CRAY-1®
COMPUTER SYSTEMS

CRAY-OS VERSION 1
REFERENCE MANUAL

SR-0011

=R AY"

CRAY-1®
COMPUTER SYSTEMS

CRAY-0OS VERSION 1
REFERENCE MANUAL

SR-0011

Copyright® 1976, 1977, 1978, 1979, 1980, 1981, 1982 by
CRAY RESEARCH, INC. This manual or parts thereof
may not be reproduced in any form without permission of
CRAY RESEARCH, INC.

R AN

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SR-0011

Each time this manual is revised and reprinted, all changes issued against the previous version in the form of change packets are
incorporated into the new version and the new version is assigned an alphabetic level. Between reprints, changes may be issued
against the current version in the form of change packets. Each change packet is assigned a numeric designator, starting with
01 for the first change packet of each revision level,

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner, Changes to(s:art of a page are noted by a change bar along the margin of the page, A change bar in the margin opposite
the page number indicates that the entire page is new; a dot in the same place indicates that information has been moved from
one page to another, but has not otherwise changed.

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to:
CRAY RESEARCH, INC.,

1440 Northland Drive,

Mendota Heights, Minnesota 55120

Revision Description

June 1976 - First printing

A September 1976 - General technical changes; changes to JOB,
MODE, RFL, and DMP statements; names of DS and RETURN changed
to ASSIGN and RELEASE. STAGEI deleted, STAGEO replaced by
DISPOSE. RECALL macro added and expansions provided for all
logical I/0 macros. RELEASE, DUMPDS, and LOADPDS renamed to
DELETE, PDSDUMP, and PDSLOAD. Detailed description of BUILD
added (formerly LIB). EDIT renamed to UPDATE,

B February 1977 - Addition of Overlay Loader; deletion of Loader
Tables (information now documented in CRI publication
SR-0012) ; deletion of UPDATE (information now documented in
CRI publication SR-0013); changes to reflect current
implementation.

C July 1977 - Addition of BKSPF, GETPOS, and POSITION logical
I/0 macros and $BKSPF, $GPOS, and $SPOS routines. Addition of
random I/0. Changes to dataset structure, JOB, ASSIGN, MODE,
and DUMP statements; BUILD; logical I/0 and system action
macro expansions. General technical changes to reflect
current implementation.

Cc-01 January 1978 - Correction to DISPOSE and LDR control statement
documentation, addition of description of $WWDS write routine,
miscellaneous changes to bring documentation into agreement
with January 1978 released version of the operating system.

D February 1978 - Reprint with revision. This printing is
exactly the same as revision C with the C-01 change packet
added.

D-01 April 1978 - Change packet includes the addition of the ADJUST

control statement; MODE and SWITCH macros; and PDD, ACCESS,
SAVE DELETE, and ADJUST permanent dataset macros.
Miscellaneous changes to bring documentation into agreement
with released system, version 1.01.

SR-0011 ii)

Revision

Description

E

E-01

F-01

F-02

G-01

SR-0011

July 1978 - Represents a complete rewrite of this manual.
Changes are not marked by change bars. New features for
version 1.02 of the opeiating system that are documented
in this revision include: addition of the MODIFY control
statement and the DSP, SYSID, and DISPOSE macros; the
addition of parameters to some control statements, the
implementation of BUILD. The POSITION macro has been
renamed SETPOS. Other changes to bring documentation into
agreement with released version 1.02 of the operating
system.

October 1978 - Change packet includes the implementation
of ACQUIRE and COMPARE control statements; changes to the
AUDIT and LDR control statements; changes to the MODE
control statement and macro; the addition of control
statement continuation, GETPARAM, and the GETMODE macro;
and other minor changes to bring documentation into
agreement with the released version 1.03 of the operating
system.

December 1978 - Revision F is the same as revision E with
change packet E-01 added. No additional changes have been
made.

January 1979 - Change packet includes implementation of
some features of BUILD; the addition of the BUFIN, BUFINP,
BUFOUT, BUFOUTP, BUFEOF, and BUFEOD macros and other minor
changes to bring documentation into agreement with the
released version 1.04 of the operating system.

April 1979 - Change packet includes the implementation of
the DEBUG, RERUN, and NORERUN control statements, the
RERUN, NORERUN, and BUFCHECK macros; changes to DUMP,
DSDUMP, AUDIT, and ASSIGN control statements;
implementation of job rerun and memory resident datasets.
Other minor changes were made to bring documentation into
agreement with the released version 1.05 of the operating
system.

July 1979 - Reprint with revision. This printing
obsoletes all previous versions. Changes are marked with
change bars. The changes bring this documentation into
agreement with the released version 1.06 of the operating
system.

December 1979 - Change packet includes the implementation
of the WAIT and NOWAIT options on the DISPOSE control
statement; the addition of a new DUMP format and CFT
Linkage Macros; and other minor changes to bring
documentation into agreement with the released version
1.07 of the operating system.

iii I

Revision

Description

H

SR-0011

January 1980 - Revision H is the same as revision G with
change packet G-01 added. No additional changes have been
made.

April 1980 - Revision I is a complete reprint of this
manual. All changes are marked by change bars. New
features for version 1.08 of the operating system that are
documented in this revision include: the addition of the
CALL and RETURN control statements, job classes, the NA
parameter on permanent dataset management control
statements, the NRLS parameter on the DISPOSE control
statement and PDD macro, and the CW parameter on the
COMPARE control statement. Changes to the LDR control
statement include the addition of the LLD, NA, USA, and I
pParameters and the new selective load directives. New
documentation has been added for unblocked I/0, including
descriptions of the READU and WRITEU macros. Other new
macros include ENDRPV, DUMPJOB and the debugging aids
SNAP, DUMP, INPUT, OUTPUT, FREAD, FWRITE, UFREAD, UFWRITE,
SAVEREGS, and LOADREGS. Documentation on CRAY-1
interactive capabilities and changes to reflect the CRAY-1
S Series have also been added. Other changes were made to
bring documentation into agreement with released Version
1.08 of the operating system.

With this revision, the publication number has been
changed from 2240011 to SR-0011.

October 1980 - Change.packet includes the implementation
of the IOAREA, SETRPV, ROLL, and INSFUN macros and the
IOAREA control statement; the addition of execute-only
datasets including adding the EXO parameter to the SAVE
and MODIFY control statements and the PDD macro; the
lengthening of the TEXT parameter field; the addition of
the DEB parameter to the LDR control statement; and a
change to the formats of the UFREAD and UFWRITE macros.
The DEBUG option allowing conditional execution of the
SNAP, DUMP, INPUT, and OUTPUT macros has been
implemented. Other minor changes were made to bring
documentation into agreement with the released version
1.09 of the operating system.

iv I-01

July 1981 - This change packet includes changes to Job Control
Language syntax; the addition of JCL block control statements
for procedure definition (PROC, ENDPROC, &DATA, and prototype
statement), conditional processing (IF, ELSE, ELSEIF, and
ENDIF), and iterative processing (LOOP, EXITLOOP, and
ENDLOOP); the addition of ROLLJOB, SET, LIBRARY, ECHO, PRINT,
FLODUMP, and SYSREF control statements; the addition of CSECHO
macro; the addition of CNS parameter to CALL statement,
REPLACE parameter to BUILD statement, ARGSIZE parameter to
ENTER macro, KEEP parameter to EXIT macro, USE parameter to
ARGADD macro; the addition of the two JCL tables JBI and JST.
Other minor changes were made to bring the documentation into
agreement with the released version of 1.10 of the operating

February 1982 - Reprint. This reprint incorporates revision I
with change packets I-01 and I-02. No other changes have been

June 1982 - This change packet includes the following
additions: magnetic tape characteristics, temporary and local
dataset clarification, mass storage permanent datasets,
magnetic tape permanent datasets, tape I/0 formats,
interchange format, transparent format, new accounting
information, *grn=nr parameter, several CHARGES parameters,

the OPTION control statement, procedure definition, HOLD
parameter, new information to the ACCESS control statement,
new tape dataset parameters, tape dataset conversion
parameters, SUBMIT job control statement, PDSDUMP and PDSLOAD
sample listings, SID parameter on the LDR control statement,
new loader errors, relocatable overlays, CONTPRV macro, SUBMIT
macro, unrecovered data error information, POSITION macro, new
PDD macro parameters, the LDT macro, and new glossary terms.
The information formerly in Appendix C is now in the COS
EXEC/STP/CSP Internal Reference Manual, publication SM-0040.
Other miscellaneous technical and editorial changes were made
to bring the documentation into agreement with version 1.11 of
the operating system.

Revision Description
I-02
system.
J
made.
J-01
K

SR-0011

July 1982 - Reprint. This reprint incorporates revision J
with change packet J-01. No other changes have been made.

PREFACE

This manual describes the external features of the CRAY-1l Operating
System (COS). The manual consists of three parts:

PART 1 SYSTEM DESCRIPTION

This part describes the system components, storage of
information on the CRAY-1l, and job processing. An
introduction to job control language is also included.

PART 2 JOB CONTROL LANGUAGE

In this part, the format of each COS control statement is
given, along with an explanation of the function of each.

PART 3 MACRO INSTRUCTIONS

In part 3, CAL language macro instructions are described
and in some cases examples are provided.

Other CRI publications that may be of interest to the reader are:
e CRAY-1 Hardware Reference Manual, publication 2240004
® CRAY-1 S Series Hardware Reference Manual, publication HR-0808

® CRAY-1 FORTRAN (CFT) Reference Manual, publication SR-0009

SR~0011 vii I-02

CONTENTS

P REFACE L] * L] L] L] L] L] L] L] L L] * . L] L] . * L] . * . L] . L] L] * ° L] . v i i
PART 1 SYSTEM DESCRIPTION

1 [INTRODUCTION e ® o @ & e o o o © 9 e © & e ~ 8 ® © © & o o o o l—l

HARDWARE REQUIREMENTS . « o « « o o o o o s s o s o s s ¢ o = 1l
SYSTEM INITIALIZATION . ¢ o o o o o o o s o s o o o o o o o @ 1-
CENTRAL MEMORY ASSIGNMENT AND CHARACTERISTICS .« ¢« o o o o o 1
Memory resident COS ¢« ¢ ¢« « ¢ o o o ¢ o ¢ ¢ s o o o s s o 1=
User area Of MEMOXY o o o o o o o o o o o ¢ o o o o o o o 1-
Job Table Area = JTA ¢ o ¢ o o ¢ o o o o o o o o o o 1-
User field o« v o o o o o o o o o o s o o o o s s o 1-5
MASS STORAGE CHARACTERISTICS ¢ o o o + o o o o o o o o s o o o 1-5
MAGNETIC TAPE CHARACTERISTICS. « « ¢ o o o o o o o o o o s o » 1-8

2 . DATASETS e ©®© & e e e o e & © o © o o o o O o o o o * o & o o o 2_1

DATASET TYPES . o o ¢ o o o o o o o o o o o s o o s o o o a s 2-1
Temporary datasets . « o o o o o o o o o o o o ¢ o o o 2-1
Iocal datasets . ¢ ¢ ¢ ¢ « o 2 o ¢ o o o 2 o o o o o o o 2-1
Mass storage permanent datasets . ¢« ¢« ¢ ¢ ¢ ¢ ¢ o o o o . 2-2
Magnetic tape datasets . ¢« ¢ ¢ ¢ ¢ ¢ o ¢ o ¢ o o o o o o 2-2

EXECUTE-ONLY DATASETS « o ¢ o o o o o o o s o o o o o o o o o 2-3

MEMORY~RESIDENT DATASETS o « ¢ o o o o 2 o o o o o o o s o o o 2-4

INTERACTIVE DATASETS « o o o o o o o ¢ o o o o o s o o o s o o 2-4

DATASET NAMING CONVENTIONS o ¢ ¢ o o o o o o o o o o o o o o o 2-5

DATASET FORMATS .« o o o o o o s o o o o s o o o o o o s o o o 2-5
Blocked fOrmat .+ o« o« o o o o o o o o o o o o o o o o o o 2-5

Block Control WOrd « « « o« o o o o o o o o o o o o o 2-6

Record Control WOXd . « « s o o o o o ¢ o o o o o o 2=-7

Blank compression . ¢ « ¢ o o ¢ o o o o o ¢ o o o o 2-10
Interactive format . « ¢ ¢« ¢ o« o ¢ o ¢ o o o o s o ¢ o o 2-10
Unblocked format . o« o« o o« o« o o o ¢ o o o o ¢ o o o o o 2-10

TAPE I/O FORMATS &« o« « o o o o o o o s o s o o o o s o s o o o 2-11
Interchange format . « ¢ ¢ ¢« o o o ¢ o ¢ o s o s o o o o 2-11
Transparent format . « o o o ¢ o ¢ o o o o o s o o o o o 2-13

USER LOGICAL I/O INTERFACES .+ o« o o o o o o o o o s o o o o o 2-13

DATASET DISPOSITION CODES &« o o ¢ o o o o o« o s o« o o o o o o 2-15

SR-0011 ix J-01

3. DECK STRUCTURE AND JOB PROCESSING

JOB DECK STRUCTURE . . .

GENERAL DESCRIPTION OF JOB FLOW

Job entry
Job initiation . .
Job advancement . .
Job termination . .
JOB RERUN . ¢ o & o o &
REPRIEVE PROCESSING . .

JOB LOGFILE AND ACCOUNTING

4., JOB CONTROL LANGUAGE . .

SYNTAX VIOLATIONS . . .

VERBS L] L] L] Ll L] L] L . .
System verbs . . .

Local dataset name verbs

Library-defined verbs .
System dataset name verbs

Verb search order .
SEPARATORS o« ¢ ¢ o o o o
PARAMETERS ¢ « o o o o @

Positional parameters .

Keyword parameters

JCL parameter expressions

Operands . . .
Operators . .

Expression evaluation
Parameter interpretation

STRINGS . ¢ o« ¢ o o o &«

String construction rules .
Apostrophes and parentheses
block control statement

PART 2 JCL CONTROL STATEMENT

1. INTRODUCTION AND JOB DEFINITION

.

S

INTRODUCTION e o o o o
JOB DEFINITION
JOB - JOB IDENTIFICATION
MODE - SET OPERATING MODE
EXIT - EXIT PROCESSING .
RFL - REQUEST FIELD LENGT

H

in JCL

o o o

SWITCH - SET OR CLEAR SENSE SWITCH . . .

* - COMMENT STATEMENT .

NORERUN - CONTROIL DETECTION OF NONRERUNNABLE

SR-0011

.

¢ o o e

e e o * e

FUNCTIONS

w
| !
[

i
AU Wb NN N

W www
| I |

NN > W WwWww
(U] 1 1 1
N =

' T
]
HFoOoJg~NNoadasaDdbwWwWwwWwNN

=

D
U

=3
I

-
L.

i
[}
=

L S Y N NG N
] I
s}
'—l

}
[}
N

=S
L}

—

w

J-01

INTRODUCTION AND JOB DEFINITION (continued)
RERUN - UNCONDITIONALLY SET JOB RERUNNABILITY .« . o« ¢ ¢ o o & 1-7
IOAREA - CONTROL USER'S ACCESS TO I/O AREA . & ¢ « o « o s o @ 1-8
CALL - READ CONTROL STATEMENTS FROM ALTERNATE DATASET 1-8
RETURN - RETURN CONTROL TO CALLER &+ ¢ & o o o s o o o« o o o o« 1-9
ACCOUNT - VALIDATE USER ACCOUNT . & « o o o o o s o o o o o » 1-10
CHARGES — JOB STEP ACCOUNTING . « « o o o o s = o o o o o o o 1-11
ROLLJOB — ROLL A USER JOB TO DISK &+ « & o « ¢ o o o o o o o & 1-12
SET ~ CHANGE SYMBOL VALUE . ¢ ¢ o o o o s o o o o o o o o o = 1-12
ECHO - Enable or suppress logfile meSSage€s « « « o o o o s o o 1-13
LIBRARY - List and/or change library searchlist . . . « . . . 1-14

2. JCIL CONTROL STATEMENTS BLOCKS =« ¢ o o o o o o« ¢ o o o o o o » 2-1
PROCEDURE DEFINITION ¢ o ¢ ¢ o o o o ¢ o o o o o s o o o o o = 2-1
Procedure definition format . « « ¢ ¢« ¢ « o o o o o ¢ o 2-2
PROC - Begin procedure definition , ¢« ¢ ¢« « & o « « 2-3
Prototype statement - Introduce a procedure 2-3
Procedure definition body . .« « ¢« ¢ ¢ ¢ ¢ ¢ o ¢ o . 2-4
&DATA - Procedure data . « « o o« o o « o o o o o o « 2-4
ENDPROC - End procedure definition . « « &« ¢« ¢ ¢ o« & 2=-5
Substitution parameters . . « ¢« o« ¢ + o o ¢ o o o s o o 2-5
Value substitution . ¢ ¢ o« ¢ o ¢ o ¢ o o o o o o o o o o 2-6
Positional parameters . . « « ¢ o « ¢ s o ¢ o o o o o o 2-6
Keyword parameters o« « o o o o o o o o o ¢ o o o o o 2-6
Positional and keyword parameters . « « o« o o o o o 2-7
Apostrophes and parentheses . ¢« ¢« « ¢ o o o o o o & 2-7

EXamMPleS + o o o o o o o o o o o o s o o s s o o o o o 2-

CONDITIONAL CONTROL STATEMENT PROCESSING +« « o « o o o o ¢ o o
Conditional block o « o o o o o o o o o o ¢ o o o o o o =
IF - Begin conditional block « v & ¢« ¢ ¢ ¢ ¢ o « o &

N Y N
[RN
W Ww

ENDIF - End conditional block . . ¢« ¢« ¢ ¢ ¢ o o o &« 2-14
COnditiOnal blOCk With ELSE e ® e e e e & @ 8 e e o e e » 2-15
ELSE - Define alternate condition .« ¢« ¢ « o« ¢ o o &« 2-16

Conditional block with ELSEIF « o ¢ ¢ « o o ¢ ¢ o o o o @ 2-17
ELSEIF - Define alternate condition . . .« . « ¢ « « 2-18
Conditional block with ELSE and ELSEIF . ¢« « « o o o o « 2-19
ITERATIVE CONTROL STATEMENT PROCESSING . ¢ « o o o o o o o o = 2-20
LOOP - Begin iterative block . ¢« ¢ ¢ ¢ o o o o o o o o &« 2=-21
ENDLOOP - End iterative bloCk « ¢« ¢ ¢« ¢ o ¢ o ¢ o« o o o « 2-22
EXITLOOP - End iteration . ¢« ¢ ¢« o« ¢ v o o o o o o s o 2~22

3. DATASET DEFINITION AND CONTROL « ¢ « o ¢ ¢ o o o o o o o o o o 3-1

ASSIGN -~ ASSIGN MASS STORAGE OR MAGNETIC TAPE DATASET
CHARACTERISTICS e e o © e o o o @ s o o e ® o e e s 2 e o 3-1
RELEASE — RELEASE DATASET. « « o o o s o s o o o o o o o o o o 3-4

SR-0011 xXi J-01

4, PERMANENT DATASET MANAGEMENT . o v & ¢ o o o o @

SAVE - SAVE PERMANENT DATASET . ¢ o« o o o o o o
ACCESS - ACCESS PERMANENT DATASET . « « « o o o«

Tape dataset parameters . . « ¢ « ¢ o o o »

Tape dataset conversion parameters
ADJUST - ADJUST PERMANENT DATASET .+ « o ¢ o o o«
MODIFY - MODIFY PERMANENT DATASET . + o« o o o o
DELETE - DELETE PERMANENT DATASET .« « « o o o »

5. DATASET STAGING CONTROL .« ¢ o ¢ o s o o o o o =

ACQUIRE - ACQUIRE PERMANENT DATASET . « o« o o+ »
DISPOSE - DISPOSE DATASET e ® e o e o o o o o o
SUBMIT - SUBMIT DATASET e ® e e & e * s s ° o o

6. DATASET UTILITIES .+ o « « o o o o o o o o o o @

COPYR - COPY RECORDS e ® e © e e e @ s o o o o o
COPYF - COPY FILES ¢« o« o o e ® o o s e e ° e o
COPYD - COPY DATASET e @ e o e e 9 e ¢ o e e o =

SKIPR — SKIP RECORDS « ¢ ¢« o o ¢ ¢ o o o o o o
SKIPF SKIP FILES ¢ o« ¢ o o o « o o« o o o o o o
SKIPD — SKIP DATASET o« ¢ « ¢ o o o o o o o o o =
REWIND - REWIND DATASET . o e o o e e o o o
WRITEDS - WRITE RANDOM OR SEQUENTIAL DATASET .« o

7. PERMANENT DATASET UTILITIES .« o o« « o o o o o

PDSDUMP -~ DUMP PERMANENT DATASET « o « ¢ & o o «
PDSLOAD - LOAD PERMANENT DATASET « « o « o o o o
AUDIT - AUDIT PERMANENT DATASET .+ ¢ o o « o o o

8. ANALYTICAL AIDS . « o o s o o o o o s o s o o o

DUMPJOB - CREATE SDUMP e e ©® e © 6 e o o o o o o
DUMP - DUMP REGISTERS AND MEMORY . &« « ¢ o o o+ o«

DEBUG - PRODUCE SYMBOLIC DUMP . ¢ o o o o« o & &
DSDUMP — DUMP DATASET =« « o o o o o o o o s s o
COMPARE - COMPARE DATASETS . . « . e s e s o
PRINT - WRITE VALUE OF EXPRESSION TO LOGFILE o« .
FLODUMP -~ FLOW TRACE RECOVERY DUMP ., . o« « o &
SYSREF - GENERATE GLOBAL CROSS-REFERENCE LISTING
Use Of SYSREF &+ ¢ o o o o o o o o o o o o »
Global cross-reference listing format . . .

SR-0011 xii

a N
11

N
1

I
vyt d»ww e

o ? N o

~
1
[

8-1
8-2

8-8

8-11
8-13
8-14
8-16
8-16
8-17

J-01

9., RELOCATABLE LOADER &« « o o o o o o o o o o o o«

LDR CONTROL STATEMENT . ¢ « o« o o o o o o o &
LOADER ERRORS ©. & ¢ o o o o ¢ o o o o o o o o
LOAD MAP ¢ o ¢ o o o o o o o o o o o o s o o o
SELECTIVE LOAD &« o « o o ¢ o o o o o o o o o o
RELOCATABLE OVERLAYS &« &« ¢ o ¢ o o o o s o o o

Generation of relocatable overlays . . .

Memory layout when relocatable overlays exist
Memory layout of a relocatable overlay image

Address relocation . « ¢ « o o o o o o o

10. OVERLAY TOADING .« o ¢ ¢ ¢ « o o o o o o o o o«

INTRODUCTION o« « o o o ¢ o o o o o o o o o o o
OVERLAY GENERATION + « ¢ ¢ o o o o o o o o o o
Overlay directives . ¢« o« ¢ ¢ ¢« o o o o &
FILE directive . o o« « o o o o o o &
OVLDN directive . ¢« ¢« o« o o o o o »

SBCA directive « « o o ¢ o o o o o &

TYPE 1 overlay structure . « « « « o o o
Type 1 overlay generation directives
Rules for Type 1 overlay generation
Example of Type 1 overlay generation
Execution of Type 1 overlays

Type 1 overlay calls « « « « o o o &
FORTRAN language call . « ¢« « o o &

CAL language call . « « o o o o o &«

Log of Type 1 overlay generation . .

Type 2 overlay structure « ¢« « &
Type 2 overlay generation directive
Rules for Type 2 overlay generation

Example of Type 2 overlay generation
Execution of Type 2 overlays
Type 2 overlay calls ¢« « ¢ ¢ « o o &
FORTRAN language call . . « « ¢ + &

CAL language call . ¢ ¢ « o o o o &

Log of Type 2 overlay generation . .

llo BUILD e © e e o @ e o © ° o ¢ ° o s & o o o o

INTRODUCTION o o ©o o o o o o o o o o o o o o o
Program module NamesS .« « o« o o o o s o o
Program module groups « « o o « o o o o o
Program module range€s « « « « o o o o o o
File output Sequence . « « o o o o o o «
File searchingmethod « « « ¢« ¢« o ¢ « « &

BUILD CONTROL STATEMENT .« ¢ o o o o o o o o o

SR-0011 xiii

e o o o o

directives

10-1

10-1
10-1
10-2
10-2
10-2
10-3
10-3
10~-4
10-7
10-7
10-8
10-9
10-9
10-10
10-11
10-11
10-11
10-14
10-15
10-16
10-16
10-16
10-17
10-18

11-1

11-1
11-1
11-1
11-2
11-2
11-2
11-3

J-01

BUILD (continued)

BUILD DIRECTIVES e ® © @ © o e o 8 © & o & o © ¢ °o o o s o o

FROM Girective . o o o o ¢ o o o o o o o o o o o s o o
OMIT AireCtivVe =« « o« o o e o o o o o o o o o o o« o o «
COPY Qirectives o« o v o ¢ o« o o o o o o o o o o o o o &
LIST AirectivVe . o o o o o o o o o o o s o o o o o o »

EXAMPLES e ®© e e e © o 6 e ©* © e 6 © © © e ° o o e © s o 0+ o

PART 3 MACRO INSTRUCTIONS

1 . I NTRODUCT ION e ®© e © & e o ® 6 o e © e o & © o & & o e o o oo

2. SYSTEM ACTION REQUEST MACROS « « o o o o o s s o s o s s o o

JOB CONTROL e © e @ ® @ ¢ © ¢ e ® © o & © o & o e s o o o+ o

MEMORY - RequesSt MEMOLY « « o« o ¢ o o o o o o o o o o o
MESSAGE - Enter message in logfile . « ¢« « o o o ¢ « &«
CSECHO -~ Echo a control statement to the logfile . . .
MODE - Set operating mode . « « « o« « o o o o o s o o &
SWITCH - Set or clear sense switch . . ¢ ¢ ¢« ¢ ¢ o o &
JTIME - Request accumulated CPU time for job
RECALL - Recall job upon I/0 request completion
DELAY - Delay job processSing .« « « o o ¢ o o o o o o
ABORT — AbOrt Program « « « « o o o o o o o o o o o o s
SETRPV - Set job step reprieve . « « ¢« « o o o o « o »
CONTRPV - Continue from reprieve condition .,
ENDRPV - End reprieve processing . « « « o o o « o o o«
ROLL -~ RO1Ll @ JODb 4 4 o ¢ ¢ ¢ o o o o o a s s o o o o s
ENDP -~ ENnd Program . « « o s o o s o o o o s o o s o »
NORERUN - Control detection of nonrerunnable functions
RERUN - Unconditionally set job rerunnability . . . « .
IOAREA - Control user access to I/0 area . « « « o o &
DUMPJOB — Dump job image . « o o o o o o o o o o o o »

DATASET MANAGEMENT « ¢ o« o o ¢ o o o o ¢ o ¢ o o o o o o s o

DSP - Create Dataset Parameter Ar€a . o« « « o s o o o &
OPEN - Open dataset . « o o o« o o o o o o o o o o o o &
CLOSE — Close dataset « « o o o « o o o o o s o s s o
RELEASE -~ Release dataset tO SyStém « « « o ¢ o o o o &
DISPOSE — Dispose dataset o« « o o o o o o o o o o o o o
SUBMIT -~ Submit dataset . o o« ¢ ¢ ¢ o o o ¢ o o o o o &

TIME AND DATE REQUESTS @ e © @ o o o e o @ °© o e © s 2 ¢ °o o

TIME - Get current time . . . ¢ ¢ o ¢ ¢ ¢ o ¢ o o o o &
DATE - Get current date ® © e ® ¢ o e 6 e e ¢ * e o o o

JDATE - Return Julian date . ¢« ¢ ¢ ¢ o o o o o o o o «

DEBUGGING AIDS ® & © e © e ® e © o & o & e & o o ° e & e *o o

SR-0011

SNAP - Take snapshot of selected registers« .
DUMP - Dump sSelected areas Of MEMOXY .+ « « o o o o o &
INPUT - Read data ® o e e e e o e e e & o ° o o . e o o

xiv

11-5
11-6
11-7
11-7
11-9
11-9

N D N
UL 1
w N [l

NodhdpopodDdDp oo
by by g 1t

\D\IO\G'\‘UlUlvbp.b

[\
!
[}
o

2-10
2-10
2-11
2-11
2-12
2-13
2-13
2-13
2=-15
2-17
2-17
2-18
2-18.1
2-19
2-19
2-19
2-20
2-21
2-21
2-22
2-24

J-01

(continued)

2. SYSTEM ACTION REQUEST MACROS

OUTPUT ~ Write data « « o ¢ o ¢ o o o &
FREAD ~ Read data « « « o o o o o o o «
FWRITE - Write data « « o« o o o o o o @
UFREAD - Unformatted read s e o o & o
UFWRITE - Unformatted wrlte e e o o o o
SAVEREGS ~ Save all registers
LOADREGS - Restore all registers . . .
MISCELLANEOUS ¢ o o o o o o o o o o o o o
SYSID - Request system identification .
GETMODE - Get mode setting . . . « .« &
GETSWS - Get switch setting . . . « . .«

INSFUN - Call installation-defined subfunctlon e o o o

3. LOGICAL I/O MACROS &« « « o o o o o o s o o &

SYNCHRONOUS READ/WRITE « o « « o o o o « o
READ/READP — Read WOXdS « « « o ¢ o o o
READC/READCP - Read characters . .
WRITE/WRITEP - Write words . « « o « &
WRITEC/WRITECP - Write characters . . .
WRITEF - Write end of file . . . « «
WRITED - Write end of data . .« « . . .

ASYNCHRONOUS READ/WRITE . ¢ o o o o o o o @

BUFIN/BUFINP - Transfer data from dataset

ALEA o« o o o ¢ o o o o o o o o o »
BUFQUT/BUFOUTP - Transfer data from user
dataset . . 4 ¢ ¢ 0 bt e 0 o e o @
BUFEOF - Write end of file on dataset .
BUFEOD - Write end of data on dataset .
BUFCHECK - Check buffered I/0 completion
UNBLOCKED READ/WRITE « + « o ¢ o ¢ o o o o o

record

to user
record area to

. . L] L] . L] Ll L] .
L] - L] . L] . L] L] L]

® e & o o e o+ e o

READU -~ Transfer data from dataset to user's area . . « .

WRITEU - Transfer data from user's area
POSITIONING &« o« o o o s ¢ s o o o o s o o
REWIND - Rewind dataset . « « o« ¢ o « &
BKSP - Backspace record « ¢« « « o o o o«
BKSPF - Backspace file . ¢« ¢« ¢ ¢« « o &
GETPOS - Get current dataset position .
SETPOS - Position dataset . + &« ¢« « « &
POSITION - Position tape « « « o o o &

SR-0011 XV

to dataset . . .

2-27
2-32
2-33
2-35
2-36
2-37
2-38
2-39
2-39
2-39
2-40
2-40

w
1
-t

W W
I 11

www
| |

PEETY
[YeRR-IR N B N, B

w
1
o

3-10
3-12
3-12
3-13
3-14
3-14
3-15
3-16
3-16
3-17
3-18
3-18
3-20
3-21

J-01

4.

PERMANENT DATASET MACROS . Ll L] L] L3 . . L] . L . L3 L] L] L] L]

PERMANENT DATASET DEFINITION .« « o o o ¢ o o ¢ o o o o o
PDD - Create Permanent Dataset Definition Table . .
LDT - Create Label Definition Table
PERMANENT DATASET MANAGEMENT . ¢ « ¢ o o o o ¢ o o o o o
ACCESS - Access permanent dataset . « ¢« o o« o« o o«
SAVE - Save permanent dataset . « « ¢« ¢ ¢ o o ¢ o &
DELETE - Delete permanent dataset . « ¢« ¢« ¢ « o « &
ADJUST - Adjust permanent dataset . . « ¢ o o o o &«

CFT LINKAGE MACROS e © @ o o o o e e o & o o s ° ° o o

CALL EXTERNAL ROUTINES . ¢ ¢ ¢ o o o o o o o s o o o o o
CALL - Call external routine using call-by-address
conNvVeNntion o « « o o o o o o o o s o o o o o o

CALLV - Call external routine using call-by-value
convention « « o o o + o o o o o s e o o o o o
ENTER BAND EXIT « o o o o o o o o o ¢ o o o o o o o o o @
ENTER - Form a CFT callable entry . « ¢« ¢ ¢ o ¢ « &
EXIT - Return from a routine . « « o« o « o o o o &
REGISTER ASSIGNMENT . & ¢ o o o o s o s o o s o o o o o
BREG —~ Assign symbols for B register names
TREG - Assign symbols for T register names
FETCH ARGUMENT ADDRESS « o ¢ o o o o s s s s s s s o o &
ARGADD - Fetch argument addresSs . « « « « « o o o &

APPENDIX SECTION

A.

B.

JOB USER AREA e © e e e o & o & * & & e & o e o s o o o

JOB TABLE AREA = JTA « ¢ « o o o o o o o o o o o o o o o
JOB COMMUNICATION BLOCK = JCB « o o o o o o o o o o o o
LOGICAL FILE TABLE = LFT &« o o ¢ o ¢ o o o o o o o o o o
DATASET PARAMETER AREA = DSP &+ ¢ o ¢ o o o o o o o o o o
PERMANENT DATASET DEFINITION TABLE = PDD ¢« o« ¢ o o o o o
BEGIN CODE EXECUTION TABLE = BGN « ¢ o o o o o o o o o &
DATASET DEFINITION LIST = DDL & o o o o o o o o o o o o
OPEN DATASET NAME TABLE — ODN . ¢ « o o o o o o s o o o
JCL BLOCK INFORMATION TABLE = JBI . o o o o ¢ o o o o o
JCL SYMBOL TABLE = JST ¢ ¢ o o o o o o o o o s o o o o o
Label Definition Table = IDT . ¢ ¢ ¢ ¢ o ¢ o o o o o o @

CHARACTER S ET e © e ® @ ° e 8 e ° 9 e e e o e B o o °o o

SR-0011 xvi

(ST, IS T S
[T I |
AT N

w ? Ul

wm
[

A-2
A-2
A-6
A-7
A-12
A-17
A-18
A-20
A-21
A-22
A-23

J-01

APPENDIX (continued)

C. FUNCTION CODES ¢ « ¢ o o o o o

D. LOGICAL I/O ROUTINES . « « + »

LOGICAL RECORD I/O ROUTINES .
Read routines « « « « ¢« &
Write routines . .« . .
Positioning routines . .

FORTRAN LEVEL I/0 . ¢ o o « o«
Formatted and unformatted

e e
s e
e o

I/0

routines

Buffered I/0 routines « « « o o o o« o «
Positioning and control I/0 ro

E. EXCHANGE PACKAGE ¢« « ¢ o o« o

F. ERROR AND STATUS CODES . « «

SYSTEM ERROR CODES « ¢« ¢ o o
PERMANENT DATASET STATUS CODES

GLOSSARY
INDEX

SUMMARY

SR-0011

xvii

utines .

Cc-1

D-1
D-1
D-6.1
D-11
D-15
D-15
D-26
D-27

J-01

PART 1

SYSTEM DESCRIPTION

CONTENTS
PART 1 SYSTEM DESCRIPTION

1. INTRODUCTION &« o « o o s o o o o s s s s s o o o o o o s o o 1-1
HARDWARE REQUIREMENTS &« o o ¢ o o ¢ o o o o o o s o o o o o 1-1
SYSTEM INITIALIZATION . ¢ ¢ o o o o o s o o o o s o o o o o 1-2
CENTRAL MEMORY ASSIGNMENT AND CHARACTERISTICS ¢ ¢« o ¢ o o o 1-2

Memory resident COS « v &« o o o & o o « o s o o o o o 1-4

User area Of MEMOLY « «o ¢ ¢ « o o o ¢ o o o o s o o o o 1-4

Job Table Area = JTA + ¢ = o o o o o o s o o o o o 1-5

User field . o ¢ ¢ o o o o o o ¢ o o o s o o o o o 1-5

MASS STORAGE CHARACTERISTICS ¢ ¢ © o o o s o o « o o o o o @ 1-5
MAGNETIC TAPE CHARACTERISTICS . & 4 4 o ¢ o o o s o o s o o 1-8

2. DATASETS ¢ « « o o o o o o o s o o o o o s o o o o o s o o o 2~1

DATASET TYPES &« o o o o s o o o o o s o s o o o o o s o o o 2-1
Temporary datasetsS . ¢ o« o ¢ o o« o ¢ o o o o o o o o o 2-1
Local datasets . ¢ ¢ ¢ ¢ o« o o ¢« o o« o ¢ o o ¢ s o o o 2-1
Mass storage permanent datasets . . « ¢« ¢« ¢ ¢ ¢ ¢ o o 2-2
Magnetic tape datasetsS . ¢ ¢ o ¢ 4 ¢ o ¢ ¢ o o o o o o 2-2

EXECUTE-ONLY DATASETS ¢ ¢ o o o s o o o s o o o o o o o o @ 2=-3

MEMORY-RESIDENT DATASETS « o « o o o o o s o o o ¢ s o o o« o« 2~4

INTERACTIVE DATASETS « « « o o o o o o o s o o o o o o o o o 2-4

DATASET NAMING CONVENTIONS &« ¢ « o o o o 2 o « o o o o s o 2-5

DATASET FORMATS & ¢ o o o o & 2 s s o o o o o s o o s o s o 2-5
Blocked formate. o« o « o o o o ¢ o o o o o o s o o o o o 2-5

Block Control WOrd « « ¢ o o o o o « o o o o o o & 2-6

Record Control Word . . o o o« o o o o o o o o o o 2-7
Blank compression . « o « o o o o 2 o o s o o o 2-10
Interactive format . « ¢ o ¢ o o o o o ¢ o o o o o o o 2-10
Unblocked £Ormat . « o« o o o o o o s o o « s o o o o o 2-10

TAPE I/O FORMATS ¢ o « ¢ o o o o o o o o o « o o o o o s o @ 2-11

Interchange format . « o ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o o o o @ 2-11
Transparent format . . ¢ ¢« ¢ o o ¢ o o ¢ o 2 o o o o 2-13
USER LOGICAL I/O INTERFACES « o o s + o« s o o o o o o o o @ 2-13
DATASET DISPOSITION CODES &« o o o o o o s s o s o s s o » @ 2-15

Part 1
SR-0011 iii J-01

3.

DECK STRUCTURE AND JOB PROCESSING . . .

JOB DECK STRUCTURE « « o o o
GENERAL DESCRIPTION OF JOB FLOW
Jobentry . « ¢« ¢ ¢ o . &
Job initiation
Job advancement
Job termination
JOB RERUN . & ¢ ¢ ¢ o o o o o
REPRIEVE PROCESSING . « o « o

JOB LOGFILE AND ACCOUNTING INFORMATION .

JOB CONTROL LANGUAGE . « + « &

SYNTAX VIOLATIONS .+ « o o o o«
VERBS . . i . - . . L] L . . .

System verbs . . ¢ 4 ¢ 4 ¢ o o o

Local dataset name verbs

Library-defined verbs . « « ¢« « «

System dataset name verbs

Verb search order « ¢« ¢« « o o o o &«

SEPARATORS ¢ ¢ ¢ o o ¢ o o o o«
PARAMETERS ¢« ¢« o « ¢ o o o o o
Positional parameters . .
Keyword parameters . . .

JCL parameter expressions
Operands « « « o o &
Operators . . . « &

Expression evaluation
Parameter interpretation
STRINGS ¢ ¢ o o o o o o » o &«
String construction rules

e ® o o o

e o o o o

Apostrophes and parentheses in JC

block control stateme

nts . . .

Part 1

SR-0011

iv

w
I
=)

w ? w‘f(n(f W W
| | U 1
AU e WNN N

w
]
o>
I
[

TETET
]
W wdhdpopnN

L N f S
Sow

TR
(oo T NS I) QRN S N

>
I

o ? ? >
(ol
N

L
-

T
[
w

J-01

FIGURES

1-1 CRAY-1l system configuration . « « « ¢ ¢ ¢ o o o o o o o o & 1-3

1-2 Memory assignment « o « o o o o s o ¢ o o ¢ o o o o s o o o 1~-4

2-1 Data hierarchy within a dataset . « ¢« ¢« o ¢« ¢ o o ¢ o o o &« 2-6

2-2 Format of a block control word . « « ¢« ¢ ¢ o« o o o o o ¢ o 2-6

2-3 Format of a record control wOrd « « o o ¢ o « o o ¢ o o o 2-7

2-4 Example of dataset control WOrds .« o« « o o o o o o ¢ o o 2-9

2-5 1Interchange~format tape dataset . « ¢ o o o o o o o o o « & 2-12
2-6 Relationship of levels of user I/O . o« ¢ ¢ o« o o o o o o o 2-14
3-1 Basic JOb deCK & o o o o o o o o o o o o o o s o s o s o o 3-1

3-2 Example of a job logfile .« o « o ¢ « o o o s o o o o o o o 3-7

TABLES

1-1 Physical characteristics of disk storage units 1-6
1-2 Physical characteristics of 200 ips, 9-track tape devices . 1-8
4-1 Control statement SeparatoOrs . « « « « o o o o o o s = o 4-5
4-2 Symbolic variable table . « ¢ ¢ ¢ o ¢ o o o o o o o o s o o 4-9
4-3 Expression operator table « « ¢« ¢« ¢ ¢ ¢ ¢ ¢ o o s o o o o o 4-1

Part 1
SR-0011 v J-01

INTRODUCTION 1

The CRAY-1 Operating System (COS) is a multiprogramming operating system
for CRAY-1 Computer Systems. The operating system provides for

efficient use of system resources by monitoring and controlling the flow
of work presented to the system in the form of jobs. The operating
system optimizes resource usage and resolves conflicts when more than one
job is in need of resources.

COS is a collection of programs residing in CRAY-1l CPU memory or on
system mass storage following startup of the system. (Startup is the
process of bringing the CRAY-1 and the operating system to an operational
state.)

Jobs are presented to the CRAY-1 by one or more computers referred to as
front-end computers (also referred to as stations in Cray manuals).

A front-end computer may be any of a variety of computer systems. Since
a front-end computer system operates asynchronously under control of its
own operating system, software execution on the front—-end computer system
is beyond the scope of this publication.

COS includes linkages providing for the initiation and control of
interactive jobs and data transfers between the CRAY-1 and front-end
terminals. These features are available only where supported by the
front-end system.

The FORTRAN compiler (CFT), library routines, the CAL assembler, and the
UPDATE source maintenance program are described in separate publications.

HARDWARE REQUIREMENTS

The CRAY-1 Operating System executes on the basic configuration of the
CRAY-1 Computer System. A CRAY-1 models A, B, S/500 or S/1000 consists
of a Central Processing Unit (CPU), a minicomputer-based Maintenance
Control Unit (MCU), and a mass storage subsystem.

A CRAY-1 Model S/1200 through S/4400 consists of a CPU, an I/O Subsystem
with a mass storage subsystem and an optional IBM-compatible tape
subsystem.

Part 1
SR-0011 1-1 J=-01

COS operates with any of four central memory size options: one-half
million, one million, two million, and four million words.

The mass storage for Models S/500 through S/1000 is a mass storage
subsystem consisting of two or more disk storage units. The mass storage
for Models S/1200 through S/4400 is conventionally composed of disk
storage units on the I/0 Subsystem but can optionally include a mass
storage subsystem.

The I/0 Subsystem consists of from two to four I/O processors and
one-~half, one, four, or eight million words of shared Buffer Memory. The
optional tape subsystem is composed of at least one block multiplexer
channel, one tape controller, and two tape units. The tape units
supported are IBM-compatible 9-track, 200 ips, 1600/6250 bpi devices.

Figure 1l-1 illustrates a basic system configuration. For more information
about CRAY~l1 hardware characteristics, refer to the CRAY-1 Hardware
Reference Manual, Models A and B, publication HR-0004 and to the CRAY-1l S
Series Hardware Reference Manual, publication HR-0808.

SYSTEM INITIALIZATION

COS is loaded into memory (deadstarted) and activated through a system
startup procedure performed at the MCU or I/0 Subsystem. At startup,
permanent datasets are re-established on mass storage. (Permanent
datasets survive deadstart; the user can always assume that they are
present. See part 1, section 2 of this manual for more information on
datasets.)

CENTRAL MEMORY ASSIGNMENT AND CHARACTERISTICS

Memory is shared by COS, jobs running on the CRAY-1l, dataset I/O buffers,
and system tables associated with those jobs. COS allocates resources to
each job as needed as these resources become available. As a job
progresses, information is transferred between memory and mass storage.
These transfers can be initiated by either the job or by COS.

Figure 1-2 illustrates the assignment of memory to COS and to jobs.

Part 1
SR-0011 1-2 J-01

MAGNETIC TAPE

DISPLAYS
SUBSYSTEM
OPTION
LOCAL OR
REMOTE
INTERACTIVE —2z____| CRAY-1
TERMINALS —2___| FRONT-END
COMPUTER COMPUTER
LOCAL OR =
SYSTEMS
REMOTE SYSTEM
JOB ENTRY
STATIONS

PERIPHERALS MASS STORAGE

Figure 1-1. CRAY-1l system configuration

Part 1
SR-0011 1-3 J=-01

User area;

User area,

User areaj

User arean

Y
MAXTMUM
MEMORY

Figure 1-2. Memory assignment

MEMORY-RESIDENT COS

COS occupies two areas of memory. The memory resident portion of the
operating system occupying lower memory consists of exchange packages,
the System Executive (EXEC), the System Task Processor (STP), and the
Control Statement Processor (CSP). The memory resident portion of the
operating system occupying extreme upper memory contains station I/0
buffers and space for the system log and dataset buffer.

USER AREA OF MEMORY

COS assigns every job a user area in memory. The user area consists
of a Job Table Area (JTA) and a user field.

Part 1
SR-0011 1-4

J-01

Job Table Area - JTA

For each job, the operating system maintains an area in memory that
contains the parameters and information required for monitoring and
managing the job. This area is called the Job Table Area (JTA). Each
active job has a separate Job Table Area adjacent to the job's user
field. The Job Table Area is not accessible to the user, although it may

be dumped for analysis (see part 2, section 8).

User field

The user field for a job is a block of memory immediately following the
job's JTA. The user field is always a multiple of 512 words. The
beginning or Base Address (BA) and the end or Limit Addrese (LA) are

set by the operating system. The Limit Address is specified by a
parameter on one of the job control statements (see part 2) or by
default. A user can request changes in field size during the course of a
job.

Compilers, assemblers, system utility programs, and user programs are
loaded from mass storage into the user field and are executed in response
to control statements in the job deck. Each load and execution of a
program may be referred to as a job step.

A detailed description of the contents of the user field is given in
Appendix A. Briefly, however, the first 200g words of the user field
are reserved for an operating system/job communication area known as the
Job Communication Block (JCB). Programs are loaded starting at BA+200g
and reside in the lower portion of the user field. The upper portion of
the user field contains tables and dataset I/0 buffers. The user field
limit is equal to LA-1.

Memory addresses for instructions and operands are relative to BA. The
CRAY-1 hardware adds the contents of BA to the address specified by a
memory reference instruction to form an absolute address. A user cannot
reference memory outside of the user field as defined by the BA and LA
register contents; LA-1 is the user limit. (Refer to the CRAY-1 Hardware
Reference Manual or to the CRAY-1 S Series Hardware Reference Manual for
more information.)

MASS STORAGE CHARACTERISTICS

Mass storage for the CRAY-1/A and CRAY-1/B consists of one to thirty-two
DD-19 or DD-29 Disk Storage Units (DSUs). Mass storage for CRAY-1 Models
S/500 or S/1000 consists of two to thirty-two DD-29 DSUs. Mass storage

Part 1
SR-0011 1-5 J-01

for CRAY-1 Models S/1200 through S/4400 consists of two to forty-eight
DD-29 DSUs, depending on the number of I/0 Processors in the I/0
Subsystem. These devices are physically non-removable.

All information maintained on mass storage by the CRAY-1 Operating System
is organized into quantities of information known as datasets. In
deneral, the user need not be concerned with the physical transfer of
data between the disks and memory nor with the exact location and
physical form in which datasets are maintained on mass storage. COS
translates the user's logical requests for data input and output into
disk controller functions automatically. For the orientation of the user
the physical characteristics of disk storage units are summarized in

table 1-1.

Table 1-1. Physical characteristics of disk storage units

Feature DD-19 DD-29

Word capacity per drive 3.723 x 107 7.483 x 107/
Word capacity per cylinder 92,160 92,160

Bit capacity per drive 2.424 x 10° 4.789 x 10°
Tracks per surface or 411 823
cylinders per drive

Sectors per track 18 18

Bits per sector 32,768 32,768
Number of head groups 10 10

Latency (revolution time) 16.7 ms 16.7 ms
Access time 15 - 80 ms 15 - 80 ms
Data transfer rate (average 35.4 x 10° 35.4 x 10°
bits per second)

Longest continuous transfer 92,160 words 92,160 words
per request (1 cylinder) (1 cylinder)
Total bits that can be 5.9 x 106 5.9 x 108
streamed to a unit (disk

cylinder capacity)

Part 1

SR-0011 1-6 J-01

Each disk storage unit contains a device label, datasets, and unused space
to be allocated to datasets. The device label notes usable (unflawed)
space on the disk unit and designates one of the devices as the Master
Device. The Master Device is the disk storage unit DSU containing a

table known as the Dataset Catalog (DSC), which contains information

for maintaining permanent datasets.

To the user, mass storage permanent datasets are those datasets that may
be assumed always present and available on mass storage. This permanence
is achieved through techniques permitting the datasets noted in the DSC to
be recovered or re-established in the event of system failures. Portions
of COS, such as the loader, utility programs, the compiler, the assembler,
and library maintenance and generation routines, reside in permanent
datasets accessible by user jobs at any time.

Datasets containing job input decks and output from jobs already
terminated also reside on mass storage, and because they are listed in the
Dataset Catalog are regarded as permanent. This designation is somewhat
misleading since their permanence is by definition rather than by tenure
in the system. That is, the input dataset is permanent from the time it
is staged from the front-end system to the CRAY-1 until the job
terminates. Output datasets being disposed to a front end are permanent
from job termination until the disposition is completed. The permanence
of these systemdefined datasets allows them to be recovered along with
other permanent datasets after a system failure.

Any user job can create a mass storage permanent dataset that can be
subsequently accessed, modified, or deleted by any other job producing the
correct permission control words when attempting to associate it with a
job. These permission control words are defined at the time the dataset
is designated as permanent (that is, saved).

A permanent dataset ceases to exist when a user with the correct
permission control word deletes it. This deletion notifies COS that the
space occupied by the dataset is no longer permanent. However, the space
is still reserved by the dataset until it is released by the user (see
part 2 sections 3 and 5, respectively, for information on the RELEASE and
DISPOSE control statements.)

In addition to the various permanent datasets, mass storage is used for
temporary datasets. A temporary dataset is created by the job using it
and remains temporary unless it is designated as permanent or disposed to
a front end by the job. A temporary dataset neither saved as permanent
nor disposed of is termed a scratch dataset and ceases to exist when the
job terminates.

Part 1
SR-0011 1-7 J-01

COS allocates space to datasets by sectors as space is needed. Storage
assigned to a single dataset can be noncontiguous and can even be on
multiple disk units. Default and maximum sizes for datasets are defined
by system parameters. The user has limited control over the allocation of
storage to a dataset through the ASSIGN control statement.

MAGNETIC TAPE CHARACTERISTICS

An I/0O Subsystem can include an Auxiliary I/0 Processor (XIOP) with the
capability of addressing up to 16 block multiplexer channels of tape
units. Each block multiplexer channel can be attached to IBM-compatible
control units and tape units in a variety of configurations. The block
multiplexer channels communicate with the control units and tape units to
allow reading and writing data that can also be read and written on
IBM-compatible CPUs.

Table 1-2. Physical characteristics of 200 ips,
9-track tape devices

Density Transfer rate Data/2400 ft. reel $ of reel | Block size
(bits/inch) | (kilo bytes/sec) (mega bytes) containing (bytes)s
data
6250 1170 168 94 32768
1600 300 43 94 16384

§ The block sizes in this table are used by the COS tape system for
transparent-format tape datasets.

Part 1
SR-0011 1-8 J-01

DATASETS

All information maintained by the CRAY-1 Operating System is organized
into quantities of information known as datasets. Each dataset is
identified by a symbolic name called a dataset name (dn). A dataset
can be local to a job or permanent and available to the system and other
jobs.

DATASET TYPES

Datasets are of two types: temporary and permanent.

TEMPORARY DATASETS

A temporary dataset is available only to the job that created it.
Temporary datasets can be created in two ways: either explicitly by use
of the ASSIGN control statement, or implicitly upon first reference to a
dataset by name or unit number on an I/0 request (CFT) or an OPEN macro
call (CAL) (see part 3, section 2).

A temporary mass storage dataset is empty until written on. Rewind or
backspace of the dataset is necessary before it can be read. A temporary
dataset can be made permanent by use of the SAVE control statement. If
the dataset is not made permanent, it will be released at job termination
and its mass storage made available to the system.

LOCAL DATASETS

A dataset where a job has access is a local dataset. A local dataset
can be temporary or permanent. Permanent datasets are made local with
the ACCESS control statement or the ACCESS library subroutine.

Tape datasets can be made local to a job with the ACCESS control
statement or the ACCESS library subroutine (described in the Library
Reference Manual, CRI publication SR-0014). The device resource must
also be specified on the JOB control statement.

Part 1
SR-0011 2-1 J-01

MASS STORAGE PERMANENT DATASETS

A permanent dataset is available to the system and to other jobs and is
maintained across system startups. Permanent datasets are of two types:
those created by SAVE requests made by the user or front-end system (user
permanent datasets), and input, output, or COS internal datasets (system
permanent datasets).

User permanent datasets are maintained for as long as the user or
installation desires. They are protected from unauthorized access by use
of permission control words.

When a user permanent dataset is accessed via an ACCESS control statement
(see part 2, section 4), it is treated as a local dataset by the job
requesting access. However, it still exists as a permanent dataset on
the system and may be used by other jobs unless unique access to that
dataset was granted.

System permanent datasets relate to particular jobs or reflect the
current operational state of COS. A job's input dataset is made
permanent when the job is received by the CRAY~1 and is deleted when the
job terminates. Output datasets local to the job can be disposed while
the job is running or can be made permanent when the job terminates and
then deleted from the CRAY-1 after being sent to the front-end system for
processing. An example of a C0S internal dataset is the system log.

MAGNETIC TAPE DATASETS

A magnetic tape dataset is available to any job declaring tape resource
requirements on the JOB statement and specifying the appropriate
information on its ACCESS request.

A magnetic tape dataset can be nonlabeled (NL), ANSI-labeled (AL), or IBM
standard labeled (SL), and can be recorded or read at either 1600 or 6250
bits per inch (bpi). To gain access to an existing tape dataset for
reading and/or rewriting, a volume identifier list, the correct file
identifier (permanent dataset name), and the desired device type must be
specified. The volume identifier list can consist of 1 to 255 volume
identifiers. If the PDN is omitted from the ACCESS request, the local
dataset name is used as the file identifier.

To gain access to a tape dataset for creating, the file identifier,
desired device type, and the NEW parameter option must be specified. If
no file identifier is present the local dataset name is used. If the
volume identifier list is missing from the access request, it is called a
non-specific volume seratch. A specific volume scratch occurs when

the volume identifier list is present at the time of the access request.
New tape datasets must be written to before a read is allowed.

Part 1
SR-0011 2-2 J-01

Other options describing the tape dataset are available from the access
request., Refer to the ACCESS control statement (part 2, section 4) for
more details. Using other parameter options allows more efficient tape
dataset descriptions.

COS automatically switches volumes during dataset processing and returns
to the first volume of a multivolume dataset in response to a REWIND
command. If a permanent write error occurs when trying to write a tape
block for the user, COS automatically attempts to close the current
volume and continues to the next volume.

The COS tape system uses Buffer Memory as a tape block buffering area so
having a COS memory circular buffer as large as or larger than a tape
block is unnecessary. This technique can result in significant memory
savings whenever large tape blocks are being processed and in increased
transfer rates whenever smaller blocks are being processed. The only
real advantage in having a large COS buffer is a reduction in the packet
traffic (overhead) in the tape subsystem. The smallest circular buffer
for tape datasets is 512 words (inefficient) while a buffer size greater
than 8192 words (16 sectors) results in little performance improvement.

EXECUTE-ONLY DATASETS

An execute-only dataset is a user permanent dataset for which all
unauthorized forms of examination and modification are prohibited. An
execute-only dataset is loaded by the Control Statement Processor (CSP)
for execution. It differs in usage from other user permanent datasets in
several ways:

® The accessor of the dataset cannot open the dataset for reading or
writing.

® While an execute-only dataset is loaded in memory, no DUMPJOB
requests are honored.

® The dataset cannot be staged via a DISPOSE request.

® The dataset must be loaded by a dataset name call rather than by
the LDR control statement.

® The dataset cannot be dumped via PDSDUMP for archiving purposes.
Because execute-only is a dataset state rather than a permission mode, it
is advisable to set at minimum a maintenance permission control word to

disallow modification or deletion of the secure dataset.

A tape dataset cannot be made an execute-only dataset.

Part 1
SR-0011) 2-~3 J-01

MEMORY-RESIDENT DATASETS

Some datasets may be specified by the user as memory resident datasets.

A memory resident dataset is wholly contained within one buffer (see BS
parameter on the ASSIGN control statement) and remains in memory at all
times. Such a dataset ordinarily occupies no mass storage space. A
memory resident dataset is normally a local dataset; however, a permanent
dataset can sometimes be declared memory resident.

A dataset can be declared memory resident to reduce the number of I/O
requests and disk blocks transferred. This is particularly useful for
intermediate datasets not intended to be saved or disposed to another
mainframe. 1In this case, all I/0 performed on the dataset takes place in
the dataset buffers in memory and the contents of the buffers are not
ordinarily written to mass storage. Such a dataset cannot be made
permanent, nor may it be disposed to another mainframe.

Normally, a memory resident dataset is empty until written on. If an
existing dataset is declared memory resident, it is loaded when the first
read occurs., A user attempting to write to a memory resident dataset
must have write permission. However, as long as the buffer does not
appear full, no actual write to mass storage ever occurs. Therefore,
changes made to an existing dataset declared memory resident are not
reflected on the mass storage copy of the dataset.

A memory resident dataset must be defined through an ASSIGN control
statement containing the MR parameter or through an F$DNT call to the
system. If the FHDNT call is used, the Dataset Definition List (DDL)
supplied should specify DDMR=1l. (See the description of the ASSIGN
control statement or refer to the system calls in Appendix C for more
information about formats.) In addition, the buffer size parameter
should specify a buffer large enough to contain the entire dataset plus
one block.

If at any time the system I/0 routines are called to write to the dataset
and the buffer appears to be full, the dataset ceases to be treated as
memory resident, the buffer is flushed to mass storage, and all memory
resident indicators for the dataset are cleared.

A magnetic tape dataset cannot be declared memory resident.

INTERACTIVE DATASETS

A dataset can be specified as interactive by a logged-on user provided
that this feature is supported by the front end. Batch users cannot
create interactive datasets. An interactive dataset differs from a local
dataset in that a disk image of the dataset is not maintained. 1Instead,
records are transmitted to and from a terminal attached to a front-end

Part 1
SR-0011 2-4 J-01

station. Record positioning (for example, REWIND or BACKSPACE) is not
possible.

Interactive datasets can be created in two ways: by interactive users
through the use of the ASSIGN control statement or through an F$DNT
system call.

DATASET NAMING CONVENTIONS

The user assigns a symbolic name to each user dataset. This name, the
loecal dataset mame, is one through seven characters, the first of which
can be A-Z, $, @, or %; remaining characters can also be numeric,
However, a permanent dataset name does not have this restriction; all
characters in a permanent dataset name may be alphanumeric. Certain
language processors may place further restrictions on dataset names.

All datasets defined by the operating system are assigned names of the
form $dn. Since datasets whose names begin with a $ may receive
special handling by the system, the user should refrain from using this
format when naming datasets.

DATASET FORMATS

Three dataset formats are supported for CRAY-l: blocked, interactive,
and unblocked.

BLOCKED FORMAT

Blocked format is required for external types of datasets, such as user
input and output datasets. The blocked format adds control words to the
data to allow for processing of variable-length records and to allow for
delimiting of levels of data within a dataset. Figure 2-1 illustrates
the data hierarchy within a dataset. A blocked dataset can be composed
of one or more files, which are, in turn, composed of one or more records.

Part 1
SR-0011 2-5 J-01

Dataset

File; File, e Filep,

Record, Record, | ... [Record,

Figure 2-1. Data hierarchy within a dataset

The data in a blocked dataset can be either coded or binary. Each block
consists of 512 words. There are two types of control words in a blocked
dataset: block and record.

Block control word

The block control word (BCW) is the first word of every 512-word block.
The format of a block control word is depicted in figure 2-2,

0 8 16 24 32 40 48 56 63
MI///1/177777777V \//1/777/7/7///7///////] BN | FWI
BDF

Figure 2-2. Format of a block control word

Field Bits Description
M 0-3 Mode indicator (for block control word, M=0)
BDF 11 Bad data flag; indicates the following data, up

to the next control word, is bad. This flag is
set by the I/0 Subsystem for magnetic tape
datasets in interchange format.

BN 31-54 Block number. Designates the number of the

current data block. The first block in a
dataset is block 0.

SR-0011 2-6 J-01

Field Bits Description

FWI 55-63 Forward index. Designates the number of words
(starting with 0) to the next record control
word or block control word.

Record control word

A record control word (RCW) occurs at the end of each record, file, or
dataset. The format of a record control word is illustrated in figure

2"30
TRAN BDF
0 s [/16 24 32 40 48 56 63
Ml usc IVIV1///// PFI | PFI | FWI
Figure 2-3. Format of a record control word
Field Bits Description
M 0-3 Mode indicator: 10g End-of-record

l6g End-of-file
17g End-of-data

Disregarding block control words occurring at
512-word intervals in a dataset, RCWs have the
following logical relationship in a dataset.

An end-of-record RCW immediately follows the
data for the record it terminates. If the
record is null, that is, if it contains no data,
an end-of-record RCW can immediately follow an
end-of-record or end-of-file RCW or can be the
first word of the dataset.

An end-of-file RCW immediately follows the
end-of-record RCW for the final record in a
file. If the file is null, that is, if it
contains no records, the end-of-file RCW can
immediately follow an end-of-file RCW or can be
the first word of the dataset.

An end-of-data RCW immediately follows the
end-of-file RCW for the final file in the
dataset. If the dataset is null, the
end-of-data RCW can be the first word on the
dataset.

SR-0011 2-17 J-01

Field

UBC

TRAN

BDF

PFI

PRI

10

11

20-39

40-54

55-63

Description

Unused bit count. For end-of-record, UBC
designates the number of unused low-order bits
in the last data word of the record terminated
by the end-of-record. For end-of-file and
end-of-data RCWs, this field is 0. The data
area protected by UBC must be zero-filled.

Transparent record field. Used for an
interactive output dataset only. If set,
substitution of line feed for end-of-record RCWs
is suppressed.

Bad data flag; indicates the following data, up
to the next control word, is bad. This flag is
set by the I/0 Subsystem for magnetic tape
datasets in interchange format. If flag is set,
indicates when data was read from the device; an
irrecoverable error was encountered in following
data.

Previous file index. This field contains an
index modulo 2**20 (20,000,000g) to the
beginning of the file. The index is relative to
the current block such that if the beginning of
the file is in the same block as this RCW, the
PFI is 0.

Previous record (RCW) index. This field
contains an index modulo 2**15 (100,000g) to

the block where the current record starts. The
index is relative to the current block such that
if the first word of data in this record is in
the same block as this RCW, PRI is 0.

Forward word index. This field points to the
next control word (RCW or BCW) and consists of a
count of the number of data words up to the
control word (that is, if the next word is an
RCW or BCW, FWI is 0).

The typical dataset has many end-of-record RCWs per block. An example of
dataset control words is illustrated in figure 2-4.

SR-0011

Part 1
2-8 J-01

BCW

G

EOR

EOR

W74 2 — ! s
) 000000 1
F3 (null 0
F4 RS 42%?7/4222%%22

Figure 2-4. Example of dataset control words
(octal values shown)

SR-0011 2-9 J-01

Blank compression

Blank fields may be compressed for blocked coded files. Blank field
compression is indicated by a blank field initiator code followed by a
count. The default blank field initiator code is the installation
parameter I@BFI which is either an ASCII code or 777g indicating that
blank compression will not be done. Blank compression may be inhibited
using an ASSIGN statement parameter or a F§DNT system

call. A blank field of 3 through 96 characters is compressed to a
2-character field. The count is biased by 36g; the actual count
character is limited to 4lg < character count < 176g (the ASCII
graphics).

INTERACTIVE FORMAT

Interactive format closely resembles blocked format; however, each buffer
begins with a block zero RCW. Each record transmitted to or from COS by
an FERDC or an F$WDC call must contain a single record consisting of a
BCW, data, and an end-of-record RCW.

Two formats for interactive output can be assigned at creation time:
character blocked and transparent. Character blocked mode is the
default. In character blocked mode, an end-of-record RCW is interpreted
as a line feed or a carriage return. In transparent mode, the
end-of-record RCW is ignored and the user is responsible for supplying
carriage control characters.

UNBLOCKED FORMAT

Dataset I/O can also be performed using unblocked datasets. Any dataset
not in COS blocked format is considered unblocked. The data stream for
unblocked datasets does not contain CRAY-1l Operating System RCWs or BCWs.

The system does not allocate buffers in the job's I/O buffer area for
unblocked datasets; the user must specify an area for data transfer.
When a read or write is performed on an unblocked dataset, the data goes
directly to or from the user data area without passing through an I/0
buffer. The word count of data to be transferred must be a multiple of
512.

Unblocked I/0 cannot be performed on an interchange format tape dataset.

Part 1
SR-0011 2-10 J-01

TAPE I/0 FORMATS

Tape datasets are written and read on tape volumes. A tape volume is a
reel of tape, also known as a section of the dataset (for example, in
FSEC= on the ACCESS statement). Data is read or written in tape blocks.
A tape block is a unit of data recorded on magnetic tape between two
consecutive interblock gaps.

The size of tape blocks can vary up to a maximum of one million bytes.

Tape datasets can be read or written using two different formats:
interchange or transparent. Tape datasets can be labeled or
unlabeled.

INTERCHANGE FORMAT

Interchange format facilitates reading and writing tapes that are also to
be read or written on other vendors' systems. 1In interchange format

each tape block of data corresponds to a single logical record in COS
blocked format.

In interchange format, tape block lengths can vary up to an
installation-defined maximum of 1,048,576 bytes (131,072 64-bit words) .
It is recommended the maximum blocksize not exceed 100 to 200 kilobytes.
Blocks exceeding this size may require special operational procedures
(such as the use of special prepared tape volumes having an extended
length of tape following the EOT reflective marker) and yield little
increase in transfer rates or storage capacity.

When a tape dataset is read in interchange mode, physical tape blocks are
represented in the user's I/0 buffer with block control words (BCWs) and
record control words (RCWs) added by COS. The data in each tape block is
terminated by an RCW. The unused bit count field in the RCW indicates
the amount of data in the last word of the tape block that is not valid
data. A BCW is inserted before every 511 words of data, including the
RCWs. The formats of RCWs and BCWs are described previously in this
section. Figure 2-5 depicts a tape dataset in interchange mode. Tape
blocks within tape label groups are not included in this format. The end
of the dataset is represented by an end-of-file (EOF) RCW followed by an
end-of-data (EOD) RCW.

When a tape dataset is written in interchange mode, the data must be in
the I/0 buffer in the user field in COS blocked format. The data in each
logical record is written as a single tape block. BCWs and RCWs are not
recorded on tape: block control words (BCWs) within a record are
discarded; and the unused bits and terminating record control word (RCW)
are also discarded. The unused bit count must be a multiple of 8. Tape
datasets written in interchange mode must consist of a single file
(single EOF RCW). Multiple-file tape datasets are not supported in
interchange mode.

Part 1
SR-0011 2-11 J-01

TAPE DATA AS IT APPEARS IN I/O
BUFFER (IN 512-WORD UNITS)

DATA IN TAPE BLOCKS

VoLl

Header Label
Group (if labeled)

* (Tapemark)

—
Bew | 0 ?;%Zg?
7
data block 0
EOR 10| 40 0 0 T~
~—_
~ \\\
data S~ ~—~a
~—
EOR 101 20 0 0 S~
S~o block 1
N S~
\\ \\\
\\\\ ~<
N\ ~
\, . \\\
N N
BCW 0 1 \ Y
L AN ~
Na \\
~.
~ \\
a o~ N
ata ~ N
\\\\\\ block 2
v, \N
R | 10| oW o [P Ry S
~—_
\\\\
~~
~~
BCW N ~ last
data
data block
77777
Z - - -
EOR 10 60 N 1 0 * (Tapemark) End of Data
7/
EOF 16 00 N 0 0 EOF1 Label Group
(if labeled)
EOD 17 0o 0 0 0
EOF2 OR
End of Volume
unused * Label
Group
* (if labeled)
—
Figure 2-5, 1Interchange-format tape dataset

SR-0011

{(octal values shown)

Part 1
2-12

* (Tapemark)

EOV1

EOV2

J-01

TRANSPARENT FORMAT

In transparent format (disk image), each tape block is a fixed multiple
of 4096 bytes (512 words) based on the dataset density (that is, 16384
bytes at 1600 BPI and 32768 bytes at 6250 BPI). The data in the tape

block is transferred unaltered between the tape and the I/0 buffer in the
user field; no control words are added on reading or discarded on

writing. 1In transparent mode, the data can be in COS blocked format or
COS unblocked format.

USER LOGICAL I/0 INTERFACES

When using logical I/O, the user is never directly concerned with the
actual transfer of data between the devices and the system buffers.
Figure 2-6 illustrates the relationship of different levels of user
logical I/0 interfaces and routines. Figure 2-6 summarizes the request
levels and routine calls without going into detail on the movement of
data between the system buffers and user program areas. For details, see
Logical I/0 Macros in part 3, section 3 of this publication.

The highest level of user interface is FORTRAN I/O statements; the lowest
level is in the form of specially formatted requests called Exchange

Processor requests.

FORTRAN statements fall into two categories: formatted/unformatted and
buffered. The formatted/unformatted statements result in calls to
library routines $RFI through $WUF. If the dataset is blocked, these
routines call the logical record I/0 routines. The logical record I/0
routines perform blocking and deblocking. The logical record I/O
routines communicate with COS through the Exchange Processor F$RDC and
F$WDC requests.

If the dataset is unblocked, $RUA or $WUA calls the unblocked dataset
routine $RLB or $WLB. These routines do no blocking or unblocking of
data. The unblocked I/O routines communicate with the system through the
F$RDC and F$WDC Exchange Processor calls.

Buffered I/0 takes a different path from formatted/unformatted I/0.

These routines interface (through an F$BIO Exchange Processor request) to
routines in COS that normally perform logical I/O for system tasks.

These routines, called TASK I/0 or TIO, closely resemble the logical
record I/0 routines. TIO and the logical record I/0 routines make
similar requests of circular I/O routines in COS although the mechanism
for making these requests is different.

Part 1
SR-0011 2-13 J-01

Asynchronous 1/0 Synchronous 1/0

user
CFT BUFFERED /0 CFT FORMATTED/ interface
STATEMENTS UNFORMATTED STATEMENTS
BUFFER IN READ PUNCH
BUFFER OUT PRINT WRITE CAL BLOCKED [/0 MACROS

READ WRITE WRITEF

- READP WRITEP WRITED
CAL BUFFERED READC WRITEC BKSP
1/0 MACROS CAL UNBLOCKED READCP WRITECP BKSPF
BUFIN BUFOUT BUFEOF 170 MACROS GETPOS
BUF INP BUFOUTP BUFEOQD READU SETPOS
BUF CHE CK WRITEY REWIND
______________ '_ - T - T * - librgry
routines
BUFFERED 1/0 SRFI S$WFI JRUI $WUI
$RFA SWFA SRUA $WUA
$RB SRFV $WFV SRUV $WUV
B SRFF SWFF SRUF $WUF
CAL BUFFERED 1/0
INTERFACE
$CBIO i’ ‘L
UNBLOCKED DATASETS LOGICAL RECORD 1/0
$RWOR SWWDR $WEOF $GPOS
$RLB SRWDP $WWDP $WEOD $SPOS
$WLB $RCHR $WCHR $REWD
SRCHP SWCHP $BKSP
$WHDS $BKSPF

system
calls
USER
Y Y SYSTEM
TIO CI0
RDCS
JRWDR $WWDR SWEOF
$RWDP $WWDP $WEOD > WDCS
$WWDS $REWD C1o0s

Figure 2-6. Relationship of levels of user I/0

Part 1
SR-0011 2-14 J-01

Circular I/0 routines (CIO) are the focal point for all logical I/0
generated by COS. CIO communicates its needs for physical I/0 to the
Disk Queue Manager or Tape Queue Manager,

A FORTRAN buffered I/O request issued for an unblocked dataset results in
the buffered I/0 routines calling the unblocked dataset routines $RLB and
$WLB, which then process these requests. These requests are processed
the same as formatted/unformatted requests except that buffered I/0
requests return control to the user after initiating I/O rather than
waiting for completion of the I/O request. For a CAL buffered I/O
request, $CBIO is called to route the request to either the blocked or
unblocked I/0 processing routines.

CRAY Assembly Language (CAL) I/O macros are described in part 3, section
3 of this manual. Logical Record I/0 routines and FORTRAN I/0 routines
are described in Appendix D of this manual. Refer to the FORTRAN (CFT)
Reference Manual, CRI publication SR-0009, for a description of FORTRAN
statements.

DATASET DISPOSITION CODES

Each dataset is assigned a disposition code telling the operating

system the disposition to be made of the dataset when the job is
terminated or the dataset is released. The disposition code is one of
the parameters of the DISPOSE and ASSIGN control statements (see part 2).

Each disposition code is a 2-character alpha code describing the
destination of the dataset. The default disposition code for a dataset
is SC (scratch) when a dataset is opened, unless the dataset is named
$0OUT. By default, COS assigns the disposition code PR (print) to $OUT
when the dataset is created. No DISPOSE statement is required for $0UT;
it is automatically routed back to the designated mainframe to be printed
on a front-end designated printer.

Part 1
SR-0011 2-15 J-01

DECK STRUCTURE AND JOB PROCESSING

A job is a unit of work submitted to the CRAY-1 computing system. It
consists of one or more files of card images contained in a Jjob deck
dataset. Each job passes through several stages from job entry
through job termination.

JOB DECK STRUCTURE

A job originates as a card deck (or its equivalent) at a front—end
computer system. Card images in the job deck dataset are organized
into one or more files. Figure 3-1 illustrates a typical job deck
consisting of a control statement file, a source file, and a data

file. (The physical card forms for end-of-file and end-of-data are
defined by the front-end system.)

e —— Rl

m J0B,JN=. ..

“ JCL CONTROL STATEMENT
! FILE

Figure 3-1. Basic job deck

SR-0011 3-1 I

The first (or only) file of the job deck must contain the job control
language (JCL) control statements that specify the job processing
requirements. Each job begins with a JOB statement, identifying the
job to the system. If accounting is mandatory in the user's system,
the ACCOUNT statement must immediately follow the JOB statement. All
other control statements follow the JOB statement. Control statements
may also be grouped into control statement blocks as decribed in part
2, section 2. The end of the control statement file is designated by
an end-of-file (or an end-of-data if the job consists of a control
statement file only). :

Files following the control statement file may contain source code or
data. These files are handled according to instructions given in the
control statement file.

The final card in a job deck must be an end-of-data.

GENERAL DESCRIPTION OF JOB FLOW

A job passes through the following stages from the time it is read by
the front-end computer system until it completes:

® Entry
e Initiation
® Advancement

® Termination

JOB ENTRY

A job can enter the system in the form of a job deck submitted to a
front-end computer system or a local or remote job entry station. The
job is transferred to CRAY-1l mass storage, where it resides until it
is scheduled to begin processing. An entry is made in the system
tables for the job thus making the job input dataset permanent until
it is deleted at the completion of the job.

JOB INITIATION

The operating system examines the parameters on the JOB control
statement to determine the resources needed. When system resources
required for initiation are available, the job is initiated (scheduled
to begin processing).

SR-0011 3-2 I-02

Initiation of a job includes preparing a Job Table Area (JTA) and user
field, positioning the input dataset for the first job step, and

placing the job in a waiting queue for the CPU.

When the CRAY-1 Operating System (COS) schedules the job for
processing, it creates four datasets: $CS, $IN, $0OUT, and $LOG.

® $CS is a copy of the job's control statement file from $IN and
is used only by the system; the user cannot access $CS by
name. This dataset is used to read job control statements.
The disposition code for $CS is SC (scratch).

e $IN is the job input dataset. It is identified at the
front—end computer system by a dataset name assigned by the
user. The job itself can access the input dataset, with read
only permission, by its local name, $IN, or as FORTRAN unit 5.

® $OUT is the job output dataset. The job can access this
dataset by name or as FORTRAN unit 6. The disposition code for
$0OUT is PR (print).

® The job's logfile ($LOG) contains a history of the job. This
dataset is known only to the operating system and is not
accessible by the user. User messages can be added to the
job's logfile with the MESSAGE system action request macro (see
part 3) or the REMARK, REMARK2, or REMARKF subroutines in
$FTLIB.

JOB ADVANCEMENT

Job advancement is the processing of a job according to the
instructions in a control statement file. Advancement occurs as a
normal advance or as an abort advance.

A normal advance causes COS to interpret the next control statement in
the job's control statement file.

An abort advance occurs if the operating system detects an error or if
the user requests that the job abort. An abort advance causes the
operating system to search for and interpret the first control
statement following the next valid EXIT control statement in the
control statement file. EXIT statements that are within control
statement blocks (in-line procedure, conditional, or iterative) that
have not yet been invoked are ignored during the search for the next
EXIT statement.

Part 1
SR-0011 3-3 I

02

If the block currently being processed is a conditional block, only
the group of control statements preceding the next conditional
statement in the block is evaluated. For example, in the following
sample control statement sequence, an abort advance occurs at the
control statement THIS IS A JOB STEP ABORT CONDITION because it does
not begin with a valid verb. Control statement interpretation resumes
with the control statement: *. RESUME HERE. The EXIT statements
that are included in the conditional block are ignored because they
reside in blocks that are not executed.

.
.

SET,J1=0.
IF(J1.EQ.0)

.

THIS IS A JOB STEP ABORT CONDITION,
ELSEIF (J1.EQ.1l)

EXIT.
ELSE.

EXIT.
ENDIF.

EXIT.
*. RESUME HERE

JOB TERMINATION

Output from a job is placed on system mass storage. At completion of a
job, the operating system appends $LOG to $OUT and makes $OUT permanent.
$IN, $CS, and $LOG are released. $OUT is renamed jobname (from the JIN
parameter value of the JOB control statement) and is directed to the

output queue for staging to the specified front-end computer system.

When the front end has received the entire contents of $O0UT, the system
table entries for the dataset are deleted, and the output dataset itself
is deleted from CRAY-1l mass storage.

The front-end computer processes $0OUT as specified by the dataset
disposition code.

SR-0011 3-4 I-02

If, for any reason, $0OUT does not exist, $LOG is the only output returned
at job termination.

JOB RERUN

Under certain circumstances, restarting of a job from its beginning may
become necessary or desirable. This is referred to as rerunning a job.
Conditions causing the system to attempt to rerun a job are:

® Operator command
® Uncorrectable memory error

® Uncorrectable error reading the mass storage image of a job that
has been rolled out. Rolling out occurs because of system or user
initiation.

® System restart

A user job may perform certain functions that normally make rerunning of
a job impossible. These functions are considered nonrerunnable because
they produce results that might cause the job to run differently if it
were rerun. These functions include:

e Writing to a permanent dataset
® Saving, deleting, adjusting, or modifying a permanent dataset
® Acquiring a dataset from a front-end system

Ordinarily, when a job becomes nonrerunnable, it remains so. However,
the user may specify in the program that the job is rerunnable. The user
should do this only when changes in job results due to execution of
nonrerunnable functions are acceptable. COS never makes a job rerunnable
automatically.

The user may also override system monitoring of a job rerunnability,
regardless of what functions the job performs. This ordinarily is done
only if the job is structured to run correctly regardless of whether
nonrerunnable functions are performed.

Part 1
SR-0011 3-5 I-02

REPRIEVE PROCESSING

Normally, when a job step abort error occurs, control passes to the EXIT
control statement and exit processing begins. Reprieve processing,
however, allows the user to attempt recovery from many of the job step
abort errors or to perform clean-up functions before continuing with the

abort.

Reprieve processing may also be used during the normal termination of a
job step. 1In this case, control transfers to the user's reprieve code

instead of to the next normal job step.

Two types of error conditions are related to a job step: non-fatal and
fatal. Non-fatal error conditions may be reprieved any number of times
per job step by the user. Fatal error conditions can be reprieved only
once for each type per job step.

When requesting reprieve processing, the user selects the error
conditions to be reprieved by setting a mask in the SETRPV subroutine or

macro call. If a selected error condition occurs during job processing,
the user's current job step maintains control. The user's exchange
package, vector mask register, error code, and error class are saved and
control passes to the user's reprieve code. (Refer to the F§RPV
processing description in Appendix C and to Appendix F for error codes.
Also, see description of SETRPV macro for mask values.)

JOB LOGFILE AND ACCOUNTING INFORMATION

For each job run, the system produces a logfile--an abbreviated history
of the progress of the job through the system. The logfile for a job
appears at the end of the job output and consists of a list of comments.
Each job control statement is listed sequentially, followed by any
messages associated with the job step. Clock time, accumulated CPU time,
and COS information are also given for each job step. A logfile usually
consists of the items illustrated in figure 3-2. Item 6 illustrates the
accounting information given to the user.

Part 1
SR-0011 3-6 I-01

1341 81 0.0908 CSP Systen .

@ 134181 veme Cee MAMMILAL ML
13:41: 891 Q. B0 C5P
13:41: 01 3. 0eB1 C5F] No news is 3ood news,
13:41: 81 3. ana1 CSP
134191 (%% [%]% DY cep CRAY-L SERIAL-25/I0F MENDOTA HEIGHTS 065-14/82
13:41: 91 @. 8001 csP
13:41: 21 2. o1 CSP CRAY-1 OPERATING SYSTEM CNS 1,11 ASSEMBLY DATE @O8/05-92
13:41: 831 a.gBal CSP
13: 41: 01 a.08a1 cep
13: 41: 91 % %550 CSF JOB, TN=SAMPJOB, US=FPROJECT2813, T=1.
13:41: 01 [% urd CSP CCOLNT .
13: 41: 2 B.0a14 EXP *
13: 41: @2 7n.20914 EXpP % . #GEMNERATE A PERMANENT DATASET.
13:41: @2 B.0614 ExF *.
13: 41: 92 2.0814 CEF COPYF(O=PERMDZ)
13: 41: @2 7.8018 SER FT48 — COPY OF 8 RECORDS 1 FILES COMPLETED
13: 41: 92 @a.ea1s C5P COFYF, O=PERMDS.
131 41: @2 2. 9829 USER FTR48 ~ COPY COF 72 RECORDS 1 FILES COMPLETED
120 41: 62 0. 2923 CSP SALE(DN=PERMDS, ID=P2013)
13: 41: 92 2. 8931 PUN@F’D@BL -~ SAVE FERMDS ED=20081 COMPLETE
13:41: 82 3. @a@31 CeP EXIT.
13:41: 22 a.eas1 CSF EMDN OF JOB
13:41: 02 @a. pE3l CSP
13 41: 82 Q2. 2331 TSP
13: 41: 82 a. 833 JSER JOR NAME — SAMPJOB
13:41: 22 3. 0823 USER UzZER MUMBER ~ FROJECTZ2813
13: 41: 92 2. BA33 USER @ TIME EXECUTING IN CPU - 2003: 96: 3D . 833
13 41: 82 B. P24 USER TIME VAITING TO EXECUTE - ERn: 98- A1 . 0236
13:41: 82 2. 2034 USER TIME WAITING FOR 10 -~ ana: Ba: B, 5720
13:41: 82 @, Baz4 1JSER TIME WAITING IN IMNPLT QUELE - 7% e L B v R [S B
13:41: 22 B PA34 USER MEMCORY #¥ CPU TIME (MWDS%SEC) -- @ E32618
13: 41: 82 B. =S USER MEMORY *¥ I-0 WAIT TIME (MWNDS®SEC) - 3. .0a313e
1214182 @. 935 USER MINIMUM MEMORY WORDS USED - E4734
13:41: 82 @. pA3s USER MAKIMUM MEMORY WORDS USED — 4724
13:41: a2 @. e93Es USER DISK SECTORS MOVED ~ 128
13:41: 82 @ ag3s USER WUSER 10 REQUESTS - 14
132 41: @2 @. aa3s USER OFEN CALLS - =}
13:41: 82 [e USER CLOSE CALLS -~ 7
12:41: 82 @.Auzs LSER MEMORY RESIDENT DATASETS — o]
12041 82 2. PR3 USER TEMPORARY DATASET SECTORS USED - 5]
1341 82 [USER PERMANENT DATASET SECTORS ACCESSED - 28
13 41: 02 @, pazE USER PERMANENT DATASET SECTORS SAVED — 1
134162 3. 36 USER SECTORS RECEIVED FROM FROMT END -~ 5]
1341 82 3. 9636 USER SECTORS QUEUED TO FROMT END - 3

Figure 3-2. Example of a job logfile

First header line: Installation-defined message, usually
identifying the site and date the job was run.

Second header line: Installation-defined message, usually
identifying the operating system, its current revision level, and
the date of the last revision.

® ©

Columns: The leftmost column identifies the wallclock time for
each job step and the middle column identifies the accumulated CPU
time for the job. The rightmost column identifies a system module
or the user as the originator of the message. 2All times are in
decimal. Entries commonly noted include the following:

©

Csp Control Statement Processor
PDM Permanent Dataset Manager
EXP Exchange Processor
ABORT Abort Message
USER Program in user field

Part 1

SR-0011 3-7 J-01

<:> Control statements: Control statements are listed in the logfile
as they are processed if requested with the ECHO statement
described in part 2, section 1.° When the job terminates, the last
control statement processed is the last control statement printed.
Control statements are not listed if JCL message class is disabled.

Logfile messages: Any messages related to control statement
processing are shown below the statement.

<:> Accounting information: When a job reaches completion, COS writes
a summary of basic accounting data onto the logfile for the job.
All times given are in hours, minutes, and seconds (to the nearest
ten-thousandth of a second). The following accounting information
is provided (in decimal):
e Job name and user number
e CPU time used by the job
e Time waiting to execute
e Time waiting for I/O

e Time waiting in input queue

® Memory usage based on the execution and I/0 wait time in million
word-seconds

® Minimum and maximum number of memory words used
® Number of 512-word disk blocks (sectors) moved
® Number of user I/O requests made by the job

® Open and close calls

® Memory-resident datasets

® Number of 512-word disk blocks (sectors) used for temporary
datasets

® Number of 512-word disk blocks (sectors) accessed and saved for
permanent datasets

® Number of 512-word disk blocks (sectors) received from and
queued to the front end

® Number of tape devices reserved; message issued only if magnetic
tape datasets have been processed.

Part 1
SR-0011 3-8 J-01

e Number of tape volumes mounted; message issued only if magnetic
tape datasets have been processed.

® Amount of tape data moved, expressed as a multiple of 512 words;
message issued only if magnetic tape datasets have been
processed. Each CRAY-1 disk sector consists of 512 words, and
in COS blocked format each block consists of 512 words.

® Number of tape blocks moved; message issued only if magnetic
tape datasets have been processed.

(:) System Bulletin: The system bulletin allows the installation to
print messages in the logfile, usually about the status of the
system environment. It is an installation-maintained message
dataset.

I sr-0011 3-9 J-01

JOB CONTROL LANGUAGE 4

The job control language of the CRAY-1 Operating System (COS) allows the
user to present a job to the CRAY-1, define and control execution of
programs within the job, and manipulate datasets associated with a job.

The job control language is composed of control statemente with each
control statement containing information for a job step. COS initially
creates a ceontrol statement dataset, $CS, to hold job control
statements. Additional control statement datasets can be created via
procedure definition (part 2, section 2) or the CALL control statement
(part 2, section 1).

All control statements must adhere to a set of general syntax rules.

The syntax of a control statement is:

verb | sepy | param, | eepy |paramy | ... | sep,|param, | term | comments

Every control statement consists of a verb and a terminator (fterm) as a
minimum, except for the comment control statement (*) which does not
require a terminator. Additionally, most control statements require
parameters (param;) and separators (sep;) between the verb and

the terminator. The maximum number of parameters (zero, one, or more)
depends on the verb.

The continuation separator (the caret symbol) allows a control statement
to consist of more than one line image (80 characters). The JOB,
ACCOUNT, DUMPJOB, EXIT, and comment control statements cannot be
continued. All other control statements may have any number of
continuation card images, subject to restriction by the verb. A caret
occurring within a literal string has no special significance.

A comment is an optional annotation to a control statement and can be a
string of any ASCII graphic characters. The comment follows the line
image terminator. The control statement interpreter ignores comments.
All comments appear in the logfile.

Blanks are ignored unless they are embedded in a literal string. Blanks
cannot precede the verb on the JOB control statement.

Part 1
SR-0011 4-1 J-01

SYNTAX VIOLATIONS

COS notes syntax violations in the system and user logfiles. If the JOB
control statement is in error, processing of the job terminates
immediately. If accounting is mandatory, ACCOUNT statement errors also
cause job termination. All other syntax errors cause a job step abort
condition, which causes the system to search for an EXIT control
statement. A successful search resumes control statement processing with
the job step following EXIT. If no such job step exists or if an EXIT
statement is not found, the job is terminated. Job step abort may also
direct control to a user-specified routine (see description of Reprieve
processing in part 1, section 3 of this publication).

VERBS

A control statement verb is the first nonblank field of a control
statement specifying the action to be taken by COS during control
statement processing. COS recognizes three types of control statement
verbs: system verbs, dataset name verbs (local and system), and
library-defined verbs. A control statement verb cannot be continued
across a card boundary.

SYSTEM VERBS

A system verb consists of an alphabetic character which can be followed by
one through six alphanumeric characters.S The verb requests that COS
perform the indicated function. The system verbs are:

* DELETE EXIT NORERUN RFL
ACCESS DISPOSE EXITLOOP OPTION ROLLJOB
ACCOUNT ECHO IF PRINT SAVE
ACQUIRE ELSE JOAREA PROC SET
ADJUST ELSEIF LIBRARY RELEASE SIMABORT
ASSIGN ENDIF LooP RERUN SUBMIT
CALL ENDLOOP MODE REWIND SWITCH

ENDPROC MODIFY RETURN

§ Alphabetic characters include §, %, @, and the 26 uppercase letters A
through Z. Alphanumeric characters include all the alphabetic
characters and the digits 0 through 9.

Part 1
SR-0011 4-2 J-01

LOCAL DATASET NAME VERBS

A verb that is the name of a local dataset consists of an alphabetic
character followed by one through six alphanumeric characters.S This

verb requests that COS load and execute an absolute binary program from
the first record of the named dataset. If the user job has a dataset with
the indicated name, COS loads and executes the program from that dataset.

LIBRARY-DEFINED VERBS

A library-defined verb consists of one through eight characters. The
library-defined verb is either a programSS or procedure definition
residing in a library that is a part of the current library searchlist.
(The library searchlist is the order in which the content of the library
is searched by COS. This order may be specified with the LIBRARY
statement described in part 2, section 1.) A program in a library is an
absolute binary program to be loaded and executed. A procedure definition
is a group of control statements and/or data to be processed (see part 2,
section 2).

SYSTEM DATASET NAME VERBS

COS searches for a verb that is the name of a system-defined dataset in
the System Directory Table (SDR). A system—-defined dataset name verb
consists of an alphabetic character which can be followed by one through
six alphanumeric characters.S The System Directory Table is a list of
common language processors and utilities known to the system and made
available to users at startup. The name of the program (for example, CAL,
CFT, or DUMP) is also the name of the dataset containing the absolute
binary of the program.

VERB SEARCH ORDER

When COS encounters a verb in a control statement file, it searches for a
match to that verb in the following order:

1. System verbs

2. Local dataset name verbs
3. Library-defined verbs

4, System dataset name verbs

§ Alphabetic characters include $, %, @, and the 26 uppercase letters A
through 2. Alphanumeric characters include all the alphabetic
characters and the digits 0 through 9.

§§ Deferred implementation

Part 1
SR-0011 4-3 I1-02

COS first searches the list of system verbs for a match. If the verb is
not a system verb, COS searches for a local dataset name that might match
the verb. If the verb is not the name of a local dataset, COS searches
each library in the library searchlist for a match. If it does not find

a library entry that matches the verb, it searches the System Directory
Table (SDR) for a matching system dataset name. If a match for the verb
is not found under any of these categories, COS issues a control statement

error.

SEPARATORS

A geparator is a character used as a delimiter in a control statement. It
separates the verb from the first parameter, separates parameters from
one another, delimits subparameters, terminates verbs and parameters, and
separates a keyword from its value in parameters having keyword form.

The control statement separators allowed by COS are given in table 4-1.

PARAMETERS

A parameter is a control statement argument, the exact requirements of
which are defined by the verb. Parameters are used in control statements
to specify information to be used by the verb-defined process. Parameters
that can be used with COS control statements are either positional

or keyword. For certain verbs, a parameter value can be an expression.
Detailed information on the use of expressions is presented later in this
section. Parameters are separated by commas.

POSITIONAL PARAMETERS

A positional parameter has a precise position relative to the separators
in the control statement. Even a null positional parameter must be
delimited from the verb or other parameters by a separator.

The format for a positional parameter is:

value
or
vaZuel:vaZueZ:...:valuen

where each valuei is a string of alphanumeric characters, a literal

string, or a null string. All positional parameters are required to be
represented by at least one value, although the value may be null. Rules
for strings are given later in this section.

SR-0011 4-4 I-02

Table 4-1. Control statement separators

Function bharacter Examples
Initial separator (comma or open , VERB ,parameter .
parenthesis)§ - Separates the (VERB (parameter)
verb from the first parameter
Statement terminator (period if . VERB.,
initial separator is comma; close) VERB ,parameter.
parenthesis if initial separator VERB (parameter)

is open parenthesis)$ - Signifies
end of control statement

Parameter separator (comma) - ' VERB (parameter ,parameter)
Indicates the end of one parameter

and the beginning of the next

Equivalence separator (equal sign) - = VERB (keyword=value)
Delimits a parameter keyword from the
first parameter value for that key-
word. Adjacent equivalence separa-

tors are illegal.

Concatenation separator (colon) - : VERB,keyword=value1:valuez.

Separates multiple parameter values
in a keyword parameter from each

other
Continuation character (caret) - A VERB (...parameters. ..\
Indicates that the control statement parameters)

consists of more than one 80-character
card; may appear anywhere after the

initial separator

Literal delimiters (apostrophes) - et VERB(...'string'...)
Identify the beginning and end of a (eos)

literal string

Parenthesis delimiters (open and close (...) VERB ,keyword= (value :value) .
parentheses) - Indicate a group of
characters to be treated as one value

§ By convention in this manual, the comma and period are used as initial
and terminator separators for all control statements except for the
JCL block control statements (procedure definition, iterative, and
conditional) where paired parentheses are advisable.

Part 1
SR-0011 4-5 I-02

Examples of positional parameters:
«.«,ABCDE, ... Parameter value is ABCDE.

ceerrecs The adjacent parameter separators
indicate a null positional parameter.

«eesPl:P2:P3,... The parameter consists of multiple values.

VERB () or VERB,. Positional parameter 1 is null

KEYWORD PARAMETERS

A keyword parameter is identified by its form rather than by its position
in the control statement. The keyword is a string of one to eight
alphanumeric characters uniquely identifying the parameter. Parameters
of this type can occur in any order but must be placed after all of the
positional parameters for the control statement; or they can be omitted.

The format of a keyword parameter is:

keyword
or
keyword=value

or
keyword=value ;walue,:...:value,

where keyword is an alphanumeric string that depends on the requirements
of the verb, and valuei is the value associated with the keyword. A
keyword parameter can occur anywhere in the control statement after all
positional parameters are specified. Whether or not a keyword parameter
is required depends on the verb's requirements. If the keyword is not
included in the control statement, a default value can be assigned by the
prototype statement.

Examples of keyword parameters:
«++,DN=FILE]l,... Parameter consists of keyword and value.
eeesUQ, 00 Parameter consists of keyword only.

+++,DN=FILE1:FILE2:FILE3,... Parameter consists of keyword and list of
values.

«ee,DN=,... Null parameter value, as if omitted from
the statement.

«+«+/DN=A:::B,... A, B, and two null parameter values are
listed.

SR-0011 4-6 I-02

JCL PARAMETER EXPRESSIONS

The JCL block control statements described in part 2, section 2 require a
parameter value known as a JCL parameter expression. Others, such as the
prototype statement and the definition calling statement can include
expressions.

An expression consists of operands and operators. Parentheses should be

used to delimit expressions. See the description later in this section
on the use of apostrophes and parentheses in JCL block control statements.

Operands

Expression operands are of four types: integer constants, literal
constants, symbolic values, and subexpressions.

Integer constants - An integer constant is a character string of the form:

{i}ddd'-~

where d is a decimal digit, or
nmn...B
where n is an octal digit.

An integer constant has an approximate decimal range 01|1l11019. Range
overflow is not detected and overflow results may be unpredictable.

Literal constants - A literal constant is a string of one to eight
characters of the form:

'‘ecee...'L
‘cee...'R

‘eee...'H

where ¢ is a character code with an ordinal number in the range 040g
through 176g. The value of a character constant corresponds to the
ASCII character codes positioned within a 64-bit word. Alignment is
indicated by the following suffixes:

L Left-adjusted, zero-filled
R Right-adjusted, zero-filled
H Left-adjusted, space-filled

If no suffix is supplied, H is assumed.

Part 1
SR-0011 4-7 I-02

Symbolic variable - A symbolic variable is a string of one to eight
alphanumeric characters, beginning with an alpha character, of the form:

CCCewe

A symbolic variable always has an associated value that is either
constant or varies. COS defines a set of symbols when the job is
initiated. Symbols are mnemonics for values maintained by COS and/or the
user. The user may manipulate the group of symbols listed in table 4-2
through COS control statements or through system requests.

Certain symbols allow communication between COS and the job being
processed. Used in the JCL block control statements defined in part 2,
section 2, they provide the user with powerful tools for analyzing the
progress of a job. For example, a job can request the reason for an
abort situation and proceed, based on the reply from COS, through the use
of conditional control statements. Symbols that are preserved over
subprocedure calls are called local to a procedure; they are saved when a
subprocedure is called. Those that are not preserved are global over all
procedures and can be altered by any procedure. Constants are symbols
that are never altered.

Information on predefined symbols is summarized in table 4-2.

Subexpressions - A subexpression is an expression that is evaluated so
that its result becomes an operand.

Operators

Expression operatore are of three types: arithmetic, relational, and
logical. These operators are used in the FORTRAN sense. The expression
operators are detailed in table 4-3.

Arithmetic Operators - All arithmetic operations are performed on 64-bit
integer quantities. Care must be used with arithmetic operators because:

e Multiplication/division underflow or overflow of the result is not
detected,

e Division by zero produces a zero result.

® Intermediate and final results are truncated. For example,
2*(13/2) yields 12 whereas (2*13)/2 yields 13.

Relational Operators - Relatiomal operations return a -1 value for a TRUE
result and a 0 value for a FALSE result. A value produced by arithmetic

or logical operation is considered TRUE if it is a negative value.

SR-0011 4-8 I-02

Table 4.2 Symbolic variable table

Symbol |Set by Range Description Local/Global
J0-J7 [§) Any 64-bit value Job pseudo-registers; represent LOCAL
user—alterable data local to a
procedure. Each procedure level
can be considered to have its
own set of J registers.
G0-G7 U Any 64-bit value Global job pseudo-registers; GLOBAL
represent user—alterable data global
over all procedure levels. Data can
be passed into or returned from
procedures with the G registers.
JSR 9] Any 64-bit value |Job status register; previous GLOBAL
job step completion code
(normally 0)
FL S 0-777771777g Current job field length:; can GLOBAL
be set with RFL statement.
FLM I 0-777777177g Maximum job field length GLOBAL
SYSID I Literal value COS system level of the form GLOBAL
'COS X.XX'
sswn S (1>n>6) Job pseudo sense switch GLOBAL
settings; can be set with the
SWITCH statement
ABTCODE S System error codes| COS job abort code; abort code GLOBAL
(See Appendix F) corresponding to the last job
0-nnn step abort. The abort code
corresponds to the abort message
number (the mmn in ABnnn)
issued by COS.
TRUE I -1 True value GLOBAL
FALSE I 0 False value GLOBAL
TIME S Literal value Time of day in the form: GLOBAL
hh:mm: ss
DATE s Literal value Date in the form: mm/dd/yy GLOBAL
TIMELEFT, S 64-bit integer Job time remaining in milli- GLOBAL
seconds as an integer value
PDMFC S 64-bit value Most recent user-issued Perm- GLOBAL
anent Dataset Manager request.
See Appendix C.
PDMST S 64-bit value Status of most recent Perm- GLOBAL
anent Dataset Manager request.
See Appendix F.
U Alterable by user
S Set by COS
I System constant
Part 1
SR-0011 4-9 I-02

Table 4-3.

Expression operator table

Type Function Symbol Results
A Addition + 64-bit sum of operands
A Unary plus + Following integer operand is positive.
A Subtraction - 64-bit difference of operands
A Unary minus - Following integer operand is negative.
A Multiplication * 64-bit product of operands
A Division / 64-bit quotient of operands
R Equal .EQ. True/false
R Not equal .NE. True/false
R Less than LT, True/false
R Greater than .GT. True/false
R Less than or .LE. True/false
equal
R Greater than or .GE. True/false
equal
L Inclusive OR .OR. A 1 bit in either operand sets
corresponding bit in the result.
L Intersection .AND. A 1 bit in both operands sets
corresponding bit. in the result.
L Exclusive OR .XOR. A 1l bit is set in the result if
either (but not both) corresponding
bit in the operands is 1.
L Unary complement .NOT. A 1l bit (or 0) is set in the result
if the corresponding operand bit is 0
(or 1).
A Arithmetic
R Relational
L Logical
Part 1 »
SR-0011 4-10 I-02

Logical Operators - Logical operations return a 64-bit result. Their
functions are performed on a bit-by-bit basis.

Expression Evaluation

Expressions are evaluated from left to right, honoring nested
parentheses. The operator hierarchy is:

1. Multiplication and division

2. Addition, subtraction, and negation
3. Relational operation

4. Complement (.NOT.)

5. Intersection (.AND.)

6. Inclusive OR (.OR.)

7. Exclusive OR (.XOR.)

Parentheses can be used to change the order of evaluation. For example,
2+3*4 is evaluated as 14 whereas (2+3)*4 is evaluated as 20.

CAUTION

Because COS does not check for type, the results of
expression evaluation may not be as expected. For
example, although both Jl1=1 and J2=2 are TRUE, (Jl
.AND. J2) is FALSE.

PARAMETER INTERPRETATION

The cracking and interpretation of control statement parameters is
performed by $CCS and GETPARAM. These processes are described in the
Library Reference Manual, CRI publication SR-0014.

STRINGS

A string is a group of characters, delimited with either apostrophes or
open and close parentheses, which is to be taken literally as a parameter
value.

Strings are normally delimited with apostrophes, in which case they are
referred to as literal strings. Strings delimited with parentheses are
called parenthetic strings. Parentheses are advised to delimit strings
in JCL block statements. See the description later in this section
concerning the use of apostrophes and parentheses in JCL block control
statements.

Part 1
SR-0011 4-11 I-02

Characters in a string can be any ASCII graphic characters (codes 040
through 176). Characters otherwise recognized as separator characters
are not evaluated as such when part of a string.

YSEPARATORS IN STRING, .=()"' The literal string contains
separator characters which are not
interpreted as such.

-(ABC=DEF) The parenthetic string contains an
equal sign which is not interpreted
as a separator.

STRING CONSTRUCTION RULES

Apostrophes are never treated as part of a literal string during
evaluation except when doubled (see below). The outermost parentheses of
a parenthetic string are not treated as part of the string during
parameter evaluation if preceded by the initial, parameter, equivalence,
or concatenation separators.

KEYWORD= (ABC.DEF) ABC.DEF is the value assigned to
KEYWORD.
'ABC.DEF' ABC.DEF is the string value.

To continue literal strings across card images, place an apostrophe
followed by a continuation character at the end of the line, and place
the remainder of the string on the next card image preceded by an
apostrophe. To continue parenthetic strings, place a continuation
character at the end of the line and the remainder of the string on the
next card image. A string can be any length, depending upon the control
statement parameter requirements.

«««'LITERAL STRING CONTINUED' A This is the format for continuing
'ACROSS CARD IMAGES' literal strings across card images.

« «« (PARENTHETIC STRING CON- A This is the format for continuing
TINUED ACROSS CARD IMAGES) parenthetic strings across card
images.

Two adjacent literal delimiters are interpreted as a null string.

v or () Both are null strings.

Part 1
B sr-o011 4-12 1-02

The continuation and literal string delimiters are interpreted when
included in a parenthetic string.

eee: (STRING WITH 'EXTRA CLOSE PAREN)')...
STRING WITH EXTRA CLOSE PAREN) is
the value of the string following
the concatenation separator.

«++=(STRING CONTINUED ACROSS A STRING CONTINUED ACROSS CARD IMAGES
CARD IMAGES)... , is the value of the string
following the equivalence separator.

An apostrophe within the string is indicated by doubling it.

'DON''T" The literal string is interpreted
as DON'T.

APOSTROPHES AND PARENTHESES IN JCL BLOCK CONTROL STATEMENTS

The IF, ELSEIF, EXITLOOP, PRINT, SET, procedure definition prototype, and
definition calling statements described in part 2, section 2 can include
expressions. Since an expression can include a literal constant which is
delimited with apostrophes, values delimited with apostrophes in these
statements are always treated as literal constants. Therefore,
apostrophes should only be used to delimit literal constants, and
parentheses should be used to delimit strings. Apostrophes in these
statements are retained as part of the value during statement cracking,
parameter substrition, and parameter evaluation. Also use parentheses as
the initial and terminator separators instead of the usual comma and
period to allow the period to be treated as an expression operator
instead of a control statement terminator.

IF(GO.NE.'YES'L) Creates value with a literal
constant: protects the expression
characters during statement
cracking so that periods are
evaluated as expression operators
instead of statement terminators
and apostrophes are evaluated as
part of literal constant instead of
being treated as string delimiters.

IF,GO.NE,''YES''L. ERROR. First period processed as
statement terminator; expression

not evaluated.

IF,'GO.NE.''YES''L"', ERROR. GO.NE.''YES''L is the single
literal constant which is created.

Part 1
SR-0011 4-13 I-02

More specific information about how to use apostrophes and parentheses in
procedure definition and calling statements is presented in part 2,
section 2, Procedure Definition.

Part 1
I sr-o011 4-14 1-02

PART 2

JOB CONTROL LANGUAGE

CONTENTS
PART 2 JCL CONTROL STATEMENTS

INTRODUCTION AND JOB DEFINITION « « o o o o o o o o .o

INTRODUCTION e« o o o e o o o s e o s e s e o e o s
JOB DEFINITION « ¢ o « o o o o o o o o o ¢ o o o o o o
JOB — JOB IDENTIFICATION « o o ¢ « o o o ¢ o o o o o o
MODE - SET OPERATING MODE . « ¢ © o o o o o o o o o o
EXIT — EXIT PROCESSING « o « o ¢ o o o o s o o o o o o
RFL — REQUEST FIELD LENGTH . ¢ ¢« ¢ ¢ « ¢ o o o o o o o
SWITCH - SET OR CLEAR SENSE SWITCH . ¢« « ¢ o o o o ¢ o
*¥ — COMMENT STATEMENT . « ¢ « s o s o s o o s o o o o
NORERUN - CONTROL DETECTION OF NONRERUNNABLE FUNCTIONS
RERUN - UNCONDITIONALLY SET JOB RERUNNABILITY . . « o
IOAREA - CONTROL USER'S ACCESS TO I/O AREA . . « « o o
CALL - READ CONTROL STATEMENTS FROM ALTERNATE DATASET
RETURN - RETURN CONTROL TO CALLER . « o« ¢ o o o o o &
ACCOUNT - VALIDATE USER ACCOUNT .« ¢ ¢ « ¢ ¢ o o o o o
CHARGES — JOB STEP ACCOUNTING « <« « o o o o o o o o o
ROLI.JOB - ROLL A USER JOB TO DISK . o ¢ o ¢ ¢ ¢ o o o
SET — CHANGE SYMBOL VALUE . &« « o o o o o ¢ o o o ¢ o »
ECHO - Enable or suppress logfile messages « « « o o o
LIBRARY - List and/or change library searchlist . . .
OPTION -~ Set user-defined options . « ¢« ¢« ¢ ¢ o « « &«

JCL CONTROL STATEMENTS BLOCKS ¢ ¢ ¢ o ¢ o ¢ ¢ o o o o

PROCEDURE DEFINITION « « o o o o o o o s o o o o o o o
Procedure definition format . . « « ¢« ¢« ¢ o « o« &
PROC -~ Begin procedure definition . « « . «
Prototype statement - Introduce a procedure .
Procedure definition body . ¢« « ¢« ¢ o ¢ o ¢ o
&DATA -~ Procedure data « ¢ « o o o o o o o o
ENDPROC - End procedure definition . . . « &
Substitution parameters . « ¢ ¢ ¢ ¢ ¢ o o ¢ o o o
Value substitution ¢« ¢« ¢ ¢ ¢ ¢ ¢ o o ¢ o o o o o o
Positional parameters . « « o « o ¢ o o o o o
Keyword parameters . o« ¢ ¢ o o« o o o o o o o
Positional and keyword parameters . . « « o o
Apostrophes and parentheses . ¢« ¢« ¢« ¢ ¢ ¢ ¢ &
EXaQMPleS o o o ¢ o o o o o o o o o o o o o o ¢ o o

Part 2

SR-0011 iii

1-1

1-1
1-2
1-3
1-5
1-5
1-6
1-6
1-6.1
1-6.1
1-7
1-8
1-8
1-9
1-10
1-11
1-12

. 1-12

1-13
1-14
1-15

N
]
=

NNNNNN?’NNNNNNN
NN W WN

J-01

CONDITIONAL CONTROL STATEMENT PROCESSING
Conditional block« o

IF - Begin conditional block .

ENDIF - End conditional block .
Conditional block with ELSE

e e e o o o o
e e o o o o o
e o o o o e o
e e e o o o o

® o o o o e o

ELSE - Define alternate condition . « « « « &

Conditional block with ELSEIF . . .

ELSEIF - Define alternate condition
Conditional block with ELSE and ELSEIF . « « « « &

ITERATIVE CONTROL STATEMENT PROCESSING .
LOOP - Begin iterative block c o
ENDLOOP - End iterative block . . .
EXITLOOP - End iteration . « « « «

DATASET DEFINITION AND CONTROL . « « « &

ASSIGN - ASSIGN MASS STORAGE OR MAGNETIC
CHARACTERISTICS « « o o o o o « « &
RELEASE -~ RELEASE DATASET . . «

PERMANENT DATASET MANAGEMENT . « . « «

SAVE - SAVE PERMANENT DATASET .« « « o o«
ACCESS - ACCESS PERMANENT DATASET . . .
ADJUST -~ ADJUST PERMANENT DATASET . . .
MODIFY - MODIFY PERMANENT DATASET . . .
DELETE - DELETE PERMANENT DATASET . . .

DATASET STAGING CONTROL . ¢ « o o o o &

ACQUIRE - ACQUIRE PERMANENT DATASET . .
DISPOSE - DISPOSE DATASET e e e o o o o
SUBMIT - SUBMIT JOB DATASET . « o o o o

DATASET UTILITIES .+ « ¢ ¢ o o o s o o o

COFYR
COPYF
COPYD

COPY RECORDS ¢ o ¢ o o o ¢ o o o
COPY FILES « « ¢ o o o o o o o o
COPY DATASET « ¢ o o o o o o o o
SKIPR SKIP RECORDS « « ¢ « o« o o o o o
SKIPF SKIP FILES ¢« « ¢ o o o o o ¢ o o

SKIPD - SKIP DATASET « « « « o o o ¢ o o
REWIND - REWIND DATASET .

® e ® o & e o

TAPE DATASET

WRITEDS - WRITE RANDOM OR SEQUENTIAL DATASET e o o o @

Part 2

SR-0011 iv

2-13
2-13
2-14
2-14
2-15
2-16
2-17
2~18
2-19
2-20
2-21
2-22
2-22

3-1

U

AUV WWN R

7. PERMANENT DATASET UTILITIES . « o ¢ o o o o o o &

PDSDUMP ~ DUMP PERMANENT DATASET . . « ¢ ¢ o o o o«
PDSLOAD — LOAD PERMANENT DATASET « ¢ « « « o o o o«
AUDIT - AUDIT PERMANENT DATASET . o ¢ o o o o o &

8 . ANALYTICAL AIDS . L] Ll . L4 . L4 . L . L] . . L] L] . -

DUMPJOB = CREATE SDUMP « « ¢ & « o o o o o o « o
DUMP — DUMP REGISTERS AND MEMORY « « o o o o o o o
DEBUG -~ PRODUCE SYMBOLIC DUMP ¢+ ¢ « o « o o o o o
DSDUMP — DUMP DATASET v « « o o o o o o s o o o o
COMPARE - COMPARE DATASETS . + . . e e e e e e a
PRINT - WRITE VALUE OF EXPRESSION TO LOGFILE . . .
FLODUMP - FLOW TRACE RECOVERY DUMP « & &« « « o o« &
SYSREF - GENERATE GLOBAL CROSS—-REFERENCE LISTING .

Use o f SYSREF L] - L] L L] . . L] . L L] -
Global cross-reference listing format

9. RELOCATABLE LOADER ¢« « o o ¢ o o o o s o o o o o @

LDR CONTROL STATEMENT .« « ¢ o « o o o o« o o o o o
ILOADER ERRORS . ¢ ¢ «c ¢ ¢ o o o o o s o o o o o
LOAD MAP ¢ &« ¢ o o o o o o o o o o o o o o o o o o
SELECTIVE LOAD ¢ o o « o o o s o o o o o o o s o s
RELOCATABLE OVERLAYS o ¢« ¢ « o o o o o s o o o o o

Generation of relocatable overlaysS . « « « « o«
Memory layout when relocatable overlays exist
Memory layout of a relocatable overlay image .
Address relocation « « + ¢« ¢« o o ¢ o o o s o @

10. OVERLAY LOADING =« ¢ o o o o o o o o o o o o o o &

INTRODUCTION ¢ « « o o o« o o o o o o o o o o o o o
OVERLAY GENERATION . o ¢ ¢ o o o o o o o o o o o

SR-0011

Overlay directives . ¢« o o o o o o o o o o o =«
FILE directive .« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o &
OVLDN directive .« ¢« o« o o ¢ o o o o o o o
SBCA directive . o o o o o o ¢ o o « o &«

TYPE 1 overlay Structure « « « o o« ¢ o o o o «
Type 1 overlay generation directives . .
Rules for Type 1 overlay generation . . .

Example of Type 1 overlay generation directives

Execution of Type 1 overlays . . « « « .
Type 1 overlay calls . ¢« o« « o« o o o o o
FORTRAN language call .« « « o « o o o o «
CAL language call . & ¢ o o o « o o o o o
Log of Type 1 overlay generation

Part 2

8-11
8-13
8-14
8-16
8-16
8-17

l10-1

10-1
10-1
10-2
10-2
10-2
10-3
10-3
10-4
10-7
10-7
10-8
10-9
10-9
10-10
10-11

J-01

OVERLAY LOADING (continued)

Type 2 overlay structure
Type 2 overlay generation directive
Rules for Type 2 overlay generation

Example of Type 2 overlay generation directives

Execution of Type 2 overlays
Type 2 overlay calls . . .

FORTRAN language call
CAL language call .
Log of Type 2 overlay

11, BUILD . .

.

INTRODUCTION .
Program module names .

Program module groups
Program module ranges

3

.

-File output sequence .

File searching method
BUILD CONTROL STATEMENT

BUILD DIRECTIVES .
FROM directive .
OMIT directive .

COPY directives

LIST directive .

EXAMPLES .

FIGURES

[=JEV- I I ? SRS I SRR S N
HFEMMFFOAGO® WD

=

o
U

N

SR-0011

.

Procedure definition deck structure
Basic conditional block structure .
Conditional block structure including
Conditional block structure including
Conditional block structure including
Iterative block structure .
Example of a flow trace summary . .
Example of a flow trace recovery dump
Example of a load map .
Example of a Type 1 overlay loading .
Example of Type 2 overlay loading . .

e e o 0

Part 2
vi

.

.

L]

o e o e o o o o

s e o e o o o o

generation ., &

e e o o s o o+ =

e e o * e o o o

E LSE * L4 L] . L]
ELSEIF . . .«
ELSE and ELSEIF

10-11
10-11
10-14
10-15
10-16
10-16
10-16
10-17
10-18

11-1

11-1
11-1
11-1
11-2
11-2
11-2
11-3
11-5
11-6
11-7
11-7
11-9
11-9

2-2.1
2-14
2-16
2-17
2-19
2-21
8-15
8-15
9-10
10-5
10-12

J-01

INTRODUCTION AND JOB DEFINITION 1

INTRODUCTION

Job control statements identify a job to the system, define operating
characteristics for the job, manipulate datasets, call for the loading
and execution of user programs, call programs that perform a number of
utility functions for the user, and define and manipulate control
statements themselves. The first file of a job dataset contains control
statements that are read, interpreted, and processed.

Information on the general syntax rules and conventions for control
statements is presented in part 1, section 4. This part describes COS
control statements individually and gives examples in some cases. The
control statements have been divided into the categories listed below.
The Job Definition statements are described in this section; the other
categories are defined in the remaining sections in part 2.

e Job Definition and Control - JOB, MODE, EXIT, RFL, SWITCH, *,
NORERUN, RERUN, IOAREA, CALL, RETURN, ACCOUNT, CHARGES, ROLLJOB,
SET, ECHO, LIBRARY, and OPTION

® Control Statement Blocks - In-line procedure definition,
conditional control statement processing, and iterative control
statement processing

® Dataset Definition and Control - ASSIGN and RELEASE

® Permanent Dataset Management - SAVE, ACCESS, ADJUST, MODIFY, and
DELETE

e Dataset Staging Control - ACQUIRE, DISPOSE, and SUBMIT

® Dataset Utilities - COPYR, COPYF, COPYD, SKIPR, SKIPF, SKIPD,
REWIND, and WRITEDS

® Permanent Dataset Utilities - PDSDUMP, PDSLOAD, and AUDIT

® Analytical Aids - DUMPJOB, DUMP, DEBUG, DSDUMP, and COMPARE,
FLODUMP, PRINT, and SYSREF

The relocatable and overlay loader (LDR) and the BUILD utility are also
described in part 2.

Part 2
SR-0011 1-1 J=-01

JOB DEFINITION

Several control statements allow the user to specify job processing
requirements. Control statements defining a job and its operating
characteristics to the operating system include the following:

® JOB defines the job to the operating system and sets
characteristics such as size, time limit, and priority levels.

® MODE allows the user to set or clear the floating-point error
interrupt flag.

® EXIT indicates the point in a series of control statements at
which processing of control statements resumes following a job
step abort from a program or indicates the end of control
statement processing.

® RFL allows the user to request a new field length.

® SWITCH allows the user to turn on or turn off pseudo sense
switches.

® * allows the user to annotate control statements with comments.
® RERUN and NORERUN allow the user to set job rerunnability.
® IOAREA denies or allows access to the user's I/0 area.

o CALL and RETURN allow the user to manipulate control statement
files.

® ACCOUNT validates the user's account number and optional password.

e CHARGES allows the user to obtain partial or total resource
reporting for a job.

e ROLLJOB allows the user to protect a job by writing it to disk.

® SET allows the user to change the value of a job control language
(JCL) expression.

® ECHO allows the dser to control the message classes to be written
to the user's logfile.

® LIBRARY allows the user to specify the library datasets to be
searched for defined procedures during job processing and in
which order.

® OPTION allows the user to specify user-defined options, such as
the format of the job's listing.

Part 2
SR-0011 1-2 J=-01

JOB = JOB IDENTIFICATION

The JOB control statement defines the job to the operating system. It
must be the first statement in a control statement file. The JOB
control statement cannot be continued to subsequent cards. No leading
blanks are allowed on the JOB statement. JOB is a system verb.,

Format:

JOB,JIN=jn,M=f1,T=tl,P=p,US=us,0LM=0lm,CL=jcn, *gn=nr.

Parameters are in keyword form; the only required parameter is JN.

IN=gn

M=f1

Job name., 1-7 alphanumeric characters. This name
identifies the job and its subsequent output. JN is a
required parameter.

Memory field length. fl specifies an octal count of
10008-word (512)3) blocks of memory to be assigned to
the job. The limit address is a function of the base
address and requested field length:

(LA) =(BA) +1*1000g.

If this parameter is omitted, the field length is set by
the system to a value determined by an installation
parameter.§

If M is present without a value, the field size is the
maximum amount that can be assigned. The maximum amount
allowed is either the total amount of memory available
after the operating system is initialized or is an
installation-defined maximum job field length whichever is
smaller.

Time limit in decimal seconds after which the job is
terminated by the system. If this parameter is omitted,
the time limit is set to a value determined by an
installation parameter, If T is present without a value,
a maximum of 16,777,215 seconds (approximately 194 days)
is allowed.

§ The fl parameter on the JOB statement does not include the job's
Job Table Area (JTA); space for the JTA is added by the system. The
installation parameter, however, does include the JTA.

SR-0011

1-3 J-01

P=p

US=us

OLM=olm

CL=jen

*gn=nr

Priority level at which the job enters the system. This
parameter may assume the values of 0-15 decimal. If P is
0, the job will not be initiated. 1If omitted, a value
specified by the installation is assumed.

User number. 1-15 alphanumeric characters. The default
is no user number. This parameter identifies the user
submitting the job. The user number feature is provided
for installation accounting; specific application is
installation-defined.

Size of $OUT. olm specifies a decimal count of 512-word
blocks. A block holds about 45 print lines. The default
and maximum values for olm are defined by the
installation.

Name of the installation-defined job class where this job
is to be placed. 1 to 7 alphanumeric characters. The job
is aborted if it does not fit the requirements of the
indicated class or if the indicated class does not exist.
The default is that the job is placed in the highest rank
class in which it fits.

Type and number of dedicated resources required by a
job. Dedicated resource requirements are specified with
gn and nr.

*gn is a generic name of 1 through 7 alphanumeric
characters. A generic name (or its installation-defined
synonym) corresponds to a device type. For example, the
generic name is *1600 if the job requires a tape unit
capable of 1600 bpi.

nr is a positive integer; the default is 0. The job is
aborted if it requests more resources than are dedicated
on the JOB statement.

Generic Name Synonym Significance
*6250 *TAPE Device capable of 6250 bpi
or 1600 bpi
*1600S Device capable of 1600 bpi
Example:

*TAPE=2 requests two 6250-bpi devices for use by the job.

§ Deferred implementation

SR-0011

Part 2

MODE - SET OPERATING MODE

The MODE control statement allows the user to set or clear the
floating-point error interrupt flag in the mode (M) register in the
exchange package for the job. This flag controls whether or not a
floating-point error will cause an interrupt flag to be set in the flags
(F) register., If a floating-point error condition occurs, an exit from
the program occurs only if the floating-point error flag is set in the
mode register.

Format:

MODE ,M=mode.

Parameters:
M=mode Operating mode. May be any of the following:

DFI, 1, or 2 Disable floating-point error interrupt
EFI, 3, or 4 Enable floating-point error interrupt

EXIT - EXIT PROCESSING

An EXIT control statement indicates the point in the control statement
file where processing of control statements resumes following a job step
abort from a program. If no job step abort occurs, the EXIT control
statement indicates the end of the control statement processing. EXIT
is a system verb.

Format:

EXIT.

Parameters: none

Part 2
. SR-0011 1-5 J=-01

RFL - REQUEST FIELD LENGTH

The RFL control statement allows the user to request a new field
length. RFL is a system verb.

Format:

RFL,M=f1.

Parameters:

M=f1 New field length which is the octal number of 1000g-word
(512,9) blocks of memory to be assigned to the job,
excluding the Job Table Area. M is a required parameter.
If M is present without a value, the field length is the
maximum that can be assigned to the job. The maximum is
either the total memory available after the operating
system is initialized or is an installation-defined
maximum job field length, whichever is smaller.

SWITCH - SET OR CLEAR SENSE SWITCH

The SWITCH control statement allows a user to turn on or turn off pseudo
sense switches. SWITCH is a system verb.

Format:
SWITCH,n=x.

Parameters:
n Number of switch (1-6) to be set or cleared
x Switch position

" ON Switch n is turned on; set to 1
OFF Switch n is turned off; set to 0

Part 2
SR-0011 1-6 J

* — COMMENT STATEMENT

The comment control statement allows the user to annotate job control
statements with comments. A period is not required on a comment control
statement. * is a system verb.

Format:

* comment text

Parameters: none

NORERUN - CONTROL DETECTION OF NONRERUNNABLE FUNCTIONS

The NORERUN control statement allows the user to specify whether the
operating system is to recognize functions that would make a job
rerunnable. The current rerunnability of the job is not affected.
NORERUN is a system verb.

Part 2
SR-0011 1-6.1 J=-01

Format:

NORERUN }, ENABLE |
DISABLE

The keywords ENABLE and DISABLE are mutually exclusive. The default for
the system as released is NORERUN,ENABLE; however, this is an

installation option.

Selecting ENABLE instructs the system to begin monitoring functions
performed by the job and to declare the job nonrerunnable if any of the
nonrerunnable functions are performed.

Selecting DISABLE instructs the system to stop monitoring functions for

nonrerunnable operations. If a job has already been declared to be
nonrerunnable, specifying DISABLE does not make the job rerunnable again.

RERUN - UNCONDITIONALLY SET JOB RERUNNABILITY

The RERUN control statement allows the user to unconditionally declare a
job to be either rerunnable or nonrerunnable. If RERUN is used to
declare a job rerunnable, the subsequent execution of a nonrerunnable
function may cause the system to declare the job nonrerunnable,
depending on whether a NORERUN control statement or macro is also
present. RERUN is a system verb.

Format:

RERUN ,ENABLE .
DISABLE

The keywords ENABLE and DISABLE are mutually exclusive. If no
parameter is specified on the control statement, installation option
determines if the job is to be rerunnable or not; the default for the
system as released is RERUN,ENABLE.

If ENABLE is selected, the system is instructed to consider the job to
be rerunnable, regardless of what functions have been executed
previously.

If DISABLE is selected, the system marks the job not rerunnable

regardless of what functions have been executed previously.

Part 2
SR-0011 1-7 I-02

The RERUN control statement in no way affects the monitoring of the
user job for nonrerunnable functions.

IOAREA - CONTROL USER'S ACCESS TO I/O AREA

The IOAREA control statement locks (denies the user access to) or
unlocks (gives the user access to) that portion of the user field
containing the user's Dataset Parameter Area (DSP) and I/0O buffers.
This area follows the High Limit Memory address (HLM) of the user
field if locked. IOAREA is a system verb.

Format:

IOAREA J,LOCK |,
UNLOCK

The keywords LOCK and UNLOCK are mutually exclusive. A parameter must
be specified on the control statement. When the control statement is
not used, the user's I/0 area is assumed to be unlocked.

If LOCK is selected, the system sets the limit address to the base of
the DSPs, thereby denying direct access to the user's DSP area and I/0
buffers. When the I/0 area is locked, the library I/O routines make a
system request to gain access to the I/0 area. This introduces

additional overhead in job processing but should prevent accidental
destruction of the I/0 area.

If UNLOCK is selected, the system sets the limit address to the value

specified in JCFL, allowing access to the user's DSP area and I/0
buffers.

CALL - READ CONTROL STATEMENTS FROM ALTERNATE DATASET

The CALL control statement instructs COS to begin reading control
statements from the first file of the indicated dataset. CALL may
appear anywhere in the control statement file. Nesting of CALL
statements is allowed to seven levels. COS reads and processes the
control statements from the indicated dataset until it encounters an
end-of-file or a RETURN statement. Control then reverts to the
previous control statement dataset; the named dataset is closed prior

Part 2
SR-0011 1-8 I-02

to the invocation of the procedure. The CALL statement can also
specify values to be substituted in the procedure body. CALL is a
system verb.

Format:

CALL,DN=dn,CNS.

Parameters are in keyword form.

DN=dn Name of dataset from which to begin reading control
statements. This is a required parameter.

CNS If specified, the control statement that follows is a
procedure calling statement containing parameters for
procedure string substitution. The format of the
procedure calling statement depends upon the format of
the prototype statement. The prototype statement format
is described in part 2, section 2. If CNS is omitted,
no substitution is performed. CNS (Crack Next
Statement) cannot be equated.

RETURN - RETURN CONTROL TO CALLER

The RETURN control statement returns control to the caller. The
caller can be a procedure or the job's control statement file.
Processing resumes with the caller's next control statement. A RETURN
control statement may be embedded anywhere within the called
procedure. However, it is not necessary to place a RETURN control
statement at the end of the procedure because an end-of-file is
interpreted as the control statement sequence of an EXIT, RETURN, and
RETURN,ABORT. A RETURN encountered in the primary control statement
file is ignored. RETURN is a system verb.

Format:

RETURN,ABORT.

Part 2
SR-0011 1-9 J=-01

Parameter:

ABORT After returning to the previous control statement level,
ABORT causes COS to issue a job step abort. ABORT is an
optional parameter.

ACCOUNT - VALIDATE USER ACCOUNT

The ACCOUNT control statement validates the user's account number and
optional password. A job is processed only if the account number and
password (if specified) are valid.

The ACCOUNT statement declares the user's account number to COS. It
must immediately follow the JOB control statement if the installation
has defined accounting as mandatory. Only one ACCOUNT statement is
allowed per job. The ACCOUNT control statement cannot be continued to
subsequent cards. ACCOUNT is a system verb.

NOTE

The ACCOUNT control statement parameters do not appear
with the ACCOUNT control statement in the job logfile.

Format:

ACCOUNT,AC=qc ,PW=pw.

Parameters are in keyword form. The only required parameter is AC; the
installation defines whether a password is needed.

AC=qc Account number. 1-15 alphanumeric characters assigned to
the user. This number identifies the user for accounting
purposes, and is a required parameter. The account number
is not the same as the user number on the JOB control
statement, unless the site chooses to use the same
characters for both numbers.

PW=pw Password. 1-15 alphanumeric characters. A password must
be specified if the installation has made it mandatory by
installation parameter.

Part 2
SR-0011 1-10 J=-01

CHARGES - JOB STEP ACCOUNTING

The CHARGES control statement allows the user to monitor a job's usage of
computer resources up to a specific point in a job. Hence, CHARGES can
be used for either partial or total resource reporting.

Partial reporting occurs when parameters are specified on the control
statement. In this case, usage statistics for the computer resources
specified on the CHARGES statement are obtained for the job steps
preceding the CHARGES statement. The summary is placed in the user log
and the system log.

Total reporting occurs when usage statistics are obtained for all the
resources in all the available resource groups. The summary is placed in
the user log and the system log.

A CHARGES statement may be placed in a job deck any number of times. If
no CHARGES control statements are used in a job deck, computer resource
usage statistics are gathered only upon job termination and placed in the
user log.

Format:

CHARGES, SR=options.

Parameters are in keyword form.

SR=optione
System resources used. Any one or more of the following
groups of resources can be specified. Options are
separated by colons. The default is a listing of the job's
usage of resources in all of the following groups:

JNU Job name and user number

DS Permanent dataset space accessed, permanent dataset
space saved, temporary dataset space used, 512-word
disk blocks (sectors) moved, user I/0 requests,
memory resident datasets used, number of OPEN calls
and number of CLOSE calls

WT I/0 wait time, time waiting to execute and time
waiting for a JXT

MM Minimum job size (words), maximum job size (words),
execution-time memory integral, I/O wait-time
memory integral, maximum field length used (words),
minimum field length used (words), maximum JTA used
(words), and minimum JTA used (words)

Part 2
SR-0011 1-11 J-01

CPU Time executing in CPU

NBF Number of 512-word blocks (sectors) received from a
front end and number of 512-word blocks (sectors)
queued to a front end

TPS Number of tape devices reserved, number of tape
volumes mounted, amount of tape data moved
(expressed as a multiple of 512 words) and number
of tape blocks moved

ROLLJOB - ROLL A USER JOB TO DISK

The ROLLJOB control statement allows the user to protect a job by writing
it to disk so that it can be recovered in case a system interruption
occurs. ROLLJOB is a system verb.

Format:

ROLLJOB.

Parameters: none

SET - CHANGE SYMBOL VALUE

The SET control statement changes the value of a specified valid job
control language symbol. Valid symbols are those classified as alterable
by the user (U) in table 4-2 in part 1. A job step abort occurs if a
symbol included in a SET control statement is unknown to the system, can
be set only by COS, or is a constant. SET is a system verb.

Format:

SET (symbol=expression)

Parameters:
symbol A valid user-alterable symbol; symbol is a required
parameter,
expression

A valid arithmetic, logical, or literal assignment
expression. It may be delimited with parentheses to
simplify interpretation during control statement
evaluation. expression is a required parameter.

Part 2
SR-0011 1-12 J=-01

Examples:
SET (J1=J1+1)

This example increments the procedure-local register J1 by 1.
SET (G1=(SYSID.AND.177777B))

The global register Gl is given an ASCII value which is the low-order
two characters from the current system revision level (COS X.XX).

SET (G3=((ABTCODE.EQ.74) .AND. (G2.EQ.0)))

The global register G3 is assigned a value, depending upon the current
values of ABTCODE and G2.

ECHO - ENABLE OR SUPPRESS LOGFILE MESSAGES

The ECHO control statement allows the user to control the message

classes to be written to the user's logfile by turning the classes ON or
OFE. ECHO can be used more than once during a job to toggle the
printing/suppression of message classes. ECHO is a system verb.

Format:

ECH = = . : : .
C O,ON—cZassl.cZassz.....classz,OFF—cZassl.cZassz.....cZasst.

Parameters are in keyword form.

0N=cla33i Only the messages in the classes specified are written to

the user's logfile. If only the keyword ON or ON=ALL is
specified, all messages are written to the logfile.

JCL is the currently available message class. If the JCL
message class is enabled (ON), the JCL control statements
are echoed on the user's logfile; if it is disabled, the

JCL control statements are not listed on the logfile.

Part 2
B SR-0011 1-13 I-02

OFF=classg
The messages in the classes specified are not written to
the user's logfile. If only the keyword OFF or OFF=ALL is
specified, all messages in defined classes are suppressed.
OFF=JCL suppresses echoing of JCL control statements to
logfile; however, output resulting from the execution of
the control statements will appear.

The keywords ON and OFF can be used in any combination: both, either, or
neither. However, a particular class should not be included in both
ON=class; and OFF=class;, nor should both defaults (ON and OFF) be
included. When the ECHO statement is not used, all messages are written
to the user's logfile.

Specify each class to be written or not written instead of using the
defaul;s (ON and OFF) because additional classes may be added.

When a job calls a procedure, the echo state of the job is the same upon
return from the procedure as before, even though the procedure may use a
different echo state. The following occurs when ECHO is used in
conjunction with CALL and PROC: (1) The echo state of the caller (a job
or another procedure) is saved so that on return to the caller the same
state is in effect as before the call, and (2) When the procedure is
called, a new echo state is created that affects only the procedure. If
the procedure does not include an ECHO statement, the echo state of the
caller is in effect. The echo state of the procedure can be changed
during the procedure's execution.

LIBRARY - LIST AND/OR CHANGE LIBRARY SEARCHLIST

The LIBRARY control statement allows the user to specify the library-
defined dataset names that are to be searched during the processing of
control statement verbs. It also allows the user to list the current or
new searchlist to the logfile for verification.

When modifying the searchlist, the current members of the searchlist may
be retained in the new searchlist by including an asterisk in the LIBRARY
control statement. The asterisk corresponds to all members of the
current searchlist in their present order. If the asterisk is omitted,
the new searchlist contains only the library dataset names identified on
the LIBRARY control statement. LIBRARY is a system verb.

The default library searchlist upon job initiation consists of the single
library dataset $PROC.

Part 2
B SR-0011 1-14 I-02

Format:

LIBRARY,DN=d7, :dMnee e :d 4,V
12472 64

DN=dni Library dataset names to become members of the new
library searchlist. A maximum of 64 names (separated by
colons) may be specified. The order in which they appear
is the order in which they are searched. An asterisk
included in the list means that the current searchlist
members are to be part of the new searchlist in their
current order.

v List the current library searchlist on the logfile for

verification. When specified along with the new
searchlist, the new searchlist is listed.

OPTION - SET USER-DEFINED OPTIONS

The OPTION control statement allows the user to specify the user-defined
options, such as the format of the job's listing. OPTION is a system
verb.

Format:

OPTION,LPP=n,sTAT=[ON |,
OFF

Parameters:

LPP=n Number of lines per page; a decimal number from 0 through
255. If 0 is specified, the current number of lines per
page is not changed. The default is an installation
parameter.

STAT={°N]STAT=0N causes dataset I/O statistics for each job to

OFF) e printed in the user logfile whenever a dataset is
released. The statistics include dataset name, device
name, dataset size, number of user I/O requests, number of
512-word blocks transferred, and total time blocked for I/O
for the dataset. No statistics are printed if STAT=OFF,
which is the default condition.

Part 2
SR-0011 1-15 J-01

JCL CONTROL STATEMENTS BLOCKS 2

Certain control statements are grouped in the control statement file to
create a control statement block. The concepts and techniques for
using control statement blocks assume that the reader is familiar with
the control statements described in part 2, section 1 and has some
experience with running simple jobs under COS control.

Control statement blocks provide the user with the following capabilities:

® Procedure definition. The user can request that a series of
control statements and/or data be written to a library and called
for processing at a later time. Parameters within this procedure
can be substituted during processing.

e C(Conditional control statement processing. The user can identify
control statements that are to be processed only if certain
conditions are met.

e Iterative control statement processing. The user can identify
control statements to be processed repetitively.

Parentheses are advised as initial and terminator separators in the JCL
block control statements to avoid possible errors during processing
resulting from the unique treatment of apostrophes and parentheses in
these statements. See part 1, section 4 for a general description of the
use apostrophes and parentheses in the JCL block control statements.

PROCEDURE DEFINITION

A procedure is a sequence of control statements and/or data that has
been saved for processing at a later time. Procedures have two formats.

The simple procedure format consists of only the control statement body.

The well defined procedure format consists of a prototype definition
statement, control statement body, and optional data. It provides the
capability of replacing values within the procedure body with values
supplied from the procedure call. These values are called substitution
parameters and are governed by the prototype statement of the procedure.

Part 2
SR-0011 2-1 J-01

A well defined procedure can reside in a library or non-library dataset.
A simple procedure can only reside in a non-library dataset because a
simple procedure has no name associated with it.

Processing (invocation) of procedures can be initiated by a procedure
name call or with the CALL control statement (see part 2, section 1). A
simple procedure, because it does not have a name, must be invoked with
the CALL control statement without the CNS parameter. A well defined
procedure can also be invoked with the CALL statement but the CNS
parameter must be included. The presence of CNS on a CALL statement
indicates that the procedure to be called has a prototype statement and
that it should be processed as such.

Well defined procedures can be defined within the control statement
stream (in-line definition) or as input to the BUILD utilityS. When

an in-line procedure definition is encountered in the JCL control
statement file, it is processed and written to the system default library
$PROC. See example 8 in this section for an example of how to create a
user permanent procedure library.

PRODCEDURE DEFINITION FORMAT

A simple procedure format consists of only the control statement body.
The format of an in-line procedure is shown in figure 2-1. The first
control statement in an in-line procedure is PROC; the last is ENDPROC.

A prototype statement follows PROC; it provides the name of the procedure
and optionally a list of parameters that identify the substitution values
within the definition body. In addition to defining the values to be
substituted, the prototype statement parameters control the selection or
omission of the parameters and define the default value assignments. The
control statements and data to be processed are contained in the
definition body. The control statements are grouped in a sequence.

If data is included in a procedure, the data is preceded by an &DATA
statement and follows the control statement sequence. The &DATA
statement also includes the name of the dataset to which the data is to
be written after processing so that programs can use the data as source
data.

§ BUILD currently does not suppport procedure entries in libraries.

Part 2
SR-0011 2-2 J-01

A definition can be placed within a definition; such nesting can occur to
any level. However, nested definitions are not defined until the

outermost procedure is invoked.

prototype statement

PROC.

Figure 2-1.

SR-0011

Part 2
2-2.1

I

il

&DATA,dn.

J”l COS control
statements

Procedure definition deck structure

J-01

PROC - Begin procedure definition

The PROC control statement defines the beginning of an in-line procedure
definition block. PROC is a system verb.

Format:

PROC.

Parameters: none

Prototype statement - Introduce a procedure

The prototype control statement has two functions: (1) to specify the
name of the procedure and (2) to provide the formal parameter
specifications that define where substitution is to occur within the
definition body. Value substitution is described later in this section.

Format:

namelpl,pz,p3, o.-lpn.

name Procedure name; 1 through 8 alphanumeric characters.

p; Formal parameter specifications, using one of the formats
listed below. A formal parameter identifies a character
string within the definition body. All formal positional
parameters must precede all formal keyword parameters; if
not, the procedure definition is in error and the job
aborts.

pos; Positional formal parameter specification, or
keyi={dvalue}: kvalue}

Keyword formal parameter specification as
follows:

Part 2
l SR-0011 2-3 I-02

keyi Formal keyword parameter

dvalue Optional default value; this
value is substituted if entire
keyword parameter is omitted from
the calling statement.

kvalue Optional keyed default value;
this value is substituted if the
keyword is present but no value

is specified.
Special cases:
key ;= Provides no default values and
requires the caller to provide a
non-null value.
key;=: Provides no default values, but

allows the user to
specify key;= or just key,;.

Procedure definition body

The procedure definition body consists of a sequence of COS control
statements processed as part of the current control statement file when
the procedure is called. (It can optionally include lines of text data
preceded in the definition body by an &DATA control statement. See
&DATA below.)

The prototype statement identifies character strings within the
procedure that are to be substituted when the procedure is called. COS
uses values supplied with the procedure call and default parameter
values from the prototype statement to replace these strings.

An ampersand (&) must precede each parameter to be substituted
(substitution parameter) within the definition body. If a parameter
appears in the prototype but is not preceded by an ampersand in the
body, substitution does not occur.

&DATA - Procedure data

Data may be included within the procedure definition body after the
procedure data card.

Part 2
] sr-0011 2-4 1-02

The dn parameter creates a temporary dataset composed of the data
identified in the procedure, including any substitutions resulting from
the call. This temporary dataset allows programs such as CAL or CFT to
use it as source data.

Format:

&DATA,dn .

dn Name of dataset to contain the data that follows; this is
a required parameter.

The initial separator for an &DATA statement can be a blank, comma, or
an open parenthesis; the statement terminator can be a blank, period, or
a close parenthesis.

An &DATA specification cannot be continued to subsequent cards. All
card images following an &DATA card up to the next &DATA card are

written to the specified dataset after string substitution is
performed. See example 7 later in this section.

ENDPROC - End procedure definition

The ENDPROC control statement indicates the end of an in-line procedure
definition block. ENDPROC is a system verb.

Format:

ENDPROC.

Parameters: none

SUBSTITUTION PARAMETERS

A character string that is eligible for substitution is listed in the
prototype statement as a formal parameter specification. This name,
when preceded by an ampersand in the definition body, indicates that a
value is to be substituted during procedure invocation.

Part 2
SR-0011 2-5 I-02

COS replaces the ampersand and parameter name with its selected wvalue.
If the parameter listed in the prototype statement is not preceded by an
ampersand in the body, substitution does not occur. If two ampersands
precede the string, one is removed and substitution is inhibited.

Any string consisting of one through eight characters may be selected
for substitution. Character strings to be substituted are delimited by
any character other than numerals, alphabetics, commercial at (@),
dollar sign (%), and the percent sign (%). An ASCII underline is used
as a string delimiter when the next character is one of these
characters. See example 3 later in this section. COS deletes the
underline after evaluating the string it delimits. Thus, the underline
concatenates the strings it delimits.

VALUE SUBSTITUTION

When a statement in the current control statement file calls a
procedure, COS searches the definition body for the character strings
preceded by ampersands. For each occurrence, it substitutes the values
supplied by either the calling statement or the prototype statement.

In the prototype statement, parameters may be in positional or keyword
format.

Positional parameters

Pogitional formal parameters allow the user to list the strings within
the body that can be substituted. The calling statement lists values to
be substituted for these strings in the same order in which they are
listed in the prototype statement. The value supplied with the calling
statement is substituted for every occurrence of the corresponding

formal positional parameter within the definition body. 1If the caller
passes too few positional parameters, null strings are substituted for
the remaining formal positional parameters. If too many positional
parameters are passed, the procedure call is in error and the job aborts.

Keyword parameters

Keyword formal parameters are listed in any order after all positional
parameters are given on the prototype statement and the calling
statement. A keyword formal parameter allows the user to specify
substitution values on the prototype statement that are to be used when
one is not given on the calling statement.

Part 2
SR-0011 2-6 I-02

If the keyword formal parameter is included in the calling statement
with a value, that value is substituted. If the entire keyword formal
parameter is omitted from the calling statement, the default value on
the prototype statement is substituted. If a default value is not
provided on the prototype statement, the character string within the
body corresponding to that formal parameter is not included in the
procedure expansion.

If only the keyword portion of the keyword formal parameter (the
character string itself) is included in the calling statement, without a
value assigned to it, then a keyed default value from the prototype
statement is substituted. If a keyed default value is not provided on
the prototype statement, again the character string within the body
corresponding to that formal parameter is not included in the procedure
expansion.

A keyword parameter enclosed in apostrophes ('KEY'=value) is considered
a positional parameter.

Positional and keyword parameters

When supplying both positional and keyword parameters, all positional
parameters must precede all keyword parameters; COS evaluates the call's
positional parameters first. The end of the caller's list of positional
parameters is signaled by the appearance of a keyword parameter,
statement terminator, or by specifying all positionals.

Apostrophes and parentheses

Sometimes parameter values in a procedure definition or a procedure
calling statement require a special format. If a literal string (a
string delimited with apostrophes) appears in either of these
statements, it is processed as though it were a literal constant. That
is, all apostrophes in the value remain when the value is substituted.
See example 5 later in this section.

To avoid any possibility of erroneous processing, use parentheses as
string delimiters in these statements. Outermost parentheses preceded
by the initial, parameter, equivalence, or concatenation separators are
removed during value substitution which delays processing of any
separator characters in the string until the statement itself, with
substituted values, is processed.

This delay is also required when specifying multiple values for the
default value and/or keyed default value parameters on a procedure
definition statement. See examples 1, 2, 4, and 6. Parentheses are
advised in the procedure calling statement when the use of the value in
the procedure statements is unknown. See examples 4, 5, and 6 later in
this section.

Part 2
SR-0011 2-7 I-02

EXAMPLES

The following examples explain the COS control statement procedure
substitution process.

Example 1:

Consider a single statement procedure called LOAD which is defined as
follows:

Definition

PROC.
LOAD,NOGO=:NX,LIBRARY= (§FTLIB: $SYSLIB) :MYLIB. Prototype statement

LDR, &NOGO,LIB=LIBRARY. Definition body
ENDPROC.

The prototype statement in this example defines two formal parameters,
both of which are in keyword format. The keyword NOGO has a null value
when omitted from the calling statement and a value of NX when included
on the calling statement in keyword-only format. The keyword LIBRARY
has the default value of $FTLIB:$SYSLIB. When LIBRARY is used in the
calling statement without a value, the keyed default value, MYLIB, is

substituted.

When the LOAD procedure is invoked, it expands to a single statement
whose form depends on the choice of parameters:

Invocation

LOAD,NOGO.

LOAD.
LOAD,LIBRARY=THISLIB.

LOAD, LIBRARY,NOGO.

Expansion

LDR,NX,LIB=$FTLIB:$SYSLIB.
LDR, ,LIB=$FTLIB:$SYSLIB.
LDR, ,LIB=THISLIB.
LDR,NX,LIB=MYLIB.

SR-0011 2-8 I-02

Example 2:

The following in-line procedure definition creates a procedure called
BLDABS.

Definition

PROC.
BLDABS, SOURCE,LIST,GO="NO':'YES',LIB= A

: ($SYSLIB: $FTLIB) ,MAP=FULL:PART. Prototype statement
REWIND ,DN=$BLD: &§ SOURCE.
CAL,I=§SOURCE,L=gLIST,ABORT.
LDR,NX,LIB=§LIB,MAP=gMAP,L=5LIST.
REWIND,DN=$ABD:§LIST. Definition body
SAVE, DN=$ABD, PDN=MYPROGRAM.
IF (&GO.EQ.'YES')
$ABD.
ENDIF.
ENDPROC .

Invocation
BLDABS,WORK, ,GO,LIB=VLIB2.

Expansion

REWIND,DN=$BLD:WORK.
CAL,I=WORK,L=,ABORT.
LDR,NX,LIB=VLIB2,MAP=FULL,L=.
REWIND,DN=$ABD: .

SAVE, DN=$ABD , PDN=MYPROGRAM.
IF('YES'.EQ.'YES')

$ABD.

ENDIF.

Example 3:

This procedure exemplies the proper use of the underscore character for
the definition of a formal parameter. It creates a procedure called

AUDJCL.
Definition
PROC.
AUDJCL,DN,LEVEL, L=$0UT: AUDLST. Prototype statement
AUDIT,PDN=§DN§LEVEL JCL,ID=JCL,L=gL. Definition body
ENDPROC.
Invocation Expansion
AUDJCL,-,05. AUDIT,PDN=-05JCL,ID=JCL,L=$0UT.

Part 2
| SR-0011 2-9 I-02

Example 4:

Parentheses are required when specifying multiple values for a single
parameter value on a procedure definition prototype statement or on a
calling statement. In these cases, the colon is used to separate default
and Boolean values in a keyword parameter. For example:

Procedure-definition prototype statement:

MYPROC,POS1,KEY=(DEF1:DEF2) : (B001:B002) .
Invocation:
MYPROC, (POS1A:POS1B) .

When substitution occurs during this call, POS1A:POS1B replaces all POS1
occurrences within the definition body. Both values (POS1A and POS1B)
are evaluated separately during control statement evaluation. If
apostrophes are on the call, 'POS1A:POS1B' is evaluated as one literal
string.

Example 5:

The following procedure definition exemplifies the use of literal strings
instead of parenthetical strings.

Definition

PROC.

PURGER,PDN,ID,ED,M. Prototype
ACCESS,DN=$PURGE,PDN=§PDN, ID=51D,ED=&ED,M=&M,UQ,NA.

DELETE, DN=$PURGE ,NA. Definition body
ENDPROC.

Invocation
PURGER, 'SOURCE.MAIN',PROJECT.

Expansion

ACCESS,DN=$PURGE,PDN="'SOURCE.MAIN',ID=PROJECT,ED=,M=,UQ,NA.
DELETE,DN=$PURGE,NA.

Part 2
I sr-0011 2-10 1-02

The apostrophes remain as part of the string in the expansion. If
parentheses had been used in the invocation instead of apostrophes for
the permanent dataset name, (SOURCE.MAIN), the value when the ACCESS
statement is evaluated would be SOURCE.MAIN because the outermost
parentheses are removed when preceded by a valid separator. This action
would cause an error because the period in SOURCE.MAIN would be evaluated
as a statement terminator during evaluation.

Example 6:

The following example illustrates the use of parenthetical strings
instead of literal strings in a procedure definition.

Definition

PROC.
LGO,CALSORC,ABS,NLIB=$SCILIB: (§SCILIB: A
$SYSLIB:$FTLIB) . Prototype
CAL, I=CALSORC.
LDR,NX ,AB=§ABS,NOLIB=gNLIB. } Definition body
ENDPROC.

Invocation

LGO, ,,NLIB.

Expansion

CAL,I=.
LDR,NX,AB=,NOLIB=$SCILIB:$SYSLIB:$FTLIB.

Parentheses were not included for the expansion of the NLIB keyed default
value because parentheses are removed during processing when preceded by
the concatenation delimiter (:).

If apostrophes had been used instead of parentheses for the NLIB
parameter value, the colons would have been ignored as separators during
expansion. Also, apostrophes are treated as part of the value when
included in a procedure definition prototype statement or a calling
statement. Therefore, if apostrophes had been used, the following
expansion would have occurred.

CAL,I=,
LDR,NX,AB=,NOLIB="'$SCILIB: $SYSLIB:$FTLIB"'.

When the LDR statement is executed, the value assigned to the NOLIB
parameter would be the literal string $SCILIB:$SYSLIB:$FTLIB which
violates the syntax for the NOLIB parameter.

Part 2
SR-0011 2-11 I-02

Example 7:

Consider the following procedure definition. This procedure is used to
retrieve specified source decks from an UPDATE program library by the use
of the &DATA option.

PROC.

FETCH,PLNAME ,MASTERCH, DECKRNGE. Prototype statement
ACCESS,DN=§PLNAME,

UPDATE, I=QZRR2Q2,Q,C=0,S,P=§PLNAME .

RELEASE,DN=QZRRZQ2: §PLNAME. , Definition body
&DATA QZRRZQ2

&MASTERCH_COMPILE &DECKRNGE

ENDPROC.

Two sample invocations and their expansions follow:

Invocation Expansion
FETCH,COSPL,*, (ST,CT) . ACCESS,DN=COSPL.

UPDATE, I=QZRRZ0Q2,Q,C=0,S,P=COSPL.
RELEASE,DN=QZRRZQ2:COSPL.

(Dataset QZRRZQ2 contains:
*COMPILE ST,CT)

FETCH,FTLIBPL,*, (COS.RFD) . ACCESS ,DN=FTLIBPL.
UPDATE, I=QZRRZQ2,Q,C=0,S,P=FTLIBPL.
RELEASE,DN=QZRRZQ2: FTLIBPL.

(Dataset QZRRZQ2 contains:
*COMPILE COS.RFD)

Part 2
l SR-0011 2-12 I-02

Example 8:

Ths example illustrates one mechanism for defining and maintaining user
procedure libraries.

ACCESS,DN=GENLIB.
CALL,DN=GENLIB.

The permanent dataset GENLIB contains:

ECHO,OFF.
RELEASE ,DN=§PROC.
*.

*, Define procedure for ACCESS of commonly used ID.
*

.

PROC.

UQ,DN,ED=:1,PDN=:GENLIB, R=:READCW,W=:WRITECW,M=:MAINCW,NA=:NA.
ACCESS ,DN=&DN, ID=MYUID, PDN=&PDN,ED=&ED,R=&R ,W=&W ,M=&M,NA=&NA .
RETURN.

EXIT.

RETURN,ABORT.

ENDPROC,

*, Edit a local dataset.

PROC.

ED,DN,AC=:"'ACCESS'.

IF('s&AC'.EQ.'ACCESS')
UQ, &N.

ENDIF

TEDI,DN=&DN.

RETURN.

EXIT.

RETURN,ABORT.

ENDPROC.

*, End of definitions

UQ,PROCLIB,NA.

SAVE,DN=§PROC, PDN=PROCLIB, ID=MYUID.
DELETE,DN=PROCLIB,NA.

RELEASE ,DN=§PROC.

ACCESS ,DN=PROCLIB, ID=MYUID .
LIBRARY,DN=* ;: PROCLIB,

ECHO,ON.

Part 2
I sr-oon1 2-12.1 J-01

CONDITIONAL CONTROL STATEMENT PROCESSING

The control statements IF, ELSE, ELSEIF, and ENDIF allow control
statements to be placed in a conditional block structure. A conditional
block must begin with an IF statement and conclude with an ENDIF
statement. 1In addition to these two statements, it contains a control
statement sequence that is processed only if the IF expression is true.

Optional control statement sequences can be included within a
conditional block using the ELSEIF and ELSE statements. If the result
of an IF or ELSEIF expression evaluation is true, the control statement
sequence that follows is processed and subsequent ELSE or ELSEIF
conditions, even if true, are not processed. If the expression
evaluates as false, the control statement sequence that follows is
skipped. 1If all such sequences are skipped (all expression evaluations
yield false), the sequence following the ELSE statement (if it exists)
is processed.

The conditional block is first scanned to verify the validity of the
block's syntax. If there are any syntax errors, the block is skipped
without being evaluated and a job step abort error occurs. This means
that any EXIT control statements within the conditional block are
ignored when there is a syntax error in that conditional block. This
validation occurs when the control statement file in which it is
contained ig invoked.

ELSEIF and ELSE sequences are optional. Within a conditional block,
only one ELSE sequence is permitted and it must be the last one in the
block. There is no limit to the number of ELSEIF sequences that may be
used in a conditional block.

Null blocks (for example, an ELSE statement immediately following an
ELSEIF) are ignored without comment.

Conditional blocks can be constructed in the following ways:

Conditional block

Conditional block with ELSE

Conditional block with ELSEIF(s)
Conditional block with ELSE and ELSEIF(s)

CONDITIONAL BLOCK

The basic format of a conditional block, figure 2-2, begins with an IF
statement and ends with an ENDIF statement. When the IF statement
expression is true, the control statement sequence that follows is
processed. If the expression is false, the control statement sequence
is not processed.

: Part 2
SR-0011 2-13 I-02

“l control statement
”“ sequence

H‘
I

IF(expression)

Figure 2-2. Basic conditional block structure

IF - Begin conditional block

The IF control statement defines the beginning of a conditional block.
Each IF control statement must have a corresponding ENDIF control
statement. IF is a system verb.

Format:

IF (expression)

Parameters:
expression

A valid JCL expression (part 1, section 4). This parameter
is required.

ENDIF - End conditional block

The ENDIF control statement defines the end of a conditional block.
ENDIF is a system verb.

Part 2
SR-0011 2-14 I-02

Format:

ENDIF.

Parameters: none

Example:

Following is an example of the conditional block structure.

ACCESS ,DN=MYPROG.

MYPROG.

EXIT.

IF(ABTCODE.NE,21)
*

*, UNEXPECTED JOB STEP ABORT ERROR
*

EXIT.
ENDIF.

In this example, if the ACCESS request or execution of MYPROG fails, the
conditional block after the EXIT control statement is processed. The
conditional block determines if the job step abort occurred because a
dataset was not found, in which case the processing of control
statements resumes after the ENDIF control statement. If this is not
the reason for the abort, the job terminates with the EXIT control
statement.

CONDITIONAL BLOCK WITH ELSE

The second conditional block structure includes the ELSE control
statement. The control statement sequence is processed if the
expression on the IF statement is true. If the expression is not true,
the sequence following the ELSE statement is processed. The block
structure is illustrated in figure 2-3.

Part 2
SR-0011 2-15 I-02

Figure 2-3.

control statement
b sequence

‘ﬁ| control statement
il sequence

IF(expression) ™

Conditional block structure including ELSE

ELSE - Define alternate condition

The ELSE control statement is used to define an alternate condition.
IF statement, as well as any ELSEIF statements (see Conditional Block
with ELSE and ELSEIF), must precede the ELSE control statement.
conditions specified by the IF and ELSEIF statements that precede the
ELSE in the conditional block test as false, then the sequence of
statements that follow the ELSE statement is executed.

verb.

Format:

ELSE.

Parameters:

§ sr-0011

Part 2
2-16

An

If all

ELSE is a system

I-02

Example:

An example of a conditional block structure using the ELSE statement

follows.

ACCESS,DN=INITJCL.
ACCESS , DN=MYPROG .
ACCESS, DN=PROG.
PREPROG.

IF (JSR.NE.0)
CALL,DN=INITJCL.
SWITCH, 1=ON.

ELSE.
SWITCH,1=OFF.

ENDIF.

PROG.

After PREPROG is executed, the conditional block determines if PREPROG

has successfully executed (by its setting of JSR).

The procedure

INITICL is executed and a sense switch is set if the status was bad; the
sense switch is cleared if PREPROG executed properly.

CONDITIONAL BLOCK WITH ELSEIF

The third conditional block structure, shown in figure 2-4, includes one

or more ELSEIF statements.

Each logical expression on the IF and ELSEIF

statements is tested in sequence until a true condition is found; then
the corresponding control statement sequence is processed.

Figure 2-4. Conditional block structure including ELSEIF

SR-0011

ENDIF. ™N
—
_JM control statement
W& sequence
ELSEIF(expression)
e\
Wh control statement
5@m sequence
IF(expression) ™

Part 2
2-17

I-02

ELSEIF - Define alternate condition

The ELSEIF control statement defines an alternate condition to test if
the previous one tested was false. The sequence of statements following
the ELSEIF statement is executed when the ELSEIF expression is true.

All ELSEIF control statements must precede the optional ELSE control
statement for a conditional block. An ELSEIF statement without a
previously processed IF statement results in a job step abort. ELSEIF
is a system verb.

Format:

ELSEIF (expression)

Parameters:

expression
Any valid JCL expression (part 1, section 4). This
parameter is required.

A conditional block can contain any number of ELSEIF control statements.
The block of control statements following an ELSEIF statement is
processed under the following conditions:

® The expression for the IF statement is false,
® All preceding ELSEIF statement expressions are false, and

® The ELSEIF expression is true.

Example:

An example of a deck including the ELSEIF statement is:

IF(SYSID.EQ.'COS 1.07")
ACCESS,DN=$FTLIB,ID=V107.
ELSEIF (SYSID.EQ.'COS 1.08')
ACCESS,DN=$FTLIB,ID=V108.
ELSEIF (SYSID.EQ.'COS 1.09"')
ACCESS,DN=$FTLIB, ID=V109.
ENDIF.
LDR,NOLIB,LIB=$FTLIB.

This conditional block tries to access the correct version of the FORTRAN
library, $FTLIB, for the execution of the loader that follows the

conditional block.

‘ Part 2
SR-0011 2-18 ’ I-02

CONDITIONAL BLOCK WITH ELSE AND ELSEIF

The conditional block structure in figure 2-5 uses ELSEIF and the ELSE

statements. A block can contain any number of ELSEIF statements but can

contain only one ELSE, which must be the last conditional statement

before the ENDIF.

m control statement
i sequence

control statement

Ll sequence

control statement
sequence

IF(expression)

Figure 2-5. Conditional block structure including ELSEIF and ELSE

The ELSE control statement sequence in this case is processed only if:

® The expression on the IF statement is false, and

® All ELSEIF statement expressions are also false.

SR~-0011

Part 2

2-19 I-02

Example:
An example of this type of conditional block structure follows.

IF (TIMELEFT.GT.175)
IF(SYSID.EQ.'COS 1.08')
ACCESS,DN=$FTLIB,ID=V108.
ELSEIF(SYSID.EQ.'COS 1.09')
ACCESS,DN=$FTLIB,ID=V109.

ELSE.
*

*. CURRENT SYSTEM LEVEL NOT RECENT ENOUGH
*

EXIT.
ENDIF.
LDR,NOLIB,LIB=$FTLIB.
SET,J1="YES'L.
ELSE.
SET,J1='NOTIME'L.
ENDIF.
IF(J1.EQ.'YES'L)
DISPOSE, DN=RESULTS, DC=ST.
ELSE.
*.
*, JOB DID NOT RUN TO NORMAL COMPLETION
ENDIF.
EXIT.

This example is an expansion of the example for the third format and
allows execution of the compiled program if there is enough time left and
if the correct library is accessible. On a successful run, the dataset
called RESULTS is disposed as a staged dataset.

ITERATIVE CONTROL STATEMENT PROCESSING

An iterative block, figure 2-6, contains a control statement sequence
that is to be processed more than once during the processing of a

job. It includes the LOOP, EXITLOOP, and ENDLOOP statements. Nesting
can occur to any level. The EXITLOOP statement indicates the normal
exit condition for the loop. If its expression is true, the loop is
exited; if it is false, loop execution continues with the subsequent
statements. Control returns to the beginning of the loop when the
ENDLOOP statement is encountered.

I sr-o011 2-20 1-02

ENDLOOP.

Jﬂ control statement
il sequence

LOOP. N

Figure 2-6. Iterative block structure

Iterative blocks are prescanned for syntax errors before actual
processing begins. Any errors in the block structure cause a skipping
of that block followed by a job step abort. If an iterative block is
included within a conditional block, it must be totally contained

within that block.

LOOP - BEGIN ITERATIVE BLOCK

The LOOP control statement is required to define the beginning of an
iterative block. An ENDLOOP control statement is required in the same
procedure dataset to terminate the iterative block. LOOP is a system

verb.

Format:

LOOP.

Parameters: none

Part 2
SR-0011 2-21 I-02

ENDLOOP - END ITERATIVE BLOCK

The ENDLOOP control statement terminates an iterative control
statement block. If an ENDLOOP control statement occurs in a
procedure dataset without a preceding LOOP statement, a job step abort
occurs. Execution of the ENDLOOP statement results in control being
passed to the preceding LOOP statement which begins another iteration
of the loop.

Format:

ENDLOOP.

Parameters: none

EXITLOOP - END ITERATION

The EXITLOOP control statement defines the condition(s) under which
the control statement block iteration is to end. If its expression is
true, the loop is exited; if it is false, the control statements which

follow are executed.

An EXITLOOP statement that appears outside of an iterative block
causes a job step abort. When nesting iterative control statement
blocks, the EXITLOOP control statement defines the exit conditions for
only the most immediate iterative block. EXITLOOP is a system verb.

Format:

EXITLOOP.
or

EXITLOOP (expression)

Parameters:

expression
Optional valid JCL expression (part 1, section 4). If
omitted, an unconditional exit from the iterative block
occurs.

Part 2
I sr-0011 2-22 1-02

Example:

The following example merges the two datasets DSIN1 and DSIN2 for 60

records.

SET,J1=0.
SET,J2=60.
LOOP.
EXITLOOP (J2.EQ.0)
IF (J1.EQ.0)
COPYR,I=DSIN1,0=0UTDS

SET,Jl=1.
ELSE.
COPYR,I=DSIN2,0=0UTDS
SET,J1=0.
ENDIF.
SET,J2=J2-1.
ENDLOOP.

REWIND,DN=DSIN1:DSIN2:0UTDS.

Part 2

SR-0011

2-23

I-02

DATASET DEFINITION AND CONTROL 3

Datasets can be defined and managed by the user via three dataset control
statements: ASSIGN, ACCESS, and RELEASE.

® ASSIGN creates a dataset on mass storage and assigns dataset
characteristics for tape and disk.

® ACCESS (defined in part 2, section 4) makes an existing disk or
tape permanent dataset local to a job or can be used to create a
dataset on magnetic tape; ASSIGN assigns tape dataset
characteristics.

® RELEASE relinquishes access to the named dataset for the job.

ASSIGN - ASSIGN MASS STORAGE OR MAGNETIC TAPE DATASET CHARACTERISTICS

The ASSIGN control statement creates a mass storage dataset and assigns
dataset characteristics for tape and mass storage. If an ASSIGN is used
for dataset creation, it must appear prior to the first reference to the
dataset; otherwise, the characteristics are defined at the first
reference. If an ASSIGN is used for a tape dataset, it must follow the
tape ACCESS request, ASSIGNS is a system verb,

Format:

ASSIGN,DN=dn,S=size,BS=blk,DV=ldv,DT=dt,DF=df,

RDM,U,MR,LM=1m,DC=de,BFI=bf1,A=un.

Parameters are in keyword form. The only required parameter is DN.

DN=dn Local dataset name. 1-7 alphanumeric characters, the first
of which is A-Z, §, %, or @; remaining characters may also
be numeric. DN is a required parameter.

§ ASSIGN does not create a dataset which the CFT 1.10 OPEN statement
recognizes as existing.

Part 2
SR-0011 3-1 J-01

S=size Dataset size. Octal number of sectors (1000g-word
blocks) to be reserved for the dataset. If the dataset
size is not given, the disk space for the dataset is
dynamically allocated as needed. This parameter applies to
mass storage datasets only and is ignored when used for
magnetic tape datasets.

BS=blk Buffer size. Number of 1000g-word blocks to be reserved
for user buffer. The default number of blocks is set by an
installation parameter. BS generates an error if the U
parameter is specified (indicating unblocked dataset
structure) .

DV=1dv Logical device on which dataset is to begin. If a logical
device name is not given, one is chosen by the system.
Consult the on-site analyst for possible logical device
names. This parameter applies to mass storage datasets
only and is ignored when used for magnetic tape datasets.

DT=dt . Device type. The allowable device types are CRT and MS.
MS is the default. This parameter applies to mass storage
datasets only and is ignored when used for magnetic tape
datasets.

DF= Dataset format. This parameter is used only on output; it
is valid only when DT=CRT. This parameter applies to mass
storage datasets only and is ignored when used for magnetic
tape datasets. Two formats are supported:

CB Character blocked. End-of-record RCWs are converted
to line feeds. This is the default.

TR Transparent. End-of-record RCWs are not converted
to line feeds. The user is responsible for
inserting line feeds.

RDM Random dataset. If the RDM parameter is present, the
dataset is to be accessed randomly. If the RDM parameter
is not specified, the dataset is accessed sequentially.
This parameter applies to mass storage datasets only and is
invalid for magnetic tape datasets.

U Unblocked dataset structure. If the U parameter is
present, the dataset is not in COS-defined blocked format.
If the U parameter is absent, the dataset is a COS blocked
dataset. (See part 1, section 2 for information on
unblocked dataset format.) This parameter is invalid for
interchange format tape datasets.

Part 2
SR-0011 3-2 J=-01

MR Memory resident dataset. If this parameter is present, the
system I/0 routines write the buffers to the disk only if
they become full. If the MR parameter is absent, the
dataset is not a memory resident dataset. MR generates an
error if the U parameter is specified. This parameter
applies to mass storage datasets only and is invalid for
magnetic tape datasets.

LM=1m Maximum size limit for this dataset. Im specifies a
decimal count of 512-word blocks. The job step will be
aborted if this size is exceeded. The default and maximum
dataset size limits are set by an installation parameter.
This parameter applies to mass storage datasets only and is
ignored for magnetic tape datasets.

DC=de Disposition code. Disposition to be made of the dataset at
job termination. This parameter applies to mass storage
datasets only and is ignored for tape datasets. The
default is SC,

de is a 2-character alpha code describing the destination
of the dataset as follows:

IN The dataset is placed in the input queue of the
default destination station.

ST Stage to mainframe. Dataset is made permanent at
the mainframe of job origin.

SC Scratch dataset. Dataset is deleted.

PR Print dataset. Dataset is printed on printer at the
mainframe of job origin.

PU Punch dataset. Dataset is punched on any card punch
available at the mainframe of job origin.

PT Plot dataset. Dataset is plotted on any available
plotter at the mainframe of job origin.

MT Magnetic tape. Dataset is written on magnetic tape
at the mainframe of job origin.

BFI=pf7i Blank field initiation. Octal representation of ASCII code
which indicates the beginning of a sequence of blanks.
BFI=OFF means that blank compression is inhibited. The
default code is 33g (ASCII ESC code) but may be changed
by an installation parameter.

Part 2
SR-0011 3-3 _ J-01

A=un Unit name. Unit names allow the user to refer to a dataset
from a FORTRAN program. Each unit name is 4 characters in
the form FTxx, where xx is the unit number specified. The
unit number is an integer value in the range 0-102.
However, because unit numbers 100, 101, and 102 are
reserved for system use, a user may designate unit numbers
0-99.

Use of this parameter associates the designated unit with
the dataset specified by the DN parameter. At job
initiation, unit FT05 is associated with dataset $IN and
unit FT06 is associated with dataset $0UT. Unit names
should not be used as dataset names.

NOTE

If a dataset is used in place of a unit name or
vice versa, FORTRAN '77 auxiliary statements
(that is, OPEN, CLOSE, and INQUIRE) may produce
unpredictable results.

RELEASE - RELEASE DATASET

The RELEASE control statement relinquishes access to the named datasets
for the job. If a dataset is not permanent and its disposition code is
SC (scratch), the mass storage assigned to the dataset is released to the
system. If the dataset is to be staged, the dataset is entered in the
output queue for staging to the default destination station. An
end-of-data is written to a permanent dataset when it is released if the
dataset is blocked sequential and the previous operation was a write.

Format:

RELEASE ,DN=dnq:d%oz .« « » :dng,HOLDS,
134n2 8

§ Deferred implementation

Part 2
SR-0011 3-4 J-01

Parameters:

DN=dni Name of dataset to be released. A maximum of eight
datasets may be specified.

HOLDS Hold generic device; do not return it to the system pool.

This parameter applies to magnetic tape datasets only and
is ignored for mass storage datasets.

§ Deferred implementation

Part 2 .
SR-0011 3-5 J=01

PERMANENT DATASET MANAGEMENT

Permanent dataset management provides methods for creating, protecting,
and accessing datasets assigned permanently to mass storage or magnetic

tape.

Such datasets cannot be destroyed by normal system activity,

deadstarting, restarting, or engineering maintenance.

The user can manage user permanent datasets only; system permanent
datasets are not directly accessible by the user. (See part 1, section 2
for a description of the types of datasets.)

The user manages user mass storage and magnetic tape permanent datasets
by sending requests to the system through the control statements
described below. Mass storage datasets are controlled by the Permanent
Dataset Manager using the CRAY-1 resident Dataset Catalog (DSC); magnetic
tape datasets are processed by the Tape Queue Manager (TQM).

SAVE enters a dataset's identification and location in a
systemmaintained Dataset Catalog. Datasets recorded in the
Dataset Catalog via a user SAVE request are user permanent
datasets and are recoverable at deadstart. SAVE applies to mass
storage datasets only; it is ignored for tape datasets.

ACCESS causes a user permanent dataset to be assigned (made local)
to a job. The usage (reading or writing, for example) of a
dataset is determined by permissions granted when the dataset is
accessed. ACCESS is also used to create a dataset on magnetic
tape or to obtain an existing one.

ADJUST changes the size of a user permanent dataset in the Dataset
Catalog. ADJUST applies to mass storage datasets only; it is
ignored for tape datasets since their size is automatically
changed when the output tape dataset is closed.

MODIFY changes established information for an existing user
permanent dataset in the Dataset Catalog. MODIFY applies to mass
storage datasets only; it is ignored for tape datasets.

DELETE causes removal of a saved dataset from the Dataset Catalog.

Part 2

SR-0011 4-1 J-01

SAVE - SAVE PERMANENT DATASET

The SAVE control statement makes a local dataset permanent. Saving a
dataset consists of making an entry in the DSC. A permanent dataset is
uniquely identified by permanent dataset name, user identification, and
edition number. SAVE is a system verb. The SAVE statement is ignored
when used for magnetic tape datasets.

SAVE has a twofold function:

® Creation of an initial edition of a permanent dataset
® Creation of an additional edition of a permanent dataset

A maintenance control word controls the creation of additional
editions of an existing permanent dataset. Thus, to create a
subsequent edition of an existing permanent dataset, the user must
match the maintenance control word of the oldest existing edition.
Read and write control words specified on the oldest existing edition
of a permanent dataset apply to all subsequent editions of that
dataset.

Under the appropriate conditions, SAVE forces any unwritten data to
disk to ensure that all of the dataset is made permanent. Since this
situation occurs when the dataset has been recently written to but not
yet closed, SAVE will attempt to close the dataset. The specific
conditions which the dataset must meet are described under the SAVE
macro (part 3, section 4).

Format:

SAVE,DN=dn,PDN=pdn,ID=uid,ED=ed,RT=rt,R=rd,W=wt,

M=mn,UQ,NA,Ex0]=ON |,
OFF

Parameters are in keyword form; the only required parameter is DN,

DN=dn Name of a dataset that is local to the job. This dataset
may be closed before the dataset is made permanent.

PDN=pdn Permanent dataset name. 1-15 characters assigned by the

dataset creator. This is the name that is saved by the
system. Default value is dn.

SR~0011 4-2 J-01

ID=uid

ED=ed

RT=rt

M=mn

UQ

NA

EX0{=ON
OFF

SR-0011

User identification. 1-8 alphanumeric characters assigned
by the dataset creator. The default is no user ID.

Edition number. A value from 1-4095 assigned by the dataset
creator. The default value is:

® One, if a permanent dataset with the same PDN and ID
does not exist, or

® The current highest edition number plus one, if a
permanent dataset with the same PDN and ID does exist.

Retention period. User-defined value from 0-4095 specifying
the number of days a permanent dataset is to be retained by
the system. The default value is an installation-defined
parameter.

Read control word. 1-8 alphanumeric characters assigned by
the dataset creator. The read control word of the oldest
existing edition of a permanent dataset applies to all
subsequent editions of that dataset. The default is no read
control word.

Write control word. 1-8 alphanumeric characters assigned by
the dataset creator. The write control word of the oldest
existing edition of a permanent dataset applies to all
subsequent editions of that dataset. To obtain write
permission, the user must also have unique access (UQ) to
that dataset. The default is no write control word.

Maintenance control word. 1-8 alphanumeric characters. The
maintenance control word must be specified if a subsequent
edition of the same permanent dataset is saved. The default
is no maintenance control word.

Unique access. If the UQ parameter is specified, only this
job may access the permanent dataset at the completion of
the SAVE function. Otherwise, multiuser access to the
permanent dataset is granted.

No abort. If this parameter is omitted, an error causes the
job to abort.

Execute-only dataset. This parameter sets or clears the
execute-only status of the dataset. EXO only or EXO=ON
causes the dataset to be saved as execute-only. EXO=OFF or
omission of this parameter causes the dataset to be saved as
a non-execute-only dataset.

4-3 J-01

NOTE

When processing for the SAVE request is
complete, all forms of examination of this
dataset are prohibited if EXO=ON,

ACCESS - ACCESS PERMANENT DATASET

The ACCESS control statement makes an existing permanent dataset local to
a job and can be used to create a tape dataset. Following the ACCESS
statement, all references to the permanent dataset must be by the local
dataset name specified by the DN parameter. ACCESS assures that the user
is authorized to use the permanent dataset. The ACCESS control statement
must precede the ASSIGN control statement or the open call for the
dataset. ACCESS is a system verb.

The user need not access a permanent dataset entered into the System
Directory (SDR). A tape dataset cannot reside in the SDR. A basic set of
datasets is entered into the System Directory when the operating system is
installed. These datasets include the loader, the CFT compiler, the CAL
assembler, UPDATE, BUILD, and system utility programs such as copies and
dumps. Other datasets can be entered into the System Directory according
to site requirements.

Format:

ACCESS,DN=dn ,PDN=pdn, ID=uid,ED=ed ,R=rd,W=wt ,M=mn,UQ,LE,NA, %

CS=cg,DF=df,DT=dt,FSEC=fsec,LB=1b,MBS=mbs,NEW, XDT=yyddd ,

RT=rt,VOL=v0l,:v0l3s...v01,,CT=ct,RF=rf,RS=rs.

Part 2
SR-0011 4-4 J=-01

Parameters are in keyword form; DN is the only required parameter for mass
storage datasets to make an existing permanent dataset local to a job.

DN=dn Local dataset name by which the permanent dataset is to be
known. This is a required parameter.

PDN=pdn Name of a permanent dataset being accessed and already
existing in the system. The default value is dn. The
name can be 1-15 characters for mass storage datasets; it

"can be 1-44 characters for tape datasets. For a labeled
tape dataset, the right-most 17 characters of the PDN must
match the file identification field of the HDR1l label.

ID=uid User identification. 1-8 alphanumeric characters. If uid
was specified at SAVE time, the ID parameter must be
specified on the ACCESS control statement. The default is
no user ID. This parameter applies to mass storage datasets
only; it is ignored for magnetic tape datasets.

ED=ed Edition number of permanent dataset being accessed; a value
from 1-4095 was assigned by the dataset creator. If the ED
parameter is not specified, the default is the highest
edition number known to the system (for this permanent
dataset). This parameter applies to mass storage datasets
only; it is ignored for magnetic tape datasets.

R=rd Read control word as specified at SAVE time. 1-8
alphanumeric characters assigned by the dataset creator.
The read control word of the oldest existing edition of a
permanent dataset applies to all subsequent editions of that
dataset. The default is no read control word. To obtain
read permission, this parameter must be specified on the
ACCESS control statement if a read parameter was specified
when the dataset was saved. This parameter applies to mass
storage datasets only; it is ignored for magnetic tape
datasets.

W=wt Write control word as specified at SAVE time. To obtain
write permission, this parameter must be specified in
conjunction with a UQ parameter on the ACCESS control
statement if a W parameter was specified when the dataset
was saved. This parameter is required prior to an ADJUST
and applies to mass storage datasets only; it is ignored for
magnetic tape datasets.

Part 2
I SR-0011 4-5 J-01

M=mn

UQ

LES

NA

CS=ce

DF=df

Maintenance control word as specified at SAVE time. This
parameter is specified in conjunction with a UQ parameter on
an ACCESS control statement if the dataset is to be
subsequently deleted. That is, maintenance permission is
required to delete a dataset. This parameter applies to
mass storage datasets only; it is ignored when used for
magnetic tape datasets.

Unique access. If the UQ parameter is specified and the
appropriate write or maintenance control words are
specified, then write, maintenance, and/or read permission
may be granted. If UQ is not specified, then multiuser read
access is granted by default (if at a minimum, the read
control word is specified). UQ is required to delete a
permanent dataset using the DELETE control statement. This
parameter applies to mass storage datasets only; it is
ignored for magnetic tape datasets.

Lowest edition number. If the LE parameter is specified,
the lowest edition number known to the system for this
dataset is accessed. LE must not be equated with a value
and cannot be specified in conjunction with the ED
parameter. This parameter applies to mass storage datasets
only; it is ignored when used for magnetic tape datasets.

No abort. If this parameter is omitted, an error causes the
job to abort.

Character set of tape dataset, for data only. This
parameter applies only to tape datasets; it is ignored when
used for mass storage datasets.

AS ASCII; default.

SL EBCDIC

Tape dataset format. This parameter applies only to tape
datasets; it is ignored when used for mass storage datasets.
IC Interchange format
TR Transparent format; default.

§ Deferred implementation

SR-0011

4-6 J-01

DT=dt Tape dataset generic device name or synonym. This parameter
is required for tape datasets.

Generic Name Synonym Significance
*6250 *TAPE Device capable of 6250 bpi
*1600 Device capable of 1600 bpi;

also used to declare density
when writing

FSEC=fgec File section number; a numeric field from 1 through 9999
that specifies the volume in the tape dataset. The first
section (or volume) of a tape datatset is numbered 0001.
The default is 1. For example, to access a tape dataset
starting with the eighth section, specify FSEC=8 on the
ACCESS call. This parameter applies only to tape datasets;
it is ignored when used for mass storage datasets.

LB=lb Tape dataset label type. This parameter applies only to
tape datasets; it is ignored when used for mass storage
datasets.

BLP Bypass label processing§

SL IBM standard—-labeled tapes

NL Non labeled tapes; default

AL ANSI standard labeled tapes

MBS=mbe Maximum tape block size; that is, the number of bytes in the
largest tape blocks to be read or written. The maximum size
allowed at the installation and the default are specified as
installation parameters. This parameter applies only to
tape datasets; it is ignored when used for mass storage
datasets.

NEW Tape dataset is to be created; the dataset must be written
starting at the beginning of information. This parameter
applies only to tape datasets; it is ignored when used for
mass storage datasets.

XDT=yyddd Expiration date. Indicates the date on which this tape
dataset may be overwritten. yy specifies the year and is
a number from 0-99. ddd specifies the day in the year and
is a number from 001 through 366. This parameter applies
only to tape datasets; it is ignored when used for mass
storage datasets.

§ Deferred implementation

I sr-o011 4-7 J-01

RT=ptS

VOL=vol;

Retention period. User-defined value from 1 through

4095 specifying the number of days a permanent dataset is
to be retained by the system. Similar to the XDT parameter
but allows the user to specify relative expiration date.
The default value is an installation-defined parameter.

Volume identifier; a list of 6-character alphanumeric
volume identifiers comprising the tape dataset. The
maximum number of volume identifiers per dataset is an
installation parameter.

The following tape dataset parameters specify that record and data format
conversion are to be performed at run time on the tape dataset.

CT=ctS

RF=pfS

Tape dataset conversion type. ¢t is a 3-character code
describing the machine internal data representation.

IBM IBM 370 and compatible internal data representation

This parameter is required if run-time record and data
format conversion are performed; default is no conversion.
This parameter applies only to tape datasets; it is ignored
when used for mass storage datasets. Specifying this
parameter converts data on the tape from 32-bit IBM
internal representation to 64-bit internal CRAY-1
representation. Real numbers and integers are converted.

Tape dataset record format. 7f is a 1- to
8-character code describing the record type.

U IBM U (undefined) format; default if CT=IBM
F IBM F (fixed) format

FB IBM FB (fixed block) format

\'4 IBM V (variable) format

VB IBM VB (variable block) format

VBS IBM VBS (variable blocked spanned) format

Tape dataset record size. rs is the decimal length of

the record expressed in units depending upon the conversion
type; if CT=IBM, rs is the record size expressed as a
decimal number of 8-bit byte units. If the rf parameter

is F or FB, the RS parameter is required; if »f is V, VB,
or VBS, the RS parameter is optional; if »f is U, the RS
parameter is not pertinent as the U record format does not
contain records.

§ Deferred implementation

SR-0011

Part 2
4-8 J-01

ADJUST - ADJUST PERMANENT DATASET

The ADJUST control statement changes the size of a mass storage permanent
dataset; that is, it redefines the size of the dataset. When a permanent
dataset is overwritten, and the dataset size changes, issuing an ADJUST
statement informs the system of the dataset's new size. An ADJUST of a
permanent dataset may be issued if the dataset has been previously
accessed within the job with write permission. ADJUST is a system verb.

Under the appropriate conditions, ADJUST forces any unwritten data to
disk to ensure that all of the dataset is made permanent. Since this
situation occurs when the dataset has been recently written to but not
vet closed, ADJUST will attempt to close the dataset. The specific
conditions that the dataset must meet are described under the ADJUST
macro (see part 3).

The ADJUST statement is ignored when used with magnetic tape datasets.

Format:

ADJUST,DN=dn,NA.

Parameters:

DN=dn Local dataset name of a permanent dataset that has been
accessed with write permission. This dataset may be closed
before the ADJUST statement is processed.

NA No abort. If this parameter is omitted, an error causes the

job to abort.

MODIFY - MODIFY PERMANENT DATASET

The MODIFY control statement changes permanent dataset information
established by the SAVE function or a previously executed MODIFY
function. A permanent dataset must be accessed with unique access (UQ)
and all permissions before a MODIFY of a permanent dataset can be issued.
MODIFY is a system verb.

Once a permanent dataset exists, the read, write, and maintenance control
words apply to subsequent editions of that permanent dataset. Therefore,
permission control words can be modified only for a permanent dataset
having a single edition. MODIFY applies to mass storage datasets only; it
is ignored for tape datasets.

SR-0011 4-9 J-01

Format:

MODIFY,DN=dn,PDN=pdn, ID=uid,ED=ed,RT=rt,R=rd,

W=wt,M=mm,NA,EX0/=ON |,
OFF

Parameters are in keyword form; the only required parameter is DN,

DN=dn

PDN=pdn

ID=uid

ED=ed

RT=rt

R=prd

W=wt

. SR-0011

Local dataset name of a permanent dataset that has been
accessed with all permissions. DN is a required parameter.

New permanent dataset name to be applied to the existing

‘dataset. If this parameter is omitted, the existing

permanent dataset name is retained.

New user identification, to be applied to the existing
permanent dataset. 1-8 alphanumeric characters. If this
parameter is omitted, the existing user ID is retained. 1If
this parameter is present without a value, user
identification is established as binary zeros.

New edition number to be applied to the existing permanent
dataset. If this parameter is omitted, the existing edition
number is retained.

New retention period to be applied to the existing permanent
dataset. If this parameter is omitted, the current
retention period is retained. If this parameter is present
without a value, the retention period is set to the
installation-defined value.

New read permission control word to be applied to the
existing permanent dataset. If this parameter is omitted,
the existing read permission is retained. If R is present
without a value, read permission is established as binary
Zeros.

New write permission control word to be applied to the
existing permanent dataset. If this parameter is omitted,
the existing write permission is retained. If W is present
without a value, write permission is established as binary
zeros.

Part 2
4-10 J~-01

M=mm New maintenance permission control word to be applied to the
existing permanent dataset. If this parameter is omitted,
the existing maintenance permission is retained. If M is
present without a value, maintenance permission is
established as binary 2zeros.

NA No abort. If this parameter is omitted, an error causes the
job to abort.

Exol=ON } Execute-only dataset. This parameter sets or clears

OFF the execute~only status of a dataset. EXO only or
EXO=ON causes the dataset to be modified to execute-only.
EXO=OFF causes the dataset to be modified to a
non-execute-only dataset. If this parameter is omitted, the
execute-only status of a dataset is unchanged.

NOTE

When processing for the MODIFY request is
complete, all forms of examination of this
dataset are prohibited if EXO=ON,

DELETE - DELETE PERMANENT DATASET

The DELETE control statement removes a mass storage permanent dataset from
the Dataset Catalog (DSC). To issue a DELETE of a dataset, the job must
have previously accessed the dataset with maintenance permission, if
specified on the SAVE control statement, and unique access (UQ). The
dataset remains a local dataset after DELETE until job termination.

DELETE is a system verb.

Format:
DELETE,DN=d»n,NA.
Parameters:
DN=dn Local dataset name of a permanent dataset accessed with
maintenance permission and unique access
NA No abort. If this parameter is omitted, a fatal error

causes the job to abort.

Part 2
SR-0011 4-11 J-01

DATASET STAGING CONTROL 5

Two control statements support staging datasets between the CRAY-1 and a
front-end system: ACQUIRE and DISPOSE. Another control statement,
SUBMIT, directs datasets to the CRAY input queue.

® ACQUIRE obtains a front-end resident dataset, stages it to the
CRAY-1, and makes it permanent and accessible to the job making
the request. Alternatively, if the dataset is already permanent
on CRAY-1 mass storage, ACQUIRE allows dataset access to the job
making the request.

® DISPOSE directs a dataset to the specified queue for staging to a
front-end system. DISPOSE can also be used to release a local
dataset or to change dataset disposition characteristics.

@ SUBMIT directs a dataset on CRAY-1 mass storage local to the
submitting job to the CRAY-1 input queue.

Dataset control information such as save or access codes (required by a
front-end system for management of its own files) can be sent by the
CRAY-1 user to the front-end system through the use of TEXT, a special
parameter of the ACQUIRE and DISPOSE statements. The contents of the
character string provided with the TEXT parameter are defined by the
front-end system.

ACQUIRE and DISPOSE are invalid with tape datasets because these two
statements apply only to the staging of datasets between a front-end
computer system and the Cray computer. No interface exists between the
Station Call Processor (SCP) and the Tape Queue Manager (TQM). The tape
subsystem is online to the CRAY-1l computer.

ACQUIRE - ACQUIRE PERMANENT DATASET

The ACQUIRE control statement allows the user to make a dataset permanent
and accessible to the job making the request. ACQUIRE is a system verb.

When an ACQUIRE control statement is issued, COS determines if the
requested dataset is front-end resident or permanently resident on CRAY-1
mass storage.

Part 2
SR-0011 5-1 J-01

If the CRAY-1 Operating System determines that the requested dataset is
already permanently resident on CRAY-1 mass storage, dataset access is
granted to the job making the request.

If the requested dataset is not a CRAY-1l permanent dataset, the request
for the dataset is sent to the front-end system. The front-end system
stages the dataset to the CRAY-1l. COS then makes the dataset permanent
and grants dataset access to the job making the request. Until the
dataset is made permanent, processing of the job making the request is
delayed.

Format:

ACQUIRE,DN=dn,PDN=pdn,ID=uid,ED=ed,RT=rt,R=rd,W=wt,M=mn,

UQ,TEXT=text,MF=mf,TID=tid,DF=df.

Parameters are in keyword form; the only required parameter is DN,

DN=dn Local dataset name by which the permanent dataset is to be
known. 1-7 alphanumeric characters, the first of which is
A-Z2, $, @, or %; remaining characters may also be numeric.
DN is a required parameter.

PDN=pdn Name of COS permanent dataset to be accessed or staged
from a front-end system, saved, and accessed. This is the
name that is saved by the system if the dataset is staged.
pdn is 1-15 alphanumeric characters assigned by the
dataset creator. The default for pdn is dn.

ID=uid User identification. 1-8 alphanumeric characters assigned
by the dataset creator. The default is no user ID.

ED=ed Edition number. A value from 1 through 4095 assigned by
the dataset creator. The default value is:

® One, if a permanent dataset with the same PDN and ID
does not currently exist, or

® The current highest edition number of that dataset
if the permanent dataset with the specified PDN and
ID does exist.

Part 2
SR-0011 5-2 J-01

RT=prt

R=7rd

W=wt

uQ

TEXT=text

MF=m]f"

TID=tid

DF=df

SR-0011

Retention period. User-defined value from 0-4095
specifying the number of days that a permanent dataset is
to be retained by the system. The default value is an
installation-defined parameter.

Read control word. 1-8 alphanumeric characters assigned by
the dataset creator. The default is no read control word.

Write control word. 1-8 alphanumeric characters assigned
by the dataset creator. The default is no write control
word.

Maintenance control word. 1-8 alphanumeric characters
assigned by the dataset creator. The control word must be
specified if a subsequent edition of the permanent dataset
is saved. If no staging occurs, and the dataset is to be
subsequently deleted, this parameter may be specified in
conjunction with the UQ parameter (that is, maintenance
permission is required to delete a dataset).

Unique access. If specified, the job is granted unique
access to the permanent dataset; otherwise, multiaccess to
the permanent dataset is granted. If no staging is
performed because the dataset already exists, write,
maintenance, and/or read permission may be granted if the
appropriate write or maintenance control words are
specified.

Text to be passed to the front-end system requesting
transfer of the dataset. The format for TEXT is defined by
the front-end system for managing its own datasets or
files. Typically, text is in the form of one or more
control statements for the front-end system; these
statements must contain their own terminator for the front
end. Any COS record control words are extracted from the
text string before it is passed to the front end. text
cannot exceed 240 characters.

Mainframe identifier for the front-end computer. Two
alphanumeric characters. The default is the mainframe of
job origin.

Terminal identifier. 1-8 alphanumeric characters
identifying destination terminal. The default is terminal
of job origin.

Dataset format. This parameter defines whether a dataset
is to be presented to the CRAY-1l in COS blocked format and
whether the front—end system is to perform character
conversion. The default is CB.

Part 2
5-3 J-01

For example, a user may wish to acquire a dataset from
magnetic tape in blocked binary as it appears at the
front-end system. In this case, BB is specified.

df is a 2-character alpha code defined for use on the
front-end system. The default is CB. Cray Research
suggests support of the following codes:

CD Character deblocked. The front-end system performs
character conversion to 8-bit ASCII, if necessary.

CB Character blocked. The front-end system blocks the
dataset prior to staging and performs character
conversion to 8-bit ASCII, if necessary.

BD Binary deblocked. The front-end system does not
perform character conversion. For ACQUIRE, BD is the
same as TR.

BB Binary blocked. The front-end system blocks the
dataset prior to staging but does not do character

conversion.

TR Transparent. No blocking/deblocking or character
conversion is performed.

DISPOSE - DISPOSE DATASET

The DISPOSE control statement directs a dataset to the CRAY-1 output
queue for staging to a specified front-end computer system (mainframe).
DISPOSE can also be used to alter dataset disposition characteristics or
to release a dataset.

Defining the DISPOSE characteristics can be done before the actual
staging via the DEFER parameter. The DEFER parameter saves all selected
dispose parameters for use when the dataset is released, which is when
the actual staging is initiated. DISPOSE is a system verb.

Part 2
SR-0011 5-4 J=-01

Format:

DISPOSE,DN=dn,SDN=gdn,DC=de ,DF=df ,MF=mf ,SF=8f,1D=uid,TID=tid,

;ED=ed,RT=Pt,R=Pd,W=wt,M=mn,TEXT=text,WAIT,NOWAIT,DEFER,NRLS.

Parameters are in keyword form; the only required parameter is DN.

DN=dn

SDN=gdn

DC=de

SR-0011

Local dataset name. Name by which the dataset is known at
the CRAY-1, DN is a required parameter.

Staged dataset name. 1-15 character name by which the
dataset will be known at destination mainframe. The
default for sdn is dn.

Disposition code. Disposition to be made of the dataset.
The default is PR when the DC parameter is omitted.

de is a 2-character alpha code describing the destination
of the dataset as follows:

IN Input (job) dataset. Dataset is queued as a job on
the mainframe specified with the MF parameter.

ST Stage to mainframe. Dataset is made permanent at the
mainframe designated by the MF parameter.

SC Scratch dataset. Dataset is released.

PR Print dataset. Dataset is printed on a printer
available at the mainframe designated by the MF
parameter.

PU Punch dataset. Dataset is punched on any card punch
available at the mainframe designated by the MF
parameter.

PT Plot dataset. Dataset is plotted on any available
plotter at the mainframe designated by the MF
parameter,

Part 2
5-5 J=-01

DF=

MF=

SR-0011

af

MT Write dataset on magnetic tape at the mainframe
designated by the MF parameter.

Dataset format. This parameter defines whether a dataset
is sent from the CRAY-1 in COS blocked format and whether
the front-end system is to perform character conversion.
The default is CB,

For example, a user may wish to save a dataset on magnetic
tape in blocked binary as it appears at the CRAY-1l. 1In
this case, BB is specified. A user who wants a dataset
printed will specify CB if the front-end computer handles
deblocking.

df is a 2-character alpha code defined for use on the
front-end system. Cray Research suggests support of the
following codes:

CD Character deblocked. The front-end system performs
character conversion from 8-bit ASCII, if necessary.

CB Character blocked. No deblocking is performed at the
CRAY-1 prior to staging. The front-end system
performs character conversion from 8-bit ASCII, if
necessary.

BD Bihary deblocked. The front-end system does not
perform character conversion.

BB Binary blocked. The front-end system does not
perform character conversion. The CRAY-1l does not
perform deblocking prior to staging. For DISPOSE, BB
is the same as TR.

TR Transparent. No blocking/deblocking or character
conversion is performed.

Other codes may be added by the local site. Undefined
pairs of characters may be passed but will be treated as
transparent mode by the CRAY-1.

Mainframe computer identifier. Two alphanumeric
characters. 1Identifies the front-end station where the
dataset is to be staged. If omitted, the mainframe where
the issuing job originated is used. If MF is given a value
of a CRAY-1 ID and DC=IN, the dataset is disposed to the

CRAY-1 input queue after issuing a warning message (see
note) .

Part 2
5-6 J-01

NOTE

In future versions of COS, the SUBMIT control statement
will be the only way to place datasets into the CRAY-1

job input queue. Therefore, it is advisable to use
SUBMIT instead of DISPOSE to dispose datasets to the
CRAY-1 input queue. If DISPOSE is used to submit a job
to the CRAY-1 input queue, the following informative
messadge is printed in the logfile: SY004 - USE SUBMIT
TO PLACE JOBS IN CRAY INPUT QUEUE.

SF=gf

ID=uid

TID=tid

ED=ed

RT=rt

R=rd

W=wt

M=

SR-0011

Special form information to be passed to the front-end
system. 1-8 alphanumeric characters. SF is defined by the
needs of the front-end system.

User identification. 1-8 alphanumeric characters assigned
by the dataset creator. The default is no user ID.

Terminal identifier. 1-8 alphanumeric characters
identifying destination terminal. The default is terminal
of job origin, where applicable.

Edition number, meaningful only if DC=ST. A user—defined
value from 1 through 4095. The default value depends on
the destination mainframe.

Retention period, meaningful only if DC=ST. A user-defined
value from 0 through 4095 specifying the number of days a
dataset is to be retained by the destination mainframe.

The default value depends on the destination mainframe.

Read control word, meaningful only if DC=ST. 1-8
alphanumeric characters. The default is no read control
word.

Write control word, meaningful only if DC=ST. 1-8
alphanumeric characters. The default is no write control
word.

Maintenance control word, meaningful only if DC=ST. 1-8
alphanumeric characters. The default is no maintenance
control word.

Part 2
5-7 J-01

TEXT=text

WAIT

NOWAIT

DEFER

NRLS

SR-0011

Text to be passed to the front-end system requesting
transfer of a dataset. The format for TEXT is defined by
the front-end system for managing its own datasets or
files. Typically, text is in the form of one or more
control statements for the front-end system; these
statements must contain their own terminator for the front
end. Any COS record control words are extracted from the
text string before it is passed to the front end. text
cannot exceed 240 characters.

Job wait. When this parameter is specified, the job does
not resume processing until the disposed dataset has been
staged to the front-end system. If the front-end system
cancels the transfer, the waiting job is aborted.
Processing then resumes after the next EXIT statement, if
one is present. If WAIT is not specified, processing
resumes immediately upon issue of the DISPOSE, depending
upon an installation option. The WAIT parameter is useful
in detecting unsuccessful transfers.

Job no wait. When this parameter is specified, the job
will not wait until the dataset has been staged to the
front-end system but resumes processing immediately. If
the front-end system cancels the transfer, no special
action is taken, that is, the job is not aborted. If
NOWAIT is not specified, processing resumes immediately
upon issue of the DISPOSE, depending upon an installation
option.

When this parameter is specified, the disposition occurs
when the dataset is released either by a RELEASE request or
job termination. The dispose characteristics are saved and
used when the dataset is released.

No release. When this parameter is specified, the dataset
remains local to the job after the DISPOSE request has been
processed. When NRLS is specified on a DISPOSE control
statement, the dataset cannot be written to, until the
transfer to the specified front-end is completed.
Therefore, it is advisable to use WAIT with NRLS.

Part 2
5-8 J-01

SUBMIT -~ SUBMIT JOB DATASET

With SUBMIT, a job running on the CRAY-1l can direct another dataset
(which must also be a job) to the CRAY-1l input queue. The job that is
submitted executes independently of the submitting job. SUBMIT ijis a
system verb.

Format:

SUBMIT,DN=dn,SID=mf ,DID=mf, TID=tid ,DEFER,NRLS.

Parameters are in keyword format; the only required parameter is DN.

DN=dn Local dataset name. A valid local dataset name. DN is a
required parameter and must be given a value.

SID=mf Default source front-end system identifier. Two
alphanumeric characters. If an MF parameter is not
specified in an ACQUIRE control statement for the submitted
job, the SID parameter defines the default source front—-end
system for the dataset to be acquired. If the MF parameter
as well as the SID are omitted, the default source
identifier of the submitting job is used.

DID=mf Default destination mainframe identifier. Two alphanumeric
characters. If an MF parameter is not specified in a
DISPOSE control statement for the submitted job, the DID
parameter defines the default destination front—-end system
for the dataset to be acquired. If the MF parameter as
well as the DID are omitted, the default destination
identifier of the submitting job is used.

TID=tid Default terminal identifier. 1-8 alphanumeric character
identifier which defines the default terminal ID for the
submitted job. If omitted, then the terminal ID of the
submitting job is used.

DEFER Deferred submit. Selection of this parameter causes the
SUBMIT characteristics to be defined, with a release of the
dataset actually initiating the submit of the dataset. If
omitted, the SUBMIT occurs immediately.

Part 2
I sr-oom2 5-9 J-01

NRLS

SR-0011

No release. This parameter indicates if the dataset is to
remain local to the job after SUBMIT has been processed.
If omitted, the dataset is released after the SUBMIT. If
selected, the dataset remains local to the job after the
SUBMIT. If the dataset is not released, it is available
for reading only. When NRLS is specified on a SUBMIT
control statement, the dataset cannot be written to, until
the transfer to the specified front-end is completed.

Part 2
5-10 J-01

DATASET UTILITIES 6

Utility control statements provide the user with a convenient means of

copying, positioning, or dumping datasets. The following utilities
are available to the user:

® COPYR, COPYF, and COPYD allow the user to copy records, files,
or datasets, respectively.

® SKIPR, SKIPF, and SKIPD allow the user to skip records, files,
or datasets, respectively.

® REWIND positions a dataset at the beginning of data, that is,
prior to the first block control word of the dataset.

® WRITEDS is intended for initializing a random dataset but may
also initialize a sequential dataset.

All parameters are in keyword form and have default values.

COPYR - COPY RECORDS

The COPYR statement copies a specified number of records from one
dataset to another starting at the current dataset position.

Following the copy, the datasets are positioned after the
end-of-record for the last record copied.

Format:

COPYR, I=7d~n,0=0d" ,NR=n.

Part 2
SR-0011 6-1 I

Parameters are in keyword form.

I=7dn

O=odn

NR=7

Name of dataset to be copied. The default is $IN.

Name of dataset to receive the copy. The default is
$0uT.

Decimal number of records to copy. The default is 1.
If the dataset contains fewer than n records, the copy
prematurely terminates on the next end-of-file.
End-of-file or end-of-data is not written. If the
keyword NR is specified without a value, the copy
terminates at the next end-of-file. If the input

dataset is positioned midrecord, the partial record is
counted as one record.

COPYF - COPY FILES

The COPYF statement copies a specified number of files from one
dataset to another starting at the current dataset position.

Following the copy, the datasets are positioned after the end-of-file
for the last file copied.

Format:

COPYF, I=tdn ,0=0dn ,NF=.

Parameters are in keyword form.

I=7dn

O=odn

NF=n

SR-0011

Name of dataset to be copied. The default is $IN.

Name of dataset to receive the copy. The default is

$OUT.

Decimal number of files to copy. The default is 1. 1If
the dataset contains fewer than u files, the copy
prematurely terminates on end-of-data. End-of-data is
not written. If the keyword NF is specified without a
value, the copy terminates at the end-of-data. If the
input dataset is positioned midfile, the partial file
counts as one file.

Part 2

COPYD - COPY DATASET

The COPYD statement copies one dataset to another starting at their
current positions. Following the copy, both datasets are positioned
after the end-of-file of the last file copied. The end-of-data is not
written to the output dataset. Both input and output datasets must be
blocked.

Format:

COPYD, I=idn,0=0dn.

Parameters are in keyword form.
I=1dn Name of dataset to be copied. The default is $IN.

O=odn Name of dataset to receive the copy. The default is $OUT.

SKIPR - SKIP RECORDS

The SKIPR control statement directs the system to bypass a specified
number of records from the current position of the named dataset.

Format:

SKIPR,DN=dn,NR=%.

Parameters are in keyword form.
DN=dn Name of dataset to be bypassed. The default is $IN,

NR=n Decimal number of records to skip. The default is 1., If
the keyword NR is specified without a value, the system
positions dn after the last end-of-record of the current
file. If n is negative, SKIPR skips backward on dn.

Part 2
SrR-0011 6-3 J=-01

SKIPR does not bypass an end-of-file or beginning-

of-data. If an end-of-file or beginning-of-data is
encountered before n records have been bypassed when
skipping backward, the dataset is positioned after the
end-of-file or beginning-of-data; when skipping forward,
the dataset is positioned after the last end-of-record of
the current file. This statement is available for use with
online tapes except that a negative value cannot be used
for NR.

SKIPF - SKIP FILES

The SKIPF control statement directs the system to bypass a specified
number of files from the current position of the named dataset.

Format:

SKIPF,DN=dn,NF=n.

Parameters are in keyword form.
DN=dn Name of dataset to be bypassed. The default is $IN.

NF=n Decimal number of files to bypass. The default is 1. If
the keyword NF is specified without a value, the system
positions dn after the last end-of-file of the dataset.
If n is negative, SKIPF skips backward on dn.

If dn is positioned midfile, the partial file skipped
counts as one file.

SKIPF does not bypass an end-of-data or beginning-of-data.
If beginning-of-data is encountered before 7n files have
been bypassed when skipping backward, the dataset is
positioned after the beginning-of-data; when skipping
forward, the dataset is positioned before the end-of-data
of the current file. This statement is available for use
with online tapes except that a negative value cannot be
used for NF; for interchange format tapes (DF=IC), NF can
only be 1.

Part 2
SR-0011 6-4 ; J-01

For example, if dn is positioned just after an
end-of-file, the following control statement will position
dn after the previous end-of-file. If dn is positioned
midfile, dn will be positioned at the beginning of that
file.

SKIPF,DN=dn,NF=-1,

SKIPD - SKIP DATASET

The SKIPD control statement directs the system to position a dataset at
end-of-data, that is, after the last end-of-file of the dataset. It has
the same effect as the following statement:

SKIPF,DN=dn,NF.

If the specified dataset is empty or already at end-of-data, the
statement has no effect.

Format:

SKIPD,DN=dn.

The parameter is in keyword form.

DN=dn Name of dataset to be skipped. The default is $IN,

REWIND - REWIND DATASET

The REWIND control statement positions the named datasets at the
beginning-of-data, that is, prior to the first block control word of the
dataset. The $IN dataset represents an exception. After REWIND, $IN is
positioned after the control statement file. If any of the named
datasets is not open, REWIND opens it. REWIND is a system verb.

SR-0011 6-5 J

REWIND causes an end-of-data to be written to the dataset if the previous
operation was a write or if the dataset is null. If the dataset is not
memory resident, the buffers are flushed to mass storage when REWIND
follows a write operation. If the dataset is memory resident, the
end~-of-data is still placed in the buffer, but the buffer is not

flushed. For an online magnetic tape dataset, REWIND positions the tape
dataset to the beginning of the first volume accessed by the user.

Format:

REWIND 'DN=dnl:dn2 Sece :dns.

Parameters are in keyword form.

DN=dni Names of datasets to be rewound. A maximum of eight
datasets can be specified, separated by colons.

WRITEDS - WRITE RANDOM OR SEQUENTIAL DATASET

The WRITEDS control statement is intended for initializing a blocked
dataset. It writes a dataset containing a single file consisting of a
specified number of records of a specified length. This utility is
especially useful for random datasets because a record written on a
random dataset must end on a pre—-existing record boundary. Direct-access
datasets, implemented in CFT as defined by the ANSI x3.9-1978 FORTRAN
standard, can be initialized (and even extended) without the help of
WRITEDS.

WRITEDS can also be used to write a sequential dataset.

Format:

WRITEDS,DN=dn,NR=nr,RL=rl.

Parameters are in keyword form; the only required parameters are DN and
NR.,

DN=dn Name of dataset to be written. DN is a required parameter.

Part 2
SR-0011 6-6 J=-01

NR=nr

RL=pl

SR-0011

Decimal number of records to be written. NR is a required
parameter. Set to the largest value that may be needed,
since a dataset cannot be extended when it is in random
(RDM) mode.

Decimal record length, that is, the number of words in each

record. The default is zero words, which generates a null
record.

If the record length is 1 or greater, the first word of

each record is the record number as a binary integer
starting with 1.

6-7 J-0l1

PERMANENT DATASET UTILITIES

The following utility routines are provided for permanent datasets:

e PDSDUMP dumps all specified permanent datasets to a

user-specified dataset. Input and output datasets may be
included in the dump.

PDSLOAD loads permanent datasets that have been dumped by
PDSDUMP and updates or regenerates the Dataset Catalog. Input
and output datasets are also loaded via PDSLOAD,

AUDIT produces a report containing status information for each
permanent dataset. AUDIT does not include input or output
datasets.

PDSDUMP - DUMP PERMANENT DATASET

PDSDUMP dumps specified permanent datasets to a dataset, which may
then be saved or staged to a station as desired. Conditions that
cause a dataset to be omitted from dumping include:

Format:

The dataset is execute-only,

There are dataset allocation conflicts,

The dataset has catastrophic errors,

Inconsistent allocation has occurred,

The dataset resides on a down device, or

The dataset has an inactive entry in the system's Queued
Dataset Table (QDT).

PDSDUMP,DN=dn ,DV=Ldv ,PDS=pde ,CW=cw,

Ib=uid,US=usn,ED=ed,X,Cc,D,I,0,S.

Part 2

SR-0011 7-1

All parameters are in keyword form. Optional parameters establish
criteria for datasets being dumped.

DN=dn

DV=1dv

PDS=pds

CW=cw

ID=uid

US=usn

ED=ed

Name of dataset where dump is written. The default is
$PDS. Multiple dumps to a dataset are possible; if the
dataset specified already exists, the dump is appended to
it.

Dump all datasets residing on logical device 1dv.
Currently only one Ldv can be specified.’

Dump all editions of the specified permanent dataset.
Editions may be limited by ED parameter.§

Installation-defined control word regulating use of
PDSDUMP. If the user number is specified on the JOB
control statement, the CW parameter is not usually
required; only the datasets with that user number are
selected. If the CW parameter is omitted, only the
datasets belonging to the user number as specified on the
JOB control statement can be dumped. If the CW parameter
is present and the correct control word is used, any
dataset can be dumped. If an invalid control word is
given, the job is aborted. When the user number is omitted
from the JOB control statement, CW is a required parameter.

Dump all datasets with user identification as specified.§
If ID is specified without a value, all datasets which meet
the rest of the criteria and have a null id are dumped.

Dump all datasets with specified user number . §

Edition number of permanent dataset dumped; meaningful only
if PDS parameter is specified.§

Dump expired datasets.

Dump selected datasets never dumped or datasets modified
since the last dump of the dataset.

Delete datasets that are dumped.
Dump system input datasets.
Dump system output datasets. See note

Dump user permanent datasets.

§ By default, all permanent datasets specified by the parameters are

dumped.

SR-0011

Part 2
7-2 J-01

NOTE

If none of these parameters is specified, the input,
output, and user permanent datasets are all dumped.
If any of these parameters is specified, only those
datasets of the type specified are dumped.

Multiple calls to PDSDUMP may be made if the dump dataset is to include
several permanent datasets requiring specification of different
parameters.

Example:

PDSDUMP ,DN=DUMPA ,PDS=LIB1.
PDSDUMP ,DN=DUMPA ,PDS=LIB2.

This example results in a dataset DUMPA that contains all editions of
LIB1 and all editions of LIB2.

PDSDUMP produces a listing (figure 7-1) on $0OUT identifying the datasets
dumped or bypassed and summarizing the dump run. The date and time in
the heading line refer to the time when the dump run started. The
permanent dataset name, edition number, ID, and user number are extracted
from the DSC entry for each dataset selected. Each message is followed
by the notation DUMPED or NOT DUMPED. The notation NOT DUMPED indicates
the dataset was selected but could not be accessed for dumping. A user
logfile message further explains the problem encountered. -

When dumping to a tape dataset, the recording format for the tape dataset
must be transparent (for example, DF=TR on ACCESS statement). If the
dataset is recorded in interchange format loading, using the dump dataset
leads to unsuccessful results.

Part 2
SR-0011 7-3 J-01

PDSDUMP -~ PERMANENT DATASET DUMP UTILITY

AUDPL
AUDPL

DSCED

DSCED

TXBUILD

TXBUILD
TXBUILD
LONGDATASETNAME
LONGDATASETNAME
LONGDATASETNAME
LONGDATASETNAME
DSBUILD
DSBUILD
DSBUILD
DSBUILD

AUDPL

DSCED

TXBUILD

AUDPL

DSCED

ED=0001
ED=0002
ED=0001
ED=0002
ED=0001
ED=0002
ED=0003
ED=0001
ED=0002
ED=0003
ED=0004
ED=0001
ED=0002
ED=0003
ED=0004
ED=0003
ED=0003
ED=0004
ED=0004
ED=0004

ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT
ID=QITTYQAT

USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM
USR=SYSTEM

20 DATASETS SELECTED FOR DUMPING

Figure 7-1.

PDSLOAD « LOAD PERMANENT DATASET

PDSLOAD loads permanent datasets from a dataset created by PDSDUMP.
the dataset already exists, it is not reloaded.

Format:

PDSDUMP listing

DUMP ON 01/07/82 AT

DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED
DUMPED

14:50:44

If

PDSLOAD, DN=dn ,PDS=pds ,CW=cw, ID=uid,US=usn, ED=ed,DV=dvn,A,I,0,S,NA.

All parameters are in keyword form.
criteria for datasets being loaded.

DN=dn

loaded.

PDS=pds

Optional parameters establish

Name of dataset from which permanent dataset is to be
The default is $PDS.

Load all editions of the specified permanent dataset.

Editions may be limited by the ED parameter.§

§ By default, all permanent datasets that are specified by the

parameters are loaded.

SR-0011

J-01

CW=cw Installation-defined control word to regulate the use of
PDSLOAD. The CW parameter is usually not required. If the
CW parameter is used when the user number is specified, the
datasets with the user number are searched. If the CW
parameter is omitted when the user number is specified,
only the datasets belonging to that user number may be
loaded.

When the user number is omitted from the JOB control
statement, CW is a required parameter. When the CW
parameter is specified on the PDSLOAD control statement,
the user can load any datasets with the correct control
word. If an invalid control word is given, the job is
aborted.

ID=uid Load all datasets with user identification as specified.
US=usn Load all datasets with specified user number.S

ED=ed Edition number of dataset to be loaded; meaningful only if
PDS parameter is specified.S

DV=dvn The name of a logical device where the output dataset is
assigned before it is opened. 1If omitted, COS assigns a
device at open time. If specified, the supplied device
name is built into the DNT entry for the output dataset
(the one being loaded). Note that COS can choose not to
honor this assignment. This parameter is not involved in
any way in the selection of a dataset for loading.

A Load only active datasets; that is, do not load expired
datasets.

I Load input datasets.

(0] Load output datasets. See note following.

S Load saved datasets.

NA Do not abort if there is not a dataset matching the

specifications to load on the $PDS dataset. This parameter
applies only to this situation. It does not prevent any
other abort condition from occurring or offer reprieve
processing of any kind.

§ By default, all permanent datasets that are specified by the parameters
are loaded. '

Part 2
SR-0011 7-5 J-01

NOTE

If none of these parameters is specified, the
input, output, and saved datasets are loaded.

If any of these parameters is specified, only
those datasets of the type specified are loaded.

PDSLOAD produces a listing on $OUT identifying the datasets loaded or
bypassed and summarizing the load run. The date and time in the heading
line refer to the time when the load run started. The permanent dataset
name, edition number, ID, and user number are extracted from the PDD for
each dataset selected and successfully loaded. Each message is followed
by the notation LOADED or NOT LOADED. The notation NOT LOADED jindicates
the dataset was selected but not loaded. A user logfile message further
explains the problem encountered.

PDSLOAD ~ PERMANENT DATASET RESTORE UTILITY LOAD ON 01/07/82 AT 17:13:47

ENTIT ED=0001 ID=TAQI USR=SYSTEM LOADED
DSBUILD ED=0001 ID=TAQI USR=SYSTEM LOADED
TXBUILD ED=0001 ID=TAQI USR=SYSTEM LOADED
AUDPL ED=0001 ID=TAQI USR=SYSTEM LOADED
DSCED ED=0001 ID=TAQI USR=SYSTEM LOADED

5 DATASETS SELECTED FOR LOADING

AUDIT - AUDIT PERMANENT DATASETS

The AUDIT utility provides reports on the status of each permanent dataset
known to the system. If the user number for the job is SYSTEM, AUDIT reports
on all permanent datasets. Otherwise, AUDIT only reports on those permanent
datasets whose user number matches the user number for the job. AUDIT does
not include input and output datasets.

If more than one parameter is selected, only those datasets which meet all
criteria are listed. Parameter values can be selected that conflict with each
other, such as PDN and PREFIX. For example, requesting that permanent dataset
names that begin with ABC (PDN=ABC-) and whose prefix characters are BOT
(PREFIX=BOT) would result in no permanent datasets being listed.

AUDIT supplies the following information on the listing:

Permanent dataset name Creation date/time

Edition number Last dump date/time

User identifications Last access date/time
Dataset size in words Last modification date/time
Retention time in decimal Logical device name

Number of accesses in decimal Number of datasets selected

Total block count in decimal

Part 2
SR-0011 7-6 J-01

Format:

AUDIT,L=1ldn,B=bdn,PDN=pdn, ID=uid,PREFIX=pfx,DV=dvn,

Sz=dez ,X=mm/dd/yy:'hh:mm:es" ,TCR=mm/dd/yy "' hh:mm:8s",

% TLA=mm/dd/yy: hh:mm:es* ,TLM=mm/dd/yy: ' hh:mm:88" .

Parameters are in keyword form.
L=1ldn List dataset name. The default is $OUT.

B=bdn Specifies dataset to receive the binary output. If B is
specified alone, the dataset is $BINAUD. If the B parameter
is omitted, no binary output is written. For a description
of the binary output format, refer to the COS Product Set
Internal Reference Manual, CRI publication SM—-0041.

PDN=pdn Name of permanent dataset or datasets to be listed. Up to
15 alphanumeric characters may be specified. A shorthand
notation may be used where a dash represents any number of
characters or no characters and an asterisk represents any
one character.

Examples:

PDN=ABC- List all permanent dataset names beginning
with ABC.

PDN=A*** TList all 4-character permanent dataset names
beginning with A,

PDN=-A*- List all permanent dataset names containing
the letter A followed by one or more other
characters.

PDN=- List all names.

PDN=***- TList all names having three or more
characters.

Part 2
. SR-0011 7-7 J-01

ID=uid List all permanent datasets with the specified user
identification. The default is to list all IDs. If ID is
present without an equated value, datasets having a null id
are selected.

PREFIX=pfi
List all permanent datasets whose names begin with the
specified prefix. pfa is 1-8 characters. The default is
no prefix specified.

DV=dvn List all permanent datasets on the specified logical
device. The default is to list permanent datasts on all
devices.

SZ=dsz List all permanent datasets greater than or equal to the
specified size. Size is specified in words. The default is
to list all sizes.

X=mm/dd/yy: 'hh:mm: ss"
List all permanent datasets that are expired as of the
specified mm/dd/yy: 'hh:mm:se'. mm/dd/yy
may be specified alone. The default expiration date and
time are "now" if only X is specified.

TCR=mm/dd/yy: ' hh:mm:ss’
List all permanent datasets that have been created since the
specified mm/dd/yy: 'hh:mm:ss'. The keyword
cannot be specified alone; however, TCR=mm/dd/yy is
sufficient.

TLA=mm/dd/yy: ' hh:mm:ss"
List all permanent datasets that have not been accessed
since the specified mm/dd/yy:'hh:mm:s8'. The
keyword cannot be specified alone; however,
TLA=mm/dd/yy is sufficient.

TLM=mm/dd/yy : *hh:mm:8s*
List all permanent datasets that have been modified since
the specified mm/dd/yy:'hh:mm:ss8'. The keyword
cannot be specified alone; however, TLM=andd/yy is
sufficient.

Part 2
SR-0011 7-8 J-01

ANALYTICAL AIDS 8

The following control statements provide analytical aids to the
programmer:

e DUMPJOB and DUMP are generally used together to examine the
contents of registers and memory as they were at a specific time
during job processing. DUMPJOB captures the information so that
DUMP can later format selected parts of it.

® DEBUG produces a symbolic dump.

e DSDUMP dumps all or part of a dataset to another dataset in one of
two formats: blocked or unblocked.

e COMPARE compares two nearly identical datasets and lists all
differences.

e FLODUMP dumps flowtrace tables when a program aborts with
flowtrace active.

® PRINT writes the value of an expression to the logfile.

® SYSREF generates a global cross-reference listing for a group of
CAL or APML programs.

DUMPJOB - CREATE $DUMP

The DUMPJOB control statement causes creation of the local dataset $DUMP,
if not already existent. $DUMP receives an image of the memory assigned
to the job (JTA and user field) when the DUMPJOB statement is
encountered. If DUMPJOB is placed after a system verb (excluding the
comment and EXIT statements), the dump is of the Control Statement
Processor (CSP). A DUMPJOB statement is not honored if an execute-only
dataset is loaded in memory; a DUMPJOB to an execute-only dataset is
rejected.

If $DUMP already exists, it is overwritten each time a DUMPJOB control
statement is processed. If $DUMP is permanent and the job does not have
write permission, DUMPJOB aborts. If $DUMP is permanent and the job has
write permission, the dataset is overwritten.

Part 2
SR-0011 8-1 J=-01

If the DUMPJOB/DUMP sequence fails because of such situations as
destroyed system-managed DSPs, assign $DUMP and save it with unique
access., DUMPJOB writes to $DUMP, and job termination automatically
adjusts $DUMP. $DUMP can then be inspected in a separate job.

$DUMP is created as an unblocked dataset by DUMPJOB for use by DUMP.
DUMPJOB is a system verb and cannot be continued to subsequent cards.

Format:

DUMPJOB.

Parameters: none

DUMP - DUMP REGISTERS AND MEMORY

DUMP reads and formats selected parts of the memory image contained in
$DUMP and writes the information onto another dataset. The DUMP
statement can be placed anywhere in the control statement file after
$DUMP has been created by the DUMPJOB control statement.

Placing the DUMPJOB and DUMP statements after an EXIT statement is
conventional and provides the advantage of giving the dump regardless of
which part of the job causes an error exit. The usage of DUMP and
DUMPJOB, however, is not restricted to this purpose.

DUMP can be called any number of times within a job. This might be done

to dump selected portions of memory from a single $DUMP dataset or it
might be done if $DUMP has been created more than once in a single job.

Format:

DUMP, I=tdn,0=odn,FW=fwa ,LW=1wa ,JTA ,NXP,V,DSP,FORMAT=f ,CENTER,

Parameters are in keyword form.
I={dn Name of the dataset containing the memory image. The
- dataset $DUMP is created by DUMPJOB and is the default, but
any dataset in the $DUMP (unblocked) format is acceptable.
O=odn Name of the dataset to receive the dump; default is $OUT.

Part 2
SR~-0011 8~-2 J=-01

FW=fwa Octal first word address of memory to dump. The default
is 0.

W= Lwa Octal last word address+l of memory to dump. The

default is 200g. Specifying the keyword LW without a
value causes the limit address to be used.

JTA Job Table Area to be dumped. The default is no dump.
NXP No exchange package, B registers, or T registers
dumped. The default causes exchange package, B

registers, and T registers to be dumped.

v Vector registers to be dumped. The default is no dump
of V registers.

DSP Logical File Tables (LFTs) and Dataset Parameter Areas (DSPs)
to be dumped. The default is to not dump LFTs and DSPs.

FORMAT=f Format for the part of memory selected by FW and LW.
The options are:

0 Octal integer and ASCII character. This is
the default.

D Decimal integer and ASCII character
X Hexadecimal integer and ASCII character
G Floating point or exponential (depending on

the value of the number) and ASCII character

P 16-bit parcel (4-word boundaries are forced
for FW and LW)

M Mixed hexadecimal and octal written in ASCII.
Each 16-bit parcel is represented as five
characters; the first is a hexadecimal digit
representing the upper 4 bits and the next
four are octal characters representing the
lower 12 bits.

CENTER Dump 100g words on each side of the address contained
in the P register of the exchange package. The format
is P.

Part 2
SR-0011 8-3 I

Examples:

The following example is a portion of the dump obtained using format
O, the default format type:

JOP1935

2000100 0451172042047114632400

USER FIELD

(FOPMAT=0)

VARAOAZ2L001 3700

2000104 00ROV 2

OAROAORNA)

DUMR X .07 79254 09/11/73

20XON4001 17000201 165600
ARACOAACVRIAOCAAGCD
OO0

0220110 00RO
rrrrg
Q0 ird CON0CAORCANOAAIOND
Q000170 A00N0OPRAOACIROAIVN0
202174 RORARORANAOIOCRAN
OXX)0A 04 32500402144 75
Q20004 @304 70164132071 16431465
2200110 *13145314R314631473145
0200214 Q4ORVNNNON1. 1202000203
¥¥¥ END OF DIMP Xtk

DARONNO

AONARCAAAPAONRDOANRN
OOV
[cRLFg B Bk LETR RIS 2ig'e

20V mimw«sc;éé&w‘
Q10442041721 7070 3004,
004 OANLAAARRNANGAD]

QAOODO

QAN LG3OI61136334 21
BONOCRNCOROOARCCOOD
L@ ik‘ 1701432071 16431465

.d?!r_ 13?.1 1r.34

(L2 0% ',04“- Mo e alb sl lo o)

A portion of the dump in format D:

5354571261147297024
Q

]
pet o
Q
Q
Q
49E3926774 1 IF706578
3546648702527091509
7378697629483320645
461 1686028552700
XAk END OF DUMP ¥xx

A portion of the same dump specifying format X:

USER FIFID

(FORMAT=D)

2RI 744
~IARA3720IGTHA7 L0
o

347486014761
ey § e g

1234567RA0L NG
57653112104 22142002

2000070000000 1 16562
[vu ol s tens iyl
QR2MRAACAOCIAAONMACNRA

030470164 32071 164 31465
QOOCHDOCNAOCACANCONO
AOAGA0ANCIONRCARANNOA
Q@ O30V21136304G1136G334 71
12345G670123406701 23456
M377124002000000000M
0RAOAOZ70445102722441 11

DUMP X .07 79254 09-11/79

11265786117157°12

<]
2]
34ABFATER1S122209

® ¢

254RNdR70252T7091503
SUROTRAANS 11801 EBRY
-1

= o6e 9315371434340
3716342400 5729

ot

19703248301 4892
2

IGARAI8IA2T27091509

[

34748004 75818129209
-G%Bl?ll?"’-?ﬁl@?d
7173367808

H/CM@ 231836033153

JORLNS USFR FIELD (FORMAT=X) DUMP X. 07 79254 03.11/79
QU100 4A4F 423139333500 DOAVONCINOPE R WWWG 2ON7O0MCCIDTE
0P tRd % A @0 OOV
2000110 (& A OO oo WM 200 Q
R 24241
20001 L4 DOCAMINBINNIIOQ QOACHAARRONNN AVADOR 31317339 II3RBABAZNAIING
OONA1 0 AACAINRMIAONK) QOOOCAODONOOCORY OO RN OONCNCOCCOAO20
QAL o0 73 s s) BN NEL IS P SRS S IRCMACERER N ACOOAOOCONKD
44554050204 GAF G2 ADd 1200 A 0! BQHAF 311K 333
31383A347333A3336 2CAACOACERABONN ATEEONP2EEORTEE
BRBEEBRGHHBEHE6HS 1SR 42 DEDRLY Y COIDAIRIAIDIZAC 3FCASIRORINVACRO
0eRr 14 400V00R24 0400033 CEOOOCORAIALD QOZ1ASOM CRRORAQ PEAO4RIFIR424PAS
X¥X END OF DUMP kXX
Part 2
SR-0011 8-4

18-43- 2% POGE, 1

JOR193S
09117918 49.3%

09-11/791S 49 35

DUMP FORMAT TYPER 01179
18 49:3G
" E >
L] L0 L L] - HIHTIHL
18- 49:35 PHGE 1
JOR193%

9/11/7218-49° 35

23/11/7918 42: 3

DR FORMAT TYFES ©3/11/79
18-48:35
" 7 ?
a ae a ee L HIHIHL
1842 35 POGE 1
JOR193S

021170 42 35

0n11 7918 90 36

DUMP FORMAT TYPES w/11/29
18-49-35
e @@ L L] HIHINL

Format G specified on the same dump portion:

JOB133% USER FIELD (FORMAT=G) DUMP X.07 79254 @3/11/79 18-49-35 PAGE 1
2000100 ©.677213997398+79%4 2 . G0N IO 3 . 202N 9 . 900D JOB19G3S
2000124 0. 20V Q. OO 9. PPN 9. PO
200119 @ . 020D Q200 0. 000000 9 . 2C0MVVORANR0
pese 2
200016:4 2. B0V 0 ROV ? 2UAAPRT2RONE-121R 0. 1R1RVOGRIGE-11790 00/11/7MNMR 4B/
[6.358 SA0A] 9 . PAANXNN0 Q VOACCONWON Q. QOO0 0, ANV
(200 S a”] 0 DN Q. S ANPPR0R5 1216 @ IRIGEORENR-11130 @ . COOROCONOD Q/11/7A1R 49 G
A0, 1 Q2100282479024 334 Q. RILHLRWN 4,22 H10:%] 2 MOOOMROX 0 0 2543°G7260R6G-1216 DUMP FORMAT TYPES V1129
(27 PR 0. 181633066368-1139 2 20NN R -0, 15808830791 ’-1912 18 .49 35
20010 R © . QOMRAVAONIND -0.301503151190€E+17 @.2776557561568-16 "))
00214 9.343471770172E-04 Q. 2NN 0. 200G 9 . 2ROAG0RAOO0] (] e e e HIMINL
kX END OF DUMP %xxX
The same portion of the dump in format P:
LOR1a0S USER FIELD (FORMAT=F) DU X. 07 79254 0@9/11/73 18-48: 3% PAGE. 1
Q000100 045117 941061 834463 032400 00020 PO 110000 137000 200004 0XO236 P00 116600 COR0Q7 NOOONR MO 116562
2000104 OOXAX 200000 PRV RPNV 100000 QOO OOAXS YOO 200000 (OACAV (NCOXNN A0V QOO QAR BAOAAD CANID
00ON*110 y 00A2C AN PRRMAV PO 200D AR GRG0 000020 0RO ACCARA AR
peen <l
QRA154 Q00N GO0 PAOVVY AAAOA DAOXN) PAOCY ONOAOD PAROND 932871 027461 OIGA57 Q33421 QWAV0 OISOB4 024472 031465
2000179 201 A2 VAN CARNX BAARNQ COVCNR (NN OO 20002 0NNQ CCRAM0 BORONe AROAOA OPAMO AR AAANN
202174 00N PAAAN0 AVRAAD OOXANQ QAT APVARL 02467 AR Q30470 OISO6d 034472 QR146S COOC0R OCOORO (OROM AR
200NN QAL1LS IEE2Y BPA106G P44 QMRG0 L 05O OR21 31 DGR Q51400 RROCO0 MG OO Q0071 A27461 23045T Q3L
POVOSAE QIR0 OFSOGA OIMAYY 031467 QUM OONBRD ANV DO AP0 \TPFPV2 NP2 AT 123456 150247 Q77 M0 1856
2000'10 V63146 063146 63146 OR3145 21044;2 O1A 4 O7GUNT V4SS 140067 153073 015215 011234 Q37712 100000 Q0O COOOMN
20Q0C14 04000 QV00DZ B40100 VRAIQ3 Q42D 04200 OO Heien Q0224 2R40RQ (VRO AVROM Q4000 Jd111 044111 44111
Xt¥x END OF DUMP Xxx
The same portion of the dump in format M:
JOB1335 USER FIELD (FORMAT=M) DUMP X.@7 7a254 3/11/798 18:49-3% PAGE 1
2000120 4511741061 3446332400 0ARRAAGAAO JNOOR7ON OOCOAMN2I0 0OMOIGHOR PACO72X0NMD PAAOWEEZ JOB1A3S
20104 OORNAAONOY 2O BAGGNCORNIQ QOO OOXCANNOND 2ANDNOONC OOOCOANNAN CRACDION
0000110 000000000 CRAVOANOAY AOVVONENAC BACARNNAAN AAIOMNAOG PLAMBIANNA0 ANV
TXVRX E
VO 654 QOO OO 3007127461 FAGVITNTL 04TOF 064 3447231465 QAAs11/791R 492-35
e01.e RO QOO AA0Q GO GIMRANNND PROARAAA0A0 COREOANNA AAACNAROD
25,2 200 L S .5 Z W 7461 304573341 37015064 3447231405 2000000000 20000000 Q@311 722 4235
QO 42172046520 2010647622 4RSO152040 S213150105 5140000000 0002QM0000 00212774G1 30457733471 DIMP FORHNT TYPES o0\11/79
0020204 047035064 3447231465 000OAQONOQ ORORA0NXC FIAN-2072 FZ777F7777 ABASEEN247 273403456 18 49 36
POVNZ10 63T14R53146 6314663145 10442103G4 FH N 18S04EE CONRTNRATE 1581511234 3771280000 Q0000000 " 4 K
2000714 4000000XA2 4010000203 O4OOR4NARO CONN34010Q 22FRANR0 JDAAMVONE ©4ORdd]111 4411144111 @ e] ae L] HIHIWL
*xx END OF DUMP XXX
Part 2
SR-0011 8-5 J

DEBUG - PRODUCE SYMBOLIC DUMP

The symbolic debug utility routine, DEBUG, provides a means of dumping
portions of memory and interprets the dump in terms of FORTRAN or CAL
symbols. DEBUG is normally used when a job aborts after an EXIT,
DUMPJOB sequence, however it may be used anywhere provided that a
valid version of $DUMP exists.

To be useful, both CFT and CAL must write special tables, which the
loader (LDR) augments with a version of the load map. The loader
writes this information on a dataset called $DEBUG, which gives the
FORTRAN or CAL symbol names associated with memory addresses. This is
initiated by specifying the ON=Z option for CFT or the SYM option for
CAL. DEBUG reads $DEBUG and $DUMP and prints out variable names and
values in a format appropriate for the variable type.

The following example shows the conventional use of DEBUG:

JOB, «.. .
CFT,ON=%.
LDR.
EXIT,
DUMPJOB.
DEBUG .,

The library routine SYMDEBUG may be called from either FORTRAN or CAL
with one argument, which is a Hollerith string containing any of the

DEBUG parameters. SYMDEBUG produces output similar to that produced

by DUMP but interprets the memory of the running program rather than

$DUMP.

Format:

DEBUG, I={dn,0=0dn ,DUMP=ddn , TRACE=n, SYMS=gym, NOTSYMS=nyem,

% MAXDIM=dim, BLOCKS=blk ,NOTBLKS=nblk ,PAGES=np,COMMENTS="string" .

Part 2
SR-0011 8-6

J-01

Parameters are in keyword form.

I=%dn Name of dataset containing debug symbol tables. The
default is $DEBUG, which is created by the loader from the
symbol tables produced by CFT and CAL.

O=oan Name of dataset to receive the listing output from the
symbolic debug routine. The default is $OUT.

DUMP=ddn Name of dataset containing the dump of the user field.
This dataset is created by the DUMPJOB control
statement. ddn is used when the symbolic debug routine is
invoked after an abort. The default is $DUMP.

TRACE=n Number of routine levels to be looked at in symbolic dump.
DEBUG traces back through the active subprograms the number
of levels specified by n. If this parameter is omitted or
if TRACE is specified without a value, the default is 50.

SYMS=sym List of symbols to be dumped by DEBUG. Up to 20 symbols
may be specified; symbols are separated by a colon. A
shorthand notation as described in the AUDIT statement may
be used; thus, a dash represents any character or
characters or no character, and an asterisk represents any
single character. For example: »

«e. ySYMS=ABC:X-:B**, ...

requests a dump of the symbol ABC, all symbols that start
with X, and all 3-character symbols beginning with B. This
parameter applies to all blocks dumped. The default is all
symbols.

NOTSYMS=nsym
List of symbols to be skipped. Up to 20 symbols may be
specified; symbols are separated by a colon. The shorthand
notation as described under the SYMS parameter may be
used. This parameter applies to all blocks dumped. The
default is that no symbols are to be skipped. This
parameter takes precedence over the SYMS parameter.

MAXDIM=dim
Maximum number of each dimension of the arrays to be
dumped. This parameter allows the user to sample the
contents of arrays without creating huge amounts of
output. For example:

e+ (MAXDIM=3:2:3, ...

SR-0011 8-17 I-01

causes the following elements to be dumped from an array
dimensioned as A(10,3,6):

A(l, 1, 1) A(2, 1, 1) A(3,1,1) A, 2, 1) A2, 2,1
A(3, 2, 1) A(1, 1, 2) A(2,1, 2) A(3, 1, 2) A(1, 2, 2)
A(2, 2, 2) A(3, 2, 2) A(1, 1, 3) A(2,1, 3)
A(3, 1, 3) A(1, 2, 3) A(2, 2, 3) A(3, 2, 3)

This parameter applies to all blocks dumped. The default
is MAXDIM=20:5:2:1:1:1:1. The arrays are dumped in storage
order.

BLOCKS=blk
List of common blocks to be included in the symbolic dump.
A maximum of 20 blocks may be specified. The shorthand
notation as described under the SYMS parameter may be
used. All symbols (qualified by the SYMS and NOTSYMS
parameters) in the blocks named here are to be dumped. If
BLOCKS is specified without a value, all common blocks are
dumped.

NOTBLKS=nblk
List of common blocks to be excluded from the symbolic
dump. A maximum of 20 blocks may be specified. The
shorthand notation as described under the SYMS parameter
may be used. The default is to exclude no blocks. NOTBLKS
specified without a value excludes all but the subprogram
block. This parameter takes precedence over the BLOCKS
parameter.

PAGES=7np Page limit for the symbolic debug routine. The default is
70 pages.

COMMENT="string"'

Identifier to be printed on the DEBUG output title line.
Up to 8 ASCII characters may be specified.

DSDUMP - DUMP DATASET

The DSDUMP control statement dumps specified portions of a dataset to

another dataset. The dump may be made in one of two formats: blocked or
unblocked.

In the blocked format, a group of words within a record, a group of
records within a file, and a group of files within a dataset may be
selected. 1Initial word number, initial record number, and initial file
number begin with 1 and are relative to the current dataset position.
Specifying an initial number greater than one causes words,

Part 2
SR-0011 8-8 I1-01

records, or files to be skipped starting from the current position.

Since the initial word, record, or file number is relative to the current
position of the dataset, the dataset must be positioned properly prior to
calling DSDUMP. A rewind of the dataset prior to calling DSDUMP makes
the initial word, record, and file numbers relative to the beginning of
the dataset. When DSDUMP is completed, the input dataset is positioned
after the last record dumped.

The unblocked format is used for dumping a dataset without regard to
whether it is blocked. It is possible to dump a blocked dataset in
unblocked format (by sectors). A group of sectors within the dataset or
a group of words within each sector may be selected. The initial word
and initial sector numbers begin with one and are always relative to the
beginning of the dataset. Specifying an initial sector greater than 1
causes sectors to be skipped from the beginning of the dataset;
specifying an initial word greater than one causes words to be skipped
from the beginning of each sector. Following a dump in unblocked format,
the dataset is closed.

Format:

DSDUMP, 1=¢dn ,0=0dn ,DF=df ,IW=n ,NW=n,IR=n ,NR=n, IF=n ,NF=n ,1S=1 ,NS=n1.

Parameters are in keyword form; the only required parameter is I.

I=idn (or DN=idn)
Name of dataset to be dumped. This is a required parameter.

O=odn (or L=odn)
Name of dataset to receive the dump. The default is $OUT.

DF=df Dump format. The default is B.
B Blocked
U Unblocked

IW=x Decimal number () of initial word for each record/sector
on 1dn. The default is 1.

NW=n Decimal number () of words per record/sector to dump.

Specifying NW without a value dumps all words to the end of
a record/sector. The default is 1.

Part 2
SR-0011 8-9 I-02

IR= Decimal number (1) of initial record for each file
on 7Zdn. Applicable only if DF=B. The default is 1.

NR=1 Decimal number (n) of records per file to dump.
Specifying NR without a value dumps all records to the
end of the file. Applicable only if DF=B. The default
is 1.

IF: Decimal number (1) of initial file for dataset on idn.
Applicable only if DF=B. The default is 1.

NF=n Decimal number (7) of files on Zdn to dump. Specifying
NF without a value dumps all files to the end of the
dataset. Applicable only if DF=B. The default is 1.

IS=n Decimal number (n) of initial sector on Zdn. Applicable
only if DF=U. The default is 1.

NS=n Decimal number (n) of sectors to dump. Specifying NS
without a value dumps all sectors to the end of the
dataset. Applicable only if DF=U. The default is 1.

For blocked format, each record from idn dumped to odn is preceded by
a header specifying the file and record number. For unblocked format,
each sector is preceded by a header specifying the sector number.

Format of each dump record:

Octal interpretation Character interpretation
Word count of four words of four words

A row of five asterisks indicates that one or more groups of four
words has not been formatted because they are identical to the
previous four. Only the first group is formatted. The number of
words not formatted can be determined from the word counts of the
formatted lines before and after the asterisks. The final group of
four or less words is always formatted.

Part 2
SR~0011 8-10 I

COMPARE - COMPARE DATASETS

The COMPARE control statement compares two blocked datasets and lists all
differences found. The output consists of a listing of the location of
each discrepancy, the contents of the differing portions of the datasets,
and a message indicating the number of discrepancies. Refer to the
CRAY-0S Message Manual, publication SR-0039.

Keyword parameters allow the user to specify the maximum number of errors
and the amount of context to be listed.

If only parts of two datasets are being compared, the parts must first be
copied before using a COMPARE statement; COMPARE compares complete
datasets only.

COMPARE rewinds both input datasets before and after the comparison.

Format:

COMPARE ,A=adn,B=bdn,L=ldn,DF=df ,ME=maxe ,CP=cpn,

Parameters are in keyword form; both A and B must be specified.

A=adn and B=bdn
Input dataset names. If adn=bdn, an error message is
issued and the job is aborted. A and B are required
parameters.

L=ldn Dataset name for list of discrepancies. Lldn must be
different from adn and bdn. The default is $OUT.

DF=df Input dataset format. The default is T.
df is a l-character alpha code as follows:

B Binary. The input datasets are compared logically
to verify that they are identical. If they are not
identical, the differing words are printed in octal
and as ASCII characters. The location printed is a
word count in decimal. The first word of each
dataset is called word 1.

Part 2
SR-0011 8-11 J-01

ME=maxe

CP=cpn

CS=csn

T Text. The input datasets are compared to see if
they are equivalent as text. For example, a
blank-compressed record and its expansion are
considered equivalent. If the two datasets are
not equivalent, the differing records are printed
as text. The location is printed as a record
count in decimal. The first record of each
dataset is called record 1.

Maximum number of differences printed. The default is
100.

Amount of context printed. e¢pn records to either side
of a difference are printed. The CP parameter applies
only if DF=T; if DF=B and CP are specified, an error
message is generated. The default is 0.

Amount of context scanned. c¢éen records to either side
of a discrepancy are scanned for a match. The CS
parameter applies only if DF=T; if DF=B and CS are
specified, an error message is generated. The default
is 0.

If a match is found within the defined range, subsequent
comparisons are made at the same interval. That is, if
record 275 of dataset A is equivalent to record 277 of
dataset B, the next comparison is between record 276 of
dataset A and record 278 of dataset B.

NOTE

If identical records occur within csn
records of each other, the pairing is
ambiguous and COMPARE may match the wrong
pair.

CW=cw or CW=0wl86w2

SR-0011

Compare width., If CW=cw is specified, columns 1
through cw are compared. If CW=cwj:cwy is

specified, columns cw; through cw, are

compared. Specifying CW without a value is not
permitted. The default is to compare columns 1 through
133, but this can be changed by installation option.
The CW parameter applies only if DF=T; if DF=B and CW
are specified, an error message is generated.

Part 2
8~12 J

ABORT=n¢ 1If ac or more differences are found, the job step aborts.
Specifying ABORT alone is equivalent to ABORT=1 and causes
an abort if any differences are found. Specifying ABORT
does not prevent the listing of up to maxe differences.

PRINT - WRITE VALUE OF EXPRESSION TO LOGFILE

The PRINT control statement writes the value of an expression on the
logfile. The value of the expression is written in three different

formats: as a decimal integer, as a 22-digit octal value, and as an
ASCII string. PRINT is a system verb.

Format:

PRINT (expression)

Parameters:

expression
Any JCL expression (part 1, section 4). This parameter is

required.
Format in the logfile:
FT060 decimal octal ASCII
FT060 Message code indicating origin is PRINT statement

decimal 16-digit decimal representation of evaluated expression

octal 22-digit octal representation of evaluated expression
ASCII 8-character ASCII representation of evaluated expression
Part 2

|] SR-0011 8-13 1-02

FLODUMP - FLOW TRACE RECOVERY DUMP

The FLODUMP control statement recovers and dumps flow trace tables when a
program aborts with flow tracing active. The flow trace tables are
dumped in the FORTRAN flow trace format.

FLODUMP is invoked by specifying the F option on the CFT control
statement and including the FLODUMP control statement in the COS control
statement file. (Refer to the CRAY-1 FORTRAN (CFT) Reference Manual,
publication SR-0009, for more information on the F option.)

Format:

FLODUMP.

Parameters: none

The following example illustrates the use of the FLODUMP control
statement.

JOB,....
CFT, ON=F.
LDR.

EXIT.
DUMPJOB,
FLODUMP.

A flow trace summary is illustrated in fiqure 8-1; a flow trace recovery
dump is shown in figure 8-2.

The examples in figures 8-1 and 8-2 show that the total time reported for
the main program, ONF, is larger for the flow trace recovery dump than
for the flow trace summary. This difference is because the time reported
with FLODUMP includes the main program's execution time, the time
required to abort the program, and the time required to recover the flow
trace tables.

. Part 2
SR-0011 8-14 1-02

FLOW TRACE --- SUMMARY

ROUTINE TIME % CALLED
1 ONF 0.000053 5.42
2 SUBl 0.000323 32.80
3 SuB2 0.000322 32,75
4 SUB3 0.000286 29.04
*kk TOTAL 0.000985
*** OVERHEAD 0.000712

AVERAGE T

0.000053

CALLS SUB1
0.000036 CALLED BY ONF
CALLS SUB2
0.000036 CALLED BY SUB1
CALLS SUB3
0.000032 CALLED BY SUB2

SUBROUTINE LINKAGE OVERHEAD SUMMARY 28 CALLS
MINIMUM MAXIMUM AVERAGE CYCLES SECONDS %
T REGISTERS 1 2 2.0 838 1.05E-05 1.0640
B REGISTERS 2 3 3.0 894 1.12E-05 1.1351
ARGUMENTS 0 0 0.0 0 0.00E+00 0.0000
TOTAL 1732 2.17E-05 2.1991
MAXIMUM SUBROUTINE DEPTH = 4
Figure 8-1. Example of a flow trace summary
FLOW TRACE RECOVERY DUMP --- RECOVER WITH ONFDMP ACTIVE
FLOW TRACE --- SUMMARY
ROUTINE TIME $ CALLED AVERAGE T
1 ONFDMP 0.000328 26.04 1 0.000328
CALLS SUB1
2 SUB1 0.000323 25.64 9 0.000036 CALLED BY ONFDMP
CALLS SUB2
3 SUB2 0.000322 25.61 9 0.000036 CALLED BY SUB1
CALLS SUB3
4 SUB3 0.000286 22.70 9 0.000032 CALLED BY SUB2
* k% TOTAL 0.001259
**%* QVERHEAD 0.000712
SUBROUTINE LINKAGE OVERHEAD SUMMARY 28 CALLS
MINIMUM MAXIMUM AVERAGE CYCLES SECONDS
T REGISTERS 1 2 2.0 838 1.05E-05 0.83
B REGISTERS 2 3 3.0 894 1.12E-05 0.88
ARGUMENTS 0 0 0.0 0 0.00E+00 0.00
TOTAL 1732 2.17E-05 1.71
MAXIMUM SUBROUTINE DEPTH = 4
Figure 8-2. Example of a flow trace recovery dump
Part 2
SR-0011 8-15 I-02

SYSREF - GENERATE GLOBAL CROSS-REFERENCE LISTING

The SYSREF utility generates a global cross-reference listing for a group
of CAL or APML programs. The number of CAL or APML programs that can be
included in such a group is limited by the amount of CRAY-1l memory

allocated to a user.

SYSREF reads special binary symbol tables written by CAL or APML and
produces a single cross-reference listing for the program modules
represented in the tables. When the X parameter appears on a CAL or APML
statement, a record is written for each program unit assembled. The
records are written to a dataset specified by the X parameter ($XRF by
default if X appears alone). Each record has a header containing the
name of the program unit. The rest of the record consists of
cross-reference information for every global symbol used in that program.

Format:

SYSREF,X=xdn ,L=Ldn.

Parameters:
X=xdn Name of dataset whose first file (normally the only file)
contains one or more symbol records written by CAL and/or
APML. The default is $XRF.
L=ldn Name of output dataset. The default is $OUT.

USE OF SYSREF

SYSREF is usually used to process symbol records written by CAL and/or
APML earlier in the same job. To do so, add X parameters to each CAL or
APML control statement and follow them with a SYSREF control statement:

CAL,X.

APML,X.

CAL,X.
SYSREF,L=XROUT.

Part 2
] SR-0011 8-16 I-02

$XRF is used as default in all cases.

To process symbol records written in an earlier job, the following
sequence is used:

The first job:
CAL,X.
APML,X.
SAVE,DN=$XRF,ID=XX.

The second job:
ACCESS,DN=$§XRF, ID=XX,UQ.
DELETE,DN=$XRF.
SYSREF,L=XROUT.

To add more symbol records before invoking SYSREF, use:

ACCESS ,DN=$XRF, ID=XX,UQ.
DELETE,DN=$XRF.
SKIPR,DN=$XRF,NR.

CAL,X.

SYSREF

The format above has the same effect as if the CAL step had been done
before the SAVE step.

GLOBAL CROSS—-REFERENCE LISTING FORMAT

The global cross-reference listing contains only global symbols. A
symbol is global if it is any one of the following:

® Named in an ENTRY or EXTERNAL statement

® Defined before an IDENT statement and after the preceding END
statement

® Defined within a system text such as $SYSTXT

® Defined within a section of source code bracketed by TEXT and
ENDTEXT pseudo instructions

The order of the symbols in the global cross-reference listing is
lexicographic, based first on the symbol name and then (within each
symbol name) on the module name. An exception to the order is made for
symbol names beginning with N@, S@, or W@. These symbol names are sorted
as if @ is the most significant (leftmost) character and the N, S, or W
is the least significant character. The listing displays the symbol name
correctly. The effect is a grouping of all the N@, S@, and W@ symbols
that refer to the same field in a table.

Part 2
SR-0011 8-17 I1-02

The global cross-reference listing consists of 13 columns:

Column Heading Contents

1 Value The symbol's value

2 Symbol The symbol's name

3 Origin The IDENT of the system text in which the symbol

is defined; or the label of the TEXT block in
which the symbol is defined; or *GLOBAL*, if the
symbol is defined outside any program unit; or

blank.

4 Module The IDENT of the module within or before which
the symbol is defined or referenced

5-13 References A list of the lines on which the symbol is

defined or referenced

The symbol's name, value, and references appear in the same format as in
a CAL or APML listing. The page number in each reference is a local page
number which starts at 1 for each module. In a CAL or APML listing, this
is the page number that appears in parentheses to the right of the second
title line on each page.

Part 2
SR-0011 8-18 1-02

RELOCATABLE LOADER 9

The COS relocatable loader is a utility program that executes within
the user field and provides the loading and linking in memory of
relocatable modules from datasets on mass storage.

The relocatable loader is called through the LDR control statement
when a user requires loading of a program in relocatable format.
Absolute load modules can also be loaded. The design of the COS
loader tables and relocatable loader allows program modules to be
loaded, relocated, and linked to externals in a single pass over the
dataset being loaded. This minimizes the time spent in loading
activities on the CRAY-1l. The loader allows the immediate execution
of the object module or the creation of an absolute binary image of
the object module on a specified dataset. Loader features are
governed by parameters of the LDR control statement.

The relocatable loader can also generate a partially relocated
module. This module is referred to as a relocatable overlay and is
described at the end of this section.

LDR CONTROL STATEMENT

The loader is called into execution by the LDR control statement.
Parameters of the control statement determine the functions to be
performed by the loader.

Format:

LDR,DN=dn, LIB=]dn,NOLIB=Ldn,LLD,AB=adn,MAP=0p,SID="string" ,T=tra,

§' NX,DEB=(,C,OVL=d7r,CNS,NA,USA,L=1dn,SET=val,E=n,I=sdir.

SR-0011 9-1 J-01

Parameters are in keyword form.

DN=dn

LIB=ldn

SR-0011

Dataset containing modules to be loaded. The default is
$BLD. Loading continues until an end-of-file is

reached. Modules are loaded according to block name as
determined by a CAL IDENT card or a CFT PROGRAM,
SUBROUTINE, BLOCK DATA, or FUNCTION statement. Duplicate
blocks are skipped and an informative message is issued.

Multiple files from the same dataset may be loaded by
specifying the dataset name multiple times separated by
colons. A maximum of eight files may be indicated.

Datasets specified by the DN parameter are closed at the
end of the load process. Closing a dataset has the
effect of rewinding the dataset and releasing I/0 tables
and buffers.

Modules to be loaded may be relocatable or absolute.
However, the two types of modules may not be mixed.

For example,
DN=LOAD] :LOAD2:$BLD

causes the loading of all modules in the first file of
datasets LOAD1, then LOAD2, and then $BLD.

Normally the dataset is rewound before loading; however,
consecutive occurrences of a dataset name inhibit
subsequent rewind operations. Therefore, the statement

DN=LOAD3 :LOAD3

causes the loading of all modules in the first two files
of dataset LOAD3.

The DN parameter takes on a special quality when OVL is
specified: only one dn may be specified. The dataset
named will be the initial LOAD file used by the overlay
loader. (See the description of the overlay loader, part
2, section 10 for more information.)

The LIB parameter names the dataset from which
unsatisfied externals are loaded. A maximum of eight
datasets can be named, with the dataset names separated
by colons. All datasets listed are automatically
accessed if not already local; therefore, no ACCESS
statement is required.

Part 2
9-2 J

NOLIB=1dn

LLD

SR-0011

Any default libraries are automatically included in the
library list unless the NOLIB parameter is specified.
The loader accesses the default libraries if they are
not local to the job; no ACCESS statement is required.

Datasets specified by the LIB parameter are closed at
the end of the load process. Closing a dataset has the
effect of rewinding the dataset and releasing I/O tables
and buffers.,

NOTE
Thése datasets should be generated using the
BUILD utilities to prevent unnecessary
overhead in the loader.

The libraries cannot be tape resident.

The NOLIB parameter value names the specific default
library to be excluded from the load. Selecting NOLIB
with no value specifies the exclusion of all default
system libraries. If NOLIB is not specified, any
default libraries that a site has are automatically
included in the library list, along with any libraries
specified on the LIB parameter.

Specifying the LLD parameter causes any libraries
included in the load to be retained as local datasets at
load completion. These local datasets remain open. If
the LLD parameter is not specified, the loader closes
all libraries at load completion. Datasets
automatically accessed are not released at load
completion.

Absolute binary object module generation. Use of this
parameter causes an absolute binary object module to be
written to the named dataset after the load process is
completed. Selecting AB does not imply NX (no
execution). Unless NX is also selected, the loaded
program begins execution after the binary is generated.
Specifying AB without adn causes the module to be
written on a dataset named $ABD, the default dataset.
Some other dataset may be specified by AB=adn. The
dataset is not rewound before or after the file is
written.

Part 2
9-3 J-01

MAP=0p

If the AB parameter is omitted, no binary generation
occurs.

If OVL is specified on the loader statement, the OVLDN
directive replaces AB; any value specified for AB is
ignored in overlay mode. (See part 2 section 10 for a
detailed description.)

Map control. The MAP parameter causes the loader to
produce a map of the loaded program on the specified
dataset. MAP can take any of the following values:

ON Produces a block list and an entry list
including all cross references to each entry.

FULL Same as MAP=ON.
OFF No map is produced. MAP=OFF is the default.

PART Produces a block list only. Equivalent to MAP
with no value specified.

SID="'string"

T=tra

SR-0011

Debug routine loading. The SID parameter indicates the
system debugging routines (SID) are to be loaded with
the code. These routines comprise an additional binary
dataset loaded after all DN specified datasets and
before any libraries.

The 'string', if provided, is passed to SID for
evaluation as a control statement. The verb and initial
separator are not required. For example,
SID='I=IN,ECH=ELIST.' is a proper string specification
(the period is a required terminator). For a complete
description of SID parameters, see the Symbolic
Interactive Debugger (SID) User's Guide, CRI publication
SG-0056. If only SID is specified, all keyed default
SID control statement parameter values are used.

Transfer name. The T parameter allows specification of
an entry name where the loader transfers control at
completion of the load. The T parameter also specifies
the entry included in absolute binary object modules.

The entry name is a maximum of eight characters. If no
T parameter is specified, the loader begins object
program execution at either the entry specified by the
first encountered START pseudo from a CAL routine or at
the entry of the first main program in CFT compiled
routines. If no START entries are encountered, a
warning message is issued and the first entry of the
first relocatable or absolute module is used.

Part 2
9-4 J-01

NOTE

When the SID parameter is used, the load transfer is to
the system debugger; the T parameter is ignored and a
warning message is issued to the user logfile.

NX No execution. Inclusion of this parameter inhibits
execution of the loaded program.

DEB=1 Job Communication Block (JCB) length. The default
length is 200g. Specifying DEB without a value
changes the JCB length to 3000g.

C Compressed load. This parameter causes loading of each

module to begin at the next available location after the
previous module. If this parameter is omitted, loading
of modules begins on 20g-word boundaries only

(optional load).

OVL=dir Overlay load. The OVL parameter indicates an overlay

CNs

SR-0011

load sequence is specified on dir. (See part 2

section 10 for a detailed description of the overlay
load.) If the OVL keyword is specified without a value,
the loader examines the next file of $IN for an overlay
load sequence. The default is no overlay load.
Selecting OVL implies NX (no execution).

Crack next control statement record image. This feature
allows the loader to pass parameters on to the loaded
program for analysis and use during execution of the
loaded program. The control statement cracked follows
the LDR control statement and is not available for
processing by the Control Statement Processor (CSP)
after processing by the loaded program.

NOTE

When the SID parameter is specified, the CNS parameter
is ignored and a warning message is written to the user
logfile. SID prompts for the control statement for the
code being debugged.

Part 2
9-5 J-01

NA No abort. If this parameter is omitted, a caution or
higher level loader error causes the job to abort.

Usa Unsatisfied external abort. When USA is specified, the
loader aborts at the end if it finds one or more
unsatisfied externals. A load map listing all
unsatisfied externals is produced, if called for.

L=1ldn Listing output. This parameter allows the user to
specify the name of the dataset to receive the map
output. If L=0, all output is suppressed. The default
is gour.

SET=pal Memory initialization. Variables, named and blank
common blocks, and storage areas defined by DIMENSION
statements are set to 0, -1, or an out-of-range
floating=-point value during loading. The default is an
installation option.

SET=ZERO Memory is set to binary zeros.
SET=ONES Memory is set to -1 (all bits set in word).

SET=INDEF Memory is set to a value that causes an
out-of-range error if the word is referenced
as a floating-point operand. The 1's
complement of each memory address is placed in
the lower 24 bits of the respective word to
aid in reading register and memory dumps. An
example, in octal, of the value loaded into
memory word 13216 is: 0605050037740177764561,

Part 2
. SR-0011 9-6 J=-01

E=n Lists error messages. This parameter indicates which
level of loader-produced error messages are not to be
listed. The user may specify one of five levels of
severity, where 7n is the highest level to be
suppressed. The default for this parameter is E=2,

Level Type Description
1 COMMENT Error does not hinder program
execution.
2 NOTE Error probably hinders program
execution,
3 CAUTION Job aborts when load process

completes unless NA is selected;
program might not execute properly.

4 WARNING Job aborts when load process
completes unless NX is selected;
program execution is not possible.

5 FATAL Job aborts immediately.
Example:

E=2 suppresses COMMENT and NOTE messages and allows
CAUTION, WARNING, and FATAL messages to appear. FATAL
messages are never suppressed.

I=gdir Selective load. Modules from other datasets may be
loaded according to a set of directives. sdir
indicates the dataset containing the directives. If the
I keyword is specified without a value, the directives
are taken from the next file of $IN. The selective load
directives are described later in this section.

LOADER ERRORS

Following is a list of the errors encountered by the loader. The
errors are listed by class.

Comment :

Blank common redefined
Named common redefined smaller
Generating BUILD directory for Library

Part 2
SR-0011 9-7 J-01

Note:

Caution:

Warning:

Fatal:

SR-0011

All files searched
Name included before
Name excluded before

Overlay member not found

Multiple load datasets ignored in overlay mode
Illegal map value

No start address found - first entry used
Duplicate entry loaded and ignored

Duplicate program block name encountered and skipped
Bad directory format on library dataset
Unsatisfied external

Disabled parameter selected and ignored
Dataset replaced by file DN

Invalid read, try again

No selective modules from dataset

Skip dataset included before

Invalid selective file

Blank common address not large enough
Dataset name too long

Named common defined larger

Relocatable load module in absolute mode
Member error

Directive error

Illegal character in overlay directive
Compile error

Transfer is to SID; T parameter ignored
SID loaded; CNS parameter ignored.
Absolute load module in relocatable load

Start entry not found

Bad XI field in External Relocation Table (XRT) table

More than one internal relocation block

Invalid table type

Unable to open specified dataset

Null file or abnormal table found

Invalid program block name

Initial table not Program Description Table (PDT)

Part 2

J-01

LOAD MAP

Each time the loader is called, the user has the option of requesting
a listing that describes where each module is loaded and what entry
points and external symbols were used for loading. This listing is
called a load map.

The user may specify the contents of the map or the dataset to receive
the map by setting parameters of the LDR control statement to the
desired values. The MAP parameter of the LDR control statement allows
the user to specify the contents of the map requested. MAP=ON or
MAP=FULL produces a block list and an entry list. The block list
gives the names, beginning addresses and lengths of the program and
subroutines loaded on this loader call; the entry list includes all
cross references to each entry. MAP=PART supplies a partial map, that
is, the block map only.

The load map is printed when requested even if fatal errors abort the
load. 1In this case, the map contains only those modules loaded up to
the point where the fatal load error occurred.

Figure 9~1 illustrates the load map generated by the following LDR
statement:

LDR,DN=$BLD: LOAD2,LIB=MYLIB:$FTLIB,MAP=FULL.

The block list consists of items 1-16 in figure 9-1; the entry list
includes items 17-21.

1. Job name from the JOB control statement

2. Loader level and Julian date of assembly of the loader
3. Date and time of loader execution

4, Page number

5. Load type; either relocatable, absolute, or overlay

6. Entry name to which initial transfer is given

7. Entry address where initial transfer is made

8. Name of load or library dataset containing modules to be
loaded

9. Names of blocks loaded from the named dataset. These are
common blocks (identified by the slashes around their names,
for example, /LABEL/) or are names of program blocks.

Part 2
SR-0011 9-9 J-01

*SYSTEM is always the first block listed in a relocatable
load. It consists of the first 200g words of the user
field, which is reserved for the Job Communication Block
(JCB). For an absolute load, *SYSTEM is not allocated.
Therefore, the CAL user must set the origin to 200g via an
ORG pseudo instruction to allow space for the JCB. If this
is not done, the job will abort.

Blank common, indicated as //, is allocated last and appears
at the end of the list (if it has been defined).

SAMPL LIR 1 @2 78173 @7/ 13,79 14: 58: 05
(:) C) . \\c:y/w
RELOCATABLE [0AN
LOAD TRANSFER 1S TO @ aT @ Y
DATASET BLOCK ADDRESS LEMGTH DATE 05 FEV PROC. UER COMMENT
¥SYSTEM @ 200
$BLD MAINPRG 60 1938 97/13/78 B7/12-73 CFT 1.92 @6/22/78
,GLOBAL 200 144
SUBBL 15644 68 @7/ 13,78 @7/12/-7% CFT 1.82 B6/22/78
ARBEL / 1412 146
FUNLL 1648 25 @7/13.78 @7 1273 CFT 1.B2 BBr22/78
LORDZ2 SIBS 170a 1 B7/13-78 @7 12-78 CAL 1.92 78173
MYLIB SuUBLL 1723 43 @Q7-13-.78 @7/12-.72 CFT 1. A2 QE-22-78
SLURA3 2008 42 @v/13-78 @v/12.73 CFT 1.82 06/22/78
$FTLIB $END 2060 25 @6.22/78 @5/24-72 CAL 1 @l 78174
$SEXIT 2120 16 ©6/22/78 05/24/78 CAL 1.91 78104
. . 2ot
e $RCW 5400 267 OR/22/78 ©5/24-78 CAL 1.01 78184
s S667 144 _
BLOCK NAME ENTRIES ENTRY UALUE ABSOLUTE REFERENCES
MAINPRG MAINPRG 1371a
SUBD1 SUBB1 15650 1374d
FUNL1 FUNLL 1645a 1621a 16721c 1622
SUBS SURDZ 1799a 1375¢
SUBL1 SUB! 1 1725a 1614a
SUBP3 SUBA3 2012a 1376b
$END $END 2063a 14830 1631a 1668a 1753a 28336
END$ 2063a
$LEUL 2100
$LEUZ 2101
SAMPL LR 1.82 78173 07,1378 14: 58: @5
$LOCA 21e3
$LOCB 2104
$EXIT EXIT 21230 1482
L_\A M
$RCW $RCHP S441b
$RCHR £442q
TRINDP 5551b
@ $RINDR 5552a 4256a
L LoAD FL - 22332 BUFFERS - 40000 LFT/DSPS - 4z4 1 TOTAL FL - B275B.

Figure 9-1.

SR-0011

Example of a load map

Part 2
9-10

J-01

10. Octal starting address of the block

11. Octal word length of the block
12. Date the object module was generated

13. Operating system revision date at the time the object module
was generated

l4. Name and revision level of the processor that generated the
object module

15. Revision date of the processor that generated the object
module

16. Comment (if any) from CAL COMMENT pseudo included in the load
module

17. Name of program block referenced

18. Entry points in the program block

19. Word address, parcel address, or value of each entry point

20. Absolute parcel addresses of references to each entry point.
Eight references are listed per line; some entry points have
no references.

21. Size of loaded binary, amount of memory used for I/O buffers,
amount of memory used for LFTs and DSPs, and total amount of

memory used. Total is the minimum amount of memory needed
for the program.

SELECTIVE LOAD

If the I keyword is present on the LDR control statement, one or more
INCLUDE and/or EXCLUDE directives are examined in the specified
dataset.

Part 2
SR-0011 9-11 J=-01

Formats:

INCLUDE,SDN=sdn,FN;fn,Mon=mdl,:mdzz...zmdso.

EXCLUDE, SDN=gdn, FN=fn,MOD=md :mdy: ... :mdsgq.

Parameters are in keyword form.

SDN=gdn Name of dataset containing modules to be selectively
loaded. If SDN is specified without a value, the first
dataset specified on the DN parameter of the LDR
statement is the default. If the SDN parameter is
omitted, an error message results, and the directive is
skipped; the load does not abort. The SDN and FN
parameters must refer to the same dataset.

FN=fn File number of the specified dataset. A number from 0
through 7. fn refers to the file by its numerical
position in SDN or in the DN parameter of the LDR
statement.

For example, if DN=D1:D1:D2, the first file of D1 has an
fn of 0, and the second file of D1 has an f7 value

of 1. 1If FN is specified without a value, the default
is 0. If FN is omitted, the whole of s&dn is searched
for the correct module; a message is issued for a
complete 8dn search. The SDN and FN parameters must
refer to the same dataset.

To load a module from the first file of D1, the
directive may include the parameter FN=0; however, if FN
is specified without a value, the default is to load a
module from the first file.

MOD=md Module name or entry point to a module to be included or
excluded from the load. Up to 50 modules can be
specified; the modules must be separated by colons. If
the MOD parameter is omitted, an error message results,
and the directive is skipped.

Example: Given the LDR statement

LDR,DN=D1:D1:D2,...

Part 2
° SR-0011 9-12 J-01

A directive to load a module from the second file of dataset D1 would
include the following directive in the next file of $IN:

INCLUDE,SDN=D1,FN=1,MOD=....

Selective load messages are never suppressed.

RELOCATABLE OVERLAYS

When a binary module is defined as a relocatable overlay, the loader
can generate an image of the module that has been only partially
relocated. The image of the binary module contains sufficient
information for a user program to relocate all address references
within the module program block according to the actual address at
which the user program determines that the module should be executed.

The relocatable overlay is useful because program modules are
generated in such a way that a common memory pool can execute the
overlay and also any of several overlays can execute at any address
within the pool.

GENERATION OF RELOCATABLE OVERLAYS

The CAL assembler defines a module as a relocatable overlay at
assembly time with the MODULE pseudo-op.

Format:
Location|{Result Operand
ignored |MODULE type
Parameters:
type A keyword parameter identifying the type of module being

defined. RELOCOVL is the only type currently available.

When the relocatable overlay is defined by the assembler, COS sets a
special flag in the Program Descriptor Table (PDT) for use by the
relocatable loader.

Part 2
' SR-0011 9-13 J-01

The loader, recognizing that the current module being loaded is a
relocatable overlay, performs limited relocation of the address
references in the module. That is, all references to labeled COMMON
blocks and all references to entry points defined within other modules
are adjusted according to the address at which the other module
resides in the memory image being constructed. References to blank
COMMON are illegal. It is also illegal for any other module to make
any reference to any entry point which is defined to be within the
relocatable overlay module. References from within the module to
addresses within the module are not adjusted at this time. Instead, a
copy of the necessary Block Relocation Table (BRT) entries is included
in the memory image of the module. All BRT entries not needed for
satisfying internal references are deleted.

The absolute memory image of the program constructed by the loader
will contain the loaded programs, including all relocatable overlay
modules.

The relocatable overlays are physically located at the end of the
memory image; all nonrelocatable overlay modules are loaded
contiguously in the order in which they are encountered. Relocatable
overlay modules can appear at any point in the load sequence and can
be contained in libraries. The loader moves modules in memory as
required to order the relocatable overlays at the end of the image.
This placement of the overlays makes it possible for a user program to
locate the images of each overlay and to copy the overlays to mass
storage, if it is desired, in order to make the memory space used by
the overlay images available for use by the program.)

MEMORY LAYOUT WHEN RELOCATABLE OVERLAYS EXIST

When the loader has detected the existence of one or more relocatable
overlays, memory is laid out in the following manner.

1. All nonrelocatable modules, in the order they were encountered
on load datasets or in libraries

2, Labeled COMMON blocks interspersed among the nonrelocatable
modules so that a labeled COMMON block precedes the absolute
image of the first block encountered which defines the block

3. All labeled COMMON blocks which are first defined within a
relocatable overlay module and which are not defined within
any other type of module

4, The images of all relocatable overlays in the order in which
they are encountered on load datasets or in libraries

Part 2
B sr-0011 9-14 J-01

5. Unsatified external (USX) program which is the loader's
internal program for processing unsatisfied external references

6. Blank COMMON if defined by any program module

Note that the placement of USX and blank COMMON can defeat the purpose
of relocatable overlays, since the overlay images must remain
reserved. With proper care, the program can use the space occupied by
the overlay images for internal tables and other data with
nonallocated space.

MEMORY LAYOUT OF A RELOCATABLE OVERLAY IMAGE

When the loader completes constructing the image of the complete
program being loaded, the relocatable overlay portions have a
different structure than do the nonrelocatable overlay portions.
Normal modules are loaded as an absolute image with all loader-related
tables removed. All address references, both internal to the module
and to other modules, are adjusted so that the code executes
correctly. If the C parameter is specified when the loader is called
into execution, individual modules may begin immediately after the
previous module, or they may begin at the next 16-word (decimal)
boundary.

Because relocatable overlay modules are expected by the loader to be
moved to a different address for execution, the C specification has no
meaning to a relocatable overlay module, and the first and subsequent
such modules begin immediately after the last word of the previous
module.

Relocatable overlay module images also contain loader-relocated
tables. These tables are required so that the user program can adjust
address references within a relocatable overlay when it has determined
the address at which the overlay will execute. The tables are:

® Program Description Table (PDT)
® Text Table (TXT)
® Block Relocation Table (BRT)

The PDT contains information regarding the number of entry points
defined and the number of blocks and external references. The TXT
contains a count of the words in the actual image of the code,
followed by the semi-absolute image of the code. The BRT contains
information necessary for adjusting address references within the
module. If the user program wants to write the overlays to mass
storage, the information in the PDT can be used to construct a
directory or similar table for locating specific overlays or entry
points, and then can be discarded. TXT and BRT must be retained in
the mass storage copy for future relocation of address references.

Part 2
SR-0011 9-15 J=-01

ADDRESS RELOCATION

When a relocatable overlay has been loaded into the desired execution
area, the BRT information must be used to locate all address
references within the overlay. Information in the BRT includes a
header with a word count and a number of words containing two
relocation specifiers. Some words may contain only one specifier
which must be in the left position because of the way in which the
loader gathers references for the image.

The format of the header follows:

0 4 28 63
15 we /11717777777 7/777/7//7777/777
Field Bits Description
0-3 Table type: 15-block relocation table.
we 4-27 Number of words in the table, including the header

There are we-1 words of relocation specifiers. Each relocation
specifier word contains two 32-bit values, the format of which is:

0 8 32 63
////71q qua [1177777777777777777/77/77/777771
Field Bits Description
q 7 Relocation mode:

0 Reference requires a word address value
1 Reference requires a parcel address value

qua 8-31 Quarter word address; indicates the parcel
address of a field relative to the beginning of
the overlay code image which must be modified.

It consists of a 22-bit word address and a 2-bit
field specifying the parcel within the word.
Parcels are located within words as follows:

Part 2
B sr-o0011 9-16 J-01

Field

SR-0011

Description

Parcel word Addr Parcel Location

0 0-1 = mmememe e e e * %
0 % &k %k %%k - -

1 0 ———kk FhRAK e e

2 0 === mmmkh RkRAK e

3 [SR —— *k kkkkk

Relocation is
word boundary

Part 2
9-17

22-bits wide, and occurs across a
if the parcel number is 0.

J=-01

OVERLAY LOADING 10

INTRODUCTION

Very large programs may not fit in the available user memory space or
may not use large portions of memory while other parts of the program
are in execution. For such programs, the COS relocatable loader
includes the ability to define and generate overlays —- separate
modules that the user creates and then calls and executes as necessary.

Two types of overlays are available to the user, classified as either
Type 1 or Type 2 depending on the directives used. Type 1 overlays
are generated by using the generation directives ROOT, POVL, and
SOVL. Two levels of overlays in addition to the root overlay are
allowed with calls to a maximum of 999 adjacent overlays. Type 2
overlays are generated by using the generation directive OVLL. Ten
levels of overlays in addition to the root overlay are allowed with
calls to a maximum of 63 adjacent overlays.

The overlay loader can also generate a partially relocated module.
This module is referred to as a relocatable overlay. It is described
in part 2, section 9.

The overlay structure, rules for overlay generation and overlay calls
for both types are described in this section. The control statements
used to generate the overlay and the directives common to both types
of overlays are described first. Specific rules for generation of
Type 1 and Type 2 overlays are described separately in the following
subsections.

OVERLAY GENERATION

Overlay generation consists of a load operation in which the loader
performs relocatable loading and writes the resulting binary image to
disk. One named absolute binary record is written per root and each
overlay.

If the LDR control statement (part 2, section 9) has the parameter
OVL=dir, the loader finds the overlay generation directives on the
named dataset, dir. If no dataset is given (that is, OVL), then the
loader reads overlay generation directives from $IN.

Part 2
SR-0011 10-1 J-01

The format of the control statement is:

LDR' oo e ,OVL=d7:7°, es e e

OVERLAY DIRECTIVES

An overlay directive consists of a keyword and a parameter. A blank,
comma, or open parenthesis must separate the keyword from the

parameter. A period, closed parenthesis, or two consecutive blanks
serve as the terminator. A caret () at the end of the directive line
indicates that the next line is a continuation of the current

directive. The caret cannot be preceded by a blank; it must immediately
follow the last character of the line.

FILE directive

The FILE directive indicates the dataset, dn, containing the routines
to be loaded. This directive's function is similar to that of the DN
parameter on the LDR control statement. It is generally the first
directive on the directives dataset but may appear at any time and as
often as necessary thereafter. If no FILE directive appears, the
loading proceeds from the dataset specified on the DN parameter of the
LDR control statement (see part 2, section 9). If that, too, has been
omitted, loading initially occurs from $BLD. This directive is common
to both overlay types.

Format:

FILE,dn.

OVLDN directive

The function of this directive is similar to that of the AB parameter on
the LDR control statement. This directive names the dataset, dn, on
which overlays are written. The dn parameter must be present. If no
OVLDN directive is present, the default overlay binary dataset ($OBD) is
assigned. All overlays generated following an OVLDN directive reside as
separate binary records on dataset dn. OVLDN directives may appear as
often as desired. This directive is common to both overlay types.

Part 2
SR-0011 10-2 J

Format:

OVLDN,d» .

SBCA directive

The SBCA directive sets the blank common starting address to the
specified address. This directive allows the user to place blank common
after all load modules in the current overlay structure. The address
specified must be larger than any address used in the overlay

structure. This directive must appear before any overlay generation
directive, such as ROOT or OVLL.

Format:

SBCA,address.

where address is the octal address assigned to blank common.

TYPE 1 OVERLAY STRUCTURE

Each Type 1 overlay is identified by a pair of decimal numbers, each
from 0 through 999. There must be one and only one root overlay; its
level numbers are (0,0). This root remains in memory throughout program
execution. Primary overlays all have level numbers (n,0) where " is in
the range 1 through 999.

Primary overlays are called at various times by the root and are loaded
at the same address immediately following the root. A secondary overlay
is associated with a specific primary overlay. The secondary level
numbers are (n,m), where n is the primary level, and m is in the

range 1 through 999. All secondary overlays associated with a given
primary (i.e., the same 7) are loaded at the same address immediately
following that primary.

Only the root, one primary overlay, and one secondary overlay can be in
memory at one time.

Part 2
SR-0011 10-3 I

Figure 10-1 is a diagram of a sample Type 1 overlay loading. The
primary and secondary overlays are shown in time sequence. The sequence
of generation does not imply that the programs are loaded into memory in
the same sequence or that they remain in memory for a set period of time
when they are executed.

All external references must be directed toward an overlay nearer to the
root. For example, overlay (1,0) may contain references to the root
(0,0) but not to overlay (1,1). Overlay (1,1) may contain references to
both (1,0) and (0,0).

The loader places named common prior to the routine that first
references it. All named common references must be directed toward a
lower level routine. The lowest level routine with a named common block
must contain data statements for that block. '

For example, in figure 10-1,
MAIN can reference named common A only
SUB1 and SUB2 can reference named common A and B only
TEST can reference named common A, B, and C

The loader allocates blank common immediately after the first overlay in
which it is declared. If blank common is declared in the root overlay
(0,0), it is allocated at the highest address of the root overlay and is
accessible to all overlays. If blank common is first declared in
primary overlay (1,0) and not declared in the root (0,0), then it is
accessible only to the (1,x) overlays. Allocation and placement of
blank common may also be manipulated by the user through the SBCA
director.

JCHLM is set to the highest address of the root overlay prior to

loading. If a subsequent overlay module requires additional memory, JCHL
is reset to the highest address of that module

Type 1 overlay generation directives

The overlay generation directives define the structure of the overlay.
Included in this class are the ROOT, POVL, and SOVL directives.

ROOT directive - This directive defines programs, subroutines, and/or
entry points comprising the load from dn. For programs written in CAL,
list each entry referenced. FORTRAN programs need the program name
only. All members for this directive reside on the same dataset, Jn, as
defined by the FILE directive.

Part 2
SR-0011 10-4 I

JOB COMMUNICATION

BLOCK
200g[
NAMED COMMON A
PROGRAM MAIN
NAMED COMMON B
SUBROUTINE SUBI ROOT (0,0)
SUBROUTINE SUB2
>
5 BLANK COMMON
5 AV/4
[0]
| namep common ¢ T | PROGRAM
PR IMARY ALPHA (3,0) (2,0)
PROGRAM TEST | L 2 |
SUBROUT INE
PROGRAM PROGRAM BETA
NEW1 NEW2 (5,0)
PROGRAM
SECONDARY (1,2) DELTA
(1,1)
JCHLM i (2.1)

(5,1) | (5,2) | (5,3)

Figure 10-1. Example of Type 1 overlay loading

Part 2

SR-0011 10-5

Format:

ROOT,member],memberz,membern.

POVL directive - This directive causes relocatable loading of the named
blocks to the primary overlay with the name plevel:000. The size of the
root determines the base location. All members for this directive
reside on the same dataset, dn. The first member in the list is the one
that receives control when the overlay is loaded. For programs written
in CAL, the first entry point of the first routine receives control.

Format:

POVL,plevel, member) membery , ...,member, .

where plevel is between 1 and 999.

SOVL, directive - This directive causes relocatable loading of the named
blocks to the secondary overlay with the name plevel:slevel. The length
of POVL (plevel:000) determines the base location. All members for this
directive reside on the same dataset, dn. The first member in the list
is the one that receives control when the overlay is loaded. For
programs written in CAL, the first entry point of the first routine
receives control.

Format:

SOVL, slevel ymemberyymembery ... imembery, -

where sglepel is between 1 and 999.

Part 2
SR-0011 10-6 I

Rules for Type 1 overlay generation

1. Overlay members are loaded from datasets named in FILE
directives. Members are searched for in the most recently
mentioned dataset only. In the absence of a FILE directive,
members are loaded from the dataset specified on the LDR control
statement. If that is also omitted, loading will initially occur
from $BLD. Currently, the relocatable modules of all members for
any overlay level must reside on the same file.

2. The overlays are generated in the order of the directives.
3. There must be one and only one root.

4. Level hierarchy must be maintained. The ROOT overlay must be
generated first; hence the ROOT directives appear first.
Following the ROOT generation, a primary overlay (POVL) is
generated. No limitation is placed on which primary overlay
number (plevel) is generated; however, all secondary overlays
(S0VL) associated with the plevel must follow. The secondary
overlay slevels may be generated in any order following their
respective primary level.

5. An end-of-file in the directives file ends the input of overlay
directives; hence overlay generation.

6. Any directive other than FILE, OVLDN, SBCA, ROOT, POVL, or SOVL
causes a fatal error.

7. The list of members may be continued to another line by using a
caret (A) immediately following the last character at the end of
the directive line (that is, no blanks). The A does not replace
a separator and must not appear within a member name.

8. Any number of lines may be used to name the members of an overlay.

Example of Type 1 overlay generation directives

In the following example,
DSET1 contains routines THETA, TEST, GAMMA, SUBl, MAIN, SUB2.

DSET2 contains routines NEW2, ALPHA, OVER, NEWl, DELTA, EPSILON,
SIGMA, BETA.

Format of the control statement that initializes overlay generation:

ILDR, ¢+ +,OVL=OVLIN,....

Part 2
SR-0011 10-7 I

Dataset OVLIN contains the following directives:
FILE,DSET1. Loader selectively loads from dataset DSET1.

OVLDN, LEVO0O. The following overlay modules are written to the
dataset LEV0O.

ROOT,MAIN,SUBL The absolute binary of MAIN,SUBl,SUB2 is
,SUB2. written as the first record on dataset LEV0O.
POVL,1,TEST. The binary of TEST is named 001:000 and is

binary record 2 on dataset LEVO0O.
FILE,DSET2. Loader selectively loads from dataset DSET2.

SOVL,1,NEW1. The binary of NEWl is named 001:001 and is
binary record 3 on dataset LEVO0O.

OVLDN, LEV12. The subsequent overlay modules are written to
the dataset LEV12.

SOVL, 2,NEW2. The binary of NEW2 is named 001:002 and is
binary record 1 on dataset LEV12.

POVL, 2,ALPHA,BETA. The binary of ALPHA,BETA is named 002:000 and is
record 2 on dataset LEV12.

<eof> End of overlay load sequence

Execution of Type 1 overlays

A control statement call of the dataset containing the ROOT overlay
initiates its loading and execution. If no OVLDN directives are used
before generating the ROOT, the dataset $OBD will contain the ROOT
overlay.

The following sequence executes the root overlay after generation:

LDR, e+, OVL=dLl s e ue
$OBD.

Part 2
SR-0011 10-8 I

Dur ing overlay generation the members are loaded from the FILE dataset
in the order they appear on the dataset, regardless of their order of
appearance in the members list. The entry for POVL and SOVL overlays is
defined by the first member listed on the generation directive. Control
is transferred to this address after loading by the $OVERLAY routine
during program execution. The ROOT entry may be named using the T
parameter on the LDR control statement (see part 2, section 9).

Type 1 overlay calls

The user calls for the loading of overlays from within the program, and
the method by which they are called depends on the program language in
use (FORTRAN or CAL). OVERLAY is a subroutine of the root overlay and
is loaded into memory with the root.

FORTRAN Language Call

A FORTRAN program calls for the loading of overlays as follows:

CALL OVERLAY (nLdn,levely,levely,r)

n Number of characters in the name

L Left-adjusted; zero filled

dn Name of the dataset on which this overlay resides
Zevell Primary level number of the overlay

Zevelz Secondary level number of the overlay

r An optional recall parameter. If the user wishes to

re-execute an overlay without reloading it, 6LRECALL may
be entered. If it is not currently loaded, it will be
loaded.

SR-00"1 10-9 I

CAL Language Call

A sample call sequence from a CAL program is as follows:

Location Result Operand
EXT OVERLAY
S1 OVLDN
S2 PLEV
S3 SLEV

W.OVERLAY-1,0 |S1
W.OVERLAY-2,0 |S2
W.OVERLAY-3,0 [S3
R

OVERLAY
DVLDN CON A'LEV12'L
PLEV CON 2
SLEV CON 0

where OVLDN is the address of the dataset name, PLEV is the address of
the primary level, and SIEV is the address of the secondary level. 1If
recall is desired, the address of the literal RECALL is transmitted to
W.OVERLAY-4.

Example:

Location Result Operand

Sk ='RECALL'L
W.OVERLAY-L4,0 |Sk

For both FORTRAN and CAL languade calls, during execution of the
ROOT(0,0) program MAIN, the statement

CALL OVERLIAY(5LLEV12,2,0) or the above CAL sample call

causes OVERLAY to search dataset LEV12 for the absolute binary named
002:000. OVERLAY positions the dataset LEV12 to the location of the
absolute binary named 002:000 using information supplied by the loader,
loads the overlay, and transfers control to the first member specified
on the POVL or SOVL directive. After execution of the overlay, control

Part 2
SR-0011 10-10 I

returns to the statement in MAIN immediately following the CALL
statement. Following the load, dataset LEV12 is positioned immediately
after the end of record for the overlay (2,0). If overlay (2,0) is not
on dataset LEV12, a fatal error results.

Placing a call for a secondary overlay for which the corresponding
primary overlay is not already loaded causes OVERLAY to load both
overlays. Control transfers to the secondary after both overlays are in
memory. A fatal error results if the primary and secondary overlays are
not both on the named ovidn. If the overlays reside on different
datasets, the user must place separate calls to load the overlays in the
correct order.

Log of Type 1 overlay generation

When MAP is specified on the LDR control statement, a listing is
generated that describes where each module is loaded and what entry
points and external symbols were used for loading. This listing is an
overlay load map and is similar to the map of a non-overlay load (part
2, section 9). A log of the directives used follows the map of the last
overlay generated. If overlay loading aborts, the directives are not
listed.

TYPE 2 OVERLAY STRUCTURE

A Type 2 overlay is identified by a pair of decimal numbers that
indicate the overlay level and the number of the overlay within that
level. The overlay notation is of the form (level,number) where the
value of 7epel is in the range 1 through 10 and the value of numbper is
in the range 1 through 63. Only one root overlay exists; its level
number is 0. The root overlay remains in memory during the entire
program execution and may call only level one overlays.

Level one overlays are called at various times by the root overlay; each
call loads the named overlay at the same address, which is immediately
following the location of the root. The first level overlay must be
called by the root; each upper level overlay may be called by the
associated overlay at the adjacent lower level. A hierarchy exists
among overlay levels; an upper level overlay is subordinate to the
proximate lower level overlay. An upper level overlay associated with
overlay (2,1) might be (3,2), (3,3) or (3,4).

Part 2
SR-~0011 10-11 I

JOB COMMUNICATION

BLOCK

2004
NAMED COMMON A

PROGRAM MAIN

NAMED COMMON B
SUBROUTINE SUB!

LEVEL (0)
(ROOT)

SUBROUTINE SUB2

BLANK COMMON

memory
K

NAMED COMMON C |
LEVEL | (1.3)

(1,1)
PROGRAM TEST (1,5) (1,2)

PROGRAM PROGRAM
NEW1 NEW2

(2,2)

(2,1) (2,4)

y LEVEL 2
@) |

PROGRAM T PROGRAM §:

(3,1)

ALPHA BETA

seam| BoD

(4,1) | (4,2)

Figure 10-2. Example of Type 2 overlay loading

Part 2
SR-0011 10-12 . I

An overlay can call into memory any overlay in the next higher level; it
cannot call an overlay more than one level above it in the hierarchy.
For example, overlay (2,1) can call (3,1) through (3,63), but it cannot
call (4,1). Each call for an overlay loads the named overlay at the
same address location, which immediately follows the location of the
calling overlay. Only the root and one overlay at each level can be in
memory concurrently.

All external references must be directed toward an overlay nearer the
root overlay. Overlay (1,1) may contain references to the root overlay
but not to overlay (1,2) or overlay (2,1). The (2,1) overlay may
reference externals in both the (1,1) overlay and the root overlay.

The loader places named common blocks prior to the routine that first
references it. All named common references must be directed toward a
lower level routine (toward the root overlay). If blank common is
declared in the root overlay, it is allocated at the highest address of
the root and is accessible to all overlays. If blank common is declared
first in a level one overlay, for example, and is not declared in the
root overlay, it is accessible only to level one and upper level
overlays.

JCHLM is set to the highest address of the root overlay prior to
loading. If a subsequent overlay module requires additional memory,

JCHLM is reset to the highest address of that module.

Figure 10-2 shows a sample Type 2 overlay loading diagram. The overlays

are shown in time sequence. The sequence of generation does not imply
that the programs are loaded into memory in the same sequence or that

they remain in memory for a set period of time when they are executed.

Type 2 overlay generation directive

The Type 2 overlay directive defines the structure of the overlay within
the directive format.

OVLL directive - This directive causes relocatable loading of the named
blocks of an overlay. The size of the lower level overlays in the group
determines the base location. All members for this directive reside on
the same dataset, dn, specified by the FILE directive. The first member
in the list is the one that receives control when the overlay is

loaded. For programs written in CAL, the first entry point of the first
routine receives control.

Part 2
SR-0011 10-13 I

Format:

OVLL,level ,number ymembery jnember,, ... member, .

level Level number of the overlay (1 < level < 10).
If Jepel is 0, the root phase is generated and
the number must be omitted.

number Number of the overlay within the level
(1 < number < 63).

member Module names for the individual overlays

Rules for Type 2 overlay generation

1. Overlay members are loaded from datasets named in FILE
directives. Members are searched for in the most recently
mentioned dataset only. In the absence of a FILE directive,
members are loaded from the dataset specified on the LDR control
statement. If that is also omitted, loading initially occurs
from $BLD.

2. The overlays are generated in the order of the directives.
3. There must be one and only one root per dataset.

4. Level hierarchy must be mai tained. The root overlay must be
generated first. Following the root generation, a first level
overlay is generated. No limitation is placed on which overlay
number is generated; however, all overlays associated with that
first level overlay must follow. The overlays may be generated
in any order; the same restrictions apply for all levels of
overlays (1 through 10).

5. An end-of-file ends the input of overlay directives.

6. Any directive other than FILE, OVLDN, SBCA or OVLL causes a fatal
error.

. Part 2
SR-0011 10-14 I

7. The list of members can be continued to another line by using a
caret (A) immediately following the last character at the end of
the directive line (that is, no blanks). The A does not replace
a separator and must not appear within a member name.

8. Any number of lines can be used to name the members of an overlay.

Example of Type 2 overlay generation directives

In the following example,
DSET1 contains routines THETA, TEST, GAMMA, SUBl, MAIN, SUB2.
DSET2 contains routines NEW2, ALPHA, OVER, NEWl, DELTA, EPSILON,
SIGMA, BETA.
Format of the control statement that initializes overlay generation:

LDR, ..., OVL=OVLIN, ...

Dataset OVLIN contains the following directives:
FILE,DSET1. Loader selectively loads from dataset DSETI.

OVLDN, LEV0O. The following overlay modules are written to
the dataset LEV0O.

OvVLL,0,MAIN,SUB1, The absolute binary of MAIN,SUB1,SUB2

SUB2. is named 0 and is the first record on dataset
LEVO00.
ovLL,1,1,TEST. The binary of TEST is named 1 and is binary

record 2 on dataset LEVO0O.
FILE,DSET2. Loader selectively loads from dataset DSET2.

OvVLL,2,1,NEW1. The binary of NEWl is named 101lg and is
binary record 3 on dataset LEVO0O.

OVLDN, LEV12. The subsequent overlay modules are written to
the dataset LEV12.

OVLL,2,2,NEW2. The binary of NEW2 is named 20lg and is
binary record 1 on dataset LEV12.

OVLL,3,1,ALPHA. The binary of ALPHA is named 1020l1g and is
binary record 2 on dataset LEV12.

Part 2
SR-0011 10-15 ; I

OVLL,3,2,BETA. The binary of BETA is named 2020l1g and is
binary record 3 on dataset LEV12.

<eof> End of overlay load sequence.

Execution of Type 2 overlays

A control statement call of the dataset containing the root overlay
initiates its loading and execution. If no OVLDN directives are used
before generating the root, the dataset $OBD will contain the root
overlay. All overlays reside on the datasets specified on the overlay
directives. The entry for higher level overlays is defined by the first
member listed on the generation directive. Control is transferred to
this address after loading by the $OVERLAY routine during program
execution. The root entry may be named using the T parameter on the LDR
control statement (see part 2, section 9).

The following sequence executes the root overlay after generation:

IDR; ee e, OVL=AT) e e
$OBD.

When the program is to be executed, the root overlay is brought into
memory as a result of a control statement call in the job deck.
Thereafter, additional overlays are called into memory by the executing
program. Overlay loading allows any overlay to call for the loading of
an adjacent upper level overlay.

Type 2 overlay calls

The user calls for the loading of Type 2 overlays from within the
program, and the method by which they are called depends on the program
language in use (FORTRAN or CAL). OVERLAY is a subroutine of the root
overlay and is loaded into memory with the root.

FORTRAN Language Call

A FORTRAN program calls for the loading of Type 2 overlays as follows:

CALL OVERLAY (nlLdn,level ,number,r)

Part 2
SR-0011 10-16 I

n Number of characters in the name

L Left-adjusted, zero filled

dn Name of the dataset on which this overlay resides
level Level number of the overlay

number Number of the overlay within the level

r Optional recall parameter. If the user wishes to

re—-execute an overlay without reloading it, 6LRECALL may
be entered. If it is not currently loaded, it will be
loaded.

CAL Language Call

Location Result Operand
EXT OVERLAY
S1 OVLDN
S2 LEVEL
S3 NUMBER

W.OVERLAY-1,0 |S1
W.OVERLAY-2,0 |S2
W.OVERLAY-3,0 |S3

R OVERLAY
OVLDN CON A'LEVI2'L
LEVEL CON 1
NUMBER CON 2

where OVLDN is the address of the dataset name, LEVEL is the address of
the overlay level, and NUMBER is the address of the number within the
level. 1If recall is desired, the address of the literal RECALL is
transmitted to W.OVERLAY-4.

Part 2
SR-0011 10-17 I

Example:

Location Result Operand

Sh ='RECALL'L
W.OVERLAY-4,0 |Sk

For both FORTRAN and CAL language calls, during execution of the ROOT
program MAIN, the statement

CALL OVERLAY(5LLEV12,1,2), or above CAL sample call

causes OVERLAY to search dataset LEV12 for the absolute binary named 2.
OVERLAY positions the dataset LEV12 to the location of the absolute
binary named 2 using information supplied by the loader, loads the
overlay, and transfers control to the first member specified on the OVLL
directive. After execution of the overlay, control returns to the
statement in MAIN immediately following the CALL statement. Following
the load, dataset LEV12 is positioned immediately after the end of

record for the overlay 2. 1If overlay 2 is not on dataset LEV12, a fatal
error results.

Log of Type 2 overlay generation

When MAP is specified on the LDR control statement, a listing is
obtained that describes where each module is loaded and what entry
points and external symbols were used for loading. This listing is an
overlay load map and is similar to the map of a non-overlay load (part
2, section 9). A log of the directives used will follow the map of the

last overlay generated. If overlay loading aborts, the directives are
not listed.

Part 2
SR-0011 10-18 I

BUILD 1

INTRODUCTION

BUILD is an operating system utility program for generating and
maintaining library datasets. A library dataset is a dataset
containing a program file followed by a directory file. Library
datasets are designed primarily to provide the loader with a means of
rapidly locating and accessing program modules. The program file is
composed of loader tables for one or more absolute or relocatable
program modules. The directory file contains an entry for each

program. The entry contains the name of the program module; the
relative location of the program module in the dataset; and block names,
entry names, and external names.

The BUILD program constructs a library from one or more input datasets
named by the user when BUILD is called. A library dataset created by a
BUILD run may be used as input to a subsequent BUILD run. Through BUILD
directives, the user designates the program modules to be copied from
the input datasets to the new library and the order in which they are to
be placed in the library. However, no directives or control statement
parameters are needed for the most frequent application of BUILD, which
is to add new binaries from $BLD to an existing library of binary
programs, replacing the old binaries where necessary.

PROGRAM MODULE NAMES

BUILD directives refer to program modules by their names as given in the
directory or, if the directory is missing or is unreadable, by the names
given in the program modules.

PROGRAM MODULE GROUPS

In the COPY and OMIT directives, program modules whose names contain one
or more identical groups of characters may be specified together, with
the variable parts of each name relaced by one or more hyphens. For
example, XYZ- represents all names beginning with XYZ, including XYZ
itself. 1In the extreme case, a name consisting of only a hyphen
represents all possible names.

Part 2
SR-0011 11-1 I-01

In addition, up to eight asterisks may be used anywhere in a name as
wild characters matching any character other than a blank. For
example, GE* specifies a group of modules having three-character names
including GET and GEM but not GE or GEMS.

PROGRAM MODULE RANGES

In order to facilitate the copying of large numbers of contiguous
program modules, the COPY directive allows a range specifier to be
used instead of a single name or group specifier. The range specifier
has the general form:

(first, last)

which means: skip to the first module and then copy all modules from
that first one up to and including the last module.

FILE OUTPUT SEQUENCE

If the SORT parameter appears in the BUILD control statement, all
modules are copied alphabetically according to their new names. In
the absence of a SORT parameter, modules are written in the order in
which they are read originally from the input datasets.

The order of the entries in the directory is always the same as the
order of the modules themselves.

FILE SEARCHING METHOD

The user need not be aware of the order of modules in the input
dataset unless (1) there are two or more modules with the same name or
(2) a range is specified in a COPY directive.

If two or more modules with the same name are in the input datasets,
the last of the modules read is the one that survives, unless the user
specifically omits that last module while its original dataset is the
currently active input dataset.

Part 2
SR-0011 11-2 I-01

The concept of current position in the input file is used to interpret
range specifiers in which the first name is omitted as in (,) or
(,). In such cases, the current position is defined to be either
immediately after the last module copied or at the beginning of the
dataset if no modules have yet been copied.

BUILD CONTROL STATEMENT

Format:

BUILD,I=ddn ,L=ldn ,OBL=odn ,B=bdn ,NBL=ndn , SORT,NODIR,REPLACE.

Parameters are in keyword form.

I=idn

L=ldn

SR-0011

Name of dataset containing BUILD directives, if any.
Directives may be included in the $IN dataset, or they may
be submitted in a separate dataset.

If the I parameter appears alone or is omitted, all

directives are taken from the $IN dataset, starting at its
current position and stopping when an end-of-file is read.

If I=ddn, all directives are taken from the specified
dataset, ddn, stopping when an end-of-file is read.

If I=0, no directives are read. The most common condition
is to merge the modules from odn (the OBL dataset) with
those from bdn (the B dataset), replacing OBL modules with
B modules whenever the names conflict, and to write the
output to ndn (the NBL dataset). Note that the input
dataset specified by the B parameter corresponds to the
binary output from CAL and CFT, also designated by B.

Name of list output dataset.

If the L keyword appears alone or is omitted, list output
is written to $OUT.

If L=ldn, list output is written to ldn.

If L=0, no list output is written.

Part 2
11-3 I-02

OBL=odn Name of the first input dataset, which is usually a
pPreviously created program library.

If the OBL parameter is omitted or appears alone, the
first dataset read is $OBL.

I1f OBL=0odn, the first dataset read is odn.

If OBL=0, no old binary library exists. This is a
creation run.

B=hbdn Name of the second input dataset, whose modules will be
added to or will replace the modules in the first

dataset.

If the B parameter appears alone or is omitted, the
second dataset read is $BLD.

If B=bdn, the second dataset read is bdn, which is read
to the first end-of-file.

If B=0, no modules are being added. This run edits an
old library.

BUILD stops at end-of-file; bdn is not required.

NBL=xdn Name of the output dataset, which is usually considered
to be a new program library.

If the NBL parameter appears alone or is omitted, output
is written to $NBL.

If NBL=ndn, output is written to ndn.

If NBL=0, no output is written. This usage is intended
for checking out BUILD directives.

SORT Specifies that all modules are to be listed
alphabetically according to their new names. The
default is to list the modules in the order they were

first read.

NODIR Specifies that no directory is to be appended to the
output dataset, resulting in an ordinary sequential
dataset like $BLD. The default is to append the

directory.

Part 2
SR-0011 11-4 I-01

REPLACE Specifies that the output library is to contain modules in
the same order as the old library. If omitted, the new
library contains modules from the o0ld library which were
not replaced by modules from the input binary dataset,
followed by modules from the input dataset.

Any of the following errors causes BUILD to abort:

® A module specified explicitly in a COPY or OMIT directive is
not in the current input dataset.

® A module specified explicitly in a COPY directive has already
been selected for output.

® Improper syntax is used in the BUILD control statement or in
the directive dataset.

® An unrecognized directive or control statement keyword is used.

® A dataset name or module name is too long or contains illegal
characters.

BUILD DIRECTIVES

BUILD is controlled through directives in a dataset defined by the I
parameter on the BUILD control statement. A directive consists of a
keyword and, if the keyword requires it, a list of dataset names or
module names. When names are required, the keyword must be separated
from the first name by a blank; subsequent names (if any) in the list
are separated from each other by commas. Extra blanks are optional
except within the keyword.

A line can contain more than one directive; periods or semicolons are
used to separate directives on the same line from each other. A
directive cannot be continued from one directive line to the next.
Examples of directives:

OMIT ENCODE,DECODE

COPY **CODE.
Examples of multiple directives on one line:

FROM OLDLIB; LIST; OMIT ENCODE,DECODE,XLATE

FROM $BLD. LIST.

: Part 2
SR-0011 11-5 I-02

FROM DIRECTIVE

A FROM directive may name a single dataset, which is thus established
as the input dataset for succeeding COPY, OMIT, and LIST directives,
or it may list several datasets that (except for the last dataset in
the list) are to be copied in their entirety to the output dataset
($NBL). The last dataset in the list is established as the current
input dataset, just as if it were specified alone in the FROM
directive. If no COPY or OMIT directive follows, the last dataset is
also copied in its entirety to the output dataset.

An input dataset may be a library (with a directory) or an ordinary
sequential dataset (such as $BLD). BUILD always determines whether a
directory is present at the end of the dataset and attempts to use it
if it is there. A library dataset is treated as sequential if its
directory file is unreadable for any reason.

Format:

FROM dnl,dnz,...,dnn

The following general rule allows the user to copy several datasets
from one FROM directive or to omit COPY (which means "copy all") when
it would be the only directive (except for OMIT directives) in the
range of a particular FROM directive:

If any dataset named on a FROM directive are not acted on by any
LIST or COPY directive, then BUILD copies all of the modules
belonging to that dataset. BUILD takes this action when it
encounters the next FROM dataset name or the end of the directive
file, whichever comes first.

If there are two input datasets to be read as soon as BUILD begins to
execute (that is, if neither OBL=0 nor B=0 is specified), the modules
from these two datasets are treated as if they belong to a single
dataset as far as the OMIT, COPY, and LIST directives are concerned.
However, if either of them is named in a FROM directive, it is treated
as a separate dataset and OMIT, COPY, and LIST directives apply only
to whichever is the current input dataset.

Part 2
SR-0011 11-6 I

OMIT DIRECTIVE

The OMIT directive allows a user to specify that certain modules
otherwise included in a group be omitted from the group on subsequent
copy operations. An OMIT affects modules on the current input dataset
only; its effect ends when a FROM directive is encountered.

Format:

OMIT fnq,f%y, ..., 7y

Each fn; may be one of the following:

® A single name, such as $AB@CDEF or CAB22, by which binary
records can be explicitly prevented from being copied

® A group name, such as F$- or *AB**, by which binary records are

prevented from being copied unless they are specified
explicitly (i.e., singly) in a COPY directive (see AUDIT
statement for description of * and -)

If an fn parameter specifies a module not in the input dataset or a
group of modules having no representatives in the input dataset, a
diagnostic message is included in the list output and BUILD aborts.

COPY DIRECTIVES

COPY directives cause BUILD to select the specified modules for
copying from current input dataset to the output dataset. The user
may specify single modules, groups of modules, or ranges of modules to
be copied. If the user specifies a module that is not in the current

input dataset, a diagnostic message is included in the list output and
BUILD aborts.

Format:

COpPY f%l,fhz,...,f%n

Part 2
SR~0011 11-7 I

Each fni may be either of the two forms that are valid in OMIT
directives:

® A single module name, by which modules are explicitly selected

for copying, even if they belong to a group named in a previous
OMIT directive

® A group specifier, by which all the modules in the group are
selected for copying unless they were specified either

explicitly or implicitly in a previous OMIT directive

In addition, two special forms are allowed for each fn; in COPY
directives:

® A form to rename a single module whose old name is specified
explicitly; for example, OLDNAME=NEWNAME. (The name is changed
both in the output directory and in the PDT.)

e A form to copy an inclusive range, as in (FIRST,LAST), by which

all the modules in the range are selected for copying unless
they were specified either explicitly or implicitly in a
previous OMIT directive.

These two forms are mutually exclusive. A module copied by being
included in a range cannot at the same time be renamed. Nor can
either form accept a hyphen or asterisk specifying a group of modules.

Examples:

BUG=ROACH Copies BUG, renaming it to ROACH

(LOKI, THOR) Copies all modules from LOKI through THOR

(THOTH,) Copies all modules from THOTH to the end of the
input dataset

(,ISIS) Copies all modules from the current dataset
position through ISIS

(r) Copies all modules from the current dataset

position to the end of the input dataset

The current dataset position is defined as the beginning of the input
dataset if no modules have been selected for copying yet, or else as
the beginning of the record immediately after the last module that has
been selected for copying.

Part 2
SR~-0011 11-8 I

LIST DIRECTIVE

The LIST directive tells BUILD to list the characteristics of the
modules in the current input dataset. Its effect is immediate.
(BUILD's standard list output describes the contents of the output
dataset and is produced at the end of the run so as not to interfere
with output triggered by LIST directives.)

Format:

LIST

EXAMPLES
The following are examples of various uses of the BUILD program:

e Creating a new library dataset, using as input whatever binary
modules have been written out to $BLD by CAL and/or CFT.

Control statements:

BUILD,OBL=0,I=0.
SAVE, DN=$NBL, PDN=MLIB.

® Adding one or more modules to an already existing library
dataset, again taking the input from $BLD.

Control statements:

ACCESS,DN=$0OBL , PDN=MYLIB.
BUILD,I=0.
SAVE ,DN=$NBL , PDN=MYLIB.

Any modules whose names were already in the directory of MYLIB
are replaced by the new binaries from $BLD in the new edition
of MYLIB that is created by BUILD and saved by the SAVE control
statement.

Part 2
SR-0011 11-9 I-01

® Merging several libraries.
Control statements:

ACCESS,DN=LIBONE, PDN=HERLIB.
ACCESS,DN=LIBTWO,PDN=HISLIB.
ACCESS ,DN=ANOTHER, PDN=ITSLIB.
ACCESS,DN=LASTONE , PDN=MYLIB.
BUILD,I,OBL=0,B=0.
SAVE,DN=$NBL, PDN=NEWLIB.

Directives:
FROM LIBTWO,ANOTHER,LIBONE,LASTONE

The order of the dataset names in the FROM directives, not the
order of the ACCESS control statements, determines the order of
processing. If two datasets contain modules of the same name,
the surviving module is the one in the dataset whose name
occurs later in the FROM directive. (Any module could be
renamed before input from a succeeding dataset is begun, in
order to prevent it from being discarded.)

® Deleting a program module from a library.

Control statements:

ACCESS,DN=$0BL, PDN=MYLIB.
BUILD,B=0.
SAVE ,DN=$NBL , PDN=MYLIB.

Directive:
OMIT BADPROG

® Extracting a program module from a library for input to the
system loader, using the local dataset name $BLD as the
intermediate file.

Control statements:

ACCESS ,DN=XXX,PDN=MYLIB.
BUILD,I,0BL=XXX,B=0,NBL=$BLD,NODIR.

Directive:

COPY RUNPROG

Part 2
SR-0011 11-10

PART 3

MACRO INSTRUCTIONS

CONTENTS
PART 3 MACRO INSTRUCTIONS

l L] INTRODUCTION - L] L] L] L] L . . i d L3 . L]

2. SYSTEM ACTION REQUEST MACROS « ¢ ¢ o o ¢ o o o o o s o o o &

JOB CONTROL . « o o o o o 5 o o o o o o o o s o s o o o o @

MEMORY — REQUESE MEMOLY &+ ¢ o o o o o o o o o o o o o o
MESSAGE - Enter message in logfile . « 4o ¢ o o o o o &
CSECHO - Echo a control statement to the logfile . . .
MODE — Set operating mode « « « o « « o o o o « o ¢ o «
SWITCH - Set or clear sense switch . . ¢« ¢« ¢« ¢« o o« & &
JTIME ~ Request accumulated CPU time for job
RECALL - Recall job upon I/0 request completion
DELAY - Delay JOb Processing . « « « « o o o s s o o &
ABORT — ADOXt Program o« « o « o o o o o o o o o s o o o
SETRPV - Set job step reprieve . ¢« ¢« « o o « o o o o &
CONTRPV - Continue from reprieve condition
ENDRPV - End reprieve pProcessSing . « « o o o s o o o o
ROLL = RO11l @ JOD 4 4 o ¢ o o o o o o o s o o« o o o o o
ENDP - ENd PrOGXAM . o o« o o o o o o o o s o o o o o o
NORERUN - Control detection of nonrerunnable functions
RERUN - Unconditionally set job rerunnability
IOAREA - Control user access to I/0 area . « « o « o o
DUMPJOB — Dump job image . « o « o o « o o o o o o o &

DATAS E T MANAGEMENT e e o e e o e 6 & o o © o o s e e o ° o o

T IME

DSP - Create Dataset Parameter Area . . « ¢« ¢ o« « « « &
OPEN — Open dataset « ¢« o« ¢ ¢ ¢ o o o o o o o o o o o o
CIOSE - Close dataset « o« o o o o o o o o o o o « o o o
RELEASE - Release dataset to system . . ¢« ¢« ¢« ¢ o o o &
DISPOSE - Dispose dataset o « « « o ¢ o o o o o o o o &
SUBMIT =~ Submit dataset . o « o o« o o o o o o o o o o o
AND DATE REQUESTS o « ¢ « o o = o o o o o o o o o o o «
TIME - Get current time . o ¢« o « ¢ v o ¢ o o o o s o &
DATE - Get current date .« ¢« ¢« & ¢ ¢ ¢ ¢ o o o o o o o
JDATE - Return Julian date . ¢« ¢« ¢ ¢ « ¢ o o o o o o &

DEBUGGING AIDS ® ® o e & e * s ° e o ° ° o o e o e o o * o

SR-0011

SNAP -~ Take snapshot of selected registers
DUMP - Dump selected areas of memory . . « « ¢ o ¢ o «
INPUT — Read data@ o« o o o« o o o o o ¢ o o s o o o o o o
OUTPUT -~ Write data@ « ¢« o o o o o o « o o o o o o s o &
FREAD — Read data o o o o « o o o o o« o o o o o o o o
FWRITE - Write data@ « « ¢ o o o o o o o o o o o o o o o
UFREAD - Unformatted read « « o« o ¢ ¢ ¢ o o o o o o o &
UFWRITE -~ Unformatted write .« « « o « ¢ o o o o ¢ o o &

Part 3
iii

N
1
[}

TYYYVY
] I i
O Jga Ut gt b wh -
L]
Lol]

.

SN RSN SRS I O
[R

J-01

2.

4.

SYSTEM ACTION REQUEST MACROS (continued)

SAVEREGS - Save all registers « « ¢« ¢« o o o o o «
LOADREGS ~ Restore all registers . « « « « o« o« &
MISCELLANEOUS . « o o o o o ¢ s .0 o ¢ o o o o o o o o
SYSID - Request system identification
GETMODE - Get mode setting . « o ¢ ¢ o ¢ ¢ « o o«
GETSWS - Get switch setting . . « « ¢ ¢« ¢« ¢ ¢ ¢
INSFUN - Call installation-defined subfunction .

LOGICAL I/O MACROS ¢ ¢ « « o o o o o o o o o o s o o &

SYNCHRONOUS READ/WRITE ¢ o ¢ o o o o o o o s o o o o o
READ/READP — Read WOXdS « « ¢ o o o o o o s o o o
READC/READCP - Read characters . « « ¢ o« ¢ « o &
WRITE/WRITEP ~ Write words .« o« o« o o o o o o o o
WRITEC/WRITECP -~ Write characters . « « « « + o &
WRITEF - Write end of file . o ¢ ¢ o ¢ o o o & &«
WRITED - Write end of data . « ¢ ¢« ¢« & ¢ & o o &

ASYNCHRONOUS READ/WRITE ¢ o « « o s o « o o o s s o &
BUFIN/BUFINP - Transfer data from dataset to user

ALEA « o o o o o ¢ ¢ o o o o o o o e & s e ®

record

BUFOUT/BUFQUTP - Transfer data from user record area to

dataset .« ¢ ¢ o o o s o o e o s o e o s s

BUFEOF - Write end of file on dataset « « « ¢« « &
BUFEOD - Write end of data on dataset « « « ¢« «
BUFCHECK -~ Check buffered I1/0 completion
UNBLOCKED READ/WRITE &+ « ¢ o o o o o ¢ o o o o o o o o

READU - Transfer data from dataset to user's area
WRITEU - Transfer data from user's area to dataset
POSITIONING . « o o o o o o o o o o o o o s o o s o o
REWIND ~ Rewind dataset « « « « o « o o o o o o &
BKSP — Backspace reCord « « o o« ¢ o o o o o o o o
BKSPF - Backspace file . ¢« ¢ « ¢ o o o o s o o &
GETPOS -~ Get current dataset position
SETPOS - Position dataset . ¢« « ¢ ¢ ¢ ¢ ¢ ¢ o o &
POSITION - Position tape . « « o « o o o o o & &«

PERMANENT DATASET MACROS ¢ « ¢ ¢ o o o o o o o o o o o

PERMANENT DATASET DEFINITION . o o o o o o o o o o o o
PDD - Create Permanent Dataset Definition Table .
LDT - Create Label Definition Table . . « « . «
PERMANENT DATASET MANAGEMENT . « « o ¢ o o o o o o o @
ACCESS - Access permanent dataset . « « « « « + &
SAVE - Save permanent dataset . . ¢« ¢ ¢« ¢« ¢ « o« &
DELETE - Delete permanent dataset . . « « « « « &
ADJUST - Adjust permanent dataset . « « « ¢ o o &

Part 3

SR-0011 iv

2-37
2-38
2-39
2-39
2-39
2-40
2-40

w
!
=

11
o

PEPLYTY LY
W00~ O

w
1
o

3-10
3-11
3-12
3-13
3-13
3-14
3-15
3-15
3-16
3-16
3-17
3-18
3-19
3-20

>
1
)

1
W WY JH M

o R -
I
oo

J-01

5. CFT LINKAGE MACROS ¢« « s s o o o o o

CALL EXTERNAL ROUTINES « 4 & o « o + «

CALL - Call external routine using call-by-address

convention « « ¢ « o o o o o

CALLV - Call external routine using

convention « ¢« ¢« ¢ ¢ o o o o

ENTER AND EXIT « ¢ ¢ o « o o o o o o &
ENTER - Form a CFT callable entry .

EXIT - Return from a routine . .

REGISTER ASSIGNMENT . « o « o o o o o

BREG - Assign symbols for B register names
TREG - Assign symbols for T register names

FETCH ARGUMENT ADDRESS « ¢ ¢ o o o« o &

SR-0011

ARGADD - Fetch argument address .

Part 3

.

3

.

call-by-value

.

.

.

Voo
| I T I T S T B T |
oot s NN

J-01

INTRODUCTION

Included with the CRAY-1 Operating System is a set of macro
instructions that provide the user with a means of communicating with
COS. These macro instructions are available only when programming in
the CAL assembler language and are processed by the assembler using
macro definitions defined in the system text, $SYSTXT. The code
generated by the macros represents a call to a system task or a
system-provided subroutine, or it generates a table.

The format for a macro instruction is:

Location Result Operand
ZOC name alyazyo-o'aj’fl=bl'f2=b2'-.o'fk=bk
loe Location field argument. Certain macros require an entry

in this field. For other macros, loe is an optional
symbolic program address. Macros that generate a table
are assigned a word address; macros that generate
executable code are assigned a parcel address.

name Name of macro as given in system text

a; Actual argument string corresponding to positional
parameter in prototype. Two consecutive commas indicate a
null string.

fj= - Keyword and actual argument; these entries can be in any
order. A space or comma following the equal sign
indicates a null string.

‘ } Stacked items within braces signify that one and only one
of the listed items must be entered.

A parameter shown in all UPPERCASE letters must be coded literally as
shown. A parameter presented in italics must be supplied with a value, a
symbol, an expression, or a register designator as indicated in the text
following the format for each macro.

SR-0011 1-1 I-01

A macro can be coded through column 72 of a line. It can be continued on
the next line by placing a comma in column 1 of the next line and resuming

the parameter list in column 2, with no intervening blanks at the end of
the first line.

NOTE-

Use the A0 and SO registers as parameters with care.
When a macro that includes A0 or SO as a parameter is
expanded, special syntax values are used rather than
the value of the contents of A0 or S0.

SR-0011 I-02

SYSTEM ACTION REQUEST MACROS 2

The system action request macros are a subset of the system function
requests. Each macro generates a function code that is a call to the
operating system. The octal function value is stored in register S0;
S1 and S2 provide additional arguments for some requests. The
function is enabled when the program exit instruction is executed.
The contents of the registers used are not restored after the call is
completed.

See the COS EXEC/STP/CSP Internal Reference Manual, CRI publication
SM-0040 for more information on system function codes.

The system action request macros can be divided into five main
classes: those involved in job control, those related to dataset
management, those representing requests for time or date, those that
are debugging aids, and miscellaneous. Any macro that generates
executable code can have a label.

JOB CONTROL

Several system action request macros allow the user to set operating
characteristics and control job processing. These include MEMORY,
MESSAGE, CSECHO, MODE, SWITCH, JTIME, RECALL, DELAY, ABORT, SETRPV,
ENDRPV, ROLL, ENDP, NORERUN, RERUN, IOAREA, and DUMPJOB.

Part 3
SR-0011 2-1 J-01

MEMORY -~ REQUEST MEMORY

The amount of memory assigned to the job may be determined or changed
by the memory request. If the user area is expanded, the additional
memory is set to an installation-defined value before control returns
to the user. The job is aborted if filling the request would exceed
the maximum allowable memory for the job.

Format:

Location Result Operand

MEMORY address

address A symbol or an A, S, or T register (except A0 or S0) that
contains the request word address

The format of the word at location address is as follows:

0 2 7 16 40 63
|| /7|2 102/ DEL We

Field Bits Description

M 0 Maximum memory flag. If set by the caller, the

system returns in WC the maximum allowable
amount of memory (in words) not including the
Job Table Area (JTA). No memory is allocated.

L 2 Limit flag. The system sets this flag when the
job has received the maximum allowable amount of
memory .

T 7 Total flag. If T is set, WC represents the

total memory requested (excluding the JTA)
rather than an increment or decrement. If T is
specified, DEL is ignored.

Part 3
SR-0011 2-2 - J

Field Bits
DEL 16-39
wC 40-63

Description

Deletion pointer. If the caller wants an
increase in memory, DEL must equal 0. If the
caller wants a decrease in memory, DEL must
contain the address relative to the user's base
address of the beginning of the area to be
deleted.

Word count. Here, if T=0, the caller must
supply the absolute number of words to be added
to or deleted from the user area. If T=1, the
caller must supply the total field length
desired. If T=0 and WC=0, no action is taken
other than to return the user's field length as
described below.

In the memory request word, L may be set by the
system as described above. When WC and T equal
0, the system sets WC to the current total
number of words in the user's field length. The
total number of words in the user's field length
does not include the Job Table Area but does
include the I/0 buffers and tables.

MESSAGE - ENTER MESSAGE IN LOGFILE

The printable ASCII message at the location specified in the macro call
is entered in the job and system logfile. The message must be 1-80
characters terminated by a zero byte. A flag, loc, indicates the
destination for the message.

Format:

Location Result

Operand

MESSAGE

address,loc,msgclass,override

addresse A symbol or an A, S, or T register (except A0, S0, and S2)
that contains the starting address of the ASCII message

SR-0011

Part 3
2-3 J

loc Destination for message. Can be any of the following:

U User logfile only
S System logfile only
US User and system logfiles; default if loc is blank

loc can be a symbol or an A, S, or T register (except A0,
S0, S3, or S4).

msgelass Class where the message is to be assigned. Only current
class is JCLMSG. msgclass can be a symbol or an A, S, or
T register (except A0, S0, S2, 83, or S4) containing the
message class.

override Message suppression override flag; if present message is
to go to $LOG regardless of ECHO status.

CSECHO - ECHO A CONTROL STATEMENT TO THE LOGFILE

The control statement at the specified location is entered into the
system log and user logfile. This macro will not echo the control
statement to the user logfile if the statement originated as terminal
input from an interactive job. Echoing is also governed by the current
ECHO state for JCL statements. (See part 2, section 2, ECHO control
statement.)

Format:

Location Result Operand

CSECHO address

address A symbol or an A, S, or T register (except S0, S1, S2) that
contains the base address of the control statement image.
This is a required parameter.

Part 3
SR-0011 2-4 J-01

MODE - SET OPERATING MODE

The MODE macro sets the floating-point error flag in the M register of
the job's exchange package. This flag controls whether or not a
floating-point error will cause an interrupt flag to be set in the
Flags (F) register. An exit from the program occurs on a
floating-point error only when the floating-point error flag has been

set.
Format:
Location Result Operand
MODE M=mode
M=mode Operating mode. May be any of the following:

DFI, 1, or 2 Disable floating-point interrupt
EFI, 3, or 4 Enable floating-point interrupt

SWITCH - SET OR CLEAR SENSE SWITCH

The SWITCH macro allows a user to turn on (set) or turn off (clear) pseudo
sense switches.

Format:

Location Result Operand

SWITCH N,

Part 3
° SR-0011 2-4.1 1-02

n Number of switch (1-6) to be set or cleared

x Switch position

ON Switch 7 is turned on; set to 1
OFF Switch 7 is turned off; set to 0

JTIME - REQUEST ACCUMULATED CPU TIME FOR JOB
The accumulated CPU time for the job is returned at the location

specified in the macro call. The time in seconds is expressed in
floating-point form.

Format:

Location Result Operand
JTIME address

address A symbol or an A, S, or T register that contains the
address at which to return the accumulated CPU time

RECALL - RECALL JOB UPON I/0O REQUEST COMPLETION

This function removes a job from processing. The job does not become
a candidate for processing until the previously issued I/0 request for
the specified dataset is completed or partially completed, that is,
the job is resumed when another block of data is transferred to or
from the user's buffer or when the I/0 request is completed.

Format:

Location Result Operand
RECALL address

Part 3
SR-0011 2-5 I

address Symbolic address of the Open Dataset Name Table (ODN) or
Dataset Parameter Area (DSP) for this dataset or an A,
S, or T register containing the ODN or DSP address. See
description of OPEN macro (this section) and DSP table
(Appendix A).

DELAY - DELAY JOB PROCESSING

This function removes a job from execution and delays the job from
becoming a candidate for processing until the number of milliseconds
(specified in the word at the given address) has elapsed.

Format:

Location Result Operand

DELAY address

address A symbol or an A, S, or T register containing the
address of the word that contains the number of
milliseconds to delay

ABORT - ABORT PROGRAM

The ABORT request provides for abnormal termination of the current
program. Processing resumes with the first job control statement
following the next EXIT statement unless reprieve processing is
enabled. If no such statement exists, the job is terminated.

Format:

Location Result Operand
ABORT

Part 3
SR-0011 2-6 I

SETRPV - SET JOB STEP REPRIEVE

The SETRPV request enables the user's current job step to maintain
control when a job step abort error condition occurs or upon normal
termination of the job step. Once enabled by the user, reprieve
processing remains in effect until the job step terminates, a selected
error condition