=R AY"

CRAY COMPUTER SYSTEMS

CAL ASSEMBLER VERSION 2
REFERENCE MANUAL

SR-2003

Copyright® 1986 by CRAY RESEARCH, INC. This manual or
parts thereof may not be reproduced in any form without
permission of CRAY RESEARCH, INC.

CRANY

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SR-2003

Each time this manual is revised and reprinted, all changes issued against the previous version are incorporated into the new version
and the new version is assigned an alphabetic level.

Every page changed by a reprint with revision has the revision level in the lower righthand corner. Changes to part of a page are noted
by a change bar in the margin directly opposite the change. A change bar in the margin opposite the page number indicates that the
entire page is new. If the manual is rewritten, the revision level changes but the manual does not contain change bars.

Requests for copies of Cray Research, Inc. publications should be directed to the Distribution Center and comments about these
publications should be directed to:

CRAY RESEARCH, INC.

2520 Pilot Knob Road

Suite 310

Mendota Heights, Minnesota 55120

Revision Description
February 1986 - Original printing.

[0
[

SR-2003

PREFACE

The CAL Assembler Version 2 allows the user to express symbolically all
hardware functions of a mainframe for a Cray Research, Inc. CRAY-2,

CRAY X-MP, or CRAY-1 Computer System. This detailed and precise level of
programming is of special aid in tailoring programs to the architecture
of a Cray mainframe and writing programs requiring code that is optimized
to the hardware.

Augmenting the instruction repertoire of CAL is a versatile set of pseudo
instructions that provide the user with a variety of options for
generating macro instructions, controlling list output, organizing
programs, and so on.

Except where indicated, the content of this manual applies to all series
of Cray Research, Inc., computers. Detailed information about the Cray
operating systems COS and unicost is presented in separate Cray
Research, Inc. publications.

The system macro instructions for CRAY X-MP and CRAY-1 Computer Systems
that are available with CAL Version 2 are described in the Macros and
Opdefs Reference Manual, CRI publication SR-0012.

The system macro instructions for CRAY-2 Computer Systems that is
available with CAL Version 2 are described in the CRAY-2 UNICOS
Libraries, Macros and Opdefs Reference Manual, publication SR-2013.

+ UNICOS is derived from the AT&T UNIX system; UNIX is a trademark of
AT&T Bell Laboratories.

SR-2003 iii

CONTENTS

PREFACE

1. INTRODUCTION & ¢ ¢ ¢ o« o o o o o« =

.

1.1
1.2
1.3

EXECUTION OF THE CAL ASSEMBLER . . .
MANUAL ORGANIZATION
CONVENTIONS . . ¢« ¢ o ¢ o « o o o &

2. OPERATING SYSTEMS & ¢ « o « o « &

2.1 OPERATING SYSTEM INTERFACES
2.1.1 Cray operating system COS
2.1.1.1 JCL file . .« v +v ¢ ¢ v o o o o o o
2.1.1.2 CAL control statement .
2.1.1.3 The COS environment . . e .
2.1.2 Cray operating system UNICOS
2.1.2.1 Interactive assembly . . .« o .
2.1.2.2 as - CAL command line . . e e .
2,1.2.3 The UNICOS environment .
2.2 BINARY DEFINITION FILES « « +« « .«
2,2.1 Defining a binary definition file
2.2.1.1 Symbols . . . « « . . .
2.2.1.2 Macros . « « ¢ & ¢« ¢ ¢ ¢ o 4 . . .
2.2.1.3 Opdefs ¢« « ¢ ¢ ¢« « + o & .
2.2.1.4 Opsyns
2.2.1.5 MICTO . +¢ ¢ v ¢ o o o o o o o o
2.2.2 Creating binary definition files
2.2.2.1 Creating new binary definition files
for COS « s e
2.2.2.2 Creating new binary definition files
for UNICOS o o s
2.2.3 Using binary definition files . .
2.2.3.1 Compatibility checking . .
2.2.3.2 Multiple references to a definition
3. THE CAL PROGRAM . . . ¢ ¢ & 4 ¢ o ¢ o o o o o o o o o « o &
3.1 PROGRAM SEGMENT ¢ o

SR-2003

3.1.1 Program module
3.1.2 Global definitions

iii

NDNDNNDNDNDNDNDNNDIND
Vo

N RREOWN PP
o~

2-21
2-22
2-22
2-24
2-24
2-24
2-24

2-25
2-26
2-26
2-27

w w w
i
e

3. THE CAL PROGRAM (continued)

3.2

w w
.
o »

SOURCE STATEMENT . . . ¢ +v o o o o o s s o o o« &
3.2.1 New format . . . ¢ ¢ ¢« o o o o o « o o &
.1 Location field
2 Result field . . .« « « « « .« .
3 Operand field
4 Comment field
YMAt . ¢ ¢ e e e e e e e e e e e
.1 Location field
2
3
4

o pd o o o o
NN NN NN
.
Hh
(e}

Result field
Operand field
Comment field
STATEMENT EDITING . . ¢ « o« « o o o o o o o o @
3.3.1 Micro substitution
2 Concatenate . . . ¢ ¢ ¢ ¢ o o o o o o
3 Append e e e e 4 s e e e 0 e .
.4 Continuation . . + « « v v o & o ¢ o o« &
5 Comment . . ¢ o o « o o o o o o o o &
3.3.6 Actual statements and edited statements
INSTRUCTIONS . . &« & o ¢ o o o o o o o o o o o &
3.4.1 Assembler-defined instructions
3.4.1.1 Machine instructions
3.4.1.2 Pseudo instructions
3.4.2 User-defined instructions
MICROS . « & ¢ ¢« o o o s s o o o o o s o o o o
SECTIONS . « v & 2 o o o o o o o o o« s o o« o« «
3.6.1 Local sections . . . +v ¢« ¢ ¢ o o « o & &
3.6.1.1 Main section
3.6.1.2 Literals section

w

.

N

.

N
wwwwo«»www

2
2.
2
.2.

3.6.1.3 Sections defined by the SECTION pseudo

.2 Common sections . . « « &« o o o « o o &
3 Section stack buffer
3.6.3.1 Origin counter
3.6.3.2 Location counter
3.6.3.3 Word-bit-position counter . .
3.6.3.4 Force word boundary
3.6.3.5 Parcel-bit-position counter

3.6.3.6 Force parcel boundary

4. CRAY ASSEMBLY LANGUAGE . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o « o« « &

4.1

4.2
4.3

SR-2003

REGISTER DESIGNATORS . . &« « ¢ « o o o o « o o &
4.1.1 Complex registers
4.1.2 Simple registers o . . .
NAMES . & ¢ ¢ ¢ o o o o o o o o o o o o o o o«
SYMBOLS . ¢ & ¢ & ¢ & o o o o o o o o o o o o 4
4.3.1 Symbol specification . . « e e e
4.3.1.1 Unqualified symbol o e e e e
4.3.1.2 Qualified symbols

vi

W W WWwwWwwwwwwwww
[}

1
PRROOOINNNOOO G DD
o OO

w w
o

3-10
3-11
3-11
3-12
3-13
3-13
3-13
3-13
3-14
3-19
3-19
3-19
3-20
3-20
3-21
3-21
3-23
3-23
3-23
3-24
3-24
3-24

-3
t
[

Lo
[
NO O DWW

4.3 SYMBOLS (continued)
4.3.2 Symbol definition
4.3.3 Symbol attributes
4.3.3.1 Address attributes . e e e e e e s
4.3.3.2 Relative attributes
4.3.3.3 Redefinable attributes
4.3.4 Symbol reference ¢ . o . .« . .
4.4 DATA . . ¢ v 4« 4« o o o o o o o o o o o o o o @ ..
4.4.1 Constants « ¢ « « ¢« « ¢ o o . .« .
4.4.1.1 Floating-constant
4.4.1.2 Integer-constant
4.4.1.3 Character-constants
4.4.2 Data items « .+
4.4.2.1 Floating-data item
4.4.2.2 Integer-data item
4.4.2.3 Character-data item
4.4.3 Literals . . .« +¢ & ¢ v ¢ ¢ o o o o o & .
4.5 SPECIAL ELEMENTS e e . o« o
4.6 ELEMENT PREFIXES FOR SYMBOLS, CONSTANTS
OR SPECIAL ELEMENTS ¢ ¢ ¢ ¢ ¢ o « & N
4.6.1 P. - Parcel-address prefix o« o
4.6.2 W. - Word-address prefix
4.7 EXPRESSIONS . . . ¢ & & 4 o« o o o o o o o o & .« .
4.7.1 Add-operator
4.7.2 Terms . ¢ ¢ o ¢ o o« o o+ o o . o« o
4.7.2.1 Prefixed-element
4.7.2.2 Multiply-operator
4,7.2.3 Term attributes
4.8 EXPRESSION EVALUATION« .
4.8.1 Evaluating immobile and relocatable terms with
coefficients « e .
4.9 EXPRESSION ATTRIBUTES« - « o
4.9.1 Absolute, immobile, relocatable, or external .
4.9.2 Parcel-address, word-address, or value
attributes o o
4.9.3 Truncating expression values« e
5. PSEUDO INSTRUCTIONS . . ¢ ¢ ¢ &« ¢ o o o o o o o = e e .
5.1 PROGRAM CONTROL . . . v « ¢ ¢ o« o o o o o & o e e
5. 1 1 IDENT - Identify program module . . .« o e
5.1.2 END - End program module
5.1 .3 COMMENT - Enter comment into generated binary
load module ¢ ¢ ¢ ¢ v e e e e . e .
5.2 LOADER LINKAGE« e o s . .

SR-2003

5.2.1 ENTRY - Specify entry symbols .
5.2.2 EXT - Specify external symbols .
5.2.3 START - Specify program entry .

vii

4-26
4-27
4-28
4-29
4-30
4-30
4-31
4-32
4-32
4-36

5. PSEUDO INSTRUCTIONS (continued)

5.3

5.5

5.6

SR-2003

MODE CONTROL . . ¢ ¢ ¢ ¢ o o ¢ ¢ ¢ o « o o o o o o o @
5.3.1 BASE - Declare base for numeric data
5.3.2 QUAL - Qualify symbols « +« « ¢ o o « o«
5.3.3 EDIT - Change statement editing status
5.3.4 FORMAT - Change statement format
SECTION CONTROL .« . ¢ & ¢ o « o ¢ o o o o s o o o o
5.4.1 SECTION - Section assignment

5.4.2 BLOCK - Local section assignment
5.4.3 COMMON - Common section assignment
5.4.4 STACK - Increment the size of the stack . . .
5.4.5 ORG - Set * and *O counter
5.4.6 BSS - Block save « ¢« ¢ ¢ v ¢ ¢ 4 4 e e e e e
5.4.7 LOC - Set * counter ¢« +« ¢ ¢ ¢« o« &
5.4.8 BITW - Set *W counter ¢« ¢« .« .
5.4.9 BITP - Set *P counter « . .
5.4,10 ALIGN - Align on an instruction buffer boundary
MESSAGE CONTROL « « « « + . © e e e e e o
5.5.1 ERROR - Unconditional error generatlon « e . e
5.5.2 ERRIF - Conditional error gemeration
5.5.3 MLEVEL - Message priority « « « .
5.5.4 DMSG - Issue diagnostic message
LISTING CONTROL . &« & ¢ o ¢ & o o o o o o o o o o o o
5.6.1 LIST - List control ¢ ¢ ¢ ¢ o o o o &
5.6.2 SPACE - List blank lines « « &« &« o &
5.6.3 EJECT - Begin new Page . . . « « o« o o o o o &
5.6.4 TITLE - Specify listing title . o« e o e e s
5.6.5 SUBTITLE - Specify listing subtltle .« o o .
5.6.6 TEXT - Declare beginning of global text source
5.6.7 ENDTEXT - Terminate global text source . . .

SYMBOL DEFINITION . . . ¢ & & o o & o o o o o o s o s
5.7.1 = - Equate symbol o
5.7.2 SET - Set symbol o« e 4 e e e e o e
5.7.3 MICSIZE - Set redefinable symbol to micro size

DATA DEFINITION . . . ¢ & & o o o o o o s o o o o o
5.8.1 CON - Generate constant « « « .«
5.8.2 BSSZ - Generate zeroed block « « .+ &
5.8.3 DATA - Generate data words . . . « « « « « . .
5.8.4 VWD - Variable word defimition

CONDITIONAL ASSEMBLY ¢ ¢ ¢ ¢ ¢ o« o o o o o o o«
5.9.1 IFA - Test expression attribute for assembly
condition 0 0 0 e 0 e e e e
5.9.2 IFC - Test character strings for assembly
condition o 4 0 0 00 e e e e .
5.9.3 IFE - Test expressions for assembly condition
5.9.4 IFM - Text machine characteristics
5.9.5 SKIP - Unconditionally skip statements
5.9.6 ENDIF - End conditiomnal code sequence
5.9.7 ELSE - Toggle assembly condition

viii

5-11
5-11
5-13
5-15
5-16
5-17
5-18
5-26
5-27
5-29
5-30
5-31
5-32
5-33
5-35
5-37
5-38
5-39
5-40
5-42
5-43
5-44
5-45
5-48
5-49
5-50
5-50
5-51
5-52
5-53
5-54
5-55
5-56
5-57
5-57
5-58
5-59
5-63
5-65

5-70
5-73
5-76
5-79
5-80
5-81

5. PSEUDO INSTRUCTIONS (continued)

510 MICROS . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o s o o o o o o« o o &

5.10.1 CMICRO - Constant micro definition
5.10.2 MICRO - Micro definition
5.10.3 OCTMIC - Octal micros . . « « + & & « « o« o .
5.10.4 DECMIC - Decimal micros . . « « « &« « « « « .
FILE CONTROL (INCLUDE pseudo) .+ « « +« « « o o « « o+ &
DEFINED SEQUENCES ¢ ¢ ¢ &« ¢ o o o « s o o o @
5.12.1 Similarities among defined sequences
5.12.1.1 EQiting . « « v v v ¢ 4 4 4 4 0 . .
5.12.1.2 Definition format
5.12.1.3 Formal parameters
5.12.1.4 Instruction calls « « « .« .
5.12.1.5 INCLUDE pseudo instruction
5.12.2 MACro .« ¢ o o o o o o o o o o o o o o s o @
5.12.2.1 Macro definition
5.12.2.2 Macro calls . . ¢ ¢ ¢ o o ¢« o o o
5.12.3 OPDEF - Operation definition
- 5.12.3.1 Opdef definition
5.12.3.2 Opdef calls ¢« « ¢« ¢« « « .
5.12.4 DUP - Duplicate code « «
5.12.5 ECHO - Duplicate code with varying arguments .
5.12.6 ENDM - End macro or opdef definition
5.12.7 EXITM - Premature exit of a macro expansion .
5.12.8 ENDDUP - End duplicated code e . .
5.12.9 NEXTDUP - Premature exit of the current
iteration of a duplication expansion
5.12,.10 STOPDUP - Stop duplication + « « « . .
5.12.11 LOCAL - Specify local unique character string
5.12.12 OPSYN - Synonymous operation

APPENDIX SECTION

A. INSTRUCTION SYNTAX . . . & ¢ o o o o o o o o s o « s o o o =

A.l
A2

INSTRUCTION SYNTAX CONVENTIONS . . . ¢ « + « « o o o« &
CAL INSTRUCTION SYNTAX . . . & ¢ & o o o o o o o o o

A.2.1 Syntax description o .
A.2.2 Instruction syntax (hierarchical ver51on) . e
A.2.3 Instruction syntax (sorted version)

B. PSEUDO INSTRUCTION INDEX . . ¢ ¢ ¢ o o o o o o o o o o o o o

C. LISTING MESSAGES . . « ¢« ¢ ¢« &+ ¢ + v o ¢« o o o o o o o o o «

D. DIAGNOSTIC MESSAGES . . . o ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o o o« o« =

SR-2003

ix

5-82
5-84
5-86
5-89
5-91
5-94
5-97
5-98
5-98
5-99
5-100
5-102
5-103
5-104
5-105
5-111
5-123
5-127
5-134
5-139
5-142
5-144
5-145
5-146

5-147
5-147
5-152
5-154

E. CHARACTER SET . . & v ¢ ¢ o« o o s o o o o o o s o o o
FIGURES

2-1 Symbols to be Included in a Binary Definition File . . .
3-1 Sample Organization of a CAL Program . . . « « « « « o+ &
4-1 Word-parcel Conversion for Six Words

4-2 Diagram of an Expression« « ¢« ¢ ¢ ¢ o o o o o o
4-3 Diagram of @ Term . « « « o s o o o o o o o o o .« o
4-4 Address Attribute Assignment Chart
TABLES

2-1 Comparison of COS and UNICOS Parameters
C-1 Listing MesSsages . . .« « + « o o o o o o o o o o o o o &
D-1 Diagnostic Messages . . « « « « + o o o o &+ o o .
DIAGRAMS

4-1 ASCII Character with Left Justification and Blank Fill .
4-2 ASCII Character with Left Justification and Zero Fill .
4-3 ASCII Character with Right Justification and Zero Fill .
4-4 ASCII Character with Right Justification in 8 Bits . .
4-5 64-bit ASCII Representation of 'abc’', Left Justified . .
4-6 64-bit Representation of 1+ + ¢ v v ¢ & « o &
4-7 ASCII Representation of 'abc', Left Justified in 9 Bits
4-8 Result of VWD with 9-bit Destination Field
4-9 64-bit Representation of the Complement of 1
4-10 64-bit Representationof 1 e e . .
4-11 Complement of 1 Stored in the Right-most Bits of a 4-bit
4-12 Result of VWD with 4-bit Destination Field
4-13 64-bit Representation of -1 “ e e e e
4-14 Truncated Value of -1 Stored in a 5-bit Fleld .
4-15 64-bit Representation of 5 e .

4-16 Truncated Value of 5 Stored in a 3-bit Fleld o« e e e e s
4-17 64-bit Representation of 5
4-18 Truncated Value of 5 Stored in a 2-bit Field
5-1 BITP Example - Zeroing Parcel A + ¢ & « o o o &
5-2 BITP Example - Parcel B Set by vwd Instruction
5-3 BITP Example - Resetting the Pointer . . . e e e e e
5-4 BITP Example - Result of a Bitp Followed by a vwd o o s
5-5 Storage of Unlabeled Data Items . . . « « « o o« o o &
5-6 Storage of Labeled and Unlabeled Data Items . . .- .
5-7 Storage of CDC Character Data Item
INDEX

SR-2003 X

2-23
3-2

4-27
4-29
4-29
4-35

oOQwN
|
N B

4-23
4-23
4-24
4-24
4-38
4-38
4-38
4-38
4-39
4-39
4-39
4-40
4-48
4-48
4-48
4-48
4-49
4-49
5-36
5-36
5-36
5-37
5-61
5-62
5-62

1. INTRODUCTION

Cray Assembly Language, Version 2 (CAL), is a powerful symbolic language
for the generation of object code to be loaded and executed on a Cray
Computer System.

CAL source programs consist of sequences of source statements. The
source statement can be a symbolic machine instruction, pseudo
instruction, a macro instruction, or an opdef instruction. The symbolic
machine instructions provide a means of expressing symbolically all
functions of a Cray mainframe. Pseudo instructions allow programmer
control of the assembly process. Macros and opdefs allow the programmer
to define instruction sequences and call them later in the program.

Features inherent in CAL include:

® Free-field source statement format. Size and location of source
statement fields are largely controlled by the user.

® Source statements (with some exceptions) can be entered using
uppercase, lowercase, or mixed-case letters.

® Control of local and common sections. You can assigh code or data
segments to specific areas.

® Preloaded data. Data areas can be defined during assembly and
loaded with the program.

® Data notation. Data can be designated in integer, floating-point,
and character code notation.

® Word and parcel address arithmetic. Addresses can be specified as
either word or parcel addresses.

e Listing control. You can control the content of the assembler
listing.

® Micro coding. A character string can be defined in a program and
substituted for each occurrence of its micro name in the program.

® Macro coding. Sequences of code are defined in a program or on a

library, are substituted for each occurrence of the macro name in
the program, and use parameters supplied with the macro call.

SR-2003 1-1

1.1 EXECUTION OF THE CAL ASSEMBLER

The CAL assembler executes under the control of the Cray operating
systems, COS and UNICOS. It has no hardware requirements beyond those
required for the minimum system configuration.

The assembler is loaded and begins executing as a result of the CAL
invocation statement that is specified by the user. Parameters on the
invocation statement specify characteristics of an assembler run, such as
the file containing source statements and list output. See section 2 of
this publication for descriptions of the CAL control statement used with
COS and the CAL command line used with UNICOS.

The source statements can include more than one CAL program segment. The
assembler assembles each program segment as it is encountered in the
source. The assembler makes two passes for each program segment to be
assembled. During the first pass, the assembler reads each source
language statement instruction, expands sequences (such as macro
instructions), generates the machine function codes, and assigns memory.
During the second pass, the assembler substitutes values for symbolic
operands and addresses and generates the object code and an associated
listing.

The object code must be linked and loaded before execution. References

to external symbols are resolved during the link and load phase. The
absolute file created by the linker/loader is ready for execution.

1.2 MANUAL ORGANIZATION

This publication is organized as follows:
® Section 2, Operating Systems, describes the CAL invocation
statements that execute under the Cray operating systems, COS and

UNICOS, program environment and binary definition files.

e Section 3, The CAL Program, describes the organization of a CAL
program.

¢ Section 4, Cray Assembly Language, describes the statement syntax
of the CAL program.

e Section 5, Pseudo Imstructions, describes the pseudo instructions
that are available in CAL.

Appendixes to this publication provide the following information:

® A description of CAL instruction and syntax in Backus-Naur Form
(BNF)

SR-2003 1-2

® A list of CAL pseudo instructions

® A list of CAL listing messages

® A list of CAL diagnostic messages

¢ A list of the character sets supported by CAL
Symbolic machine instructions for specific Cray Computer Systems are not
included in this manual. For a description of the symbolic machine
instructions available with your Cray Computer System, see the Symbolic

Machine Instructions Reference Manual, publication SR-0085, and the
CRAY-2 Computer System Functional Description, publication HR-2000.

1.3 CONVENTIONS

This publication uses the Backus-Naur Form (BNF). The following general
conventions are used in this manual.

italics Lowercase italicized letters, numbers, or symbols
indicate variable information.

underlining In presenting parameter options, underlining indicates
default options.

. A sequence of code is missing from the program.

Throughout this manual, CAL format (syntax) is presented using the
following header:

|Location|Result |Operand
I I I

Throughout this manual, examples of CAL source statements are represented
using the following header:

|Location|Result |Operand | Comment
11 110 120 |35
| | | I

SR-2003 1-3

The following BNF conventions are used in this manual:

[x]
{x}

SR-2003

Indicates that either X or y is valid

Indicates the x is a literal or terminal; the symbol within
the quotation marks should be entered exactly as

specified. The quotation marks, however, should not be
entered.

Indicates that x is a nonterminal symbol. A definition of
x can be found elsewhere in the syntax representation. For
example, the nonterminal symbol octal-digit is defined as
follows.

OCtal—digit s = nou I nlu I "2u| "3" I "4"' nsn I "6" | "7"

If the nonterminal symbol consists of more than one word,
the words are hyphenated.

Follows a nonterminal symbol with a string of symbols that
replace the nonterminal symbol

Indicates x is optional
Indicates 0 to n occurrences of x are valid

Indicates the end of a description

2. OPERATING SYSTEMS

CAL Version 2 is a portable assembler that includes the following:
¢ Multiple operating system interfaces

e Support for binary definition files

2.1 OPERATING SYSTEM INTERFACES

CAL Version 2 interfaces with the following operating systems and Cray
Computer Systems:

® Cray Operating System (COS) on CRAY X-MP and CRAY-1 series
mainframes

e (Cray Operating System (UNICOS) on CRAY-2 and CRAY X-MP and CRAY-1
series mainframes

2.1.1 CRAY OPERATING SYSTEM COS

A typical CAL job on a Cray computer running the Cray operating system
COS contains the following files:

® A job control language (JCL) file of COS control statements
® A CAL source file

End-of-file indicators divide files from each other. An end-of-dataset
indicator follows the last file. (The actual representation of the
end-of-file and end-of-dataset indicators depends on the front-end
computer.) Together these files comprise a job dataset, named $IN by COS.

The job dataset is submitted to the Cray computer for processing through
a front-end computer. The method of submitting the job depends on the
front-end computer.

A job's output dataset (named $OUT by default) is returned to the
front-end computer when the job completes. The job's output dataset
includes a program listing (by default), any output created by the job,
and the job's logfile. The logfile, containing a history of the job and
other aspects of running a job on a Cray computer, is described in more
detail in the COS Version 1 Reference Manual, publication SR-0011.

SR-2003 2-1

CAL generates two kinds of messages during assembly: 1listing and
diagnostic. Listing messages are generated by the assembler when a
syntax or semantic error is encountered. A message is printed on the
listing beneath every source statement that was flagged by the
assembler. A pointer identifies the location in the source statement
that corresponds to the message that was issued.

CAL generates five levels of diagnostic messages that are divided into
two classes: user information about the assembly (comment, note, and
caution) and CAL assembler errors (warning and error). All diagnostic
messages are written to the logfile.

Diagnostic user messages are classified by level of severity as follows:

¢ Comment - Statistical information
® Note - Possible assembly problems
¢ Caution - Definite user errors during assembly of the program

These messages are always printed in the logfile and include messages
about segments processed, time of assembly, number of messages, and so
on. These messages are numbered 1 through 99 and are listed in
appendix D, Diagnostic Messages.

CAL diagnostic assembler messages (warning and error) are printed only if
the assembler is malfunctioning. Therefore, it is unlikely that they
will ever appear in your job's logfile. If a diagnostic message with a
priority of warning or error message ever does appear in your job's
logfile, contact your local site analyst. These messages are numbered
100 and greater and are not listed in this manual.

2.1.1.1 JCL file
A simple CAL job may contain the following COS control statements in its
JCL file followed by an end-of-file marker, the CAL source, and another

end-of-file marker:

JOB, JN=TEST.
ACCOUNT,AC=... .

CAL.

SEGLDR.

$ABD.

/EOF
IDENT TEST
END

/EOF

SR-2003 2-2

The JOB statement is a required statement that defines the job to COS.
At the minimum, it must contain a JN parameter to assign the job name.

The ACCOUNT control statement presents the user's account number, which
may be required by a site before access is granted to the system.

The CAL statement causes the CAL assembler to be loaded and executed.
CAL control statement parameters are described in the following
subsection.

The SEGLDR statement links and loads the assembled program.

The $ABD statement executes the assembled program.

These and other control statements are described in the COS Version 1

Reference Manual, publication SR-0011.

2.1.1.2 CAL control statement

The COS NEWCAL control statement invokes the CAL Version 2 assembler.

The user selects assembler parameters either explicitly by listing them
on the control statement or implicitly by accepting the default values.
All parameters have default values. Parameters are order independent and
are optional.

Format:

NEWCAL,I=[idn{:[idn]}],L=1dn,E=edn,B=bdn,X=xdn,S=[{sdn{:[sdn]}],
T=tdn, SYM=symdn, ALLSYMS, ABORT, CPU=[primary]{: [charac]}.NLIST,
LIST=[name{:[namel}],options,ML=1evel, MC=count, FORMAT=format,

EDIT=edit.

I=[idn{:[idn]}]
Name of dataset containing source statement input. The
default is $IN. CAL reads source statements from dataset
Iidn until an end-of-file is encountered. One or more
dataset names can be entered and are processed as if
appended.

L=1dn Name of dataset into which list output is written. The

default is $OUT. CAL writes one file of output. If L=0,
no listing is written.

SR-2003 2-3

E=edn Name of dataset on which messages are written. The default
is no message dataset if the list output is on $OUT,
otherwise, the default is $OUT. CAL writes source
statements containing messages to this dataset as one file.

Specifying E causes a message dataset to be generated on a
file named $OUT. If the message dataset name, edn, is

the same as the listing dataset name, list output is
written. If E=0, the message dataset is not listed.

B=bdn Name of dataset to receive binary load data. The default
is $BLD. CAL writes binary load data to this dataset, one
record per program module. An end-of-file is not written.
If B=0, no binary load data is written.

X=xdn Binary symbol table for the global cross-reference
generator, SYSREF. Each record contains cross-reference
information for the global symbols in one particular
program unit. The default, equivalent to specifying X=0,
writes no global cross-reference records. If X is
specified and the listing is suppressed (L=0), the
cross-reference file is not created. If X is specified
without a value, the information is written to $XRF.

S=[sdn{:([sdn]}]
Binary definition dataset name. The default is $SYSDEF.
If S=0 is specified, no binary definition datasets are
used. sdn can be a single dataset name or a list of
dataset names separated by colons. The following is an
example of specifying a list of dataset names:

S=$SYSDEF : OURDEF :MYDEF

Binary definition datasets are processed in the order in
which they are specified.

T=tdn Binary definition. Specifies dataset name to which all
global macros, opdefs, symbols, micros, and OPSYN
assignments are written. The default, equivalent to
specifying T=0, is that no binary definition dataset is
written, If T is specified without a value, the binary
dataset is written to $BDF.

SYM=symdn Name of dataset where the optional symbol table is to be
written. The default is that no symbol table dataset is
generated by CAL. If SYM is specified without a value, the
symbol text is written to the same dataset as the binary
load data.

SR-2003 . 2-4

ALLSYMS

ABORT

Forces a symbol table to be generated with all symbols;
normally nonreferenced symbols are not included. If the
SYM option is not specified on the CAL control statement,
the symbol text is writtem to the same dataset as the
binary load data.

Abort mode. If this parameter is present and if any
diagnostic messages of priority caution, warning, or error
were issued to the logfile, CAL aborts the job after the
assembly of the program.

If this parameter is omitted or if diagnostic error
messages of priority caution, warning, or error were not
encountered, CAL exits normally and job processing
continues the next control statement in the job.

CPU=[primary]{:[charac]}

SR-2003

Cray computer to execute CAL source code. The default is
that code is generated for the characteristics of the
machine specified in the TARGET control statement. If
there is no previous TARGET control statement in the JCL
stream, code is generated for the characteristics of the
host machine. For more information about the TARGET
control statement, see subsection 2.1.1.3, The COS
Environment.

If the CPU option instruction set looks like this,
CPU=:charac{: [charac]}

where the primary is not specified and one or more
charac are given, the primary stated on the TARGET
control statement is used. Any charac that are not
specified are taken from the TARGET control statement.

If the CPU option instruction set looks like this,
CPU=primary{: [charac]}

where the primary is specified and the charac may or

may not be given, the specified primary overrides that of
the TARGET control statement. Any charac that are not
specified are taken from the defaults for the given
primary.

primary The type of Cray computer. The primary
options may differ from site to site. The
commonly used options are:

*HOST The machine on which the assembler
is currently running

SR-2003

charac

*TARGET The machine that is specified in
the TARGET control statement
CRAY-X4 CRAY X-MP Models 48 and 416
CRAY-X2 CRAY X-MP Models 22, 24, and 28
CRAY-X1 CRAY X-MP Models 11, 12, 14, and

18

CRAY-XMP CRAY X-MP

CRAY-1M CRAY-1
CRAY-1S CRAY-1
CRAY-1B CRAY-1
CRAY-1A CRAY-1
CRAY-1 CRAY-1
CRAY-2 CRAY-2

M
S
B
A

The features of the primary computer.

The CRAY-2 series
options.

The CRAY X-MP and
permit you to spec

and numeric traits

Logical Traits

has no special feature

CRAY-1 Computer Systems
ify the following logical

Description

AVL
NOAVL
BDM
NOBDM
CIGS

NOCIGS

CORI

NOCORI

EMA
NOEMA
HPM
NOHPM

PC

NOPC
READVL
NOREADVL
STATRG
NOSTATRG
VPOP
NOVPOP
VRECUR

Additional vector logical

No additional vector logical
Bidirectional memory

No bidirectional memory
Compressed index and
gather/scatter

No compressed index and
gather/scatter

Control operand range
interrupts

No control operand range
interrupts

Extended memory addressing
No extended memory addressing
Hardware performance monitor
No hardware performance
monitor

Programmable clock

No programmable clock

Read vector length

Do not read vector length
Status register

No status register

Vector pop count

No vector pop count

Vector recursion

NLIST

Numeric Traits Description

NOVRECUR No vector recursion

BANKBUSY=n Bank busy time in clock
periodsf

BANKS=n Number of memory bankst

CLOCKTIM=n Clock time in picoseconds*

IBUFSIZE=n Instruction buffer size in
wordst

MEMSIZE=n[c] Memory size in words; ¢
can be one of the
following:*

K = n*10003 words
M = n*1000000g words

MEMSPEED=n Memory speed in clock
periods

NUMCLSTR=n Number of cluster
registers

NUMCPUS=n Number of cpus*

Ignores all LIST pseudos in the code including those
specified by LIST in the control statement

LIST=[name{: [name]}]

options

Name of LIST pseudo instructions to be processed. A LIST
pseudo instruction with a matching location field name is
not ignored. A LIST pseudo with a location field name that
does not match a name specified on the CAL control
statement is ignored.

A name can be a single name or can be a list of names
separated by colons, for example:

LIST=TASK1:TASK2:TASK7

If just LIST is specified, all LIST pseudo instructions are
processed, regardless of the location field name.

Listing control options. Any of the following listing
control options can be specified to enable or disable a
listing feature. The selection of an option on the CAL
control statement overrides the enabling or disabling of
the corresponding feature on a LIST pseudo instruction.
Refer to the description of the LIST pseudo in subsection
5.6, Listing Control, for more details about these options.

+ n represents an unsigned decimal number.

SR-2003

Defaults are underlined.

ON Enables source statement listing

OFF Disables source statement listing

ED Enables listing of edited statements

NED Disables listing of edited statements

XRF Enables cross-reference

NXRF Disables cross-reference

XNS Includes nonreferenced symbols in cross-reference
NXNS Does not include nonreferenced symbols in

cross-reference

LIS Enables listing of listing control pseudo
instructions

NLIS Disables listing of listing control pseudo
instructions

TXT Enables global text source listing

NTXT Disables global text source listing

MAC Enables listing of macro and opdef expansions

NMAC Disables listing of macro and opdef expansions

MBO Enables macro binary only

NMBO Disables macro binary only

MIC Enables listing of generated statements before
editing within an expansion

NMIC Disables listing of generated statements before
editing within an expansion

MIF Enables macro conditional listing

NMIF Disables macro conditional listing

DUP Enables listing of duplicated statements

NDUP Disables listing of duplicated statements

ML=level Priority of listing messages received on output and message

listing. level can be: COMMENT, NOTE, CAUTION, WARNING,
or ERROR; the default is WARNING. Specific levels are
described under the MLEVEL pseudo instruction. Message
descriptions are in appendix D, Diagnostic Messages.

level indicates the threshold for listing messages; COMMENT
is considered to be the lowest level and ERROR to be the
highest level. When a threshold level is specified, the
specified level and all levels above it are printed.

SR-2003 2-8

For example, if ML=CAUTION, CAL prints caution, warning,
and error messages. If ML=ERROR, CAL prints only error
messages. If ML=COMMENT, CAL prints all message levels
(comment, note, caution, warning, and error).

When ML is set on the control statement, the MLEVEL pseudo
is ignored. In other words, the ML specification cannot be
overridden by the MLEVEL pseudo.

MC=count Message count. Specifies how many messages print on the
listing. For example, if count is set to 200, the line
of code that contains approximately the 200th listing
message causes display of a message saying the maximum
number of messages have been encountered and no more
messages are listed. The default for MC is 100.

FORMAT=format
FORMAT options are OLD and NEW. FORMAT sets the statement
format to old (CAL Version 1 style) or new. If FORMAT is
not specified, the default is new for CRAY-2 Computer
Systems and old for CRAY X-MP and CRAY-1 Computer Systems.

Statement format can be modified by the FORMAT pseudo
within an assembler program, but the default established by
the FORMAT option on the CAL invocation statement is
reactivated at the beginning of each segment. For more
information about the FORMAT pseudo, see subsection 5.3,
Mode Control.

EDIT=edit Edit options are ON and OFF; the default is ON. EDIT turns
the actual editing of statements (concatenation and micro
substitution) on and off. 1If the default is used, editing
can be modified by the EDIT pseudo.

Statement editing can be modified by the EDIT pseudo within
an assembler program, but the default established by the
EDIT assembler option is reactivated at the beginning of
each segment. For more information about the EDIT pseudo,
see section 5.3, Mode Control, of this publication.

2.1.1.3 The COS environment

The COS environment can be modified using the OPTION and TARGET control
statements. NEWCAL uses values set by OPTION and TARGET to establish
values for its environment.

LPP parameter on the OPTION control statement - The LPP parameter on the
OPTION control statement sets the number of lines per page for output
listings. By default, the number of lines per page is 55. The format of
the OPTION control statement is as follows:

SR-2003 2-9

OPTION,LPP=n,....

n Specifies the page length that CAL uses for output
listings. n is a decimal number that must be a value in a
valid range (0-255 for COS and 4 through 999 for CAL):; the
default is 55. If n is outside of the permitted range by
CAL (4-255), CAL uses the default value of 55.

For more information about the OPTION control statement, see the COS
Version 1 Reference Manual, publication SR-0011.

TARGET control statement - The TARGET control statement identifies the
kind of cpu for which CAL is targeting code. The format of the TARGET
control statement is as follows:

TARGET, CPU=[primary]{: [charac]}

primary Machine type. See the CPU parameter for the CAL control
statement elsewhere in this section for more information.

charac Characteristics for the target machine. See the CPU
parameter for the CAL control statement elsewhere in this
section for more information.

For more information about the TARGET control statement, see COS
Version 1 Reference Manual, publication SR-0011.

For every COS job, there are two environment descriptions. One, called
the host, describes the machine on which the job is currently executing.
The other, called the target, describes the machine that language
processors may use to determine the machine for which they generate code.

Initially, the host and the target are identical. For the duration of
the job, the host remains unchanged. However, the target may be modified
by the TARGET control statement at any time and as frequently as needed.

The assembler uses the description of the target if the CPU parameter is
not specified on the NEWCAL control statement or if a primary is not
specified on the CPU parameter. All options specified on the CPU
parameter override the current target description during the assembler's
execution.

SR-2003 2-10

2.1.2 CRAY OPERATING SYSTEM (UNICOS)

A typical interactive session in which a CAL program is assembled on a
Cray Computer System that is running UNICOS contains a CAL source file
that is assembled, loaded, and executed with a series of commands entered
at the keyboard.

CAL does not use the standard input file or standard output file during
assembly, but does use the standard error file to report diagnostic
messages and source line messages.

CAL generates two kinds of messages during assembly: 1listing and
diagnostic. If the -1 and -L options are specified on the CAL as command
line, listing messages are generated by the assembler when a syntax or
semantic error is encountered. A message is printed on the listing
beneath every source statement that was flagged by the assembler. A
pointer identifies the location in the source statement that corresponds
to the message that was issued. This type of message is also issued to
the standard error file.

CAL generates five levels of diagnostic messages that are divided into
two classes: user information about the assembly (comment, note, and
caution) and CAL assembler errors (warning and error). All diagnostic
messages are written to standard error.

Diagnostic user messages are classified by level of severity as follows:
¢ (Comment - Statistical information
® Note - Possible assembly problems
® Caution - Definite user errors during assembly of the program

The -V option must be specified in order for messages with a priority of
comment to be printed to standard error. Messages with a priority of
note and caution are printed to standard error even if -V is not
specified. Messages with a priority of comment, note, and caution are
numbered 1 through 99 and are listed in appendix D, Diagnostic Messages.

CAL diagnostic assembler messages with priorities of warning and error
are printed only if the assembler is malfunctioning. Therefore, it is
unlikely that they will ever appear. If a diagnostic message with a
priority of warning or error ever does appear in standard error, contact
your local site analyst. These messages are numbered 100 and greater and
are not listed in this manual.

SR-2003 2-11

2.1.2.1 1Interactive assembly

A CAL program can be assembled and executed interactively by entering the
following commands at the keyboard:

as myfile.s
1d myfile.o
a.out

The as command assembles file myfile.s and creates file myfile.o.

The 1d command links and loads the assembled program found in myfile.o
and creates the executable file a.out.

The a.out command executes the executable file a.out
These and other commands are described in the UNICOS Commands Reference

Manual, publication SR-2011.

2.1.2.2 as - CAL command line

The UNICOS as - common Cray assembler (CAL) command line invokes the CAL
Version 2 assembler.

Format:

as [-o objfile] [-1 lstfile] [-L msgfile] [-b bdflist] [-B]
[-c bdfile] [-g symfile] [-G] [-C cpu] [-h] [-H]
[-i nlist] [-I options] [-m mlevel] [-n number)

[-£] [-F] [-j] [-J] [-V] filename

The as command assembles the named file. The following options, each a
separate argument, can appear in any order, but must precede the filename
argument.

-0 objfile
Relocatable assembly output; stored in file objfile. By
default, the relocatable output file name is formed by
removing the path name and the .s suffix, if they exist,
from the input file and by appending a .o suffix.
objfile must be processed by a link editor or loader.

SR-2003 2-12

-1 Istfile

Assembly output source listing; stored in file lstfile.
By default, the output source listing is suppressed.

-L msgfile

-b bdflist

Assembly output source message listing; stored in file
msgfile. By default, the output message listing is
suppressed.

Reads the binary definition files stored in one or more
files. The files named in bdflist can be designated
using one of the following forms:

® List of files separated from one another by a comma.

® List of files enclosed in double quotes and separated
from one another by a comma and/or one or more spaces.

Reads the default binary assembler definitions found in
file /1ib/asdef unless suppressed with the -B option. The
remaining files listed in bdflist are read in the order

in which they are specified.

-B Suppresses /lib/asdef as the default binary assembler
definition file.

-c bdfile
Creates the binary definition file bdfile. By default,
the creation of a binary definition file is suppressed.

-g symfile
Assembly output symbol file; stored in symfile.
symfile is used by the system debuggers. By default, the
output symbol file is suppressed.

-G Forces all symbols to symfile if the -g option is used.
Normally, nonreferenced symbols are not included.

-C cpu Code is generated for the specified cpu. The default is

SR-2003

that code is generated for the characteristics of the host
machine. c¢pu has the following syntax:

cpu ::= primary{".,"([charac]}
or
cpu ::= ","[charac]{","[charac]}

primary primary can be one of the following Cray
Computer Systems:

cray-2 CRAY-2

cray-x4 CRAY X-MP Models 48 and 416

cray-x2 CRAY X-MP Models 22, 24, and 28
cray-x1 CRAY X-MP Models 11, 12, 14, and 18
cray-xmp CRAY X-MP

cray-1m CRAY-1 M

cray-1s CRAY-1 S

cray-1b CRAY-1 B

cray-1la CRAY-1 A

cray-1 CRAY-1

charac The features of the primary computer.

CRAY-2 Computer Systems have no special
options.

The CRAY X-MP and CRAY-1 Computer Systems
permit you to specify the following logical

and numeric traits:

Logical Traits Description

avl Additional vector logical

noavl No additional vector logical

bdm Bidirectional memory

nobdm No bidirectional memory

cigs Compressed index and
gather/scatter

nocigs No compressed index and
gather/scatter

cori Control operand range
interrupts

~ nocori No control operand range

interrupts

ema Extended memory addressing

noema No extended memory addressing

hpm Hardware performance monitor

nohpm No hardware performance
monitor

PC Programmable clock

nopc No programmable clock

readvl Read vector length

noreadvl Do not read vector length

statrg Status register

nostatrg No status register

vpop Vector pop count

novpop No vector pop count

vrecur Vector recursion

SR-2003 2-14

-h

-H

-i nlist

Numeric Traits Description

novrecur No vector recursion

bankbusy=n Bank busy time in clock
periods*

banks=n Number of memory banks¥

clocktim=n Clock time in picosecondsf

ibufsize=n Instruction buffer size in
wordst

memsize=n Memory size in wordst

memspeed=n Memory speed in clock
periods

numclstr=n Number of cluster
registers

numcpus=n Number of cpus?

Enables all list pseudos regardless of the location field
name.

Disables all list pseudos regardless of the location field
name.

Restricts list pseudo processing to those pseudos whose
location field names are given in nlist. The names
specified by nlist can take one of the following forms:

e List of names separated from one another by a comma

¢ List of names enclosed in double quotes and separated
from one another by a comma and/or one or more spaces.

-1 options

List options. A list of more than one option must be
specified without intervening blanks. It is not permitted
to specify conflicting options (the same character in
uppercase and lowercase) in the same -I list. options

can be any of the following:

s Enable source statement listing (default)
S Disable source statement listing

e Enable edited statement listing (default)
E Disable edited statement listing

t Enable text source statement listing
T Disable text source statement listing (default)

+ n represents an unsigned decimal number.

SR-2003

-m mlevel

-n number

SR-2003

1 Enable listing control pseudo instructions
L. Disable listing control pseudo instructions (default)

m Enable macro/opdef expansions binary only
M Disable macro/opdef expansions binary only (default)

d Enable dup/echo expansion
D Disable dup/echo expansion (default)

b Enable macro/opdef/dup/echo expansion binary only
B Disable macro/opdef/dup/echo expansion binary only
(default)

¢ Enable macro/opdef/dup/echo expansion conditionals
C Disable macro/opdef/dup/echo expansion conditionals
(default)

P Enable macro/opdef/dup/echo expansion of pre-edited
lines

P Disable macro/opdef/dup/echo expansion of pre-edited
lines (default)

]

Enable cross-reference listing (default)
X Disable cross-reference listing

n Enable nonreferenced local symbols included in the
cross-reference (default)

N Disable nonreferenced local symbols included in the
cross-reference

Priority for the output listing, the message listing, and
the standard error file. mlevel can be one of the
following:

comment, note, caution, warning, or error

If the -m option is specified, it overrides all MLEVEL
pseudo instructions. By default, the priority is warning,
and the MLEVEL pseudo instruction controls the message
level during assembly.

Maximum number of messages to be inserted into the output
listing, the message listing, and the standard error file.
number must be zero or greater; the default is 100.

Enables the new statement format. By default, the old
format is used when targeting for a CRAY X-MP or CRAY-1
Computer System; otherwise, the new format is used.
Statement format reverts to the format specified on the
invocation statement at the end of every assembler segment.

-F Disables the new statement format. By default, the old
format is used when targeting for a CRAY X-MP or CRAY-1
Computer System; otherwise, the new format is used.
Statement format reverts to the format specified on the
invocation statement at the end of every assembler segment.

-3 Enables editing; the default is enabled. Editing status
reverts to the status specified on the invocation statement
at the end of every assembler segment.

-J Disables editing; the default is enabled. Editing status
reverts to the status specified on the invocation statement
at the end of every assembler segment.

-V Causes the version number of the assembler being run and
other statistical information (diagnostic messages of
priority, comment, note, and caution) to be written to the
standard error file.

filename File to be assembled; all options must precede the file
name argument.

2.1.2.3 The UNICOS environment

The CAL assembler is affected by the LPP shell variable from the UNICOS
environment. The LPP shell variable sets the number of lines per page for
output listings (page length). By default, the number of lines per page
is 55.

The UNICOS environment is set as follows:T
LPP=n as filenamex.s
or

LPP=n
as filenamea.s
as filenameb.s

as filenamez.s

n Specifies the page length used for output listings. n is a
decimal number. CAL requires a value in a valid range
(4 through 999); the default is 55. If n is outside of
the valid range, CAL uses the default to set the page length.

+ The environment is dependent on the type of shell being used.

SR-2003 2-17

filenamea, filenameb...filenamez
Names of the UNICOS files that are being assembled.

If the LPP shell variable is specified before and on the same line as the
as command line, the number of lines per page assigned by the LPP shell
variable affects only that particular as instruction.

If the LPP shell variable is specified as a separate entry, all of the
assemblies that follow use the page length specified by that LPP shell
variable for output and message listings.

In the following example, the number of lines per page for the output
listings for srca.s and srcb.s is 45:

LPP=45
as srca.s
as srcb.s

In the following example, the page length for srcd.s is 45. The page
length for srce.s, however, reverts to 64. 64 is used because the second
LPP shell variable is associated only with file srcd.s:

LPP=64
LPP=45 as srcd.5

as srce.s

Table 2-1 compares the control parameters for the Cray operating systems
COS and UNICOS.

Table 2-1. Comparison of COS and UNICOS Parameters

- — —

| I

| Ccos UNICOS | Comments
| |

| | [

| I=[idn{:[1idn]}] | filename | Input source

| Default is $IN | No default |

| I |

| L=1dn | -1 1stfile | Source listing
| Default is $OUT | Default is no |

| | Istfile I

| | |

SR-2003 2-18

Table 2-1. Comparison of COS and UNICOS Parameters (continued)

cos UNICOS Comments
E=edn -L msgfile Message listing
Default is $OUT Default is no
msgfile
B=bdn -o objfile Relocatable or object file

Default is file
name with .s suffix
replaced by .o
suffix

Not available

Default is $BLD

B=0O

X=xdn Not available Cross-reference symbol table

I | I

I I I

| | |

| | |

| | |

| | I

| | |

| | |

| I |

I | I

| | |

| I |

| I |

| I |

| | |

| | |

| | I

| S=[sdn{:[sdnl}] | -b bdflist | System definitions or binary
| Default is | Default is | definition files

| $SYSDEF | 7/1ib/asdef |

| | I

| S=0 | -B | Suppress the use of binary
| | | definition file

[| |

| T=bdf | -c bdfile | Create binary definition file
| | |

| SYM=sym | -g symfile | Symbol table file

| ALLSYMS | -G | Force all symbols to symbol
| | | table file

! | |

| ABORT | Not applicable | Abort mode; when diagnostic
| | | messages are sent to the

| | | logfile, CAL aborts the job
| | |

| CPU=cpu | -C cpu | Target machine

| | I

| LIST | -h | Enable all list pseudo

| | | instructions

| | I

| NLIST | -H | Disable all list pseudo

| | | instructions

| I I

| LIST=names | -i nlist | Enable all list pseduos with
| | | a matching location field

| | | name

I I I

| options | -1 options | List pseudo options

| | |

SR-2003 2-19

Table 2-1. Comparison of COS and UNICOS Parameters (continued)

the assembler being run and
other statistical information
to be written

| | |

| cos | UNICOS | Comments

| | |

| | I

| ML=mlevel | -m mlevel | Message level

| I |

| MC=count | -n number | Number of messages allowed in
| | | the listing

| | I

| FORMAT=NEW | -£ | Enable new format

| FORMAT=OLD | -F | Enable old format

| | |

| EDIT=ON | -3 | Enable editing

| EDIT=OFF | -J | Disable editing

| | |

| Not applicable | -V | Causes the version number of
| I |

| | |

| | |

I | |

2.2 BINARY DEFINITION FILES

The CAL Version 2 Assembler allows your assembler source program access
to previously assembled lines or sequences of code. These preassembled
sequences are stored in files that are called binary definition files.
These files are analagous to libraries. Binary definition files can be
classified in two groups:

¢ System defined
¢ User defined

The system-defined binary definition files for the Cray Operating Systems
are $SYSDEF for COS and /lib/asdef for UNICOS. These system-defined
binary definition files are accessed automatically by CAL unless the
assembler is directed otherwise. Binary definition files contain
symbols, macros, opdefs, opsyns, and micros that are commonly used by CAL
users. For the macros and opdefs available under COS and UNICOS, refer
to the Macros and Opdefs Reference Manual, CRI publication SR-0012 and
the CRAY-2 UNICOS Libraries, Macros and Opdefs Reference Manual,
publication SR-2013, respectively.

SR-2003 2-20

NOTE

System- and user-defined binary definition files are
identical in all respects. User-defined binary
definition files are created and used the same way that
system-defined binary definition files are created and
used. They have been treated as separate entities in
this discussion in order to encourage you to define
binary definition files that meet your particular
programming requirements.

User-defined binary definition files can be created by copying the
system-defined binary definition files and by editing them in one of the
following ways:

® Adding to the system-defined binary definition file

® Redefining a definition in the system-defined binary definition
file

or by disabling the recognition of system-defined binary definition files
and accumulating the defined sequences entirely from an assembler source
program.

You can specify more than one binary definition file with each assembly.
If more than one binary definition file is specified, the files are

processed from left to right in the order in which they are specified on
the S (COS control statement) and -b parameters (UNICOS as command line).

Binary definition files are important, because once lines or sequences of
code are assembled and stored in a binary definition file, they can be
accessed without being reassembled. The direct access of a binary
results in considerable savings in assembler time.

System- and user-defined binary definition fields are defined, created,
and used in the same manner.

2.2.1 DEFINING A BINARY DEFINITION FILE

Only certain types of lines or sequences of code are permitted in a
binary definition file. Binary definition files are always created from
the global part of program segments and currently accesssed binary
definition files, if any. Ordinarily, binary definition files are
created from source programs that include a global part in a single
segment that does not include a program module.

SR-2003 2-21

You can also make additions to binary definition files using assembler
source programs that may or may not include program modules. Under no
circumstance is any line or sequence of code added to a binary definition
file from an assembler program module. Although all additions to binary
definition files come from the global part of the segment, not all lines
or sequences of code in the global part are added when a new binary
definition file is created.

Binary definition files are made up of lines or sequences of code that
can be classified as follows:

Symbols
Macros
Opdefs
Opsyns
Micros

® & 0 o o

Every line or sequence of code must fall into one of the classes listed
above and satisfy the requirements for that particular class before they
are added to a binary definition file.

2.2.1.1 Symbols

CAL accumulates symbols to be included in a new binary definition file
from all currently accessed binary definition files and from all of the
global parts of program segments that fit the following requirements:

e Symbols that are to be included in binary definition files cannot
be redefinable. To be included in a binary definition file, a
symbol must be defined with the = pseudo instruction. Symbols
defined with the SET or MICSIZE pseudo instruction are redefinable
and therefore are not included in a binary definition file.

¢ Symbols that are to be included in binary definition files cannot
be preceded by %%. This exclusion applies to symbols that are
created by the LOCAL and = pseudo instructions.

CAL identifies all of the symbols in the global part of program segments
that meet the requirements described above and includes them when a
binary definition file is created. In figure 2-1, SYM1, SYM3, and SYM4
meet the requirements and are included. SYM2 (defined in the module),
SYM5 (redefinable), %%SYM6 (begins with %%) do not meet the requirements
and are not included when a binary definition file is created.

2.2.1.2 Macros
CAL accumulates macros to be included in a new binary definition file

from all currently accessed binary definition files and from all of the
global parts of segments within a source program.

SR-2003 2-22

< N
- o~ o~
I
=
nee| n
1] i} 1]
< < m M &) ©
— (] ~ Q — m
< '] ! — o~ m 1] ™ — QL 1] < N
Q m] m Q m = Q mms
+ (o] o] + [o] g + (o] o
=] ~ w (o] w <} —~ w Q =} ~ v v ¢f
m (&) = m. (4] = m. (&)
m Q 1]]
3] [72} 7] 7]
o
o IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
]
[+¥]

Symbols to be Included in a Binary Definition File

Figure 2-1.

2-23

SR-2003

2.2.1.3 Opdefs

CAL accumulates opdefs to be included in a new binary definition file
from all currently accessed binary definition files and from all of the
global parts of segments within a source program.

2.2.1.4 Opsyns

CAL accumulates opsyns to be included in a new binary definition file
from all currently accessed binary definition files and from all of the
global parts of segments within a source program.

2.2.1.5 Micro

CAL accumulates micros to be included in a new binary definition file
from all currently accessed binary definition files and from all of the
global parts of segments within source program. Only micros that cannot
be redefined are included in a binary definition file. If a micro
defined by the micro pseudo instruction is to be included into a binary
definition file, it must be defined using the CMICRO pseudo instruction.

2.2.2 CREATING BINARY DEFINITIONS FILES

Binary definition files can be created for use with the Cray operating
systems COS and UNICOS.

2.2.2.1 Creating new binary definition files for COS

A binary definition file is created under COS when the S and T parameters
are included on the COS control statement. The S parameter can be
followed by one or more dataset names that are separated by colons.

In the following example, $SYSDEF, OURDEF, and MYDEF are the names of the
predefined binary definition files that are to be included along with any
symbols, macros, opdef, opsyn, and micros from the global parts of the
program segments from the current source program being assembled. The
new binary definition file named NEWDEF is defined by the T parameter.

NEWCAL, S=$SYSDEF : OURDEF : MYDEF , T=NEWDEF .

SR-2003 2-24

NEWDEF, the binary definition file created by the T parameter in the
previous example, contains the symbols, macros, opdefs, opsyns, and
micros that were accumulated by CAL from $SYSDEF, OURDEF, MYDEF, and $IN
(default input file). When the next source program is assembled, the
following statement would make NEWDEF available as the only binary
definition file:

NEWCAL, S=NEWDEF.

If only the symbols, macros, opdefs, opsyns, and micros accumulated from
the global parts of the program segments from the current source program
being assembled are to be entered into a binary definition file, the
following would be entered:

NEWCAL, S=0, T=NEWDEF .

The S=0 specification suppresses the default system-defined binary
definition file ($SYSDEF) and excludes the definitions in $SYSDEF from
the binary definition file being created. If a binary definition file
was defined as shown above, the new binary definition file (NEWDEF) would
be created and on subsequent assemblies could be specified as follows:

NEWCAL, S=$SYSDEF : NEWDEF .

In the previous example, two binary definition files ($SYSDEF the
system-defined file and NEWDEF a user-defined file) are specified.

2.2.2.2 Creating new binary definition files for UNICOS

A binary definition file is created under UNICOS when the -b and -c
parameters are included on the as command line. The -b parameter can be
followed by a list of files that are separated by commas or a list of
files enclosed in double quotes and separated by spaces or commas.

In the following example, the default system-defined binary definition
file /lib/asdef and user-defined binary definition files ourdeffile, and
mydeffile are to be included along with the accumulated symbols, macros,
opdefs, opsyns, and micros from the global parts of the program segments
from the current source program (prog.s) being assembled. The new binary
definition file named mynewfile is defined by the -c parameter and is
created by CAL.

as -b ourdeffile,mydeffile, -c mynewfile prog.s
By default, the default binary definition file (/1lib/asdef) is always

available unless it is suppressed with the -B parameter. If not
suppressed, /lib/asdef is the first binary definition file that is read.

SR-2003 2-25

Any other binary definition files that are specified by the -b parameter
are processed in the order in which they are specified. When the next
source program is assembled, the following statement makes mynewfile
available as the only binary definition file:

as -B -b mynewfile prog.s

If only the accumulated symbols, macros, opdefs, opsyns, and micros from
the global parts of the program segments from the curreant source program
being assembled are to be entered into a binary definition file, the
following could be entered:

as -B -c mynewfile prog.s

The -B parameter disables the default system-defined binary definition
file /1ib/asdef and only the accumulated symbols, macros, opdefs, opysns,
and micros from the global parts of the program segments from the current
source program being assembled are included in the new binary definition
file. If a binary definition file was created using the parameters shown
above, binary definition file mynewfile could be specified on a
subsequent assembly as follows:

as -b mynewfile prog.s

In the previous example, two binary definition files (/1lib/asdef the
default system-defined file and mynewfile a user-defined file) are used.

2.2.3 USING BINARY DEFINITION FILES

Binary definition files allow users to access lines or sequences of code
that have been previously assembled. Binary definition files are
accessed using the S parameter on the COS control statement and the -b
parameter on the UNICOS as command line. The following checks are run on
binary definition files when they are accessed:

® Compatibility checking

e Multiple references to the same definition

2.2.3.1 Compatibility checking

CAL allows the user to access any previously defined file with one
restriction. Binary definition files are marked with the kind of cpu
(CRAY-2, CRAY X-MP, or CRAY-1 Computer System) for which they were
created. If a binary definition file is created on a CRAY X-MP or CRAY-1

SR-2003 2-26

Computer System and is specified for a CRAY-2 Computer System, or
binary definition file is created on a CRAY-2 Computer System and
specified for a CRAY X-MP or CRAY-1 Computer System, the binary

definition file is not accepted and the following message is issued:

e e
0
<]

Incompatible version of binary definition file ‘'file'

This check ensures that the machine on which the binary definition file
was created is compatible with the program that is attempting to use it.
Some CAL Version 2 pseudo instructions have restricted use that is based
on hardware and software requirements. The binary definition file
compatibility check protects users from getting binary definition files
mixed and ensures that hardware and software restrictions are not
violated.

2.2.3.2 Multiple references to a definition

CAL checks for multiple references to definition names (functional names
for macros and opsyns, location field names for symbols, and micros, and
syntax for opdefs. CAL handles multiple references to definitions with
the same functional name, location field name, or opdef syntax as follows:

Symbols - If a symbol is defined in more than one binary definition file,
the definitions are compared. If the definitions are identical, CAL
disregards the duplicates and makes one entry for the symbol from the
binary definition files. If a symbol is defined more than once and the
definitions are not identical, CAL uses the last definition associated
with the location field name and issues the following diagnostic message:

Symbol 'name' is redefined in file 'file’

Macros - If a macro with the same functional name is defined in more than
one binary definition file, the definitions are compared. If the
definitions associated with the macro's functional name are identical
character by character, CAL disregards the duplicate definition and makes
one entry for the macro from the binary definition files. If the macro's
functional name is used more than once, and the definitions associated
with the functional name are not identical character by character, CAL
uses the definition associated with the last reference to the functional
name and issues the following diagnostic message:

Macro 'nmame' in file 'file' replaces previous definition
If a macro is defined with the same functional name as a pseudo

instruction, the macro replaces the pseudo instruction and CAL issues the
same message as shown above.

SR-2003 2-27

Opdefs - If an opdef with the same syntax is defined in more than one
binary definition file, the definitions of the opdefs are compared. If
the definitions of the two opdefs are exactly the same, CAL disregards
the duplicate definition and makes one entry for the opdef from the
binary definition files. If the same syntax appears more than once and
the definitions are not exactly the same, the syntax associated with the
last reference to the opdef is used as its definition. CAL also issues
the following diagnostic message:

Opdef 'name' in file 'file' replaces previous definition

If an opdef is defined with the same syntax as a machine instruction, the
opdef replaces the machine instruction and CAL issues the same message as
shown above.

Opsyn - If an opsyn with the same functional name is defined in more than
one binary definition file, the definitions are compared. If the
definitions are identical character by character, CAL disregards the
duplicate definition and makes one entry for the opsyn from the binary
definition files. If the functional name for an opysn is used more than
once and the definitions are not identical character by character, CAL
uses the definition associated with the last reference to the opsyn name
and issues the following diagnostic message:

Opsyn 'name' in file 'file' replaces previous definition

If an opsyn is defined with the same name as a pseudo instruction, the
opsyn replaces the pseudo instruction and CAL issues the same message as
shown above. Pseudos instructions have an internal code that permits CAL
to identify them when they are encountered. When an opsyn is used to
redefine an existing pseudo instruction, CAL copies the predefined
internal code of that pseudo instruction and uses it for identification
in the binary definition file.

Micros - If a micro with the same location field name is defined in more
than one binary definition file, the micro strings associated with the
location field names are compared. If the strings are identical when
checked character by character, CAL disregards the duplicate definition
and makes one entry for the micro from the binary definition files. 1If
the micro is used more than once and the strings associated with the
micro names are not exactly identical, CAL uses the string associated
with the last reference to the micro name and issues the following
diagnostic message:

Micro 'name' in file 'file' replaces previous definition

SR-2003 2-28

3. THE CAL PROGRAM

Writing a CAL program requires an understanding of the way a CAL program
is organized and how each component functions within the program. This
section describes the CAL program and its components.

The following components of a CAL program are discussed in this section.

Program segment
Source statement
Statement editing
Instructions
Micros

Sections

3.1 PROGRAM SEGMENT

A CAL program consists of zero or more segments. A CAL program with zero
segments consists of one or more empty files. A file containing one
blank line is considered a segment. For example, CAL considers a program
with an ident/end sequence that is followed by a blank line to contain
two segments. Ordinarily, each segment consists of global definitions, a
program module, or a combination of global definitions and a program
module. Figure 3-1 illustrates the organization of a CAL program.

3.1.1 PROGRAM MODULE

A program module is the main body of code and resides between the IDENT
and END pseudo imnstructions. (Pseudo instructions are described in more
detail later in this section and in section 5.) IDENT marks the
beginning of a program module. The END pseudo instruction identifies the
end of a module and always terminates a segment. Anything defined
between these two pseudo instructions applies only to the program module
in which the information resides.

3.1.2 GLOBAL DEFINITIONS
Before the first IDENT pseudo instruction and between program modules

(that is, between the END pseudo that terminates one program module and
the IDENT that begins the next program module), CAL recognizes sequences

SR-2003 3-1

- o~ [S]
| 1 !
7] — 7] o~ 7] <
=l o >
[} | (o] | [o} I
o~ o -
+ [} + [} + [}
ord — ot — o —
= =3 =] S| =
s o] o hel o o
p 2 s 2 p 2
Le] Le] Le]
— m — m — m
1] lal] 4 © o)
- Q o ~ Q o & Q o
[o} [e} [o} (o} o o
| ~ [1 — 9 ! ~ 9
(4] [¥ (U] ¥ (4] A
I + Fs)
] [=] e
E - 7T E T TTT E T T
Q [} ']
w 7] [72]

— — — — — — — — —— — — — — - . — —— —— — — — — — — — —— — — — — — — — —

Sample Organization of a CAL Program

Figure 3-1.

SR-2003

of instructions that do not generate code but define symbols and assign
them values, macros and opdef instructions, and micros. (Opdefs, macros,
and micros are described in more detail later in this section and in
section 5, Pseudo Instructioms.)

Definitions occurring before an IDENT pseudo instruction are considered
global and can be referenced without redefinition from within any of the
program segments that occur after the definition. Redefinable micros,
redefinable symbols, and symbols of the form %%X, where X is zero or
more identifier-characters (see appendix A, Instruction Syntax), are
exceptions. While they can occur in such sequences, they are local to
the segment in which they are defined, are not known to the assembler
after the next END pseudo instruction (end of the current segment) is
encountere,d and are not included in the cross reference listing.
Symbols defined within the global definitions area cannot be qualified.

Example:
|Location|Result |Operand | Comment
11 110 120 135
| | I I
| SYM1 | = |1 | > Begin segment 1 global
| | | |; SYM1 cannot be redefined
| SYM2 | SET |2 | ; SYM2 equals 2 for this module
| %%SYM3 | = |3 | Gone at the end of the module
| %%SYM4 |SET |4 | s Gone at the end of the module
| | IDENT | TEST1 }; Beginning of module 1
| |s1 | SYM1 |2 Register S1 gets 1
| |S2 | SYM2 |; Register S2 gets 2
| |s3 | %6%SYM3 | Register S3 gets 3
] |S4 | ©%SYM4 | s Register S4 gets 4
| | END | |2 End of segment 1 and module
| | | |; TEST 1
| SYM2 |SET |3 | > Beginning of segment 2
| %%SYM3 | = |5 | Global definitions
| | IDENT | TEST2 | ; Beginning of module 2
| |Ss1 | SYM1 |7 Register S1 gets 1
| S2 | SYM2 | 7 Register S2 gets 3
| |S3 | 6%SYM3 | s Register S3 gets 5
| | S4 | 6%SYM4 |3 Error; not defined
| | END | |7 End of segment 2 and module
| | | | ; TEST2
| | IDENT | TEST3 | ; Beginning of segment 3 and
[[| |: module TEST3
| |s1 | SYM1 |; Register S1 gets 1
| |s2 | SYM2 |: Error; not defined
| |S3 | %%SYM3 |2 Error; not defined
| | END | |; End of segment 3 and module
| [5

| | TEST3

SR-2003 3-3

3.2 SOURCE STATEMENT

A CAL program consists of a sequence of source statements. A source
statement can be an instruction or a comment. (The assembler lists
comments, but they have no effect on the program.)

Although CAL source statements are essentially free field, adoption of
formatting conventions provides more uniform and readable listings. CAL
supports two formatting conventions, the new format and the old format.

Formal parameters, symbols, names, pseudos, and macro names are
case-sensitive. To be recognized, any subsequent references to a
previously defined formal parameter, symbol, name, or functional must
match the original definition character for character and case for case
(uppercase or lowercase). The following are examples of case-sensitivity:

Definition Reference Comment

HERE HERE Recognized
HERE Here Not recognized
PARAM1 paraml Not recognized

When coding in CAL, you can enter statements using both uppercase and
lowercase characters according to the following rules.

¢ Pseudo instructions and mnemonics can be uppercase or lowercase,
but not mixed case; case-sensitive.

® Register names can be uppercase, lowercase, or mixed case;
case-insensitive.

¢ Macro names, opdef mnemonics, symbol names, and other names are
interpreted as coded; case-sensitive.

CAL supports two source statement formats: new format and old format.

3.2.1 NEW FORMAT

The new format is specified by the FORMAT pseudo or on the invocation
statement line of the CAL assembler. For more information about running
CAL under the Cray operating systems COS and UNICOS, see section 2,
Operating Systems. A source statement using the new format consists of
the following four fields.

Location field
Result field

Operand field
Comment field

e & o o

SR-2003 3-4

If the new format is specified, use the following coding conventions:

Beginning Column Field
1 Blank or asterisk
1 Location field entry
9 Blank
10 Result field entry
19 Blank
20 Operand field entry
34 Blank
35 Semicolon (indicates comment field)
36 Blank
37 Beginning of comment field

3.2.1.1 Location field

The content of the location field is dependent on the requirements of the
result and/or operand fields of each particular source statement. The
location field of all machine instructions can optionally contain a
symbol. If the location field of a machine instruction contains a
symbol, the symbol is set equal to the current address of the location
counter.

When the location field is used by an instruction, it begins in column 1
(new format) and is terminated by a blank character. The location field
can also contain the * to identify a comment line.

3.2.1.2 Result field

The contents of the result field depends on the particular instruction.
The result fields of pseudos and macros must match existing functionals.
Machine or opdef instructions can contain one, two, or three subfields.

The subfield can be null, can contain expressions, or can consist of
register designators or operators. (Expressions, register designators,
and operators are described in section 4, Cray Assembly Language.) The
result field begins with the first nonblank character following a
nonempty location field and normally ends with one or more blanks or a
semicolon. If column 1 is empty, the result field can begin in column 2
or after. A blank result field following a location field produces a
listing message.

The detailed syntax for the result field is described using the
Backus-Naur Form (BNF) in appendix A, Instruction Syntax.

SR-2003 3-5

3.2.1.3 Operand field

The operand field cannot be specified unless it is preceded by a result
field. For functionals (pseudos and macro names), the operand field is
dependent on the functional specified in the result field.

For symbolic machine instructions, the operand field contains the
operation being performed if the instruction is a symbolic instruction.
It can, however, contain other information depending on the particular
instruction. The syntax of the operand field is identical to that of the
result field. Machine or opdef instructions can contain one, two, or
three subfields. A subfield can be null, can contain zero or more
expressions, or can consist of register designators and operators.

Normally, the operand field begins with the first nonblank character

following a nonempty result field and ends with one or more blank
characters or a semicolon.

3.2.1.4 Comment field

The comment field contains an explanation of the source statement; it
does not generate code. The comment field is optional and can be
specified with an asterisk or a semicolon. A semicolon comment can be
coded in any blank column including column 1. Generally, a comment that
begins in column 1 is specified with an asterisk; otherwise, it is
specified by a semicolon. If a semicolon is specified with nothing
preceding it, the line is treated as a null instruction followed by a
comment. Normally, comment fields are not edited. For more information
about editing comment fields, see statement editing in this section.

Example:
| Location|Result | Operand |Comment
11 [10 120 135

| [I I
| | ident |testl

|
| *Asterisk comment | |
| | | | ; Semicolon comment

SR-2003 3-6

3.2.2 OLD FORMAT

The old format is specified by the FORMAT pseudo or on the invocation
line of the CAL assembler. For more information about running CAL under
the Cray operating systems COS and UNICOS, see section 2. A source
statement using the old format consists of the following fields:

Location field
Result field

Operand field
Comment field

® O o o

If the old format is specified, use the following coding conventions:

Beginning Column Field
1 Asterisk, or comma
1 Location field entry, left-justified
9 Blank
10 Result field entry, left-justified
19 Blank
20 Operand field entry, left-justified
34 Blank
35 Beginning of comment field

3.2.2.1 Location field

The content of the location field is dependent on the requirements of the
result and/or operand fields of each particular source statement. The
location field of all machine instructions can optionally contain a
symbol. If the location field of a machine instruction contains a
symbol, the symbol is set equal to the current address of the location
counter.

The location field can also contain the * (column 1 only) to identify a

comment line. The location field is not used by all instructions, begins
in column 1 or 2 (old format), and is terminated by a blank character.

3.2.2.2 Result field

The result field begins with the first nomblank character following the
location field. It cannot begin before column 3 or after column 34.
Normally, a blank terminates the result field. The result field has no
entry if only blank characters occur between the location field and
column 35. A blank result field following a nonblank location field
produces a listing message.

The detailed syntax for the result field is described using the
Backus-Naur Form (BNF) in appendix A, Instruction Syntax.

SR-2003 3-7

3.2.2.3 Operand field

The operand field begins with the first nonblank character following a
nonempty result field and ends with one or more blanks. If the result
field terminates before column 33, the operand field must begin before
column 35; otherwise, the field is considered empty. If the result field
extends beyond column 32, however, the operand field must follow at most
one blank separator and can begin after column 35.

3.2.2.4 Comment field

The comment field is optional and begins with the first nonblank

character following the operand field or if the operand field is empty,
does not begin before column 35. If the result field extends beyond
column 32 and no operand entry is provided, two or more blanks must
precede the comment field. The comment field can be the only field
supplied in a statement. If editing is enabled, comments are edited.

For more information about editing, see statement editing in this section.

Example:
|Location|Result]Operand | Comment
1L__ 110 120 135

| I | I
I | IDENT | TEST1 |

|* An asterisk comment must begin in column 1.

3.3 STATEMENT EDITING

CAL processes source statements sequentially from the source file.
Statement editing is a form of preprocessing in which CAL deletes or
replaces characters before processing the statement as source code. The
following types of statement editing are peformed by the assembler:

® Concatenation; the assembler recursively deletes all underscore
characters and combines the character that preceded the underscore
with the character following the underscore.

® Micro substitution; the assembler replaces a micro name with a
predefined character string. The character string replacement is
not re-edited.

A macro or opdef definition is not immediately interpreted but is saved
and interpreted each time it is called. Before interpreting a statement,
CAL performs editing operations. CAL does not perform micro substitution
or concatenate lines when editing is disabled. (Editing is disabled by
the EDIT pseudo or on the invocation line of the assembler.)

SR-2003 3-8

Appending, continuation, and the processing of comments are not affected
by the edit invocation statement option.

The following special characters signal micro substitution, concatenation,
append, continuation, and comments:

Character Edit Description

"‘name" Yes Micro; affected by the EDIT pseudo on the
invocation statement option (new or old format).

Yes Concatenate; affected by the EDIT pseudo on the
invocation statement option (new or old format).

No Append; unaffected by the EDIT pseudo on the
invocation statement option (new format).

p No Continuation line; unaffected by the EDIT pseudo
on the invocation statement option (old format).

* No Comment line; unaffected by the EDIT pseudo on the
invocation statement option (new or old format).

No Comment line; unaffected by the EDIT pseudo on the
invocation statement option (new or old format).

e

NOTE

When CAL edits "$CMNT'", "$MIC", "$CNC", or "$APP" the
string name and the double quote marks (" ') are
replaced by a previously defined string. For example,
when CAL edits "$CMNT", a semicolon is substituted for
the micro name $CMNT and the double quote marks (" ").
After the substitution occurs, the semicolon is not
re-edited and editing continues on the line. Using the
predefined "$CMNT'" micro permits a comment to be
edited. For example:

"$CMNT" Cray Research, Inc. "$DATE" - "$TIME"
is edited as follows:
3 Cray Research, Inc. 12/31/85 - 8:15:45

The characters to the right of the substituted
character are shifted six positions to the left after
editing, because the character string substituted for
“$CMNT" (:) is six characters shorter than the micro
name.

SR-2003 3-9

3.3.1 MICRO SUBSTITUTION

You can assign a name to a character string and refer to the character
string by its micro name. The CAL assembler searches for quotation marks
(") that delimit micro names. The first quotation mark indicates the
beginning of a micro name; the second quotation mark identifies the end
of a micro name. Before a statement is interpreted, CAL replaces the
micro name by the character string comprising the micro. (See micros in
subsection 3.5.)

3.3.2 CONCATENATE

The concatenate feature combines characters that are connected by
underscore characters. CAL examines each line for the underscore (_)
character and deletes it so that the two adjoining columns are linked
before the statement is interpreted. The concatenate symbol can be in
any column and tells the assembler to concatenate the characters
following the last underscore to the character preceding the first
underscore.

3.3.3 APPEND

The append feature combines source statements that continue for more than
one line and is available only when the new format is specified on the
CAL invocation statement.

The append symbol, a circumflex ("), appends one line to another. The
append symbol can be in any column. CAL appends the first nonblank
character on the next line to the position that contains the circumflex
(the circumflex is deleted). A circumflex can be embedded in a micro
name. CAL can append a number of lines; the exact number is dependent on
memory limitations. Appending is only permitted when the new format is
specified.

3.3.4 CONTINUATION
A comma in column 1 indicates a continuation line. Columns 2 through 72

are then a continuation of the previous line. Continuation is only
permitted when the old format is specified.

SR-2003 3-10

3.3.5 COMMENT

A semicolon (;) in any column (new format) or an asterisk (*) in column 1
indicate a comment line. The assembler lists comment lines, but they
have no effect on the program. When a semicolon or an asterisk has an
editing symbol after it, the symbol is treated as part of the comment and
is not edited. CAL never appends (new format) comment statements with
semicolons or asterisks.

NOTE

Asterisk comment statements are not included in macro
definitions. To include a comment line in a macro
definition, enter an underscore in column 1 of the
comment line followed by an asterisk and then the
comment. Since editing is disabled at definition time,
the statement is inserted. If editing is enabled at
expansion time the underscore is edited out and the
statement is treated as a comment. For example,

|Location|Result |Operand | Comment
11 110 120 135

| | I |

| | MACRO | |

[| EXAMPLE I |

|* This comment is not included in the definition.
|_* This comment is included in the definition.

| SYM |= 1 I

| EXAMPLE |ENDM | |

is expanded as follows:

|Location|Result |Operand | Comment

11 110 120 135

| I | I

| |LIST |LIS,MAC |

i | EXAMPLE | | ; Macro call
|* This comment is included in the definition.

| SYM | = 11 |

3.3.6 ACTUAL STATEMENTS AND EDITED STATEMENTS

CAL statements can be divided into two categories: actual and edited.

SR-2003 3-11

An actual statement is the unedited version of a statement that includes
any appending of lines. It contains all the editing symbols rather than
the results of the editing. If an actual statement has a corresponding
edited statement, further processing is done on the edited statement.
The following examples show actual and edited statements.

Examples:

1. This is an example of an actual statement.

|Location|Result |Operand | Comment
1 110 120 135

| | I |

|LoC | MCALL |ARGL, " [

| | |ARG2, |

| I |ARG3, " I

| | |ARG4, ” |

I I | ARG5S I

2. An actual statement can have a corresponding edited statement. The
edited statement displays the statement without any editing symbols.
The following example shows the edited version of the actual
statement in example 1.

|Location|Result |Operand | Comment
|1 110 120 |35

I | | |

|LOC | MCALL | ARG1, ARG2,ARG3, ARG4, ARG5S

3. The actual statement in the following example has no corresponding
edited statement.

|Location]Result |Operand | Comment

|1 110 120 135

I | | |

| | ENTER |ARG1,ARG2,ARG3 |; Comments

3.4 INSTRUCTIONS

CAL recognizes two types of instructions: assembler-defined and
user-defined. Assembler-defined instructions are predefined by CAL.
User-defined instructions must be defined by you before you invoke them.

SR-2003 3-12

3.4.1 ASSEMBLER-DEFINED INSTRUCTIONS

Two types of assembler-defined instructions are available in CAL:
machine instructions and pseudo instructions.

3.4.1.1 Machine instructions

Machine instructions manipulate data by performing such functions as
arithmetic operations, memory retrieval and storage, and transfer of
control. Each machine instruction can be represented symbolically in
CAL. The assembler identifies a machine instruction according to its
syntax and generates a binary machine instruction in object code.

The location field of every instruction can contain an optional symbol.
If included, an optional symbol has the following qualities: not
redefinable, a value equal to the value of the current location counter,
an address attribute of parcel, and a relative attribute equal to the
relative attribute of the current location counter (absolute, immobile,
or relocatable). Refer to section 4, Cray Assembly Language, for more
information about symbols and evaluating expressions.

Machine instruction syntax is uniquely defined on the result field alone
or on the result and operand fields. The optional location field
represents the logical memory location of the instruction. The syntax
for machine instructions is described in appendix A, Instruction Syntax.

Each Cray Computer System has its own set of machine instructions. The

machine instructions for specific mainframes are discussed in the
Symbolic Machine Instruction manuals listed in the preface.

3.4.1.2 Pseudo instructions

Pseudo instructions direct the assembler in its task of interpreting the
source statements and generating an object program. CAL has a large
complement of pseudo instructions.

Each pseudo instruction has a unique identifier in the result field. The
contents of the location and operand fields depend on the pseudo
instruction.

Individual pseudo instructions and their formats are described in section

5, Pseudo Instructions. Appendix B, Pseudo Instruction Index, contains
an alphabetical list of CAL pseudo instructions.

3.4.2 USER-DEFINED INSTRUCTIONS

The CAL assembler allows you to identify a sequence of instructions to be
saved for assembly at a later point in the source program.

SR-2003 3-13

CAL recognizes four types of defined sequences: macro, opdef, dup, and
echo. Defined sequences come in two classes: permanent and temporary.

A permanent defined sequence (macro or opdef) can be called any number of
times after it has been defined. A temporary defined sequence (dup or
echo) must be defined before each call. Permanent defined sequences are
placed in the source program and assembled when they are called.
Temporary defined sequences are assembled immediately after they are
defined.

3.5 MICROS

Through the use of micros, you can assign a name to a character string
and subsequently refer to the character string by its name. A reference
to a micro results in the character string being substituted for the name
before assembly of the source statement containing the reference. The
CMICRO, MICRO, OCTMIC, and DECMIC pseudo instructions (described in
subsection 5.10, Micros) assigns the name to the character string.

A programmer refers to a micro by using the micro name enclosed by
quotation marks (") anywhere in a source statement other than within a
comment. If column 72 of a line is exceeded as a result of a micro
substitution, the assembler creates additional continuation lines. No
replacement takes place if the micro name is unknown or if one of the
micro quotation marks has been omitted.

When a micro is edited, the source statement in which it is found is
changed. Each substitution produces one of the following cases:

¢ The length of the micro name and the double quote marks is the
same as the predefined substitute string. When the micro is
edited, the length of the source statement is unchanged.

®¢ The length of the micro name and the double quote marks is greater
than the predefined substitute string. When the string is edited,
all characters to the right of the edited string shift left the
number of spaces equal to the difference between the length of the
micro name including the double quote marks and the predefined
substitute string.

® The length of the micro name and the double quote marks is less
than the predefined substitute string. If column 72 of a line is
exceeded as a result of a micro substitution, the assembler
creates additional continuation lines. Resulting lines are
processed as if they were a single statement.

SR-2003 3-14

In the following example, the length of the micro name is equal to the
length of the predefined substitute string. A micro named PFX is defined
as EQUAL. A reference to PFX is in the location field of the statement
as follows:

|Location|{Result | Operand | Comment

1 110 |20 135

| I I I

| "PFX"TAG| SO |s1 The location of SO and S1 on

| :
I | | |; the source statement is
| i | | ; unchanged.

When the line is interpreted, CAL substitutes the definition (EQUAL) for
"PFX" producing the following line.

|Location|Result | Operand | Comment

11_ 110 120 135

I | |

| EQUALTAG| SO |s1 ; The location of SO and S1 on

I
I
| | | | : the source statement is
| | | | unchanged.

In the following example, the length of the micro name is greater than
the length of the predefined substitute string. A micro named PFX is
defined as LESS. A reference to PFX is in the location field of the
statement as follows:

|Location]|Result]Operand | Comment
|1 110 120 135
I | !
Since LESS is one character

shorter than the micro string
name "PFX", the values in the
result and operand fields are
shifted one space to the left.

| "PFX"TAG|S0 Is1
I I I

I

|

I

Ne Ne Ne No N

Before the line is interpreted, CAL substitutes the definition (LESS) for
"PFX" producing the following line.

SR-2003 3-15

| Location|Result | Operand | Comment
1. 110 120 135

| | |
| LESSTAG SO

S1 Since LESS is one character

shorter than the micro string
name "PFX", the values in the
result and operand fields are

shifted one space to the left.

— — — — — —
Ne Ne %o Ne N

In the following example, the length of the micro name is less than the
length of the predefined substitute string. A micro named pfx is defined
as greater. A reference to pfx is in the location field of the following
statement:

|Location]|Result |Operand | Comment

11 110 120 [35
| | |
| "pfx"tag]|s0 Is1 Since greater is two

characters longer than the
micro string name "pfx'", the
values in the result and
operand fields are shifted
two spaces to the right.

Ne Ne Ne Ne Ne Ne

I I I
I I I
I I |
I I |

Before the line is interpreted, CAL substitutes the predefined string
greater for "pfx'". Since the predefined substitute string is two
characters longer than micro name, the fields to the right of the
substitution are shifted two characters to the right producing the
following:

|Location|Result | Operand | Comment
|11 L1Q 120 135

|greatertag sO

Since greater is two
characters longer than the
micro string name "pfx", the
values in the result and
operand fields are shifted
two spaces to the right.

~e

Ne N» Ne Ne N

SR-2003 3-16

One or more micro substitutions can occur between the beginning and
ending quotation marks of a micro. These substitutions create a micro
name that is substituted, along with the surrounding quotation marks, for
the corresponding micro string. Substitutions of this type are referred
to as embedded micros. An embedded micro consists of a {, a micro name,
and a } and is specified as follows:

{micro-name}

When a micro containing one or more embedded micros is encountered, CAL
edits all of the embedded micros within the micro until a micro name is
recognized or until the micro name is determined to be illegal (undefined
or exceeding the maximum allowable string length of eight characters).
When an illegal micro is encountered, CAL issues an appropriate message
and terminates the editing of the micro. An embedded micro can itself
contain one or more embedded micros.

The following example includes valid and invalid defined embedded micros:

|Location|Result | Operand | Comment

|1 110 120 35

[I I I

| index |micro [REAN |2 Assigns literal value to index
|null |micro I\ | Assigns literal value to null

|array”index" micro \Some string\ |

farrayl micro \Some string\ |

I | I |

| _%* "arrayl" - This is an explicit reference.

|* Some string - This is an explicit reference.¥

| | ! I

| _%* "array""index" - This is invalid, because ‘'array' was not defined.
|* "array"l - This is invalid, because 'array' was not defined. T

I I I I

| _%* "array{index}" - This is an example of an embedded micro.

|* Some string - This is an example of an embedded micro.¥

I | I |

| _* “{null}array{index}" - This is an example of two embedded micros.
|* Some string - This is an example of two embedded micros.t

CAL places no restrictions on the number of recursions that are necessary
to identify a micro name. The following example demonstrates the
unlimited recursive editing capablility of CAL on embedded micros:

+ Edited by CAL

SR-2003 3-17

|Location]|Result | Operand | Comment
i1 110 120 135

I | I I

| index {micro I\NIN

|null |micro I\\
|array'"index" micro \Some string\
|arrayl micro \Some string\

I I I |

| _* "{nu{n{null}u{null}ll}il}ar{null{null}}ray{ind{null}ex}" - Micro
|* Some string - Micro |

Assigns literal value to index
Assigns literal value to null

CAL issues an informative message with a priority of warning or error
when an invalid micro name is specified. If a micro name is recognized
as being invalid before any editing has begun, a message with a priority
of warning is issued. If any embedded micro has been edited and the
resulting string is an invalid micro name, a message with a priority of
error is issued.

The following example demonstrates how CAL assigns priorities to messages
when an invalid micro is encountered:

|Location|Result | Operand | Comment

11 _110 120 135

| I I |

|identity micro |\The substitute string for this example\

|null |micro | \\ |; Assigns literal value to null
| | I |

| * "identity{null}" - This is a valid micro.

|* The substitute string for this example - This is a wvalid micro.¥

| I I I

|* The following micro is invalid, because the maximum micro name

|* length of eight characters is exceeded. When a micro name is

|* identified as being invalid before editing occurs, a message with a
|* priority of warning is issued. |

| * | I |

|_%* "identity9{null}" - This is an invalid micro.

|* "identity9 - This is an invalid micro.t

I | | I

|* The following micro is invalid, because the maximum micro name

|* length of eight characters is exceeded. When a micro name is

|* identified as being invalid after editing occurs, a message with a
|* priority of error is issued. |

! | | |

| _* "id{null}entity9{null}" - This is an invalid micro.

|* "identity9" - This is an invalid micro.t

+ Edited by CAL

SR-2003 3-18

3.6 SECTIONS

A CAL module can be divided into blocks of memory called sections. By
dividing a program into sections, you can conveniently separate
executable sequences of code from nonexecutable data. As assembly of a
program proceeds, you can explicitly or implicitly assign code to
specific sections or reserve areas of a section. The assembler assigns
locations in a section consecutively as it encounters instructions or
data destined for that particular memory section.

The main and literals sections are used for implicitly assigned code.

CAL maintains a stack of section names assigned by the secTiont pseudo
instruction. All sections are passed directly to the loader with the

exception of stack sectionms.

Sections can be local or common. A local section is available to the CAL
program module in which it resides; a common section is available to
another CAL program module.

To explicitly assign code to a section; use the secTIONt pseudo
instruction. The SECTION pseudo instruction can be specified for CRAY-2,
CRAY X-MP, or CRAY-1 Computer Systems.

3.6.1 LOCAL SECTIONS

A local section is a block of code that is useable only by the program
module in which it resides. CAL uses three types of local sections.

‘e Main section
¢ Literals section
e Sections defined by the SECTION pseudo

When a SECTION pseudo instruction is used, every SECTION type except
COMMON, DYNAMIC, and TASKCOM are local. For more detailed information
about SECTION types, see the SECTION pseudo in subsection 5.4, Section
Control.

3.6.1.1 Main section

The main section is initiated by the IDENT pseudo and is always the first
section in a program module. This section is used for all local code
other than that generated by the occurrence of a literal reference or
code between two SECTIONT pseudo instructions.

+ The BLOCK and COMMON pseudo instructions can also be used to
implicitly or explicitly assign code to memory blocks for CRAY X-MP
and CRAY-1 Computer Systems. BLOCK and COMMON are not supported for
the CRAY-2 Computer System.

SR-2003 3-19

Generally, sections may or may not have names but must be assigned types
and locations. The main section's default name is always empty. The
defaults for type and location are MIXED and CM, respectively. For more
information about section name, MIXED and CM, see the SECTION pseudo in
subsection 5.4, Section Control.

3.6.1.2 Literals section

The first use of a literal value in an expression causes the assembler to
store the data item in a literals section. For more information about
literals, see section 4, Cray Assembly Language. Data is generated in
the literals section implicitly by the occurrence of a literal. Explicit
data generation or memory reservation is not allowed in the literals
section.

3.6.1.3 Sections defined by the SECTION pseudo

When a SECTIONT pseudo instruction is used, all code generated or

memory reserved (other than literals) from the occurrence of one SECTION
pseudo instruction up to the occurrence of the next SECTION pseudo
instruction is assigned to the designated section. Until the first
SECTION pseudo instruction is specified, the main section is used. An
exception to these conditions can occur if the ORG pseudo instruction is
specified. Specifying the ORG pseudo instruction may cause the placement
of code or memory reservations to be different from the currently
specified working section.

Although the BLOCK and COMMON pseudos can be specified with CRAY X-MP or
CRAY-1 Computer System, the SECTION pseudo is recommended for use with
all types of Cray Computer Systems (CRAY-2, CRAY X-MP, and CRAY-1),
because it has all of the capabilities of the BLOCK and COMMON pseudos in
addition to many other capabilities.

When a section is released (see SECTION * in section 5, Pseudo
Instructions), the type and location of the previous section is used.
When the number of sections released is equal to or greater than the
number specified, CAL uses the defaults of the main section for type
(MIXED) and location (CM).

A section with the same name, type, and location used in different areas
of a program is recognized as the same section.

+ The SECTION pseudo replaces the BLOCK pseudo instruction. SECTION can
be used in any of the ways that BLOCK was previously used. BLOCK is
not supported on the CRAY-2 Computer System.

SR-2003 3-20

3.6.2 COMMON SECTIONS

When a SECTIONT pseudo instruction is used with a type of COMMON,
DYNAMIC, or TASKCOM, all code generated (other than literals) or memory
reserved from the occurrence of one SECTION instruction up to the
occurrence of the next SECTION instruction is assigned to the designated
common, dynamic, or task common section. At program end, each common
section is identified to the loader by its SECTION name and is available
for reference by another program module. An exception to these
conditions can occur if the ORG pseudo instruction is specified.
Specifying the ORG pseudo instruction may cause the placement of code or
memory reservations to be different from the currently specified working
section.

If a common section is named, the identifier in the location field that
names the section must be unique within the module in which it is
defined. Even if a section is assigned a type (COMMON, DYNAMIC, or
TASKCOM) that is different from the type of a previously defined section,
it cannot be assigned the name of a previously defined section within the
same module. If duplicate location field names are specified, a message
with a priority of error is issued.

3.6.3 SECTION STACK BUFFER

CAL maintains a stack buffer that contains a list of the sections that
have been specified. Each time a sEcTIONT pseudo instruction names a
new section, CAL adds the name of the section to the list and identifies
the new section as the current section. CAL remembers the order that
sections are specified. An entry is deleted from the list each time a
SECTION pseudo contains an *. When an entry is deleted, the name,
location, and type of the section specified before the deleted section is
enabled.

The first section on the list is the last section to be deleted from the
list. If the program contains more SECTION * instructionsTtt than
there are entries, the assembler uses the main section.

For each section used in a program, CAL maintains an origin counter, a
location counter, and a bit position counter. When a section is first
established or its use is resumed, CAL uses the counters for that section.

+ The SECTION pseudo replaces the COMMON pseudo instruction. SECTION
can be used in any of the ways that COMMON was previously used.
COMMON is not supported on the CRAY-2 Computer System.

++ The BLOCK and COMMON pseudo instructions can also be used to name
sections. BLOCK and COMMON are not supported on the CRAY-2 Computer
System.

+++ The BLOCK * and COMMON * instructions replaces the current section
with the most recent previous section that was specified by the
BLOCK and COMMON pseudo instructions.

SR-2003 3-21

The following example illustrates specifying sections, the current

section in effect, and deleting sections.

The example includes the QUAL

pseudo. For a detailed description of the QUAL pseudo see subsection
5.3, Mode Control.

Example:

|]Location|Result

|Operand

| Comment

11

110

120

{35

SNAME

2

2

SR-2003

I
| IDENT

QUAL

1

SECTION

MLEVEL

MLEVEL

SECTION

H

QUAL

it

QUAL

|
| STACK

I
I
I
1
|

| ONAME1
I

j2

I

| MIXED

I

| ERROR
I

|

|*

|

I

I

|*

I

I

|*

|

|4

I

I

| ONAME2
|

|5

|

| /QNAME1/SYM2

The IDENT statement puts the
first entry on the list of
qualifiers; this entry starts
the symbol table for
unqualified symbols.

SYM1 is relative to the main
section.

Second entry on the list of
qualifiers.

SYM is the first entry in the
symbol table for QNAME1l.

SNAME is the second entry on
the list of sections.

Reset message level to error
eliminate warning level
messages.

SYM3 is the second entry in
the

symbol table for QNAME1l and is
relative to the SNAME section.
Reset message level to default
in effect before the MLEVEL
specification.

SNAME is deleted from the list
of sections.

SYM4 is the third entry in the
symbol table for QNAME1l and is
relative to the main section.
Third entry on the list of
qualifiers.

SYM5 is the first entry in the
symbol table for QNAME2.

SYM6 gets SYM2 from the symbol
table for QNAME1l even though
QNAME1 is not the current
qualifier in effect.

QONAME2 is removed as the
current qualifier name SYM7

is the fourth entry in the
symbol table for QNAME1.

Ne Ne NE NE Ne Ne N Ne Ne %o N Ne N Ne Ne Ne NE Ne Ne Ne NS Ne Ne NE Ne %o NE NE Ne N N Ne NE NS NE Ne Ne Ne Ne v

Example: (continued)

|Location|Result |Operand | Comment

|1 110 |20 [35

I I I |

I | QUAL | * ONAME1 is removed as the

| | |
| SYM8 | = 17
I I I

current qualifier name
Second entry in the symbol
table for unqualified symbols.

Ne Ne Ne N

3.6.3.1 Origin counter

The origin counter controls the relative location of the next word to be
assembled or reserved in the section. It is possible to reserve blank
memory areas simply by using either the ORG or BSS pseudo instructions to
advance the origin counter. When the special element *0O is used in an
expression, the assembler replaces it with the current parcel-address
value of the origin counter for the section in use. Special elements are
described in section 4, Cray Assembly Language. W.*0 can be used to
obtain the word-address value of the origin counter. For more
information about the W. prefix, see section 4.

3.6.3.2 Location counter

The location counter is normally the same value as the origin counter and
is used by the assembler for defining symbolic addresses within a
section., The counter is incremented whenever the origin counter is
incremented. It is possible to use the LOC pseudo instruction to adjust
the location counter so that it differs in value from the origin counter
or so that it refers to the address relative to a section other than the
one currently in use. When the special element * is used in an
expression, the assembler replaces it by the current parcel-address value
of the location counter for the section in use. W.* can be used to
obtain the word-address value of the location counter.

3.6.3.3 Word-bit-position counter

As instructions and data are assembled and placed into a word, CAL
maintains a pointer indicating the next available bit within the word
currently being assembled. This pointer is known as the
word-bit-position counter. It is 0 when a new word is begun and is
incremented by 1 for each completed bit in the word. Its maximum value
is 63 for the right-most bit in the word. When a word is completed, the
origin and location counters are incremented by 1 and the
word-bit-position counter is reset to 0 for the next word.

SR-2003 3-23

When the special element *W is used in an expression, the assembler
replaces it with the current value of the word-bit-position counter. The
normal advancement of the word-bit-position counter is in increments of
16, 32, and 64 as l-parcel and 2-parcel instructions or words are
generated. This normal advancement can be altered, however, through use
of the BITW, BITP, DATA, and VWD pseudo instructions.

3.6.3.4 Force word boundary

The assembler completes a partial word and sets the word-bit-position and
parcel-bit-position counters to O if either of the following conditions is

true:

® The current instruction is an ORG, LOC, BSS, BSSZ, CON, or ALIGN
pseudo instruction.

¢ The current instruction is a DATA or VWD pseudo instruction and
the instruction has an entry in the location field.

3.6.3.5 Parcel-bit-position counter

In addition to the word-bit-position counter, CAL also maintains a
counter that points to the next bit to be assembled in the current

parcel. This pointer is known as the parcel-bit-position counter. It is
0 when a new parcel is begun and advances by 1 for each completed bit in
the parcel. Its maximum value is 15 for the right-most bit in a parcel.
When a parcel is completed, the parcel-bit-position counter is reset to 0.

When the special element *P is used in an expression, CAL ‘replaces it
with the current value of the parcel-bit-position counter.

The parcel-bit-position counter will be set to 0 following assembly of

most instructions. The pseudo instructions BITW, BITP, DATA, and VWD can
cause the counter to be nonzero.

3.6.3.6 Force parcel boundary

The assembler completes a partially filled parcel and sets the
parcel-bit-position counter to 0 if the current instruction is a symbolic
machine instruction.

SR-2003 3-24

4. CRAY ASSEMBLY LANGUAGE

This section presents the general rules and statement syntax for coding a
Cray Assembly Language (CAL) program. CAL syntax is described using
Backus-Naur Form (BNF). For a complete listing of CAL BNF and a
description of BNF notation, see appendix A, Instruction Syntax, and
section 1, Introduction, respectively. This section describes the
following instruction syntax:

Register designators

Names

Symbols

Data

Special elements

Element prefixes for symbols, constants, or special elements
Expressions

Expression evaluation

Expression attributes

® 0 0 0 0 0 0 0 0

4.1 REGISTER DESIGNATORS

Register designators are used in symbolic machine instructions and opdefs
to identify which register is used for an operation. Each Cray Computer
System supports all or a subset of the following types of operating
registers. The register is defined as follows:

register ::= complex-register | simple-register .

4.1.1 COMPLEX REGISTERS

A complex register is a member of a set of registers that are identical
in function and architecture. These registers are identified by register
names that are comprised of a letter followed by an octal number or a
constant. For example, register S1 can be specified from the group of
registers known as the S registers.

The A, B, SB, SM, SR, ST, S, T, and V registers can be designated as
complex registers. Any complex register that is available on a Cray
Computer System can be specified by CAL. The exact combination of
registers available in symbolic machine instructions to CAL depends on
the Cray Computer System for which CAL is targeting code.

SR-2003 4-1

CAL accepts register mnemonics that are specified in uppercase,
lowercase, or mixed case. Complex registers can be specified with up to
four octal digits. 2Although CAL does not restrict the way designators
are entered, the requirements of the Cray Computer System for which CAL
is targeted can be more specific.

Some register. designators have letter prefixes that have special meaning
to the assembler. The prefixes and their meanings are listed in the
appropriate Cray symbolic machine instruction manual. For more
information about the complex registers available with your Cray Computer
System, see the CRAY-2 Computer System Functional Description,
publication HR-2000, and the Symbolic Machine Instructions Reference
Manual, publication SR-0085.

Complex registers are defined as follows:

complex-register ::= complex-register-mnemonic register-designator .
complex-register-mnemonics ::= "A" | "B" | "“SB" * "SM" | "SR' | "ST" |
" Sn I "T" I nvn

register-designator ::= octal-digit [octal-digit [octal-digit
[octal-digit]] 1 |

"." integer-constant | "." symbol .
Examples:
|Location|Result |Operand | Comment
i1 110 120 135
| I | [
| SyM | = | * | > CAL permits mixed case
| |Al | SyM |2 in any combination with the
] | | | following restriction:
| | | | ; matching names must be entered
| | | |2 in the same manner.
| REG | = |3 |
| |A.REG |al | ; Register A3 gets the contents
| | I |; of Al
| |s1 |82 |; Register S1 gets the contents
| | | |: of S2

+ Uppercase, lowercase, and mixed case in any combination is permitted
by CAL.

SR-2003 4-2

4.1.2 SIMPLE REGISTERS

A simple register has a predefined function that cannot be redefined.
These registers are identified by register names that are comprised of
letters only.

The CA, CE, CI, CL, MC, RT, SB, SM, VL, VM, and XA registers have been
designated as simple registers.

For more information about the simple registers available with your Cray
Computer System, see the CRAY-2 Computer System Functional Description,
publication HR-2000, and the Symbolic Machine Instructions Reference
Manual, publication SR-0085.

The simple-register designator is defined as follows:

simple-register ::= simple-register-mnemonic .

simple-register-mnemonic ::= "CA" | "CE" | "CI" | "“CL" | "MC" | "RT" |
uSBu l Rl SM" l "VL" l "VM" I "XA" ."'
Example:
|Location|Result |Operand | Comment
|1 {10 120 135
I | I |
| |S1 |RT Register S1 gets the contents

|2
I I I | ; of the RT register

4.2 NAMES

A name is a one- to eight-character identifier. The first character
(initial-identifier-character) must be alphabetic (A through Z), a dollar
sign ($), a percent sign (%), or an at sign (@). Characters 2 through 8

(identifier-characters) can also be decimal digits (0 through 9).

Unlike a symbol, a name does not have a value or an attribute associated
with it and cannot be used in expressions.

+ CAL permits uppercase, lowercase, and mixed case in any combination.

SR-2003 4-3

Names are used to identify the following types of information.

Program modules
Sections

Macro instructions
Micro character strings
Conditional sequences
Duplicated sequences

Names are defined as follows:
name ::= identifier .
Different types of names do not conflict with each other or with

symbols. For example, a micro can have the same name as a macro and a
program module can have the same name as a section.

Examples of valid and invalid names:

Vvalid Comment

count Lowercase is permitted

@ADD @ legal beginning character

ABC5 Combinations of letters and digits are legal if the first

character is an initial-identifier-character

Invalid Comment

9knt Begins with a number
JOHNJONES More than 8 characters
+YZ3 Begins with +

4.3 SYMBOLS

A symbol is a 1- to 8-character identifier that has a value and
attributes associated with it and can be used in expressions. A symbol
can be used in the following ways:

® When a symbol is in the location field of a source statement, the
symbol is being defined for use in the program. When a symbol is
defined, it assumes a value and certain characteristics called
attributes.

® When a symbol is in the operand or result field of a source
statement, the symbol is being referenced.

® Loader linkage

SR-2003 4-4

A symbol can be local or global depending on where the symbol is defined.
That is, a symbol can be used within a single program module (local) or by
a number of program segments (global). (See global definitioms,
section 3, The CAL Program.) A symbol can also be made unique to a code
sequence (see qualified symbols, this section).
Symbols of the following form %% are generated by CAL:

%%BNNNNNN
where n is a decimal digit.
%% symbols are discarded at the end of a program segment regardless of
whether or not the symbol is redefinable or defined in the global

definitions part.

For more detailed information about symbols generated by CAL, see the
description of the LOCAL pseudo in subsection 5.12, Defined Sequeaces.

CAL issues a warning message if a symbol is a valid identifier and is
defined as one of the following registers reserved by CAL:

register ::= complex-register | simple-register
complex-register ::= complex-register-mnemonic register-designator

complex-register-mnemonics ::= "A" | "B" | "SB" | "SM" | "SR" | "ST" |
nsn l uTn I nvu

register-designator ::= octal-digit [octal-digit [octal-digit
[octal-digit] 1] .

simple-register ::= simple-register-mnemonic
simple-register-mnemonic ::= "CA" | “CE" | "CI" | "CL" | "MC" | "RT" |
" SB" l "SM" I "VL" I "VM" I HXA"
A symbol can be used in the following ways:
e Specified as unqualified or qualified

e Defined, that is, associated with a value and attributes

+ Uppercase, lowercase, and mixed case in any combination is permitted
by CAL.

SR-2003 4-5

e Assigned the following attributes: address, relative, and
redefinable

¢ Referenced by using the value instead of the symbol itself

4.3.1 SYMBOL SPECIFICATION

Symbols can be specified as unqualified or qualified and are defined as
follows:

symbol ::= unqualified-symbol | qualified-symbol

4.3.1.1 Unqualified symbol

An unqualified symbol is a 1- to 8-character identifier that identifies a
value and its associated attributes (see following description of symbol
attributes). The initial-identifier-character of a symbol must be a
letter (upper or lowercase A-Z), a dollar sign ($), a percent sign (%), or
an at sign (@). The characters that follow the
initial-identifier-character (identifier-characters) can also be decimal
digits (0 through 9).

A warning message is issued if a symbol is defined with an identifier that
matches the syntax of a register.

Unqualified symbols can be referenced as follows:
® Unqualified symbols, defined in an unqualified code sequence and
referenced from within the unqualified code sequence, can be
referenced without qualification.
® Unqualified symbols can be referenced within the current qualifier
without qualification if the symbol has not been defined within the

current qualifier.

¢ Unqualified symbols can be referenced from within the current
qualifier using the form //symbol.

Unqualified symbols are defined as follows:

unqualified-symbol ::= identifier .

SR-2003 4-6

Example:

|Location|Result |Operand | Comment

|1 110 L20 |35

I I | |

| | IDENT | TEST

| SYM1 |= | * SYM1 has a value equal to the

location counter

Ne Ne Ne Ne N

| |Al | SYM1 Register Al

| SYM2 | SET |2 SYM2 is redefinable

| SYM3 | = |13 SYM3 is not redefinable
| | END I

4.3.1.2 Qualified symbols

A symbol that is not a global symbol can be made unique to a code sequence
by specifying a symbol qualifier that is to be appended to all symbols
defined within the sequence. The QUAL pseudo instruction qualifies
symbols (see QUAL pseudo instruction in subsection 5.3, Mode Control).
Qualified symbols must be defined with respect to following rules:

® A qualified symbol cannot be defined with a label that is reserved
for complex or simple registers. A warning message is issued if a
symbol is defined with such a label.

e Symbols can be qualified in a program module only.

e Symbols can never be qualified in the global definitions part of a
program.

Qualified symbols can be referenced as follows:

® If a qualified symbol (defined in a code sequence) is referenced
from within a sequence, it can be referenced without
qualification.

® If a qualified symbol is referenced outside of the code sequence in
which it was defined, it must be referenced in the form
/qualifier/symbol, where qualifier and symbol are one- to
eight-character identifiers and are defined by a QUAL pseudo
instruction.

Qualified symbols are defined as follows:

qualified-symbol ::= "/" [identifier] "/" identifier .

SR-2003 4-7

Example:

| Location|Result | Operand | Comment

11 110 120 135

| | | I

| | IDENT | TEST |:

| SYM1 | = |1 |2 Assignment

| | QUAL | NAME1 | ; Declare qualifier name
| SyM1 | = |2 |; Qualified symbol SYM1
| |s1 | SYM1 | ; Register S1 gets 2

| | | | (qualified SYM1)

| |s1 | 7/75¥YM1 | s Register S1 gets 1

| | | |2 (ungualified SYM1)

| |1 | /NAME1/SYM1 |2 Register S1 gets 2

| | | |; (qualified SYM1)

| | QUAL | * |; Pop the top of the qualifier
| | | |: stack

| |s1 | sYM1 |7 Register S1 gets 1

| |s1 | 7/75YM1 | Register S1 gets 1

| |s1 | /NAME1/SYM1 |; Register S1 gets 2

| | END | |

4.3.2 SYMBOL DEFINITION

A symbol is defined by assigning it a value and attributes. A symbol's
value and attributes depend on how the symbol is used in the program. The
assignment can occur in the following three ways.

¢ When a symbol is used in the location field of a symbolic machine
instruction or certain pseudo instructions, it is defined as

follows:

- Having the address of the current value of the location
counter (counters are described in section 3, The CAL Program)

- Having parcel-address or word-address attributes

- Being absolute, immobile, or relocatable

- Not redefinable

® A symbol used in the location field of a symbol-defining pseudo
instruction is defined as having the value and attributes derived
from an expression in the operand field of the instruction. Some
symbol-defining pseudo instructions cause the symbol to have a

redefinable attribute.

When a symbol is redefinable, a

redefinable pseudo instruction must be used to define the symbol

the second time.

Redefinition of the symbol causes it to be

assigned a new value and attributes.

SR-2003

® A symbol can be defined as external to the current program
module. A symbol is external if it is defined in a program module
other than the module currently being assembled. The true value
of an extermnal symbol is not known within the current program
module.

Examples:

Each of the following is an example of a symbol.

|Location|Result | Operand | Comment

11 110 120 135

| I |

| START = | * The symbol START has the

current value of the
location counter and cannot be
redefined.

I
| |
|
I
|[PARAM |SET ID'18
I
I
|
I

The symbol PARAM is equal to
| | the decimal value 18 and can
| be redefined.
EXT | SECOND Identifies SECOND as an

Ne Ne Ne Ne Ne Ne Yo N N

| external symbol

4.3.3 SYMBOL ATTRIBUTES

When a symbol is defined, it assumes two or more attributes. These
attributes fall into three categories:

® Address
® Relative
® Redefinable

Every symbol is assigned one attribute from each of the first two
categories. Whether or not a symbol is assigned the redefinable
attribute depends on how the symbol is used. Every symbol has a value of
up to 64 bits associated with it.

4.3.3.1 Address attributes

Each symbol is assigned one of the following address attributes:
® Word address

® Parcel address
e Value

SR-2003 4-9

Word address - A symbol is assigned a word-address attribute if it
appears in the location field of a pseudo instruction, such as a BSS or
BSSZ, that defines words; if is equated to an expression having a
word-address attribute; or if the word is explicitly stated in the
operand field of an EXT pseudo.

Parcel address - A symbol is assigned a parcel-address attribute if it
appears in the location field of a symbolic machine instruction or
certain pseudo instructions; is equated to an expression having a
parcel-address attribute; or if parcel is explicitly stated in the
operand field of an EXT pseudo.

Value - A symbol has a value attribute if it does not have word-address
or parcel-address attributes, or if value is explicitly stated in the
operand field of an EXT pseudo. All globally defined symbols have an
address attribute of value.

4.3.3.2 Relative attributes

Every symbol is assigned one of the following relative attributes:

Absolute
Immobile
Relocatable
External

¢ ¢ 0 O

Absolute - A symbol is assigned the relative attribute of absolute when
the current location counter is absolute and it appears in the location
field of a machine instruction, BSS pseudo instruction, or data
generation pseudo instruction such as BSSZ or CON. A symbol is also
absolute if it is equated to an expression that is absolute. All
globally defined symbols have a relative attribute of absolute. The
symbol is only known at assembly time.

Immobile - A symbol is assigned the relative attribute of immobile when
the current location counter is immobile and it appears in the location
field of a machine instruction, BSS pseudo instruction or data generation
pseudo instruction such as BSSZ or CON. A symbol is also immobile if it
is equated to an expression that is immobile. The symbol is only known
at assembly time.

Relocatable - A symbol is assigned the relative attribute of relocatable
when the current location counter is relocatable and it appears in the
location field of a machine instruction, BSS pseudo instruction, or data
generation pseudo instruction such as BSSZ or CON. A symbol is also
relocatable if it is equated to an expression that is relocatable.

SR-2003 4-10

External - A symbol is assigned the relative attribute of external when
it is defined by an EXT pseudo instruction. An external symbol defined
in this manner is entered in the symbol table with a value of 0. You can
specify the address attribute of an external symbol as value (V), parcel
(P), or word (W); the default is wvalue.

A symbol is also assigned the relative attribute of external if it is
equated to an expression that is external. Such a symbol assumes the
value of the expression and can have an attribute of parcel address, word
address, or value.

The assignment of an unknown variable with a register at assembly time,
can be made by use of a symbol with a relative attribute of external. 1In
the following example, register sl is loaded with variable extl at
assembly time.

Example:
|Location|Result |Operand . |Comment
|1 110 120 135
| | | I
| | ident | testl |
| |ext |lextl | 7 Variable extl is defined as
| | | |: an external variable
| |s1 lextl |; extl transmits value to
| | | |; register sl
I lend | I
| |ident |test2 |
| |entry lextl |
|extl | = 13 | : When the two modules are
| | | |2 linked, register S1 gets 3.
| |end | |

4.3.3.3 Redefinable attributes

In addition to its other attributes, a symbol is assigned the attribute
of redefinable if it is defined by the SET or MICSIZE pseudo
instructions. A redefinable symbol can be defined more than once in a
program segment and can have different values and attributes at different
times during an assembly. When such a symbol is referenced, its most
recent definition is used by the assembler. All redefinable symbols are
discarded at the end of a program segment without regard to whether they
were defined in the global definitions or not.

SR-2003 4-11

Examples:

|Location]|Result |Operand | Comment

|1 110 120 135

I | I I

| | IDENT | TEST |

| SYM1 | = |1 | : Not redefinable

| SYM2 | SET |2 | ; Redefinable

| SYM1 | SET |2 |; Error; SYM1 previously
| | | |; defined as 1

| SYM2 |SET |3 | 5 Redefinable

| | END | |

4.3.4 SYMBOL REFERENCE

When a symbol is in a field other than the location field, the symbol is
being referenced. Reference to a symbol within an expression causes the
value and attributes of the symbol to be used in place of the symbol.
Symbols may also be found in the operand fields of pseudos.

A symbol reference within an expression can contain a prefix which causes
the usual value and attributes associated with the symbol to be altered
according to the prefix. The prefix affects only the specific reference
with which it occurs. For details, refer to subsection 4.6, Element
Prefixes for Symbols, Constants, or Special Elements.

Examples:

| Location|Result |Operand | Comment

11 L10 120 135

| I |

S1 |SYM1+1 ; Register S1 gets the location
| ; of SYMl+1l. SYMl+l is an
I ; example of a symbol in an
| ; operand
| ; field used as an expression.
Symbols can also be used

outside

of an expression. In this
instance, SYM1 is not used
within

an expression; it is a symbol.

Ne Ne Ne Ne Ne No

I
I
I
I
I
|IFA | DEF, SYM1
I
I
I
I
I

SR-2003 4-12

4.4 DATA

Some instructions manipulate data. CAL instructions can use data that is
specified in any of the following forms:

¢ Constants

® Data items
® Literals

4.4.1 CONSTANTS
Constants are defined as follows:

constant ::= floating-constant | integer-constant | character-constant .

4.4.1.1 Floating-constant

A floating-constant is evaluated as a 1- or 2-word quantity, depending on
the precision specified. (See the floating-point data formats figures in
the approriate Symbolic Machine Instruction Manual.)

The floating-constant is defined as follows:

floating-constant ::= [decimal-prefix] floating-decimal

{

(binary-scale decimal-integer]] .

decimal-prefix
Numeric base used for the floating-decimal and/or the
decimal-integer. D' or d' specifies a decimal-prefix and
is the only prefix available for a floating-constant.

floating-decimal
A floating-decimal can be one of the following:

A decimal-integer followed by a decimal-fraction with
an optional decimal-exponent and decimal-integer; for
example:

n.n or n.nEn or n.nE+n or n.nDn or n.nD+n

A decimal-integer followed by a "." with a
decimal-exponent and decimal-integer; for example:

n. or n.En or n.E+n or n.nbDn or n.nD+n

SR-2003 4-13

A decimal-integer followed by a decimal-exponent and
decimal-integer; for example:

nEn or nE+n or nDn pr nD+n

A decimal-fraction followed by an optional
decimal-exponent and decimal-integer; for example:

.n or .nEn or .nE+n or .nbDn or .nD+n

A decimal-integer is a nonempty string of decimal

digits. A decimal-integer decimal-fraction is a nonempty
string of decimal digits representing a whole number, a
mizxed number, or a fraction.

decimal-exponent
The power of 10 by which the integer and/or fraction
is to be multiplied; indicates whether the constant is
to be single precision (E or e; one 64-bit word) or
double precision (D or d; two 64-bit words). n is
an integer in the base specified by prefix.

If no decimal-exponent is provided, the constant
occupies one word. decimal-exponents are defined as
follows:

En Positive decimal exponent, single precision
E+n Positive decimal exponent, single precision
E-n Negative decimal exponent, single precision
Dn Positive decimal exponent, double precision
D+n Positive decimal exponent, double precision
D-n Negative decimal exponent, double precision

binary-scale decimal-integer

SR-2003

The integer and/or fraction is to be multiplied by a power
of 2. Binary scale is specified with S or s and an optional
add-operator (+ or -). n is an integer in the base
specified by the decimal-prefix; for example:

Sn or S+n Positive binary exponent
SN or s+n Positive binary exponent
S-n or s-n Negative binary exponent

Examples (floating-constant for constants):

|Location|Result |Operand | Comment
11 {10 120 135
| | I
| CON |ID'1.5 ; Mixed decimal of the form

n.n

|
| |
I |
| | CON |4.5E+10 | ; Single-precision floating
| | | |2 constant of the form
| [| |: n.nE+n
| | CON {4.D+15 | 2 Double-precision floating
| | | | constant of the form n.D+n
| | CON ID'1.0E-6 | ; Negative floating constant of
| | | | the form n.nE-n
| | CON |]1000e2 |; Single-precision floating
| | | | » constant of the form nen
| SYM |= |1777752d4+10 | ; Double-precision floating
| | |2

constant of the form nD+n

4.4.1.2 Integer-constant

An integer-constant is evaluated as a 64-bit twos-complement integer.
(See the twos-complement integer figure in one of the following
appropriate Symbolic Machine Instruction manuals: CRAY-2 Computer System
Functional Description, publication HR-2000 or Symbolic Machine
Instructions Reference Manual, CRI publication SR-0085.) The
integer-constant is defined as follows:

integer-constant ::= base-integer [binary-scale base-integer] |
octal-prefix octal-integer [binary-scale
octal-integer] |
decimal-prefix decimal-integer [binary-scale
decimal-integer] |
hex-prefix hex-integer [binary-scale
hex-integer] .

base-integer

A string of decimal digits (O, 1, 2, 3, 4, 5, 6, 7, 8, 9)
of any length

SR-2003 4-15

binary-scale
The integer and/or fraction is to be multiplied by a
power of 2. Binary scale is specified with S or s and an
optional add-operator (+ or -). n is an integer in the
base specified by the decimal-prefix; for example:

Sn or S+n Positive binary exponent
SN or s+n Positive binary exponent
s-n or S-n Negative binary exponent

base-integer or octal-prefix or decimal-prefix or hex—prefix
Numeric base used for the integer. If no prefix is used,
base-integer is determined by the default mode of the
assembler or by the BASE pseudo instruction. A prefix can
be one of the following:

D' or 4’ Decimal (default mode)
0' or o' Octal
X' or x' Hexadecimal

octal-integer
A string of octal integers (0, 1, 2, 3, 4, 5, 6, 7) of any
length

decimal-integer
A string of decimal integers (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
of any length

hex-integer

A string of hex integers (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A
or a, Bor b, Cor c, Dor d, E or e, F or £f) of any length

Example (integer-constant for constants):

|Location|Result | Operand | Comment
11 110 | 20 135
| | | |
}s1 |0'1234567 Octal-prefix followed by

octal-integer

| A4 |D'50 Integer-constant of the form
decimal-prefix followed by
| decimal-integer
Integer-constant of the form

hex-prefix followed by
hex-integer

|

SYM |= |h'£££fffa
I
I

Ne Ne Ne %o Ne e Ne N

SR-2003 4-16

4.4.1.3

Character-constants

The character-constant is defined as follows:

character-constant ::= [character-prefix 1 character-string

[character-suffix] .

character-prefix
Character set used for stored constant:

A or a ASCII character set (default)
C or ¢ Control Data Display Code
E or e EBCDIC character set

character-string
Default is a string of zero or more characters from the
ASCII character set. Two consecutive apostrophes
(excluding the delimiting apostrophes) indicate a single
apostrophe.

character-suffix

Justification and fill of character string:

Hor h Left-justified, blank-filled (default)

L or 1 Left-justified, zero-filled

R or r Right-justified, zero-filled

Z or z Left-justified, zero-filled, at least one

trailing binary zero character guaranteed

Example (character-constant):

|Location|Result |Operand jComment

|1 110 120 135

| I I I

| |83 | "*'R |2 ASCII character set (default):
| | | {; right justified, zero filled
| | CON |A*ABC'L |7 ASCII character set; left

| | | |; justified, zero filled

| |s1 |E'XYZ'H | ; EBCDIC character set; left

| | | |; justified, blank filled

| | CON jcrout’ |2 CDC character set; left

| | | | justified, blank filled:

| | | | (default)

| | VWD |32/ 'EFG’ | ASCII character set; left

I I

| I:

SR-2003

a 32-bit field (all default)

justified, blank filled within

4.4.2 DATA ITEMS

A character or data item can be used in the operand field of the DATA
pseudo instruction and in literals. The length of the data field
occupied by a data item is determined by its type and size. The data

item is defined as follows:

data-item ::= floating-data | integer-data | character-data .

4.4.2.1 Floating-data item

A floating-data item occupies one word if single precision and two words
if double precision. Floating-point data is defined as follows:

floating-data ::= [sign] floating-constant .

sign Data item is to be stored ones or twos complemented or
uncomplemented:

+ or omitted Uncomplemented

- Negated (twos complemented)

Ones complemented. Although syntactically
correct, # is not permitted; a semantic
error is generated with floating-data.

The floating-constant is defined as follows:
floating-constant ::= [decimal-prefix] floating-decimal

[binary-scale decimal-integer 1] .

The syntax for floating-data is the same as the syntax for
floating-constants. See subsection 4.4.1.1, Floating-constant, for a
description of floating constants.

Example (floating-constant for data items):

|Location|Result |Operand | Comment
|1 110 120 135
| | |
| DATA |D'1345.567 Decimal floating data item of

the form n.n

|DATA]1345.E+1 Decimal floating data item of
the form n.E+n

| DATA ID'1.5 Decimal of the form n.n

| DATA |4.5E+10 Single-precision floating

constant of the form
n.nE+n

Ne Ne Na Ne Ne Ne N Ne

I
I
I
I I I
I
I
I
I

SR-2003 4-18

Examples (continued):

|Location]Result |Operand | Comment

|1 110 120 135
| I |
| DATA |4.D+15 | ; Double-precision floating
| | | 5 constant of the form n.D+n
| DATA |ID'1.0E-6 | : Negative floating constant of
| | | the form n.nE-n
| DATA | 1000e2 |; Single-precision floating
| | | constant of the form nen
{DATA |1.582 |; Floating binary scale data

'

4.4.2.2 Integer-data item

An integer-data item occupies

integer-data ::

sign

integer-constant

Data item is to

[sign]

uncomplemented:

+ or omitted

#

item of the form n.nSn

one 64-bit word and is defined as follows:

Integer-constant .

be stored ones or twos complemented or

Uncomplemented

Negated (twos complemented)
Ones complemented

base-integer [binary-scale base-integer] |

octal-prefix octal-integer

[binary-scale octal-integer] |

decimal-prefix decimal-integer

[binary-scale decimal-integer] |

hex-prefix hex-integer [binary-scale hex-integer] .

The syntax for the integer-data is the same as the syntax for the
integer-constant.
detailed description of integer-constants.

Example (integer-constant for data):

See subsection 4.4.1.2, Integer-constant, for a

|Location|Result | Operand | Comment
11 110 120 135
I I | I
| | DATA]+0'20 | ; Octal-integer
I I I I
| | VWD 140/0,24/0'200 |
SR-2003 4-19

4.4.2.3 Character-data item

The character-data item is as follows:

character-data ::= [character-prefix] character-string
{ character-count] [character suffix] .

character-prefix
Character set used for stored constant:

A or a ASCII character set (default)
C or ¢ Control Data Display Code
E or e EBCDIC character set

character-string
Default is a string of zero or more characters from the
ASCII character set. Two consecutive apostrophes
(excluding the delimiting apostrophes) indicate a single
apostrophe.

character-count
Length of the field, in number of characters, into which
the data item is to be placed. If count is not supplied,
the length is the number of words needed to hold the
character string. If a count field is present, the length
is the character count times the character width, so length
is not necessarily an integral number of words. The
character width is 8 bits for ASCII or EBCDIC, 6 bits for
Control Data Display Code.

If an asterisk is in the count field, then the actual
number of characters in the string is used as the count.
The case where two apostrophes are used to represent a
single apostrophe is counted as a single character.

If the base is M (mixed), CAL assumes that count is
decimal. Refer to section 4, Cray Assembly Language, for a
description of mixed base.

character-suffix
Justification and fill of character string:

Hor h Left-justified, blank-filled (default)

L or 1 Left-justified, zero-filled

Rorr Right-justified, zero-filled

Z or z Left-justified, zero-filled, at least one

trailing zero character guaranteed

SR-2003 4-20

Example (character-data):

| Location]Result jOperand | Comment
L 110 120 135
I I I
| DATA |A*'ERROR IN DSN' ASCII character set with

I |
| |
| |
| DATA |E'error in dsn’
| |

|

| left justification and blank
I

|

I

|

|

] | DATA | 'Error’
|

|

|

|

|

I

£ill by default; stored in two
words.

EBCDIC character set; right
justified, zerc filled; stored
in two words.

Default ASCII Character set
left justified and blank
filled by default; stored in
one word.

Default ASCII character set:
that is stored in 5 character
positions (40 (5*8) bits)

—_——— e e Y — — — — —

Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne %o No

|
|
I
| DATA | 'Error'#*
|
|

4.4.3 LITERALS

Literals are read-only data items whose storage is controlled by CAL.
Specifying a literal allows you to implicitly insert a constant value
into memory. The actual storage of the literal value is the
responsibility of the assembler. Literals can only be used in
expressions, because the address of a literal, rather than its value is
used.

The first use of a literal value in an expression causes the assembler to
store the data item in one or more words in a special, local memory block
known as the literals section. Subsequent references to a literal value,
do not produce multiple copies of the same literal.

Since literals can map into the same location in the literals section,
CAL checks for the presence of a matching literal in the literals section
before new entries are added to the section. This check is made bit by
bit. If the current string identically matches any string currently
stored in the literals section, CAL maps that string to the location of
the matching string. If the current string does not identically match
any of the strings currently stored in the literals section, the current
string is considered to be unique and is assigned a location in the
literals section.

SR-2003 4-21

The following special syntaxes are in effect for literals:
¢ Literals always have the following attributes:

- Relocatable (relative)
- Word (address)

e Literals cannot be specified as character strings of zero bits.
The actual constant within a literal must have a bit length
greater than zero. In actual use, you must specify at least one
6- or 8-bit character as follows:

- 6 bits for CDC character set
- 8 bits for ASCII character set (default)
- 8 bits for EBCDIC character set
¢ By default, literals always come out on full-word boundaries.
Trailing blanks are added to fill the word to the next word
boundary. The following special characters can be specified with
literals:
A literal is defined as follows when used as an element of an expression.
literal ::= "=" data-item .
Data-item is defined as follows:
data-item ::= floating-data | integer-data | character-data .
The syntax of the data-item for literals is the same as the syntax for
data-items for comnstants. For a complete description of the data item,
see Data-item in this section.
Examples:
1. Literals can be specified with single- or double-precision; the

default is single-precision. Single-precision literals are stored in
1 64-bit word. Double-precision literals are stored in 2 64-bit

words.

|Location|Result | Operand |Comment

i1 [10 120 135

| I | |

| | CON |=1.5 |; Single-precision literal
| | CON |=1.5D1 | s Double-precision literal

SR-2003 4-22

2. The following example illustrates how the the ASCII character a is
stored when ='a'H is specified; represents a blank character. If
='a’' is specified, this same value is generated.

|Location|Result | Operand | Comment

|1 [10 120 {35

I ! | |

| | CON |='a'H |7 ASCII character set by default
| | | |: left justify blank fill

AAAAAAAA AAAAAAAA AAAAAAAARA AAAAAAAA AAAAAAAA AAA~AAAAAA

101100001 | | | | | I [~nmnanns
I | | 1 | | | |

Diagram 4-1. ASCII Character with Left Justification and Blank Fill

3. The following examples illustrates how the the ASCII character a is
stored.

a. In the following example, ='a'L is specified; specifying ='a'R or
='a'2 generates the same value.

| Location|Result |Operand | Comment

|1 110 120 135

! | I I

] | CON |='a'L | ; ASCII character set by default
| | | |2 left justify zero filled

| | I I I | I I I
101100001 00000000 | 30000000 | 00000000 | 00000000 |00000000|00000000|00000000 |

I | | l | | I | I

Diagram 4-2., ASCII Character with Left Justification and Zero Fill

b. The following example illustrates how the the ASCII character a
is stored when ='a'R is specified.

SR-2003 4-23

|Location|Result | Operand | Comment

11 110 {20 135

| I | I

] | CON |='a‘'R ASCII character set by default
|

|2
|2 right-justified, zero-filled

| 00000000|00000000{00000000|00000000|00000000]00000000|00000000]|01100001]

I | 1 I

L | I |

Diagram 4-3. ASCII Character with Right Justification and Zero Fill

c. The following example illustrates how the the ASCII character a
is stored when ='a'#R is specified. The value is right-justified

in the first 8 bits of word 4.

|Location]|Result | Operand | Comment
|1 110 120 135

I | I |

| | CON | 'a'*R

| ASCII character set by default
|; right-justified, zero-filled

]01100001]00000000|00000000]00000000]|00000000|00000000|00000000|00000000|

I l I 1

1 I I [

Diagram 4-4. ASCII Character with Right Justification in 8 Bits

4. The following example illustrates the declaration of the three

character sets available to CAL.

|Location|Result |Operand | Comment

11 110 |20 135

| | I |

| | CON |="A" | 8-bit ASCII character
| | CON |=A'A" |; 8-bit ASCII character:;
| | CON |=C'A" |s 6-bit CDC character

| | CON |=E*'A" |; 8-bit EBCDIC character

SR-2003

5. The following examples illustrate how literals can be specified using
H, L, R, Z:

|Location|Result | Operand | Comment
1 110 120 135
| I |
| CON |='AB'3 Left justified with one blank

| padded on the right; default

I ;

| I ;

| | CON |='AB'3H ; Left justified with one blank
| | | ; padded on the right; default
| | CON |='AB'6R ; Right justified, filled with
| | | ; four leading zeros

I | CON |='AB'62Z ; Left justified, padded with

| ;

four trailing zeros

4.5 SPECIAL ELEMENTS

Special elements are used to obtain the current value of the location
counter, the origin counter, the word pointer, and the parcel pointer,
Special elements can occur as elements of expressions. Expression
elements are described in subsection 4.7, Expressions. The origin,
location, word-bit-position, and parcel-bit-position counters are
described in section 3, The CAL Program. Special elements are defined as
follows:

Special element se= ' ' Mg A l kgt I "eRBY I u*bn | Bt Told l e l
u*Pu I n*Pu I u*wn | u*wu

Special elements have the following special meanings to the assembler.

Element Description

* Location counter; denotes a value equal to the current
value of the location counter with parcel-address
attribute and absolute, immobile, or relocatable
attributes. The location counter is absolute if it has
been modified by the LOC pseudo using an expression that
has a relative attribute of absolute. The location
counter is immobile if it is relative to either a STACK
section or a TASKCOM section. The location counter is
relocatable in all other cases.

*A or *a Absolute location counter; denotes a value equal to the

current value of the location counter with parcel-address
and absolute attributes.

SR-2003 4-25

Element Description

*0 or *o Origin counter; denotes a value equal to the current
value of the origin counter relative to the beginning of
the current section. The origin counter has an address
attribute of parcel. If the current section is a section
with a type of STACK or TASKCOM, it has an immobile
attribute. In all other cases it has a relative
attribute of relocatable.

*B or *b Absolute origin counter; denotes a value equal to the
current value of the origin counter relative to the
beginning of the section with parcel-address and absolute
attributes.

*W or *w Word pointer; denotes a value equal to the current value
of the word-bit-position counter with absolute and value
attributes. *W is relative to the word and the
word-bit-position counter is almost always equal to O,

16, 32, or 48. CAL issues a warning message when the
word-bit-position counter has a value other than 0 (not
pointing at a word boundary) and is used in an expression.

*P or *p Parcel pointer; denotes a value equal to the current
value of the parcel-bit-position counter with absolute
and value attributes. The range of possible values for
*P is 0 through 15. CAL issues a warning message when
the parcel-bit-position counter has a value other than 0
(not pointing at a parcel boundary) and is used in an
expression. The following statement defines where you
are within a parcel and is almost always O:

SYM1 = *Pp

4.6 ELEMENT PREFIXES FOR SYMBOLS, CONSTANTS, OR SPECIAL ELEMENTS

Element prefixes have the following form:

element—PrefiX : := NP. ” I "Po" I 'lw." | Hw.‘l .
A symbol, constant, or special element can be prefixed by an
element-prefix (P. or p. for parcel or W. or w. for word) causing the
value to assume an attribute of parcel address or word address,

respectively, in the expression in which the reference appears.

A prefix does not permanently alter the attribute of a symbol; the effect
of a prefix is for the current reference only.

SR-2003 4-26

4.6.1 P. - PARCEL-ADDRESS PREFIX

A symbol, special element, or constant can be prefixed by P. or p. to
specify the attribute of parcel address. If a symbol (sym) has the
attribute of word address, the value of P.sym or p.sym is the value

of sym multiplied by four. Each Cray word is divided into four parcels
that are designated as a, b, ¢, and 4. Each parcel has a 2-bit value
associated with it; 00, for a, 01, for b, 10, for c, and 11,

for 4. To find the exact parcel that is being addressed, multiply the
word address by four. For example, the following word address attributes
are translated into parcel address attributes:

Parcel
Word Equation Value Representation
2 2X4 0'10 2a
4 4%4 0'20 4a
0 0xX4 0'0 O0a

A P. or p. that is specified for an element with value address attribute
does not cause the value to be divided by four. The value can, however,
be used to assign the parcel address attribute to the element.

A P. or p. that is specified for an element with parcel address attribute
does not alter its characteristics.

Figure 4-1 illustrates the numbering of parcels a, b, ¢, and d in a
6-word block.

Parcel a Parcel b Parcel c Parcel 4

| | [| |
Word 0 | 0 | 1 | 2 | 3 |
1 | | | |
| [| | |
Word 1 | 4 | 5 | 6 | 7 |
| | i | |
I | | | |
Word 2 | 10 | 11] 12 | 13 |
|] |] |
| [| | I
Word 3 | 14 | 15 | 16 | 17 |
| | | 1 1
I [| | I
Word 4 | 20) 21 | 22 | 23 |
t | | | 1
| I I | |
Word S | 24 | 25 [26 | 27
| | | | |

Figure 4-1. Word-parcel Conversion for
Six Words

SR-2003 4-27

An expession is defined as follows:

expression ::= embedded-argument |
[add-operator 1 term { add-operator term } .

embedded-argument
An embedded-argument can be any argument-character that is
enclosed in parentheses. If parentheses are used with an
embedded argument, each open parenthesis must have a
matching close parenthesis. For example:

(3*SYMBOL+2-(2%SYMBOL))

4.7.1 ADD-OPERATOR

An add-operator joins two terms in an expression or precedes the first
term of an expression. Add-operators are defined as follows:

add-operator s:= "+ | "-" ,

4.7.2 TERMS

A term consists of one or more prefixed-elements joined by special
characters referred to as multiply-operators. The multiply-operators
complete all multiplication and division before the add-operators
complete addition or subtraction. The following general rules apply for
terms.

¢ Only one prefixed-element within a term can have a relative
attribute of immobile or relocatable. All other
prefixed-elements, if any, in that term must have relative
attributes of absolute.

¢ A prefixed-element with a relative attribute of external, if
present, must be the only prefixed-element of the term. If

preceded by an adding operator, that operator must be a +.

¢ The prefixed-element to the right of / must have a relative
attribute of absolute.

® A term containing / must have an attribute of absolute up to the
point at which the / is encountered (see the description of term

attributes).

¢ Division by 0 produces an error.

SR-2003 4-30

4.6.1 P. - PARCEL-ADDRESS PREFIX

A symbol, special element, or constant can be prefixed by P. or p. to
specify the attribute of parcel address. If a symbol (sym) has the
attribute of word address, the value of P.sym or p.Sym is the value

of sym multiplied by four. Each Cray word is divided into four parcels
that are designated as a, b, ¢, and d. Each parcel has a 2-bit value
associated with it; 00; for a, 01, for b, 10, for ¢, and 11,

for d. To find the exact parcel that is being addressed, multiply the
word address by four. For example, the following word address attributes
are translated into parcel address attributes:

Parcel
Word Equation Value Representation
2 2X4 0'10 2a
4 4X4 0'20 4a
0 0X4 0'0 Oa

A P. or p. that is specified for an element with value address attribute
does not cause the value to be divided by four. The value can, however,
be used to assign the parcel address attribute to the element.

A P. or p. that is specified for an element with parcel address attribute
does not alter its characteristics.

Figure 4-1 illustrates the numbering of parcels a, b, ¢, and d in a
6-word block.

Parcel a Parcel b Parcel ¢ Parcel 4

| I | - I |
Word O | 0 | 1 | 2 | 3 |
| | | | |
| | [I |
Word 1 | 4 | 5 | 6 | 7 |
| | 1 | 1
| | | | I
Word 2 | 10 | 11 | 12 | 13 |
L | | | |
| | | | I
Word 3 | 14 | 15 | 16 | 17
| | 1 [|
[[| | |
Word 4 | 20 | 21 | 22 | 23 |
1 | | I 1
| I | I I
Word 5 | 24 | 25 | 26 | 27 |
[| | | I

Figure 4-1. Word-parcel Conversion for
Six Words

SR-2003 4-27

Example:

|Location|Result __|Operand | Comment

[1 110 |20 [35

I |

| SYM1 = | % SYM1 is equal to the location

counter with parcel and
relocatable attributes.

Register S1 gets the
| relocatable parcel address of
| SyM1.
S1 |P.SYM1 The same value that was

generated by the last
statement is produced.

_______u_).__..__
H
©n
3
=

Ne Ne Ne Ne Ne Ne N N N

4.6.2 W. - WORD-ADDRESS PREFIX

A symbol, special element, or comnstant can be prefixed by W. or w. to
specify the attribute of word address. If a symbol (sym) has the
attribute of parcel address, the value of W.sym or w.sym is the value
of sym divided by four. When converting from parcel address attribute
to a word address attribute, divide the parcel address by 4. When the
conversion is completed, the result is always understood to be pointing
at parcel a.

If the parcel address is not pointing at a word boundary, CAL issues a
warning message and truncates the division to a word boundary. For
example, the following parcel address attributes are converted into
word-address attributes:

Parcel Truncation
Representation Value Equation Word Warning
Oc 2 2/4 0 Yes
3a 14 1474 3 No
5c 26 2674 5 Yes
Oa 0 0/4 0 No
6a 30 3074 6 No

A W. or w. prefix specified for an element with a value-address attribute
does not cause the value to be divided by four. The value can, however,
be used to assign the word-address attribute to the element.

A W. or w. prefix specified for an element with a word-address attribute
does not alter its characteristics.

SR-2003 4-28

Example (word-address prefix):

|Location|Result |Operand | Comment

11 110 120 135

| | | |

| SYM2 | = |W.* | ; Word and relocatable
| | | | s attributes

| |AO |W.ADDR |

| | | |

| | A4 |W.BUFF+0'100 |

4.7 EXPRESSIONS

The result and operand fields for many source statements consist of
expressions. An expression consists of one or more terms joined by
special characters referred to as adding operators (add-operators in the
BNF). Figure 4-2 is a diagram of an expression. A term consists of one
or more special elements, constants, symbols, or literals
(prefixed-element in the BNF) joined by multiplying operators
(multiply-operator in the BNF). Figure 4-3 is a diagram of a term.

I | [I I I I
I Add I | Add | | Add | I
| op1 | Termy | opp | Termy. . . | opp | Termp |
| (optional) | | | I I I
I 1 | | I I I
Figure 4-2. Diagram of An Expression
I | I I I I
| Prefixed | Mult | Prefixed | Mult | Prefixed |
| elementy; | opy | element; . . . | opp | elementy |
! | I
I I I

Figure 4-3. Diagram of A Term

SR-2003 4-29

An expession is defined as follows:

expression ::= embedded-argument |
[add-operator] term { add-operator term } .

embedded-argument
An embedded-argument can be any argument-character that is
enclosed in parentheses. If parentheses are used with an
embedded argument, each open parenthesis must have a
matching close parenthesis. For example:

(3*SYMBOL+2-(2*SYMBOL))

4.7.1 ADD-OPERATOR

An add-operator joins two terms in an expression or precedes the first
term of an expression. Add-operators are defined as follows:

add-operator ::= "+" | "-"

4.7.2 TERMS

A term consists of one or more prefixed-elements joined by special
characters referred to as multiply-operators. The multiply-operators
complete all multiplication and division before the add-operators
complete addition or subtraction. The following general rules apply for
terms.

® Only one prefixed-element within a term can have a relative
attribute of immobile or relocatable. All other
prefixed-elements, if any, in that term must have relative
attributes of absolute.

® A prefixed-element with a relative attribute of external, if
present, must be the only prefixed-element of the term. If

preceded by an adding operator, that operator must be a +.

® The prefixed-element to the right of / must have a relative
attribute of absolute.

® A term containing / must have an attribute of absolute up to the
point at which the / is encountered (see the description of term

attributes).

e Division by 0 produces an error.

SR-2003 4-30

Example:

|Location|Result |Operand | Comment
11 110 120 135
I I |
| SYM |= | % Relocatable and parcel
| | | attributes.
|S1 | SYM*1 One term within an expression.
|s2 | SYM*1+1 Two terms within an
| | expression.
1S3 |1%2%3/4 Every prefixed-element

A term is defined as follows:

preceding a / must have the
attribute of absolute and the
prefixed-element following the
/ must have an attribute of
absolute.

Ve Ne Ne Ne %o Ne Ne Ne Ne N N

term ::= prefixed-element { multiply-operator prefixed-element }

prefixed-element ::= ["#"]

multiply-operator ::= "%

Examples (terms):

Term Description

I u/"

[element-prefix] element

SIGMA*5 Two elements, SIGMA (symbol) and 5 (constant) are joined by

a multiplying operator (*).

DELTA A single-element term

4.7.2.1 Prefixed-elements

A prefixed-element is defined as follows:

prefized-element ::= [¥] [element-prefix] element

Complement character (#) - If an element is prefixed with the complement

character (#), the element itself must have a relative attribute of

absolute.

SR-2003

Element-prefix - If an element is prefixed with an element-prefix, the
attribute of the element is as follows:

P. or p. Parcel-address attributes
W. or w. Word-address attributes

See subsection 4.6, Element Prefixes for Symblols, Constants, or Special
Elements, for information about element-prefizxes.

Elements - An element can be a special element, constant, symbol, or
literal. Elements can be optionally preceded by a complement character
(#) or an element prefix (P. or W.). Elements are defined as follows:

element ::= special-element | constant | symbol | literal .

element For more detailed information about element, see
subsection 4.5, Special Elements, for special-element,
subsection 4.4.1, Constants, for constant, subsection
4.3, Symbols, for symbol, and subsection 4.4.2, Data
Items, for literal.

Examples (elements):

Element Description

SIGMA Symbol

* Special element

*W Special element
0°'7783 Numeric constant
A'ABC'R Character constant
=A'ABC"' Literal

4.7.2.2 Multiply-operator

A multiply-operator joins two prefixed-elements. Multiply-operators are
defined as follows:

multiply-operator ::= "*" | "/" |

4.,7.2.3 Term attributes

Every prefixed-element in a term has a relative and an address attribute
associated with it. CAL assigns relative and address attributes to the
entire term by evaluating each prefixed-element in the term.

SR-2003 4-32

The relative and address attributes for a term vary as CAL evaluates each
prefixed-element in the term. The term's final attribute is the
attribute in effect when the final (right-most) element of the term is
evaluated. As CAL encounters each prefixed-element in the left-to-right
scan of a term, it assigns an attribute to the term based on the
multiply-operator (if any) preceding the prefixed-element, the attribute
of any previous partial term, and the attribute of the prefixed-element
currently being evaluated.

Relative attributes - The prefixed-elements and multiply-operators
comprising a term determine the term's relative attributes. CAL assigns
every term a relative attribute determined by the following rules:

Rule Attribute Description

1 Absolute A term assumes the attribute of absolute if every
prefixed-element is absolute.

2 Immobile A term assumes an attribute of immobile if it
contains one prefixed-element with immobile
attributes, zero or more prefixed-elements with
absolute attributes, and no prefixed-elements with
relocatable or external attributes. Thus an
immobile term can contain one immobile
prefixed-element with the remaining
prefixed-elements being absolute.

3 Relocatable A term assumes an attribute of relocatable if it
contains one prefixed-element with relocatable
attributes, zero or more prefixed-elements with
absolute attributes, and no prefixed-elements with
immobile or external attributes. Thus a
relocatable term can contain one relocatable
prefixed-element with the remaining
prefixed-elements being absolute.

4 External A term assumes the attribute of external if it
consists of one prefixed-element and the
prefixed-element is external.

Examples:
Term Evaluation
2%4/3%4 Absolute (2) * absolute (4) is evaluated as absolute.
Absolute (2*4) / absolute (3) is evaluated as absolute.

Absolute (2*4/3) * absolute (4) is evaluated as absolute;
rule 1.

SR-2003 4-33

Term Evaluation

STKSYM*3 Immobile (STKSYM) * absolute (3) is evaluated as immobile;
rule 2.

2*SYM1*2 Absolute (2) * relocatable (SYM1l) is evaluated as
relocatable. Relocatable (2%#SYM1) * absolute (2) is
evaluated as relocatable; rule 3.

EXT1 One external (EXT1) element is evaluated as external:; rule
4,

EXT2%SYM1 External (EXT2) * relocatable (SYM1) produces an error;
rule 4.

4*SYM1/4 Absolute (4) * relocatable (SYM1l) is evaluated as
relocatable; relocatable (4*SYM1) / 4 produces an error.
All prefixed-elements to the left of the / must have a
relative attribute of absolute; see general rules for terms
in subsection 4.7.2, Terms.

Address attributes - CAL assigns every term one of the following address
attributes:

® Parcel-address
® Word-address
® Value

Figure 4-4 indicates how address attributes are assigned to terms and
partial terms. Pterm, Wterm, and Vterm denote the attribute of the
partial term resulting from all elements evaluated before the current
element. In figure 4-4, P, W, and V denote an element being incorporated
into the term and having an attribute of parcel-address, word-address, or
value, respectively.

If a partial term has the address attribute of the left column and is
multiplied or divided by a prefixed-element with the address attribute of
the top horizontal row, the resulting attribute is determined at the
intersection of the column and row by the arithmetic operator position in
the upper left corner of table.

The results for multiplication and division are given in the top (*) and
bottom (/) halves of each box on the chart, respectively. For example,

if partial term Vterm is multiplied by a prefixed-element with an address
attribute of word, the address attribute for the new partial term is word.

SR-2003 4-34

A two-digit value following an address attribute indicates that although
a result is specified, CAL issues a warning message that corresponds to
the two-digit superscript. For example, if the partial term Vterm is
divided by a prefixed element with an address attribute of parcel, the
result is value and message 84 is issued:

Partial term with value address is divided by parcel element

See appendix D, Diagnostic Messages, for the text that is associated with
messages 80 through 87.

| | I
| * I I | |
| == | v | P | w | 2nd Term
| / | I | I
|] | | I
| | | | |
I | v I P | W I
| Vterm | -——-—-- | ——————- [|
I I v | v&8 | v8t
| [| 1 I
| I I | |
i | P | p 80 | v 82 |
| Pterm | ————--——- | ——————- [|
| I P 1 v | v38
I | | 1 |
I | | | I
| | W | v8l | v8 [V - Value
| Weerm | ------- | —=-m | —————-- | P - Parcel
| | W | v 8 \Y | W - Word
| |] | | nn - Warning message number
Partial
Term

Figure 4-4. Address Attribute Assignment Chart

SR-2003 4-35

4.8 EXPRESSION EVALUATION

Expressions are evaluated from left to right. Each term is evaluated
from left to right with CAL performing 64-bit integer multiplication or
division as each multiply-operator is encountered. Expressions are
defined as follows:

expression ::= embedded-argument |
[add-operator] term { add-operator term } .

NOTE

The embedded-argument is intended for use with macros
and opdefs and should not be included in expressions.
Although the embedded-argument is syntactically
correct, the CAL expression evaluator cannot evaluate
expressions that contain embedded-arguments. For

example:

|Location|Result |Operand | Comment

|1 110 120 135

I I

| syml = |1 Valid expression.
= (1) Syntactically

|
I
I

correct, but CAL
issues error

I
|
| sym2 I
I
I
| message.

Ne Ne Ne Ne No

When a complete term has been evaluated, it is added or subtracted from
the sum of the previous terms. CAL does not check for overflow and
underflow.

The assembler treats each element as a 64-bit twos-complement integer.
Character constants are left- or right-justified within a field width
equal to the destination field. If the field width is shorter than the
length of the character constant a warning message is issued.
Complemented elements are complemented in the right-most bits in a field
width equal to the destination field.

SR-2003 4-36

NOTE

CAL processes floating-constants as expected when they
are specified as single uncomplemented
prefixed-elements within an expression. If
floating-constants are used in any other way, an
appropriate warning message is issued and integer
arithmetic is used to evaluate the expression. CAL
processes the floating-constants within the expressions
of the following examples as expected.

|Location|Result | Operand | Comment
11 110 |20 {35

| | | |

{A | CON j1.0 |

|B | CON |-1.0 |

|C | CON 14.5 |

|D | CON |.3 |

|E | CON [-.75 [

CAL issues an appropriate warning message and evaluates the
floating-constants within the expressions of the following
examples using integer arithmetic:

|Location|Result |Operand | Comment
11 110 |20 135

I | | |

|G | CON 11.0+2.0 |

|H | CON | -1%3.4 |

|1 | CON |-#1.0 |

Examples:

1. The following example demonstrates how the result of a VWD with a
nine-bit destination field is stored; represents a blank space.

|Location]Result | Operand |Comment

11 110 |20 135

I | I |

| | VWD |D'9/'abc'+1 | ; The terms of the expression

| | | |: 'abc' and 1

SR-2003 4-37

AAAAAAARAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA

101100001}01100010{01100011 | I | I | I
l I | 1 l | 1 | I

Diagram 4-5. 64-bit ASCII Representation of 'abc', Left Justified

I I I I [l I I |
100000000|00000000|00000000|00000000|00000000}00000000|00000000|00000001 |

l I 1 L | I 1 l I

Diagram 4-6. 64-bit Representation of 1

Diagrams 4-5 and 4-6 contain the ASCII representations of the character
strings 'abc' and 1, respectively. Since the character constant is
left-justified by default within a field width equal to the 9 bits
specified in the example, the 64-bit representation of ‘'abc’' is actually
as follows:

I | I I I I I I I
00000000 | 00000000 | 00000000 | 00000000 |00000000|00000000|00000000|11000010]

I | l | l | I l I

Diagram 4-7. ASCII Representation of 'abc', Left Justified
in 9 Bits

CAL adds the value 1 (diagram 4-6) to the value shown in diagram 4-7
(011000010), and stores it in the destination field (diagram 4-8). CAL
issues a warning message stating that the character string 'abc' has been
truncated. The destination field contains a value of 303 (011000011).

I I
1011000011}

Diagram 4-8. Result of VWD with 9-bit Destination Field

SR-2003 4-38

2. The following example demonstrates that complemented elements are
complemented in the right-most bits of a field width equal to the
destination field.

|Location|Result | Operand | Comment
11 110 120 135
| | |
| VWD |D'4/#1+1 The terms of the expression

are the complement of 1 and
the value 1. The destination
field is 4 bits wide.

— v —— —— —
e Ne Ne “e

I I I I I I I I I
[11111111]11111111§11211111/11111111/111121111(11111111}11111111]11111110]

I | | | l | I | I

Diagram 4-9. 64-bit Representation of the Complement of 1

I I | | I I l I I
| 00000000 00000000|00000000| 00060000 |00000000]|00000000|00000000|00000001|

I | 1 | I | | I I

Diagram 4-10. 64-bit Representation of 1

Diagrams 4-9 and 4-10 contain the complement of 1 and the ASCII
representation for the value 1 (0001), respectively. Diagram 4-11 shows
the actual value of the complement of 1 is stored in the right-most bits
of a word in memory.

! | I I I I | I |
|00000000]00000000| 00000000|00000000|00000000|00000000|00000000}00001110]

I I | | I | | | |

Diagram 4-11. Complement of 1 Stored in the Right-most Bits
of a 4-bit Field

SR-2003 4-39

The character string 1110 (diagarm 4-11) is stored in the destination
field, CAL adds the value 1 to the destination field, and the result
(1111) is stored as shown in diagram 4-12,

Diagram 4-12. Result of VWD with 4-bit Destination Field

4.8.1 EVALUATING IMMOBILE AND RELOCATABLE TERMS WITH COEFFICIENTS

An immobile term has one immobile prefixed-element, no relocatable or

external prefixed-elements, and zero or more absolute prefixed-elements.
A relocatable term has one relocatable prefixed-element, no immobile or
external prefixed-elements, and zero or more absolute prefixed-elements.

An immobile term has a 64-bit integer coefficient associated with it,
equal to the value of the term obtained when a 1 is substituted for the
immobile element. The value of an immobile term is the value of the
immobile element multiplied by the coefficient.

A relocatable term has a 64-bit integer coefficient associated with it,
equal to the value of the term obtained when a 1 is substituted for the
relocatable element. The value of a relocatable term is the value of the
relocatable element multiplied by the coefficient.

Every section has two relative section coefficients, one representing an
immobile relative attribute and one representing a relocatable relative
attribute. These relative section coefficients are initialized to zero
before the evaluation of each expression. As each term is evaluated
within an expression, the term's coefficient is either added to or
subtracted from the corresponding coefficient of the corresponding
section depending on the sign immediately preceding the term. When each
term within an expression has been evaluated, the expression is assigned
a relative attribute as follows:

® Absolute; if the expression contains no external terms and all of
the coefficients for all of the sections are zero.

¢ TImmobile; if the expression contains no external terms and all of
the coefficients for all of the sections are zero except for one
immobile coefficient that must have a value of 1. The expression
is immobile relative to the section with the coefficient of one.

SR-2003 4-40

® Relocatable; if the expression contains no external terms and all
of the coefficients for all of the sections are zero except for
one relocatable coefficient that must have a value of 1. The
expression is relocatable relative to the section with the
coefficient of one.

e External; if the expression contains one extermnal term and all of
the coefficients for all of the sections are zero.

e Invalid; all other cases.

If, for example, SYMBOL is assumed to be relocatable, SYMBOL*2+1-SYMBOL
is considered a valid expression when it is evaluated by CAL. Since
SYMBOL is relocatable, substituting one for SYMBOL generates three terms
(1%2, +1, and -1). The first term (1%2) includes the relocatable term
SYMBOL. A value of 2 is stored with the coefficient maintained by CAL
for the relocatable section to which SYMBOL is relative. The second term
(+1) is absolute and does not effect the evaluation of the relocatable
coefficient. The third term (-1) includes the relocatable term SYMBOL. A
one is subtracted from the coefficient maintained by CAL for the
relocatable section named SYMBOL.

When the entire term is evaluated, the coefficient associated with the
relocatable term SYMBOL equals one. Since all of the relocatable terms
within the expression are relative to a single section and the section's
final coefficient is one, the expression is relocatable relative to that
section.

Every relocatable symbol is relative to some section. All sections have
an initial coefficient of zero before expression evaluation. The
operator immediately preceding a relocatable term is the operator
associated with that term. For example, the coefficient for SYMBOL is
maintained as -1. When the sign of a coefficient is not indicated, it is
assumed to be positive. The coefficient for SYMBOL*1 is maintained as
+1%1, If la (100) is substituted for SYMBOL in the following expression:

SYMBOL*2+1-SYMBOL

the binary to be evaluated is 100%010+001-100. CAL evaluates the string
from left to right. The following partial results are obtained:

100#010=1000
1000+0001=1001
1001-0100=0101=1b

The final result (1b) is the result that we would expect to be

generated. The following example demonstrates the correct and incorrect
use of a relocatable term.

SR-2003 4-41

Example:

|Location|Result

| Operand | Comment

|1

110

120 135

|
|
| SYMBOL

* SYMBOL is given a value equal
to the current location
counter.

; When evaluated, this
expression produces a value
equal to the current location
counter plus 1. The value is
relocatable.

When evaluated, this
expression produces a value
equal to twice the current
location counter plus 1. The
value is not relocatable.

CAL produces an error message.

SYMBOL*2+1-SYMB

SYMBOL*2+1

Ne Ne Se Ne Se Ne Ne Ne ve v [one Ne v

—_——— e . —— e — e —) — — —— —

The term SYMBOL*2+1 is not relocatable because the results generated are
dependent on the location where the loader puts the module. If the
loader puts the module at 400, SYMBOL*2+1=801. If the loader puts the

module at 200,

SYMBOL*2+1=401. If a term is evaluated and found to be

not relocatable, CAL issues a message with a priority of error.

Example (relocatable):

|Location|Result | Operand | Comment
|1 110 120 135

I | [I

I | IDENT | TEST [
|SNAME1 | SECTION | |

| SYMBOL1 |BSS |4 |

| SYMBOL2 |= | W, * |

I | BSS |5 I

| | SECTION | * |
|SNAME2 | SECTION [|

| SYMBOL3 |BSS |3 I

I | SECTION | * I

| SYMBOL4 |= | 3*SYMBOL 2 +SYMBOL 3 -1 -SYMBOL 2 -2*#SYMBOL 1
| | END | |

SR-2003

The expression 3*SYMBOL2+SYMBOL3-1-SYMBOL2-2*SYMBOL1 contains five terms,
four of which are relocatable, and is evaluated as follows:

Value of
Term Coefficient Attribute
3*SYMBOL2 3%1 Relocatable (relative to SNAME1l)
+SYMBOL3 +1 Relocatable (relative to SNAME2)
-1 Absolute
—~SYMBOL.2 -1 Relocatable (relative to SNAME1l)
~-2*%SYMBOL1 -2%1 Relocatable (relative to SNAME1l)

In the previous example, the coefficients for the sections SNAMEl1l, and
SNAME2 were initialized to zero before the expression was evaluated. The
main section has a coefficient of zero. When the coefficients for the
relocatable terms relative to SNAMEl1l are evaluated, the result is zero
(+3-1-2). When the coefficients for the relocatable terms for SNAME2 are
evaluated, the result (+1) is 1.

SYMBOL4 obtains a relative attribute of relocatable because one section
in the expression has a coefficient of 1 (SNAME2) and all other sections
(SNAME1l) maintained for the expression have coefficients of 0. The final
expression is relocatable relative to SNAME2, because SNAME2 is the
section with the coefficient of 1.

The address attribute of the expression is evaluated as follows:

Term Partial Term Attribute

3*SYMBOL?2 Value*word Word (see figure 4-4)
+SYMBOL3 Word Word (see figure 4-4)
-1 Value Value (see figure 4-4)
-SYMBOL2 Word Word (see figure 4-4)
-2*SYMBOL1 Value*word Word (see figure 4-4)

The address attribute for the entire expression is word. For a
description of the manner in which parcel-address, word-address, and
value attributes are assigned to entire expressions, see subsection 4.9,
Expression Attributes.

The value of the expression 3*SYMBOL2+SYMBOL3-1-SYMBOL2-2*SYMBOL1=0'7 and
is calculated as follows:

Term Result Description
3*SYMBOL2 3*%4-=0'14 SYMBOL2 begins with word 4 in section

SNAME1l; 4 is substituted for SYMBOLZ2.

SYMBOL3 0 SYMBOL3 begins with word O in section
SNAME2; 0 is substituted for SYMBOL3.

-1 -1 Term 3 is absolute; no substitution.

SR-2003 4-43

Term Result Description

~-SYMBOL2 -4 SYMBOL2 begins with word 4 in section
SNAME1; 4 is substituted for SYMBOL2.

~-2*SYMBOL1 -2%0=0 SYMBOL1 begins with word 0 in section
SNAME1l; O is substituted for SYMBOL1.

When the values for the terms (0'14+0-1-4-0) are substituted for the
expression (3*SYMBOL2+SYMBOL3-1-SYMBOL2-2*SYMBOL1), the result is 7.

Example (immobile):

|Location|Result |Operand | Comment
|1 110 120 |35

I i I |

| | ident | test]

| taskc | section | taskcom |

| tesym |bss |4 |

| | section | % |
|symbol |= | taskc+tcsym-taskc

The expression taskc+tcsym-taskc contains three terms, two that are
relocatable and one that is immobile. The expression is evaluated as
follows:

Value of
Term Coefficient Attribute
taskc +1 Relocatable (relative to taskc)
+tcsym +1 Immobile (relative to taskc)
-taskc -1 Relocatable (relative to taskc)

In the previous example, the relative section coefficients for
relocatable taskc and immobile tcsym were initialized to zero before the
expression was evaluated. When the coefficients for the relocatable
terms relative to taskc are evaluated, the result is zero (+1-1=0). When
the coefficient for the immobile term (tcsym) is evaluated, the result
(+1) is 1. Since the term with the relative attribute of immobile has
the coefficient of 1, the entire expression is assigned a relative
attribute of immobile.

The address attribute of the expression is evaluated as follows:

Term Partial Term Attribute

taskc Word Word (see fiqure 4-4)
+tesym Word Word (see fiqure 4-4)
-taskc Word Word (see figure 4-4)

SR-2003 4-44

The address attribute for the entire expression is word. For a
description of the manner in which parcel-address, word-address, and
value attributes are assigned to entire expressions, see subsection 4.9,

Expression Attributes.

The value of the expression taskc+tcsym-taskc is calculated as follows:

Term Result Description

taskc 0 taskc is assigned a value of 0 relative to the
task common section taskc; O is substituted for
taskc.

+tcsym 0 tecsym begins with word 0 in taskcom section

taskc; 0 is substituted for tcsym.

-taskc 0 taskc is assigned a value of 0 relative to the
task common section taskc; 0 is substituted for

taskc.

When the values for the terms (0+0-0) are substituted for the expression

(taskc+tcsym-taskc), the result is 0.

4.9 EXPRESSION ATTRIBUTES

The expression attributes for a full expression are determined by

evaluating the terms within an expression. The
following attributes to an expression:

® Relative
- Absolute
- Immobile
- Relocatable
- External
® Address
- Parcel-address

- Word-address
- Value

SR-2003 4-45

assembler can assign the

4.9.1 ABSOLUTE, IMMOBILE, RELOCATABLE, or EXTERNAL
Every expression assumes one of the following relative attributes:

® Absolute
¢ Immobile
® Relocatable
¢ External

An expression is absolute if no external terms are present and the
coefficients of all other sections are 0.

An expression is immobile if the coefficient for every section within the
current module represented in the expression is 0, except for one section
which must have a coefficient of +1 (positive relocation) and is
immobilely associated with that section. An expression is relocatable if
the coefficient for every section within the current module represented
in the expression is 0, except for one section which must have a
coefficient of +1 (positive relocation) and is relocatably associated
with that section. An expression error occurs if a coefficient does not
equal 0 or +1, or if more than one coefficient is nonzero.

An expression is external if the expression contains one external term
and if the coefficients of all sections are 0. An expression error
occurs if more than one external term is present. All external terms
defined with the EXT pseudo have a value of 0 associated with them.

Examples:
|Location]|Result |Operand | Comment
11 [10 |20 135
| | I [
	IDENT	TEST
	EXT	EXT1
SNAME1	SECTION	
[SYM1	BSS	4
SYM2	= [W.*	
	BSS	5
	SYM4	EXT1+SYM1
[; to have an external term and
I		; coefficients of 1 in the same
	I	; expression.
	SYMS	EXT1+SYM1-SYM2
i		
I I		; each other and produce a
	I	: coefficient of 0 for the
I		
I | | |; 4 (0+0-4).
I | END I |

SR-2003 4-46

See section 3, The CAL Program, for a description of sections.

4.9.2 PARCEL-ADDRESS, WORD-ADDRESS, OR VALUE ATTRIBUTES
Every expression assumes one of the following attributes:

® Parcel-address
® Word-address
e Value

An expression has parcel-address attribute if at least one term has a
parcel-address attribute and all other terms have value or parcel-address
attributes.

An expression has word-address attribute if at least one term has a
word-address attribute and all other terms have value or word-address
attributes.

All other expressions have value attributes. A warning message is issued

if an expression has terms with both parcel-address and word-address
attributes.

4.9.3 TRUNCATING EXPRESSION VALUES

An expression value is truncated to the field size of the expression
destination.

the range of values is as
follows -4 < exp > 7

Example:
|Location|Result |Operand |Comment
1 110 1290 135
I I | I
| SYM1 | BSS |4 |2
| SYM2 |= |-1 |: 64 bits
| | VWD 15/7-1 |; 5 bits
| | VWD 1375 |; 3-bit destination field,
| | | | > value of 5
| | VWD 12/5 | 2-bit destination field,
| | | | value of 5; truncation message
| | | |: issued.
| | VWD |3/exp |2 3-bit destination field,
| I
I |

SR-2003 4-47

A warning message is issued if the left-most bits lost in truncation are
not all zeros or all ones with the left-most remaining bit also one (that
is, a negative quantity).

Truncation occurs in the statement VWD 5/-1 (diagram 4-13), but an error
message is not generated because the part that was truncated included all
ones and the left-most bit of the 5-bit field is also a one. The result
of the VWD is stored in 5 bits as shown in diagram 4-14.

I I I I I I I | |
[11111111]11111111]11112111]11211111}111122133}112111111[11111111[21111211

I | | |] |] I [
t Truncated fResultt

Diagram 4-13. 64-bit Representation of -1

| |
[11111]
| |

Diagram 4-14. Truncated Value of -1 Stored in a 5-bit Field

Truncation occurs in the statement VWD 3/5. An error message is not
generated, because the truncated part was all zeros. The result is
stored as shown in diagram 4-15 and then truncated and stored as shown in
diagram 4-16.

I ! I I I I I I |
[00000000|00000000]00000000|00000000|00000000]|00000000|00000000|00000101 |

| L | | | | | | |
1 Truncated 1 T

Diagram 4-15. 64-bit Representation of 5

|101]
| |

Diagram 4-16. Truncated Value of 5 Stored in a 3-bit Field

SR-2003 4-48

Truncation occurs in the statement VWD 2/5. CAL generates a warning
message, because a combination of ones and zeros is truncated. The result
is stored as shown in diagram 4-17 and then truncated and stored as shown
in diagram 4-18.

I I I I I | I I I
| 00000000 | 00000000 00000000 |00000000|00000000|00000000|00000000}00000101 |

| | | | | | | | |
1 Truncated Tt 1

Diagram 4-17. 64-bit Representation of 5

Diagram 4-18., Truncated Value of 5 Stored in a 2-bit Field
If the values generated by the statement VWD 3/exp are in the range from
-4 through 7, a warning message is not generated.
Any message with a priority of error issued for an expression causes the

expression to have a relative attribute of absolute, an address attribute
of value, and a value of 0.

Examples of expressions:

Expression Description

ALPHA An expression consisting of a single term.
*W+BETA Two terms; *W and BETA.

GAMMA/4+DELTA*S Two terms; each consisting of two elements.
MU-NU*2 +% Three terms; the first consisting only of MU, the

second consisting of NU*2, and the third
consisting only of the special element *,

0'100+=0'100 Two terms; a constant and the address of a
literal.

SR-2003 4-49

In the following examples, P and Q are immobile symbols in the same
section, R and S are relocatable symbols in the same section, COM is
relocatable in a common section, X and Y are external, and A and B are
absolute. The location counter is currently in the section containing R
and S.

The following expressions are absolute.

A+B

'A'R-1

2%R-S-% Relocation of terms all cancel.
1/2%R Equivalent to O*R,

A*(R-S) Error; parentheses not allowed.

The following expressions are immobile.

P+B

0+3

COM+P-Q P and Q cancel.

X+P Error; external and immobile.

R+P Error; relocatable and immobile.

P+Q Error; immobile coefficient of 2.

Q/16*16 Error; division of immobile element is illegal.

The following expressions are relocatable.

%*

W.*4+B

R+2

COM+R-S R and S cancel.

3*%*_R-S 3*%* cancels -R and -S.

=A'LITERAL' Relocatable.

X+R Error; external and relocatable.

R+S Error; relocation coefficient of 2.

Q+S Error; immobile and relocatable.

R/16%16 Error; division of relocatable element is illegal.

The following expressions are external.

X+2

Y-100

X+R-* R, -* cancel relocation.

X+2%%_R-S Relocatable terms 2%*, -R, -S cancel each other.
-X+2 Error:; external cannot be negated.

X+Y Error; more than one external.

X/Z Error; division of an external element is illegal.

SR-2003 4-50

5. PSEUDO INSTRUCTIONS

Cray Assembly Language (CAL) includes a set of instructions known as
pseudo instructions that direct the assembler in its task of interpreting
the source statements and generating an object program.

Each program module begins with an IDENT pseudo instruction and ends with
an END pseudo instruction. Symbol, micro, macro, and opdef definitions
occurring within the program module are cleared before assembling the
next program module.

A symbol, micro, macro, or opdef can be defined before the first IDENT
pseudo instruction or between an END and a subsequent IDENT pseudo
instruction. Such a definition is global and can be referenced in any
subsequent program module. (Refer to Global Definitions, subsection
3.1.2.)

Redefinable micros and symbols can only be defined locally. Redefinable
micros and symbols appearing before the first IDENT or between an END and
subsequent IDENT pseudo instruction are cleared after assembling the next
program module.

Symbolic machine instructions and the pseudo instructions listed below
must appear within a program module. They are allowed outside of an
IDENT to END sequence only within opdef or macro definitionms.

ALIGN BSS CON LOC START
BITP BSSZ DATA ORG VWD
BITW COMMENT ENTRY QUAL

BLOCK COMMON EXT SECTION

The LOCAL pseudo instruction must occur after a macro or opdef prototype
statement or DUP or ECHO pseudo instructions, except for intervening
comment statements. All other pseudo instructions, macro definitions,
and opdef definitions can appear anywhere.

Pseudo instructions are classified and described according to their
applications, as follows:

Class Pseudo Instructions

Program control IDENT, END, COMMENT

Loader linkage ENTRY, EXT, START

Mode control BASE, QUAL, EDIT, FORMAT

Section control SECTION, BLOCK, COMMON, ORG, LOC, BITW,
BITP, BSS, ALIGN

Message control ERROR, ERRIF, MLEVEL, DMSG

SR-2003 5-1

Class Pseudo Instructions

Listing control LIST, SPACE, EJECT, TITLE, SUBTITLE, TEXT,
ENDTEXT

Symbol definition =, SET, MICSIZE

Data definition CON, BSSZ, DATA, VWD

Conditional assembly IFa, IFC, IFE, IFM, ENDIF, SKIP, ELSE

Micro definition CMICRO, MICRO, OCTMIC, DECMIC

File control INCLUDE

Defined sequences MACRO, OPDEF, DUP, ECHO, ENDM, ENDDUP,

STOPDUP, LOCAL, OPSYN, EXITM, NEXTDUP

NOTE

Pseudo instructions can be specified in uppercase or
lowercase, but never in mixed case.

The syntax for pseudos is not presented in strict Backus-Naur Form
(BNF). In some cases, the BNF has been condensed to eliminate
unnecessary redundancy in the documentation.

Throughout this section, pseudos with ignored fields (location or
operand) are defined as follows:

|Location|Result |Operand
I I I

|ignored |pseudox |

pseudox Pseudo instruction with a blank location field

ignored The location field of this statement is ignored by the
assembler. A message with a priority of CAUTION is issued
if the field is not empty and all of the characters in the
field are skipped until a blank character is encountered.
The first nonblank character following the blank character
is assumed to be the beginning of the result field.

|Location|Result |Operand
I | |
I | pseudoy | ignored

SR-2003 5-2

pseudoy Pseudo instruction with a blank operand field

ignored The operand field of this statement is ignored by the
assembler. A message with a priority of CAUTION is issued
if the field is not empty and all of the characters in the
field are skipped until a blank character is encountered.
The first nonblank character following the blank character
is assumed to be the beginning of the comment field.

5.1 PROGRAM CONTROL

The pseudo instructions described in this subsection define the limits of
a program module.

¢ IDENT Marks the beginning of a program module
¢ END Marks the end of a program module

¢ COMMENT Enters comment, generally a copyright, into the generated
binary load module.

5.1.1 IDENT - IDENTIFY PROGRAM MODULE

The IDENT pseudo instruction identifies a program module and marks its
beginning. The name of the module appears in the heading of the listing
produced by CAL (if the title pseudo has not been used) and in the
generated binary load module.

The IDENT pseudo must be specified in the global part of a CAL program.
If the IDENT pseudo instruction is found within a definition, it is
defined and is not recognized as a pseudo instruction. If the IDENT
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

Format:

IL_ssg_ax;__miM__t 10perand
[|

| ignored |IDENT | name
|ignored |ident | name
name Name of the program module. name must meet the

requirements for identifiers as described in the BNF. For
a description of names, see subsection 4.2, Names.

SR-2003 5-3

Example:

|Location|Result | Operand | Comment
P! 110 120 L35

| | | |

| | IDENT | EXAMPLE |

5.1.2 END - END PROGRAM MODULE

The END pseudo instruction terminates a program segment (module initiated
with an IDENT pseudo) under the following conditions:

® If the assembler is not in definition mode

® If the assembler is not in skipping mode

e If the END pseudo does not occur within an expansion
If the END pseudo is found within a definition, a skip sequence, or an
expansion, a message is issued indicating that the pseudo is not allowed
within these modes and the statement is treated as follows:

¢ Defined if in definition mode

e Skipped if in skipping mode

® Do-nothing instruction if in an expansion
The END pseudo instruction can be specified from within a program module
only. If the END pseudo instruction validly terminates a program module,

it causes the assembler to take the following actions:

® Generate a cross reference for symbols if the cross reference list
option is enabled, and the listing is enabled

® C(Clear and reset the format option

® (Clear and reset the edit option

¢ Clear and reset the message priority

® C(Clear and reset all list control optionmns

® Clear and reset the default numeric base

® Discard all qualified, redefinable, nonglobal, and %% symbols

® Discard all qualifiers

SR-2003 5-4

e Discard all redefinable and nonglobal micros

e Discard all local macros, opdefs, and local pseudos (defined with
an OPSYN pseudo)

¢ Discard all sections

Format:
|Location|Result _ |Operand
| [|
| ignored |END |ignored
| ignored |end | ignored

5.1.3 COMMENT - ENTER COMMENT INTO GENERATED BINARY LOAD MODULE

The COMMENTT pseudo instruction defines a character string of up to 256
characters to be entered as an informational comment in the generated
binary load module.

If the operand field is empty, the comment field is cleared and no
comment is generated. If a comment is specified more than once, the last
specification is used. If a comment is specified more than once and the
current comment is different from the previous comment, a message with a
priority of caution is issued.

If a subprogram contains more than one COMMENT pseudo, the character
string from the last COMMENT pseudo is inserted into the binary load
module.

The COMMENT pseudo instruction must be specified from within a program
module. If the COMMENT pseudo instruction is found within a definition,
it is defined and is not recognized as a pseudo instruction. If the
COMMENT pseudo instruction is found within a skipping sequence, it is
skipped and is not recognized as a pseudo instruction.

Format:
|Location|Result __ |Operand
| I |
| ignored |COMMENT | [del-char([string—of-ASCII)del-char]
|ignored |comment | [del-char([string-of-ASCII]del-char)

+ CRAY-1 and CRAY X-MP Computer Systems only

SR-2003 5-5

string—of-ASCII
An optional ASCII character string of any length.

del-char Delimiter character; must be a single matching character
on both ends of the ASCII character string. A character
string can be delimited by a character other than an
apostrophe. Any ASCII character other than a space can be
used. Two consecutive occurrences of the delimiting
character indicate a single such character is to be included
in the character string.

Example:
|Location|Result | Operand | Comment
|1 110 120 135
| I I I
| | IDENT | CAL [
| | COMMENT | "COPYRIGHT CRAY RESEARCH, INC. 1985'
| | COMMENT | -CRAY X-MP Computer System-
| | COMMENT | @ABCDEF @@FEDCBA@
| |END | I

5.2 LOADER LINKAGE

The pseudo instructions described in this subsection provide for loading
multiple object program modules, linking them into a single executable
program (ENTRY and EXT), and specifying the main program entry (START).

¢ ENTRY Specifies symbols, defined as addresses or values, so they
can be used by other program modules linked by a loader

e EXT Specifies linkage to addresses or values defined as entry
symbols in .other program modules

® START Specifies symbolic address where execution begins

5.2.1 ENTRY - SPECIFY ENTRY SYMBOLS

The ENTRY pseudo instruction specifies symbolic addresses or values that
can be referred to by other program modules linked by the loader. Each
entry symbol must be an absolute, immobile, or relocatable symbol defined
within the program module.

SR-2003 5-6

The ENTRY pseudo instruction is restricted to sections that allow
instructions, data, or instructions and data. If the ENTRY pseudo
instruction is found within a definition, it is defined and is not
recognized as a pseudo instruction. If the ENTRY pseudo instruction is
found within a skipping sequence, it is skipped and is not recognized as
a pseudo imnstruction.

Format:

|Location|Result |Operand
| [|

| ignored |ENTRY | [symbol]{","[symbol]}
| ignored |entry | [symbol]l{"," [symbol]}
symbol Name of zero, one, or more symbols; each of the names must

be defined as an unqualified symbol within the same program
module. The corresponding symbol must not be redefinable,
external, or relocatable relative to either a stack or a
task common section.

symbol must meet the requirements for symbols as
described in the BNF. For a description of symbols, see
subsection 4.3,

Example:
|Location|Result | Operand | Comment
{1 110 120 135
I I I I
| | ENTRY | EPTNME, TREG |
| |- I I
| [« I |
I [| |
|[EPTNME | = | * I
| TREG | = |0'17

5.2.2 EXT - SPECIFY EXTERNAL SYMBOLS

The EXT pseudo instruction specifies linkage to symbols that are defined
as entry symbols in other program modules. They can be referred to from
within the program module but must not be defined as unqualified symbols
elsewhere within the program module. Symbols specified on the EXT
instruction are defined as unqualified symbols having relative attributes
of external and the specified address attribute.

SR-2003 5-7

The EXT pseudo instruction can be specified anywhere within a program
module. If the EXT pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the EXT
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

Format:
|Location|Result |Operand
I I |
|ignored |EXT | [symbol{":" [attribute]}]{".,"[symbol{":"[attribute]}])
| ignored |ext | [symbol{":"[attribute]}]{", " [symbol{":"[attributel}])
symbol Name of zero, one, or more external symbols; each must be

an unqualified symbol having a relative attribute of
external and the corresponding address attribute.

symbol must meet the requirements for symbols as
described in the BNF. For a description of symbols, see
subsection 4.3.

attribute Specify one of the following attribute types:
address-attribute or linkage-attribute

address-attribute is the address attribute to be
assigned to the external symbol; can be one of the
following:

V or v Value (default)
P or p Parcel
W or w Word

linkage-attribute is the linkage attribute to be

assigned to the external symbol. Linkage attributes can be
specified in uppercase, lowercase, or mixed case and can be
one of the following:

HARD (default)
SOFT

If the linkage-attribute is not specified on the EXT
pseudo, the default is HARD. All hard external references
are resolved at load time.

A soft reference for a particular external name is resolved

at load time if and only if at least one other module has
referenced that same external name as a hard reference.

SR-2003 5-8

A user conditionally references a soft external name at
execution time. If a soft external name has not been
included at load time and is referenced at execution time,
an appropriate message is issued.

If the operating system for which the assembler is
generating code does not support soft externals, a caution
level message is issued and soft externals are treated as
hard externals.

NOTE

SOFT saves memory and time by excluding
software packages, such as graphic routines,
debugging routines, and so on, that may be
available on your system but are not
required by your program. HARD is, however,
recommended for most users.

Example:
|Location|Result |Operand | Comment
11 110 120 135
I | I |
| | IDENT |A I
I |- I |
I |. I |
! . | |
[| ENTRY | VALUE I
|[VALUE |= |2.0 |
I |. | |
I i I I
| l. I |
I |E I |
| | IDENT |B |
I | EXT | VALUE |
| | CON | VALUE | The 64-bit external value 2.0
| | | |; is stored here by the loader.
| |. I I
| |. ! |
I | END I I

SR-2003 5-9

5.2.3 START - SPECIFY PROGRAM ENTRY

The START pseudo instruction specifies the main program entry. The
program uses the START pseudo to specify the symbolic address where
execution begins following the loading of the program. The named symbol
can optionally be an entry symbol specified in an ENTRY pseudo
instruction.

The START pseudo instruction must be specified from within a program
module. If the START pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the START
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

Format:

|Location|Result __ |Operand

| I I

|ignored |START | symbol

| ignored |start | symbo1

symbol Name of a symbol; must be defined as an unqualified symbol
within the same program module. symbol must not be
redefinable, must have a relative attribute of relocatable,
and cannot be relocatable relative to any section other
than a section that allows instructions or a section that
allows instructions and data. The START pseudo cannot be
specified in a section with a type of data only.
symbol must meet the requirements for symbols as
described in the BNF. For a description of symbols, see
subsection 4.3.

Example:

|Location|Result | Operand | Comment

|1 110 120 135

I I | I

| | IDENT | EXAMPLE |

| | START | HERE |

| HERE | = | % |

| - | I

I l - I |

I be | I

I | END | |

SR-2003 5-10

5.3 MODE CONTROL

Mode control pseudo instructions define the characteristics of an
assembly. The BASE pseudo determines whether notation for numeric data
is assumed to be octal or decimal. The QUAL pseudo instruction permits
symbols to be defined as qualified or unqualified. The EDIT pseudo
instruction controls editing of assembler statements. The FORMAT pseudo
instruction controls the format that is used for interpreting assembly
source statements.

& BASE Specifies data as being octal, decimal, or a mixture of both

¢ QUAL Designates a sequence of code where symbols may be defined
with a qualifier, such as a common routine with its own
labels

e EDIT Turns editing on or off

® FORMAT Changes the format to o0ld or new

5.3.1 BASE - DECLARE BASE FOR NUMERIC DATA

The BASE pseudo instruction allows specification of the base of numeric
data as being octal, decimal, or mixed when the base is not explicitly
specified by an O', D' or H' prefix. The default is decimal.

The BASE pseudo instruction can be specified anywhere in a program
segment. If the BASE pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the BASE
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

Format:

|Location|Result |Operand
I | |

| ignored |BASE |option
|ignored |BASE | *

I I |

| ignored |base |option
| ignored |base | %

SR-2003 5-11

option Numeric base used for the integer. option is a required
single character as follows:

O or o Octal

D or 4 Decimal (default mode)

M or m Mixed; numeric data is assumed to be octal,
except for numeric data used for the following,
which is assumed to be decimal:

® Statement counts in DUP and conditional
statements

¢ Line count in the SPACE pseudo instruction

® Bit position or count in the BITW, BITP, or
VWD pseudo instructions

® Character counts as in CMICRO, MICRO,
OCTMIC, and DECMIC pseudo instructions

® Character count in data items (see data in
section 4, Cray Assembly Language)

* Reverts to the prefix that was in effect prior to the
specification of the current prefix within the current
program segment. Each occurrence of a BASE pseudo
instruction other than BASE * can modify the current
prefix. Each BASE * releases the most current prefix and
reactivates the prefix that preceded the current prefix.

If all BASE pseudos specified have been released, a message
with a priority of CAUTION is issued, and the default mode
(decimal) is used.

value both decimal

Example:
|Location]Result | Operand | Comment
|1 110 |20 L35
| | | |
| | BASE |0 | ; Change base from default to
| | | |: octal
| | VWD |50/12 |: Field size and constant
] |- | . | ; value both octal
| I I+ |
| l. . I
| | BASE D | ; Change base from octal to
| | |; decimal
| |; Field size and constant
I I:
| I
I I

SR-2003 5-12

Example (continued):

|Location|Result | Operand | Comment
11 110 |20 135
| I I I
| BASE |M Change from decimal to mixed

base

Ne Ne Neo N

I |

| |

| | VWD |39/12 | Field size decimal; constant
| |« | . | ; value octal.

| l. |- |

I l. I. |

| | BASE | % |7 Resume decimal base

| | BASE | % | ; Resume octal base

| | BASE | * | ; Stack empty; resume decimal
I | |2

base.

5.3.2 QUAL - QUALIFY SYMBOLS

A QUAL pseudo instruction begins or ends a code sequence in which all
symbols defined either are qualified by a qualifier specified by the QUAL
or are unqualified. Until the first use of a QUAL pseudo instruction,
symbols are defined as unqualified for each program segment. Global
symbols cannot be qualified. Thus, QUAL pseudo instructions must not
occur before an IDENT pseudo instruction.

A qualifier applies to symbols only. Names used for sections,
conditional sequences, duplicated sequences, macros, micros, externals,
formal parameters, and so on, are not affected.

The QUAL pseudo instruction must be specified from within a program
module. If the QUAL pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the QUAL
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

At the end of each program segment all qualified symbols are discarded.

Format:

|Location|Result |Operand
I I |

| ignored |QUAL | (name]

| ignored |QUAL | *

| | |

| ignored |qual | [symbol]
| ignored |qual | %

SR-2003 5-13

name

SR-2003

Optional name qualifier. Indicates whether symbols are to
be qualified or unqualified and, if qualified, indicates
the qualifier to be used. name must meet the

requirements for names as described in the BNF. For a
description of names and qualifiers, see section 4, Cray
Assembly Language.

name causes all symbols defined until the next QUAL

pseudo instruction to be qualified. A qualified symbol can
be referenced with or without the qualifier that is
currently active. If the symbol is referenced while some
other qualifier is active, the reference must be in the
following form:

/qualifier/symbol

When a symbol is referenced without a qualifier, CAL
attempts to find it in the currently active qualifier.

If the qualified symbol is not defined within the current
qualifier, CAL attempts to find it in the list of
unqualified symbols. The symbol is undefined if both of
these searches fail.

An unqualified symbol can explicitly be referenced using
the following form:

//symbol

If the operand field of the QUAL is empty, symbols are
unqualified until the next occurrence of a QUAL pseudo
instruction. An unqualified symbol can be referenced
without qualification from any place in the program module,
or in the case of global symbols, from any program segment
assembled after the symbol definition.

An * resumes use of the qualifier in effect before the most
recent qualification within the current program segment.
Each occurrence of a QUAL other than a QUAL * causes the
initiation of a new qualifier. Each QUAL * removes the
current qualifier and causes the most recent prior
qualification to be activated. If the QUAL * statement is
encountered and all specified qualifiers have been
released, a message with a priority of CAUTION is issued
and succeeding symbols are defined as being unqualified.

5-14

Example:

defined within qualifier
QNAME?2

|Location|Result | Operand | Comment

11 110 [20 L35

| I | I

| l. | |7 Assembler default for symbols
] | . | |; is unqualified.

| . I I

| ABC | = |1 |: ABC is unqualified.

| | QUAL | ONAME1 | ; Symbol qualifier QNAME1.
|ABC | = |2 |; ABC is qualified by ONAME1l.
| iJ |XYZ |

|XYZ |S1 |A2 |; XYZ is qualified by QNAME1
! |« | |

| | | |

| | . I I

| | QUAL | ONAME 2 | ; Symbol qualifier QNAME2,

| ABC |= I3 I

| |J | /QNAME1/XYZ [

I [+ | I

I |« I I

I . | I

| | QUAL | * | : Resume the use of symbols

| | | |2 qualified with qualifier

| | I | ; ONAME1.

I |+ | |

I |- I |

I [| I

| | QUAL | * | ;7 Resume the use of unqualified
| | | }: symbols.

|A | IFA | DEF, ABC | 5 Test whether ABC is defined
|B | IFA | DEF, /QNAME1/ABC|; Test whether ABC is defined
| | | |; within qualifier QNAME1.

|C | IFA |DEF, /QNAME2/ABC|; Test for /QNAME2/ABC being
I |

| |

| I

| I

| I

§.3.3 EDIT - CHANGE STATEMENT EDITING STATUS

The EDIT pseudo allows you to turn editing off and on within a program
segment. Appending (- new format) and continuation (, - old format)

are not effected by the EDIT pseudo.

The current editing status is reset

at the beginning of each segment to the editing option specified on the
See section 3, The CAL Program, for a
description of statement editing.

CAL invocation statement.

SR-2003

The EDIT pseudo can be specified anywhere within a program segment. If
the EDIT pseudo instruction is found within a definition, it is defined
and is not recognized as a pseudo instruction. If the EDIT pseudo
instruction is found within a skipping sequence, it is skipped and is not
recognized as a pseudo instruction.

Format:
|Location|{Result |Operand
I I I
| ignored |EDIT | [option]
| ignored |EDIT | *
| I I
|ignored {edit | [option]
|ignored |edit | %
option Turns editing on and off. option can be specified in
uppercase, lowercase, or mixed case and can be one of the
following:
ON Editing is enabled.
OFF Editing is disabled.
No entry Editing is enabled.
* An * resumes use of the edit option in effect before the

most recent edit option within the current program
segment. Each occurrence of an EDIT other than an EDIT *
causes the initiation of a new edit option. Each EDIT *
removes the current edit option and reactivates the edit
option that preceded the current edit option. If the
EDIT * statement is encountered and all specified edit
options have been released, a message with a priority of
CAUTION is issued and the default, ON, is used.

5.3.4 FORMAT - CHANGE STATEMENT FORMAT

CAL Version 2 supports both the CAL Version 1 statement format and a new
statement format. The FORMAT pseudo allows you to switch between
statement formats within a program segment. The current statement format
is reset at the beginning of each section to the format option specified
on the