
c: 
RESEARCH, INC. 

CRAY X_MpTM AND CRAY-1® 
COMPUTER SYSTEMS 

COS VERSION 1 
REFERENCE MANUAL 

SR-0011 

Copyright© 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 
1986, 1987 by CRAY RESEARCH, INC. This manual or parts 
thereof may not be reproduced in any form without permission of 
CRAY RESEARCH, INC. 



RECORD OF REVISION RESEARCH. INC. PUBLICATION NUMBER SR-OOll 

Each time this manual is revised and reprinted, all changes issued against the previous version are incorporated into the new version 
and the new version is assigned an alphabetic level. 

Every page changed by a reprint with revision has the revision level in the lower righthand corner. Changes to part of a page are noted 
by a change bar in the margin directly opposite the change. A change bar in the margin opposite the page number indicates that the 
entire page is new. If the manual is rewritten, the revision level changes but the manual does not contain change bars. 

Requests for copies of Cray Research, Inc. publications should be directed to the Distribution Center and comments about these 
publications should be directed to: 

CRAY RESEARCH, INC. 

1345 Northland Drive 

Mendota Heights, Minnesota 55120 

Revision Description 

ii 

A 

B 

C 

June 1976 - Original printing. 

September 1976 - General technical changes; changes to JOB, 
MODE, RFL, and DMP statements; names of DS and RETURN changed 
to ASSIGN and RELEASE. STAGEI deleted, STAGEO replaced by 
DISPOSE. RECALL macro added and expansions provided for all 
logical I/O macros. RELEASE, DUMPDS, and LOADPDS renamed to 
DELETE, PDSDUMP, and PDSLOAD. Detailed description of BUILD 
added (formerly LIB). EDIT renamed to UPDATE. 

February 1977 - Addition of Overlay Loader; deletion of Loader 
Tables (information now documented in CRI publication 
SR-0012); deletion of UPDATE (information now documented in 
CRI publication SR-0013); changes to reflect current 
implementation. 

July 1977 - Addition of BKSPF, GETPOS, and POSITION logical 
I/O macros and $BKSPF, $GPOS, and $SPOS routines. Addition of 
random I/O. Changes to dataset structure, JOB, ASSIGN, MODE, 
and DUMP statements; BUILD; logical I/O and system action 
macro expansions. General technical changes to reflect 
current implementation. 

CRAY, CRAY-1, SSD, and UNICOS are registered trademarks and APML, CFT, 
CFT77, CFT2, COS, CRAY-2, CRAY X-MP, CSIM, lOS, SEGLDR, SID, and 
SUPERLINK are trademarks of Cray Research, Inc. 

CDC is a registered trademark of Control Data Corporation. CYBER is a 
trademark of Control Data Corporation. IBM is a registered trademark 
of Internation Business Machines Corporation. VAX and VMS are 
trademarks of Digital Equipment Corporation. UNIX is a registered 
trademark of AT&T. 

SR-0011 0 



C-01 

D 

D-01 

E 

E-01 

January 1978 - Correction to DISPOSE and LDR control statement 
documentation, addition of description of $WWDS write routine, 
miscellaneous changes to bring documentation into agreement 
with January 1978 released version of the operating system. 

February 1978 - Reprint with revision. This printing is 
exactly the same as revision C with the C-01 change packet 
added. 

April 1978 - Change packet includes the addition of the ADJUST 
control statement; MODE and SWITCH macros; and PDD, ACCESS, 
SAVE DELETE, and ADJUST permanent dataset macros. 
Miscellaneous changes to bring documentation into agreement 
with released system, version 1.01. 

July 1978 - Complete rewrite. Changes are not marked by 
change bars. New features for version 1.02 of the operating 
system that are documented in this revision include: addition 
of the MODIFY control statement and the DSP, SYSID, and 
DISPOSE macros; the addition of parameters to some control 
statements, the implementation of BUILD. The POSITION macro 
has been renamed SETPOS. Other changes to bring documentation 
into agreement with released version 1.02 of the operating 
system. 

October 1978 - Change packet includes the implementation of 
ACQUIRE and COMPARE control statements; changes to the AUDIT 
and LDR control statements; changes to the MODE control 
statement and macro; the addition of control statement 
continuation, GETPARAM, and the GETMODE macro; and other minor 
changes to bring documentation into agreement with the 
released version 1.03 of the operating system. 

F December 1978 - Revision F is the same as revision E with 
change packet E-01 added. No additional changes have been 
made. 

F-01 January 1979 - Change packet includes implementation of some 
features of BUILD; the addition of the BUFIN, BUFINP, BUFOUT, 
BUFOUTP, BUFEOF, and BUFEOD macros and other minor changes to 
bring documentation into agreement with the released version 
1.04 of the operating system. 

F-02 April 1979 - Change packet includes the implementation of the 
DEBUG, RERUN, and NORERUN control statements, the RERUN, 
NORERUN, and BUFCHECK macros; changes to DUMP, DSDUMP, AUDIT, 
and ASSIGN control statements; implementation of job rerun and 
memory-resident datasets. Other minor changes were made to 
bring documentation into agreement with the released version 
1.05 of the operating system. 

SR-0011 0 iii 



G 

G-01 

H 

I 

1-01 

iv 

July 1979 - Reprint with reV1S1on. Changes are marked with 
change bars. The changes bring this documentation into 
agreement with the released version 1.06 of the operating 
system. This printing obsoletes all previous versions. 

December 1979 - Change packet includes the implementation of 
the WAIT and NOWAIT options on the DISPOSE control statement; 
the addition of a new DUMP format and CFT Linkage Macros; and 
other minor changes to bring documentation into agreement with 
the released version 1.07 of the operating system. 

January 1980 - Revision H is the same as revision G with 
change packet G-01 added. No additional changes have been 
made. 

April 1980 - Revision I is a complete reprint of this manual. 
All changes are marked by change bars. New features for 
version 1.08 of the operating system that are documented in 
this revision include: the addition of the CALL and RETURN 
control statements, job classes, the NA parameter on permanent 
dataset management control statements, the NRLS parameter on 
the DISPOSE control statement and PDD macro, and the CW 
parameter on the COMPARE control statement. Changes to the 
LDR control statement include the addition of the LLD, NA, 
USA, and I parameters and the new selective load directives. 
New documentation has been added for unblocked 1/0, including 
descriptions of the READU and WRITEU macros. Other new macros 
include SETRPV, ENDRPV, DUMPJOB, and the debugging aids SNAP, 
DUMP, INPUT, OUTPUT, FREAD, FWRITE, UFREAD, UFWRITE, SAVEREGS, 
and LOADREGS. Documentation on CRAY-1 interactive 
capabilities and changes to reflect the CRAY-1 S series have 
also been added. Other changes were made to bring 
documentation into agreement with released version 1.08 of the 
operating system. 

With this revision, the publication number has been changed 
from 2240011 to SR-0011. 

October 1980 - Change packet includes the implementation of 
the IOAREA, SETRPV, ROLL, and INSFUN macros and the IOAREA 
control statement; the addition of execute-only datasets 
including adding the EXO parameter to the SAVE and MODIFY 
control statements and the PDD macro; the lengthening of the 
TEXT parameter field; the addition of the DEB parameter to the 
LDR control statement; and a change to the formats of the 
UFREAD and UFWRITE macros. The DEBUG option allowing 
conditional execution of the SNAP, DUMP, INPUT, and OUTPUT 
macros has been implemented. Other minor changes were made to 
bring documentation into agreement with the released version 
1.09 of the operating system. 

SR-0011 0 



I-02 July 1981 - This change packet includes changes to Job Control 
Language syntax; the addition of JCL block control statements 
for procedure definition (PROe, ENDPROC, &DATA, and prototype 
statement), conditional processing (IF, ELSE, ELSEIF, and 
ENDIF), and iterative processing (LOOP, EXITLOOP, and 
ENDLOOP); the addition of ROLLJOB, SET, LIBRARY, ECHO, PRINT, 
FLODUMP, and SYSREF control statements; the addition of CSECHO 
macro; the addition of CNS parameter to CALL statement, 
REPLACE parameter to BUILD statement, ARGSIZE parameter to 
ENTER macro, KEEP parameter to EXIT macro, USE parameter to 
ARGADD macro; the addition of the two JCL tables JBI and JST. 
Other minor changes were made to bring the documentation into 
agreement with the released version of 1.10 of the operating 
system. 

J February 1982 - Reprint. This reprint incorporates reV1S1on I 
with change packets I-01 and I-02. No other changes have been 
made. 

J-01 June 1982 - This change packet includes the following 
additions: magnetic tape characteristics, temporary and local 
dataset clarification, mass storage permanent datasets, 
magnetic tape permanent datasets, tape 1/0 formats, 
interchange format, transparent format, new accounting 
information, *gn=nr parameter, several CHARGES parameters, 
the OPTION control statement, procedure definition, HOLD 
parameter, new information to the ACCESS control statement, 
new tape dataset parameters, tape dataset conversion 
parameters, SUBMIT job control statement, PDSDUMP and PDSLOAD 
sample listings, SID parameter on the LOR control statement, 
new loader errors, relocatable overlays, CONTRPV macro, SUBMIT 
macro, unrecovered data error information, POSITION macro, new 
POD macro parameters, the LDT macro, and new glossary terms. 
The information formerly in appendix C is now in the COS 
EXEC/STP/CSP Internal Reference Manual, publication SM-0040. 
Other miscellaneous technical and editorial changes were made 
to bring the documentation into agreement with version 1.11 of 
the operating system. 

K July 1982 - Reprint. This reprint incorporates revision J 
with change packet J-01. No other changes have been made. 

SR-0011 a v 



vi 

L July 1983 - Rewrite. Extensive editorial changes have been 
made, including moving macro information which was in part 3 
to Macro and Opdefs Reference Manual, CRI publication 

L-01 

L-02 

M 

SR-0012. Other major reorganization has occurred. Part 3 now 
contains job control language structures. Information has 
been added on interactive job processing and job step abort 
processing. Major new features documented include enhanced 
support of tape datasets, the FETCH control statement, memory 
management, enhancements to COS security, permanent dataset 
privacy, and support of the CRAY X-MP computer system. 
Miscellaneous editorial and technical changes have been made 
to bring the documentation into agreement with version 1.12 of 
the operating system. This printing obsoletes all previous 
versions. 

October 1983 - This change packet describes two new ACCOUNT 
control statement parameters: APW and NAPW. The use of APW 
and NAPW, and their interrelationship with existing parameters 
on ACCOUNT, are also explained. A new parameter on the AUDIT 
control statement, ACC, is described. In addition, 
illustrative information is provided on how the OWN parameter 
of the AUDIT utility affects output listings. 

February 1984 - This change packet supports the COS 1.13 
release. It includes editorial and technical amendments to 
information that had been included in previous versions of 
this manual. The contents reflect new multitasking 
capabilities. Additional information has been included for 
coding the CALL statement. New parameters have also been 
documented in this manual for foreign dataset processing, 
particularly on the ASSIGN and ACCESS control statements. The 
LDR statement has been modified considerably; RELEASE, SAVE, 
MODIFY, DELETE, PERMIT, ACQUIRE, and PDSLOAD also have new 
parameters. Furthermore, new information is included for 
managed memory capabilities, the EXITIF control statement 
block identifier, the COPYU utility for unblocked datasets, 
and new error codes for reprieve processing. 

December 1984 - This reprint with revision describes many 
technical changes to COS for the 1.14 release, including 
contiguous disk allocation and the tape features multitape 
mark, on-line tape ring processing, partial IBM multifile, 
special end-of-volume processing, and superblock size. The 
revision describes software to support four-processor 
CRAY X-MP computer systems and systems with up to 8 Mwords of 
memory. Appendix B provides instructions for Subsystem 
Support: interjob communication, user channel access, and 
event recall. This revision also documents the Integrated 
Support Processor (ISP). Note that ISP code will be released 
later. 

SR-0011 0 



This reV1S1on contains several format changes. To increase 
the accuracy of the tables and related information in appendix 
A, the section is printed as generated by the system. In the 

body of the manual the "parts" have been removed and the 
sections numbered consecutively. Material in the four 
sections of part 3 has been consolidated into one section, 
16. This reprint obsoletes all previous editions. 

N January 1986 - This reprint with revision brings the manual 
into agreement with the COS 1.15 release. Technical 
information added includes documentation of permanent dataset 
archiving, the HOLD and NOHOLD commands to control an 
allocated generic resource, changes to resource accounting, 
and partial support for the IBM 3480 tape subsystem. 

There is one significant editorial change: To make 
information more retrievable, the control statements in 
sections 7 through 13 now appear in alphabetical order by verb 
within each section. This reprint obsoletes all previous 
editions. 

a May 1987 - This reprint with revision brings the manual into 
agreement with the COS 1.16 release. Technical information 
added includes access of SEGLDR with the new LD2 control 
statement, the BLOCK and QUERY control statements, the FETCH 
SF parameter, the RESTORE type parameter, the ASSIGN SPD 
parameter, and new options for VMS tape files in the ASSIGN 
and ACCESS RF parameter. Concatenated dataset information has 
also been added. System error codes have been removed from 
appendix E. Refer to the COS Message Manual, publication 
SR-0039, for these messages. Appendix F, which lets you 
record site-specific information, has been added. 

SR-0011 a vii 





PREFACE 

This manual describes the external features of the Cray operating system 
COS and is intended as a reference document for all users of COS. It 
deals with three aspects of COS: 

• Job processing. Sections 1 through 5 discuss the fundamentals of 
creating and running jobs on a Cray computer system. These 
sections describe the system components, storage of information on 
a Cray computer system, and job processing. They also introduce 
COS job control and describe the use of libraries. 

• Job control statements. Sections 6 through 15 describe each COS 
job control statement and give the format of each with an 
explanation of its function. 

• Control statement structures. Section 16 describes the control 
statement block structures available with COS. E~amples at the 
end of the section demonstrate the COS control statement procedure 
substitution process. 

OTHER PUBLICATIONS 

Other Cray Research, Inc. (CRI) publications that may be of interest to 
the reader include the following: 

• Products and Utilities 

SR-0011 a 

SR-0010 
SR-0013 
SG-0055 
SG-0056 
SR-0066 
SR-0073 
SR-0074 
SR-Ol12 
SR-0146 
SN-0236 

Software Tools Reference Manual 
UPDATE Reference Manual 
Text Editor (TEDI) User's Guide 
Symbolic Interactive Debugger (SID) User's Guide 
Segment Loader (SEGLDR) Reference Manual 
Cray Simulator (CSIM) Reference Manual 
SORT Reference Manual 
Symbolic Debugging Package Reference Manual 
COS Performance Utilities Reference Manual 
Foreign Dataset Conversion on CRAY-1 and CRAY X-MP 
Computer Systems 

ix 



• 

• 

Languages 

SR-OOOO 
SR-0009 
SR-0012 
SR-0018 
SR-0060 
SR-Ol13 
SR-2003 
SR-2024 

Miscellaneous 

SR-0039 
SI-OlS4 
SI-0178 
SR-0222 

CONVENTIONS 

CAL Assembler Version 1 Reference Manual 
Fortran (CFT) Reference Manual 
Macros and Opdefs Reference Manual 
CFT77 Reference Manual 
Pascal Reference Manual 
Programmer's Library Reference Manual 
CAL Assembler Version 2 Reference Manual 
Cray C Reference Manual 

COS Message Manual 
SUPERLINK/ISP General Information Manual 
SUPERLINK/MVS User Guide 
CRAY X-MP Multitasking Programmer's Manual 

This manual uses the following conventions in presenting control 
statements: 

Convention 

italics 

[] Brackets 

Choice 1 
Choice 2 

Description 

Define generic terms representing the words or 
symbols you supply 

Enclose optional portions of a command format 

Stacked items indicate two or more literal 
parameters when only one choice can be used 

I Numbers are decimal unless otherwise indicated. 

x SR-OOll 0 



CONTENTS 

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ix 

1. 

2. 

INTRODUCTION TO JOB PROCESSING . 

1.1 
1.2 
1.3 

1.4 
1.5 

HARDWARE REQUIREMENTS . . . . . . . . . . . . . . 
COS STARTUP . . . . . . . . . . . 
CENTRAL MEMORY ASSIGNMENT AND CHARACTERISTICS 
1.3.1 Memory-resident COS ... . 
1.3.2 User area of memory ... . 

1.3.2.1 Job Table Area (JTA) . 
1.3.2.2 User field ......... . 

MASS STORAGE CHARACTERISTICS . . . . . . . . . . 
MAGNETIC TAPE CHARACTERISTICS 

DATASETS . . . . . . 

2.1 

2.2 

2.3 

DATASET MEDIA . . . . . .. ........... . 
2.1.1 Mass storage datasets ......... . 
2.1.2 Memory-resident datasets .... . 
2.1.3 Interactive datasets ..... . 
2.1.4 Magnetic tape datasets . . .... 

2.1.5 
DATASET 
2.2.1 

2.2.2 
2.2.3 
2.2.4 

DATASET 
2.3.1 
2.3.2 

2.1.4.1 Gaining access to a tape dataset. 
2.1.4.2 Bypass label processing .... 
2.1.4.3 User tape end-of-volume processing 
2.1.4.4 Tape mark processing ...... . 
2.1.4.5 Multidataset access ... . 
2.1.4.6 Concatenated datasets 
Integrated Support Processor (ISP) datasets 
FORMATS . . . . . . . . .. 
Blocked format . . . . . . . . . . . . 
2.2.1.1 Blank compression .... . 
2.2.1.2 Block control word .... . 
2.2.1.3 Record control word 
Unblocked format . . . . . . . 
Interactive format . . . 
Tape format . . . . . . 
2.2.4.1 Interchange format 
2.2.4.2 Transparent format 
LONGEVITY 
Temporary datasets 
Permanent datasets 

. 
. 

. 

SR-0011 0 

1-1 

1-1 
1-3 
1-3 
1-3 
1-3 
1-3 
1-4 
1-5 
1-6 

2-1 

2-1 
2-1 
2-2 
2-2 
2-3 
2-3 
2-4 
2-4 
2-5 
2-6 
2-8 
2-9 
2-9 
2-9 
2-10 
2-10 
2-11 
2-13 
2-13 
2-13 
2-15 
2-15 
2-17 
2-17 
2-17 

xi 



3. 

4. 

5. 

xii 

2.4 
2.5 
2.6 
2.7 

2.3.2 Permanent datasets (continued) 
2.3.2.1 Magnetic tape permanent datasets . 
2.3.2.2 Mass storage permanent datasets 

LOCAL DATASETS . 
DATASET DISPOSITION CODES . . . . 
USER DATASET NAMING CONVENTIONS . . . . . . . . 
USER 1/0 INTERFACES . . . . . . . . . . . . 

COS JOB PROCESSING . . . . . • 

3.1 
3.2 

3.3 

3.4 
3.5 
3.6 
3.7 
3.8 

JOB DATASET STRUCTURE . . .. ..... ... . 
JOB FLOW . . . . . . .. .......... . 
3.2.1 Job entry 
3.2.2 Job initiation. . ... 
3.2.3 Job advancement ... . 
3.2.4 Job termination ............ . 
JOB MEMORY MANAGEMENT . . . . . . . . . . . . . . . . . 
3.3.1 Initial memory allocation ....... . 
3.3.2 Field length reduction. . . . ... 
3.3.3 User management of memory . . . . . 

3.3.3.1 Management by control statement from 
the run stream . . . . . . . . . . . . 

3.3.3.2 Management from within a program ... 
3.3.3.3 Management associated with a program. 

3.3.4 System management of memory 
JOB RERUN . . . . . 
EXIT PROCESSING . . . • . 
REPRIEVE PROCESSING 
INTERACTIVE JOB PROCESSING . . . . . . . . • . . . 
JOB LOGFILE AND ACCOUNTING INFORMATION . . . . . . . . . 

JOB CONTROL LANGUAGE . . . 

4.1 
4.2 

4.3 
4.4 

SYNTAX VIOLATIONS 
CONTROL STATEMENT VERBS 
4.2.1 System verbs. . . . .... . 
4.2.2 Local dataset name verbs ... . 
4.2.3 Library-defined verbs ........ . 
4.2.4 System dataset name verbs 
SEPARATORS . . . . . . . . . . . . . . . 
PARAMETERS . . . . . . . . . . 
4.4.1 Positional parameters ........•. 
4.4.2 Keyword parameters .. 
4.4.3 Parameter interpretation ........... . 

LIBRARIES 

5.1 PROCEDURE LIBRARY 

2-17 
2-17 
2-19 
2-19 
2-19 
2-20 

3-1 

3-1 
3-2 
3-2 
3-2 
3-3 
3-3 
3-4 
3-4 
3-4 
3-6 

3-6 
3-6 
3-6 
3-7 
3-7 
3-8 
3-9 
3-10 
3-10 

4-1 

4-2 
4-2 
4-3 
4-3 
4-3 
4-4 
4-4 
4-4 
4-4 
4-6 
4-7 

5-1 

5-1 

SR-0011 0 



5. LIBRARIES (continued) 

6. 

7 • 

5.2 
5.3 

PROGRAM LIBRARY . . . . 
OBJECT CODE LIBRARIES 

5-1 
5-2 

JOB CONTROL STATEMENTS . 6-1 

6.1 
6.2 
6.3 

6.4 
6.5 
6.6 
6.7 
6.8 
6.9 

JOB DEFINITION AND CONTROL . 
DATASET DEFINITION AND CONTROL . 
PERMANENT DATASET MANAGEMENT 
6.3.1 Mass storage dataset attributes 

6.3.1.1 Permission control words. 
6.3.1.2 
6.3.1.3 
6.3.1.4 
6.3.1.5 

Public access mode attribute . . . . . 
Public access tracking attribute . 
Permits attribute 
Text attribute . . • . . . . . . . 

6-1 
6-3 
6-3 
6-4 
6-4 
6-6 
6-6 
6-6 
6-6 

6 3.2 
6.3.1.6 Notes attribute . . . . . 6-6 
Establishing attributes for mass storage datasets 6-7 
6.3.2.1 Existing permanent dataset 6-7 
6.3.2.2 New permanent dataset . . . . . . .. 6-7 
6.3.2.3 Attributes dataset. . . . . . . . .. 6-8 

6.3.3 Protecting and accessing mass storage datasets . 
6.3.3.1 Privacy ...... . 
6.3.3.2 Access mode ..•....... 
6.3.3.3 Dataset use tracking .. 
6.3.3.4 Attribute association 

DATASET STAGING CONTROL . . . . . . . . . . . 
PERMANENT DATASET UTILITIES . . . . 
LOCAL DATASET UTILITIES 
ANALYTICAL AIDS . . . . . . . 
EXECUTABLE PROGRAM CREATION 
OBJECT LIBRARY MANAGEMENT 

6-8 
6-9 
6-9 
6-10 
6-10 
6-11 
6-13 
6-13 
6-14 
6-15 
6-16 

JOB DEFINITION AND CONTROL . . 7-1 

7.1 
7.2 
7.3 
7.4 
7.5 
7.6 
7.7 
7.8 
7.9 
7.10 
7.11 
7.12 

* - COMMENT STATEMENT . . . . . . . . . . . . 
ACCOUNT - VALIDATE USER NUMBER AND ACCOUNT 
CALL - READ CONTROL STATEMENTS FROM ALTERNATE DATASET 
CHARGES - JOB STEP ACCOUNTING . . . . . . 
ECHO - ENABLE OR SUPPRESS LOGFILE MESSAGES 
EXIT - EXIT PROCESSING . . . . 
IOAREA - CONTROL USER'S ACCESS TO 1/0 AREA 
JOB - JOB IDENTIFICATION . . . . . . 
LIBRARY - LIST ANDIOR CHANGE LIBRARY SEARCHLIST 
MEMORY - REQUEST MEMORY CHANGE . . . . 
MODE - SET OPERATING MODE . . . . . . . . . 
NORERUN - CONTROL DETECTION OF NONRERUNNABLE FUNCTIONS . 

7.13 OPTION - SET USER-DEFINED OPTIONS 

7-2 
7-2 
7-4 
7-8 
7-10 
7-11 
7-12 
7-12 
7-14 
7-15 
7-16 
7-18 
7-18 

SR-0011 0 xiii 



7. JOB DEFINITION AND CONTROL (continued) 

8. 

9. 

7.14 RERUN - UNCONDITIONALLY SET JOB RERUNNABILITY 
7.15 
7.16 
7.17 
7.18 
7.19 

RETURN - RETURN CONTROL TO CALLER 
ROLLJOB - ROLL A USER JOB TO DISK 
SET - CHANGE SYMBOL VALUE 
SWITCH - SET OR CLEAR SENSE SWITCH . . . . . 
TARGET - SPECIFY CPU CHARACTERISTICS . 

DATASET DEFINITION AND CONTROL . . . . . . . . 

8.1 
8.2 
8.3 
8.4 
8.5 

ASSIGN - ASSIGN DATASET CHARACTERISTICS 
HOLD - HOLD GENERIC RESOURCE . 
NOHOLD - RESCIND THE EFFECT OF HOLD 
RELEASE - RELEASE DATASET . . . . 
INTEGRATED SUPPORT PROCESSOR (ISP) DATASETS 

PERMANENT DATASET MANAGEMENT • • . . . . . 

9.1 ACCESS - ACCESS PERMANENT DATASET · · · · · 
9.2 ADJUST - ADJUST PERMANENT DATASET · 
9.3 DELETE - DELETE PERMANENT DATASET · · · · 9.3.1 Local dataset format · · · · · · 

9.3.2 Nonlocal dataset format · · · · 9.4 MODIFY - MODIFY PERMANENT DATASET 
9.5 PERMIT - EXPLICITLY CONTROL ACCESS TO DATASET 
9.6 SAVE - SAVE PERMANENT DATASET · · · · 

· · 
· · · · · 

· · 
· · · 

· · · · 
9.7 EXAMPLES OF PERMANENT DATASET CONTROL STATEMENTS · 

10. DATASET STAGING CONTROL . . · · · · · · · · · · · · 
10.1 ACQUIRE - ACQUIRE PERMANENT DATASET · · · · 
10.2 DISPOSE - DISPOSE DATASET · · · · 
10.3 FETCH - FETCH LOCAL DATASET · · · · · · 
10.4 SUBMIT - SUBMIT JOB DATASET · · · · · · · · 

11. PERMANENT DATASET UTILITIES · · · · · · · · · · · · 
11.1 AUDIT - AUDIT PERMANENT DATASETS · · · · · · · 
11.2 PDSDUMP - DUMP PERMANENT DATASETS · · · 
11.3 PDSLOAD - LOAD PERMANENT DATASETS · · 
11.4 RESTORE - RECALL A DATASET TO ON-LINE DISK · · · 
11.5 RETIRE - RETIRE A DATSET · · · · · · · · · · · · 

12. LOCAL DATASET UTILITIES . . · · · · · · · · · · · · · · · 
12.1 BLOCK - CONVERT UNBLOCKED DATASET TO BLOCKED DATASET 

xiv 

---------- -

· 

· 
· 
· 

· 
· 
· 
· 

· 
· 
· 
· 

· 

· 
· 
· 

· 
· 
· 
· 

· 
· 
· 
· 

7-20 
7-21 
7-22 
7-22 
7-23 
7-23 

8-1 

8-1 
8-12 
8-13 
8-13 
8-14 

9-1 

9-1 
9-13 
9-14 
9-14 
9-15 
9-16 
9-20 
9-21 
9-25 

10-1 

10-1 
10-6 
10-10 
10-13 

11-1 

11-2 
11-9 
11-13 
11-16 
11-17 

12-1 

12-2 

SR-0011 0 



12. LOCAL DATASET UTILITIES (continued) 

12.2 COPYD - COpy BLOCKED DATASET · · · 
12.3 COPYF - COPY BLOCKED FILES . 
12.4 COPYR - COPY BLOCKED RECORDS 
12.S COPYU - COpy UNBLOCKED DATASETS · · · · 12.6 NOTE - WRITE TEXT TO A DATASET · · · · 12.7 QUERY - RETURN STATUS AND POSITION INFORMATION 
12.8 REWIND - REWIND BLOCKED OR UNBLOCKED DATASET · 
12.9 SKIPD - SKIP BLOCKED DATASET 
12.10 SKIPF SKIP BLOCKED FILES . . · · 
12.11 SKIPR - SKIP BLOCKED RECORDS · · · · 
12.12 SKIPU - SKIP UNBLOCKED DATASET 
12.13 UNBLOCK - CONVERT BLOCKED DATASET TO UNBLOCKED 
12.14 WRITEDS - INITIALIZE A BLOCKED RANDOM OR 

SEQUENTIAL DATASET . . · . · · · 
13. ANALYTICAL AIDS 

13.1 COMPARE - COMPARE DATASETS 
13.2 DSDUMP - DUMP DATASET ..... 
13.3 
13.4 
13.S 

DUMP - DUMP REGISTERS AND MEMORY . 
DUMP JOB - CREATE $DUMP . • . . . . 
ITEMIZE - INSPECT LIBRARY DATASETS 

· . 
· 

· · 
· . 

· · · 
DATASET 

· · · 

13.S.1 File-level output . . . .. . ... 
13.5.2 Output for binary library datasets . 

· 
· 
· 

· 

13.6 
13.7 

PRINT - WRITE VALUE OF EXPRESSION TO LOGFILE .... 
SYSREF - GENERATE GLOBAL CROSS-REFERENCE LISTING . . 
13.7.1 Use of SYSREF .•........... 
13.7.2 Global cross-reference listing format 

14. CREATING AN EXECUTABLE PROGRAM 

14.1 
14.2 

LDR CONTROL STATEMENT 
LD2 CONTROL STATEMENT 

14.3 LOAD ORDER FOR LDR AND LD2 
14.4 LOAD MAP ... 
14.S 
14.6 

SR-0011 0 

SELECTIVE LOAD . 
OVERLAYS . . • . 
14.6.1 Overlay directives .. 

14.6.1.1 FILE directive. 
14.6.1.2 
14.6.1.3 
14.6.1.4 

OVLDN directive 
SBCA directive . 
SMMA directive . 

14.6.2 Type 1 overlay structure. 
14.6.3 Type 1 overlay generation directives 

14.6.3.1 ROOT directive 
14.6.3.2 
14.6.3.3 
14.6.3.4 

POVL directive . . . 
SOVL directive . . . . 
Generation directive example . 

12-3 
12-4 
12-4 
12-S 
12-6 
12-6 
12-7 
12-8 
12-8 
12-9 
12-10 
12-10 

12-12 

13-1 

13-2 
13-4 
13-7 
13-11 
13-11 
13-13 
13-14 
13-16 
13-17 
13-18 
13-19 

14-1 

14-1 
14-10 
14-12 
14-13 
14-16 
14-17 
14-18 
14-18 
14-18 
14-19 
14-19 
14-20 
14-22 
14-22 
14-22 
14-23 
14-23 

xv 



15. 

14.6 OVERLAYS (continued) 
14.6.4 Type 1 overlay generation rules 
14.6.5 Type 1 overlay execution . . · · 

14.6.5.1 Fortran language call 
14.6.5.2 CAL language call 

14.6.6 Type 2 overlay structure · · 
14.6.7 Type 2 overlay generation directive 

14.6.7.1 OVLL directive 
14.6.7.2 Generation directive 

14.6.8 Type 2 overlay generation rules 
14.6.9 Type 2 overlay execution · 

14.6.9.1 Fortran language call 
14.6.9.2 CAL language call 

14.6.10 Overlay generation 

BUILD UTILITY . . . 
15.1 BUILD CONTROL STATEMENT 
15.2 PROGRAM MODULE NAMES. 

PROGRAM MODULE GROUPS 
PROGRAM MODULE RANGES 
FILE OUTPUT SEQUENCE 

. 

log 

15.3 
15.4 
15.5 
15.6 
15.7 

FILE SEARCHING CONSIDERATIONS 
BUILD DIRECTIVES . . . . 
15.7.1 FROM directive. 
15.7.2 
15.7.3 

OMIT directive . . 
COpy directive . 

15.7.4 LIST directive. 
15.8 EXAMPLES ......•. 

. 

· . 
example 

· . 

. · 

· 
. 

. · 
· 

. · 

· 

· 

· 
· 

. 
14-24 
14-25 
14-26 
14-26 
14-27 
14-30 
14-30 
14-31 
14-32 
14-33 
14-33 
14-34 
14-35 

15-1 

15-1 
15-3 
15-3 
15-4 
15-4 
15-4 
15-5 
15-5 
15-6 
15-7 
15-8 
15-8 

16. JOB CONTROL LANGUAGE STRUCTURES 16-1 

xvi 

16.1 CONTROL STATEMENT LOGIC STRUCTURES 16-1 
16.1.1 Simple control statement sequences. . . 16-1 
16.1.2 Conditional control statement blocks. 16-1 

16.1.2.1 ELSE - Define alternate condition 16-2 
16.1.2.2 
16.1.2.3 
16.1.2.4 
16.1.2.5 
16.1.2.6 

ELSEIF - Define alternate condition 
ENDIF - End conditional block . .. 
EXITIF - Exit from conditional block . 
IF - Begin conditional block . 
Conditional block structures • . 

16.1.3 Iterative control statement blocks •... 
16.1.3.1 ENDLOOP - End iterative block 

16-2 
16-3 
16-3 
16-4 
16-4 
16-8 
16-8 

16.1.3.2 EXITLOOP - End iteration. • 16-9 
16.1.3.3 LOOP - Begin iterative block .. .. 16-9 

16.2 JOB CONTROL LANGUAGE EXPRESSIONS. . . . . . 16-10 
16.2.1 Operands 

16.2.1.1 
16.2.1.2 

Integer constants 
Literal constants 

16-10 
16-11 
16-11 

SR-0011 0 



16.3 

16.2.1 Operands 
16.2.1.3 

(continued) 
Symbolic variables • . 

16.2.1.4 Subexpressions ... 
16.2.2 Operators ......•.•.......... 

16.2.2.1 Arithmetic operators ........ . 
16.2.2.2 Relational operators. 
16.2.2.3 Logical operators ..... . 

16.2.3 Expression evaluation ...••• 
16.2.4 Strings .............. . 

16.2.4.1 Literal strings .... . 
16.2.4.2 Parenthetic strings 

PROCEDURES . . . 
16.3.1 
16.3.2 

16.3.3 

Simple procedures . . . . . . . . . . . . . 
Complex procedures .... ..••. 
16.3.2.1 PROC - Begin procedure definition 
16.3.2.2 Prototype statement - Introduce 

a procedure . . . . . . . . . 
16.3.2.3 Procedure definition body 
16.3.2.4 &DATA - Procedure data ..... . 
16.3.2.5 ENDPROC - End procedure definition .. 
Parameter substitution . . . . . . . .. 
16.3.3.1 Positional parameters ..... . 
16.3.3.2 Keyword parameters .......• 
16.3.3.3 Positional and keyword parameters 
16.3.3.4 Apostrophes and parentheses 

APPENDIX SECTION 

A. JOB USER AREA 

BG BEGIN CODE EXECUTION - BGN . . . . . . . 
DD DATASET DEFINITION LIST - DDL 
DP DATASET PARAMETER TABLE - DSP . 
DR DISK RESERVATION TABLE - DRT 
ER F$ERCL PARAMETER BLOCK - ERPB . 
IJ F$IJMSG PARAMETER BLOCK - IJPB 
NC NODE CONTROL BLOCK - NCB 
RCB RECEPTIVE CONTROL BLOCK - RCB 
MH INTER-JOB COMMUNICATION MESSAGE BUFFER - MHB 
JB JCL BLOCK INFORMATION TABLE - JBI . 
JC JOB COMMUNICATION BLOCK - JCB . . . . 
JS JCL SYMBOL TABLE - JST . . . . . . . . . 
JT JOB TABLE AREA - JTA . . . • . . . . . 
LD LABEL DEFINITION TABLE - LDT . . • . . 
LF LOGICAL FILE TABLE - LFT 
OD OPEN DATASET TABLE - ODN 
OP PARAMETER BLOCK FOR F$OPT - OPT 
PM PERMANENT DATASET DEFINITION - PDD 
TC TASK CONTROL BLOCK - TCB 

SR-0011 0 

16-11 
16-13 
16-14 
16-15 
16-15 
16-15 
16-16 
16-16 
16-16 
16-16 
16-18 
16-18 
16-19 
16-21 

16-21 
16-23 
16-23 
16-24 
16-24 
16-24 
16-24 
16-26 
16-26 

A-1 

A-2 
A-5 
A-8 
A-19 
A-21 
A-23 
A-27 
A-29 
A-30 
A-31 
A-33 
A-4l 
A-43 
A-62 
A-73 
A-74 
A-75 
A-76 
A-lll 

xvii 



B. 

C. 

D. 

E. 

F. 

SUBSYSTEM SUPPORT 

B.1 

B.2 
B.3 
B.4 
B.5 
B.6 

INTERJOB COMMUNICATION . . • • . . . • • 
B .1.1 Establishing communication .. ..... 
B.1.2 Sending and receiving messages ••••••• 
B.1.3 Closing communication paths .... 
B.1.4 System requests 
USER CHANNEL ACCESS 
EVENT RECALL . . . . • . • . . . 
SDT QUEUE MANIPULATION . 
OPERATOR MESSAGES . • . • . 
SYSTEM JOBS . . . . 

CHARACTER SET 

EXCHANGE PACKAGES 

PERMANENT DATASET STATUS CODES . . . . . . . . • . . . • . • . 

CONTROL STATEMENT PARAMETERS . . . . . . . . . . . . . • . • • 

FIGURES 

1-1 
1-2 
2-1 
2-2 
2-3 
2-4 
3-1 
3-2 

11-1 
11-2 
11-3 
11-4 
11-5 
11-6 
11-7 
11-8 
13-1 
13-2 

14-1 
14-2 
14-3 
14-4 

Cray Computer System Configuration . . . . . 
Central Memory Assignment . . • .. .••....•••• 
Data Hierarchy Within a Blocked Dataset .. ..•• 
Example of Dataset Control Words (Octal values shown) • . 
Interchange-format Tape Dataset (Octal values shown) ..•. 
Relationship of Levels of User 1/0 • • • • 
User Area of Memory for a Job . . . . . 
Example of a Job Logfile . . • • 
Audit, LO=S Listing .. ........ . . . • 
AUDIT, LO=P Listing . . . . • . . ... 
AUDIT, LO=L:P:N Listing. . ..•.. 
AUDIT, LO=L Listing . • . • • . . . • • . • • • • 
AUDIT, LO=N Listing . . . • •• .••. 
AUDIT, LO=L:R Listing. . . • • . . • • • • •••. 
PDSUMP Listing . . • • . . . . . . . • • • . 
PDSLOAD Listing . . • • . 
Sample Listing of ITEMIZE for a Program Library 
Sample Listing of ITEMIZE for a Binary Library Dataset 
with X and NF Parameters • . • • • 
Load Map Example . • • . 
Type 1 Overlay Loading Example 
Type 2 Overlay Tree Example • • • 
Type 2 Overlay Loading Example . • . • • • 

B-1 

B-1 
B-2 
B-3 
B-4 
B-5 
B-5 
B-6 
B-7 
B-7 
B-7 

C-1 

D-1 

E-1 

F-1 

1-2 
1-4 
2-10 
2-14 
2-16 
2-21 
3-5 
3-11 

11-7 
11-7 
11-8 
11-10 
11-11 
11-11 
11-15 
11-17 
13-13 

13-15 
14-14 
14-21 
14-28 
14-29 

xviii SR-0011 0 



FIGURES (continued) 

A-l 
A-2 
A-3 
A-4 
A-5 
A-6 
A-7 
A-8 
A-9 
A-10 
A-ll 
A-12 
A-13 
A-14 
A-15 
A-16 
A-17 
A-18 
A-19 
A-20 
A-21 
A-22 
A-23 
A-24 
A-25 
A-26 
A-27 
A-28 
A-29 
A-30 
A-31 
A-32 
A-33 
A-34 
A-35 
A-36 
A-37 
A-38 
A-39 
A-40 
A-41 
A-42 
A-43 
A-44 
A-45 
A-46 
A-47 
A-48 
A-49 

Begin Code Execution Table . . . . . 
Dataset Definition List • • • • • . • . 
Dataset Parameter Table • . • 
CDC Record Format • • • • • 
Save Areas Used by Asynchronous SETPOS 
Disk Reservation Table 
F$ERCL Parameter Block 
F$IJMSG Parameter Block . . 
Node Control Block 
Receptive Control Block . .•..• 
Inter-job Communication Message Buffer 
JBI Conditional Format . . • . . . . • 
JBI Iterative Format • . • • • 
Job Communication Block . . . • 
Additional Tags for Diagnostics 
JCL Symbol Table 
Job Table Area . • . • • 
JTA User Breakpoints 
JTA DNTs .• . • . . 
Provide Tags for JTUSR . . . . 
Provide Tags for JTGRN . • • . 
Label Definition Table Header . • . • . 
Header Redefinition of LDDNT 
VOLl Entry Description 
Redefinition of LDVSN? . . • • 
HDRl Entry Description 
HDR2 Entry Description 
Logical File Table 
Open Dataset Table 
Parameter Block for F$OPT 
Permanent Dataset Definition 
PDD Format 2 
PDD Format 3 
PDD Format 4 • . • • • • • 
PDD for PMFCACDC L@PMACDC=3 
POD for PMFCADX L@PMACDX=3 
PDD for PMFCACMC, PMFCLDMC • . . • . • . . 
POD for PMFCACBC, PMFCLDBC . . • . • . 
POD for PMFCONBU • • • • 
PDD for PMFCONSM 
Device List Entry for PMFCONSM 
POD for PMFCONRC and PMFCONCU • 
PDD for 
PDD for 
POD for 
PDD for 
PDD for 
POD for 
PDD for 

PMFCONxH through PMFCOFxx • 
PMFCSDEI . . • . • . 
PMFCCDEI . . • • . 
PMFCRET through PMFCSRLD 
PMFCBUAC 
PMFCRLD .• 
PMFCWRBC 

SR-OOll 0 

A-3 
A-5 
A-8 
A-17 
A-18 
A-19 
A-21 
A-23 
A-27 
A-29 
A-30 
A-31 
A-32 
A-33 
A-40 
A-41 
A-44 
A-59 
A-60 
A-60 
A-61 
A-63 
A-64 
A-65 
A-66 
A-67 
A-71 
A-73 
A-74 
A-75 
A-79 
A-88 
A-89 
A-90 
A-91 
A-92 
A-93 
A-94 
A-95 
A-96 
A-97 
A-98 
A-99 
A-100 
A-10l 
A-102 
A-103 
A-104 
A-105 

xix 



FIGURES (continued) 

A-SO 
A-51 
A-S2 
A-53 

PDD for PMFCGLDV and PMFCGRRL . . .• ..... 
POD for PMFCSRET, PMFCSRES, PMFCSDEL . . . . . . ...•.. 
PDD for PMFCARCL • • • . . • • . . • • • . • • . . • • • 
PDD for PMFCGKEY • . . . • . . • . . . . • • • 

A-S4 Task Control Block 
B-1 
D-1 
D-2 

TABLES 

1-1 
2-1 
4-1 
6-1 

8-1 
8-2 
9-1 
9-2 

13-1 
16-1 
16-2 
16-3 
16-4 
A-1 
C-1 
E-1 
F-1 

A Typical Subsystem Interjob Communication Structure 
CRAY-1 Exchange Package . . . . . • . . . • • . . • • . 
CRAY X-MP Exchange Package . . . . . • . . . . . . . 

Physical Characteristics of Tape Devices 
Tape Formats for Multidataset Access 
Control Statement Separators . . . . • . 
Permanent Dataset Management Control Statements for Each 
Medi urn . . •. ....•...•....... 
RS Defaults for IBM Tape Files 
RS Restrictions for IBM Tape Files 
RS Defaults for IBM Tape Files 
RS Restrictions for IBM Tape Files 
DSDUMP Output Format . . . . 
Symbolic Variable Table . . • . . . . 
Expression Operator Table . . • . . 
Keyword Substitution after Expansion 
Expansion of Parenthetic and Literal String Values 
Permanent Dataset Function Codes 
ASCII Character Set • . • . . • • . . 
POD Status • • • • . • . . . . • . 
Ranges and Installation Definitions . 

SUMMARY 

GLOSSARY 

INDEX 

A-106 
A-107 
A-108 
A-109 
A-111 
B-3 
D-1 
D-2 

1-7 
2-7 
4-S 

6-5 
8-10 
8-10 
9-11 
9-12 

13-7 
16-12 
16-14 
16-25 
16-26 

A-76 
C-1 
E-1 
F-2 

xx SR-0011 0 



COS 1.16 NEW FEATURES 

The 1.16 release of COS includes numerous enhancements of and additions 
to previous versions of the operating system. 

New features include: 

• Access of SEGLOR with the new L02 control statement. L02 is a new 
product that has the same interface as does LOR, but it invokes 
SEGLOR. The purpose of L02 is to assist users in migrating from 
LOR to SEGLOR. 

• The BLOCK/UNBLOCK control statements. BLOCK and UNBLOCK convert 
between COS blocked and unblocked dataset formats. In addition to 
converting datasets containing native Cray data, these utilities 
interpret and convert between Cray and front-end record 
structures. 

• The QUERY control statement. QUERY returns local mass storage 
dataset status and position information. 

• The TYPE parameter on the RESTORE control statement enables you to 
select retired and/or migrated datasets. 

• The SF parameter for FETCH has been added to $SYSLIB. 

• The SPO parameter on the ASSIGN control statement allows striping 
without system stripe devices. 

• The RF parameter on the ACCESS and ASSIGN control statements 
offers new options for VMS tape files. 

• Concatenated datasets. The concatenated dataset feature lets you 
view logically connected tape datasets as one dataset for the 
duration of a job step. This feature also provides positioning 
and rewinding within the same dataset. 





INTRODUCTION TO JOB PROCESSING 1 

COS is a multiprogramming, multiprocessing, and multitasking operating 
system for Cray computer systems. It makes efficient use of system 
resources by monitoring and controlling work presented to the system in 
the form of jobs. COS optimizes the use of system resources and resolves 
conflicts when jobs compete for resources. 

COS is a collection of programs that reside in either Cray mainframe 
Central Memory or on system mass storage following startup of the 
system. (Startup is the process of bringing the Cray computer system and 
the operating system to an operational state.) 

Jobs are submitted to the Cray computer system from one or more front-end 
computers (also referred to as stations in CRI manuals). Front-end 
computers can be any of a variety of computer systems. (Software 
executing on the front-end computer system is beyond the scope of this 
manual.) 

COS provides for the initiation and control of interactive jobs and data 
transfers between the Cray computer system and users on the front-end 
system. These features are available only where supported by the 
front-end system. 

1.1 HARDWARE REQUIREMENTS 

COS executes on the basic configuration of any CRAY X-MP or CRAY-1 
computer system. Each computer system contains the following components: 

• One or more central processing units (CPUs) 

• Central Memory 

• An 1/0 Subsystem (lOS) or a minicomputer-based maintenance control 
unit (MCU). The lOS performs all required MCU functions. 

• A mass storage subsystem. The mass storage subsystem consists of 
disk drives, an optional SSD solid-state storage device, and lOS 
Buffer Memory (BMR). 

• An optional IBM-compatible tape subsystem. The tape subsystem 
requires that an lOS be present. 

SR-0011 a 1-1 



I 

The lOS consists of from two to four 1/0 processors (lOPs) and 1/2-, 1-, 
2-, 4-, or 8-Mwords of shared BMR. The optional tape subsystem is 
composed of at least one block multiplexer channel, one tape controller, 
and two tape units. The tape units supported are IBM-compatible 9-track, 
200 ips, 1600 or 6250 bpi devices, and IBM 3480 cartridge drives. 

Figure 1-1 shows a basic system configuration. 

Local or Remote 

Interactive Terminals 

Local or Remote 
Job Entry Stations 

~ 

-z..-

-

Displays 

Front-end 

Computer 

System 

Peripherals 

Magnetic Tape 
Subsystem Option 

1 
Cray 

Computer 

System 

I 
Mass Storage 

Figure 1-1. Cray Computer System Configuration 

1000 

1-2 SR-0011 0 

--------



1.2 COS STARTUP 

COS is loaded into Central Memory and initiated through a system startup 
procedure performed at the IDS or MCU. At startup, linkage to the 
Dataset Catalog (DSC) is reestablished on mass storage. All permanent 
mass storage datasets are recorded in the DSC; thus, permanent datasets 
survive startup and the user can always assume that they are present. 
Refer to section 2 for more information on datasets. 

1.3 CENTRAL MEMORY ASSIGNMENT AND CHARACTERISTICS 

Central Memory is shared by COS, jobs running on the Cray mainframe, 
dataset IIO buffers, and system tables associated with the jobs. COS 
allocates the required resources to each job as these resources become 
available. As a job progresses, information is transferred between 
Central Memory and mass storage. These transfers can be initiated by 
either the job or COS. 

Figure 1-2 shows the assignment of memory to COS and to jobs. 

1.3.1 MEMORY-RESIDENT COS 

COS occupies two areas of Central Memory. The memory-resident portion of 
COS occupying lower memory consists of Exchange Packages, the System 
Executive (EXEC), the System Task Processor (STP), and optionally the 
Control Statement Processor (CSP). The memory-resident portion of COS 
occupying extreme upper memory contains station liD buffers, space for 
the system log buffer, and DSC information and buffers. 

1.3.2 USER AREA OF MEMORY 

COS assigns every job a user area in Central Memory. The user area 
consists of a Job Table Area (JTA) and a user field. 

1.3.2.1 Job Table Area (JTA) 

The JTA of each job contains the parameters and information required for 
monitoring and managing that job. You cannot access the JTA, but it can 
be dumped for analysis (refer to section 13, Analytical Aids). 

SR-0011 a 1-3 



o 

Maximum 
Memory 

User Areal 

User Area 2 

User Area 3 

User Area n 

Figure 1-2. Central Memory Assignment 

1.3.2.2 User field 

1008 

The job's user field is a block of memory immediately following the job's 
JTA and is always a multiple of 512 words. The beginning address [Base 
Address (BA)] and the end address [Limit Address (LA)] are set by COS. 
The maximum user field size is specified by a parameter on one of the job 
control statements (refer to section 6) or by installation-defined 
default. You can request changes in your user field size while the job 
is running. 

Compilers, assemblers, system utility programs, and user programs are 
loaded from mass storage into the user field and are executed in response 
to control statements in the job control statement file. Each load and 
execution of a program is referred to as a job step. 

1-4 SR-0011 0 



Section 3, COS Job Processing, gives a detailed description of the 
contents of the user field. Briefly, however, the first 200a words of 
the user field are reserved for an operating system/job communication 
area known as the Job Communication Block (JCB). Programs are loaded 
starting at BA+200a and reside in the lower portion of the user field. 
The upper portion of the user field contains tables and dataset I/O 
buffers. The user field addressing limit is equal to LA-1. 

All memory addresses for instructions and operands are relative to BA. 
The Cray mainframe adds the contents of BA to the address specified by a 
memory reference instruction to form an absolute address. A user cannot 
reference memory outside of the user field as defined by the BA and LA 
register contents; LA-1 is the user limit. 

1.4 MASS STORAGE CHARACTERISTICS 

All information maintained on mass storage by COS (except specific 
preallocated areas such as the Device Label) is organized into quantities 
of information known as datasets. You do not need to concern yourself 
with the physical transfer of data between disks and memory or with the 
exact location and physical form in which datasets are maintained on mass 
storage. COS translates your logical requests for data input and output 
into disk controller functions automatically. 

Each disk storage unit (DSU) contains a Device Label, datasets, and 
unused space to be allocated to datasets. The Device Label lists 
unusable (flawed) space on the DSU and indicates which DSU is the Master 
Device. The Master Device is the DSU that contains the DSC table. The 
DSC table contains information needed to maintain permanent datasets. 

Mass storage permanent datasets are always present and available. This 
permanence is achieved with techniques that permit the datasets listed in 
the DSC to be recovered or reestablished if a system failure occurs. 
Portions of COS (such as loaders, utility programs, compilers, 
assemblers, and library maintenance and generation routines) reside on 
mass storage devices as permanent datasets accessible by user jobs at any 
time. 

Job input and output datasets also reside on mass storage and are listed 
in the DSC. Because they are listed in the DSC, they are also regarded 
as permanent. This designation is somewhat misleading because their 
permanence is by definition not status. The input dataset is "permanent" 
from the time it is staged from the front-end system to the Cray computer 

SR-0011 a 1-5 



I 

system until the job terminates. Output datasets being disposed to a 
front end are "permanent" from job termination (or whenever the 
disposition was initiated) until the disposition is complete. The 
"permanent" status of these system-defined datasets allows them to be 
recovered (along with other permanent datasets) after a system failure. 

Any job can create a mass storage permanent dataset that can be 
subsequently accessed, modified, or deleted by any other job that has the 
correct access privileges and produces the correct permission control 
words. Permission control words are defined at the time the dataset is 
designated as permanent (that is, saved). 

A permanent dataset can be deleted by any user with the correct 
permission control word. Deleting a dataset notifies COS that the space 
occupied by the dataset is no longer permanent. However, the space is 
still reserved by the dataset until you release it. (Refer to sections 8 
and 10, respectively, for information on the RELEASE and DISPOSE control 
statements.) 

In addition to permanent datasets, mass storage is used for temporary 
datasets. Temporary datasets are created by a job and remain temporary 
unless designated permanent, released, or disposed to a front end by the 
job. A temporary dataset that is not saved or disposed is termed a 
scratch dataset and is deleted when the job releases it or when the job 
terminates. 

COS allocates space to a mass storage dataset by disk tracks. The space 
assigned to a single dataset can be noncontiguous and can even be on 
several different disk units. Both default and maximum size limits for 
datasets are defined by system parameters. Using the ASSIGN control 
statement, you have limited control of how mass storage is allocated to a 
dataset. 

1.5 MAGNETIC TAPE CHARACTERISTICS 

An IDS can include an Auxiliary I/O Processor (XIOP) with the capability 
of addressing up to 16 block multiplexer channels of tape units. Each 
block multiplexer channel can be attached to IBM-compatible control units 
and tape units in a variety of configurations. The block multiplexer 
channels communicate with the control units and tape units to allow 
reading and writing data that can also be read and written by 
IBM-compatible CPUs. Table 1-1 summarizes the physical characteristics 
of 200 ips, 9-track tape drives, and IBM 3480 cartridge drives. The 
block sizes in this table are used by the COS tape system for 
transparent-format tape datasets (described in section 2). 

1-6 SR-0011 0 



I 

Table 1-1. Physical Characteristics of Tape Devices 

Device 

Reel-to-reel 

Reel-to-reel 

Cartridge 

Density 
(Bits/In) 

6250 

1600 

N/A 

t Data-streaming mode 

SR-0011 0 

Transfer Rate 
(Kbytes/s) 

1170 

300 

2700t 

Data/2400-ft 
Reel Equiv. 

(Mbytes) 

168 

43 

200 

Block Size 
(Bytes) 

32768 

16384 

32768 

1-7 





DATASETS 

Nearly all information maintained by COS is organized as datasets. COS 
supports blocked and unblocked, interactive and tape (interchange and 
transparent) format dataset structures. Some important factors to 
remember about datasets are the following: 

• Dataset medium is the type of physical device on which the 
dataset resides. 

• Dataset structure is the logical organization of the dataset. 

• Dataset longevity is the retention period for the dataset. 

• Datasets must be local to the job to be usable. 

• The dataset disposition code tells the operating system what 
action to take when the dataset is no longer local. 

• Each dataset is known by its dataset name. 

• Datasets are read and written using operating system requests 
(user IIO interfaces). 

2.1 DATASET MEDIA 

2 

Datasets are often classified by medium. COS uses the classifications to 
identify the various types of datasets. 

• Mass storage datasets 
• Memory-resident datasets 
• Interactive datasets 
• Magnetic tape datasets 
• Integrated Support Processor (ISP) datasets 

2.1.1 MASS STORAGE DATASETS 

Mass storage datasets are those that reside on Cray mass storage devices; 
that is, on mass storage devices attached directly to the mainframe or to 
the IIO Subsystem (IOS). 

SR-0011 a 2-1 



2.1.2 MEMORY-RESIDENT DATASETS 

Datasets classified as memory-resident are those you specify to be kept 
in memory and are typically temporary datasets. A memory-resident 
dataset is wholly contained within one buffer (refer to the BS parameter 
on the ASSIGN control statement in section 8) and remains in memory at 
all times. Such a dataset ordinarily occupies no mass storage. A 
memory-resident dataset is normally a temporary dataset; however, a mass 
storage permanent dataset can be declared memory resident. 

A memory-resident dataset is defined through an ASSIGN control statement 
containing the MR parameter or through an F$DNT (described later) call to 
the system. If the F$DNT call is used, the Dataset Definition List (DDL) 
supplied should specify DDMR=l. (Refer to the description of the ASSIGN 
control statement in section 8.) In addition, the buffer size parameter 
on the ASSIGN control statement should specify a buffer large enough to 
contain the entire dataset plus one block. 

A dataset can be declared memory resident to reduce the number of I/O 
requests and disk blocks transferred. Memory residence is particularly 
useful for intermediate datasets not intended to be saved or disposed to 
another mainframe. All I/O performed on a memory-resident dataset occurs 
in the dataset buffers in memory and the contents of the buffers are not 
ordinarily written to mass storage. Such a dataset can neither be made 
permanent, nor may it be disposed to another mainframe, unless copied to 
mass storage. 

If at any time the system I/O routines are called to write to the dataset 
and the buffer appears to be full, the dataset ceases to be treated as 
memory resident, the buffer is flushed to mass storage, and all 
memory-resident indicators for the dataset are cleared. 

Normally, a memory-resident dataset is empty until written on. If an 
existing dataset is declared memory resident, it is loaded when the first 
read occurs. A user attempting to write to a memory-resident dataset 
must have write permission. As long as the buffer does not appear full, 
however, no actual write to mass storage ever occurs. Therefore, changes 
made to an existing dataset declared memory resident are not reflected on 
the mass storage copy of the dataset. 

Magnetic-tape datasets, mass storage execute-only datasets, and 
interactive datasets cannot be declared memory resident. 

2.1.3 INTERACTIVE DATASETS 

Interactive datasets are those specified as such by interactive jobs. 
Interactive datasets are supported by the front-end station. Batch users 
cannot create interactive datasets. 

2-2 SR-0011 0 



An interactive dataset differs from other datasets in that a physical 
image of the dataset is not maintained. Instead, records are transmitted 
to and from your terminal attached to the front-end station. Record 
positioning (for example, REWIND or BACKSPACE) is not possible. 

Interactive datasets are created by interactive jobs through the use of 
the ASSIGN control statement or F$DNT system call. 

2.1.4 MAGNETIC TAPE DATASETS 

Magnetic tape datasets are available to any job that declares tape 
resource requirements on the JOB control statement and specifies the 
appropriate information on its ACCESS control statement. Refer to the 
ACCESS control statement description in section 9 for more details. 

COS automatically switches volumest during dataset processing unless 
user end-of-volume (EOV) processing (defined later) is requested, and 
returns to the first volume of a multivolume dataset in response to a 
REWIND control statement. If a permanent write error occurs when trying 
to write a tape block for the user, COS automatically attempts to close 
the current volume. If the attempt succeeds, the system continues to the 
next volume. 

The COS tape system uses Buffer Memory (BMR) as a tape block buffering 
area so that the job's 1/0 buffer need not be as large as the tape 
block. This technique results in significant memory savings whenever 
large tape blocks are processed and increases transfer rates when smaller 
blocks are processed. The advantage in having a large 1/0 buffer is a 
reduction in the overhead in the tape subsystem. 

This subsection discusses the following aspects of using tape datasets: 

• Gaining access to a tape dataset 
• Bypass label processing 
• User tape end-of-volume processing 
• Tape mark processing 
• Multidataset access 

2.1.4.1 Gaining access to a tape dataset 

To gain access to an existing permanent tape dataset to read or rewrite 
or both, you must specify the file identifier (permanent dataset name), 
the desired device type, and, optionally, a volume identifier (VOL) 
list. The volume identifier list can consist of from 1 to 255 volume 

t In this context, the term "volume" means a reel of magnetic tape. 

SR-0011 a 2-3 



I 

identifiers. If the permanent dataset name (PDN) is omitted from the 
ACCESS control statement, the local dataset name is used as the file 
identifier. 

To create a tape dataset, the file identifier, the desired device type, 
and the NEW parameter option must be specified on the ACCESS control 
statement. If no file identifier is present, the local dataset name is 
used. If a volume identifier list is not specified on the ACCESS control 
statement, it is a nonspecific volume allocation (scratch tape). A 
specific volume allocation occurs when a volume identifier list is 
specified on the ACCESS request. COS records the volume label on the 
tape. Like all other physical datasets, new tape datasets must be 
written to before a read is allowed. 

More than one tape ACCESS control statement with the same dataset name, 
but a different permanent dataset name, will activate concatenation. 
Refer to the Concatenated Datasets subsection for more information on 
concatenated datasets. 

2.1.4.2 Bypass label processing 

Bypass label processing is a COS option controlled by the installation 
parameter I@BPL that lets you bypass a tape's label by declaring BP as a 
label type on the ACCESS control statement. Bypass label processing is 
not supported for transparent datasets. 

Normally, tape labels are scanned during the beginning of tape processing 
and at the end-of-data (EOD) and volume processing. This label 
processing is not performed when bypass label processing is operative. 
When the tape is mounted, the tape subsystem positions it at the 
beginning-of-tape (BOT). The first I/O request (read or write) begins at 
this point. If tape labels are present, you must take them into 
consideration. Your job can read an existing label, overwrite it, or 
position past it. A tape is treated as a nonlabeled tape with embedded 
tape marks while bypass label processing is in effect if BP is the label 
type specified for the LB parameter on the ACCESS control statement. 

If system security (I@SLVL) is in warning or full mode, bypass label 
processing is a privileged operation; otherwise, any user may request it. 

2.1.4.3 User tape end-of-volume processing 

The tape end-of-volume (EOV) feature, which may be used only by 
interchange format tapes, uses special processing system macros to allow 
you to gain control at tape EOV and perform special EOV and 
beginning-of-volume (BOV) processing. The special processing macros 
used, SETSP, STARTSP, ENDSP, TAPESTAT, and CLOSEV, affect individual 
datasets. If EOV processing is needed for more than one dataset, the 
macros must be issued for each tape dataset. Refer to the Macros and 
Opdefs Reference Manual, CRI publication SR-0012, for more information. 

2-4 SR-0011 0 



I 

I 

I 

You instruct the system to perform EOV processing by issuing the SETSP 
macro (with the ON option) after a tape dataset is opened. Using SETSP 
with the OFF option informs the system that EOV processing is no longer 
needed. The CLOSE macro also terminates EOV special processing. 

To test whether the tape dataset is at EOV, you must use the TAPESTAT 
macro after every READ, WRITE, and SYNCH macro. Not all macros that 
result in I/O operations return EOV status; for example, the CLOSE, 
POSITION, and REWIND macros do not return EOV status. For output 
datasets, you should use the SYNCH macro to flush the buffers and 
determine if EOV has been encountered before using such macros. 

After EOV is encountered, you can start EOV processing by issuing the 
STARTSP macro. During EOV processing, you can execute read, write, and 
position operations. Volume switching is done by issuing the CLOSEV 
macro. When EOV processing is complete, the ENDSP macro notifies the 
system to return to normal processing. 

During EOV processing, no read ahead is performed. Data blocks are read 
one at a time. Also, any position request with a relative block number 
is positioned from the current physical tape position. For output 
datasets, the physical and logical tape positions will differ because the 
last few blocks written will still be in the lOP buffer. The TAPEPOS 
macro lets your program determine how many blocks are buffered in the lOP. 

For an output dataset, the data in the lOP buffer when EOV is encountered 
is considered part of the dataset and may be read during EOV processing. 
Once any of this data is read, it is no longer part of output data. 
Because no read ahead is performed during EOV processing, the program may 
position backwards and read only the blocks on the tape. If this is 
done, the data in the lOP buffer is kept intact, and it will be written 
to tape when the ENDSP macro is issued. 

The use of the CLOSEV macro is not restricted to the EOV routine. You 
can issue the CLOSEV macro anytime during dataset processing. This macro 
lets you terminate an output tape anywhere and continue the dataset on 
the next tape. It also lets you read part of a tape and switch to the 
following tape. 

2.1.4.4 Tape mark processing 

Three label types are available that allow tape marks to be embedded in 
the data. These "field" formats are field ANSI labels (FAL), field 
standard IBM labels (FSL), and field nonlabeled (FNL). On output, a tape 
mark is created by a write EOF operation. On input, a tape mark is 
translated to an EOF. 

Field format tapes cannot be used with the transparent recording format. 

SR-OOl1 0 2-5 



I 
With these label types, when COS recognizes a tape mark, it translates it 
to an end-of-file (EOF) record control word and puts it in the data. You 
are responsible for recognizing EOF conditions. 

An attempt to position past a tape mark (using the POSITION macro) 
results in the following actions: The tape moves forward until the tape 
mark is encountered. At that point, tape movement stops and you get 
control. A residual record count is returned to find the position on 
tape and the tape is physically positioned after the tape mark just 
encountered. 

For input, all field format tapes (FAL/FNL/FSL) are processed for labels 
in the same way. If a label is encountered at BOT, it is validated based 
on its type. If no label is found, there is no validation. When a 
tapemark is detected, COS checks the next record for an EOV1 or EOF1 
trailer label. If EOV1 is found, COS performs an automatic volume 
switch. If EOF1 is found, COS performs EOD processing. If neither EOV1 
or EOFl is encountered, the tape is left positioned immediately following 
the tape mark ready for the next read. Labeled tapes not terminated with 
either SL or AL standard labels must be terminated by the program using 
CLOSE or CLOSEV system calls. 

For output, field format tapes are labeled based on the LB parameter on 
the ACCESS control statement. EOV labels are processed when either the 
EOT reflective marker is sensed or when the user program calls CLOSEV. 
EOF labels are written when the dataset is closed, rewound, or released. 

2.1.4.5 Multidataset access 

The user job can access more than one dataset on a tape labeled AL, SL, 
or NL. The FSEQ parameter on the ACCESS control statement identifies the 
accessible dataset. FSEQ=l accesses the first dataset, FSEQ=2 accesses 
the second, and so on. Table 2-1 details the tape formats. 

During ACCESS processing, the system requests a volume mount if the 
volume needed is not currently mounted. Only one dataset can be opened 
at a time on a volume. 

During CLOSE processing, a volume remains loaded if it is the first 
volume of another dataset in the same job. If it is not the first volume 
of another dataset, the volume is unloaded. 

During RELEASE processing, if the volume has not been unloaded, it 
remains loaded until no more datasets require the volume. 

The examples that follow show possible arrangements of ACCESS, OPEN, 
CLOSE, and RELEASE processing. 

2-6 SR-0011 0 



Table 2-1. Tape Formats for Multidataset Access 

AL and SL 
Single Volume 

Tapes 

VOL1 
HDRl 
HDR2t 

* 
DATA BLOCKS 

* 
EOFl 
EOF2t 

* 
HDRl 
HDR2t 

* 
DATA BLOCKS 

* 
EOFl 
EOF2t 

* 

* 
HDRl 
HDR2t 

* 
DATA BLOCKS 

* 
EOFl 
EOF2t 

* 
* 

t HDR2, EOF2, 
optional on 

* = Tapemark 

SR-OOll 0 

AL and SL Multivolume Tapes NL Single 
Volume and 

First Subsequent Multivolume 
Volume Volumes Tapes 

VOL1 VOL1 DATA BLOCKS 
HDRl HDRl 
HDR2t HDR2t 

* * 
DATA BLOCKS DATA BLOCKS * 

* * DATA BLOCKS 
EOFl EOFl 
EOF2t EOF2t 

* * 
HDRl HDR1 * 
HDR2t HDR2t DATA BLOCKS 

* * 
DATA BLOCKS DATA BLOCKS 

* * 
EOFl EOFl * 
EOF2t EOF2t * 

* * 
* 

* 
HDRl 
HDR2t 

* 
DATA BLOCKS 

* 
EOVl 
EOV2t 

* 
* 

and EOV2 are written by COS, however, their presence is 
tapes created by other computer systems. 

2-7 



Example 1: 

This job uses two datasets on volume TAPEl and reserves one tape drive. 
The order of processing does not have to be the same as the order of 
access. 

JOB,JN= ... ,*TAPE=l. 
ACCESS,DN=A,FSEQ=2,VOL=TAPE1. 
ACCESS,DN=B,FSEQ=1,VOL=TAPE1. 

RELEASE,DN=A. 
RELEASE,DN=B. 
IEOF 

Example 2: 

In the user program . . . 
Open B, process B, close B 
Open A, process A, close A 

This job uses two datasets which are contained on three volumes and 
reserves one tape drive. The order of processing does not have to be the 
same as the order of access. 

JOB,JN= ..• ,*TAPE=l. 
ACCESS,DN=A,FSEQ=2,VOL=TAPE1:TAPE2:TAPE3 
ACCESS,DN=B,FSEQ=1,VOL=TAPE1:TAPE2:TAPE3. 

RELEASE,DN=A. 
RELEASE,DN=B. 
IEOF 

In the user program . . . 
Open A, process A, close A 
Open B, process B, close B 

2.1.4.6 Concatenated datasets 

The concatenated dataset feature lets your job logically connect a group 
of tape datasets for the duration of your job. The job treats the 
connected datasets as one. Concatenation is activated when more than one 
tape dataset with the same local dataset name (DN= parameter on the 
ACCESS control statement) is encountered. Each dataset must have its own 
ACCESS control statement. This example is for tapes with like blocksize 
and recordsize. 

2-8 SR-001l 0 



Examples: 

ACCESS,DN=F1,PDN=ABC,VOL=T03461. 
ACCESS,DN=F1,PDN=DEF,VOL=T03462. 

Datasets with different record sizes but the same blocksize can be 
specified as follows: 

ACCESS,DN=F1,PDN=ABC,RS=80,VOL=T03461. 
ACCESS,DN=F1,PDN=DEF,RS=100,VOL=T03462. 

The Front End Tape Management Catalog cannot be used with concatenated 
datasets. 

A mixture of tapes ending with EOV or EOF is allowed. End-of-information 
is not returned to your program until all of the tapes accessed with the 
same local dataset name (DN=) have been read. 

2.1.5 INTEGRATED SUPPORT PROCESSOR (ISP) DATASETS 

An ISP dataset resides on another mainframe that communicates with COS 
using ISP software. COS and the ISP software function together to give 
the COS user access to the remote dataset as if it resides on a device 
directly attached to the Cray computer system. ISP datasets are 
accessible through the ISP and CONNECT control statements. Refer to the 
SUPERLINK/ISP General Information Manual, CRI publication SI-0154, or the 
SUPERLINK/MVS User Guide, CRI publication SI-0178, for further 
information on the ISP. 

2.2 DATASET FORMATS 

Dataset formats include blocked, unblocked, interactive, and tape. These 
are described in the sections that follow. 

2.2.1 BLOCKED FORMAT 

Blocked format is the default format for external types of datasets such 
as user input and output datasets. A blocked dataset is usually composed 
of one or more files, which are, in turn, composed of one or more 
records. Figure 2-1 shows the data hierarchy within a blocked dataset. 

SR-0011 0 2-9 



I 

Data in a blocked dataset can be ASCII character, binary, or both. 
Blanks are normally compressed in blocked coded datasets. Each block 
consists of 512 words. Blocked datasets use two types of control words: 
block and record. 

Record positioning requires a blocked format. The blocked format adds 
control words to the data to allow for processing of variable-length 
records and to allow for delimiting of levels of data within a dataset. 

Dataset 

Recordl Record2 Recordn 

1007 

Figure 2-1. Data Hierarchy Within a Blocked Dataset 

2.2.1.1 Blank compression 

Blank fields can be compressed in files containing only ASCII 
characters. Blank field compression is indicated by a blank-field 
initiator code followed by a count. The default blank-field initiator 
code is defined by the installation parameter I@BFI, which is either an 
ASCII code or 7778 indicating that blank compression will not be done. 
Blank compression can be inhibited using an ASSIGN statement parameter or 
an F$DNT system call. A blank field (3 to 96 characters) is compressed 
to a 2-character field. The count is biased by 368; the actual 
character count is limited to 418 ~ character count ~ 1768 (the 
ASCII graphics). 

2.2.1.2 Block control word 

The block control word (BCW) is the first word of every 512-word block. 

2-10 SR-0011 0 

------- - -- - --



Format: 

Field 

M 

BDF 

BN 

FWI 

o 4 11 31 55 63 

I MIIIIIIIIII*IIIIIIIIIIIIIIIIIII BN FWI 

Bits 

0-3 

11 

31-54 

55-63 

Description 

Type of control word (for BCW, M=O) 

Bad Data flag; indicates that the following 
data, up to the next control word, is bad. This 
flag is set by the lOS for magnetic tape 
datasets in interchange format. 

Block number; designates the number of the 
current data block. The first block in a 
dataset is block O. 

Forward index; designates the number of words 
(starting with 0) to the next record control 
word (RCW) or BCW. 

2.2.1.3 Record control word 

A record control word (RCW) occurs at the end of each record, file, or 
dataset. 

Format: 

Field 

M 

UBC 

o 4 10 20 40 55 63 

1 MI UBC 1* 1*1*11/11 PFI PRI FWI 

Bits 

0-3 

4-9 

Description 

Type of control word: 
lOS End-of-record (EOR) 
168 End-of-file (EOF) 
178 End-of-data (EOD) 

Unused bit count. For EOR, UBC designates the 
number of unused low-order bits in the last data 
word of the record terminated by the EOR. For 
EOF and EOD RCWs, this field is O. The data 
area protected by UBC must be zero-filled. 

SR-0011 0 2-11 



Field Bits 

TRAN 10 

BDF 11 

SRS 12 

PFI 20-39 

PRI 40-54 

FWI 55-63 

Description 

Transparent record field; used for an 
interactive output dataset only. If set, 
substitution of EOR RCWs is suppressed. 

Bad Data flag; indicates the following data, up 
to the next control word, is bad. This flag is 
set by the lOS for magnetic tape datasets in 
interchange format. If flag is set, an 
irrecoverable error was encountered in the 
following data. 

Skip remainder of sector; indicates that the 
next control word to follow is a BCW and the 
data after this RCW is not to be processed. 
This is used only in tape dataset processing. 

Previous file index; this field contains an 
index modulo 220 (20,000,000 8 ) to the 
beginning of the file; the index is relative to 
the current block such that if the beginning of 
the file is in the same block as this RCW, the 
PFI is o. 

Previous record index; this field contains an 
index modulo 215 (100,0008) to the block 
where the current record starts. The index is 
relative to the current block such that if the 
first word of data in this record is in the same 
block as this RCW, PRI is o. 

Forward word index (FWI); this field points to 
the next control word (RCW or BCW) and consists 
of a count of the number of data words up to the 
control word (that is, if the next word is an 
RCW or BCW, FWI is 0). 

Disregarding BCWs occurring at 512-word intervals in a dataset, RCWs have 
the following logical relationship in a dataset. 

An EOR RCW immediately follows the data for the record it terminates. If 
the record is null (contains no data), an EOR RCW can immediately follow 
an EOR or EOF RCW, or it can be the first word of the dataset. 

An EOF RCW immediately follows the EOR RCW for the final record in a 
file. If the file is null (contains no records), the EOF RCW can 
immediately follow an EOF RCW, or it can be the first word of the dataset. 

An EOD RCW immediately follows the EOF RCW for the final file in the 
dataset. If the dataset is null, the EOD RCW can be the first word on 
the dataset. 

2-12 SR-0011 0 



A typical dataset has many EOR RCWs per block. Figure 2-2 shows an 
example of dataset control words. In this example, a dataset is 
contained on four physical disk sectors, each beginning with a BCW (thus 
the four BCWs in this example are numbered 0, 1, 2, and 3). The dataset 
contains four files shown as F1, F2, F3, and F4. F1 contains the four 
records shown as R1 through R4, F2 contains records R5 through R7, F3 
contains no records at all, and F4 contains record R8. 

2.2.2 UNBLOCKED FORMAT 

Dataset lID can also be performed using unblocked datasets. The data 
stream for unblocked datasets does not contain COS RCWs or BCWs. 

COS does not allocate buffers for unblocked datasets in the job's I/O 
buffer area. You must specify an area for data transfer. When a read or 
write is performed on an unblocked dataset, the data goes directly to or 
from the user data area without passing through I/O buffers. The word 
count for data to be transferred must be a multiple of 512. 

Unblocked I/O cannot be performed on an interchange format tape dataset. 

2.2.3 INTERACTIVE FORMAT 

Interactive format closely resembles blocked format; however, each buffer 
begins with a block 0 BCW. Each record transmitted to or from COS by an 
F$RDC or an F$WDC call must contain a single record consisting of a BCW, 
data, and an EOR RCW. 

Either of two formats for interactive output can be assigned when the 
dataset is created: character blocked or transparent. Character blocked 
mode is the default. In character blocked mode, an EOR RCW is 
interpreted as a line feed or a carriage return. In transparent mode, 
the EOR RCW is ignored and you supply carriage control characters. 

2.2.4 TAPE FORMAT 

Tape datasets are written to and read from tape volumes. A tape volume 
is a reel of tape. A tape volume is also known as a dataset section 
(for example, in FSEC= on the ACCESS control statement). 

Data is read or written in tape blocks. A tape block is a unit of data 
recorded on magnetic tape between two consecutive interblock gaps. 

Tape datasets can be read or written using two different formats: 
interchange or transparent. Tape datasets can also be labeled or 
unlabeled. 

SR-0011 0 2-13 



Oat 

10 

16 

10 

R6(null) 10 

F2 

10 

16 

F3 (null) 16 

F4 R8 

Figure 2-2. Example of Dataset Control Words 
(Octal values shown) 

sew 

BOR 

BOR 

BOR 

BCW 

EaR 

BOF 

BOR 

BaR 

BaR 

BCW 

BOF 

F.QF 

BaR 

BOF 

EOO 

1004 

2-14 SR-0011 a 



2.2.4.1 Interchange format 

Interchange format is useful for reading and writing tapes that are also 
to be read or written on other vendors' systems. In interchange 
format, each tape block corresponds to a single logical record in COS 
blocked format (that is, the data between RCWs). 

In interchange format, tape block lengths can vary from one byte up to an 
installation-defined maximum, which cannot exceed 1,048,576 bytes 
(131,072 64-bit words). In general, the maximum block size should not 
exceed 200 kilobytes. Blocks exceeding this size may require special 
operational procedures, such as the use of specially prepared tape 
volumes having an extended length of tape following the end-of-tape (EOT) 
reflective marker and yield little increase in transfer rates or storage 
capacity. 

When a tape dataset is read in interchange mode, physical tape blocks are 
represented in the user's 1/0 buffer with BCWs and RCWs added by COS. 
The data in each tape block is terminated by an RCW. The unused bit 
count field in the RCW indicates the amount of data in the last word of 
the tape block that is not valid data. A BCW is inserted before every 
511 words of data, including the RCWs. The formats for RCWs and BCWs 
were described earlier. 

Figure 2-3 shows a tape dataset in interchange format. Tape blocks 
within tape label groups are not included in this format. The end of the 
dataset is represented by an EOF RCW followed by an EOD RCW. 

Multifile datasets are supported in interchange format by field label 
(FAL, FSL, and FNL) and BP label tapes. 

2.2.4.2 Transparent format 

In transparent format (disk image), each tape block is a fixed mul~iple 
of 512 words, generally based on the dataset density (that is, 16,384 
bytes at 1600 bli and 32,768 bytes at 6250 b/i). The data in the tape 
block is transferred unaltered between the tape and the 1/0 buffer in the 
user field; no control words are added on reading or discarded on 
writing. In transparent mode, the data can be in COS blocked or 
unblocked format. Transparent format tapes are not generally read or 
written by other vendors' equipment. 

SR-0011 a 2-15 



Tape Data as it Appears in I/O 
Buffer (in 512-word Units) 

Data in Tape Blocks 

VOL! 

HDR! 

HDR2 

* (Tapemark) 

Header Label Group 
(if labeled) 

Bew 0 
~~~~~------~ 

..... ...... .... 

...... "'--------' 
-'" 

Block 0 

...... "0 Block 1 
EOR 10 ........ . 1---'--'"""""""""'1....--................. . . . ... ...... . ... 

Bew 0 

EOR 10 

Bew 

EOR 10 40 

EOF 16 00 

EOD 17 00 

2-16 

" --
" 

" 
'" 

Data 

'" 

Unused 

Figure 2-3. 

". 
" . 

. '. 0.------, 

--

"" :~~:-- Block 2 
',~ 

'" 

• 
..... 

* (Tapemark) 

EOFl 

EOF2 

* 
* 

Last Data 
Block 

End of Data 
Label Group 
(if labeled) 

Or 

End of Volume 
Label Group 
(if labeled) 

Interchange-format Tape Dataset 
(Octal values shown) 

* (Tapemark) 

I EOV1 I 
I EOV2 I 

* 
* 

1037 

SR-0011 0 



2.3 DATASET LONGEVITY 

Permanent datasets are retained by COS until instructed otherwise. All 
other datasets are considered temporary, and are deleted when the job 
completes. 

2.3.1 TEMPORARY DATASETS 

A temporary dataset is available only to the job that created it. You 
can create temporary datasets explicitly by use of the ASSIGN control 
statement, or implicitly upon first reference to a dataset by name or 
unit number on an I/O request or an OPEN macro call. 

A temporary mass storage dataset is empty until written on. Rewinding or 
backspacing of a dataset is necessary before it can be read. 

To make a temporary dataset permanent, use the SAVE control statement. 
If the temporary dataset is not made permanent, it is released when the 
job terminates. A temporary dataset may also be released with the 
RELEASE control statement. When a temporary dataset is released, its 
mass storage (if used) is made available to the system. 

2.3.2 PERMANENT DATASETS 

Only mass storage or magnetic tape datasets can be permanent. 

2.3.2.1 Magnetic tape permanent datasets 

The subsection on dataset media earlier in this section discusses tape 
datasets. 

2.3.2.2 Mass storage permanent datasets 

A mass storage permanent dataset is maintained across system startups. 
Mass storage permanent datasets are of two types: 

• Those created by SAVE control statements made by the user or as 
the result of a front-end system SAVE command (user permanent 
datasets) 

• Input or output datasets 

SR-0011 0 2-17 



I 

User permanent datasets are maintained for as long as the user or 
installation desires. They can be protected from unauthorized access 
using permission control words and ownership values on the SAVE control 
statements. 

When a user permanent dataset is accessed through an ACCESS control 
statement (refer to section 9), it is copied to the job as a local 
dataset by the job requesting access. It still exists, however, as a 
permanent dataset on the system and can be used by other jobs unless 
unique access to that dataset was granted. You must have write 
permission to write to a permanent dataset. If any information in an 
existing permanent dataset is overwritten or if the size of a permanent 
dataset is changed, an ADJUST should be performed on that dataset (refer 
to section 9). When a permanent dataset is released or closed, an ADJUST 
is performed automatically if the size of the dataset changes. 

System permanent datasets relate to particular jobs or reflect the 
current operational state of COS. A job's input dataset is made 
permanent when the job is received by the Cray computer system and is 
deleted when the job terminates. Output datasets local to the job can 
be disposed of while the job is running or can be automatically made 
permanent when the job terminates and are then deleted from the Cray 
computer system after being sent to the front-end system for processing. 

An execute-only dataset is a user permanent dataset for which all forms 
of examination and modification by users are prohibited. An execute-only 
dataset is loaded by the COS Control Statement Processor (CSP) for 
execution. It differs from other user permanent datasets in several ways: 

• The dataset can be accessed, but it cannot be opened for reading 
or writing. 

• While an execute-only dataset is loaded in memory, DUMPJOB 
requests are not honored. 

• The execute-only dataset cannot be staged to a front-end by a 
DISPOSE request. 

• The execute-only dataset must be loaded by a dataset name call 
rather than by a load-and-go request by LDR or SEGLDR. 

Because execute-only is a dataset state rather than a permission mode, it 
is advisable to set, at minimum, a maintenance permission control word to 
disallow modification or deletion of the dataset. 

2-18 SR-0011 0 

---_._--------



2.4 LOCAL DATASETS 

A dataset to which a job has access is a local dataset. A local dataset 
can be a temporary or a permanent dataset. Permanent datasets are made 
local with the ACCESS control statement or the ACCESS library subroutine 
(described in the Programmer's Library Reference Manual, CRI publication 
SR-0113). If the dataset referenced is a tape dataset, the device 
resource must also be specified on the JOB control statement (refer to 
section 1). 

2.5 DATASET DISPOSITION CODES 

Each dataset is assigned a disposition code that tells COS what to do 
with the dataset when the job ends or the dataset is released. The 
disposition code is one of the parameters of the DISPOSE and ASSIGN 
control statements (refer to section 8). 

Each disposition code is a 2-character alphabetic code describing the 
destination of the dataset. The default disposition code for a dataset 
is SC (scratch) when a dataset is opened, unless the dataset named is one 
of a group of special names such as $PLOT, $PUNCH, and $OUT. By default, 
COS assigns the disposition code PR (print) to $OUT when the dataset is 
created. No DISPOSE statement is required for $OUT; a PR disposition 
automatically routes it to the station and terminal from which the job 
was submitted unless a DISPOSE statement changes either the disposition 
code or destination station or terminal. 

2.6 USER DATASET NAMING CONVENTIONS 

There are two types of naming conventions for user datasets; one for 
local datasets and a different one for permanent datasets. Each type 
requires an assigned symbolic name. 

A local dataset name consists of 1 to 7 characters: the first 
character must be an uppercase A through Z, $, @, or %; the remaining 
characters may be any alphanumeric character. If you specify a lowercase 
name, COS interprets the characters as uppercase. COS does not accept a 
lowercase local dataset name that is within double quotes. For example: 

JCL Name Assignment 

ASSIGN, DN NAME. 
ASSIGN, DN : name. 

SR-0011 0 

COS Interpretation 

NAME 
NAME 

2-19 



I 

JCL Name Assignment COS Interpretation 

ASSIGN, DN = 'NAME'. 
ASSIGN, DN 'name'. 
ASSIGN, DN = "name". 

NAME 
NAME 
Error 

A permanent dataset name is less restrictive; it can contain upper and 
lowercase alphanumeric characters, $, @, or %. If a lowercase name is 
specified, COS interprets the characters as uppercase. If a lowercase 
name within double quotes is specified, COS accepts the name as 
lowercase. For example: 

JCL Name Assignment COS Interpretation 

SAVE, DN=X, PDN 
SAVE, DN=X, PDN = 
SAVE, DN=X, PDN = 
SAVE, DN=X, PDN = 
SAVE, DN=X, PDN 

NAME. 
name. 
'NAME' • 
'name' . 
"name". 

NAME 
NAME 
NAME 
NAME 
name 

Other considerations: 

• Do not use characters with the octal codes 000 through 037 or 177 
through 377. These are unprintable characters. Refer to the 
ASCII character set in appendix C for details. 

• Certain language processors place further restrictions on dataset 
names. 

• Most datasets defined by COS are assigned names of the form 
$dn. Because datasets whose names begin with a $ may receive 
special handling by the system, refrain from using this format 
when naming datasets. 

2.7 USER 1/0 INTERFACES 

When using logical liD, you are never directly concerned with the actual 
transfer of data between the devices and the system buffers. Figure 2-4 
shows the relationship of different levels of user logical liD interfaces 
and routines. In this figure, the request levels and routine calls are 
summarized without going into detail about the movement of data between 
the system buffers and user program areas. Refer to the Macros and 
Opdefs Reference Manual, CRI publication SR-0012, for details on logical 
liD. 

The highest level of user interface is liD statements used by programming 
languages such as Fortran and Pascal; the lowest level is in the form of 
specially formatted requests called Exchange Processor requests. 

2-20 SR-0011 0 



AsynchrounOU5 I/O 

CAL Buffered 

1/0 Macros 

BUFIN BUFOUT BUFEOF 
BUFINP BUFOUTP BUFEOD 

CFT Buffered 
I/O Statements 

Buffer IN 

Buffer OUT 

CAL Unblocked 
I/O Macros 

CFT Formatted/ 
Unformatted Statement 

READ 
PRINT 

PUNCH 

WRITE 

CIO 

:~:: ::: ::~~~ 1------------+1 ~~~~~ ~~~~~EXI 
@WllDS @REWD CIDTR 

CUIOS CDSPE 

Synchrounous I/O 

CAL Blocked I/O Macros 

READ WRITE WRITEF 
READP WRITEP WRITED 
READC WRITEC BKSP 

READCP IiRITECP BKSPF 

SWllDR 
$WllDP 
$WCHR 

$WCHP 

SWllDS 

GETPOS 
SETPOS 

SWEOF SGPOS 
$WEOD $SPOS 

$REIIO 

SBKSP 
$BKSPF 

Figure 2-4. Relationship of Levels of User I/O 

User 
Interface 

System 
Calls 

User 

System 

1315 

Fortran statements fall into two categories: formatted/unformatted and 
buffered. The formatted/unformatted statements ~esult in calls to 
library routines $RFI through $WUF. If the dataset is blocked, these 
routines call the logical record I/O routines. The logical record I/O 
routines perform blocking and deblocking. The logical record I/O 
routines communicate with COS through the Exchange Processor requests, 
F$RDC and F$WDC. 

If the dataset is unblocked, $RUA or $WUA calls the unblocked dataset 
routine $RLB or $WLB. These routines do no blocking or unblocking of 
data. The unblocked I/O routines communicate with the system through the 
F$RDC and F$WDC Exchange Processor calls. 

Buffered I/O takes a different path from formatted/unformatted I/O. 
These routines interface (through an F$BIO Exchange Processor request) to 
routines in COS that normally perform logical I/O for system tasks. 
These routines, called Task I/O (TIO), closely resemble the logical 
record I/O routines. TIO and the logical record 1/0 routines make 
similar requests of circular I/O routines in COS although the mechanism 
for making these requests is different. 

SR-OOll 0 2-21 



Circular I/O (CIO) routines are the focal point for all logical I/O 
generated by COS. CIO communicates its needs for physical I/O to the 
Disk Queue Manager (DQM) or Tape Queue Manager (TQM). 

All I/O on the lowest levels from DQM and TQM is asynchronous; meaning 
that wuen you do a write, the information is passed to COS, but the 
actual transfer to disk or tape is performed later. This method of I/O 
is a performance feature termed write-behind (which for disk is 
controlled by the COS installation parameter I@DTDREP). On a rare 
occasion with write-behind enabled, a job can complete before the 
physical transfer of data actually occurs, and if an error is found after 
job completion, there is no mechanism for reporting it. 

A Fortran buffered I/O request issued for an unblocked dataset results in 
the buffered I/O routines calling the unblocked dataset routines $RLB and 
$WLB, which then process these requests. These requests are processed 
the same as formatted/unformatted requests except that buffered I/O 
requests return control to you after initiating I/O rather than waiting 
for completion of the I/O request. For a Cray Assembly Language (CAL) 
buffered I/O request, $CBIO is called to route the request to either the 
blocked or unblocked I/O processing routines. 

The Macros and Opdefs Reference Manual, eRI publication SR-0012, 
describes the CAL I/O macros. The Programmer's Library Reference Manual, 
eRI publication SR-Ol13, describes the logical record I/O routines and 
Fortran I/O routines. Refer to the Fortran (eFT) Reference Manual, eRI 
publication SR-0009, or the CFT?? Reference Manual, CRI publication 
SR-0018, for a description of Fortran statements. 

2-22 SR-OOl1 0 



COS JOB PROCESSING 

A job is a unit of work submitted to COS. It consists of one or more 
files of statements, which may be control statements or input to a 
processing routine. The files form a job dataset. Each job passes 
through several stages from the time the job is entered until the job 
terminates. 

3.1 JOB DATASET STRUCTURE 

3 

A job originates as a dataset at a front-end computer system. Control 
statements and data in the job dataset are organized into one or more 
files. The following example represents a typical job dataset consisting 
of a control statement file, a source file, and a data file. (The 
statement formats for end-of-file and end-of-data are defined by the 
front-end system.) 

Example: 

JOB,JN= 
Control statements 

<eof> 
Source file 

<eof> 
Data file 

<eof> 

The first (or only) file of the job dataset must contain the job control 
language (JCL) statements that specify the processing requirements for the 
job (section 4 describes JCL). Each job begins with a JOB control 
statement that identifies the job to COS. If accounting is mandatory in 

SR-0011 0 3-1 



your system, the ACCOUNT control statement must immediately follow the 
control JOB statement. All other control statements follow. Control 
statements can be grouped into control statement blocks as described in 
section 16. 

At the end of the JCL file is an end-of-file (EOF) record (or an 
end-of-data (EOD) record if the job consists of a control statement file 
only). 

Files following the control statement file can contain source code or 
data. These files are handled according to instructions given in the JCL 
file. 

3.2 JOB FLOW 

A job passes through the following stages from the time it is read by the 
front-end computer system until it completes: 

• Entry into COS 

• Initiation on the system 

• Advancement through the system 

• Termination 

3.2.1 JOB ENTRY 

A job enters the system in the form of a dataset submitted from a 
front-end computer system or by a JCL SUBMIT control statement and a job 
already executing (described in section 10). The job is transferred to 
Cray computer system mass storage, where it resides until it is scheduled 
to begin processing. The job input dataset ($IN) is made permanent until 
it is deleted at the completion of the job. 

3.2.2 JOB INITIATION 

COS examines the parameters on the JOB control statement to determine the 
resources needed. When the system resources required to begin are 
available, the job is scheduled to begin processing (initiated). 

Initiation of a job includes preparing a Job Table Area (JTA) and user 
field in memory, positioning the input dataset for the first job step, 
and placing the job in a queue for the CPU. 

3-2 SR-0011 0 



When COS schedules the job for processing, it creates four datasets: $CS, 
$IN, $OUT, and $LOG. 

$CS is the job's control statement file from $IN and is used only by the 
system; you cannot access $CS by name. This dataset is used to read job 
control statements, and its disposition code is SC (scratch). 

$IN is the job input dataset. The job itself can access the input 
dataset, with read-only permission, by its local name, $IN, or as Fortran 
unit 5. The disposition code for $IN is SC (scratch). 

$OUT is the job output dataset. 
local name or as Fortran unit 6. 
(print). 

The job can access this dataset by its 
The disposition code for $OUT is PR 

$LOG is the job's logfile and contains a history of the job. This dataset 
is known only to COS; you cannot access $LOG by name. User messages can 
be added to the job's logfile with the MESSAGE system action request macro 
(refer to the Macros and Opdefs Reference Manual, CRI publication 
SR-0012,) or the REMARK, REMARK2, or REMARKF subroutines (refer to the 
Programmer's Library Reference Manual, CRI publication SR-Ol13). 

3.2.3 JOB ADVANCEMENT 

Job advancement is the processing of a job according to the instructions 
in a control statement file. Advancement occurs as a normal advance or as 
an abort advance. 

A normal advance causes COS to interpret the next control statement in the 
job's control statement file. When a job step is multitasked, a job 
advance deletes all user tasks except the one that causes the advance. 

An abort advance occurs if COS detects an error or if you request that the 
job abort. The Exit Processing subsection describes abort advances. 

3.2.4 JOB TERMINATION 

Output from a job is placed on system mass storage. At completion of a 
job, COS appends $LOG to $OUT and returns $OUT to its originating 
station. $IN, $CS, and $LOG are released. $OUT is renamed jn (from the 
JN parameter value of the JOB control statement described in section 7) 

and is directed to the output queue for staging to the originating 
front-end computer system. When the front end receives the entire 
contents of $OUT, the output dataset is deleted from COS mass storage. 

The front-end computer processes $OUT as specified by the dataset 
disposition code. If, for any reason, $OUT does not exist, $LOG is the 
only output returned at job termination. 

SR-OOll 0 3-3 



If COS encounters an error as it attempts to copy $LOG to $OUT, $LOG is 
disposed as a separate dataset. 

3.3 JOB MEMORY MANAGEMENT 

Central Memory is one of the resources allocated to a job by COS. A 
job's memory is composed of several distinct areas. Some of these areas 
are managed exclusively by COS; others are managed by both you and COS. 

Figure 3-1 shows a job in memory. The total job size equals the length 
of the job's JTA plus the user field length. The lined area between 
WJCHLM and WJCLFT is unused space within the job and contains enough 
memory to guarantee that the user area is always a multiple of 512 words. 

3.3.1 INITIAL MEMORY ALLOCATION 

When the job initiates, it is given sufficient memory for the Control 
Statement Processor (CSP) to execute. Once the JOB statement is 
processed, the job is allowed a user field length no larger than the 
amount specified by the MFL parameter on the JOB control statement (refer 
to section 7). 

3.3.2 FIELD LENGTH REDUCTION 

There are two modes of user field length reduction: automatic and user 
managed. A job initiates in automatic field length reduction mode, and 
the system automatically increases and decreases the job's field length 
as the areas within the job increase and decrease. 

When a job is in user-managed field length reduction mode, the system 
continues to increase the job's field length as before, but never 
automatically decreases it. The job's field length can be decreased only 
by the user until the job is returned to automatic field length reduction 
mode. 

Increases in field length can result in the job requ1r1ng more memory 
than can be immediately supplied, which causes the job to be delayed 
until sufficient memory can be given to it. Therefore, you may want to 
manage the job's field length when it is known that the job will undergo 
frequent short-lived fluctuations in size. The field length can be 
reduced at the beginning of each job step and during each job step if the 
job is in automatic field length reduction mode and any area of the job 
decreases. 

3-4 SR-0011 0 



n 
//////////////////////////////////////////////////////// 

//////////////////////////////////////////////////////// 

//////////////////////////////////////////////////////// 

/////////////////// Job Table Area /////////////////// 
//////////////////////////////////////////////////////// 

o //////////////////////////////////////////////////////// 

128 

WJCHLM 

WJCLFT 

WJCDSP 

WJCBFB 

W@JCFL 

Job Communication Block 

User Code/Data 

Blank Common 

Heapt 

//////////////////////////////////////////////////////// 

/////////////////////// Unused /////////////////////// 
//////////////////////////////////////////////////////// 

Logical File Tables 

Dataset Parameter Area 

I/O Buffers 

Figure 3-1. User Area of Memory for a Job 

t Although the heap follows blank common in the figure, it can 
optionally precede blank common. 

SR-OOll 0 

User 
Field 

3-5 



3.3.3 USER MANAGEMENT OF MEMORY 

A user can dynamically manage the user code/data area of the job by 
requesting an increase or decrease of memory at the end of the user 
code/data area. 

A user can manage the field length of the job by requesting a specific 
field length. 

When the user manages the field length of the job, the job is placed in 
user-managed field length reduction mode for the duration of the job step 
(the next job step when using the MEMORY control statement described in 
section 7). 

A user can place the job in user-managed field length reduction mode 
across job steps by explicitly requesting that mode. The job remains in 
user-managed field length reduction mode until the user explicitly 
requests automatic field length reduction mode. 

3.3.3.1 Management by control statement from the run stream 

A user can use the MEMORY control statement to manage the job's field 
length. When the user manages the job's field length, the job will be 
placed in user-managed field length reduction mode for the duration of 
the next job step. The MEMORY control statement may also place the job 
in user-managed field length reduction mode across job steps or return 
the job to automatic mode. 

3.3.3.2 Management from within a program 

From within a program, the MEMORY macro or MEMORY routine requests user 
management of the job's user code/data area and field length. When the 
user manages the job's field length, the job is placed in user-managed 
field length reduction mode for the duration of the job step. The MEMORY 
macro or MEMORY routine may also place the job in user-managed field 
length reduction mode across job steps or return the job to automatic 
mode. 

3.3.3.3 Management associated with a program 

Use of the SEGLDR directives BCINC, PADINC, and NORED, and the LDR 
control statement parameters BC, PAD, and NORED causes certain types of 
memory management to be associated with the binary being loaded. (Refer 
to the Segment Loader (SEGLDR) Reference Manual, CRI publication SR-0066, 
for more information on SEGLDR and section 14 of this manual for more 
information on LDR.) This association is stored with the binary if the 

3-6 SR-0011 0 



,- b~~~~¥ ~~ ~~vQd on a dataset. The management associated can be user 
code/data area management or field length management and occurs when the 
binary is loaded for execution. If the field length is being managed, 
the job is placed in user-managed field length reduction mode for the 
duration of program execution. 

3.3.4 SYSTEM MANAGEMENT OF MEMORY 

The system changes appropriate areas of the job's memory when a job 
initiates certain system actions (that is, advances to the next job step, 
does I/O, and so on). The JTA, Logical File Tables (LFTs), and Dataset 
Parameter Area (DSP) pictured in figure 3-1 can increase but will never 
decrease. The user code/data and buffer areas may both increase and 
decrease in size. If the job is in automatic field length reduction 
mode, the system automatically increases and decreases the job's field 
length when any area in the job increases or decreases. If the job is in 
user-managed field length reduction mode, the system continues to 
increase the field length when it needs to, but never automatically 
decreases the field length. 

3.4 JOB RERUN 

Under certain circumstances, you may want to rerun a job from the 
beginning. Conditions that cause the system to attempt to rerun a job 
are as follows: 

• An operator command 
• An uncorrectable memory error 
• An uncorrectable error reading the mass storage image of a job 
• A system restart 

A user job may perform certain functions that make it impossible to 
rerun. The functions render a job nonrerunnable because they produce 
results that might cause the job to run differently if it were rerun. 
These functions include the following: 

• Writing to a permanent dataset 
• Saving, deleting, adjusting, or modifying a permanent dataset 
• Acquiring a dataset from a front-end system 

Ordinarily, when a job becomes nonrerunnable, it remains so; however, you 
may declare that the job is rerunnable. You should do this only when 
changes in job results due to execution of nonrerunnable functions are 
acceptable. COS never makes a job rerunnable automatically. 

SR-0011 0 3-7 



You can also override system monitoring of job rerunnability, regardless 
of what functions the job performs. This ordinarily is done only if the 
job is structured to run correctly regardless of the functions 
performed. 

3.5 EXIT PROCESSING 

When COS detects an error condition or when you request a job step abort, 
COS checks to see if the condition is to be reprieved. (The next 
subsection describes reprieve processing.) If no reprieve occurs, exit 
processing occurs. 

Generally, when a job step abort occurs, the current job step is 
immediately abandoned and control statements are skipped until the next 
eligible EXIT statement is encountered (section 7 describes EXIT). 
Normal job advancement occurs with the EXIT statement that is found. If 
no eligible EXIT statement is found, the job is terminated. EXIT 
statements within control statement blocks (iterative, conditional, or 
in-line procedure) that have not yet been invoked are ignored during the 
search for the next eligible EXIT statement. 

If the block currently being processed is a conditional block (refer to 
section 16), and the system encounters an abort condition, COS suspends 
execution until it reaches the first EXIT statement at the same 
conditional level. If there is no EXIT within the block, COS suspends 
execution until the first EXIT statement after the conditional block. 

COS ignores all statements including EXITs within any unexecuted blocks 
and, if no EXIT statement is at the same conditional level, also ignores 
statements between that block and the first EXIT following it. For 
example, in the following control statement sequence, an abort advance 
occurs at the control statement THIS IS A JOB STEP ABORT CONDITION 
because it does not begin with a valid verb. Control statement 
interpretation resumes with the control statement *. RESUME HERE. 

Exit processing is not performed for interactive jobs except inside an 
invoked procedure. After a job step abort occurs, you are simply 
prompted for the next control statement. 

3-8 SR-OOll 0 



Example: 

SET,Jl=O. 
IF(Jl.EQ.O) 

THIS IS A JOB STEP ABORT CONDITION. 
ELSEIF (Jl.EQ.l) 

EXIT. 
ELSE. 

EXIT. 
ENDIF. 

EXIT. 
* RESUME HERE 

3.6 REPRIEVE PROCESSING 

Normally, when a job step abort condition occurs, exit processing begins. 
Reprieve processing, however, lets a user program attempt recovery-from 
many of the job step abort conditions or perform clean-up functions 
before continuing with the abort. 

Reprieve processing can also be invoked during the normal termination of 
a job step. In this case, control transfers to the user's reprieve code 
instead of to the next normal job step. 

Two types of error conditions are related to a job step abort condition: 
nonfatal and fatal. They are as follows: 

• Nonfatal error conditions are those that you can reprieve any 
number of times per job step. 

• Fatal error conditions can be reprieved only once for each type 
per job step. 

SR-OOll 0 3-9 



When requesting reprieve processing, you select the conditions to be 
reprieved by setting a mask in the SETRPV subroutine or macro call. If a 
selected condition occurs during job processing, your current job step 
maintains control. The user's Exchange Package, vector mask register, 
error code, and error class are saved, and control passes to the user's 
reprieve code. 

3.7 INTERACTIVE JOB PROCESSING 

An interactive job dataset has interleaved control statements, program or 
utility input, and program or utility output. In an interactive job, the 
control statement file ($CS), standard input dataset ($IN), standard 
output dataset ($OUT), and logfile ($LOG) are all defined by the system to 
be interactive datasets. Refer to section 2 for more information on 
interactive datasets. 

Each job step of an interactive job is initiated with a control 
statement. Control statements can be either part of a procedure 
invocation or entered directly from the interactive terminal. After each 
control statement is received by COS, input to the job step can be entered 
from the terminal, and output and logfile information is returned to the 
terminal. When the current job step is complete, normal job advancement 
occurs, and COS prompts for the next control statement or reads it from 
the invoked procedure file. Exit processing (refer to section 3) is never 
performed on an interactive job except within a procedure invocation. 

Whenever a program or utility executing as part of an interactive job 
requests to read from the standard input dataset, the interactive user is 
prompted to enter data one record at a time. Likewise, any data written 
to $OUT, the standard output dataset, is sent to the interactive 
terminal. User logfile messages are also sent to the interactive terminal. 

3.8 JOB LOGFILE AND ACCOUNTING INFORMATION 

For each job that runs, COS produces a logfile, which is an abbreviated 
history of the progress of the job through the system. The logfile for a 
noninteractive job appears at the end of the job output. Each job control 
statement is listed sequentially, followed by any messages associated with 
the job step. Clock time, accumulated CPU time, and COS information are 
also given for each job step. Figure 3-2 shows the items usually 
contained in a logfile. Item 6 illustrates the accounting information 
given to the user. 

3-10 SR-0011 0 



• 

11 51 10.598~CSP 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 
11 51 

10.5990 
10.5993 
10.5996 
10.5999 
10.6058 
10.6322 
10.6325 
10.6329 
10.6332 
10.6335 
10.6626 
10.7136 
11. 3553 
11. 3556 
11.3559 
11. 4401 
17.5634 
17.5641 
17.5647 
17.5654 
17.5662 
17.7286 
17.9139 
25.6768 
25.6813 
25.6817 
25.7006 
25.7024 
25.7080 
25.7082 
25.8395 
25.8399 
25.8405 
25.8412 
25.8416 
25.8420 
25.8424 
25.8428 
25.8432 
25.8436 
25.8443 
25.8448 
25.8452 
25.8456 
25.8460 
25.8464 
25.8467 
25.8471 
25.8475 
25.8479 
25.8483 
25.8487 
25.8491 
25.8495 
25.8499 
25.8503 
25.8507 
25.8510 
25.8514 
25.8518 

0.0000 
0.0000 
0.0000 
0.0001 
0.0003 
0.0003 
0.0003 
0.0003 
0.0003 
0.0003 
0.0003 
0.0012 
0.0575 
0.0575 
0.0575 
0.0580 
0.1890 
0.1893 
0.1896 
0.1899 
0.1903 
0.1908 
0.1915 
0.4228 
0.4229 
0.4229 
0.4230 
0.4230 
0.4230 
0.4230 
0.4232 
0.4232 
0.4232 
0.4232 
0.4232 
0.4232 
0.4232 
0.4232 
0.4232 
0.4233 
0.4233 
0.4233 
0.4233 
0.4233 
0.4233 
0.4233 
0.4234 
0.4234 
0.4234 
0.4234 
0.4234 
0.4234 
0.4234 
0.4234 
0.4234 
0.4234 
0.4234 
0.4234 
0.4235 
0.4235 

CSP 
CSP 
CSP 
CSP 
CSP 
CSP 
CSP 
CSP 
CSP 
CSP 
CSP 
CSP 
EXP 
EXP 
EXP 
CSP 
USER 
USER 
USER 
USER 
USER 
CSP 
USER 
USER 
USER 
EXP 
CSP 
CSP 
CSP 
CSP 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 
USER 

-----~-~~;~-~=~;-;~~7;~=;~~i4~----~~7-=-~~~~~~;-~~7~~~;~-~7~~~-~~i~4i~6--------

~CRAY OPERATING SYSTEM COS 1.16 ASSEMBLY DATE 10/05/86 

JOB(JN=TEST,T=4) 
ACCOUNT(AC=,US=,UPW=) 
* 

Compile and run a program. 

CFT77( L=O) 
FFOOl - CFT77 VERSION 1.1 09/25/86 22:33:06 I 
FF002 - COMPILE TIME .123 SECONDS 
FF003 - 5 SOURCE LINES 
FF004 - 0 ERRORS, 0 OTHER MESSAGES ~ 
FF005 - CODE: 7 WORDS, DATA: 7 WORDS 

EGLDR(GO) 5 
SGOOO - SEGLDR VERSION 2.2 09/29/86 I 
SG001 - BEGIN EXECUTION 
UT010 - STOP in TEST 
* 
EXIT. 
END OF JOB 

JOB NAME -
USER NUMBER -
JOB SEQUENCE NUMBER -

TEST 
STI 

2955 

TIME EXECUTING IN CPU -
TIME WAITING TO EXECUTE -
TIME WAITING FOR I/O -
TIME WAITING SEMAPHORE -

0000:00:00.4232 
0000:00:10.2314 
0000:00:04.3384 
0000:00:00.0000 
0000:00:00.0016 TIME WAITING IN INPUT QUEUE -

MEMORY * CPU TIME (MWDS*SEC) -
MEMORY * I/O WAIT TIME (MWDS*SEC) -
MEMORY * SEM WAIT TIME (MWDS*SEC) -
MINIMUM JOB SIZE (WORDS) -
MAXIMUM JOB SIZE (WORDS) -
MINIMUM FL (WORDS) -
MAXIMUM FL (WORDS) -
MINIMUM JTA (WORDS) -
MAXIMUM JTA (WORDS) -
DISK SECTORS MOVED -
FSS SECTORS MOVED -
USER I/O REQUESTS -
USER I/O SUSPENSIONS 
OPEN CALLS -
CLOSE CALLS -
MEMORY RESIDENT DATASETS -
TEMPORARY DATASET SECTORS USED -
PERMANENT DATASET SECTORS ACCESSED -
PERMANENT DATASET SECTORS SAVED -
SECTORS RECEIVED FROM FRONT END -
SECTORS QUEUED TO FRONT END -

0.07772 
0.93982 
0.00000 

32256 
326144 

27136 
321536 

4096 
5120 
3620 

o 
119 
522 

26 
28 
o 

603 
191 

o 
o 
o 1011 

Figure 3-2. Example of a Job Logfile 

SR-0011 0 3-11 



~ First header line: Installation-defined message, usually 
identifying the site and date the job was run. 

(3) Second header line: Installation-defined message, usually 
identifying the operating system, its current revision level, and 
the date of the last revision. 

(I) Columns: The leftmost column identifies the wallclock time for 
each job step and the middle column identifies the accumulated CPU 
time for the job. The rightmost column identifies a system module 
or the user as the originator of the message on that line. All 
times are in decimal. Entries commonly noted include the following: 

CSP 
PDM 
EXP 
ABORT 
USER 

Meaning 

Control Statement Processor 
Permanent Dataset Manager 
Exchange Processor 
Abort Message 
Program in user field 

~ Control statements: The logfile lists every control statement 
processed. 

~ Logfile messages: Any messages related to control statement 
processing are shown below the statement. 

~ Accounting information: When a job reaches completion, COS writes 
a summary of basic accounting data onto the logfile for the job. 
All times given are in hours, minutes, and seconds (to the nearest 
ten-thousandth of a second). The following accounting information 
is provided (in decimal): 

• Jobname and user number 

• CPU time used by the job and by each job task in a multi tasked 
job step 

• Time waiting to execute for the job and each job task in a 
multi tasked job step; includes time waiting for the CPU, 
memory, operator suspension, and recovery. 

• Time waiting for 1/0 for the job and each job task in a 
multitasked job step 

• Time waiting in input queue 

• Memory usage based on the execution and 1/0 wait time in 
million word-seconds 

• Minimum and maximum job size including JTA (words) 

3-12 SR-0011 0 



• Minimum and maximum field length used (words) 

• Minimum and maximum JTA used (words) 

• Number of 512-word disk blocks (sectors) moved 

• Number of fast secondary storage (FSS) sectors moved to either 
the SSD solid-state storage device or Buffer Memory (BMR) 

• Number of user 1/0 requests made by the job 

• Open and close calls 

• Memory-resident datasets 

• Number of 512-word disk blocks (sectors) used for temporary 
datasets 

• Number of 512-word disk blocks (sectors) accessed and saved 
for permanent datasets 

• Number of 512-word disk blocks (sectors) received from and 
queued to the front end 

• For each generic resource specified on the JOB control 
statement, the accounting information includes a report 
describing the device type (tape, disk, or ISP), number of 
units reserved from the JOB control statement, number of 
sectors transferred, largest number of units allocated 
concurrently during job execution, and resource allocation 
integral. If the resource consists of tape devices, the 
report includes the number of tape volumes mounted and number 
of tape blocks transferred. 

• For each FSS device not configured as a generic resource, the 
accounting information includes a report describing the 
logical device name, number of sectors transferred, maximum 
number of sectors allocated concurrently during job execution, 
and resource allocation integral. 

CZ) System bulletin: The system bulletin allows the installation to 
print messages in the logfile, usually about the status of the 
system environment. It is an installation-maintained message 
dataset and may not be present. 

SR-OOll 0 3-13 





I 

JOB CONTROL LANGUAGE 4 

The job control language (JCL) for COS lets you present a job to the Cray 
computer system, define and control execution of programs, and manipulate 
datasets. 

The JCL is composed of control statements. Each control statement 
contains information for a job step. COS initially creates a control 
statement dataset, $CS, to hold job control statements. Additional 
control statement datasets can be created through procedure definition or 
the CALL control statement (refer to section 7). 

The syntax of a control statement is as follows: 

I I I I I I 
verb IseP1 Iparam1 IseP2 Iparam2 I ... IsePn Iparamn Iterm Icomments 

I I I I I I I I I 

All control statements must adhere to a set of general syntax rules. 
Every control statement must have a verb and a terminator (term) as a 
minimum, except for a comment control statement (introduced by an 
asterisk *) which does not require a terminator. Most control statements 
also require parameters (param) and separators (sep) between the verb 
and its parameters. The maximum number of parameters depends on the verb. 

Lowercase letters are converted to uppercase letters unless they are used 
in a literal string. 

The continuation separator (the caret symbol allows a control 
statement to consist of more than one record (80 characters). The JOB, 
DUMPJOB, EXIT, and * (comment) control statements cannot be continued. 
All other control statements can have any number of continuation lines, 
subject to restriction of the verb. (A caret occurring within a literal 
string has no special significance. Refer to section 16 for more 
information about literal strings.) 

A comment is an optional annotation to a control statement and can be a 
string of any ASCII graphic characters. The comment follows the 
statement terminator. The control statement interpreter ignores 
comments. All comments appear in the logfile unless suppressed by the 
ECHO control statement. 

SR-0011 0 4-1 



Blanks are ignored unless they are embedded in a literal string. Blanks 
cannot precede the verb on the JOB control statement. 

4.1 SYNTAX VIOLATIONS 

COS notes syntax violations in the system and user logfiles. If the JOB 
control statement is in error, processing of the job terminates 
immediately. If accounting is mandatory, ACCOUNT statement errors also 
cause job termination. All other syntax errors cause a job step abort 
condition, which causes the system to search for an EXIT control 
statement. A successful search resumes control statement processing with 
the job step following EXIT. If no such job step exists or if an EXIT 
statement is not found, the job is terminated. Job step abort can also 
direct control to a user-specified routine (refer to exit processing and 
reprieve processing in section 3). 

4.2 CONTROL STATEMENT VERBS 

A control statement verb is the first nonblank field of a control 
statement. It specifies what action COS will perform for that 
statement. COS recognizes three types of control statement verbs: 
system verbs, dataset name verbs (local and system), and 
library-defined verbs. A control statement verb cannot be continued to 
a second record. 

When COS encounters a verb in a control statement file, it searches for a 
match to that verb. First, it searches the list of system verbs for a 
match. If the verb is not a system verb, COS searches first for a local 
dataset, next for a matching program name in the datasets in the library 
searchlist, and then for a matching system dataset name in the System 
Directory Table (SDR). If a match for the verb is not found under any of 
these categories, COS issues a control statement error and aborts the job 
step. 

4-2 SR-0011 a 

. -



4.2.1 SYSTEM VERBS 

A system verb consists of an althabetic character that can be followed 
1 to 7 alphanumeric characters. The system verb requests that COS 
perform a function. The system verbs are as follows: 

* ACCESS ACQUIRE ADJUST ASSIGN CALL 
&DATA DELETE DISPOSE DUMP JOB ECHO ELSE 
ELSEIF ENDIF END LOOP ENDPROC EXIT EXITIF 
EXITLOOP FETCH HOLD IF IOAREA JOB 
LIBRARY LOOP MEMORY MODE MODIFY NOHOLD 
NORERUN OPTION PERMIT PRINT PROC RELEASE 
RERUN RESTORE RETIRE RETURN REWIND ROLLJOB 
SAVE SET SUBMIT SWITCH TARGET 

The Cray Simulator (CSIM) Reference Manual, publication SR-0073, 
describes the SIMABORT control statement. 

4.2.2 LOCAL DATASET NAME VERBS 

by 

Local dataset name verbs begin with an alphabetic character followed by 1 
to 6 alphanumeric characters.t Local dataset name verbs request that 
COS load and execute an absolute binary program from the first record of 
the named dataset. If the user job has a dataset with the indicated 
name, COS loads and executes the program from that dataset. 

4.2.3 LIBRARY-DEFINED VERBS 

Library-defined verbs consist of 1 to 8 characters. The library-defined 
verb is either a program or procedure definition residing in a library 
that is a part of the current library searchlist. (The library 
searchlist defines the library and the order in which the libraries are 
searched by COS. This order can be specified with the LIBRARY statement 
described in section 7.) A program in a library is an absolute binary 
program to be loaded and executed. A procedure definition is a group of 
control statements or data or both to be processed (refer to section 16). 

t Alphabetic characters include $, %, @, and the letters A through Z 
(uppercase and lowercase). Alphanumeric characters include all the 
alphabetic characters and the digits 0 through 9. 

SR-0011 0 4-3 



4.2.4 SYSTEM DATASET NAME VERBS 

COS searches for a verb that is the name of a system-defined dataset in 
the SDR. A system-defined dataset name verb begins with an alphabetic 
character followed by 1 to 6 alphanumeric characters. The SDR is a list 
of common language processors and utilities known to the system and made 
available to users at startup. The name of the program (for example, 
CAL, CFT, or DUMP) is also the name of the dataset containing the 
absolute binary of the program. The exact list of system dataset name 
verbs is site-dependent. 

4.3 SEPARATORS 

A separator is a character used as a delimiter in a control statement. 
It separates the verb from the first parameter, separates parameters from 
one another, delimits subparameters, terminates verbs and parameters, and 
separates a keyword from its value in parameters having keyword form. 

Table 4-1 shows the control statement separators allowed by COS. 

4.4 PARAMETERS 

A parameter is a control statement argument whose exact requirements 
are defined by the control statement verb. Parameters are used in 
control statements to specify information to be used by the verb-defined 
process. Parameters that can be used with COS control statements are 
either positional or keyword. For certain verbs, a parameter value can 
be an expression. Detailed information on the use of expressions is 
presented later in this section. Parameters are separated by commas. 

4.4.1 POSITIONAL PARAMETERS 

A positional parameter has a precise position relative to the separators 
in the control statement. Even a null positional parameter must be 
delimited from the control statement verb or other parameters by a 
separator. 

4-4 SR-0011 0 



Table 4-1. Control Statement Separators 

Function 

Initial separator (comma or open 
parenthesis)t - Separates the 
verb from the first parameter 

Statement terminator (period if 
initial separator is comma, close 
parenthesis if initial separator 
is open parenthesis)t - Signifies 
end of control statement 

Parameter separator (comma) -
Indicates the end of one parameter 
and the beginning of the next 

Equivalence separator (equal sign) 
Delimits a parameter keyword from the 
first parameter value for that key
word. Adjacent equivalence separa
tors are illegal. 

Concatenation separator (colon) -
Separates multiple parameter values 
from each other 

Continuation character (caret) -
Indicates that the control statement 
consists of more than one 80-character 
card; may appear anywhere after the 
initial separator. 

Literal string delimiters 
(apostrophes)tt - Identifies the 
beginning and end of a literal string 

Character Examples 

VERB, parameter. 
VERB(parameter) 

VERB. 
VERB, parameter. 
VERB(parameter) 

VERB(parameter,parameter) 

VERB(keyword=value) 

VERB( ... parameters ... h 

parameters) 

VERB(keyword='string') 

Parenthesis delimiters (open and close 
parentheses) - Indicates a group of 
characters to be treated as one value 

( ... ) VERB(keyword=(value:value) 

t By convention, the comma and period are used as nitial and terminator 
separators for all control statements except on the JCL block control 
statements (procedure definition, iterative, and conditional), where paired 
parentheses are conventional. 

tt Refer to section 16 for additional information on strings and string 
delimiters. 

SR-0011 0 

1003 

4-5 



I 

The formats for a positional parameter follow: 

value 

Each valuei is a string of alphanumeric characters, a literal string, 
or a null string. Positional parameters are represented by at least one 
value, unless the value is null. To represent null values, use only 
the closing comma. 

Examples of positional parameters: 

... ,ABCDE, ... 

... ,Pl:P2:P3, ... 

VERB() or VERB,. or VERB. 

4.4.2 KEYWORD PARAMETERS 

The parameter value is ABCDE. 

The adjacent parameter separators 
indicate a null positional parameter. 

The parameter consists of multiple values . 

The positional parameter 1 is null. 

A keyword parameter is identified by its form rather than by its 
position in the control statement. The keyword is a string of 1 to 8 
alphanumeric characters uniquely identifying the parameter. Parameters 
of this type can occur in any order but must be placed after all of the 
positional parameters for the control statement, or they can sometimes be 
omitted. 

The formats of keyword parameters are as follows: 

keyword 

keyword=value 

keyword is an alphanumeric string that depends on the requirements of the 
verb. Valuei is the value associated with the keyword. A keyword 
parameter can occur anywhere in the control statement after all positional 

4-6 SR-OOll 0 



parameters are specified. Whether a keyword parameter is required depends 
on the verb's requirements. If the keyword is not included in the control 
statement, a default value can be assigned. 

Examples of keyword parameters: 

... ,DN=FILE1,... The parameter consists of the keyword and 
a value . 

... ,UQ,... The parameter consists of the keyword 
only . 

... ,DN=FILE1:FILE2:FILE3, •.. The parameter consists of the keyword and 
a list of values . 

... ,DN=,... The parameter contains a null value. 
(The value is omitted from the statement.) 

... ,DN=A:::B,... The parameter value contains A, two null 
parameters values, and B. 

The parameter associated with a keyword may be defined as a secure 
parameter. Every secure parameter is edited out of the statement before 
it is echoed to the user logfile. When a keyword is secure, all that 
appears in the user's logfile is the keyword and the = sign, followed by 
the next delimiter. Secure parameters are defined when calling GETPARAM 
as described in the Programmer's Library Reference Manual, CRI 
publication SR-Ol13. 

4.4.3 PARAMETER INTERPRETATION 

The decoding (parsing) of control statement parameters is normally 
performed by the routines $CCS and GETPARAM, as described in the 
Programmer's Library Reference Manual, CRI publication SR-Ol13. 
Parameter interpretation is performed by the particular program or 
utility that calls $CCS or GETPARAM. 

SR-OOll 0 4-7 



-------------------



LIBRARIES 5 

Job control statements, programs, and compiled subprograms are maintained 
in libraries. The following types of libraries are available on COS: 

• Procedure libraries 
• Program libraries (PLs) 
• Object code libraries 

The CALL and LIBRARY control statements (refer to section 7) refer to 
procedure libraries; UPDATE (refer to the UPDATE Reference Manual, CRI 
publication SR-0013) maintains program libraries. 

5.1 PROCEDURE LIBRARY 

A procedure library is made up of procedures that consist of a sequence 
of control statements or data (or both) saved for processing at a later 
time. 

A procedure library is created by the in-line procedure definition 
process described in section 16. After it is created, a procedure 
library is made available for using the LIBRARY control statement (refer 
to section 7). 

5.2 PROGRAM LIBRARY 

A program library (PL) is a means of maintaining programs and other 
data on datasets. These datasets are created and maintained by the 
UPDATE utility described in the UPDATE Reference Manual, CRI publication 
SR-0013. A PL contains one or more specially formatted files consisting 
of records of ASCII characters. The files are separated by end-of-file 
(EOF) records. The decks can be programs, portions of programs, input 
data for programs, or even job control statements. Refer to the UPDATE 
Reference Manual for full information on using PLs. 

SR-0011 0 5-1 



5.3 OBJECT CODE LIBRARIES 

Object code libraries are termed library datasets or simply libraries. A 
library dataset is a dataset containing a program file followed by a 
directory file. Within the category of object code libraries are 
relocatable libraries and absolute libraries. Relocatable libraries are 
designed to provide the loader with a means of rapidly locating and 
accessing program modules. Relocatable library datasets are created and 
maintained by the BUILD utility as described in section 15. Any library 
dataset can be inspected and described by ITEMIZE. Refer to section 13 
for more information on ITEMIZE. 

Absolute binaries are created by LOR or SEGLDR. From them, BUILD 
produces a collection of absolute binaries called an absolute library. 
The absolute libraries are searched for system verbs when the object 
library's dataset name is in a search list specified by the LIBRARY 
control statement. For information on library-defined verbs, refer to 
section 4. 

5-2 SR-0011 a 

-- ---------



JOB CONTROL STATEMENTS 6 

Job control statements perform the following functions: 

• Identify a job to the system 
• Define operating characteristics for the job 
• Manipulate datasets 
• Call for the loading and execution of user programs 
• Call COS programs that perform utility functions for the user 
• Define and manipulate other control statements 

The first file of a job dataset contains control statements that are 
read, interpreted, and processed one at a time. The sequential 
processing of control statements determines the job flow through the 
operating system. Refer to section 3 for a general description of job 
flow. Sequential processing of control statements can be altered by exit 
or reprieve processing, or by control statement structures described in 
section 16. 

Section 4 presented information on the general syntax rules and 
conventions for control statements. Sections 6 through 15 describe COS 
control statements and give examples in some cases. The control 
statements are described in the following categories: 

• Job definition and control 
• Dataset definition and control 
• Permanent dataset management 
• Dataset staging control 
• Permanent dataset utilities 
• Local dataset utilities 
• Analytical aids 
• Executable program creation 
• Object library management 

6.1 JOB DEFINITION AND CONTROL 

Several control statements let you specify job processing requirements. 
Control statements defining a job and its operating characteristics to 
the operating system include the following: 

SR-0011 0 6-1 



6-2 

Verb 

* 
ACCOUNT 

CALL, RETURN 

CHARGES 

ECHO 

EXIT 

IOAREA 

JOB 

LIBRARY 

MEMORY 

MODE 

OPTION 

Function 

Annotates control statements with comments 

Validates the job's account number, user number, and 
optional passwords 

Allows the use of alternate control statement files 

Obtains partial or total resource reporting for a job 

Controls types of messages written to the job's logfile 

Indicates the point in a series of control statements 
at which processing of control statements resumes 
following a job step abort from a program, or 
indicates the end of control statement processing 

Denies or allows access to the job's 1/0 area, the 
upper (high-address) portion of user memory that 
contains tables and buffers managed by the system 1/0 

library routines 

Introduces the job to the operating system and defines 
characteristics such as size, time limit, and priority 
levels 

Specifies the datasets to be searched when looking for 
defined procedures during job processing. LIBRARY 
also specifies the order in which to perform the 
search. 

Requests a new field length andlor mode of field 
length reduction 

Sets or clears mode bits in the job's Exchange Package 

Specifies user-defined options, such as the format of 
the job's listing and the amount of dataset accounting 
statistics produced 

RERUN, NORERUN Control job rerunnability 

ROLLJOB 

SET 

Protects a job by writing it to disk 

Changes the value of a job control language (JCL) 
symbolic variable 

SR-OOll 0 



Verb Function 

SWITCH Turns on or turns off pseudo sense switches 

TARGET Sets CPU characteristics 

Section 7 fully describes job definition and control statements. 

6.2 DATASET DEFINITION AND CONTROL 

You can define and manage datasets using the following dataset control 
statements: 

Verb 

ACCESS 

ASSIGN 

HOLD 

NOHOLD 

RELEASE 

Function 

Makes a permanent dataset local to a job. ACCESS can 
cause the creation of a tape dataset. If both are 
used, ACCESS must precede the ASSIGN control statement. 

Defines characteristics for datasets, such as the 
amount of user memory to allocate for the dataset's 
1/0 buffer. ASSIGN also can be used to create a mass 
storage dataset. The ACCESS control statement must 
precede ASSIGN when creating a tape dataset. 

Declares that dataset release occurs with implicit HOLD 

Rescinds the effect of the HOLD control statement 

Relinquishes access to the named dataset for the job 

Section 8 describes ASSIGN, HOLD, NOHOLD, and RELEASE. Section 9 
describes ACCESS. 

6.3 PERMANENT DATASET MANAGEMENT 

Control statements for managing permanent datasets provide for creating, 
protecting, and accessing datasets assigned permanently to mass storage 
or magnetic tape. Such datasets cannot be destroyed by normal system 
activity or engineering maintenance. 

Front-end computer systems cannot directly affect Cray-resident permanent 
datasets, because permanent dataset management is handled entirely by 
COS; however, permanent magnetic tape dataset management can be 
optionally coordinated with a front-end computer system. 

SR-0011 0 6-3 



Users can manage user permanent datasets only; system permanent datasets 
cannot be managed (modified or deleted) by the user. (Refer to section 2 
for a description of the types of datasets.) 

Table 6-1 shows the control statements available for user permanent mass 
storage and magnetic tape dataset management. Actual processing of these 
requests depends upon the medium on which the dataset resides. Mass 
storage datasets are controlled by the COS system task called the 
Permanent Dataset Manager (PDM). Magnetic tape datasets are controlled 
by a system task called the Tape Queue Manager (TQM). Both of these 
system tasks (PDM and TQM) have mechanisms for retaining the 
characteristic information about the dataset. Information for mass 
storage datasets is retained in the Central Memory-resident Dataset 
Catalog (DSC). Magnetic tape datasets can have characteristic 
information retained on a front-end computer system. 

Section 9 fully describes the permanent dataset management control 
statements. 

6.3.1 MASS STORAGE DATASET ATTRIBUTES 

Every mass storage permanent dataset has several attributes associated 
with it. These attributes are as follows: 

• Read, write, and maintenance permission control words 
• Public access mode 
• Public access tracking 
• Permits 
• Text 
• Notes 

6.3.1.1 Permission control words 

A permission control word is a password that must be supplied to gain 
access to a particular permanent dataset. Permanent datasets are not 
required to have a permission control word, but if a permission control 
word is specified for the mode of dataset access desired (read, write, or 
maintenance), the control word must be specified to gain access to the 
named dataset. If more than one mode of access is desired (for example, 
both read and write), all appropriate control words must be supplied. 

6-4 SR-0011 a 



Table 6-1. Permanent Dataset Management Control Statements 
for Each Medium 

Verb 

ACCESS 

ADJUST 

DELETE 

MODIFY 

PERMIT 

SAVE 

SR-0011 0 

Mass Storage 

Makes a user permanent 
dataset local to the 
requesting job with the 
requested and/or allowable 
modes (execute, read, 
write, or maintenance) 

Records the change in any of 
the size or allocation 
information for a dataset 
that might have contracted 
or expanded 

Removes the definition of 
a user permanent dataset 
from the DSe. It is 
possible to delete a 
dataset's contents and 
have its attributes 
retained by the system. 

Changes the characteristic 
information for an existing 
user permanent dataset 

Explicitly grants or denies 
specified users or groups 
of users access to a 
permanent dataset 

Enters a dataset's 
identification and location 
in a system-maintained 
DSC. Datasets recorded 
in the DSC using a user SAVE 
request are user permanent 
datasets and are recoverable 
at deadstart. 

Magnetic Tape 

Makes an existing tape dataset 
available to the job or 
defines a NEW-type tape 
dataset that will be created 
by the job. Also optionally 
defines the front-end computer 
system that will be the 
central point for servicing 
that dataset. 

Not applicable 

Requests the front-end 
computer system servicing 
the dataset to remove 
(delete) any information 
concerning the dataset 

Not applicable 

Not applicable 

Supplies to a front-end 
computer system the 
characteristic information 
about a dataset for its 
retention 

6-5 



I 

6.3.1.2 Public access mode attribute 

If all users are to be allowed some kind of access to a permanent 
dataset, that dataset must have a public access mode defined. The 
public access mode is the type of access, as a minimum, all users can 
have to the permanent dataset. Users can be allowed read, write, and/or 
maintenance mode access to the dataset. Users can be restricted to only 
executing the dataset; the public access mode can alternatively be NONE, 
signifying that public access is not permitted. When public access to a 
dataset is granted, any required permission control words must still be 
supplied in order to gain access to the dataset. 

6.3.1.3 Public access tracking attribute 

Public access tracking is a facility that can be turned on or off. A 
record can be kept of every user who accesses a public dataset. Refer to 
the Dataset Use Tracking subsection for more information on the public 
access tracking mechanism. 

6.3.1.4 Permits attribute 

User permanent mass storage datasets can have a list of alternate users 
of the dataset and in what mode or modes each alternate user can access 
the dataset. Each element of the list is known as a permit and names a 
specific alternate user and that user's allowed mode of dataset access. 
Refer to the Access Mode subsection for more information on permits. 

6.3.1.5 Text attribute 

Text is a character string to be passed to a front-end computer system 
when requesting transfer of the dataset to or from Cray mass storage. 
Refer to the Dataset Staging Control subsection for more information on 
text. 

6.3.1.6 Notes attribute 

Notes is a string of up to 480 characters associated with a permanent 
dataset. There is no restriction on what notes contains. When notes 
is listed using the AUDIT utility (refer to the Permanent Dataset 
Utilities subsection), the caret symbol is interpreted as an end-of-line 
signal and AUDIT advances to a new line when listing the dataset 
notes. Notes can contain such information as dataset structure, 
usage instructions, or history. For example, if several versions of a 
program exist as different permanent datasets, the notes could identify 
the purpose, difference, and origin of each dataset. 

6-6 SR-0011 0 



6.3.2 ESTABLISHING ATTRIBUTES FOR MASS STORAGE DATASETS 

Mass storage permanent dataset attributes are established at dataset 
creation time, though they can be later modified (or added to, in the 
case of permits). Attribute establishment depends on whether a dataset 
with the same Permanent Dataset Name (PDN), additional identification 
(ID), and ownership already exists. 

Supplying the entire set of attributes every time a new permanent dataset 
is created, that is, when no permanent dataset with the same PDN, ID, and 
ownership currently exists, can become quite tedious, especially if a 
long list of permits must be established. Instead, the dataset creator 
can supply an attributes dataset. 

6.3.2.1 Existing permanent dataset 

If a permanent dataset with the requested PDN, ID, and ownership already 
exists, the current dataset's permission control words, public access 
mode, public access tracking, and permit list are set to the 
corresponding attributes of the permanent dataset with the highest 
existing edition number (ED) and identical PDN, ID, and ownership. 

The text attribute is also copied from the highest existing edition 
unless otherwise specified; the notes attribute is not copied. 

The discussion of creating a new edition of an existing permanent dataset 
applies to datasets created by SAVE or PDSLOAD (refer to the Permanent 
Dataset Utilities subsection for information on PDSLOAD). If you use 
MODIFY to create a new edition of an existing dataset (by changing the 
PDN or ID), any dataset attributes not explicitly modified remain 
unchanged. Thus, it is possible, though not recommended, for different 
permanent datasets with the same PDN, ID, and ownership to have different 
attributes. 

6.3.2.2 New permanent dataset 

Using SAVE or ACQUIRE when no permanent dataset currently exists with the 
same PDN, ID, and ownership causes a new permanent dataset to be created. 

All permanent dataset attributes can be established for a new permanent 
dataset; no attribute is associated with any other dataset. For example, 
if the new permanent dataset is to have a read permission control word, 
the control word must be supplied. If a list of permits is needed, the 
list must be supplied. Establishing an attributes dataset (described in 
the next subsection) provides a convenient way of supplying a list of 
permits. 

SR-0011 0 6-7 



6.3.2.3 Attributes dataset 

An attributes dataset is an existing permanent mass storage dataset 
from which any (or all) permanent dataset attributes can be copied. The 
actual dataset content is ignored; the attributes are copied from the 
dataset's catalog entry. The attributes dataset can even be partially 
deleted (refer to the Dataset Staging Control subsection for a discussion 
of partial dataset deletion). The attributes dataset must be local to 
the job referencing it. 

The attributes dataset is referenced with the ADN parameter on the SAVE 
or ACQUIRE control statement. When the attributes dataset is referenced, 
all desired attributes (such as permission control words and the public 
access mode) are copied from the attributes dataset and used in 
establishing the attributes of the current dataset. Any attribute 
explicitly specified on the SAVE or ACQUIRE control statement is used 
instead of the attributes dataset's attribute. The end of section 9 
includes examples of attribute dataset use. 

An attributes dataset can also be used with the PERMIT control statement, 
although it is used slightly differently. When an attributes dataset is 
used with PERMIT, the entire permit list (but no other attribute) is 
copied from the attributes dataset and added to the permit list 
established (or being established) for the current dataset. 

For example, suppose the same permit list is being used for several 
different datasets. A single permanent dataset can be created and the 
list of permits established. Then whenever a new dataset is created, the 
original dataset can be accessed and used as an attributes dataset. The 
new dataset creator need not even know what permits are being established. 

6.3.3 PROTECTING AND ACCESSING MASS STORAGE DATASETS 

Access of mass storage datasets can be restricted on two levels: 

• Which users can access the dataset (privacy) 

• What type of access is allowed (access mode) 

The mass storage dataset protection system has two other dataset 
management aspects: 

• Dataset use tracking 

• Attribute association 

6-8 SR-OOll 0 

7 --------------



6.3.3.1 Privacy 

Mass storage permanent datasets fall into three categories, depending on 
which users can access the permanent dataset: 

• Private datasets are accessible only to the dataset owner. 

• Semiprivate datasets are accessible to the dataset owner and to 
a specific group of other users. 

• Public datasets are accessible to all users. 

New mass storage datasets are either public or private (not semiprivate) 
by default. Contact your CRI site analyst for the default value at your 
site. A new dataset can be explicitly declared as either public or 
private with the public access mode (PAM) parameter on the SAVE control 
statement. (Refer to section 9.) 

6.3.3.2 Access mode 

In addition to establishing which users may access a dataset, the owner 
must establish what mode of access alternate users are allowed; that is, 
whether users other than the dataset owner may execute, read, write, or 
maintain the permanent dataset. Specifying the mode of alternate access 
depends upon what category of user is being granted the access. The 
three categories of users are as follows: 

• The dataset owner who is allowed all modes of access. 

• Specific alternate users who are named with the USER parameter of 
the PERMIT control statement (refer to section 9); the alternate 
user's allowed mode of access is declared with the access mode 
(AM) parameter of the same PERMIT control statement. Multiple 
PERMIT statements can be issued for the same permanent dataset to 
provide a list of alternate users. PERMIT can also be used to 
change or remove the allowed mode of access for an alternate user 
of the dataset. The allowed access mode for a specific user is 
known as a permit. 

• All other users (the public). All users of a dataset not in the 
preceding two categories can be allowed (or denied) access to the 
dataset by using the PAM parameter on the ACQUIRE (section 10), 
SAVE, or MODIFY control statement (section 9). The mode of public 
access to a dataset can be changed at any time with the MODIFY 
control statement. 

Any mass storage permanent dataset can have a public access mode with any 
combination of permits. If an alternate user desiring access to a 
permanent dataset is allowed public access and is named in a permit, the 
alternate user is allowed the access named in the permit. The permit 
takes precedence over the public access mode. 

SR-0011 0 6-9 



Such a combination of public and permitted access is often desirable. 
For example, suppose dataset FROG is to be used (executed as a program) 
by many groups of users, maintained by the dataset owner, and backed up 
or restored as needed by another user. Then, the dataset should have a 
public access mode of execute only and a permit of maintenance mode 
access for the alternate user who does dataset backup and restoration. 

All users, including the owner, must correctly specify any existing 
permission control words corresponding to the mode of access desired. 
For example, suppose dataset BIG has a public access mode of READ and a 
read password of README. Any user desiring to read the dataset must 
supply the read password (README) to gain access to the dataset. An 
exception occurs if the permanent dataset utilities are used. Refer to 
section 11 for more information. 

6.3.3.3 Dataset use tracking 

The total access count and date/time of last access are recorded for each 
dataset in the DSC. Access tracking capabilities include recording who 
accessed the dataset, how many times, and the date/time of last access. 
The permit mechanism described earlier in this section provides access 
tracking whenever a permit is issued for a user. A dataset that allows 
public access can also be tracked. The owner must explicitly state, 
however, that public access tracking is required with the track accesses 
(TA) parameter on the ACQUIRE, SAVE, or MODIFY control statement; the 
system does not normally provide it. 

6.3.3.4 Attribute association 

The system allows permanent datasets having the same PDN and additional 
10 to be distinguished by an ED. That is, there can be several datasets 
with different edition numbers that have the same PDN, 10, and ownership 
value. 

A user permanent dataset is uniquely identified by the PDN, 10, ED, and 
ownership value. The ownership value recorded in the OSC when a 
dataset is made permanent is normally equal to the user number as 
specified on the ACCOUNT or JOB control statement. Specific 
installations can choose to define dataset ownership as the account 
number rather than the user number. Contact your CRI site analyst to 
find out which type of ownership value is used. 

Permanent mass storage datasets with the same PON, 10, and ownership are 
assumed to be closely related. Therefore, most permanent dataset 
attributes are the same for all editions of the permanent dataset. The 
read, write, and maintenance permission control words, public access 
mode, public access tracking, and permits are the same for all datasets 
with the same PON, 10, and ownership. 

6-10 SR-0011 0 



The text attribute is treated slightly differently. Any text supplied 
when the dataset is created is kept as a dataset attribute; if no text 
is supplied, the text attribute from the highest existing edition of the 
permanent dataset, if any, is used. 

The notes attribute is treated similarly to text except that notes are 
assumed to be different for each dataset edition. Notes supplied at 
dataset creation time are used; if no notes are supplied, none are used. 

Deleting the data in a permanent dataset while leaving the dataset's name 
and attributes recorded in the DSC is possible. Such a dataset is 
referred to as a partially deleted dataset. The subsection on Dataset 
Staging Control describes partial dataset deletion. 

6.4 DATASET STAGING CONTROL 

Staging is the process of transferring jobs and data in the form of COS 
datasets from a front-end computer system to Cray mass storage or of 
transferring datasets from Cray mass storage to a front-end computer 
system. Three control statements support staging datasets between COS 
and a front-end system: ACQUIRE, DISPOSE, and FETCH. Another control 
statement, SUBMIT, directs datasets to the COS input queue. Section 10 
fully defines the following control statements: 

Verb 

ACQUIRE 

DISPOSE 

FETCH 

SUBMIT 

SR-0011 0 

Function 

Checks to see if the requested dataset is currently 
permanent on mass storage. If the dataset is already 
permanent, ACQUIRE works exactly like ACCESS 
(described earlier in this section) and allows 
dataset access to the job making the request. 
Alternatively, if the dataset is not mass storage 
resident, ACQUIRE obtains a front-end resident 
dataset, stages it to Cray mass storage, and makes it 
permanent and accessible to the job making the 
request. The dataset is staged from the front end 
only if it is not already permanent. 

Directs a dataset to the specified queue for staging 
to a front-end system. DISPOSE can also be used to 
release a local dataset or to change dataset 
disposition characteristics. 

Obtains a front-end resident dataset and makes it 
local to the requesting job 

Directs a dataset on Cray mass storage local to the 
submitting job to the COS input queue 

I 

6-11 



Dataset control information such as save or access codes is usually 
required by a front-end system for management of its own files. Such 
control information can be sent by the Cray system user to the front-end 
system through the use of the text parameter (expressed as TEXT=text), 
which is a special parameter of the SAVE, MODIFY, ACQUIRE, FETCH, and 
DISPOSE statements. The contents of the character string provided with 
the TEXT parameter are defined by the front-end system (refer to the 
appropriate station reference manual for the use of the TEXT parameter 
on your front-end system). 

The text information not only provides most of the directives for 
obtaining the dataset from the front-end computer system but can contain 
sensitive or secure information as well. When using the ACQUIRE control 
statement, the staged dataset is recorded in the DSC and thus made 
permanent. Like any other mass storage permanent dataset, the staged 
dataset's attributes are recorded and protected as described under the 
Protecting and Accessing Mass Storage Datasets subsection earlier in 
this section. 

The owner of an acquired dataset can provide permission to acquire the 
dataset to other users by specifying a public access mode or by issuing 
permits. The actual dataset (that is, the data) need not reside on mass 
storage for the permissions to be issued. For this reason the text, 
as specified by the owner when the dataset was initially acquired, is 
retained by the system as an attribute. The owner can, at a later date, 
delete the data while still retaining all of the permanent dataset 
attributes. A dataset registered in the DSC in this manner is referred 
to as a partially deleted dataset. 

When an authorized user acquires a partially deleted dataset, the text 
required to obtain the dataset from the front-end computer system is 
retrieved from the DSC and sent along with the request. Therefore, the 
user need not specify the text in the ACQUIRE request. In fact, if 
the ACQUIRE is being issued by an alternate user as opposed to the 
owner, any text in the request is ignored. In this manner, the owner 
does not have to disclose the text information to other users. 

The owner can at any time replace the text using the MODIFY command. 
After a partially deleted permanent dataset has been successfully 
acquired, the data is once again made permanent and is considered 
completely Cray mass storage resident. Because the dataset is mass 
storage resident, a subsequent ACQUIRE request is treated as an ACCESS 
request. The ACQUIRE request stages a dataset only if it is not already 
permanent on Cray mass storage. 

6-12 SR-0011 0 



I 

6.5 PERMANENT DATASET UTILITIES 

Three utilities (AUDIT, PDSDUMP, and PDSLOAD) can be used with any mass 
storage permanent datasets available to the user. Datasets processed by 
these utilities need not be local to the user job. The following 
utility routines are provided for mass storage permanent datasets: 

Verb 

AUDIT 

PDSDUMP 

PDSLOAD 

RESTORE 

RETIRE 

Function 

Produces a report containing status information for 
each permanent dataset. AUDIT does not include system 
input or output datasets. 

Dumps all specified permanent datasets to a 
user-specified dataset. Input and output datasets 
managed by the operating system can be included in the 
dump. 

Loads permanent datasets that have been dumped by 
PDSDUMP and updates or regenerates the DSe. Input and 
output datasets managed by the operating system can 
also be loaded with PDSLOAD. 

Recalls a retired dataset to on-line disk 

Declares a dataset retired 

These utilities are defined in Section 11. 

6.6 LOCAL DATASET UTILITIES 

Utility control statements provide the user with a convenient means of 
copying, positioning, or initializing local datasets. The following 
utilities are available to the user: 

Utility 

BLOCK 

COPYD 

COPYF 

COPYR 

COPYU 

SR-0011 a 

Function 

Converts an unblocked dataset to a blocked dataset 

Copies blocked datasets 

Copies files of blocked datasets 

Copies records of blocked datasets 

Copies unblocked datasets or sectors of unblocked 
datasets 

6-13 



I 

I 

Utility 

NOTE 

QUERY 

REWIND 

SKIPD 

SKIPF 

SKIPR 

SKIPU 

UNBLOCK 

WRITEDS 

Function 

Writes text to a dataset 

Returns local mass storage dataset status and 
position information 

Positions a blocked or unblocked dataset at 
beginning-of-data, that is, before the first word of 
the dataset 

Skips blocked datasets 

Skips files of blocked datasets 

Skips records of blocked datasets 

Skips sectors of unblocked datasets 

Converts a blocked dataset to an unblocked dataset 

Initializes a blocked random or sequential dataset 

Section 12 describes these utilities. 

6.7 ANALYTICAL AIDS 

The following control statements provide analytical aids to the 
programmer. 

Verb 

6-14 

COMPARE 

DSDUMP 

DUMP JOB 
DUMP 

FLODUMP 

FTREF 

Function 

Compares two blocked datasets and lists all 
differences 

Dumps all or part of a blocked or unblocked dataset 

DUMP JOB and DUMP are generally used together to 
examine the contents of registers and memory as they 
were at a specific time during job processing. 
DUMPJOB captures the information so that DUMP can 
later format selected parts of it. 

Dumps flowtrace tables when a program aborts with 
flowtrace active 

Generates information about a Fortran application 

SR-0011 0 



Verb 

ITEMIZE 

PRINT 

SYSREF 

Function 

Inspects and generates statistics about library 
datasets. Section 5 describes libraries; the Object 
Library Management subsection that follows describes 
dataset management. 

Writes the value of a JCL expression (as defined in 
section 16) to the logfile 

Generates a global cross-reference listing for one or 
more CAL or APML programs 

Section 13 describes these control statements. 

6.8 EXECUTABLE PROGRAM CREATION 

Two utilities are available under COS to prepare programs for execution. 
The segment loader (SEGLOR) is described in the Segment Loader (SEGLOR) 
Reference Manual, CRI pUblication SR-0066; the COS relocatable loader 
(LOR) is described in section 14. These utilities prepare programs for 
execution from relocatable modules. A series of relocatable modules 
is normally created when a program is compiled or assembled. Each 
relocatable module normally represents one subroutine of the whole 
program, or the main program itself. Each relocatable module (also known 
as a module, an object module, a relocatable, or a binary) 
consists of a series of tables. The tables contain such information as 
executable machine (program) instructions, references to other modules 
(such as when one subroutine calls another), and the location of where 
the main program is to start execution. 

Before a collection of relocatable modules (the program) can be executed, 
the collection of modules must be linked together into a single module. 
This single module, the absolute load module, contains the main program 
and a copy of every subroutine called, including ones found in the 
various system libraries. An absolute load module can be executed any 
time without having to be reprocessed by SEGLOR or LOR. The loaders 
execute as utility programs within the user field and provide the loading 
and linking in memory of relocatable modules from datasets on mass 
storage. 

Very large programs might not fit in the available user memory space or 
might not use large portions of memory while other parts of the program 
are in execution. For such programs, both loaders provide overlay 
capabilities. With SEGLOR, these are called segments; with LOR, 
overlays. Creating and using segments requires no source code changes; 
creating and using overlays requires source code to be changed to invoke 
the overlay processor. 

SR-0011 0 6-15 



I 

In general, the capabilities (except overlays) that are available with 
LDR are available with SEGLDR. Most applications that use more than 4 
Mwords of Central Memory, however, cannot be loaded by LDR because of 
internal limitations of its memory allocation algorithm. Such programs 
must use SEGLDR. SEGLDR also provides additional features not available 
with LOR. The LD2 utility assists in conversion from LDR to SEGLDR; LD2 
is described in section 14. 

6.9 OBJECT LIBRARY MANAGEMENT 

BUILD, a utility called through the BUILD control statement, creates and 
maintains object libraries. 

Compiled subroutines (relocatable modules) can be collected into 
libraries that can be referred to later when creating a new program. COS 
provides several standard object libraries (refer to the Programmer's 
Library Reference Manual, CRI publication SR-0113, for a description of 
the standard library routines available). 

Any number of object libraries can be created, however, in addition to 
the ones supplied with COS. 

Library datasets are designed primarily to provide the Relocatable Loader 
(refer to previous subsection) with a means of rapidly locating and 
accessing program modules. A library dataset is a dataset containing a 
program file followed by a directory file. The program file is composed 
of loader tables for one or more absolute or relocatable program 
modules. The directory file contains an entry for each program module. 

Section 15 describes BUILD. 

6-16 SR-0011 a 



I 

JOB DEFINITION AND CONTROL 7 

Several control statements let you specify job processing requirements. 
This section contains the specifications for the following control 
statements used in defining a job and its operating characteristics to 
the operating system: 

Control Statement 

* (Comment) 

ACCOUNT 

CALL 

CHARGES 

ECHO 

EXIT 

IOAREA 

JOB 

LIBRARY 

MEMORY 

MODE 

NORERUN 

OPTION 

SR-0011 0 

Function 

Allows the annotation of job control statements 

Provides privacy and security; also provides 
accounting information for the installation. 

Instructs COS to begin reading control statements 
from an alternate dataset 

Monitors a job's usage of computer resources 

Controls the message classes to be written to 
your logfile 

Indicates the end of the control statement 
processing or the point in the control statement 
file where processing of control statements 
resumes following a job step abort 

Controls access to your Dataset Parameter Area 
(DSP) and I/O buffers 

Defines the job to COS 

Specifies the library datasets to be searched 
during the processing of control statement verbs 

Requests a new field length, mode of field length 
reduction, or both 

Sets or clears mode flags in the Exchange Package 

Permits COS to recognize functions that would 
make a job rerunnable 

Specifies the format of the job's listing, 
selects the processor to be used, and specifies 
the level of statistics to gather on datasets 

7-1 



Control Statement 

RERUN 

RETURN 

ROLLJOB 

SET 

SWITCH 

TARGET 

Function 

Declares a job to be rerunnable or nonrerunnable 

Returns control to the caller 

Protects a job by writing it to disk 

Changes the value of a job control language (JCL) 
symbol 

Sets or clears sense switches 

Sets CPU characteristics 

7.1 * - COMMENT STATEMENT 

The comment control statement is a system verb that you can use to 
annotate a job with comments. A terminator is not required for such 
statements. There are no parameters. 

Format: 

1 

1 * comment text 
1 ______________ __ 

7.2 ACCOUNT - VALIDATE USER NUMBER AND ACCOUNT 

The ACCOUNT control statement validates the job's user number, user 
password, account number, and account password. A job is processed only 
if the user number/password pair and the account number/password pair (if 
specified) are valid. As implied by its name, the ACCOUNT control 
statement provides accounting data for the installation. In addition, 
privacy and security are ensured through the use of ACCOUNT parameters. 

The ACCOUNT statement declares the user's account and charge numbers to 
COS. It must immediately follow the JOB control statement if the 
installation has defined accounting or security as mandatory. Only one 
ACCOUNT statement is allowed per job. 

If the job is interactive and accounting is mandatory, the ACCOUNT 
statement must be the first statement entered in a session. If 
accounting is not mandatory, the first statement entered, a prompt is 
issued requesting the ACCOUNT statement. A similar prompt is issued if 
syntax errors are made on the ACCOUNT statement. 

7-2 SR-OOll 0 



NOTE 

ACCOUNT control statement parameters do not appear with 
the ACCOUNT control statement in the job logfile. 

The installation generally sets up AC, APW, US, and UPW parameters. The 
user, however, specifies NAPW and NUPW. Including a new account password 
provides the user accounting protection, because only the person who 
knows the NAPW can run a job under a given user's account number. NUPW 
is available as an additional security check. Therefore, NAPW and NUPW 
values should be known only to the individual user who specifies them. 

Format: 

ACCOUNT, AC=ac, APW=apw,NAPW=napw,US=US,UPW=upw,NUPW=nupw. 

AC=ac Account number. 1 to 15 alphanumeric characters assigned 
to the user. This number identifies the user for 
accounting purposes and is a required parameter. The 
account number is not the same as the user number on the 
JOB control statement unless the site chooses to use the 
same number. 

APw=apw Account password. 1 to 15 alphanumeric characters or 
null. A password must be specified if the installation has 
made the password mandatory. 

NAPW=napw New account password. 1 to 15 alphanumeric characters or 
null. This new password replaces the old account password 
if the account number/pas.sword pair given by the AC and APW 
parameters is valid. NAPW may be specified without a value 
to change the account password to null. To change an 
account password, you must specify the keyword APW with the 
old password and NAPW with the new password. 

US=us User number. 1 to 15 alphanumeric characters assigned to 
the user. This number identifies the user for system 
access purposes and is a site-optional parameter. The user 
number is not the same as the account number unless the 
site chooses to use the same number for both. This 
parameter, if specified, overrides the user number on the 
JOB control statement. If US is not specified on the 
ACCOUNT control statement, the user number on the JOB 
statement is used by cos. 

SR-0011 a 7-3 



I 

UPW=upw User password. 1 to 15 alphanumeric characters. A 
password must be specified if your site has made security 
checking mandatory. 

NUPW=nupw New user password. 1 to 15 alphanumeric characters. 
This new password replaces the old user password upw if 
the user number/password pair given by the US and UPW 
parameters is valid. 

7.3 CALL - READ CONTROL STATEMENTS FROM ALTERNATE DATASET 

The CALL control statement tells COS to begin reading control statements 
from the first file of the dataset specified as a parameter to CALL. 
CALL can appear anywhere in the control statement file. Nesting of CALL 
statements to seven levels is allowed. COS reads and processes the 
control statements from the specified dataset until it encounters an 
end-of-file (EOF) or a RETURN statement. Control then reverts to the 
dataset that contained the CALL control statement. CALL rewinds the 
dataset before reading it. 

The dataset that is called can contain either simple control statements 
or a procedure definition. Simple control statements are executed 
without any parameter substitution. On the other hand, parameter 
substitution is possible when the dataset that is called contains a 
procedure definition. The optional CNS parameter on the CALL statement 
allows COS to determine the form of control statements used. If CNS is 
not present, the statements on the dataset are assumed to be simple 
control statements and they are executed exactly as read from the 
dataset, beginning with the first statement. 

If CNS is present on the CALL statement, the control statements on the 
dataset are treated as a procedure definition. This means that parameter 
substitution can be performed before executing the statements. In this 
case, the first statement is assumed to be a prototype statement and 
subsequent statements are the procedure body definition. If the dataset 
contains a procedure definition, the dataset is closed after parameter 
substitution and before invocation of the procedure. 

If the dataset contains a procedure definition, the PROC and ENDPROC 
statements must not enclose the definition, unlike a procedure defined 
in-line within a control statement file. The PROC and ENDPROC statements 
may appear within the definition. Any statement enclosed by PROC and 
ENDPROC becomes a procedure definition that is included in the $PROC 
system procedure dataset when the enclosing procedure is invoked by a 
CALL statement. The enclosing procedure is not added to the $PROC 
dataset. 

7-4 SR-0011 0 

- - - ---------



When the CNS option is used and the procedure definition contains a 
nested PROC/ENDPROC sequence, the parameter substitution performed 
according to the prototype statement for the outermost procedure 
definition (the first statement of the dataset) is also performed on all 
nested definitions. This can produce warning messages if the inner 
definitions use keywords or positional parameters different from those 
specified for the outer definition. The nested definitions are written 
to $PROC with all matching substitutions performed and all nonmatching 
substitutions retained in the original form. 

CALL is a system verb. 

Format: 

CALL,DN=dn[,CNS]. 

DN=dn Begin reading control statements from this dataset. This 
is a required parameter. 

CNS Crack next statement. This is an optional parameter. If 
present, the first statement on the dataset named by DN is 
treated as the prototype statement for the procedure whose 
body is defined by the remaining statements in the first 
file of the dataset, and the next statement in the control 
statement dataset containing the CALL statement is read by 
COS and treated as an invocation of the procedure. 
Parameters supplied on that statement are substituted 
according to the rules of parameter substitution described 
in section 16. 

Example 1: 

Use of CALL without CNS 

Assume that dataset X contains the following control statements: 

ACCESS,DN=A,PDN=B,UQ. 
DELETE,DN=A. 
RELEASE,DN=A. 

SR-OOll 0 7-5 



If dataset B has been saved, the result of the statement 

CALL,DN=X. 

would be 

ACCESS,DN=A,PDN=B,UQ. 
PDOOO - PDN = B ID = ED = 1 OWN = ABC 
PDOO1 - ACCESS COMPLETE 
DELETE,DN=A. 
PDOOO - PDN = B ID = ED = 1 OWN = ABC 
PDOO1 - DELETE COMPLETE 
RELEASE,DN=A. 

Example 2: 

Use of CALL with CNS 

Assume the contents for dataset X are the same as in example 1. The 
result of the statement 

CALL,DN=X,CNS. 

would be 

ACCESS,DN=A,PDN=B,UQ. 
CS109 - POSITIONAL PARAM. AFTER KEYWORDS IN PROTOTYPE: UQ 
*,DN=A. 
CS122 - NO VALUE WAS ASSIGNED TO UQ 
AB025 - USER PROGRAM REQUESTED ABORT 
ABOOO - JOB STEP ABORTED. P = 00000743b 

In this case, the CNS parameter causes COS to consider the ACCESS 
statement to be a prototype statement; the ON, PDN, and UQ keywords 
are assumed to be the identifiers of substitutable parameters. 

Example 3: 

Valid CALL with CNS without nested definitions 

7-6 

Assume that the contents of dataset X are the following: 

D,A,B. 
ACCESS,DN=&A,PDN=&B,UQ. 
DELETE,DN=&A. 
RELEASE,DN=&A. 

SR-0011 0 



If the permanent dataset EXAMPLE exists, the result of the statements 

CALL,ON=X,CNS. 
*,DS,EXAMPLE. 

would be 

ACCESS,DN=OS,PDN=EXAMPLE,UQ. 
POOOO - PON = EXAMPLE ID 
PDOOl - ACCESS COMPLETE 
DELETE,DN=DS. 
PDOOO - PDN = EXAMPLE ID 
PDOOl - DELETE COMPLETE 
RELEASE,ON=OS. 

Example 4: 

= 

= 

CALL with a nested PROC/ENDPROC definition 

ED = 1 OWN = 

ED 1 OWN 

Assume that dataset X contains the following statements: 

D,A,B. 
PROC. 
A,Q,B. 
ACCESS,DN=&Q,ID=&B. 
ENDPROC. 
ACCESS,DN=&A,ID=&B,UQ. 
DELETE,DN=&A. 
RELEASE,ON=&A. 

ABC 

ABC 

If permanent dataset Z with 10 D exists, the result of the 
statements 

CALL,DN=X,CNS. 
*,Z,D. 

would be 

CS125 - NO SUCH FORMAL PARAMETER: Q 
<DEFINITION> PROC. 
<DEFINITION> A,Q,B. 
<DEFINITION> ACCESS,DN=&Q,ID=D. 
<DEFINITION> ENDPROC. 
ACCESS,DN=Z,ID=D,UQ. 
PDOOO - PON = Z 10 

PDOOl ACCESS COMPLETE 
DELETE,DN=Z. 
PDOOO - PDN = Z 
PDOOl - DELETE COMPLETE 
RELEASE,DN=Z. 

SR-OOll 0 

ID 

ED 1 OWN ABC 

ED = 1 OWN ABC 

7-7 



The $PROC dataset would contain a procedure with the following 
definition: 

A,Q,B. 
ACCESS,DN=&Q,ID=D. 

The &B in the original definition was replaced by the value that was 
specified for the corresponding parameter B in the outermost 
procedure. The &Q was retained, because there was no corresponding 
replacement in the outermost procedure. 

7.4 CHARGES - JOB STEP ACCOUNTING 

The CHARGES control statement lets you monitor the computer resources 
used by your job up to a specific point in the job. Hence, CHARGES can 
be used for either partial or total resource reporting. 

Partial reporting occurs when parameters are specified on the CHARGES 
control statement and usage statistics for the computer resources 
specified on the CHARGES statement are given for the job steps preceding 
the CHARGES statement. The statistics are placed in the user log and the 
system log. 

Total reporting occurs when usage statistics are obtained for all the 
resources in all the available resource groups. The summary is placed in 
the user log and the system log. 

CHARGES is automatically invoked when a job terminates so that usage 
statistics of the entire job are reported. 

Format: 

CHARGES,SR=options. 

SR=options 
System resources used. Anyone or more of the following 
groups of resources can be specified. Options are 
separated by colons. The default is a listing of the job's 
usage of resources in all of the following groups: 

CPU Time executing in CPU, 1/0 waiting time, and time 
waiting for CPU. CPU gives the totals for the 
entire job. 

7-8 SR-OOll 0 



I 

DS Permanent dataset space accessed, permanent dataset 
space saved, temporary dataset space used, disk 
sectors moved, fast secondary storage (FSS) sectors 
moved (SSD or Buffer Memory), user I/O requests, 
memory-resident datasets used, number of OPEN calls, 
and number of CLOSE calls 

FSU FSS usage. An FSS device is either an SSD or the 
Buffer Memory in the lOS. When a job uses an FSS 
device not configured as a generic resource, the FSU 
option reports device usage. The option reports the 
following information in the user log and system log: 

Device name 
Maximum concurrent allocation 
Unit allocation integral (sector*sec) 
Number of sectors transferred 

GRU Generic resource usage. For each generic resource 
named on the JOB control statement, the following 
information appears in the user log and system log: 

Generic resource name 
Device type (tape, disk, or ISP) 
Job limit 
Maximum concurrent allocation 
Unit allocation integral (tape unit*sec or 

sector*sec) 
Number of sectors transferred 
Number of tape blocks transferred 
Number of tape volumes mounted 

JNU Jobname and user number 

JSQ Job sequence number 

MM Minimum job size (words), maximum job size (words), 
execution-time memory usage in million words/second, 
I/O wait-time memory usage in million words/second, 
maximum field length used (words), minimum field 
length used (words), maximum JTA used (words), and 
minimum JTA used (words) 

NBF Number of 512-word blocks (sectors) received from a 
front end and number of 512-word blocks (sectors) 
queued to a front end 

SR-OOll a 7-9 



TASK Time executing in CPU, 1/0 wait time, and time 
waiting for CPU. The TASK option breaks down the 
time information according to user task number, and 
provides a total for the entire job. 

WT Time waiting in the input queue before beginning 
execution 

7.5 ECHO - ENABLE OR SUPPRESS LOGFILE MESSAGES 

The ECHO control statement controls the message classes written to your 
logfile by turning them ON or OFF. ECHO may be used more than once 
during a job to toggle the printing or suppression of message classes. 
ECHO is a system verb. ON is the default at the start of a job. 

The keywords ON and OFF may be used in any combination. Ensure that the 
classes specified do not overlap between the keywords, however, and that 
both defaults are not included. 

Format: 

7-10 

ON=classi When a COS or a program issues messages, they are written 
to your logfile in the classes specified. If any other 
classes were specified but not turned off by this statement, 
the union of the two sets of classes is enabled. If the 
ECHO control statement contains only the keyword ON or 
ON=ALL, all messages are written to the logfile. 

OFF=classi 
Messages in the classes specified are not written to the 
job's logfile. If any other classes were specified but not 
turned on by this statement, the union of the two sets of 
classes is suppressed. If the ECHO control statement 
contains only the keyword OFF or OFF=ALL, all messages in 
defined classes are suppressed. 

Messages that are not classified may not be turned off. 

SR-0011 0 



The operating system recognizes the following classes: 

Description 

ABORT ABxxx and system traceback messages that COS issues when 
a job fails 

JCL Messages that originate in the job's JCL input file 

PDMERR Error messages produced by PDM 

PDMINF Dataset information messages produced by PDM 

When a job calls a procedure, the echo state of the job is the same upon 
return from the procedure as before, even though the procedure may use a 
different echo state. The following occurs when ECHO is used with CALL 
and procedure invocations: 

• The echo state of the caller is saved so that on return to the 
caller the same state is in effect as before the call. 

• When the procedure includes an ECHO statement, the new echo state 
is in effect only for the duration of the procedure. If the 
procedure does not include an ECHO statement, the echo state of 
the caller is in effect. 

7.6 EXIT - EXIT PROCESSING 

An EXIT control statement points to the place in the control statement 
file where processing of control statements resumes following a job step 
abort from a program. If no job step abort occurs, the EXIT control 
statement indicates the end of control statement processing. EXIT is a 
system verb. It has no parameters. 

Format: 

EXIT. 

SR-0011 0 7-11 



7.7 IOAREA - CONTROL USER'S ACCESS TO IIO AREA 

The IOAREA control statement locks or unlocks that portion of the user 
field containing the user's DSP and IIO buffers. Locking denies the user 
access, unlocking allows the user access. This area follows the High 
Limit Memory (HLM) address of the user field. The user of the stack 
version of the COS libraries needs to note that IOAREA does not protect 
IIO buffers or DSPs that have been allocated within the user's stack 
space. IOAREA is a system verb. 

Format: 

I 
IOAREA, LOCK • 1 

UNLOCK I 
_______ 1 

LOCK 
UNLOCK 

The keywords LOCK and UNLOCK are mutually exclusive. A 
parameter must be specified on the control statement. When 
the control statement is not used, the user's IIO area is 
assumed to be unlocked. 

If LOCK is selected, the system sets the limit address to 
the base of the DSPs, thereby denying direct access to the 
user's DSP area and IIO buffers. When the IIO area is 
locked, the library IIO routines make a system request to 
gain access to the IIO area. Although the system request 
introduces additional overhead in job processing, it should 
prevent accidental destruction of the IIO area. 

If UNLOCK is selected, the system sets the limit address to 
the value specified in JCFL, allowing access to the user's 
DSP area and IIO buffers. 

7.8 JOB - JOB IDENTIFICATION 

The JOB control statement defines the job to COS and must be the first 
statement in a control statement file. The JOB control statement cannot 
be continued, and no leading blanks are allowed. JOB is a system verb. 

Format: 

JOB,JN=jn,MFL=fl,T=tl,P=p,US=US,OLM=olm,CL=jcn,gn=nr,S. 

7-12 SR-0011 0 



IN=jn 

T=tl 

P=p 

US=us 

OLM=olm 

CL=jcn 

Job name; 1 to 7 alphanumeric characters. This name 
identifies the job and its subsequent output. IN is a 
required parameter. 

Maximum field length allowed the job, in 54-bit words. 
The job's maximum field length is set to the greater of fl, 
rounded up to the nearest multiple of 512 words, or the 
amount needed to load the Control Statement Processor 
(CSP). The job is aborted if the maximum field length is 
greater than the system maximum. 

If this parameter is omitted, the maximum field length is 
set by the site parameter. 

If MFL is present without a value, the field length is the 
system maximum. The system maximum is the smaller of the 
total amount of memory available after COS is initialized 
minus the job's JTA size (refer to section 1) or an 
installation-defined maximum job field length. 

Time limit in seconds that the job may run. If this 
parameter is omitted, the time limit is set to a value 
determined by an installation parameter. If T is present 
without a value, a maximum of 16,777,215 (approximately 194 
days) is allowed. 

Priority level 0 to 15 at which the job enters the system. 
If P is 0, the job is not initiated. If omitted, a value 
specified by the installation is assumed. 

User number; 1 to 15 alphanumeric characters. The default 
is no user number. This parameter identifies the user 
submitting the job. Specific usage is installation defined. 

Maximum size of $OUT. oim is a count of 512-word blocks. 
A block holds about 45 print lines. The installation 
defines the default and maximum values for oim. 

Name of the installation-defined job class that this job 
fits in; 1 to 7 alphanumeric characters. The job is aborted 
if it does not fit the requirements of its class or if the 
class does not exist. The default is no class name. 

Type and number of dedicated resources required by a job. 
gn is a generic resource name of 1 to 7 alphanumeric 
characters. A generic resource name corresponds to a device 
type. For example, a generic name of SSD could be given to 

t The fl parameter on the JOB statement excludes the job's Job Table 
Area (JTA); space for the JTA is added by the system. 

SR-0011 0 7-13 



gn=nr 
(continued) 

an SSD. Site administration defines generic names. COS 
provides one generic name (*TAPE, which refers to a dual 
density tape unit capable of 1600 or 6250 b/i), but sites 
may define up to 16 generic names. Contact your CRI site 
analyst for the generic names used at your site. 

nr is the decimal number of units of the specified 
resource type. If gn refers to a tape device type, nr 
is the number of tape units to be used concurrently. If 
gn refers to a disk device type, nr is the decimal 
number of sectors required. The default is O. A job is 
initiated only when the amount of each resource reserved is 
eligible for use. The job is aborted if it attempts to 
access more resources than are reserved with the JOB 
control statement. 

S System job. This is a privileged parameter that designates 
the job as a system job. Privileges are verified during 
account processing. 

7.9 LIBRARY - LIST AND/OR CHANGE LIBRARY SEARCHLIST 

The LIBRARY control statement lets you specify the library datasets that 
will be searched during the processing of control statement verbs. 
LIBRARY may also be used to list the current or new searchlist to the 
logfile for verification. 

When modifying the searchlist, the current members of the searchlist can 
be retained in the new searchlist by including an asterisk in the LIBRARY 
control statement. The asterisk corresponds to all members of the 
current searchlist in their present order. If the asterisk is omitted, 
the new searchlist contains only the library dataset names identified on 
the LIBRARY control statement. LIBRARY is a system verb. 

When a job initiates, the default library searchlist consists of the 
library dataset. 

Format: 

DN=dni 

7-14 

• 

Library dataset names that will be part of the new 
library searchlist. A maximum of 64 names can be given. 
The order in which they appear on the control statement is 

SR-0011 0 



DN=dni the order in which they are searched. An asterisk included 
(continued) in the list signifies the current searchlist members are to 

be part of the new searchlist in their current order. 

V For verification, list the current library searchlist on 
the logfile. When specified along with the new searchlist, 
the new searchlist is listed. 

7.10 MEMORY - REQUEST MEMORY CHANGE 

The MEMORY control statement lets you request a new field length, change 
the mode of field length reduction, or both. Section 3 discusses job 
memory management. MEMORY is a system verb. 

You must specify at least one parameter for the MEMORY control statement. 

Format: 

MEMORY[,FL=fl1[,USER]. 
AUTO 

FL=fl 

USER 

AUTO 

Field length. fl specifies the number of words to be 
allocated to the job. If FL is specified without a value, 
the new field length is set to the maximum allowed the job. 

Field length reduction is managed by the user (user mode) 

Field length reduction is managed by the system (automatic 
mode) 

The field length is set to the larger of the requested amount rounded up 
to the nearest multiple of 512 words or the smallest multiple of 512 
decimal words large enough to contain the user code/data, LFT, DSP, and 
buffer areas. Field length management is in user mode for the duration 
of the next job step. 

When the USER parameter is specified, the job is placed in user mode 
until a subsequent request is made to return it to automatic mode. When 
the AUTO parameter is specified, the job is placed in automatic mode. 

The job step is aborted if completing the request results in a field 
length greater than the maximum allowed the job. The maximum is the 
smaller of the total number of words available to user jobs minus the 
job's JTA or the amount determined by the MFL parameter on the JOB 
control statement. 

SR-0011 0 7-15 



Examples: 

MEMORY,FL,USER. 

The job's field length is set to the maximum allowed and the job is 
placed in user mode until an explicit request is made to return it to 
automatic mode. 

MEMORY, AUTO. 

The job is returned to automatic mode. Its field length is reduced at 
the next job step. 

MEMORY,FL=28988. 

The field length is adjusted. If the job is in user mode by explicit 
user request, no change in mode occurs; otherwise, the job is placed in 
user mode for the duration of the next job step. 

MEMORY,FL=28988,AUTO. 

The field length is adjusted and the job is placed in user mode for the 
duration of the next job step. After the next job step, the job is put 
in automatic mode. 

7.11 MODE - SET OPERATING MODE 

The MODE control statement sets or clears mode flags in the Exchange 
Package for the job. MODE is a system verb. 

Format: 

7-16 

MODE,FI=option,BT=option,EMA=option,AVL=option,ORI=option. 

FI=option Floating-point interrupt mode. option can be either of 
the following: 

ENABLE 

DISABLE 

Enables floating-point error interrupts; 
default. 
Disables floating-point error interrupts; 
floating-point errors are ignored. 

SR-0011 0 



BT=option Bidirectional transfer mode. The BT parameter is used 

EMA=option 

AVL=option 

ORI=option 

on CRAY X-MP series computer systems only. option can be 
either of the following: 

ENABLE 
DISABLE 

Enable bidirectional memory transfers; default. 
Disable bidirectional memory transfers; block 
reads and writes are not performed concurrently. 

Extended memory addressing mode. The EMA parameter is used 
on CRAY X-MPt series computer systems only: it causes an 
abort on CRAY-! systems. option can be either of the 
following: 

ENABLE 
DISABLE 

Enables extended memory addressing 
Disables extended memory addressing; the 
default is an installation option released as 
EMA=DISABLE. On the CRAY X-MP model 48, the 
default is released as EMA=ENABLE. 

Second vector logical functional unit mode. The AVL 
parameter is used on CRAY X-MPt series computer systems 
only; it causes an abort on CRAY-1 systems. option can 
be either of the following: 

ENABLE 

DISABLE 

Makes two logical functional units available, 
the first of which shares reservation logic 
with the vector floating multiply unit. 
Makes only one vector logical unit available. 
The vector multiply reservation path is not 
shared; default is an installation parameter 
released as AVL=DISABLE. 

Operand range error interrupt mode. The ORI parameter is 
used on CRAY X-MP series computer systems only; option 
can be either of the following: 

ENABLE 

DISABLE 

Enables interrupts on operand range errors; 
default. 
Disables interrupts on operand range errors 

t Not available on all CRAY X-MP systems. Check with a CRI site analyst 
to determine if this feature is available. 

SR-0011 0 7-17 



I 

7.12 NORERUN - CONTROL DETECTION OF NONRERUNNABLE FUNCTIONS 

The NORERUN control statement specifies whether COS is to recognize 
functions that would make a job rerunnable. The current rerunnability of 
the job is not affected. NORERUN is a system verb. 

Format: 

NORERUN,ENABLE . 

ENABLE 
DISABLE 

DISABLE 

The keywords ENABLE and DISABLE are mutually exclusive. 
The default for the system as released is NORERUN,ENABLE; 
however, this is an installation option. 

ENABLE instructs the system to begin monitoring functions 
performed by the job and to declare the job nonrerunnable 
if any of the nonrerunnable functions are performed. 

DISABLE instructs the system to stop monitoring functions 
for nonrerunnable operations. If a job has already been 
declared to be nonrerunnable, specifying DISABLE does not 
make the job rerunnable again. 

7.13 OPTION - SET USER-DEFINED OPTIONS 

The OPTION control statement specifies user-defined options, such as the 
format of the job's listing. OPTION is a system verb. 

Format: 

: OPTION[,LPP=n) ~PN=~]~STAT=~:F]' 
,---------------------------------------

LPP=n 

7-18 

Number of lines per page (0 through 255) for a job 
listing. If 0 is specified, the current number of lines 
per page is not changed. The default is an installation 
parameter. 

This value is used by CRI products that do pagination and 
is available to user software through the GETLPP subroutine 
call. It has no effect on IIO processing from user jobs 
that do not perform their own pagination. 

SR-0011 0 



I 

PN=P 
ANY 

ON 
STAT=OFF 

SR-0011 a 

Select processor. Select a processor by specifying its 
number as the argument. Use ANY to indicate that any 
processor is acceptable. The default is ANY. 

If the processor specified by p is not available (because 
it does not exist on the mainframe or is inoperative), an 
error message appears and the job aborts. 

Specifies the level of I/O statistics gathered for 
datasets local to the job. The statistics appear on the 
user logfile when the dataset is released. The statistics 
can be on two levels: 

• User level statistics (sometimes called accounting 
information) that identify the type of system requests 
you made for the dataset. 

• System level statistics (sometimes called device 
information) that indicate how the system handled the 
requests device by device. 

The options are as follows: 

ON User information as defined by the site or, if not 
defined by the site, as determined by the preset 
categories of USR. ON is the default if STAT is 
specified without an option. 

OFF No statistics. OFF is the default if STAT is not 
specified on the OPTION control statement. 

The output is a logfile message of one or more lines with 
the following format: 

SY005 - Idn xWROS, xIOS, XREQ, xSECTRS, xx.xxSEC 
Idv xSECTRS mode: XREQ, xSECTRS, xx.xxSEC 

The first line of the message reports the following 
user-level information (it is issued when STAT equals ON): 

Idn 

XWROS 

xIOS 

Local dataset name 

Size of the dataset in words (decimal) 

Number of I/O suspensions performed for the 
dataset by F$RCL 

7-19 



I XREQ Number of the start liD requests (F$WDC, F$RDC, 
and F$QIO) resulting in queue manager requests 

xSECTRS Number of sectors moved as a result of the 
F$WDC, F$RDC, F$BIO, and F$QIO requests 

xX.xxSEC Time in seconds that the job spent in liD 
suspension waiting for the dataset 

Subsequent lines in the message report system level 
information. Each line corresponds to an 1/0 transmission 
to a device on which the dataset resides. A line appears 
for every device on which the dataset has space allocated. 
The lines contain the following information: 

Idv 

xSECTRS 

mode 

xREQ 

xSECTRS 

Logical device name (optional) 

Number of sectors allocated on the device for 
the dataset (optional) 

Direction of 1/0 data transfer requests: READ 
or WRITE 

Number of data transfer requests issued to the 
device driver 

Number of sectors moved as a result of the data 
transfer requests 

xX.xxSEC Time in seconds that the system (queue 
manager) waited for the device driver to 
respond to the data transfer requests 

STAT gathers 1/0 statistics on every dataset created or 
accessed after STAT is specified on the OPTION control 
statement. The level of statistics gathering that is in 
effect at the time a dataset is created with ASSIGN or 
accessed with ACCESS remains in effect until the dataset is 
released, regardless of subsequent changes to STAT. 

7.14 RERUN - UNCONDITIONALLY SET JOB RERUNNABILITY 

The RERUN control statement unconditionally declares a job to be either 
rerunnable or nonrerunnable. If RERUN is used to declare a job 
rerunnable, the subsequent execution of a nonrerunnable function may 
cause the system to declare the job nonrerunnable, depending on whether a 
NORERUN control statement or macro is also present. The RERUN control 
statement does not affect the monitoring of the user job for 
nonrerunnable functions. RERUN is a system verb. 

7-20 SR-0011 0 



Format: 

RERUN,ENABLE . 

ENABLE 
DISABLE 

DISABLE 

The keywords ENABLE and DISABLE are mutually exclusive. If 
no parameter is specified on the control statement, the 
installation option determines if the job is to be 
rerunnable; the default for the system as released is 
RERUN,ENABLE. 

If ENABLE is selected, the system is instructed to consider 
the job to be rerunnable, regardless of previously executed 
functions. 

If DISABLE is selected, the system marks the job not 
rerunnable, regardless of previously executed functions. 

7.15 RETURN - RETURN CONTROL TO CALLER 

The RETURN control statement returns control to the caller. The caller 
can be a procedure or the job's control statement file. Processing 
resumes with the caller's next control statement. A RETURN control 
statement can be embedded anywhere within the called procedure. A RETURN 
control statement does not have to be placed at the end of the procedure, 
however, because an EOF record is interpreted as the control statement 
sequence of an EXIT, RETURN, and RETURN,ABORT. A RETURN encountered in 
the primary control statement file is ignored. RETURN is a system verb. 

Format: 

RETURN[,ABORT]. 

ABORT 

SR-0011 0 

After returning to the previous control statement level, 
ABORT causes COS to issue a job step abort. 

7-21 



7.16 ROLLJOB - ROLL A USER JOB TO DISK 

The ROLLJOB control statement protects a job by writing it to disk at any 
point in its execution so that it can be recovered at that point in the 
event of a system interruption. The use of ROLLJOB does not guarantee 
that a job will remain recoverable. It merely ensures that at the 
current stage there is a recoverable image. Subsequent job activity may 
invalidate this image. Performing ROLLJOB does not make a job 
recoverable that has on-line tape datasets accessed. 

ROLLJOB is a system verb. There are no parameters. 

Format: 

ROLLJOB. 

7.17 SET - CHANGE SYMBOL VALUE 

The SET control statement changes the value of a valid job control 
language symbol. Valid symbols are those you classify as alterable (U) 
in table 16-1. A jOb-step abort occurs if a symbol included in a SET 
control statement is unknown to the system, can be set only by COS, or is 
a constant. SET is a system verb. 

Format: 

SET(symbol=expression) 

symbol 

expression 

Examples: 

A valid symbol that you can alter 

A valid arithmetic, logical, or literal assignment 
expression. It may be delimited with parentheses to 
simplify interpretation during control statement 
evaluation. 

This example increases the procedure-local register J1 by 1. 

SET(J1=J1+1) 

7-22 SR-0011 0 



I 

The global register G1 is given an ASCII value that is the low-order 2 
characters from the current system revision level (COS X.XX). 

SET(G1=(SYSID.AND.177777B» 

The global register G3 is assigned a value, depending on the current 
values of ABTCODE and G2. 

SET(G3=«ABTCODE.EQ.74).AND.(G2.EQ.O») 

7.18 SWITCH - SET OR CLEAR SENSE SWITCH 

The SWITCH control statement turns pseudo-sense switches on or off. 
SWITCH is a system verb. 

Format: 

SWITCH,n=x. 

n 

x 

Number of switch (1 to 6) to be set or cleared 

Switch position: 
ON Switch n is turned on; set to 1. 
OFF Switch n is turned off; set to o. 

7.19 TARGET - SPECIFY CPU CHARACTERISTICS 

The TARGET control statement: 

• Reports the current default settings for CPU characteristics in 
the job's machine specification table 

• Changes the current default settings for the CPU for the job's 
target machine specification table 

The CPU can be any of the following: 

• *HOST, the machine on which the job is running 

• *TARGET, a site-specified target machine 

• A named CPU 

SR-0011 0 7-23 



At job initiation the *HOST and *TARGET settings are preset to those of 
the machine on which the job resides. The *TARGET settings can be 
altered by the user. The actual *HOST and named-CPU characteristics 
cannot be changed, but a copy of those settings becomes the *TARGET 
specifications and can be altered. 

The characteristics set by TARGET remain in effect for a job until they 
are changed by another TARGET command or a library request. TARGET is a 
system verb. 

Format: 

TARGET, CPU = cpu ~ ~:MA] ~ ~~~~ GS ] [: ~~~:OP] [: =~PC ] 
[ 

READVL ] [ VRECUR ] [AVL ] [HPM ] [ STATRG ] 
: NOREADVL : NOVRECUR : NOAVL : NOHPM : NOSTATRG 

~ :~:DM] [:BANKS=banks] [:NUMCPUS=numcpus] [:IBUFSIZE=ibuEsize] 

[:MEMSIZE=memsize] [:MEMSPEED=memspeed] [:CLOCKTIM=clock tim] 

[ 
*HOST ] 

[:NUMCLSTR=numclstr] [:BANKBUSY=bankbusy] ,VERIFY=*TARGET . 

CPU=cpu Identification of the CPU whose characteristics are to be 
reported or changed. cpu can be *HOST, *TARGET, or a 
named CPU. The named CPU can be anyone of the following: 

CRAY-l 
CRAY-Xl 
CRAY-1M 

CRAY-XMP 
CRAY-1B 
CRAY-X4 

CRAY-1A 
CRAY-X2 
CRAY-1S 

The CPU parameter is required except when VERIFY is the 
only parameter specified. 

The following parameters that have a NO prefix indicate that the 
characteristic is not available. 

7-24 

EMA 
NOEMA 

CIGS 
NOCIGS 

VPOP 
NOVPOP 

PC 
NOPC 

Extended memory addressing 

Compressed index, gather/scatter 

Vector population count 

Programmable clock 

SR-OOll 0 



READVL 
NOREADVL Read vector length 

VRECUR 
NOVRECUR Vector recursion 

AVL 
NOAVL 

HPM 
NOH PM 

STATRG 

Additional vector logical functional unit 

Hardware performance monitor 

NOSTATRG Status register 

BDM 
NOBDM Bidirectional memory 

BANKS=banks 
Number of memory banks 

NUMCPUS=numcpus 
Number of CPUs 

IBUFSIZE=ibufsize 
Instruction buffer size 

MEMSIZE=memsize 
Memory size in words. The words can be expressed as follows 
(the i represents a number): 

i Words 
iK Words multiplied by 1024 
iM Words multiplied by 1,048,576 

Thus, the following values are equal: 1,048,576, 1024K, 
and 1M. 

MEMSPEED=memspeed 
Memory speed in clock periods 

CLOCKTIM=clocktim 
Clock period in integer picoseconds (10**-12) 

NUMCLSTR=numclstr 
Number of clusters 

BANKBUSY=bankbusy 
Number of clock periods that the memory bank has reserved 

SR-0011 0 7-25 



*HOST 
VERIFY=*TARGET 

Example 1: 

Logfile report of the current settings of *HOST or 
*TARGET. VERIFY can be the first parameter or the last. 
If VERIFY is specified without a value, the default is 
*TARGET. 

In this use of TARGET, the only parameter on the control statement 
requests a report of the current settings for the target machine, a 
CRAY X-MP computer system. The report follows: 

TARGET,VERIFY=*TARGET. 

TA005 - Primary machine type is: CRAY-XMP 
TA006 - BANKS 64 
TA006 - NUMCPUS = 4 
TA006 - IBUFSIZE = 32 
TA006 - MEMSIZE 8388608 
TA006 - MEMSPEED = 14 
TA006 - CLOCKTIM 9500 
TA006 - NUMCLSTR = 5 
TA006 - BANK BUSY = 4 
TA006 - EMA 
TA006 - CIGS 
TA006 - VPOP 
TA006 - PC 
TA006 - READVL 
TA006 - NOVRECUR 
TA006 - AVL 
TA006 - HPM 
TA006 - STATRG 
TA006 - BDM 

Example 2: 

This use of TARGET changes the specifications for the clock period, 
number of clusters, availability of vector population count, and 
availability of additional vector logical functional unit. It also 
requests a report of the settings, as follows: 

TARGET,CPU=*TARGET:CLOCKTIM=12500:NUMCLSTR=0:NOVPOP:NOAVL, 
VERIFY=*TARGET. 

TA005 - Primary machine type is: CRAY-XMP 
TA006 - BANKS 64 
TA006 - NUMCPUS = 4 
TA006 - IBUFSIZE = 32 

7-26 SR-0011 0 



TA006 - MEMSIZE 8388608 
TA006 - MEMSPEED = 14 
TA006 - CLOCKTIM 12500 
TA006 - NUMCLSTR = 0 
TA006 - BANK BUSY 4 
TAOO6 - EMA 
TA006 - CIGS 
TA006 - NOVPOP 
TA006 - PC 
TA006 - READVL 
TA006 NOVRECUR 
TA006 - NOAVL 
TA006 - HPM 
TA006 - STATRG 
TA006 - BDM 

SR-0011 0 7-27 



--------------------- - -



I 

I 

DATASET DEFINITION AND CONTROL 8 

The dataset control statements, ASSIGN, HOLD, NOHOLD, and RELEASE, let 
you define and manage datasets. ACCESS is not used for Integrated 
Support Processor (ISP) datasets. The ISP control statement gives your 
jobs access to an ISP, and the CONNECT control statement accesses a 
specific dataset. Refer to the SUPERLINK/ISP General Information Manual, 
CRI publication SI-0154, or the SUPERLINK/MVS Users Guide, CRI 
publication SI-0178, for details. 

Control Statement 

ASSIGN 

HOLD 

NOHOLD 

RELEASE 

Function 

Defines characteristics for datasets. ASSIGN can 
also be used to create a mass storage dataset. 

Declares that dataset release occurs with 
implicit HOLD 

Rescinds the effect of the HOLD control statement 

Relinquishes access by the job to the named 
dataset 

8.1 ASSIGN - ASSIGN DATASET CHARACTERISTICS 

The ASSIGN control statement assigns dataset characteristics for tape and 
mass storage and can create a mass storage dataset.t If an ASSIGN is 
used for dataset creation, it must appear before the first reference to 
the dataset; otherwise, the characteristics of the dataset are defined at 
the first reference to it. If an ASSIGN is used for a tape dataset, it 
must follow the tape ACCESS request (see section 9 for a description of 
ACCESS). ASSIGN is a system verb. 

t ASSIGN does not create a dataset that the Fortran OPEN statement 
recognizes as existing. Refer to the Fortran (CFT) Reference Manual, 
CRI publication SR-0009, or the CFT77 Reference Manual, CRI 
publication SR-0018. 

SR-0011 0 8-1 



I 

I 

Format: 

8-2 

ASSIGN,DN=dn,S=size,Sz=size,NOF,BS=bsz,XSZ=xmx:xmn,DV= Idv,DT=dt, 

DF=df,RDM,U,MR,LM=lm,INC=nds,C,DC=dc,BFI=bfi,A=alias,FD=fd,CV=cv, 

CS=cs,F=f,RF=rf,RS=rs,MBS=mbs,DEF=dtl[:dt2:dt3],ST=st,SPD=spd. 

DN=dn 

S=size 

Sz=size 

Local dataset name beginning with an alphabetic character 
or $, %, or @, and consisting of 1 to 7 alphanumeric 
characters. DN is a required parameter. 

Dataset size. Octal number of sectors (512-word blocks) to 
be reserved for the dataset. If the dataset size is not 
given, the space for the dataset is dynamically allocated 
as needed. The Sand SZ options are mutually exclusive. 
Furthermore, S applies to mass storage datasets only, and 
is ignored when used for magnetic tape datasets. 

Dataset size. Decimal number of sectors (512-word blocks) 
to be reserved for the dataset. If the DV option specifies 
a generic resource or if Idv is a controlled device, SZ 
is the largest number of sectors associated with this 
dataset that can reside on the device. The mass storage 
space reservation occurs when the ASSIGN command is 
processed. If the SZ option is not specified, the space 
for the dataset is dynamically allocated as needed. The S 
and SZ options are mutually exclusive. SZ applies to mass 
storage datasets only and is ignored when used for magnetic 
tape datasets. 

Although the SZ option specifies decimal sectors, disk 
space is allocated by COS in tracks that are larger than 
sectors. When an ASSIGN statement declares dataset size, 
COS rounds the sector count up to an integral multiple of 
track size and allocates that number of tracks. For 
example, when ASSIGN( ... ,SZ=l, ... ) is specified, COS 
allocates one track to the dataset, even though the request 
is for one sector. Track sizes for the various mass 
storage device types are as follows: 

DD-19 disk drive 18 sectors 
DD-29 disk drive 18 sectors 
DD-39 disk drive 24 sectors 
DO-49 disk drive 42 sectors 
Extended Buffer Memory 18 sectors 
SSD solid-state storage 32 sectors 
device 

SR-0011 0 



SZ=size When the disk device specified on the ASSIGN statement is a 
(continued) controlled device with a generic resource name, the total 

concurrent use of the device must be declared on the JOB 
statement as decimal sectors. If the space on the device 
is divided among several datasets with the SZ option on the 
ASSIGN statement, a rounding error may occur with each use 
of the SZ or S options. The result can be an unexpected 
GENERIC RESOURCE LIMIT EXCEEDED error or an unexpected 
device overflow. The SZ option can produce other results 
when it is used with the NOF parameter of ASSIGN. Those 
results are described under NOF in this section. 

If both INC and SZ are specified, SZ is used initially and 
INC is used thereafter. 

To divide space among several datasets on a generic 
resource such as Buffer Memory or SSD, sector counts should 
be specified as multiples of track size. Track size is 
device dependent. 

NOF No overflow. When NOF is indicated, the dataset does not 
span any more than the device specified by the DV 
parameter. (If a device is not specified, the system 
selects one.) The SZ and NOF options on the ASSIGN 
statement produce the following: 

BS=bsz 

SZ and NOF specified 

SZ specified without NOF 

NOF specified without SZ 

Neither SZ nor NOF 
specified 

Abort at MIN (Remaining Job 
Limit, SZ) 

Overflow at MIN (Remaining 
Job Limit, SZ) 

Abort at Remaining Job Limit 

Overflow at Remaining Job 
Limit 

Buffer size. bsz is an octal number that specifies the 
size of a dataset's circular I/O buffer in 512-word 
blocks. The default is the value defined by the 
installation parameter. The U and BS parameters are 
mutually exclusive. 

XSZ=xmx:xmn 

SR-OOll 0 

Transfer sizes. This parameter permits the circular buffer 
to be partitioned into specific zones, tailoring the I/O to 
a dataset and the program that uses the dataset. 

xmx is the maximum transfer size in octal sectors to a 
device. If it is omitted, a system default is used; 
generally half the buffer size. 

8-3 



Dv=ldv 

DT=dt 

DF=df 

RDM 

U 

MR 

8-4 

xmn is the minimum transfer size in octal sectors to a 
device. If it is omitted, a system default is used: 
generally one sector. 

Logical device on which the dataset begins. If a logical 
device name is not given, one is chosen by the system. 
Idv can also be a generic resource name. Ask site 
operations for possible logical device names and generic 
resource names. When Idv is a generic resource or a 
controlled device, the number of sectors consumed by the 
dataset before overflow is counted against the resource 
allocation limit specified on the JOB control statement. 
The DV parameter applies to mass storage datasets only and 
is ignored when used for magnetic tape datasets. 

Device type. The allowable device types are CRT 
(interactive) and mass storage (MS). MS is the default. 
This parameter is ignored when used for magnetic tape 
datasets. 

Dataset format. This parameter is used only on output and 
is valid only when DT=CRT. This parameter is ignored when 
used for magnetic tape datasets. The following two formats 
are supported: 

CB Character blocked; end-of-record (EOR) record control 
words are converted by the station to the format that 
the station supports. CB is the default. 

TR Transparent; EOR record control words are not 
converted. You must insert cursor controls. 

Random dataset. If the RDM parameter is present, the 
dataset is read and written randomly (that is, records may 
be read or written out of sequence). If the RDM parameter 
is not specified, only sequential or Fortran direct access 
I/O is allowed on the datasets. This parameter applies to 
mass storage datasets only and is invalid for magnetic tape 
datasets. 

Unblocked dataset structure. If the U parameter is 
present, the dataset is not in COS-defined blocked format. 
If the U parameter is absent, the dataset is a COS blocked 
dataset. (Refer to section 2 for information on unblocked 
dataset format.) This parameter is invalid for interchange 
format tape datasets. The U and BS parameters are mutually 
exclusive. 

Memory-resident dataset. If this parameter is present, the 
system I/O routines write the buffers to mass storage only 
if they become full. If the MR parameter is absent, the 
dataset is not a memory-resident dataset. MR generates an 

SR-OOll 0 



I 

I 

LM=lm 

INC=nds 

C 

DC=de 

error if the U parameter is specified. This parameter 
applies to mass storage datasets only and is invalid for 
magnetic tape datasets. 

Maximum size limit for this dataset. 1m specifies a 
number of 512-word blocks. The job step is aborted if this 
size is exceeded. The default and maximum dataset size 
limits are set by an installation parameter. The default 
is 100,000 sectors. This parameter applies to mass storage 
datasets only and is ignored for magnetic tape datasets. 

Number of sectors to allocate each time allocation occurs. 
The maximum value is 255 sectors. If both INC and SZ are 
specified, SZ is used initially and INC is used thereafter. 

Contiguous space allocation. Use C to allocate contiguous 
space requested by the SZ or INC parameter or the default 
size. If C is not specified, the system tries to find 
contiguous space on the selected device only. If C is 
specified, the system searches on every eligible device. 

If contiguous space cannot be found when C has been 
specified, the return status CONTIGUOUS SPACE NOT AVAILABLE 
appears. 

Disposition code. Disposition of the dataset when it is 
released. This parameter applies to mass storage datasets 
only and is ignored for tape datasets. The default is SC 
(scratch). 

de is a 2-character alphabetic code describing the 
destination of the dataset as follows: 

IN Input queue. The dataset is placed in the input 
queue of the destination station. 

MT Magnetic tape. The dataset is written on magnetic 
tape at the mainframe of job origin. 

PR Print dataset. The dataset is printed on the printer 
at the mainframe of job origin. 

PT Plot dataset. The dataset is plotted on an available 
plotter at the mainframe of job origin. 

PU Punch dataset. The dataset is punched on a card 
punch available at the mainframe of job origin. 

SC Scratch dataset. The dataset is deleted. 

ST Stage to mainframe. The dataset is made permanent at 
the mainframe of job origin. 

SR-0011 0 8-5 



I 

I 

BFI=bfi 

A=alias 

Blank field initiation. An octal representation of ASCII 
code that indicates the beginning of a sequence of blanks. 
BFI=OFF means that blank compression is inhibited. The 
default code is 338 (ASCII ESC code) but can be changed 
by an installation parameter. BFI is ignored for ISP 
datasets. 

Alternate unit name. Unit names let you refer to a dataset 
by an alternate name in a program. Each unit name must be 
a valid COS dataset name. 

If the unit name is to be used with Fortran unit numbers, 
alias has the form FTxx, where xx is the unit number 
specified. By default, this unit is formatted. If you 
wish to open it as unformatted, first close it and then 
reopen it to change the default. The unit number is an 
integer value in the range 0 through 102. Because unit 
numbers 100, 101, and 102 are reserved for system use, 
however, you may designate unit numbers 0 through 99. 

Use of this parameter associates the designated unit with 
the dataset specified by the DN parameter. At job 
initiation, unit FT05 is associated with dataset $IN and 
unit FT06 is associated with dataset $OUT. Unit names 
should not be used as dataset names. 

NOTE 

If a dataset name is used in place of a unit 
name or vice versa, Fortran auxiliary 
statements (that is, OPEN, CLOSE, and 
INQUIRE) produce unpredictable results. 

Foreign dataset translation identifier. fd is a 
3-character code that indicates that foreign dataset 
translation is to be performed by the libraries on the 
dataset. This parameter is required for run-time 
translation. If FD is coded, RF must also be coded. 
Valid values for fd are: 

CDC CDC-compatible tape dataset 
IBM IBM-compatible tape dataset 
VMS VAX/VMS-compatible tape dataset 

The default is no translation. 

t See Foreign Dataset Conversion on CRAY X-MP and CRAY-1 Computer 
Systems, publication SN-0236, for more information. 

8-6 SR-0011 0 



I 

I 

CV=cvt 

CS=cst 

Foreign dataset conversion mode. CV indicates if 
implicit data conversion is to be done by the run-time 
library. CV values are as follows: 

ON Data conversion on. ON causes the library to 
convert the foreign internal representation to or 
from Cray internal representation according to the 
Fortran 1/0 list. 

OFF Data conversion off. The data type is not 
considered when OFF is specified. Full Cray words 
are moved to or from the foreign dataset. 

The default is OFF. 

Foreign data character set. This parameter specifies 
the character set to represent the internal data on the 
foreign dataset. Run-time library routines convert 
character data from the cs character set to ASCII when 
implicit data conversion is turned on. The valid cs 
values are as follows: 

AS ASCII; AS is the default for VAXIVMS tape file 
translation. 

DC CDC display code; this option is illegal when IBM 
tape file translation is requested. DC is the 
default for CDC tape file translation. 

EB EBCDIC; EB is the default for IBM tape file 
translation. 

Tape format. f is a 1- or 2-character code which 
describes a CDC tape format type. It is required for CDC 
tape file translation; no default value is provided for F. 
Valid F values are as follows: 

I Internal tape format 
SI System or SCOPE internal tape format 

Record format, or block and record type. When defined 
for IBM files, RF refers to record format. rf is a 1- to 
3-character code that describes an IBM record format. 
Valid values for RF when defining IBM files are the 
following: 

t See Foreign Dataset Conversion on CRAY X-MP and CRAY-1 Computer 
Systems, publication SN-0236, for more information. 

SR-0011 0 8-7 



RF=rf 
(continued) 

I 

8-8 

• 

F Fixed-length records 
FB Fixed-length blocked records 
U Undefined-length records 
V Variable-length records 
VB Variable-length blocked records 
VBS Variable-length blocked spanned records 

No default value is provided, but RF can be omitted when 
accessing an IBM standard-labeled tape file. In that case, 
the record format designated by the label is used. If NEW 
is specified, RF=U. 

When defined for CDC tape files, RF refers to block and 
record type. In this case, rf is a 2-character code; 
the first character of the 2-character code describes the 
block type: 

C Character-count block type 
I Internal block type 

The second character of the 2-character code describes the 
record type: 

S System-logical record type 
W Control-word record type 
Z Zero-byte record type 

No default value is provided. RF is required for CDC tape 
file translation. The following rf values are supported 
for CDC tape files: 

CS Character-count block type, system-logical record type 
CW Character-count block type, control-word record type 
CZ Character-count block type, zero-byte record type 
IW Internal block type, control-word record type 

When defined for VMS files, RF refers to record format. 
Here, rf is a 1- or 2-character code that describes a VMS 
record format. Values for rf are as follows: 

F Fixed-length records 
UF Unblocked fixed-length records 

D ANSI D variable-length records 
V Variable-length records 
S Variable-length segmented records 

US Unblocked variable-length segmented records 

Certain formats are valid only on specific applications. 
See Foreign Dataset Conversion on CRAY X-MP and CRAY-1 
Computer Systems, publication SN-0236, for details. 

SR-OOll 0 



I 

I 

RS=rs+ Tape dataset record size. rs is the length of the 
record, and its expression varies for IBM and CDC tape 
files. 

When defined for IBM files, rs is the length of the 
record in 8-bit bytes. The default is set according to the 
requested record format. Table 8-1 shows the defaults for 
RS for IBM files. No default value is used, however, when 
accessing an IBM standard labeled tape file. Instead the 
record size designated by the label is used. 

In addition, restrictions may be imposed on IBM files at 
ASSIGN processing time. Table 8-2 summarizes those 
restrictions. 

When defined for CDC tape files, rs is the length of the 
record in 6-bit characters. rs refers to the maximum 
record length when W is specified as a value for RF. The 
default, RS=O, implies no maximum record length. 

When Z is specified as a value for RF, rs becomes the CDC 
equivalent of the FL parameter: rs specifies the length 
to which zero-byte records are to be extended on input, and 
the length of a zero-byte record on output. This parameter 
is required for zero-byte record translation. No default 
value is provided for rs when Z is specified as an RF 
value. 

For CDC system-logical records, rs is the maximum record 
length. The default, RS=O, implies no maximum record 
length. 

For VAX/VMS tape files, rs is the length of the 
record in 8-bit bytes. For fixed-length (F-format) or 
unblocked fixed-length (UF-format) records, rs can be 
between 1 and 32767. There is no default. 

For ANSI D variable-length (D-format) records, rs is the 
maximum record length in 8-bit bytes: rs can be between 1 
and 9995. The default is a maximum record length of MBS-4 
or 9995, whichever is smaller. For variable-length (V 
format) records, rs can be between 1 and 32767. rs may 
not exceed MBS for variable-length (V-format) records. 

+ See Foreign Dataset Conversion on CRAY-1 and CRAY X-MP Computer 
Systems, publication SN-0236, for more information. 

SR-0011 0 8-9 



I 

I 
MBS=mbs 

8-10 

Table 8-1. RS Defaults for IBM Tape Files 

Record Format Default 

Undefined-length 

Fixed-length RS=MBS 

Fixed-length, blocked 

Variable-length 

Variable-length, blocked RS<MBS-4 

Variable-length, blocked, spanned 

For variable-length segmented and unblocked variable-length 
segmented (S and US formats) records, rs is the maximum 
record length in 8-bit bytes. The value of rs is 
unrestricted. 

Table 8-2. RS Restrictions for IBM Tape Files 

Record Format 

Undefined-length 

Fixed-length 

Fixed-length, blocked 

Variable-length 

Variable-length, blocked 

Variable-length, blocked, spanned 

Restriction 

RS=MBS 

RS is multiple 
of MBS 

RS<MBS-4 

None 

Maximum tape block size. If you request foreign dataset 
translation by specifying FD (see the description of the FD 
parameter), values for mbs are different. mbs values 
are different for IBM, CDC, and VMS tape files. 

SR-0011 0 



MBS=mbs When defined for IBM files, mbs is the maximum block 
(continued) length in 8-bit bytes. The only mbs restriction for IBM 

files is that the value be less than or equal to 32760 
bytes. 

When defined for CDC tape files, mbs is the maximum block 
length in 6-bit characters. The default is 5120 
characters. It is recommended that you not override this 
default value. 

When defined for VMS files, mbs is the maximum block 
length in 8-bit bytes. The value must be no greater than 
32767. 

DEF=dtl[:dt2:dt3] 

SR-0011 a 

User-defined default space. The default space is allocated 
starting with the first device type specified. If that 
space is not available, the system tries the next device 
type. Up to three device types may be specified. The 
device types are as follows: 

DD19 Disk drive 
DD29 Disk drive 
DD39 Disk drive 
0049 Disk drive 
EBM Extended Buffer Memory 
SSD Solid-state storage device 
* Any available device 

If DEF is not specified, the device type defaults to *. 

Example 1: 

The system attempts to allocate space first on the SSD, 
next on EBM, and finally on all other default devices. If 
space is available on the SSD, overflow would be allocated 
on EBM and subsequent overflow would go to other default 
space. 

ASSIGN,DN=A,DEF=SSD:EBM:*. 

Example 2: 

The system attempts to allocate space on the SSD. If space 
is not available on the SSD, the status NO MORE DISK SPACE 
AVAILABLE returns. 

ASSIGN,DN=A,DEF=SSD. 

8-11 



ST=st 

SPD=spd 

User-specified storage for the dataset. The storage types 
are the following: 

SCR 
PERM 

Scratch device 
Permanent space device 

The installation parameter I@STYPE defines the default. 

Example: 

The dataset named A is placed on a scratch device: 

ASSIGN,DN=A,ST=SCR. 

Sectors per device. spd is the number of sectors to 
allocate to a device before overflowing to a different 
device that is part of the user-defined default space. 
Simultaneous transfers can occur from different devices 
when the request spans more than one device (i.e., pseudo 
striping). spd ranges from a minimum of the number 
sectors allocated to one track on a device to a maximum of 
2047. 

If no spd is specified or if SPD=O, all data is 
transferred to the default device. If DV is specified, the 
SPD function will not occur until the specified DV 
overflows. 

8.2 HOLD - HOLD GENERIC RESOURCE 

The HOLD control statement declares that any dataset associated with the 
indicated generic resource will be released as if HOLD were specified on 
the RELEASE control statement. The HOLD parameter on the RELEASE control 
statement prevents the return of the resource allocation to the system 
pool. The HOLD control statement is useful when the dataset resides on a 
generic resource, and dataset assignment and release are controlled by 
applications over which you do not have direct control. 

Format: 

HOLD,GRN=grn. 

GRN=grn Generic resource name 

8-12 SR-0011 0 



8.3 NOHOLD - RESCIND THE EFFECT OF HOLD 

The NOHOLD control statement rescinds the effect of the HOLD control 
statement for the specified generic resource. 

Format: 

NOHOLD,GRN=grn. 

GRN=grn Generic resource name 

8.4 RELEASE - RELEASE DATASET 

The RELEASE control statement relinquishes access to the named datasets 
for the job. If a dataset is not permanent and its disposition code is 
SC (scratch), the system releases the mass storage assigned to the 
dataset. If the dataset is to be staged, it enters the output queue for 
staging to the destination station. If the dataset is permanent, the 
system updates the allocation information in the system catalogs if the 
size of the dataset has changed since the last SAVE, ACCESS, or ADJUST 
request. Finally, if the disposition code is not scratch (whether or 
not the dataset is permanent), the system writes an end-of-data (EOD) 
record to the dataset if it is blocked sequential and the last operation 
on it was a write. 

A dataset associated with a generic resource has a resource allocation as 
well as a physical allocation. The resource allocation for a tape 
dataset is one tape unit. The resource allocation for a disk dataset is 
the number of allocation units used by the dataset. Resources needed for 
a dataset are counted against the resource allocation limit specified on 
the JOB control statement during ACCESS (for tape) or ASSIGN (for disk). 
When a dataset is released, the physical allocation and the resource 
allocation are released to the system. When HOLD is specified on the 
RELEASE control statement, the physical allocation is released, but the 
resource allocation is retained for those datasets specified that are 
associated with a generic resource. HOLD is ignored for datasets not 
associated with a generic resource. 

SR-0011 0 8-13 



Format: 

HOLD 

Name of dataset to be released. A maximum of eight 
datasets may be specified. 

Hold generic resource. Do not return the resource 
allocation to the system pool. 

8.5 INTEGRATED SUPPORT PROCESSOR (ISP) DATASETS 

ISP datasets are controlled by two types of COS control statements: 

Control Statement 

CONNECT 

ISP 

Description 

Provides access to a dataset in the MVS system by 
a COS job 

Initiates communication with the ISP system on 
behalf of a COS job 

Refer to the SUPERLINK/ISP General Information Manual, CRI publication 
SI-0154 or the SUPERLINK/MVS User Guide, CRI publication SI-0178, for a 
complete description of these control statements and their uses. 

8-14 SR-0011 0 



PERMANENT DATASET MANAGEMENT 9 

The permanent dataset management control statements provide methods for 
creating, protecting, and accessing datasets assigned permanently to mass 
storage or magnetic tape. Such datasets cannot be destroyed by normal 
system activity or engineering maintenance. 

Section 6 introduces permanent dataset management. This section 
describes the following permanent dataset management control statements: 

Control Statement 

ACCESS 

ADJUST 

DELETE 

MODIFY 

PERMIT 

SAVE 

Function 

Makes an existing permanent dataset local to a 
job and is used to create a tape dataset 

Records the change in any of the size or 
allocation information for a dataset that might 
have contracted or expanded 

Clears all or part of a dataset edition's entry 
in the system catalogs 

Changes the characteristic information for an 
existing user permanent dataset 

Explicitly grants or denies specified users or 
groups of users access to a permanent dataset 

Makes a local dataset permanent and defines its 
associated characteristics for the system 

9.1 ACCESS - ACCESS PERMANENT DATASET 

The ACCESS control statement makes an existing permanent dataset local to 
a job and can be used to create a tape dataset. Following the ACCESS 
statement, all references to the permanent dataset must be by the local 
dataset name specified by the DN parameter. ACCESS permission parameters 
ensure that the user is authorized to use the permanent dataset. The 
ACCESS control statement must precede the ASSIGN control statement or the 
request call for the dataset. All tape datasets, whether or not they are 
new, must be made local by an ACCESS control statement or a system 
request. ACCESS is a system verb. 

SR-0011 0 9-1 



I 
More than one tape ACCESS control statement with the same dataset name, 
but a different permanent dataset name, will activate concatenation. 
Refer to the Concatenated Datasets subsection in section 2 for more 
information on concatenated datasets. 

You do not have to access a permanent dataset entered in the System 
Directory (SDR). A basic set of datasets is entered into the SDR when the 
operating system is installed. These datasets include the loaders, 
Fortran compilers, the CAL assemblers, UPDATE, BUILD, and system utility 
programs such as copies and dumps (all utilities described in sections 6 
through 15 are entered in the SDR). Other datasets can be entered into 
the SDR according to site requirements. A tape dataset cannot reside in 
the SDR. 

The processing of the ACCESS system request ensures the following: 

• The dataset already exists or, for new magnetic tape datasets, the 
dataset does not already exist. 

• The requested permissions are allowed. 

• The type of medium on which the dataset resides has been previously 
allocated by the job, provided the medium is a dedicated resource 
(such as magnetic tape). 

If the Permanent Dataset Archiving feature is enabled, the following 
factors can cause a delay between the issue of the ACCESS request and its 
completion while the system recalls the dataset edition to on-line mass 
storage. 

• The dataset edition being accessed has migrated off-line. 

• The dataset edition being accessed has been retired off-line and 
the recall process initiated by a preceding RESTORE statement has 
not completed. 

The Permanent Dataset Manager (PDM) issues a message to your job's logfile 
indicating the reason for the delay. 

Format: 

9-2 

ACCESS,DN=dn,NA,ERR,MSG,IR,PDN=pdn,ID=uid,ED=ed,R=rd,W=wt,M=mn,UQ, 

IN 
OWN=OV,DT=dt,NEW,MOD,RING=OUT,DEN=den,MF=fes, 

XDT=yyddd,RT=rt,FD=fd,CV=cv,CS=cs,F=f,RF=rf,RS=rs,FSEQ= fseq. 

SR-0011 0 



I 

The following parameters can be used with mass storage datasets: 

ON=dn 

NA 

Local dataset name. The name the job uses to refer to the 
dataset named in PDN while it remains local to the job. 
This parameter must be present and equated to a valid local 
dataset name not already in use. 

No abort indicator. This parameter indicates that the job 
step is not to abort if an error results from the access 
attempt. If omitted, an error causes the job step to 
abort. NA is ignored if it is used for magnetic tape 
datasets. 

ERR Error message. If this parameter is specified, error 
termination messages are suppressed. 

MSG Termination message. If MSG is specified, normal 
termination messages are suppressed. 

IR 

PDN=pdn 

Io=uid 

ED=ed 

SR-0011 a 

Immediate reply. An ACCESS request cannot always be 
honored immediately. When this is the case, the operating 
system automatically delays the request until it can be 
honored. If IR is specified and the ACCESS control 
statement cannot be honored immediately, the job will abort 
and the caller has to reissue the ACCESS request. 

Name or file identifier of the permanent dataset to 
access. For a mass storage dataset, the name can be 1 to 
15 characters; for a magnetic tape dataset, 1 to 44 
characters. For labeled tape datasets (AL and SL), the 
rightmost 17 characters of pdn are used to match the file 
identifier from the label group. With front-end servicing, 
the whole value is generally used as the identifier. If 
PDN is omitted, the DN value is used. 

Additional user identification; 1 to 8 alphanumeric 
characters. If uid was specified at SAVE time, the ID 
parameter must be specified on the ACCESS control 
statement. The default is no user 10. This parameter 
applies to mass storage datasets only; it is ignored for 
magnetic tape datasets. 

The edition number of the permanent dataset being accessed; 
a value from 1 through 4095 was assigned by the dataset 
creator. If the ED parameter is not specified, the default 
is the highest edition number known to the system (for this 
permanent dataset). This parameter applies to mass storage 
datasets only; it is ignored for magnetic tape datasets. 

9-3 



The following parameters identify the permissions for accessing mass 
storage permanent datasets. 

R=rd 

W=wt 

M=mn 

UQ 

9-4 

Read control word as specified at SAVE time; 1 to 8 
alphanumeric characters assigned by the dataset creator. 
The default is no read control word. To obtain read 
permission, this parameter must be specified on the ACCESS 
control statement if a read parameter was specified when 
the dataset was saved. This parameter applies to mass 
storage datasets only; it is ignored for magnetic tape 
datasets. 

Write control word as specified at SAVE time. To obtain 
write permission, this parameter must be specified in 
conjunction with a UQ parameter on the ACCESS control 
statement if a W parameter was specified when the dataset 
was saved. Write permission is required for an ADJUST and 
applies to mass storage datasets only; it is ignored for 
magnetic tape datasets. 

Maintenance control word as specified at SAVE time. This 
parameter is specified in conjunction with a UQ parameter 
on an ACCESS control statement if the dataset is to be 
subsequently deleted. That is, maintenance permission is 
required to delete a dataset. This parameter applies to 
mass storage datasets only; it is ignored when used for 
magnetic tape datasets. 

Unique access. This parameter indicates exclusive access 
to the dataset is desired. If the UQ parameter is 
specified and the appropriate write or maintenance control 
words are specified, write, maintenance, and/or read 
permission is granted. If UQ is not specified, 
multiple-user read access is granted by default (if at a 
minimum, the read control word is specified). UQ is 
required to delete a permanent dataset using the DELETE 
control statement. This parameter applies to mass storage 
datasets only; it is ignored for magnetic tape datasets. 

Access to the requested dataset edition is delayed if 
either of the following conditions exist: 

• You have requested unique access and another user 
already has access to the dataset edition. 

• You have requested multiple-user read access and another 
user has unique access to the dataset edition. 

When the condition blocking access is resolved, the delay 
state is cancelled. When multiple-user jobs or tasks are 
waiting for access to the same dataset edition, the delay 

SR-OOll 0 



I 

I 

UQ state is cancelled for all the jobs or tasks at the same 
(continued) time. Thus, you cannot assume that the first of several 

jobs or tasks to be delayed for the same dataset edition 
will be the first to access it after a delay state is 
cancelled. 

OWN=ov Ownership value. If the OWN parameter is specified and the 
user has been granted access by the owner, the dataset is 
made local to the job. OWN is ignored if OV matches the 
active ownership value of the job (users need not be 
permitted to their own datasets). 

The following list describes the parameters available for accessing 
and/or defining magnetic tape datasets. The DN=dn parameter names the 
dataset. 

DT=dt 

NEW 

MOD 

SR-0011 a 

Tape dataset generic resource name. This parameter is 
required for tape datasets. Up to 16 generic resource 
names can be defined by the installation. Only one generic 
resource name is configured with the released system: 

*TAPE Device capable of 1600 or 6250 b/i 

The number of generic resources needed by the job is 
declared on the JOB control statement, and it is the 
resource allocation limit. (Refer to the JOB control 
statement description for details.) When a tape dataset is 
accessed, the number of tape drives associated with the 
dataset (usually one) is counted against the resource 
allocation. 

Creation disposition. Selection of this parameter 
indicates the dataset does not yet exist and is to be 
created by this job. NEW treats a tape as if it were blank 
and overwrites an existing tape label. If omitted, it is 
assumed the dataset already exists. NEW datasets must be 
written to before any read can occur. NEW and MOD are 
mutually exclusive. NEW automatically selects RING=IN if 
ring processing is in effect. 

Existing tape dataset modification identifier. This 
parameter lets you position single volume and multivolume 
datasets on tape. It specifies that data is to be added at 
the end of an existing dataset on either labeled or 
unlabeled tapes. Access requests using MOD for tape volume 
positioning are successful only if the end of a dataset is 
indicated by the EOF trailer label for a labeled tape 
volume, and by a tape mark for an unlabeled tape. MOD and 
NEW are mutually exclusive. MOD selects RING=IN if ring 
processing is in effect. MOD cannot be used with the 
transparent recording format. 

9-5 



RING=IN Tape write ring option. The choices are IN if the tape 
OUT is to be written and OUT if the tape is only to be read. 

DEN=den 

MF=fes 

This parameter is in effect only if the installation 
parameter I@RNGABT is selected at your site. 

Density of the tape dataset. This parameter applies only 
to tape datasets; it is ignored when used for mass storage 
datasets. Density values are: 

6250 
1600 

Dataset density of 6250 b/i, default 
Dataset density of 1600 b/i 

Front-end servicing mainframe identifier. This parameter 
specifies an alternate front-end computer system to which 
servicing requests are directed. If MF is omitted, the 
front end from which the job originated is used. Front-end 
serv1c1ng is a mechanism whereby auxiliary servicing (such 
as updating front-end resident catalogs and tape management 
systems) of the dataset and/or tape volumes is performed. 

The following parameters identify the magnetic tape dataset to be 
accessed. The PDN=pdn parameter names the dataset. 

9-6 

VOL=voli Volume identifier list. An optional list of 1- to 
6-character volume identifiers (VIs) identify tape volumes 
where the dataset resides. The list contains up to 255 
VIs. If the VI list is omitted for a new tape dataset, the 
tape volumes on which the dataset is written are selected 
by the system operator and the front-end servicing 
routine. This is called a nonspecific volume allocation. 
If the VI list is omitted for an old tape dataset, the 
volumes on which the dataset resides are determined by 
front-end servicing. If front-end servicing has no 
knowledge of the dataset or is inactive, the omission of 
the VI list results in a job step abort. 

FSEC=fsec File section number or volume sequence number. This 
parameter describes on which volume, relative to the first 
physical volume of the dataset, to begin processing. 

The volume sequence number for the first volume of the 
dataset is 1. If fsec is omitted, a value of 1 is 
assumed. This parameter has a direct relationship to the 
VIs specified in the VOL parameter. The volume sequence 
number corresponds to the first VI identified in the VOL 
parameter. For example, to access a tape dataset starting 
with the eighth section, specify FSEC=8 on the ACCESS 
call. 

If both the MOD and FSEC=fsec are coded, the FSEC 
parameter is not used for validating the header label. 

SR-OOll 0 



I 

I 

FSEC=fsec Instead, it represents the position of the volume serial 
(continued) number in the volume list where MOD processing begins. 

LB=lb 

For example, the following statement causes processing to 
start with tape T2. 

ACCESS, ... MOO,VOL=Tl:T2:T3,FSEC=2, ... 

Tape dataset label type that indicates the tape format. If 
this parameter is omitted, label type NL is assumed. Label 
types are as follows: 

AL ANSI standard labeled tapes 
BP Bypass label processingt 
FAL Field format with ANSI standard labels 
FNL Field format with no labels 
FSL Field format with IBM standard labels 
NL Unlabeled tapes (default) 
SL IBM standard labeled tapes 

Field format tape datasets treat embedded EOFs or tapemarks 
as data. Tapemarks that are not followed by a label are 
returned in the data as EOF control words. On output, EOF 
control words that are not followed by an EOO control word 
are converted to physical tapemarks. 

The following parameters identify the characteristics of a magnetic tape 
dataset. 

t 

tt 

OF=df 

PROTtt 

Recording format. Identifies the format in which the tape 
dataset is to be read or written or both. Values for this 
parameter are the following: 

IC Interchange format 
TR Transparent format (invalid for field format 

tape datasets) 

If OF is omitted, the format is transparent. Refer to 
section 2 for a description of the formats and the 
associated properties. 

Front-end protect indicator. Indicates to the front-end 
computer system performing the service functions that the 
tape dataset or its volumes or both are to be protected. 
PROT is recognized for new tape datasets only. If PROT is 
omitted, the dataset and its volumes are not protected. 

User privilege is required if 
in warning mode or full mode. 
to acquire this privilege. 
Station-dependent parameter 

the system security option (I@SLVL) is 
Refer to the CRI site operations staff 

SR-OOll 0 9-7 



I 

MBS=mbs Maximum tape block size. If foreign dataset translation is 
requested by specifying FD, values for mbs are different. 
Refer to the description of the FD parameter. mbs values 
are different for IBM, CDC, and VMS tape files. 

When defined for IBM files, mbs is the maximum block 
length in 8-bit bytes. The only mbs restriction for IBM 
tape files is that the value be less than or equal to 32760 
bytes. 

When defined for CDC tape files, mbs is the maximum block 
length in 6-bit characters. The default is D'5120 
characters. It is recommended that you not override this 
default value. 

When defined for VMS files, mbs is the maximum block 
length in 8-bit bytes. The value must be no greater than 
32767. 

If MBS is omitted and the dataset is new, a default size 
that has been determined by the site is used. The limiting 
value of the parameter is also left to site definition. If 
omitted for an existing labeled tape dataset (AL or SL), 
the maximum block size is set to the value from the label 
group. Exceeding this size when writing results in a job 
abort condition of WRITE FORMAT ERROR. When reading a tape 
block that is larger than the specified value, a job abort 
condition of LARGE BLOCK ENCOUNTERED is produced. MBS is 
rounded up to the next multiple of 4096 bytes for 
transparent format tape datasets. 

XDT=yyddd Expiration date. Indicates the date this tape dataset 
is considered dormant and may be overwritten. yy 
specifies the year and is a number from 0 through 99. 
ddd specifies the day in the year, 001 through 366. If 
omitted and the dataset is going to be written, the current 
date is used. This parameter is also used as a means of 
communicating with a servicing front-end computer system. 
The XDT and RT parameters are mutually exclusive. 

RT=rt Retention period. User-defined value from 1 through 4095 
specifying the number of days a permanent dataset should be 
retained by the system. The RT parameter is similar to the 
XDT parameter but lets you specify relative expiration 
date. If RT is omitted, the default value is O. The RT 
and XDT parameters are mutually exclusive. 

The following tape dataset parameters specify that record and data format 
conversion are to be performed at run time. 

9-8 SR-0011 0 



I 

cv=cvt 

CS=cst 

Foreign dataset translation identifier. Ed is a 
3-character code that indicates foreign dataset 
translation should be performed on the dataset. 
parameter is required for run-time translation. 
values for fd are the following: 

CDC CDC-compatible tape dataset 
IBM IBM-compatible tape dataset 
VMS VAX/VMS-compatible tape dataset 

The default is no translation. 

This 
Valid 

Foreign dataset conversion mode. CV indicates whether or 
not implicit data conversion should be done by the run-time 
library (RTL). CV values are the following: 

ON Data conversion turned on. ON causes the library 
to convert the foreign internal representation to 
or from Cray internal representation, according to 
the 1/0 list. 

OFF Data conversion turned off means the data type 
is not considered. Full Cray words are moved to or 
from the foreign dataset. 

The default is OFF. 

Foreign data character set specifies the character set to 
represent the internal data on the foreign dataset. RTL 
routines convert character data from the cs character set 
~o ASCII when implicit data conversion is turned on. The 
valid cs values are the following: 

AS ASCII. AS is the default for VAXIVMS tape file 
translation. 

DC CDC display code. DC is the default for CDC tape 
file translation. This option is illegal when IBM 
tape file translation is requested. 

EB EBCDIC. EB is the default for IBM tape file 
translation. 

Tape format. f is a 1- or 2-character code that 
describes a CDC tape format type. It is required for CDC 
tape file translation. No default value is provided for 
F. Valid F values are the following: 

I Internal tape format 
SI System or SCOPE internal tape format 

t See Foreign Dataset Conversion on CRAY X-MP and CRAY-1 Computer 
Systems, publication SN-0236 for more information. 

SR-OOll 0 9-9 



RF=rti" Record format, or block and record type. When defined for 
IBM files, RF refers to record format. rf is a 1- to 
3-character code that describes an IBM record format. Valid 
values for RF when defining IBM files are the following: 

F Fixed-length records 
FB Fixed-length blocked records 
U Undefined-length records 
V Variable-length records 
VB Variable-length, blocked records 
VBS Variable-length, blocked, spanned records 

No default value is provided, but RF can be omitted when 
accessing an IBM standard-labeled tape file. In that case, 
the record format designated by the label is used. If NEW 
is specified, RF=U. 

When defined for CDC tape files, RF refers to block and 
record type and is a 2-character code. The first character 
of the 2-character code describes the block type: 

C Character-count block type 
I Internal block type 

The second character of the 2-character code describes the 
record type: 

S System-logical record type 
W Control-word record type 
Z Zero-byte record type 

No default value is provided. RF is required for CDC tape 
file translation. The following rf values are supported 
for CDC tape files: 

CS Character-count block type, system-logical record type 
CW Character-count block type, control-word record type 
CZ Character-count block type, zero-byte record type 
IW Internal block type, control-word record type 

When defined for VMS files, RF refers to record format. 
Here rf is a 1- or 2-character code that describes a VMS 
format. Values for rf are as follows: 

F Fixed-length records 
UF Unblocked fixed-length records 
D ANSI D variable-length records 
V Variable-length records 
S Variable-length segmented records 
US Unblocked variable-length segmented records 

t See Foreign Dataset Conversion on CRAY X-MP and CRAY-1 Computer 
Systems, publication SN-0236 for more information. 

9-10 SR-0011 0 



I 

Tape dataset record size. rs is the decimal length 
of the record, and its expression varies for IBM and 
CDC tape files. 

When defined for IBM files, rs is the decimal length of 
the record in 8-bit bytes. The default is set according to 
the requested record format. No default value is used, 
however, when accessing an IBM standard labeled tape file. 
Instead, the record size designated by the label is used. 
Table 9-1 shows the defaults for which RS is set for IBM 
files. 

Table 9-1. RS Defaults for IBM Tape Files 

Record Format Default 

Undefined-length 

Fixed-length 

Fixed-length, blocked 

Variable-length 

Variable-length, blocked 

Variable-length, blocked, spanned 

In addition, restrictions may be imposed on IBM tape files 
at ACCESS processing time. Table 9-2 summarizes those 
restrictions. Nonetheless, restrictions are not enforced 
if the file accessed is an IBM standard labeled tape file, 
and if neither RS nor MBS is specified. 

t See Foreign Dataset Conversion on CRAY X-MP and CRAY 1 Computer 
Systems, publication SN-0236 for more information. 

SR-0011 0 9-11 



Table 9-2. RS Restrictions for IBM Tape Files 

Record Format 

Undefined-length 

Fixed-length 

Fixed-length, blocked 

Variable-length 

Variable-length, blocked 

Variable-length, blocked, spanned 

Restriction 

RS=MBS 

MBS is multiple 
of RS 

RS<MBS-4 

None 

RS=rs For CDC tape files, rs is the decimal length of the 
(continued) record in 6-bit characters. rs refers to the maximum 

record length when W is specified as a value for RF. The 
default, RS=O, implies there is no maximum record length. 

9-12 

When Z is specified as a value for RF, rs becomes the 
equivalent of the CDC FL parameter: rs specifies the 
length to which zero-byte records are to be extended with 
blank characters on input and the length of a zero-byte 
record on output. This parameter is required for zero-byte 
record translation. No default value is provided for rs 
when Z is specified as an RF value. 

For CDC system-logical records, rs is the maximum record 
length. The default, RS=O, implies that there is no maximum 
record length. 

For VAX/VMS files, rs is the length of the record in 
8-bit bytes. For fixed-length (F-format) or unblocked 
fixed-length (UF-format) records, rs can be between 1 and 
32767. There is no default. 

For ANSI 0 variable-length (0 format) records, rs is the 
maximum record length in 8-bit bytes. rs can be between 
1 and 9995. The default, RS=O, implies a maximum record 

SR-0011 0 



RS=rs length of MBS-4 or 9995, whichever is smaller. For 
(continued) variable-length (V format) records, rs can be between 1 

and 32767; rs may not exceed MBS. 

For variable-length segmented and unblocked variable-length 
segmented (S and US formats) records, rs is the maximum 
record length in a-bit bytes. The value of rs is 
unrestricted. The default, RS=O, implies no maximum record 
size. 

FSEQ=fseq File sequence number. This is a 1- to 4-digit number 
that describes the relative position of the dataset on the 
tape volume. The default is 1. 

9.2 ADJUST - ADJUST PERMANENT DATASET 

The ADJUST control statement redefines the size of a mass storage 
permanent dataset by modifying the information in the Dataset Catalog 
(DSC) to reflect changes in the dataset size and disk allocation. When a 
permanent dataset is overwritten, and the dataset size changes, issuing 
an ADJUST statement informs the system of the dataset's new size. An 
ADJUST of a permanent dataset can be issued if the dataset has been 
previously accessed within the job with write permission. ADJUST is a 
system verb. 

Under the appropriate conditions, ADJUST forces any unwritten data to 
mass storage to ensure that all of the dataset is made permanent. 
Because this situation occurs when the dataset has recently been written 
to but not yet closed, ADJUST attempts to close the dataset. CLOSE 
disposes of current positioning information for that dataset. Therefore, 
subsequent operations on that dataset must reopen it and begin at the 
beginning-of-data (BOD). The specific conditions that the dataset must 
meet are described under the ADJUST macro (refer to the Macros and Opdefs 
Reference Manual, CRI publication SR-0012). 

The ADJUST statement is ignored when used with magnetic tape datasets. 

If a dataset's size is reduced sufficiently to require fewer disk 
allocation units, the unused disk space returns to COS. The size of a 
disk allocation unit is dependent on the device type. 

Format: 

ADJUST,DN=dn,NA,ERR,MSG. 

SR-0011 0 9-13 



DN=dn 

NA 

ERR 

MSG 

Local dataset name of a permanent dataset that has been 
accessed with write permission. This dataset can be closed 
before the ADJUST statement is processed. 

No abort. If this parameter is omitted, an error causes 
the job step to abort. 

Error message. If this parameter is specified, error 
termination messages are suppressed. 

Termination message. Normal termination messages are 
suppressed when MSG is specified. 

9.3 DELETE - DELETE PERMANENT DATASET 

The DELETE control statement clears all or part of a dataset edition's 
entry in the system catalogs: the Master Catalog Dataset (MCD), the 
Dataset Catalog (DSC), and the Backup Catalog (BCD). DELETE's effect 
depends both on the residence of the dataset and on the parameters 
specified. The control statement has two formats: one for local 
datasets and another for nonlocal datasets. 

9.3.1 LOCAL DATASET FORMAT 

The local dataset format of the DELETE control statement requires that 
the dataset be accessed as a local dataset with both unique access (the 
UQ parameter on the ACCESS control statement) and maintenance permission. 

For a mass storage resident dataset, the action of DELETE depends on the 
PARTIAL parameter. If the parameter is specified, the entries in the 
system catalogs for the dataset are retained, but the allocation 
information is erased; the dataset itself remains accessible to the job 
as an empty permanent dataset. If the PARTIAL parameter is omitted, the 
entries in the system catalogs for the dataset are erased, and the 
dataset remains accessible to the job as a temporary dataset. 

For a magnetic tape resident dataset, DELETE causes COS to send a request 
to the front-end computer to remove the dataset's definition from its 
catalogs. 

Format: 

DELETE,DN=dn,NA,ERR,MSG,PARTIAL. 

9-14 SR-0011 0 



I 

I 

DN=dn 

NA 

ERR 

MSG 

PARTIAL 

Local dataset name of a permanent dataset accessed with 
maintenance permission and unique access. This is a 
required parameter. 

No abort. If this parameter is omitted, a fatal error 
causes the job step to abort. 

Error message. If this parameter is specified, error 
termination messages are suppressed. 

Termination message. If MSG is specified, normal 
termination messages are suppressed. 

Partial delete. Presence of this parameter causes COS to 
delete only the mass storage resident data. The DSC entry 
and the dataset's attributes information are retained. 
PARTIAL can be specified only for a mass storage dataset; 
it is ignored for tapes. 

9.3.2 NONLOCAL DATASET FORMAT 

The nonlocal dataset format of the DELETE control statement is used to 
permit the deletion of permanent datasets without accessing them in 
advance. It can be used only for mass storage resident datasets. If you 
get an error message, it could mean that the system does not have the 
Master Catalog option enabled. In this case, use the local dataset 
format of the DELETE control statement. 

This form of DELETE erases all record of the specified datasets from the 
system catalogs; there is no PARTIAL parameter. Deletion from the system 
catalogs is immediate if the dataset or datasets are not currently 
accessed. If the datasets are currently accessed, the Permanent Dataset 
Manager (PDM) processes the request for deletion when the last accessor 
releases the dataset. In either case, there is no delay to the job 
issuing the DELETE. 

The arguments for PDN, ID, and OWN can use the notations * to indicate 
anyone character and - to indicate an arbitrary string of characters. 

Format: 

DELETE,PDN=pdn,ERR,MSG,ID=id,OWN=owner,ED=ed,M=m. 

PDN=pdn Permanent dataset name; required parameter. 

SR-0011 0 9-15 



ERR Error message. If this parameter is specified, error 
termination messages are suppressed. 

MSG Termination message. Normal termination messages are 
suppressed if MSG is specified. 

ID=id 

OWN=owner 

ED=ed 

M=mn 

Permanent dataset ID; optional. Omission implies a null ID. 

Owner of the permanent dataset. The default is the job 
owner. If the requester is not the dataset owner, the 
requester must have maintenance permission. 

Edition number of the dataset. Options for ed are as 
follows: 

Specification 

Unsigned integer 
Example: ED=2 

Negative integer 
Example: ED=-2 

Positive integer 
Example: ED=+2 

ED=ALL 

(ed) 

(-ed) 

(+ed) 

Meaning 

The specific edition of the 
dataset 

All but the ed highest editions 

The ed highest editions 

All editions of the dataset 

The default is the highest edition. 

Maintenance control word. Must be specified if the dataset 
has a maintenance control word. 

9.4 MODIFY - MODIFY PERMANENT DATASET 

The MODIFY control statement changes permanent dataset information 
established by the SAVE function or a previously executed MODIFY 
function. A permanent dataset must be accessed with unique access (UQ) 
and all permissions before MODIFY can be issued. MODIFY is a system verb. 

Once a permanent dataset exists, the read, write, and maintenance control 
words, public access mode, and access tracking apply to subsequent 
editions of that permanent dataset. 

Parameters are in keyword form; the only required parameter is DN. If 
any combination of PDN, ID, and ED (including omission of one or more of 
them) is specified, and the resulting PDN/ID/ED combination already 
exists, the MODIFY aborts, and no changes are made. 

9-16 SR-0011 0 



MODIFY applies to mass storage datasets only; it is ignored for tape 
datasets. 

Format: 

MODIFY,DN=dn,PDN=pdn,ID=uid,ED=ed,RT=rt,R=rd,w=wt,M=mn,NA,ERR, 
ON 

MSG, EXO=OFF' PAM=mode,TA=opt,TEXT=text,NOTES=notes, 
ONLINE YES 

RESIDE=OFFLINE,BACKUP=NO . 

DN=dn 

PDN=pdn 

ID=uid 

ED=ed 

RT=rt 

R=rd 

w=wt 

SR-0011 0 

Local dataset name of a permanent dataset that has been 
accessed with all permissions; DN is a required parameter. 

New permanent dataset name to be applied to the existing 
dataset. If this parameter is omitted, the existing 
permanent dataset name is retained. 

New user identification to be applied to the existing 
permanent dataset; 1 to 8 alphanumeric characters. If 
parameter is omitted, the existing user ID is retained. 
this parameter is present without a value, user 
identification is cleared. 

this 
If 

New edition number to be applied to the existing permanent 
dataset. If this parameter is omitted, the existing 
edition number is retained. 

New retention period to be applied to the existing 
permanent dataset. If this parameter is omitted, the 
current retention period is retained. If this parameter is 
present without a value, the retention period is set to the 
installation-defined value. 

New read permission control word to be applied to the 
existing permanent dataset. If this parameter is omitted, 
the existing read permission is retained. If R is present 
without a value, the read permission control word is 
cleared. 

New write permission control word to be applied to the 
existing permanent dataset. If this parameter is omitted, 
the existing write permission is retained. If W is present 
without a value, the write permission control word is 
cleared. 

9-17 



9-18 

M=mn 

NA 

ERR 

MSG 

EXO=ON 
OFF 

New maintenance permission control word to be applied to 
the existing permanent dataset. If this parameter is 
omitted, the existing maintenance permission is retained. 
If M is present without a value, the maintenance permission 
control word is cleared. 

No abort. If this parameter is omitted, an error causes 
the job to abort. 

Error message. If this parameter is specified, error 
termination messages are suppressed. 

Termination message. Normal termination messages are 
suppressed when MSG is specified. 

Execute-only dataset. This parameter sets or clears 
the execute-only status of a dataset. EXO only (EXO=ON) 
causes the dataset to be modified to execute-only. EXO=OFF 
causes the dataset to be modified to a nonexecute-only 
dataset. If this parameter is omitted, the execute-only 
status of a dataset is unchanged. 

PAM=mode Public access mode. The following options are allowed: 

TA=opt 

TEXT=text 

Option Mode 

E Execute only 
M Maintenance only 
N No public access allowed 
R Read only 
W Write only 

Each site controls the default PAM value. Combinations of 
R, W, and M permissions are allowed; for example, PAM=R:W 
gives both read and write permissions. PAM=E has the same 
effect as the EXO or EXO=ON parameter and nullifies any 
other permissions specified. 

Track accesses. opt can be either YES or NO and indicates 
whether the owner requires that public accesses to the 
dataset be tracked. Refer to section 6 for a description of 
public access and access tracking. The default TA value is 
NO. 

Text to be passed to a front-end computer system requesting 
transfer of the dataset. Specify a maximum of 240 
characters. This text information is considered an 
attribute of the dataset and is retained along with any 
other attributes. Refer to section 6 for an explanation of 
all permanent dataset attributes. 

To clear the text, specify TEXT without a value. 

SR-0011 0 



I 

NOTES=notes 
Notes to be associated with the dataset. Specify a maximum 
of 480 characters. There is no other restriction on the 
contents of notes. A caret symbol in notes signifies 
end-of-line and causes AUDIT to advance to a new line when 
listing the notes. The caret symbol is included in the 
480-character maximum limit. notes is a permanent dataset 
attribute. Refer to section 6 for an explanation of all 
permanent dataset attributes. 

To clear the notes, specify NOTES without a value. 

ONLINE 
RESIDE=OFFLINE 

The preferred residency of a dataset. ONLINE specifies the 
dataset should remain on-line. This option requires the 
SCRESON privilege. 

OFFLINE specifies the dataset should receive priority when 
datasets are selected for migration. The speed with which 
the dataset migrates depends on factors such as how often 
the site runs space management. This option does not 
require a privilege. 

To clear the preferred-residency setting, specify RESIDE 
without a value. This causes the dataset edition to become 
a candidate for space management based on site-defined 
criteria. 

YES 
BACKUpt=NO 

Dataset backup. YES specifies the dataset should be backed 
up after it is created and whenever it is modified. NO 
specifies that the dataset should not be backed up under any 
circumstance. A dataset with no backup may be subject to 
rules defined by the site, especially regarding retention 
time. The default is YES. 

I t Deferred implementation 

SR-0011 0 9-19 



9.5 PERMIT - EXPLICITLY CONTROL ACCESS TO DATASET 

The PERMIT control statement explicitly designates who can access a 
particular permanent dataset. PERMIT applies to all editions of the 
permanent dataset. The dataset does not need to be local for PERMIT to be 
executed. PERMIT applies to user permanent mass storage datasets only. 
Access permission given with a PERMIT control statement takes precedence 
over the PAM parameter described under SAVE and MODIFY. PERMIT is a 
system verb. 

Format: 

PERMIT,PDN=pdn,ID=uid,AM=m,RP,USER=ov,ADN=adn,NA,ERR,MSG. 

PDN=pdn 

ID=uid 

AM=m 

RP 

USER=ov 

9-20 

Name of an existing user permanent dataset; 1 to 15 
characters. PDN is a required parameter. 

Additional user identification; 1 to 8 alphanumeric 
characters. If ID was specified on the SAVE request, the 
ID parameter must be specified on the PERMIT control 
statement. The default is no user ID. 

Access mode permitted for alternate user. The options are 
as follows: 

Option 

E 
M 
N 
R 
W 

Mode 

Execute only 
Maintenance only 
No public access allowed 
Read only 
Write only 

Each site controls the default AM value. Combinations of R, 
W, and M permissions are allowed; for example, AM=R:W gives 
both read and write permissions. AM=E gives the permitted 
user execute-only access to the dataset, effectively 
nullifying any other permissions specified. 

Remove permit parameter. Removes the permit associated with 
the specified ownership value. 

User ownership value associated with the user whose access 
permissions are being specified. 

SR-0011 0 



AON=adn Local dataset name of the attributes dataset from which the 
permit list is copied. The permits are created for the 
dataset specified by PDN, overwriting existing permits. 

NA No abort. If this parameter is omitted, an error causes the 
job step to abort. 

ERR Error message. If this parameter is specified, error 
termination messages are suppressed. 

MSG Termination message. Normal termination messages are 
suppressed when MSG is specified. 

9.6 SAVE - SAVE PERMANENT DATASET 

The SAVE control statement makes a local dataset permanent and defines its 
associated characteristics for the system. For mass storage datasets, 
saving involves making entries in the system catalogs, which uniquely 
identify the dataset. For magnetic tape datasets, saving involves 
front-end servicing on the defined front-end computer system. 

Under the appropriate conditions, SAVE forces any unwritten data (left in 
the output buffer) to be written, ensuring that all the data is made 
permanent. Because this situation occurs when the dataset has been 
recently written but not yet rewound or closed, SAVE attempts to close the 
dataset. CLOSE disposes of current positioning information for that 
dataset. Therefore, subsequent operations on that dataset must reopen it 
and begin at the beginning of the dataset (BOD). The specific conditions 
that the dataset must meet are described under the SAVE macro (refer to 
the Macros and Opdefs Reference Manual, CRI publication SR-0012). A 
permanent dataset is uniquely identified by permanent dataset name (PON), 
additional user identification (ID), edition number (ED), and ownership 
value. SAVE is a system verb. 

NOTE 

Because COS does not identify unblocked and random 
datasets, these datasets must be assigned as unblocked 
or random (use the ASSIGN control statement) after they 
have been accessed. 

SAVE creates an initial edition or an additional edition of a permanent 
dataset. 

SR-0011 0 9-21 



Format: 

9-22 

SAVE,DN=dn,PDN=pdn,ID=uid,ED=ed,RT=rt,R=rd,W=wt,M=mn,UQ,NA,ERR, 

ON 
MSG,EXO=OFF,PAM=mode,ADN=adn(m),TA=opt,TEXT=text,NoTES=notes, 

ONLINE YES 
RESIDE=OFFLINE,BACKUP=NO . 

DN=dn 

PDN=pdn 

ID=uid 

Local dataset name. The name the job uses to refer to the 
dataset while it remains local to the job. This dataset can 
be closed before the dataset is made permanent. This is a 
required parameter. 

Permanent dataset name. The default value is dn. The 
name can be 1 to 15 alphanumeric characters. 

Additional user identification. uid can be 1 to 8 
alphanumeric characters assigned by the dataset creator. 
The default is no user ID. 

Edition number. 
dataset creator. 

A value from 1 through 4095 assigned by the 
The default value is: 

• 1, if a permanent dataset with the same PDN and ID 
does not exist 

• The current highest edition number plus one, if a 
permanent dataset with the same PDN and ID does exist 

Retention period. User-defined value from 1 through 4095 
specifying the number of days a permanent dataset is to be 
retained by the system. The default value is an 
installation-defined parameter. 

Read control word; 1 to 8 alphanumeric characters assigned 
by the dataset creator. The read control word of the 
highest-numbered existing edition of a permanent dataset 
applies to all subsequent editions of that dataset. The 
default is no read control word. 

Write control word; 1 to 8 alphanumeric characters assigned 
by the dataset creator. The write control word of the 
highest-numbered existing edition of a permanent dataset 
applies to all subsequent editions of that dataset. To 
obtain write permission, you must also have unique access 
(UQ) to that dataset. The default is no write control word. 

SR-0011 0 

------------ -------- ---



I 

I 

M=mn 

UQ 

NA 

ERR 

Maintenance control word; 1 to 8 alphanumeric characters. 
The maintenance control word must be specified if a 
subsequent edition of the same permanent dataset is saved. 
The default is no maintenance control word. 

Unique access. If the UQ parameter is specified, only this 
job can access the permanent dataset at the completion of 
the SAVE function. Otherwise, multiple-user read access to 
the permanent dataset is granted. 

No abort. If this parameter is omitted, an error causes the 
job to abort. 

Error message. If this parameter is specified, error 
termination messages are suppressed. 

MSG Termination message. If MSG is specified, normal 
termination messages are suppressed. 

EXO=ON 
OFF 

Execute-only dataset. This parameter sets or clears the 
execute-only status of the dataset. EXO only or EXO=ON 
causes the dataset to be saved as execute-only. EXO=OFF or 
omission of this parameter causes the dataset to be saved 
as nonexecute-only dataset. When EXO=ON has been 
specified, it overrides permitted and public access modes. 

PAM=mode Public access mode. The following options are allowed: 

ADN=adn(m) 

Option 

E 
M 
N 
R 
W 

Mode 

Execute only 
Maintenance only 
No public access allowed 
Read only 
Write only 

Your site controls the default PAM value. 

Combinations of R, W, and M permissions are allowed; for 
example, PAM=R:W gives both read and write permissions. 
PAM=E has the same effect as the EXO or EXO=ON parameter and 
nullifies any other permissions specified. 

If the dataset is to be used for a segmented load with 
SEGLDR, use PAM=R (rather than PAM=E) to enable SEGLDR to 
read the dataset. 

Name of the attributes dataset from which attributes, 
indicated by the modifier m, are selected. If no 
modifiers are present, all attributes are selected. 
Attribute parameters such as NOTES=, TEXT=, PAM=, R=, and so 

SR-OOll 0 9-23 



I 

ADN=adn(m) 
(continued) on, take precedence over the modifiers. adn must be the 

local dataset name of a permanent dataset. The modifiers 
must be enclosed with parentheses and separated by colons. 
The following modifiers are supported: 

9-24 

TA=opt 

Modifier 

ALL 
CW 
NOTES 
P~ 

PERMITS 
TEXT 
TRACK 

Selection from Attributes Dataset 

All attributes 
Control words 
Notes attribute 
Public access mode attribute 
Permit list 
Text attribute 
Public access tracking attribute 

Track accesses. opt can be either YES or NO and 
indicates whether the owner requires that public accesses 
to the dataset be tracked. Refer to section 6 for a 
description of public access and access tracking. The 
default TA value is NO. 

TEXT=text Text to be passed to a front-end computer system requesting 
transfer of the dataset. A maximum of 240 characters can 
be specified. This text information is considered an 
attribute of the dataset and is retained along with any 
other attributes. Refer to section 6 for an explanation of 
all permanent dataset attributes. 

NOTES=notes 
Notes to be associated with the dataset. A maximum of 480 
characters can be specified. There is no restriction on 
the content of notes. A caret symbol in notes 
signifies end-of-line and causes AUDIT to advance to a new 
line when listing the notes. The caret symbol is 
included in the 480 character maximum limit. notes is a 
permanent dataset attribute. Refer to section 6 for an 
explanation of all permanent dataset attributes. 

ONLINE 
RESIDE=OFFLINE 

The preferred residency of a dataset. ONLINE specifies the 
dataset should remain on-line. This option requires the SCRESON 
privilege. 

OFFLINE specifies the dataset should receive priority when 
datasets are selected for migration. The speed with which the 
dataset migrates depends on factors such as how often the site 
runs space management. This option does not require a privilege. 

SR-OOll 0 



I 

9.7 

If RESIDE is not specified, the dataset's selection for 
migration is based on site-defined criteria established for 
space management. 

YES 
BACKUpt=NO 

Dataset backup. YES specifies the dataset should be backed 
up after it is created and whenever it is modified. NO 
specifies the dataset should not be backed up under any 
circumstance. The default is YES. 

EXAMPLES OF PERMANENT DATASET CONTROL STATEMENTS 

To clarify the permanent dataset management control statements, some 
examples follow: 

Example 1: 

A user identified as USERXYZ creates a permanent dataset that no other 
user can access. All subsequent editions of this dataset share this 
attribute. 

SAVE,DN=ABC,PDN=EXAMPLE1,ED=1,PAM=N,TA=NO. 

Example 2: 

A user identified as USERXYZ creates a permanent dataset that can be 
accessed by all other users in read mode. 

SAVE,DN=XYZ,PDN=EXAMPLE2,ED=1,PAM=R,TA=NO. 

Example 3: 

An alternate user is accessing the permanent dataset created in example 2. 

ACCESS,DN=LOCAL,PDN=EXAMPLE2,ED=1,OWN=USERXYZ. 

The system does not track the alternate user access because the dataset 
was created with TA=NO. 

I t Deferred implementation 

SR-0011 0 9-25 



Example 4: 

Allow another user (known in this example as USERl) to access the 
permanent dataset created in example 1 in read and execute mode only. 

PERMIT, PDN=EXAMPLE1,USER=USER1,AM=R: E. 

Example 5: 

Enable public access tracking for the permanent dataset created in example 
2. 

ACCESS,DN=LOCAL,PDN=EXAMPLE2,ED=l,UQ. 
MODIFY,DN=LOCAL,TA=YES. 

Example 6: 

Permit write mode access for PDN=EXAMPLE2 to users known as USER2 and 
USER3. 

PERMIT,PDN=EXAMPLE2,USER=USER2,AM=W. 
PERMIT,PDN=EXAMPLE2,USER=USER3,AM=W. 

Example 7: 

Change the permission granted to USER1 in example 4 to AM=W. 

PERMIT,PDN=EXAMPLEl,USER=USER1,AM=W. 

Example 8: 

Remove the access permission granted to USER1 in example 7. 

PERMIT, PDN=EXAMPLEl,USER=USER1, RP. 

Example 9: 

User USERXYZ acquires a dataset, then permits another user to use it and 
subsequently partially deletes the dataset to retain just the PERMITs and 
TEXT information. Section 10 discusses the ACQUIRE control statement. 

9-26 

ACQUIRE,DN=EX9,TEXT=' .......... ',UQ. 
PERMIT ,PDN=EX9,USER=SOMEONE,AM=R. 
DELETE ,DN=EX9,PARTIAL. 

SR-0011 0 



Example 10: 

User USERXYZ creates a permits template. 

SAVE,DN=EX10,PDN=PERMS, 
NOTES='PERMITS TEMPLATE FOR AERO USERS. 
'THESE PERMITS SHOULD BE REMOVED AFTER OCT 31, 1983. I,UQ. 

PERMIT,PDN=PERMS,USER=USERA,AM=E. 
PERMIT,PDN=PERMS,USER=USERB,AM=R. 
PERMIT,PDN=PERMS,USER=USERC,AM=W. 
DELETE,DN=EX10,PARTIAL. 

Example 11: 

User SOMEONE acquires the dataset that was partially deleted in example 
9. Section 10 discusses the ACQUIRE control statement. 

ACQUIRE,DN=LOCAL,PDN=EX9,OWN=USERXYZ. 

The TEXT need not be specified and after the dataset has been acquired 
from the front-end computer system, it is made permanent and belongs to 
user USERXYZ. 

SR-0011 0 9-27 



---------------- - - ---



DATASET STAGING CONTROL 10 

Staging is the process of transferring COS datasets (jobs and data) from 
front-end computer systems to Cray mass storage or vice versa. Dataset 
staging control is introduced in section 6. 

Three control statements support staging datasets between Cray mass 
storage and a front-end system: ACQUIRE, DISPOSE, and FETCH. Another 
control statement, SUBMIT, directs datasets to the COS input queue. 

Control Statement Function 

ACQUIRE Makes a front-end resident dataset permanent and 
accessible to the job making the request 

DISPOSE Directs a dataset to the COS output queue for 
staging to a specified front-end computer system 

FETCH 

SUBMIT 

Makes a dataset that resides on a front-end 
computer system local to the COS job 

Directs a dataset to the COS input queue 

10.1 ACQUIRE - ACQUIRE PERMANENT DATASET 

The ACQUIRE control statement converts a front-end resident dataset into 
a permanent dataset so that it is accessible to the job making the 
request. ACQUIRE is a system verb. 

When an ACQUIRE control statement is issued, COS determines if the 
requested dataset is resident on the front end or permanently resident on 
Cray mass storage by checking the system catalogs for a dataset with 
matching PDN, ID, ED, and ownership value fields. 

If COS determines that the requested dataset is already permanently 
resident on Cray mass storage, dataset access is granted to the job 
making the request if the user has the appropriate access permissions. 

If the requested dataset is not a COS mass storage permanent dataset, the 
request for the dataset is sent to the front-end system. 

SR-0011 a 10-1 



The front-end system stages the dataset to Cray mass storage if the front 
end grants the user access. Such access is determined by the front-end 
operating system and may be dependent on the contents of the TEXT 
information from a FETCH or ACQUIRE control statement, or of a SAVE or 
MODIFY control statement preceding a partial DELETE. COS then makes the 
dataset permanent on Cray mass storage and grants dataset access to the 
job making the request. Until the dataset is made permanent, processing 
of the job making the request is delayed. 

Format: 

10-2 

ACQUIRE,DN=dn,PDN=pdn,AC=ae,ID=uid,ED=ed,RT=rt,R=rd,w=wt,M=mn,UQ, 

TEXT=text,MF=mf,TID=tid,DF=df,OWN=ov,PAM=mode,ADN=adn(m), 

ONLINE YES 
TA=opt,NOTES=notes,ERR,MSG,RESIDE=OFFLINE,BACKUP=NO . 

DN=dn 

PDN=pdn 

AC=ae 

Local dataset name; begins with A-Z, $, @, or %, followed 
by 1 to 6 alphanumeric characters. The name the job will 
use to refer to the dataset while it remains local to the 
job. DN is a required parameter. 

Name of the COS permanent dataset to be accessed or 
staged from a front-end system, saved, and accessed. The 
permanent dataset name is passed to the front-end system; 
it is the name saved by the system if the dataset is 
staged. pdn is 1 to 15 alphanumeric characters assigned 
by the dataset creator. The default for pdn is dn. 

Acquisition code. The source from which the dataset is to 
be acquired. If the AC parameter is omitted, the default 
is ST. 

ae is a 2-character alphanumeric code describing the 
source of the dataset as follows: 

IN Input (job) dataset. Use the SUBMIT control 
statement to run the job. 

IT Intertask communication 

MT Magnetic tape at the front end designated by the MF 
parameter 

ST Staged dataset from the front end designated by the 
MF parameter 

SR-0011 0 



ID=uid 

ED=ed 

UQ 

SR-0011 0 

NOTE 

The dataset acquisitions previously noted 
are by convention only. Actual dataset 
acquisition is determined by the front end. 

Additional user identification, 1 to 8 alphanumeric 
characters assigned by the dataset creator. The default is 
no user ID. 

Edition number. A value from 1 to 4095 assigned by the 
dataset creator. The default value is one of the following: 

• 1, if a permanent dataset with the same PDN and ID 
does not currently exist 

• The current highest edition number of that dataset if 
the permanent dataset with the specified PDN and ID 
does exist 

Retention period. User-defined value from 1 through 4095 
specifying the number of days a permanent dataset is to be 
retained by the system. The default value is an 
site-defined parameter. 

Read control word. 1 to 8 alphanumeric characters assigned 
by the dataset creator. The default is no read control 
word. 

Write control word. 1 to 8 alphanumeric characters 
assigned by the dataset creator. The default is no write 
control word. 

Maintenance control word. 1 to 8 alphanumeric characters 
assigned by the dataset creator. The control word must be 
specified if a subsequent edition of the permanent dataset 
is saved and the previous editions have an associated 
maintenance control word. 

Unique access. If the UQ parameter is specified, the job 
is granted unique access to the permanent dataset; 
otherwise, multiple-user read access to the permanent 
dataset is granted. If no staging is performed because the 
dataset already exists, write, maintenance, and/or read 
permission can be granted if the appropriate read, write, 
and/or maintenance control words are specified. 

10-3 



10-4 

TEXT=text Text to be passed to a front-end computer system 
requesting transfer of the dataset. A maximum of 240 
characters can be specified. This text information is 
considered an attribute of the dataset and is retained 
along with any other attributes. See section 6 for an 
explanation of all permanent dataset attributes. 

MF=mf 

TID=tid 

DF=df 

OWN=OV 

Identifier for the front-end computer. Two alphanumeric 
characters. The default is the front end on which the job 
originated. 

Terminal identifier. 1 to 8 alphanumeric characters 
identifying the destination terminal. The default terminal 
is the terminal where the job originated. 

Dataset format. This parameter defines whether a dataset 
is to be presented to the Cray computer system (see the 
FETCH control statement) in COS blocked format and whether 
the front-end system is to perform character conversion. 
The default is CB. 

df is a 2-character alphanumeric code defined for use on 
the front-end system. CRI suggests support of the 
following codes: 

BB Binary blocked. The front-end system blocks the 
dataset before staging but does not do character 
conversion. 

BD Binary deblocked. The front-end system does not 
perform character conversion. For ACQUIRE, BD is the 
same as TR. 

CB Character blocked. The front-end system blocks the 
dataset before staging and performs character 
conversion to ASCII, if necessary. 

CD Character deblocked. The front-end system performs 
character conversion to ASCII, if necessary. 

TR Transparent. No blocking/deblocking or character 
conversion is performed. 

Ownership value. If the OWN parameter is specified and the 
user has been granted access by the owner, the dataset is 
made local to the job. OWN is ignored if OV matches the 
active ownership value of the job (users need not be 
permitted to their own datasets). 

SR-0011 a 



PAM=mode Public access mode. The following options are allowed: 

ADN=adn(m) 

TA=opt 

Option 

E 
M 
N 

R 
W 

Mode 

Execute only 
Maintenance only 
No public access allowed 
Read only 
Write only 

Combinations of R, W, and M permissions are allowed; for 
example, PAM=R:W gives both read and write permissions. 
Note that PAM=E has the same effect as the EXO or EXO=ON 
parameter and nullifies any other permissions specified. 
Each installation controls the default PAM value. 

Name of attributes dataset from which attributes, indicated 
by the modifiers m, are selected. If no modifiers are 
present, then all attributes are selected. Attribute 
parameters such as NOTES=, TEXT= and PAM=, and R= take 
precedence over the modifiers. adn must be the local 
dataset name of an accessed permanent dataset. The 
modifiers must be enclosed with parentheses and separated 
by colons. The following modifiers are supported: 

Modifier 

ALL 
CW 
NOTES 
PAM 
PERMITS 
TEXT 
TRACK 

Selection from Attributes Dataset 

All attributes 
Control words 
Notes attribute 
Public access mode attribute 
Permit list 
Text attribute 
Public access tracking attribute 

Track accesses. opt can be either YES or NO and indicates 
whether the owner requires that public accesses to the 
dataset be tracked. See section 6 for a description of 
public access and access tracking. The default TA value is 
NO. 

NOTES=notes 

SR-0011 0 

Notes to be associated with the dataset. A maximum of 480 
characters can be specified. There is no other restriction 
on the content of notes. A caret symbol in notes signifies 
end-of-line and causes AUDIT to advance to a new line when 
listing the notes. The caret symbol is included in the 480 
character maximum limit. notes is a permanent dataset 
attribute. Refer to section 6 for an explanation of all 
permanent dataset attributes. 

10-5 



I 

I 

10.2 

ERR Error message. If this parameter is specified, error 
termination messages are suppressed. 

MSG Termination message. Normal termination messages are 
suppressed when MSG is specified. 

ONLINE 
RESIDE=OFFLINE 

The preferred residency of a dataset. ONLINE specifies the 
dataset should remain on-line. This option requires the 
SCRESON privilege. 

OFFLINE specifies the dataset should receive priority when 
datasets are selected for migration. The speed with which 
the dataset migrates depends on factors such as how often 
the site runs space management. This option does not 
require a privilege. 

If RESIDE is not specified, the dataset's selection for 
migration is based on site-defined criteria established for 
space management. 

YES 
BACKupt=NO 

Dataset backup. YES specifies the dataset should be backed 
up after it is created and whenever it is modified. NO 
specifies the dataset should not be backed up under any 
circumstance. A dataset with no backup may be subject to 
rules defined by the site, especially regarding retention 
time. The default is YES. 

DISPOSE - DISPOSE DATASET 

The DISPOSE control statement directs a dataset to the COS output queue 
for staging to a specified front-end computer system. You can also use 
DISPOSE to alter the effects of a previous DISPOSE, DEFER of the same 
dataset. 

Defining the DISPOSE characteristics can be done before the actual 
staging by using the DEFER parameter. The DEFER parameter saves all 
selected dispose parameters for use when the dataset is released, which 
is when the actual staging is initiated. DISPOSE is a system verb. 

I t Deferred implementation 

10-6 SR-OOll 0 

-- - ----------



I 

Format: 

DISPOSE,DN=dn,SDN=sdn,DC=dc,DF=df,MF=mf,SF=sf,ID=uid,TID=tid, 

ED=ed,RT=rt,R=rd,W=wt,M=mn,TEXT=text,wAIT,NOWAIT,DEFER,NRLS. 

DN=dn 

SDN=sdn 

DC=dc 

SR-OOll 0 

Local dataset name. Name by which the dataset is known to 
the user job. DN is a required parameter. 

Staged dataset name. 1- to 15-character name by which the 
dataset is to be known at the destination front end. The 
default for sdn is dn. 

Disposition code. Disposition to be made of the dataset. 
If the DC parameter is omitted, the default is PR (print). 

dc is a 2-character alphanumeric code describing the 
destination of the dataset as follows: 

IN Input (job) dataset. Dataset is queued as a job on 
the mainframe specified with the MF parameter. 

IT Intertask communication 

MT Write dataset on magnetic tape at the front end 
designated by the MF parameter. 

PR Print dataset. Dataset is printed on a printer 
available at the front end designated by the MF 
parameter. 

PT Plot dataset. Dataset is plotted on any available 
plotter at the front end designated by the MF 
parameter. 

PU Punch dataset. Dataset is punched on any card punch 
available at the front end designated by the MF 
parameter. 

SC Scratch dataset. Dataset is released, unless another 
DISPOSE request is still pending on the dataset. 
This parameter has the same effect as RELEASE,DN=dn. 

ST Stage to front end. Dataset is made permanent at the 
front end designated by the MF parameter. 

VC Station-specific code. Refer to station 
documentation for more information. 

10-7 



DF=df 

NOTE 

The dataset dispositions previously noted 
are by convention only. With the exception 
of SC, actual dataset disposition is 
determined by the destination front end. 

Dataset format~ This parameter defines whether a dataset 
is sent from the Cray computer system in COS-blocked format 
and whether the front-end system is to perform character 
conversion. The default is CB (character blocked). 

For example, a user wishes to save a dataset on magnetic 
tape in blocked binary as it appears on COS mass storage. 
In this case, BB is specified. A user who wants a dataset 
printed can specify CB if the front-end computer handles 
deblocking. 

df is a 2-character alphanumeric code defined for use on 
the front-end system. CRI suggests support of the 
following codes listed below. Other codes can be added by 
the local site. Undefined pairs of characters can be 
passed but are treated as transparent mode by COS. 

BB Binary blocked. The front-end system does not 
perform character conversion. The Cray mainframe 
does not perform deblocking before staging. The 
front-end system is expected to perform deblocking. 

BD Binary deblocked. The front-end system does not 
perform character conversion. For DISPOSE, BD is the 
same as TR. 

CB Character blocked. No deblocking is performed at the 
Cray mainframe before staging. The front-end system 
performs deblocking and character conversion from 
8-bit ASCII, if necessary. 

CD Character deblocked. The front-end system performs 
character conversion from 8-bit ASCII, if necessary. 

TR Transparent. No blocking, deblocking, or character 
conversion is performed. 

10-8 SR-0011 a 



MF=mf 

SF=sf 

ID=uid 

TID=tid 

ED=ed 

RT=rt 

R=rd 

W=wt 

M=mn 

Front-end computer identifier; 2 alphanumeric characters. 
Identifies the front end to which the dataset is to be 
staged. If omitted, the front end where the issuing job 
originated is used. If MF is given a value of the ID of 
the Cray mainframe on which the job is running and DC=IN, 
an error message is issued and the job step is aborted (see 
the SUBMIT control statement in subsection 10.4). 

Special form information to be passed to the front-end 
system. 1 to 8 alphanumeric characters. SF is defined by 
the needs of the front-end system. 

Additional user identification. 1 to 8 alphanumeric 
characters assigned by the dataset creator. The default is 
no user ID. 

Terminal identifier. 1 to 8 alphanumeric characters 
identifying the destination terminal. The default 
terminal is the terminal where the job originated, where 
applicable. 

Edition number, meaningful only if DC=ST. A user-defined 
value from 1 through 4095. The default value depends on 
the destination front end. 

Retention period, meaningful only if DC=ST. A user-defined 
value from 1 through 4095 specifying the number of days a 
dataset is to be retained by the destination front end. 
The default value depends on the destination front end. 

Read control word, meaningful only if DC=ST. 1 to 8 
alphanumeric characters. The default is no read control 
word. 

Write control word, meaningful only if DC=ST. 1 to 8 
alphanumeric characters. The default is no write control 
word. 

Maintenance control word, meaningful only if DC=ST. 1 to 8 
alphanumeric characters. The default is no maintenance 
control word. 

TEXT=text Text to be passed to the front-end system requesting 
transfer of a dataset. The format for TEXT is defined by 
the front-end system for managing its own datasets or 
files. Typically, text is in the form of one or more 
control statements for the front-end system; these 
statements must contain their own terminator for the front 
end. text cannot exceed 240 characters. 

SR-0011 0 10-9 



WAIT 

NOWAIT 

DEFER 

NRLS 

NOTE 

text specified on the DISPOSE control 
statement is not the same as the permanent 
dataset text attribute. Any text 
existing as a permanent dataset attribute is 
ignored by DISPOSE (refer to section 6 for 
more information). 

Job wait. When this parameter is specified, the job does 
not resume processing until the disposed dataset has been 
staged to the front-end system. If the front-end system 
cancels the transfer, the waiting job is aborted and job 
step abort processing occurs as described in section 3. If 
WAIT is not specified, processing can resume immediately 
upon issue of the DISPOSE, depending upon an installation 
option. The WAIT parameter is useful in detecting 
unsuccessful transfers. 

When this parameter is specified, the job does not wait 
until the dataset has been staged to the front-end system 
but resumes processing immediately. If the front-end 
system cancels the transfer, no special action is taken; 
that is, the job is not aborted. If neither WAIT or NOWAIT 
are specified, processing can resume immediately upon issue 
of the DISPOSE, depending upon an installation option. 

When this parameter is specified, the disposition occurs 
when the dataset is released either by a RELEASE request or 
job termination. The disposition characteristics are saved 
and used when the dataset is released. 

No release. When this parameter is specified, the dataset 
remains local to the job after the DISPOSE request has been 
processed. When NRLS is specified, the dataset cannot be 
written to until the transfer to the specified front end is 
completed. Therefore, it is advisable to use WAIT with 
NRLS. 

10.3 FETCH - FETCH LOCAL DATASET 

The FETCH control statement makes a dataset that resides on a front-end 
computer system local to the COS job. The dataset is transferred from 
the front-end computer system if the front-end system grants access to the 

10-10 SR-0011 0 



I 

dataset. The dataset is not made permanent on the Cray computer system. 
The originating job is delayed until the dataset arrives on Cray mass 
storage. 

Format: 

FETCH,DN=dn,SDN=sdn,AC=ac,TEXT=text,MF=mf,TID=tid, 

DF=df,SF=sf. 

DN=dn 

SDN=sdn 

AC=ac 

SR-0011 0 

Local dataset name. The name the job will use to refer to 
the dataset while it remains local to the job; 1 to 7 
alphanumeric characters, the first of which is A through Z, 
$, @, or~. DN is a required parameter. 

Staged dataset name. Name by which the dataset is known on 
the front end; 1 to 15 alphanumeric characters. The 
default for sdn is dn. 

Acquisition code. The source from which the dataset is to 
be acquired. If the AC parameter is omitted, the default 
is ST (staged dataset). 

ac is a 2-character alphanumeric code describing the 
source of the dataset as follows: 

IN Input (job) dataset. Use the SUBMIT control 
statement to run the job. 

IT Intertask communication 

MT Magnetic tape at the front end designated by the MF 
parameter 

ST Staged dataset from the front end designated by the 
MF parameter 

NOTE 

The dataset acquisitions previously noted 
are by convention only. Actual dataset 
acquisition is determined by the front end. 

10-11 



TEXT=text Text to be passed to the front-end system requesting 
transfer of a dataset. The format for TEXT is defined by 
the front-end system for managing its own datasets or 
files. Typically, text is in the form of one or more 
control statements for the front-end system; these 
statements must contain their own terminator for the front 
end. text cannot exceed 240 characters. 

MF=mf 

TID=tid 

DF=df 

Mainframe computer identifier. 2 alphanumeric characters. 
The default is the front end of job origin. 

Terminal identifier. 
destination terminal. 
the job originated. 

1 to 8 characters identifying the 
The default is the terminal where 

Dataset format. This parameter defines whether a dataset 
is sent from the Cray computer system (see the FETCH 
control statement) in COS blocked format and whether the 
front-end system is to perform character conversion. The 
default is CB (character blocked). 

For example, a user who wishes to save a dataset on 
magnetic tape in blocked binary as it appears on COS mass 
storage can specify BB. A user who wants a dataset printed 
can specify CB if the front-end computer handles deblocking. 

Other codes can be added by the local site. Undefined 
pairs of characters can be passed but are treated as 
transparent mode by COS. 

df is a 2-character alphanumeric code defined for use on 
the station. CRI suggests support of the following codes: 

BB Binary blocked. The front-end system blocks the 
dataset before staging but does not do character 
conversion. 

BD Binary deblocked. The front-end system does not 
perform character conversion. For FETCH, BD is the 
same as TR. 

CB Character blocked. The front-end system blocks the 
dataset before staging and performs character 
conversion to 8-bit ASCII, if necessary. 

CD Character deblocked. The front-end system performs 
character conversion to 8-bit ASCII, if necessary. 

TR Transparent. No blocking, deblocking or cha~acter 
conversion is performed. 

10-12 SR-0011 a 



I 

DF=df Other codes can be added by the local site. Undefined 
(continued) Pairs of characters can be passed but are treated as 

transparent mode by COS. 

SF=sf Special form information to be passed to the front-end 
system. 1 to 8 alphanumeric characters. SF is defined by 
the needs of the front-end system. 

10.4 SUBMIT - SUBMIT JOB DATASET 

The SUBMIT control statement is used by one job to direct another dataset 
(which must have the structure of a job dataset as defined in section 3) 
to the COS input queue. The job that is submitted executes independently 
of the submitting job. SUBMIT is a system verb. 

Format: 

SUBMIT,DN=dn,SID=sf,DID=df,TID=tid,DEFER,NRLS. 

DN=dn 

SID=sf 

DID=df 

TID=tid 

SR-0011 a 

Local dataset name. Must be a valid local dataset name. 
ON is a required parameter. 

Default source identifier; 2 alphanumeric characters. If 
an MF parameter is not specified in an ACQUIRE or FETCH 
control statement within the submitted job, the SID 
parameter defines the default front-end system for the 
dataset to be acquired. If the MF and SID parameters are 
omitted, the default source identifier of the submitting 
job is used. 

Default destination identifier; 2 alphanumeric characters. 
If an MF parameter is not specified in a DISPOSE control 
statement within the submitted job, the DID parameter 
defines the default destination front-end system for the 
dataset to be disposed. If the MF and DID parameters are 
omitted, the default destination identifier of the 
submitting job is used. 

Default terminal identifier; 1 to 8 alphanumeric characters 
that define the default terminal 10 for the submitted job. 
If TID is omitted, the terminal 10 of the submitting job is 
used. 

10-13 



DEFER 

NRLS 

10-14 

Deferred submit. This parameter causes the SUBMIT 
characteristics to be defined, with a release of the 
dataset actually initiating the submit of the dataset. If 
DEFER is omitted, the SUBMIT occurs immediately. 

No release. This parameter indicates if the dataset is to 
remain local to the job after SUBMIT has been processed. 
If NRLS is omitted, the dataset is released after the 
SUBMIT. If NRLS is selected, the dataset remains local to 
the job after the SUBMIT and is available for reading only. 

SR-0011 0 



I 

PERMANENT DATASET UTILITIES 11 

The following utility routines support permanent datasets: 

Utility 

AUDIT 

PDSDUMP 

PDSLOAD 

RESTORE 

RETIRE 

Function 

Produces a report containing status information for each 
permanent dataset. AUDIT does not include input or 
output datasets. 

Dumps all specified permanent datasets to a 
user-specified dataset. Input and output datasets can be 
included in the dump. 

Loads permanent datasets that have been dumped by PDSDUMP 
and updates or regenerates the Dataset Catalog (DSC). 
Input and output datasets are also loaded through PDSLOAD. 

Recalls retired or migrated datasets to on-line disk 

Declares a dataset retired 

All of the permanent dataset utilities permit a shorthand notation for 
the arguments to the PDN (or PDS), ID, US, and OWN parameters. Using 
this notation, a dash represents any number of characters or no 
characters and an asterisk represents anyone character. 

Examples: 

Notation 

PDN=ABC-

PDN=A*** 

PDN=-A*-

PDN=-

PDN=***-

SR-0011 0 

Description 

Lists all permanent dataset names beginning with ABC 

Lists all 4-character permanent dataset names beginning 
with A 

Lists all permanent dataset names containing the letter A 
followed by one or more other characters 

Lists all permanent dataset names 

Lists all permanent dataset names having three or more 
characters 

11-1 



When permanent dataset privacy is enabled, callers of these utilities are 
limited to actions on their own datasets unless the CW parameter is 
present on the control statement. The OWN and NOWN parameters cannot be 
specified unless CW is also specified. When privacy is enabled, the US 
value from the JOB or ACCOUNT control statement is an implied dataset 
selection criterion, unless the CW parameter is present. When privacy is 
not enabled, the US value from the JOB or ACCOUNT control statement is 
not used as a selection criterion. CW must be specified if US or OWN is 
specified on the permanent dataset utility control statement. 

11.1 AUDIT - AUDIT PERMANENT DATASETS 

The AUDIT utility reports the status of all the permanent datasets known 
to the system. AUDIT does not include input and output datasets. 

If more than one parameter is selected, only those datasets that meet all 
criteria are listed. 

AUDIT can supply the following information on the output listing: 

• Permanent dataset name 
• Dataset identifier 
• Edition number 
• User identifications 
• Dataset size in words 
• Retention time 
• Number of accesses 
• Public access mode 
• Total block count 
• Track access flag setting 
• Creation date/time 
• Last dump date/time 
• Last access date/time 
• Last modification date/time 
• Device name 
• note information 
• text information 
• Permitted users 
• Access counts by user 
• Number of datasets selected 
• Current residency 
• Preferred residency 

11-2 SR-0011 0 

--------------------------------. ---



Format: 

AUDIT,L=ldn,B=bdn,PDN=pdn,ID=uid,US=usn,ACN=dcn,Dv=dvn ,SZ=dsz, 

ACC=opt:opt,x=mmlddlyy:'hh:mm:sS',TCR=mmlddlyy: 'hh:mm:ss', 

TLA=mmlddlyy: 'hh:mm:sS',TLM=mmlddlyy:'hh:mm:ss',CW=CW, 

OWN=OV,LO=opt: ... opt,BO=opt: ... Opt. 

L=ldn 

B=bdn 

PDN=pdn 

ID=uid 

US=usn 

ACN=dcn 

Dv=dvn 

sz=dsz 

Lists dataset name; default is $OUT. 

Name of dataset to receive the binary output. If B is 
specified alone, the dataset is $BINAUD. If the B 
parameter is omitted, no binary output is written. 

Name of permanent dataset or datasets to be listed 

Lists all permanent datasets with the specified additional 
user identification. The default is to list all IDs. If 
ID is present without an equated value, datasets having a 
null ID are selected. 

Lists all permanent datasets with the specified user 
number. The default is to list all user numbers. 

Lists all permanent datasets with the specified account 
number. The default is to list datasets without respect to 
account number. 

Lists all permanent datasets on the specified logical 
device. The default is to list permanent datasets on all 
devices. 

Lists all permanent datasets greater than or equal to the 
specified size. Size is specified in words. The default 
is to list all sizes. 

ACC=Opt:Opt 
Access option parameters. The options are as follows: 

AM Lists only those datasets belonging to OWN that have 
an explicit permit for the job's ownership value 

PAM Lists only those datasets belonging to OWN that 
have any form of public access (R:W:M:E) 

SR-0011 0 11-3 



If the OWN parameter is omitted, all datasets are searched 
for the permit or public access. If the CW parameter is 
specified, the AM includes any permit for any owner value. 
If the OWN parameter is specified and the CW and ACC 
parameters are omitted, AUDIT assumes the ACC=AM:PAM 
parameter on the control statement. 

x=mmlddlyy: 'hh:mm:ss' 
Lists all permanent datasets expired as of the specified 
mmlddlyy:'hh:mm:ss'. mmlddlyy can be 
specified alone. The default expiration date and time are 
"now" if only X is specified. 

TCR=mmlddlyy: 'hh:mm:ss' 
Lists all permanent datasets that have been created since 
the specified mmlddlyy: 'hh:mm:ss'. The keyword 
cannot be specified alone; however, TCR=mmlddlyy is 
sufficient. 

TLA=mmlddlyy: 'hh:mm:ss' 
Lists all permanent datasets that have not been accessed 
since the specified mmlddlyy: 'hh:mm:ss'. The keyword 
cannot be specified alone; however, TLA=mmlddlyy is 
sufficient. 

TLM=mmlddlyy:'hh:mm:ss' 

CW=cw 

OWN=ov 

Lists all permanent datasets that have been modified since 
the specified mmlddlyy:'hh:mm:ss'. The keyword cannot be 
specified alone; however, TLM=mmlddlyy is sufficient. 

Site-defined control word regulating the use of AUDIT. If 
the CW parameter is omitted, only the datasets belonging to 
the job owner can be listed. If the CW parameter is 
present and the correct control word is used, any dataset 
can be listed. If an invalid control word is given, the 
job step is aborted. When the CW and ACC parameters are 
omitted, but the OWN parameter is specified, AUDIT assumes 
the ACC=AM:PAM parameter on the control statement. 

Lists all permanent datasets with the specified ownership 
value. If OWN is not specified, the job's ownership value 
is used. 

Output formatting parameters are the following: 

11-4 

LO=Opt: ••• Opt 
Listing option selection. S is the default for interactive 
jobs; L, for batch. The S option cannot be mixed with any 
others. 

The following options can be specified alone or in 
combination separated by colons: 

SR-0011 0 



LO=Opt: ... Opt 
(continued) A Access tracking. Includes accessing owner name, 

access count, time of last access, and time of first 
access. 

B Backup. Reports the tape volume names on which the 
current back-up copy resides, the number of space 
management deletions and reloads, and the status of 
internal flags indicating whether the dataset is a 
candidate for backup or recall. Also specify the CW 
parameter if this option is used. 

L Long list. Consists of PON, 10, ED, size in words, 
retention time, access count, track access flag, 
public access mode (PAM), creation, last access, last 
modification, last dump time, device name, preferred 
residency (PR), and current residency (CR). L is used 
for batch jobs when LO is not specified. It lists 
information for on-line or migrated datasets only. 

N Notes list. Displays the dataset catalog notes 
field. 

P Permit list. Includes permitted owner name, access 
mode, access count, time of last access, and time of 
permit creation. 

R Retired datasets listing. Consists of the same 
categories of information as LO=L but for retired 
datasets only. 

S Short list. Includes PDN, ID, and ED listed two per 
line. This is used for interactive jobs when LO is 
not specified. 

T Text list. Displays the dataset catalog text field. 

X Extended long list. Includes everything in the long 
list (L) plus an indication of the dataset's allocated 
(ALLOC) size (shown immediately below the dataset's 
size (SZ». The extended long list also includes a 
line immediately below the dataset size summary that 
gives the number of blocks and words allocated. 

BO=Opt: ... Opt 

SR-0011 0 

Binary audit options. These options specify what 
additional information, if any, is to be added to the 
standard binary audit file. They are ignored without 
comment unless a binary audit is requested by the B 
parameter. If more than one option is desired, separate 
them with colons. The options are as follows: 

11-5 



BO=opt: ... Opt 
(continued) A 

B 

Access tracking. Generates one record for each 
accessing user for each selected dataset. 

Backup. Reports the tape volume name(s) on which the 
current back-up copy resides, the number of space 
management deletions and reloads, and the status of 
internal flags indicating whether the dataset is a 
candidate for backup or recall. The ew parameter must 
be specified if this option is used. 

N Notes. Generates one record for each selected dataset 
that has notes. 

P Permits. Generates one permit record for each 
permitted user for each selected dataset. 

R Retired datasets listing. Consists of PDN, ID, ED, 
size in words, retention time, access count, track 
access flag, PAM, creation, last access, last 
modification, last dump time, device name, PR, and CR. 

T Text. Generates one record for each selected dataset 
that has text. 

X Adds a field to the regular binary audit record 
indicating the allocated word size of the dataset. 
This is the same value as the ALLoe field on the LO=X 
output. 

Figures 11-1 through 11-6 show some of the LO options as they appear when 
the listing is directed to a mass storage dataset. Interactive reports 
omit the page header line. Systems in which the Permanent Dataset 
Privacy feature is not enabled suppress the owner line unless OWN is used 
as a control statement parameter. 

11-6 SR-0011 0 



I 

AUDIT COS 1.16 03/23/87 14:30:09 PAGE. 

OWN TNG 

PDN ID ED PDN ID ED 

"DIANE" U1520 1 "GOTCHA" U1520 7 
DATA U1520 7 DATA U1520 8 
DATA1234 U1520 2 01 U1520 1 
ENG. SCORES U1520 1 LETEM U1520 1 
NDAT U1520 8 NEWDATA U1520 10 
NEWLIB U1520 1 NLI B U1520 1 
OBJECT U1520 6 OOPS.34 U1520 2 
SDCVALUES_V1 U1520 1 TEST U1520 1 
VOTE U1520 1 WHATISIT U1520 1 

18 DATASETS, 34 BLOCKS, 13217 WORDS 
4 DATASETS, 6 BLOCKS, 3072 WORDS ARE ONLI NE 

14 DATASETS, 28 BLOCKS, 10145 WORDS ARE OFFLt NE 

Figure 11-1. AUDIT, LO=S Listing 

PERMITTED USERS FOR PDN 

USER 

TNG1520 
TNG12 

AM 

RWM 
RWM 

ACC 

o 
o 

NO REQUESTED INFO FOUND FOR PDN 

PERM /TTED USERS FOR PDN 

USER AM ACC 

U1520 RM 0 
TNGOO N 0 
TNG99 E 0 
RJJ RWM 0 

DI 

LAST ACCESS 

ENG. SCORES 

LETEM 

LAST ACCESS 

ID U1520 ED 

CREATED 

03/18/87 15:19:08 
03/18/87 15:24:58 

ID = U1520 ED = 

10 = U1520 ED 

CREATED 

11/04/86 11 32 31 
03/23/87 12 29 53 
11/04/86 11 32 33 
03/23/87 11 35 51 

1540 

1541 

Figure 11-2. AUDIT, LO=P Listing 

SR-0011 0 11-7 



PDN 10 ED LAST LAST LAST 
SZ RT ACC TA PAM CREATED ACCESSED MODIFIED DUMPED 

ENG. SCORES U1520 11/04/86 01/23/87 01/24/87 
527 45 3 N N 14:03: 12 11:55:22 02:36:45 

LETEM U1520 10/30/86 03/23/87 03/14/87 
0 45 34 N M 14:20:27 13:36:28 02: 14:22 

PERMITTED USERS: 

USER AM ACC LAST ACCESS CREATED 

U1520 RM 0 11/04/86 11: 32 
TNGOO N 0 03/23/87 12:29 
TNG99 E 0 11/04/86 11: 32 
RJJ RWM 0 03/23/87 11: 35 

NOTES: 

These are permits to beused in exercise 4 

Figure 11-3. AUDIT, LO=L:P:N Listing 

566 45 6 N N 16:59:04 10:37:20 02:35:17 

NEWDATA U1520 10 01/06/87 03/18/87 01/06/87 02/21/87 
532 45 23 N N 16:40:12 16:19:43 16:40:15 01:45:21 

NEWLI B U1520 01/08/87 01/23/87 01/24/87 
1024 45 4 N N 11:04:09 11:26:51 02:36:43 

NLI B U1520 11/06/86 03/19/87 03/21/87 
512 45 20 N N 17:13:09 16:51:19 01:39:56 

OBJECT U1520 6 03/12/87 03/19/87 03/21/87 
633 45 4 N N 15:29:51 13:12:49 01:38:06 

00PS.34 U1520 2 01/06/87 03/23/87 01/19/87 01/24/87 
512 45 9 N N 16:04:34 12:47:46 15:27:43 02:36:19 

SDCVALUES Vl U1520 06/18/86 01/23/87 01/23/87 01/24/87 

Figure 11-4. AUDIT, LO=L Listing 

I 11-8 

DEVICE 
CR PR 

MIG NO 

39-1-36A 
ON NO 

31 
53 
33 
51 

1542 

MIG NO 

MIG NO 

MIG NO 

49-1-31A 
ON NO 

MIG NO 

39-1-36A 
ON NO 

1543 

SR-0011 0 



I 

NO REQUESTED INFO FOUND FOR PDN DI ID U1520 ED 

NO REQUESTED INFO FOUND FOR PON ENG. SCORES 10 U1520 EO 

NOTES FOR PDN = LETEM ID = U1520 ED 

These are permits to beused in exerc i se 4 
1544 

Figure 11-5. AUDIT, LO=N Listing 

1024 45 4 N N 11:04:09 11:26:51 02:36:43 MIG NO 
NEWS.PL4 U1520 2 11/05/86 01/19/87 01/19/87 

1024 45 10 N N 09:44:33 15:19:22 15:21:19 RET NO 
NLI B U1520 11/06/86 03/19/87 03/21/87 49-1-31A 512 45 20 N N 17:13:09 16:51:19 01:39:56 ON NO 
OBJECT U1520 6 03/12/87 03/19/87 03/21/87 633 45 4 N N 15:29:51 13:12:49 01:38:06 MIG NO 
OOPS.34 U1520 2 01/06/87 03/23/87 01/19/87 01/24/87 39-1-36A 512 45 9 N N 16:04:34 12:47:46 15:27:43 02:36:19 ON NO 
POPEYE U1520 10/30/86 03/18/87 01/24/87 

633 45 9 N N 13:50:11 09:38:57 02:33:54 RET NO 

1815 

Figure 11-6. AUDIT, LO=L:R Listing 

11.2 PDSDUMP - DUMP PERMANENT DATASETS 

PDSDUMP dumps specified permanent datasets to another dataset that can 
then be saved or staged to a station. Datasets that have the following 
characteristics or conditions cannot be dumped: 

• Execute-only dataset 
• Dataset allocation conflict 
• Catastrophic dataset error 
• Inconsistent dataset allocation 
• Device on which the dataset resides is down 
• Inactive dataset entry in the COS Queued Dataset Table (QDT) 
• Retired or migrated dataset 

When dumping to a tape dataset, the recording format for the tape dataset 
must be transparent (for example, DF=TR on ACCESS statement). If the 
dataset is recorded in interchange format, loading of the dumped datasets 
cannot be performed. 

SR-0011 0 11-9 



PDSDUMP produces a listing (refer to figure 11-7) on $OUT identifying the 
datasets dumped or bypassed and summarizing the dump run. The date and 
time in the heading line refer to the time when the dump run started. 
The permanent dataset name, edition number, ID, and user number are 
extracted from the DSC entry for each dataset selected. Each message is 
followed by the notation DUMPED, DUMPED AND DELETED, or NOT DUMPED. The 
notation NOT DUMPED indicates the dataset was selected but could not be 
accessed for dumping. A user logfile message further explains the 
problem encountered. 

Format: 

PDN 
PDSDUMP,DN=dn,DV=ldv'PDS=pdn,ED=ed,CW=cw,ID=uid,US=usn,oWN=ov, 

INC=mmlddlyy:'hh:mm:ss',ARC=mmlddlyy: 'hh:mm:ss', 

TS=opt,X,C,D,B,SO,I,O,S. 

DN=dn 

Dv=ldv 

PDN 
PDS=pdn 

ED=ed 

CW=CW 

ID=uid 

11-10 

Name of dataset to which dump is written. The default is 
$PDS. Multiple dumps to a dataset are possible; if the 
dataset specified already exists, the dump is appended to 
it. 

Dumps all datasets residing on logical device Idv. 
Currently only one Idv can be specified. (By default, 
all permanent datasets that could be specified by the 
parameters are dumped.) Datasets can be limited by the B 
parameter. 

Dumps all editions of the specified permanent dataset. 
Editions can be limited by ED parameter.t 

Edition number of permanent dataset dumped; meaningful 
only if PDS parameter is specified.t 

Site-defined control word regulating use of PDSDUMP. If 
the CW parameter is omitted, only the datasets belonging to 
the job owner can be dumped. If the CW parameter is 
present and the correct control word is used, any dataset 
can be dumped. If an invalid control word is given, the 
job step is aborted. 

Dumps all datasets with additional user identification as 
specified.t If ID is specified without a value, all 
datasets that meet the rest of the criteria and have a null 
ID are dumped. 

SR-0011 0 



US=usn Dumps all datasets with specified user numbert 

OWN=ov Dumps all datasets with specified ownership valuet 

INC=mmlddlyy: 'hh:mm:ss' 
Incremental dump. Dumps only datasets modified since the 
specified date and time. 

ARC=mmlddlyy:'hh:mm:ss' 

TS=opt 

x 

C 

D 

B 

so 

I 

o 

S 

Archive datasets. Dumps and deletes datasets, regardless 
of the D option, that have not been accessed since the 
specified date and time. 

Time-stamp conversion option. opt may be one of the 
following: 

CURR 

NS 
RT 
S~E 

Writes time-stamp in whatever format is the 
current system default for writing time-stamps 
Writes time-stamp in nanosecond (new) format 
Writes time-stamp in real-time clock (old) format 
Does not convert time-stamp 

If TS is not specified, TS=CURR is assumed. 

Dumps expired datasets 

Dumps selected datasets never dumped or datasets modified 
or adjusted since the last dump of the dataset 

Deletes datasets that are dumped 

Dumps only datasets that begin on the logical device 
specified by the DV parameter 

Performs selection only (suppress actual dumping or 
deletion) 

Dumps system input datasets 

Dumps system output datasets 

Dumps user permanent datasets 

t By default, all permanent datasets that match the criteria specified 
by the parameters are dumped. 

SR-0011 0 11-11 



NOTE 

If none of the I, 0, or S parameters is specified, the 
input, output, and user permanent datasets are all 
dumped. If any of these parameters is specified, only 
those datasets of the type specified are dumped. 

Multiple calls to PDSDUMP can be made if the dump dataset is to include 
several permanent datasets requiring specification of different 
parameters. 

Example: 

PDSDUMP,DN=DUMPA,PDS=LIB1. 
PDSDUMP,DN=DUMPA,PDS=LIB2. 

This example results in a dataset DUMPA that contains all editions of 
LIB1 and all editions of LIB2. 

PDSDUMP produces a listing (refer to figure 11-7) on $OUT identifying the 
datasets dumped or bypassed and summarizing the dump run. The date and 
time in the heading line refer to the time when the dump run started. 
The permanent dataset name, edition number, ID, and user number are 
extracted from the DSC entry for each dataset selected. Each message is 
followed by the notation DUMPED, DUMPED AND DELETED, or NOT DUMPED. The 
notation NOT DUMPED indicates the dataset was selected but could not be 
accessed for dumping. A user logfile message further explains the 
problem encountered. 

When dumping to a tape dataset, the recording format for the tape dataset 
must be transparent (for example, DF=TR on ACCESS statement). If the 
dataset is recorded in interchange format, loading of the dumped datasets 
cannot be performed. 

11-12 SR-0011 0 



PDSDUMP - PERMANENT DATASET DUMP UTILITY DUMP ON 08/15/85 AT 14:50:44 
AUDPL ED=OOOl ID=QITTYQAT USR=SYSTEM DUMPED 
AUDPL ED=0002 ID=QITTYQAT USR=SYSTEM DUMPED 
DSCED ED=OOOl ID=QITTYQAT USR=SYSTEM DUMPED 
DSCED ED=0002 ID=QITTYQAT USR=SYSTEM DUMPED 
TXBUILD ED=OOOl ID=QITTYQAT USR=SYSTEM DUMPED 
TXBUILD ED=0002 ID=QITTYQAT USR=SYSTEM DUMPED 
TXBUILD ED=0003 ID=QITTYQAT USR=SYSTEM DUMPED 
LONGDATASETNAME ED=OOOl ID=QITTYQAT USR=SYSTEM DUMPED 
LONGDATASETNAME ED=0002 ID=QITTYQAT USR=SYSTEM DUMPED 
LONGDATASETNAME ED=0003 ID=QITTYQAT USR=SYSTEM DUMPED 
LONGDATASETNAME ED=0004 ID=QITTYQAT USR=SYSTEM DUMPED 
DSBUILD ED=OOOl ID=QITTYQAT USR=SYSTEM DUMPED 
DSBUILD ED=0002 ID=QITTYQAT USR=SYSTEM DUMPED 
DSBUILD ED=0003 ID=QITTYQAT USR=SYSTEM DUMPED 
DSBUILD ED=0004 ID=QITTYQAT USR=SYSTEM NOT DUMPED 
AUDPL ED=0003 ID=QITTYQAT USR=SYSTEM DUMPED 
DSCED ED=0003 ID=QITTYQAT USR=SYSTEM DUMPED 
TXBUILD ED=0004 ID=QITTYQAT USR=SYSTEM DUMPED 
AUDPL ED=0004 ID=QITTYQAT USR=SYSTEM DUMPED 
DSCED ED=0004 ID=QITTYQAT USR=SYSTEM DUMPED 

20 DATASETS SELECTED FOR DUMPING 

Figure 11-7. PDSDUMP Listing 

11.3 PDSLOAD - LOAD PERMANENT DATASETS 

PDSLOAD loads permanent datasets from a dataset created by PDSDUMP. If 
any of the permanent datasets already exist on Cray mass storage, they 
are reloaded only if the RP parameter is present. 

Format: 

PDN 
PDSLOAD,L=ldn,DN=dn'PDS=pdn,ED=ed,CW=cw,ID=uid,NID=nuid, 

US=usn,OWN=ov,NOWN=noV,DV=dvn,RP,CR,A,I,O,S,NA,SO,TLA. 

L=ldn Lists dataset name. The default is $OUT. 

DN=dn Name of the dataset from which permanent datasets are to 
be loaded. The default is $PDS. 

SR-OOll 0 11-13 



PON 
POS=pdn 

Eo=ed 

CW=cw 

IO=uid 

Loads all editions of the specified permanent dataset. 
Editions can be limited by the ED parameter.t 

Edition number of the dataset to be loaded; meaningful 
only if the POS parameter is specified.t 

Installation-defined control word regulating the use of 
POSLOAO. If CW is omitted, only datasets belonging to the 
job owner are loaded. 

Loads all datasets with additional user identification as 
specified 

NIO=nuid Loads selected datasets with new user identification. 

US=usn 

OWN=ov 

NOWN=nov 

ov=dvn 

RP 

CR 

A 

I 

o 

This parameter changes the user identification of selected 
datasets. 

Loads all datasets with the specified user numbert 

Loads all datasets with the specified ownership valuet 

Loads selected datasets to owner nov. This parameter 
changes the ownership value of the selected datasets. 

Name of logical device the output dataset is assigned 
before it is opened. If omitted, COS assigns a device at 
open time. If this parameter is specified, the device name 
is requested for the output dataset (the one being loaded). 
COS can choose not to honor this assignment (for example, 
the device might not be available). This parameter is not 
involved in selecting a dataset for loading. 

Replaces a specified existing dataset with the one being 
loaded 

Loads the most current version of a dataset, based on 
creation time. This option allows incremental loads to be 
performed in any order. 

Loads only active datasets; that is, does not load expired 
datasets. 

Loads input datasets 

Loads output datasets 

t By default, all permanent datasets that could be specified by the 
parameters are loaded. 

11-14 SR-0011 0 



S 

NA 

Loads saved datasets 

NOTE 

If I, 0, or S is not specified, the input, 
output, and saved datasets are loaded. If 
anyone of these parameters is specified, 
only the datasets of the type specified are 
loaded. 

Does not abort if there is not a dataset matching the 
specifications to load on the $PDS dataset. This parameter 
applies only to this situation. It does not prevent any 
other abort condition from occurring or offer reprieve 
processing of any kind. 

SO Performs selection only; suppresses the actual loading of 
datasets. 

TLA Updates the time of the last access as the time that the 
load was performed 

PDSLOAD produces a listing on the list dataset that identifies the 
datasets loaded or bypassed and summarizing the load run (refer to figure 
11-8). The date and time in the heading line refer to the time when the 
load run started. The permanent dataset name, edition number, 10, and 
user number are extracted from the Permanent Dataset Definition Table 
(PDD) for each dataset selected and successfully loaded. Each message is 
followed by the notation LOADED or NOT LOADED. The notation NOT LOADED 
indicates the dataset was selected but not loaded. An error message 
further explains why the dataset was not loaded. 

PDSLOAD - PERMANENT DATASET RESTORE UTILITY LOAD ON 01/07/82 AT 17:13:47 
ENTIT ED=OOOl ID=TAQI USR=SYSTEM LOADED 
DSBUILD ED=OOOl ID=TAQI USR=SYSTEM LOADED 
TXBUILD ED=OOOl ID=TAQI USR=SYSTEM LOADED 
AUDPL ED=OOOl ID=TAQI USR=SYSTEM LOADED 
DSCED ED=OOOl ID=TAQI USR=SYSTEM LOADED 

5 DATASETS SELECTED FOR LOADING 

Figure 11-8. PDSLOAD Listing 

SR-0011 0 11-15 



I 

11.4 RESTORE - RECALL A DATASET TO ON-LINE DISK 

RESTORE recalls retired or migrated datasets to on-line disk. The 
specified dataset must be present in the Master Catalog and marked as 
either "retired" or "migrated" and the user must have maintenance 
permission. RESTORE does not make the dataset local to the job. 

The arguments for PDN, 10, and OWN can use the notations * to indicate 
anyone character and - to indicate an arbitrary string of characters. 

Format: 

RESTORE,PDN=pdn,ID=id,ED=ed,OWN=ov,M=m,TYPE=type. 

The only required parameter is PDN. 

PDN=pdn 

ID=id 

ED=ed 

OWN=ov 

11-16 

Permanent dataset name; required parameter. The keyword 
cannot appear alone. 

Permanent dataset 10. If this parameter is omitted or 
present without a value, the 10 is null. 

Edition number of the permanent dataset. Options for ed 
are as follows: 

Specification 

Unsigned integer 
Example: ED=2 

Negative integer 
Example: ED=-2 

Positive integer 
Example: ED=+2 

ED=ALL 

(ed) 

(-ed) 

(+ed) 

Meaning 

The specific edition of the 
dataset 

All but the ed highest editions 

The ed highest editions 

All editions of the dataset 

The default is the highest edition. 

Owner of the permanent dataset. The default is the job 
owner. If the requester is not the dataset owner, the 
requester must have maintenance permission. 

Maintenance control word. The default is null. M is 
required if the dataset has a maintenance control word. 

SR-0011 0 



I 
TYPE=type Dataset type. The type can be RET for a retired 

dataset or MIG for a migrated dataset. Only on-line 
datasets can be selected for a PDSDUMP. The default is 
RET. You can specify both by using RET:MIG. 

11.5 RETIRE - RETIRE A DATASET 

RETIRE retires a dataset; that is, it moves an on-line or migrated 
dataset to backup medium. The dataset to be retired does not have to be 
local to the job. A retired dataset is not recalled to on-line disk by 
user access or by system or device reload. To recall a retired dataset, 
use the RESTORE utility. 

The arguments for PDN, ID, and OWN can use the notations * to indicate 
anyone character and - to indicate an arbitrary string of characters. 

Format: 

RETIRE,PDN=pdn,ID=id,ED=ed,OWN=Ov,M=m,X. 

The only required parameter is PDN. 

PDN=pdn 

ID=id 

ED=ed 

SR-0011 0 

Permanent dataset name; required parameter. The keyword 
cannot appear alone. 

Permanent dataset ID. If this parameter is omitted or 
present without a value, the ID is null. 

Edition number of the permanent dataset. Options for ed 
are as follows: 

Specification 

Unsigned integer 
Example: ED=2 

Negative integer 
Example: ED=-2 

Positive integer 
Example: ED=+2 

ED=ALL 

(ed) 

(-ed) 

(+ed) 

Meaning 

The specific edition of the 
dataset 

All but the ed highest editions 

The ed highest editions 

All editions of the dataset 

The default is the highest edition. 

11-17 



OWN=ov 

x 

11-18 

Owner of the permanent dataset. The default is the job 
owner. If the requester is not the dataset owner, the 
requester must have maintenance permission. 

Maintenance control word. The default is null. M is 
required if the dataset has a maintenance control word. 

Specification that the dataset is to be retired only if it 
is expired; that is, if the retention time has been 
exhausted. 

SR-0011 0 

----------



I 

I 

LOCAL DATASET UTILITIES 

Local dataset utilities copy, position, or initialize local datasets. 
The following utilities are available: 

Utility 

BLOCK 

COPYD 

COPYF 

COPYR 

COPYU 

NOTE 

QUERY 

Function 

Converts an unblocked dataset to a blocked dataset 

Copies blocked datasets 

Copies files of blocked datasets 

Copies records of blocked datasets 

Copies unblocked datasets or sectors of unblocked 
datasets 

Writes text to a dataset 

Returns local mass storage dataset status and 
position information 

12 

REWIND Positions a blocked or unblocked dataset at 
beginning-of-data, that is, before the first word of 
the dataset 

SKIPD Skips blocked datasets 

SKIPF Skips files of blocked datasets 

SKIPR Skips records of blocked datasets 

SKIPU Skips sectors of unblocked datasets 

UNBLOCK Converts a blocked dataset to an unblocked dataset 

WRITEDS Initializes a blocked random or sequential dataset 

You invoke these utilities by issuing control statements in your JCL. 
This section describes these control statements. 

SR-0011 0 12-1 



I 

12.1 BLOCK - CONVERT UNBLOCKED DATASET TO BLOCKED DATASET 

BLOCK copies a specified unblocked dataset to a blocked dataset, adding 
blocked dataset control words as the copy proceeds. For datasets that 
you did not assign as foreign datasets (with the ASSIGN control 
statement), a fixed-record length must be provided on a control statement 
parameter. For datasets previously assigned as foreign, the values for 
record length and type are taken from the ASSIGN control statement. 

Never use BLOCK with tape datasets. To use BLOCK with foreign datasets, 
see Foreign Dataset Conversion on CRAY-1 and CRAY X-MP Computer Systems, 
publication SN-0236. 

The BLOCK control statement has two mutually exclusive forms, as follows: 

Format 1: 

BLOCK,DN=ldn,BLKSIZE=size. 

Format 1 is valid for nonforeign datasets only. 

DN=ldn Name of dataset to be blocked. When the utility 
terminates, the ldn local dataset has been replaced by 
the blocked copy. (During the copy process, a temporary 
blocked copy is made in dataset $BLOCK. BLOCK then 
releases the original ldn dataset and $BLOCK is copied 
back to a new dataset named ldn. The ldn dataset is 
rewound before and after processing. 

This is a required parameter. 

BLKSIZE=size 
The BLOCK operation on nonforeign datasets merely adds Cray 
blocking control words to create the blocks of length equal 
to that specified in the BLKSIZE parameter. The BLKSIZE 
parameter is only used on nonforeign datasets and describes 
the record length in 64-bit words of the output dataset. 

Format 2: 

BLOCK,I=idn,O=odn,BLKSIZE=size. 

12-2 SR-0011 0 

------------,--------------------- --- ~~ - -



I=idn 

O=odn 

Name of the unblocked input dataset. The copy proceeds 
from the current dataset position throughout the dataset to 
end-of-data (EOD). This is a required parameter; there is 
no default. 

Name of the local dataset to which the blocked copy is 
written. If you previously opened this dataset (using, for 
instance, the job control language (JCL) ASSIGN control 
statement), BLOCK writes from the current position; 
otherwise, BLOCK creates the dataset. This is a required 
parameter. 

BLKSIZE=size 
For foreign datasets, appropriate Cray blocking control 
information corresponding to the foreign control words in 
the input dataset are added and the result is written to 
the output dataset. For datasets previously assigned as 
foreign, the values for record length and type are taken 
from the ASSIGN control statement for the input dataset. 
For these datasets, the BLKSIZE parameter is not permitted. 

BLOCK is intended primarily as a post processor for datasets created by 
or for certain stations. 

12.2 COPYD - COpy BLOCKED DATASET 

COPYO copies one blocked dataset to another dataset starting at their 
current positions. Following the copy, both datasets are positioned 
after the end-of-file (EOF) of the last file copied. The end-of-dataset 
(EOO) is not written to the output dataset. COPYD expands compressed 
blanks when writing to the output dataset if an ASSIGN control statement 
contains BFI=OFF for the output dataset. 

Format: 

COPYO,I=idn,O=odn,S=m. 

I=idn Name of dataset to be copied. The default is $IN. 

O=odn Name of dataset to receive the copy. The default is $OUT. 

S=m Shift count. The value m is the number of ASCII blanks 
to insert at the beginning of each line of a character 
file. The maximum is 132. If S is omitted, the shift 
count is o. If S is specified without a value, S=1. 

SR-0011 0 12-3 



12.3 COPYF - COpy BLOCKED FILES 

COPYF copies a specified number of files from one blocked dataset to 
another dataset starting at the current dataset position. Following the 
copy, the datasets are positioned after the EOF for the last file 
copied. COPYF expands compressed blanks when writing to the output 
dataset if an ASSIGN control statement contains BFI=OFF for the output 
dataset. 

Format: 

COPYF,I=idn,O=odn,NF=n,S=m. 

I=idn 

O=odn 

NF=n 

Name of dataset to be copied. The default is $IN. 

Name of dataset to receive the copy. The default is $OUT. 

Decimal number of files to copy. The default is 1. If the 
dataset contains fewer than n files, the copy terminates 
on EOD. EOD is not written. If the keyword NF is 
specified without a value, the copy terminates at the EOD. 
If the input dataset is positioned midfile, the partial 
file counts as one file. 

Shift count. The value m is the number of ASCII blanks 
to insert at the beginning of each line of a character 
file. The maximum is 132. If S is omitted, the shift 
count is O. If S is specified without a value, S=l. 

12.4 COPYR - COpy BLOCKED RECORDS 

COPYR copies a specified number of records from one blocked dataset to 
another dataset starting at the current dataset position. Following the 
copy, the datasets are positioned after the end-of-record (EOR) for the 
last record copied. COPYR expands compressed blanks when writing to the 
output dataset if an ASSIGN control statement contains BFI=OFF for the 
output dataset. 

Format: 

COPYR,I=idn,O=odn,NR=n,S=m. 

12-4 SR-0011 0 



I=idn 

O=odn 

NR=n 

Name of dataset to be copied. The default is $IN. 

Name of dataset to receive the copy. The default is $OUT. 

Decimal number of records to copy. The default is 1. If 
the dataset contains fewer than n records, the copy 
terminates on the next EOF. EOF and EOD are not written. 
If the keyword NR is specified without a value, the copy 
terminates at the next EOF. If the input dataset is 
positioned midrecord, the partial record is counted as one 
record. 

S=m Shift count. The value m is the number of ASCII blanks 
to insert at the beginning of each line of a character 
file. The maximum is 132. If S is omitted, the shift 
count is o. If S is specified without a value, S=l. 

12.5 COPYU - COpy UNBLOCKED DATASETS 

COPYU copies a specified number of sectors or all data until EOD. The 
copy is made to or from the current position on both datasets. At the 
end of the copy, the datasets remain positioned after the last sector 
copied. 

Format: 

COPYU,I=idn,O=odn,NS=ns. 

Parameters I and 0 are required; they have no defaults. 

I=idn Name of unblocked dataset to be copied 

O=odn Name of unblocked dataset to receive the copy 

NS=ns Decimal number of sectors to copy. The default is 1. If 
the unblocked dataset contains fewer than ns sectors, the 
copy terminates on EOD. If the keyword NS is specified 
without a value, the copy terminates at EOD. 

SR-0011 0 12-5 



12.6 NOTE - WRITE TEXT TO A DATASET 

NOTE writes text included in the NOTE control statement to a dataset 
named in the control statement. 

Format: 

NOTE,DN=dn,TEXT=text. 

DN=dn 

TEXT=text 

Name of the dataset to be written. The dataset is written 
at its current position. If the dataset does not exist, it 
is created. The dataset is not rewound. If DN is omitted 
or appears without a value, the dataset defaults to $OUT. 

Information to be written to the dataset. The text can 
have a maximum of 153 characters. It is subject to the 
same conventions as other strings, as discussed in 
subsection 16.2.4, Strings. 

12.7 QUERY - RETURN STATUS AND POSITION INFORMATION 

QUERY determines the current status and position of a local mass storage 
dataset. QUERY issues this information in the form of a user logfile 
message. It can also set this information in user-specified symbolic 
variables for later use in JCL statements. 

Format: 

QUERY,DN=ldn,STATUS=sym,POS=sym. 

DN=ldn 

STATUS=sym 

12-6 

Local dataset name, 1 to 7 characters. This is a required 
parameter. 

JCL symbol name in which the dataset status is to be 
returned. Symbols are described in subsection 16.2.1.3, 
Symbolic variables. Return values are as follows: 

-1 Dataset is not local 
0 Dataset is closed 
1 Dataset is open for output 
2 Dataset is open for input 
3 Dataset is open for I/O 

SR-OOll 0 

--------------- ---- -



I 

JCL symbol name in which the dataset position is to be 
returned. Return values are as follows: 

-1 Position indeterminate (dataset is either not local, 
unblocked format, or closed) 

o Beginning-of-data 
1 End-of-data 
2 End-of-file 
3 End-of-record 
4 Mid-record 

The logfile message issued has the format: 

QU001 - DN: ldn STATUS: status POS: pos 

ldn Local dataset name 

status UNKNOWN if Idn is not local 
CLOSED if Idn is local and closed 
OPEN-O if Idn is local and open for output 
OPEN-I if Idn is local and open for input 
OPEN-I/O if Idn is local and open for both input and 
output 

pos NIA position is not available (dataset is not local, 
closed, or is in unblocked format) 
BOD if dataset is at beginning-of-data 
EOD if dataset is at end-of-data 
EOF if dataset is at end-of-file 
EOR if dataset is at end-of-record 
MID if dataset is in the middle of a record 

12.8 REWIND - REWIND BLOCKED OR UNBLOCKED DATASET 

is 

REWIND positions the named datasets at the beginning-of-data (BOD). 
REWIND opens any of the named datasets that are not open. REWIND is a 
system verb. The $IN dataset, however, is an exception. After REWIND, 
$IN is positioned after the control statement file. 

REWIND causes an EOD to be written to the dataset if the previous 
operation was a write or if the dataset is null. If the dataset is not 
memory resident, the buffers are flushed to mass storage when REWIND 
follows a write operation. If the dataset is memory resident, the EOD is 
still placed in the buffer, but the buffer is not flushed. For an 
on-line magnetic tape dataset, REWIND positions the tape dataset to the 
beginning of the first volume accessed by the user. 

SR-0011 0 12-7 



Format: 

Names of datasets to be rewound. A maximum of eight 
datasets can be specified, separated by colons. 

12.9 SKIPD - SKIP BLOCKED DATASET 

SKIPD positions a blocked dataset at EOD (after the last EOF of the 
dataset). It has the same effect as the following statement: 

SKIPF,DN=dn,NF. 

If the specified dataset is empty or already at EOD, the statement has no 
effect. 

Format: 

SKIPD,DN=dn. 

DN=dn Name of dataset to be skipped. The default is $IN. 

12.10 SKIPF - SKIP BLOCKED FILES 

SKIPF bypasses a specified number of files from the current position of 
the named blocked dataset. 

Format: 

SKIPF,DN=dn,NF=n. 

DN=dn Name of dataset. The default is $IN. 

12-8 SR-0011 a 



NF=n Number of files to bypass. The default is 1. If the 
keyword NF is specified without a value, the system 
positions dn after the last EOF of the dataset. If n 
is negative, SKIPF skips backward on dn. If dn is 
positioned midfile, the partial file skipped counts as one 
file. 

SKIPF does not bypass an EOD or BOD. If BOD is encountered 
before n files have been bypassed when skipping backward, 
the dataset is positioned after the BOD. When skipping 
forward, the dataset is positioned before the EOD of the 
current file. 

This utility is available for use with on-line tapes, 
except that a negative value cannot be used for NF; for 
interchange format tapes (DF=IC), NF can only be 1. 

For example, if dn is positioned just after an EOF, the 
following control statement positions dn after the 
previous EOF. If dn is positioned midfile, dn is 
positioned at the beginning of that file. 

SKIPF,DN=dn,NF=-I. 

12.11 SKIPR - SKIP BLOCKED RECORDS 

SKIPR bypasses a specified number of records from the current position of 
the named blocked dataset. 

Format: 

SKIPR,DN=dn,NR=n. 

DN=dn 

NR=n 

SR-OOll 0 

Name of dataset. The default is $IN. 

Number of records to skip. The default is 1. If the 
keyword NR is specified without a value, the system 
positions dn after the last EaR of the current file. If 
n is negative, SKIPR skips backward on dn. If dn is 
positioned in the middle of the record, the partial record 
skipped counts as one record. 

SKIPR does not bypass an EOF or BOD. If an EOF or BOD is 
encountered before n records have been bypassed when 

12-9 



NR=n 
(continued) 

skipping backward, the dataset is positioned after the EOF 
or BOD. When skipping forward, the dataset is positioned 
after the last EOR of the current file. 

This utility is available for use with on-line tapes except 
that a negative value cannot be used for NR. 

12.12 SKIPU - SKIP UNBLOCKED DATASET 

SKIPU bypasses a specified number of sectors or all data from the current 
position of the named unblocked dataset. 

Format: 

SKIPU,DN=dn,NS=ns. 

DN=dn 

NS=ns 

Name of unblocked dataset. There is no default value. 

Number of sectors to bypass. The default is 1. If the 
keyword NS is specified without a value, the system 
positions dn after the last sector of the dataset. If 
ns is negative, SKIPU skips backwards on dn. 

12.13 UNBLOCK - CONVERT BLOCKED DATASET TO UNBLOCKED DATASET 

UNBLOCK copies a specified blocked dataset to an unblocked dataset, 
removing all blocked dataset control words as the copy proceeds. When 
you assign the input dataset as foreign, the ASSIGN control statement 
also causes addition of control words, as appropriate, for the foreign 
host according to the blocking and record format information from 
ASSIGN. 

Never use UNBLOCK with tape datasets. 

The UNBLOCK control statement has two mutually exclusive forms, as 
follows: 

12-10 SR-0011 0 



I 

I 

Format 1: 

UNBLOCK,DN=ldn. 

This format is illegal for foreign datasets. 

DN=ldn 

Format 2: 

Name of dataset to be unblocked. During the copy process, 
a temporary unblocked copy is made in the dataset $UNBLK. 
The original Idn dataset is then released and $UNBLK is 
copied back to a new dataset named Idn. When the utility 
terminates, the Idn local dataset has been replaced by 
the unblocked copy. The Idn dataset is rewound before 
and after processing. 

This is a required parameter. 

UNBLOCK,I=idn,O=odn. 

I=idn 

O=odn 

Name of the blocked input dataset. The unblocking copy 
proceeds from the current dataset position through the 
dataset to EOD for nonforeign datasets, and to EOF for 
foreign datasets. The default is $IN. 

Name of the local dataset to which the unblocked copy is 
written. If you previously marked the dataset to be 
unblocked (using, for instance, the JCL ASSIGN statement), 
UNBLOCK writes from the current position. Otherwise, 
UNBLOCK closes the dataset and assigns the unblocked 
attribute. This has the effect of rewriting the dataset, 
losing its previous content. This is a required parameter. 

The UNBLOCK operation on nonforeign datasets merely discards the blocked 
dataset control words. (Refer to section 2 for a detailed description of 
the blocked format and its control words.) For foreign datasets, it also 
adds appropriate host control information so that you can dispose the 
dataset (use the DISPOSE control statement) transparently to a supported 
front end. In a nonforeign dataset containing text, it discards record 
boundaries. The UNBLOCK utility is intended primarily as a postprocessor 
for datasets created by or for certain stations. 

SR-0011 0 12-11 



12.14 WRITEDS - INITIALIZE A BLOCKED RANDOM OR SEQUENTIAL DATASET 

WRITEDS initializes a blocked dataset. It writes a dataset containing a 
single file consisting of a specified number of records of a specified 
length. This utility is useful only for random datasets, because a 
record written on a random dataset must end on a preexisting record 
boundary. Direct-access datasets, implemented in Cray Fortran CFT77 and 
CFT as defined by the ANSI X3.9-l978 Fortran standard, can be 
initialized, and even extended, using WRITEDS. 

You can also use WRITEDS to write a sequential dataset. 

Format: 

WRITEDS,DN=dn,NR=nr,RL=rl. 

DN=dn 

NR=nr 

RL=rl 

12-12 

Name of dataset to be written. ON is a required parameter. 

Decimal number of records to be written. NR is a required 
parameter set to the largest value that may be needed, 
because a dataset is generally not extended when it is in 
random mode. 

Decimal record length (the number of words in each 
record). The default is zero words, which generates a null 
record. 

If the record length is nonzero, the first word of each 
record is the record number, represented as a binary 
integer starting with 1. 

SR-OOll 0 



ANALYTICAL AIDS 13 

The following utilities provide analytical aids to the programmer: 

Utility 

COMPARE 

DEBUG 

DSDUMP 

DUMP and DUMP JOB 

FLODUMP 

FTREF 

ITEMIZE 

Function 

Compares two blocked datasets and lists all 
differences 

Dynamic Dump Analyzer. Allows interactive 
symbolic analysis of a dump. The Symbolic 
Debugging Package Reference Manual, CRI 
publication SR-Ol12, describes DDA in detail. 

Produces a symbolic dump. The Symbolic Debugging 
Package Reference Manual, CRI publication SR-Ol12, 
describes DEBUG in detail. 

Dumps all or part of a dataset to another 
dataset. The input dataset may be either blocked 
or unblocked. 

Generally used together to examine the contents of 
registers and memory as they were at a specific 
time during job ~rocessing. DUMPJOB captures the 
information so that DUMP can later format selected 
parts of it. 

Dumps flowtrace tables when a program aborts with 
flowtracing active. Refer to the COS Performance 
Utilities Reference Manual, publication SR-0146, 
for a description of FLODUMP. 

Analyzes Fortran source code to show the calling 
tree, common block usage, and information for 
multitasking. Refer to the COS Performance 
Utilities Reference Manual, publication SR-0146, 
for a description of FTREF. 

Inspects library datasets and generates statistics 
about them. Section 5 describes libraries; 
section 15 describes library dataset management. 

I t Deferred implementation 

SR-0011 0 13-1 



I 

MTDUMP 

PERFMON 

PRINT 

Spy 

SYSREF 

Produces formatted listings of dumps of the 
multitasking history buffer. Refer to the 
CRAY X-MP Multitasking Programmer's Manual, 
publication SN-0222, for more information. 

Monitors machine activity in detail, by means of 
the performance monitor that is part of most CRAY 
X-MP computer systems. Refer to the COS 
Performance Utilities Reference Manual, 
publication SR-0146. 

Writes the value of an expression to the logfile 

Indicates approximate amounts of time used by 
different loops and code segments, including a 
histogram to show "spikes." Refer to the COS 
Performance Utilities Reference Manual, 
publication SR-0146. 

Generates a global cross-reference listing for a 
group of Cray Assembly Language (CAL) or APML 
programs 

You can invoke these aids by including a control statement in your JCL. 
This section describes these control statements. 

13.1 COMPARE - COMPARE DATASETS 

COMPARE compares two blocked datasets and lists all differences found. 
The output consists of a listing of the location of each discrepancy, the 
contents of the differing portions of the datasets, and a message 
indicating the number of discrepancies. Refer to the COS Message Manual, 
CRI publication SR-0039. 

Keyword parameters let you specify the maximum number of errors and the 
amount of context to be listed. 

If portions of two datasets are being compared, the portions must be 
copied to separate datasets before comparison; COMPARE compares complete 
datasets only. 

COMPARE rewinds both input datasets before and after the comparison. 

Format: 

COMPARE,A=adn,B=bdn,L=ldn,DF=df,ME=maxe,CP=cpn, 

13-2 SR-0011 0 



A=adn and B=bdn 

L=ldn 

DF=df 

ME=maxe 

CP=cpn 

CS=csn 

SR-0011 0 

Input dataset names. If adn=bdn, COMPARE issues an 
error message and aborts the job step. Both A and Bare 
required parameters. 

Dataset name for the list of discrepancies. Idn must be 
different from adn and bdn. The default is $OUT. 

Input dataset format. The default is T. df is a 
1-character alphabetic code as follows: 

B Binary. The input datasets are compared logically to 
verify that they are identical. If they are not 
identical, the differing words are printed in octal 
and as ASCII characters. Nonprinting characters 
appear as blanks in the ASCII representation. The 
location printed is a word count. The first word of 
each dataset is called word 1. 

T Text. The input datasets are compared to see if they 
are equivalent as text. For example, a 
blank-compressed record and its expansion are 
considered equivalent. If the two datasets are not 
equivalent, the differing records are printed as 
text. The location is printed as a record count. The 
first record of each dataset is called record 1. 

Maximum number of differences printed. The default is 100. 

Amount of context printed. cpn records to either side 
of a difference are printed. The CP parameter applies only 
if DF=T; if DF=B and CP are specified, an error message is 
generated. The default is o. 

Amount of context scanned. csn records to either side 
of a discrepancy are scanned for a match. The CS parameter 
applies only if DF=T; if DF=B and CS are specified, an 
error message is generated. The default is O. 

If a match is found within the defined range, subsequent 
comparisons are made at the same interval. That is, if 
record 275 of dataset A is equivalent to record 277 of 
dataset B, the next comparison is between record 276 of 
dataset A and record 278 of dataset B. 

NOTE 

If identical records occur within csn 
records of each other, the pa1r1ng is 
ambiguous and COMPARE can match the wrong 
pair. 

13-3 



CW=cw or CW= cw1: cw2 
Compare width. If CW=cw is specified, columns ! through 
cw are compared. If Cw=cw1:cw2 is specified, columns 
cw1 through cw2 are compared. Specifying CW without a 
value is not permitted. The default is to compare columns 
1 through 133, but this can be changed by installation 
option. The CW parameter applies only if DF=T; if DF=B and 
CW are specified, an error message is generated. 

ABORT=ae If ae or more differences are found, the job step aborts. 
Specifying ABORT alone is equivalent to ABORT=! and causes 
an abort if any differences are found. Specifying ABORT 
does not prevent the listing of up to maxe differences. 

13.2 DSDUMP - DUMP DATASET 

DSDUMP dumps specified portions of a dataset to another dataset. A disk 
dataset can be dumped in either blocked or unblocked format. A tape 
dataset can be dumped only in blocked format. 

Unblocked format is used to dump a disk dataset without regard to whether 
it is blocked. Dumping a blocked dataset in unblocked format (by 
sectors) is possible. A group of sectors within the dataset or a group 
of words within each sector can be selected. The initial word and 
initial sector numbers are relative to the beginning of the dataset. 
Specifying an initial sector greater than 1 causes sectors to be skipped 
from the beginning of the dataset; specifying an initial word greater 
than 1 (or 0, if the control statement includes the Z parameter) causes 
words to be skipped from the beginning of each sector. Following a dump 
in unblocked format, the dataset is closed. 

For a blocked format, a group of words within a record, a group of 
records within a file, or a group of files within a dataset can be 
selected. The initial word number, initial record number, and initial 
file number are relative to the current dataset position. Specifying an 
initial number greater than 1 (or 0, if the control statement includes 
the Z parameter) causes words, records, or files to be skipped starting 
from the current position. 

Because the initial word, record, or file number is relative to the 
current position of the dataset, the dataset must be positioned properly 
before calling DSDUMP. If you rewind the dataset before calling DSDUMP, 
the initial word, record, and file numbers are relative to the beginning 
of the dataset. When DSDUMP is completed, the input dataset is 
positioned after the last record dumped. 

13-4 SR-0011 0 



Two groups of DSDUMP parameters require the specification of numbers: 
the values of the initial word, record, file, and sector (I values) and 
their counts (N values). These values may be specified in three ways: 

• Explicit decimal number (for example, D'1234' or D1234) 

• Explicit octal number (for example, 0'1234' or 01234) 

• Simple number (for example, 1234). This is interpreted as a 
decimal number. 

The following lines reference the same first word: 

DSDUMP, ... ,IW=4096. 
DSDUMP, ... ,IW=D'4096'. 
DSDUMP, ... ,IW=O'lOOOO'. 

Format: 

DSDUMP,I=idn,O=odn,DF=df,Iw=n,NW=n,IR=n,NR=n,IF=n, 

NF=n,IS=n,NS=n,Z,DB=db,DSZ=SZ. 

The only required parameter is I. 

I=idn (or DN=idn) 
Name of dataset to be dumped. This is a required parameter. 

O=odn (or L=odn) 

DF=df 

IW=n 

NW=n 

IR=n 

SR-0011 0 

Name of dataset to receive the dump. The default is $OUT. 

Dump format. The default is B. 

B Blocked 
U Unblocked 

Decimal or octal number (n) of the initial word for each 
record or sector on idn. The default is 0 if Z is 
specified; 1 if Z is not specified. 

Decimal or octal number (n) of the words per record or 
sector to dump. Specifying NW without a value dumps all 
words to the end of a record or sector. The default is 1. 

Decimal or octal number (n) of the initial record for 
each file on idn. Applicable only if DF=B. The default 
is 0 if Z is specified; 1 if Z is not specified. 

13-5 



NR=n 

IF=n 

NF=n 

IS=n 

NS=n 

Z 

DB=db 

DSZ=sz 

Decimal or octal number (n) of the records per file to 
dump. Specifying NR without a value dumps all records to 
the end of the file. Applicable only if DF=B. The default 
is 1. 

Decimal or octal number (n) of the initial file of the 
dataset on idn. Applicable only if DF=B. The default is 
o if Z is specified; 1 if Z is not specified. 

Decimal or octal number (n) of the files on idn to dump. 
Specifying NF without a value dumps all files to the end of 
the dataset. Applicable only if DF=B. The default is 1. 

Decimal or octal number (n) of the initial sector on idn. 
Applicable only if DF=U. The default is 0 if Z is 
specified; 1 if Z is not specified. 

Decimal or octal number (n) of the sectors to dump. 
Specifying NS without a value dumps all sectors to the end 
of the dataset. Applicable only if DF=U. The default is 1. 

Zero-based initial-value parameters (IW, IR, IF, and IS). 
If Z is specified, the value for each I parameter is 0, and 
output referring to word, record, file, and sector numbers 
begins at O. The following lines reference the same first 
word: 

DSDUMP, ••. ,IW=4096. 
DSDUMP, .•. ,Z,IW=4095. 

If Z is not specified, the value for each I parameter is 1. 

The Z parameter does not affect the Nx parameters. 

Numeric base in which to display the data words 

OCTAL or 0 
HEX or X 

The default 

Size of the 

WORD or W 
PARCEL or 

The default 

is 

Octal (base 8) 
Hexadecimal (base 16) 

OCTAL. 

data items to dump 

Cray 64-bit words 
P Cray 16-bit parcels 

is WORD. 

For blocked format, each record from idn dumped to odn is preceded by 
a header specifying the file and record number in both octal and 
decimal. For unblocked format, each sector is preceded by a header 
specifying the sector number in both octal and decimal. 

13-6 SR-0011 0 



Table 13-1 summarizes the DSDUMP output records according to the 
specification of DB and DSZ parameters. 

A row of five asterisks indicates that one or more groups of 4 words have 
not been formatted because they are identical to the previous 4 words. 
Only the first group is formatted. The number of words not formatted can 
be determined from the word counts of the formatted lines before and 
after the asterisks. The final group of 4 or fewer words is always 
formatted. 

Table 13-1. DSDUMP Output Format 

Word Number ASCII 
DB,DSZ Count Interpretation Interpretation 

OCTAL, WORD t Four 22-digit One 32-character 
octal numbers interpretation 

HEX, WORD t Four 16-digit One 32-character 
hexadecimal numbers interpretation 

OCTAL, PARCEL t Sixteen 6-digit None (insufficient 
octal numbers space) 

HEX, PARCEL t Sixteen 4-digit One 32-character 
hexadecimal numbers interpretation 

t If the Z parameter is used, the word count is O-based and octal. If 
the Z parameter is not used, the word count is 1-based and decimal. 

13.3 DUMP - DUMP REGISTERS AND MEMORY 

DUMP reads and formats selected parts of the memory image that is 
contained in $DUMP and writes the information to another dataset. The 
DUMP control statement can be placed anywhere in the control statement 
file after $DUMP has been created by the DUMP JOB control statement. 

Normally the DUMPJOB and DUMP control statements are placed after an EXIT 
control statement. This ensures the dump is performed no matter which 
part of the job causes an error exit. The use of DUMP and DUMP JOB is 
not, however, restricted to this purpose. 

SR-0011 0 13-7 



I 

DUMP can be called any number of times within a job. This might be done 
to dump selected portions of memory from a single $DUMP dataset or it 
might be done if $DUMP has been created more than once in a single job. 

Format: 

DUMP, I=idn,O=odn, FWA=fwa, LWA=lwa, JTA,NXP,V,DSP, FORMAT=f,c ENTER, 

BIAS=addresS,BUFFER. 

I=idn 

O=odn 

FWA=fwa 

LWA=lwa 

Name of the dataset containing the memory image. The 
default dataset $DUMP is created by DUMP JOB but any dataset 
in the $DUMP (unblocked) format is acceptable. 

Name of the dataset to receive the dump; default is $OUT. 

First word address of memory to dump. The default is word 
o of the Job Communication Block (JCB). 

Last word address of memory to dump. The default is word 
200 of the JCB. Specifying the keyword LWA without a value 
causes the limit address to be used. Specifying LWA=O 
causes no memory to be dumped. 

JTA Dump Job Table Area. The default is no JTA dump. 

NXP No dump of Exchange Package, B registers, T registers, 
cluster registers, or semaphore registers dumped. The 
default causes the Exchange Package, B registers, T 
registers, cluster registers, and semaphore registers to be 
dumped. Cluster registers and semaphore registers are 
available only on CRAY X-MP mainframe types. NXP overrides 
the V parameter if the two are used together. 

v Dumps vector registers. The default is no dump of V 
registers. 

DSP Dumps Logical File Tables (LFTs) and Dataset Parameter 
Tables (DSPs). The default is no LFTs and DSPs are dumped. 

FORMAT=f Format for the part of memory selected by FWA and LWA. 
All of the following options except I are appropriate for 
formatting a data dump. The I format is for dumping 
program instructions only. 0 is the default. 

D Decimal numbers and ASCII character 

13-8 SR-0011 0 



I 

FORMAT=f G 
(continued) 

I 

Floating-point or exponential numbers, depending on 
the value of the number, and ASCII character 

Instruction format. CAL instruction mnemonics are 
printed with ASCII characters. 

M Mixed hexadecimal and octal numbers and characters 
written in ASCII. Each 16-bit parcel is represented 
as 5 characters; the first character is a hexadecimal 
digit representing the high-order 4 bits, and the next 
4 are octal characters representing the low-order 12 
bits. 

o Octal numbers and ASCII characters 

P Dump is given in 16-bit parcels (4-word boundaries are 
forced for FWA and LWA) 

X Hexadecimal numbers and ASCII characters 

CENTER Dump 100a words on each side of the address in the P 
register of the Exchange Package. The format is P. 

BIAS=address 
Print of dump will begin at user address 

BUFFER Dump IIO buffers 

Example 1: 

The following example is a portion of a data dump obtained using format 
0, the default format type. 

()flllll 1(1f) 0',?I'lill')?.llo60?02(100IlII (l3(,(JlI()(JlI01 1I(J3200125000 0000100003100000030200 0000163231]/.,00000030144 U1520A < 
(JlJI /0 I (III O(lIlIlI) 1 (JlIIIIIIl(I()(JlIIJlJI/()()Il() 1 11111507000650 l 11U022000 U4151721162006113'I301166 UOUOOOOOUOOOOOOOOOOOOO 
11111 II) 1 10 11I11I01l( 1111111111 II II II II 11111111 1000 O( 111(111110000000000000000 0000(100000000000000000 03741100000000000000000 
(II I( 1111 1 'I I II II II II II II II II II 1111 II IIIIIO( 11111111111 (IIII)( IIIII()OIJOOOOOOOOOOOOO 0000000000000000000000 0000000000000000000000 
(111(1111 ?1I*0(1I10(1I)00(1IJ111)0(1I11I11I1I1I1I11l I11HlJ 00110157 
(lIl1)O 160 (JlIIJOIIII(IIIIIIIII(IIIIIII(1I111110(10 OOOIlOOOIIlIOOOOO()OO()()OOO 0000000000000000000000 0000000000000000000000 
(IIIIIIJ 1 (,11 1I00( IIIIJOOIlOO( 1111 1111101101100 1l001IIHlIIOOOOOOOOOOOOOOO 0300711363107113634066 0310601643146416430064 
(1I111() 170*01100000110110(11111111111111111011 llmlJ 0000177 
(II/OII?OIl 01(;>C,]O?(J?'I(,')2(1?1(1"?'JlII) (11)/10111)0100115217620000 000221110'1247237625601 02500210000000lt5lt22102 EXAMPLE 

Example 2: 

The same portion of the dump in format D. 

1IIIIllll1111 (,131\ 11·16:")0 /',G89lJH1w 
1111111111111 ?R 1 II {II') /6/1i1(,~)6 
011110110 
011(11111'1 II 
0000 121l"0000(lIlIlIlIIIJ(1I111110'1(IIJllIIIIIJ 
11011(11611 () 
111111111611 II 
111111111/(1 'IlO(IIIOIl(II)fIlIIlIIIIlIlIIlIIIIlIUOU 
11001121111 119<)()/11 r,',8G8tUil c'Il?')6 

SR-0011 0 

1t323Llr)~11t"79111t?lt0(1 
-1I1111 112liR39311003/632 

U 

IHIW IJI1IJ() 1 ~7 

THHU 1I!l1I1)111 
122119 79653 111l1J3 36128 

22520 lit 562062lt61t 
1t85\) 186 721lt30lt8325LI 

o 
o 

o 
31t 7118601180211731 Ij l186 

IIOSr,3751375801217 

1t1l5G68251 OLJ 30 308 lJ 1520A < 
U 

1t5486 3562 364lt200960 
o 

o 
361 645ltlt92 3 72lt811052 

3027017083928323138 EXAMPLE 

2 0 Od 
A S cos 1.16 

09/29/8620: 34:04 

*? SE: + * SB 

1794 

2 0 Od 
ASCOS1.16 

09/29/8620: 31t: 04 

SE: + * SB 

1795 

13-9 



I 

Example 3: 

The same portion of the dump in format x. 

0011(1111) 5')31353231111100011 3COOlllJ 181 AOOAAO(J 
9928Ul004180240(J 
OU(JO()(10000000000 
OODllooonoooOO(J()O 

0008003200003080 
434 F53203 12E31 36 
ooooouoooooooooo 
OOOOOOO(JOOOOOOOO 

(J00E698800003064 U1520A < 
0000000000000000 

2 0 Od 
0000104 OUO 100()()Ooooonoo 
OOiHI 11 0 1l1lOOllOOllOOOOOOOO 
IJlHJll114 IJIJllllOOOllOOOIHJlIOIJ 
OIIOllI21J*OOIJOOO(J(JOOUIIOIIIJIIOO(IOOU 
OOIJIJ 1611 IJIH)(IOOUIJllOllOO()OIJ 

3 F 20000000000000 
0000000000000000 

0000000000000000 

A S COS 1.16 

U(JO(lI6L1 1I1J1I1lOU()Il11(JOUIlIHIO 
(HIOO 1 11I'-(IO()Ofl(JIHH)(HHIOOIIOIIOll(J(lO 
nooo200 Ij',58111l1[)50IjCII',2(J 

THRU 0000157 
IHIOOOOlJOOOOOOOOO 
OIIOOUOll(JOOOOOOOO 

IfllHJ (JOD()ln 
l11J00P812A1F2000 

OO(JOOOOOOOOOOOOO 
30392 F32 392 F 38 36 32 303A3 3 343A3034 09/29/8620: 34:04 

009124453A7F2B81 2A02200000962442 EXAMPLE *? SE: + * SB 

1796 

Example 4: 

The same portion of the dump in format G. 

011(011)(1 1I.2~11311Ij311113')+1633 0.201157371j2130-311 
O. non()oOOOnOOOE +00 
n. UIJUilOnOIlOOOUE+OO 
II. OOOOIJOOO()OUO E +UO 

O. 000000000000 E +00 
0.30 lI720688618+255 
O.OOUOOOU(JOOOOE+OO 
0.000000000000 E +00 

O. OOOOOOOOO()(JU [+00 U 1520A < 2 0 Od 
OO()(110 11 il.nOOOOOO()(IOOO[+UO 
IJI)(IO lllJ II. ()(IIJOUtJnl)()()O(JE+Oll 

0.000000000000 E +00 
O. 000000000000 E +00 

A S COS 1.16 

tJtJl)(lll l l IJ. (JUOIJO()()()(IUUll[+1J11 O. 000000000000 E +00 
(JO(J(J 12(J~OOn()(IO(J(JnO(Jil()()(JUOOOlJOO 
00011160 (J. (JOtJO(Jlll)OOl)(I(}E +00 
OIHIO 1611 U. (JO(H)()(IUOOiH)oF+no 
000(11 III 'OO(JOIHIOO(HIOOOOOtJuon(IIJO 
(JUIl(}200 O. 1611 33 14?7%6+lj 12 

TIIRU 0000157 
o.onooollouOOOOE+OO 
o. OO()OO(JUOOlHIOE +00 

T HRU ouon 177 
(J.OOOOOOUOOOOOE+OO 

(). 000000000000 E +00 
0.254398439672-1216 

0.000000000000[+00 
0.821520619736-1065 09/29/8620: 34:04 

O.OOOOOOOOOOOOE+OO O. 198625290891-1695 EXAMPLE S[: + * SB 

Example 5: 

The same portion of the dump in format P. 

Example 6: 

0000100 052461 032462 030101 000000 036000 000030 015000 125000 U1520A < 
0000102 000010 000062 000000 030200 000016 064610 000000 030144 2 0 Od 
0000104 000001 000000 000000 000000 114450 160015 040600 022000 ( A $ 
0000106 041517 051440 030456 030466 000000 000000 000000 000000 COS 1.16 
0000110 000000 000000 000000 000000 000000 000000 000000 000000 
0000112 000000 000000 000000 000000 037440 000000 000000 000000 
0000114 000000 000000 000000 000000 000000 000000 000000 000000 
0000116 000000 000000 000000 000000 000000 000000 000000 000000 
0000120'0000000000000000000000 THRU 0000157 
0000160 000000 000000 UOOOOO 000000 000000 000000 000000 000000 
0000162 000000 000000 000000 000000 000000 000000 000000 000000 
0000164 000000 000000 000000 000000 000000 000000 000000 000000 
0000166030071 027462034457034066 031060035063 032072 030064 09/29/8620:34:04 
0000170'0000000000000000000000. THRU 0000177 
0000200 042530 040515 050114 042440 010400 000201 025077 020000 [XAMPLE 
0000202 000221 022105 035177 025601 025002 020000 000226 022102 $[: + * $8 

1798 

The same portion of the dump in format M. 
0,)246115231 u6l120200000 U360000001403200 12')OUO UI520A < nOOOlOll ~')313~)3230InOU(Jo 

00001112 (l(l08003200003080 
3coono 181 AOOAAOO 
Ol)() [6988( 1000 3 064 
9928[()n01j 1802400 
OIIUllOU{)OOOOOIIOOO 
OUlHII)(HHI(IUOl)()OO(1 
3 r2000lJOouoooono 
OOOlIllOOU(IOOllOO(I(J 
OIlOOOOOOlJOOOOOOO 

O(H)O 1 000031 00000030200 00001632304()000n030 144 2 0 (Jd 
LJOIlO 11111 (JOO 1 OOlJlIOOOOO(lOO 
IJIHI01116 113'IF';321l312E3136 
OlllHlll0 OOOLJOlHlllllOllllOIiOll 
OOO() 112 ooooonooooooOOOO 
00001111 IHIOlHHH)()()(JO()()(H)O 
0000116 OOOOll(JOO(HJOOOO(JO 
IJlIOllI2(J"OLJIHHIOOU(lOOOlHIIlIJO(J(J()1l1l 
0000160 O()OOOOOU()OOIllHIOO 
nooo 162 OOUOO()OOIHI(JOOlIOO 
(JlllHJ 1611 UlilIOll()OUOOlJOllUOlI 
0(J00166 30392F32392F3836 
0000I7()*1I0011Il()O()IlOOI)lIlIOllll()OlHJI) 
OOO()2l)() 4 5~84 lllD')(J4C4~20 
OU002U2 00912411~3A7f2B81 

Example 7: 

THRU 001lUl,)7 
O(JUOOOOOOOIIOOO()O 
U(IIIO(IOnUOllOOUUOO 
O(JIJOllOOUOOOOOOOO 
32 303A3 3 34 3A30 31j 

1 HRU ilOilO 111 
11 UlI()0812A3 F20(J0 
2A0220000096241j2 

OOOOll100000ll0000000000 1144507000650140022non A S 
041517211620061134301166 OOOOOllOOOllOOoouooonooo cos 1.16 
OOOIIOOOOOOllOOOO()OOO()OO ononooooooOOOOOOOOllO(IO 
OOO( IUOOOOOOUOOOOOOOOOO 03 71j400000UOOOllOOOOOOO 
nOOllOOOOOO(JOOO(JOOOOOllO OOllOOOOOOOOOOO(IOO()(JOOO 
OOoooooooonooooooOOOOO OOOOOOOOOOOOOOOOOOOOOU 

onooooooOOOOOOOOO(IOOOO ooooonOOOOOOllOOOO()OOOO 
O{)O(IOOOOOOOOOOOOOOUOOO OOllOOI)OOOOOOOOOOOOOOOll 
OOOOOOO(JOOOOO(JOOOOO(IOO OOOOOOOOOO(JOOOOOOOUOOO 
0300711363107113634066 031 06016431461j 1643nn64 09/29/8620: 34: 04 

Ol12~ 30202465202 30421140 010400001004521 76211000 EXAMPLE *? 
OO()2211104247237625601 0250021000000045422102 SE: + * SB 

1799 

A dump of program instructions in format I. 
OOUU070*oooonoonoooouoonOOOOOOTHRU0000017 
0000100aSO 511<61 A4 

Al O+Al £RR 

f~:~l~"I;:" !: 

A6*A2 
000 
030 

06' 
0" 

Sl*fS8 
A4+AiI 
000 
000 

A6+A6 
000 
000 

0524611523106020200000 

0360000001403200125000 

0000100003100000030200 

000016323011000000301114 

0000010000000000000000 

1141150700060;0140022000 

041517246200611]430466 

OOOOOOOOOODOOOOOOOOOOO 

( .$ 

1797 

13-10 SR-0011 0 



13.4 DUMP JOB - CREATE $DUMP 

DUMPJOB creates the local dataset $DUMP, if it does not already exist. 
When the DUMP JOB statement is encountered, $DUMP receives an image of the 
memory assigned to the job (the Job Table Area (JTA) and user field). 
Placing the DUMPJOB statement after a system verb, excluding the * 
(comment) and EXIT statements, causes a dump of the Control Statement 
Processor (CSP). A DUMP JOB to an execute-only dataset is rejected. 

If the $DUMP dataset already exists, it is overwritten each time a 
DUMPJOB control statement is processed. If $DUMP is permanent and the 
job does not have write permission, DUMP JOB aborts. If $DUMP is 
permanent and the job has write permission, the dataset is overwritten. 

If the DUMPJOB/DUMP sequence fails because of such situations as 
destroyed system-managed Dataset Parameter Areas (DSPs), rewind $DUMP 
before the job step for which the dump is to be written and save it with 
unique access. DUMPJOB writes to $DUMP, and job termination 
automatically adjusts $DUMP. $DUMP can then be inspected in a separate 
job. This procedure applies only to situations in which the user 
overwrites certain system tables without the detection of the system. 

DUMPJOB creates $DUMP as an unblocked dataset so it can be used by DUMP, 
I FLODUMP, DEBUG, and DDA.t DUMP JOB is a system verb and cannot be 

continued to subsequent statements. 

I 

I 

There are no parameters. 

Format: 

DUMPJOB. 

13.5 ITEMIZE - INSPECT LIBRARY DATASETS 

ITEMIZE prints a formatted report of the contents of a dataset generated 
by compilers, loaders, assemblers, UPDATE, or BUILD. For additional 
information about the contents of an UPDATE PL, use AUDPL. Refer to the 
UPDATE Reference Manual, CRI publication SR-0013. 

I t Deferred implementation 

SR-0011 0 13-11 



A header containing the jobname, ITEMIZE version number, date, time, and 
page number appears at the top of every page. The line shown below 
appears following the header on page 1. The line gives the local dataset 
name of the dataset being processed. 

ITEMIZE OF dn 

ITEMIZE normally produces file-level output. For binary library 
datasets, however, it produces a more detailed record-level output. The 
following subsections describe both levels of output. 

Restrictions: 

• An UPDATE PL is recognized only if it is the only item in a 
dataset. A PL created by the UPDATE utility consists of many 
files. The last file of the dataset must be a PL directory. If 
NF is not specified on the control statement, ITEMIZE prints 
information only for the first file, although it has examined the 
last file. Again, the dataset must contain only a PL. 

• ITEMIZE does not operate on a tape dataset. 

Format: 

ITEMIZE,DN=dn,L=odn,NREW,NF=n,T,BL,E,B,X. 

DN=dn 

L=odn 

NREW 

NF=n 

T 

13-12 

Local dataset name of the dataset to be listed. The 
default is $OBL. 

Local dataset name where listing is written. If L is 
omitted or is specified alone, $OUT is used. 

No rewind. Specifies the dataset is not rewound. If NREW 
is omitted, the dataset to be listed is rewound before and 
after ITEMIZE is executed. 

Number of files within a dataset to be listed. If NF is 
used alone, the contents of all files within the dataset 
are listed. If NF=n, the contents of n files within the 
dataset are listed. The default is NF=l. 

Truncation. Specifying this parameter truncates lines on 
the listing dataset to 80 characters. Optional parameter; 
however, specifying this parameter precludes specifying the 
E, B, and X parameters. 

SR-0011 0 



BL Burstable listing. When this parameter is specified, each 
dataset heading starts at the top of a page. The default 
is a compact listing in wHich a page eject occurs only when 
the current page is nearly full. 

E Entry points. Specifying E causes all entry points to be 
included in the listing. Use for binary library datasets 
only. 

B Blocks. Specifying B causes all entry points, code, and 
common block information to be included in the listing. 
Use for binary library datasets only. B overrides E. 

X Externals. Specifying X causes all entry points, code, 
common block, and external information to be included in 
the listing. X overrides B. 

13.5.1 FILE-LEVEL OUTPUT 

ITEMIZE prints one line for each file examined (up to the maximum 
specified by the NF parameter or the default of 1). A second header 
line appears on each page and contains the column headings shown in 
figure 13-1. 

Figure 13-1 is an example of ITEMIZE operating on a program library (PL). 
The control statement used to generate the listing was ITEMIZE,BL,NF. 
The list following figure 13-1 describes the contents of each column. 

Itemize 1.16 11/10/86 09:37:55 

Itemize of COSPL 

File Records Type Length Check Part 

1 60 PL 245 7314 7314 

File count limit (NF parameter) reached. 

Sum= 245 7314 7314 

****************************************************** 
* Dataset is UPDATE PL -- use AUDPL for more details * 
****************************************************** 

Page 1 

Date 

10/15/86 

Figure 13-1. Sample Listing of ITEMIZE for a Program Library 

1743 

SR-0011 0 13-13 



Heading 

FILE 

RECORDS 

TYPE 

LENGTH 

CHECK 

PART 

DATE 

Description 

Sequence number of the file within the dataset 

Number of records within the file 

Type of information contained within the file. If the 
file is a member of a PL, the column contains PL. Other 
values that may appear in this column are ABS, REL, DAT, 
and ??? ABS and REL indicate absolute and relocatable 
program modules, respectively. DAT indicates data, and 
??? is used for otherwise unrecognized files. 

Length of the file in words 

Checksum of the data within the file 

Same as CHECK for file-level output 

Date of the PL from its directory; blank if other types 
of datasets. 

13.5.2 OUTPUT FOR BINARY LIBRARY DATASETS 

A binary library is a collection of binary records recognized by the 
existence of a Program Description Table (PDT). For binary library 
datasets, ITEMIZE operates record-by-record rather than file-by-file. 
The second header line for binary library datasets contains the column 
headings. 

Figure 13-2 is an example of ITEMIZE operating on a binary library 
dataset. The list following figure 13-2 describes the contents of each 
column. The control statement used to generate the listing was 
ITEMIZE,BL,NF,X. If the control statement had been ITEMIZE,BL,NF., 
lines with no entry in the REC column would not have appeared. 

13-14 SR-0011 a 



I 

TITEMA Itemize 1.16 11/19/86 16:51:56 Page 

Itemize of TESTLIB File 

Ree Name Type Length Cheek Part Date 

DUMMY 1 REL 75 6737 0234 11/19/86 16:51:55 CFT 1. 
Hardware requirements CRAY-XMP EMA 

* ENT * DUMMYl 
* BLK * DUMMYl 
* BLK * UB 
* BLK * teL 
* BLK * 1ST 
* BLK * tRG 
* BLK * tDA 
* EXT * DUMMY2 DUMMY3 

DUMMY2 REL 70 1230 0274 11/19/86 16:51:55 eFT 1. 
Hardware requirements CRAY-XMP EMA 

* ENT * DUMMY2 
* BLK * DUMMY2 
* BLK * UB 
* BLK * teL 
* BLK * tST 
* BLK * tRG 
* BLK * tDA 
* EXT * DUMMY3 

DUMMY3 REL 63 2431 0241 11/19/86 16:51:55 eFT 1. 
Hardware requirements CRAY-XMP EMA 

* ENT * DUMMY3 
* BLK * DUMMY3 
* BLK * UB 
* BLK * tCL 
* BLK * tST 
* BLK * tRG 
* BLK * fDA 

* EOF * 208 0531 0026 

TITEMA Itemize 1.16 11/19/86 16:51:56 Page 

Itemize of TESTLIB File 

Ree Name Type Length Check Part Date 

* DIR * DOl 31 2564 2564 

Dir entry:DUMMY1 REL No. of blocks 
No. of entries 
No. of externals 

* ENT * DUMMYl 
* BLK * ITB 
* BLK * tCL 
* BLK * tST 
* BLK * fRG 
* BLK * fDA 
* EXT * DUMMY2 DUMMY3 

Dir entry:DUMMY2 REL No. of blocks 
No. of entries 
No. of externals 

* ENT * DUMMY2 
* BLK * ITB 
* BLK * tCL 
* BLK * fST 
* BLK * tRG 
* BLK * tDA 
* EXT * DUMMY3 

Dir entry: DUMMY 3 REL No. of blocks 
No. of entries 
No. of externals 

* ENT * DUMMYJ 
* BLK * ITB 
* BLK * tCL 
* BLK * 1ST 
* BLK * tRG 
* BLK * tDA 

* EOF * 31 2564 2564 
* EOD * Sums 239 0664 0173 

/EOF 

1015 

Figure 13-2. Sample Listing of ITEMIZE for a Binary Library Dataset 
with X and NF Parameters 

SR-0011 0 13-15 



I 

Heading 

REC 

N~E 

TYPE 

LENGTH 

CHECK 

PART 

DATE 

Description 

Sequence number of the record within the file 

Name of the program from the PDT 

ABS or REL, which indicate absolute and relocatable 
program modules, respectively 

Length of the record in words 

Checksums 

Checksums 

Date of compilation from the PDT 

One line containing the data previously listed is generated for each 
record. If you specify any of the E, B, or X options on the control 
statement, several additional lines can be printed. The information in 
these lines is labeled separately: 

• When you specify E, B, or X, the comment field of the PDT is 
printed on a separate line. The hardware required for the module 
to execute correctly is listed on a separate line. In addition, 
the entry point names are printed with five names per line. 

• When you specify B or X, a separate line is printed for each block 
containing its name and length. 

• When you specify X, the externals referenced by the program are 
printed with five external names per line. 

A binary library dataset contains a second directory file containing one 
record. If E, B, or X is specified on the control statement, a line is 
printed specifying the directory ID and length. In addition, entries, 
blocks, and externals are printed as described previously for program 
records. 

13.6 PRINT - WRITE VALUE OF EXPRESSION TO LOGFILE 

PRINT writes the value of an expression on the logfile. The value of the 
expression is written in three different formats: as a decimal integer, 
as a 22-digit octal value, and as an ASCII string. PRINT is a system 
verb. 

13-16 SR-0011 0 



Format: 

PRINT(expression) 

expression 
Any JCL expression (refer to section 16). The maximum 
length is 8 characters. This parameter is required. 

Logfile format: 

UT060 decimal octal ASCII 

UT060 Message code indicating the origin is a PRINT statement 

decimal 

octal 

ASCII 

A 16-digit decimal representation of the evaluated 
expression 

A 22-digit octal representation of the evaluated 
expression 

An 8-character ASCII representation of the evaluated 
expression 

13.7 SYSREF - GENERATE GLOBAL CROSS-REFERENCE LISTING 

SYSREF generates a global cross-reference listing for a group of CAL or 
APML programs. The number of CAL or APML programs that can be included 
in such a group is limited by the amount of Cray computer system memory 
allocated to a user. 

SYSREF reads special binary symbol tables written by CAL or APML and 
produces a single cross-reference listing for the program modules 
represented in the tables. When the X parameter appears on a CAL or APML 
statement, a record is written for each program unit assembled. The 
records are written to a dataset specified by the X parameter ($XRF by 
default or if X appears alone). Each record has a header containing the 
name of the program unit. The rest of the record consists of 
cross-reference information for every global symbol used in that program. 

SR-0011 a 13-17 



Format: 

SYSREF,X=xdn,L=ldn. 

X=xdn Name of dataset whose first file (normally the only file) 
contains one or more symbol records written by CAL or 
APML. The default is $XRF. 

L=ldn Name of output dataset. The default is $OUT. 

13.7.1 USE OF SYSREF 

SYSREF is usually used to process symbol records written by CAL and/or 
APML earlier in the same job. To do so, add X parameters to each CAL or 
APML control statement and follow them with a SYSREF control statement: 

CAL,X. 
APML,X. 
CAL,X. 
SYSREF,L=XROUT. 

$XRF is used as the default in all cases. 

To process symbol records written in an earlier job, the following 
sequence is used. 

The first job: 

CAL,X. 
APML,X. 
SAVE,DN=$XRF,ID=XX. 

The second job: 

ACCESS,DN=$XRF,ID=XX. 
SYSREF,L=XROUT. 

To add more symbol records before invoking SYSREF, use: 

ACCESS,DN=$XRF,ID=XX,UQ. 
SKIPR,DN=$XRF,NR. 
CAL,X. 
SYSREF. 

The previous format has the same effect as if the CAL step had been done 
before the SAVE step. 

13-18 SR-0011 0 



13.7.2 GLOBAL CROSS-REFERENCE LISTING FORMAT 

The global cross-reference listing contains only global symbols. A 
symbol is global if it is anyone of the following: 

• Named in an ENTRY or EXTERNAL statement 

• Defined before an IDENT statement and after any preceding END 
statement 

• Defined within a system text such as $SYSTXT 

• Defined within a section of source code bracketed by TEXT and 
ENDTEXT pseudo instructions 

The order of the symbols in the global cross-reference listing is 
lexicographic, based first on the symbol name and then (within each 
symbol name) on the module name. An exception to the order is made for 
symbol names beginning with N@, S@, or W@. These symbol names are sorted 
as if @ is the most significant (leftmost) character and the N, S, or W 
is the least significant character. The listing displays the symbol name 
correctly. The effect is a grouping of all the N@, S@, and W@ symbols 
that refer to the same field in a table. 

The global cross-reference listing consists of 13 columns: 

Column 

1 

2 

3 

4 

5-11 

Heading 

Value 

Symbol 

Origin 

Module 

References 

Contents 

The symbol's value 

The symbol's name 

The IDENT of the system text in which the 
symbol is defined; or the label of the~TEXT 
block in which the symbol is defined; or 
*GLOBAL*, if the symbol is defined outside 
any program unit; or blank. 

The IDENT of the module within or before 
which the symbol is defined or referenced 

A list of the lines on which the symbol is 
defined or referenced 

The symbol's name, value, and references appear in a format similar to 
that of a CAL or APML listing. The page number in each reference is a 
local page number that starts at 1 for each module. In a CAL or APML 
listing, this is the page number that appears in parentheses to the right 
of the second title line on each page. 

SR-0011 0 13-19 





I 

CREATING AN EXECUTABLE PROGRAM 14 

The COS Relocatable Loader is a utility program that executes within the 
user field. It is used for loading and linking, in memory, relocatable 
modules from datasets on mass storage. 

The relocatable loader is called with the LDR control statement when you 
need to load a program in relocatable format. Absolute load modules can 
also be loaded. The design of the COS loader tables and relocatable 
loader allows program modules to be loaded, relocated, and linked to 
externals in a single pass over the dataset being loaded. This minimizes 
the time spent in loading activities on the Cray computer system. The 
loader allows the immediate execution or the creation of an absolute 
binary image of the object module on a specified dataset. 

The relocatable loader can also generate a partially relocated module. 
This module, referred to as a relocatable overlay, is described later in 
this section. 

Most applications that require more than 4 Mwords of Central Memory 
cannot be loaded by LDR. LDR messages LD064, LD065, LD066, or all three 
are issued if problems are found. These applications may have to be 
loaded with the Segment Loader (for details refer to the Segment Loader 
(SEGLDR) Reference Manual, CRI publication SR-0066). You can use the LD2 
control statement to change from the LDR control statement to SEGLDR. 

14.1 LDR CONTROL STATEMENT 

The LDR control statement begins execution of the loader. Parameters of 
the control statement determine the functions to be performed by the 
loader. 

SR-0011 0 14-1 



I 

Format: 

14-2 

LDR,DN=dn,LIB=ldn,NOLIB=ldn,LLD,AB=adn,MAP=op,SID[='string'],T=tra, 

NX,DEB=l,C=com,OVL=dir,CNS,NA,USA,L=ldn,SET=val,E=n,I=sdir, 

NOECHO,SECURE,GRANT=SC1: sC2:···: SCn,BC=bc,PAD=pad,NORED, 

STK[=initial size[:increment]],MM[=initial size[:increment]], 
AFTER 

MMEPs=epsilon,MMLOC=BEFORE· 

DN=dn Dataset containing modules to be loaded. The default is 
$BLD. Modules are loaded in $BLD unless you specify a 
block name with a Fortran PROGRAM, SUBROUTINE, BLOCK DATA, 
or FUNCTION statement. Loading continues until an 
end-of-file (EOF) is reached. Duplicate blocks are skipped 
and an informative message is issued. 

Multiple files from the same dataset can be loaded by 
specifying the dataset name multiple times separated by 
colons. You can indicate a maximum of eight files. 

Datasets specified by the DN parameter are closed at the 
end of the load process. Closing a dataset has the effect 
of rewinding the dataset and releasing I/O tables and 
buffers. 

Modules to be loaded can be relocatable or absolute; but do 
not mix the two types of modules. Neither LD2 nor SEGLDR 
supports absolute modules. 

For example, the following statement causes the loading of 
all modules in the first file of datasets LOAD1, then 
LOAD2, and then $BLD: 

DN=LOAD1:LOAD2:$BLD 

Normally the dataset is rewound before loading; however, 
consecutive occurrences of a dataset name inhibit 
subsequent rewind operations. Therefore, the following 
statement causes the loading of all modules in the first 
two files of dataset LOAD3: 

DN=LOAD3:LOAD3 

SR-0011 0 

--_. -.---.----



I 

LIB=ldn 

The DN parameter takes on a special quality when OVL is 
specified. Then only one dn can be specified. The 
dataset named is the initial LOAD file used by the overlay 
loader. (Refer to the description of overlay loading later 
in this section for more information.) 

The LIB parameter names the dataset from which unsatisfied 
externals are loaded. A maximum of eight datasets can be 
named, with the dataset names separated by colons. 

Any default libraries are automatically included in the 
library list unless the NOLIB parameter is specified. LDR 
accesses the default libraries from the COS System 
Directory (SDR) if they are not local to the job; no ACCESS 
statement is required. 

Datasets specified by the LIB parameter are closed at the 
end of the load process. Closing a dataset has the effect 
of rewinding the dataset and releasing IIO tables and 
buffers. 

NOTE 

Use the BUILD utility to generate object datasets 
specified by the LIB parameter to prevent 
unnecessary overhead in the loader. 

The libraries cannot be tape datasets. 

NOLIB=ldn The NOLIB parameter value names the specific default 
library to be excluded from the load. Selecting NOLIB with 
no value specifies the exclusion of all default system 
libraries. If NOLIB is not specified, any default 
libraries that a site has are automatically included in the 
library list, along with any libraries specified on the LIB 
parameter. 

LLD 

SR-0011 0 

Specifying the LLD parameter will retain any libraries 
included in the load as local datasets when the load is 
completed. These local datasets remain open. Datasets 
automatically accessed are not released when the load is 
completed. If the LLD parameter is not specified, the 
loader closes all libraries and releases automatically 
accessed datasets at load completion. 

LD2 uses the LLD parameter to inhibit the release of 
datasets generated to assist in using SEGLDR. Use the LLD 
parameter to keep these datasets for subsequent conversion 
to SEGLDR. 

14-3 



14-4 

AB=adn 

MAP=Op 

Absolute binary object module generation. This parameter 
causes an absolute binary object module to be written to 
the named dataset after the load process is complete. 
Selecting AB does not imply no execution (NX). Unless NX 
is also selected, the loaded program begins execution after 
the binary is generated. Specifying AB without adn 
causes the module to be written on a dataset named $ABD, 
the default dataset. The dataset is not rewound before or 
after the file is written. 

If the AB parameter is omitted, no binary generation occurs. 

If OVL is specified on the LDR statement, the OVLDN 
directive replaces AB; any value specified for AB is 
ignored in overlay mode. Overlay loading is described 
later in this section. 

Map control. The MAP parameter causes the loader to 
produce a map of the loaded program on the specified 
dataset. MAP can take any of the following values: 

ON Produces a block list and an entry list including 
all cross-references to each entry 

OFF No map is produced. Default is MAP=OFF. 

FULL Same as MAP=ON 

PART Produces a block list only. Equivalent to MAP with 
no value specified. 

SID[=' string'] 
Debug routine loading. The SID parameter indicates the 
system debugging routines are to be loaded with the code. 
These routines comprise an additional binary dataset loaded 
after all DN specified datasets and before any libraries. 

The 'string', if given, is passed to SID for evaluation as 
a control statement. The verb and initial separator are not 
required. For example, SID='I=IN,ECH=ELIST.' is a proper 
string specification; the period is a required terminator. 
Refer to the Symbolic Interactive Debugger (SID) User's 
Guide for a complete description of SID parameters. If only 
SID is specified, all keyed default SID control statement 
parameter values are used. 

SR-0011 0 



T=tra 

NX 

DEB=1 

C=com 

SR-0011 0 

Transfer name. Lets you specify an entry name for the 
loader to transfer control at completion of the load. 

The T parameter also specifies the entry included in 
absolute binary object modules. The entry name is 8 
characters maximum. If no T parameter is specified, the 
loader begins object program execution at either the entry 
specified by the first encountered START pseudo from a CAL 
routine or at the entry of the first main program in Fortran 
compiled routines. If no START entries are encountered, a 
warning message is issued and the first entry of the first 
relocatable or absolute module is used. 

NOTE 

When the SID parameter is used, the load 
transfer is to the system debugger, and the T 
parameter is ignored. If T is coded, however, 
a warning message is issued to the user 
logfile. 

No execution. This parameter inhibits execution of the 
loaded program. 

Job Communication Block (JCB) length. The default length 
is 2008 words. Specifying DEB without a value changes 
the JCB length to 30008. 

Compressed load. Allows control of the starting locations 
of modules and common blocks. An align bit is set for each 
relocatable module and common block that contains an ALIGN 
pseudo-oPe Refer to the CAL Assembler Version 1 Reference 
Manual, CRI publication SR-OOOO, or the Fortran (CFT) 
Reference Manual, CRI publication SR-0009. 

C can take on any of the following values: 

ON Forces the loading of each module and common block 
to begin at the next available location after the 
previous module or common block, ignoring the align 
bit. Equivalent to C with no value specified. 

14-5 



OVL=dir 

CNS 

PART Forces the loading of each module and common block 
with the align bit set to an instruction buffer 
boundary.t If the align bit is not set, that 
module or common block is loaded at the next 
available location after the previous module or 
common block. C=PART is the default. 

OFF Forces the loading of every module to an 
instruction buffer boundary.t Common blocks are 
forced to instruction buffer boundaries only if the 
align bit is set. 

Overlay load. Indicates an overlay load sequence is 
specified on dire Overlay loading is explained in detail 
later in this section. If the OVL keyword is specified 
without a value, the loader examines the next file of $IN 
for an overlay load sequence. The default is no overlay 
load. Selecting OVL implies NX (no execution). 

Crack next control statement record image. Allows the 
loader to pass parameters to the loaded program for 
analysis and to use the parameters during execution of the 
loaded program. The control statement that is cracked 
follows the LOR control statement and is not available for 
processing by the Control Statement Processor (CSP) after 
processing by the loaded program. 

NOTE 

When the SID parameter is specified, the CNS 
parameter is ignored and a warning message is 
written to the user logfile if CNS is present. 
SID prompts for the control statement for the 
code being debugged. 

NA No abort. If this parameter is omitted, a caution or 
higher level loader error causes the job to abort. 

USA Unsatisfied external abort. When USA is specified, the 
loader aborts at the end if it finds one or more 
unsatisfied externals. If called for, a load map listing 
all unsatisfied externals is produced. 

t Instruction buffer sizes are 408 words for the CRAY X-MP computer 
system and 208 words for all CRAY-l S models. 

14-6 SR-0011 0 



L=ldn 

SET=val 

Listing output. Lets you specify the name of the dataset, 
ldn, to receive the map output. If L=O, all output is 
suppressed. The default dataset is $OUT. 

Memory initialization. Variables, named and blank common 
blocks, and storage areas defined by DIMENSION statements 
are set to 0, -1, or an out-of-range floating-point value 
during loading. The default is SET=ZERO. 

SET=ZERO 

SET=ONES 

SET=INDEF 

Memory is set to binary zeros. 

Memory is set to -1 (all bits set). 

Memory is set to a value that causes an 
out-of-range error if the word is referenced 
as a floating-point operand. The ones 
complement of each memory address is placed in 
the low-order 24 bits of the respective word 
to aid in reading register and memory dumps. 
An example, in octal, of the value loaded into 
memory word 13216 is: 0605050037740177764561. 

E=n List error messages. Indicates the highest level of 
loader-produced error messages to be suppressed. One of 
five levels of severity can be suppressed, where n is the 
highest level to be suppressed. The default for this 
parameter is E=l. 

SR-0011 0 

Level 

1 

2 

3 

4 

5 

Example: 

COMMENT 

NOTE 

CAUTION 

WARNING 

FATAL 

Description 

Error does not hinder program 
execution 

Error probably hinders program 
execution 

Job aborts when load process 
completes unless NA is selected; 
program might not execute properly. 

Job aborts when load process 
completes unless NX is selected; 
program execution is not possible. 

Job aborts immediately. FATAL 
messages are never suppressed. 

E=2 suppresses COMMENT and NOTE messages and allows 
CAUTION and WARNING messages to appear. 

14-7 



• 

I=sdir 

NOECHO 

SECURE 

Selective load. Modules from other datasets can be 
loaded according to a set of directives. sdir 
indicates the dataset containing the directives. If the 
I keyword is specified without a value, the directives 
are taken from the next file of $IN. The selective load 
directives INCLUDE and EXCLUDE are described later in 
this section. 

Suppresses writing the current control statement to the 
user logfile (that is, the control statement that invoked 
the actual loading into memory is not written to the 
logfile) . 

Defines each dataset created during this job step to be 
secure (that is, to be released during job advancement 
unless specifically overridden with a F$DSD operating 
system request). 

GRANT=SCl: SC2:···: scn 
Grants the privileges defined as parameters if this 
module is loaded from the System Directory (SDR). (These 
privileges are merged with the user's only for the 
duration of the job step.) The following parameters are 
defined if security is enabled. They are operative only 
if the dataset is executed from the SDR. 

Parameter 

SCACES 

SCDIAG 

SCDTIM 

SCDUMP 
SCENTR 
SCERCH 
SCERQM 
SCISPT 

SCLUSR 
SCMLOG 

SCNVOK 
SCPDAD 
SCPRIV 
SCQDXT 
SCQSDT 

SCRDSC 

Privilege 

Accesses user-saved dataset without 
passwords 
Allows F$DIAG request for on-line 
diagnostics 
Allows use of PDM "set time of PDSDUMP" 
function 
Allows F$DJA requests anytime 
Allows ENTER option on ACCESS 
Allows F$DRIVER requests 
Allows SDT queue manipulation 
Allows F$TRB requests for Integrated 
Support Processor (ISP) testing 
Loads user dataset 
Lets you send messages to another user's 
logfile 
Invokes job class structure 
Allows access of system catalog dataset 
Allows special system requests 
Allows LINK DXT requests 
Allows dequeuing and queuing of SDT 
requests 
Allows reading of Dataset Catalog (DSC) 
page 

14-8 SR-OOll 0 



I 

I 
Bc=bc 

PAD=pad 

NORED 

Parameter 

SCRESIDE 

SCRESON 

SCSPOL 

SCSYSJ 
SCSYSPRG 

SCTPBLP 

SCUPDD 
SCURID 

SCWNSC 

Privilege 

Allows declaring a dataset to be on-line, 
preventing it from being migrated or 
retired 
Allows you to request that a dataset reside 
on-line 
Allows SAVE/ACCESS/DELETE/LOAD/DUMP 
spooled dataset 
Allows a job to be a system job 
Allows system programmer functions such as 
F$PROF and F$CMEM 
Allows bypass label processing for 
magnetic tape 
Allows access user dataset for PDSDUMP 
Allows use of reserved ID in interjob 
communication 
Allows you to randomly seek a direct access 
dataset beyond an area to which you have 
written 

Blank common. bc specifies the number of words to be 
added to the size of blank common when the program is 
loaded for execution. The default is o. 

Pad. pad specifies the number of words of unused space 
to be made available in the job when the program is loaded 
for execution. After the program is loaded with its 
requested extra space, the job is placed in user-managed 
field-length reduction mode for the duration of the job 
step. The default is o. 

No field-length reduction. Before the program is loaded, 
the job is placed in user-managed field-length reduction 
mode for the duration of the job step. 

STK[=initial size[:increment]] 

SR-0011 0 

Initializes for stack processing. STK is a run-time memory 
management parameter. 

initial size indicates the initial size of a stack in 
number of words. An installation parameter defines the 
default value. If the initial size value is less than 
128, LDR substitutes the default value. 

increment specifies the size of additional segments to a 
stack (in number of words) if a stack overflows. An 
installation parameter defines the default value. A value 
of 0 indicates that overflow is prohibited. 

14-9 



MM[=initial size[:increment]] 
Initializes for managed memory processing. The values 
assigned to MM specify the number of words available to 
the heap manager. 

initial size indicates the number of words initially 
available to the heap manager. An installation parameter 
defines the default value. The loader changes the 
specified value if the heap is not allowed to grow and if 
there is no room for heap and stack overhead. 

increment specifies the minimum size, in words, of a 
request to the operating system for additional memory if 
the heap overflows. Zero means that the size of the heap 
is fixed. An increment other than zero cannot be specified 
if the heap is before blank common. An installation 
parameter defines the default value. If the BEFORE value 
is specified for the MMLOC parameter, the default value is o. 

MMEPS=epsilon 
epsilon is the smallest block that can be left on the 
list of available space in the heap. If a r~quest for 
additional memory from the heap is made by the run-time 
routines, and the request leaves a memory fragment of less 
than epsilon words, the additional words are given to the 
request. The value must be at least 2. An installation 
parameter defines the default value. 

AFTER 
MMLOC=BEFORE 

Specifies the location of the heap. AFTER specifies that 
the heap is located after blank common; default. If the 
heap is located before blank common, BEFORE is specified. 

14.2 LD2 CONTROL STATEMENT 

LD2 is a utility program that converts programs using LDR to programs 
using SEGLDR. You will find LD2 useful with applications that require 
more than 4 Mwords of Central Memory and with applications (especially 
those that use overlays) being migrated to the Cray operating system 
UNICOS, where LDR is not available. Normally, LD2 builds auxiliary CAL 
source files, SEGLDR directive files, and COS job control language (JCL) 
files, and automatically invokes the COS JCL file. This has the effect 
of retaining LDR control statements, directive files, and overlay methods 
while actually using SEGLDR. 

Use the LLD parameter on the LD2 control statement to capture the CAL 
source and SEGLDR directive intermediate files. This simplifies creation 

14-10 SR-0011 0 



I 

of a hybrid job using SEGLDR more directly. This can save time for jobs 
with large, complex overlay programs by removing the need to execute L02 
each time. 

You might detect some differences between LOR and L02. In general, the 
LD2 control statement produces the same result as the LDR control 
statement; however, LD2 does not convert programs that rely on loading 
one or more common blocks at a specific address. Unlike LDR, LD2 does 
not allocate the first common block encountered in the first module 
loaded at 200(8). 

Before using L02, remove from your program any names that conflict with 
the following LD2 output names: 

• Program names of the form ZOOOOOOl through Z9999999 

• OVERLAY. If you have a private copy of the library module 
OVERLAY, you must remove it before using LD2. 

• Dataset names $ILDR, $DLDR, $XLDR, and $A00001 through $A99999 

LD2 does not fully support multiple file object datasets, although it 
does handle many straightforward cases. 

The LD2 control statement has the same parameters as the LDR control 
statement with some exceptions. These are: LD2 does not support the SID 
parameter, but it does support the VIEW and CMD parameters. Refer to the 
LDR parameter descriptions for other minor differences. The LD2 VIEW and 
CMD parameters function as follows: 

VIEW=level 

CMD=string 

SR-0011 0 

Echoes the LDR directives being converted to the 
SEGLDR listing dataset. This produces a sometimes 
large listing detailing the joint actions of LD2 and 
SEGLDR. The level specifies the degree of detail 
desired in the report. By default, level is 1. The 
range is from 1 to 255; currently, however, useful 
values are 1 and those greater than 8. Larger values 
produce more detailed information. A level greater 
than 8 writes to the listing dataset a possibly 
voluminous report of each dataset examined. 

CMD lets you specify one or more SEGLDR directives. 
The string is passed to SEGLDR as its first 
directive. This permits you to obtain SEGLDR specific 
load maps, for example. Occasionally, you must use 
the CMD parameter to supply the proper SLT count for 
SEGLDR (for example, you must code "CMD='SLT=number''', 
where number can be obtained from a SEGLDR error 
message in an earlier, failed run). For more 
information on the SLT directive and on the CMD 
parameter, refer to the Segment Loader (SEGLDR) 
Reference Manual, eRI publication SR-0066. 

14-11 



I 

14.3 LOAD ORDER FOR LOR AND LD2 

Loaders (LOR and LD2) load in the following order: 

• Routines you supply are loaded first. These routines usually come 
from $BLD. You may specify other datasets with the DN parameter 
in both LDR and LD2 or use the BIN directive with SEGLDR. 

• If any externals remain unresolved, the libraries are scanned, in 
this order: 

Libraries you supply with the LIB parameter are scanned 
first, in the order in which you gave them. 

The default libraries are scanned next, in this order: 

$IOLIB 
$UTLIB 
$SYSLIB 
$ARLIB 
$FTLIB 
$PSCLIB 
$SCILIB 
$SLLIB 

Loaders load only one module with a given external name. LDR and LD2 use 
different methods to select the module that is loaded if you have 
duplicate external names, either within your own libraries or in the 
complete set of libraries. LDR loads the first module encountered after 
the external call becomes known; this is not always the first module in 
the library scan order. SEGLDR (and hence LD2) loads the first module in 
the library scan order and generates a warning message for duplicates 
that are ignored. 

Example: 

Suppose your main program references FOO, which you expect to satisfy 
from library USER2. FOO, in turn references BAR. You specified 
LIB=USER1:USER2 on the LDR or LD2 control statement and there are 
instances of BAR in both USER1 and USER2. For LDR, USER2 is used, 
because at the time USER1 was scanned, FOO had not yet been 
encountered and the need for BAR was not known. For LD2 (SEGLDR), 
USER1 is used. 

14-12 SR-0011 0 



I 

NOTE 

Because of differences between loaders, and because 
Cray Research reserves the right to modify, reorganize, 
and reorder standard libraries, you are cautioned 
against developing applications that depend on how 
loaders process duplicate entry points. 

14.4 LOAD MAP 

Each time the loader is called, you have the option of requesting a 
listing, called a load map. This load map describes where is module is 
loaded and what entry points and external symbols are used for loading. 

Specify the contents of the map or the dataset to receive the map by 
setting the LDR control statement parameters. The MAP parameter of the 
LDR control statement lets you specify the contents of the map 
requested. The Segment Loader (SEGLDR) Reference Manual, CRI publication 
SR-0066, decribes the load maps produced by LD2 and SEGLDR. MAP=ON or 
MAP=FULL produces a block list and an entry list. The block list gives 
the names, beginning addresses, and lengths of the program and 
subroutines loaded on this loader call; the entry list includes all 
cross-references to each entry. MAP=PART supplies the block map only. 

When a load map is requested, it is printed even if fatal errors abort 
the load. In this case, the map contains only those modules loaded up to 
the point where the fatal load error occurred. 

Figure 14-1 shows the load map generated by the following LDR statement: 

LDR,DN=$BLD:LOAD2,LIB=MYLIB,MAP=FULL,MM=16000:4000,STK=1280:128 

The block list consists of items 1 through 16; the entry list includes 
items 17 through 23. 

SR-0011 0 14-13 



CD CD 
TOTAL: 1321 CD LDRMAP LDR X.14 84251 

RELOCATABLE LOAD 

LOAD TRANSFER IS TO -..0.- AT (CD 
DATASET BLOCK0 ADDRESS LENGTH DATE OS REV PROCSSR VER. 

CD 00 ® ® ® ® ® *SYSTEM 200 
$BLD LDRMAP 200 1321 09/24/84 COS X.14 CFT 1.13 09/21/84 
LOAD 2 ABCDEFGH 1521 36 09/24/84 COS X.14 CFT 1.13 09/21/84 
MYLIB Xl 1557 41 09/24/84 COS X.14 CFT 1.13 09/21/84 

X2 1620 41 09/24/84 COS X.14 CFT 1.13 09/21/84 

® ® ® ® 0 
MODULE NAME ENTRIES ENTRY VALUE REF. MODULE ABSOLUTE REFERENCES 

LDRMAP 
ABCDEFGH 
Xl 

$FDP 
$WFD 

@ 

LDRMAP 
ABCDEFGH 
Xl 

NLERP% 
$FDP 
$WFI 

*** MANAGED MEMORY STATISTICS 
INITIAL STACK SIZE: 
STACK INCREMENT SIZE: 

717a 
1525a 
1570a 

3234a 
4640 
5451a 

*** 

LDRMAP 1425a 
ABCDEFGH 1531a 

SWOT 
LDRMAP 

10603b 
1410a 

1280(10) 2400(8) WORDS 
128(10),200(8) WORDS 

1416d 

INITIAL MANAGED MEMORY SIZE: 16000(10), 37200(8) WORDS 
MANAGED MEMORY INCREMENT SIZE: 4000(10), 7640(8) WORDS 
MANAGED MEMORY EPSILON: 
2(8) WORDS 
BASE ADDRESS OF MANAGED MEMORY/STACK: 
WORDS 

2 (10), 

15566(10), 

MANAGED MEMORY/STACK LOCATION: AFTER BLANK COMMON 

*** LOAD IMAGE STATISTICS *** ~ 
ABSOLUTE BINARY LENGTH: 31438(10), 75316(8) WORDS 
PROGRAM IMAGE: FWA = 200(8), LWA = 75516(8) 

Figure 14-1. 

36316(8) 

Load Map Example 

Job name from the JOB control statement 

09/24/84 

Conunent 

® 

CD 
CD 
0) 

Loader level and the assembly date of the loader 

G) 

® 
® 
(j) 

Date and time of loader execution 

Page number 

Load type; either relocatable, absolute, or overlay. 

Entry name to which initial transfer is given 

Entry address where initial transfer is made 

CD 
11:54:11 PAGE 1 

1009 

® Name of load or library dataset containing modules to be loaded 

14-14 SR-0011 0 

• 



~ Names of blocks loaded from the named dataset. These are common 
blocks (identified by the slashes around their names, for 
example, ILABEL/) are names of program blocks. 

*SYSTEM is always the first block listed in a relocatable load. 
It consists of the first 2008 words of the user field, which 
is reserved for the Job Communication Block (JCB). For an 
absolute load, *SYSTEM is not allocated. The CAL user must set 
the origin to 2008 with an ORG pseudo instruction to allow 
space for the JCB. If this is not done, the job aborts. 

Blank common, indicated as II, is allocated last and appears at 
the end of the list (if it has been defined). 

~ Starting address of the block, in octal 

QY Word length of the block, in octal 

~ Date the object module was generated 

~ Operating system revision date at the time the object module was 
generated 

~ Name and revision level of the processor that generated the 
object module 

~ Revision date of the processor that generated the object module 

~ Comment (if any) from CAL COMMENT pseudo included in the load 
module 

~ Name of program block referenced 

~ Entry points in the program block 

~ Word address, parcel address, or value of each entry point 

~ Module name of reference to each entry point 

~ Absolute parcel addresses of references to each entry point. 
Eight references are listed per line; some entry points have no 
references. 

~ Managed memory statistics. The numbers in parentheses indicate 
the base: decimal (10) and octal (8). 

~ Actual length of the binary; the minimum amount of memory 
required to load the program. FWA is the first word address of 
the load image. LWA is the last word address of the load 
image. The numbers in parentheses indicate the base: decimal 
(10) and octal (8). 

SR-0011 0 14-15 



14.S SELECTIVE LOAD 

If the I keyword is present on the LDR control statement, one or more 
INCLUDE and/or EXCLUDE directives are examined in the specified dataset. 

Formats: 

INCLUDE,SDN=sdn,FN=fn,MOD=md1 :md2 :···:mdSO • 

EXCLUDE,SDN=sdn,FN=fn,MOD=md1 :md2 :···:mdSO · 

SDN=sdn 

FN=fn 

Name of the dataset containing modules to be selectively 
loaded. If SDN is specified without a value, the first 
dataset specified on the DN parameter of the LDR statement 
is the default. If the SON parameter is omitted, an error 
message results and the directive is skipped; the load does 
not abort. The SON and FN parameters must refer to the 
same dataset. 

File number of the specified dataset; a number from 0 to 
7. fn refers to the file by its numerical position in 
SON or in the ON parameter of the LOR statement. 

For example, if ON=Dl:01:D2, the first file of 01 has an 
fn of 0, and the second file of 01 has an fn value of 
1. If FN is specified without a value, the default is o. 
If FN is omitted, all of sdn is searched for the correct 
module; a message is issued for a complete sdn search. 
The SON and FN parameters must refer to the same dat~set. 

To load a module from the first file of 01, the directive 
can include the parameter FN=O; however, if FN is specified 
without a value, the default is to load a module from the 
first file. 

MOD=md Module name or entry point to a module to be included or 
excluded from the load. Up to SO modules can be specified; 
the modules must be separated by colons. If the MOD 
parameter is omitted, an error message results, and the 
directive is skipped. 

Example: Given the LOR statement 

LDR,DN=D1:D1:D2, •.. ,I. 

14-16 SR-0011 0 



I 

A directive to load a module from the second file of dataset 01 includes 
the following directive in the next file of $IN: 

INCLUDE,SDN=Ol,FN=l,MOD= .... 

Selective load messages are never suppressed. 

14.6 OVERLAYS 

Very large programs may not fit in the available user memory space or 
might not use large portions of memory while other parts of the program 
are in execution. For such programs, the COS relocatable loader includes 
the ability to define and generate overlays, separating modules that 
the user creates and then calling and executing as necessary. 

Two types of overlays are available: 

• Type 1 overlays are generated by using the directives ROOT, 
POVL, and SOVL. Two levels of overlays in addition to the root 
overlay are allowed with calls to a maximum of 999 primary 
overlays and up to 999 secondary overlays per primary overlay. 

• Type 2 overlays are generated by using the directive OVLL. Ten 
levels of overlays in addition to the root overlay are allowed 
with calls to a maximum of 63 overlays per branch. 

The overlay structure, rules for overlay generation, and overlay calls 
for both types are described in this subsection. The control statements 
used to generate the overlay and the directives common to both types of 
overlays are described first. Specific rules for generating Type 1 and 
Type 2 overlays are described separately in the following subsections. 

Overlay generation consists of a load operation in which the loader 
performs relocatable loading and writes the resulting binary image to 
disk. One named absolute binary record is written per root and each 
overlay. 

If the LOR control statement has the parameter OVL=dir, the loader 
finds the overlay generation directives on the named dataset, dir. If 
no dataset is given, the loader reads overlay generation directives from 
$IN. 

Format: 

LOR, ••. ,OVL=dir, .... 

SR-0011 0 14-17 



I 

dir Name of the dataset containing the overlay generation 
directives 

14.6.1 OVERLAY DIRECTIVES 

An overlay directive consists of a keyword and a parameter. A blank, 
comma, or open parenthesis must separate the keyword from the parameter. 
A period, closed parenthesis, or two consecutive blanks serve as the 
terminator. A caret at the end of the directive line indicates that the 
next line is a continuation of the current directive. The caret cannot 
be preceded by a blank; it must immediately follow the last character of 
the line. 

14.6.1.1 FILE directive 

The FILE directive indicates the dataset, dn, containing the routines 
to be loaded. This directive's function is similar to that of the DN 
parameter on the LDR control statement. It is generally the first 
directive on the directives dataset but appears at any time and as often 
as necessary thereafter. If no FILE directive appears, the loading 
proceeds from the dataset specified on the DN parameter of the LDR 
control statement. If that too has been omitted, loading initially 
occurs from $BLD. This directive is common to both overlay types. 

Format: 

FILE,dn. 

dn Name of the dataset containing the routines to be loaded 

14.6.1.2 OVLDN directive 

The function of the OVLDN directive is similar to that of the AB 
parameter on the LDR control statement. This directive names the 
dataset, dn, on which overlays are written. The dn parameter must be 
present. If no OVLDN directive is present, the default overlay binary 
dataset ($OBD) is assigned. All overlays generated following an OVLDN 
directive reside as separate binary records on dataset dn. OVLDN 
directives appear as often as desired on the LDR control statement. The 
LD2 control statement accepts only the first OVLDN directive that you 
specify; it silently ignores any others. This directive is common to 
both overlay types. 

14-18 SR-0011 0 



I 

Format: 

OVLDN,dn. 

dn Name of the dataset on which overlays are written 

14.6.1.3 SBCA directive 

The SBCA directive sets the blank common starting address to the 
specified address. This directive lets you place blank common after all 
load modules in the current overlay structure. The address specified 
must be larger than any address used in the overlay structure. This 
directive must appear before any overlay generation directive, such as 
ROOT or OVLL. The SBCA directive is mutually exclusive. 

Format: 

SBCA,address. 

address Address assigned to blank common, in octal. For LD2, even 
though the octal address is ignored, it must be present. 
SEGLDR can automatically determine blank common location. 

14.6.1.4 SMMA directive 

The SMMA directive sets the managed memory (heap) address to the 
specified address. This directive lets you place managed memory after 
all load modules in the current overlay structure. The address specified 
must be larger than any address used in the overlay structure. This 
directive must appear before any overlay generation directive, such as 
ROOT or OVLL. The SMMA directive is mutually exclusive. 

Format: 

SMMA,address. 

address Octal address assigned to the heap 

SR-0011 0 14-19 



14.6.2 TYPE 1 OVERLAY STRUCTURE 

Each Type 1 overlay is identified by a pair of decimal numbers, each from 
o to 999. There must be one and only one root overlay; its level numbers 
are (0,0). This root remains in memory throughout program execution. 
Primary overlays all have level numbers (n,O), where n is in the 
range 1 through 999. 

Primary overlays are called at various times by the root and are loaded 
at the same address immediately following the root. A secondary overlay 
is associated with a specific primary overlay, and it can be called only 
by the corresponding primary overlay. The secondary level numbers are 
(n,m), where n is the primary level, and m is in the range 1 through 
999. All secondary overlays associated with a given primary (that is, 
the same n) are loaded at the same address immediately following that 
primary. 

Only the root, one primary overlay, and one secondary overlay can be in 
memory at one time. 

Figure 14-2 is a diagram of a sample Type 1 overlay loading. The primary 
and secondary overlays are shown in time sequence. The sequence of 
generation does not imply that the routines are loaded into memory in the 
same sequence or that they remain in memory for a set period of time when 
they are executed. 

All external references must be directed toward an overlay nearer to the 
root. For example, overlay (1,0) can contain references to the root 
(0,0) but not to overlay (1,1). Overlay (1,1) can contain references to 
both (1,0) and (0,0). 

LDR places named common before the routine that first references it. All 
named common references must be directed toward a lower-level routine. 
The lowest level routine with a named common block must contain data 
statements for that block. 

For example, in figure 14-2, 

MAIN Can reference named common A only 

SUB1 and SUB2 Can reference named common A and B only 

TEST Can reference named common A, B, and C 

LDR allocates blank common immediately after the first overlay where it 
is declared. If blank common is declared in the root overlay (0,0), it 
is allocated at the highest address of the root overlay and is accessible 
to all overlays. If blank common is first declared in primary overlay 
(1,0) and not declared in the root (0,0), it is accessible only to the 
(l,x) overlays. Allocation and placement of blank common is also 
manipulated by the user through the SBCA directive. 

14-20 SR-0011 0 



o 

200 8 

M 

E 

M 

Named Common A 
Program Main 

Named Common B 
Subroutine SUB1 

Subroutine SUB2 

Heap 

o Blank Common 

R 

y 

JCHLM 

Named Common C 

Subroutine Test 

Subroutine 
Alpha 

(2,0) 

~------~--~------~~ Subroutine 
Sub-

NEW1 

Sub
routine 

NEW2 
(1,2) 

Beta 

Subroutine 

Delta 

o ... 
o 

~ 
o 
o 
p:: 

(5,0) 

(5,1) (5,2) (5,3) 

(3,0) 

(2,0) 

.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• '--___ ..... "-""""""-'~""-I. ..... 

Time ______ .... 1316 

Figure 14-2. Type 1 Overlay Loading Example 

SR-0011 0 14-21 



JCHLM is set to the highest address of the root overlay before loading. 
If a subsequent overlay module requires additional memory, JCHLM is reset 
to the highest address of that module. 

14.6.3 TYPE 1 OVERLAY GENERATION DIRECTIVES 

The overlay generation directives define the structure of the overlay. 
Included in this class are the ROOT, POVL, and SOVL directives. 

14.6.3.1 ROOT directive 

This directive defines programs, subroutines, and entry points, that 
comprise the load from dn. For programs written in CAL, list each 
entry referenced. Fortran programs need the program name only. All 
members for this directive reside on the same dataset, dn, as defined 
by the FILE directive. 

Format: 

memberi Module names for inclusion in the root 

14.6.3.2 POVL directive 

This directive causes relocatable loading of the named blocks to the 
primary overlay with the name plevel:OOO. The size of the root 
determines the base location. All members for this directive reside on 
either the dataset specified in the last FILE directive or, if none was 
named there, the dataset specified on the LDR statement. The first member 
in the list is the one that receives control when the overlay is loaded. 
For routines written in CAL, the first entry point of the first routine 
receives control. 

Format: 

plevel Primary overlay name; between 1 and 999. 

14-22 SR-0011 0 



memberi Module names for inclusion in the primary overlay number 
plevel 

14.6.3.3 SOVL directive 

This directive causes relocatable loading of the named blocks to the 
secondary overlay with the name plevel:slevel. The length of PQVL 
(plevel:OOO) determines the base location. All members for this 
directive reside on the same dataset, dn. The first member in the list 
is the one that receives control when the overlay is loaded. For routines 
written in CAL, the first entry point of the first routine receives 
control. 

Format: 

slevel Secondary overlay name; between 1 and 999. 

memberi Module names for inclusion in the secondary overlay number 
slevel 

14.6.3.4 Generation directive example 

In the following example: 

• DSET1 contains routines THETA, TEST, GAMMA, SUB1, MAIN, and SUB2. 

• DSET2 contains routines NEW2, ALPHA, OVER, NEW1, DELTA, EPSILON, 
SIGMA, and BETA. 

Format of the control statement that initializes overlay generation 
follows: 

LDR, ... ,OVL=OVLIN, .... 

Dataset OVLIN contains the following directives: 

Directive Description 

FILE,DSETI. The loader selectively loads from dataset DSETI. 

OVLDN,LEVOO. 

SR-0011 0 

The following overlay modules are written to 
the dataset LEVOO. 

14-23 



Directive Description 

ROOT,MAIN,SUB1 The absolute binary of MAIN,SUB1,SUB2 is 
,SUB2. written as the first record on dataset LEVOO. 

POVL,1,TEST. The binary of TEST is named 001:000 and is 
binary record 2 on dataset LEVOO. 

FILE,DSET2. The loader selectively loads from dataset DSET2. 

SOVL,1,NEW1. The binary of NEW1 is named 001:001 and is 
binary record 3 on dataset LEVOO. 

OVLDN,LEV12. The subsequent overlay modules are written to 
the dataset LEVI2. 

SOVL,2,NEW2. The binary of NEW2 is named 001:002 and is 
binary record 1 on dataset LEV12. 

POVL,2,ALPHA,BETA. The binary of ALPHA,BETA is named 002:000 and 
is record 2 on dataset LEV12. 

EOF End of overlay load sequence 

14.6.4 TYPE 1 OVERLAY GENERATION RULES 

The Type 1 overlay generation rules are as follows: 

1. Overlay members are loaded from datasets named in FILE 
directives. Members are searched for in the most recently 
mentioned dataset only. In the absence of a FILE directive, 
members are loaded from the dataset specified on the LOR control 
statement. If that is also omitted, loading initially occurs 
from $BLD. Currently, the relocatable modules of all members 
for any overlay level must reside on the same file. 

2. The overlays are generated in the order of the directives. 

3. There must be only one root. 

4. Level hierarchy must be maintained. The root overlay must be 
generated first; hence, the ROOT directives appear first. 
Following the root generation, a primary overlay (POVL) is 
generated. No limitation is placed on which primary overlay 
number (plevel) is generated; however, all secondary overlays 
(SOVL) associated with the plevel must follow. The secondary 
overlay slevels can be gene~ated in any order following their 
respective primary level. 

14-24 SR-0011 0 



5. An EOF in the directives file ends the input of overlay 
directives; hence, overlay generation. 

6. Any directive other than FILE, OVLDN, SBCA, ROOT, POVL, or SOVL 
causes a fatal error. 

7. The list of members can be continued to another line by using a 
caret (A) immediately following the last nonblank character at 
the end of the directive line. The A does not replace a 
separator and must not appear within a member name. 

8. Any number of lines can be used to name the members of an 
overlay. 

9. A secondary overlay can only be called by the corresponding 
primary overlay. 

14.6.5 TYPE 1 OVERLAY EXECUTION 

A control statement call of the dataset containing the ROOT overlay 
initiates its loading and execution. If no OVLDN directives are used 
before generating the ROOT, the dataset $OBD contains the ROOT overlay. 

The following sequence executes the root overlay after generation: 

LDR, ... ,OVL=dir, ... 
$OBD. 

During overlay generation, the members are loaded from the FILE dataset 
in the order they appear on the dataset, regardless of their order of 
appearance in the members list. The entry for POVL and SOVL overlays is 
defined by the first member listed on the generation directive. Control 
is transferred to this address after loading by the $OVERLAY routine 
during program execution. The ROOT entry is named using the T parameter 
on the LDR control statement. 

You call for the loading of overlays from within the program, and the 
method by which they are called depends on the program language in use 
(Fortran or CAL). OVERLAY is a subroutine of the root overlay and is 
loaded into memory with the root. 

SR-0011 0 14-25 



14.6.5.1 Fortran language call 

A Fortran program calls for the loading of overlays as follows: 

dn Dataset name or unit number that contains the file. Must 
be a character constant, integer variable, or an array 
element containing Hollerith data of not more than 7 
characters. 

level1 Primary level number of the overlay 

leve12 Secondary level number of the overlay 

r An optional recall parameter. If you wish to reexecute an 
overlay without reloading it, enter 6LRECALL. If the 
overlay is not currently loaded, it is loaded. 

14.6.5.2 CAL language call 

A sample call sequence from a CAL program follows: 

Location Result 

OVLDN 
PLEV 
SLEV 

EXT 

CALL 

CON 
CON 
CON 

Operand 

OVERLAY 

OVERLAY, (OVLDN,PLEV,SLEV) 

A'LEV12'L 
2 
o 

OVLDN is the address of the dataset name, PLEV is the address of the 
primary level, and SLEV is the address of the secondary level. If 
recall is desired, the address of the literal 'RECALL' is transmitted as 
the fourth argument. 

14-26 SR-0011 0 



Example: 

ILocation 
I 1 
I 
I 
I 
I 
I 
IRECL 

IResult 
110 

I 
ICALL 

I · 
I • 
I • 
ICON 

I Operand I Comment 
120 135 

I I 
I OVERLAY, (OVLDN,PLEV,SLEV,RECL) 

I · I 
I . I 
I · I 
I'RECALL'L I 

For both Fortran and CAL language calls, during execution of the 
ROOT(O,O) program MAIN, the statement 

CALL OVERLAY(5LLEV12,2,0) 

or the preceding CAL sample call causes OVERLAY to search dataset LEV12 
for the absolute binary named 002:000. OVERLAY positions the dataset 
LEV12 to the location of the absolute binary named 002:000 using 
information supplied by the loader, loads the overlay, and transfers 
control to the first member specified on the POVL or SOVL directive. 
After execution of the overlay, control returns to the statement in MAIN 
immediately following the CALL statement. Following the load, dataset 
LEV12 is positioned immediately after the EOR for the overlay (2,0). If 
overlay (2,0) is not on dataset LEV12, a fatal error results. 

Placing a call for a secondary overlay for which the corresponding 
primary overlay is not already loaded causes a fatal error. A fatal 
error also results if the primary and secondary overlays are not both on 
the named ovidn. 

14.6.6 TYPE 2 OVERLAY STRUCTURE 

Figure 14-3 shows the tree structure of the Type 2 overlay. There is 
only one root overlay, and its level number is O. The root overlay 
remains in memory during program execution and calls only level 1 
overlays. Only one branch is in memory at any time. Overlay (2,1) 
under overlay (1,1) is different from the (2,1) under (1,5). Moreover, 
overlay (2,1) under overlay (1,1) can be called only by overlay (1,1). 

SR-0011 0 14-27 



ROOT 

I I T I I 
(1,5) (1,3) (1,4) 

~ 
~ (2.2) 

;L 
(2,1) (2,4) (2,1) (2,1) 

(3,1) (3,2) 

~ 
(4,1) (4,2) 

Figure 14-3. Type 2 Overlay Tree Example 

Figure 14-4 shows a sample Type 2 overlay loading diagram. The overlays 
are shown in time sequence. The sequence of generation does not imply 
that the programs are loaded into memory in the same sequence or that 
they remain in memory for a set period of time when they are executed. 

14-28 SR-0011 0 



o 

200 8 

M 

E 

M 

o 

R 

y 

(2,1) 

Named Common A 
Program Main 

Named Common B 

Subroutine SUBl 

Subroutine SUB2 

Heap 

Blank Common 

Named Common C 

Subroutine 
NEW1 

Sub
routine 
Alpha ('t') 

,......j 

('t') 

,......j .-i 
<1> , 
> N 
<1> 
H 

JCHLM ~ 

Sub
routine 

NEW2 

(1,5) 

o , 
o 

+J 
o 
a 
~ 

(1,3) 
(1,2) 

... ~ ............. ~ ....................................................... ~~ 
Time ______ ... ~ 1317 

Figure 14-4. Type 2 Overlay Loading Example 

SR-0011 0 14-29 



I 

Level 1 overlays are called at various times by the root overlay. Each 
call loads the named overlay at the same address, immediately following 
the location of the root. The first level overlay must be called by the 
root. Each upper-level overlay must be called by the associated overlay 
at the adjacent lower level. A hierarchy exists among overlay levels; an 
upper-level overlay is subordinate to the proximate lower-level overlay. 
An upper-level overlay associated with overlay (2,1) might be (3,2), 
(3,3), or (3,4). Upper-level overlays appear on the page after the 
lower-level overlays. 

An overlay can call into memory any overlay in the next higher level; it 
cannot call an overlay more than one level above it in the hierarchy. 
For example, overlay (2,1) can call (3,1) through (3,63), but it cannot 
call (4,1). Each call for an overlay loads the named overlay at the same 
address location immediately following the location of the calling 
overlay. Only the root and one overlay at each level can be in memory 
concurrently. 

All external references must be directed toward an overlay nearer the 
root overlay. Overlay (1,1) can contain references to the root overlay 
but not to overlay (1,2) or overlay (2,1). The (2,1) overlay can 
reference externals in both the (1,1) overlay and the root overlay. 

The loader places named common blocks before the routine that first 
references it. All named common references must be directed toward a 
lower-level routine (toward the root overlay). If blank common is 
declared in the root overlay, it is allocated at the highest address of 
the root and is accessible to all overlays. If blank common is declared 
first in a level 1 overlay, for example, and is not declared in the root 
overlay, it is accessible only to levelland upper-level overlays. 

JCHLM is set to the highest address of the root overlay before loading. 
If a subsequent overlay module requires additional memory, JCHLM is reset 
to the highest address of that module. 

14.6.7 TYPE 2 OVERLAY GENERATION DIRECTIVE 

The Type 2 overlay directive defines the structure of the overlay within 
the directive format. 

14.6.7.1 OVLL directive 

This directive causes relocatable loading of the named blocks of an 
overlay. The size of the lower-level overlays in the group determines 
the base location. All members for this directive reside on the same 
dataset, dn, specified by the FILE directive. The first member in the 
list is the one that receives control when the overlay is loaded. For 
programs written in CAL, the first entry point of the first routine 
receives control. 

14-30 SR-0011 0 



Format: 

level 

number 

memberi 

Either a level number of the overlay (1 to 10), or the root 
phase (0). If the root phase is being generated, number 
must be omitted. 

Number of the overlay (1 to 63) within the level 

Module names for inclusion in the individual overlays 

14.6.7.2 Generation directive example 

In the following example: 

• DSET1 contains routines THETA, TEST, GAMMA, SUB1, MAIN, and SUB2. 

• DSET2 contains routines NEW2, ALPHA, OVER, NEW1, DELTA, EPSILON, 
SIGMA, and BETA. 

Format of the control statement that initializes overlay generation: 

LDR, ... ,OVL=OVLIN, ... 

Dataset OVLIN contains the following directives: 

Directive Description 

FILE,DSET1. The loader selectively loads from dataset DSET1. 

OVLDN,LEVOO. The following overlay modules are written to the 
dataset LEVOO. 

OVLL,O,MAIN,SUB1, The absolute binary of MAIN,SUB1,SUB2 is the first 
SUB2. record on dataset LEVOO. 

OVLL,l,l,TEST. The binary of TEST is binary record 2 on dataset 
LEVOO. 

FILE,DSET2. The loader selectively loads from dataset DSET2. 

OVLL,2,1,NEW1. The binary of NEWl is binary record 3 on dataset 
LEVOO. 

SR-0011 0 14-31 



Directive 

OVLDN,LEV12. 

OVLL,3,1,ALPHA. 

OVLL,3,2,BETA. 

OVLL,2,2,NEW2. 

EOF 

Description 

The subsequent overlay modules are written to the 
dataset LEV12. 

The binary of ALPHA is binary record 2 on dataset 
LEV12. 

The binary of BETA is binary record 3 on dataset 
LEV12. 

The binary of NEW2 is binary record 1 on dataset 
LEV12. 

End of overlay load sequence 

14.6.8 TYPE 2 OVERLAY GENERATION RULES 

The Type 2 overlay generation rules are as follows: 

1. Overlay members are loaded from datasets named in FILE 
directives. Members are searched for in the most recently 
mentioned dataset only. In the absence of a FILE directive, 
members are loaded from the dataset specified on the LOR control 
statement. If that is also omitted, loading initially occurs 
from $BLD. 

2. The overlays are generated in the order of the directives. 

3. There must be one and only one root per dataset. 

4. Level hierarchy must be maintained. The root overlay must be 
generated first. Following the root generation, a first level 
overlay is generated. No limitation is placed on which overlay 
number is generated; however, all overlays associated with that 
first level overlay must follow. The overlays can be generated 
in any order; the same restrictions apply for all levels of 
overlays (1 to 10). 

5. The first level overlay must be called by the root. An overlay 
can call into memory any overlay in the next higher level; 
however, an overlay cannot call an overlay that is more than one 
level above it in the hierarchy. 

6. An EOF ends the input of overlay directives. 

14-32 SR-0011 0 



7. Any directive other than FILE, OVLDN, SBCA, or OVLL causes a 
fatal error. 

8. The list of members can be continued to another line by using a 
caret immediately following the last character at the end of the 
directive line (that is, no blanks). The caret does not replace 
a separator and must not appear within a member name. 

9. Any number of lines can name the members of an overlay. 

14.6.9 TYPE 2 OVERLAY EXECUTION 

A control statement call of the dataset containing the root overlay 
initiates the root overlay's loading and execution. If no OVLDN 
directives are used before generating the root, the dataset $OBO 
contains the root overlay. All overlays reside on the datasets 
specified on the overlay directives. The entry for higher-level 
overlays is defined by the first member listed on the generation 
directive. Control is transferred to this address after loading by the 
$OVERLAY routine during program execution. The root entry is named 
using the T parameter on the LDR control statement. 

The following sequence executes the root overlay after generation: 

LOR, ... ,OVL=dir, .... 
$OBO. 

When the program is to be executed, the root overlay is brought into 
memory as a result of a control statement call in the job deck. 
Thereafter, additional overlays are called into memory by the executing 
program. Overlay loading allows any overlay to call for the loading of 
an adjacent upper-level overlay. 

You call for the loading of Type 2 overlays from within the program, and 
the method by which they are called depends on the program language in 
use (Fortran or CAL). OVERLAY is a subroutine of the root overlay and 
is loaded into memory with the root. 

14.6.9.1 Fortran language call 

A Fortran program calls for the loading of Type 2 overlays as follows: 

CALL OVERLAY(dn,level,number,r) 

SR-0011 0 14-33 



dn Name of the dataset in which this overlay resides. The 
name must be left-adjusted and zero-filled. 

level Level number of the overlay 

number Number of the overlay within the level 

r Optional recall parameter. If you wish to reexecute an 
overlay without reloading it, enter 6LRECALL. If not 
currently loaded, it is loaded. 

14.6.9.2 CAL language call 

A sample call sequence from a CAL program is as follows: 

Location Result 

OVLDN 
PLEV 
SLEV 

EXT 

CALL 

CON 
CON 
CON 

Operand 

OVERLAY 

OVERLAY, (OVLDN,PLEV,SLEV) 

A'LEV12'L 
2 
o 

OVLDN is the address of the dataset name, PLEV is the address of the 
primary level, and SLEV is the address of the secondary level. If recall 
is desired, the address of the literal 'RECALL' is transmitted as the 
fourth argument. 

Example: 

I Location 
11 
I 
I 
I 
I 
I 
IRECL 

14-34 

IResult 
110 

I 
I CALL 
I . 
I . 
I • 
ICON 

I Operand I Comment 
120 135 

I I 
I OVERLAY, (OVLDN,PLEV,SLEV,RECL) 
I . I 
I . I 
I . I 
I'RECALL'L I 

SR-0011 0 

---------- -



For both Fortran and CAL language calls, during execution of the ROOT 
program MAIN, the statement 

CALL OVERLAY(5LLEV12,1,2) 

or the preceding CAL sample call causes OVERLAY to search dataset LEV12 
for the absolute binary named 2. OVERLAY positions the dataset LEV12 to 
the location of the absolute binary named 2 using information supplied by 
the loader, loads the overlay, and transfers control to the first member 
specified on the OVLL directive. After execution of the overlay, control 
returns to the statement in MAIN immediately following the CALL 
statement. Following the load, dataset LEV12 is positioned immediately 
after the EOR for the overlay 2. If overlay 2 is not on dataset LEV12, a 
fatal error results. 

14.6.10 OVERLAY GENERATION LOG 

When MAP is specified on the LOR control statement, a listing is obtained 
describing where each module is loaded and what entry points and external 
symbols are used for loading. This listing is an overlay load map and is 
similar to the map of a nonoverlay load. A log of the directives used 
follows the map of the last overlay generated. If overlay loading 
aborts, the directives are not listed. 

SR-0011 0 14-35 





BUILD UTILITY 15 

BUILD is a utility program used for generating and maintaining library 
datasets. A library dataset contains a program file followed by a 
directory file. The program file is composed of loader tables for one or 
more absolute or relocatable program modules. The directory file 
contains an entry for each program. The entry contains the name of the 
program module, the relative location of the program module in the 
dataset, and block, entry, and external names. Library datasets 
primarily provide the loader with a means of rapidly locating and 
accessing program modules. 

The BUILD program constructs a library from one or more input datasets 
named in the BUILD control statement. A library dataset created by one 
BUILD run can be used as input to a subsequent BUILD run. Through BUILD 
directives, you designate the program modules to be copied from the input 
datasets to the new library and their order in the library. 

No directives or control statement parameters are needed for the most 
frequent application of BUILD, which is to add new binaries from $BLD to 
an existing library of binary programs, replacing the old binaries where 
necessary. 

BUILD does not use tape datasets. 

15.1 BUILD CONTROL STATEMENT 

Keywords can be in any order. 

Format: 

BUILD,I=idn,L=ldn,OBL=odn,B=bdn,NBL=ndn,SORT,NODIR,REPLACE. 

I=idn 

SR-0011 0 

idn is the name of the data containing BUILD directives, 
if any. Directives can be included in the $IN dataset, or 
they can be submitted in a separate dataset. BUILD 
directives are discussed later in this section. 

If the I parameter appears alone or is omitted, all 
directives are taken from the $IN dataset, starting at its 

15-1 



I=idn current position and stopping when an end-of-file (EOF) is 
(continued) read. 

L=ldn 

OBL=odn 

B=bdn 

NBL=ndn 

SORT 

NODIR 

15-2 

If I=ddn, all directives are taken from the specified 
dataset, ddn, stopping when an EOF is read. 

If 1=0, no directives are read. The most common condition 
is to merge the modules from odn (the OBL parameter 
dataset) with those from bdn (the B parameter dataset), 
replacing OBL modules with B modules whenever the names 
conflict, and to write the output to ndn (the NBL 
parameter dataset). The input dataset specified by the B 
parameter corresponds to the binary output from CAL and 
Fortran, also designated by B. 

Name of list output dataset. If the L keyword appears 
alone or is omitted, list output is written to $OUT. If 
L=ldn, list output is written to ldn. If L=O, no list 
output is written. 

Name of the first input dataset, usually a previously 
created library dataset. If the OBL parameter is omitted 
or appears alone, the first dataset read is $OBL. If 
OBL=odn, the first dataset read is odn. If OBL=O, no 
old binary library exists; this is a creation run. 

Name of the second input dataset, whose modules are added 
to or replace the modules in the first dataset. If the B 
parameter appears alone or is omitted, the second dataset 
read is $BLD. If B=bdn is specified, the second dataset 
read is bdn, which is read to the first EOF. If B=O, no 
modules are being added; this run edits an old library. 

Name of the output dataset, usually a new library 
dataset. If the NODIR parameter is also present, ndn is 
not in library format. If the NBL parameter appears alone 
or is omitted, output is written to $NBL. If NBL=ndn, 
output is written to ndn. If NBL=O, no output is 
written. 

Specifies that all modules will be listed alphabetically 
according to their new names. The default is to list the 
modules in the order they are first read. SORT applies 
only to the list dataset and not to the output library. 

Specifies that no directory is to be appended to the output 
dataset, resulting in an ordinary sequential dataset like 
$BLD. The default is to append the directory. 

The dataset ndn specified by NBL is not rewound if NODIR 
is specified. 

SR-0011 0 



REPLACE Specifies that the output library is to contain modules in 
the same order as the old library. If REPLACE is omitted, 
the new library contains modules from the old library that 
are not replaced by modules from the input binary dataset. 
These are followed by modules from the input dataset, 

whether the modules from the input dataset are new or 
replace modules from the old library. The modules appear 
in the order encountered on the input dataset. 

Build aborts if any of the following errors occur: 

• A module specified explicitly in a COpy or OMIT directive is 
not in the current input dataset. 

• A module specified explicitly in a COpy directive has already 
been selected for output. 

• Improper syntax is used in the BUILD control statement or in 
the directive dataset. 

• An unrecognized directive or control statement keyword is used. 

• A dataset name or module name is too long or contains illegal 
characters. 

15.2 PROGRAM MODULE NAMES 

BUILD directives refer to program modules by their names (as given in 
the directory) or, if the directory is missing or is unrecognizable, 
by the names given in the program modules. 

15.3 PROGRAM MODULE GROUPS 

In the COpy and OMIT directives, program modules with names containing 
one or more identical groups of characters can be specified together. 
To accomplish this, variable parts of each name are replaced by one or 
more hyphens. For example, XYZ- represents all names beginning with 
XYZ, including XYZ itself. The extreme case is a name consisting of 
only a hyphen which represents all possible names. 

In addition, up to eight asterisks can be used anywhere in a name as 
wild characters matching any character other than a blank. For 
example, GE* specifies a group of modules having 3-character names 
including GET and GEM but not GE or GEMS. GE*S would represent GEMS. 

SR-0011 0 15-3 



15.4 PROGRAM MODULE RANGES 

To make it easy to copy large numbers of contiguous program modules, 
the COPY directive allows use of a range specifier instead of a single 
name or group specifier. The range specifier has the following 
general format: 

(first, last) 

This means skip to the first module specified and copy all modules 
from the first up to and including the last module specified. 

15.5 FILE OUTPUT SEQUENCE 

If the SORT parameter appears in the BUILD control statement, all 
modules are copied alphabetically according to their new names. In 
the absence of a SORT parameter, modules are written in the order they 
are originally read from the input datasets. 

The order of the entries in the directory is always the same as the 
order of the modules themselves. 

15.6 FILE SEARCHING CONSIDERATIONS 

You do not need to know the order of modules in the input dataset 
unless two or more modules have the same name or a range is specified 
in a COpy directive. 

If two or more modules with the same name are in the input datasets, 
the last of'the modules read is the one that survives, unless you 
specifically omit that last module while its original dataset is the 
currently active input dataset. 

The concept of current position in the input file is used to interpret 
range specifiers where the first name is omitted as in (,last) or (,). 
In such cases, the current position is defined to be either immediately 
after the last module copied or at the beginning of the dataset if no 
modules have yet been copied. 

15-4 SR-OOll 0 



15.7 BUILD DIRECTIVES 

BUILD is controlled through directives in a dataset defined by the I 
parameter on the BUILD control statement. A directive consists of a 
keyword and, if the keyword requires it, a list of dataset names or 
module names. When names are required, the keyword must be separated 
from the first name by a blank; subsequent names (if any) in the list are 
separated from each other by commas. Extra blanks are optional except 
within the keyword. 

A line can contain more than one directive. Use periods or semicolons to 
separate directives on the same line from each other. You cannot 
continue a directive from one directive line to the next. 

Examples of directives: 

OMIT ENCODE, DECODE 

COPY **CODE. 

Examples of multiple directives on one line: 

FROM OLDLIB; LIST; OMIT ENCODE,DECODE,XLATE 

FROM $BLD. LIST. 

15.7.1 FROM DIRECTIVE 

A FROM directive names a single dataset, which is used as the input 
dataset for succeeding COpy, OMIT, and LIST directives, or it lists 
several datasets that (except for the last dataset in the list) are to be 
copied in their entirety to the output dataset ($NBL). The last dataset 
in the list is established as the current input dataset, just as if it 
were specified alone in the FROM directive. If no COpy or OMIT directive 
follows, the last dataset is also copied in its entirety to the output 
dataset. 

An input dataset can be a library (with a directory) or an ordinary 
sequential dataset (such as $BLD). BUILD always determines whether a 
directory is present at the end of the dataset and attempts to use it if 
it is there. A library dataset is treated as sequential if its directory 
file is unrecognizable. 

Format: 

SR-0011 0 15-5 



The following rule lets you copy several datasets with one FROM directive 
or omit COPY (which means copy all) when it would be the only directive 
(except for OMIT directives) in the range of a particular FROM directive: 

If any dataset named on a FROM directive is not acted on by any LIST 
or COPY directive, BUILD copies all of the modules belonging to that 
dataset. BUILD takes this action when it encounters the next FROM 
dataset name or the end of the directive file, whichever comes first. 

If there are two input datasets to be read as soon as BUILD begins to 
execute (that is, if neither OBL=O nor B=O is specified), the modules 
from these two datasets are treated as if they belong to a single dataset 
as far as the OMIT, COPY, and LIST directives are concerned. If either 
of them is named in a FROM directive, however, it is treated as a 
separate dataset and OMIT, COPY, and LIST directives apply only to 
whichever is the current input dataset. 

15.7.2 OMIT DIRECTIVE 

The OMIT directive lets you specify that certain modules, that would 
otherwise be included in a group, be omitted from the group on subsequent 
copy operations. An OMIT affects modules on the current input dataset 
only; its effect ends when a FROM directive is encountered. 

Format: 

Each fni can be one of the following: 

• A single name, such as $AB@CDEF or CAB22, by which binary records 
can be explicitly prevented from being copied 

• A group name, such as F$- or *AB**, by which binary records are 
prevented from being copied unless they are specified explicitly 
(that is, singly) in a COpy directive. (Refer to subsection 15.3, 
Program Module Groups, for a description of * and - usage.) 

If an fn parameter specifies a module not in the input dataset or a 
group of modules having no representatives in the input dataset, a 
diagnostic message is included in the list output and BUILD aborts. 

15-6 SR-0011 0 

--------------- - --



15.7.3 COpy DIRECTIVE 

COpy directives cause BUILD to select the specified modules for copying 
from the current input dataset to the output dataset. You can specify 
single modules, groups of modules, or ranges of modules to be copied. If 
you specify a module not in the current input dataset, a diagnostic 
message is included in the list output and BUILD aborts. 

Format: 

Each fni is either of the two forms valid in OMIT directives: 

• A single module name by which modules are explicitly selected for 
copying even if they belong to a group named in a previous OMIT 
directive 

• A group specifier by which all the modules in the group are 
selected for copying unless they are specified either explicitly 
or implicitly in a previous OMIT directive 

In addition, two special forms are allowed for each fni in COpy 
directives: 

• A form to rename a single module whose old name is specified 
explicitly; for example, OLDNAME=NEWNAME. (The name is changed 
both in the output directory and in the module's Program 
Description Table.) 

• A form to copy an inclusive range, as in (FIRST,LAST), by which 
all the modules in the range are selected for copying unless they 
are specified either explicitly or implicitly in a previous OMIT 
directive. 

These two forms are mutually exclusive. A module copied by being 
included in a range cannot simultaneously be renamed. Both forms cannot 
accept a hyphen or an asterisk specifying a group of modules. 

Examples: 

BUG=ROACH Copies BUG, renaming it to ROACH 

(LOKI, THOR) Copies all modules from LOKI through THOR 

SR-0011 0 15-7 



(THOTH, ) 

(, ISIS) 

( , ) 

Copies all modules from THOTH to the end of the input 
dataset 

Copies all modules from the current dataset position 
through ISIS 

Copies all modules from the current dataset position 
to the end of the input dataset 

The current dataset position is defined as the beginning of the input 
dataset if no modules have been selected for copying yet. Otherwise the 
position is the beginning of the record immediately after the last module 
that has been selected for copying. 

15.7.4 LIST DIRECTIVE 

The LIST directive tells BUILD to list the characteristics of the modules 
in the current input dataset. Its effect is immediate. (BUILD's 
standard list output describes the contents of the output dataset and is 
produced at the end of the run so as not to interfere with output 
triggered by LIST directives.) 

Format: 

LIST 

15.8 EXAMPLES 

The following are examples of various uses of the BUILD program: 

15-8 

• Creating a new library dataset, using as input whatever binary 
modules have been written out to $BLD (for example, by CAL or 
Fortran, or both) 

Control statements: 

BUILD,OBL=O,I=O. 
SAVE,DN=$NBL,PDN=MYLIB. 

SR-0011 0 



• Adding one or more modules to an already existing library dataset, 
again taking the input from $BLD 

Control statements: 

ACCESS,DN=$OBL,PDN=MYLIB. 
BUILD,I=O. 
SAVE,DN=$NBL,PDN=MYLIB. 

Any modules whose names were already in the directory of MYLIB are 
replaced by the new binaries from $BLD in the new edition of MYLIB 
that is created by BUILD and saved by the SAVE control statement. 

• Merging several libraries 

Control statements: 

ACCESS,DN=LIBONE,PDN=HERLIB. 
ACCESS,DN=LIBTWO,PDN=HISLIB. 
ACCESS, DN=ANOTHER, PDN=ITSLIB. 
ACCESS,DN=LASTONE,PDN=MYLIB. 
BUILD,I,OBL=O,B=O. 
SAVE,DN=$NBL,PDN=NEWLIB. 

Directives: 

FROM LIBTWO,ANOTHER,LIBONE,LASTONE 

The order of the dataset names in the FROM directives, not the 
order of the ACCESS control statements, determines the order of 
processing. If two datasets contain modules of the same name, the 
surviving module is the one in the dataset whose name occurs later 
in the FROM directive. (Any module could be renamed in order to 
prevent it from begin discarded before input from a succeeding 
dataset is begun. See the File Searching Considerations 
subsection for a description of the interaction with OMIT 
directives.) 

SR-OOll 0 15-9 



• Deleting a program module from a library 

Control statements: 

ACCESS,DN=$OBL,PDN=MYLIB. 
BUILD,B=O. 
SAVE,DN=$NBL,PDN=MYLIB. 

Directive: 

OMIT BADPROG 

• Extracting a program module from a library for input to the system 
loader, using the local dataset name $BLD as the intermediate file 

15-10 

Control statements: 

ACCESS,DN=XXX,PDN=MYLIB. 
BUILD,I,OBL=XXX,B=O,NBL=$BLD,NODIR. 

Directive: 

COpy RUNPROG 

SR-0011 0 



JOB CONTROL LANGUAGE 
STRUCTURES 

This section discusses three aspects of Job Control Language (JCL) 
structures: 

• Control statement logic structures 
• JCL expressions 
• Procedures 

16.1 CONTROL STATEMENT LOGIC STRUCTURES 

The COS JCL allows three fundamental logic structures: 

• Simple control statement sequences. Control statements are 
processed one after another. 

• Conditional control statement blocks. A sequence of control 
statements is processed only if the specified condition is met. 

16 

• Iterative control statement blocks. A sequence of control 
statements is processed repetitively until the specified condition 
is met. 

Most computer algorithms can be expressed in terms of these structures or 
as combinations of them. 

16.1.1 SIMPLE CONTROL STATEMENT SEQUENCES 

A simple control statement sequence is a series of one or more of the 
control statements described in sections 6 through 15. The individual 
control statements are processed sequentially as described in section 3. 

16.1.2 CONDITIONAL CONTROL STATEMENT BLOCKS 

A conditional control statement block is a group of control statements 
that is processed only if a specified condition is met. The control 
statements ELSE, ELSEIF, ENDIF, EXITIF, and IF allow other control 
statements to be placed in a conditional block structure, as follows: 

SR-0011 a 16-1 



• IF defines the beginning of a conditional block. 

• ENDIF defines the end of a conditional block. 

• EXITIF defines a condition which causes an escape from a 
conditional block. 

• ELSE defines an alternate condition. 

• ELSEIF defines an alternate condition to test when the previous 
one tested is false. 

ELSE, ELSEIF, and EXITIF sequences are optional. 

16.1.2.1 ELSE - Defines alternate condition 

The ELSE control statement defines an alternate condition. An IF 
statement, as well as any ELSEIF statements, must precede the ELSE 
control statement. If all conditions specified by the IF and ELSEIF 
statements that precede the ELSE in the conditional block test as false, 
the statements that follow the ELSE statement are executed. 

Within a conditional block, only one ELSE sequence is permitted. The 
ELSE statement, if present, must follow any ELSEIF statement. ELSE is a 
system verb. (System verbs are defined in subsection 4.2, Control System 
Verbs.) There are no parameters. 

Format: 

ELSE. 

16.1.2.2 ELSEIF - Defines alternate condition 

The ELSEIF control statement defines an alternate condition to test if 
the previously tested condition was false. The sequence of statements 
following the ELSEIF statement is executed when the ELSEIF expression is 
true. All ELSEIF control statements must precede the optional ELSE 
control statement for a conditional block. An ELSEIF statement without a 
previously processed IF statement results in a job step abort. An 
unlimited number of ELSEIF sequences can be used in a conditional block. 

ELSEIF is a system verb. 

16-2 SR-0011 0 



Format: 

ELSEIF(expression) 

expression 
A valid JCL expression (discussed later in this section). 
This parameter is required. 

The block of control statements following an ELSEIF statement is 
processed under the following conditions: 

• The expression for the IF statement is false. 

• All preceding ELSEIF statement expressions are false. 

• The ELSEIF expression is true. 

16.1.2.3 ENDIF - End conditional block 

The ENDIF control statement defines the end of a conditional block. 
ENDIF is a system verb. There are no parameters. 

Format: 

ENDIF. 

16.1.2.4 EXITIF - Exit from conditional block 

The EXITIF control statement defines the conditions that must be met so 
that the remaining control statements in the conditional block are 
skipped. EXITIF is a means of skipping to the ENDIF statement without 
regard to EXIT statements. If the EXITIF expression is true, the 
remainder of the conditional block is skipped; if the expression is 
false, the control statements which follow the EXITIF statement are 
executed. 

EXITIF may appear anywhere within a conditional block. An EXITIF 
statement that is not within a conditional block causes a job step 
abort. When conditional blocks are nested, the EXITIF control statement 
applies to the innermost conditional block that contains it. EXITIF is a 
system verb. 

SR-0011 0 16-3 



Formats: 

EXITIF. 

EXITIF(expression} 

expression 
A valid JCL expression (discussed later in this section). 
If expression is omitted, the remainder of the block is 
skipped unconditionally. 

16.1.2.5 IF - Begin conditional block 

The IF control statement defines the beginning of a conditional block. 
Each IF control statement must have a corresponding ENDIF control 
statement. IF is a system verb. 

Format: 

IF(expression} 

expression 
A valid JCL expression (discussed later in this section). 
This parameter is required. 

16.1.2.6 Conditional block structures 

The conditional block is first scanned to verify the validity of the 
block's syntax. If any syntax errors exist, the block is skipped without 
being evaluated and a job step abort error occurs. Any EXIT control 
statements within the conditional block are ignored when a syntax error 
exists in that conditional block. This validation occurs when the 
control statement file, where it is contained, is invoked. (Validation 
occurs at job initiation if the control statement file is $CSi it can 
also occur at the time that a procedure is invoked, or when a CALL 
statement is encountered.) 

Null sequences (for example, an ELSE statement immediately following an 
ELSEIF) are ignored without comment. 

Conditional blocks can be constructed in the following ways: 

16-4 SR-0011 0 



I 

• Basic conditional block 

• Conditional block with ELSE 

• Conditional block with ELSEIFs 

• Conditional block with ELSEIFs and ELSE 

Basic conditional block - The format of a basic conditional block begins 
with an IF statement and ends with an ENDIF statement. When the IF 
statement expression is true, the control statement sequence that follows 
is processed. When the expression is false, the control statement 
sequence is not processed. The following example shows the conditional 
block structure. 

Examples: 

ACCESS,DN=MYPROG,NA. 
IF(PDMST.NE.1) 

FETCH,DN=MYPROG,MF= ... 
SAVE,DN=MYPROG. 

ENDIF. 

In the preceding example, the JCL symbolic variable PDMST would be 1 if 
the ACCESS succeeded. The IF condition would be evaluated as false, and 
control statement execution would continue with the line following the 
ENDIF. If the ACCESS did not succeed, the IF condition would be 
evaluated as true, and the dataset would be accessed from the front-end 
system with FETCH and written to the Cray system with SAVE. 

The following example shows a conditional block using EXITIF. 

ACCESS,DN=MYPROG,NA. 
IF(PDMST.NE.1) 

* 
* 
* 

UPDATE (Q=MYPROG) 
CFT(I=$CPL,ON=A) 
LDR(AB=MYPROG,NX,USA) 
SAVE (DN=MYPROG,NA) 
EXITIF. 
EXIT. 

ERROR GENERATING MYPROG 

EXIT. 
ENDIF. 
MYPROG. 

In this example, a conditional block is used to generate a dataset if 
that dataset is not found. EXITIF is used to skip the remaining 
statements in the conditional block if the dataset is generated 
successfully; otherwise, the job terminates. 

SR-0011 0 16-5 



I 

Conditional block with ELSE - The second conditional block structure 
includes the ELSE control statement. The control statement sequence is 
processed if the expression on the IF statement is true. If the 
expression is not true, the sequence following the ELSE statement is 
processed. An example of a conditional block structure using the ELSE 
statement follows. 

Example: 

ACCESS,DN=INITJCL. 
ACCESS,DN=PREPROG. 
ACCESS,DN=PROG. 
PREPROG. 
IF(JSR.NE.O) 

CALL,DN=INITJCL. 
SWITCH,l=ON. 

ELSE. 
SWITCH,l=OFF. 

ENDIF. 
PROG. 

After PREPROG is executed, the conditional block determines if PREPROG 
has successfully executed (by its setting of JSR). The procedure INITJCL 
is executed and a sense switch is set if JSR is nonzero. The sense 
switch is cleared if PREPROG set JSR to zero. 

Conditional block with ELSEIF - The third conditional block structure 
includes one or more ELSEIF statements. Each logical expression on the 
IF and ELSEIF statements is tested in sequence until a true condition is 
found; then the corresponding control statement sequence is processed. 

A conditional block can contain any number of ELSEIF control statements. 
The block of control statements following an ELSEIF statement is 
processed under the following conditiohs: 

• The expression for the IF statement is false. 
• All preceding ELSEIF statement expressions are false. 
• The ELSEIF expression is true. 

Example: 

16-6 

IF(SYSID.EQ. 'COS 1.12') 
ACCESS,DN=$FTLIB,ID=Vl12. 

ELSEIF(SYSID.EQ.'COS 1.13') 
ACCESS,DN=$FTLIB,ID=Vl13. 

ELSEIF(SYSID.EQ.'COS 1.14') 
ACCESS,DN=$FTLIB,ID=Vl14. 

ENDIF. 
LDR,NOLIB,LIB=$FTLIB. 

SR-0011 0 



I 

This conditional block tries to access the correct version of the Fortran 
library, $FTLIB, for the execution of the loader following the conditional 
block. 

Conditional block with ELSEIF and ELSE - The fourth conditional block 
structure uses ELSEIF and the ELSE statements. A block can contain any 
number of ELSEIF statements but can contain only one ELSE, which must be 
the last conditional statement before the ENDIF. 

The ELSE control statement sequence in this case is processed only if both 
of the following are true: 

• The expression on the IF statement is false 
• All ELSEIF statement expressions are also false 

The following example is an expansion of the example for the third format 
and allows execution of the compiled program if there is enough time left 
and if the correct library is accessible. On a successful run, the 
dataset called RESULTS is disposed as a staged dataset. 

Example: 

IF(TIMELEFT.GT.175) 
IF(SYSID.EQ. 'COS 1.12') 

ACCESS,DN=$FTLIB,ID=V112. 
ELSEIF(SYSID.EQ.'COS 1.13') 

ACCESS,DN=$FTLIB,ID=V113. 
ELSE. 

* * CURRENT SYSTEM LEVEL NOT RECENT ENOUGH 

* 
EXIT. 

ENDIF. 
LDR,NOLIB,LIB=$FTLIB. 
SET,J1='YES'L. 

ELSE. 
SET,J1='NOTIME'L. 

ENDIF. 
IF(J1.EQ.'YES'L) 

DISPOSE,DN=RESULTS,DC=ST. 
ELSE. 

*. 
*. JOB DID NOT RUN TO NORMAL COMPLETION 

ENDIF. 
EXIT. 

SR-0011 0 16-7 



16.1.3 ITERATIVE CONTROL STATEMENT BLOCKS 

An iterative control statement block is the third fundamental logic 
structure allowed by COS JCL. It contains a control statement sequence 
that will process more than once during the processing of a job. 

• LOOP defines the beginning of an iterative block. 

• EXITLOOP defines the conditions under which the control statement 
block iteration is to end. 

• ENDLOOP defines the end of an iterative control statement block. 

16.1.3.1 END LOOP - End iterative block 

The ENDLOOP control statement terminates an iterative control statement 
block. If an END LOOP control statement occurs without a preceding LOOP 
statement at the same nesting level, a job step abort occurs. Execution 
of the ENDLOOP statement results in control being passed to the preceding 
LOOP statement, which begins another iteration of the loop. 

There are no parameters. 

Format: 

ENDLOOP. 

16.1.3.2 EXITLOOP - End iteration 

The EXITLOOP control statement defines the conditions under which the 
control statement block iteration is to end. If its expression is true, 
the loop is exited; if it is false, the control statements that follow 
are executed. 

An EXITLOOP statement that does not appear within an iterative block 
causes a job step abort. When nesting iterative control statement 
blocks, the EXITLOOP control statement defines the exit conditions for 
only the most immediate iterative block. EXITLOOP is a system verb. 

Formats: 

EXITLOOP. 

EXITLOOP(expression) 

16-8 SR-0011 0 



I 

expression 
Optional valid JCL expression (discussed later in this 
section). If omitted, an unconditional exit from the iterative 
block occurs. 

16.1.3.3 LOOP - Begin iterative block 

The LOOP control statement defines the beginning of an iterative block. 
An ENDLOOP control statement is required at the same nesting level to 
terminate the iterative block. LOOP is a system verb. 

There are no parameters. 

Format: 

LOOP. 

Iterative blocks are prescanned for syntax errors before actual 
processing begins. Any errors in the block structure cause a skipping of 
that block followed by a job step abort. If an iterative block is 
included within a conditional block, it must be totally contained within 
that conditional block. 

The following example merges the two datasets DSIN1 and DSIN2 for 60 
records. 

Example: 

SET,J1=0. 
SET,J2=60. 
LOOP. 

EXITLOOP(J2.EQ.0) 
IF(J1.EQ.O) 

COPYR,I=DSIN1,O=OUTDS. 
SET,J1=1. 

ELSE. 
COPYR,I=DSIN2,O=OUTDS. 
SET,J1=0. 

ENDIF. 
SET,J2=J2-1. 

ENDLOOP. 
REWIND,DN=DSIN1:DSIN2:0UTDS. 

SR-0011 0 16-9 



16.2 JOB CONTROL LANGUAGE EXPRESSIONS 

Much of the power of the control statements described in this section is 
derived from the use of expressions. Expressions allow operations such 
as incrementing counters, checking error codes, and comparing strings. 

An expression is a string (strings are described in the Strings 
subsection below) consisting of operands and operators. Expressions 
are evaluated from left to right, honoring nested parentheses and 
operator hierarchy. This subsection begins by defining operands and 
operators, and it ends by discussing expression evaluation and strings. 

16.2.1 OPERANDS 

Expression operands are of four types: 

• Integer constants 
• Literal constants 
• Symbolic variables 
• Subexpressions 

16.2.1.1 Integer constants 

An integer constant is a character string with two possible forms: 

+ ddd ••• 

nnn . .. B 

d is a decimal digit and n is an octal digit. 

An integer constant has an approximate decimal range 0<111<10 19 • Range 
overflow is not detected and overflow results may be unpredictable. 

16.2.1.2 Literal constants 

A literal constant is a string of 1 to 8 characters of the form: 

'eee ••• 'L 
'eee • •• I R 
'eee • •• I H 

16-10 SR-0011 0 



c is a character code with an ordinal number in the the range 040 a 
through 176a. The value of a character constant corresponds to the 
ASCII character codes positioned within a 64-bit word. Alignment is 
indicated by the following suffixes: 

L Left-adjusted, zero-filled 
R Right-adjusted, zero-filled 
H Left-adjusted, space-filled 

If no suffix is supplied, H is assumed. 

16.2.1.3 Symbolic variables 

A symbolic variable is a string of 1- to a-alphanumeric characters, 
beginning with an alphabetic character. 

A symbolic variable always has an associated value. COS defines a set of 
symbols when the job is initiated. Symbols are mnemonics for values 
maintained by COS or the user or both. You can manipulate the group of 
symbols listed in table 16-1 through COS control statements or through 
system requests. 

Certain symbols allow communication between COS and the job being 
processed. Used in the JCL block control statements defined in this 
section, these symbols provide you with powerful tools for analyzing the 
progress of a job. For example, a job can request the reason for an 
abort situation and proceed, based on the reply from COS, through the use 
of conditional control statements. 

Symbols that are preserved over subprocedure calls are called local to 
a procedure; they are saved when a subprocedure is called. Those that 
are not preserved are global over all procedures and can be altered by 
any procedure. Constants are symbols that are never altered. 

Information on predefined symbols is summarized in table 16-1; the only 
local symbols are JO through J7. 

SR-0011 a 16-11 



I 

Symbol 

ABTCODE 

DATE 

FALSE 

FL 

FLM 

GO-G7 

JO-J7 

JSR 

NOT EXT 

Set By 

st 

S 

Itt 

st 

S 

uttt 

utt 

u 

u 

Table 16-1. Symbolic Variable Table 

Range 

System error codes 
O-nnn 

Literal value 

o 

0-777777778 

0-777777778 

Any 64-bit value 

Any 64-bit value 

Any 64-bit value 

Any 64-bit value 

Description 

COS job abort code; abort 
code corresponding to 
most recent job step abort. 
The abort code corresponds to 
the abort message number (the 
nnn in ABnnn) issued by 
COS. Refer to the COS Message 
Manual, CRI publication 
SR-0039, for the error codes. 

Date in the form mm/dd/yy 

False value 

Current job field length; can 
be set with MEMORY statement. 

Maximum job field length; 
determined by JOB statement. 

Global job pseudo-registers; 
represent user-alterable data 
global over all procedure 
levels. Data can be passed 
or into returned from 
procedures with the G 
registers. 

Job pseudo-registers; 
represent user-alterable data 
local to a procedure. Each 
procedure level can be 
considered to have its own set 
of J registers. 

Job status register; previous 
job step completion code 
(normally 0). 

Text field not echoed (text 
field secured). Default is ON. 

t 
tt 
ttt 

The etter S designates COS. 

16-12 

The letter I designates a system constant. 
The letter U designates user. 

SR-0011 0 



Table 6-1. Symbolic Variable Table (continued) 

Symbol Set By 

PDMFC U 

PDMST S 

SID I 

SN I 

SSWn U 

SYSID I 

TRUE It 

TIME S 

TIMELEFT S 

XM I 

Range 

64-bit value 

64-bit value 

Literal value 

64-bit integer 

Literal value 

-1 

Literal value 

64-bit integer 

64-bit value 

Description 

Most recent user-issued PDM 
request. 

Status of most recent Permanent 
Dataset Manager request. 

Mainframe identifier for front end 
of job origin; 2 right-justified 
ASCII characters. 

CPU serial number 

Job pseudo sense switch settings; 
can be set with the SWITCH 
statement. 

COS system level of the form 
'COS X.XX' 

True value 

Time of day in the form hh:mm:ss 

Job time remaining (in 
milliseconds) as an integer 
value 

System-build module level 

t The letter I designates a system constant. 

16.2.1.4 Subexpressions 

A subexpression is an expression that is evaluated so that its result 
becomes an operand. 

16.2.2 OPERATORS 

Expression operators are of three types: 

• Arithmetic 
• Relational 
• Logical 

SR-0011 0 16-13 



These operators are used in the Fortran sense. Table 16-2 details the 
expression operators. 

Type 

At 

A 

A 

A 

A 

A 

Rtt 

R 

R 

R 

R 

R 

Lttt 

Lttt 

L 

L 

Table 16-2. Expression Operator Table 

Function Symbol 

Addition + 

Unary plus + 

Subtraction 

Unary minus 

Multiplication .. 
Division / 

Equal . EQ . 

Not equal .NE. 

Less than .LT. 

Greater than .GT. 

Less than or .LE. 
equal 

Greater than or .GE. 
equal 

Inclusive OR .OR. 

Intersection .AND. 

Exclusive OR .XOR. 

Unary complement .NOT. 

Results 

64-bit sum of operands 

Following integer operand is positive 

64-bit difference of operands 

Following integer operand is negative 

64-bit product of operands 

64-bit quotient of operands 

True/false 

True/false 

True/false 

True/false 

True/false 

True/false 

A 1 bit in either operand sets 
corresponding bit in the result. 

A 1 bit in both operands sets 
corresponding bit in the result. 

A 1 bit is set in the result if 
either (but not both) corresponding 
bit in the operands is 1. 

A 1 bit (or 0) is set in the result 
if the corresponding operand bit is 0 
(or 1). 

t The letter A designates arithmetic. 
tt The letter R designates relational. 
ttt The letter L designates logical. 

16-14 SR-0011 0 



16.2.2.1 Arithmetic operators 

All arithmetic operations are performed on 64-bit integer quantities. 
Care must be used with arithmetic operators because of the following 
conditions: 

• Multiplication/division underflow or overflow of the result is not 
detected 

• Division by 0 produces a zero result 

• Intermediate and final results are truncated (for example, 
2*(13/2) yields 12, whereas (2*13)/2 yields 13) 

16.2.2.2 Relational operators 

Relational operations return a -1 value for a TRUE result and a 0 value 
for a FALSE result. A value produced by an arithmetic or logical 
operation is considered true if it is a negative value. 

16.2.2.3 Logical operators 

Logical operations return a 64-bit result. Their functions are 
performed on a bit-by-bit basis. 

16.2.3 EXPRESSION EVALUATION 

Expressions are evaluated from left to right, honoring nested parentheses. 
The operator hierarchy is as follows: 

1. Multiplication and division 
2. Addition, subtraction, and negation 
3. Relational operation 
4. Complement (.NOT.) 
5. Intersection (.AND.) 
6. Inclusive OR (.OR.) 
7. Exclusive OR (.XOR.) 

Parentheses can be used to change the order of evaluation. For example, 
2+3*4 is evaluated as 14, whereas (2+3)*4 is evaluated as 20. 

SR-0011 0 16-15 



••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

CAUTION 

Because COS does not check for type, the results of 
expression evaluation may not be as expected. For 
example, although both J1.EQ.1 and J2.EQ.2 are TRUE, 
(J1 .AND. J2) is FALSE . 

••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

16.2.4 STRINGS 

A string is a group of characters that is to be taken literally as a 
parameter value as follows: 

• Strings are normally delimited with apostrophes, in which case 
they are referred to as literal strings. 

• Strings can also be delimited with open and close parentheses, in 
which case they are referred to as parenthetic strings. 

Characters in a string can be any ASCII graphic characters (codes 0408 
through 1768). 

16.2.4.1 Literal strings 

Apostrophes are never treated as part of a literal string during 
evaluation except when doubled or when the literal string is a part of an 
expression (refer to the examples). To continue literal strings to 
another line, place an apostrophe followed by a continuation character at 
the end of the line, and place the remainder of the string on the next 
line preceded by an apostrophe. Characters otherwise recognized as 
separators are not evaluated as such when part of a literal string. 
Doubled apostrophes within a literal string are interpreted as a single 
apostrophe. A literal string without characters is the null string. 

Examples: 

String Interpretation 

... 'LITERAL STRING' LITERAL STRING 

.•• 'LITERAL STRING' LITERAL STRINGACROSS LINE BOUNDARIES 
'ACROSS LINE BOUNDARIES' 

.•. 'WON' 'T SHOW' WON'T SHOW 

16-16 SR-0011 0 



String Interpretation 

... 'LITERAL STRING' LITERAL STRING 

Interpreted as a null string 

•.• IF (GO.EQ. 'COS1.Ol'L) GO.EQ. 'COS1.Ol'L 

16.2.4.2 Parenthetic strings 

There are two main differences between parenthetic strings and literal 
strings: in parenthetic strings, blank spaces are removed, and some 
separators are evaluated. The separators are evaluated as follows: 

• If apostrophes appear in a parenthetic string, the enclosed 
characters are interpreted as a literal string. 

• The continuation character is interpreted within a parenthetic 
string. 

• Nested parentheses within a parenthetic string are not treated as 
separato:-s. 

Examples: 

String Interpretation 

... (LITERAL STRING) LITERALSTRING 

... (LITERAL STRING LITERALSTRINGACROSSLINEBOUNDARIES 
ACROSS LINE BOUNDARIES) 

· .. (WON' 'T SHOW) WONTS HOW 

•.• « NESTED PARENTHESES » (NESTEDPARENTHESES) 

... ( STRING 'LITERAL STRING') STRINGLITERAL STRING 

... (CLOSED PARENTHESIS' )') CLOSEDPARENTHESIS 

... (KEYWORD=ABC.DEF) KEYWORD=ABC.DEF 

· .. ( Interpreted as a null string 

· .. ( ) Interpreted as a null string 

SR-0011 0 16-17 



16.3 PROCEDURES 

Just as Fortran programs can be divided into separate modules called 
subprograms, control statement sequences can be divided into modules 
called procedures. A procedure is a sequence of control statements, 
data, or both that have been saved for processing at a later time. 
Procedures simplify control statement use in three ways: 

• Generalized procedures can be written to perform many similar 
tasks. Work is saved because a new control statement sequence 
need not be written to perform each separate task. 

• Complex control statement structures can be decomposed into 
separate subtasks, with a separate procedure written for each 
subtask. Such modularization reduces the job's design complexity 
and allows each subtask to be individually tested. 

• Procedure libraries can be built. Procedures need be defined only 
once and placed in a library; different jobs and users can use the 
procedures and make them part of their own control statement 
structures. 

Procedures have two formats: 

• A simple procedure consists of only the control statement body. 

• A complex procedure consists of a prototype definition 
statement, control statement body, and optional data. 

16.3.1 SIMPLE PROCEDURES 

A simple procedure is a series of control statements that does not reside 
in the primary control statement dataset ($CS). No parameter 
substitution occurs in a simple procedure. 

Because a simple procedure has no name associated with it, a simple 
procedure can only reside in a nonlibrary dataset. It therefore must be 
invoked with the CALL control statement without the CNS parameter. 

Example: 

The first file of dataset MOVER contains five control statements. The 
five control statements can be executed with the following procedure 
calling statement: 

CALL,DN:MOVER. 

16-18 SR-OOll 0 



I 

In the preceding example, interpretation of control statements from 
dataset MOVER terminates when a RETURN statement is encountered (refer to 
section 7), when the end of the first file (in dataset MOVER) is reached, 
or when an EXIT statement is encountered while COS is not skipping 
control statements due to an error condition. 

16.3.2 COMPLEX PROCEDURES 

A complex procedure allows replacing values within the procedure body 
with values supplied from the procedure call. These values are called 
sUbstitution parameters and are governed by the prototype statement of 
the procedure. 

A complex procedure can reside in a library or nonlibrary dataset; they 
are invoked (executed) in one of two fashions: 

• Procedure name call. The procedure must first reside in a known 
control statement library (either $PROC or a local dataset named 
with a LIBRARY control statement); the procedure is called 
(invoked) by using the procedure name as the control statement 
verb. 

• CALL statement call. The procedure must reside in the first file 
of a separate dataset; the dataset is named in the CALL control 
statement. The CNS (crack next statement) parameter must be used 
for the operating system to properly recognize and process the 
procedure prototype statement. PROC and ENDPROC are not used with 
CALL. 

Complex procedures can be defined within the control statement stream 
(in-line definition) or as input to the BUILD utility. BUILD currently 
does not support procedure entries in libraries. When an in-line 
procedure definition is encountered in the JCL control statement file, it 
is processed and written to the system default library $PROC. Refer to 
example 8 later in this section for an example of how to create a user 
permanent procedure library. 

A complex procedure can contain formal parameters that define what 
substitution is to occur in the procedure body. A character string that 
is eligible for substitution is listed in the prototype statement as a 
formal parameter specification. This name, when preceded by an 
ampersand in the definition body, indicates that a value is to be 
substituted during procedure invocation. COS replaces the ampersand and 
parameter name with the corresponding value supplied by the procedure 
invocation. If the parameter listed in the prototype statement is not 
preceded by an ampersand in the body, substitution does not occur. If 
two ampersands precede the string, one is removed and substitution is 
inhibited. 

SR-OOll 0 16-19 



Any string consisting of 1 to 8 characters (ampersand included) can be 
selected for substitution. 

When a statement in the current control statement file calls a procedure, 
COS searches the definition body for the character strings preceded by 
ampersands. For each occurrence, COS substitutes the values supplied by 
either the calling statement or the prototype statement. 

Whereas simple procedures consist only of a control statement body, 
complex procedures contain five elements as shown in the following 
example: 

Example: 

PROC. 
Prototype statement 
Control statements 

&DATA,dn. 
Data 

* 

ENDPROC. 

Optional; may be repeated for more than one dn 

• PROC defines the beginning of an in-line procedure definition 
block. 

• The prototype statement specifies the name of the procedure and 
identifies character strings within the procedure that are to be 
substituted when the procedure is called. COS uses values 
supplied with the procedure call and default parameter values from 
the prototype statement to replace these strings. 

• The procedure definition body is a sequence of COS control 
statements processed as part of the current control statement file 
when the procedure is called. It can optionally include lines of 
text data preceded in the definition body by an &DATA control 
statement. 

16-20 SR-0011 0 



I 

I 

• &DATA introduces text information to be included in the procedure 
definition body, and it names the dataset to be created and 
written to when the procedure is invoked. If the dataset already 
exists, it will be overwritten. When the procedure is invoked, 
the named dataset is created and the text information is available 
in that local dataset, including any substitutions resulting from 
the call. This temporary dataset remains local and allows 
programs such as CAL or CFT to use the temporary dataset as source 
data. 

• ENDPROC indicates the end of an in-line procedure definition block. 

The first control statement in an in-line procedure is PROC; the last is 
ENDPROC. A prototype statement follows PROC providing the name of the 
procedure and optionally a list of parameters that identify the 
substitution values within the definition body. 

In addition to defining the values to be substituted, the prototype 
statement parameters control the selection or omission of the parameters 
and define the default value assignments. The control statements and 
data to be processed are contained in the definition body. The control 
statements are grouped in a sequence. 

If data is included in a procedure, the data is preceded by an &DATA 
statement and follows the control statement sequence. The &DATA 
statement also includes the name of the dataset to which the data is to 
be written after processing so that programs can use the data as source 
data. 

A definition can be placed within a definition; such nesting can occur to 
any level. Nested definitions do not become defined, however, until the 
outermost procedure is invoked. 

16.3.2.1 PROC - Begin procedure definition 

The PROC control statement defines the beginning of an in-line procedure 
definition block. PROC is a system verb. There are no parameters. 

Format: 

PROC. 

16.3.2.2 Prototype statement - Introduce a procedure 

The prototype control statement specifies the name of the procedure and 
provides the formal parameter specifications that define where 
substitution is to occur within the definition body. Value substitution 
is described later in this section. 

SR-0011 0 16-21 



Format: 

name,P1,P2,···Pn· I 
_________________ 1 

name 

Pi 

16-22 

Procedure name; 1 to 8 alphanumeric characters. The name 
should not be the same as a system verb; if it is, the 
results are unpredictable. 

Formal parameter specifications, using one of the formats 
which follow. A formal parameter identifies a character 
string within the definition body. All formal positional 
parameters, if any, must precede all formal keyword 
parameters; if they do not, the procedure definition is in 
error and the job aborts. 

Positional formal parameter specification 

keYi=dvalue:kvalue 
Keyword formal parameter specification as 
follows: 

dvalue 

kvalue 

Formal keyword parameter 

Optional default value; this 
value is substituted if entire 
keyword parameter is omitted from 
the calling statement. 

Optional keyed default value; 
this value is substituted if the 
keyword is present but no value 
is specified. 

Special cases: 

Provides no default values and 
requires the caller to provide a 
nonnull value 

Provides no default values, but 
lets you specify keYi= or just 
keYi 

SR-0011 0 



16.3.2.3 Procedure definition body 

The procedure definition body consists of a sequence of COS control 
statements processed as part of the current control statement file when 
the procedure is called. (It can optionally include lines of text data 
preceded in the definition body by an &DATA control statement. Refer to 
&DATA, which follows.) 

The prototype statement identifies character strings within the 
procedure that are to be substituted when the procedure is called. COS 
uses values supplied with the procedure call and default parameter 
values from the prototype statement to replace these strings. 

An ampersand (&) must precede each parameter to be substituted 
(substitution parameter) within the definition body. If a parameter 
appears in the prototype, and a matching string in the body is found but 
is not preceded by an ampersand, substitution does not occur. 

16.3.2.4 &DATA - Procedure data 

Data can be included within the procedure definition body after the 
&DATA statement. 

The dn parameter creates a temporary dataset composed of the data 
identified in the procedure, including any substitutions resulting from 
the call. This temporary dataset allows programs such as CAL or CFT to 
use it as source data. 

Format: 

&DATA,dn. 

dn Name of dataset to contain the data that follows; dn is 
required. 

The initial separator for an &DATA statement can be a blank, a comma, or 
an opening parenthesis; the statement terminator can be a blank, a 
period, or a closing parenthesis. 

An &DATA specification cannot be continued to subsequent lines. All 
lines following an &DATA statement up to the next &DATA statement or an 
ENDPROC statement are written to the specified dataset after string 
substitution is performed. Refer to example 7 later in this section. 

SR-0011 0 16-23 



16.3.2.5 ENDPROC - End procedure definition 

The ENDPROC control statement indicates the end of an in-line procedure 
definition block. ENDPROC is a system verb. 

Format: 

ENDPROC. 

16.3.3 PARAMETER SUBSTITUTION 

Formal parameter specifications can be selected for substitution. 
Character strings to be substituted are delimited by any character other 
than numerals, alphabetics, commercial at (@), dollar sign ($), and the 
percent sign (%). An ASCII underline is used as a string delimiter when 
the next character is one of these characters. (Refer to example 3 
later in this section.) COS deletes the underline after evaluating the 
string it delimits. Thus, the underline concatenates the strings it 
delimits. 

Formal parameter specifications can be in positional or keyword format. 

16.3.3.1 Positional parameters 

Positional formal parameters let you list the strings within the body 
that can be substituted. The calling statement lists values to be 
substituted for these strings in the same order in which they are listed 
in the prototype statement. The value supplied with the calling 
statement is substituted for every occurrence of the corresponding 
formal positional parameter within the definition body. If the caller 
passes too few positional parameters, null strings are substituted for 
the remaining formal positional parameters. If too many positional 
parameters are passed, the procedure call is in error and the job aborts. 

16.3.3.2 Keyword parameters 

Keyword formal parameters are listed in any order after all positional 
parameters are given on the prototype statement and the calling 
statement. A keyword formal parameter let you specify substitution 
values on the prototype statement that are to be used when one is not 
given on the calling statement. 

16-24 SR-0011 0 



If the keyword formal parameter is included in the calling statement with 
a value, that value is substituted. If the entire keyword formal 
parameter is omitted from the calling statement, the default value on 
the prototype statement is substituted. If a default value is not 
provided on the prototype statement, the character string within the body 
corresponding to that formal parameter is not included in the procedure 
expansion. 

If only the keyword portion of the keyword formal parameter (the character 
string itself) is included in the calling statement, without a value 
assigned to it, a keyed default value from the prototype statement is 
substituted. If a keyed default value is not provided on the prototype 
statement, again the character string within the body corresponding to 
that formal parameter is not included in the procedure expansion. 

A keyword parameter enclosed in apostrophes ('KE¥=value') is 
considered a positional parameter. Table 16-3 summarizes the forms of 
keyword substitution. 

Table 16-3. Keyword Substitution After Expansion 

I 
Keyword I 

Format for key=dv:kv I 
Calling Prototype key key=:kv key=( dv) : I kv key=dv 
Statement Statement I (positional) I key=: (kv) key=dv: (kv) I key=(dv) 

1. name, value. value CSl19t CSl19t CSl19t 

2. name, key. CS121t kv kv CS121t 

3. name. Null Null dv dv 
name, ( ) . 

4. name, key=value. value value value value 

5. name, key=. Null Null Null Null 

t Error message number Refer to the COS Message Manual, publication 
SR-0039, for an explanation of each message. 

kv=keyword value 
dv=default value 

Error messages: 

CSl19 - EXTRA POSITIONAL PARAMETER: value 
CS121 - KEYWORD USED WITHOUT ASSIGNING IT A VALUE: key 
CS122 - NO VALUE WAS ASSIGNED TO key 

SR-0011 0 16-25 



16.3.3.3 Positional and keyword parameters 

When supplying both positional and keyword parameters, all positional 
parameters must precede all keyword parameters; COS evaluates the call's 
positional parameters first. The end of the caller's list of positional 
parameters is signaled by the appearance of a keyword parameter, 
statement terminator, or by specifying all positionals. 

16.3.3.4 Apostrophes and parentheses 

Sometimes parameter values in a procedure definition or a procedure 
calling statement require a special format. If a literal string (a 
string delimited with apostrophes) appears in either of these 
statements, it is processed as if it were a literal constant. That is, 
all apostrophes in the value remain when the value is substituted. 
Refer to example 5 later in this section. 

To avoid erroneous processing, use parentheses as string delimiters in 
these statements. Outermost parentheses preceded by the initial, 
parameter, equivalence, or concatenation separators are removed during 
value substitution. This procedure delays processing of any separator 
characters in the string until the statement itself, with substituted 
values, is processed. 

This delay is also required when specifying multiple values for the 
default value or keyed default value parameters on a procedure 
definition statement. (Refer to examples 1, 2, 4, and 6.) Parentheses 
are advised in the procedure calling statement when the use of the value 
in the procedure statements is unknown. (Refer to examples 4, 5, and 6.) 

Table 16-4 summarizes the forms of parenthetical substitution. 

16-26 

Table 16-4. Expansion of Parenthetic and 
Literal String Values 

Invocation 

value 
(value1=value2) 
value1'.'value2 
value1(.)value2 

Expansion 

value 
value1=value2 
value1'. 'value2 
value1.value2 

----------

SR-0011 0 



The following examples demonstrate the COS control statement procedure 
substitution process. 

Example 1: 

Consider a single statement procedure called LOAD defined as follows: 

Definition 

PROC. 
LOAD,NOGO=:NX,LIBRARY=($FTLIB:$SYSLIB):MYLIB. 
LDR,&NOGO,LIB=&LIBRARY. 

Prototype statement 
Definition body 

ENDPROC. 

The prototype statement in this example defines two formal parameters, 
both of which are in keyword format. The keyword NOGO has a null value 
when omitted from the calling statement and a value of NX when included 
on the calling statement in keyword-only format. The keyword LIBRARY has 
the default value of $FTLIB:$SYSLIB. When LIBRARY is used in the calling 
statement without a value, the keyed default value, MYLIB, is substituted. 

When the LOAD procedure is invoked, it expands to a single statement 
whose form depends on the choice of parameters: 

Invocation 

LOAD, NOGO. 
LOAD. 
LOAD,LIBRARY=THISLIB. 
LOAD,LIBRARY,NOGO. 

Example 2: 

Expansion 

LDR,NX,LIB=$FTLIB:$SYSLIB. 
LDR"LIB=$FTLIB:$SYSLIB. 
LDR"LIB=THISLIB. 
LDR,NX,LIB=MYLIB. 

The following in-line procedure definition creates a procedure called 
BLDABS. 

SR-0011 0 16-27 



Definition 

PRoe. 
BLDABS,SOURCE,LIST,GO='NO': 'YES',LIB= 

: ($SYSLIB:$FTLIB),MAP=FULL:PART. Prototype statement 
REWIND,DN=$BLD:&SOURCE. 
CAL,I=&SOURCE,L=&LIST,ABORT. 
LDR,NX,LIB=&LIB,MAP=&MAP,L=&LIST,AB=$ABD. 
REWIND,DN=$ABD:&LIST. 
SAVE,DN=$ABD,PDN=MYPROGRAM. 

Definition body 

IF (&GO. EQ. 'YES' ) 
$ABD. 
ENDIF. 
ENDPROC. 

Invocation 

BLDABS,WORK"GO,LIB=VLIB2. 

Example 3: 

Expansion 

REWIND,DN=$BLD:WORK. 
CAL,I=WORK,L=,ABORT. 
LDR,NX,LIB=VLIB2,MAP=FULL,L=. 
REWIND,DN=$ABD:. 
SAVE,DN=$ABD,PDN=MYPROGRAM. 
IF( 'YES' .EQ. 'YES') 
$ABD. 
ENDIF. 

This procedure shows the proper use of the underscore character for the 
definition of a formal parameter. It creates a procedure called AUDJCL. 

Definition 

PROC. 
AUDJCL,DN, LEVEL, L=$OUT:AUDLST. 
AUDIT,PDN=&DN&LEVEL_JCL,ID=JCL,L=&L. 
ENDPROC. 

Invocation Expansion 

Prototype statement 
Definition body 

AUDJCL,-,05. AUDIT,PDN=-05JCL,ID=JCL,L=$OUT. 

16-28 SR-OOll 0 



Example 4: 

Parentheses are required when specifying multiple values for a single 
parameter value on a procedure definition prototype statement or on a 
calling statement. In these cases, the colon separates default and 
Boolean values in a keyword parameter. For example: 

Procedure-definition Prototype Statement 

MYPROC,POS1,KEY=(DEF1:DEF2):(B001:B002). 

Invocation 

MYPROC,(POS1A:POS1B). 

When substitution occurs during this call, POSIA:POSIB replaces all POSI 
occurrences within the definition body. Both values (POSIA and POSIB) 
are evaluated separately during control statement evaluation. If 
apostrophes are on the call, 'POSlA:POSlB' is evaluated as one literal 
string. 

Example 5: 

The following procedure definition shows the use of literal strings 
instead of parenthetical strings. 

Definition 

PROC. 
PURGER,PDN,ID,ED,M. Prototype 
ACCESS,DN=$PURGE,PDN=&PDN,ID=&ID,ED=&ED,M=&M,UQ,NA. 
DELETE,DN=$PURGE,NA. Definition body 
RELEASE,DN=$PURGE. 
ENDPROC. 

Invocation Expansion 

PURGER, 'SOURCE.MAIN',PROJECT ACCESS,DN=$PURGE,PDN='SOURCE.MAIN', 
ID=PROJECT,ED=,M=,UQ,NA. 

DELETE,DN=$PURGE,NA. 
RELEASE,DN=$PURGE. 

The apostrophes remain as part of the string in the expansion. If 
parentheses had been used in the invocation instead of apostrophes for 
the permanent dataset name, (SOURCE.MAIN), the value when the ACCESS 
statement is evaluated would be SOURCE.MAIN because the outermost 
parentheses are removed when preceded by a valid separator. This action 
would cause an error because the period in SOURCE.MAIN would be evaluated 
as a statement terminator during evaluation. 

SR-0011 0 16-29 



Example 6: 

The following example shows the use of parenthetical strings instead 
of literal strings in a procedure definition. 

Definition 

PROC. 
LGO,CALSORC,ABS,NLIB=$SCILIB:($SCILIB: 

$SYSLIB:$FTLIB). 
CAL,I=&CALSORC. 
LDR,NX,AB=&ABS,NOLIB=&NLIB. 
ENDPROC. 

Invocation Expansion 

Prototype 

Definition body 

LGO",NLIB. CAL,I=. 
LDR,NX,AB=,NOLIB=$SCILIB:$SYSLIB:$FTLIB. 

Parentheses were not included for the expansion of the NLIB keyed default 
value because parentheses are removed during processing when preceded by 
the concatenation delimiter (:). 

If apostrophes had been used instead of parentheses for the NLIB 
parameter value, the colons would have been ignored as separators during 
expansion. Also, apostrophes are treated as part of the value when 
included in a procedure definition prototype statement or a calling 
statement. Therefore, if apostrophes had been used, the following 
expansion would have occurred. 

CAL,I=. 
LDR,NX,AB=,NOLIB='$SCILIB:$SYSLIB:$FTLIB'. 

When the LDR statement is executed, the value assigned to the NOLIB 
parameter is the literal string '$SCILIB:$SYSLIB:$FTLIB' which violates 
the syntax for the NOLIB parameter. 

Example 7: 

Consider the following procedure definition. This procedure retrieves 
specified source decks from an UPDATE program library by the use of the 
&DATA option as follows: 

16-30 SR-0011 0 



PROC. 
GDECK,PLNAME,MASTERCH,DECKRNGE. 
ACCESS,DN=&PLNAME. 
UPDATE,I=QZRRZQ2,Q,C=O,S,P=&PLNAME. 
RELEASE,DN=QZRRZQ2:&PLNAME. 

Prototype statement 

Definition body 
&DATA QZRRZQ2 
&MASTERCH COMPILE &DECKRNGE 
ENDPROC. 

Two sample invocations and their expansions follow: 

Invocation 

GDECK,COSPL,*,(ST,CT). 

GDECK,FTLIBPL,*,(COS.RFD). 

Example 8: 

Expansion 

ACCESS,DN=COSPL. 
UPDATE,I=QZRRZQ2,Q,C=O,S,P=COSPL. 
RELEASE,DN=QZRRZQ2:COSPL. 

(Dataset QZRRZQ2 contains: 
*COMPILE ST,CT) 

ACCESS,DN=FTLIBPL. 
UPDATE,I=QZRRZQ2,Q,C=O,S,P=FTLIBPL. 
RELEASE,DN=QZRRZQ2:FTLIBPL. 

(Dataset QZRRZQ2 contains: 
*COMPILE COS.RFD) 

This example shows one mechanism for defining and maintaining user 
procedure libraries. The new procedure library is saved on mass storage 
for later use. 

ACCESS,DN=GENLIB. 
CALL,DN=GENLIB. 

SR-0011 0 16-31 



The permanent dataset GENLIB contains the following: 

ECHO,OFF. 
RELEASE,DN=$PROC. 

* 
* 
* 

Define procedure for ACCESS of commonly used ID. 

PROC. 
UQ,DN,ED=:l,PDN=:GENLIB,R=:READCW,W=:WRITECW,M=:MAINCW,NA=:NA. 
ACCESS,DN=&DN,ID=MYUID,PDN=&PDN,ED=&ED,R=&R,W=&W,M=&M,NA=&NA. 
RETURN. 
EXIT. 
RETURN, ABORT. 
ENDPROC. 

* 
* 
* 

Edit a local dataset. 

PROC. 
ED,DN,AC=:'ACCESS'. 
IF(&AC.EQ.'ACCESS') 

UQ,&DN. 
ENDIF 
TEDI,DN=&DN. 
RETURN. 
EXIT. 
RETURN, ABORT. 
ENDPROC. 

* 
* 
* 

End of definitions 

UQ,PROCLIB,NA. 
SAVE,DN=$PROC,PDN=PROCLIB,ID=MYUID. 
DELETE,DN=PROCLIB,NA. 
RELEASE,DN=$PROC. 
ACCESS,DN=PROCLIB,ID=MYUID. 
LIBRARY,DN=*:PROCLIB. 
ECHO,ON. 

16-32 SR-OOl1 0 



APPENDIX SECTION 





JOB USER AREA 

The table diagrams and their field descriptions were generated by the 
Table Diagram Generator using definitions from COSPL and SYSDFPL version 
V116BF1M of December 1986. Subsequent releases and local modifications 
could compromise the accuracy of the tables printed here. 

The table diagrams use the following symbols: 

A 

$ When two appear on the same line, indicates a range of words not 
shown. When one appears at the end of one line and another at 
the beginning of the next, indicates a field crossing a word 
boundary. 

* Indicates that a field is too short to contain its label. 

/ Indicates an unused area of a table. Hashed areas can contain 
information used elsewhere in the system, such as a front-end 
station. 

Numbers in table descriptions are denoted as follows: 

0' Indicates an octal number. 

D' Indicates a decimal number. 

Throughout this appendix, word numbers are shown in octal. Bit numbers 
are decimal. 

The tables appear in alphabetical order according to field prefix (a 
2-character string before the table name). Some program library (PL) 
decks contain multiple tables. When multiple tables are contained in a 
single program library deck, they are presented in the order in which 
they occur. This causes some tables to be out of sequence. An example 
of this is program library deck COMIJ, which contains definitions for the 
F$IJMSG parameter block, the Node Control Block, the Receptive Control 
Block, and the Inter-job Communication Message Buffer. Please check the 
table of contents if a table does not appear where expected. 

A table's prefix is included in every field. To save space, however, the 
prefix is left off the field names in the bit description. 

SR-OOl1 0 A-l 



I 

BG Begin Code Execution Table - BGN 

A-2 

BGN Table. This table is input to the F$BGN call which 
provides a mechanism for a user program to indicate to the 
Operating System the location of the executable binary 
and a P address which the CPU can be released to. In addition, 
the old BGN format is supported for this release. The following 
functions are currently supported with the new BGN format: 

A) Load a dataset from mass storage as specified by the DSP. 
B) Copy memory from a source base address to target base 

address for lengths specified. 
C) Preset memory with supplied pattern from preset base address 

for lengths specified. 
D) Support for target machine characteristics. 

Support is included for the separation of instruction and 
data segments. Instruction segments are currently supported and 
any attempt to load a data segment will be aborted. 

Define the F$BGN Function codes: 

BGNLOAD 
BGNCOPY 
BGNFMAX 

= 0'1 
= 0'2 
= BGNCOPY 

Load from dataset function code 
Copy from source to destination 
Set max Function Code value 

SR-0011 0 



I 

BG Begin Code Execution Table - BGN 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+++-----+-------+-----------------------+-------+---------------+ 
o III AM 111111111 PRGL 111111111 FC 

+++-----+-------+-----------------------+-------+---------------+ 
1 PSV 

+++-------------------------------+-----+-----------------------+ 
2 III PAD 111111I ENT 

+++-------------------------------+-----+-----------------------+ 
3 1111111111111111111111111111111111111111111111111111111111111111I 

+ +-----------------------+ 
4 11111111111111111111111111111111111111111 DSP 

5 

6 

7 

10 

11 

12 

+----.---------------------------+-------+-----------------------+ 
IBA IBL 

+-------------------------------+-------------------------------+ 
DBA DBL 

+-------------------------------+-------------------------------+ 
IHLM DHLM 

+-------------------------------+-------------------------------+ 
PDBA PDBL 

+-------------------------------+-------------------------------+ 
SIBA SIBL 

+-------------------------------+-------------------------------+ 
SDBA SDBL 

+-------------------------------+-------------------------------+ 

Figure A-1. Begin Code Execution Table 

Field Word(base8) Bits 

BGPSF 0 0 

BGEMA 0 1 

BGAM 0 2-7 
BGAMF 
BGBDM 
BGAVL 
BGORI 
BGFI 
BGPS 

BGPRGL 

o 
o 
o 
o 
o 
o 

o 

2 
3 
4 
5 
6 
7 

16-39 

Description 

Preset value flag 
If=1, preset segment 

EMA setting for new calls, l=ENABLE 

Additional modes field 
Additional modes flag (l=modes set) 
Bi-directional memory 1=ENABLE 
Additional vector logical l=ENABLE 
Operand range interrupt 1=ENABLE 
Floating point interrupt 1=ENABLE 
Program state 

Program length(Old BGN Format only) 

SR-0011 0 A-3 



I 

BG Begin Code Execution Table 

Field Word(base8) Bits 

BGFC 0 48-63 

BGPSV 1 0-63 

BGBP 2 0 

BGNRD 2 1 

BGPAD 2 2-33 

BGENT 2 40-63 

- BGN 

Description 

BGN Function Code(O for old) 

Preset value 

Breakpoint flag 

No reduce bit 

Pad value 

Entry point for instruction segment 

New BGN table field definitions 

A-4 

BGDSP 

BGIBA 

BGIBL 

BGDBA 

BGDBL 

BGIHLM 

BGDHLM 

BGPDBA 

BGPDBL 

BGSIBA 

BGSIBL 

BGSDBA 

BGSDBL 

4 

5 

5 

6 

6 

7 

7 

10 

10 

11 

11 

12 

12 

40-63 

0-31 

32-63 

0-31 

32-63 

0-31 

32-63 

0-31 

32-63 

0-31 

32-63 

0-31 

32-63 

DSP address of load dataset 

Instruction base address to load to 

Instruction segment length 

Data base address to load to 

Data segment length 

Instruction segment HLM value 

Data segment HLM value 

Preset data base address for pattern 

Preset data length for pattern 

Source Instruction base address(COPY) 

Source Instruction length(COPY) 

Source Data base address(COPY) 

Source Data length(COPY) 

SR-0011 0 



I 

DO Dataset Definition List - DOL 

o 

1 

A Dataset Definition List in the user field must accompany 
any create DNT (F$DNT) request. 

0 .... + •••• 1 .... + •••• 2 ...• + •••• 3 •.•. + •••• 4 .••. + •••• 5 .... + •••• 6 ... 

+-------------------------------------------------------+-------+ 
DN 111111111 

+-------------------------------------------------------+-------+ 
LDV 

++++++++--------++----------+-----------+-----------------------+ 
2 11111111 BFI " ERC 1111111111111 SZ 

++++++++--------++----------+-----------+-------++--------------+ 
3 III SPD DNT I11111111 I BFZ 

+++-------------++++--------+-----------+-----+-++--------------+ 
4 I I I I I I I I I I I I I I I I I I I I INC DTO 1*1 DC 

5 
+---------------++++--------+---+-------+-----+-+---------------+ 

TFMN TFMX I1111111I LM 
+---------------+---------------+-------+-----------------------+ 

Field 

DDDN 

DDLDV 

DDRDM 

DDUDS 

DDNFE 

Figure A-2. Dataset Definition List 

Word(baseB) Bits 

0 0-55 

1 0-63 

2 0 

2 1 

2 2 

NUMDT=3 Max number of desired 
device types 

Description 

Dataset name 

Logical device name 

Random dataset flag: 
0 Sequential 
1 Random 

Undefined dataset structure: 
o COS blocked dataset structure 
1 Undefined structure 

Return error if dataset does not 
exist. Register SO returned nonzero 
if DNT does not exist; no DNT is 
created. 

SR-OOll 0 A-5 



I 

DD Dataset Definition List - DDL 

A-6 

Field Word(base8) Bits 

DDSTAT 2 3 

DDMR 2 4 

DDIA 2 5 

DDTRAN 2 6 

DDBFI 2 7-15 

DDNA 2 16 

DDERC 2 17-27 

DDSZ 2 40-63 

DDSEQ 3 o 

DDBLK 3 1 

DDSPD 3 2-15 

DDDNT 3 16-39 

DDNOF 3 48 

DDBFZ 3 49-63 

Description 

Request dataset statistics; ignored 
unless DDNFE=l (see DDDNT) 

Dataset is to be memory resident 

Interactive type dataset 

Transparent mode for interactive 
dataset 

Blank field indicator (octal) for 
character 1/0: 

Value Symbol 
000 

Meaning 
BFI=I@BFI 

1-377 This ASCII character 
400 BFI@ZER BFI=<OOO> 
>400 Disabled 
777 BFI@OFF Disabled 

No-Abort flag 

Error code if No-Abort set 

Dataset size in 512-word blocks 

Change a dataset from random to 
sequential. Valid only if dataset is 
currently random, ignored if sequential. 

Change a dataset form unblocked to 
blocked. Valid only if dataset is 
currently unblocked, ignored if blocked. 

Sectors to allocate before switching 
devices"STRIPING" 

Address of DNT image returned by 
F$DNT when DDNFE=l and DDSTAT=l 

No Overflow flag 

Buffer size in 512-word blocks 
$SYSTXT name 

SR-0011 0 

--------- -- --



I 

DD Dataset Definition List 

Field Word(base8) 

DDC 4 

DDSL 4 

DDINC 4 

DDDTO 4 
DDDT1 4 
DDDT2 4 
DDDT3 4 

DDST 4 
DDSCR 
DDPERM 

DDDC 

DDTFMN 

DDTFMX 

DDLM 

SR-0011 0 

4 

4 

4 

5 

5 

5 

- DDL 

Bits 

17 

18 

19-27 

28-45 
28-33 
34-39 
40-45 

46-47 
46 
47 

48-63 

0-15 

16-31 

40-63 

Description 

allocate contiguous space for request 

Superlink dataset flag 

sectors to allocate per request 

Default devices wanted 
Desired device type for storage 
2nd preferred type for storage 
3rd preferred type for storage 

Storage type 
Scratch storage space preferred 
Permanent storage space necessary 

Disposition code (two characters): 

Transfer minimum 

Transfer maximum 

Dataset size limit in 512-word blocks 

A-7 



I 

DP Dataset Parameter Table - DSP 

o 

Logical I/O requires the presence of a DSP for the dataset in 
the user's field. Refer to COS Version 1 Reference 
Manual, publication SR-0011, for details of DSP use. 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+-------------------------------------------------------+-------+ 
ON 1///////1 

++-----------++-+--------+++---++-+++++++---------------+-------+ 
1 II ERR II * I BFI IIIOSTII *1111111 FRST 

++--------+--++-+--------+++---++-+++++++-----------------------+ 
2 1/////////1 IBP I IBN IN 

++-+------+-----+-----------------------+-----------------------+ 
3 II/I RBC I OBP I OBN OUT 

++-+------+-----+-----------------------+-----------------------+ 
4 II BS TBN LMT 

++--++----------+--------+--------------+-----------------------+ 
5 ICWFII PFI PRI RCW 

+---++-------------------+--------------+-----------------------+ 
6 LPW 

+++-------+-----+-----------------------+-----------------------+ 
7 III BF IBUBC I BWC BWA 

+++++-----+-----+---------------+-------+-----------------------+ 
10 I I I I 1/ / / / / / / / / / / / / / / / / / / / / / / / / / / I SLCT 

+++++-----------+---------------+-------------------------------+ 
11 TFMN TFMX 1///////////////////////////////1 

+--------.-------+---------------+-------------------------------+ 
12 XFMN XFMX 1///////////////////////////////1 

+---------------+---------------+-------------------------------+ 
13 SSEC NSEC 

+-------------------------------+-------------------------------+ 
14 1///////////////////////////////////////////////////////////////1 

+ + 
15 1///////////////////////////////////////////////////////////////1 

+---------------------------------------------------------------+ 
16 INS1 

+---------------------------------------------------------------+ 
17 INS2 

+---------------------------------------------------------------+ 
Figure A-3. Dataset Parameter Table 

A-a SR-0011 a 



DP Dataset Parameter Table - DSP 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+---------------+-----------------------+-----------------------+ 
20 TPS 1111111111111111111111111 TPV 

+-+-+-----------+---+-------------------+-------+---------------+ 
21 1*1*1 TAPE 11111111111111111111111111111 MTF 

+++-++------+---+---+-------------------+-------+---------------+ 
22 IIFD I RF 11111 MBS RS 

++---++-+---+-+++-----------------------+-----------------------+ 
23 IBFBO 1*11/11*1 I I BFBL BFBA 

+-----+++---+-+++-----------------------+-----------------------+ 
24 ILPBL I 1111111111 SBL BLBL 

+-----+++-------+-----------------------+-----------------------+ 
25 LOCK 

+-----------+---------------------------------------------------+ 
26 EEC 11/1/11111111111111111111111111111111111111111111111$ 

+---------+++++++-----------------------+-----------------------+ 
27 $1/1/111111 I I I I I I RECL NXRC 

+---------+++++++-----------------------+-----------------------+ 

Figure A-3. Dataset Parameter Table 

Field Word(base8) Bits 

DPDN 0 0-55 

DPBSY 1 0 

DPERR 
DPEO! 

SR-0011 a 

DPENX 
DPEOP 
DPEPD 
DPEBN 
DPEDE 
DPEHE 
DPERW 

DPEPT 

1 
1 

1 
1 
1 
1 
1 
1 
1 

1 

1-12 
1 

2 
3 
4 
5 
6 
7 
8 

9 

Description 

Dataset name 

Busy flag, circular 1/0: 
o Not busy 
1 Busy 

Error flags: 
End of data on read; write past 
allocated disk space on write. 

Dataset does not exist 
Dataset not open 
Invalid processing direction 
Block number error 
Unrecovered data error 
Unrecovered hardware error 
Attempted read after write or 
past EOD 

Dataset prematurely terminated 

A-9 



DP Dataset Parameter Table 

DPELE 1 

DPEEP 1 

DPSTS 1 

DPBFI 1 

DPISP 1 

DPQIO 1 

DPOST 1 

DPABD 1 

DPTP 1 

DPTRAN 1 

DPIA 1 

DPMEM 1 

DPRDM 1 

DPUDS 1 

DPEND 1 

DPFRST 1 

DPIBP 2 

I A-10 

- DSP 

10 

12 

14-15 

16-24 

25 

26 

27-30 

31 

32-33 

34 

35 

36 

37 

38 

39 

40-63 

10-15 

Unrecovered logical data error 
Reserved 

Extended error (see DPEEC) 

Status: 
00 Closed 
01 Open for output (0) 
10 Open for input (I) 
11 Open for I/O 

Blank compression character in ASCII 
(BFI=0'777 implies no compression) 

ISP dataset flag 

Queued I/O Request Flag 

Open status 

Accept bad data flag 

Tape dataset (online/staged) 

Transparent mode for interactive 
dataset 

Dataset is interactive 

Dataset is memory resident 

Random dataset flag: 
o Sequential dataset 
1 Random dataset 

Undefined dataset structure: 
o COS-blocked dataset structure 
1 Undefined dataset structure 

Write end-of-data flag 

Address of first word of buffer 

Input bit position 

SR-0011 0 



I 

DP Dataset Parameter Table - DSP 

Field Word(base8) Bits 

DPIBN 2 16-39 

DPIN 2 40-63 

DPSPOS 3 0 

DPRBC 3 3-9 

DPOBP 3 10-15 

DPOBN 3 16-39 

DPOUT 3 40-63 

DPUEOF 4 0 

DPBS 4 1-15 

DPTBN 4 16-39 

DPLMT 4 40-63 

DPCWF 
DPEOR 
DPEOF 
DPEOD 

DPRW 

DPPFI 

SR-0011 0 

5 
5 
5 
5 

5 

5 

0-3 
o 
2 

3 

4 

5-24 

Description 

Block number, read request. System 
reads from block number until buffer 
is filled. DPIBN is then set to the 
next block number. 

Address of current input word 

Asynchronous SETPOS busy flag 

Remaining blank count 

Bit position in current output word 
(character 1/0 only) 

Block number, write request. System 
writes from block number until 
buffer is empty. The next block 
number is then in DPOBN. 

Address of current output word 

Uncleared end-of-file (EOF) 

Buffer size (in D'512 word sectors) 

Temporary block number; used by 
random I/O for last block read 

Address of last word+l of buffer. 
LMT minus FRST defines buffer size. 

Control word types detected 
End Of Record 
End Of File 
End Of Data 

Previous operation read/write flag: 
o Read 
1 Write 

Previous file index; backward index 
to block containing previous EOF. 

A-11 



I 

DP Dataset Parameter Table - DSP 

Field Word(base8) Bits 

DPPRI 5 25-39 

DPRCW 5 40-63 

DPLPW 6 0-63 

DPBIO 7 0 

DPBER 7 1 

DPBF 7 2-9 

DPBPD 7 4 

DPBEO 7 6-9 

DPBUBC 7 10-15 

A-12 

Description 

Previous record index; backward 
index to block containing previous 
EOR. 

Control word address: 
Previous RCW address if in write 
mode 
Next RCW if in read mode 

Last partial word; used for 
character mode 1/0 

Buffered 1/0 busy: 
o Buffered 1/0 operation complete 
1 Buffered 1/0 operation 

incomplete 

Buffered 1/0 error flag 

Function code: 
BIOFRRP = 0 
BIOFRR 
BIOFWRP 
BIOFWR 
BIOFEOF 
BIOFEOD 

= 0'10 
= 0'40 
= 0'50 
= 0'52 
= 0'56 

Read partial record 
Read record 
Write partial record 
Write record 
Write EOF 
Write EOF 

Processing direction: 
o Read 
1 Write 

Termination condition: 
00 Partial 
10 Record 
12 File, write only 
16 Dataset, write only 

Unused bit count; must be specified 
on a write record request. Value 
returned on a read request. 

SR-0011 0 



I 

DP Dataset Parameter Table - DSP 

Field Word(base8) Bits Description 

DPBWC 7 16-39 Word count; number of words at DPBWA 
to read or write. Field contains 
actual number of words read when 
request is completed. 

DPBWA 7 

DPXV 10 

DPNSN 10 

DPRMIO 10 

DPSL 10 

DPSLCT 10 

DPTFMN 11 

DPTFMX 11 

DPXFMN 12 

DPXFMX 12 

DPSSEC 13 

DPNSEC 13 

DPINS1 16 

DPINS2 17 

DPTPS 20 

DPTPV 20 

DPTPD 21 

DPTPF 21 

SR-0011 0 

40-63 Word address of user data area 

o Extended DSP validation if set 

1 New sector number processing mode 

2 I/O mode is record flag 

3 Superlink dataset flag 

32-63 Pointer to Super link Connection Tables 

0-15 Minimum buffer transfer size (sectors) 

16-31 Maximum buffer transfer size (sectors) 

0-15 Active transfer minimum size (sectors) 

16-31 Active transfer maximum size (sectors) 

0-31 Starting sector number (FSS copy) 

32-63 Number of sectors to copy (FSS copy) 

0-63 Reserved for installation 

0-63 Reserved for installation 

0-15 Online tape status 

40-63 Tape pointer to label definition 
table 

0-1 Tape density 

2-3 Tape format 

A-13 



I 

DP Dataset Parameter Table - DSP 

A-14 

Field Word(base8) Bits 

DPTAPE 
DPAEV 
DPTOR 
DPTMS 
DPBLT 
DPEOVR 
DPBTM 

21 
21 
21 
21 
21 
21 
21 

4-19 
4 
5 
6 
7 
8 
9 

Description 

Tape status 
User is at tape end of volume 
Tape off reel 
Tape mark status 
Blank tape 
EOV READ 
tape is before tape mark 

MASKS FOR TESTING TAPE STATUS FIELD 

DPMTF 21 48-63 

DPCV 22 o 

DPFD 22 1-4 

TS$EOV=O'100000 EOV mask 
TS$TOR=O'040000 Tape off 

reel mask 
TS$TMS=O'020000 Tape mark 

status mask 
TS$BLT=O'010000 Blank tape 

detected mask 
TS$EOVR=O'004000 Read completed 

in EOV processing 
TS$BTM=O'002000 tape is before 

tape mark 

Maintenance test field 

Data conversion flag 
DPCVOFF=O Data conversion off 
DPCVON=1 Data conversion on 

Translation identifier 
DPFDNONE=O NO foreign file 

translation 
DPFDIBM=1 IBM file translation 
DPFDCDC=2 CDC file translation 
DPFDVMS=3 VMS file translation 

SR-0011 0 



I 

DP Dataset Parameter Table - DSP 

Field Word(base8) Bits 

DPRF 22 5-11 

Description 

Record format (if DPCT nonzero) 
DPRFUNKN=O'177 Unknown record 

format 
DPRFIU=O IBM undefined 
DPRFIF=l IBM fixed 
DPRFIFB=2 IBM fixed blocked 
DPRFIV=3 IBM variable 
DPRFIVB=4 IBM variable blocked 
DPRFIVBS=5 IBM variable block 

span 

Values 21 through 37 are reserved for ANSI record types: 

DPRFIIW=O'OO I tape format, 
I blocks, W records 

DPRFICW=O'10 I tape format, 
C blocks, W records 

DPRFICZ=O'11 I tape format, 
C blocks, Z records 

DPRFICS=O'12 I tape format, 
C blocks, S records 

DPRFSIIW=O'40 SI tape format, 
I blocks, W records 

DPRFSICW=O'50 SI tape format, 
C blocks, W records 

DPRFS1CZ=O'51 SI tape format, 
C blocks, Z records 

DPRFSICS=O'52 SI tape format, 
C blocks, S records 

DPRFVF=l VMS F format 
DPRFVUF=2 VMS UF format 
DPRFVD=3 VMS D format 
DPRFVV=4 VMS V format 
DPRFVS=5 VMS S format 
DPRFVUS=6 VMS US format 

DPMBS 22 16-39 Maximum block size 

DPRS 22 40-63 Record length 

DPBFBO 23 0-5 User data area current bit offset 

SR-0011 0 A-15 



• 

DP Dataset Parameter Table - DSP 

Field Word(base8) Bits 

DPCS 23 6-7 

DPSCC 23 12-13 

DPBDF 23 14 

DPPCR 23 15 

DPBFBL 23 16-39 

DPBFBA 23 40-63 

DPLPBL 24 0-5 

DPEOLR 24 6 

DPEOLF 24 7 

DPSBL 24 16-39 

DPBLBL 24 40-63 

DPLOCK 25 0-63 

DPEEC 26 0-11 

DPSEQ 27 10 

DPFMT 27 11 

DPDEL 27 12 

DPBLNK 27 13 

DPDIR 27 14 

A-16 

Description 

Character set (if DPCT nonzero) 
DPCSAS=O ASCII 
DPCSEB=l EBCDIC 
DPCSDC=2 CONTROL DATA display code 

Record continuation code 

Bad data flag 

Process-characters-remaining flag 

User data area current bit length 

User data area current address 

Last partial word bit length 

Foreign dataset end of logical record 

Foreign dataset end of logical file 

Current segment/record bit length 

Current tape block bit length 

Multitasking lock (nonzero TIB address 

Error code if DPEEP is set; 
correspond to EXP abort codes. 

FORTRAN sequential access flag 

FORTRAN formatted I/O flag 

FORTRAN file status: 
o Keep 
1 Delete 

FORTRAN numeric input blank 
conversion: 

o Null 
1 Zero 

FORTRAN direct access flag 

SR-0011 0 



DP Dataset Parameter Table - DSP 

Field Word(base8) Bits Description 

DPUFMT 27 15 FORTRAN unformatted I/O flag 

DPRECL 27 16-39 FORTRAN direct access record length 
(in number of characters) 

DPNXRC 27 40-63 FORTRAN direct access next record 
number 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 ...• + •••• 6 ... 

+----+-+-+--+---------------------------------------------------+ 
22 I////IFI*IRTI///////////////////////////////////////////////////1 

+----+-+-+--+---------------------------------------------------+ 
Figure A-4. CDC Record Format 

Field Word(base8) Bits Description 

DPF 22 5-6 Tape format 
DPFNONE=O No tape format 
DPFI=1 Internal 
DPFSI=2 System or scope internal 

DPBT 22 7-8 Block type 
DPBTI=O Internal 
DPBTC=1 Character count 

DPRT 22 9-11 Record type 
DPRTW=O Control word 
DPRTZ=1 Zero byte 
DPRTS=2 System-logical 

I SR-0011 0 A-17 



DP Dataset Parameter Table - DSP 

0 •••. + .... 1 ••.• + .... 2 .... + .... 3 ••.• + .... 4 ..•. + .... 5 .... + .... 6 •.. 

+---------------------------------------------------------------+ 
o 1///////////////////////////////////////////////////////////////1 

$///////////////////////////////////////////////////////////////$ 

5 1///////////////////////////////////////////////////////////////1 

+ +--------+--------------------------------+ 
6 1/////////////////////1 SPWA SPIN 

+---------------------+--------+--------------------------------+ 

Figure A-5. Save Areas Used by Asynchronous SETPOS 

Field Word(base8) Bits Description 

DPSPWA 6 22-30 Word address save areas used 

DPSPIN 6 31-63 by asynchronous SETPOS 

I A-18 SR-0011 0 



I 

DR Disk Reservation Table - DRT 

STP contains a Disk Reservation Table (DRT) for each logical 
mass storage device known to the system. The table (figure 
A-6) consists of a header and a bit map. Each bit in the 
bit map represents one allocation unit (AU), such as one track 
on a disk. A set bit implies that the the AU is in use. 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+---------------------------------------------------------------+ 
o LDV 

+---------------+---------------+---------------+---------------+ 
1 MAU SPB 11111111111111111 AlA 

+---------------+---------------+-------+-------+---------------+ 
2 PDA 1111111111111111111111111 SZ 

++------+-------+---------------+-------+-------+---------------+ 
3 II111111I SBMW SMTO TRSH 

++------+-----------------------+---------------+---------------+ 
4 MAP 

$ $ 

n I 
+---------------------------------------------------------------+ 

Figure A-6. Disk Reservation Table 

Field Word(base8) Bits 

DRLDV 0 0-63 

DRMAU 1 0-15 

DRSPB 1 16-31 

DRAIA 1 48-63 

DRPDA 2 0-15 

DRSZ 2 40-63 

SR-0011 0 

Description 

Logical device name 

Maximum allocation units (AU) less 
flaws 

SECTORS PER RESERVATION BIT 

Total available AUs (number of 
unused bits) 

Number of AUs used for permanent 
dataset 

DRT map size in words 

A-19 



DR Disk Reservation Table - DRT 

Field Word(base8) Bits Description 

DRSMAA 3 0 Space Manager already activated 

DRSBMW 3 8-31 STP reI address to start map search 

DRSMTO 3 32-47 Space Manager TXT ordinal 

DRTRSH 3 48-63 Space Manager activation threshold, 
expressed as minimum available Als 

DRMAP 4-n 0-63 Bit map, one bit per track 

I A-20 SR-0011 0 

------- ----- -



I 

ER F$ERCL parameter block - ERPB 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 ..•. + •••• 6 ... 

+------+--------------------------------+-----------------------+ 
o I FUNC 1111111111111111111111111111111111 TO 

+------+--------+-----------------------+-----------------------+ 
1 11111111111111111 MASK MAP 

+---------------+-----------------------+-----------------------+ 

Figure A-7. F$ERCL Parameter Block 

Field Word(base8) Bits Description 

ERFUNC 0 0-6 Subfunction code 

The functions range from ERCL$$MI to ERCL$$MA-l. When 
subfunctions are added adjust the ERCL$$ symbols as 
needed. 

ERCL$DIS=Ol 

ERCL$ENA=02 

Disable event 
monitoring 
Enable event 
monitoring 

ERCL$RCL=03 
ERCL$RET=04 

Recall untill event 
Return occurred-events 
map 

ERCL$$MI=Ol 
ERCL$$MA=05 

minimum subfunction 
maximum subfunction+l 

ERTO o 40-63 Timeout value (milliseconds) 

ERMASK 1 16-39 Event selection mask 

ERCL$$ values must be changed when new events are added. 
Bits zero thru ERM$$MAX-l must always be defined. 
Bits ERM$$FP thru ERM$$LP-1 must always be defined. 

SR-0011 0 A-21 



I 

ER F$ERCL parameter block 

A-22 

ERMSIJ 
ERMSUO 
ERMSOR 
ERMSIP 
ERMSSE 

ERMSCH 
ERMSIQ 
ERMSOQ 
ERMSAE 

ERMAP 
ERMPIJ 
ERMPUO 
ERMPOR 
ERMPIP 
ERMPSE 
ERMPCH 
ERMPIQ 
ERMPOQ 
ERMPAE 

1 
1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

- ERPB 

16 
17 
18 
19 
20 

26 
27 
28 

29 

Inter-job message arrived 
Unsolicited oper msg arrived 
Operator reply arrived 
IPC request done 
Site defined event (for local code) 

ERM$$MAX=O'20+1 Last non
privileged 

ERM$$FP=O'26 First privileged 
Channel function done 
SOT placed in INPUT queue 
SDT placed in OUTPUT queue 
Archiving System Event 

ERM$$LP=D'29+1 Last 

bit+1 
bit 

privileged bit+1 

40-63 
40 
41 
42 
43 
44 
50 
51 
52 
53 

Occurred-events map 
Inter-job message arrived 
Unsolicited oper msg arrived 
Operator reply arrived 
IPC request done 
Site defined event (for local code) 
Channel function done 
SOT placed in INPUT queue 
SOT placed in OUTPUT queue 
Archiving System Event 

On return from F$ERCL, 
SO can have the following 
values. 

ERER=OO Okay 
ERER$MT=Ol Prohibited to 

multitasking job 
ERER$PV=02 
ERER$BFN=03 
ERER$UDB=04 

Not a privileged job 
Bad function 
Mask contains 
undefined bits 

ERER$MDI=05 Monitoring not enabled 

SR-0011 0 



IJ F$IJMSG Parameter Block - IJPB 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+------+-----+--------------------------+-----------------------+ 
o I PLEN IHLEN 1//////////////////////////1 JSQ 

+------+-----+--------------------------+-----------------------+ 
1 1///////////////////////////////////////1 LINK 

+---------------------------------------+-----------------------+ 
2 STAT 

+---------------------------------------------------------------+ 
3 FUNC 

+---------------------------------------------------------------+ 
4 RID 

+---------------------------------------------------------------+ 
5 TID 

+---------------------------------------+-----------------------+ 
6 1///////////////////////////////////////1 RCB 

+---------------------------------------+-----------------------+ 
7 1///////////////////////////////////////1 NCB 

+---------------------------------------+-------+---------------+ 
10 1///////////////////////////////////////////////1 BLEN 

+---------------------------------------+-------+---------------+ 
11 1///////////////////////////////////////1 BADD 

+---------------------------------------+-----------------------+ 
12 OVR 

+---------------------------------------------------------------+ 
13 FCS 

+---------------------------------------------------------------+ 
14 FCU 

+---------------------------------------------------------------+ 
15 CLS 

+---------------------------------------------------------------+ 

Figure A-B. F$IJMSG Parameter Block 

I SR-0011 0 A-23 



I 

IJ F$IJMSG Parameter Block - IJPB 

A-24 

Field Word(base8) Bits Description 

IJPLEN 0 0-6 length of the parameter block 

IJHLEN 0 7-12 message buffer header length (LH@MHB) 

IJJSQ 0 40-63 JSQ of target (OPEN, ACCEPT, REJECT) 

IJLINK 1 40-63 link to next parameter block 

IJSTAT 2 0-63 status 
IJMS$OK=OO completed with no 

error 

The following responses do not terminate a request chain. 
If any values are changed, SYSLIB must be changed also. 

IJMS$AR=Ol 

IJMS$AU=02 
IJMS$BA=03 

IJMS$BN=04 
IJMS$BNA=05 
IJMS$BP=06 
IJMS$HL=07 
IJMS$IF=08 
IJMS$INR=09 
IJMS$INS=10 
IJMS$MC=ll 
IJMS$ML=12 
IJMS$NA=13 
IJMS$NE=14 
IJMS$NO=15 

IJMS$NP=16 
IJMS$NR=17 
IJMS$OO=18 

IJMS$PE=19 

IJMS$PF=20 
IJMS$PR=21 
IJMS$RB=22 
IJMS$RF=23 

ID is already 
receptive 
ID is in use 
buffer address or 
length bad 
NCB is bad 
NCB address is bad 
path is busy 
HLEN error 
IPT full 
ID not registered 
ID not specified 
bad log message class 
bad message length 
ID is not attached 
path is not open 
no outstanding open 
request 
path does not exist 
ID is not receptive 
outstanding OPEN was 
found 
path is already 
established 
memory pool is full 
ID is privileged 
bad RCB address 
RIT full 

SR-0011 0 



I 

IJ F$IJMSG Parameter Block - IJPB 

IJMS$TA=24 

IJMS$TL=25 

target's buffer 
address is bad 
target's buffer length 
is bad 

The following responses terminate a request chain. 

IJFUNC 3 0-63 

IJMS$BE=32 
IJMS$BF=33 
IJMS$LA=34 
IJMS$MT=35 

IJMS$NC=36 

IJMS$PV=37 
IJMS$TP=38 

IJPB length error 
undefined function 
bad link address 
more than one active 
TXT 
RIT or IPT has zero 
entries 
privileged function 
more than I@MPBS 
parameter blocks 

IJMS$MAX=39 maximum status 
value + 1 

subfunction code 

If any values are changed, SYSLIB must be changed also. 

SR-OOll 0 

IJM$NOP=OO 
IJM$REC=Ol 

IJM$OPEN=02 

IJM$ACCE=03 

IJM$REJE=04 

IJM$SNDM=05 
IJM$CLOS=06 

IJM$END=07 

no op 
request receptivity 
state 
open a communication 
path 
accept an IJM$OPEN 
request 
reject an IJM$OPEN 
request 
send a message 
close a communication 
path 
ends the receptivity 
state 

IJM$$HNP=07+1 maximum value + 1 
of unprivileged 
subfunctions 

A-25 



1J F$1JMSG Parameter Block 

1JR1D 4 

1JT10 5 

1JRCB 6 

1JNCB 7 

1JBLEN 10 

1JBADD 11 

I JOVR 12 

1JFCS 13 

1JFCU 14 

1JCLS 15 

I A-26 

- 1JPB 

0-63 

0-63 

40-63 

40-63 

48-63 

40-63 

0-63 

0-63 

0-63 

0-63 

1JM$$M1P=32 m~n~mum privileged 
function value 

1JM$SNOL=32 send a logfile message 
(privileged) 

1JM$$MAX=32+1 maximum subfunction 
value + 1 

10 of the requesting job 

10 of the target job 

RCB address 

NCB address 

message buffer length 

message buffer address 

log message over-ride flag 

log message to system log 

log message to user log 

log message class 

SR-0011 0 



I 

NC Node Control Block - NCB 

0 ...• + •••• 1 .•.• + •••• 2 .... + •••• 3 •... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+-----+---------------------------------+-----------------------+ 
o I LEN 1/////////////////////////////////1 PN 

+-----+---------------------------------+-----------------------+ 
1 \///////////////////////////////////////\ BLEN 

+---------------------------------------+-----------------------+ 
2 1///////////////////////////////////////1 BADD 

3 

4 

5 

+---------------------------------------+-----------------------+ 
ST 

+---------------------------------------------------------------+ 
ALEN 

+---------------------------------------------------------------+ 
SLEN 

+---------------------------------------------------------------+ 

Figure A-g. Node Control Block 

Field Word(base8) 

NCLEN 0 

NCPN 0 

NCBLEN 1 

NCBADD 2 

NCST 3 
NCMS 3 
NCOS 3 

Bits 

0-5 

40-63 

40-63 

40-63 

0-63 
o 

48-63 

Description 

length of the NCB (L@NCB) 

IPT offset for this path 

length of the node buffer 

address of the node buffer 

status 
message status 
open status 

If any values are changed, SYSLIB must be changed also. 

NCALEN 4 0-63 

NCB$ACC='AC'R 

NCB$REJ='RJ'R 

NCB$CLO='CL'R 

open request 
accepted 
open request 
rejected 
path was 
closed 

length of message put into buffer 

SR-OOll 0 A-27 



NC Node Control Block - NCB 

Field Word(base8) Bits 

NCSLEN 5 0-63 

I A-28 

Description 

length of the message sent 
L@NCMH=2 length of the message 

header 

SR-OOll 0 



RCB Receptive Control Block - RCB 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+---------------------------------------------------------------+ 
o ID 

+---------------------------------------------------------------+ 
Figure A-10. Receptive Control Block 

Field Word(base8) Bits Description 

RCBID 0 0-63 ID of the job requesting connection 

I SR-OOll 0 A-29 



MB Inter-job Communication Message Buffer - MBB 

0 .... + •••• 1 •••• + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+---------------------------------------------------------------+ 
o DATA 

+---------------------------------------------------------------+ 
$ $ 

n I 
+---------------------------------------------------------------+ 

Figure A-11. Inter-job Communication Message Buffer 

Field Word(base8) Bits Description 

MHDATA 0 0-63 first word of the message 

The message length is defined by 
fields in the NCB 

MHLAST O-n 0-63 last word of the message 

I A-30 SR-0011 0 

------- -- -- --



I 

JB JCL Block Information Table - JBI 

The l-word JCL Block Information Table (JBI) is generated in 
the user field and has two formats: one for conditional 
information (figure JB-1) and the other for iterative 
information (figure JB-2). 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

++--------------+---------------+---------------+---------------+ 
o 11//////////////1 LLEV PLEV LEVL 

++--------------+---------------+---------------+---------------+ 

Figure A-12. JBI Conditional Format 

Field Word(base8) Bits Description 

JBEXC 0 0 Conditional sequence is in execution 

JBLLEV 0 16-31 Conditional is contained in this 
iterative nesting level 

JBPLEV 0 32-47 Iterative is contained in this 
procedure level 

JBLEVL 0 48-63 Current iterative nesting level 

SR-0011 0 A-31 



JB JCL Block Information Table - JBI 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+-------+-----------------------+---------------+---------------+ 
o 1///////1 CNT PLEV LEVL 

+-------+-----------------------+---------------+---------------+ 
Figure A-13. JBI Iterative Format 

Field Word(base8) Bits Description 

JBCNT 0 8-31 Iteration count 

JBPLEV 0 32-47 Iterative is contained in this 
procedure level 

JBLEVL 0 48-63 Current iterative nesting level 

I A-32 SR-0011 0 



I 

JC Job Communication Block - JCB 

5 

17 

20 

77 

100 

101 

102 

103 

The first 128 words of each user field comprise the Job 
Communication Block. The JCB is accessible to the user. 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+---------------------------------------------------------------+ 
CCl 

$ $ 

+---------------------------------------------------------------+ 
CPR 

$ $ 

+-------------------------------------------------------+-------+ 
IN 111111111 

+-------+--++-+-+-----------------------+---------------+-------+ 
LPP I I I I I I I U I HLM FL 

+-------+--++-+-+-----------------------+-----------------------+ 
NPF BFB DSP 

+---------------+-----------------------+-----------------------+ 
NLE MFL LFT 

++++++++++++++++++----------------------+-------+-------+-------+ 
104 111111111111111111 ULFT I PNST I STRM 

++++++++++++++++++---+--------+----+----+++-----+-+++++++-------+ 
105 111111 CYCL CPTP IMCP INLCPI I I lAC I I I I I 1111111111 

++++++---------------+--------+----+----+++-------++++++--------+ 
106 CRL 

+---------------------------------------------------------------+ 
107 ACN 

+ +-------+ 
110 111111111 

+-------------------------------------------------------+-------+ 
111 PWD 

+ +-------+ 
112 111111111 

+-------------------------------------------------------+-------+ 

Figure A-14. Job Communication Block 

SR-0011 0 A-33 



JC Job Communication Block - JCB 

o •••• + ••• • 1 ... . ' + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 ••• 

+---------------------------------------------------------------+ 
113 PROM 

+---------------+---------------+---------------+---------------+ 
114 NULE PLEV ILEV CLEV 

+---------------+---------------+---------------+---------------+ 
115 MMIN MMIS 

+-------------------------------+-------------------------------+ 
116 MMBA MMEP 

+------------------------------++-------------------------------+ 
117 STIN II STIS 

+------------------------------++-------------------------------+ 
120 1///////////////////////////////1 AVBA 

+-------------------------------+-------------------------------+ 
121 TSF 

+-------------------------------+-------------------------------+ 
122 PSM 1///////////////////////////////1 

+-------------------------------+-------------------------------+ 
123 DMM 

+---------------------------------------------------------------+ 
124 1///////////////////////////////////////////////////////////////1 

+ + 
125 1///////////////////////////////////////////////////////////////1 

+---------------+-----------------------------------------------+ 
126 NUDP 1///////////////////////////////////////////////1 

+---------------+ +-------------------------------+ 
127 1///////////////////////////////1 TPTR 

+-------------------------------+-------------------------------+ 
130 RDYQ 

+---------------------------------------------------------------+ 
131 RUNQ 

+---------------------------------------------------------------+ 
132 1///////////////////////////////////////////////////////////////1 

$///////////////////////////////////////////////////////////////$ 

145 1///////////////////////////////////////////////////////////////1 

+---------------------------------------------------------------+ 
Figure A-14. Job Communication Block 

I A-34 SR-OOll 0 



I 

JC Job Communication Block - JCB 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+---------------------------------------------------------------+ 
146 LDR 

$ $ 

163 

+---------------,------------------------------------------------+ 
164 sm 

+---------------------------------------------------------------+ 
165 STF 

+---------------------------------------------------------------+ 
166 BOAT 

+---------------------------------------------------------------+ 
167 BTIM 

+---------------------------------------------------------------+ 
170 DIG 

$ $ 

177 
+---------------------------------------------------------------+ 

200 1///////////////////////////////////////////////////////////////1 

+---------------------------------------------------------------+ 

Figure A-14. Job Communication Block 
B@JCB=O Symbol for JCB base, 

relative to BA 

The first five words of the JCB are assigned as a save area 
for the BGN table that is used by F$BGN. 

Field Word(base8) Bits 

JCCCI 5-17 0-63 

JCCPR 20-77 0-63 

JCJN 100 0-55 

JCLPP 101 0-7 

SR-0011 0 

Description 

Control statement image packed 8 
characters per word 

Control statement parameters, 
expanded to two words per parameter 

Job name; bits 56-63 must be O. 

Lines per page 

A-35 



I 

JC Job Communication Block - JCB 

Field Word(base8) Bits 

JCRMSG 101 11 

JCU 101 14-15 
JCUL 101 14 
JCUG 101 15 

JCHLM 101 16-39 

JCFL 101 40-63 

JCNPF 102 0-15 

JCBFB 102 16-39 

JCDSP 102 40-63 

JCNLE 103 0-15 

JCMFL 103 16-39 

JCLFT 103 40-63 

JCDCS 104 o 

JCCSDB 104 1 

JCBP 104 2 

JCNTB 104 3 

JCIOAC 104 4 

JCIOAP 104 5 

JCIA 104 6 

JCCHG 104 7 

A-36 

Description 

RFL messave sent 

User mode indicator: 
Local 
Global 

High limit of user code 

Current field length 

Number of physical buffers and 
datasets 

Base address of liD buffers 

Base address of DSP area 

Number of entries in LFT 

Maximum FL allowed 

Base of LFT 

CSP dynamic control statement flag 

CSP debug flag 

JOB statement breakpoint (BP) flag 

CSP traceback suppression flag 

1/0 area current status flag: 
o User's liD area is unlocked 
1 User's liD area is locked 

liD area previous status flag: 
o User's liD area is unlocked 
1 User's liD area is locked 

Interactive flag 

Execute CHARGES utility for trailer 
message. 

SR-0011 0 



I 

JC Job Communication Block - JCB 

Field Word(baseB) Bits 

JCJBS 104 B 

JCCSIM 104 9 

JCDLIT 104 10 

JCRPRN 104 11 

JCVSEP 104 12 

JCSDM 104 13 

JCPDMS 104 14 

JCCSQ 104 15 

JCOVT 104 16 

JCULFT 104 17-47 

JCPNST 104 48-55 

JCSTRM 104 56-63 

JCEFI 105 o 

JCOVL 105 1 

JCSBC 105 2 

JCBDM 105 3 

JCORI 105 4 

JCCYCL 105 5-20 

SR-0011 0 

Description 

JOB statement flag (if set, JOB 
statement just processed) 

Flag is set when CRAY-! simulator is 
running. 

Display literal delimiters in 
control statement crack. 

Retain level 1 parentheses. 

Last character was valid separator. 

NOECHO of current control statement 

Suppress PDM user logfile messages 

New eFT calling sequence in effect 

Overlay type 

Base of user LFTs (JCB-REL) 

Parentheses nesting level for 
current control statement 

Statement termination for current 
control statement 

Enable floating-point interrupt 
flag; used by $ARLIB math routines 
to reset floating-point interrupt 
flag 

Overlay flag 

SBCA flag 

Enable bidirectional mode flag 

Interrupt on operand range flag 

CPU cycle time, in picoseconds 

A-37 



• 

JC Job Communication Block - JCB 

Field Word(base8) Bits 

JC~PTP 105 21-29 

JCMCP 105 30-34 

JCNLCP 105 35-39 

JCEMA 105 40 

JCAVL 105 41 

JCIAC 105 42-49 

JCACRQ 105 50 

JCPWRQ 105 51 

JCRYPT 105 52 

JCSLVL 105 53 

JCSJOB 105 54 

JCCRL 106 0-63 
JCCRLS 106 32-63 

JCACN 107-110 0-63 

JCACN1 107 0-63 

JCACN2 110 0-55 

JCPWD 111-112 0-63 

JCPWD1 111 0-63 

JCPWD2 112 0-55 

A-38 

Description 

CPU type, @CRAYxxx 

Maximum number of logical CPUs that 

Current number of logical CPUs asg'd 

l=Extended memory addressing enabled 

l=Additional vector logical unit enab. 

Number of account processing retries 
allowed for an interactive job 

Accounting mandatory flag 

Password mandatory flag 

Encryption flag 

Security level flag 

S on job card 

COS revision level 
COS revision number 

1 through 15 character account number 

Characters 1 through 8 of account 
number 

Characters 9 through 15 of account 
number 

1 through 15 character password 

Characters 1 through 8 of password 

Characters 9 through 15 of password 

SR-0011 0 



I 

JC Job Communication Block - JCB 

Field Word(base8) Bits 

JCPROM 113 0-63 

JCNULE 114 0-15 

JCPLEV 114 16-31 

JCILEV 114 32-47 

JCCLEV 114 48-63 

Description 

Current user job interactive prompt, 
justified, zero-filled. 64 bits of 
binary zeroes disables user job 
prompt. Set to system default at 
beginning of each job step. 

Number of user LFT entries (below HLM) 

Current procedure nesting level 

Current iterative nesting level 

Current conditional nesting level 

The next four words are used by the run-time memory manager: 

JCMMIN 115 0-31 Size of increments to the managed memo 

JCMMIS 115 32-63 Initial size of memory to be managed 

JCMMBA 116 0-31 Base address of managed space 

JCMMEP 116 32-63 Size of smallest block added to availa 

JCSTIN 117 0-30 Size of increments to a stack 

JCSTRT 117 31 Flag to indicate stack for root task 

JCSTIS 117 32-63 Initial size of a stack 

JCAVBA 120 32-63 Base of available space 

JCTSF 121 0-63 Task scheduling flag 

JCPSM 122 0-31 Pseudo semaphore registers 1 A&B, liS 

JCDMM 123 0-63 Don't move memory when nonzero 

JCNUDP 126 0-15 Number of system DSPs in user 

JCTPTR 127 32-63 Pointer to list of all tasks 

JCRDYQ 130 0-63 Multitasking ready queue header 

SR-0011 0 A-39 



I 

JC Job Communication Block - JCB 

170 

A-40 

Field Word(base8) Bits Description 

JCRUNQ 131 0-63 Multitasking run queue header 

JCLDR 146-163 0-63 Unsatisfied externals 

JCSTN 164 0-63 Job step count 

JCSTF 165 0-63 Job step failure flag 

JCBDAT 166 0-63 Date of absolute load module 
generation 

JCBTIM 167 0-63 Time of absolute load module 
generation 

JCDIG 170-177 0-63 Reserved for diagnostics 

The presence of this figure adds no information. It is 
required by the table diagram generator to improve the 
appearance of the table while still supplying the S@JCDIG 
and N@JCDIG tags. 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 ..•• + •••• 5 .... + •••• 6 ... 

+---------------------------------------------------------------+ 
DIG 

+---------------------------------------------------------------+ 
Figure A-1S. Additional Tags for Diagnostics 

Field Word(base8) Bits Description 

JCDIG 170 0-63 

SR-0011 0 



I 

JS JCL Symbol Table - JST 

The 4-word JST contains information about system and user 
symbols. 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •..• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

++--------------------------------------------------------------+ 
o I 1//////////////////////////////////////////////////////////////1 

++--------------------------------------------------------------+ 
1 SN 

+---------+-----+-----------------------+-----------------------+ 
2 FLG ITYPE 1///////////////////////1 LEVL 

+---------+-+---+-------------------+---+-----------------------+ 
3 1///////////1 LEN 1///1 VAL 

+-----------+-----------------------+---+-----------------------+ 

Figure A-16. JCL Symbol Table 

Field Word(base8) Bits 

JSCRE 

JSSN 

JSFLG 
JSLOC 

JSCON 

JSSRS 

JSUSR 

JSSYS 

JSTYPE 

JSLEVL 

SR-0011 0 

o 

1 

2 
2 

2 

2 

2 

2 

2 

2 

o 

0-63 

0-9 
o 

1 

2 

3 

4 

10-15 

40-63 

Description 

Create if not found. Available only 
for system use. 

Symbol name 

Symbol flag fields 
Local or global. If set, symbol is 
procedure local. 
Constant or variable. If set, 
symbol is constant. 
System reserved. If set, the symbol 
name is reserved by system. 
User settable. If set, symbol may 
be modified by the job. 
System settable. If set, the symbol 
may be modified by COS. 

One of the following symbol types: 
SYMTUND=O'OO Undefined - no type 
SYMTBOO=O'Ol Boolean - logical 
SYMTINT=O'02 Decimal integer 
SYMTLIT=O'03 ASCII literal; 1-8 

characters. 
SYMTBIN=O'04 Binary 

Procedure definition level 

A-41 



JS JCL Symbol Table - JST 

Field Word(base8) Bits Description 

JSLEN 3 12-35 Length of value 

JSVAL 3 40-63 Base of value buffer 

I A-42 SR-0011 0 



I 

JT Job Table Area - JTA 

* Job Table Area (JTA) 

The Job Table Area records all information about a job which 
needs to be present whenever the job is rolled into memory. 

There is a fixed portion, followed by a memory pool which 
holds entries allocated as the jobs needs grow. 

Figure A-17 shows the JTA. The display of field JTOTM is 
in error. JTOTM is shown as one word, while it in fact 
occupies the apparently undefined words below it as well. 

Figure A-18 shows the detailed structure of the user 
breakpoints (JTBKP). 

Figure A-19 shows the detailed structure of the pointer fields 
within the memory pool areas for the JTA DNTs. 

Figures A-20 and A-21 provide additional tags for the JTUSR 
and JTGRN fields. They provide no additional information and 
exist only for the convenience of the table diagram generator. 

Assumed sizes of other tables referenced. 

LE@SCTR = D'512 Disk sector length in words 
C@CLSIZE = 0'17 XMP cluster register save area 

size 
LH@ONT = 0'01 Length of ONT linkage word 
LE@DNTSK D'40 IIO stack length 

SR-0011 a A-43 



JT Job Table Area - JTA 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+-------------------------------------------------------+-------+ 
o IN I1111111I 

+-------------------------------------------------------+-------+ 
1 TCB 

+---------------------------------------------------------------+ 
2 FTCB 

+---------------+---------------+-------+-----------------------+ 
3 SID DID I1111111I JXT 

+---------------+---------------+-------+-----------------------+ 
4 TID 

+---------------------------------------------------------------+ 
5 ACN 

+ +-------+ 
6 I1111111I 

+-------------------------------------------------------+-------+ 
7 PWD 

+ +-------+ 
10 I1111111I 

+-------------------------------------------------------+-------+ 
11 USR 

+ +-------+ 
12 I1111111I 

+-------------------------------------------------------+-------+ 
13 AVAL 

$ $ 

144 

+---------------------------------------------------------------+ 
145 SHB 

$ $ 

154 

+---------------------------------------------------------------+ 
155 SHT 

$ $ 

164 

+---------------------------------------------------------------+ 
Figure A-17. Job Table Area 

I A-44 SR-0011 0 

-----------



JT Job Table Area - JTA 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 ..•. + •••• 6 ... 

+---------------------------------------------------------------+ 
165 OWN 1 

+-------------------------------------------------------+-------+ 
166 OWN 2 I1111111I 

+-------------------------------------------------------+-------+ 
167 GSCO 

+---------------------------------------------------------------+ 
170 GSC1 

+---------------------------------------------------------------+ 
171 GSC2 

+---------------------------------------------------------------+ 
172 GSC3 

+---------------------------------------------------------------+ 
173 SSCO 

+---------------------------------------------------------------+ 
174 SSC1 

+---------------------------------------------------------------+ 
175 SSC2 

+---------------------------------------------------------------+ 
176 SSC3 

+---------------------------------------------------------------+ 
177 BKP 

$ $ 

206 

+---------------------------------------------------------------+ 
207 CSTK 

$ $ 

216 

+---------------------------------------------------------------+ 
217 DAA 

+---------------------------------------------------------------+ 
220 FST 

+---------------------------------------------------------------+ 
221 JSL 

+---------------------------------------------------------------+ 
222 IBS 

+---------------------------------------------------------------+ 

Figure A-17. Job Table Area 

I SR-0011 0 A-45 



JT Job Table Area - JTA 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+---------------------------------------------------------------+ 
223 CBS 

+---------------------------------------------------------------+ 
224 HMCC 

$ $ 

227 

+-----------------------+-------+-------------------------------+ 
230 MFL 1///////1 LIB 

+---------------+-------+-------+-------+-----------------------+ 
231 LAC 1///////////////////////1 ABTC 

+---------------+---------------+-------+-------+---------------+ 
232 NLE NSLE NULE NDPU 

+---------------+---------------+---------------+---------------+ 
233 FLF 

+---------------------------------------------------------------+ 
234 DTS 

+---------------------------------------------------------------+ 
235 1///////////////////////////////////////////////////////////////1 

+---------------------------------------------------------------+ 
236 IOC 

+---------------------------------------------------------------+ 
237 BIOR 

+---------------------------------------------------------------+ 
240 LMC 

+---------------------------------------------------------------+ 
241 ARCL 

+---------------------------------------------------------------+ 
242 CCI 

$ $ 

253 

+---------------------------------------------------------------+ 
254 MSG 

$ $ 

273 

+---------------------------------------------------------------+ 
Figure A-17. Job Table Area 

I A-46 SR-0011 0 



JT Job Table Area - JTA 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+---------------------------------------------------------------+ 
274 INS 

$ $ 

313 

+---------------++------------------------------+---------------+ 
314 JSQ 11//////////////////////////////1 TERM 

+--------------+++----------------------+-------+---------------+ 
315 1//////////////1 I NBA lOSC 

+--------------++-----------------------+-----------------------+ 
316 JCB 

+ + 
317 

+ + 

320 

+---------------------------------------------------------------+ 
321 1///////////////////////////////////////////////////////////////1 

+---------------------------------------------------------------+ 
322 FILL 

+---------------+---------------+-------+-----------------------+ 
323 HLD FRE I RATS RAT 

+---------------+---------------+-------+-----------------------+ 
324 sse SLOT 1///////////////////////1 

+---------------+-----------------------+-----------------------+ 
325 DSPD 

$ $ 

354 

+---------------------------------------------------------------+ 
355 DSPl 

$ $ 

404 

+---------------------------------------------------------------+ 

Figure A-17. Job Table Area 

I SR-0011 0 A-47 



JT Job Table Area - JTA 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+---------------------------------------------------------------+ 
405 DNTC 

$ $ 

445 

+---------------------------------------------------------------+ 
446 STKC 

$ $ 

515 

+---------------------------------------------------------------+ 
516 DSPC 

$ $ 

545 

+---------------------------------------------------------------+ 
546 GRN 

$ $ 

565 

+---------------------------------------------------------------+ 
566 NRPD 

$ $ 

661 

+---------------------------------------------------------------+ 
662 DIPD 

$ $ 

755 
+---------------------------------------------------------------+ 

Figure A-17. Job Table Area 

• A-48 SR-OOll 0 



JT Job Table Area - JTA 

0 .... + •••• 1 .... + •••• 2 .•.. + •••• 3 .... + •••• 4 ..•. + •••• 5 ••.. + •••• 6 ... 

+---------------------------------------------------------------+ 
756 JXTI 

$ $ 

1122 

+---------------------------------------------------------------+ 
1123 LFL 

+---------------------------------------------------------------+ 
1124 RDAT 

$ $ 

2063 

+---------------------------------------------------------------+ 
2064 COP 

$ $ 

2113 

+---------------------------------------------------------------+ 
2114 LOP 

$ $ 

2143 

+---------------------------------------------------------------+ 
2144 csa 

$ $ 

3143 

+---------------------------------------------------------------+ 
3144 LGF 

$ $ 

4143 

+---------------------------------------------------------------+ 
Figure 10.-17. Job Table Area 

I SR-0011 0 A-49 



JT Job Table Area - JTA 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+---------------------------------------------------------------+ 
4144 POOL 

$ $ 

n I 
+---------------------------------------------------------------+ 

Figure A-17. Job Table Area 

Identifying information. 

Field Word(base8) Bits Description 

JTJN 0 0-55 Job name 

JTTCB 1 0-63 JTA offset of first TCB 

JTFTCB 2 0-63 JTA offset of free TCB chain 

JTSID 3 0-15 Two character source ID 

JTDID 3 16-31 Two character destination ID 

3 32-39 Reserved for expansion of JTJXT 

JTJXT 3 40-63 Address of JXT entry 

JTTID 4 0-63 Terminal ID 

JTACN 5-6 0-63 Fifteen character account number 

JTACNI 5 0-63 First eight characters 

JTACN2 6 0-55 Last seven characters 

JTPWD 7-10 0-63 Fifteen character password: 

JTPWDI 7 0-63 First eight characters 

JTPWD2 10 0-55 Last seven characters 

JTUSR 11-12 0-63 Fifteen character user number 

• A-50 SR-0011 0 



I 

JT Job Table Area - JTA 

Field Word(base8) Bits Description 

JTUSRI 11 0-63 First eight characters 

JTUSR2 12 0-55 Last seven characters 

The following fields contain ASCII field names plus 
the values of the symbols for aid in debugging and 
for DUMP. 

JTAVAL 13-144 0-63 L@JTAVAL=D'64 

Job statistics. These are aggregate task statistics. 

JTTSX 113 0-63 

JTTSWS 114 0-63 

JTDTSX 115 0-63 

JTTSW 116 0-63 

JTTSD 117 0-63 

JTXMI 120 0-63 

JTDMI 121 0-63 

JTSMI 122 0-63 

JTIOB 123 0-63 

JTIOF 124 0-63 

JTIOR 125 0-63 

JTBIOC 126 0-63 

JTIOS 127 0-63 

JTDLI 130 0-63 

JTMXM 131 0-23 

SR-0011 0 

Time spent executing (cycles) 

Time spent waiting semaphore (Cycles) 

Sum of all deleted tasks' time spent 
executing 

Time spent waiting to execute(cycles) 

Time spent waiting for IIO completion 

(CPU time)*(memory size) floating 

(I/O wait time)*(memory size) floating 

(Wait sem) * (Memory size) floating 

Disk sectors transferred 

FSS sectors transferred 

User IIO requests made 

Number of F$BIO requests made 

Number of IIO suspend requests to CIO 

Count of deadlock interrups for job 

Maximum job size 

A-51 



JT Job Table Area - JTA 

Field Word(base8) Bits Description 

JTMIM 131 24-47 Minimum job size 

JTOPC 131 48-63 Number of open calls by user 

JTPFA 132 0-23 Permanent file space accessed 

JTPFS 132 24-47 Permanent file space saved 

JTCLC 132 48-63 Number of close calls by user 

JTBRF 133 0-23 No. of sectors received from front end 

JTBSF 133 24-47 No. of sectors sent to front end 

JTDDRO 133 48-63 Number of data to disk replies owed 

JTTFS 134 0-23 Temporary file space used 

JTMRD 134 24-39 Number of memory resident datasets 

JTL 134 40-63 Length of job table area 

JTMXFL 135 0-23 Maximum field length used 

JTMIFL 135 24-47 Minimum field length used 

JTMXJT 136 0-23 Maximum JTA used 

JTMIJT 136 24-47 Minimum JTA used 

Flags of every size and flavor. 

JTSEC 137 0 Security flag. CSP is executing 

JTTLE 137 1 Initial time limit expired 

JTADV 137 2 Job in advance 

JTITRM 137 3 Intend to terminate 

JTEOF 137 4 End of file on $CS 

JTKIL 137 5 Job killed 

I A-52 SR-0011 0 



JT Job Table Area - JTA 

Field Word(base8) Bits Description 

JTRRN 137 6 Job rerun 

JTEPO 137 7 OAT changed by OIA task 

JTWUC 137 10 Waiting for user channel reply 

JTIOP 137 11 Inhibit dumpjob processing 

JTEXO 137 12 Execute only dataset open 

JTRST 137 13 Reprieve processing set single thread 

JTDLM 137 14 Disable log messages 

JTTRM 137 15 Job in termination 

JTABT 137 16 Job abort 

JTCMSG 137 17 Enable conditional messages 

JTLGFL 137 18 $LOG size exdeeded I@LGUSZ 

JTJCBX 137 19 Bad JCB detected 

JTSTAT 137 20 Request dataset statistics 

JTTRM1 137 21 Second pass through TRM 

JTCXDS 137 22 Close Execute-only datasets (EXP/ENDP) 

JTINIT 137 23 Job initiated 

JTNRR 137 24 Job not rerunnable 

JTNRO 137 25 Disable no rerun 

JTIPC 137 26 Set if F$IPC request made 

JTOSUP 137 28 Interactive output suspended flag 

JTISUP 137 29 Interactive input suspended flag 

JTIA 137 30 Interactive flag 

I SR-0011 0 A-53 



I 

JT Job Table Area - JTA 

Field Word(base8) Bits 

JTSKP 137 31 

JTMAC 137 32 

JTDNR 137 33 

JTLPP 137 34-41 

JTSDR 137 42 

JTSSM 137 43 

JTVFLG 137 44 

JTETRM 137 45 

JTSCM 137 46 

JTFUA 137 47 

JTSSF 
JTIJF 
JTIJC 

JTIRT 

140 
140 
140 

140 

16-33 
16 

18-33 

40-63 

JTVIO MUST BE A FULL WORD 

JTVIO 141 0-63 

Description 

Control statement skip flag 

Move AC.NO./PW. to JTA flag 

Device-not-ready flag 

Lines per page 

Module is from SDR 

Module wants secure datasets 

Security violation occured flag 

Internal termination flag 

EXU control statement msg flag: 
O=issued, 1=not issued 

Force-unique-access (for AQR) 

Subsystem feature flags 
Set if any F$IJMSG function is used 
Inter-job connection count 

POINTER TO IRT CHAIN 

Number of security violations 

Job-related reprieve information 

JTST 142 0-63 Reprieve status word 

JTFEFW 143 0-63 Reprieve fatal error flags: 
JTFE03 143 1 No DAT space 
JTFE10 143 2 No disk space 
JTFE11 143 3 System directory is full 
JTFE23 143 4 Job time limit exceeded 
JTFE24 143 5 Operator dropped user job 
JTFE41 143 6 Enter allowed on access only 

JTFEXX SUBFIELD 7,1 ** UNASSIGNED ** 

A-54 SR-0011 0 



I 

JT Job Table Area 

JTFE51 
JTFE43 
JTFE94 
JTF260 
JTFENR 

- JTA 

143 
143 
143 
143 
143 

8 
9 

10 
11 
63 

Cluster registers for job. 

JTSEM 144 0-31 

JTSHB 145-154 0-63 

JTSHT 155-164 0-63 

Security information 

JTOWN1 165 0-63 

JTOWN2 166 0-55 

JTGSCO 167 0-63 

JTGSC1 170 0-63 

JTGSC2 171 0-63 

JTGSC3 172 0-63 

JTSSCO 173 0-63 

JTSSC1 174 0-63 

JTSSC2 175 0-63 

JTSSC3 176 0-63 

LFT chain pointer invalid 
User log size exceeded 
HARDWARE ERROR WHILE WRITING $LOG 
Dataset not recoverable after offload 
Not reprievable 

Semaphore registers 

Shared B registers 

Shared T registers 

Dataset owner 1D, characters 1-8 

Dataset owner 1D, characters 9-15 

Global security flags 

Job step security flags 

Breakpoint control information. 

JTBKP 177-206 0-63 

JTCSTK 207-216 0-63 

SR-0011 0 

L@JTBKP=D'8 Length of breakpoint 
information 

User breakpoints 
MAXPRLVL=7 Maximum nesting level, 

with $CS 

Control statement file stack base 

A-55 



JT Job Table Area - JTA 

Field Word(baseS) Bits 

JTDAA 217 0-63 

JTFST 220 0-63 

JTJSL 221 0-63 

JTIBS 222 0-63 

JTCBS 223 0-63 

JTHMCC 224-227 0-63 

JTATCC 225 0-63 

JTFTCC 226 0-63 

JTTACC 227 0-63 

JTMFL 230 0-23 

JTLIB 230 32-63 

JTLAC 231 0-15 

JTABTC 231 40-63 

JTNLE 232 0-15 

JTNSLE 232 16-31 

JTNULE 232 32-47 

JTNDPU 232 4S-63 

JTFLF 233 0-63 

JTDTS 234 0-63 

JTIOC 236 0-63 

JTBIOR 237 0-63 

• A-56 

Description 

Pointer to device name table 

Pointer to FSS accounting table 

JCL symbol list chain control word 

Iterative block stack chain control 

Conditional block stack chain control 

Hardware perf.mon. chain control 

Active TCB chain control 

Free TCB chain control 

Task accounting chain control 

Maximum FL 

Library search JTA offset 

Last abort code 

Job step abort code (ABxxx) 

Number of LFT entries in JTA 

NUMBER OF JTA LFTS WHICH POINT TO 
SYSTEM-AREA USER LFTS 

NUMBER OF JTA LFTS WHICH POINT TO 
USER-AREA USER LFTS 

NUMBER OF USER-AREA SYSTEM DSPS 

JTA offset of first link in LFT chain 

RT clock at rollout 

Count of active I/O requests/functions 

Number of active F$BIO requests 

SR-0011 0 



JT Job Table Area - JTA 

Field Word(base8) Bits 

JTLMC 240 0-63 

JTARCL 241 0-63 

JTCCI 242-253 0-63 

JTMSG 254-273 0-63 

JTINS 274-313 0-63 

JTJSQ 314 0-15 

JTTRM2 314 16 

JTTERM 314 48-63 

JTMR 315 15 

JTNBA 315 16-39 

JTIOSC 315 40-63 

JTJCB 316-320 0-63 

JTCHLM 316 16-39 

JTCFL 316 40-63 

JTCNDP 317 0-15 

JTCBFB 317 16-39 

JTCDSP 317 40-63 

JTCNLE 320 0-15 

JTCMFL 320 16-39 

JTCLFT 320 40-63 

I SR-0011 0 

Description 

Lock-in-memory counter 

Recall-on-any user task bit map DNTMSK 
L@JTCCI=D'80/D'8 80 character 

buffer for 
control stmt 

L@JTMSG=D'128/D'8 128 character 
buffer for last 
$LOG msg 

L@JTINS=O'20 JTA installation words 

Control statement being prescanned 

Last logfile message issued 

Reserved for installation 

Job sequence number 

MSG flag to terminate job immediately 

Termination status 

Outstanding memory request flag 

New buffer address 

IIO suspend counter 

JCB save area 

End of user code, JCB relative 

Current field length, in words 

Number of DSPs in system area 

Base of system buffers, JCB relative 

Base of sytem DSPs, JCB relative 

Number of LFTs in system area 

Maximum field length, in words 

Base of system LFTs, JCB relative 

A-57 



JT 

I A-58 

Job Table Area - JTA 

Field Word(base8) Bits Description 

JTFILL 322 0-63 

JTHLD 323 0-15 Implicit hold bit map 

JTFRE 323 16-31 G.R. - first request encountered 

JTRATS 323 32-39 Size if RAT save area 

JTRAT 323 40-63 RAT save area in JTA pool 

JTSSC 324 0-15 Station slot word count 

JTSLOT 324 16-39 Station slog address (JTA-relative) 

Allocate DNT/DSP space for the datasets that the system 
performs the 1/0 on. 

JTDSPD 325-354 0-63 $DUMP Dataset parameter table (DSP) 

JTDSPI 355-404 0-63 Submit dataset parameter table (DSP) 

JTDNTC 405-445 0-63 $CSP Dataset Name Table (DNT) 

JTSTKC 446-515 0-63 1/0 stack for CSP reads 

JTDSPC 516-545 0-63 $CSP Dataset parameter table (DSP) 

Allocate space for various tables. 

JTGRN 546-565 

JTNRPD 566-661 

JTDIPD 662-755 

JTJXTI 756-1122 

JTLFL 1123 

JTRDATl124-2063 

0-63 

0-63 

0-63 

0-63 

0-63 

0-63 

Pointers to G. R. accounting tables 

PDD for NORERUN 

PDD for diagnostic requests 
L@JTRDAT=D'16*D'30 Length of 

roll image 
DAT space 

JXT image at time of rollout 

Last word of roll image 

DAT for roll dataset 

Allocate the space for $CS and $LOG DSPs and circular buffers. 

SR-0011 0 



I 

JT Job Table Area - JTA 

j+177 

Field Word(base8) Bits Description 

JTCDP 2064-2113 0-63 $CS Dataset parameter table (DSP) 

JTLDP 2114-2143 0-63 $LOG Dataset parameter table 

JTCSB 2144-3143 0-63 $CS Circular buffer base 

JTLGF 3144-4143 0-63 $LOG Circular buffer base 

Dynamic area of JTA. Initialize with the DNTs for 
$CS (control statements) and $LOG (logfile messages). 

(DSP) 

JTPOOL 4144-n 0-63 First word of JTA pool, header word 

The POOL initially contains DNTs for $CS and $LOG. These 
are not shown due to problems with the table diagram 
generator. 

Detailed structure of user breakpoints 

0 .... + .... 1 .... + .... 2 .... + .... 3 .... + .... 4 .... + .... 5 .... + .... 6 ... 

+---------------+-----------------------+-----------------------+ 
BKPP BKP2 BKP1 

+---------------+-----------------------+-----------------------+ 

Figure A-lB. JTA User Breakpoints 

Field Word(baseB) Bits Description 

JTBKPP j +177 0-15 Contents of replaced parcel 

JTBKP2 j+177 16-39 Breakpoint reset address 

JTBKP1 j +177 40-63 Breakpoint address 

SR-0011 0 A-59 

-------------------------------------------------~ -~ -----.--~ 



• 

JT Job Table Area - JTA 

DEFINE THE POINTER FIELDS WITHIN THE MEMORY POOL 
AREAS FOR THE JTA DNT'S 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+---------------+-----------------------+-----------------------+ 
o 1///////////////1 DBL DFL 

+---------------+-----------------------+-----------------------+ 

Figure A-19. JTA DNTs 

Field Word(base8) Bits Description 

JTDBL 0 16-39 DNT BACKWARD LINK 

JTDFL 0 40-63 DNT FORWARD LINK 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+---------------------------------------------------------------+ 
11 USR 

+---------------------------------------------------------------+ 

Figure A-20. Provide Tags for JTUSR 

Field Word(base8) Bits Description 

JTUSR 11 0-63 

A-60 SR-0011 0 



JT Job Table Area - JTA 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+---------------------------------------------------------------+ 
546 GRN 

+---------------------------------------------------------------+ 
Figure A-21. Provide Tags for JTGRN 

Field Word(base8) Bits Description 

JTGRN 546 0-63 

I SR-0011 0 A-61 



• 

LD Label Definition Table - LDT 

A-62 

The Label Definition Table describes the tape label, and 
consists of four parts: the LDT header, volume header, header 
which points to the other entries, these entries are optional 
and can appear anywhere after the header. The following 
conditions must be met for constructing a Label Definition 
Table (LDT): 

• The header must be present. 

• The header must precede each entry. 

• Each entry must be pointed to by the offset value in the 
LDT header. Zero is used for absent fields. 

• The lengths of the whole LDT and of each entry must be set 
in the proper fields. 

• The length value for volume 1 must be at least the length 
of the entire first VSN. The length value for either 
header 1 or header 2 must be at least the defined length 
of the respective entry • 

SR-OOll 0 

-------- -~- -- --



I 

LD Label Definition Table - LDT 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 ..•. + •••• 5 .... + •••• 6 ... 

+-----------------------+-----------------------+---------------+ 
o TN 1111111111111111111111111 TL 

+---+---++++------------+---+---+-------+-------+---------------+ 
1 IFD ILT I I I IIIIIIIIIIIIIIIIIIIDCIIIIIIIII DNT 

+---+---++++----+-----------+---+-------+-----------------------+ 
2 11111111111111111 V1B H1B 

+---------------+-----------------------+-----------------------+ 
3 11111111111111111 H2B NXT 

+---------------+-----------------------+-----------------------+ 

Figure A-22. Label Definition Table Header 

Field Word(base8) Bits 

LDTN o 0-23 

LDTL o 48-63 

LDFD 1 0-3 

LDLT 1 4-7 

LDPROT 1 8 

LDCAT 1 9 

SR-OOll 0 

Description 

Table name ('LDT' in ASCII) 

Table length (variable) 

Foreign dataset translation identifier 
This field is used to indicate whether 
run time foreign dataset translation 
should be performed on this dataset. 

Requested label type: 
0 TPLNL Non-labeled 
1 TPLAL ANSI-standard label 
2 TPLSL IBM standard labels 
3 TPLBP BY-PASS LABEL 
4 TPLFR UNSUPPORTED LABEL 
5 TPLFAL FIELD ANSI LABELED 
6 TPLFNL FIELD NON LABELED 
7 TPLFSL FIELD IBM LABELED 

Protected access indicator. If 
non-zero for a new tape dataset then 
the dataset is to be protected on 
the servicing front-end. 

Cataloged dataset indicator 

A-63 



• 

LD Label Definition Table - LDT 

Field Word(base8) Bits 

LDCV 1 10 

LDIDC 1 28-31 

LDDNT 1 40-63 

LDV1B 2 16-39 

LDH1B 2 40-63 

LDH2B 3 16-39 

LDNXT 3 40-63 

Description 

Dataset data conversion flag. 
This field is used to indicate whether 
implicit data conversion shall be done 
by the run time library. 

Initial dataset desposition 
o TPOLD Old dataset 
1 TPNEW New dataset 

Dataset name table (DNT) pointer. 
The field value is JTA-relative. 

Offset of volume 1 entry, relative 
to LDT base. If the LDT does not 
contain a VOL1 entry, this field 
must be zero. 

Offset of header I entry, relative 
to LDT base; must be zero if there 
is no HDR1 entry 

Offset of header 2 entry, relative 
to LDT base; must be zero if there 
is no HDR2 entry 

PTR TO NEXT LDT FOR CONCATENATION 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+---------------------------------------+-----------------------+ 
1 1///////////////////////////////////////1 FSH 

+---------------------------------------+-----------------------+ 

Figure A-23. Header Redefiniton of LDDNT 

Field Word(base8) Bits Description 

LDFSH 1 40-63 Front-end service header offset 

A-64 SR-0011 0 



I 

LD Label Definition Table - LOT 

o 

1 

2 

3 

4 

5 

VOLUME 1 ENTRY 

The volume 1 entry corresponds to volume 1 labels for all 
volumes in the dataset. The volume 1 entry can be placed 
anywhere after the header, as long as the LDV1B header field 
points to it properly. The volume 1 entry is optional. 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+-------------------------------+---------------+---------------+ 
VaLl VSB VL1L 

+---------------+---------------+-------+-------+---------------+ 
VSNL CVN DT 1///////1 FVN 

+---------------+---------------+-------+-------+---------------+ 
010 

+ +---------------+ 
1///////////////1 

+-----------------------------------------------+---------------+ 
GDN 

+-----------------------------------------------++--+---+-------+ 
VSN I I / / I VDC I VAC 

+-----------------------------------------------++--+---+-------+ 

Figure A-24. VaLl Entry Description 

Field Word(base8) Bits Description 

LDVOL1 0 0-31 Entry name ( 'VaLl' in ASCII) 

LDVSB 0 32-47 Volume serial list base offset 

LDVL1L 0 48-63 Volume 1 length 

LDVSNL 1 0-15 Number of VSNs in entry 

LDCVN 1 16-31 Current VSN ordinal 

LOOT 1 32-39 Device type 
LDDT6250=0 0 TPD62 6250 BPI 
LDDT1600=1 1 TPD16 1600 BPI 
LDDT3480=2 2 3480 DEVICE 

SR-0011 a A-65 



I 

LD Label Definition Table - LDT 

5 

A-66 

Field Word(base8) Bits 

LDFVN 1 48-63 

LDOID 2-3 0-63 

LDOID1 2 0-63 

LDOID2 3 0-47 

LOGON 4 0-63 

LOVSN 5 0-47 

LDVRG 5 48 

LDVDC 5 52-55 

LDVAC 5 56-63 

Description 

Final VSN ordinal: ordinal of VSN 
corresponding with the volume 
sequence number in access condition 

Owner identifier 

Characters 1-8 

Characters 9-14 

Generic device name 

Beginning VSN 

Volume-registered flag, set by a 
servicing front-end. When set, the 
VSN is from front-end catalog. 

Volume disposition 
o TPOLD Existing dataset 
1 TPNEW New volume to dataset 

Volume accessibility character, 
obtained from the label group 

0 •.•. + •.•• 1 .••. + ..•. 2 .... + •... 3 ••.• + .... 4 .•.. + ...• 5 .•.. + ...• 6 ... 

+-----------------------------------------------+---------------+ 
VSN1 11111111111111111 

+-----------------------------------------------+---------------+ 

Figure A-25. Redefinition of LDVSN? 

Field Word(base8) Bits Description 

LDVSN1 5 0-47 
LE@VOL1=W@LOVSN+I@TMV 

SR-0011 0 



I 

LD Label Definition Table - LDT 

o 

1 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

HEADER 1 ENTRY 

The header 1 entry describes dataset attributes and 
corresponds to the HDR1, EOF1, and EOV1 labels for all 
volumes in the dataset. Header 1 shows numeric fields in 
both binary and ASCII. COS uses ASCII for generating and 
validating the label group. If a field is changed, both 
versions must be changed. ASCII fields are right-justified 
with leading zeros. The header 1 entry is optional and can 
be placed anywhere after the header, provided it is pointed 
to by header field LDH1B. 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••. + .... 5 •••• + .... 6 ••• 

+-------------------------------+---------------+---------------+ 
HDR1 1///////////////1 HR1L 

+-------------------------------+---------------+---------------+ 
FID1 

+---------------------------------------------------------------+ 
FID2 

+---------------------------------------------------------------+ 
FlD3 

+---------------------------------------------------------------+ 
FID4 

+---------------------------------------------------------------+ 
FID5 

+-------------------------------+---------------+---------------+ 
FID6 CVSQ FVSQ 

+-------------------------------+---------------+---------------+ 
FSEC CSEC 

+-------------------------------+-------+-------+---------------+ 
FSEQ DAC VN FSQ 

+-------------------------------+-------+-------+---------------+ 
GEN GN G~ 

+-------------------------------+---------------+---------------+ 
CDT 1///////////////1 

+-----------------------------------------------++--------------+ 
~T II RT 

+-----------------------------------------------++--------------+ 
BLK 1///////////////1 

+-----------------------------------------------+---------------+ 

Figure A-26. HDR1 Entry Description 

SR-0011 0 A-67 



I 

LD Label Definition Table - LOT 

15 

16 

17 

20 

A-68 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+-----------------------------------------------+---------------+ 
SET 1///////////////1 

+-------------------------------+---------------+---------------+ 
FBC VBC 

+-------------------------------+-------------------------------+ 
SCOD 

+ +-----------------------+ 
1///////////////////////1 

+---------------------------------------+-----------------------+ 

Figure A-26. HDR1 Entry Description 

Field Word(base8) Bits 

LDHDR1 o 0-31 

LDHR1L o 48-63 

LDFID1 1 0-63 

LDFID2 2 0-63 

LDFID3 3 0-63 

LDFID4 4 0-63 

LDFID5 5 0-63 

LDFID6 6 0-31 

LDCVSQ 6 32-47 

LDFVSQ 6 48-63 

LDFSEC 7 0-31 

Description 

Entry name ('HDR1' in ASCII) 

Header 1 length 

Characters 1-8 

Characters 9-16 

Characters 17-24 

Characters 25-32 

Characters 33-40 

Characters 41-44 

Current volume sequence number (file 
section number), binary equivalent 
of LDCSEC 

First volume sequence number (file 
section number), binary equivalent 
of LDFSEC 

First file section number (volume 
sequence number) in ASCII, the 
ordinal number of the volume to be 
mounted first 

SR-0011 0 



I 

LD Label Definition Table - LDT 

Field Word(base8) Bits 

LDCSEC 7 32-63 

LDFSEQ 10 0-31 

LDDAC 10 32-39 

LDVN 10 40-47 

LDFSQ 10 48-63 

LDGEN 11 0-31 

LDGN 11 32-47 

LDGVN 11 48-63 

LDCDT 12 0-47 

LDCSP 
LDCYR 
LDCDY 

LDXDT 

SR-0011 0 

12 
12 
12 

13 

0-7 
8-23 

24-47 

0-47 

Description 

Current file section number (volume 
sequence number) in ASCII, the 
ordinal number of the currently 
mounted volume 

File sequence number (ASCII) ordinal 
of the dataset being accessed. If 
FSEQ > 1, volume should have more 
than one dataset. 

Dataset accessibility character. 

Generation version number, numeric 
equivalent of LDGVN 

File sequence number, numeric 
equivalent of LDFSEQ 

Generation number. Any value other 
than one indicates that a dataset is 
in a generation data group. 

Generation number, numeric 
equivalent of LDGEN 

Generation version number (ASCII). 
Any value other than 0 indicates 
that the dataset is in a generation 
data group. 

Creation date (ASCII). This field 
indicates the creation date of the 
dataset in the julian form: 
'yyddd'. Note the space (LDCSP) 
must be present. 

Space 
Year 
Day 

Expiration date; same format as 
creation date above 

A-69 



I 

LD Label Definition Table 

A-70 

LDXSP 
LDXYR 
LDXDY 

LDUXD 

LDRT 

LDBLK 

LDSET 

LDFBC 

LDVBC 

LDSCOD 

LDSCD1 

LDSCD2 

13 
13 
13 

13 

13 

14 

15 

16 

16 

17-20 

17 

20 

- LDT 

0-7 
8-23 

24-47 

48 

49-63 

0-47 

0-47 

0-31 

32-63 

0-63 

0-63 

0-39 

Space 
Year 
Day 

User specified XDT (expiration date) 
flag 

Retention period, integer days 

Volume block count (ASCII): number 
of user data blocks present, read 
from or written into the label. Can 
be inaccurate because overflow 
causes it to be cleared; see LDVBC 
for an accurate count. 

File set identifier, normally set to 
the serial number of first volume in 
the dataset 

File block count (binary) 

Volume block count (binary), number 
of blocks written on volume so far 

System identification code, to 
identify the operating system or 
computer system that generated the 
tape 

Character 1-8 

Character 9-13 
identify the operating system or 
computer system that generated the 
tape 

LE@HDR1=W@LDSCD2+1 

SR-0011 0 



I 

LD Label Definition Table - LDT 

o 

1 

2 

3 

4 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+-------------------------------+---------------+---------------+ 
HDR2 11111111111111111 HR2L 

+-------+-------+------+--------+---------------+---------------+ 
FMT BA RF I I I I I I I I I I MBS 

+-------+-------+------+--------+-------------------------------+ 
BFO 11111111111111111 MRS 

+---------------+---------------+-------+-----------------------+ 
BL 1111111111111111111111111 

+---------------------------------------+-----------------------+ 
RL 1111111111111111111111111 

+---------------------------------------+-----------------------+ 

Figure A-27. HDR2 Entry Description 

Field Word(base8) Bits 

LDHDR2 o 0-31 

LDHR2L o 48-63 

LDFMT 1 0-7 

LDBA 1 8-15 

LDRF 1 16-22 

Description 

Entry name ('HDR2' in ASCII) 

Header 2 length 

Record format, two types 
IBM label types: 

F Fixed-length records 
V Variable-length records 
U Undefined record format 

ANSI label types: 
F Fixed-length records 
D Variable-length records 
S Records span tape blocks 

Blocking attributes, IBM label types 
only: 

B Blocks are an integral multiple 
of the record size 

S Records span tape blocks 
R Records span tape blocks, and 

the blocks are an integral 
multiple of the record size 

Record format. 

SR-0011 0 A-71 



I 

LD Label Definition Table - LDT 

Field Word(base8) Bits 

LDMBS 1 32-63 

LDBFO 2 0-15 

LDMRS 2 32-63 

LDBL 3 0-39 

LDRL 4 0-39 

A-72 

Description 

Maximum block size (binary), maximum 
size of any tape block that can be 
read or written 

Buffer offset, ANSI only (not 
currently supported by COS) 

Maximum record size (binary) , 
maximum size of any record that can 
be read or written 

Maximum block size (ASCII), maximum 
number of bytes in a tape block, 
read from or written into the 
label. Can be inaccurate because 
overflow causes it to be cleared; 
see LDMBS for an accurate count. 

Maximum record size (ASCII), maximum 
number of bytes in a tape record, 
read from or written into the 
label. Can be inaccurate because 
overflow causes it to be cleared; 
see LDMRS for an accurate count. 

LE@HDR2=W@LDRL+1 

SR-0011 0 



LF Logical File Table - LFT 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 ••.. + •••• 6 ... 

+-------------------------------------------------------+-------+ 
o DN 1///////1 

+---+-----------------------------------+---------------+-------+ 
1 IOSTI///////////////////////////////////1 DSP 

+---+-----------------------------------+-----------------------+ 

Figure A-28. Logical File Table 

Field Word(base8) Bits Description 

LFDN 0 0-55 Dataset name 

LFOST 1 0-3 DATASET OPEN STATUS 

LFDSP 1 40-63 DSP address 

I SR-OOll ° A-73 



I 

00 Open Dataset Table - ODN 

0 •••• + .... 1 ••.• + .... 2 •••• + .... 3 •••. + .... 4 ..•. + .... 5 ...• + .... 6 .•. 

+-------------------------------------------------------+-------+ 
o ON 11/11111$ 

+++++++-+-----------------------+---+---+---------------+-------+ 
1 $111111 I I LOT IIIIIOSTI DSP 

A-74 

+++++++-+-----------------------+---+---+-----------------------+ 

Figure A-29. Open Dataset Table 

Field Word(base8) Bits 

ODDN 0 0-55 

ODV 1 1 

ODM 1 2 

ODS 1 3 

ODH 1 4 

ODUDS 1 5 

ODLDT 1 8-31 

ODOST 1 36-39 

ODDSP 1 40-63 

Description 

Dataset name 

Close volume 

Open for 'mod' (append) 

Close or open with saved position 

Hold resources 

Open as unblocked flag 

LOT address 

TYPE OF OPEN REQUESTED 
OSTSA=O Create DSP/LFT buffer in 

system area 
OSTUA=l Create DSP/LFT/buffer in 

user area 
OSTMSY=2 DSP/LFT/buffer moved to 

system area 

DSP pointer: 
Negative: negative offset 
Positive: absolute address 

SR-0011 0 



OP Parameter Block for F$OPT - OPT 

This table is passed for an F$OPT call. 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+---------------------------------------------------------------+ 
o LPP 

++++---+--------------------------------------------------------+ 
1 I I I IPNNIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII111111I 

++++---+--------------------------------------------------------+ 

Figure A-30. Parameter Block for F$OPT 

Field Word(base8) Bits Description 

OPLPP 0 0-63 Page length 

OPSTAT 1 0 Dataset statistics enabled 

OPPNCH 1 1 NZ if OPTION,PN selected 

OPPNAS 1 2 NZ if PN=n, ZR if PN=ANY 

OPPNN 1 3-6 Processor number (if @OPPNAS NZ) 

I SR-0011 0 A-75 



I 

PM Permanent Dataset Definition - PDD 

A-76 

A PDD is a parameter list that accompanies a Permanent 
Dataset Management request. 

The PDD illustrated in table A-1 is used for all save, 
access, dump access, load, modify, permit, rewrite SDT, 
pseudo-access, and permanent dataset name requests. 

The PDD illustrated in figure A-31 is used for both DSC 
and DXT page requests, and for dump time requests. 

The PDD illustrated in figure A-32 is used for all delete, 
release, and adjust requests. 

The PDD illustrated in figure A-33 is used for queue and 
dequeue SDT requests, and for get and link DXT requests. 

The PDDs starting with figure A-34 are function oriented; 
most are used for archive feature support. 

Table A-1. Permanent Dataset Function Codes 

Symbol 

PMFCSU 
PMFCSI 
PMFCSO 
PMFCAU 
PMFCAI 
PMFCAO 
PMFCDU 
PMFCDI 
PMFCDO 
PMFCPG 
PMFCPX 
PMFCLU 
PMFCLI 
PMFCLO 
PMFCRL 
PMFCPN 
PMFCPNI 
PMFCPNO 
PMFCDT 
PMFCDQ 

Octal 
Code 

10 
12 
14 
20 
26 
26 
30 
36 
36 
40 
41 
50 
52 
54 
60 
70 
72 
74 
100 
110 

Function 

Save user dataset 
Save input dataset 
Save output dataset 
Access user dataset 
Access spooled dataset 
Access spooled dataset 
Delete user dataset 
Delete spooled dataset 
Delete spooled dataset 
DSC Page request 
DXT Page request 
Load user dataset 
Load input dataset 
Load output dataset 
PDS/Release request 
PDN request 
PDN request - input datasets 
PDN request - output datasets 
Dump time request 
Dequeue SDT 

SR-0011 0 



I 

PM Permanent Dataset Definition - PDD 

SR-0011 0 

PMFCEA 120 
PMFCEI 122 
PMFCEO 124 
PMFCAD 130 
PMFCMD 140 
PMFCRSDT 150 
PMFCPSAC 160 
PMFCPU 170 
PMFCPO 176 
PMFCPI 176 
PMFCPE 200 
PMFCLKDX 210 
PMFCCTXT 221 
PMFCCSLT 222 
PMFCCTAS 223 
PMFCACDC 231 
PMFCACDX 232 
PMFCACMC 233 
PMFCACBC 234 
PMFCLDMC 243 
PMFCLDBC 244 
PMFCONBU 250 
PMFCONSM 251 
PMFCONRC 252 
PMFCONCU 253 
PMFCONBH 254 
PMFCONSH 255 
PMFCONRH 256 
PMFCONCH 257 
PMFCOFBU 260 
PMFCOFSM 261 
PMFCOFRC 262 
PMFCOFCU 263 
PMFCOFBH 264 
PMFCOFSH 265 
PMFCOFRH 266 
PMFCOFCH 267 
PMFCSDEI 270 
PMFCCDEI 300 
PMFCRET 311 
PMFCMIG 312 
PMFCDEL 313 
PMFCSBRS 321 
PMFCCBRS 322 
PMFCSRLD 330 

Queue SDT to available queue 
Queue SDT to input queue 
Queue SDT to output queue 
Adjust user dataset 
Modify user dataset 
Rewrite input SDT entry 
Pseudo-access for RRJ 
Access user saved dataset for PDSDUMP 
Access output dataset for PDSDUMP 
Access input dataset for PDSDUMP 
Permit Request 
Link DXT Request 
Copy Text to buffer 
Copy Station Slot to buffer 
Copy Text and Station Slot to buffer 
Access Dataset Catalog 
Access Dataset Catalog Extension 
Access Master Catalog 
Access Backup Catalog 
Load Master Catalog 
Load Backup Catalog 
Logon Backup System Job 
Logon Space Manager System Job 
Logon Recall System Job 
Logon Cleanup System Job 
Logon Backup Helper Job 
Logon Space Manager Helper Job 
Logon Recall Helper Job 
Logon Cleanup Helper Job 
Logoff Backup System Job 
Logoff Space Manager System Job 
Logoff Recall System Job 
Logoff Cleanup System Job 
Logoff Backup Helper Job 
Logoff Space Manager Helper Job 
Logoff Recall Helper Job 
Logoff Cleanup Helper Job 
Set Dataset Edition Interlock 
Clear Dataset Edition Interlock 
Retire Dataset Edition 
Migrate Dataset Edition 
Delete Dataset Edition 
Set Backup Required Status 
Clear Backup Required Status 
Set Reload Requested Status 

A-77 



PM Permanent Dataset Definition - PDD 

PMFCBUAC 340 Backup Access 
PMFCRLD 350 Reload Dataset Edition 
PMFCWRBC 360 Write Backup Catalog 
PMFCGLDV 370 Get Logical Device Information 
PMFCGRRL 400 Get Recall/Restore List 
PMFCSRET 411 Set Retirement Requested Status 
PMFCSRES 412 Set Restore Requested Status 
PMFCSDEL 413 Set Delete Requested Status 
PMFCARCL 420 Abort Recall Requests 
PMFCGKEY 430 Return hash key and region FWA 
PMFCDAU 440 Copy DAT to STP and place address in DNT 

(User permanent dataset) 
(System request only) 

PMFCDAI 441 Copy DAT to STP and place address in DNT 
(Input spooled dataset) 
(System request only) 

PMFCDAO 442 Copy DAT to STP and place address in DNT 
(Output spooled dataset) 
(System request only) 

PMFCCDWU 450 Set/clear DCDWN bit in DSC 
(User permanent dataset) 
(System request only) 

PMFCCDWI 451 Set/clear DCDWN bit in DSC 
(Input spooled dataset) 
(System request only) 

PMFCCDWO 452 Set/clear DCDWN bit in DSC 
(Output spooled dataset) 
(System request only) 

• A-78 SR-0011 0 



PM Permanent Dataset Definition - PDD 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

++++++-+-+-++++---------+-------+-------+-----------+-----------+ 
o I I I I I 1*1*1*1 I I 11111111111 VER I SIZE ST FC 

++++++-+-+-++++---------+-------+-------+-----------+---+-------+ 
1 DN 11111111I 

+-------------------------------------------------------+-------+ 
2 PDN 

+ +-------+ 
3 111111111 

+-------------------------------------------------------+-------+ 
4 ID 

+---------------------------------------------------------------+ 
5 USR 

+ +-------+ 
6 111111111 

+-----------------------+---------------+-----------+---+-------+ 
7 TXT FM RT ED 

+-----------------------+---------------+-----------+---+------++ 
10 OJB 1111111I1 

+---------------+---------------+---------------+-------+------++ 
11 SID DID DC JSQ 

+---------------+---------------+---------------+---------------+ 
12 TID 

+---------------------------------------------------------------+ 
13 SF 

++++-------++++++---------------+-----------------------+-------+ 
14 I I I I TXL I I I I I I MFL TL PR 

++++-------++++++---------------+-----------------------+-------+ 
15 RD 

+---------------------------------------------------------------+ 
16 WT 

+---------------------------------------------------------------+ 
17 MN 

+-------------------------------------------------------+-------+ 
20 JCN 111111111 

+-------------------------------------------------------+-------+ 
CL 111111111 

++-------+---------------+-----------------------+-----++-------+ 
22 II JSP JCR OLM I RJST I I IJSP 

+++--+-+-+-----++--------+--------------+--------+-----++-------+ 
23 1*1**1*1111111111 TPB TPV 

+-+--+-+-------++-----------------------+-----------------------+ 

Figure A-31. Permanent Dataset Definition 

I SR-0011 0 A-79 



PM Permanent Dataset Definition - PDD 

0 •.•• + .... 1 •••• + .... 2 .••• + .... 3 •.•• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

++--+++--+------------------------------------------------------+ 
24 I I ** I I I ** I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

++--+++--+------------------------------------------------------+ 
25 I 1111111111111111111111111111111111111111111111111111111111111111 

++--------------------------------------------------------------+ 
26 I 1111111111111111111111111111111111111111111111111111111111111111 

+++---------------------------------------------+---------------+ 
27 1*11/11111111111111111111111111111111111111111111 TXO 

+++-----+-----------------------+---+-----------+---------------+ 
30 I11111111 LSD I111I FPE 

++------+-------+---------------+---+-----------+---------------+ 
31 ACS DSZ OJSQ 

+---------------+-------------------------------+---------------+ 
32 CRT 

+---------------------------------------------------------------+ 
33 ACT 

+---------------------------------------------------------------+ 
34 TDM 

+---------------------------------------------------------------+ 
35 MOD 

+-------+-------+-----------+-----------------------------------+ 
36 SSC TXC MML 1111111111111111111111111111111111111 

+++-+-+-+-------+-----------+---+-------------------------------+ 
37 I I 1*1*1*1 PAM ADNM 111111111111111111111111111111111 

+++-+-+-+-------+---------------+-----------------------+-------+ 
40 ADN 111111111 

+-------+-----------------------+-----------------------+-------+ 
41 I NOTL NOTE 111111111111111111111111111111111 

+-------+-----------------------+-------------------------------+ 
42 CHG 

+---------------------------------------------------------------+ 
43 OWN 

+ +-------+ 
44 I11111111 

+-------------------------------------------------------+-------+ 
45 DNS 

+---------------------------------------------------------------+ 
46 ACN 

+ +-------+ 

47 I1111111I 

+-------------------------------------------------------+-------+ 

Figure A-31. Permanent Dataset Definition 

• A-SO SR-0011 0 



I 

PM Permanent Dataset Definition - PDD 

50 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 ••.• + •••• 5 .•.• + •••• 6 •.• 

+---------------------------------------------------------------+ 
GRN 

+---------------------------------------------------------------+ 
Figure A-31. Permanent Dataset Definition 

LE@MPDD=l Minimum PDD size 

Field Word(base8) Bits 

PMSG 0 0 

PMERR 0 1 

PMWAIT 0 2 

PMNRLS 0 3 

PMAQR 0 4 

PMTP 0 5-6 

PMTCS 0 7-8 

PMEXO 0 9-10 

PMDTR 0 11 

PMSMT 0 12 

PMDFFL 0 13 

PMVER 0 24-31 

PMSIZE 0 32-39 

PMST 0 40-51 

PMFC 0 52-63 

PMDN 1 0-55 

LE@PDD11=D'31 COS 1.11 PDD 
size 

Description 

Normal completion message 
suppression indicator 

Error message suppression indicato 

WAIT flag for a disposed dataset 

No release of dataset on DISPOSE 

Acquire flag for accounting 

Tape dataset (online/staged) 

Tape dataset character set 

Execute only 

Update dump-time on PDSDUMP access 

Submit flag 

Job-used-MFL-default flag 

PDD Version number 

PDD size in words 

Return status 

Function code (see chart PM-1) 

Local dataset name 

SR-0011 0 A-81 



PM Permanent Dataset Definition 

Field Word(base8) Bits 

PMPDN 2-3 0-63 

PMPDN1 2 0-63 

PMPDN2 3 0-55 

PM1D 4 0-63 

PMUSR 5-6 0-63 

PMUSR1 5 0-63 

PMUSR2 6 0-55 

PMTXT 7 0-23 

PMFM 7 24-39 

PMRT 7 40-51 

PMED 7 52-63 

PMOJB 10 0-55 

PMDWN 10 63 

PMS1D 11 0-15 

PMD1D 11 16-31 

PMDC 11 32-47 

PMJSQ 11 48-63 

I A-82 

- POD 

Description 

Permanent dataset name 

Characters 1-8 

Characters 9-15 

User identification 

User number 

Characters 1-8 

Characters 9-15 

Address of optional text field 

Format designator (two characters) 
FMCD=CD Character/deblocked 
FMCB=CB Character/blocked 
FMBD=BD Binary/deblocked 
FMBB=BB Binary/blocked 

Retention period; 0-4095 days. 

Edition number (0-4095) 

Originating job name 

New state of DCDWN bit (FC=45x) 

Source 10; 2 characters. 

Destination 10; 2 characters. 

Disposition code; 2 characters. 
DC1N=1N Job dataset 
DCST=ST Dataset to be staged 

Scratch dataset 
Print dataset 
Punch dataset 
Plot dataset 

DCSC=SC 
DCPR=PR 
DCPU=PU 
DCPT=PT 
DCMT=MT Magnetic tape dataset 

Job sequence number 

SR-0011 0 



I 

PM Permanent Dataset Definition 

Field Word(base8) Bits 

PMTID 12 0-63 

PMSF 13 0-63 

PMUQ 14 0 

PMENT 14 1 

PMIR 14 2 

PMTXL 14 3-10 

PMNRR 14 11 

PMINIT 14 12 

PMIA 14 13 

PMDFR 14 14 

PMNA 

PMMFL 
PMSGFL 
PMFL 

PMTL 

PMPR 

PMRD 

PMWT 

PMMN 

PMJCN 

PMCL 

SR-0011 0 

14 

14 
14 
14 

14 

14 

15 

16 

17 

20 

21 

15 

16-31 
16 

17 -31 

32-55 

56-63 

0-63 

0-63 

0-63 

0-55 

0-55 

- POD 

Description 

Terminal ID; 1-8 characters. 

Special forms 

Unique access required 

Enter in System Directory 

Immediate reply requested 

Number of words of text 

Job rerun flag; set if job cannot 
rerun (input entries only). 

Job initiate flag; set if job has 
been initiated. 

Interactive flag 

Deferred disposition indicator 

No abort flag. If set, processing 
continues even if an error is 
encountered. 

MFL parameter from job card (input 
All available memory requested 
Field length/512 

Time limit (input datasets) 

Priority (input datasets) 

Read permission control word 

Write permission control word 

Maintenance permission control wor 

Job class name 

CL parameter from JOB statement 

A-83 



PM Permanent Dataset Definition - PDD 

Field Word(base8) Bits Description 

PMSYS 22 0 System job 

PMJSP 22 1-8 JOB statement priority 

PMJCR 22 9-24 Job class rank 

PMOLM 22 25-48 Size of $OUT in 512-word block 

PMRJST 22 49-54 Job status flag 

PMIJSP 22 56-63 Original job card priority 

PMTPD 23 0-1 Tape density 

PMTPL 23 2-4 Tape label type 

PMTPF 23 5-6 Tape format 

PMTPC 23 15 Tape cataloged dataset 

PMTPB 23 16-39 Tape maximum block size in bytes 

PMTPV 23 40-63 Tape pointer to label definition 
table 

PMTPM 24 0 Tape online maintenance access 

PMTPP 24 1-3 Tape parallel device count 

PMTP2 24 4 Tape second device assignment 

PMTPH 24 5 Tape hold assigned device 

PMIDC 24 6-8 Tape initial disposition code 

PM2164 25 0 Unused 

PM2264 26 0 Unused 

PMTSCV 27 0-1 Timestamp conversion specification 
TSCVTHIS=O Convert to current COS 

system 

I A-84 SR-0011 0 



I 

PM Permanent Dataset Definition 

PMTXO 

PMOCC 

PMLSD 

PMFPE 
PMFPP 
PMFEN 

PMACS 

PMDSZ 

PMOJSQ 

PMCRT 

PMACT 

PMTDM 

PMMOD 

PMSSC 

PMTXC 

SR-0011 0 

27 

30 

30 

30 
30 
30 

31 

31 

31 

32 

33 

34 

35 

36 

36 

48-63 

o 

8-31 

36-63 
36-59 
60-63 

0-15 

16-47 

48-63 

0-63 

0-63 

0-63 

0-63 

0-7 

8-15 

- PDD 

TSCVRT=l Convert to RT-based 
timestamp 

TSCVNS=2 Convert to NS-based 
timestamp 

TSCVSAME=3 No conversion -- leave 
timestamp alone 

TXT ORDINAL OF USER TASK 

Operator-changed-class flag 

Temporary SDT address for load 
input/output 

First DSC page/entry for dataset 
First DSC page for dataset 
First entry for dataset 

Number of accesses (load saved 
datasets only) 

Size of dataset as reflected by DS 
DAT bodies (used only when apse 
access is performed during the 
recovery of rolled jobs) 

Originating job sequence number 

Creation time in cycles (load 
request only) 

Time of last access in cycles (loa 
request only) 

Time of last dump in cycles (load 
request only) 

Time of last modification in cycle 
(load request only) 

Station slot word length 

Text field word length 

A-85 



PM Permanent Dataset Definition 

Field Word(base8) Bits 

PMMML 36 16-27 

PMPDE 37 0 

PMREM 37 1 

PMTRA 37 2-3 

PMRESD 37 4-5 

PMBACK 37 6-7 

PMPAM 37 8-15 

PMADNM 37 16-31 

I A-86 

- PDD 

Description 

Interactive maximum message length 

Partial delete flag 

Remove permit flag 

Track accesses flag: 
TRAKNO=l Do not track accesses 
TRAKYE=2 Do track accesses 

Preferred residency 
RESON=l Online residency 

preferred 
RESOF=2 Offline residency 

preferred 
RESNP=3 No residency preference 

Backup requirement 
BACKNO=2 No backup required 
BACKYE=3 Backup is required 

Public/permit access mode: 
PAMEX=O'Oll Execute only 
PAMRE=O'OOl Read permission 
PAMWR=O'002 Write permission 
PAMMA=O'004 Maintenance permission 
PAMNO=O'200 No permissions 
MAXP AM = 5 

ADN propagate attributes mask: 
PACW=O'OOOOOl Control words 
PAPAM=O'000002 Public 

PATRK=O'000004 
PAPER=O'000010 
PATXT=O'000020 
PANTS=O'000040 
PAALL=O'000077 
PANO=O'100000 
MAXPA=D'8 

access mode 
Track accesses 
Permits 
Text 
Notes 
All of the above 
None 
Maximum allowable 
attributes 

SR-0011 0 



PM Permanent Dataset Definition - PDD 

Field Word(base8) Bits Description 

PMADN 40 0-55 Attributes dataset name 

PMNOTL 41 0-7 Notes length in words 

PMNOTE 41 8-31 Pointer to notes text 
LE@NOTE=D'60 Allow 480 characters 

for notes 

PMCHG 42 0-63 Last modification time (PDSLOAD) 

PMOWN 43-44 0-63 Dataset Owner 

PMOWN1 43 0-63 Owner (char 1-8) 

PMOWN2 44 0-55 Owner (char 9-15) 

PMDNS 45 0-63 Reserved for installation 

PMACN 46-47 0-63 Account Number 

PMACN1 46 0-63 Characters 1-8 of account number 

PMACN2 47 0-55 Characters 9-15 of account number 

PMGRN 50 0-63 Generic resource counters 

I SR-0011 0 A-87 



I 

PM Permanent Dataset Definition - POD 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+++---------------------+-------+-------+-----------+-----------+ 
o 1 1 11111111111111111111111 VER 1 SI ZE ST FC 

+++---------------------+-------+-------+-----------+---+-------+ 
1 ON 11111111$ 

+-------------------------------+---------------+-------+-------+ 
2 $11111111111111111111111111111111 NPG BPG 

+-------+---------------+-------+-------+-------+---------------+ 
3 111111111 NHP NOP BUF 

A-88 

+-------+---------------+---------------+-----------------------+ 

Figure A-32. POD Format 2 

Field Word(base8) Bits 

PMSG 0 0 

PMERR 0 1 

PMVER 0 24-31 

PMSIZE 0 32-39 

PMST 0 40-51 

PMFC 0 52-63 

PMDN 1 0-55 

PMNPG 2 32-47 

PMBPG 2 48-63 

PMNHP 3 8-23 

PMNOP 3 24-39 

PMBUF 3 40-63 

Description 

Normal completion message 
suppression indicator 

Error message suppression indicator 

POD Version number 

POD size in words 

Return status 

Function code (see chart PM-1) 

Local Dataset Name (PMFCDT) 

Number of pages (PMFCPG,PMFCPX) 

Beginning page number (PMFCPG,PMFC 
for PMFCPX requests) 

Number of hash pages (returned by 
PDM for PMFCPG requests) 

Number of overflow pages (returned 
by PDM for PMFCPG requests) 

Buffer address 

SR-0011 0 



I 

PM Permanent Dataset Definition - PDD 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •.•• 4 .... + •••• 5 .... + •••• 6 ... 

+++---------------------+-------+-------+-----------+-----------+ 
o I I 11111111111111111111111 VER I SIZE ST Fe 

1 
+++---------------------+-------+-------+-----------+---+-------+ 

DN 111111111 

+-------------------------------------------------------+-------+ 

Figure A-33. PDD Format 3 

Field Word(base8) Bits 

PMSG 0 0 

PMERR 0 1 

PMVER 0 24-31 

PMSIZE 0 32-39 

PMST 0 40-51 

PMFC 0 52-63 

PMDN 1 0-55 

Description 

Normal completion message 
suppression indicator 

Error message suppression indicator 

PDD Version number 

PDD size in words 

Return status 

Function code (see chart PM-l) 

Local dataset name 

SR-OOll 0 A-89 



I 

PM Permanent Dataset Definition - POD 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+++---------------------+-------+-------+-----------+-----------+ 
o I I 11111111111111111111111 VER I SIZE ST FC 

+++---------+-----------+-------+-------+-----------+-----------+ 
1 1111111111111 DSPE DXT 

+-----------+---------------------------+-----------------------+ 
2 PDN 

+ +-------+ 
3 11/11111$ 

+-----------------------+-----------------------+-------+-------+ 
4 $1/1111111111111111111111 SDT SQJ 

A-90 

+-----------------------+-----------------------+---------------+ 

Figure A-34. PDD Format 4 

Field Word(base8) Bits 

PMSG 0 0 

PMERR 0 1 

PMVER 0 24-31 

PMSIZE 0 32-39 

PMST 0 40-51 

PMFC 0 52-63 

PMDSPE 1 12-39 

PMDSP 1 12-35 

PMDSE 1 36-39 

PMDXT 1 40-63 

PMPDN 2-3 0-63 

Description 

Normal completion message 
suppression indicator 

Error message suppression indicator 

PDD Version number 

PDD size in words 

Return status 

Function code (see chart PM-1) 

Pagelentry of main DSC entry 
(PMFCLKDX, PMFCRTDX requests) 

Page number of main DSC entry 
(PMFCLKDX, PMFCRTDX requests) 

Entry number of main DSC entry 
(PMFCLKDX, PMFCRTDX requests) 

Pointer to DXT information buffer 
(PMFCLKDX, PMFCRTDX requests) 

Permanent dataset name 

SR-0011 0 



PM Permanent Dataset Definition - PDD 

Field Word(base8) Bits Description 

PMPDN1 2 0-63 Characters 1-8 

PMPDN2 3 0-55 Characters 9-15 

PMSDT 4 24-47 SOT address 
Returned by PDM for PMFCDQ request 
Input for PMFCEA, PMFCEI, PMFCEO 

PMSQJ 4 48-63 Job sequence number (PMFCDQ request) 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+-----------------------+-------+-------+-----------+-----------+ 
o 1///////////////////////1 VER I SIZE ST FC 

+-----------------------+-------+-------+-----------+---+-------+ 
1 ON 1///////1 

+-------------------------------+-----------------------+-------+ 
2 DCOP DCHP 

+-------------------------------+-------------------------------+ 

Figure A-35. POD for PMFCACDC 
L@PMACDC=3 POD size for PMFCACDC 

Field Word(base8) Bits Description 

PMVER 0 24-31 POD Version number 

PMSIZE 0 32-39 POD size in words 

PMST 0 40-51 Return status 

PMFC 0 52-63 Function code (see chart PM-1) 

PMDN 1 0-55 Local Dataset Name 

PMDCOP 2 0-31 Number of DSC overflow pages 

PMDCHP 2 32-63 Number of DSC hash pages 

I SR-0011 0 A-91 



PM Permanent Dataset Definition - PDD 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+-----------------------+-------+-------+-----------+-----------+ 
o 1111111111111111111111111 VER I SIZE ST FC 

+-----------------------+-------+-------+-----------+---+-------+ 
1 DN 11/11111$ 

+-------------------------------+-----------------------+-------+ 
2 $1/111111111111111111111111111111 DXNP 

+-------------------------------+-------------------------------+ 

Figure A-36. PDD for PMFCACDX 
L@PMACDX=3 PDD size for PMFCACDX 

Field Word(base8) Bits Description 

PMVER 0 24-31 PDD Version number 

PMSIZE 0 32-39 PDD size in words 

PMST 0 40-51 Return status 

PMFC 0 52-63 Function code (see chart PM-l) 

PMDN 1 0-55 Local Dataset Name 

PMDXNP 2 32-63 Number of DXT pages 

I A-92 SR-0011 0 



I 

PM Permanent Dataset Definition - POD 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+-----------------------+-------+-------+-----------+-----------+ 
o \///////////////////////\ VER \ SIZE ST FC 

+-----------------------+-------+-------+-----------+---+-------+ 
1 ON 1///////1 

+-------------------------------+-----------------------+-------+ 
2 MCNR MCRS 

+-------------------------------+-------------------------------+ 

Figure A-37. POD for PMFCACMC, PMFCLDMC 
L@PMACMC=3 POD size for PMFCACMC 
L@PMLDMC=3 POD size for PMFCLDMC 

Field Word(base8) Bits Description 

PMVER 0 24-31 POD Version number 

PMSIZE 0 32-39 POD size in words 

PMST 0 40-51 Return status 

PMFC 0 52-63 Function code (see chart PM-1) 

PMDN 1 0-55 Local Dataset Name 

PMMCNR 2 0-31 Number of MCD regions 

PMMCRS 2 32-63 Size of each MCD region (sectors) 

SR-0011 0 A-93 



I 

PM Permanent Dataset Definition - POD 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+-----------------------+-------+-------+-----------+-----------+ 
o 1111111111111111111111111 VER I SIZE ST FC 

+-----------------------+-------+-------+-----------+---+-------+ 
1 ON 11/11111$ 

+-------------------------------+-----------------------+-------+ 
2 $1/111111111111111111111111111111 BCNP 

A-94 

+-------------------------------+-------------------------------+ 

Field 

PMVER 

PMSIZE 

PMST 

PMFC 

PMDN 

PMBCNP 

Figure A-38. POD for PMFCACBC, PMFCLDBC 

Word(base8) Bits 

0 24-31 

0 32-39 

0 40-51 

0 52-63 

1 0-55 

2 32-63 

L@PMACBC=3 PDD size for PMFCACBC 
L@PMLDBC=3 PDD size for PMFCLDBC 

Description 

PDD Version number 

PDD size in words 

Return status 

Function code (see chart PM-1) 

Local Dataset Name 

Number of BCD pages 

SR-0011 0 



PM Permanent Dataset Definition - PDD 

0 .•.. + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+-----------------------+-------+-------+-----------+-----------+ 
o 1111111111111111111111111 VER I SIZE ST FC 

+-----------------------+-------+-------+-----------+---+-------+ 
1 1///////////////////////////////////////////////////////1 MXHJ 

+-------------------------------------------------------+-------+ 
2 BKTH 

+---------------------------------------------------------------+ 

Figure A-39. PDD for PMFCONBU 
L@PMONBU=3 PDD size for PMFCONBU 

Field Word(base8) Bits Description 

PMVER 0 24-31 PDD Version number 

PMSIZE 0 32-39 PDD size in words 

PMST 0 40-51 Return status 

PMFC 0 52-63 Function code (see chart PM-1) 

PMMXHJ 1 56-63 Maximum number of helper jobs 

PMBKTH 2 0-63 Backup threshold (integer words) 

I SR-0011 0 A-95 



I 

PM Permanent Dataset Definition - PDD 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+-----------------------+-------+-------+-----------+-----------+ 
o 1111111111111111111111111 VER I SIZE ST FC 

1 

2 

A-96 

+-----------------------+-------+-------+-----------+-----------+ 
BUFL BUFA 

+-------------------------------+-------------------------------+ 
NDVN 

+---------------------------------------------------------------+ 

Figure A-40. 

Field Word(base8) Bits 

PMVER 0 24-31 

PMSIZE 0 32-39 

PMST 0 40-51 

PMFC 0 52-63 

PMBUFL 1 0-31 

PMBUFA 1 32-63 

PMNDVN 2 0-63 

PDD for PMFCONSM 
L@PMONSM=3 

Description 

PDD size for PMFCONSM 
(minimum) 

PDD Version number 

PDD size in words 

Return status 

Function code (see chart PM-1) 

Buffer length 

Buffer address 

Number of devices in device threshold 
list (two words per device, see below) 

SR-0011 0 



I 

PM Permanent Dataset Definition - PDD 

The device list is passed in a buffer pointed to by PMBUFA 
and must be at least LE@PMDVL*PMNDVN words in length. 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+-----------------------------------------------+-------+-------+ 
o 1///////////////////////////////////////////////1 DVST I DVTH 

+-----------------------------------------------+-------+-------+ 
1 DVN 

+---------------------------------------------------------------+ 

Figure A-41. Device List Entry for PMFCONSM 
LE@PMDVL=2 Length of device list 

entry 

Field Word(base8) Bits Description 

PMDVST 0 48-55 Device status 

PMDVTH 0 56-63 Device threshold percentage (0-100) 

PMDVN 1 0-63 Device name, LJZF 

SR-OOll 0 A-97 



PM Permanent Dataset Definition - PDD 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+-----------------------+-------+-------+-----------+-----------+ 
o 1///////////////////////1 VER I SIZE ST FC 

+-----------------------+-------+-------+-----------+---+-------+ 
1 1///////////////////////////////////////////////////////1 MXHJ 

+-------------------------------------------------------+-------+ 

Figure A-42. PDD for PMFCONRC and PMFCONCU 
L@PMONRC=2 PDD size for PMFCONRC 
L@PMONCU=2 PDD size for PMFCONCU 

Field Word(base8) Bits Description 

PMVER 0 24-31 PDD Version number 

PMSIZE 0 32-39 PDD size in words 

PMST 0 40-51 Return status 

PMFC 0 52-63 Function code (see chart PM-1) 

PMMXHJ 1 56-63 Maximum number of helper jobs 

I A-98 SR-0011 0 



PM Permanent Dataset Definition - PDD 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+-----------------------+-------+-------+-----------+-----------+ 
o 1111111111111111111111111 VER I SIZE ST FC 

+-----------------------+-------+-------+-----------+-----------+ 

Figure />.-43. PDD for PMFCONxH through PMFCOFxx 
L@PMONBH=l PDD size for PMFCONBH 
L@PMONSH=l PDD size for PMFCONSH 
L@PMONRH=l PDD size for PMFCONRH 
L@PMONCH=l PDD size for PMFCONCH 
L@PMOFBU=l PDD size for PMFCOFBU 
L@PMOFSM=l PDD size for PMFCOFSM 
L@PMOFRC=l PDD size for PMFCOFRC 
L@PMOFCU=l PDD size for PMFCOFCU 
L@PMOFBH=l POD size for PMFCOFBH 
L@PMOFSH=l PDD size for PMFCOFSH 
L@PMOFRH=l PDD size for PMFCOFRH 
L@PMOFCH=l POD size for PMFCOFCH 

Field Word(base8) Bits Description 

PMVER 0 24-31 POD Version number 

PMSIZE 0 32-39 POD size in words 

PMST 0 40-51 Return status 

PMFC 0 52-63 Function code (see chart PM-1) 

I SR-OOll 0 A-99 



PM Permanent Dataset Definition - PDD 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+-----------------------+-------+-------+-----------+-----------+ 
o 1///////////////////////1 VER I SIZE ST FC 

+-----------------------+-------+-------+-----------+-----------+ 
1 1///////////////////////////////////////////////////////////////1 

+ +-------------------------------+ 
2 1///////////////////////////////1 MCA 

+-------------------------------+-------------------------------+ 
3 ITS 

+---------------------------------------------------------------+ 

Figure A-44. PDD for PMFCSDEI 
L@PMSDEI:4 PDD size for PMFCSDEI 

Field Word(base8} Bits Description 

PMVER 0 24-31 PDD Version number 

PMSIZE 0 32-39 PDD size in words 

PMST 0 40-51 Return status 

PMFC 0 52-63 Function code (see chart PM-1) 

PMMCA 2 32-63 Master Catalog address 

PMITS 3 0-63 Identifying Timestamp 

I A-100 SR-0011 0 



PM Permanent Dataset Definition - PDD 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 ..•. + •••• 5 •... + •••• 6 ..• 

+-----------------------+-------+-------+-----------+-----------+ 
o 1111111111111111111111111 VER I SIZE ST FC 

+-----------------------+-------+-------+-----------+-----------+ 
1 11111111111111111111111111111111111111111111111111111111111111111 

+ +-------------------------------+ 
2 111111111111111111111111111111111 MCA 

+-------------------------------+-------------------------------+ 
Figure A-45. PDD for PMFCCDEI 

L@PMCDEI=3 PDD size for PMFCCDEI 

Field Word(base8) Bits Description 

PMVER 0 24-31 PDD Version number 

PMSIZE 0 32-39 PDD size in words 

PMST 0 40-51 Return status 

PMFC 0 52-63 Function code (see chart PM-1) 

PMMCA 2 32-63 Master Catalog address 

I SR-0011 0 A-101 



PM Permanent Dataset Definition - PDD 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+-----------------------+-------+-------+-----------+-----------+ 
o 1///////////////////////1 VER I SIZE ST FC 

+-----------------------+-------+-------+-----------+-----------+ 
1 1///////////////////////////////////////////////////////////////1 

+ +-------------------------------+ 
2 1///////////////////////////////1 MCA 

+-------------------------------+-------------------------------+ 

Figure A-46. PDD for PMFCRET through PMFCSRLD 
L@PMRET=3 PDD size for PMFCRET 
L@PMMIG=3 PDD size for PMFCMIG 
L@PMDEL=3 PDD size for PMFCDEL 
L@PMSBRS=3 PDD size for PMFCSBRS 
L@PMCBRS=3 PDD size for PMFCCBRS 
L@PMSRLD=3 PDD size for PMFCSRLD 

Field Word(base8) Bits Description 

PMVER 0 24-31 PDD Version number 

PMSIZE 0 32-39 PDD size in words 

PMST 0 40-51 Return status 

PMFC 0 52-63 Function code (see chart PM-1) 

PMMCA 2 32-63 Master Catal~g address 

I A-l02 SR-OOll 0 



PM Permanent Dataset Definition - PDD 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••. 4 .... + •••• 5 .... + •••• 6 ... 

+-----------------------+-------+-------+-----------+-----------+ 
o 1/ / / / / / / / / / / / / / / / / / / / / / /1 VER 1 SIZE ST FC 

+-----------------------+-------+-------+-----------+---+-------+ 
1 DN 1///////$ 

+-------------------------------+-----------------------+-------+ 
2 $///////////////////////////////1 MCA 

+-------------------------------+-------------------------------+ 

Figure A-47. PDD for PMFCBUAC 
L@PMBUAC=3 PDD size for PMFCBUAC 

Field Word(base8} Bits Description 

PMVER 0 24-31 PDD Version number 

PMSIZE 0 32-39 PDD size in words 

PMST 0 40-51 Return status 

PMFC 0 52-63 Function code (see chart PM-1) 

PMDN 1 0-55 Local dataset name 

PMMCA 2 32-63 Master Catalog address 

I SR-0011 0 A-103 



PM Permanent Dataset Definition - PDD 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+-----------------------+-------+-------+-----------+-----------+ 
o 1///////////////////////1 VER I SIZE ST FC 

+-----------------------+-------+-------+-----------+---+-------+ 
1 DN 1///////$ 

+---+---------------------------+-----------------------+-------+ 
2 $///1 DCA MCA 

+---+---------------------------+-------------------------------+ 

Figure A-48. PDD for PMFCRLD 
L@PMRLD=3 PDD size for PMFCRLD 

Field Word(base8) Bits Description 

PMVER 0 24-31 PDD Version number 

PMSIZE 0 32-39 PDD size in words 

PMST 0 40-51 Return status 

PMFC 0 52-63 Function code (see chart PM-I) 

PMDN 1 0-55 Local dataset name 

PMDCA 2 4-31 Dataset Catalog address 

PMMCA 2 32-63 Master Catalog address 

I A-104 SR-0011 0 



PM Permanent Dataset Definition - PDD 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ..• 

+-----------------------+-------+-------+-----------+-----------+ 
o 1111111111111111111111111 VER I SIZE ST FC 

+-----------------------+-------+-------+-----------+-----------+ 
1 BUFL BUFA 

+-------------------------------+-------------------------------+ 
2 111111111111111111111111111111111 MCA 

+-------------------------------+-------------------------------+ 

Figure A-49. PDD for PMFCWRBC 
L@PMWRBC=3 PDD size for PMFCWRBC 

Field Word(base8) Bits Description 

PMVER 0 24-31 PDD Version number 

PMSIZE 0 32-39 PDD size in words 

PMST 0 40-51 Return status 

PMFC 0 52-63 Function code (see chart PM-1) 

PMBUFL 1 0-31 Buffer length 

PMBUFA 1 32-63 Buffer address 

PMMCA 2 32-63 Master Catalog address 

I SR-0011 0 A-lOS 



PM Permanent Dataset Definition - PDD 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+-----------------------+-------+-------+-----------+-----------+ 
o 1111111111111111111111111 VER I SIZE ST FC 

+-----------------------+-------+-------+-----------+-----------+ 
1 BUFL BUFA 

+-------------------------------+-------------------------------+ 
Figure A-50. PDD for PMFCGLDV and PMFCGRRL 

L@PMGLDV=2 PDD size for PMFCGLDV 
L@PMGRRL=2 PDD size for PMFCGRRL 

Field Word(base8} Bits Description 

PMVER 0 24-31 PDD Version number 

PMSIZE 0 32-39 PDD size in words 

PMST 0 40-51 Return status 

PMFC 0 52-63 Function code (see chart PM-I) 

PMBUFL 1 0-31 Buffer length 

PMBUFA 1 32-63 Buffer address 

I A-I06 SR-OOll 0 



PM Permanent Dataset Definition - PDD 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+-----------------------+-------+-------+-----------+-----------+ 
o 1///////////////////////1 VER I SIZE ST FC 

+-----------------------+-------+-------+-----------+-----------+ 
1 1///////////////////////////////////////////////////////////////1 

+ +-------------------------------+ 
2 1///////////////////////////////1 MCA 

+-------------------------------+-------------------------------+ 
3 ITS 

+---------------------------------------------------------------+ 
4 MNCW 

+---------------------------------------------------------------+ 

Figure A-51. PDD for PMFCSRET, PMFCSRES, PMFCSDEL 
L@PMSRET=5 PDD size for PMFCSRET 
L@PMSRES=5 PDD size for PMFCSRES 
L@PMSDEL=5 PDD size for PMFCSDEL 

Field Word(base8) Bits Description 

PMVER 0 24-31 PDD Version number 

PMSIZE 0 32-39 PDD size in words 

PMST 0 40-51 Return status 

PMFC 0 52-63 Function code (see chart PM-l) 

PMMCA 2 32-63 Master Catalog address 

PMITS 3 0-63 Identifying Timestamp 

PMMNCW 4 0-63 Maintenance Control Word 

I SR-0011 0 A-107 



PM Permanent Dataset Definition - PDD 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+-----------------------+-------+-------+-----------+-----------+ 
o 1///////////////////////1 VER I SIZE ST FC 

+-----------------------+-------+-------+-----------+-----------+ 
1 1///////////////////////////////////////////////////////////////1 

+ +-------------------------------+ 
2 1///////////////////////////////1 MCA 

+-------------------------------+-------------------------------+ 

Figure A-52. PDD for PMFCARCL 
L@PMARCL=3 PDD size for PMFCARCL 

Field Word(baseB) Bits Description 

PMVER 0 24-31 PDD Version number 

PMSIZE 0 32-39 PDD size in words 

PMST 0 40-51 Return status 

PMFC 0 52-63 Function code (see chart PM-1) 

PMMCA 2 32-63 Master Catalog address 

I A-lOB SR-0011 0 



PM Permanent Dataset Definition - PDD 

0 •••• + .... 1 •••. + .... 2 •••• + .... 3 •••. + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+-----------------------+-------+-------+-----------+-----------+ 
o 1111111111111111111111111 VER I SIZE ST FC 

+-----------------------+-------+-------+-----------+-----------+ 
1 GDN1 

+-------------------------------------------------------+-------+ 
2 GDN2 111111111 

+-------------------------------------------------------+-------+ 
3 GOWl 

+-------------------------------------------------------+-------+ 
4 GOW2 111111111 

+-------------------------------------------------------+-------+ 
5 GID 

+---------------------------------------------------------------+ 
6 GKEY 

+-------------------------------+-------------------------------+ 
7 111111111111111111111111111111111 RFWA 

+-------------------------------+-------------------------------+ 

Figure A-53. PDD for PMFCGKEY 
L@PMGKEY=D'8 PDD size for PMFCGKEY 

Field Word(base8) Bits Description 

PMVER 0 24-31 PDD version number 

PMSIZE 0 32-39 PDD size in words 

PMST 0 40-51 Return status 

PMFC 0 52-63 Function code (see chart PM-1) 

PMGDNl 1 0-63 Permanent dataset name (1-8) 

PMGDN2 2 0-55 Permanent dataset name (9-15) 

PMGOW1 3 0-63 Owner (1-8) 

PMGOW2 4 0-55 Owner (9-15) 

PMGID 5 0-63 ID 

PMGKEY 6 0-63 Return hash key 

I SR-0011 0 A-I09 



PM Permanent Dataset Definition - PDD 

Field Word(base8) Bits Description 

PMRFWA 7 32-63 Owner's region FWA 

• A-IIO SR-OOII 0 



I 

TC Task Control Block - TCB 

* Task Control Block (TCB) 

o 

1 

2 

3 

The task control block is located in the Job Table Area (JTA). 
There is one TCB entry allocated for each user task known 
to COS. The TCa entry is used for storage of information 
specific to each task within a job such as the exchange 
package, vector registers, timings, I/O request information, 
and other save areas. 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+---------------------------------------------------------------+ 
NUM 

+---------------------------------------------------------------+ 
NEXT 

+---------------------------------------------------------------+ 
JTA 

+---------------------------------------------------------------+ 
~T 

+++++++++++++---------------------------------------------------+ 
4 I I I I I I I I I I I I 1//11//11111111111111/1/111111/1/1/111/11111111111111 

+++++++++++++---------------------------------------------------+ 
5 TSB 

+---------------------------------------------------------------+ 
6 JREQ 

+---------------------------------------------------------------+ 
7 SDT 

+---------------+---------------+-------------------------------+ 
10 EPAL 1///////////////1 EPA 

+---------------+---------------+-------+-----------------------+ 
11 WPDS 1///11/11/////111//////11 DFT 

+---------------+-----------------------+-----------------------+ 
12 HMBA 

+---------------------------------------------------------------+ 
13 NDLI 

+---------------------------------------------------------------+ 
14 NDNP 

+---------------------------------------------------------------+ 

Figure A-54. Task Control Block 

SR-0011 a A-111 



TC Task Control Block - TCB 

0 .... + .... 1 .... + .... 2 .... + .... 3 .... + .... 4 .... + .... 5 ..•. + .... 6 ... 

+---------------------------------------------------------------+ 
15 LDLT 

+---------------------------------------------------------------+ 
16 LDPR 

+---------------------------------------------------------------+ 
17 TSX 

+---------------------------------------------------------------+ 
20 TSWS 

+---------------------------------------------------------------+ 
21 TSW 

+---------------------------------------------------------------+ 
22 TSD 

+---------------------------------------------------------------+ 
23 TSXL 

+---------------------------------------------------------------+ 
24 WSL 

+---------------------------------------------------------------+ 
25 TXTS 

+---------------------------------------------------------------+ 
26 TWTS 

+---------------------------------------------------------------+ 
27 XMI 

+---------------------------------------------------------------+ 
30 DMI 

+---------------------------------------------------------------+ 
31 SMI 

+---------------------------------------------------------------+ 
32 DLI 

+---------------------------------------------------------------+ 
33 WSEM 

+---------------------------------------------------------------+ 
34 DLLC 

+---------------------------------------------------------------+ 
35 XP 

$ $ 

55 

+---------------------------------------------------------------+ 

Figure A-54. Task Control Block 

I A-112 SR-0011 



TC Task Control Block - TCB 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+---------------------------------------------------------------+ 
56 B 

$ $ 

155 

+---------------------------------------------------------------+ 
156 T 

$ $ 

255 

+---------------------------------------------------------------+ 
256 va 

$ $ 

355 

+---------------------------------------------------------------+ 
356 V1 

$ $ 

455 

+---------------------------------------------------------------+ 
456 V2 

$ $ 

555 

+---------------------------------------------------------------+ 
556 V3 

$ $ 

655 

+---------------------------------------------------------------+ 

Figure A-54. Task Control Block 

I SR-0011 0 A-113 



TC Task Control Block - TCB 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••• + .... 6 ••• 

+---------------------------------------------------------------+ 
656 V4 

$ $ 

755 
+---------------------------------------------------------------+ 

756 V5 

$ $ 

1055 
+---------------------------------------------------------------+ 

1056 V6 

$ $ 

1155 
+---------------------------------------------------------------+ 

1156 V7 

$ $ 

1255 
+---------------------------------------------------------------+ 

1256 ABDN 
+---------------------------------------------------------------+ 

1257 ABXP 

$ $ 

1276 

++----------------------------~---------------------------------+ 

1277 I 1//////////////////////////////////////////////////////////////1 

++--------------------------------------------------------------+ 
1300 DXP 

$ $ 

1317 

+---------------------------------------------------------------+ 

Figure A-54. Task Control Block 

I A-114 SR-0011 



TC Task Control Block - TCB 

o .••. + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... 5 •••. + .... 6 ••• 

+-------------------------------+-------------------------------+ 
1320 DSEM 1///////////////////////////////1 

+-------------------------------+-------------------------------+ 
1321 DSHB 

$ $ 

1330 

+---------------------------------------------------------------+ 
1331 DSHT 

$ $ 

1340 

+---------------------------------------+-----------------------+ 
1341 1///////////////////////////////////////1 ERC 

+---------------+-----------------------+-----------------------+ 
1342 MSK RXP REP 

+---------------+-----------------------+-----------------------+ 
1343 LMSK LRXP LREP 

+---------------+-----------------------+-----------------------+ 
1344 AREG 

$ $ 

1353 

+---------------------------------------------------------------+ 
1354 SREG 

$ $ 

1363 

+---------------------------------------------------------------+ 
1364 ROO 

+---------------------------------------------------------------+ 
1365 R01 

+---------------------------------------------------------------+ 
1366 R02 

+---------------------------------------------------------------+ 
1367 R03 

+---------------------------------------------------------------+ 

Figure A-54. Task Control Block 

I SR-0011 0 A-115 



TC Task Control Block - TCB 

0 •••• + .... 1 •••• + .... 2 •••• + .... 3 •••• + .... 4 •••• + .... S •••• + .... 6 ••• 

+---------------------------------------------------------------+ 
1370 R04 

+---------------------------------------------------------------+ 
1371 R05 

+---------------------------------------------------------------+ 
1372 R06 

+---------------------------------------------------------------+ 
1373 R07 

+---------------------------------------------------------------+ 
1374 R10 

+---------------------------------------------------------------+ 
1375 R11 

+---------------------------------------------------------------+ 
1376 R12 

+---------------------------------------------------------------+ 
1377 R13 

+---------------------------------------------------------------+ 
1400 R14 

+---------------------------------------------------------------+ 
1401 R15 

+---------------------------------------------------------------+ 
1402 R16 

+---------------------------------------------------------------+ 
1403 R17 

+---------------------------------------------------------------+ 
1404 ESTK 

$ $ 

1503 

+---------------+-----------------------+-----------------------+ 
1504 1///////////////1 SPYC TS 

+---------------+-----------------------+-----------------------+ 
lS0S 1///////////////1 FFW LLW 

+---------------+-----------------------+-----------------------+ 
lS06 SPCC 

+---------------------------------------------------------------+ 
1507 UNDR 

+---------------------------------------------------------------+ 
1510 BET 

+---------------------------------------------------------------+ 

Figure A-S4. Task Control Block 

I A-116 SR-0011 



TC Task Control Block - TCB 

0 .... + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+---------------------------------------------------------------+ 
1511 OVER 

+---------------------------------------------------------------+ 
1512 OON 

+ + 
1513 

+---------------------------------------------------------------+ 
1514 DDL 

$ $ 

1521 

+---------------------------------------------------------------+ 
1522 PDD 

$ $ 

1615 

+---------------------------------------------------------------+ 
1616 APT 

$ $ 

1625 

+---------------------------------------------------------------+ 
1626 TXT! 

$ $ 

1663 

+---------------------------------------------------------------+ 
1664 PMSG 

$ $ 

1675 

+---------------------------------------------------------------+ 
Figure A-54. Task Control Block 

I SR-0011 0 A-117 



TC Task Control Block - TCB 

0 .•.. + •••• 1 .... + •••• 2 .... + •••• 3 .... + •••• 4 .... + •••• 5 .... + •••• 6 ... 

+---------------------------------------------------------------+ 
1676 BGN 

$ $ 

1710 

+---------------------------------------------------------------+ 
1711 INS 

$ $ 

1714 

+---------------------------------------------------------------+ 
1715 WJTM 

+---------------------------------------------------------------+ 
1716 WDNR 

+---------------------------------------------------------------+ 
1717 WICD 

+---------------------------------------------------------------+ 

Figure A-54. Task Control Block 

TCB - Task control block. 

Field Word(base8) Bits Description 

TCNUM 0 0-63 Task number within job 

TCNEXT 1 0-63 Next TCa pointer offset from JTA(O) 

TCJTA 2 0-63 Offset of TCa from JTA(O) 

TCTXT 3 0-63 Address of associated TXT entry 

TCEFI 4 o Enable floating interrupts 

TCIOAC 4 1 Current IOAREA status 

TCIOAP 4 2 Previous IOAREA status 

I A-118 SR-0011 



I 

TC Task Control Block - TCB 

Field Word(base8) Bits 

TCBDM 4 3 

TCORI 4 4 

TCSPY 4 5 

TCACTV 4 6 

TCFGR 4 7 

TCEMA 4 8 

TCAVL 4 9 

TCPS 4 10 

TCURPV 4 11 

TCTSB 5 0-63 

TCJREQ 6 0-63 

TCSOT 

TCEPAL 

TCEPFG 

TCEPN 
TCEPE 
TCEPC 
TCEPJ 
TCEPM 
TCEPNR 
TCEPDL 
TCEPCD 
TCEDIA 
TCEPWR 

TCEXPF 

TCEPA 

SR-0011 0 

7 

10 

10 

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

10 

10 

0-63 

0-15 

0-9 

o 
1 
2 

3 
4 
5 
6 
7 
8 
9 

15 

32-63 

Description 

Enable bidirectional mode flag 

Interrupt on operand range flag 

Spy enabled when <> 0 

ACTIVE-OURING-CURRENT-JOB-STEP FLAG 

Force another GETREPLY before EPTK1 

l=Extended memory addressing enabled 

l=Additional vector logical unit enab. 

Program State Register 

User Reprieve in progress 

Task Status Block addr (JTA-rel), or 0 

Word for JSH requests 

SOT address, used by RLO in EXP 

NZ if EXEC should schedule EXP 
instead of connected user task 

Flags that EXP clears on specific 
events: 

Set on normal exchange 
Set on error exchange 
Set if TCEPA is valid 
Set on JSH-to-EXP request 
Resubmit no-DAT-space liD request 
Resubmit not-ready liD request 
Set on deadlock-error exchange 
Resubmit circuit disc ISP IIOreq 
Set by EXEC for diagnostic request 
Set when awaiting a reply from SLT 

Set by EXEC when EXP should examine 
Cleared by EXP to allow user execution 

Continuation address within EXP 

A-119 



• 

TC Task Control Block - TCB 

A-120 

Field Word(base8) Bits Description 

TCWPOS 11 0-15 POS-full delay counter 

TCDFT 11 40-63 OFT address for diagnostic task 

TCHMBA 12 0-63 H'ware perf.mon. blk addr (JTA offset) 

The following fields are used by Exec during deadlock 
interrupt processing. 

TCNDLI 13 0-63 No. of deadlock interrupts (DLI) 

TCNDNP 14 0-63 No. of DLI without progress 

TCLDLT 15 0-63 (PWUTIM) of last DLI 

TCLDPR 16 0-63 (P register) of last DLI 

Task statistics. Times are in cycles unless noted otherwise. 

TCTSX 11 0-63 Time spent executing 

TCTSWS 20 0-63 Time spent waiting semaphore 

TCTSW 21 0-63 Time spent waiting to execute 

TCTSD 22 0-63 Time spend waiting for liD 

TCTSXL 23 0-63 (TCTSX) at last CONNECT request 

TCWSL 24 0-63 (TCTSWS) last time sl. computation 

TCTXTS 25 0-63 CPU cycles used in last time slice 

TCTWTS 26 0-63 Wait sem cycles in last time slice 

TCXMI 21 0-63 (CPU time)*(memory size) floating 

TCDMI 30 0-63 (liD wait time)*(memory size) floating 

TCSMI 31 0-63 (Wait sem) * (Memory size) floating 

TCDLI 32 0-63 Total i of deadlock interrupts 

TCWSEM 33 0-63 Semaphore number task is waiting for 

SR-0011 



TC Task Control Block - TCB 

Field Word(base8) Bits Description 

TCDLLC 34 0-63 Count of deadlocks to ignore before 
scheduling EXP. (EXEC-use only) 

Task registers. 

TCXP 35-55 0-63 Exchange package 

TCVM 55 0-63 Vector mask 

TCB 56-155 0-63 B registers 

TCT 156-255 0-63 T registers 

TCVO 256-355 0-63 VO register 

TCV1 356-455 0-63 V1 register 

TCV2 456-555 0-63 V2 register 

TCV3 556-655 0-63 V3 register 

TCV4 656-755 0-63 V4 register 

TCV5 756-1055 0-63 V5 register 

TCV6 1056-1155 0-63 V6 register 

TCV7 1156-1255 0-63 V7 register 

Abort save areas 

TCABDN 1256 0-63 Dataset name for abort 

TCABXP1257-1276 0-63 Abort exchange package save 

Debug register save area. 
These fields are used to take a snapshot of the current state 
of the task when a DEBUG request is made by the user. The 
debugging utility in the user space can then make another 
request to retrieve the information. 

TCDACT 1277 0 Debug information is active flag 

TCDXP 1300-1317 0-63 Exchange package 

I SR-0011 0 A-121 



I 

TC Task Control Block - TCB 

A-122 

Field Word(base8) Bits 

TCDBOO 1300 32-63 

TCDSEM 1320 0-31 

TCDSHB1321-1330 

TCDSHT1331-1340 

0-63 

0-63 

Description 

Register BOO 

Semaphore registers 

Shared B registers 

Shared T registers 

Reprieve control information. 

TCERC 

TCMSK 

TCRXP 

TCREP 

1341 

1342 

1342 

1342 

40-63 

0-15 

16-39 

40-63 

Library Reprieve Control 

TCLMSK 

TCLRXP 

TCLREP 

1343 

1343 

1343 

0-15 

16-39 

40-63 

TASK ERROR CODE 

Reprieve mask 

Reprieve XP address in user area 

Reprieve entry address in user area 

Library Reprieve Mask 

Library Reprieve XP save area 

Library Reprieve entry address 

Register save area for resume/continue 

TCAREG1344-1353 

TCSREG1354-1363 

0-63 

0-63 

Register save area for EXP 

TCROO 

TCR01 

TCR02 

TCR03 

TCR04 

1364 

1365 

1366 

1367 

1370 

0-63 

0-63 

0-63 

0-63 

0-63 

A register save area 

S register save area 

Register save area 00 

Register save area 01 

Register save area 02 

Register save area 03 

Register save area 04 

SR-0011 



TC Task Control Block - TCB 

Field Word(base8) Bits Description 

TCR05 1371 0-63 Register save area 05 

TCR06 1372 0-63 Register save area 06 

TCR07 1373 0-63 Register save area 07 

TCR10 1374 0-63 Register save area 10 

TCR11 1375 0-63 Register save area 11 

TCR12 1376 0-63 Register save area 12 

TCR13 1377 0-63 Register save area 13 

TCR14 1400 0-63 Register save area 14 

TCR15 1401 0-63 Register save area 15 

TCR16 1402 0-63 Register save area 16 

TCR17 1403 0-63 Register save area 17 
L@TCESTK=D'64 EXP stack 

size 

TCESTK1404-1503 0-63 Stack for EXP 

F$SPY fields 

TCSPYC 1504 16-39 # Spy areas enabled 

TCTS 1504 40-63 User requested time slice 

TCFFW 1505 16-39 First of Spy FW's 

TCLLW 1505 40-63 Last of Spy LW's 

TCSPCC 1506 0-63 Chain control for user profile 

TCUNDR 1507 0-63 'under' counter 

TCBET 1510 0-63 'between' counter 

TCOVER 1511 0-63 'over' counter 

I SR-0011 0 A-123 



I 

TC Task Control Block - TeB 

Field Word(base8) Bits 

TCODN 1512-1513 0-63 

TCDDL 1514-1521 0-63 

TCPDD 1522-1615 0-63 

TCAPT 1616-1625 0-63 

TCCCNT 1624 0-63 

TCOCNT 1625 0-63 

TCTXTI1626-1663 0-63 

TCPMSG1664-1675 0-63 

TCB Copy of F$BGN table: 

TCBGN 1676-1710 0-63 

Description 

ODN table. Used by RELEASE/DISPOSE 

DDL for FETCH/ACQUIRE 

PDD for FETCH/ACQUIRE 

F-PACKET for user driver requests 

Count of outstnding channel requests 

Count of open channels 

Copy of TXT at rollout 

L@TCPMSG=D'10 Length of 
pending message 

Text of pending message 

BGN for F$BGN Call 

Installation reserved space 

L@TCINS=O'4 Installation reserved 
words 

TCINS 1711-1714 0-63 Reserved for installation use 

TCWJTM 1715 0-63 Number of datasets waiting on memory 

TCWDNR 1716 0-63 Number of datasets waiting on device 

TCWICD 1717 0-63 Number of datasets waiting on circuit 

A-124 SR-0011 



SUBSYSTEM SUPPORT B 

Subsystem support provides a mechanism to develop code that would 
otherwise have to be incorporated as part of COS. Examples of this kind 
of code are networking packages and on-line diagnostics. Subsystem 
support is a collection of independent functions whose use may be 
restricted to jobs granted the necessary privilege by COS. 

This appendix describes the following subsystem support features: 

• Interjob communication 
• User channel access 
• Event recall 
• System Dataset (SOT) queue manipulation 
• Operator messages 
• System jobs 

B.1 INTERJOB COMMUNICATION 

Interjob communication allows a job to communicate with other jobs. This 
feature is available to all single-tasking job steps but is prohibited to 
multitasking job steps. 

To establish communication, one job indicates it is receptive to 
communication, and the others request to open a communication path 
between them and the receptive job. Once a path is established, jobs can 
freely exchange messages. Anyone job can open as many communication 
paths as it needs. An installation-defined parameter I@MIJPA determines 
the total number of communication paths allowed in the system at one time. 

Message exchange is memory to memory between jobs if both are resident; 
otherwise, messages are queued for rolled-out jobs. The installation
defined parameter I@MIJML determines the maximum length of a message. 

A receptive job can place a message in the user logfile of any connected 
job. This is a privileged function. 

SR-0011 0 B-1 



B.1.1 ESTABLISHING COMMUNICATION 

Each job must have at least one unique nonzero 64-bit 10. The programmer 
chooses the 10 and must therefore know the lOs of the communicating 
jobs. See the CRI site analyst for the lOs of system supported 
programs. Because system supported programs commonly have lOs that begin 
with a $, do not use this format when choosing an 10. 

A job becomes receptive through a system request specifying its 10 and 
the location of its Receptive Control Block (RCB). The system uses this 
RCB when processing requests from other jobs to determine whether this 
job allows a communication path to be established with another job. The 
RCB is 1 word long and is set to 0 by the system when the job becomes 
receptive. When another job makes a request to open communication, that 
job's 10 is placed in the RCB. The RCB is always set by the system and 
read by the user. The user should never write to the RCB. 

A job attempts to establish a communication path with another job by 
making a system request and then specifying its own 10 and the target 
job's 10. If the target job is receptive, the system puts the requesting 
job's 10 into the target job's RCB if the target job is resident and its 
RCB is o. Otherwise, the request is queued. No further requests may be 
made to the target job until a response is received. The target job 
polls its RCB for a nonzero value, indicating a request for connection. 
The target job screens out undesirable jobs. The target job accepts or 
rejects the attempt to establish communication by making a system request 
and indicating its response (accept or reject), its 10, and the 10 of the 
initiating job. If it accepts, the communication path is established, 
and messages can be transferred freely. The job that requested that a 
communication path be established is said to be attached to the target 
job. Upon receipt of the response, whether it is accept or reject, the 
system places in the RCB the 10 of the next job requesting that a path be 
established. If there is no job requesting a path, the RCB is set to o. 

The communication path consists of two nodes, one in each job. Each node 
consists of a Node Control Block (NCB) and a message buffer (MRB). The 
NCB consists of a pointer to the MHB, the length of the buffer, the 
number of words received, the number of words sent, and status 
indicators. The message status indicator must be polled to see if a 
message arrived. A zero-length message indicates a change in open status 
may have occurred. The open status indicates whether a reply to an open 
request arrived or the other job closed this path. Each job must clear 
its message status after it has taken appropriate action. No further 
messages are put into a buffer until the message status is o. The NCB 
allows dynamic message buffers. The job can change the size of MRB with 
or without relocating it, but this change can only be made when the 
message status has been set by the system. When the message status has 
been set by the system, the system does not do anything further with that 
buffer until the user clears the status. The job can then change the 
buffer and clear the message status (in that order) so the system resumes 
message transfer to that node. 

B-2 SR-0011 0 



When a job requests that a communication path be established with another 
job, the requesting job sends the location of its NCB in the request. 
When the target job replies, it sends the location of its NCB in the 
reply. So, the communication path is well defined. Figure B-1 shows a 
typical subsystem interjob communication structure. 

NCB1 

~ ________________________ ~~~------------------------~.~~I _____ M_e_S_S __ a_g_e __ B_u_f_f_e_r ____ ~ 

NCB2 

~ ____ ~.~I _____ M_e_S_S_a_g __ e __ B_U_f_f_e_r ____ ~ 

NCB3 

~ __________ ~·~I~ ____ M_e_S_S_a_g_e __ B_U_f_f_e_r ____ ~ 

Figure B-1. A Typical Subsystem Interjob Communication Structure 

The job in figure B-1 has communication paths established with three 
other jobs. Messages from JOB1 are placed in the buffer pointed to by 
NCB1, while JOB3's messages are placed in the buffer pointed to by NCB3. 
The location of the buffers is not important. The NCBs should be 
allocated, however, so V registers can be used to poll for nonzero status 
values. 

A job can use more than one ID in its communications. This allows 
multiple paths between jobs. 

B.1.2 SENDING AND RECEIVING MESSAGES 

When a communication path has been established, a job sends a message by 
making a system request indicating the location and length of the message 
to be sent and an NCB address. 

SR-0011 0 B-3 



If a job's NCB message status indicates that a message is in its message 
buffer, the job reads the message in the buffer and clears its NCB message 
status. The NCB also contains the length of the message sent and the 
length of the message actually put in the buffer. A message that is too 
large for the buffer is truncated. No further action is taken by the 
system. 

Message exchange is memory to memory when both jobs are resident. 
Otherwise, one message per node is queued for any job that is rolled out 
or has a nonzero NCB message status. All requests to send a message to a 
job that already has a message queued are rejected with a busy status. If 
no pool space is available to queue a message, a pool-full status is 
returned. The job tries again later. 

When a program removes messages from message buffers and clears the 
message status, it issues an event recall return or recall function. This 
ensures that queued messages move into the buffers as quickly as possible 
rather than wait for the system to detect that buffers are available for 
new messages. 

Sending an ASCII message to an attached job's logfile is a privilege and 
can be done by making a system request specifying the location of the 
message, an NCB address, a message class indicator, destination indicator, 
and an Override flag. The message can be 1 to 80 characters and must be 
terminated by a zero byte if it is less than 80 characters. 

B.1.3 CLOSING COMMUNICATION PATHS 

A job can close all communication paths with a given ID by specifying that 
ID and an NCB address. A job closes a specific communication path by 
making a system request specifying its ID, an NCB address, and another 
job's ID. The closing job signals the other job of its intention to close 
communication before the close request is made. Any messages queued on 
either end of this path are discarded, and a zero-length path-closed 
message is placed in the other job's message buffer or queued for the 
other job. If a job receives a zero-length message, it checks its NCB 
open status for a change. 

A job gives up its receptivity by making a system request specifying its 
ID. This request does not affect existing communication paths but 
prevents future open requests that refer to that ID from being posted. If 
there are any open requests pending when this request is made, a status 
indicator is returned in the NCB, and the ID is placed in the RCB. The 
job's receptivity is ended, but the job continues to accept or reject open 
requests until the RCB is returned with a 0 value. The 0 indicates that 
no more open requests are queued for this job. If the job does not 
perform this function, the queued open requests remain until either the 
job becomes receptive again or job advance occurs. 

B-4 SR-0011 0 



All communication must be closed before the end of each job step or the 
job aborts. Communication paths do not affect the recoverability of a 
job. If a job with paths established is recovered, all paths are 
eliminated and the job reestablishes the paths. A job using an 
established communication path detects this occurrence when an 
ID-not-established status is returned in response to a communication 
request. 

B.1.4 SYSTEM REQUESTS 

The system requests available are F$IJMSG requests with the following 
functions: IJM$NOP, IJM$REC, IJM$OPEN, IJM$ACCE, IJM$REJE, IJM$SNDM, 
IJM$SNDL, IJM$CLOS, and IJM$END. Each request requires a parameter block 
(IJPB). Up to an installation-defined maximum number of parameter blocks 
(I@MPBS) can be linked together allowing for multiple requests with one 
F$IJMSG system request. 

B.2 USER CHANNEL ACCESS 

A job can communicate directly with a user-supplied driver using open, 
read, write, close, and special driver requests. These requests require 
the specification of a logical channel name, a return status word, and 
various buffer information. This is a privileged feature available to 
single-tasking job steps but prohibited to multitasking job steps. 

A user accesses a user-supplied driver with the F$DRIVER system request, 
DRIVER macro, or DRIVER Fortran subroutine. Only one request for a 
channel can be outstanding at a time. 

The user opens a channel by specifying a logical channel name, a channel 
time-out value, a driver name, and an 1/0 direction. If no time-out 
value is specified, the system uses an installation-defined value 
(I@CHATIM). All subsequent functions on this channel use this value 
unless a time-out value is specified with a specific function. Specify 
the driver name only if the system is not to use the standard driver for 
the given channel. The input or output channel must be opened before it 
can be read or written. Opening the channel automatically reserves it. 
The system rejects all subsequent requests from other jobs for that 
channel until the job closes the channel. 

Close a channel by specifying the channel name and direction. The 
channel reservation is released when the channel is closed. 

The user can send a message to the operator requesting that a channel be 
turned on or off (refer to subsection B.5, Operator Messages). 

SR-0011 0 B-5 



Transfer data by specifying the channel name (the direction is not 
needed), the address of the buffer to or from which data is to be 
transferred, and the length of the data to be transferred. The system 
returns the length of the data actually transferred. 

Issue special requests defined in the individual driver specifications by 
specifying the channel name and direction. Refer to the individual 
driver specifications for other requirements. 

For each function, send additional data to the driver (for example, the 
time-out value for this function) in a reserved driver word in the 
request parameter block. The driver returns information to the user in 
this word. Refer to the individual driver specifications for the use of 
this word. 

Job termination closes and releases all channels currently belonging to a 
job. Open channels do not affect the recoverability of a job. If a job 
with opened channels is recovered, all channel links are eliminated and 
the job must reopen them. A job can detect this occurrence when the 
channel-does-not-belong-to-you status is returned in response to a 
channel request. 

B.3 EVENT RECALL 

An event recall request causes a job to suspend until an event occurs. 
When the event occurs, the job is resumed and the event is reported. 
This feature is available to all single-tasking job steps but is 
prohibited to multitasking job steps. 

Event recall has two phases: waiting for events and discovering whether 
events have occurred. If one or more of the following events are 
requested in a job, the job is released from recall when the event 
occurs. A time-out event is always enabled to prevent a job from being 
suspended indefinitely. 

• Time-out elapsed 
• Interjob communication message received 
• Unsolicited operator message received 
• Operator reply received 
• Channel driver completed (privileged) 
• An SOT placed in the INPUT queue (privileged)t 
• An SDT placed in the OUTPUT queue (privileged)t 

The F$ERCL system request, ERECALL system macro, and Fortran ERECALL 
subroutines are available for event recall. 

t Deferred implementation 

B-6 SR-OOll 0 



B.4 SOT QUEUE MANIPULATION 

SDT queue manipulation allows a privileged job access to the COS system 
dataset queues. The job can then alter SOT entries, retrieve datasets for 
routing. The following subfunctions are available: 

• Accessing an SOT entry for 1/0 
• Changing a job characteristic 
• Releasing an accessed SDT entry 

The F$SDTQM system call and SDTQM macro are available for queue 
manipulation. 

B.S OPERATOR MESSAGES 

Operator messages allow a user job to communicate with the master operator 
console or with front-end stations (if the stations support station 
messages). The allowable message types are as follows: 

• Information only (STM I) 
• Reply requested (STM) 
• Cancel reply-requested message 
• Setup for unsolicited message 

The F$OPMSG system call and OPMSG macro are available for operator 
messages. 

B.6 SYSTEM JOBS 

A system job is any user job with an S parameter on the JOB control 
statement. The class structure (invoked through JCSOEF) can use the S as 
a characteristic in determining job classes, thus permitting the system 
administrator to schedule the jobs efficiently. 

SR-OOll 0 B-7 





CHAR.ACTER SET 

Table C-1 shows the ASCII character set, which contains 128 control and 
graphic characters. The letter C in column 3 identifies the numbers, 
letters, and special characters that form the Cray Fortran character 
set. The letter A in column 3 indicates those characters belonging to 
the ANSI Fortran character set. 

The letters that appear in parentheses following the descriptions in 
column 4 indicate the following control character usage: 

• CC 
• FE 
• IS 

Character 

NUL 

SOH 

STX 

ETX 

EOT 

ENQ 

ACK 

BEL 

BS 

HT 

LF 

SR-0011 0 

Communication control 
Format effector 
Information separator 

Table C-1. ASCII Character Set 

ASCII 
Octal 

Code 

000 

001 

002 

003 

004 

005 

006 

007 

010 

011 

012 

Fortran 
(A=ANSI) 
(C=CRAY) Description 

Null 

Start of heading (CC) 

Start of text (CC) 

End of text (CC) 

End of transmission (CC) 

Inquiry (CC) 

Acknowledge (CC) 

Bell (audible or attention signal) 

Backspace (FE) 

Horizontal tabulation (FE) 

Line feed (FE) 

c 

C-l 



Table C-1. ASCII Character Set (continued) 

ASCII Fortran 
Octal (A=ANSI) 

Character Code (C=CRAY) Description 

VT 013 Vertical tabulation (FE) 

FF 014 Form feed (FE) 

CR 015 Carriage return (FE) 

SO 016 Shift out 

SI 017 Shift in 

DLE 020 Data link escape (CC) 

DC1 021 Device control 1 

DC2 022 Device control 2 

DC3 023 Device control 3 

DC4 024 Device control 4 (stop) 

NAK 025 Negative acknowledge (CC) 

SYN 026 Synchronous idle (CC) 

ETB 027 End of transmission block (CC) 

CAN 030 Cancel 

EM 031 End of medium 

SUB 032 Substitute 

ESC 033 Escape 

FS 034 File separator (IS) 

GS 035 Group separator (IS) 

US 037 Unit separator (IS) 

(Space) 040 A,C Space (blank) 

RS 036 Record separator (IS) 

C-2 SR-0011 0 



Table C-1. ASCII Character Set (continued) 

ASCII Fortran 
Octal (A=ANSI) 

Character Code (C=CRAY) Description 

041 Exclamation mark 

042 C Quotation mark (diaeresis) 

# 043 Number sign 

$ 044 A,C Dollar sign (currency symbol) 

'\, 045 Percent 

& 046 Ampersand 

047 A,C Apostrophe (single close quotation) 

050 A,C Opening (left) parenthesis 

051 A,C Closing (right) parenthesis 

* 052 A,C Asterisk 

+ 053 A,C Plus 

054 A,C Comma (cedilla) 

055 A,C Minus (hyphen) 

056 A,C Period (decimal point) 

/ 057 A,C Slant (slash, virgule) 

0 060 A,C Zero 

1 061 A,C One 

2 062 A,C Two 

5 065 A,C Five 

6 066 A,C Six 

3 063 A,C Three 

SR-0011 0 C-3 



Character 

4 

7 

7 

8 

9 

) 

= 

< 

? 

@ 

A 

B 

C 

D 

F 

G 

H 

I 

J 

E 

C-4 

Table C-1. ASCII Character Set (continued) 

ASCII 
Octal 
Code 

064 

067 

067 

070 

071 

072 

0731 

074 

075 

076 

077 

100 

101 

102 

103 

104 

106 

107 

110 

111 

112 

105 

Fortran 
(A=ANSI) 
(C=CRAY) 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

Description 

Four 

Seven 

Seven 

Eight 

Nine 

Colon 

Semicolon 

Less than 

Equal 

Greater than 

Question mark 

Commercial at-sign 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

SR-0011 0 



Character 

K 

L 

M 

N 

o 

p 

Q 

R 

s 

T 

U 

v 

w 

x 

y 

z 

\ 

SR-0011 0 

Table C-1. ASCII Character Set (continued) 

ASCII 
Octal 
Code 

113 

114 

115 

116 

117 

120 

121 

122 

123 

124 

125 

126 

127 

130 

131 

132 

133 

134 

135 

136 

137 

140 

Fortran 
(A=ANSI) 
(C=CRAY) 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

A,C 

Description 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Uppercase letter 

Opening (left) bracket 

Reverse slant (backslash) 

Closing (right) bracket 

Circumflex 

Underline 

Grave accent (single open quotation) 

C-5 



Table C-1. ASCII Character Set (continued) 

ASCII Fortran 
Octal (A=ANSI) 

Character Code (C=CRAY) Description 

a 141 C Lowercase letter 

b 142 C Lowercase letter 

c 143 C Lowercase letter 

d 144 C Lowercase letter 

e 145 C Lowercase letter 

f 146 C Lowercase letter 

g 147 C Lowercase letter 

h 150 C Lowercase letter 

i 151 C Lowercase letter 

j 152 C Lowercase letter 

k 153 C Lowercase letter 

1 154 C Lowercase letter 

m 155 C Lowercase letter 

n 156 C Lowercase letter 

• 157 C Lowercase letter 

p 160 C Lowercase letter 

q 161 C Lowercase letter 

r 162 C Lowercase letter 

s 163 C Lowercase letter 

t 164 C Lowercase letter 

u 165 C Lowercase letter 

C-6 SR-0011 0 



Table C-1. ASCII Character Set (continued) 

ASCII Fortran 
Octal (A=ANSI) 

Character Code (C=CRAY) Description 

v 166 C Lowercase letter 

w 167 C Lowercase letter 

x 170 C Lowercase letter 

y 171 C Lowercase letter 

z 172 C Lowercase letter 

} 173 Opening (left) brace 

174 Vertical line 

} 175 Closing (right) brace 

176 Overline (tilde, general accent) 

DEL 177 Delete 

SR-0011 0 C-7 





EXCHANGE PACKAGES 

An Exchange Package is a 16-word block of data in memory that is 
associated with a particular computer program. An Exchange Package 
contains the basic hardware parameters necessary to provide continuity 
from one execution interval for the program to the next. The CRAY X-MP 
Exchange Package is shown in figure D-2; the CRAY-1 Exchange Package is 
shown in figure 0-1. 

0 8 16 24 32 40 48 56 

0 E S IRI BI P AO 

1 C 11111 BA I I I II A1 

2 IIIIIIIIIIIIIIRHIIIII LA I M I A2 

3 1///////////////1 XA VL F I A3 

4-7 11111111111111111111111111111111111111111 A4 to A7 

8-15 SO to S7 

Figure 0-1. CRAY-1 Exchange Package 

Field Word Bits 

Error type (E) 0 0-1 
Syndrome bits (S) 0 2-9 
Read mode (R) 0 10-11 
Bank error address (B) 0 12-15 
Program register (P) 0 16-39 
Chip error address (C) 1 0-15 
Base address (BA) 1 18-35 
Interrupt Monitor Mode bit (IMM) 1 39 
High-order bits of memory error read 

address (RH) 2 14-15 
Limit address (LA) 2 18-35 
Mode bits (M) 2 36-39 
Exchange address (XA) 3 16-23 
Vector length (VL) 3 24-30 
Flag register (F) 3 31-39 
Current contents of the eight A registers 0-7 40-63 
Current contents of the eight S registers 8-15 0-63 

SR-0011 0 

D 

63 

D-1 



0 8 16 24 32 40 48 

a I lEI S 1///1 P AO 

1 IRI CS B 1///1 IBA I/IMI A1 

2 I 1/////////1///1 ILA I/IMI A2 

3 I///////////IFI XA VL 1/1 F I A3 

4 11//////////////1 DBA 1/1 A4 

5 1/////////////////1 DLA 1///1 A5 

6-7 1////111////////1///////////////////////1 A6 to A7 

8-151 so to S7 

Figure 0-2. CRAY X-MP Exchange Package 

Field Word 

Processor number (PN) 0 
Error type (E) a 
Syndrome bits (S) 0 
Program Address 

register (P) a 
Read mode (R) 1 
Read address (CS) 1 

Instruction Base 
Address (IBA) 1 

Mode register (M) 1 
Instruction Limit 

Address (ILA) 2 
2 

Vector not used (VNU) 2 
Enable Second Vector 

Logical (ESVL)t 3 
Flag register (F) 3 

Exchange Address 
register (XA) 3 

Vector Length 3 
register (VL) 

Four-processor 
CRAY X-MP 

0-1 
2-3 
4-11 

16-39 
0-1 
2-5 (CS); 
6-11 (B) 

16-33 
35-39 

16-33 
35-39 
0 

a 
14-15; 
31-39 

16-23 
24-30 

Bits 

Single-processor 
CRAY X-MP 

1 
2-3 
4-11 

16-39 
0-1 
2-4 (CS) ; 
7-11 (B) 

18-34 
35-37, 39 

18-34 
35-39 
a 

a 
15; 
31-39 

16-23 
24-30 

t Not available on all CRAY X-MP computer systems 

0-2 

56 63 

I 

I 

Dual-processor 
CRAY X-MP 

1 
2-3 
4-11 

16-39 
0-1 
2-6 (CS) 
7-11 (B) 

18-34 
35-39 

18-34 
35-39 
a 

0 
14-15; 
31-39 

16-23 
24-30 

SR-0011 0 



Field Word Bits 

Four-processor Single-processor Dual-processor 
X-MP X-MP X-MP 

Enhanced Addressing 
Mode (EAM) 4 0 NA NA 

Data Base Address (DBA) 4 16-33 18-34 18-34 
Program State (PS) 4 35 35 35 
Cluster Number (CLN) 4 37-39 38-39 38-39 
Data Limit 5 16-33 18-34 18-34 

Address (DLA) 

Eight A register 0-7 40-63 40-63 40-63 
contents 

Eight S register 8-15 0-63 0-63 0-63 
contents 

SR-0011 0 0-3 





I 

PERMANENT DATASET STATUS CODES E 

The permanent dataset status octal codes are placed in the PMST field of 
the Permanent Dataset Definition Table (PDD), which is presented in 
appendix A. PMST can also be tested as the JCL symbol PDMST (refer to 
table 16-1). Table E-1 lists the PDD statuses. The logfile contains a 
corresponding code (of the form PDnnn, where nnn is listed in table 
E-1) and message for most of the status conditions. 

Logfile 
Code 

o 

1 

2 

3 

4 

5 

6 

7 

9 

10 

11 

12 

SR-0011 0 

PMST 

1 

11 

21 

31 

41 

51 

61 

71 

Table E-1. PDD Status 

Status 

Complete; no error. 

No Dataset Name Table (DNT) found for the specified 
dataset 

Maintenance permission not granted 

Edition already exists 

Dataset Catalog (DSC) full 

Function code out of range 

The local dataset name (DN) specified is already in 
use by the job 

No permission granted 

101 Delay and try again 

111 Requested dataset not in DSC 

121 Edition does not exist 

131 Active Permanent Dataset Table (PDS) full 

141 Dataset not permanent 

E-1 



I 

Logfile 
Code 

14 

15 

16 

18 

21 

25 

26 

27 

28 

29 

30 

31 

E-2 

Table E-1. PDD Status (continued) 

PMST Status 

151 Unused 

161 Continuation error 

171 DAT full 

201 DNT full 

211 End of DSC 

221 Specified permanent dataset already accessed by 
this job 

231 Request to read zero pages 

241 Invalid page number requested 

251 No data has been written to disk. 

261 SDT does not exist. 

271 SDT entry not on input or output queue 

301 Unable to queue SDT entry 

311 

321 

331 

341 

351 

361 

Dataset name in PDD is 0 

Access control word validation error 

Notes length exceeds allowable maximum 

Unique access is not acceptable because the 
dataset is part of the System Directory. 

Text length is 0 

Text length specified exceeds the allowable 
maximum. 

371 Device on which all or part of the dataset resides 
is down 

SR-0011 0 



I 

Logfile 
Code 

34 

35 

36 

40 

41 

42 

43 

44 

45 

46 

47 

48 

SR-0011 0 

PMST 

401 

411 

421 

431 

441 

451 

461 

471 

501 

511 

521 

531 

541 

551 

561 

571 

601 

Table E-1. PDD Status (continued) 

Status 

Error has occurred while rewriting the SDT, or the 
SOT name and dataset type in the DSC do not match 
those in the PDD 

Permanent dataset to be pseudo-accessed is not 
available, or the Dataset Allocation Table (OAT) in 

the DSC does not match the JTA DAT 

Access is denied because crossed allocation unit 
exists 

Dataset is already permanent 

The DSC entry was flagged by Startup as containing 
a fatal error; access is denied. 

DSC or Dataset Catalog Extension Table (DXT) page 
buffer supplied is outside the user field length. 

No available Queued Dataset Table (QDT) entries 
exist. 

The dataset has outstanding disposes; do not 
deallocate disk space. 

Allocation of multi type dataset is inconsistent 
with related datasets. 

Multitype dataset has nonexistent QDT entry. 

Maximum edition reached 

Dataset is on an active SOT queue. 

Bad SDT address on Enqueue SDT request 

Dataset is on a scratch device. 

Access is denied due to DXT error. 

Notes length is O. 

The buffer address specified with a DUMPTM request 
is not within the caller's field length. 

E-3 



Logfile 
Code PMST 

49 611 

50 621 

51 631 

52 641 

53 651 

54 661 

671 

701 

711 

721 

731 

60 741 

751 

761 

771 

1001 

1011 

1021 

E-4 

Table E-1. POO Status (continued) 

Status 

Maximum number of OXT entries per dataset reached 

Attributes dataset not local 

Attributes dataset not permanent 

Invalid notes buffer specified 

Invalid text buffer specified 

Specified permit entry not found 

Invalid DXT buffer address (get/link DXT) 

Bad DXT linkage pointer (get/link DXT) 

PMPDN and DCPDN do not match (get/link DXT) 

Unused 

PMSIZE greater than maximum PDD size 

The TEXT length components PMTXC and PMSSC are 
greater than the total length PMTXL. 

Pseudoaccess - No DNT address was supplied with the 
request. 

Pseudoaccess - The DSC address found in the JTA OAT 
is not for the main entry of a user saved dataset. 

Pseudoaccess - The DSC and JTA DAT allocation 
styles are different. 

Pseudoaccess - A DSC and JTA OAT partition header 
LDV are different. 

Pseudoaccess - The LOV specified in a DAT partition 
headercould not be found in the EQT. 

Pseudoaccess - The blocks per bit field in a OAT 
partition header are different. 

SR-0011 0 



Logfile 
Code 

76 

77 

SR-0011 0 

PMST 

1031 

1041 

1051 

Table E-l. POD Status (continued) 

Status 

Pseudoaccess - The JTA OAT has fewer partitions 
than recorded in the OSC OAT. 

Pseudoaccess - A JTA OAT partition has fewer Als 
than recorded in the OSC OAT partition. 

Pseudoaccess - Either the JTA or OSC OATs 
terminated prematurely. 

1061 Pseudoaccess - A JTA and DSC partition AI have 
different values. 

1071 Pseudoaccess - A OSC continuation address is 1) not 
within the OSC, 2) not for a continuation entry, 
or 3) not for a continuation entry that belongs to 
the main entry. 

1101 Pseudoaccess - A JTA OAT address is positive 
(should be negative). 

1111 Pseudoaccess - A JTA OAT address is not within the 
JTA. 

1121 Pseudoaccess - A JTA OAT page number is out of 
sequence. 

1131 The OSC address supplied with a POSOUMP access 
request is invalid (that is, zero, beyond DSC EOD, 
entry number 8-15) 

1141 

1151 

The request type is illegal for the dataset 
specified. For example, this error is returned if 
the caller requested a spooled delete of a user 
dataset or vice versa, or if the caller requested a 
partial delete of a spooled dataset. 

An access input dataset request was issued for a 
job that was submitted by the *SUBMIT Startup 
parameter file directive. 

E-5 



Logfile 
Code 

E-6 

PMST 

1161 

1171 

1201 

Table E-1. PDD Status (continued) 

Status 

PMFCGLDV - the supplied buffer was too small to 
contain the logical device list information. When 
PDM returns this code, PDD field PMBUFL has been 
set to the actual size required. Increase the 
buffer to at least that number of words, and 
reissue the request. 

PMFCLDMC - The Master Catalog has already been 
loaded. 

PMFCLDBC - The Backup Catalog has already been 
loaded. 

1211 PMFCONSM, PMFCWRBC, PMFCGLDV, and PMFCGRRL - The 
supplied buffer is not wholly contained within the 
caller's field length. Either the buffer address 
(PMBUFA) or the buffer length (PMBUFL) could be in 
error. 

1221 

1231 

PMFCONBU - The maximum number of BACKUP jobs have 
already logged on to PDM. The maximum is defined 
in the KL table found in STPTAB at tag B@KL, and 
includes both the main BACKUP job and all of its 
BUPIO helper jobs. It should be set to the value 
of TAPEJOBS in UTILPL common deck ADMIJCOM plus 
one. This error could indicate that the maximum in 
the KL table is less. It could also indicate that 
more than one main BACKUP job is running. The most 
likely cause, however, is that previous BACKUP or 
BUPIO jobs were unable to issue the PMFCOFBU 
(logoff) function. This case is generally caused 
by a failure in reprieve processing. In any event, 
a system restart is the only method available for 
clearing this error. 

PMFCONSM - The maximum number of SPACE MANAGER jobs 
have already logged on to PDM. Because in the 
current design this maximum is 1, the error could 
be caused by accidently running more than one SPACE 
MANAGER job. It could also be caused by failure of 
a previous SPACE MANAGER job to issue the PMFCOFSM 
function during reprieve processing. In any case, 
a system restart is required to clear the error. 

SR-0011 0 



Logfile 
Code 

SR-0011 0 

PMST 

1241 

1251 

1261 

1271 

Table E-l. PDD Status (continued) 

Status 

PMFCONRC - The maximum number of RECALL jobs have 
already logged on to PDM. The maximum is defined 
in the KL table found in STPTAB at tag B@KL, and 
includes both the main RECALL job and all of its 
RECIO helper jobs. It should be set to the value 
of TAPEJOBS in UTILPL common deck ADMIJCOM plus 1. 
This error could indicate that the maximum in the 
KL table is less. It could also indicate that more 
than one main RECALL job is running. The most 
likely cause, however, is that previous RECALL or 
RECIO jobs were unable to issue the PMFCOFRC 
(logoff) function. This case is generally caused 
by a failure in reprieve processing. In any event, 
a system restart is the only method available for 
clearing this error. 

PMFCONCU - The maximum number of CLEANUP jobs have 
already logged on to PDM. The maximum is defined 
in the KL table found in STPTAB at tag B@KL, and 
includes both the main CLEANUP job and all of its 
helper jobs. It should be set to the value of 

TAPEJOBS in UTILPL common deck ADMIJCOM plus one. 
This error could indicate that the maximum in the 
KL table is less. It could also indicate that more 
than one main CLEANUP job is running. The most 
likely cause, however, is that previous CLEANUP or 
helper jobs were unable to issue the PMFCOFCU 
(logoff) function. This case is generally caused 
by a failure in reprieve processing. In any event, 
a system restart is the only method available for 
clearing this error. 

PMFCACDC, PMFCACDX, PMFCACMC, PMFCACBC - The 
requested catalog dataset does not exist. This 
error should never be seen for DSC or DXT access 
function. In the case MCD or BCD, it indicates that 
GENCAT has not been run. 

PMFCSDEI, PMFCCDEI, PMFCRET, PMFCMIG, PMFCDEL, 
PMFCCBRS, PMFCBUAC, PMFCRLD, and PMFCWRBC - The 
dataset edition requested is interlocked by 
another task. 

E-7 



Logfile 
Code 

E-8 

Table E-1. PDD Status (continued) 

PMST Status 

1301 PMFCCDEI, PMFCRET, PMFCMIG, PMFCDEL, PMFCCBRS, 
PMFCBUAC, PMFCRLD, PMFCWRBC - The requested 
function requires that the dataset edition be 
interlocked and there is no interlock set. 

1311 PMFCCDEI, PMFCBUAC, PMFCWRBC, and PMFCARCL - PDM 
could not find a PDS table entry for the dataset 
edition when one should exist. This error is 
nearly always caused by failure to set a dataset 
edition interlock when one is required. 

1321 PMFCSDEI, PMFCCDEI, PMFCRET, PMFCMIG, PMFCDEL, 
PMFCCBRS, PMFCSRLD, PMFCBUAC, PMFCRLD, PMFCWRBC, 
PMFCSRET, PMFCSRES, PMFCSDEL, and PMFCARCL - The 
specified Master Catalog address is out of the 
range of the catalog size. 

1331 PMFCMIG - The dataset edition to be migrated is not 
on-line. 

1341 

1351 

1361 

1371 

PMFCMIG, PMFCRET, and PMFCSRET - The specified 
dataset edition has no Backup Catalog entry when 
one is required for the requested function. 

PMFCRET and PMFCSRET - The specified dataset 
edition is already retired. 

PMFCAU and PMFCPU - The specified dataset edition 
is retired. The PMFCSRES function must be used to 
initiate the process of restoring the dataset to 
Crayon-line disk (typically using the RESTORE 
control statement). 

PMFCSDEI - The specified dataset edition is 
accessed by other tasks. 

SR-0011 0 



Logfile 
Code 

SR-0011 0 

PMST 

1401 

1411 

1421 

1431 

1441 

1451 

1461 

1471 

1501 

Table E-1. PDD Status (continued) 

Status 

PMFCGRRL - The supplied buffer is not large enough 
to hold the recall/restore work list. When this 
return code is issued, PDM sets PDD field PMBUFL to 
the actual length required at that time. The 
requestor should expand the buffer and reissue the 
request. Note: Because the recall/restore work 
list can grow between the first and second 
requests, the buffer should be expanded to a size 
greater than indicated by PMBUFL. 

PMFCONSM - A logical device name supplied in the 
device list could not be found in the system. 
Note: This status is set in the device list itself 
rather than in the PDD. 

PMFCSRES - The specified dataset edition is not 
retired. 

PMFCWRBC - The Backup Catalog is full. By release 
time, PDM should be able to extend the catalog, so 
this will mean that it could not extend it. 

PMFCWRBC - SAA 

PMFCSDEI - PDM was unable to interlock a dataset 
edition because the PDS table is full. Note: This 
return code does not cause an automatic time delay 
and retry of the requesting job; if such processing 
is desired, the requestor must provide it. 

PMFCOFBU, PMFCOFSM, PMFCOFRC, and PMFCOFCU - The 
requestor's TXT ordinal could not be found in PDM's 
task logon table. 

PMFCSDEI - There is no dataset edition at the 
specified Master Catalog address. Generally, this 
means that the dataset edition has been deleted 
since the requestor saw it in the Master Catalog. 

PMFCAU and PMFCPU - The specified dataset edition 
could not be recalled to Crayon-line disk. 
Generally, this means that the RECALL job was 
unable to access the backup copy of the dataset 
edition from the back-up media. 

E-9 



Logfile 
Code 

E-10 

Table E-1. PDD Status (continued) 

PMST Status 

1511 PMFCSRES - The specified dataset edition is already 
on-line. 

2001 Parameter error (internal to $SYSLIB) 

2002-2777 This range of status codes is reserved for magnetic 
I tape support 
I 

SR-0011 0 



I 

CONTROL STATEMENT PARAMETERS 

Use table F-l to record ranges and installation definitions for your 
site. This table can then serve as a handy reference for these values. 

SR-OOll 0 

F 

F-l 



I 

Table F-l. Ranges and Installation Definitions 

Parameter 

ACCESS,ED= 
ACCESS,RT= 
ACQUIRE,ED= 
ACQUIRE,PAM= 
ACQUIRE,RT= 
ASSIGN,A= 
ASSIGN,BFI= 
ASSIGN,S= 
ASSIGN,BS= 
ASSIGN,LM= 
AUDIT,CW= 
AUDIT,SZ= 
COMPARE,CP= 
COMPARE,CS= 
COMPARE,CW= 
COMPARE,ME= 
COPYF,NF= 
COPYR,NR= 
DEBUG,BLOCKS= 
DEBUG,COMMENT= 
DEBUG,MAXDIM= 
DEBUG, NOTBLKS= 
DEBUG, NOTSYMS= 
DEBUG,PAGES= 
DEBUG,SYMS= 
DEBUG,TRACE= 
DSDUMP,IW= 
DSDUMP,NW= 
DSDUMP,IR= 
DSDUMP,NR= 
DSDUMP,IF= 
DSDUMP,NF= 
DSDUMP,IS= 
DSDUMP,NS= 
DUMP,FW= 
DUMP,LW= 
EXCLUDE,FN= 
INCLUDE,FN= 
ITEMIZE,NF= 
JOB,CL= 
JOB,MFL= 
JOB,OLM= 
JOB,P= 
JOB,T= 
JOB,*SSD= 

F-2 

Minimum Maximum Default 

SR-OOll 0 



SUMMARY 





COS CONTROL STATEMENT SUMMARY 

This summary lists control statements in the COS job control language. 
This manual uses the following conventions to illustrate command syntax: 

Convention 

UPPERCASE 

Italics 

[] Brackets 

Choice 1 
Choice 2 

{} Braces 

Description 

Identifies the control statement verb or literal 
parameter 

Defines generic terms that represent the words or 
symbols you supply 

Enclose optional portions of a command format 

Stacked items indicate two or more literal parameters 
when only one choice can be used 

Items in braces are repeated zero or more times. 

Numbers are decimal unless otherwise indicated. 

The column at the left margin refers to the location of additional 
information on each control statement. References in the form of a 
single number indicate a section in this manual. (Within the section, 
control words appear alphabetically.) Other references are to the 
publication numbers of CRI manuals in which you can find the control 
statements described. 

SR-OOll 0 Summary-l 



Reference Control Statement 

7 

9 

7 

10 

* comment text 

ACCESS,DN=dn,NA,ERR,MSG,IR,PDN=pdn,ID=uid,ED=ed,R=rd,W=wt,M=mn, 

IN 
UQ,OWN=OV,DT=dt,NEW,MOD,RING=OUT,DEN=den,MF=fes, 
VOL=vol1:Vo12:···voln,FSEC=fseC,LB=lb,DF=df,PROT, 
MBS=mbs,XDT=yyddd,RT=rt,FD=fd,CV=cv,CS=CS,F=f,RF=rf, 
RS=rS,FSEQ=fseq. 

ACCOUNT, AC=ac, APW=apW,NAPW=napw,uS=US,UPW=UPW,NUPW=nUp W. 

ACQUIRE,DN=dn,PDN=pdn,AC=ac,ID=uid,ED=ed,RT=rt,R=rd,w=wt,M=mn,UQ, 
TEXT=text,MF=mf,TID=tid,DF=df,OWN=Ov,PAM=mode,ADN=adn(m), 

ONLINE YES 
TA=opt,NOTES=notes,ERR,MSG,RESIDE=OFFLINE,BACKUP=NO . 

9 ADJUST,DN=dn,NA,ERR,MSG. 

8 ASSIGN,DN=dn,S=size,SZ=size,NOF,BS=bsz,XSz=xmx:xmn,DV= Idv,DT=dt,DF=df, 
RDM,U,MR,LM=lm,INC=nds,C,DC=dc,BFI=bfi,A=alias,FD=fd,CV=cv,CS=cs, 
F~f,RF=rf,RS=rs,MBS=mbs,DEF=dtl[dt2:dt3],ST=St,SPD=spd. 

11 AUDIT,L=ldn,B=bdn,PDN=pdn,ID=uid,US=USn,ACN=aCn,DV=dvn,SZ=dsz, 
ACC=opt:opt,X=mmlddlyy: 'hh:mm:sS',TCR=mmlddlyy: 'hh:mm:ss', 
TLA=mmlddlyy:'hh:mm:sS',TLM=mmlddlyy: 'hh:mm:ss',CW=CW, 
OWN=ov,LO=Opt: ... Opt,BO=opt: ... Opt. 

SR-0013 AUDPL,p=pdn,I=idn,L=ldn,M=mdn,B=bdn,*=m,I=C,DW=dw,LW=lw,JU=ju, 
DK=list,PM=list,LO=string,CM,NA,NR. 

12 BLOCK,DN=ldn,BLKSIZE=size. 

12 BLOCK,I=idn,O=odn,BLKSIZE=size. 

15 BUILD,I=idn,L=ldn,OBL=odn,B=bdn,NBL=ndn,SORT,NODIR,REPLACE. 

SR-OOOO CAL Version 1 
CAL,CPU=type,I=idn,L=ldn,B=bdn,E=edn,ABORT,DEBUG,options, 

LIST=name,S=sdn,SYM=sym,ALLSYMS,T=bst,X=xdn. 

SR-2003 CAL Version 2 
CAL,I=idn{:idn},L=ldn,E=edn,B=bdn,X=xdn,S=sdn{:sdn}, 
T=tdn,SYM=symdn,ALLSYMS,ABORT,CPU=primary{:charaC},NLIST, 
LIST=name{:name},optionS,ML=level,MC=COunt,FORMAT=format, 
EDIT=edit. 

7 CALL,DN=dn,CNS. 

Surnmary-2 SR-0011 0 



Reference Control Statement 

SR-0009 CFT,AIDS=aids,ALLOC=alloc,ANSI,B=bdn,C=cdn,CPU=cputype:cpuchar, 
DEBUG,E=eml,EDN=edn,I=idn,INDEF,INT=il,L=ldn,LOOPMARK=lmmsgs, 
MAXBLOCK=mb,OFF=OptS,ON=opts,OPT=optim,SAVEALL,TRUNC=tr,UNROLL=r. 

SR-0018 CFT77,ALLOC=a,B=binarydn,C=caldn,CPU=cpu:hdw,E=msglev, 
I=inputdn,INTEGER=n,L=listingdn,OFF=string,ON=string, 
OPT=Optim,TRUNC=n,DEBUG,LIST,STANDARD,INDEF. 

7 CHARGES,SR=Options. 

13 COMPARE,A=adn,B=bdn,L=ldn,DF=df,ME=maxe,cP=cpn,CS=csn, 
CW= CW1: cw2,ABORT=ac. 

S1-0154 CONNECT,DN=dname[,DV=DAMname],MF=mf[,DF=df] [,TEXT='ispte xt'] 
S1-0178 [,STEXT='s-text'][,APPL=applname]. 

12 COPYD,1=idn,O=odn,S=m. 

12 COPYF,1=idn,O=odn,NF=n,S=m. 

12 COPYR,1=idn,O=odn,NR=n,S=m. 

12 COPYU,1=idn,O=odn,NS=ns. 

16 &DATA,dn. 

SR-0112 DEBUG,S=sdn,L=ldn,DUMP=ddn,CALLS=n,TASKS,SYMS=sym{:sym}, 
NOTSYMS=nsym{:nsym},MAXD1M=dim{:dim},BLOCKS=blk{:blk}, 
NOTBLKS=nblk{:nblk},RPTBLKS,MTBUF=m,PAGES=np. 

9 DELETE,DN=dn,NA,ERR,MSG,PART1AL. 

9 DELETE,PDN=pdn,ERR,MSG,ID=id,OWN=Owner,ED=ed,M=m. 

10 DISPOSE,DN=dn,SDN=sdn,DC=dc,DF=df,MF=mf,SF=sf,ID=uid,TID=tid, 
ED=ed,RT=rt,R=rd,W=wt,M=mn,TEXT=text,wA1T,NOWAIT,DEFER, 
NRLS. 

13 DSDUMP,I=idn,O=odn,DF=df,1W=n,NW=n,1R=n,NR=n,1F=n,NF=n,IS=n, 
NS=n,Z,DB=db,DSZ=SZ. 

13 DUMP, 1=idn,O=odn,FWA=fwa, LWA=lwa, JTA,NXP,V,DSP, FORMAT=f, CENTER, 
BIAS=addresS,BUFFER. 

13 DUMPJOB. 

SR-0011 0 Summary-3 



Reference Control Statement 

16 ELSE. 

16 ELSEIF(eXpression) 

16 ENDIF. 

16 ENDLOOP. 

16 ENDPROC. 

7 EXIT. 

16 EXITIF. 

16 EXITIF(eXpression) 

16 EXITLOOP. 

16 EXITLOOP(expression) 

10 FETCH,DN=dn,SDN=sdn,AC=dC,TEXT=text,MF=mf,TID=tid,DF=df,SF=sf. 

SR-0146 FLODUMP[,L=ldn]. 

SR-0146 FTREF,I=idn,L=idn,CB=Op,TREE=Op,ROOT=root,END=end,LEVEL=n, 
DIR=dir,NORDER,MULTI. 

8 HOLD,GRN=grn. 

16 IF(expression) 

7 IOAREA,LOCK 
UNLOCK 

SI-0154 ISP,MF=id[,TEXT='isp-text'][,STEXT='paSsword'][,APPL=applname]. 
81-0178 

13 

7 

14 

Summary-4 

ITEMIZE,DN=dn,L=odn,NREW,NF=n,T,BL,E,B,X. 

JOB,JN=jn,MFL=fl,T=tl,P=p,U8=us,OLM=olm,CL=jcn,gn=nr,8. 

LDR,DN=dn,LIB=ldn,NOLIB=ldn,LLD,AB=adn,MAP=op,8ID[='string'], 
T=tra,NX,DEB=l,C=com,OVL=dir,CNS,NA,USA,L=ldn, 
SET=val,E=n,I=sdir,NOECHO,SECURE, 
GRANT=SC1: SC2:···: SCn,BC=bc,PAD=pad,NORED, 
STK[=initial size[:increment]],MM[=initial size[:increment]], 

AFTER 
MMEPS=epsilon,MMLOC=BEFORE· 

SR-0011 0 



Reference Control Statement 

14 LD2,DN=dn,LIB=ldn,NOLIB=ldn,LLD,AB=adn,MAP=op, 

7 

16 

7 

7 

9 

8 

7 

12 

7 

SR-0060 

11 

LOOP. 

T=tra,NX,DEB=l,C=com,OVL=dir,CNS,NA,USA,L=ldn, 
SET=val,E=n,I=sdir,NOECHO,SECURE, 
GRANT=SC1: SC2:···: SCn,BC=bc,PAD=pad,NORED, 
STK[=initial size[:increment]],MM[=initial size[:increment]], 

AFTER 
MMEPS=epsilon,MMLOC=BEFORE,VIEW=level,CMD=string. 

MEMORY,FL=fl,USER. 
AUTO 

MODE,FI=option,BT=option,EMA=option,AVL=option,ORI=option. 

MODIFY,DN=dn,PDN=pdn,ID=uid,ED=ed,RT=rt,R=rd,w=wt,M=mn ,NA,ERR, 

ON 
MSG, EXO=OFF' PAM=mode,TA=opt,TEXT=text,NOTES=notes, 

ONLINE YES 
RESIDE=OFFLINE,BACKUP=NO . 

NOHOLD,GRN=grn. 

NORERUN,ENABLE . 
DISABLE 

NOTE,DN=dn,TEXT=text. 

OPTION,LPP=n,PN= P ,STAT=ON. 
ANY OFF 

PASCAL,I=idn,L=ldn,B=bdn,O=list,CPU=list. 

PDN 
PDSDUMP,DN=dn,DV=ldv'PDS=pdn,ED=ed,CW=cw,ID=uid,US=usn,oWN=OV, 

INC=mmlddlyy: 'hh:mm:ss',ARC=mmlddlyy: 'hh:mm:ss', 
TS=opt,X,C,D,B,SO,I,O,S. 

PDN 
11 PDSLOAD,L=ldn,DN=dn'PDS=pds,ED=ed,CW=cw,ID=uid,NID=nuid, 

US=usn,OWN=ov,NOWN=nov,DV=dvn,RP,CR,A,I,O,S,NA,SO,TLA. 

9 PERMIT,PDN=pdn,ID=uid,AM=m,RP,USER=ov,ADN=adn,NA,ERR,MSG. 

13 PRINT(expression) 

16 PROC. 

SR-OOll 0 Sumrnary-5 



Reference Control Statement 

12 QUERY,DN=ldn,STATUS=sym,POS=sym. 

8 RELEASE,DN=dn1:dn2: .•. :dn8,HOLD. 

7 RERUN, ENABLE . 
DISABLE 

11 RESTORE,PDN=pdn,ID=id,ED=ed,OWN=Ov,M=m,TYPE=type. 

11 RETIRE,PDN=pdn,ID=id,ED=ed,OWN=Ov,M=m,X. 

7 RETURN, ABORT. 

7 ROLLJOB. 

9 SAVE,DN=dn,PDN=pdn,ID=uid,ED=ed,RT=rt,R=rd,W=wt,M=mn,UQ,NA,ERR, 
MSG,EXO=ON ,PAM=mode,ADN=adn(m),TA=Opt,TEXT=text, 

OFF ONLINE YES 
NOTES=notes,RESIDE=OFFLINE,BACKUP=NO . 

SR-0066 SEGLDR,I=idn,L=ldn,DW=dw,CMD='dirstr',GO. 

7 SET(symbol=expression) 

SG-0056 SID=adn,I=idn,L=ldn,ECH=edn,CNT=n. 

12 SKIPD,DN=dn. 

12 SKIPF,DN=dn,NF=n. 

12 SKIPR,DN=dn,NR=n. 

12 SKIPU,DN=dn,NS=ns. 

SR-0074 SORT,S=sdn[:sdn •.. ],M=mdn[:mdn ..• ],O=odn,DIR=ddn,L=ldn,ECHO, 
RETAIN,NOVERF. 

10 SUBMIT,DN=dn,SID=sf,DID=df,TID=tid,DEFER,NRLS. 

7 SWITCH,n=x. 

13 SYSREF,X=xdn,L=ldn. 

Summary-6 SR-0011 0 



Reference Control Statement 

7 

SG-0055 

12 

12 

SR-0013 

EMA 
TARGET,CPU=cpu : NOEMA 

VRECUR 

CIGS 
NOCIGS 

AVL READVL 
NOREADVL 
BDM 

: NOVRECUR : NOAVL 

VPOP 
NOVPOP 

HPM 
: NOHPM 

PC 
NOPC 

STATRG 
: NOSTATRG 

NOBDM [:BANKS=banks] [:NUMCPUS=numcpus] [:IBUFSIZE=ibufsize] 

[:MEMSIZE=memsize] [:MEMSPEED=memspeed] [:CLOCKTIM=clock tim] 

*HOST 
[:NUMCLSTR=numclstr] [:BANKBUSY=bankbusy],VERIFY=*TARGET' 

TEDI,DN=dn,I=idn,L=ldn. 

UNBLOCK,DN=ldn. 

UNBLOCK,I=idn,O=odn. 

UPDATE,p=pdn,I=idn1:idn2:···:idnn' 
c=cdn,CL=cln1:cln2:···:clnn,DEF=def1:def2:···:defn' 
N=ndn,L=ldn,E=edn,S=sdn,*=m,l=c,DW=dw,DC=dc,ML=C, 
F 

Q[=d1:d2:···:dn ] ,options. 

12 WRITEDS,DN=dn,NR=nr,RL=rl. 

SR-0011 0 Sumrnary-7 





GLOSSARY 





GLOSSARY 

A 

Abort - To terminate a program or job when a condition (hardware or 
software) exists from which the program or computer cannot recover. 

Absolute address - (1) An address permanently assigned by the machine 
designator to a storage location. (2) A pattern of characters that 
identifies a unique storage location without further modification. 
Synonymous with machine address. 

Absolute block - Loader tables consisting of the image of a program in 
memory. The program image can be saved on a dataset for subsequent 
reloading and execution. 

Address - (1) An identification, as represented by a name, label, or 
number, for a register, location in storage, or any other data source or 
destination such as the location of a station in a communication 
network. (2) Any part of an instruction that specifies the location of 
an operand for the instruction. 

Allocate - To reserve an amount of some resource in a computing system 
for a specific purpose (usually refers to a data storage medium). 

Alphabetic - A character set including, $, %, @, as well as the 26 
uppercase letters A through Z. 

Alphanumeric - A character set including all alphabetic characters and 
the digits 0 through 9. 

Arithmetic operator - Part of an expression that indicates action to be 
performed during evaluation of expression; can be symbolic character 
representing addition, unary plus, subtraction, unary minus, 
multiplication, or division. 

Assemble - To prepare an object language program from a symbolic language 
program by substituting machine operation codes for symbolic operation 
codes and absolute or relocatable addresses for symbolic instructions. 

SR-0011 0 Glossary-1 



B 

Base address - The starting absolute address of the memory field length 
assigned to the user's job. This address is maintained in the Base 
Address (BA) register. The base address must be a multiple of 20 8 . 

Binary data - Data that the system treats as a bit string (no character 
conversion). 

$BLD - A dataset on which load modules are placed by a compiler or an 
assembler unless the user designates some other dataset. 

Blank common block - A common block where data cannot be stored at load 
time. The first declaration need not be the largest. The blank common 
block is allocated after all other blocks have been processed. 

Block - (1) A tape block is a collection of characters written or read as 
a unit. Blocks are separated by an interblock gap and can be from 1 
through 1,048,576 bytes. A tape block and a physical record are 
synonymous on magnetic tape. (2) In COS blocked format, a block is a 
fixed number of contiguous characters with a block control word as the 
first word of the block. The internal block size for the Cray mainframe 
is 512 words (one sector on disk). In COS manuals, the terms tape block 
and 512-word block are consistently used to distinguish between the two 
uses. 

Block control word - A word occurring at the beginning of each block in 
the COS blocked format that identifies the sequential position of the 
block in the dataset and points forward to the next block control word. 

BOT - Beginning-of-tape; the position of the beginning-of-tape reflective 
marker. 

BOV - Beginning-of-volume. See BOT. 

BPI - Bits per inch. COS supports the 1600 and 6250 bpi recording 
densities. 

Buffer - A storage device used to compensate for the difference in rate 
of flow of data, or time of occurrence of events, when transmitting data 
from one device to another. It is normally a block of memory used by the 
system to transmit data from one place to another. Buffers are usually 
associated with the liD subsystem. 

Buffer Memory - A 64-bit memory in the liD Subsystem common to all liD 
Processors. 

Glossary-2 SR-0011 0 



C 

Call - The transfer of control to a specified routine. The called 
routine normally transfers control back to the caller after the called 
routine has finished its task. 

Catalog - A list or table of items with descriptive data, usually 
arranged so that a specific kind of information can be readily located. 

Channel - A path along which signals can be sent. 

Character - A logical unit composed of bits representing alphabetic, 
numeric, and special symbols. The Cray software processes a-bit 
characters in the ASCII character set. 

Code - (1) A system of character and rules representing information in a 
form understandable by a computer. (2) Translation of a problem into a 
computer language. 

Coded data - Data consisting of graphic characters. The default 
character set is ASCII. 

Common block - A block that can be declared by more than one program 
module during a load operation. More than one program module can specify 
data for a common block but if a conflict occurs, information from later 
programs is loaded over previously loaded information. A program can 
declare no common blocks or as many as 125 common blocks. The two types 
of common blocks are labeled and blank. 

Conditional control statement block - Defines the conditions under which 
a group of control statements are to be processed. The statements which 
define the block and conditions are: IF, ELSE, ELSEIF, ENDIF, and EXITIF. 

Control statement - The format, consisting of a verb and its parameters, 
used to control the operating system and access its products. Directives 
are used to control products. 

Control statement input file - A dataset containing valid control 
statements as its first file. 

Controlled device - One of one or more devices or resources that are 
allocated to jobs on the basis of resource limits and requests. 

COS - The Cray Operating System described in this manual. 

$CS - A primary control statement input file. 

CSP The Control Statement Processor (CSP) is a system program that 
executes in the user field. CSP initiates the job, analyzes, and stores 
the various elements of the control statements (that is, cracks them), 
processes system verbs, advances the job step by step, processes errors, 
and ends the job. 

SR-OOll a Glossary-3 



D 

Data - (1) Information manipulated by or produced by a computer program. 
(2) Empirical numerical values and numerical constants used in arithmetic 
calculation. Data is considered to be that which is transformed by a 
process to produce the evidence of work. Parameters, device input, and 
working storage are considered data. 

Dataset - A quantity of information maintained on mass storage by the 
Cray Operating System. Each dataset is identified by a symbolic name 
called a dataset name. Datasets are of two types: temporary and 
permanent. A temporary dataset is available only to the job that created 
it. A permanent dataset is available to the system and to other jobs and 
is maintained across system deadstarts. 

Dataset characteristic information - A description of where a dataset 
resides, how large it is, its permanent name, edition number, information 
about the creating job and other information. 

Dataset name verb - A verb that is the name of a dataset. See local or 
system dataset name verb. 

Deadstart - The process by which an inactive machine is brought up to an 
operational condition ready to process jobs. 

Debug - To detect, locate, and remove mistakes from a routine or 
malfunction of a computer. Synonymous with troubleshoot. 

DEC - Disk Error Correction, a task within the STP portion of COS. DEC 
can be called by the Disk Queue Manager (DQM) to attempt correction of a 
disk error. 

Delimiter - A character that separates items in a control statement or a 
directive; synonymous with separator. 

Density - See tape density. 

Device - A piece of equipment that mechanically contains and drives a 
recording medium. 

Directive - A command used to control a product, such as UPDATE. 

Diagnostic - (1) Pertaining to the detection and isolation of a 
malfunction or a mistake. (2) A message printed when an assembler or 
compiler detects a program error. 

Glossary-4 SR-0011 0 



Disposition code - A code used in I/O processing to indicate the 
disposition to be made of a dataset when its corresponding job is 
terminated or the dataset is released. 

DQM - The Disk Queue Manager is a task within the STP portion of COS. 
DQM controls the simultaneous operation of disk storage units on CPU I/O 
channels or on the I/O Subsystem. 

Dump - (1) To copy the contents of all or part of a storage device, 
usually from internal storage, at a given instant of time. (2) The 
process of performing (1). (3) The document resulting from (1). 

E 

End-of-data delimiter - Indicates the end of a dataset. In COS blocked 
format, this is a record control word with a 178 in the mode field. 

End-of-file delimiter - Indicates the end of a file. (1) In COS blocked 
format, this is a record control word with a 16 8 in the mode field. 
(2) On magnetic tape, this is a tapemark. 

End-of-record delimiter - Indicates the end of a record. (1) In COS 
blocked format, this is a record control word with a 108 in the mode 
field. (2) In an ASCII punched deck, this is indicated by the end of 
each card. 

Entry point - A location within a block that can be referenced from 
program blocks that do not declare the block. Each entry point has a 
unique name associated with it. The loader is given a list of entry 
points in a loader table. A block can contain any number of entry points. 

An entry point name must be 1 through 8 characters and cannot contain a 
blank, an *, or a /. Some language processors (for example, FORTRAN) can 
produce entry point names under more restricted formats due to their own 
requirements. 

EOD - End-of-data on tape. The definition of EOO is a function of 
whether the tape is labeled or nonlabeled and of the type of operation 
being performed (input or output). When reading a labeled tape, EOO is 
returned to the user when an EOF1 trailer label is encountered. When 
reading a nonlabeled tape, EOD is returned when a tapemark is read on the 
last volume in the volume list for a particular dataset. When writing a 
labeled or nonlabeled tape, EOO processing is initiated by a write EOO, 
rewind, close, or release request. 

SR-0011 0 Glossary-S 



EOF - End-of-file on tape, sometimes used to mean end of tape trailer 
group. 

EOI - End-of-information; see EOD. 

EDT - End-of-tape; a status, set only on a write operation indicating 
sensing of the end of the tape reflective marker. 

EOV - End-of-volume. On output, EOV occurs when end-of-tape status is 
returned on a write operation. This status occurs when the EDT 
reflective marker is sensed by the tape device. For input of a labeled 
tape dataset, EOV occurs when an EOV1 trailer label is read; for input of 
a nonlabeled dataset, EOV is returned when a tapemark is encountered and 
the volume list is not exhausted. 

Exchange Package - A 16-word block of data in memory which is associated 
with a particular computer program or memory field. It contains the 
basic parameters necessary to provide continuity from one execution 
interval for the program to the next. 

EXEC - The COS System Executive (EXEC) is the control center for the 
operating system. It alone accesses all of memory, controls the lID 
channels, and selects the next program to execute. 

EXP - The User Exchange Processor (EXP or UEP) is a task within the STP 
portion of COS. The Exchange Processor task processes all user system 
action requests and user error exits. The Exchange Processor also 
handles certain requests from the Job Scheduler (JSH) to initiate or 
abort a job. 

Expression (JCL parameter expression) - A series of characters grouped 
into operands and operators which are computed as one value during 
parameter evaluation; should be delimited by parentheses. 

External reference - A reference in one program block to an entry point 
in a block not declared by that program. Throughout the loading process, 
externals are matched to entry points (this is also referred to as 
satisfying externals); that is, addresses referencing externals are 
supplied with the correct address. 

F 

File - A collection of records in a dataset. In COS blocked format, a 
file is terminated by a record control word with 16 8 in the mode field. 

Filemark - See tapemark. 

Glossary-6 SR-0011 0 



Foreign label - A special condition that can occur during the label scan 
at the beginning of a tape. If a NOT CAPABLE status is returned on a BOV 
label scan, TQM declares the tape to be foreign labeled (FRN) which 
protects a seven-track tape or a nine-track, 800 bpi tape from being 
accidentally destroyed. 

Formal parameter specifications - Parameters in a procedure definition 
which identify the character strings within the procedure body that can 
be substituted during the procedure's evaluation. 

Front-end dataset servicing - The act of requesting and receiving 
information concerning a particular dataset that is known to the 
front-end computer system. Typical servicing produces the following: 

• Direct operator messages concerning tape volume/drive activity 

• Required information concerning a dataset, such as what volumes it 
resides on, the expiration date of each volume, access permissions 

• Updated information for a dataset or tape volume or both for use 
by that computer system 

Front-end processor - A computer connected to a Cray Computer System 
channel. The front-end processor supplies data and jobs to the Cray 
mainframe and processes or distributes the output from the jobs. 
Front-end systems are also referred to as stations in Cray publications. 

G 

Generic resource - A device or group of devices connected to the Cray 
system which is accessible to user jobs. Devices which constitute a 
generic resource are characterized by common attributes, such as tape 
drives with 6250 bpi capability. These devices are subject to regulated 
access by the system. 

H 

Heap - An area of memory within the user field managed by user-callable 
library routines. The heap provides dynamic storage allocation for a 
single job. 

HLM - High limit of memory, the highest relative memory address available 
to the user for program and data area. 

SR-OOll 0 Glossary-7 



I 

$IN - A dataset containing the job control language statements as well as 
the source input and data for compilers and assemblers, unless the user 
designates some other dataset (FT05 for example). 

In-line procedure - A procedure defined in a control statement file. 

Input/Output - (1) Commonly called I/O. To communicate from external 
equipment to the computer and vice versa. (2) The data involved in such 
a communication. (3) Equipment used to communicate with a computer. (4) 
The media carrying the data for input/output. 

Integer constant - Specifies an octal value or a decimal value that can 
be signed as positive or negative. 

Interchange format - One of the two ways in which tape datasets can be 
read or written. Each tape block of data corresponds to a single logical 
record in COS blocked format. Interchange format is selected by setting 
DF=IC when a tape dataset is accessed. As far as I/O routines in the 
Cray mainframe are concerned, interchange datasets must be in COS blocked 
format because the COS blocked structure (BCWs and RCWs) is used to 
describe each tape block read or written. This blocked structure allows 
the user to write or read variable-length tape blocks at high speed with 
data resolution to the 8-bit byte level of the tape device. The RCW is 
used to define the tape block length on output and to describe the block 
length on input. No BCW or RCW ever appears in the data written on the 
tape. 

Interblock gaps - The physical separation between successive tape blocks 
on magnetic tape. 

I/O Subsystem - Part of a CRAY-1 S Series Model 5/1200 through S/4400, 
all models of the CRAY-1 M Series and CRAY X-MP Computer Systems 
consisting of two to four I/O processors and 1/2, 1, 4, or 8 million 
words of shared Buffer Memory. The optional tape subsystem is composed 
of at least one block multiplexer channel, one tape controller, and two 
tape units. The tape units supported are IBM-compatible nine-track, 200 
ips, 1600/6250 bpi devices. 

Iterative control statement block - Defines the repeated execution of a 
series of statements if a condition is satisfied. 

J 

JCL block control statement - A statement in the control statement file 
that is part of a group of control statements called a block which 
specifies an action to be taken by COS; the three types of blocks are: 
procedure definition, conditional, and iterative. 

Glossary-8 SR-0011 0 



JCM - The Job Class Monitor is a task within the STP portion of COS. JCM 
assigns every job to a job class (see JOB statement description) before 
it enters the input queue. 

Job - (1) An arbitrarily defined parcel of work submitted to a computing 
system. (2) A collection of tasks submitted to the system and treated by 
the system as an entity. A job is presented to the system as a formatted 
dataset. With respect to a job, the system is parametrically controlled 
by the content of the job dataset. 

Job Communication Block - The first 2008 words of the job memory 
field. This area is used to hold the current control statement and 
certain job-related parameters. The area is accessible to the user, the 
operating system, and the loader for inter-phase job communication. 

Job control statement - Any of the statements used to direct the 
operating system in its functioning, as compared to data, programs, or 
other information needed to process a job but not intended directly for 
the operating system itself. 

Job deck - See job. 

Job input dataset - A dataset named $IN on which the control statements 
of the job deck are maintained. This consists of programs and data 
referenced by various job steps. The user can manipulate the dataset 
like any other dataset (excluding write operations). 

Job output dataset - Any of a set of datasets recognized by the system by 
a special dataset name (for example, $OUT, $PLOT, and $PUNCH), which 
becomes a system permanent dataset at job end and is automatically staged 
to a front-end computer for processing. 

Job step - A unit of work within a job, such as source language 
compilation or object program execution. 

JSH - The Job Scheduler (JSH) is a task within the STP portion of COS. 
The JSH task initiates the processing of a job, selects the currently 
active job, manages job roll-in and roll-out, and terminates a job. 

K 

Keyword parameter - A string of I through 8 alphanumeric characters that 
consists of a keyword followed by one or more values; identified by its 
form rather than by its position in the control statement. 

SR-0011 0 Glossary-9 



L 

$LOG - See 10gfi1e. 

Label group - A group of tables that precede and follow the user data at 
dataset and/or volume boundary conditions. The label group describes the 
characteristics of the volume or dataset. 

Labeled common - A common block into which data can be stored at load 
time. 

Library - A dataset composed of sequentially organized records and 
files. The last file of the library contains a library directory. The 
rest of the files and records, known as entries, can consist of processed 
procedure definitions and/or relocatable modules. The directory gives a 
listing of entry names with their associated characteristics. 

Library-defined verb - A 1- through a-character name of a program or 
procedure definition residing in a library that is a part of the current 
library searchlist. 

Limit address - The upper address of a memory field. This address is 
maintained in the limit address (LA) register. 

Literal - A symbol which names, describes, or defines itself and not 
something else that it might represent. 

Literal constant - A string of 1 through a characters delimited with 
apostrophes whose ordinal numbers are in the range 040 a through 176a; 
value of a character constant corresponds to the ASCII character codes 
positioned within a 64-bit word; alignment indicated can be left- or 
right-adjusted and zero-filled or left-adjusted and space-filled; 
apostrophes remain as part of value. 

Literal strinq - A string delimited with apostrophes which are normally 
not treated as part of the value, except with JCL block control 
statements which treat the apostrophes as part of the string value. 

Loader tables - The form in which code is presented to the loader. 
Loader tables are generated by compilers and assemblers according to 
loader requirements. The tables contain information required for loading 
such as type of code, names, types and lengths of storage blocks, data to 
be stored. 

Loading - The placement of instructions and data into memory so that it 
is ready for execution. Loader input is obtained from one or more 
datasets and/or libraries. Upon completion of loading, execution of the 
program in the job's memory field is optionally initiated. Loading can 
also involve the performance of load-related services such as generation 
of a loader map, presetting of unused memory to a user-specified value, 
and generation of overlays. 

Glossary-l0 SR-OOll 0 



Load point - See BOT. 

Local dataset - A temporary or permanent dataset accessible by the user. 

Local dataset name verb - A verb that is the name of a local dataset 
consisting of an alphabetic character followed by 1 through 6 
alphanumeric characters. Requests that COS load and execute an absolute 
binary program from the first record of the named dataset. 

Logfile - During the processing of the job, a special dataset named $LOG 
is maintained. At job termination, this dataset is appended to the $OUT 
file for the job. The job logfile serves as a time-ordered record of the 
activities of the job: all control statements processed by the job, 
significant information such as dataset usage, all operator interactions 
with a job, and errors detected during processing of the job. 

Logical operator - Represents logical function performed on operands on a 
bit-by-bit basis, returning a 64-bit result; functions are: inclusive 
OR, intersection, exclusive OR, unary complement. 

M 

Macro instruction - An instruction in a source language that is 
equivalent to a specified sequence of machine instructions. 

Magnetic tape - A tape with a magnetic surface on which data can be 
stored by selective polarization of portions of that surface. 

Mainframe - The central processor of the computer system. It contains 
the arithmetic unit and special register groups. It does not include 
input, output, or peripheral units and usually does not include internal 
storage. Synonymous with central processing unit (CPU). 

Mass storage - The storage of a large amount of data that is also readily 
accessible to the central processing unit of a computer. 

MEP - The Error Message Processor (MEP) is a task within the STP portion 
of COS. Error messages are passed from the System Executive (EXEC) to 
the Log Manager (MSG) through the Error Message Processor. 

Migrated dataset - A dataset that has been moved from on line to a 
back-up medium by the system space manager. A migrated dataset is 
automatically returned when it is specified on the ACCESS control 
statement. 

MSG - The Log Manager (MSG) is a task within the STP portion of COS. MSG 
writes messages in the system and user logfiles. 

SR-OOll 0 Glossary-ll 



Multiprocessing - Use of several computers to logically or functionally 
divide jobs or processes; and to execute various programs or segments 
asynchronously and simultaneously. 

Multiprogramming - A technique for handling mUltiple routines or programs 
simultaneously by overlapping or interleaving their execution, that is, 
permitting more than one program to time-share machine components. 

Multitasking - A type of multiprocessing in which more than one task may 
be simultaneously active for a single job. 

N 

Nestinq - Including a block of statements of one kind into a larger 
block of statements of the same kind, such as an iterative block within a 
larger iterative block. 

Not Capable - A tape status indicating the reel currently mounted cannot 
be read by the control unit and drive. The Not Capable status would be 
returned if an 800 bpi tape were mounted on a device that supported only 
1600 and 6250 bpi, for example. Since it is not possible to read a Not 
Capable tape to verify label type and contents, COS rejects (unloads) all 
tapes that return a Not Capable status. 

o 

On-line dataset - A dataset residing on Cray disk. It is catalogued in 
the OSC. 

Operand - A character string in an expression that is operated on during 
evaluation; types are integer constant, literal constant, symbolic 
variable, and subexpresion. 

Operating system - (1) The executive, monitor, utility, and any other 
routines necessary for the performance of a computer system. (2) A 
resident executive program that automates certain aspects of machine 
operation, particularly as they relate to initiating and controlling the 
processing of jobs. 

Operator - A symbolic representation indicating the action to be 
performed in an expression; types are arithmetic, relational, and logical 
operators. 

$OUT - A dataset that contains the list output from compilers and 
assemblers unless the user designates some other dataset. At job end, 
the job logfile is added to the $OUT dataset and the dataset is sent to a 
front-end computer. 

Glossary-12 SR-0011 0 



Overlaying - A technique for bringing routines into memory from some 
other form of storage during processing so that several routines will 
occupy the same storage locations at different times. Overlaying is used 
when the total memory requirements for instructions exceeds the available 
memory. 

DVM - The Overlay Manager (DVM) is a part of the STP portion of COS and 
manages the use of the overlaid portion of COS itself. 

P 

$PROC - A dataset to which in-line procedure definitions are written. 

Parallel processing - Simultaneous or approximately simultaneous 
processing of jobs, job steps, programs, and parts of programs. 

Parameter - A quantity in a control statement which can be given 
different values when the control statement is used for a specific 
purpose or process. 

Parcel - A 16-bit portion of a word which is addressable for instruction 
execution but not for operand references. An instruction occupies 1 or 2 
parcels; if it occupies 2 parcels, they can be in separate words. 

Parenthetic string - A string delimited with parentheses instead of 
apostrophes; parentheses are treated as part of the string when evaluated 
except when preceded by an initial, parameter, equivalence, or 
concatenation separator character. 

PDM - The Permanent Dataset Manager (PDM) is a task within the STP 
portion of COS and provides the means for creating, accessing, deleting, 
maintaining, and auditing disk-resident permanent datasets. 

Permanent dataset - A dataset known to the operating system as being 
permanent; the dataset survives deadstart. 

Positional parameter - A parameter that must appear in a precise position 
relative to the separators in the control statement. 

Procedure - A named sequence of control statements, data, or both that is 
saved in a library for processing at a later time when activated by a 
call to its name by a calling statement; provides the capability of 
replacing values within the procedure with other values. 

Procedure definition - The definition of a procedure saved in a library 
to be called for processing at a later time; if defined in a job control 
statement is called an in-line procedure definition. 

SR-OOll a Glossary-13 



Program - (1) A sequence of coded instructions that solves a problem. 
(2) To plan the procedures for solving a problem. This can involve 
analyzing the problem, preparing a flow diagram, providing details, 
developing and testing subroutines, allocating storage, specifying IIO 

formats, and incorporating a computer run into a complete data processing 
system. 

Proqram block - The block within a load module usually containing 
executable code. It is automatically declared for each program (though 
it can be zero-length). It is local to the module; that is, it can be 
accessed from other load modules only through use of external symbols. 
Data placed in a program block always comes from its own load module. 

Program name - Also referred to as IDENT name or deck name, the name 
contained in the loader PDT table at the beginning of each load module. 

Program library - (PL) The base dataset used by the UPDATE utility. This 
dataset consists of one or more specially formatted files, each ending 
with an EOF. 

R 

Record - A group of contiguous words or characters related to each other 
by virtue of convention. A record is fixed or variable length. (1) In 
COS blocked format, a record ends with a record control word with lOa 
in the mode field. (2) For a listable dataset, each line is a record. 
(3) For a binary load dataset, each module is a record. 

Relational operator - An operator that indicates the comparison to be 
performed between the operands in an expression (-1 for a TRUE result and 
o for a FALSE result); types are equal, not equal, less than, greater 
than, less than or equal, and greater than or equal. 

Relative address - An address defined by its relationship to a base 
address (BA) such that the base address has a relative address of O. 

Relocatable address - An address presented to the loader in such a form 
that it can be loaded anywhere in the memory field. A relocatable 
address is defined as being relative to the beginning address of a load 
module program block or common block. 

Relocatable module - This is the basic program unit produced by a 
compiler or assembler. CAL produces a relocatable module from source 
statements delineated by IDENT and END. In FORTRAN, the corresponding 
beginning statements are PROGRAM, SUBROUTINE, BLOCK DATA, or FUNCTION. 
The corresponding end statement is END. 

A relocatable module consists of several loader tables that define 
blocks, their contents, and address relocation information. 

Glossary-14 SR-0011 0 



Relocate - In programming, to move a routine from one portion of internal 
storage to another and to adjust the necessary address references so that 
the routine can be executed in its new location. Instruction addresses 
are modified relative to a fixed point or origin. If the instruction is 
modified using an address below the reference point, relocation is 
negative. If addresses are above the reference point, relocation is 
positive. Generally, a program is loaded using positive relocation. 

Resource allocation - The number of allocation units consumed by a disk 
dataset. The resource allocation limit is defined by the JOB control 
statement. 

Retired dataset - A dataset that has been moved from on line to a back-up 
medium by the RETIRE control statement. To make the dataset accessible, 
the user must specify it on the RESTORE control statement. 

S 

SCP - The Station Call Processor (SCP) is a task within the STP portion 
of COS and handles communications with front-end computer systems. 

Sector - A physical area on disk equivalent to 512 Cray words. In COS 
blocked format, a block is also 512 contiguous words with a block control 
word as the first word of the block. Therefore the internal block size 
for the Cray is equivalent to one Cray disk sector. This is the unit of 
data transfer between the Cray mainframe and the 1/0 Subsystem. 

SPM - The System Performance Monitor (SPM) is the task within COS that 
collects and reports statistics about COS system performance. 

STG - Stager (STG) task is a subtask of SCP within the STP portion of COS 
that handles dataset transfers between the Cray mainframe and its 
front-end processors. 

STP - The System Task Processor (STP) is the main portion of the COS 
operating system and consists of tables, a set of routines called tasks, 
and some reentrant routines common to all tasks. 

Separator - Synonym for delimiter. 

String - A sequence of characters delimited by apostrophes or parentheses 
which is taken literally as a parameter value; see literal string and 
parenthetic string. 

Subexpression - An expression that is evaluated so that its result 
becomes an operand. 

SR-0011 a Glossary-1S 



Substitution parameters - Parameters on procedure definition prototype 
statement or procedure calling statement which provide replacement values 
to be substituted during evaluation for strings flagged within the 
procedure body. 

Symbolic variable - A string of 1 through 8 alphanumeric characters, 
beginning with an alpha character that represents values maintained by 
COS and/or the user. 

System dataset name verb - A verb that is the name of a system-defined 
dataset in the System Directory Table (SDR); consists of an alphabetic 
character which can be followed by 1 through 6 alphanumeric characters. 

System logfile - A permanent dataset named $SYSTEMLOG. 

System verb - Requests that COS perform a function; consists of an 
alphabetic character which can be followed by 1 through 6 alphanumeric 
characters 

T 

Table - A collection of data, each item being uniquely identified either 
by some label or by its relative position. 

Tape block - A group of contiguous characters recorded on and read from 
magnetic tape as a unit. 

Tape control unit - A piece of equipment connected to a block multiplexer 
channel that provides the capability for controlling the operation of one 
or more tape devices. Up to four control units can be combined to drive 
a maximum of 16 tape devices. The control units are cross connected to 
all devices. Such a configuration is called a 4x16 (four by sixteen). 
If one control unit were to be connected to three devices, it would be 
referred to as a 1x3 configuration. 

Tape density (bpi) - The number of bits per inch on magnetic tape. COS 
supports 6250 bpi and 1600 bpi. 

Tape format - The way tape datasets are read or written. In 
interchange format, each tape block of data corresponds to a single 
logical record in COS blocked format. In transparent format, each tape 
block is a fixed multiple of 512 words based on the density of the tape. 

Tape volume - A reel of magnetic tape. 

Tapemark - A special hardware bit configuration recorded on magnetic 
tape. It indicates the boundary between combinations of datasets and 
labels. It is sometimes called a filemark. 

Glossary-16 SR-0011 a 



Task - A subprogram or uniquely named process that can have code and data 
areas in common with other tasks of the same job. A task is a unit of 
computation that can be scheduled independently of other tasks in the 
same job step. A job step can consist of a single task, or it may 
consist of several tasks running in parallel with each other. 

Temporary dataset - A dataset which is not permanent and is available 
only to the job that created it. 

Time slice - The maximum amount of time during which the CPU can be 
assigned to a job without reevaluation as to which job should have the 
CPU next. 

Timestamp - A 1-word binary number that represents specific date and 
time. Timestamps are expressed as the number of (nanosecond/1.024) units 
between the date and time in question and midnight, 1 January 1973. 
Timestamps appear in machine-independent tables used by the operating 
system. 

TQM - The Tape Queue Manager (TQM) is the System Task Processor (STP) 
task that manages tape 1/0 between one or more user jobs and the 1/0 
Subsystem. 

Track - The smallest amount of disk space which can be allocated or 
deallocated by COS. A track is equivalent to 18 sectors for 00-19, 
00-29, Buffer Memory and Solid-state storage device. 

Transparent format - One of two ways tape datasets are read or written. 
Each tape block is a fixed multiple of 512 words. Transparent format is 
the default tape dataset format and is designated by setting OF=TR when 
accessing a tape dataset. This format produces a fixed-length block 
dataset (16384 bytes at 1600 bpi or 32768 bytes at 6250 bpi) that can be 
a COS blocked or unblocked dataset as far as any 1/0 routines are 
concerned. The tape subsystem merely takes four (1600 bpi) or eight 
(6250 bpi) sectors and processes them as one physical tape block. When a 
short block is read, it is considered to be EOO. 

U 

UEP - User Exchange Processor. See EXP. 

Unit record device - A device such as a card reader, printer, or card 
punch for which each unit of data to be processed is considered a record. 

Unload - To remove a tape from ready status by rewinding beyond the load 
point. The tape is then no longer under control of the computer. 

SR-0011 0 Glossary-17 



Unsatisfied external - An external reference for which the loader has not 
yet loaded a module containing the matching entry point. 

User field - A portion of memory containing instructions and data defined 
for a specific job. Field limits are defined by the base address and the 
limit address. A program cannot execute outside of its field nor refer 
to operands outside of its field. 

User logfile - A dataset named $LOG created for a job when it is 
initiated by the Job Scheduler. 

v 

Verb - The first nonblank field of a control statement; specifies the 
action to be taken by COS during control statement evaluation. 

Volume - A physical unit of storage media that can be dismounted from a 
storage device, for example, a reel of magnetic tape. 

Volume identifier - Up to 6 alphanumeric characters used to identify a 
physical reel of ~ape. On labeled tapes, the volume identifier is 
actually recorded on tape in the volume header label. Volume identifier 
is synonymous with volume serial number. 

VSN - Volume serial number (obsolete term). See volume identifier. 

W 

Word - A group of bits between boundaries imposed by the computer. Word 
size must be considered in the implementation of logical divisions such 
as character. The word size of the CRAY X-MP and CRAY-1 computers is 64 
bits. 

Glossary-18 SR-0011 0 



INDEX 





INDEX 

$ and dataset names, 2-20 
* verb described, 6-2 
* verb described, 7-1 
A 

parameter 
on ASSIGN, 8-6 
on COMPARE, 13-2 
on PDSLOAD, 11-16 

value 
for BO parameter on AUDIT, 11-6 
for LO parameter on AUDIT, 11-5 

AB parameter on LDR, 14-4 
Abort 

job advance, described, 3-3 
message on logfile, 3-12 

ABORT parameter 
on COMPARE, 13-4 
on RETURN, 7-21 

Absolute 
address and base address, 1-4 
binaries created to 1-5, 5-2 
binary object module generation, 14-4 
load module described, 6-15 

AC parameter 
on ACCOUNT, 7-3 
on ACQUIRE, 10-2 to 10-3 
on FETCH, 10-11 

ACC parameter on AUDIT, 11-3 to 11-4 
Access mode 

for mass storage datasets, 6-9 
ACCESS, 9-1 to 9-12 

and concatenation, 2-8 
described, 8-1 
request and magnetic tape datasets, 2-4 
request, delayed, 9-3, 9-4 
statement, more than one, 9-2 
system verb, 4-3 
to make permanent datasets local, 2-19 
to specify label types for tape mark 

processing, 2-6 
verb described, 6-3, 6-5 

Accounting 
information in logfile, 3-12, 3-13 
mandatory, 3-2 

Account 
number 

parameter, 7-3 
validated, 7-2 

password parameter, 7-3 
ACCOUNT, 7-2 to 7-4 

errors, 4-2 
format, 7-3 
in interactive jobs, 7-2 
in job dataset, 3-2 
verb described, 6-2, 7-1 

SR-OOll 0 

ACN parameter on AUDIT, 11-3 
ACQUIRE 

control statement, 10-1 to 10-6 
for new permanent datasets, 6-7 
system verb, 4-3 
treated as ACCESS request, 6-12 

Acquisition code parameter 
on ACQUIRE, 10-2 
on FETCH, 10-11 

ADJUST, 9-13 to 9-14 
changing permanent datasets, 2-18 
macro, 9-12 
system verb, 4-3 
verb described, 6-5 

ADN parameter 

ALL 

on ACQUIRE, 10-5 
on PERMIT, 9-20 
on SAVE, 6-8, 9-23 

modifier for ADN parameter on ACQUIRE, 
10-5 

value for ADN parameter on SAVE, 9-24 
value for ED parameter 

on DELETE, 9-16 
on RETIRE, 11-19 

Alphanumeric 
characters, values in positional 

parameters, 4-4 
string, values in keyword parameters, 

4-6 
AM parameter 

on PERMIT, 6-9, 9-20 
value for ACC parameter on AUDIT, 11-3 

Analytical aids, 6-14, section 13 
ANSI 0 records, and record length, 9-12 
ANY value for PN parameter on OPTION, 7-19 
Apostrophes 

for key word parameters, 16-26 to 16-29 
APW parameter on ACCOUNT, 7-3 
ARC parameter on PDSDUMP, 11-13 
Archive datasets parameter on PDSDUMP, 11-13 
Argument, control statement described, 4-4 
Arithmetic operators, 16-15 
AS value 

for CS parameter on ACCESS, 9-9 
for CS parameter on ASSIGN, 8-7 

ASCII character set, 
appendix C 
data in blocked dataset, 2-10 
files, blank compression in, 2-10 

Assemblers loaded into user field, 1-5 

Index-l 



ASSIGN, 8-1 to 8-11 
and Fortran OPEN statement, 8-1 
creating a temporary dataset, 2-17 
creating interactive datasets, 2-3 
dataset disposition code stated on, 2-19 
format, 8-2 
storage allocation, 1-6 
system verb, 4-3 
to define a memory-resident dataset, 2-2 
to inhibit blank compression, 2-10 
verb described, 6-3 

Attribute association, 6-10, 6-8 
Attributes dataset 

described, 6-8 
parameter for, on ACQUIRE, 10-5 

AUDIT utility, 11-1 to 11-11 
described, 11-1, 11-2 
information supplied by 
listing examples, 11-2 to 11-11 

AUTO parameter on MEMORY, 7-15 
Automatic field length reduction mode, 3-4 

in system management of memory, 3-7 
Auxiliary 1/0 Processor with 1/0 Subsystem, 

1-6 
AVL parameter on MODE, 7-17 

B 
parameter 

on AUDIT, 11-3 
on BUILD, 15-2 
on COMPARE, 13-2 
on ITEMIZE, 13-12 
on PDSDUMP, 11-14 

value 
for BO parameter on AUDIT, 11-6 
for LO parameter on AUDIT, 11-5 

BACKSPACE with interactive datasets, 2-3 
BACKUP parameter 

on ACQUIRE, 10-6 
on MODIFY, 9-19 
on SAVE, 9-25 

Bad data flag field 
in block control word, 2-11 
in second control word, 2-12 

BANKBUSY parameter on TARGET, 7-25 
Base address of the user field, 1-4 
BB value for DF parameter 

on ACQUIRE, 10-4 
on DISPOSE, 10-8 

BC parameter 
in memory management, 3-6 
on LDR, 14-9 

BCINC directive in memory management, 3-6 
BD value for DF parameter 

on ACQUIRE, 10-4 
on DISPOSE, 10-8 
on FETCH, 10-12 

BDF, (Bad data flag) 
in block control word, 2-11 
in second control word, 2-12 

Beginning-of-data not skipped by SKIPR, 12-9 
BFI parameter on ASSIGN, 8-6 
Bidirectional transfer mode, 7-17 

Index-2 

Binary, see also Relocatable modules 
audit options on AUDIT, 11-5 to 11-6 
blocked format value 

on ACQUIRE, 10-4 
on DISPOSE, 10-8 

data in a blocked dataset, 2-10 
deblocked format value 

on ACQUIRE, 10-4 
on DISPOSE, 10-8 
on FETCH, 10-12 

library datasets, output for, 13-14 to 
13-16 

memory management associated with, 3-6 
BL parameter on ITEMIZE, 13-12 
Blank common 

location in user field illustrated, 3-5 
parameter, 14-9 
size of, 14-9 
starting address set by SBCA directive, 

14-19 
Blank fields 

initiation, parameter on ASSIGN, 8-6 
Blanks 

$BLD 

compression 
described, 2-10 
inhibited by ASSIGN, 2-10 

fields 
compressed, 2-10 

in a control statement, 4-2 

and B parameter on BUILD, 15-2 
and BUILD, 15-1 
and FILE directive, 14-18, 14-24, 14-32 
default dataset with LDR, 14-2 

BLKSIZE parameter, on BLOCK, 12-2, 12-3 
Block control word, 2-10 to 2-11 

block number field, 2-11 
block type, codes for, 9-10 
disregarding, 2-12 
for interchange tape format, 2-15 
format illustrated, 2-11 

Block multiplexer channel 
and an Auxiliary 1/0 Processor, 1-6 
in hardware requirements, 1-2 

BLOCK utility, 12-1, 12-2 
for local datasets, 6-13 
and foreign datasets, 12-2 
as post processor, 12-3 
not with tape datasets, 12-2 

Blocked datasets, records, and files 
copied, 6-13 
format, 2-10 
skipped, 6-13 
unblocked, 12-10 

BMR, see Buffer Memory 
BN (Block number field) in block control 

word, 2-11 
BO parameter on AUDIT, 11-5 
BP value for LB parameter on ACCESS, 9-6 
BS parameter on ASSIGN, 8-3 

and memory-resident datasets, 2-2 
BT parameter on MODE, 7-17 

SR-OOll 0 



Buffer 
datasets within, 2-2 
flushed to mass storage, 2-2 
full, and memory-resident dataset 

clearance, 2-2 
Memory 

as tape block buffering area, 2-3 
dataset space divided in, 8-3 
in hardware requirements, 1-2 

size parameter 
for memory-resident dataset 
definition, 2-2 

on ASSIGN, 8-3 
on TARGET, 7-25 
partitioning parameter on ASSIGN, 8-3 

BUILD 
abort errors, 15-3 
binaries added from $BLD, 15-1 
control statement, 15-1 to 15-3 

for object library management, 6-15 
directives, 15-3 to 15-10 
utility 

complex procedures and, 16-19 
in object library management, 6-15, 

15-1 
Burstable listing parameter on ITEMIZE, 

13-12 
Bypass label processing, 2-4 

C 
value for ACCESS LB parameter, 9-7 

parameter 
on ASSIGN, 8-5 
on LDR, 14-6 
on PDSDDUMP, 11-13 

value for RF parameter 
on ACCESS, 9-10 
on ASSIGN, 8-8 

CAL (Cray Assembly Language) language call 
for loading overlays, 14-25 
in Type 2 overlay execution, 14-34 

CALL control statement, 7-4 to 7-8 
and dataset rewinding, 7-4 
examples, 7-5 to 7-8 
for procedure libraries, 5-1 
in creation of datasets, 4-1 
statement call for complex procedures, 

16-19 
system verb, 4-3 
used with ECHO, 7-11 
verb described, 6-2, 7-1 

Caret symbol, 4-1 
CAUTION error message, 14-7 
CB value, for DF parameter 

on ACQUIRE, 10-4 
on ASSIGN, 8-4 
on DISPOSE, 10-8 
on FETCH, 10-12 

$CCS routine in parameter interpretation, 
4-7 

CD value for DF parameter 
on ACQUIRE, 10-4 
on DISPOSE, 10-8 
on FETCH, 10-12 

SR-OOll 0 

CDC, see also Control Data 
system-logical records 

RS restriction for, 8-11 
tape files 

MBS values on ACCESS, 9-8 
RF parameter on ASSIGN, 8-7 
RS restrictions for, 8-9 

tape format parameter on ASSIGN, 8-7 
value for FD parameter, on ASSIGN, 8-6 

CDC-compatible 
datasets, 8-6 
tape dataset, 9-9 

CENTER parameter on DUMP, 13-9 
Central Memory 

and COS, 1-1 
assignment illustrated, 1-4 
characteristics summarized, 1-3 
in hardware requirements, 1-1 
use by jobs, 3-4 

Central Processing Unit in hardware 
requirements, 1-1 

CFT, see FORTRAN 
Channel access user, B-5 to B-6 
Character blocked 

format, 2-13 
value on ACQUIRE, 10-4 
value on ASSIGN, 8-4 
value on DISPOSE, 10-8 
value on FETCH, 10-12 

mode for interactive format datasets, 
2-13 

Character deb locked format 
value on FETCH, 10-12 
value parameter 

on ACQUIRE, 10-4 
on DISPOSE, 10-8 

Character set 
described, appendix C 
foreign data, 9-10 

parameter for, on ASSIGN, 8-7 
Character-count block type, value on 

ASSIGN, 8-8 
CHARGES control statement, 7-8 to 7-9 

verb, described, 7-1, 
CHECK field on ITEMIZE listing, 13-14, 13-16 
CIGS parameter on TARGET, 7-24 
CIO, (Circular I/O routines), 2-22 
Circular routines in logical 1/0, 2-22 
CL parameter on JOB, 7-13 
Classes of messages written to logfile, 7-10 
CLOCKTIM parameter on TARGET, 7-25 
Clock 

period parameter on TARGET, 7-25 
programmable parameter on TARGET, 7-24 

CLOSE macro with user tape end-of-volume 
processing, 2-5 

CLOSEV, 
during dataset processing, 2-5 
with user tape end-of-volume 

processing, 2-4 
Clusters, parameter on TARGET, 

7-25 
CMD parameter, on LD2, 14-11 

Index-3 



CNS parameter 
on CALL, 7-5 
on LOR, 14-6 

COMMENT error message, 14-7 
Comment 

control statement, 4-1, 7-2 
on load map, 14-15 

Communication paths 
in closing Interjob Communication, B-4 
in establishing Interjob Communication, 

B-2, B-3 
sending and receiving messages, B-3 

COMPARE utility, 6-14, 13-2 
as analytical aid, 13-1 to 13-4 

Compilers loaded into user field, 1-4 
Complex procedure, 16-19 to 16-23 
Compressed blanks expanded by COpy 

utilities, 12-3, 12-5 
Compressed index parameter on TARGET, 7-24 
Compressed load parameter, 14-6 
Concatenated datasets, 2-8 to 2-9 

and the Front End Tape Management 
Catalog, 2-9 

Concatenation, activating, 9-2 
Conditional block, with ELSE, 16-6, 16-7 
Conditional block, 

described, 16-4 to 16-9 
in exit processing, 3-8 
with ELSEIF, 16-6, 16-7 

Conditional control statement blocks, 16-1 
to 16-12 

CONNECT control statement, description, 8-14 
function of, 8-1 

Constants 
integer defined, 16-10 
literal defined, 16-10 
statement 

blocks, conditional, 16-1 to 16-9 
blocks, iterative, 16-8 to 16-12 
prototype, 16-24 
sequences, simple, 16-1 

Context printed or scanned, 13-3 
Contiguous space allocation parameter, on 

ASSIGN, 8-5 
Continuation 

character described, 4-5 
separator, 4-1 

Control Data display code value 
on ACCESS, 9-9 
on ASSIGN, 8-7 

Control Statement Processor (CSP) 
dumped, 13-11 
in COS, 1-3 
in initial memory allocation, 3-4 
information on logfile, 3-12 
listed in logfile, 3-12 
to load an execute-only dataset, 2-18 

Control statement 
dataset created, 4-1 
file in a job dataset, 3-1 
for job definition, 6-1 to 6-3 
for permanent dataset control, examples 

Index-4 

Control statement (continued) 
of, 9-25 to 9-27 

logic structures, 16-1 to 16-12 
read, 7-4 
separators illustrated, 4-5 
syntax, 4-1 
system verb, 11-18 
verbs described, 4-2 

Control word 
block 

described, 2-10 
disregarding, 2-12 
for interchange tape format, 2-15 
format, 2-11 

modifier on SAVE, 9-24 
of blocked datasets, 2-10 
permission, 1-6 
record for interchange tape format, 

2-15 
record, 2-10 to 2-13 

Conversion mode parameter on ASSIGN, 8-7 
COpy directive 

and file searching, 15-4 
described, 15-7 
examples, 15-7 to 15-8 

COPYD utility, 12-1, 12-3 
for local datasets, 6-13 

COPYF utility, 12-4 
for local datasets, 6-13 

COPYR utility, 12-4 to 12-5 
for local datasets, 6-13 

COPYU utility, 12-5 
for local datasets, 6-13 

COS 
and job control language, 4-1 
described, 1-1 
job processing, section 3 
memory-resident summarized, 1-3 
startup, 1-3 

CP parameter on COMPARE, 13-3 
CPU, see also Central Processing Unit 

option on CHARGES, 7-8 
parameter on TARGET, 7-24 
serial number symbol, 16-13 

CR parameter on PDSLOAO, 11-16 
Crack next control statement, parameter on 

LOR, 14-6 
Cracking, see Decoding 
Cray Assembly language, see CAL 
Cray Computer System configuration 

illustrated, 1-2 
Cray Operating System, see COS 
Creation disposition parameter 

on ACCESS, 9-5 
Cross-reference listing, global 

format for, 13-19 
generated by SYSREF, 13-19 
generated, 6-15 

CRT value for OT parameter on ASSIGN, 8-4 

SR-OOll 0 



CS 
parameter 

on ACCESS, 9-9 
on ASSIGN, 8-7 
on COMPARE, 13-3 

value for RF parameter 
on ACCESS, 9-10 
on ASSIGN, 8-8 

$CS dataset 
at job termination, 3-3 
control statement 

creation of, 4-1 
file in interactive processing, 3-10 

described, 3-3 
CSP, see Control Statement Processor 
Cursor control inserting, 8-4 
CV parameter 

CW 

on ACCESS, 9-9 
on ASSIGN, 8-6 

modifier for ADN parameter on ACQUIRE, 
10-5 

parameter 
on AUDIT, 11-4 
on COMPARE, 13-4 
on PDSDUMP, 11-13 
on PDSLOAD, 11-16 

value 
for ADN parameter on SAVE, 9-23 
for RF parameter on ACCESS, 9-10 
for RF parameter on ASSIGN, 8-8 

CYBER operating system, MBS 
values for, on ACCESS, 9-7 

CZ value for RF parameter 

D 

Data 

on ACCESS, 9-10 
on ASSIGN, 8-8 

parameter on PDSDUMP, 11-13 
value 

for FORMAT parameter on DUMP, 13-8 
for RF parameter on ACCESS, 9-10 
for RF parameter on ASSIGN, 8-8 

conversion enabled or disabled, 8-7 
file, 3-1 
hierarchy within a dataset illustrated, 

2-10 
transfer in user channel access, B-6 
transfers controlled by COS, 1-1 

Dataset 
backup parameter 

on ACQUIRE, 10-6 
on MODIFY, 9-19 
on SAVE, 9-25 

Dataset, section 2 
accessing, 8-1 
blocked 

copied, 12-1 to 12-3 
format described, 2-10, 2-9 
initialized, 6-14 
parameter on UNBLOCKED, 12-11 
skipped, 12-8 

Catalog 

SR-OOll 0 

Dataset, section 2 (continued) 
and Master Device, 1-5 
changes with DELETE, 9-14 
entries with SAVE, 9-21 
modified by ADJUST, 9-13 

cessation of permanence, 1-6 
characteristics defined, 8-1 
closed at end of load, 14-3 
compared, 13-2 
concatenated, 2-8 to 2-9 
control verbs, 6-3, 2-14 
conversion to SEGLDR, 14-3 
copied, 12-1 
declared memory resident, 2-2 
default sizes, 1-6 
defined, 1-5, 2-1, 2-20 
Definition List (DDL), 2-2 
definition 

and control, section 8 
verbs for, 6-3 

deleted after dump, 11-13 
deletion disallowed, 2-18 
directed 

described, 2-19 
role of, 2-1 
to the input queue, 10-13 
to the output queue for staging, 10-6 

dumped, 13-4 
execute-only 

described, 2-18 
not memory resident, 2-2 

expired parameter 
on PDSDUMP, 11-13 
on RETIRE, 11-20 

foreign conversion mode parameter on 
ACCESS, 9-9 

format 
interactive, 2-13 
parameter on ACQUIRE, 10-4 
parameter on ASSIGN, 8-4 
parameter on DISPOSE, 10-8 
parameter on FETCH, 10-12 
unblocked, 2-13 

identification parameter 
on DELETE, 9-16 
on RESTORE, 11-18 
on RETIRE, 11-19 

information changed, 9-17 
initial edition created, 9-22 
input 

described, 1-5 
dumped, 11-14 
in job entry, 3-2 
loaded, 11-16 
parameter on UNBLOCK, 12-11 
permanent, 2-18 
rewound with COMPARE, 13-2 

interactive, 2-2 to 2-3 
intermediate, as memory-resident, 2-2 
job dataset, 3-1 
job, submitted, 10-13 
library 

described, 6-16 
generated and maintained by BUILD, 

15-1 

Index-5 



Dataset, section 2 (continued) 
deleted at job termination, 3-3 
described, 1-5 to 1-6 
disposition of, 2-18 
dumped, 11-14 
loaded, 11-16 
parameter on UNBLOCK, 12-11 

owner, 6-9 
Parameter Table (DSP) 

and $DUMP, 13-11 
in system memory management, 3-7 
location in user field illustrated, 

3-5 
relation to IOAREA, 7-12 

partially deleted, 6-11 
permanent 

access control statement, 9-1 to 9-13 
additional edition created, 9-22 
audited with AUDIT 
characteristics defined for, 9-21 
control statements for, 9-25 to 9-27 
deleted, 9-14 
described, 2-18 
dumped through PDSDUMP, 11-11 to 

11-12 
editions dumped through PDSDUMP, 

11-13 
position, 12-5, 12-6, 
privacy, 11-2 
recovered, 1-5 
recovery after a system failure, 1-5 
reestablished, 1-5 
residency parameter 

on ACQUIRE, 10-6 
on MODIFY, 9-19 

residing on logical device, dumped by 
PDSDUMP, 11-12 to 11-14 

retired, 11-18, 11-19 
saved with SAVE, 9-21, 1-6 
scratch described, 1-6 
sequential, initialized, 6-14 
size and ADJUST, 9-13 
size parameter on ASSIGN, 8-2 to 8-3 
skipped, 12-8, 6-14 
space accessed, 7-9 
staged 
and use of RELEASE, 8-13 

value for AC parameter on ACQUIRE, 
10-2, 10-11 

staging control, section 10, 6-11 to 
6-12 

status, 12-6 
status codes, E-1 to E-9 

system described, 2-18 
user, 2-17 to 2-18 
utilities for, section 11, 6-13 

storage parameter on ASSIGN, 8-12 
structure, 2-1, 2-9 to 2-16 

unblocked, parameter on ASSIGN, 8-4 
system, 4-4 

Index-6 

Dataset, section 2 (continued) 
inspected by ITEMIZE, 13-13 
output for, 13-14 to 13-22 

listed with AUDIT, 11-3, 11-4 
loaded with PDSLOAD, 11-15 
local, 2-1, 4-3, 8-2 

JOB control statement for, 2-19 
dataset-name verbs, 4-3 
described, 2-19 
fetched, 10-11 
necessary for use, 2-1 
permanent dataset made local, 9-1 
utilities for, 6-13 to 6-14 

longevity, 2-1, 2-17 
made permanent and accessible, 10-1 
magnetic tape, 2-3 

availability, 2-3 
current volume closed, 2-3 
density of, parameter, 9-5 
formats, 2-13, 2-15, 2-16 
ignored by ADJUST, 9-13 
ignored by MODIFY, 9-17 
label-type parameter, 9-6 
modification identifier on ACCESS, 

9-8 
not memory-resident, 2-2 
parameters, 9-5, 9-6 
record size parameter on ACCESS, 

9-11 to 9-13 
run time conversion parameter, 9-9 

maintenance, 1-5 to 1-6 
management, handling of, 6-3 to 6-4 
management, section 9, 6-3 to 6-4 
manipulation through job control 

language, 4-1 
mass storage, 9-3, 9-13 

MODIFY used for, 9-17 
attributes for, 6-7 to 6-8 
created, 8-1 
described, 2-1 
permanent, 2-17 
protection of, 6-8 
temporary, 2-17 

maximum size 
defined by system parameters, 1-6 
limit parameter on ASSIGN, 8-5 

media classified, 2-1 
memory-resident 
changes made to, 2-2 

described, 2-2 
loading, 2-2 

migrated, 11-12, 11-18, 11-19 
modification disallowed, 2-18 
multiple, access, 2-6 to 2-8 
name 

local, as file identifier, 2-3 to 2-4 
restrictions on, 2-19 
role of, 2-1 
verbs, 4-2 to 4-4 

naming conventions, 2~19 

output 
and user tape end-of-volume 

processing, 2-4 

SR-OOll 0 



Dataset, section 2 (continued) 
tape, access to, 2-3 to 2-4 
temporary, 2-2, 1-6 

created with &DATA, 16-23 
creation of, 2-17 

translation, 8-6, 9-8 
unblocked, 12-2, 12-10 

concatenated, 2-8 to 2-9 
converted, 6-14 
copied, 12-5 

use tracking, 6-8, 6-10 
user 

naming conventions, 2-19 
symbolic name assigned to, 2-19 

&DATA control statement, 16-20, 16-23, 4-3 
Dataset access 

controlled, 9-20 
relinquished, 8-1, 8-13 
through permission control words, 6-4 

Dataset attributes, mass storage, 6-4 
Dataset control words, discarded, 12-11 
Dataset edition, access to, 9-4 
DATE field on ITEMIZE listing, 13-14 
DB parameter on DSDUMP, 13-6 
DC 

parameter 
on ASSIGN, 8-5 
on DISPOSE, 10-7 to 10-8 

value 
for CS parameter on ACCESS, 
for CS parameter on ASSIGN, 

DD-19 disk drive, track size, 8-2 
DD-29 disk drive, track size, 8-2 
DD-49 disk drive, track size, 8-2 
DD-49 disk drive, track size, 8-2 
DDA as analytical aid, 13-1 
DDL (Dataset Definition List) 

9-10 
8-7 

with F$DNT for dataset definition, 2-2 
DEB parameter on LDR, 14-5 
DEBUG as analytical aid, 13-1 
Debug routine loading, parameter for, 14-4 
Decoding of control statement parameters, 

4-7 
DEF parameter on ASSIGN, 8-11 
Default 

parameter on SUBMIT, 10-13 
Default 

space parameter on ASSIGN, 8-11 
DEFER parameter 

on DISPOSE, 10-6, 10-10 
on SUBMIT, 10-14 

Deferred submit parameter on SUBMIT, 10-14 
DELETE control statement, 9-14 to 9-16 

effect on dataset access, 10-2 
local dataset format, 9-14 to 9-16 
nonlocal dataset format, 9-15 to 9-16 
system verb, 4-3 
verb described, 6-5 

Delimiters 
for keyword parameters, 16-24 
for parameter substitution, 16-24 

DEN parameter on ACCESS, 9-6 
Density of the tape dataset 

parameter on ACCESS, 9-6 

SR-OOll 0 

Destination medium of the dataset stated 
through disposition code, 2-19 

Device 
label 

and mass storage, 1-5 
in disk storage space allocation, 1-5 

type parameter on ASSIGN, 8-4 
DF parameter 

on ACCESS, 9-7 
on ACQUIRE, 10-4 
on ASSIGN, 8-4 
on COMPARE, 13-3 
on DISPOSE, 10-8 
on DSDUMP, 13 - 5 
on FETCH, 10-12 to 10-13 

DID parameter on SUBMIT, 10-13 
Directive 

for BUILD, 15-5 to 15-10 
for overlay generation, example of, 

14-23 
for type 2 overlay generation, 14-30 to 

14-31 
example of, 14-31 

Disk 
drive track sizes, 8-2 
drives, 1-1 
Queue Manager, 2-22 

DISPOSE control statement 
dataset disposition code, 2-19, 10-7 
requests not honored, 2-18 
system verb, 4-3, 10-6 
verb for dataset staging control, 6-11, 

10-6 
Disposition codes dataset, 2-19 
Disposition code 

parameter 
on ASSIGN, 8-5 
on DISPOSE, 10-7 to 10-8 

role of, 2-1 
DN parameter, 

on ASSIGN, 8-2 
on BLOCK, 12-2 
on QUERY, 12-6 
on UNBLOCK, 12-10 

DQM (Disk Queue Manager), 2-22 
Driver for user channel access, B-5 
DS option on CHARGES, 7-9 
DSC, see Dataset Catalog, Permanent Dataset 

Catalog 
DSDUMP utility, 13-4 to 13-7 

as analytical aid, 6-14, 13-1 
output format, 13-7 

DSP, see also Dataset Parameter table 
parameter on DUMP, 13-8 

DSU, see Disk Storage Unit 
DSZ parameter on DSDUMP, 13-6 
DT parameter 

on ACCESS, 9-5 
on ASSIGN, 8-4 

DUMP utility, 13-7 to 13-10 
as analytical aid, 6-14, 13-1 
format examples, 13-9 to 13-10 

$DUMP local dataset created, 13-11 

Index-7 



DUMPJOB, 13-11 

DV 

E 

as analytical aid, 6-4, 13-1 
control statement not continued, 4-1 
requests not honored, 2-18 
system verb, 4-3 

parameter 
on ASSIGN, 8-4 
on AUDIT, 11-3 
on PDSDUMP, 11-12 
on PDSLOAD, 11-16 

parameter 
on ITEMIZE, 13-12 
on LDR, 14-7 

value 
for MODIFY PAM parameter, 9-18 
for PERMIT AM parameter, 9-20 
for SAVE PAM parameter, 9-23 

EB value 
for CS parameter on ACCESS, 9-9 
for CS parameter on ASSIGN, 8-7 

ECHO 
control statement, 7-10 to 7-11 
system verb, 4-3 
verb described, 6-2, 7-1 

ED parameter 
on ACCESS, 9-3 
on ACQUIRE, 10-3 
on DELETE, 9-16 
on DISPOSE, 10-9 
on MODIFY, 9-17 
on PDSDUMP, 11-13 
on PDSLOAD, 11-16 
on RESTORE, 11-18 
on RETIRE, 11-19 
on SAVE, 9-22 

Edition number 
new, parameter for, 9-17 
of permanent dataset dumped through 

PDSDUMP, 11-13 
parameter 

on ACCESS, 9-3 
on ACQUIRE, 10-3 
on DELETE, 9-16 
on DISPOSE, 10-9 
on PDSLOAD, 11-16 
on RESTORE, 11-18 
on RETIRE, 11-19 
on SAVE, 9-22 

ELSE control statement, 16-2 
conditional block with, 16-6, 16-7 
summarized, 16-2 
system verb, 4-3 

ELSEIF control statement, 16-2 to 16-3 
conditional block with, 16-6, 16-7 
summarized, 16-2 
system verb, 4-3 

EMA parameter 
on MODE, 7-17 
on TARGET, 7-24 
summarized, 16-2 

End-of-data in job file, 3-2 
End-of-file record in job file, 3-2 

Index-8 

End-of-record control word, 2-12 
ENDIF control statement, 16-3 

summarized, 16-2 
system verb, 4-3 

ENDLOOP, 16-8 
summarized, 16-8 
system verb, 4-3 

ENDPROC, 16-24 
effect on procedure definition, 7-5 
in complex procedures, 16-20 
system verb, 4-3 

ENDSP macro with user tape end-of-volume 
processing, 2-4 to 2-5 

Entry points, ITEMIZE parameter for, 13-12 
EOF not skipped by SKIPR, 12-9 
Equivalence separator, 4-5 
ERECALL macro for Event Recall, B-6 
ERR parameter 

on ACCESS, 9-3 
on ACQUIRE, 10-6 
on ADJUST, 9-14 
on DELETE 

local, 9-15 
nonlocal, 9-16 

on MODIFY, 9-18 
on PERMIT, 9-21 
on SAVE, 9-23 

Error 
at job termination, 3-3 
class saved on reprieve processing, 3-9 
code saved on reprieve processing, 3-9 
codes described, appendix E 
conditions described, 3-9 to 3-10 
listing, parameter for, 14-7 
message parameter 

Error 

on ACCESS, 9-3 
on ACQUIRE, 10-6 
on ADJUST, 9-14 
on DELETE, 9-16 
on MODIFY, 9-18 
on PERMIT, 9-21 
on SAVE, 9-23 

cause BUILD to abort, 15-3 
syntax, see Syntax violations 

Establishing attributes for mass storage 
datasets, 6-7 to 6-8 

Event Recall, B-6 
Exchange Package 

described, appendix D 
in COS, 1-3 
with MODE, 7-16 

Exchange Processor 
calls in user IIO interfaces, 2-22 
information on logfile, 3-12 
requests 

IIO routines communicated through, 
2-22 

in user IIO interfaces, 2-22 
EXCLUDE directive for selective load, 14-16 
EXEC in COS, 1-3 
Executable program creation, section 14 

summarized, 6-15 

SR-OOll 0 



Execute-only dataset, 2-18 
differences from other datasets, 2-18 
not memory-resident, 2-2 
parameter 

on MODIFY, 9-18 
on SAVE, 9-23 

Existing permanent dataset, 6-7 
Exit processing, 3-8 to 3-9 

on an interactive job, 3-10 
EXITIF, 16-2 to 16-4 

system verb, 4-3 
EXITLOOP, 4-3, 16-8 
EXIT, 3-8, 7-11 

in job step aborts, 4-2 
not continued, 4-1 
system verb, 4-3 
verb described, 6-2, 7-1 
within control statement blocks, 3-8 

EXO parameter 
on MODIFY, 9-18 
on SAVE, 9-23 

EXP, see Exchange Processor 
Expiration date parameter on ACCESS, 9-8 
Expression 

defined, 16-10 
evaluation, 16-16 
operands, 16-10 to 16-16 
operator table, 16-14 
operators, 16-13 to 16-15 
parameter on SET, 7-22 
value of, written to logfile, 13-16 

Extended buffer memory, track size, 8-2 
Extended memory addressing mode, 7-17 
Extended memory addressing, parameter on 

F 

TARGET, 7-24 

parameter 
on ACCESS, 9-9 
on ASSIGN, 8-7 

value for RF parameter 
on ACCESS, 9-10 
on ASSIGN, 8-8 

F$DNT system call 
to create interactive datasets, 2-3 
to define a memory-resident dataset, 2-2 

F$DRIVER system request, B-5 
F$ERCL system request, B-6 
F$OPMSG system call, B-7 
F$RDC call, record control words and, 2-13 
F$SDT system call for queue manipulation, 

B-7 
F$WDC call, record control words and, 2-13 
False value, symbol for, 16-12 
Fast Secondary Storage (FSS) 

accounting information on logfile, 3-13 
usage option for CHARGES, 7-9 

FATAL error message, 14-7 
FB value 

for RF parameter on ACCESS, 9-10 
for RF parameter on ASSIGN, 8-8 

FD parameter 
on ACCESS, 9-9 
on ASSIGN, 8-6 

SR-OOll 0 

FETCH, 10-10 to 10-12 
system verb, 4-3 
verb for dataset staging control, 6-11 

FI parameter on MODE, 7-16 
Field label types, 2-5 to 2-6 
Field length 

FILE 

reduction of, 3-4 to 3-6 
specified on MEMORY, 7-15 
user managed, 3-4 to 3-6 

directive described, 14-18 
field on ITEMIZE listing, 13-14 

File 
control statements, 3-1 
data, 3-1 
identifier for tape datasets, 2-3 to 2-4 
number, specified on the selective load 

directives, 14-16 
output sequence, and BUILD, 15-4 
searching considerations, 15-4 
section number parameter on ACCESS, 9-6 
sequence number parameter on ACCESS, 

9-12 
source, 3-1 

File-level output, with ITEMIZE, 13-13 to 
13-14 

Files 
blocked 

converted, 6-13 
copied, 12-1, 12-3 
skipped, 12-8 

following the control statement file, 
3-2 

skipped, 6-14 
First word address of memory dumped, 13-8 
Fixed-length blocked records 

value on ACCESS, 9-11 
value on ASSIGN, 8-8 

FL parameter on MEMORY, 7-15 
Floating-point interrupt mode, 7-16 
FLODUMP, 6-14 

as analytical aid, 13-1 
FN parameter on the selective load 

directives, 14-16 to 14-14 
Foreign datasets, and UNBLOCK, 12-10 
Foreign 

data character set parameter 
on ACCESS, 9-9 
on ASSIGN, 8-7 

dataset 
conversion mode parameter on ACCESS, 

9-9 
conversion mode parameter, 8-6 
translation identifier parameter on 

ASSIGN, 8-6 
translation identifier parameter on 

ACCESS, 9-9 
Formal parameters 

in complex procedures, 16-19 
specifications for substitution, 16-22 

FORMAT parameter on DUMP, 13-8 to 13-9 
Format 

for interactive output, 2-13 
tape dataset, described, 2-13 to 2-16 

Index-9 



Format (continued) 
transparent, for interactive output, 

2-13 
unblocked, 2-13 

FORTRAN 
language call 

for loading overlays, 14-26 
in Type 2 overlay execution, 14-34 

statements categories, 2-22 
Forward index field 

in block control word, 2-11 
in record control word, 2-12 

FROM directive for BUILD, 15-5 to 15-6 
Front-end 

computer identifier parameter 
on ACQUIRE, 10-4 
on DISPOSE, 10-9 

job presentation to COS, 1-1 
protect indicator parameter on ACCESS, 

9-7 
servicing mainframe identifier 

parameter on ACCESS, 9-6 
FSEC parameter on ACCESS, 9-6, 9-13 
FSS (Fast Secondary Storage) 

information in job logfile, 3-13 
usage option for CHARGES, 7-9 

FSU option on CHARGES, 7-9 
FTREF as analytical aid, 13-1 
FULL value for LDR MAP parameter, 14-4 
FWA parameter on DUMP, 13-8 
FWI (Forward index field) 

in block control word, 2-11 
in record control word, 2-12 

G value for FORMAT parameter on DUMP, 13-9 
Gather/scatter compressed index parameter 

on TARGET, 7-24 
Generation directive examples, 14-23 to 

14-24, 14-31 
Generic 

name with a controlled device, 8-3 
resource 

held with RELEASE, 8-13 
name parameter on HOLD, 8-12 
name parameter on NOHOLD, 8-13 
usage option for CHARGES, 7-9 

GETPARAM routine in parameter 
interpretation, 4-7 

Global cross-reference listing 
control statement, 13-19 
generated, 6-15 
symbols defined, 16-12 

GRANT parameter on LDR, 14-8 to 14-9 
GRN parameter 

on HOLD, 8-12 
on NOHOLD, 8-13 

GRU option for SR parameter on CHARGES, 7-9 
Hardware requirements summarized, 1-1 to 1-2 
Heap 

location 
in user field illustrated, 3-5 
specified, 14-10 

manager, 14-9 
smallest block of available space in 

the, 14-10 

Index-l0 

High Limit Memory Address relation to 
IOAREA, 7 -12 

HLM (High Limit Memory Address), 7-12 
HOLD 

control statement, 8-12 
parameter on RELEASE, 8-14 
system verb, 4-3 

HOST value for VERIFY parameter on TARGET, 
7-26 

I 

I/O 

parameter 
on BLOCK, 12-3 
on BUILD, 15-1 
on COPYD, 12-3 
on COPYF, 12-4 
on COPYR, 12-5 
on COPYU, 12-5 
on DSDUMP, 13-5 
on DUMP, 13-8 to 15-2 
on LDR, 14-8 
on PDSDUMP, 11-14 
on PDSLOAD, 11-16 
on UNBLOCK, 2-10, 12-11 

value 
for ACCESS F parameter, 9-9 
for ACCESS RF parameter, 9-10 
for ASSIGN F parameter, 8-7 
for ASSIGN RF parameter, 8-8 

area, access to, 7-12 
Buffers location in user field 

illustrated, 3-5 
circular routines, 2-22 
interfaces 

Exchange Processor calls in, 2-22 
for datasets, 2-1 
user, described, 2-20 to 2-22 
user, illustrated, 2-21 

statements, programming-language 
user-interface levels, 2-22 

Subsystem, see lOS 
wait time listed in logfile, 3-12 

I@BFI parameter to define blank field 
initiator code, 2-10 

IBM 
record format parameter on ACCESS, 9-10 
tape file translation value on ACCESS, 

9-10 
tape files 

MBS values on ACCESS, 9-8 
MBS values on ASSIGN, 8-10 
RS defaults for, 8-9 
RS restrictions for, 8-9 

value for FD parameter on ACCESS, 9-9 
value for FD parameter on ASSIGN, 8-6 

IBM-compatible 
control unit attached to block, 1-6 
dataset parameter on ASSIGN, 8-6 
tape dataset value for FD parameter on 

ACCESS, 9-9 
tape subsystem, 1-1 

IBUFSIZE parameter on TARGET, 7-25 
IC value for DF parameter on ACCESS, 9-7 

SR-OOll 0 



ID parameter 

IF 

on ACCESS, 9-3 
on ACQUIRE, 10-3 
on AUDIT, 11-3 
on DELETE, 9-16 
on DISPOSE, 10-9 
on DSDUMP, 11-13 
on MODIFY, 9-17 
on PDSLOAD, 11-16 
on PERMIT, 9-20 
on RESTORE, 11-18 
on RETIRE, 11-19 
on SAVE, 9-22 

control statement, 16-2, 16-4 
parameter on DSDUMP, 13-6 
system verb, 4-3 

Immediate reply parameter on ACCESS, 9-3 
$IN datasets 

at job termination, 3-3 
described, 3-3 
in interactive job processing, 3-10 

INC parameter 
on ASSIGN, 8-5 
on PDSDUMP, 11-13 
with S2 on ASSIGN, 8-3, 8-5 

INCLUDE directive for selective load, 14-16 
Incremental dump parameter on PDSDUMP, 11-13 
Initialization of local datasets, 6-14 
Initializing for stack processing, 

parameter for, 14-9 
Initial 

memory allocation in job memory 
management, 3-4 

separator described, 4-5 
transfer on load map, 14-14 

Input dataset 
at job initiation, 3-2 
in job entry, 3-2 
made local, 2-18 
parameter on UNBLOCK, 12-11 
permanent, 1-5 
value for AC parameter on ACQUIRE, 10-2 
value for AC parameter on FETCH, 10-11 
value for DC parameter on ASSIGN, 8-5 
value for DC parameter on DISPOSE, 10-7 

Instruction buffer size parameter on 
TARGET, 7-25 

Integer constants defined, 16-10 
Integrated Support Processor, see ISP 
Interactive 

datasets 
described, 2-2 to 2-3 
differ from local datasets, 2-3 
not memory-resident, 2-2 

device type specified on ASSIGN, 8-4 
format, 2-13 
job processing, 3-10 
job step initiated with a control 

statement, 3-10 
jobs 

control of, by COS, 1-1 
in exit processing, 3-9 

output 

SR-OOll 0 

Interactive (continued) 
datasets, TRAN used for, 2-12 
formats, 2-13 

Interchange 

tape format 
described, 2-15 
illustrated, 2-16 

value for DF parameter on ACCESS, 9-7 
Interjob Communication 

closing communication paths, B-4 
described, B-1 
establishing communication, B-2 to B-3 
illustrated, B-3 
sending and receiving messages, B-3to 

B-4 
Intermediate datasets as memory-resident 

datasets, 2-2 
Internal block type value on ASSIGN, 8-8 
Interruption, system, 7-22 
Intertask communication value for AC 

parameter 

IN 

on ACQUIRE, 10-2 
on FETCH, 10-11 

value for AC parameter on ACQUIRE, 10-2 
value for AC parameter on FETCH, 10-11 
value for DC parameter on ASSIGN, 8-5 
value for DC parameter on DISPOSE, 

IOAREA 

lOS 

control statement, 7-12 
system verb, 4-3, 6-2, 7-1 

components, 1-2 
in hardware requirements, 1-1 
with Auxiliary 1/0 Processor, 1-6 

IR parameter 
on ACCESS, 9-3 
on DSDUMP, 13-5 

IS parameter on DSDUMP, 13-6 
ISP (Integrated Support Processor) 

access to, 8-1 
blank field initiation, 8-6 
control statement, 8-14 
datasets, 2-9 

ITEMIZE utility, 13-11 to 13-16 
as analytical aid, 6-15, 13-1 
restrictions, 13-12 
sample listing for a PL, 13-13 

10-7 

Iterative control statement blocks, 16-8 
described, 16-8 to 16-12 
illustrated, 16-9 

IW 
summarized, 16-1 

parameter on DSDUMP, 13-5 
value for RF parameter on ACCESS, 9-10 
value for RF parameter on ASSIGN, 8-8 

JCB, see Job Communication Block 
JCHLM set to the highest address, 14-22 
JCL, section 4 

expression evaluation, 16-16 
expressions, 16-10 to 16-16 
functions, 6-1 
logic structures allowed, section 16 
verbs described, 4-2 to 4-4 

Index-ll 



JN parameter on JOB, 7-13 
to rename $OUT, 3-3 

JNU option on CHARGES, 7-9 
Job 

accounting information, 3-10 to 3-13 
advancement stage, 3-3 
class specified on JOB, 7-13 
control language, see JCL 
dataset described, 3-1 
defined, 3-1 
definition and control, section 7 
entry stage described, 3-2 
field length, symbol for, 16-12 
flow 

described, 3-2 to 3~4 
determined by control statements, 6-1 

initiation stage described, 3-2 to 3-3 
interactive in exit processing, 3-9 
logfile described, 3-10 
management, see Job Table Area 
memory management 

described, 3-4 
initial memory allocation in, 3-4 

name on load map, 14-14 
nonrerunnable, reasons for, 3-7 to 3-8 
normal termination of, 3-9 
processing 

described, section 3 
requirements, control statements to 

specify, 7-1 to 7-2 
pseudo-registers, symbol for, 16-12 
recovery with ROLLJOB~ 7-22 
reprieve processing, 3-9 to 3-10 
rerun described, 3-7 
rolled to disk, 7-22 
size 

defined, 3-4 
minimum and maximum, option on 

CHARGES, 7-9 
stages described, section 3 
status register, symbol for, 16-12 
step 

abort and syntax errors, 4-2 
abort, user-requested, 3-8 
error conditions, 3-9 
multitasked, 3-3, 3-12 

Table Area, see JTA 
terminated when EXIT not found, 4-2 
termination described, 3-3 
termination error, 3-3 
user area described, appendix A 
wait, parameter on DISPOSE, 10-10 

Job Communication Block (JCB) 
and the user field, 1-5 
at type 1 overlay loading, illustration 

of, 14-21 
at type 2 overlay loading, illustration 

of, 14-29 
length parameter, 14-5 
location in user field illustrated, 3-5 

JOB control statement, 7-12 to 7-14 
and magnetic tape datasets, 2-3 to 2-4 
at job initiation, 3-2 to 3-3 
execution in memory allocation, 3-4 

Index-12 

JOB control statement, 7-12 to 7-14 
(continued) 
format, 7-12 

in job dataset, 3-2 
JN parameter on, 3-3 
job name from, on load map, 14-14 
system verb, 4-3 
used for local datasets, 2-19 
verb, 6-2, 7-1 

Job, aborted, 9-3 
JSQ option on CHARGES, 7-9 
JTA (Job Table Area) 

at job initiation, 3-2 
described, 1-3 to A-53 
dumped, 13-8 
illustrated, 3-5 
in job size, 3-4 
in system memory management, 3-7 
listed in logfile, 3-12 
parameter on DUMP, 13-8 

Keyword 

L 

and positional parameters, 16-24 
parameters, 4-6, 16-24 

examples, 4-7 

parameter 
on AUDIT, 11-3 
on BUILD, 15-2 
on COMPARE, 13-3 
on ITEMIZE, 13-12 
on LOR, 14-7 
on PDSLOAD, 11-15 
on SYSREF, 13-18 

value for LO parameter on AUDIT, 11-5 
Last word address, 13-8 
LB parameter on ACCESS, 9-7 
LD2 utility 

conversion of LOR, 6-16 
and absolute modules, 14-2 
and migration, 14-10 
and multiple file object datasets, 14-11 
compared to LOR, 14-10 
description of, 14-10 
load order, 14-12 
preparation for, 14-11 

LOR control statement, 14-1 to 14-10 
and overlay generation log, 14-33 
and overlays, 14-17 to 14-34 
compared to LD2, 14-10 
in executable program creation, 6-15 
in memory management, 3-7 
load order, 14-12 
not applicable with execute-only 

datasets, 2-18 
switching to SEGLDR, 14-1 
to load a program in relocatable 

format, 14-1 
LOR directives, echoed by LD2, 14-11 
LENGTH field on ITEMIZE listing, 13-14 
Level hierarchy in overlay generation, 14-24 
LFT (Logical File Table) described 

in system memory management, 3-7 
locp-tion in user field illustrated, 3-5 

LIB parameter on LOR, 14-3 

SR-OOll 0 



Libraries, section 5 
constructed by BUILD program, 15-1 
merged through the LIST directive for 

BUILD, 15-9 
Library-defined verbs, 4-2, 4-3 
LIBRARY control statement, 7-14 to 7-15 

system verb, 4-3 
verb described, 6-2, 7-1 

Library 
datasets, 5-2 

described, 6-16 
generation and maintenance, 15-1 

routines called by FORTRAN statements, 
2-22 

searchlist 
for verbs, 4-2 
listed or changed, 7-14 

subroutine ACCESS for local datasets, 
2-19 

Limit address of the user field, 1-4 
LIST directive for BUILD, 15-8 to 15-10 
Literal 

caret within a, 4-1 
constants defined, 16-10 
delimiters described, 4-5 
strings, 16-16 to 16-17 
values in positional parameters, 4-4 

LLD parameter 
on LDR, 14-3 
on LD2, 14-3 

LM parameter on ASSIGN, 8-5 
LO parameter on AUDIT, 11-4 to 11-5 
Load map 

described, 14-13 
illustrated, 14-14 
listing, 14-13 
load type indicated on, 14-14 

Load order, for LDR and LD2, 14-12 
Loaders, duplicate entry points, 14-13 
Local dataset, 2-1, 2-19 

name as file identifier for tape 
datasets, 2-3 to 2-4 

utilities, section 12, 6-13 to 6-14 
verbs described, 4-3 

Local symbols, 16-11 
LOCK parameter on IOAREA, 7-12 
$LOG 

dataset described, 3-3 
datasets at job termination, 3-3 

Logfile 
comments in, 4-1 
defined, 3-10 
illustrated, 3-11 
messages, 3-10, 3-11 to 3-12, 7-10 

Logical File Table (LFT) 
in system memory management, 3-7 
location in user field illustrated, 3-5 

Logical operators, 16-15 
Logical 

device indicated on PDSLOAD, 11-16 
device parameter on ASSIGN, 8-4 

LOOP, 16-9 
control statement, 16-11 to 16-12 
system verb, 4-3 

SR-OOII 0 

LPP parameter on OPTION, 7-18 
LWA parameter on DUMP, 13-8 
M 

field 
in block control word, 2-11 
in second control word, 2-11 

parameter 
on ACCESS, 9-4 
on ACQUIRE, 10-3 
on DELETE, 9-16 
on DISPOSE, 10-9 
on MODIFY, 9-18 
on RESTORE, 11-18 
on RETIRE, 11-20 
on SAVE, 9-23 

value 
for AM parameter on PERMIT, 9-20 
for FORMAT parameter on DUMP, 13-9 
for PAM parameter on MODIFY, 9-19 
for PAM parameter on SAVE, 9-24 

Magnetic tape 
characteristics, 1-6 to 1-7 
dataset 

current volume closed, 2-3 
described, 2-3 to 2-9 
management verbs described, 6-5 
not memory-resident, 2-2 

value for AC parameter 
on ACQUIRE, 10-2 
on FETCH, 10-11 

value specified on ASSIGN, 8-5 
Mainframe computer identifier, parameter on 

FETCH, 10-12 
Mainframe identifier symbol, 16-13 
Maintenance 

Control Unit in hardware requirements, 
1-1 

control word parameter 
on ACCESS, 9-4 
on ACQUIRE, 10-3 
on DELETE, 9-16 
on DISPOSE, 10-9 
on RESTORE, 11-18 
on RETIRE, 11-20 
on SAVE, 9-23 

permission control word, 9-18 
Managed memory 

processing initialized, 14-9 
statistics on load map, 14-15 

Map control, parameter for, 14-4 
MAP parameter on LDR, 14-4 
Mass Storage Subsystem in hardware 

requirements, 1-1 
Mass storage 

and COS, 1-1 
characteristics described, 1-5 to 1-6 
datasets 

accessing, 6-8 
attributes, 6-4 to 6-8 
described, 2-1 
management verbs described, 6-5 
protecting, 6-8 

permanent dataset 

Index-13 



Mass storage(continued) 
creation of, 1-6 
described, 2-17 
recovery after a system failure, 1-5 

Master Device described, 1-5 
Maximum 

field length on JOB, 7-13 
size of $OUT on JOB, 7-13 
tape block size parameter 

on ACCESS, 9-8 
on ASSIGN, 8-10 

MBS parameter 
on ACCESS, 9-8 
on ASSIGN, 8-10 

MCU (Maintenance Control Unit), 1-1 
ME parameter on COMPARE, 13-3 
Memory-resident dataset 

as temporary dataset, 2-2 
changes made to, 2-2 
defined through ASSIGN, 2-2 
described, 2-2 
loaded, 2-2 
parameter on ASSIGN, 8-4 

Memory 
addresses relative to the beginning 

address, 1-5 
and out-of-range errors, 14-7 
areas, 3-4 
control statement, 3-6 
dumped with DUMP, 13-7 
initialization parameter on LDR, 14-7 
management, 3-4 to 3-7 

associated with a program, 3-6 to 3-7 
by control statement, 3-6 
by the system, 3-7 
by user, described, 3-6 to 3-7 
from within a program, 3-6 

size parameter on TARGET, 7-25 
speed parameter on TARGET, 7-25 
transfers enabled and disabled, 7-17 

MEMORY 
macro for memory management, 3-6 
routine in memory management, 3-6 
system verb, 4-3 
verb described, 6-2, 7-1 

MEMSIZE parameter on TARGET, 7-25 
MEMSPEED parameter on TARGET, 7-25 
Message class and logfile listing, 7-10 
MESSAGE system action request macro with 

job's logfile, 3-3 
Messages in logfile listing, 3-12 

operator, in subsystem support, B-7 
Messages, user logfile, 12-6 12-7 
MF parameter 

on ACCESS, 9-6 
on ACQUIRE, 10-4 
on DISPOSE, 10-9 
on FETCH, 10-12 
on JOB, 3-4 to 7-13 

Migration, and LD2, 14-10 
MM parameter 

on CHARGES, 7-9 
on LDR, 14-9 

Index-14 

MMEPS parameter on LOR, 14-10 
MMLOC parameter on LOR, 14-10 
MOD parameter 

on ACCESS, 9-5 
on selective load directives, 14-16 

MODE 
control statement, 7-16 
system verb, 4-3 
verb described, 6-2, 7-1 

Modifiers to indicate attributes, 9-24 
MODIFY, 9-16 to 9-20 

effect on dataset access, 10-2 
for new permanent datasets, 6-7 
for public access mode declaration, 6-9 
requests to create permanent dataset, 

2-17 to 2-18 
system verb, 4-3 
to change information from, 9-17 
verb described, 6-5 
with existing permanent datasets, 6-7 

Module 
absolute load, 6-15 
added to existing library dataset, 15-9 
heading for global cross-reference 

listing, 13-19 
listed alphabetically, specified on 

BUILD, 15-2 
loaded and linked in memory, 14-1 
name specified on the selective load 

directives, 14-16 
omitted, 15-6 
partially relocated, 14-1 
relocatable, 14-5, 6-15 

MR parameter on ASSIGN, 8-4 
to define a memory-resident dataset, 2-2 

MS value for DT parameter on ASSIGN, 8-4 
MSG parameter 

on ACCESS, 9-3 
on ACQUIRE, 10-6 
on ADJUST, 9-14 
on DELETE 

local, 9-15 
nonlocal, 9-16 

on MODIFY, 9-18 
on PERMIT, 9-21 
on SAVE, 9-23 

MT value 
for AC parameter on ACQUIRE, 10-2 
for AC parameter on FETCH, 10-11 
for DC parameter on ASSIGN, 8-5 
for DC parameter on DISPOSE, 10-7 

MTDUMP as analytical aid, 13-1 
Multidataset access, 2-6 

examples, 2-8 
tape formats for, 2-7 

Multiprocessing, 1-1 
Multiprogramming, 1-1 
Multitasked job step, 3-3, 3-12 
Multitasking, 1-1 
N value 

for AM parameter on PERMIT, 9-20 
for BO parameter on AUDIT, 11-6 
for LO parameter on AUDIT, 11-5 
for PAM parameter 

SR-OOll 0 



N value(continued) 
on MODIFY, 9-18 
on SAVE, 9-23 

NA parameter 
on ACCESS, 9-3 
on ADJUST, 9-14 
on LDR, 14-6 
on MODIFY, 9-18 
on PDSLOAD, 11-17 
on PERMIT, 9-21 
on SAVE, 9-23 

NAME field on ITEMIZE listing, 13-16 
NAPW parameter on ACCOUNT, 7-3 
NBF option on CHARGES, 7-9 
NBL parameter on BUILD, 15-2 
NCB, see Node Control Block 
New 

account password parameter, 7-3 
permanent datasets, attributes, 6-7 
user password parameter, 7-4 

NEW parameter 
on ACCESS, 9-5 
on ACCESS 
and MOD parameter, 9-5 
to access a tape dataset, 2-4 

NF parameter 
on COPYF, 12-4 
on DSDUMP, 13-6 
on ITEMIZE, 13-12 
on SKIPF, 12-9 

NID parameter on PDSLOAD, 11-16 
NO 

value for BACKUP parameter on ACQUIRE, 
10-6 

No release parameter 
on DISPOSE, 10-10 
on SUBMIT, 10-14 

NO value for BACKUP parameter 
on ACQUIRE, 10-5 
on MODIFY, 9-19 
on SAVE, 9-25 

NOCIGS parameter on TARGET, 7-24 
Node Control Block (NCB) 

closing interjob communication, B-4 
establishing interjob communication, B-2 
to send and receive messages, B-3 to B-4 

NODIR parameter on BUILD, 15-2 
NOECHO parameter on LOR, 14-8 
NOEMA parameter on TARGET, 7-24 
NOF parameter on ASSIGN, 8-3 
NOHOLD 

control statement, 8-13 
system verb, 4-3 

NOLIB parameter on LOR, 14-3 
Nonforeign datasets, and UNBLOCK, 12-11 
Nonrerunnability, reasons for, 3-7 to 3-8 
Nonspecific volume allocation defined, 2-4 
NOPC parameter on TARGET, 7-24 
NOREADVL parameter on TARGET, 7-25 
NORED 

directive in memory management, 3-7 
in memory management, 3-7 
parameter on LDR, 14-9 

SR-OOII 0 

NORERUN 
control statement, 7-18 
system verb, 4-3, 6-2, 7-1 

Normal 
advance job described, 3-3 
job advancement with EXIT, 3-8 
termination of a job step, 3-9 

NOTE error message, 14-7 
NOTE utility, 12-1, 12-6 
NOTES 

modifier for ADN parameter on ACQUIRE, 
10-5 

parameter 
on ACQUIRE, 10-6 
on MODIFY, 9-19 
on SAVE, 9-24 

value for AON parameter on SAVE, 9-23 
to 9-24 

Notes 
associated with a dataset, 9-19, 10-5 
attribute, 6-6 
modifier on SAVE, 9-24 

NOTEXT symbol, 16-12 
NOVPOP parameter on TARGET, 7-24 
NOVRECUR parameter on TARGET, 7-25 
NOWAIT parameter on DISPOSE, 10-10 
NOWN parameter on PDSLOAD, 11-16 
NR parameter 

on COPYR, 12-5 
on DSDUMP, 13-6 
on SKIPR, 12-9 
on WRITEDS, 12-12 

NREW parameter on ITEMIZE, 13-12 
NRLS parameter 

on DISPOSE, 10-10 
on SUBMIT, 10-14 

NS parameter 

Null 

on COPYU, 12-5 
on DSDUMP, 13-6 

record, effect of control word on, 2-12 
string values in positional parameters, 

4-6 
Null sequences, ignored, 16-4 
NUMCLSTR parameter on TARGET, 7-25 
NUMCPUS parameter on TARGET, 7-25 
NUPW parameter on ACCOUNT, 7-4 
NW parameter on OSOUMP, 13-5 
NX parameter on LDR, 14-5 
NXP parameter on DUMP, 13-8 
o 

parameter, on BLOCK, 12-3 
parameter 

on COPYD, 12-3 
on COPYF, 12-4 
on COPYR, 12-5 
on COPYU, 12-5 
on DSDUMP, 13-5 
on DUMP, 13-8 
on PDSOUMP, 11-14 
on PDSLOAD, 11-16 
on U~BLOCK, 12-10, 12-11 

value for FORMAT parameter on DUMP, 13-9 

Index-15 



Object 
code libraries described, 5-2 
library management, section 15, 6-16 
module, relocatable, 6-15 

OBL parameter on BUILD, 15-2 
OFF 

value 
for C parameter on LDR, 
14-6, 8-7, 9-9 
for MAP parameter on LDR, 14-4 
for STAT parameter on OPTION, 7-19 

parameter on ECHO, 7-10 
OFFLINE value for RESIDE parameter 

on ACQUIRE, 10-6 
on MODIFY, 9-19 
on SAVE, 9-24 

OLM parameter on JOB, 7-13 
OMIT directive for BUILD, 15-6 
ON 

parameter on ECHO, 7-10 
value 

for C parameter on LDR, 14-5 
for CV parameter on ACCESS, 9-9 
for CV parameter on ASSIGN, 8-7 
for MAP parameter on LDR, 14-4 
for STAT parameter on OPTION, 7-19 

ONLINE value for RESIDE parameter 
on ACQUIRE, 10-6 
on MODIFY, 9-18 to 9-19 
on SAVE, 9-24 

OPEN macro call and temporary dataset, 2-17 
Operand range error interrupt mode, 7-17 
Operands, expression, 16-10 to 16-15 
Operating system 

function described, 1-1 
requests for datasets, 2-1 

Operator mesages for subsystem support, B-7 
Operators (in expressions), 16-13 to 16-15 
OPMSG macro for operator messages, B-7 
OPTION, 7-18 to 7-20 

verb, 4-3, 6-2, 7-1 
ORI parameter on MODE, 7-17 
Origin heading for global cross-reference 

listing, 13-19 
$OUT 

datasets at job termination, 3-3 
dataset 

described, 3-3 
name, 2-19 

maximum size specified, 7-13 
output dataset in interactive job 

processing, 3-10 
Output dataset 

and user tape end-of-volume processing, 
2-5 

disposition of, 2-19 
permanent, described, 1-5 to 1-6 
deleted at job termination, 3-3 
parameter on UNBLOCK, 12-10 

Output 
for binary library datasets, 13-14 to 

13-27 
formatting, parameters on AUDIT, 11-4 

to 11-11 

Index-16 

Output(continued) 
interactive formats, 2-13 
placed on system mass storage, 3-3 

Overflow, and NOF parameter on ASSIGN, 8-3 
Overhead in tape subsystem, reduction, 2-3 
Overlay programs, complex, 14-10 
Overlay, 14-17 

directives described, 14-18 to 14-34 
execution 

type 1, 14-25 
type 2, 14-33 to 14-34 

generation 
described, 14-17 
directives for, 14-20 to 14-21 
log described, 14-20 to 14-27 
type 2, rules for, 14-32 

load parameter on LDR, 14-6 
loading Type 1, illustrated, 14-21 
tree, type 2 illustrated, 14-28 
type 1 described, 14-20 to 14-25 
type 2 

loading example, 14-29 
structure, 14-27 to 14-30 

OVL parameter on LDR, 14-6 
OVLDN directive described, 14-18 
OVLL directive for type 2 overlay 

generation, 14-30 to 14-32 
OWN parameter 

on ACCESS, 9-5 
on ACQUIRE, 10-4 
on AUDIT, 11-4 
on DELETE, 9-16 
on PDSDUMP, 11-13 
on PDSLOAD, 11-16 
on RESTORE, 11-18 
on RETIRE, 11-20 

Ownership 

P 

parameter 
on ACQUIRE, 10-4 
on DELETE, 9-16 
on RESTORE, 11-18 
on RETIRE, 11-20 

user parameter on PERMIT, 9-20 
value in attribute association, 6-10 

parameter on JOB, 7-13 
value 

for BO parameter on AUDIT, 11-6 
for FORMAT parameter on DUMP, 13-9 
for LO parameter on AUDIT, 11-5 

PAD parameter on LDR, 3-6, 14-9 
PADINC directive in memory management, 3-6 
Page number on load map, 14-14 
PAM, see also Public access mode 

modifier for ADN parameter on ACQUIRE, 
10-5 

parameter 
on ACQUIRE, 10-5 
on MODIFY, 9-18 
on SAVE, 9-23 

value 
for ACC parameter on AUDIT, 11-3 
for ADN parameter on SAVE, 9-23 

SR-OOll 0 



Parameter, 4-4 
formal 

for substitution, 16-24 
in complex procedures, 16-19 

interpretation described, 4-7 
keyword,_ 4-4, 16-24 
positional~ 4-4, 16-24 
substitution, 7-6, 16-24 to 16-27 
separator described, 4-5 

Parentheses 
delimiters described, 4-5 
for key word parameters, 16-26 

Parenthetic string values, 16-26 
Parenthetic strings, 16-16 to 16-20 
PART 

field on ITEMIZE listing, 13-14, 13-16 
value 

for C parameter on LOR, 14-6 
for MAP parameter on LOR, 14-4 

PARTIAL parameter on DELETE, 9-14, 9-15 
Partially deleted datasets, 6-11 
Password, account parameter for new, 7-3 
PAT, see Public access tracking 
Pattern, 11-1 
PC parameter on TARGET, 7-24 
PDM, see Permanent Dataset Manager 
PDN parameter 

on ACCESS, 9-3 
on ACQUIRE, 10-2 
on AUDIT, 11-3 
on MODIFY, 9-17 
on PDSDUMP, 11-13 
on PDSLOAD, 11-16 
on RESTORE, 11-18 
on RETIRE, 11-19 
on SAVE, 9-22 

PDSDUMP, 11-1 
listing described, 11-12 
listing illustrated, 11-13 
utility, 11-12 to 11-15 
verb for permanent datasets, 6-13 

PDSLOAD utility, 11-15 to 11-17 
described, 11-13 
listing illustrated, 11-15 
verb for permanent datasets, 6-13 
with existing permanent datasets, 6-7 

PERFMON as analytical aid, 13-2 
Permanent datasets 

attributes for, 6-7 
availability, 1-5 
cessation of permanence, 1-6 
classified, 2-17 to 2-18 
deletion of, 1-6 
described, 2-17 to 2-18 
identification 

on RESTORE, 11-18 
on RETIRE, 11-19 

maintenance, 1-5 to 1-6 
management, section 9 

control statements described, 6-5 
name omitted from the ACCESS 

request, 2-4 
utilities, 6-13, section 11 

mass storage described, 2-17 
naming, 2-20 

SR-OOll 0 

Permanent datasets (continued) 
recovery, 1-5 to 1-6 
reestablishment, 1-5 
system, described, 2-18 
user, 2-18 

Permanent Dataset Catalog 
Catalog, 1-3 
in COS, 1-3 
Manager 

information on logfile, 3-12 
mass storage datasets controlled by, 

6-4 
Permission control words defined, 1-6, 
PERMIT control statement, 9-20 

attributes dataset used with, 6-8 
system verb, 4-3 
verb described, 6-5 

Permits attribute, 6-6 
PERMITS 

modifier for ADN parameter on foCQUIRE, 
10-5 

value for ADN parameter on SAVE, 9-23 
to 9-24 

Permit 
defined, 6-9 
list modifier on SAVE, 9-23 
parameter removed, 9-20 

PFI (Previous File Index), 2-12 
PL (Program Library), 5-1 
Plot dataset value on DC parameter, 10-7, 

8-5 
$PLOT dataset name, 2-19 
PN parameter on OPTION, 7-19 
POS parameter, on QUERY, 12-7 
Position macro, and tape mark processing, 

2-6 
Positional parameters, 16-24 
Positive integer for ED parameter 

on DELETE, 9-16 
on RETIRE, 11-19 

POVL directive for overlay generation, 14-22 
PR 

disposition code, 3-3, 2-19 
value for DC parameter 

on ASSIGN, 8-5 
on DISPOSE, 10-7 

Previous 
file index in record control word, 2-12 
record index field in record control 

word, 2-12 
PRI (previous second index), 2-12 
Primary overlays, 14-20 
PRINT 

as analytical aid, 6-15 
system verb, 4-3 
utility, 13-16 to 13-23 

PRINT as analytical aid, 13-2 
Print dataset value on DC parameter, 10-7, 

8-5 
Priority level on JOB, 7-13 
Privacy 

for mass storage datasets, 6-8 
permanent dataset, enabled, 11-2 
provided by ACCOUNT, 7-2 

Index-17 



Private datasets, accessing, 6-9 
Privileges defined, 14-8 to 14-9 
PROC 

control statement, 16-21 to 16-23 
effect on procedure definition, 7-5 
in complex procedures, 16-20 
system verb, 4-3 
with LIBRARY, 7-14 

Procedure, 7-4, 16-18 
begun with PROC, 16-21 
complex, 16-20 to 16-23 
definition 

body described, 16-24 
body in complex procedures, 16-19 

invocations used with ECHO, 7-11 
library described, 5-1 
name call for complex procedures, 16-19 
simple, 16-18 
substitution, examples, 16-27 to 16-32 

Processor selection parameter on OPTION, 
7-19 

Program 
creation, executable, section 14, 6-15 
execution defined by job control 

language, 4-1 
library, 5-1 
module 

deleted from a library, 15-10 
extracted from a library, 15-10 
names and BUILD directives, 15-3, 

15-4 
PROT parameter on ACCESS, 9-7 
Protecting mass storage datasets, 6-8 
Prototype control statement, 16-20 to 16-22 
Pseudo striping, 8-12 
PT value for DC parameter 

on ASSIGN, 8-5 
on DISPOSE, 10-7 

Public access 
datasets, accessibility to, 6-9 
mode, 9-23 
modifier on SAVE, 9-23 
parameter on ACQUIRE, 10-5 
parameter on MODIFY, 9-18 
parameter on SAVE, 9-23 
tracking attribute, 6-6 

Punch dataset value for DC parameter 
on ASSIGN, 8-5, 10-7 

$PUNCH dataset name, 2-19 
QUERY utility, 12-1, 12-6 
Queue manipulation in subsystem support, B-7 
Queued Dataset Table (QDT), 11-11 
R 

parameter 
on ACCESS, 9-4 
on ACQUIRE, 10-3 
on DISPOSE, 10-9 
on MODIFY, 9-17 
on SAVE, 9-22 

value 
for AM parameter on PERMIT, 9-20 

for BO parameter on AUDIT, 11-6 

for LO parameter on AUDIT, 11-5 

Index-18 

R (continued) 
for PAM parameter on MODIFY, 9-18 
for PAM parameter on SAVE, 9-23 

Random dataset parameter on ASSIGN, 8-4 
Range specifier for program module, 15-4 
RCW, see Record control word 
RDM parameter on ASSIGN, 8-4 
Read control word parameter 

on ACCESS, 9-4 
on ACQUIRE, 10-3 
on DISPOSE, 10-9 
on SAVE, 9-22 

READVL parameter on TARGET, 7-25 
REC field on ITEMIZE listing, 13-16 
Receptive Control Block (RCB) 

in closing interjob communication, B-4 
in establishing interjob communication, 

B-2 
Record control word (RCW), 2-11 to 2-13 

end-of-record, 8-4, 2-12 to 2-13 
for interchange tape format, 2-15 

Record format parameter 
not with interactive datasets, 2-3 
on ACCESS, 9-10 
on ASSIGN, 8-7 to 8-8 

Record length on ASSIGN, 8-8 
Recording format parameter on ACCESS, 9-7 
RECORDS field on ITEMIZE listing, 13-14 
Records 

blocked 
copied, 12-4 
skipped, 12-9 to 12-10 

CDC format, 9-10 
copied, 6-13 
IBM format, 9-10 
skipped, 6-13 
variable-length, 2-9, 9-13 

Recovery of jobs, 3-9 
References heading for global 

cross-reference listing, 13-19 
Registers 

content examined with DUMPJOB, 6-14 
dumped with DUMP, 13-7 

Relational operators, 16-15 
RELEASE control statement, 8-13 to 8-13 

and HOLD, 8-12 
function request for temporary 

datasets, 2-17 
request, effect on the DEFER parameter 

of DISPOSE, 10-10 
system verb, 4-3 
verb described, 6-3 

Relocatable 
loader, 14-1, 14-30 
modules, 6-15 
overlay, 14-1 

REMARK subroutine with job's logfile, 3-3 
REMARK2 subroutine with job's logfile, 3-3 
REMARKF subroutine with job's logfile, 3-3 
REPLACE parameter on BUILD, 15-3 
Report, printed with ITEMIZE, 13-11 
Reprieve processing, 3-8 to 3-10 

SR-OOll 0 



Requests delayed with ACCESS, 9-4 
RERUN 

control statement, 7-20 
system verb, 4-3 
ve r b , 6 - 2, 7 - 2 

Rerunnability conditions summarized, 
Rerunnable, declaration of a job as, 
RESIDE parameter 

on ACQUIRE, 10-6 
on MODIFY, 9-19 
on SAVE, 9-24 

Residency of a dataset parameter 
on ACQUIRE, 10-6 
on MODIFY, 9-19 
on SAVE, 9-24 

Resource 
accounting in job logfile, 3-13 
allocation, 8-12 
dedicated, 7-13 
usage option for CHARGES, 7-9 

RESTORE, 11-1, 11-18 to 11-19 
and migrated datasets, 11-18 
and retired datasets, 11-18 
system verb, 4-3 

Retention period parameter 
on ACCESS, 9-8 
on ACQUIRE, 10-3 
on DISPOSE, 10-9 
on SAVE, 9-22 

RETIRE utility, 11-1 
RETURN, 7-21 

system verb, 4-3, 6-2, 7-2 
REWIND, 12-7 to 12-5 

command and volume switching, 2-3 
system verb, 4-3 

3-7 
3-7 

unavailable with interactive datasets, 
2-3 

utility, 6-13 
RF parameter 

on ACCESS, 9-10 
on ASSIGN, 8-7 to 8-8 

$RFI library routine, 2-22 
RING parameter on ACCESS, 9-5, 9-6 
RL parameter on WRITEDS, 12-12 to 12-8 
$RLB unblocked dataset routine in user 1/0 

interfaces, 2-22 
ROLLJOB 

control statement, 7-22 
system verb, 4-3 
verb described, 6-2, 7-2 

ROOT directive, 14-22 to 14-20 
RP parameter 

on PDSLOAD, 11-16 
on PERMIT, 9-20 

RS parameter 
for IBM tape files, 8-8 to 8-10, 9-12 
on ACCESS, 9-11 
on ACQUIRE, 10-3 
on DISPOSE, 10-9 
on MODIFY, 9-17 
on SAVE, 9-22 
restrictions for IBM files, 8-9, 9-12 

$RUA call in user 1/0 interfaces, 2-22 

SR-OOll 0 

S 
parameter 

on ASSIGN, 8-2 
on COPYD, 12-3 
on COPYF, 12-4 
on 
on 
on 
on 

value 
for 
for 
for 

COPYR, 12-5 
JOB, 7-14 
PDSDUMP, 11-14 
PDSLOAD, 11-17 

LO parameter on AUDIT, 11-5 
RF parameter on ACCESS, 9-10 
RF parameter on ASSIGN, 8-8 

S format, for records, 8-10 
SAVE 

control statement, 2-17, 9-21 
effect on dataset access, 10-2 
macro, 9-21 

Saved dataset, 1-6 
SBCA directive described, 14-19 
SC 

disposition code, 2-19 
at job initiation, 3-3 
when RELEASE is used, 8-13 

value for DC parameter 
value for DC parameter 

on ASSIGN, 8-5 
on DISPOSE, 10-7 

SCOPE internal tape format 
on ACCESS, 9-9 
on ASSIGN, 8-7 

Scratch 
dataset value 

on DC parameter, 10-7 
specified on ASSIGN, 8-5 

described, 1-6 
disposition code with RELEASE, 8-13 
temporary dataset as, 1-6 

SCRESON privilege, 9-19, 9-24 
SDN parameter 

on DISPOSE, 10-7 
on FETCH, 10-11 
on selective load directives, 14-16 

SDR, see System Directory 
SDT (System Dataset) queue manipulation, B-7 
SDTQM macro for SDT queue manipulation, B-7 
Second vector logical functional, 7-17 
Sector count, rounded off, 8-2 
Sectors per device, on ASSIGN, 8-12 
Sectors 

accessed, 3 -12, 3 -13 
used for temporary datasets, 3-13 

SECURE parameter on LDR, 14-8 
Security provided by ACCOUNT, 7-2 
SEGLDR 

directives, specfying on LD2, 14-11 
and absolute modules, 14-2 
load order, 14-12 
for more than 4 Mwords memory, 14-1 
in executable program creation, 6-15 
in memory management, 3-7 

Selective load, 14-16 
parameter for, 14-8 

Index-19 



Semiprivate datasets, accessing, 6-9 
Sense switch, 7-23 
Separators described, 4-4 
Sequential processing altered by exit 

processing, 6-1 
Serial number, CPU symbol for, 16-13 
SET 

control statement, 7-22 
parameter on LDR, 14-7 
system verb, 4-3 
verb described, 6-2, 7-2 

SETRPV subroutine, 3-10 
SETSP macro with user tape end-of-volume 

processing, 2-5 
SF parameter 

on DISPOSE, 10-9 
on FETCH, 10-13 

Shift count parameter 
on COPYD, 12-3 
on COPYF, 12-4 
on COPYR, 12-5 

Shorthand notation, 11-1 
SI value for F parameter 

on ACCESS, 9-9 
on ASSIGN, 8-7 

SID, see also Symbolic Interactive Debugger 
parameter on SUBMIT, 10-13 
parameter on LDR, 14-5 
effect on CNS, 14-6 

SIMABORT system verb, 4-3 
Site-defined control word for PDSDUMP, 11-13 
Skip remainder of section field, 2-12 
SKIPD utility, 12-1, 12-8, 6-13 
SKIPF utility, 12-1, 6-13, 12-8 to 12-9 
SKIPR utility, 6-13, 12-1, 12-9 to 12-10 
SKIPU utility, 6-14, 12-1, 12-10 
SMMA directive, 14-19 
SO parameter on PDSDUMP, 11-14, 11-17 
Solid-state Storage Device 

dataset space divided in, 8-3 
in hardware requirements, 1-1 

SORT parameter on BUILD, 15-2 
effect on file output sequence, 15-4 

Source file, 3-1 
SOVL directive, 14-23 to 14-22 
SPD parameter, on ASSIGN, 8-12 
SPD parameter, on ASSIGN, 8-2 
Special form information parameter on 

DISPOSE, 10-9 
Special form parameter on FETCH, 10-13 
Specif ic 

alternate owners user category, 6-9 
volume allocation defined, 2-4 

Spy as analytical aid, 13-2 
SR parameter on CHARGES, 7-8 to 7-9 
SRS (skip remainder of section field), 2-12 
SSD solid-state storage, track size, 8-2 
SSD, see Solid-state Storage Device 
ST 

parameter on ASSIGN, 8-12 
value for AC parameter 

on ACQUIRE, 10-2 
on FETCH, 10-11 

Index-20 

ST (continued) 
value for DC parameter 

on ASSIGN, 8-5 
on DISPOSE, 10-7 

Stack processing initialized, 14-9 
Stage from front end, value for AC parameter 

on ACQUIRE, 10-2 
on FETCH, 10-11 

Stage to front end 
value for DC parameter, 10-7 
on ASSIGN, 8-5 

Staged dataset name parameter 
on DISPOSE, 10-7 
on FETCH, 10-11 

Stages of job flow described, 3-2 to 3-4 
Staging, 6-11,10-2 

control, 6-11 to 6-12 
STARTSP macro with user tape end-of-volume 

processing, 2-5 
Startup, COS, 1-3 
STAT parameter on OPTION, 7-19 to 7-20 
Statement terminator described, 4-5 
Stations, see Front-end computers 
Statistics 

printing dataset liD statistics, 7-19 
to 7-20 

system and user level, 7-19 to 7-20 
Status codes described, E-1 to E-9 
STATUS parameter, on QUERY, 12-6 
STK parameter on LDR, 14-9 
Storage, user-defined, parameter on ASSIGN, 

8-12 
STP (System Task Processor), 1-3 
Strings, 16-16 

literal, 16-16 to 16-17 
parenthetic, 16-16 to 16-20 

Subexpressions, 16-13 
SUBMIT control statement, 10-13 to 10-14 

for job entry, 3-2 
system verb, 4-3 
verb for dataset staging control, 6-11 

Substitution parameters, 16-24 to 16-27 
in complex procedures, 16-19 

Subsystem support, appendix B 
Subsystem support, B-1 
SuperLink/ISP, see ISP 
SWITCH control statement, 4-3, 7-23 to 7-24 

verb, 6-3, 7-2 
Symbol 

heading for global cross-reference 
listing, 13-19 

parameter on SET, 7-22 
value changed with SET, 7-22 

Symbolic Interactive Debugger (SID), 14-4 
to 16-15 

Symbolic 
name assigned to user dataset, 2-19 
variable table, 16-12 to 16-15 
variables defined 16-13 

Symbols, local and global defined, 16-11 
Syntax 

control statement illustrated, 4-1 
violations, 4-2 

SR-OOll 0 



SYSREF utility, 6-15, 13-2, 13-17 to 13-25 
use of, illustrated, 13-18 

System Directory Table (SDR), 4-4 
System-logical record type parameter on 

ASSIGN, 8-8 
SYSTEM in a relocatable load, 14-15 
System 

Bulletin listed in logfile, 3-13 
Dataset (SDT) queue manipulation, B-7 
dataset name verbs described, 4-4 
debugging routines parameter, 14-4 
Directory 

access of datasets, 9-2 
loader accesses default libraries 

from the, 14-3 
Executive in COS, 1-3 
failure, 1-5 to 1-6 
job parameter on JOB, 7-14 
jobs in subsystem support, B-7 
level statistics with OPTION, 7-19 to 

7-20 
management of memory described, 3-7 
permanent datasets described, 2-18 
requests for interjob communication, B-5 
resources used, parameter, 7-8 to 7-9 
startup summarized, 1-3 
Task Processor in COS, 1-3 
utility programs loaded into user 

field, 1-4 
verbs, 4-3 

$SYSTXT relation to global symbols, 13-19 
SZ parameter 

T 

on ASSIGN, 8-2 to 8-3 
on AUDIT, 11-3 
with INC on ASSIGN, 8-3, 8-5 

parameter 
on ITEMIZE, 13-12 
on JOB, 7-13 
on LDR, 14-5 

value 
for BO parameter on AUDIT, 11-6 
for DF parameter on COMPARE, 13-3 
for LO parameter on AUDIT, 11-5 

TA parameter 
on ACQUIRE, 10-5 
on ACQUIRE, SAVE, or MODIFY for dataset 

use tracking, 6-10 
on MODIFY, 9-18 
on SAVE, 9-24 

Table 
descriptions, numbers denoted in, A-1 
diagram symbols, A-1 
diagrams, Appendix A 

Tables, appendix A 
binary symbol, 13-17 

TAPE generic resource name, 9-5 
Tape label, overwritten, 9-5 
Tape, see also Dataset; Magnetic tape block 

bypass label processing, 2-4 
controller in hardware requirements, 1-2 

SR-OOll 0 

Tape, see also Dataset; Magnetic tape block 
(continued) 
data transferred, listed in logfile, 3-13 

dataset 
access to, 2-3 
concatenating, 2-8 to 2-4 
transparent format, 2-15 
record size parameter on ASSIGN, 8-9 
generic resource name parameter on 

ACCESS, 9-5 
label type parameter on ACCESS, 9-6 
record size parameter on ACCESS, 9-11 

devices 
characteristics, 1-7 
reserved, 3-13 

files, MBS values on ACCESS, 9-8 
format 

for multidataset acess, 2-6 
described, 2-13 to 2-15 
parameter on ASSIGN, 8-7 
internal, 8-8 
parameter on ACCESS, 9-9 

mark processing by TQM, 2-5 to 2-6 
Queue Manager 

Circular 1/0 routines communicate 
with, 2-22 

to control magnetic tape datasets, 
6-4 

subsystem, overhead reduction in, 2-3 
volumes mounted, 3-13 
write ring parameter on ACCESS, 9-6 

buffering area, 2-3 
defined, 2-13 
size parameter on ACCESS, 9-8 

TARGET 
control statement, 7-24 
system verb, 4-3 
value for VERIFY parameter on TARGET, 

7-26 
TASK option on CHARGES, 7-10 
TCR parameter on AUDIT, 11-4 
Templates, 11-1 
Temporary dataset 

and memory-resident datasets, 2-2 
creation of, 2-17 
described, 1-6 
in mass storage, 1-6, 2-17 

Terminal identifier parameter 
on ACCESS, 9-3 
on ACQUIRE, 10-6 
on ADJUST, 9-14 
on DELETE, 9-16 
on DISPOSE, 10-9 
on FETCH, 10-12 
on MODIFY, 9-18 
on PERMIT, 9-21 
on SAVE, 9-23 

Terminator in a control statement, 4-1 
Text 

attribute, 6-6 
modifier on SAVE, 9-24 

function, 6-12 
replaced through MODIFY, 6-12 
to be passed, parameter for 

Index-21 



Text 

TEXT 

(continued) 
on DISPOSE, 10-9 
on FETCH, 10-12 
on MODIFY, 9-18 
on NOTE, 12-6 
on SAVE, 9-24 

effect on dataset access, 10-2 
modifier for ADN parameter on ACQUIRE, 

10-5 
parameter 

on ACQUIRE, 10-4 
on DISPOSE, 10-9 to 10-10 
on FETCH, 10-12 
on MODIFY, 9-18 
on NOTE, 12-6 
on SAVE, 9-24 

value for ADN parameter on SAVE, 9-24 
TID parameter 

Time 

on ACQUIRE, 10-4 
on DISPOSE, 10-9 
on FETCH, 10-12 
on SUBMIT, 10-13 

in execution or waiting, 7-8, 7-10 
limit on JOB, 7-13 
waiting option on CHARGES, 7-10 

Time-out in event recall, B-6 
Timestamp conversion parameter on PDSDUMP, 

11-13 
TLA parameter 

on AUDIT, 11-4 
on PDSLOAD, 11-17 

TR value for DF parameter 
on ACCESS, 9-7 
on ACQUIRE, 10-4 
on ASSIGN, 8-4 
on DISPOSE, 10-8 
on FETCH, 10-12 

Track 
accesses parameter 

on ACQUIRE, 10-5 
on MODIFY, 9-18 
on SAVE, 9-24 

modifier for ADN parameter on ACQUIRE, 
10-5 

size for devices, 8-2, 8-3 
value for ADN parameter on SAVE, 9-24 

Tracking of dataset use, 6-10 
Tracks, dataset space allocation in, 1-6 
TRAN (Transparent record field), 2-12 
Transfer 

data in user channel access, B-6 
name parameter on LDR, 14-5 
of data from front-end, 10-1 to 10-2 
size parameter on ASSIGN, 8-3 

Transparent 
for interactive output, 2-13 
format 

value on ACQUIRE, 10-4 
value on DISPOSE, 10-8 
value on FETCH, 10-12 

record field in record control word, 
2-12 

Index-22 

Transparent(continued) 
tape format, 2-15 
value 

for DF parameter on ACCESS, 9-7 
specified on ASSIGN, 8-4 

True value symbol, 16-13 
Truncation 

of intermediate and final results, 16-15 
parameter on ITEMIZE, 13-12 

TS parameter on PDSDUMP, 11-13 
Type 1 overlay loading illustrated, 14-21 
Type 2 overlay 

execution, 14-33 to 14-34 
structure, 14-27 to 14-30 

TYPE field on ITEMIZE listing, 13-14, 13-16 
TYPE parameter, on RESTORE, 11-18, on 

RESTORE, 11-19 
U 

parameter on ASSIGN, 8-4 
value 

for RF parameter on ACCESS, 9-10 
for RF parameter on ASSIGN, 8-7 

UBC (Unused bit count), 2-11 
$UNBLK, creation of, 12-11 
UNBLOCK utility, 12-1, 12-10 to 12-11 
Unblocked 

dataset structure parameter on ASSIGN, 
8-4 

datasets copied, 6-13 
format described, 2-13 

Undefined-length records value on ACCESS, 
9-11 

Unique access parameter 
on ACCESS, 9-4 
on ACQUIRE, 10-3 
on SAVE, 9-23 

Unit name parameter on ASSIGN, 8-6 
UNLOCK parameter on IOAREA, 7-12 
Unsatisfied-external abort parameter, 14-6 
Unsigned integer for ED parameter 

on DELETE, 9-16 
on RETIRE, 11-19 

Unused bit count field (UBC), 2-11 
UPDATE for program libraries, 5-1 
Update time of last access parameter, 11-17 
UPW parameter on ACCOUNT, 7-4 
UQ parameter 

on ACCESS, 9-4 
on ACQUIRE, 10-3 
on SAVE, 9-23 
relation to MODIFY, 9-16 

US format 
for records, 8-10 
on ACCOUNT, 7-3 
on AUDIT, 11-3 
on JOB, 7-13 
on PDSDUMP, 11-13 
on PDSLOAD, 11-16 

USA parameter on LDR, 14-6 
User 

area of memory, 1-3, 3-5 to 3-6 
channel access, B-5 to B-6 
code location in user field, 

illustrated, 3-5 

SR-OOll 0 



User (continued) 

USER 

dataset naming conventions, 2-19 
exchange processing, 3-10 
field, see also User area of memory 

at job startup, 3-2 
described, 1-4 to 1-5 
in memory, 1-4 
length in job size, 3-4 to 3-6 

I/O interfaces described, 2-20 to 2-22 
identification additional, parameter 

on ACCESS, 9-3 
on SAVE, 9-22 
on DISPOSE, 10-9 
parameter on PDSDUMP, 11-13 

identification, parameter on ACQUIRE, 
10-3 

management of memory, 3-6 to 3-7 
number 

parameter on ACCOUNT, 7-3 
specified on JOB, 7-13 
validated, 7-2 

ownership value parameter, 9-20 
password parameter, 7-4 
permanent datasets protected, 2-17 
programs loaded into user field, 1-4 
stack space, 7-12 
tape end-of-volume processing, 2-4 to 

2-5 

information on logfile, 3-12 
parameter 

on MEMORY, 7-15 
on PERMIT, 9-20 

User-defined default space parameter on 
ASSIGN, 8-11 

User-level statistics with OPTION, 7-19 to 
7-20 

User-managed field length reduction mode, 
3-4, 3-6 

User-managed field length reduction mode, 
3-7 

USX, see Unsatisfied external program 
Utility 

local dataset, 6-13 to 6-14 
permanent dataset, 6-13 
program BUILD, 15-1 
provide analytical aids, summarized, 

13-1 
routines examples, II-IV 
parameter 

on DUMP, 13-8 
on LIBRARY, 7-15 

value for RF parameter 
on ACCESS, 9-10 
on ASSIGN, 8-8 

Value 
heading for global cross-reference 

listing, 13-19 
of an expression written to logfile, 

13-16 
Variable-length records, 2-10, 9-10 
Variables symbolic, 16-11 to 16-15 
VAX/VMS 

files, and record length, 9-12 

SR-OOll 0 

VAX/VMS (continued) 
tape files, MBS values on ACCESS, 9-7 
tape files, RS restrictions for, 8-11 
value for FD parameter on ACCESS, 9-9 

VAX/VMS-compatible datasets, 8-6 
va value for RF parameter 

on ACCESS, 9-10 
on ASSIGN, 8-8 

VBS value for RF parameter 
on ACCESS, 9-10 
on ASSIGN, 8-8 

VC value for DC parameter, on DISPOSE, 10-7 
Vector 

length, read, parameter on TARGET, 7-25 
mask register saved on reprieve 

processing, 3-10 
population count parameter on TARGET, 

7-24 
recursion parameter on TARGET, 7-25 

Verbs 
described, 4-2 to 4-4 
for dataset definition, 6-3 
for job definition, 6-2 to 6-3 
in a control statement, 4-1 
not found by COS, 4-2 
types, 4-2 

VERIFY parameter on TARGET, 7-26 
VI, see Volume identifier 
VIEW parameter, on LD2, 14-11 
VMS, see also VAX/VMS 

parameter on ASSIGN, 8-6 
value for FD parameter on ACCESS, 9-8 

VOL parameter on ACCESS, 9-6 
Volumes switched during tape dataset 

processing, 2-3 
Volume 

identifer (VOL) 2-3, 2-4 
identifier list 

capacity, 2-3 
parameter, 9-6 

sequence number parameter on ACCESS, 9-6i 
VPOP parameter on TARGET, 7-24 
VRECUR parameter on TARGET, 7-25 
VSN, see Volume identifier (VOL) 
W 

parameter 
on ACCESS, 9-4 
on ACQUIRE, 10-3 
on DISPOSE, 10-9 
on SAVE, 9-22 

value 
for AM parameter on PERMIT, 9-20 
for PAM parameter on MODIFY, 9-18 
for PAM parameter on SAVE, 9-23 
for RF parameter on ACCESS, 9-10 
for RF parameter on ASSIGN, 8-8 

WAIT parameter on DISPOSE, 10-10 
WARNING error message, 14-7 
Wildcard character, 11-1 
$WLB unblocked dataset routine in user I/O 

interfaces, 2-22 

Index-23 



Write 
control word parameter 

on ACCESS, 9-4 
on ACQUIRE, 10-3 
on DISPOSE, 10-9 
on SAVE, 9-22 

dataset value on DC parameter, 10-7 
permission control word parameter, 9-17 

WRITEDS utility, 12-1, 6-14, 12-12 to 12-9 
WT option on CHARGES, 7-10 
$WUA call in user 1/0 interfaces, 2-22 
$WUF library routine, 2-22 
X 

parameter 
on AUDIT, 11-4 
on ITEMIZE, 13-12 
on PDSDUMP, 11-13 
on RETIRE, 11-20 
on SYSREF, 13-18 

value for FORMAT parameter on DUMP, 13-9 
value 

for BO parameter on AUDIT, 11-6 
for LO parameter on AUDIT, 11-5 

XDT parameter on ACCESS, 9-8 
XIOP (Auxiliary 1/0 Processor), 1-6 
XSZ parameter on ASSIGN, 8-3 
YES value for BACKUP parameter 

Z 

on ACQUIRE, 10-6 
on DELETE, 9-19 
on SAVE, 9-25 

parameter on DSDUMP, 13-6 
value for RF parameter 

on ACCESS, 9-10 
on ASSIGN, 8-8 

Zero-byte record type, value on ASSIGN, 8-8 

Index-24 SR-OOll 0 



READER'S COMMENT FORM 

COS Version 1 Reference Manual SR-OOll 0 

Your reactions to this manual will help us provide you with better documentation. Please take a moment to 
check the spaces below, and use the blank space for additional comments. 

1) Your experience with computers: __ 0-1 year __ 1-5 years __ 5+ years 
2) Your experience with Cray computer systems: __ 0-1 year __ 1-5 years __ 5+ years 
3) Your occupation: __ computer programmer __ non-computer professional 

__ other (please specify): ___________ _ 
4) How you used this manual: __ in a class __ as a tutorial or introduction __ as a reference guide 

__ for troubleshooting 

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria: 

5) Accuracy __ 8) Physical qualities (binding, printing) __ 
6) Completeness __ 9) Readability __ 
7) Organization __ 10) Amount and quality of examples __ 

Please use the space below, and an additional sheet if necessary, for your other comments about this 
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which 
the problem occurred. We promise a quick reply to your comments and questions. 

Name __________ _ Address ___________ _ 
Title __________ _ City ____________ _ 
Company _______________ _ State/ Country _______ _ 
Telephone _________ _ Zip Code ________ _ 
Today's Date ______ _ 



FOLD 

-----------------------------------------------~ 

IIIIII 
BUSINESS REPLY CARD 
FIRST CLASS PERMIT NO 6184 ST PAUl. MN 

POSTAGE Will BE PAlO BY AOORESSEE 

RESEARCH, INC. 

Attention: PUBLICATIONS 
1345 Northland Drive 
Mendota Heights, M N 55120 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

-----------------------------------------------~ 
FOLD 

STAPLE 

(") 
C 
-4 
» 
r o 
z 
G> 
-4 
J: 
en 
r 
Z 
m 



READER'S COMMENT FORM 

COS Version 1 Reference Manual SR-OOll 0 

Your reactions to this manual will help us provide you with better documentation. Please take a moment to 
check the spaces below. and use the blank space for additional comments. 

1) Your experience with computers: __ 0-1 year __ 1-5 years __ 5+ years 
2) Your experience with Cray computer systems: __ 0-1 year __ 1-5 years __ 5+ years 
3) Your occupation: __ computer programmer __ non-computer professional 

__ other (please specify): ___________ _ 
4) How you used this manual: __ in a class __ as a tutorial or introduction __ as a reference guide 

__ for troubleshooting 

Using a scale from 1 (poor) to 10 (excellent). please rate this manual on the following criteria: 

5) Accuracy __ 8) Physical qualities (binding. printing) __ 
6) Completeness __ 9) Readability __ 
7) Organization __ 10) Amount and quality of examples __ 

Please use the space below. and an additional sheet if necessary. for your other comments about this 
manual. If you have discovered any inaccuracies or omissions. please give us the page number on which 
the problem occurred. We promise a quick reply to your comments and questions. 

Name _______________ _ Address _________ _ 
Title __________________ _ City _________ _ 
Company _________ _ State/ Country ______ _ 
Telephone _______ _ Zip Code _________ _ 
Today's Date _______ _ 



FOLD 

-----------------------------------------------~ 

IIIIII 
BUSINESS REPLY CARD 
FIRST CLASS PERMIT NO 6184 ST PAUL. MN 

POSTAGE Will BE PAlO BY ADDRESSEE 

RESEARCH. INC. 

Attention: PUBLICATIONS 
1345 Northland Drive 
Mendota Heights, MN 55120 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

-----------------------------------------------~ 
FOLD 

STAPLE 

("') 
C 
-4 
» 
r o 
Z 
G) 

-4 
:J: 
Ci5 
r 
Z 
m 


