CRAY

RESEARCH INC.

NOTE: this tech note

is obsolete ...
but can be xeroxe

for reference
material. .

Vectorization and Conversion
of Fortran Programs
for the CRAY-1 (CFT) Compiler
by
Lee Higbie
2240207

PREFACE

This technical note presents a number of techniques for promoting
vectorization in FORTRAN programs to be run on the Cray Research
CRAY-1 Computer System. Because the CRAY-1 FORTRAN Compiler (CFT) is
continually being refined, this note will be updated periodically.
With each update, I hope to increase the number of examples and expand
it in a few other ways to improve its usefulness.

I welcome any material that might be included in future editions, such
as more examples and coding techniques. I especially solicit help
with Appendix B where many errors of both omission and comission
undoubtedly lie. In particular, the various table positions that are
blank indicate that I don't know the proper entry. Special thanks are
due to the several people who sent me suggestions and examples. In
particular, a great deal of help for this revision was provided by
Dick Hendrickson.

LCH

2240207 iii A

CONTENTS

PREFACE « ¢ ¢ 4 o o o o o o o s s o o o o o o o o o o o o o+ o o« » iii
1 INTRODUCTION .« &« & ¢ o o o o o o o o o o s o o o o s o o o » 1=1
2 FINDING THE CENTRAL PORTION OF THE PROGRAM . . « + + + » o+ « 2-1
3 GETTING AROUND OVERLY MODULAR OR STRUCTURED.PROGRAMS e e o . 3-1
4 RECURSION AND DIRECTING THE COMPILER TO VECTORIZE 4-1
5 IRREGULAR ADDRESSING .+ « « « « o o o o o o o s o s « o « « o« 5=1
6 MISCELLANEOUS TECHNIQUES . ¢ « o « o o o o o o o o o o« s o o 6-1

7 REMOVING IF STATEMENTS AND USING BUILT-IN FUNCTIONS 7-1

A $SCILIB SUBROUTINES. « « « o « o« = aA-1
B FORTRAN DIALECTICAL DIFFERENCES . B-1
C ABORT MESSAGES AND TRACEBACK . . . Cc-1
D COMPILER DIRECTIVES . . . « « « & D-1
E CHARACTER SETS . « ¢« ¢ ¢ ¢ o o o o E-1

2240207

SECTION 1

INTRODUCTION

This note describes techniques for helping to vectorize codes written
for the CRAY-1l Computer and the CRAY-1 FORTRAN, CFT, Compiler System.
Since the CFT Compiler is continually being refined, some of these
techniques will become unnecessary. It is primarily intended to aid
programmers vectorizing existing codes but should aid many programmers
who are writing new codes to generate vectorizable loops.

Before going further, a caveat is in order. This note presents
techniques for enhancing the vectorizability of codes only; it
addresses few other methods of increasing program speed. Algorithm
selection is generally far more important than coding techniques. For
example, the FFT and various good sorting algorithms are approximately
N/logN times as fast as the typical simplistic algorithms to perform
the same tasks (for N input data), whereas the vectorization usually
increases speed by a factor of 3 to 6. Thus, for typical dataset
sizes, these best algorithms or other nearly optimal ones, are orders
of magnitude faster than poor algorithms. No fancy coding techniques
can overcome the use of ill chosen algorithms in such cases.: Indeed,
a good algorithm poorly coded is usually preferable to a poor one
optimally coded. :

Also, this note does not address to-any great extent good programming
practices which for CFT include (l)using few loops with long code
blocks in preference to many short code loops; (2) judicious use of
typing of variables; (3) long loops inside short loops rather than
vice versa; and (4) if you are trying to get the last little bit from
a vectorized loop, inserting extra parentheses starting at the end of
an expression so that operations occur in an order that increases
chaining. The techniques that are described are presented in six
groups comprising the remaining sections of this note.

Sections 2 and 3 present the central issues that must be resolved
before any useful work can be done, namely (1) finding the time
consuming portions of the program and (2) circumventing overly modular
or structured programming technigques. These tasks are so fundamental
that compiler improvements are unlikely to be of much aid in the
forseeable future without programmer help in these areas.

Section 4 discusses recursion, feedback, or vector dependency and
introduces a simple but very useful and powerful technique; using
directives which allow the programmer to indicate to the compiler that
an individual block of code is logically vectorizable. Frequently,
although the programmer knows from the physics of a situation that the
code is vectorizable, coding in a form that allows the compiler to see
this may not be convenient. Directives provide a means of pointing
out vectorizable code to the compiler when this happens.

2240207 1-1 A

Section 5 shows one way to partially vectorize codes with irregular
addressing--another anathema of vectorization, but one that the
compiler will work around before too long.

Section 6 is a pot pourri of "tricks" to improve vectorization that do
not readily fit into any of the earlier discussionms.

The final section describes removing IF statements, a syntactic
construct that the compiler will soon handle, at least in some cases.

Thus, Section 5 and 7 should be of less interest to programmers who
are not in a big hurry to get the highest speed from their codes.

As a general note, CFT vectorizes innermost DO-loops only; it does not
vectorize IF loops. Table 1 lists typical snytactic elements that may
inhibit vectorization. Except for I/0 statements, which often can be
moved outside of loops after the debug phase, I discuss the more
difficult of these constructs and how the programmer can remove these
so that CPFT will vectorize loops. Although not vectocrized in the
usual sense, unformatted I/0 statements which involve arrays are
processed with vector technigues.

CFT 1.06, The July 1979 release of CFT, vectorizes loops with
constructs in the easy group (table 1) and allows scalar temporaries
and user-provided (but CAL) functions from the second group. However,
it inhibits vectorization for a -loop containing other constructs in
the second group or constructs in the third or fourth group. The
third group includes constructs that are theoretically vectorizable
but present challenges to the compiler writers. The items in the
fourth group present a theoretical impossibility so that the only real
hope for vectorizing loops containing them in the near future is to
break the loop into several lcops with the "impossible” construct in a
separate (scalar) loop. If loops can be recast so that the inner DO
loops include only items in the first categories, the chance of
vectorization is enhanced and such loops that do not vectorize with
CPFT 1.06 are more likely to vectorize in the near future.

2240207 1-2 A

Table 1. FORTRAN inner DO-loop constructs

Difficulty Syntactic constructs

Easy - Long or complicated loops
- Non unit incrementing of subscripts
- Expressions in subscript

- Intrinsic function references

Straightforward - Scalar temporéry variables

- Function calls to
programmer-supplied functions

- Inner products

- Logical IF statements

- Transfer out of a loop (search
loop)

- Reduction operations

Difficult - Linear recursion
- IF statements
- Some I/0

- Complicated subscript expressions

"Impossible"” © - Nonlinear indexing

- Complicated branching within a loop
- Ambiguous subscripting

- Transfers into a loop

- Subroutine calls

- Nonlinear recursion

- Some I/O

2240207 1-3 A

SECTION 2

FINDING THE CENTRAL PORTION OF THE PROGRAM

Before spending your time vctorizing parts of the program that do not
significantly affect the run time, first analyze the program to
determine where it spends its time. This information may be readily
available if the code is simple or if there is someone available who
is familiar with it. Suppose, however, that this is the first time
you've been faced with this task and that you have never seen the
program before.

A typical, well behaved or "nice"

program has a structure similar INITIALIZATION
to that illustrated at right. —

With any luck, you will be able BOUNDARY POINTS
to find a similar pattern in

your program and will be able to [:?%NER POINTS
concentrate on the inner points

of the program where your efforts DONE? AND I/0
will significantly impact the

program's run time. NEXT CASE?

If you question the worth of this, look at a typical program and you
are likely to see many simple vector loops that have been there all-
along. The trouble is, they intialize the grid and are not used for
any of the computations! Since a problem with a grid of 100 points on
a side has about 400 boundary points and about 10,000 interior points,
working on the interior points and ignoring the boundary points -- let
alone the initialization -- is clearly worthwhile. Even entirely
removing the code for the boundary points leaves more than 96% of the
points in the grid.

If you cannot discern the general structure, a worthwhile procedure is
to use the flow analysis option in CFT to get a complete list of the
subroutine calling tree and the time spent in each of the called
routines. These figures tell you which routines consume the largest
fractions of the time, thus it tells which routines are worth looking
at. Refer to CFT Reference Manual, section 5, for a description of
the Flowtrace option.

2240207 2-1 A

The flowtrace option adds a substantial overhead to every subroutine
call and its output is lost if a job fails or executes a CALL EXIT.*
Thus, if you have a program with many small subroutines, it is
worthwhile to flowtrace a small case, at least for starters. You
might also put a test such as the following in your code to stop the
job after a reasonable length of time:

IF (SECOND() .GT.50) STOP**

To use the flowtrace option (CFT Manual section 5.4.5), put ON=F on
the CPT statement:

CFT,ON'E,... .

At the end of the run, you will get a table listing the time, percent
of total time, number of times entered, and average time for each
routine that is called as well as what routines called it and what
routines it called. -Only calls to FORTRAN programs that are compiled
by the CFT,ON=P... statement are monitored;, $PTLIB, $SCILIB, $SYSLIB,
and CAL routines are not monitored nor are the FORTRAN routines
compiled separately without flowtrace enabled. Because of the great
difference in execution speed of vectorized code compared to
non-vectorized code, use of flowtrace is recommended even if you arce
familiar with a program. The timing analysis of flowtrace is
frequently surprising. ‘

*EXIT might be the name of one of your routines. Thus, the system
cannot automatically assume that EXIT terminates a program. If you
use EXIT to terminate your program, you can still use flowtrace by
inserting the following subprogram in your deck.

SUBROUTINE EXIT
STOP 'EXIT'*
END

**This is one of many examples of non-standard FORTRAN employed in
this note. CPFT accepts all FORTRAN shown in the examples here.

2240207 2-2 , A

SECTION 3
GETTING AROUND OVERLY MODULAR OR

STRUCTURED PROGRAMS

Assume your code looks like this:
po 31 2,99
DO 31 2,99
CENTPT = DATA(I,J)
PTLEFT = DATA(I-1,J)
PTRGHT = DATA(I+1,J)

[y
"

TEMP = TEMPURTR(I,J)
TEMPRT = TEMPURTR(I+1,J)
TEMPLFT = TEMPURTR(I-1,J)

CALL INTGRTE (CENTPT,PTLEFT,PTRGHT,TEMPRT, TEMPLFT)
CALL EQNOST (CENTPT,TEMP)

DATA(I,J) = CENTPT

TEMPURTR(I,J)= TEMP

CONTINUE

31

Your first impulse probably is to put this away until there are global
FORTRAN compiler that vectorize messes like this. However, this
represents a very common situation and is not nearly as hopeless as it
first appears. However it is hopeless for CFT thus, it is your chore
to put the DO loops inside the subroutine or, conversely, the
subroutines inside the DO loops. Putting DO loops inside subroutines
or the converse operation .is probably the most complex part of
vectorizing codes and is the part that is most likely to be beneficial
in the long run. The other techniques discussed in this note are more
likely to be handled by the compiler or by a vectorizer someday.

Putting DO loops inside subroutines probably entails subscripting the
variable names being passed to the subroutines and passing the entire
arrays at once. Putting the subroutine in the loop means expanding
the subroutine code in line in the loop.

In the above loops, this can be done easily. Perhaps in your problem
the surface is not flat but is a sphere and so the right and left
points wrap around at the ends causing nonlinear indexing. Then, you
will have to try to separate the "bad points" and perhaps use some of
the techniques suggested in later sections.

2240207 3-1 A

To illustrate putting DO loops into subroutines and vice versa,
suppose the subroutines are as follows: »

SUBROUTINE INTGRTE(C,PL,PR,TL,TR)

COMMON DELTAX,DELTAT,GAMMAI,V,R

C = C + DELTAT *0.5 * (PL+PR) *DELTAX/(TR-TL)

RETURN '

END

SUBROUTINE EQNOST(P,T,R)

COMMON DELTAX,DELTAT, GAMMAI,V,R
TP = (P/(V*R))**GAMMAI

RETURN

END

Then the two rewrites of the loop look like this:
Case l.. Putting loops inside Subroutines.
The entire D0.31 loop pair.replaced by:.
CALL INTGRTV (DATA,TEMPURTR)
CALL EQNOSTV (DATA, TEMPURTR)

Where INTGRTV is a vector version of INTRTE and EQNOSTV is a
vectorized EQNOST. ’

Then, these new subroutines are:?*

SUBROUTINE INTGRTV(D,T)

DIMENSION D(100,100), T(100,100)

COMMON DELTAX, DELTAT, GAMMAIV, R

DO 32 I=2,99

DO 32 J=2,99

D (I,J) = D(I,J) + DELTAT*0.5%(D(I-1,J)+D(I+1,J))
*DELTAX/ (T(I+1,J) - T(I-1,J))

32 CONTINUE
RETURN
END

*Reversing the order of the I and J loops would cause an

unvectorizable dependency; see section 4.

2240207 3-2

SUBROUTINE EQNOSTV (P,T)

DIMENSION P(100,100), T(100,100)

DO 33 1I=2,99

DO 33 J=2,99

T(I,J) = (P(I,J)/(V*R))**GAMMAI
33 | CONTINUE

RETURN

END

Case 2: Putting the subroutines inside the loops.

In this case, the DO 31 pair of loop becomes

DO 34 1I=2,99

DO 34 J=2,99

DATA (I,J) = DATA (I,J) + DELTAT *0.5* (DATA(I+l1,J)
3 +DATA (I-1,J)) *DELTAX/ (TEMPURTR(I+1,J)

TEMPURTR(I,J) = (DATA(I,J)/(V*R))**GAMMAI

34 CONTINUE

RETURN
END

The second alternative is also especially suitable for functions,
i.e., expand the code in line as in the next examples

DO 35 I = 1,1000 DO 36 I = 1,1000
35 X(I) = ALOG2(Y(I)+1l)... $36 X(I) = CST*ALOG(Y(I)+1l)...

FUNCTION ALOG2 (X)
DATA CST /.../
ALOG2 = CST*ALOG (X)
RETURN

END

2240207 3-3

The DO 35 loop will not vectorize because of the call to a routine
that the compiler doesn't recognize but the DO 36 loop will vectorize.

One ccmmon coding technique is to use vector subroutines such as VADD,

VMULT, and so on. The principal part of the program may then look
like this:

CALL VADD(A,B,C,N)
CALL VMULT(C,A,E,N)
CALL VADD(E,B,A,N)

Expanding these subroutines- in line and, where possible, combining the
many DO loops into a few will ensure vectorization and will allow
intermediate variables to be held in registers rather than being
returned to memory: .

DO 37 .I = 1,N
A(I) = (B(I) + A(I)) * A(I) + B(I)
37 CONTINUE

Presumably, the VADD, VMULT, etc. vectorize but the DO 37 loop is
faster because the sum A + B and the product (A + B) * A do not have
to be stored, but can be kept in a register and A does not have to be
fetched a second time. Thus, the DO 34 loop is significantly faster
than the series of calls.

2240207 3-4 A

SECTION 4
RECURSION AND DIRECTING THE
COMPILER TO VECTORIZE

Suppose the key inner loop in your program is like the DO 41 inner loop,
which doesn't vectorize and is therefore one that you want to spend some
time on.

DO 41 I=1,100
A(I) = A(I+L) ...
41 CONTINUE

If the loop is truly recursive*, the situation may be hopeless.
However, if the value of L is such that there is no recursion (e.g., if
L is greater than 1000), the easiest approach is to try directing the
compiler to vectorize the loop and see if the answers remain the same.
Placing the following compiler directive in front of the DO loop to be
vectorized allows the compiler to vectorize a loop that has an apparent
vector dependency or recursion:

CDIR$ IVDEP (see CFT manual sections 5.4, 5.4.3)

In other words, if either real or imagined recursion causes the loop

not to be automatically vectorized by the compiler, the IVDEP compiler
directive causes the computations to be done in vector mode. Note,
however, that if CALL or IF statements or anything besides or in
addition to apparent recursion prevents vectorization, CDIR$ IVDEP has
no effect. Also, the effect of the IVDEP is limited to only the next DO
loop; a separate IVDEP must be provided for each loop with an ignorable
dependency; and the IVDEP should immediately precede the DO statement.

Returning to the example, first try printing some of the A terms the
first few times through the vectorized loop to assure that vectorizing
the loop does not change the results. Though this hardly proves that no
problems can arise, it may help your analysis. This brute force
approach is inelegant and error-prone, especially in those cases where
one's insight into the physics of the situation does not provide some
assurance that the loop is recursion-free. If the value of L differs
with each pass through the loop, you may find it useful to make a copy
of the loop with the compiler directive to vectorize, ignoring vector
dependencies and a copy of the loop without the directive and select for
use the vectorizable block only when it is correct. This means that you
need to know what values of L are acceptable for vectorization of which
loops. .

*Recursion is a buzzword used to describe the case where output is
propagated back into the input. It is explained further below.

2240207 , 4-1 A

Some rules of thumb to follow are the following:

1. 1f the sign of L is the same as the sign of the loop
increment, there is never any recursion.

2. 1If the sign of L is the opposite of the loop index,
there is probably recursion. An exception is when
the loop increment and L have a least common multiple
larger than the maximum value of the loop index.

3. There is no recursion of concern if the magnitude of L is
such that there is no overlap of subscripts between the
right and left sides of the computation. In fact, if L
divided by the loop increment is greater than 64, you have
no worries because the compiler breaks loops into
64~at-a-time blocks for vectorization.

If these simple rules do not help, you may have to analyze the problem
further to determine when you can safely use vector computations.

"Recursion” is a mathematical term used to describe feedback, a noun you
may find more familiar and easier to remember. The phenomenon referred
to is the use of the output of one pass through the loop for the input
to a computation on a subsequent pass. Consider the following simple
examples:

DO 42 I = 1,1000 StM = 0
42 X(I) = X(IT - 1) +1 DO 43 I = 1,1000

43 SUM = SUM + X(I) * ¥(I)

In the code on the left, the value of X(l) is used to compute X(2); X(2)
is used to compute X(3), and so on. If this were done in vector mode,
all of the X terms would be fetched at once, 1 would be added to each of
them, and only the first value would be known to be correct. In the
code on the right, the value of SUM is used for each subsequent pass
through the loop. Inserting a CDIR$ IVDEP would probably produce wrong
answers in the DO 42 loop and would have no affect on the DO 43 loop
because the reason for scalar mode of the DO 43 loop is loop collapsing,
as well as recursion.

The following loops are similar to these but are nonrecursive:
DO 44 I = 1,1000 DO 45 I = 1,1000

44 X(I) = X(T +#1) +1 45 A(I) = A(I) + X(I) * ¥(I)

In the DO 44 loop, no X value is reused after being computed so there is
no feedback. Similarly, the DO 45 loop is not recursive because no A
value is reused after being generated; it is merely stored.

2240207 4-2 A

To understand the effects of recursion on vectorization, it is important
to realize that vectorization is an essentially parallel computation on
a group of values. Consider the simple case:

DO 46 I = 2,3

A(I-1) 3.0
46 B (I) A(1)

This loop is equivalent to the sequential statements.

A(l) = 3.0
B(2) = A(2)
A(2) = 3.0
B(3) = A(3)

Vectorization, in effect, reorders the sequence to:

A(1) = 3.0
A(2) = 3.0
B(2) = A(2) (Now 3.0)
B(3) = A(3)

and the "vectorized" sequence probably produces different results.

Whenever CFT encounters a loop which might be recursive, it generates
correct scalar code rather than fast and possibly incorrect vector code,
because vector and scalar versions of a recursive loop generally produce
different results.

Recursion can cause problems if ndmerically equal subscript values occur
on different passes through a DO loop and at least one of them is on the
left of the equal sign.

There are two general classes of recursion:
1. A value is prematurely destroyed if vectorized. ‘The preceding
is an example of this. The loop can often be made
non-recursive by reordering the statements or by using

temporary storage.

DO 47 I = 2,3 DO 48 I

= 2,3
B (I) = A (I) "TEMP = A(I)
47 A(I-1) = 3.0 A(I-1) = 3.0

48 B(I) = TEMP

2240207 4-3 A

2. A value is not ready when needed. This is the one-line
recursion relationships:

DO 49 I = 2,3
49 A(I) = B*A(I-1)+C

Because of the group computation in vector mode, both input A values
(the group A(l), A(2)) are used to compute the output value group A(2)
and A(3). However, in this case the original A(2), not B*aA(1l)+C, is
used to compute A(3), a probable error.

In many cases, CFT is not able to determine whether or not a subscript

leads to recursion. For example:

DO 410 I =1,10
410 A(I,J) = A(I-1, JPLUSL)

is recursive if J is ever the same as JPLUSl. If the programmer know§
from the physics of the situation, for example, that J. and JPLUS1 will
never be the same, then our’ ’

CDIRS IVDEP
is appropriate. Alternatively, the loop could be rewritten as
DO 411 I = 1,3

411 A(I,J) = A(I-1,J+1)

and CFT would automatically vectorize it. In general, it is an aid to
vectorization if subscripts can be explicity written out. For example:

DO 412 1 = 1,3
412 A(D) = A(I+N)

In many cases, N is not really a "variable”; it has a constant value and
often never even changes from run to run. A "variable™ is used simply
to provide some flexibility in case the problem ever changes. Rather
than initialize N with

DATA N/3/

or N = 3

2240207 4-4 a

it is much better to use:
PARAMETER (N = 3)
and CPFT would automatically vectorize the sample loop.
In the following illustrations of recursive and non-recursive loops,
assume that X(I) = 2I, Y(I) = -I, and Z(I) = 0 before the codes are

run, The final values of X are given after the loop for subscripts =
10213' L) .

Recursive:
DO 413 I = 2,5 CDIR$ IVDEP
X(I) = X(I - 1) + 1. DO 414 I = 2,5
413 CONTINUE X(I) = X(I - 1) + 1.
414 CONTINUE
X=2, 3, 4, 5, 6 X=2,3,5,7,9

the last four of which are bad
values because of forced
vectorization of a ;ecursive loop.

Non-recursive:

DO 415 I = 2,5 The compiler vectorizes the
DO 415 loop automatically.

X(I) =¥Y(T - 1) + 1.
415 CONTINUE
X = 2’ 0' "l' "2' "3

DO 416 I = 1,5 The compiler vectorizes the
DO 416 loop automatically.

X(I) = X(I) + 1.
416 CONTINUE
X=3,5,7, 9,11
DO 417 I = 1,5 The compiler vectorizes the
: DO 417 loop automatically.
X(I) = Z(I) + X(I) * ¥(I)
417 CONTINUE

X = "2' "8' -18' -32, -50

2240207 4-5 A

L= 10

DO 418 £ = 1,5

X(I) = X(T + L)
CONTINUE

X =22, 24, 26, 28, 30

418

Here, the 418 loop does not vectorize but the 419 loop does.

419

L= 10
CDIRS$ IVDEP
DO 419 I = 175
X(I) = X(I + L)
CONTINUE
X =22, 24, 26, 28, 30

The

compiler does not know that L is not negative.

Recursive:

L=-1

DO 420 I = 1,5
X(I) = X(I + L)
CONTINUE
X=0,0,0,0,0

420

421

CDIRS IVDEP
DO 421 I = 1,5
X(I) = X(T + L)
CONTINUE
X=0, 2, 4, 6, 8

The last four are incorrect
because of forced .vectoriza-
tion of a recursive locop.

Here, the value of X(1) is fed back to compute X(2), i.e., the loop is
recursive and the vectorized version of the loop produces wrong
results. In scalar mode, the computations proceed...

X(1) = x(0)
X(2) = X(1)
X(3) X(2)
X(4) X(3)
X(5) X(4)

2240207

4-6

(=0 by assumption)

(=0 from last computation)
(=0 from last computation)
(=0 from last computation)
(=0 from last computation)

CFT generates code that executes as above because its approach to
vectorization is conservative. When forced to vectorize, the loop
executes:

X = shifted X = (0, 2, 4, 6, 8)

so that X(2) = original value of X(1l), not the just-computed value;
similarly, X(3) = original X(2), not the newly computed value, etc.
Alsc, in this example it is assumed that 0 is a legal subscript, i.e., X
is declared DIMENSION X(0:50).

Many examples of recursion are of the following form where L is negative
(that is, opposite in sign to the increment of J, which is 1 here) and K
is positive (of the same sign as the increment of I in this example):

DO 422 I = 1,100
DO 422 J = 1,100
422 A(1,J) = A(I + K, J + L) ...

Here, by inverting the order of the loops, you can remove the recursion
and allow vectorization by using the CDIR$ IVDEP directive. This type
of loop order inversion is frequently too complex to analyze easily and
you may need to go back to the physics of the situation or to that
unfortunate alternative of printing gobs of values to determine a
reasonable way to reorder or rewrite the code.

The following examples show a simple but real case where the compiler's
overly conservative attitude is easy to see and correct. Case 1l runs
about four times slower than Case 2. The cause of such a large speed
increase is the complexity of the loop. Loops with very few
computations generally have less speed up.

2240207 4-7 A

CASE 1
NL1 = 1

NL2 = 2

DO 423 KX = 2,3
DO 423 KY = 2,21
DOL = UL(KX,KY + 1,NL1) - UL(KX,KY - 1,NL1)
DU2 = U2(KX,KY + 1,NL1) - U2(KX,KY - 1,NL1)
DU3 = U3(KX,KY + 1,NLl) - U3(KX,KY - 1,NL1)
Ul (RX,KY,NL2) = UL (KX,KY,NL1)+Al1*DUL+Al2*DU2+A13*DU3
$ +SIG*(UL(KX+l,KY,NL1)-2.*Ul (KX,KY,NLL)+0l (KX-1,KY,NL1))
U2(KX,KY,NL2) = U2 (KX,KY,NLL) +A21*DUL+A224DU2+A23%DU3
$ +SIG*(U2(RX+L,KY,NLl)-2.*U2 (KX,KY,NL1) +U2 (KX~1,K¥,NL1))
' U3 (RX,KY,NL2) = U3 (KX,KY,NLL) +A31*DUL+A32*DU2+A33*D03
$ +SIG*(U3(RX+l,KY,NL1)-2.*U3 (KX,KY,NL1)+0U3 (KX~1,KY,NLL))
423 CONTINUE

The values of NLl and NL2 are swapped before the next pass through loop.

2240207 4-8 A

CASE 2

DO 424 KX = 2,3

CDIR$ IVDEP

424

DO 424 KY = 2,21

DUl = Ul (KX,KY + 1,NL1l) - Ul(KX,KY - 1,NLl)

DU2 = U2(KX,KY + 1,NL1) - U2(KX,KY - 1,NLl)

DU3 = U3(KC,KY + 1,NLl) - U3(RX,KY - 1,NLl)

Ul (KX,KY,NL2) = Ul (KX,KY,NL1)+All*DUl+A12*DU2+A13*DU3
+SIG* (Ul (KX+1,KY,NL1l)~-2.*Ul (KX,KY,NL1) +Ul (KX-1,KY,NL1))
U2 (KX,KY,NL2) = U2(KX,KY,NL1)+A21*DUl+A22*DU2+A23*DU3
+SIG* (U2 (KX+1,KY,NL1)-2.*U2 (KX,KY,NL1l)+U2 (KX~-1,KY,NL1))
U3 (KX,KY,NL2) = U3 (KX,KY,NL1)+A31*DUl+A32*DU2+A33*DU3

+SIG* (U3 (KX+1,KY,NL1)~-2.*U3 (KX,KY,NL1)+U3 (KX-1,KY,NL1))
CONTINUE

.

I hope these examples shed some light on this rather abstruse topic.

2240207

- SECTION 5
IRREGULAR ADDRESSING

Irregular or nonlinear addressing arises in situations such as those
using data structures requiring subscripted subscripts. Subscripted
subscripts do not occur explicitly in FORTRAN-66 code but may
effectively occur in certain types of programs as below:

In the DO 51 loop, Y essentially has a subscripted subscript

po 511 =1,1000

J = INDEX (I)

X(I) = ¥Y(J) ...
51 CONTINUE

Change to:

DO 52 I = 1,1000
J = INDEX (I)

52 TEMP (I) = ¥(J)
po 53 I = 1,1000
53 X(I) = TEMP(I) ...

The DO 51 loop cannot vectorize with CFT 1.06 because of the nonlinear
indexing. The DO 52 loop similarly doesn't vctorize but the DO 53 loop
does and, if the computations are extensive, the speed-up can be
dramatic.

In general, if the computations are sufficiently complicated to warrant
the work, you can restructure the loop into two or three loops. The
first new loop is a GATHER loop in which all the data to be manipulated
are collected into vectors. Next is the computation loop. Then is the
SCATTER loop, in which results are distributed from the vector used in
the computation loop to their proper locations. Quite often, as in this
example, there is no SCATTER loop. There are $SCILIB routines for doing
the GATHER and SCATTER (see Appendix A and CRI Manual 2240014).

The following example illustrates this again for a particle pushing
algorithm.

2240207 5-1 A

CASE 1

54

2240207

DO 54 K = 1,150

IX = GRD(K)

XI = IX

VX (K) = VX(K) + EX(IX) + (XX(K) - XI) * DEX(IX)
XX (K) = XX(K) + VX(K) + FLX

IX IS, IN EFFECT, A SUBSCRIPTED SUBSCRIPT
IR = XX (K)

RI = IR

RX1 = XX(X) - RI

IR = IR - (IR/64) * 64

XX(K) = RI + RX1

IR IS AN IRREGULAR SUBSCRIPT

RH(IR) = RH(IR) + l.0 - RX1

RH(IR + 1) = RH(IR + 1) + Rx1l

CONTINUE

CASE 2

DO 55 K = 1,150
IX = GRD(K)
XIV(K) IX
EXC(K) EX (IX)
DEXC (K) = DEX(IX)
55 CONTINUE
GATHER LOOP ABOVE
XI IS VECTORIZED INTO X1V
EX IS GATHERED INTO EXC
DEX IS GATHERED INTO DEXC
DO 56 K = 1,150
VX (K) VX(K) + EXC(K) + (XX(K) - XIV(K)) * DEXC(K)
XX (K) XX(K) + VX(K) + FLX
IRV(K) = XX(K)
RI = IRV(K)
RX1V(K) = XX(K) - RI
XX(K) = RI + RX1V(K)
56 CONTINUE
c COMPUTATION LOOP WHICH VECTORIZES IS ABOVE
DO 57 K = 1,150

O 0 o0 0
]

[]

RH(IRV(K)) = RH(IRV(K)) + 1.0 - RX1V(K)
RH(IRV(K) + 1) = RH(IRV(K) + 1) + RX1V(K)
57 CONTINUE
C SCATTER LOOP

The code in Case 2 runs more than twice as fast as that in Case 1.

2240207 5-3

SECTION 6
MISCELLANEOUS TECHNIQUES

This section includes a group of examples that do not readily fit into
the categories discussed above. In some sense, this is a
bag-of-tricks chapter demonstrating several additional loop
restructuring techniques as well as all multi-loop techniques. The
techniques here are harder to describe in a general and systematic
fashion.

A matrix multiply represents an algorithm that can benfit from loop
restructuring. For example, the following code illustrates the common
way of coding the matrix multiply:

DO 61 I =1,L

DO 61 J = 1,M

c(1,J3) = 0.0

DO 61 K = 1,N
61 C(I,J) =

c(1,J) + A(I,K) * B(K,J) :

The recursion on C(I,J) and loop collapsing prevent vectorization now
(CFT 1.06) and will always prevent as full vectorization as the rewrite
below. This rewritten code vectorizes fully, resulting in a speedup of
5 to 10 times:

DO 63 I =1,L
DO 62 J = 1,M
62 C(I,J) =20
DO 63 K = 1,N
DO 63 J = 1,M
63 - €(I,3) = C(I,J) + A(I,K) * B(X,J)

In many similar situations, although the result is not going into a
subscripted variable but into a scalar temporary you can reorder the
loops and store the results as a vector temporary instead of as a scalar
temporary.

2240207 6-1 A

The next example shows several stages in the speed-up process. Case 2
is more than 50% faster than Case 1 and Case 3 is almost four times as
fast as Case 1.

CASE 1
Q = 0.0
DO 64 K = 1,996,5
Q=Q + Z2(K) * X(R) + 2(K + 1) * X(R + 1)
3 + Z(R +2) * X (K + 2) + Z2(K + 3) * X(R +3)
$ + Z(K + 4) * X(K + 4)
64 CONTINUE

In this original case, the loop was quintupled, presumably to cut loop
overhead or allow greater overlap of operations.

CASE 2]
DO 65 K = 1,996,5
TP(K) = Z(K) * X(K) + Z(K + 1) * X(K + 1)
$ + Z(R+ 2) * Z(K +2) + Z(K + 3) * X(K + 3)
$ F 2R +4) * X(K + 4)
65 CONTINUE
Q = 0.0
DO 66 K = 1,396,5
Q =Q + TP(K) -
66 CONTINUE

2240207 6=-2 A

CASE 3

Q = SpOT(1000,%,1,X,1)

Here, SDOT is the BLA single-precision dot function (see Appendix A or
CRI publication 2240204).

As an aid to remembering the calling sequences for the basic linear
algebra functions, the first argument is the vector length, the
remaining arguments are in pairs: a vector operand followed by its
increment in memory.

Thus, if A and B are declared DIMENSION A(M,N),B(N,L) and you want to
compute the dot product of the Ith row of A with the Jth column of B,
use:

AB = SDOT(N,A(I,l),M,B(1,J),1)

where N = the vector length = number of elements in each vector operand,
A(I,1) and B(1,J) are the starting locations in memory of the operands,
M = memory increment of the first operand vector and 1 = memory
increment of the second operand vector

Appendix A lists the BLA subroutines briefly as well as a few other
useful routines that are in $SCILIB.

A planned enhancement to CFT is to perform scalar operations for
individual statements in otherwise vectorizable loops. An industrious
programmer can achieve this now by using VFUNCTIONS:

CDIR$ VFUNCTION ...

which tells the compiler of external non-libray vector functions. For
. CFT 1.06, these can be written only in CAL. The CFT manual sections 5

‘and Appendix F provide the information necessary to link such routines
to FORTRAN programs.

2240207 6-3 A

SECTION 7
REMOVING IF STATEMENTS AND USING
BUILT-IN FUNCTIONS

CFT 1.06 does not vectorize code blocks that contain IF statements.
Many types of loops with IF statements are not hopeless, however.
Several things can be done depending on the structure of the code. CFT
will eventually vectorize many of these for you but in the meantime you
can help by using some of the built-in functions such as AMAX1l, ABS,
CVMGT, CVMGZ, ...etc. (See CPFT manual appendixes B and C). For example:

DO 71 I = 1,1000
IF(A(I) .LT. 0.) A(I) = 0.
71 B(I) = SQRT (A(I)) ...

which can be converted to:

DO 72 I = 1,1000
A(I) = aMAX1(a(1),0.)
72 B(I) = SQRT (A(L)) ...

The DO 71 loop doesn't vectorize now; the DO 72 loop does.

All the built-in arithmetic functions in FORTRAN (in $FTLIB) have both
vector and scalar versions; the compiler calls the vector version for
vectorizable loops*. The vector merge operations, CVMG*, are typeless
functions that allow you to merge the results of different vector
computations such as the following:

DO 74 I = 1,1000
IF (A(I) .LT. 0.) GOTO 73
B(I) = A(I) + D(I) ...

GOTO 74
73 B(I) = A(I) * E(I) ...
74 CONTINUE

This can be rewritten to vectorize as

DO 75 I = 1,1000 ‘
75 B(I) = CVMGT (A(I) * E(I) ..., (A(I) + D(I) ..., A(I).LT.0)

*Some are actually pseudo vector routines; they allow the loop to
vectorize but are performed in scalar mode.

2240207 7-1 A

The mnemonic for the CVMG* group of functions is that the last letter of
the name is the condition on which the first argument is used. Since
these functions are Boolean, they can be used with integer or floating
operands and results and in scalar loops as well as in vector loops.
Thus, if you are not sure that you are computing the value of B
correctly, you can put a print statement in the loop, which causes it to
be scalar, and still obtain the same results, albeit much slower than
before.

Table 2 lists the merge functions and some of the other ones that you
may want in similar situations.

Table 2. Some typical in line CFT functions.

FUNCTION NAME RESULT TYPE ARGUMENT TYPES OPERATION
AMAXO (X7 ,X5...) Real Real Largest X3
AMAX1(I1,I3...) Real Integer Largest I,
floated
MAXO (X7,X3...) Intager Real Largest Xj,

' truncated
MAX1(Iy,Is...) Integer Integer Largest I3
CVMGT (X, Y, L) Boolean Boolean X if L True,

(single word) (single word) otherwise Y
CVMGZ (X,Y,2) Boolean Boolean X if Z is zero,
. (single word) (single word) Y if Z is nonzero

Another technique that works in some cases is inverting the order of
loops so that the IF statements are in the outer loops rather than in
the inner loops. Also, if the purpose of the IF test is to separate an
exceptional case from other cases and if the computation is extensive,
it may be worthwhile to write a loop to do the testing and to write a
vectorizing loop -for the computations.

Here are some more examples:

¥(I) = 1.0
IF(X(I).EQ.0.) GOTO 76
Y(I) = 1.0/%X(X)

76 CONTINUE

Change this to:

¥(I) = 1L.0/CVMGZ (1.,X(I),X(I)) ...

2240207 7-2 ' A

which allows a loop containing it to vectorize and yet does not cause a
divide fault. Here, CVMGZ selects l. when X(I) = 0; otherwise it _
selects X(I). Alternatively, if this exceptional condition only occurs
in cases when the result is not used, you can surround the loop
containing it with CALL CLEARFI and CALL SETFI to turn the floating
point interrupt off and then on again. This allows generation of an
infinity without interrputing the program.

The next example illustrates loop reordering and IF statement removal:

CASE 1 CASE 2
DO 77 K = 1,3 DO 710 JA = 1,500
FR(K) = 0 ‘ DSV(JA) = 0
77 CONTINUE c DSV IS A VECTOR OF DS VALUES
DO 79 JA = 1,500 710 CONTINUE
IF (JA .EQ IA) GOTO 79 DO 712 K = 1,3
DS = 0 DO 711 JA = 1,500
DO 78 K = 1,3 AM(K,JA) = RS(K,IA) -~ RS(K,JA)
A(K) = RS(K,IA) - RS(K,JA)}711 DSV(JA) + AM(K,JA) ** 2
DS = DS + A(K) ** 2 712 CONTINUE
78 CONTINUE DO 713 JA = 1,500
DS = SQRT (DS) DSV(JA) = SQRT(DSV(JA))
IF (DS .GT. RAD) GOTO 79 {713 CONTINUE
. DO 714 JA = 1,500
. IF (DSV(JA) .GT. RAD) GOTO 714
79 CONTINUE
714 CONTINUE

Some of the loops in Case 1 vectorize but this vector length is only 3.
In Case 2, the inner loops vectorize with a vector length of S00. In
particular, the 713 loop uses a vector square root saving a great deal
of time. As it turns out, in the "real life" example, most of the time
DS was greater than RAD (last statement shown in the loop) so the rest
of the loop did not need any work. Even though additional vectorization
could be done, it would not have been very productive. With the change
illustrated, the entire kernel ran more than four times faster than the
original.

2240207 7-3 A

APPENDIX A

$SCILIB SUBROUTINES

This appendix summarizes the scientific library subroutines.
For a current and more complete description of these functions, refer to
the Library Subroutine Reference Manual, CRI Publication 2240014.

LEGEND:

N Vector length

X,Y Floating point vectors

IX,IY Increments in memory of floating point vectors

c,D Complex vectors

IC,ID Increments in memory of complex vectors

NB Number of bits per word selected for PACK/UNPACK

NW Number of words in unpacked array.

Name (Parameters) Type Purpose

ISAMAX (N, X,IX) Integer function Index to real array element
having maximum absolute value

ICAMAX (N,C,IC) Integer function Index to complex array
element having maximum
modulus.

SASUM (N, X, IX) Real function Sums the absolute value of a
real array

SCASUM(N,C,IC) Real function Sums the absolute values of
real and imaginary parts of
complex array

SAXPY(N,X,IX,Y,IY) Subroutine Performs vector computations
y<ax+y on real arrays, X,Y.

CAXPY(N,C,IC,D,ID) Subroutine Performs vector computation
y=<¢ax+y in complex arrays X,Y.

SCOPY (N,X,IX,Y,IY) Subroutine Copies real array x into real
array y.

CCOPY (N,C,1C,D,ID) Subroutine Copies complex array c into

2240207

complex array d.

A-1 A

Name (Parameters)

SDOT (N, X,IX,¥Y,IY)

CDOTC (N,C,IC,D,ID)
CDOTU(N,C,IC,D,ID)
SNRM2 (N,X,IX,¥Y,IY)
SCNRM2 (N,C, IC)

SROT (N, X, IX,Y,IY)

SROTG(...)
SROTM(...)
SROTMG(...)
SSCAL(N,A,X,IX)
CSSCAL(N,A,C,IC)
CSCAL(N,A,C,IC)

SSWAP (N, X,IX,Y,I1IY)
CSwar(N,C,IC,D,ID)

MXMA (...)
sz(-o-)

RCFFT2(...)

CRFFT2(...)

2240207

Iype

Complex function

Complex function

Real function

Real function

Real function

Subroutine

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

Subroutine
Subroutine

Subroutine
Subroutine

Subroutine

Subroutine

Purpose

DOT product of real arrays
X,y.

DOT product of complex arrays
c,d.

DOT product of complex arrays
c,d.

Euclidean norm of real array
X

BEuclidean norm of complex
array c.

Performs Givens
transformation on real arrays
x'Y‘

Calculates parameters for
SROTX.

Mcdified Givens
transformation.

Sets up parameters for
modified Givens.

Rescales real array x:
X==3xX, a real.

Rescales complex array c:
c=ac, with a real.

Rescales complex array c:
c=ac, with a.complex.

Swaps real arrays X,y.
Swaps complex arrays c,d.

Completely general matrix
maltiply. :

Fourier transforms binary
radix complex array.

Fourier transforms binary
radix real to complex.

Pourier transforms binary
radix complex array to real.

Name (Parameters)

Type

PACK (P,NB,U,NW)

UNPACK (P,NB, U,NW)

MINV(...)

SSuM(N,C,IC,D,ID)

CSUM(N,C,IC)

CROT (N,X,IX,Y,IY)

CROTG(N,C,IC,D,ID)

FILTERG(...)
FILTERS(...)

OPFLIT(...)

2240207

Subroutine

Subroutine

Subroutine

Real function

Complex function

Subroutine

Subroutine

Subroutine

Subroutine

Subroutine

Purpose

Packs power of 2 bit partial
word lists.

Unpacks list into power of 2
bit partial words.

Returns solution of general
linear equation set, matrix
inverse optional.

Sums the elements of a real
array.

Sums the elements of a
complex array.

Applies complex Givens
rotation.

Sets up rotational parameters
for CROT.

Performs general fitering and
auto~correlation.

Calculates symmetric filter
coefficient.

Wiener-Levinson equation
solver.

APPENDIX B
FORTRAN DIALECTICAL DIFFERENCES

As an aid for conversions, this appendix contains a number of tables
that compare the FORTRAN compiler dialects for several manufacturers.
The following tables are included.

1. Hardware dependencies

2. Coding features

3. Declaratives and ordering

4. Names and variables

5. Constants, literals, and strings
6. Arithmetic and expressions

7. Branching and control statements
8. Input/output formatting

9. Subroutines and functions

10. 1Instrinsic or inline functions

11. External functions. —

All of these tables are based.on a scan of manuals and are thus prone to
error and very prone to omissions. Further, as manufacturers bring
their FORTRAN dialects into conformance with FORTRAN X3.9-1978, some of
these differences can be ‘expected to disappear. The tables also reflect
1975-1979 versions of FORTRAN. 1In particular, while CDC FTN 5 is to be
an ANSI-1978 version here. CDC means either FTN 4 or RUN FORTRAN. IBM
means FORTRAN H. Univac means either FORTRAN V or ASCII FORTRAN. ICL
means either 1900 or 2900 FORTRAN. The tables do not generally include
any FORTRAN statement, syntax, or pecularity where CFT is believed to be
at least as general as the other dialects shown. "Unusual®™ and its
synonyms mean "non-CFT."

2240207 B-1 A

L0Z0vZT

Z-g

Iten

Numbes Of characters per word,
bits per character
Character manipulation in C¥Y
cannot involve more than 8
charactess per word. Card
images require 10A8 format
i.e6., 10 wogds to store image.

Tsue/false representation.

Equivalences to logicals ar
binary settings of logicals

Collations letters before or

after nusber, each contiguous.
Testing for character sequences:
lettess greater than numbecs
internally for CFT.

Internal Character Code
Binary constants

$... means 2 followed by a
string of digits, etc.

Crt
8,0 .

Negative,

Positive

After, yeos

ASC)

ANSI-64
Uaspecifled

Unspecified

Unspecified

Not allowed

Al
NEY -

Unspecified

Unspecitied

Unspecified

Not allowed

AR PENDENCIES

cnc

FTHs Neg, 0

RUNs Pos,0

Before,Yes

Display Code

FiN...B
RN O.. -
OR...B

1]
4.8

Before, Mo

ERCOIC

unjvac IcL HONEYWELL
A 4,0 2900 4,9

Vi 6.6 .1900: 6,6

Trues L8B=] True /- [}

valses LSB=0 Palse = 0
After, Yas Before, No

AsASCIT (9 Bit)
ViField Data (6 BiK)

O... ... 0...

L020%2¢

Item

Comment indicators
{in column 1)

Continuation allowed
(l1ine length, cords)

Multiple statements per
line, separator is:

Multiple replacement statement
PROGRAM statement

Pseudo functions (functions

usable on-left or right of =),
must be recoded without
pseudo functions.

Partially reserved words
some names may be illegal)
0...weans names beginning
with 0.

Unusual characters allowed

19

Not allowed

Not allowed

Defines prog-

ram name

Hot allowed

ANSI-66

4

19

Not allowed

Not allowed

Not allowed

‘None

None

TABLE 2 CODING FEATURES

ANSI-77

C,*

19

Not allowed

Not allowed

Defines

program name

Not allowed

None

coc

Ci*§

19

Yes

Defines files

Not allowed

FTNs FORMAT

FUNCTION

RUN: CALL,END
0...,etc.

184
C

19

Not allowed
Not allowed
Not allowed
& in CALL

' in MS 1/0
$ in name

UNIVAC

C)@ in line
for rest of
line

1320 chars
total

@ for comment

Not allowed

BITS
SUBSTR

0...

& in CALL and
for concaten-
ation

* in Ms 1/0

$ in name

o
0
=

°

19
Not allowed
1900) Yes

2900, No

Name only
allowed

Not allowed

& in CALL

HONEYWELL

c,*

19

Not allowed

for **

for continu-
ation

in MSs 1/0

for statement
terminator

L

Lozovee

P-g

AB ARATIVES AND ORDERING
tem CFT ANS]-66 ms1-n1 coc 18 wyyac e HOUEYWELL
Data assignable In declarative No No " Mo No Yes Yes Yes Yes
Precisions of varfables (by *n) Yea Nat allowed Not allowed Not allowed Yeos Yes
in type statement
“TYPE" type allowed No . W Ho Yes No Yes Yes
Hon CFT types None None Chatacter ECS Chasacter Chacsacter Chatacter
. Abnormal

DATA(...) allowed Ho No No Yos No No o
Acithmetic statemant functions Mo Not allowed Mo FTis Mo
can be other than after RUNs Yes
declarative betore executable
statements |
Parenthesis required ia Yes Not allowed Yes Yes Yeos No Yes Mo
PARAMETER
IMPLICIT must precede all other Yes Not allowed “Yes Yes Yes No Yes No
declaratives, executables *
Results of DATA statement type Converted Not allowed Converted RUNs ignored M Convert
mismatch. sxcept far except for Vs Ignose

¥or RUN and UNIVAC FORTHAN V logical, logical

must correct types of cons- complex chasacter

tants in DATA statements.
COMMON ircegularities) None Hone None Numbered None None None

Initial common block lengths . COMMON blocks

sust be as long as ever . changing

sequired., RNumbered common ' lengths of

must be changed to named. COMMON

Locovze

Item

Maximum number of characters
in names

$ in name

Lower case chacracters’

Item

Non CFT types
Quad precision change to
double and double to
single, probably.

Nonstandard length identifiers

{such as READ*D for REAL*8)
Double precision and Quad
precision functions must be
changed to correspond to
actual argument types where
these are changed.

Unusual constant forms

Alternate character codes
(See also third hatdulrg item)

0

CFT
8
Not allowed

Not allowed

None

Y)
for octal

None

TABLE 4 NAMES OF VARIABLES

ANSI-66 ANSI-77
6 6
Not allowed Not allowed

Not allowed Not allowed

cpc

7

Not allowed

Not allowed

1BM

6
Yes

Not allowed

TABLE 5 CONSTANTS, LITERALS, AND STRINGS

ANS1-66 ANSI-17
None : Character
None None

Not allowed Not allowed

Not Specified Not Specified

- ene

Not allowed

None

FTNs ...B
RUN: ...B
or O...

for octal

Display code

b1

Quad pre-
cision
double~
complex

None

2... for Hex
Data init-
ialization
only.

EBCDIC

After initial
letter

Treated as
upper case

UNIVAC

Quad pre-
cision
double-
complex
character

Not allowed

O...
for octal

Vi FPield data

Not allowed

Not allowed

i1CL

Quadruple

double-comp.

character.

1,3,K,L,M,N,

E,R,Q,D.

1900:0...
for octal
290032...
for Hex

HONEYWELL

Not allowed

Treated as
upper case

HONEYWELL

Character

O...
for octal

L0Z0%Z2

-8

ten [¥x 4

§1/3/% = FLOAT(1/J) /% Yes
Pog CDC Subscript (1) can
be added in arithwetic
statements for subscripted
vaslables {f one is not present.

1s A*-B ok (and other similac
ones)

Not allowed

Subscripts required for
sulti-dimensional arcays

Nan-integral subsceipts Not allowed

tem crT

Results of out-of-range com- Pall through

puted GO T0.

Aclthmetic IF can have missing
statement labels.

Not allowed

Acithmetic IF can have complex
argument

Not allowed

DO L I = 10,) executes
This is & dlfficult ercor to
monltor unless IP's ate Inserted
for all DO statements but it can
be fixed with ON=J on the CFT statement
Complex telational operator. .NE. and
Complex .EQ. only

No times

Latels on non-executable
non-FORMAT statements

Not allowed

At least ane

ABL R THM! € AND EXPRESS]ONS

ANS]-66 ANSE-T) coc 184

Not allowed Yes No Yes

Not allowed Mot allowed Not allowed Not allowed

all Al None Al

Not allowed Not allowed FTs Yes Yes) real
RUN: Mo

'ABLE 7 BRANCH AND CONTROL 8! ENTS

ANS1-66 ANSI-7] cnc]88

Not allowed Fall through Fatal ercor ¥all through

Not allowed Not allowed

Not allowed Naot allowad Yesy only Not allowed
real part
tested

Nol allowed Ho times Once Once

Not allowed <NE, and OK; only Hot allowed

+EQ only real part .

tested exncept
NE., and .EQ.

tot allowed labels allowed) Not allowed

Reference not
allowed

uNIvAC 16t
Yaa Yes

As Mo Not allowed

Vs Yeas

Al

Yas ¥Yes) real only
unguac €L

Pall theough Fall through

Yes, GOTO can 1900, VYes
also 2900 No
Nat allowed

As i Once

DO 1 I=10,1,-)

Mot allowed A
can end DO.
Vi Yas

FORMAT

HONEYWELL

ONEYWELL

Fatal exror

Yes

Not allowsd

Lozcovee

L-g

Itenm

Free format I1/0

End-of-file, error checks

TAPE, 1/0 TAPE, etc. allowed
with R/W statements
Random wmass storage I/0

Other I/0 statements

None CFT FORMAT specs

Format paren nesting maximum

Encode/Decode pecularities

CFT

Not allowed

END=, ERR=,
EOF, UNIT,
IEOF

Not allowed
GETPOS

SETPOS

Not allowed

None

ANSI-66

Not allowed

Not allowed

None

Not allowed

Not allowed

TABLE 8 INPUT/OUTPUT/FPORMATTING

ANSI-77

* for state-
ment label in

1/0 statement

END=, ERR=,
TOSTAT=

Not allowed

READ(. .REC=)
WRITE (. .NEC=)

OPEN
CLOSE
INQUIRE

EW.dEe,etc.

READ & WRITE
to character
strings

(o294

* for state-
ment label

FTN: EOF
JOCHEX

RUN; EOF,U
IOCHEX,U

FTN: No
RUN: Yes

READMS/
WRITEMS etc.

READEC
WRITEC
MOVLEV

Ew.dEe, etc.

FTN: 3
RUNs 2

IBM

* for state-
ment label

END=, ERR=

Not allowed

FIND
(a'r) etc.

READ (U, ID=w)
AD(UV)
DEFINF, etc.

Qw.d

E,F ok for
integers; G
ok integer,
logical

3

REREAD

UNIVAC

* for state-

ment label

END=, ERR=

A No
Vi Yes

FIND
(a'r) etc.

Iw.d, Jw, +5
Ew.dEe, etc.

5+

Char count

optional; no.

of chars
converted
available.
ERR= allowed

I1cL HONEYWELL
+ for state~ Not allowed
ment label
END=, ERR=s,
IOSTAT=
Not allowed
READ (u, £1,clause)
list, etc. Like IBM

Qw.d, V, Mw.c
G ok for logical
or integer

Char count
not included.
ERR= allowed.

L0zZo¥CT2

8-g

Item CFT
In program: RETURN=STOP No
In subroutines END = RETURN Yes
Mternate returns syntax ¢ before
label in CaLL
* in subs.
ENTHY has own calling sequence Yes

and usable as a functioan
CDC ENTRY statements must have
correct calling sequences added.

END statement required Yes

Dusny argument in glashes Illegal

= call by addsrese

*6 subpraogram name® allowed Not allowed

Oveclay syntax LDR commands
mlo m"-a
S0VL
CALL overlay
tees)

DEFINE used In arithmetic Not allowed

statement functions

ANSE-66

No
Yes

Not allowed

‘Not allowed

Illegal

Not allowed

Unspecified

Not allowed

'ABL HBROY

MS)-77
No
Yes

¢ befors *
label in CALL
* §{n subc.

Yas

Yes

I1legal

Not allowed

Unspecifled

Not allowed

i
|

ES AND FU ONS

cc L.} UNJVAC

FTN: Yes/Yes Yas “Internal)*®

RUN: Yes/No No subsoutines
allowed

emseesd s before s or 8

RETURNS (~,~, label in CALL before label

eesd 6 in subc. in CALL.
Vi Indexing
is abeolute,
not relstive.

No Yes Yeay same type
as function

Yes No

Illegal Yeosu Yes

Not allowed Hs Yea In EXTERNAL

Gs No only

OVERLAY(...) Use BANK
statement

Not allowed Allowed Allawed

1L
8TOP requited

& before
label in CALL

Yes

Yeu

Not allowed

Not allowed

HONEYWELL

FORTRAN 17
syntax used

Yes

Yoo

I1llegal

Not allowed

Item

Memory management

Lozovee

1/0

Compiler directives

Assembler code with FORTRAN

Code insertion

Actual functions that are
unusual

Item

General differences

Specific functions

CFT

None

CDIR$: LIST
NOLIST, EJECT
etc.

Not allowed

Via UPDATE

None

None

TABLE 10 INTRINSIC OR INLINE FUNCTIONS

ANSI-66"
None
Not allowed

Not specified

Not allowed

Not allowed

ANSI-66

None

ANSI-77

Not allowed

None

coe 1BM

ECS) None
Unload Unload
FTN: No Generic
RUNs between
routines,

. in column 1

IDENT Not allowed
via UPDATE

SHIFT All double
RUN:s FORTRAN precision
11 syntax Q prefixes

on functions

TABLE 11 EXTERNAL FUNCTIONS

ANSI-77

None

conc IBM

All double
precision

FORTRAN II
fupctions:
LOCF,ABSF, etc
SLITE

DISPLA

TIME

I0CHEC

UNIVAC IcL

BANK

Compiler

Not allowed

Include
Delete

All double Double precisiol

precision D,E,Q,R,1,J,K
prefixes) fatal
functionsj; many
additional such
as trig with

degrees.
UNIVAC ICL
All double All double
precision precision
GAMMA Time, date

LGAMMA

HONEYWELL

n +

HONEYWELL

APPENDIX C
TRACEBACK

There is a FORTRAN library routine TRBK (file) that you can call to
determine how the program reached the current routine. If there is no
arqument, the trace is printed in the logfile, if file is specified,
'$OUT' perhaps, the traceback goes to that file.

When a task terminates abnormally, TRBK is automatically called so a
trace of the subroutine calling tree to the point of error is provided.
To make this as useful as possible, turn on the block listing from CFT:

CFT,ON=B, ...
and the load map on the loader card: LDR,MAP,... so that the addresses

provided can be easily localized in the FORTRAN source. Below is an
annotated abort message to illustrate using the trace information.

ABOS53 FLOATING POINT ERROR

AB0OO

JOB STEP ABORTED. P = 01447602

- **%xx%** WAS CALLED BY SOLVE AT LOCATION 0144760A

SOLVE WAS CALLED BY EQNS AT LOCATION 0012341C
- EQNS WAS CALLED BY $MAIN AT LOCATION 0003411A

The cause of termination is a floating point overflow from the first
line of the abort message. Another common diagnostic is "OPERAND RANGE
ERROR", which occurs when an attempt is made to reference some part of -
memory outside your user area, most likely a wild index. If all output
is lost, one possible cause is using block common with a DIMENSION of 1,
COMMOM X(1), but storing into Xs with subscripts much larger than 1.
(This may overwrite I/O buffers and tables.)

The last instruction being executed at the time of abort was at location
00144760A. For the FORTRAN programmer, discard the parcel, A in this
case, leaving the OCTAL address of the instruction word. The actual
error probably occurred on earlier instruction. The load map ADDRESS
gives the base address of all routines. 1In this case, find the base
address of SOLVE, where the error occurred (from the third line of the
abort message). Subtract the base address from the absolute P-counter

address given to find the relative address in SOLVE. (Remember to
subtract in OCTAL!!!

2240207 c-1 A

Because the BLOCK (ON=B) listing was turned on for CFT, you will have a
list of all blocks which will allow you to find the FORTRAN code block
where the abort occurred:

P=-Counter 0144760 (A)
- Loader ADDRESS of SOLVE - 0104700
Relative address in SOLVE 0040060

Partial block listing for SOLVE:

SOLVE VECTOR BLOCX BEGINS AT SEQ. NO. 1372, P=40035B
SCLVE BLOCK BEGINS AT SEQ. NO. 1380, P=40055D
SOLVE BLOCK BEGINS AT SEQ NO. 1401, P=40077A

Because the relative error address is 40060, which is between 40055 and
40077. The bomb occurred for a FORTRAN statement between numbers 1380
and 1401. The listing should now help you find the probable source of

the error quickly.

Similarly, the point at which SOLVE was called by EQNS can be
determined. The absolute address of the CALL was 0012341C and EQNS was
called by the main program at absolute locations 0003411lA

2240207 c-2 A

APPENDIX D
COMPILER DIRECTIVES

Compiler directive lines begin with characters CDIR$ in columns 1
through 5 and any of the directives listed below in columns 7 through 72.

DIRECTIVE FUNCTION

EJECT Ejects to top of next page.

LIST Resumes listable output.

NOLIST Suppresses production of listable output.

CODE Produces code list.

NOCODE Suppresses production of CFT-generated code
lists. : ’

VECTOR .Enables vectorization of inner DO-loops.

NOVECTOR Suppresses vectorization of inner Do-loopg.

IVDEP Ignores vector dependencies in the next
DO-loops.

INT24 Identifies listed variables and arrays as
24-bit integers, equivalent to INTEGER *2
declarative.

FLOW Enables flowtrace.

NOFLOW Disables flowtrace.

SHED Enables the scheduler.

NOSCH Disables the scheduler.

VFUNCTION Identifies external vector functions.

BOUNDS Checks array references for out-of-hand

subscripts.

APPENDIX E
CHARACTER SETS

CHAR ASCII HEX ASCII [CHAR _ ASCII HEX ASCII
CARD CODE CARD CODE
NUL 000 00 12-0-9-8-1 e 100 40 3-4
SOH 001 01 12-9-1 A 101 11 12-1
STX 002 02 12-9-2 B 102 12 12-2
ETX 003 03 12-9-3 c 103 43 12-3
EOT 004 04 9-7 D 104 14 12-4
ENQ 005 05 0-9-8-5 E 105 45 12-5
ACK 006 06 0-9-8-6 F 106 46 12-6
BEL 007 07 0-9-8-7 G 107 17 12-7
BS 010 08 11-9-6 H 110 48 12-8
HT 011 09 12-9-5 1 111 19 12-9
LF 012 0A 0-9-5 J 112 1A 11-1
VT 013 0B 12-9-8-3 H K 113 18 11-2
FF 014 0C 12-9-8-4 L 114 i 11-3
CR 015 0D 12-9-8:5 M 115 4D 11-4
SO 016 0E 12-9-8-6 N 116 4E 11-5
SI 017 0F 12-9-8-7 0 17 1 11-6
DLE 020 10 12-11-9-8-1 J P 120 50 11-7
nc1 021 11 11-9-1 Q 121 51 11-8
DC2 022 2 11-9-2 R 122 52 11-9
DC3 023 13 11-9-3 s 123 53 0-2
DC4 024 14 4-8-9 T 124 54 0-3
NAK 025 15 9-8-5 l U 125 55 0-4
SYN 026 16 9-2 - v 126 50 0-5
ETB 027 17 0-9-6 W 127 57 0-6
N 030 18 11-9-8 X 130 58 0-7
EM 031 19 11-9-8-1 Y 131 59 0-8
SUB 032 1A 9-8-7 Z 132 57 0-9
ESC 033 1B 0-9-7 { 153 5B 12-8-2
FS 034 1C 11-9-8-4 \ 134 5C 0-8-2
Gs 035 1D 11-9-8-5 1 135 5D 11-8-2
RS 036 1E 11-9-8-6 - 136 56 11-8-7
us 037 1F 11-9-8-7 - 137 51 0-8-5
Space 040 20 None : 140 60 8-1

2240207

E-1

CHAR ASCII HEX ASCHl CHAR ASCII HEX ASCH
CARD CODE CARD CODE
: 041 21 12-8-7 a 141 ol 12-0-1
" 042 22 3-7 b 142 02 12-0-2
4 043 25 8-3 c 143 03 12-0-3
$ 044 24 11-8-3 d 144 6d . 12-0-4
] 045 15 0-8-4 e 145 05 12-0-5
& 046 l6 12 £ 146 06 12-0-6
! 047 27 8-5 g 147 67 12-0-7
(0s0 28 12-8-5 h 150 08 12-0-8
) 051 29 11-3-5 i 151 09 12-0-9
* 052 2A 11-8-4 j 152 04 12-11-1
- 053 28 12-8-6 k 153 o 12-11-2
’ 054 2C 0-8-3 1 154 0C 12-11-3
- 0s5 b 11 m 155 oD 12-11-4
. 056 . 2E 12-8-3 n 156 ok 12-11-5
/ 0s7 IF 0-1 o 157 oF 12-11-6
0 060 30 0 P 160 70 12-11-7
1 061 31 1 q 161 "1 12-11-38
2 062 32 2 r 162 -2 12-11-9
3 063 33 3 s 163 3 11-0-2
4 064 34 4 t 164 T4 11-0-3
5 065 35 5 u 165 7S 11-0-4
6 066 36 6 v 166 76 11-0-5
7 067 37 7 W 167 TT 11-9-6
8 070 38 P x 170 73 11-0-7
9 a71 39 9 Y in 79 11-0-8
072 3A 8-2 z 172 A 11-0-9
; 073 B 11-8-6 { 173 7B 12-0
< 073 3¢ 12-8-¢ : 174 C 12-11
= 075 3D -6 } 175 D 11-0
> 076 3E 0-8-6 ~ 176 7E 11-0-1-
077 3F 0-8-7 DEL 177 T 12-9-7

2240207 E=2

	001
	003
	005
	1-01
	1-02
	1-03
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	5-01
	5-02
	5-03
	6-01
	6-02
	6-03
	7-01
	7-02
	7-03
	A-01
	A-02
	A-03
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	C-01
	C-02
	D-01
	E-01
	E-02

