CITY ______________ STATE ___ ZIP ___ _

FOLD

FOLD

- -- - - - ---I

Attention:
PUBLICATIONS

111111

BUSINESS REPLY CARD
fiRST CLASS PERMIT NO 61e4 ST PAUL. MN

POSTAGE WILL BE PAID BY Ar'\DRESSEE

Cli -.'" a :-r-
RESEARCH. INC.

1440 Northland Drive
Mendota Heights, MN 55120
U.S.A.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

-----------------------------------~---I

STAPLE

C')
C
-4
> r o z
C)

-4
J:
C;;

!:
z
m

