
- RESEARCH, INC.

CRAY COMPUTER SYSTEMS

CAL ASSEMBLER VERSION 2
REFERENCE MANUAL

SR-2003

Copyright© 1986 by CRAY RESEARCH, INC. This manual or
parts thereof may not be reproduced in any form without
permission of CRAY RESEARCH, INC.

c=li=li"
RECORD OF REVISION RESEARCH. INC. PUBLICATION NUMBER SR-2003

Each time this manual is revised and reprinted, all changes issued against the previous version are incorporated into the new version
and the new version is assigned an alphabetic level.

Every page changed by a reprint with revision has the revision level in the lower righthand corner. Changes to part of a page are noted
by a change bar in the margin directly opposite the change. A change bar in the margin opposite the page number indicates that the
entire page is new. If the manual is rewritten, the revision level changes but the manual does not contain change bars.

Requests for copies of Cray Research, Inc. publications should be directed to the Distribution Center and comments about these
publications should be directed to:

CRAY RESEARCH, INC.
2520 Pilot Knob Road
Suite 310

Mendota Heights, Minnesota 55120

Revision Description
February 1986 - Original printing.

SR-2003 ii

PREFACE

The CAL Assembler Version 2 allows the user to express symbolically all
hardware functions of a mainframe for a Cray Research, Inc. CRAY-2,
CRAY X-MP, or CRAY-l Computer System. This detailed and precise level of
programming is of special aid in tailoring programs to the architecture
of a Cray mainframe and writing programs requiring code that is optimized
to the hardware.

Augmenting the instruction repertoire of CAL is a versatile set of pseudo
instructions that provide the user with a variety of options for
generating macro instructions, controlling list output, organizing
programs, and so on.

Except where indicated, the content of this manual applies to all series
of Cray Research, Inc., computers. Detailed information about the Cray
operating systems COS and UNICOSt is presented in separate Cray
Research, Inc. publications.

The system macro instructions for CRAY X-MP and CRAY-l Computer Systems
that are available with CAL Version 2 are described in the Macros and
Opdefs Reference Manual, CRI publication SR-0012.

The system macro instructions for CRAY-2 Computer Systems that is
available with CAL Version 2 are described in the CRAY-2 UNICOS
Libraries, Macros and Opdefs Reference Manual, publication SR-2013.

t UNICOS is derived from the AT&T UNIX system; UNIX is a trademark of
AT&T Bell Laboratories.

SR-2003 iii

CONTENTS

PREFACE

1. INTRODUCTION . . •

2.

1.1
1.2
1.3

EXECUTION OF THE CAL ASSEMBLER .
MANUAL ORGANIZATION
CONVENTIONS .. . •

OPERATING SYSTEMS . . . · · · · · · · ·
2.1 OPERATING SYSTEM INTERFACES

2.1.1 Cray operating system COS · · ·
2.1.1.1 JCL file · · · · · ·
2.1.1.2 CAL control statement
2.1.1.3 The COS environment

2.1.2 Cray operating system UNICOS · ·
2.1.2.1 Interactive assembly ·
2.1.2.2 as - CAL command line
2.1.2.3 The UNICOS environment

2.2 BINARY DEFINITION FILES · · · · · · ·
2.2.1 Defining a binary definition file

2.2.1.1 Symbols
2.2.1.2 Macros
2.2.1.3 Opdefs · · · ·
2.2.1.4 Opsyns · · · · ·
2.2.1.5 Micro · · · · ·

2.2.2 Creating binary definition files

·

·
·
·

· ·

2.2.2.1 Creating new binary definition
for COS · · · · · · . · ·

2.2.2.2 Creating new binary definition
for UNICOS · · · · · ·

2.2.3 Using binary definition files
2.2.3.1 Compatibility checking ·

·

files

· ·
files-

· · .
· · .

2.2.3.2 Multiple references to a definition

3. THE CAL PROGRAM · · · · · · · · . · · ·
3.1 PROGRAM SEGMENT . . . · · · · ·

3.1.1 Program module · · · · ·
3.1.2 Global definitions · · · ·

SR-2003 v

.

iii

1-1

1-2
1-2
1-3

2-1

2-1
2-1
2-2
2-3
2-9
2-11
2-12
2-12
2-17
2-20
2-21
2-22
2-22
2-24
2-24
2-24
2-24

2-24

2-25
2-26
2-26
2-27

3-1

3-1
3-1
3-1

3. THE CAL PROGRAM (continued)

3.2 SOURCE STATEMENT · · · · · · · · · · · 3-4
3.2.1 New format · · · · · · 3-4

3.2.1.1 Location field · 3-5
3.2.1.2 Result field · · · · · · · · · 3-5
3.2.1.3 Operand field · · · · 3-6
3.2.1.4 Comment field 3-6

3.2.2 Old format · · · · · · · 3-7
3.2.2.1 Location field · · · · · · · · · · 3-7
3.2.2.2 Result field · · 3-7
3.2.2.3 Operand field · · · · 3-8
3.2.2.4 Comment field · · · · 3-8

3.3 STATEMENT EDITING · · · · · · · · · · 3-8
3.3.1 Micro substitution 3-10
3.3.2 Concatenate · · · · · · · · · · 3-10
3.3.3 Append · · · · · · · · · · · 3-10
3.3.4 Continuation · · · · · · · · · 3-10
3.3.5 Comment · · · · · · · · · · · · · 3-11
3.3.6 Actual statements and edited statements 3-11

3.4 INSTRUCTIONS · · · · · · · · · · · · 3-12
3.4.1 Assembler-defined instructions 3-13

3.4.1.1 Machine instructions · 3-13
3.4.1.2 Pseudo instructions 3-13

3.4.2 User-defined instructions 3-13
3.5 MICROS . · · · · · · · · · · · · · 3-14
3.6 SECTIONS · · · · · · · · · · · · 3-19

3.6.1 Local sections · · · · 3-19
3.6.1.1 Main section · · · · · 3-19
3.6.1.2 Literals section · · · · 3-20
3.6.1.3 Sections defined by the SECTION pseudo 3-20

3.6.2 Common sections · · · · · 3-21
3.6.3 Section stack buffer · · · · · · · · · · · 3-21

3.6.3.1 Origin counter · 3-23
3.6.3.2 Location counter · 3-23
3.6.3.3 Word-bit-position counter · · · · 3-23
3.6.3.4 Force word boundary 3-24
3.6.3.5 Parcel-bit-position counter 3-24
3.6.3.6 Force parcel boundary 3-24

4. CRAY ASSEMBLY LANGUAGE · · · · · · · · · · · · · · · · · · 4-1

4.1 REGISTER DESIGNATORS · · · · · · · · · · 4-1
4.1.1 Complex registers · · · · · · · · · 4-1
4.1.2 Simple registers · 4-3

4.2 NAMES . · · · · · · · · · · · · · · · · 4-3
4.3 SYMBOLS · · · · · · 4-4

4.3.1 Symbol specification · · · · · · 4-6
4.3.1.1 Unqualified symbol 4-6
4.3.1.2 Qualified symbols · · · 4-7

SR-2003 vi

4.3

4.4

4.5
4.6

4.7

4.8

4.9

SYMBOLS (continued)
4.3.2 Symbol definition · · · · ·
4.3.3 Symbol attributes · · · · ·

4.3.3.1 Address attributes · ·
4.3.3.2 Relative attributes
4.3.3.3 Redefinable attributes

4.3.4 Symbol reference · ·
DATA · · · · · ·
4.4.1 Constants · · · · ·

4.4.1.1 Floating-constant
4.4.1.2 Integer-constant
4.4.1.3 Character-constants

4.4.2 Data items · · · · · · ·
4.4.2.1 Floating-data item · ·
4.4.2.2 Integer-data item
4.4.2.3 Character-data item

4.4.3 Literals · · · · · · · · ·
SPECIAL ELEMENTS · · · · · · · ·
ELEMENT PREFIXES FOR SYMBOLS, CONSTANTS,
OR SPECIAL ELEMENTS · · · · · · ·
4.6.1 P. - Parcel-address prefix ·
4.6.2 W. - Word-address prefix ·
EXPRESSIONS . . · · ·
4.7.1
4.7.2

Add-operator
Terms .••.•....
4.7.2.1 Prefixed-element.
4.7.2.2 Multiply-operator
4.7.2.3 Term attributes

EXPRESSION EVALUATION

· ·

. . · ·
· ·
· ·

· ·

· ·

· ·

4.8.1 Evaluating immobile and relocatable terms with
coefficients • . • . . . •

EXPRESSION ATTRIBUTES • .
4.9.1 Absolute, immobile, relocatable, or external
4.9.2 Parcel-address, word-address, or value

·

·
·

attributes • •
4.9.3 Truncating expression values . •

5. PSEUDO INSTRUCTIONS

5.1

5.2

SR-2003

PROGRAM CONTROL • • • .
5.1.1 IDENT - Identify program module
5.1.2 END - End program module
5.1.3 COMMENT - Enter comment into generated binary

load module
LOADER LINKAGE . • . . . •
5.2.1 ENTRY - Specify entry symbols
5.2.2 EXT - Specify external symbols.
5.2.3 START - Specify program entry

vii

4-8
4-9
4-9
4-10
4-11
4-12
4-13
4-13
4-13
4-15
4-17
4-18
4-18
4-19
4-20
4-21
4-25

4-26
4-27
4-28
4-29
4-30
4-30
4-31
4-32
4-32
4-36

4-40
4-45
4-46

4-47
4-47

5-1

5-3
5-3
5-4

5-5
5-6
5-6
5-7
5-10

5. PSEUDO INSTRUCTIONS (continued)

5.3

5.4

5.5

5.6

5.7

5.8

5.9

SR-2003

MODE CONTROL • • • •• •••••••• •
5.3.1 BASE - Declare base for numeric data.
5.3.2 QUAL - Qualify symbols •••••••
5.3.3 EDIT - Change statement editing status
5.3.4 FORMAT - Change statement format ••
SECTION CONTROL • . • • • • • • . . . •
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9
5.4.10
MESSAGE

SECTION - Section assignment • .
BLOCK - Local section assignment • •
COMMON - Common section assignment .
STACK - Increment the size of the stack
ORG - Set * and *0 counter . .
BSS - Block save • ••
LOC - Set * counter
BITW - Set *w counter
BITP - Set *p counter
ALIGN - Align on an instruction buffer boundary
CONTROL • . • • • • . • • • .

5.5.1 ERROR - Unconditional error generation
5.5.2 ERRIF - Conditional error generation.
5.5.3 MLEVEL - Message priority
5.5.4 DMSG - Issue diagnostic message
LISTING CONTROL . . • • • • • •
5.6.1 LIST - List control
5.6.2 SPACE - List blank lines
5.6.3 EJECT - Begin new page.
5.6.4 TITLE - Specify listing title
5.6.5 SUBTITLE - Specify listing subtitle
5.6.6 TEXT - Declare beginning of global text source.
5.6.7 ENDTEXT - Terminate global text source ••
SYMBOL DEFINITION
5.7.1 = - Equate symbol .•.
5. 7 • 2 SET - Set symbo 1
5.7.3 MICSIZE - Set redefinable symbol to micro size.
DATA DEFINITION• . .
5.8.1 CON - Generate constant
5.8.2 BSSZ - Generate zeroed block
5.8.3 DATA - Generate data words.
5.8.4 VWD - Variable word definition.
CONDITIONAL ASSEMBLY . • • . . •. ..
5.9.1 IFA - Test expression attribute for assembly

5.9.2

5.9.3
5.9.4
5.9.5
5.9.6
5.9.7

condition . • • • • • • •
IFC - Test character strings for assembly
condition . • • . ••••
IFE - Test expressions for assembly condition
IFM - Text machine characteristics • .
SKIP - Unconditionally skip statements •
ENDIF - End conditional code sequence
ELSE - Toggle assembly condition ..•

viii

5-11
5-11
5-13
5-15
5-16
5-17
5-18
5-26
5-27
5-29
5-30
5-31
5-32
5-33
5-35
5-37
5-38
5-39
5-40
5-42
5-43
5-44
5-45
5-48
5-49
5-50
5-50
5-51
5-52
5-53
5-54
5-55
5-56
5-57
5-57
5-58
5-59
5-63
5-65

5-66

5-70
5-73
5-76
5-79
5-80
5-81

5. PSEUDO INSTRUCTIONS (continued)

5.10

5.11
5.12

MICROS
5.10.1 CMICRO - Constant micro definition .
5.10.2 MICRO - Micro definition
5.10.3 OCTMIC - Octal micros
5.10.4 DECMIC - Decimal micros
FILE CONTROL (INCLUDE pseudo)
DEFINED SEQUENCES . • • .
5.12.1 Similarities among defined sequences

5.12.1.1 Editing
5.12.1.2 Definition format

5.12.2

5.12.3

5.12.4
5.12.5
5.12.6
5.12.7
5.12.8
5.12.9

5.12.1.3 Formal parameters •...
5.12.1.4 Instruction calls
5.12.1.5 INCLUDE pseudo instruction
Macro . • . . • . . • • • .
5.12.2.1 Macro definition .•
5.12.2.2 Macro calls
OPDEF - Operation definition .
5.12.3.1 Opdef definition.
5.12.3.2 Opdef calls
DUP - Duplicate code . • . .
ECHO - Duplicate code with varying arguments
ENDM - End macro or opdef definition
EXITM - Premature exit of a macro expansion
ENDDUP - End duplicated code
NEXTDUP - Premature exit of the current
iteration of a duplication expansion . .

5.12.10 STOPDUP - Stop duplication .•....
5.12.11 LOCAL - Specify local unique character string
5.12.12 OPSYN - Synonymous operation ••....•.•.

APPENDIX SECTION

A.

B.

C.

D.

INSTRUCTION SYNTAX . . .

A.1
A.2

INSTRUCTION SYNTAX CONVENTIONS .
CAL INSTRUCTION SYNTAX
A.2.1 Syntax description •..•
A.2.2 Instruction syntax (hierarchical version) .
A.2.3 Instruction syntax (sorted version)

PSEUDO INSTRUCTION INDEX . . . • . . • . . • • • . . • . . • •

LISTING MESSAGES • • •

DIAGNOSTIC MESSAGES

SR-2003 ix

5-82
5-84
5-86
5-89
5-91
5-94
5-97
5-98
5-98
5-99
5-100
5-102
5-103
5-104
5-105
5-111
5-123
5-127
5-134
5-139
5-142
5-144
5-145
5-146

5-147
5-147
5-152
5-154

A-1

A-1
A-1
A-1
A-2
A-8

B-1

C-1

D-1

E. CHARACTER SET

FIGURES

2-1 Symbols to be Included in a Binary Definition File
3-1 Sample Organization of a CAL Program ·
4-1 Word-parcel Conversion for Six Words ·
4-2 Diagram of an Expression . .
4-3 Diagram of a Term
4-4 Address Attribute Assignment Chart . ·

TABLES

2-1 Comparison of COS and UNICOS Parameters
C-1 Listing Messages . •
D-1 Diagnostic Messages . . . • • • . • • . •

DIAGRAMS

. . ·

· . . ·

4-1 ASCII Character with Left Justification and Blank Fill •

·
· . .

· . .

4-2 ASCII Character with Left Justification and Zero Fill . . • .
4-3 ASCII Character with Right Justification and Zero Fill •
4-4 ASCII Character with Right Justification in 8 Bits • . . . • •
4-5 54-bit ASCII Representation of 'abc', Left Justified •.
4-5 54-bit Representation of 1 • • • • • • • • • • . • . . .
4-7 ASCII Representation of 'abc', Left Justified in 9 Bits
4-8 Result of VWD with 9-bit Destination Field •
4-9 54-bit Representation of the Complement of 1 . • •
4-10 54-bit Representation of 1 • • • • • • . • . • . .
4-11 Complement of 1 Stored in the Right-most Bits of a 4-bit Field
4-12 Result of VWD with 4-bit Destination Field . • . . . • .
4-13 54-bit Representation of -1 • • . • . • . . •. ...••
4-14 Truncated Value of -1 Stored in a 5-bit Field . . .•.
4-15 54-bit Representation of 5 • . •
4-16 Truncated Value of 5 Stored in a 3-bit Field . .
4-17
4-18
5-1
5-2
5-3
5-4
5-5
5-5
5-7

INDEX

54-bit Representation of 5 • • .
Truncated Value of 5 Stored in a 2-bit Field
BITP Example - Zeroing Parcel A
BITP Example - Parcel B Set by vwd Instruction .
BITP Example - Resetting the Pointer
BITP Example - Result of a Bitp Followed by a vwd
Storage of Unlabeled Data Items • • • • • .
Storage of Labeled and Unlabeled Data Items
Storage of CDC Character Data Item • •

SR-2003 x

E-1

2-23
3-2
4-27
4-29
4-29
4-35

2-18
C-1
D-2

4-23
4-23
4-24
4-24
4-38
4-38
4-38
4-38
4-39
4-39
4-39
4-40
4-48
4-48
4-48
4-48
4-49
4-49
5-36
5-36
5-36
5-37
5-61
5-62
5-62

1. INTRODUCTION

Cray Assembly Language, Version 2 (CAL), is a powerful symbolic language
for the generation of object code to be loaded and executed on a Cray
Computer System.

CAL source programs consist of sequences of source statements. The
source statement can be a symbolic machine instruction, pseudo
instruction, a macro instruction, or an opdef instruction. The symbolic
machine instructions provide a means of expressing symbolically all
functions of a Cray mainframe. Pseudo instructions allow programmer
control of the assembly process. Macros and opdefs allow the programmer
to define instruction sequences and call them later in the program.

Features inherent in CAL include:

• Free-field source statement format. Size and location of source
statement fields are largely controlled by the user.

• Source statements (with some exceptions) can be entered using
uppercase, lowercase, or mixed-case letters.

• Control of local and common sections. You can assign code or data
segments to specific areas.

• Preloaded data. Data areas can be defined during assembly and
loaded with the program.

• Data notation. Data can be designated in integer, floating-point,
and character code notation.

• Word and parcel address arithmetic. Addresses can be specified as
either word or parcel addresses.

• Listing control. You can control the content of the assembler
listing.

• Micro coding. A character string can be defined in a program and
substituted for each occurrence of its micro name in the program.

• Macro coding. Sequences of code are defined in a program or on a
library, are substituted for each occurrence of the macro name in
the program, and use parameters supplied with the macro call.

SR-2003 1-1

1.1 EXECUTION OF THE CAL ASSEMBLER

The CAL assembler executes under the control of the Cray operating
systems, COS and UNICOS. It has no hardware requirements beyond those
required for the minimum system configuration.

The assembler is loaded and begins executing as a result of the CAL
invocation statement that is specified by the user. Parameters on the
invocation statement specify characteristics of an assembler run, such as
the file containing source statements and list output. See section 2 of
this publication for descriptions of the CAL control statement used with
COS and the CAL command line used with UNICOS.

The source statements can include more than one CAL program segment. The
assembler assembles each program segment as it is encountered in the
source. The assembler makes two passes for each program segment to be
assembled. During the first pass, the assembler reads each source
language statement instruction, expands sequences (such as macro
instructions), generates the machine function codes, and assigns memory.
During the second pass, the assembler substitutes values for symbolic
operands and addresses and generates the object code and an associated
listing.

The object code must be linked and loaded before execution. References
to external symbols are resolved during the link and load phase. The
absolute file created by the linker/loader is ready for execution.

1.2 MANUAL ORGANIZATION

This publication is organized as follows:

• Section 2, Operating Systems, describes the CAL invocation
statements that execute under the Cray operating systems, COS and
UNICOS, program environment and binary definition files.

• Section 3, The CAL Program, describes the organization of a CAL
program.

• Section 4, Cray Assembly Language, describes the statement syntax
of the CAL program.

• Section 5, Pseudo Instructions, describes the pseudo instructions
that are available in CAL.

Appendixes to this publication provide the following information:

• A description of CAL instruction and syntax in Backus-Naur Form
(BNF)

SR-2003 1-2

• A list of CAL pseudo instructions

• A list of CAL listing messages

• A list of CAL diagnostic messages

• A list of the character sets supported by CAL

Symbolic machine instructions for specific Cray Computer Systems are not
included in this manual. For a description of the symbolic machine
instructions available with your Cray Computer System, see the Symbolic
Machine Instructions Reference Manual, publication SR-0085, and the
CRAY-2 Computer System Functional Description, publication HR-2000.

1.3 CONVENTIONS

This publication uses the Backus-Naur Form (BNF). The following general
conventions are used in this manual.

italics

underlining

Lowercase italicized letters, numbers, or symbols
indicate variable information.

In presenting parameter options, underlining indicates
default options.

A sequence of code is missing from the program.

Throughout this manual, CAL format (syntax) is presented using the
following header:

ILocationlResult 1 Operand

I I

Throughout this manual, examples of CAL source statements are represented
using the following header:

ILocationlResult 1 Operand 1 Comment
11 110 120 135

I I

SR-2003 1-3

The following BNF conventions are used in this manual:

x I y

"x"

x

[x]

{x}

SR-2003

Indicates that either x or y is valid

Indicates the x is a literal or terminal; the symbol within
the quotation marks should be entered exactly as
specified. The quotation marks, however, should not be
entered.

Indicates that x is a nonterminal symbol. A definition of
x can be found elsewhere in the syntax representation. For
example) the nonterminal symbol octal-digit is defined as
follows.

octal-digit ::= "0"1"1"1"2"1"3"1"4"1"5"1"6"1"7" .

If the nonterminal symbol consists of more than one word,
the words are hyphenated.

Follows a nonterminal symbol with a string of symbols that
replace the nonterminal symbol

Indicates x is optional

Indicates 0 to n occurrences of x are valid

Indicates the end of a description

1-4

2. OPERATING SYSTEMS

CAL Version 2 is a portable assembler that includes the following:

• Multiple operating system interfaces

• Support for binary definition files

2.1 OPERATING SYSTEM INTERFACES

CAL Version 2 interfaces with the following operating systems and Cray
Computer Systems:

• Cray Operating System (COS) on CRAY X-MP and CRAY-1 series
mainframes

• Cray Operating System (UNICOS) on CRAY-2 and CRAY X-MP and CRAY-1
series mainframes

2.1.1 CRAY OPERATING SYSTEM COS

A typical CAL job on a Cray computer running the Cray operating system
COS contains the following files:

• A job control language (JCL) file of COS control statements
• A CAL source file

End-of-file indicators divide files from each other. An end-of-dataset
indicator follows the last file. (The actual representation of the
end-of-file and end-of-dataset indicators depends on the front-end
computer.) Together these files comprise a job dataset, narned $IN by COS.

The job dataset is submitted to the Cray computer for processing through
a front-end computer. The method of submitting the job depends on the
front-end computer.

A job's output dataset (named $OUT by default) is returned to the
front-end computer when the job completes. The job's output dataset
includes a program listing (by default), any output created by the job,
and the job's logfile. The logfile, containing a history of the job and
other aspects of running a job on a Cray computer, is described in more
detail in the COS Version 1 Reference Manual, publication SR-OOll.

SR-2003 2-1

CAL generates two kinds of messages during assembly: listing and
diagnostic. Listing messages are generated by the assembler when a
syntax or semantic error is encountered. A message is printed on the
listing beneath every source statement that was flagged by the
assembler. A pointer identifies the location in the source statement
that corresponds to the message that was issued.

CAL generates five levels of diagnostic messages that are divided into
two classes: user information about the assembly (comment, note, and
caution) and CAL assembler errors (warning and error). All diagnostic
messages are written to the logfile.

Diagnostic user messages are classified by level of severity as follows:

• Comment - Statistical information
• Note - possible assembly problems
• Caution - Definite user errors during assembly of the program

These messages are always printed in the logfile and include messages
about segments processed, time of assembly, number of messages, and so
on. These messages are numbered 1 through 99 and are listed in
appendix D, Diagnostic Messages.

CAL diagnostic assembler messages (warning and error) are printed only if
the assembler is malfunctioning. Therefore, it is unlikely that they
will ever appear in your job's logfile. If a diagnostic message with a
priority of warning or error message ever does appear in your job's
logfile, contact your local site analyst. These messages are numbered
100 and 9reater and are not listed in this manual.

2.1.1.1 JCL file

A simple CAL job may contain the following COS control statements in its
JCL file followed by an end-of-file marker, the CAL source, and another
end-of-file marker:

JOB,JN=TEST.
ACCOUNT,AC=
CAL.
SEGLDR.
$ABD.
IEOF

IDENT

END
IEOF

SR-2003

TEST

2-2

The JOB statement is a required statement that defines the job to COS.
At the minimum, it must contain a IN parameter to assign the job name.

The ACCOUNT control statement presents the user's account number, which
may be required by a site before access is granted to the system.

The CAL statement causes the CAL assembler to be loaded and executed.
CAL control statement parameters are described in the following
subsection.

The SEGLDR statement links and loads the assembled program.

The $ABD statement executes the assembled program.

These and other control statements are described in the COS Version 1
Reference Manual, publication SR-0011.

2.1.1.2 CAL control statement

The COS NEWCAL control statement invokes the CAL Version 2 assembler.
The user selects assembler parameters either explicitly by listing them
on the control statement or implicitly by accepting the default values.
All parameters have default values. Parameters are order independent and
are optional.

Format:

NEWCAL,I=[idn{:[idn]}],L=ldn,E=edn,B=bdn,X=xdn,S=[sdn{:[sdn]}],

T=tdn,SYM=symdn,ALLSYMS,ABORT,CPU=[primary]{:[charac]},NLIST,

LIST=[name{:[name]}],options,ML=level,MC=count,FoRMAT=format,

EDIT=edit.

I=[idn{:[idn]}]

L=ldn

SR-2003

Name of dataset containing source statement input. The
default is $IN. CAL reads source statements from dataset
idn until an end-of-file is encountered. One or more
dataset names can be entered and are processed as if
appended.

Name of dataset into which list output is written. The
default is $OUT. CAL writes one file of output. If L=O,
no listing is written.

2-3

E=edn

B=bdn

x=xdn

Name of dataset on which messages are written. The default
is no message dataset if the list output is on $OUT,
otherwise, the default is $OUT. CAL writes source
statements containing messages to this dataset as one file.

Specifying E causes a message dataset to be generated on a
file named $OUT. If the message dataset name, edn, is
the same as the listing dataset name, list output is
written. If E=O, ~he message dataset is not listed.

Name of dataset to receive binary load data. The default
is $BLD. CAL writes binary load data to this dataset, one
record per program module. An end-of-file is not written.
If B=O, no binary load data is written.

Binary symbol table for the global cross-reference
generator, SYSREF. Each record contains cross-reference
information for the global symbols in one particular
program unit. The default, equivalent to specifying X=O,
writes no global cross-reference records. If X is
specified and the listing is suppressed (L=O), the
cross-reference file is not created. If X is specified
without a value, the information is written to $XRF.

S=[sdn{:[sdn]}]

T=tdn

Binary definition dataset name. The default is $SYSDEF.
If s=o is specified, no binary definition datasets are
used. sdn can be a single dataset name or a list of
dataset names separated by colons. The following is an
example of specifying a list of dataset names:

S=$SYSDEF:OURDEF:MYDEF

Binary definition datasets are processed in the order in
which they are specified.

Binary definition. Specifies dataset name to which all
global macros, opdefs, symbols, micros, and OPSYN
assignments are written. The default, equivalent to
specifying T=O, is that no binary definition dataset is
written. If T is specified without a value, the binary
dataset is written to $BDF.

SYM=symdn Name of dataset where the optional symbol table is to be
written. The default is that no symbol table dataset is
generated by CAL. If SYM is specified without a value, the
symbol text is written to the same dataset as the binary
load data.

SR-2003 2-4

ALLSYMS

ABORT

Forces a symbol table to be generated with all symbols;
normally nonreferenced symbols are not included. If the
SYM option is not specified on the CAL control statement,
the symbol text is written to the same dataset as the
binary load data.

Abort mode. If this parameter is present and if any
diagnostic messages of priority caution, warning, or error
were issued to the logfile, CAL aborts the job after the
assembly of the program.

If this parameter is omitted or if diagnostic error
messages of priority caution, warning, or error were not
encountered, CAL exits normally and job processing
continues the next control statement in the job.

Cpu=[primary]{:[charac]}

SR-2003

Cray computer to execute CAL source code. The default is
that code is generated for the characteristics of the
machine specified in the TARGET control statement. If
there is no previous TARGET control statement in the JCL
stream, code is generated for the characteristics of the
host machine. For more information about the TARGET
control statement, see subsection 2.1.1.3, The COS
Environment.

If the CPU option instruction set looks like this,

Cpu=:charac{:[charac]}

where the primary is not specified and one or more
charac are given, the primary stated on the TARGET
control statement is used. Any charac that are not
specified are taken from the TARGET control statement.

If the CPU option instruction set looks like this,

CPu=primary{:[charac]}

where the primary is specified and the charac mayor
may not be given, the specified primary overrides that of
the TARGET control statement. Any charac that are not
specified are taken from the defaults for the given
primary.

primary The type of Cray computer. The primary
options may differ from site to site. The
commonly used options are:

*HOST

2-5

The machine on which the assembler
is currently running

charac

SR-2003

*TARGET The machine that is specified in
the TARGET control statement

CRAY-X4 CRAY X-MP Models 48 and 416
CRAY-X2 CRAY X-MP Models 22, 24, and 28
CRAY-X1 CRAY X-MP Models 11, 12, 14, and

18
CRAY-XMP CRAY X-MP
CRAY-1M CRAY-1M
CRAY-1S CRAY-1S
CRAY-1B CRAY-1B
CRAY-1A CRAY-1A
CRAY-1 CRAY-1
CRAY-2 CRAY-2

The features of the primary computer.

The CRAY-2 series has no special feature
options.

The CRAY X-MP and CRAY-l Computer Systems
permit you to specify the following logical
and numeric traits:

Logical Traits

AVL
NOAVL
BDM
NOBDM
CIGS

NOCIGS

CORl

NOCORI

EMA
NOEMA
HPM
NOHPM

PC
NOPC
READVL
NOREADVL
STATRG
NOSTATRG
VPOP
NOVPOP
VRECUR

2-6

Description

Additional vector logical
No additional vector logical
Bidirectional memory
No bidirectional memory
Compressed index and
gather/scatter
No compressed index and
gather/scatter
Control operand range
interrupts
No control operand range
interrupts
Extended memory addressing
No extended memory addressing
Hardware performance monitor
No hardware performance
monitor
Programmable clock
No programmable clock
Read vector length
Do not read vector length
Status register
No status register
Vector pop count
No vector pop count
Vector recursion

NLIST

Numeric Traits

NOVRECUR
BANKBUSY=n

BANKS=n
CLOCKTIM=n
IBUFSIZE=n

MEMSIZE=n[c]

MEMSPEED=n

NUMCLSTR=n

NUMCPUS=n

Description

No vector recursion
Bank busy time in clock
periodst
Number of memory banksT
Clock time in picosecondst
Instruction buffer size in
wordsT
Memory size in words; c
can be one of the
following:t

K = n*lOOOa words
M = n*1000000a words

Memory speed in clock
periods
Number of cluster
registers
Number of cpust

Ignores all LIST pseudos in the code including those
specified by LIST in the control statement

LIST=[name{:[name]}]

options

Name of LIST pseudo instructions to be processed. A LIST
pseudo instruction with a matching location field name is
not ignored. A LIST pseudo with a location field name that
does not match a name specified on the CAL control
statement is ignored.

A name can be a single name or can be a list of names
separated by colons, for example:

LIST=TASK1:TASK2:TASK7

If just LIST is specified, all LIST pseudo instructions are
processed, regardless of the location field name.

Listing control options. Any of the following listing
control options can be specified to enable or disable a
listing feature. The selection of an option on the CAL
control statement overrides the enabling or disabling of
the corresponding feature on a LIST pseudo instruction.
Refer to the description of the LIST pseudo in subsection
5.6, Listing Control, for more details about these options.

t n represents an unsigned decimal number.

SR-2003 2-7

ML=level

SR-2003

ON
OFF

ED
NED

XRF
NXRF

XNS

NXNS

LIS

NLIS

TXT
NTXT

MAC

NMAC

MBO
NMBO

MIC

NMIC

MIF
NMIF

DUP
NDUP

Defaults are underlined.

Enables source statement listing
Disables source statement listing

Enables listing of edited statements
Disables listing of edited statements

Enables cross-reference
Disables cross-reference

Includes nonreferenced symbols in cross-reference
Does not include nonreferenced symbols in
cross-reference

Enables listing of listing control pseudo
instructions
Disables listing of listing control pseudo
instructions

Enables global text source listing
Disables global text source listing

Enables listing of macro and opdef expansions
Disables listing of macro and opdef expansions

Enables macro binary only
Disables macro binary only

Enables listing of generated statements before
editing within an expansion
Disables listing of generated statements before
editing within an expansion
Enables macro conditional listing
Disables macro conditional listing

Enables listing of duplicated statements
Disables listing of duplicated statements

Priority of listing messages received on output and message
listing. level can be: COMMENT, NOTE, CAUTION, WARNING,
or ERROR; the default is WARNING. Specific levels are
described under the MLEVEL pseudo instruction. Message
descriptions are in appendix D, Diagnostic Messages.

level indicates the threshold for listing messages; COMMENT
is considered to be the lowest level and ERROR to be the
highest level. When a threshold level is specified, the
specified level and all levels above it are printed.

2-8

MC=count

FORMAT=format

EDIT=edit

For example, if ML=CAUTION, CAL prints caution, warning,
and error messages. If ML=ERROR, CAL prints only error
messages. If ML=COMMENT, CAL prints all message levels
(comment, note, caution, warning, and error).

When ML is set on the control statement, the MLEVEL pseudo
is ignored. In other words, the ML specification cannot be
overridden by the MLEVEL pseudo.

Message count. Specifies how many messages print on the
listing. For example, if count is set to 200, the line
of code that contains approximately the 200th listing
message causes display of a message saying the maximum
number of messages have been encountered and no more
messages are listed. The default for MC is 100.

FORMAT options are OLD and NEW. FORMAT sets the statement
format to old (CAL Version 1 style) or new. If FORMAT is
not specified, the default is new for CRAY-2 Computer
Systems and old for CRAY X-MP and CRAY-1 Computer Systems.

Statement format can be modified by the FORMAT pseudo
within an assembler program, but the default established by
the FORMAT option on the CAL invocation statement is
reactivated at the beginning of each segment. For more
information about the FORMAT pseudo, see subsection 5.3,
Mode Control.

Edit options are ON and OFF; the default is ON. EDIT turns
the actual editing of statements (concatenation and micro
substitution) on and off. If the default is used, editing
can be modified by the EDIT pseudo.

Statement editing can be modified by the EDIT pseudo within
an assembler program, but the default established by the
EDIT assembler option is reactivated at the beginning of
each segment. For more information about the EDIT pseudo,
see section 5.3, Mode Control, of this publication.

2.1.1.3 The COS environment

The COS environment can be modified using the OPTION and TARGET control
statements. NEWCAL uses values set by OPTION and TARGET to establish
values for its environment.

LPP parameter on the OPTION control statement - The LPP parameter on the
OPTION control statement sets the number of lines per page for output
listings. By default, the number of lines per page is 55. The format of
the OPTION control statement is as follows:

SR-2003 2-9

OPTION,LPP=n, ••••

n Specifies the page length that CAL uses for output
listings. n is a decimal number that must be a value in a
valid range (0-255 for COS and 4 through 999 for CAL); the
default is 55. If n is outside of the permitted range by
CAL (4-255), CAL uses the default value of 55.

For more information about the OPTION control statement, see the COS
Version 1 Reference Manual, publication SR-0011.

TARGET control statement - The TARGET control statement identifies the
kind of cpu for which CAL is targeting code. The format of the TARGET
control statement is as follows:

TARGET,CPU=[primary]{:[charac]}

primary

charac

Machine type. See the CPU parameter for the CAL control
statement elsewhere in this section for more information.

Characteristics for the target machine. See the CPU
parameter for the CAL control statement elsewhere in this
section for more information.

For more information about the TARGET control statement, see COS
Version 1 Reference Manual, publication SR-0011.

For every COS job, there are two environment descriptions. One, called
the host" describes the machine on which the job is currently executing.
The other, called the target, describes the machine that language
processors may use to determine the machine for which they generate code.

Initially, the host and the target are identical. For the duration of
the job, the host remains unchanged. However, the target may be modified
by the TARGET control statement at any time and as frequently as needed.

The assembler uses the description of the target if the CPU parameter is
not specified on the NEWCAL control statement or if a primary is not
specified on the CPU parameter. All options specified on the CPU
parameter override the current target description during the assembler's
execution.

SR-2003 2-10

2.1.2 CRAY OPERATING SYSTEM (UNICOS)

A typical interactive session in which a CAL program is assembled on a
Cray Computer System that is running UNICOS contains a CAL source file
that is assembled, loaded, and executed with a series of commands entered
at the keyboard.

CAL does not use the standard input file or standard output file during
assembly, but does use the standard error file to report diagnostic
messages and source line messages.

CAL generates two kinds of messages during assembly: listing and
diagnostic. If the -1 and -L options are specified on the CAL as command
line, listing messages are generated by the assembler when a syntax or
semantic error is encountered. A message is printed on the listing
beneath every source statement that was flagged by the assembler. A
pointer identifies the location in the source statement that corresponds
to the message that was issued. This type of message is also issued to
the standard error file.

CAL generates five levels of diagnostic messages that are divided into
two classes: user information about the assembly (comment, note, and
caution) and CAL assembler errors (warning and error). All diagnostic
messages are written to standard error.

Diagnostic user messages are classified by level of severity as follows:

• Comment - Statistical information

• Note - Possible assembly problems

• Caution - Definite user errors during assembly of the program

The -v option must be specified in order for messages with a priority of
comment to be printed to standard error. Messages with a priority of
note and caution are printed to standard error even if -v is not
specified. Messages with a priority of comment, note, and caution are
numbered 1 through 99 and are listed in appendix D, Diagnostic Messages.

CAL diagnostic assembler messages with priorities of warning and error
are printed only if the assembler is malfunctioning. Therefore, it is
unlikely that they will ever appear. If a diagnostic message with a
priority of warning or error ever does appear in standard error, contact
your local site analyst. These messages are numbered 100 and greater and
are not listed in this manual.

SR-2003 2-11

2.1.2.1 Interactive assembly

A CAL program can be assembled and executed interactively by entering the
following commands at the keyboard:

as myfile.s
Id myEile.o
a.out

The as command assembles file myEile.s and creates file myfile.o.

The ld command links and loads the assembled program found in myfile.o
and creates the executable file a.out.

The a.out command executes the executable file a.out

These and other commands are described in the UNICOS Commands Reference
Manual, publication SR-2011.

2.1.2.2 as - CAL command line

The UNICOS as - common Cray assembler (CAL) command line invokes the CAL
Version 2 assembler.

Format:

as [-0 objfile] [-1 Istfile] [-L msgfile] [-b bdElist] [-B]

[-c bdfile] [-g symfile] [-G] [-C cpu] [-h] [-H]

[-i nlist] [-I options] [-m mlevel] [-n number]

[-f] [-F] [-j] [-J] [-V] filename

The as command assembles the named file. The following options, each a
separate argument, can appear in any order, but must precede the filename
argument.

-0 objEile

SR-2003

Relocatable assembly output; stored in file objfile. By
default, the relocatable output file name is formed by
removing the path name and the .s suffix, if they exist,
from the input file and by appending a .0 suffix.
objfile must be processed by a link editor or loader.

2-12

-1 lstfile
Assembly output source listing; stored in file lstfile.
By default, the output source listing is suppressed.

-L msgfile

-b bdflist

-B

-c bdfile

Assembly output source message listing; stored in file
msgfile. By default, the output message listing is
suppressed ..

Reads the binary definition files stored in one or more
files. The files named in bdflist can be designated
using one of the following forms:

• List of files separated from one another by a comma.

• List of files enclosed in double quotes and separated
from one another by a comma and/or one or more spaces.

Reads the default binary assembler definitions found in
file /lib/asdef unless suppressed with the -B option. The
remaining files listed in bdflist are read in the order
in which they are specified.

Suppresses /lib/asdef as the default binary assembler
definition file.

Creates the binary definition file bdfile. By default,
the creation of a binary definition file is suppressed.

-g symfile

-G

-c cpu

SR-2003

Assembly output symbol file; stored in symfile.
symfile is used by the system debuggers. By default, the
output symbol file is suppressed.

Forces all symbols to symfile if the -g option is used.
Normally, nonreferenced symbols are not included.

Code is generated for the specified cpu. The default is
that code is generated for the characteristics of the host
machine. cpu has the following syntax:

cpu ::= primary{","[charac]}
or

cpu ::= ","[charac]{","[charac]}

2-13

primary

charac

SR-2003

primary can be one of the following Cray
Computer Systems:

cray-2 CRAY-2
cray-x4 CRAY X-MP Models 48 and 416
cray-x2 CRAY X-MP Models 22, 24, and
cray-x1 CRAY X-MP Models 11, 12, 14,
cray-xmp CRAY X-MP
cray-lm CRAY-1 M

cray-ls CRAY-1 S
cray-lb CRAY-1 B

cray-1a CRAY-1 A
cray-l CRAY-1

The features of the primary computer.

CRAY-2 Computer Systems have no special
options.

28
and

The CRAY X-MP and CRAY-1 Computer Systems
permit you to specify the following logical
and numeric traits:

Logical Traits Description

Additional vector logical

18

avl
noavl
bdm
nobdm
cigs

No additional vector logical
Bidirectional memory

nocigs

cori

nocori

ema
noema
hpm
nohpm

pc
nopc
readvl
noreadvl
statrg
nostatrg
vpop
novpop
vrecur

2-14

No bidirectional memory
Compressed index and
gather/scatter
No compressed index and
gather/scatter
Control operand range
interrupts
No control operand range
interrupts
Extended memory addressing
No extended memory addressing
Hardware performance monitor
No hardware performance
monitor
Programmable clock
No programmable clock
Read vector length
Do not read vector length
Status register
No status register
Vector pop count
No vector pop count
Vector recursion

-h

-H

Numeric Traits

novrecur
bankbusy=n

banks=n
clocktim=n
ibufsize=n

memsize=n
memspeed=n

numclstr=n

numcpus=n

Description

No vector recursion
Bank busy time in clock
periodst
Number of memory bankst
Clock time in picosecondst
Instruction buffer size in
wordst
Memory size in wordst
Memory speed in clock
periodst
Number of cluster
registers
Number of cpust

Enables all list pseudos regardless of the location field
name.

Disables all list pseudos regardless of the location field
name.

-i nlist Restricts list pseudo processing to those pseudos whose
location field names are given in nlist. The names
specified by nlist can take one of the following forms:

-I options

• List of names separated from one another by a comma

• List of names enclosed in double quotes and separated
from one another by a comma and/or one or more spaces.

List options. A list of more than one option must be
specified without intervening blanks. It is not permitted
to specify conflicting options (the same character in
uppercase and lowercase) in the same -I list. options
can be any of the following:

s Enable source statement listing (default)
S Disable source statement listing

e Enable edited statement listing (default)
E Disable edited statement listing

t Enable text source statement listing
T Disable text source statement listing (default)

t n represents an unsigned decimal number.

SR-2003 2-15

-m mlevel

-n number

-f

SR-2003

1 Enable listing control pseudo instructions
L Disable listing control pseudo instructions (default)

m Enable macrolopdef expansions binary only
M Disable macrolopdef expansions binary only (default)

d Enable dup/echo expansion
D Disable dup/echo expansion (default)

b Enable macro/opdef/dup/echo expansion binary only
B Disable macro/opdef/dup/echo expansion binary only

(default)

c Enable macro/opdef/dup/echo expansion conditionals
C Disable macro/opdef/dup/echo expansion conditionals

(default)

p Enable macro/opdef/dup/echo expansion of pre-edited
lines

P Disable macro/opdef/dup/echo expansion of pre-edited
lines (default)

x Enable cross-reference listing (default)
X Disable cross-reference listing

n Enable nonreferenced local symbols included in the
cross-reference (default)

N Disable nonreferenced local symbols included in the
cross-reference

Priority for the output listing, the message listing, and
the standard error file. mlevel can be one of the
following:

comment, note, caution, warning, or error

If the -m option is specified, it overrides all MLEVEL
pseudo instructions. By default, the priority is warning,
and the MLEVEL pseudo instruction controls the message
level during assembly.

Maximum number of messages to be inserted into the output
listing, the message listing, and the standard error file.
number must be zero or greater; the default is 100.

Enables the new statement format. By default, the old
format is used when targeting for a CRAY X-MP or CRAY-1
Computer System; otherwise, the new format is used.
Statement format reverts to the format specified on the
invocation statement at the end of every assembler segment.

2-16

-F Disables the new statement format. By default, the old
format is used when targeting for a CRAY X-MP or CRAY-l
Computer System; otherwise, the new format is used.
Statement format reverts to the format specified on the
invocation statement at the end of every assembler segment.

-j Enables editing; the default is enabled. Editing status
reverts to the status specified on the invocation statement
at the end of every assembler segment.

-J Disables editing; the default is enabled. Editing status
reverts to the status specified on the invocation statement
at the end of every assembler segment.

-v Causes the version number of the assembler being run and
other statistical information (diagnostic messages of
priority, comment, note, and caution) to be written to the
standard error file.

filename File to be assembled; all options must precede the file
name argument.

2.1.2.3 The UNICOS environment

The CAL assembler is affected by the LPP shell variable from the UNICOS
environment. The LPP shell variable sets the number of lines per page for
output listings (page length). By default, the number of lines per page
is 55.

The UNICOS environment is set as follows:t

or

LPP=n as filenamex.s

LPP=n
as filenamea.s
as filenameb.s

as filenamez.s

n Specifies the page length used for output listings. n is a
decimal number. CAL requires a value in a valid range
(4 through 999); the default is 55. If n is outside of
the valid range, CAL uses the default to set the page length.

t The environment is dependent on the type of shell being used.

SR-2003 2-17

filenamea, filenameb ... filenamez
Names of the UNICOS files that are being assembled.

If the LPP shell variable is specified before and on the same line as the
as command line, the number of lines per page assigned by the LPP shell
variable affects only that particular ~ instruction.

If the LPP shell variable is specified as a separate entry, all of the
assemblies that follow use the page length specified by that LPP shell
variable for output and message listings.

In the following example, the number of lines per page for the output
listings for srca.s and srcb.s is 45:

LPP=45
as srca.s
as srcb.s

In the following example, the page length for srcd.s is 45. The page
length for srce.s, however, reverts to 64. 64 is used because the second
LPP shell variable is associated only with file srcd.s:

LPP=64
LPP=45 as srcd.5
as srce.s

Table 2-1 compares the control parameters for the Cray operating systems
COS and UNICOS.

Table 2-1. Comparison of COS and UNICOS Parameters

cos UNICOS Comments

I=[idn{:[idn]}] filename Input source
Default is $IN No default

L=ldn -1 lstfile Source listing
Default is $OUT Default is no

lstfile

SR-2003 2-18

Table 2-1. Comparison of COS and UNICOS Parameters (continued)

COS

E=edn
Default is $OUT

B=bdn
Default is $BLD

B=O

x=xdn

S=[sdn{:[sdn]}]
Default is
$SYSDEF

S=O

T=bdf

SYM=sym
ALLSYMS

ABORT

CPU=cpu

LIST

NLIST

LIST=names

options

SR-2003

UNICOS

-L msgfile
Default is no
msgfile

-0 objfile
Default is file
name with .s suffix
replaced by .0

suffix
Not available

Not available

-b bdflist
Default is
/lib/asdef

-B

-c bdfile

-g symfile
-G

Not applicable

-C cpu

-h

-H

-i nlist

-I options

2-19

Comments

Message listing

Relocatable or object file

Cross-reference symbol table

System definitions or binary
definition files

Suppress the use of binary
definition file

Create binary definition file

Symbol table file
Force all symbols to symbol
table file

Abort mode; when diagnostic
messages are sent to the
logfile, CAL aborts the job

Target machine

Enable all list pseudo
instructions

Disable all list pseudo
instructions

Enable all list pseduos with
a matching location field
name

List pseudo options

Table 2-1. Comparison of COS and UNICOS Parameters (continued)

COS

ML=mlevel

MC=count

FORMAT=NEW
FORMAT=OLD

EDIT=ON
EDIT=OFF

Not applicable

UNICOS

-m mlevel

-n number

-f
-F

-j
-J

-v

2.2 BINARY DEFINITION FILES

Comments

Message level

Number of messages allowed in
the listing

Enable new format
Enable old format

Enable editing
Disable editing

Causes the version number of
the assembler being run and
other statistical information
to be written

The CAL Version 2 Assembler allows your assembler source program access
to previously assembled lines or sequences of code. These preassembled
sequences are stored in files that are called binary definition files.
These files are analagous to libraries. Binary definition files can be
classified in two groups:

• System defined

• User defined

The system-defined binary definition files for the Cray Operating Systems
are $SYSDEF for COS and /lib/asdef for UNICOS. These system-defined
binary definition files are accessed automatically by CAL unless the
assembler is directed otherwise. Binary definition files contain
symbols, macros, opdefs, opsyns, and micros that are commonly used by CAL
users. For the macros and opdefs available under COS and UNICOS, refer
to the Macros and Opdefs Reference Manual, CRI publication SR-0012 and
the CRAY-2 UNICOS Libraries, Macros and Opdefs Reference Manual,
publication SR-2013, respectively.

SR-2003 2-20

NOTE

System- and user-defined binary definition files are
identical in all respects. User-defined binary
definition files are created and used the same way that
system-defined binary definition files are created and
used. They have been treated as separate entities in
this discussion in order to encourage you to define
binary definition files that meet your particular
programming requirements.

User-defined binary definition files can be created by copying the
system-defined binary definition files and by editing them in one of the
following ways:

• Adding to the system-defined binary definition file

• Redefining a definition in the system-defined binary definition
file

or by disabling the recognition of system-defined binary definition files
and accumulating the defined sequences entirely from an assembler source
program.

You can specify more than one binary definition file with each assembly.
If more than one binary definition file is specified, the files are
processed from left to right in the order in which they are specified on
the S (COS control statement) and -b parameters (UNICOS as command line).

Binary definition files are important, because once lines or sequences of
code are assembled and stored in a binary definition file, they can be
accessed without being reassembled. The direct access of a binary
results in considerable savings in assembler time.

System- and user-defined binary definition fields are defined, created,
and used in the same manner.

2.2.1 DEFINING A BINARY DEFINITION FILE

Only certain types of lines or sequences of code are permitted in a
binary definition file. Binary definition files are always created fro~
the global part of program seqments and currently accesssed binary
definition files, if any. Ordinarily, binary definition files are
created from source programs that include a global part in a single
segment that does not include a program module.

SR-2003 2-21

You can also make additions to binary definition files using assembler
source programs that mayor may not include program modules. Under no
circumstance is any line or sequence of code added to a binary definition
file from an assembler program module. Although all additions to binary
definition files come from the global part of the segment, not all lines
or sequences of code in the global part are added when a new binary
definition file is created.

Binary definition files are made up of lines or sequences of code that
can be classified as follows:

• Symbols

• Macros

• Opdefs

• Opsyns

• Micros

Every line or sequence of code must fall into one of the classes listed
above and satisfy the requirements for that particular class before they
are added to a binary definition file.

2.2.1.1 Symbols

CAL accumulates symbols to be included in a new binary definition file
from all currently accessed binary definition files and from all of the
global parts of program segments that fit the following requirements:

• Symbols that are to be included in binary definition files cannot
be redefinable. To be included in a binary definition file, a
symbol must be defined with the = pseudo instruction. Symbols
defined with the SET or MICSIZE pseudo instruction are redefinable
and therefore are not included in a binary definition file.

• Symbols that are to be included in binary definition files cannot
be preceded by %%. This exclusion applies to symbols that are
created by the LOCAL and = pseudo instructions.

CAL identifies all of the symbols in the global part of program segments
that meet the requirements described above and includes them when a
binary definition file is created. In figure 2-1, SYM1, SYM3, and SYM4
meet the requirements and are included. SYM2 (defined in the module),
SYMS (redefinable), %%SYM6 (begins with %%) do not meet the requirements
and are not included when a binary definition file is created.

2.2.1.2 Macros

CAL accumulates macros to be included in a new binary definition file
from all currently accessed binary definition files and from all of the
global parts of segments within a source program.

SR-2003 2-22

Program

Segment A

Global A

SYM1 = 1

Module A

SYM2 = 2

Segment B

Global B

SYM3 = 2

Module B

Segment C

Global C

SYM4 = 4
SYM5 SET 5
%%SYM6 = 1

Figure 2-1. Symbols to be Included in a Binary Definition File

SR-2003 2-23

2.2.1.3 Qpdefs

CAL accumulates opdefs to be included in a new binary definition file
from all currently accessed binary definition files and from all of the
global parts of segments within a source program.

2.2.1.4 Opsyns

CAL accumulates opsyns to be included in a new binary definition file
from all currently accessed binary definition files and from all of the
global parts of segments within a source program.

2.2.1.5 Micro

CAL accumulates micros to be included in a new binary definition file
from all currently accessed binary definition files and from all of the
global parts of segments within source program. Only micros that cannot
be redefined are included in a binary definition file. If a micro
defined by the micro pseudo instruction is to be included into a binary
definition file, it must be defined using the CMICRO pseudo instruction.

2.2.2 CREATING BINARY DEFINITIONS FILES

Binary definition files can be created for use with the Cray operating
systems COS and UNICOS.

2.2.2.1 Creating new binary definition files for COS

A binary definition file is created under COS when the Sand T parameters
are included on the COS control statement. The S parameter can be
followed by one or more dataset names that are separated by colons.

In the following example, $SYSDEF, OURDEF, and MYDEF are the names of the
predefined binary definition files that are to be included along with any
symbols, macros, opdef, opsyn, and micros from the global parts of the
program segments from the current source program being assembled. The
new binary definition file named NEWDEF is defined by the T parameter.

NEWCAL,S=$SYSDEF:OURDEF:MYDEF,T=NEWDEF.

SR-2003 2-24

NEWDEF, the binary definition file created by the T parameter in the
previous example, contains the symbols, macros, opdefs, opsyns, and
micros that were accumulated by CAL from $SYSDEF, OURDEF, MYDEF, and $IN
(default input file). When the next source program is assembled, the
following statement would make NEWDEF available as the only binary
definition file:

NEWCAL,S=NEWDEF.

If only the symbols, macros, opdefs, opsyns, and micros accumulated from
the global parts of the program segments from the current source program
being assembled are to be entered into a binary definition file, the
following would be entered:

NEWCAL,S=O,T=NEWDEF.

The S=O specification suppresses the default system-defined binary
definition file ($SYSDEF) and excludes the definitions in $SYSDEF from
the binary definition file being created. If a binary definition file
was defined as shown above, the new binary definition file (NEWDEF) would
be created and on subsequent assemblies could be specified as follows:

NEWCAL,S=$SYSDEF:NEWDEF.

In the previous example, two binary definition files ($SYSDEF the
system-defined file and NEWDEF a user-defined file) are specified.

2.2.2.2 Creating new binary definition files for UNICOS

A binary definition file is created under UNICOS when the -b and -c
parameters are included on the as command line. The -b parameter can be
followed by a list of files that are separated by commas or a list of
files enclosed in double quotes and separated by spaces or commas.

In the following example, the default system-defined binary definition
file /lib/asdef and user-defined binary definition files ourdeffile, and
mydeffile are to be included along with the accumulated symbols, macros,
opdefs, opsyns, and micros from the global parts of the program segments
from the current source program (prog.s) being assembled. The new binary
definition file named mynewfile is defined by the -c parameter and is
created by CAL.

as -b ourdeffile,mydeffile, -c mynewfile prog.s

By default, the default binary definition file (/lib/asdef) is always
available unless it is suppressed with the -B parameter. If not
suppressed, /lib/asdef is the first binary definition file that is read.

SR-2003 2-25

Any other binary definition files that are specified by the -b parameter
are processed in the order in which they are specified. When the next
source program is assembled, the following statement makes mynewfile
available as the only binary definition file:

as -B -b mynewfile prog.s

If only the accumulated symbols, macros, opdefs, opsyns, and micros from
the global parts of the program segments from the current source program
being assembled are to be entered into a binary definition file, the
following could be entered:

as -B -c mynewfile prog.s

The -B parameter disables the default system-defined binary definition
file Ilib/asdef and only the accumulated symbols, macros, opdefs, opysns,
and micros from the global parts of the program segments from the current
source program being assembled are included in the new binary definition
file. If a binary definition file was created using the parameters shown
above, binary definition file mynewfile could be specified on a
subsequent assembly as follows:

as -b mynewfile prog.s

In the previous example, two binary definition files (/lib/asdef the
default system-defined file and mynewfile a user-defined file) are used.

2.2.3 USING BINARY DEFINITION FILES

Binary definition files allow users to access lines or sequences of code
that have been previously assembled. Binary definition files are
accessed using the S parameter on the COS control statement and the -b
parameter on the UNICOS as command line. The following checks are run on
binary definition files when they are accessed:

• Compatibility checking

• Multiple references to the same definition

2.2.3.1 Compatibility checking

CAL allows the user to access any previously defined file with one
restriction. Binary definition files are marked with the kind of cpu
(CRAY-2, CRAY X-MP, or CRAY-1 Computer System) for which they were
created. If a binary definition file is created on a CRAY X-MP or CRAY-l

SR-2003 2-26

Computer System and is specified for a CRAY-2 Computer System, or if a
binary definition file is created on a CRAY-2 Computer System and is
specified for a CRAY X-MP or CRAY-! Computer System, the binary
definition file is not accepted and the following message is issued:

Incompatible version of binary definition file 'file'

This check ensures that the machine on which the binary definition file
was created is compatible with the program that is attempting to use it.
Some CAL Version 2 pseudo instructions have restricted use that is based
on hardware and software requirements. The binary definition file
compatibility check protects users from getting binary definition files
mixed and ensures that hardware and software restrictions are not
violated.

2.2.3.2 Multiple references to a definition

CAL checks for multiple references to definition names (functional names
for macros and opsyns, location field names for symbols, and micros, and
syntax for opdefs. CAL handles multiple references to definitions with
the same functional name, location field name, or opdef syntax as follows:

Symbols - If a symbol is defined in more than one binary definition file,
the definitions are compared. If the definitions are identical, CAL
disregards the duplicates and makes one entry for the symbol from the
binary definition files. If a symbol is defined more than once and the
definitions are not identical, CAL uses the last definition associated
with the location field name and issues the following diagnostic message:

Symbol 'name' is redefined in file 'file'

Macros - If a macro with the same functional name is defined in more than
one binary definition file, the definitions are compared. If the
definitions associated with the macro's functional name are identical
character by character, CAL disregards the duplicate definition and makes
one entry for the macro from the binary definition files. If the macro's
functional name is used more than once, and the definitions associated
with the functional name are not identical character by character, CAL
uses the definition associated with the last reference to the functional
name and issues the following diagnostic message:

Macro 'name' in file 'file' replaces previous definition

If a macro is defined with the same functional name as a pseudo
instruction, the macro replaces the pseudo instruction and CAL issues the
same message as shown above.

SR-2003 2-27

Opdefs - If an opdef with the same syntax is defined in more than one
binary definition file, the definitions of the opdefs are compared. If
the definitions of the two opdefs are exactly the same, CAL disregards
the duplicate definition and makes one entry for the opdef from the
binary definition files. If the same syntax appears more than once and
the definitions are not exactly the same, the syntax associated with the
last reference to the opdef is used as its definition. CAL also issues
the following diagnostic message:

Opdef 'name' in file 'file' replaces previous definition

If an opdef is defined with the same syntax as a machine instruction, the
opdef replaces the machine instruction and CAL issues the same message as
shown above.

Opsyn - If an opsyn with the same functional name is defined in more than
one binary definition file, the definitions are compared. If the
definitions are identical character by character, CAL disregards the
duplicate definition and makes one entry for the opsyn from the binary
definition files. If the functional name for an opysn is used more than
once and the definitions are not identical character by character, CAL
uses the definition associated with the last reference to the opsyn name
and issues the following diagnostic message:

Opsyn 'name' in file 'file' replaces previous definition

If an opsyn is defined with the same name as a pseudo instruction, the
opsyn replaces the pseudo instruction and CAL issues the same message as
shown above. Pseudos instructions have an internal code that permits CAL
to identify them when they are encountered. When an opsyn is used to
redefine an existing pseudo instruction, CAL copies the predefined
internal code of that pseudo instruction and uses it for identification
in the binary definition file.

Micros - If a micro with the same location field name is defined in more
than one binary definition file, the micro strings associated with the
location field names are compared. If the strings are identical when
checked character by character, CAL disregards the duplicate definition
and makes one entry fpr the micro from the binary definition files. If
the micro is used more than once and the strings associated with the
micro names are not exactly identical, CAL uses the string associated
with the last reference to the micro name and issues the following
diagnostic message:

Micro 'name' in file 'file' replaces previous definition

SR-2003 2-28

3 • THE CAL PROGRAM

Writing a CAL program requires an understanding of the way a CAL program
is organized and how each component functions within the program. This
section describes the CAL program and its components.

The following components of a CAL program are discussed in this section.

• Program segment

• Source statement

• Statement editing

• Instructions

• Micros

• Sections

3.1 PROGRAM SEGMENT

A CAL program consists of zero or more segments. A CAL program with zero
segments consists of one or more empty files. A file containing one
blank line is considered a segment. For example, CAL considers a program
with an ident/end sequence that is followed by a blank line to contain
two segments. Ordinarily, each segment consists of global definitions, a
program module, or a combination of global definitions and a program
module. Figure 3-1 illustrates the organization of a CAL program.

3.1.1 PROGRAM MODULE

A program module is the main body of code and resides between the IDENT
and END pseudo instructions. (Pseudo instructions are described in more
detail later in this section and in section 5.) IDENT marks the
beginning of a program module. The END pseudo instruction identifies the
end of a module and always terminates a segment. Anything defined
between these two pseudo instructions applies only to the program module
in which the information resides.

3.1.2 GLOBAL DEFINITIONS

Before the first IDENT pseudo instruction and between program modules
(that is, between the END pseudo that terminates one program module and
the IDENT that begins the next program module), CAL recognizes sequences

SR-2003 3-1

Program

Segment - 1

Global definitions - 1

Program module - 1

Segment - 2

Global definitions - 2

Program module - 2

Segment - n

Global definitions - n

Program module - n

Figure 3-1. Sample Organization of a CAL Program

SR-2003 3-2

of instructions that do not generate code but define symbols and assign
them values, macros and opdef instructions, and micros. (Opdefs, macros,
and micros are described in more detail later in this section and in
section 5, Pseudo Instructions.)

Definitions occurring before an IDENT pseudo instruction are considered
global and can be referenced without redefinition from within any of the
program segments that occur after the definition. Redefinable micros,
redefinable symbols, and symbols of the form ~~x, where x is zero or
more identifier-characters (see appendix A, Instruction Syntax), are
exceptions. While they can occur in such sequences, they are local to
the segment in which they are defined, are not known to the assembler
after the next END pseudo instruction (end of the current segment) is
encountere,d and are not included in the cross reference listing.
Symbols defined within the global definitions area cannot be qualified.

Example:

Location Result D:eerand Comment
1 10 2Q 35

SYMl = 1 ; Begin segment 1 global

· SYM1 cannot be redefined ,
SYM2 SET 2 SYM2 equals 2 for this module
~~SYM3 = 3 ; Gone at the end of the module
~~SYM4 SET 4 ; Gone at the end of the module

IDENT TEST1 Beginning of module 1
S1 SYMl ; Register S1 gets 1
S2 SYM2 ; Register S2 gets 2
S3 ~%SYM3 Register S3 gets 3
S4 ~~SYM4 ; Register S4 gets 4
END ; End of segment 1 and module

· TEST 1 ,
SYM2 SET 3 · Beginning of segment 2 ,
~~SYM3 = 5 Global definitions

IDENT TEST2 ; Beginning of module 2
S1 SYMl · Register 51 gets 1 ,
S2 SYM2 · Register S2 gets 3 ,
S3 ~~SYM3 · Register S3 gets 5 ,
S4 ~~SYM4 Error; not defined
END · End of segment 2 and module ,

· TEST2 ,
IDENT TEST3 · Beginning of segment 3 and ,

· module TEST3 ,
S1 SYM1 Register S1 gets 1
S2 SYM2 ; Error; not defined
S3 ~~5YM3 Error; not defined
END End of segment 3 and module

· TEST3 ,

SR-2003 3-3

3.2 SOURCE STATEMENT

A CAL program consists of a sequence of source statements. A source
statement can be an instruction or a comment. (The assembler lists
comments, but they have no effect on the program.)

Although CAL source statements are essentially free field, adoption of
formatting conventions provides more uniform and readable listings. CAL
supports two formatting conventions, the new format and the old format.

Formal parameters, ~,ymbols, names, pseudos, and macro names are
case-sensitive. To be recognized, any subsequent references to a
previously defined formal parameter, symbol, name, or functional must
match the original definition character for character and case for case
(uppercase or lowercase). The following are examples of case-sensitivity:

Definition

HERE
HERE
PARAMI

Reference

HERE
Here
paraml

Comment

Recognized
Not recognized
Not recognized

When coding in CAL, you can enter statements using both uppercase and­
lowercase characters according to the following rules.

• Pseudo instructions and mnemonics can be uppercase or lowercase,
but not mixed case; case-sensitive.

• Register names can be uppercase, lowercase, or mixed case;
case-insensitive.

• Macro names, opdef mnemonics, symbol names, and other names are
interpreted as coded; case-sensitive.

CAL supports two source statement formats: new format and old format.

3.2.1 NEW FORMAT

The new format is
statement line of
CAL under the Cray
Operating Systems.
the following four

specified by the FORMAT pseudo or on the invocation
the CAL assembler. For more information about running
operating systems COS and UNICOS, see section 2,

A source statement using the new format consists of
fields.

• Location field
• Result field
• Operand field
• Comment field

SR-2003 3-4

If the new format is specified, use the following coding conventions:

Beginning Column

1
1
9

10
19
20
34
35
36
37

3.2.1.1 Location field

Field

Blank or asterisk
Location field entry
Blank
Result field entry
Blank
Operand field entry
Blank
Semicolon (indicates comment field)
Blank
Beginning of comment field

The content of the location field is dependent on the requirements of the
result and/or operand fields of each particular source statement. The
location field of all machine instructions can optionally contain a
symbol. If the location field of a machine instruction contains a
symbol, the symbol is set equal to the current address of the location
counter.

When the location field is used by an instruction, it begins in column 1
(new format) and is terminated by a blank character. The location field
can also contain the * to identify a comment line.

3.2.1.2 Result field

The contents of the result field depends on the particular instruction.
The result fields of pseudos and macros must match existing functionals.
Machine or opdef instructions can contain one, two, or three subfields.

The subfield can be null, can contain expressions, or can consist of
register designators or operators. (Expressions, register designators,
and operators are described in section 4, Cray Assembly Language.) The
result field begins with the first nonblank character following a
nonempty location field and normally ends with one or more blanks or a
semicolon. If column 1 is empty, the result field can begin in column 2
or after. A blank result field following a location field produces a
listing message.

The detailed syntax for the result field is described using the
Backus-Naur Form (BNF) in appendix A, Instruction Syntax.

SR-2003 3-5

3.2.1.3 Operand field

The operand field cannot be specified unless it is preceded by a result
field. For functionals (pseudos and macro names), the operand field is
dependent on the functional specified in the result field.

For symbolic machine instructions, the operand field contains the
operation being performed if the instruction is a symbolic instruction.
It can, however, contain other information depending on the particular
instruction. The syntax of the operand field is identical to that of the
result field. Machine or opdef instructions can contain one, two, or
three subfields. A subfield can be null, can contain zero or more
expressions, or can consist of register designators and operators.

Normally, the operand field begins with the first nonblank character
following a nonempty result field and ends with one or more blank
characters or a semicolon.

3.2.1.4 Comment field

The comment field contains an explanation of the source statement; it
does not generate code. The comment field is optional and can be
specified with an asterisk or a semicolon. A semicolon comment can be
coded in any blank column including column 1. Generally, a comment that
begins in column ! is specified with an asterisk; otherwise, it is
specified by a semicolon. If a semicolon is specified with nothing
preceding it, the line is treated as a null instruction followed by a
comment. Normally, comment fields are not edited. For more information
about editing comment fields, see statement editing in this section.

Example:

I Locationl Result
11 110

I I
I lident
I*Asterisk comment

I I

SR-2003

I Operand
120

I
Itest!
I
I

3-6

I Comment
135

I
I
I
I; Semicolon comment

3.2.2 OLD FORMAT

The old format is specified by the FORMAT pseudo or on the invocation
line of the CAL assembler. For more information about running CAL under
the Cray operating systems COS and UNICOS, see section 2. A source
statement using the old format consists of the following fields:

• Location field
• Result field
• Operand field
• Comment field

If the old format is specified, use the following coding conventions:

Beginning Column

1
1
9

10
19
20
34
35

3.2.2.1 Location field

Field

Asterisk, or comma
Location field entry, left-justified
Blank
Result field entry, left-justified
Blank
Operand field entry, left-justified
Blank
Beginning of comment field

The content of the location field is dependent on the requirements of the
result and/or operand fields of each particular source statement. The
location field of all machine instructions can optionally contain a
symbol. If the location field of a machine instruction contains a
symbol, the symbol is set equal to the current address of the location
counter.

The location field can also contain the * (column 1 only) to identify a
comment line. The location field is not used by all instructions, begins
in column 1 or 2 (old format), and is terminated by a blank character.

3.2.2.2 Result field

The result field begins with the first nonblank character following the
location field. It cannot begin before column 3 or after column 34.
Normally, a blank terminates the result field. The result field has no
entry if only blank characters occur between the location field and
column 35. A blank result field following a nonblank location field
produces a listing message.

The detailed syntax for the result field is described using the
Backus-Naur Form (BNF) in appendix A, Instruction Syntax.

SR-2003 3-7

3.2.2.3 Operand field

The operand field begins with the first nonblank character following a
nonempty result field and ends with one or more blanks. If the result
field terminates before column 33, the operand field must begin before
column 35; otherwise, the field is considered empty. If the result field
extends beyond column 32, however, the operand field must follow at most
one blank separator and can begin after column 35.

3.2.2.4 Comment field

The comment field is optional and begins with the first nonblank
character following the operand field or if the operand field is empty,
does not begin before column 35. If the result field extends beyond
column 32 and no operand entry is provided, two or more blanks must
precede the comment field. The comment field can be the only field
supplied in a statement. If editing is enabled, comments are edited.
For more information about editing, see statement editing in this section.

Example:

ILocationlResult I Operand I Comment
11 110 120 135
I I I I
I IIDENT ITESTI I
1* An asterisk comment must begin in column 1.

3.3 STATEMENT EDITING

CAL processes source statements sequentially from the source file.
Statement editing is a form of preprocessing in which CAL deletes or
replaces characters before processing the statement as source code. The
following types of statement editing are peformed by the assembler:

• Concatenation; the assembler recursively deletes all underscore
characters and combines the character that preceded the underscore
with the character following the underscore.

• Micro substitution; the assembler replaces a micro name with a
predefined character string. The character string replacement is
not re-edited.

A macro or opdef definition is not immediately interpreted but is saved
and interpreted each time it is called. Before interpreting a statement,
CAL performs editing operations. CAL does not perform micro substitution
or concatenate lines when editing is disabled. (Editing is disabled by
the EDIT pseudo or on the invocation line of the assembler.)

SR-2003 3-8

Appending, continuation, and the processing of comments are not affected
by the edit invocation statement option.

The following special characters signal micro substitution, concatenation,
append, continuation, and comments:

Character Edit Description

"name" Yes Micro; affected by the EDIT pseudo on the
invocation statement option (new or old format).

*

SR-2003

Yes Concatenate; affected by the EDIT pseudo on the
invocation statement option (new or old format).

No Append; unaffected by the EDIT pseudo on the
invocation statement option (new format).

No Continuation line; unaffected by the EDIT pseudo
on the invocation statement option (old format).

No Comment line; unaffected by the EDIT pseudo on the
invocation statement option (new or old format).

No Comment line; unaffected by the EDIT pseudo on the
invocation statement option (new or old format).

NOTE

When CAL edits "$CMNT", "$MIC", "$CNC", or "$A.PP" the
string name and the double quote marks (" ") are
replaced by a previously defined string. For example,
when CAL edits "$CMNT", a semicolon is substituted for
the micro name $CMNT and the double quote marks (" ").
After the substitution occurs, the semicolon is not
re-edited and editing continues on the line. Using the
predefined "$CMNT" micro permits a comment to be
edited. For example:

"$CMNT" Cray Research, Inc. "$DATE" - "$TIME"

is edited as follows:

. , Cray Research, Inc • 12/31/85 - 8:15:45

The characters to the right of the substituted
character are shifted six positions to the left after
editing, because the character string substituted for
"$CMNT" (;) is six characters shorter than the micro
name.

3-9

3.3.1 MICRO SUBSTITUTION

You can assign a name to a character string and refer to the character
string by its micro name. The CAL assembler searches for quotation marks
(") that delimit micro names. The first quotation mark indicates the
beginning of a micro name; the second quotation mark identifies the end
of a micro name. Before a statement is interpreted, CAL replaces the
micro name by the character string comprising the micro. (See micros in
subsection 3.5.)

3.3.2 CONCATENATE

The concatenate feature combines characters that are connected by
underscore characters. CAL examines each line for the underscore ()
character and deletes it so that the two adjoining columns are linked
before the statement is interpreted. The concatenate symbol can be in
any column and tells the assembler to concatenate the characters
following the last underscore to the character preceding the first
underscore.

3.3.3 APPEND

The append feature combines source statements that continue for more than
one line and is available only when the new format is specified on the
CAL invocation statement.

The append symbol, a circumflex (~), appends one line to another. The
append symbol can be in any column. CAL appends the first nonblank
character on the next line to the position that contains the circumflex
(the circumflex is deleted). A circumflex can be embedded in a micro
name. CAL can append a number of lines; the exact number is dependent on
memory limitations. Appending is only permitted when the new format is
specified.

3.3.4 CONTINUATION

A comma in column 1 indicates a continuation line. Columns 2 through 72
are then a continuation of the previous line. Continuation is only
permitted when the old format is specified.

SR-2003 3-10

3 • 3 • 5 COMMENT

A semicolon (;) in any column (new format) or an asterisk (*) in column 1
indicate a comment line. The assembler lists comment lines, but they
have no effect on the program. When a semicolon or an asterisk has an
editing symbol after it, the symbol is treated as part of the comment and
is not edited. CAL never appends (new format) comment statements with
semicolons or asterisks.

NOTE

Asterisk comment statements are not included in macro
definitions. To include a comment line in a macro
definition, enter an underscore in column 1 of the
comment line followed by an asterisk and then the
comment. Since editing is disabled at definition time,
the statement is inserted. If editing is enabled at
expansion time the underscore is edited out and the
statement is treated as a comment. For example,

I Locationl Result I Operand I Comment
11 110 I 2 0 I 3 5

I I I I
I I MACRO I I
I I EXAMPLE I I
1* This comment is not included in the definition.
1_* This comment is included in the definition.
I SYM 1= 11
IEXAMPLE IENDM I

is expanded as follows:

I Location I Result I Operand I Comment
11 110 120 135

I I I I
I ILIST ILIS,MAC I
I I EXAMPLE I I; Mac ro call
1* This comment is included in the definition.
I SYM 1= 11

3.3.6 ACTUAL STATEMENTS AND EDITED STATEMENTS

CAL statements can be divided into two categories: actual and edited.

SR-2003 3-11

An actual statement is the unedited version of a statement that includes
any appending of lines. It contains all the editing symbols rather than
the results of the editing. If an actual statement has a corresponding
edited statement, further processing is done on the edited statement.
The following examples show actual and edited statements.

Examples:

1. This is an example of an actual statement.

ILocationlResult I Operand I Comment
11 110 120 135
I I I I
ILOC I NCALL IARGl, I
I I IARG2, I
I I IARG3, I
I I IARG4, I
I I IARG5 I

2. An actual statement can have a corresponding edited statement. The
edited statement displays the statement without any editing symbols.
The following example shows the edited version of the actual
statement in example 1.

ILocationlResult I Operand I Comment
11 110 120 135
I I
ILOC I NCALL IARGl,ARG2,ARG3,ARG4,ARG5

3. The actual statement in the following example has no corresponding
edited statement.

ILocationlResult I Operand I Comment
11 110 120 135
I I I
I I ENTER IARGl,ARG2,ARG3 I; Comments

3.4 INSTRUCTIONS

CAL recognizes two types of instructions: assembler-defined and
user-defined. Assembler-defined instructions are predefined by CAL.
User-defined instructions must be defined by you before you invoke them.

SR-2003 3-12

3.4.1 ASSEMBLER-DEFINED INSTRUCTIONS

Two types of assembler-defined instructions are available in CAL:
machine instructions and pseudo instructions.

3.4.1.1 Machine instructions

Machine instructions manipulate data by performing such functions as
arithmetic operations, memory retrieval and storage, and transfer of
control. Each machine instruction can be represented symbolically in
CAL. The assembler identifies a machine instruction according to its
syntax and generates a binary machine instruction in object code.

The location field of every instruction can contain an optional symbol.
If included, an optional symbol has the following qualities: not
redefinable, a value equal to the value of the current location counter,
an address attribute of parcel, and a relative attribute equal to the
relative attribute of the current location counter (absolute, immobile,
or relocatable). Refer to section 4, Cray Assembly Language, for more
information about symbols and evaluating expressions.

Machine instruction syntax is uniquely defined on the result field alone
or on the result and operand fields. The optional location field
represents the logical memory location of the instruction. The syntax
for machine instructions is described in appendix A, Instruction Syntax.

Each Cray Computer System has its own set of machine instructions. The
machine instructions for specific mainframes are discussed in the
Symbolic Machine Instruction manuals listed in the preface.

3.4.1.2 Pseudo instructions

Pseudo instructions direct the assembler in its task of interpreting the
source statements and generating an object program. CAL has a large
complement of pseudo instructions.

Each pseudo instruction has a unique identifier in the result field. The
contents of the location and operand fields depend on the pseudo
instruction.

Individual pseudo instructions and their formats are described in section
5, Pseudo Instructions. Appendix B, Pseudo Instruction Index, contains
an alphabetical list of CAL pseudo instructions.

3.4.2 USER-DEFINED INSTRUCTIONS

The CAL assembler allows you to identify a sequence of instructions to be
saved for assembly at a later point in the source program.

SR-2003 3-13

CAL recognizes four types of defined sequences: macro, opdef, dup, and
echo. Defined sequences come in two classes: permanent and temporary.

A permanent defined sequence (macro or opdef) can be called any number of
times after it has been defined. A temporary defined sequence (dup or
echo) must be defined before each call. Permanent defined sequences are
placed in the source program and assembled when they are called.
Temporary defined sequences are assembled immediately after they are
defined.

3.5 MICROS

Through the use of micros, you can assign a name to a character string
and subsequently refer to the character string by its name. A reference
to a micro results in the character string being substituted for the name
before assembly of the source statement containing the reference. The
CMICRO, MICRO, OCTMIC, and DECMIC pseudo instructions (described in
subsection 5.10, Micros) assigns the name to the character string.

A programmer refers to a micro by using the micro name enclosed by
quotation marks (") anywhere in a source statement other than within a
comment. If column 72 of a line is exceeded as a result of a micro
substitution, the assembler creates additional continuation lines. No

replacement takes place if the micro name is unknown or if one of the
micro quotation marks has been omitted.

When a micro is edited, the source statement in which it is found is
changed. Each substitution produces one of the following cases:

• The length of the micro name and the double quote marks is the
same as the predefined substitute string. When the micro is
edited, the length of the source statement is unchanged.

• The length of the micro name and the double quote marks is greater
than the predefined substitute string. When the string is edited,
all characters to the right of the edited string shift left the
number of spaces equal to the difference between the length of the
micro name including the double quote marks and the predefined
substitute string.

• The length of the micro name and the double quote marks is less
than the predefined substitute string. If column 72 of a line is
exceeded as a result of a micro substitution, the assembler
creates additional continuation lines. Resulting lines are
processed as if they were a single statement.

SR-2003 3-14

In the following example, the length of the micro name is equal to the
length of the predefined substitute string. A micro named PFX is defined
as EQUAL. A reference to PFX is in the location field of the statement
as follows:

1 Location 1 Result 1 Operand 1 Comment
11 110 I~O 135
1 1 1 1
1 "PFX"TAGISO IS1 I ; The location of SO and Sl on
I I I I ; the source statement is
I 1 I I ; unchanged.

When the line is interpreted, CAL substitutes the definition (EQUAL) for
"PFX" producing the following line.

I Location 1 Result IOEerand IComme'nt
11 110 120 135
I I I I
I EQUALTAGI SO IS1 I ; The location of SO and Sl on
I I I I ; the source statement is
I I I I ; unchanged.

In the following example, the length of the micro name is greater than
the length of the predefined substitute string. A micro named PFX is
defined as LESS. A reference to PFX is in the location field of the
statement as follows:

I Location 1 Result
11 110
I I
1 "PFX"TAGISO
1 1
I I
I 1
I 1

IOEerand
120
I
IS1
I
I
I
I

1 Comment
135
I
I; Since LESS is one character
I; shorter than the micro string
I; name "PFX", the values in the
I; result and operand fields are
I; shifted one space to the left.

Before the line is interpreted, CAL substitutes the definition (LESS) for
"PFX" producing the following line.

SR-2003 3-15

I LocationlResult I Operand
11 110 120

I I I
ILESSTAG SO I Sl
I I I
I I I
I I I
I I I

I Comment
135

I
I; Since LESS is one character
I; shorter than the micro string
I; name "PFX", the values in the
I; result and operand fields are
I; shifted one space to the left.

In the following example, the length of the micro name is less than the
length of the predefined substitute string. A micro named pfx is defined
as greater. A reference to pfx is in the location field of the following
statement:

I LocationlResult
11 110

I I
I "pfx"taglsO
I I
I I
I I
, I , ,

,Operand
120 ,
Is1
I
I
I
I
I

I Comment
135
I
I; Since greater is two
I; characters longer than the
I; micro string name "pfx", the
I; values in the result and
I; operand fields are shifted
I; two spaces to the right.

Before the line is interpreted, CAL substitutes the predefined string
greater for "pfx". Since the predefined substitute string is two
characters longer than micro name, the fields to the right of the
substitution are shifted two characters to the right producing the
following:

I LocationlResult I Operand
11 110 120

I I I
Igreatertag sO I sl
I I I
I I I
I I I
I I I
I I I

SR-2003 3-16

I Comment
135

I
I; Since greater is two
I; characters longer than the
I; micro string name "pfx", the
I; values in the result and
I; operand fields are shifted
I; two spaces to the right.

One or more micro substitutions can occur between the beginning and
ending quotation marks of a micro. These substitutions create a micro
name that is substituted, along with the surrounding quotation marks, for
the corresponding micro string. Substitutions of this type are referred
to as embedded micros. An embedded micro consists of a {, a micro name,
and a } and is specified as follows:

{micro-name}

When a micro containing one or more embedded micros is encountered, CAL
edits all of the embedded micros within the micro until a micro name is
recognized or until the micro name is determined to be illegal (undefined
or exceeding the maximum allowable string length of eight characters).
When an illegal micro is encountered, CAL issues an appropriate message
and terminates the editing of the micro. An embedded micro can itself
contain one or more embedded micros.

The following example includes valid and invalid defined embedded micros:

LocationlResult
1 110

index
null

Imicro
Imicro

I Operand
120

1

1\1\
1\\

array"index" micro \Some string\
array1 micro \Some string\t

1 1

I Comment
135

1

I; Assigns literal value to index
I; Assigns literal value to null

1

1

1
_Ie "array1" - This is an explicit reference.
" Some string - This is an explicit reference.t

1 1 1
_Ie "array""index" - This is invalid, because 'array' was not defined.
" "array"l - This is invalid, because 'array' was not defined.t

1 1 1
_Ie "array{index}" - This is an example of an embedded micro.
" Some string - This is an example of an embedded micro.t

1 1 1
_Ie "{null}array{index}" - This is an example of two embedded micros.
" Some string - This is an example of two embedded micros.t

CAL places no restrictions on the number of recursions that are necessary
to identify a micro name. The following example demonstrates the
unlimited recursive editing capablility of CAL on embedded micros:

t Edited by CAL

SR-2003 3-17

I LocationlResult
11 lID

I I
I index
Inull

Imicro
Imicro

larray"index" micro
larray1 micro \Some

I Operand
120

I
1\1\
1\\

\Some string\
string\t

I Comment
135

I
I; Assigns literal value to index
I; Assigns literal value to null

I
1

I I I I
1_* "{nu{n{null}u{null}ll}ll}ar{null{null}}ray{ind{null}ex}" - Micro
1* Some string - Microt I

CAL issues an informative message with a priority of warning or error
when an invalid micro name is specified. If a micro name is recognized
as being invalid before any editing has begun, a message with a priority
of warning is issued. If any embedded micro has been edited and the
resulting string is an invalid micro name, a message with a priority of
error is issued.

The following example demonstrates how CAL assigns priorities to messages
when an invalid micro is encountered:

LocationlResult 1 Operand I Comment
1 110 120 135

1
identity micro I\The substitute string for this example\
null Imicro 1\\ I; Assigns literal value to null

1 1 1
_* "identity{null}" - This is a valid micro.
* The substitute string for this example - This is a valid micro.t

1 1 1
* The following micro is invalid, because the maximum micro name
* length of eight characters is exceeded. When a micro name is
* identified as being invalid before editing occurs, a message with a
* priority of warning is issued. I
* I 1 I
_* "identity9{null}" - This is an invalid micro.
* "identity9 - This is an invalid micro.t

I 1
* The following micro is invalid, because the maximum micro name
* length of eight characters is exceeded. When a micro name is
* identified as being invalid after editing occurs, a message with a
* priority of error is issued. 1

1 1 1
_* "id{null}entity9{null}" - This is an invalid micro.
* "identity9" - This is an invalid micro.t

t Edited by CAL

SR-2003 3-18

3.6 SECTIONS

A CAL module can be divided into blocks of memory called sections. By
dividing a program into sections, you can conveniently separate
executable sequences of code from nonexecutable data. As assembly of a
program proceeds, you can explicitly or implicitly assign code to
specific sections or reserve areas of a section. The assembler assigns
locations in a section consecutively as it encounters instructions or
data destined for that particular memory section.

The main and literals sections are used for implicitly assigned code.
CAL maintains a stack of section names assigned by the SECTIONt pseudo
instruction. All sections are passed directly to the loader with the
exception of stack sections.

Sections can be local or common. A local section is available to the CAL
program module in which it resides; a common section is available to
another CAL program module.

To explicitly assign code to a section; use the SECTIONt pseudo
instruction. The SECTION pseudo instruction can be specified for CRAY-2,
CRAY X-MP, or CRAY-1 Computer Systems.

3.6.1 LOCAL SECTIONS

A local section is a block of code that is useable only by the program
module in which it resides. CAL uses three types of local sections.

• Main section
• Literals section
• Sections defined by the SECTION pseudo

When a SECTION pseudo instruction is used, every SECTION type except
COMMON, DYNAMIC, and TASKCOM are local. For more detailed information
about SECTION types, see the SECTION pseudo in subsection 5.4, Section
Control.

3.6.1.1 Main section

The main section is initiated by the IDENT pseudo and is always the first
section in a program module. This section is used for all local code
other than that generated by the occurrence of a literal reference or
code between two SECTIONt pseudo instructions.

t The BLOCK and COMMON pseudo instructions can also be used to
implicitly or explicitly assign code to memory blocks for CRAY X-MP
and CRAY-1 Computer Systems. BLOCK and COMMON are not supported for
the CRAY-2 Computer System.

SR-2003 3-19

Generally, sections mayor may not have names but must be assigned types
and locations. The main section's default name is always empty. The
defaults for type and location are MIXED and CM, respectively. For more
information about section name, MIXED and CM, see the SECTION pseudo in
subsection 5.4, Section Control.

3.6.1.2 Literals section

The first use of a literal value in an expression causes the assembler to
store the data item in a literals section. For more information about
literals, see section 4, Cray Assembly Language. Data is generated in
the literals section implicitly by the occurrence of a literal. Explicit
data generation or memory reservation is not allowed in the literals
section.

3.6.1.3 Sections defined by the SECTION pseudo

When a SECTIONt pseudo instruction is used, all code generated or
memory reserved (other than literals) from the occurrence of one SECTION
pseudo instruction up to the occurrence of the next SECTION pseudo
instruction is assigned to the designated section. Until the first
SECTION pseudo instruction is specified, the main section is used. An
exception to these conditions can occur if the ORG pseudo instruction is
specified. Specifying the ORG pseudo instruction may cause the placement
of code or memory reservations to be different from the currently
specified working section.

Although the BLOCK and COMMON pseudos can be specified with CRAY X-MP or
CRAY-1 Computer System, the SECTION pseudo is recommended for use with
all types of Cray Computer Systems (CRAY-2, CRAY X-MP, and CRAY-I),
because it has all of the capabilities of the BLOCK and COMMON pseudos in
addition to many other capabilities.

When a section is released (see SECTION * in section 5, Pseudo
Instructions), the type and location of the previous section is used.
When the number of sections released is equal to or greater than the
number specified, CAL uses the defaults of the main section for type
(MIXED) and location (CM).

A section with the same name, type, and location used in different areas
of a program is recognized as the same section.

t The SECTION pseudo replaces the BLOCK pseudo instruction. SECTION can
be used in any of the ways that BLOCK was previously used. BLOCK is
not supported on the CRAY-2 Computer System.

SR-2003 3-20

3.6.2 COMMON SECTIONS

When a SECTIONt pseudo instruction is used with a type of COMMON,
DYNAMIC, or TASKCOM, all code generated (other than literals) or memory
reserved from the occurrence of one SECTION instruction up to the
occurrence of the next SECTION instruction is assigned to the designated
common, dynamic, or task common section. At program end, each common
section is identified to the loader by its SECTION name and is available
for reference by another program module. An exception to these
conditions can occur if the ORG pseudo instruction is specified.
Specifying the ORG pseudo instruction may cause the placement of code or
memory reservations to be different from the currently specified working
section.

If a common section is named, the identifier in the location field that
names the section must be unique within the module in which it is
defined. Even if a section is assigned a type (COMMON, DYNAMIC, or
TASKCOM) that is different from the type of a previously defined section,
it cannot be assigned the name of a previously defined section within the
same module. If duplicate location field names are specified, a message
with a priority of error is issued.

3.6.3 SECTION STACK BUFFER

CAL maintains a stack buffer that contains a list of the sections that
have been specified. Each time a SECTIONtt pseudo instruction names a
new section, CAL adds the name of the section to the list and identifies
the new section as the current section. CAL remembers the order that
sections are specified. An entry is deleted from the list each time a
SECTION pseudo contains an *. When an entry is deleted, the name,
location, and type of the section specified before the deleted section is
enabled.

The first section on the list is the last section to be deleted from the
list. If the program contains more SECTION * instructionsttt than
there are entries, the assembler uses the main section.

For each section used in a program, CAL maintains an origin counter, a
location counter, and a bit position counter. When a section is first
established or its use is resumed, CAL uses the counters for that section.

t The SECTION pseudo replaces the COMMON pseudo instruction. SECTION
can be used in any of the ways that COMMON was previously used.
COMMON is not supported on the CRAY-2 Computer System.

tt The BLOCK and COMMON pseudo instructions can also be used to name
sections. BLOCK and COMMON are not supported on the CRAY-2 Computer
System.

ttt The BLOCK * and COMMON * instructions replaces the current section
with the most recent previous section that was specified by the
BLOCK and COMMON pseudo instructions.

SR-2003 3-21

The following example illustrates specifying sections, the current
section in effect, and deleting sections. The example includes the QUAL
pseudo. For a detailed description of the QUAL pseudo see subsection
5.3, Mode Control.

Example:

Location Result Operand
1 10 20

IDENT STACK

SYM1 = 1

QUAL QNAME1

SYM2 2

SNAME SECTION MIXED

MLEVEL ERROR

SYM3 = *

MLEVEL *

SECTION *

SYM4 = 4

QUAL QNAME2

SYM5 = 5

SYM6 IQNAME1/SYM2

QUAL *

SYM7 = 6

SR-2003 3-22

Comment
35

The IDENT statement puts the
first entry on the list of

; qualifiers; this entry starts
; the symbol table for
; unqualified symbols.
; SYMl is relative to the main

section.
; Second entry on the list of
; qualifiers.
; SYM is the first entry in the

symbol table for QNAME1.
; SNAME is the second entry on
; the list of sections.
; Reset message level to error
; eliminate warning level
; messages.
; SYM3 is the second entry in
; the
; symbol table for QNAME1 and is
; relative to the SNAME section.
; Reset message level to default

in effect before the MLEVEL
specification.

; SNAME is deleted from the list
of sections.

; SYM4 is the third entry in the
; symbol table for QNAME1 and is
; relative to the main section.
; Third entry on the list of
; qualifiers.
; SYM5 is the first entry in the
; symbol table for QNAME2.
; SYM6 gets SYM2 from the symbol

table for QNAME1 even though
QNAME1 is not the current
qualifier in effect.
QNAME2 is removed as the

; current qualifier name SYM1
; is the fourth entry in the
; symbol table for QNAME1.

Example: (continued)

ILocation\Result
11 110

I I
I I QUAL
I I
I SYM8 1=
I I

3.6.3.1 Origin counter

\ Operand
120

I
1*
I
17
I

I Comment
135

I
I; QNAMEI is removed as the
I; current qualifier name
I; Second entry in the symbol
I; table for unqualified symbols.

The origin counter controls the relative location of the next word to be
assembled or reserved in the section. It is possible to reserve blank
memory areas simply by using either the ORG or BSS pseudo instructions to
advance the origin counter. When the special element *0 is used in an
expression, the assembler replaces it with the current parcel-address
value of the origin counter for the section in use. Special elements are
described in section 4, Cray Assembly Language. W.*O can be used to
obtain the word-address value of the origin counter. For more
information about the W. prefix, see section 4.

3.6.3.2 Location counter

The location counter is normally the same value as the or1g1n counter and
is used by the assembler for defining symbolic addresses within a
section. The counter is incremented whenever the origin counter is
incremented. It is possible to use the LOC pseudo instruction to adjust
the location counter so that it differs in value from the origin counter
or so that it refers to the address relative to a section other than the
one currently in use. When the special element * is used in an
expression, the assembler replaces it by the current parcel-address value
of the location counter for the section in use. W.* can be used to
obtain the word-address value of the location counter.

3.6.3.3 Word-bit-position counter

As instructions and data are assembled and placed into a word, CAL
maintains a pointer indicating the next available bit within the word
currently being assembled. This pointer is known as the
word-bit-position counter. It is 0 when a new word is begun and is
incremented by 1 for each completed bit in the word. Its maximum value
is 63 for the right-most bit in the word. When a word is completed, the
origin and location counters are incremented by 1 and the
word-bit-position counter is reset to 0 for the next word.

SR-2003 3-23

When the special element *w is used in an expression, the assembler
replaces it with the current value of the word-bit-position counter. The
normal advancement of the word-bit-position counter is in increments of
16, 32, and 64 as I-parcel and 2-parcel instructions or words are
generated. This normal advancement can be altered, however, through use
of the BITW, BITP, DATA, and VWD pseudo instructions.

3.6.3.4 Force word boundary

The assembler completes a partial word and sets the word-bit-position and
parcel-bit-position counters to 0 if either of the following conditions is
true:

• The current instruction is an ORG, LOC, BSS, BSSZ, CON, or ALIGN
pseudo instruction.

• The current instruction is a DATA or VWD pseudo instruction and
the instruction has an entry in the location field.

3.6.3~5 Parcel-bit-position counter

In addition to the word-bit-position counter, CAL also maintains a
counter that points to the next bit to be assembled in the current
parcel. This pointer is known as the parcel-bit-position counter. It is
o when a new parcel is begun and advances by 1 for each completed bit in
the parcel. Its maximum value is 15 for the right-most bit in a parcel.
When a parcel is completed, the parcel-bit-position counter is reset to O.

When the special element *p is used in an expression, CAL 'replaces it
with the current value of the parcel-bit-position counter.

The parcel-bit-position counter will be set to 0 following assembly of
most instructions. The pseudo instructions BITW, BITP, DATA, and VWD can
cause the counter to be nonzero.

3.6.3.6 Force parcel boundary

The assembler completes a partially filled parcel and sets the
parcel-bit-position counter to 0 if the current instruction is a symbolic
machine instruction.

SR-2003 3-24

4. CRAY ASSEMBLY LANGUAGE

This section presents the general rules and statement syntax for coding a
Cray Assembly Language (CAL) program. CAL syntax is described using
Backus-Naur Form (BNF). For a complete listing of CAL BNF and a
description of BNF notation, see appendix A, Instruction Syntax, and
section 1, Introduction, respectively. This section describes the
following instruction syntax:

• Register designators
• Names
• Symbols
• Data
• Special elements
• Element prefixes for symbols, constants, or special elements
• Expressions
• Expression evaluation
• Expression attributes

4.1 REGISTER DESIGNATORS

Register designators are used in symbolic machine instructions and opdefs
to identify which register is used for an operation. Each Cray Computer
System supports all or a subset of the following types of operating
registers. The register is defined as follows:

register ::= complex-register I simple-register.

4.1.1 CUMPLEX HEGl~T~H~

A complex register is a member of a set of registers that are identical
in function and architecture. These registers are identified by register
names that are comprised of a letter followed by an octal number or a
constant. For example, register Sl can be specified from the group of
registers known as the S registers.

The A, B, SB, SM, SR, ST, S, T, and V registers can be designated as
complex registers. Any complex register that is available on a Cray
Computer System can be specified by CAL. The exact combination of
registers available in symbolic machine instructions to CAL depends on
the Cray Computer System for which CAL is targeting code.

SR-2003 4-1

CAL accepts register mnemonics that are specified in uppercase,
lowercase, or mixed case. Complex registers can be specified with up to
four octal digits. Although CAL does not restrict the way designators
are entered, the requirements of the Cray Computer System for which CAL
is targeted can be more specific.

Some register, designators have letter prefixes that have special meaning
to the assembler. The prefixes and their meanings are listed in the
appropriate Cray symbolic machine instruction manual. For more
information about the complex registers available w~th your Cray Computer
System, see the CRAY-2 Computer System Functional Description,
publication HR-2000, and the Symbolic Machine Instructions Reference
Manual, publication SR-0085.

Complex registers are defined as follows:

complex-register ::= complex-register-mnemonic register-designator.

complex-register-mnemonics ::= "A" I "B" I "SB" I "SM" I "SR" I "ST"
"S" I "T" I "V" .t

register-designator

Examples:

Location Result
1 10

SyM =
A1

REG =
A.REG

Sl

octal-digit [octal-digit [octal-digit
[octal-digit]]] I

integer-constant I symbol .

°Eerand Comment
20 35

* ; CAL permits mixed case
SyM ; in any combination with the

; following restriction:
; matching names must be entered
; in the same manner.

3
A1 . Register A3 gets the contents , . of A1 ,
S2 ; Register Sl gets the contents

; of S2

t Uppercase, lowercase, and mixed case in any combination is permitted
by CAL.

SR-2003 4-2

4.1.2 SIMPLE REGISTERS

A simple register has a predefined function that cannot be redefined.
These registers are identified by register names that are comprised of
letters only.

The CA, CE, CI, CL, MC, RT, SB, SM, VL, VM, and XA registers have been
designated as simple registers.

For more information about the simple registers available with your Cray
Computer System, see the CRAY-2 Computer System Functional Description,
publication HR-2000, and the Symbolic Machine Instructions Reference
Manual, publication SR-0085.

The simple-register designator is defined as follows:

simple-register ::= simple-register-mnemonic •

simple-register-mnemonic ::= "CA"
"SB"

Example:

ILocationlResult
11 110

I I
I IS1
I I

4.2 NAMES

I Operand
120

I
IRT

I

"CE"
·"SM"

"C!"
"VL"

I Comment
135

I

"CL" "Me" I "RT"
"XA" .t "VM"

I; Register Sl gets the contents
I; of the RT register

A name is a one- to eight-character identifier. The first character
(initial-identifier-character) must be alphabetic (A through Z), a dollar
sign ($), a percent sign (%), or an at sign (@). Characters 2 through 8
(identifier-characters) can also be decimal digits (0 through 9).

Unlike a symbol, a name does not have a value or an attribute associated
with it and cannot be used in expressions.

t CAL permits uppercase, lowercase, and mixed case in any combination.

SR-2003 4-3

Names are used to identify the following types of information.

• Program modules
• Sections
• Macro instructions
• Micro character strings
• Conditional sequences
• Duplicated sequences

Names are defined as follows:

name ::= identifier.

Different types of names do not conflict with each other or with
symbols. For example, a micro can have the same name as a macro and a
program module can have the same name as a section.

Examples of valid and invalid names:

Valid

count
@~D

ABC5

Invalid

9knt
JOHNJONES
+YZ3

4.3 SYMBOLS

Comment

Lowercase is permitted
@ legal beginning character
Combinations of letters and digits are legal if the first
character is an initial-identifier-character

Comment

Begins with a number
More than a characters
Begins with +

A symbol is a 1- to a-character identifier that has a value and
attributes associated with it and can be used in expressions. A symbol
can be used in the following ways:

• When a symbol is in the location field of a source statement, the
symbol is being defined for use in the program. When a symbol is
defined, it assumes a value and certain characteristics called
attributes.

• When a symbol is in the operand or result field of a source
statement, the symbol is being referenced.

• Loader linkage

SR-2003 4-4

A symbol can be local or global depending on where the symbol is defined.
That is, a symbol can be used within a single program module (local) or by
a number of program segments (global). (See global definitions,
section 3, The CAL Program.) A symbol can also be made unique to a code
sequence (see qualified symbols, this section).

Symbols of the following form ~~ are generated by CAL:

~I?&nnnnnn

where n is a decimal digit.

~~ symbols are discarded at the end of a program segment regardless of
whether or not the symbol is redefinable or defined in the global
definitions part.

For more detailed information about symbols generated by CAL, see the
description of the LOCAL pseudo in subsection 5.12, Defined Seque~ces.

CAL issues a warning message if a symbol is a valid identifier and is
defined as one of the following registers reserved by CAL:

register ::= complex-register I simple-register.

complex-register ::= complex-register-mnemonic register-designator.

complex-register-mnemonics ::= "A"
"s"

"B"
"T"

"SB" I "SM" I "SR" I "ST"
"V" . t

register-designator octal-digit [octal-digit
[octal-digit]]] .

simple-register ::= simple-register-mnemonic .

simple-register-mnemonic ::= "CA"
"SB"

"CE"
"SM"

A symbol can be used in the following ways:

• Specified as unqualified or qualified

"CI"
"VL"

octal-digit

"CL"
"VM"

"Me" I "RT"
"XA" .t

• Defined, that is, associated with a value and attributes

t Uppercase, lowercase, and mixed case in any combination is permitted
by CAL.

SR-2003 4-5

• Assigned the following attributes: address, relative, and
redefinable

• Referenced by using the value instead of the symbol itself

4.3.1 SYMBOL SPECIFICATION

Symbols can be specified as unqualified or qualified and are defined as
follows:

symbol .. -.. - unqualified-symbol I qualified-symbol .

4.3.1.1 Unqualified symbol

An unqualified symbol is a 1- to 8-character identifier that identifies a
value and its associated attributes (see following description of symbol
attributes). The initial-identifier-character of a symbol must be a
letter (upper or lowercase A-Z), a dollar sign ($), a percent sign (~), or
an at sign (@). The characters that follow the
initial-identifier-character (identifier-characters) can also be decimal
digits (0 through 9).

A warning message is issued if a symbol is defined with an identifier that
matches the syntax of a register.

Unqualified symbols can be referenced as follows:

• Unqualified symbols, defined in an unqualified code sequence and
referenced from within the unqualified code sequence, can be
referenced without qualification.

• Unqualified symbols can be referenced within the current qualifier
without qualification if the symbol has not been defined within the
current qualifier.

• Unqualified symbols can be referenced from within the current
qualifier using the form //symbol.

Unqualified symbols are defined as follows:

unqualified-symbol ::= identifier.

SR-2003 4-6

Example:

I LocationlResult I~O~p~e_r~a_n_d ________ IComment
11 110 120 135
I I I I
I IIDENT I TEST I
I SYM1 1= 1* I; SYM1 has a value equal to the
I I I I; location counter
I IA1 ISYM1 I; Register Al
ISYM2 ISET 12 I; SYM2 is redefinable
I SYM3 1= 13 I; SYM3 is not redefinable
I lEND I I

4.3.1.2 Qualified symbols

A symbol that is not a global symbol can be made unique to a code sequence
by specifying a symbol qualifier that is to be appended to all symbols
defined within the sequence. The QUAL pseudo instruction qualifies
symbols (see QUAL pseudo instruction in subsection 5.3, Mode Control).
Qualified symbols must be defined with respect to following rules:

• A qualified symbol cannot be defined with a label that is reserved
for complex or simple registers. A warning message is issued if a
symbol is defined with such a label.

• Symbols can be qualified in a program module only.

• Symbols can never be qualified in the global definitions part of a
program.

Qualified symbols can be referenced as follows:

• If a qualified symbol (defined in a code sequence) is referenced
from within a sequence, it can be referenced without
qualification.

• If a qualified symbol is referenced outside of the code sequence in
which it was defined, it must be referenced in the form
/qualifier/symbol, where qualifier and symbol are one- to
eight-character identifiers and are defined by a QUAL pseudo
instruction.

Qualified symbols are defined as follows:

qualified-symbol ::= "/" [identifier] "/" identifier.

SR-2003 4-7

Example:

Location Result QEerand Comment
1 10 20 35

IDENT TEST
SYM1 = 1 Assignment

QUAL NAME 1 · Declare qualifier name ,
SYM1 = 2 · Qualified symbol SYM1 ,

S1 SYM1 · Register S1 gets 2 ,
· (qualified SYM1) ,

S1 IISYMl Register S1 gets 1
(unqualified SYM1)

S1 INAME1/SYM1 Register S1 gets 2
(qualified SYM1)

QUAL * ; Pop the top of the qualifier
stack

S1 SYM1 Register 81 gets 1
S1 IISYMl Register 81 gets 1
S1 INAME1/SYM1 , Register 81 gets 2
END

4.3.2 SYMBOL DEFINITION

A symbol is defined by assigning it a value and attributes. A symbol's
value and attributes depend on how the symbol is used in the program. The
assignment can occur in the following three ways.

• When a symbol is used in the location field of a symbolic machine
instruction or certain pseudo instructions, it is defined as
follows:

Having the address of the current value of the location
counter (counters are described in section 3, The CAL Program)

Having parcel-address or word-address attributes

Being absolute, immobile, or relocatable

Not redefinable

• A symbol used in the location field of a symbol-defining pseudo
instruction is defined as having the value and attributes derived
from an expression in the operand field of the instruction. Some
symbol-defining pseudo instructions cause the symbol to have a
redefinable attribute. When a symbol is redefinable, a
redefinable pseudo instruction must be used to define the symbol
the second time. Redefinition of the symbol causes it to be
assigned a new value and attributes.

SR-2003 4-8

• A symbol can be defined as external to the current program
module. A symbol is external if it is defined in a program module
other than the module currently being assembled. The true value
of an external symbol is not known within the current program
module.

Examples:

Each of the following is an example of a symbol.

Location Result Operand Comment
1 10 20 35

START = * · The symbol START has the ,
; current value of the

· location counter and cannot ,
; redefined.

PARAM SET D'18 ; The symbol PARAM is equal
; the decimal value 18 and

· be redefined. ,
EXT SECOND ; Identifies SECOND as an

; external symbol

4.3.3 SYMBOL ATTRIBUTES

When a symbol is defined, it assumes two or more attributes. These
attributes fall into three categories:

• Address
• Relative
• Redefinable

to
can

be

Every symbol is assigned one attribute from each of the first two
categories. Whether or not a symbol is assigned the redefinable
attribute depends on how the symbol is used. Every symbol has a value of
up to 64 bits associated with it.

4.3.3.1 Address attributes

Each symbol is assigned one of the following address attributes:

• Word address
• Parcel address
• Value

SR-2003 4-9

Word address - A symbol is assigned a word-address attribute if it
appears in the location field of a pseudo instruction, such as a BSS or
BSSZ, that defines words; if is equated to an expression having a
word-address attribute; or if the word is explicitly stated in the
operand field of an EXT pseudo.

Parcel address - A symbol is assigned a parcel-address attribute if it
appears in the location field of a symbolic machine instruction or
certain pseudo instructions; is equated to an expression having a
parcel-address attribute; or if parcel is explicitly stated in the
operand field of an EXT pseudo.

Value - A symbol has a value attribute if it does not have word-address
or parcel-address attributes, or if value is explicitly stated in the
operand field of an EXT pseudo. All globally defined symbols have an
address attribute of value.

4.3.3.2 Relative attributes

Every symbol is assigned one of the following relative attributes:

• Absolute
• Immobile
• Relocatable
• External

Absolute - A symbol is assigned the relative attribute of absolute when
the current location counter is absolute and it appears in the location
field of a machine instruction, BSS pseudo instruction, or data
generation pseudo instruction such as BSSZ or CON. A symbol is also
absolute if it is equated to an expression that is absolute. All
globally defined symbols have a relative attribute of absolute. The
symbol is only known at assembly time.

Immobile - A symbol is assigned the relative attribute of immobile when
the current location counter is immobile and it appears in the location
field of a machine instruction, BSS pseudo instruction or data generation
pseudo instruction such as BSSZ or CON. A symbol is also immobile if it
is equated to an expression that is immobile. The symbol is only known
at assembly time.

Relocatable - A symbol is assigned the relative attribute of relocatable
when the current location counter is relocatable and it appears in the
location field of a machine instruction, BSS pseudo instruction, or data
generation pseudo instruction such as BSSZ or CON. A symbol is also
relocatable if it is equated to an expression that is relocatable.

SR-2003 4-10

External - A symbol is assigned the relative attribute of external when
it is defined by an EXT pseudo instruction. An external symbol defined
in this manner is entered in the symbol table with a value of O. You can
specify the address attribute of an external symbol as value (V), parcel
(P), or word (W); the default is value.

A symbol is also assigned the relative attribute of external if it is
equated to an expression that is external. Such a symbol assumes the
value of the expression and can have an attribute of parcel address, word
address, or value.

The assignment of an unknown variable with a register at assembly time,
can be made by use of a symbol with a relative attribute of external. In
the following example, register s1 is loaded with variable ext1 at
assembly time.

Example:

Location Result Operand
1 10 20

ident test1
ext ext1

s1 ext1

end
ident test2
entry ext1

ext1 = 3

end

4.3.3.3 Redefinable attributes

Comment
35

; Variable ext1 is defined as
; an external variable
; ext1 transmits value to
; register sl

When the two modules are
; linked, register S1 gets 3.

In addition to its other attributes, a symbol is assigned the attribute
of redefinable if it is defined by the SET or MICSIZE pseudo
instructions. A redefinable symbol can be defined more than once in a
program segment and can have different values and attributes at different
times during an assembly. When such a symbol is referenced, its most
recent definition is used by the assembler. All redefinable symbols are
discarded at the end of a program segment without regard to whether they
were defined in the global definitions or not.

SR-2003 4-11

Examples:

I Location Result °Eerand Comment
11 10 20 35
I
I IDENT TEST
ISYM1 :;: 1 Not redefinable
ISYM2 SET 2 Redefinable
I SYM1 SET 2 Error; SYM1 previously

I defined as 1
ISYM2 SET 3 Redefinable

I END

4.3.4 SYMBOL REFERENCE

When a symbol is in a field other than the location field, the symbol is
being referenced. Reference to a symbol within an expression causes the
value and attributes of the symbol to be used in place of the symbol.
Symbols may also be found in the operand fields of pseudos.

A symbol reference within an expression can contain a prefix which causes
the usual value and attributes associated with the symbol to be altered
according to the prefix. The prefix affects only the specific reference
with which it occurs. For details, refer to subsection 4.6, Element
Prefixes for Symbols, Constants, or Special Elements.

Examples:

Location Result °Eerand
1 10 20

81 SYM1+1

IFA DEF,SYM1

SR-2003 4-12

Comment
35

Register S1 gets the location
; of SYM1+1. SYM1+1 is an

example of a symbol in an
c;>perand
field used as an expression.
Symbols can also be used
outside

; of an expression. In this
; instance, SYM1 is not used

within
an expression; it is a symbol.

4.4 DATA

Some instructions manipulate data. CAL instructions can use data that is
specified in any of the following forms:

• Constants
• Data items
• Literals

4.4.1 CONSTANTS

Constants are defined as follows:

constant ::= floating-constant I integer-constant I character-constant.

4.4.1.1 Floating-constant

A floating-constant is evaluated as a 1- or 2-word quantity, depending on
the precision specified. (See the floating-point data formats figures in
the approriate Symbolic Machine Instruction Manual.)

The floating-constant is defined as follows:

floating-constant .. -.. - decimal-prefix] floating-decimal
binary-scale decimal-integer]] .

decimal-prefix
Numeric base used for the floating-decimal and/or the
decimal-integer. D' or d' specifies a decimal-prefix and
is the only prefix available for a floating-constant.

floating-decimal

SR-2003

A floating-decimal can be one of the following:

A decimal-integer followed by a decimal-fraction with
an optional decimal-exponent and decimal-integer; for
example:

n.n or n.nEn or n.nE+n or n.nDn or n.nD+n

A decimal-integer followed by a It ... with a
decimal-exponent and decimal-integer; for example:

n. or n.En or n.E+n or n.nDn or n.nD+n

4-13

A decimal-integer followed by a decimal-exponent and
decimal-integer; for example:

nEn or nE+n or nDn pr nD~n

A decimal-fraction followed by an optional
decimal-exponent and decimal-integer; for example:

.n or .nEn or .nE+n or .nDn or .nD+n - -
A decimal-integer is a nonempty string of decimal
digits. A decimal-integer decimal-fraction is a nonempty
string of decimal digits representing a whole number, a
mixed number, or a fraction.

decimal-exponent
The power of 10 by which the integer and/or fraction
is to be multiplied; indicates whether the constant is
to be single precision (E or e; one 64-bit word) or
double precision (D or d; two 64-bit words). n is
an integer in the base specified by prefix.

If no decimal-exponent is provided, the constant
occupies one word. decimal-exponents are defined as
follows:

En positive decimal exponent, single precision
E+n Positive decimal exponent, single precision
E-n Negative decimal exponent, single precision
On Positive decimal exponent, double precision
O+n Positive decimal exponent, double precision
O-n Negative decimal exponent, double precision

binary-scale decimal-integer

SR-2003

The integer and/or fraction is to be multiplied by a power
of 2. Binary scale is specified with S or s and an optional
add-operator (+ or -). n is an integer in the base
specified by the decimal-prefix; for example:

Sn or S+n
sn or s+n
S-n or s-n

positive binary exponent
positive binary exponent
Negative binary exponent

4-14

Examples (floating-constant for constants):

Location Result IOEerand Comment
1 10 120 35

I
CON 0'1.5 Mixed decimal of the form

n.n
CON 4.5E+10 ; Single-precision floating

constant of the form
n.nE+n

CON 4.0+15 Double-precision floating
constant of the form n.D+n

CON 0'1.0E-6 ; Negative floating constant of
the form n.nE-n

CON 1000e2 Single-precision floating
constant of the form nen

SYM = 1777752d+10 ; Double-precision floating
; constant of the form nD+n

4.4.1.2 Integer-constant

An integer-constant is evaluated as a 64-bit twos-complement integer.
(See the twos-complement integer figure in one of the following
appropriate Symbolic Machine Instruction manuals: CRAY-2 Computer System
Functional Description, publication HR-2000 or Symbolic Machine
Instructions Reference Manual, CRI publication SR-0085.) The
integer-constant is defined as follows:

integer-constant ::~ base-integer [binary-scale base-integer]
octal-prefix octal-integer [binary-scale
octal-integer] I
decimal-prefix decimal-integer [binary-scale
decimal-integer] I
hex-prefix hex-integer [binary-scale
hex-integer] •

base-integer

SR-2003

A string of decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
of any length

4-15

binary-scale
The integer and/or fraction is to be multiplied by a
power of 2. Binary scale is specified with S or s and an
optional add-operator (+ or -). n is an integer in the
base specified by the decimal-prefix; for example:

Sn or S+n
sn or s+n
s-n or S-n

Positive binary exponent
Positive binary exponent
Negative binary exponent

base-integer or octal-prefix or decimal-prefix or hex-prefix
Numeric base used for the integer. If no prefix is used,
base-integer is determined by the default mode of the
assembler or by the BASE pseudo instruction. A prefix can
be one of the following:

D' or d'
0' or 0'

X' or x'

Decimal (default mode)
Octal
Hexadecimal

octal-integer
A string of octal integers (0, 1, 2, 3, 4, 5, 6, 1) of any
length

decimal-integer
A string of decimal integers (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
of any length

hex-integer
A string of hex integers (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A
or a, B or b, C or c, D or d, E or e, F or f) of any length

Example (integer-constant for constants):

ILocation Result °Eerand Comment
11 1Q 2Q 35
I
I S1 0'1234567 Octal-prefix followed by

I octal-integer

I A4 D'50 Integer-constant of the form

I decimal-prefix followed by

I decimal-integer
ISYM = h'ffffffa Integer-constant of the form

I hex-prefix followed by

I hex-integer

SR-2003 4-16

4.4.1.3 Character-constants

The character-constant is defined as follows:

character-constant .. -.. - [character-prefix] character-string
[character-suffix] •

character-prefix
Character set used for stored constant:

A or a
C or c
E or e

ASCII character set (default)
Control Data Display Code
EBCDIC character set

character-string
Default is a string of zero or more characters from the
ASCII character set. Two consecutive apostrophes
(excluding the delimiting apostrophes) indicate a single
apostrophe.

character-suffix
Justification and fill of character string:

H or h Left-justified,
L or I Left-justified,
R or r Right-justified,
Z or z Left-justified,

trailing binary

Example (character-constant):

Location Result Operand
1 10 20

S3 '·'R

CON A'ABC'L

Sl E'XYZ'H

CON C'OUT'

VWD 32/'EFG'

SR-2003 4-17

blank-filled (default)
zero-filled
zero-filled

zero-filled, at least one
zero character guaranteed

Comment
35

; ASCII character set (default);
; right justified, zero filled
; ASCII character set; left
; justified, zero filled
; EBCDIC character set; left
; justified, blank filled
; CDC character set; left

justified, blank filled;
; (default)
; ASCII character set; left
; justified, blank filled within

a 32-bit field (all default)

4.4.2 DATA ITEMS

A character or data item can be used in the operand field of the DATA
pseudo instruction and in literals. The length of the data field
occupied by a data item is determined by its type and size. The data
item is defined as follows:

data-item ::= floating-data I integer-data I character-data.

4.4.2.1 Floating-data item

A floating-data item occupies one word if single prec1s1on and two words
if double precision. Floating-point data is defined as follows:

floating-data ::= [sign] floating-constant.

sign Data item is to be stored ones or twos complemented or
uncomplemented:

+ or omitted Uncomplemented
Negated (twos complemented)

Ones complemented. Although syntactically
correct, # is not permitted; a semantic
error is generated with floating-data.

The floating-constant is defined as follows:

floating-constant decimal-prefix] floating-decimal
binary-scale decimal-integer]] .

The syntax for floating-data is the same as the syntax for
floating-constants. See subsection 4.4.1.1, Floating-constant, for a
description of floating constants.

Example (floating-constant for data items):

ILocation Result °Eerand Comment
11 10 20 35
I
I DATA D'1345.567 ; Decimal floating data item
I the form n.n
I DATA 1345.E+1 Decimal floating data item
I the form n.E+n
I DATA 0'1.5 Decimal of the form n.n
I DATA 4.5E+10 ; Single-precision floating
I constant of the form
I n.nE+n

SR-2003 4-18

of

of

Examples (continued) :

I Location Result
11 10

I
I DATA

I
I DATA

I
I DATA

I
I DATA

I

Operand
20

4.D+15

D'l.0E-6

1000e2

1.5S2

Comment
35

Double-precision floating
constant of the form n.D+n
Negative floating constant of
the form n.nE-n
Single-precision floating
constant of the form nen
Floating binary scale data
item of the form n.nSn

4.4.2.2 Integer-data item

An integer-data item occupies one 64-bit word and is defined as follows:

integer-data [sign] integer-constant .

sign Data item is to be stored ones or twos complemented or
uncomplemented:

+ or omitted Uncomplemented
Negated (twos complemented)

Ones complemented

integer-constant .• -
base-integer [binary-scale base-integer] I
octal-prefix octal-integer
[binary-scale octal-integer]
decimal-prefix decimal-integer
[binary-scale decimal-integer
hex-prefix hex-integer [binary-scale hex-integer] .

The syntax for the integer-data is the same as the syntax for the
integer-constant. See subsection 4.4.1.2, Integer-constant, for a
detailed description of integer-constants.

Example (integer-constant for data):

ILocationlResult
11 110
I I
1 1 DATA

1 1
1 IVWD

SR-2003

I Operand
120

1

1 +0'20

I
14010,24/0'200

4-19

I Comment
135

1

I; Octal-integer

1

1

4.4.2.3 Character-data item

The character-data item is as follows:

character-data .. -.. - [character-prefix] character-string
[character-count] [character suffix] •

character-prefix
Character set used for stored constant:

A or a
C or c
E or e

ASCII character set (default)
Control Data Display Code
EBCDIC character set

character-string
Default is a string of zero or more characters from the
ASCII character set. Two consecutive apostrophes
(excluding the delimiting apostrophes) indicate a single
apostrophe.

character-count
Length of the field, in number of characters, into which
the data item is to be placed. If count is not supplied,
the length is the number of words needed to hold the
character string. If a count field is present, the length
is the character count times the character width, so length
is not necessarily an integral number of words. The
character width is 8 bits for ASCII or EBCDIC, 6 bits for
Control Data Display Code.

If an asterisk is in the count field, then the actual
number of characters in the string is used as the count.
The case where two apostrophes are used to represent a
single apostrophe is counted as a single character.

If the base is M (mixed), CAL assumes that count is
decimal. Refer to section 4, Cray Assembly Language, for a
description of mixed base.

character-suffix
Justification and fill of character string:

H or h Left-justified, blank-filled (default)
L or I Left-justified, zero-filled
R or r Right-justified, zero-filled
Z or z Left-justified, zero-filled, at least one

trailing zero character guaranteed

SR-2003 4-20

Example (character-data):

Location Result
1 10

DATA

DATA

DATA

DATA

4.4.3 LITERALS

Operand I Comment
20 135

I
A'ERROR IN DSN' I; ASCII character set with

I; left justification and blank
I; fill by default; stored in two
I; words.

E'error in dsn'R; EBCDIC character set; right
I: justified, zero filled; stored
I; in two words.

'Error' I; Default ASCII Character set
I; left justified and blank
I; filled by default; stored in
I; one word.

'Error'* I; Default ASCII character set;
I; that is stored in 5 character
I; positions (40 (5*8) bits)

Literals are read-only data items whose storage is controlled by CAL.
Specifying a literal allows you to implicitly insert a constant value
into memory. The actual storage of the literal value is the
responsibility of the assembler. Literals can only be used in
expressions, because the address of a literal, rather than its value is
used.

The first use of a literal value in an expression causes the assembler to
store the data item in one or more words in a special, local memory block
known as the literals section. Subsequent references to a literal value,
do not produce multiple copies of the same literal.

Since literals can map into the same location in the literals section,
CAL checks for the presence of a matching literal in the literals section
before new entries are added to the section. This check is made bit by
bit. If the current string identically matches any string currently
stored in the literals section, CAL maps that string to the location of
the matching string. If the current string does not identically match
any of the strings currently stored in the literals section, the current
string is considered to be unique and is assigned a location in the
literals section.

SR-2003 4-21

The following special syntaxes are in effect for literals:

• Literals always have the following attributes:

Relocatable (relative)
Word (address)

• Literals cannot be specified as character strings of zero bits.
The actual constant within a literal must have a bit length
greater than zero. In actual use, you must specify at least one
6- or a-bit character as follows:

6 bits for CDC character set
a bits for ASCII character set (default)
a bits for EBCDIC character set

• By default, literals always come out on full-word boundaries.
Trailing blanks are added to fill the word to the next word
boundary. The following special characters can be specified with
literals:

A literal is defined as follows when used as an element of an expression.

literal ::= "=" data-item.

Data-item is defined as follows:

data-item .. -.. - floating-data integer-data I character-data .

The syntax of the data-item for literals is the same as the syntax for
data-items for constants. For a complete description of the data item,
see Data-item in this section.

Examples:

1. Literals can be specified with single- or double-precision; the
default is single-precision. Single-precision literals are stored in
1 64-bit word. Double-precision literals are stored in 2 64-bit
words.

I Location I Result
11 110
I I
I ICON
I ICON

SR-2003

I Operand
120
I
1=1.5
1=1.501

I Comment
135
I
I; Single-precision literal
I; Double-precision literal

4-22

2. The following example illustrates how the the ASCII character a is
stored when ='a'H is specified; A represents a blank character. If
='a' is specified, this same value is generated.

ILocationlResult I Operand I Comment
11 110 120 135

I I I I
I ICON 1='a'H I; ASCII character set by default

I I I I; left justify blank fill

I I I 1011000011AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAAIAAAAAAAA

I I I

Diagram 4-1. ASCII Character with Left Justification and Blank Fill

3. The following examples illustrates how the the ASCII character a is
stored.

a. In the following example, ='a'L is specified; specifying ='a'R or
='a'Z generates the same value.

I LocationlResult I Operand I Comment
11 110 120 135

I I I I
I ICON 1='a'L I; ASCII character set by default

I I I I; left justify zero filled

I I I I I I I I I
1011000011000000001000000001000000001000000001000000001000000001000000001
I I I I I I I I I

Diagram 4-2. ASCII Character with Left Justification and Zero Fill

b. The following example illustrates how the the ASCII character a
is stored when ='a'R is specified.

SR-2003 ~-23

ILocationlResult I Operand I Comment
11 110 120 135

I I I I
I ICON 1='a'R I; ASCII character set by default

I I I I; right-justified, zero-filled

I I I I I I I I I
1000000001000000001000000001000000001000000001000000001000000001011000011
I I I I I I 1 1 1

Diagram 4-3. ASCII Character with Right Justification and Zero Fill

c. The following example illustrates how the the ASCII character a
is stored when ='a'*R is specified. The value is right-justified
in the first 8 bits of word 4.

I Locationl Result I Operand I Comment
11 110 120 135

I I I I
I ICON I 'a'*R I; ASCII character set by default

I I I I; right-justified, zero-filled

I I I I I I I I I
1011000011000000001000000001000000001000000001000000001000000001000000001
I I I I I I I I I

Diagram 4-4. ASCII Character with Right Justification in 8 Bits

4. The following example illustrates the declaration of the three
character sets available to CAL.

ILocationlResult 1 Operand 1 Comment
11 110 120 135
1 I I I
I ICON I='A' I ; 8-bit ASCII character

I ICON I=A'A' I ; 8-bit ASCII character;

I ICON I=C'A' I ; 6-bit CDC character

I ICON I=E'A' I ; 8-bit EBCDIC character

SR-2003 4-24

5. The following examples illustrate how literals can be specified using
H, L, R, Z:

1 Location Result °Eerand Comment
11 1Q ~Q 35
1
1 CON ='AB'3 . Left justified with one blank ,
1 . padded on the right; default ,
1 CON =' AB '3H ; Left justified with one blank
1 padded on the right; default
I CON ='AB'6R Right justified, filled with
1 four leading zeros
1 CON ='AB'6Z Left justified, padded with
1 four trailing zeros

4.5 SPECIAL ELEMENTS

Special elements are used to obtain the current value of the location
counter, the origin counter, the word pointer, and the parcel pointer.
Special elements can occur as elements of expressions. Expression
elements are described in subsection 4.7, Expressions. The origin,
location, word-bit-position, and parcel-bit-position counters are
described in section 3, The CAL Program. Special elements are defined as
follows:

special element .. -.. - "*" 1 u*A" 1 "*a" 1 U*B" 1 u*b"
"*p" 1 "*p" I "*W" 1 "*w" •

1 "*0" I "*0" 1

Special elements have the following special meanings to the assembler.

Element

*A or *a

SR-2003

Description

Location counter; denotes a value equal to the current
value of the location counter with parcel-address
attribute and absolute, immobile, or relocatable
attributes. The location counter is absolute if it has
been modified by the LOC pseudo using an expression that
has a relative attribute of absolute. The location
counter is immobile if it is relative to either a STACK
section or a TASKCOM section. The location counter is
relocatable in all other cases.

Absolute location counter; denotes a value equal to the
current value of the location counter with parcel-address
and absolute attributes.

4-25

Element

*0 or *0

*B or *b

*W or *w

*p or *p

Description

Origin counter; denotes a value equal to the current
value of the origin counter relative to the beginning of
the current section. The origin counter has an address
attribute of parcel. If the current section is a section
with a type of STACK or TASKCOM, it has an immobile
attribute. In all other cases it has a relative
attribute of relocatable.

Absolute origin counter; denotes a value equal to the
current value of the origin counter relative to the
beginning of the section with parcel-address and absolute
attributes.

Word pointer; denotes a value equal to the current value
of the word-bit-position counter with absolute and value
attributes. *w is relative to the word and the
word-bit-position counter is almost always equal to 0,
16, 32, or 48. CAL issues a warning message when the
word-bit-position counter has a value other than 0 (not
pointing at a word boundary) and is used in an expression.

Parcel pointer; denotes a value equal to the current
value of the parcel-bit-position counter with absolute
and value attributes. The range of possible values for
*p is 0 through 15. CAL issues a warning message when
the parcel-bit-position counter has a value other than 0
(not pointing at a parcel boundary) and is used in an
expression. The following statement defines where you
are within a parcel and is almost always 0:

SYM1 = *p

4.6 ELEMENT PREFIXES FOR SYMBOLS, CONSTANTS, OR SPECIAL ELEMENTS

Element prefixes have the following form:

element-prefix :: = "P." I "p." I "W." I "w." .

A symbol, constant, or special element can be prefixed by an
element-prefix (P. or p. for parcel or W. or w. for word) causing the
value to assume an attribute of parcel address or word address,
respectively, in the expression in which the reference appears.

A prefix does not permanently alter the attribute of a symbol; the effect
of a prefix is for the current reference only.

SR-2003 4-26

4.6.1 P. - PARCEL-ADDRESS PREFIX

A symbol, special element, or constant can be prefixed by P. or p. to
specify the attribute of parcel address. If a symbol (sym) has the
attribute of word address, the value of p.sym or p.sym is the value
of sym multiplied by four. Each Cray word is divided into four parcels
that are designated as a, b, c, and d. Each parcel has a 2-bit value
associated with it; 002 for a, 012 for b, 102 for c, and 112
for d. To find the exact parcel that is being addressed, multiply the
word address by four. For example, the following word address attributes
are translated into parcel address attributes:

Parcel
Word Equation Value Representation

2 2X4 0' 10 2a
4 4X4 0' 20 4a
0 OX4 0'0 Oa

A P. or p. that is specified for an element with value address attribute
does not cause the value to be divided by four. The value can, however,
be used to assign the parcel address attribute to the element.

A P. or p. that is specified for an element with parcel address attribute
does not alter its characteristics.

Figure 4-1 illustrates the numbering of parcels a, b, c, and d in a
6-word block.

Parcel a Parcel b Parcel c Parcel d

Word 0 0 1 2 3

Word 1 4 5 6 7

Word 2 10 11 12 13

Word 3 14 15 16 17

Word 4 20 21 22 23

Word 5 24 25 26 27

Figure 4-1. Word-parcel Conversion for
Six Words

SR-2003 4-27

An expession is defined as follows:

expression ::= embedded-argument I
[add-operator] term { add-operator term } .

embedded-argument
An embedded-argument can be any argument-character that is
enclosed in parentheses. If parentheses are used with an
embedded argument, each open parenthesis must have a
matching close parenthesis. For example:

(3*SYMBOL+2-(2*SYMBOL»

4.7.1 ADD-OPERATOR

An add-operator joins two terms in an expression or precedes the first
term of an expression. Add-operators are defined as follows:

add-operator ::= "+" I "-"

4.7.2 TERMS

A term consists of one or more prefixed-elements joined by special
characters referred to as multiply-operators. The multiply-operators
complete all multiplication and division before the add-operators
complete addition or subtraction. The following general rules apply for
terms.

• Only one prefixed-element within a term can have a relative
attribute of immobile or relocatable. All other
prefixed-elements, if any, in that term must have relative
attributes of absolute.

• A prefixed-element with a relative attribute of external, if
present, must be the only prefixed-element of the term. If
preceded by an adding operator, that operator must be a +.

• The prefixed-element to the right of / must have a relative
attribute of absolute.

• A term containing / must have an attribute of absolute up to the
point at which the / is encountered (see the description of term
attributes).

• Division by 0 produces an error.

SR-2003 4-30

4.6.1 P. - PARCEL-ADDRESS PREFIX

A symbol, special element, or constant can be prefixed by P. or p. to
specify the attribute of parcel address. If a symbol (sym) has the
attribute of word address, the value of p.sym or p.sym is the value
of sym multiplied by four. Each Cray word is divided into four parcels
that are designated as a, b, c, and d. Each parcel has a 2-bit value
associated with it; 002 for a, 012 for b, 102 for c, and 112
for d. To find the exact parcel that is being addressed, multiply the
word address by four. For example, the following word address attributes
are translated into parcel address attributes:

Parcel
Word Equation Value Representation

2 2X4 0'10 2a
4 4X4 0'20 4a
0 OX4 0'0 Oa

A P. or p. that is specified for an element with value address attribute
does not cause the value to be divided by four. The value can, however,
be used to assign the parcel address attribute to the element.

A P. or p. that is specified for an element with parcel address attribute
does not alter its characteristics.

Figure 4-1 illustrates the numbering of parcels a, b, c, and d in a
6-word block.

Parcel a Parcel b Parcel c Parcel d

Word 0 0 1 2 3

Word 1 4 5 6 7

Word 2 10 11 12 13

Word 3 14 15 16 17

Word 4 20 21 22 23

Word 5 24 25 26 27

Figure 4-1. Word-parcel Conversion for
Six Words

SR-2003 4-27

Example:

Location Result Operand
1 10 20

SYM1 = •

Sl SYM1

Sl P.SYM1

4.6.2 W. - WORD-ADDRESS PREFIX

Conunent
35

; SYM1 is equal to the location
; counter with parcel and
; relocatable attributes.
; Register Sl gets the
; relocatable parcel address of
; SYM!.
; The same value that was
; generated by the last
; statement is produced.

A symbol, special element, or constant can be prefixed by W. or w. to
specify the attribute of word address. If a symbol (sym) has the
attribute of parcel address, the value of w.sym or w.sym is the value
of sym divided by four. When converting from parcel address attribute
to a word address attribute, divide the parcel address by 4. When the
conversion is completed, the result is always understood to be pointing
at parcel a.

If the parcel address is not pointing at a word boundary, CAL issues a
warning message and truncates the division to a word boundary. For
example, the following parcel address attributes are converted into
word-address attributes:

Parcel Truncation
Representation Value Equation Word Warning

Oc 2 2/4 0 Yes
3a 14 14/4 3 No
5c 26 26/4 5 Yes
Oa 0 0/4 0 No
6a 30 30/4 6 No

A W. or w. prefix specified for an element with a value-address attribute
does not cause the value to be divided by four. The value can, however,
be used to assign the word-address attribute to the element.

A W. or w. prefix specified for an element with a word-address attribute
does not alter its characteristics.

SR-2003 4-28

Example (word-address prefix):

ILocationlResult I Operand I Comment
11 110 120 135

I I I I
I SYM2 1= IW.* I; Word and relocatable

I I
I lAO

I I
I IA4

4. 7 EXPRESS ION.S

I
IW.ADDR

I
IW.BUFF+O'100

I; attr ibutes

I
I
I

The result and operand fields for many source statements consist of
expressions. An expression consists of one or more terms joined by
special characters referred to as adding operators (add-operators in the
BNF). Figure 4-2 is a diagram of an expression. A term consists of one
or more special elements, constants, symbols, or literals
(prefixed-element in the BNF) joined by multiplying operators
(multiply-operator in the BNF). Figure 4-3 is a diagram of a term.

Add

oP1 Term2· . .
I (optional)

I __________________ ~~----~------------~----~---------

Figure 4-2. Diagram of An Expression

Prefixed
element1

Mult

oP1

Prefixed
element2

Mult

°Pm

Figure 4-3. Diagram of A Term

SR-2003 4-29

Prefixed
elementm

An expession is defined as follows:

expression ::= embedded-argument I
[add-operator] term { add-operator term } .

embedded-argument
An embedded-argument can be any argument-character that is
enclosed in parentheses. If parentheses are used with an
embedded argument, each open parenthesis must have a
matching close parenthesis. For example:

(3*SYMBOL+2-(2*SYMBOL»

4.7.1 ADD-OPERATOR

An add-operator joins two terms in an expression or precedes the first
term of an expression. Add-operators are defined as follows:

add-operator ::= "+" I "_"

4.7.2 TERMS

A term consists of one or more prefixed-elements joined by special
characters referred to as multiply-operators. The multiply-operators
complete all multiplication and division before the add-operators
complete addition or subtraction. The following general rules apply for
terms.

• Only one prefixed-element within a term can have a relative
attribute of immobile or relocatable. All other
prefixed-elements, if any, in that term must have relative
attributes of absolute.

• A prefixed-element with a relative attribute of external, if
present, must be the only prefixed-element of the term. If
preceded by an adding operator, that operator must be a +.

• The prefixed-element to the right of / must have a relative
attribute of absolute.

• A term containing / must have an attribute of absolute up to the
point at which the / is encountered (see the description of term
attr ibutes) •

• Division by 0 produces an error.

SR-2003 4-30

Example:

Location Result Operand
1 10 20

SYM = *

S1 SYM*1
S2 SYM*1+1

S3 1*2*3/4

A term is defined as follows:

Comment
35

; Relocatable and parcel
; attributes.
; One term within an expression.
; Two terms within an

expression.
; Every prefixed-element
; preceding a / must have the
; attribute of absolute and the
; prefixed-element following the
; / must have an attribute of
; absolute.

term ::= prefixed-element { multiply-operator prefixed-element} .

prefixed-element ::= ["#"] [element-prefix] element.

multiply-operator ::= "*" I "/" .

Examples (terms):

Term

SIGMA*5

DELTA

Description

Two elements, SIGMA (symbol) and 5 (constant) are joined by
a multiplying operator (*).

A single-element term

4.7.2.1 Prefixed-elements

A prefixed-element is defined as follows:

prefixed-element .. -.. - [i] [element-prefix] element

Complement character (#) - If an element is prefixed with the complement
character (#), the element itself must have a relative attribute of
absolute.

SR-2003 4-31

Element-prefix - If an element is prefixed with an element-prefix, the
attribute of the element is as follows:

P. or p. Parcel-address attributes
w. or w. Word-address .attributes

See subsection 4.6, Element Prefixes for Symblols, Constants, or Special
Elements, for information about element-prefixes.

Elements - An element can be a special element, constant, symbol, or
literal. Elements can be optionally preceded by a complement character
(i) or an element prefix (P. or W.). Elements are defined as follows:

element ::= special-element I constant I symbol I literal.

element For more detailed information about element, see
subsection 4.5, Special Elements, for special-element,
subsection 4.4.1, Constants, for constant, subsection
4.3, Symbols, for symbol, and subsection 4.4.2, Data
Items, for literal.

Examples (elements):

Element

SIGMA

*
*w
0'77S3
A'ABC'R
=A'ABC'

Description

Symbol
Special element
Special element
Numeric constant
Character constant
Literal

4.7.2.2 Multiply-operator

A multiply-operator joins two prefixed-elements. Multiply-operators are
defined as follows:

multiply-operator "*" I "/" .

4.7.2.3 Term attributes

Every prefixed-element in a term has a relative and an address attribute
associated with it. CAL assigns relative and address attributes to the
entire term by evaluating each prefixed-element in the term.

SR-2003 4-32

The relative and address attributes for a term vary as CAL evaluates each
prefixed-element in the term. The term's final attribute is the
attribute in effect when the final (right-most) element of the term is
evaluated. As CAL encounters each prefixed-element in the left-to-right
scan of a term, it assigns an attribute to the term based on the
multiply-operator (if any) preceding the prefixed-element, the attribute
of any previous partial term, and the attribute of the prefixed-element
currently being evaluated.

Relative attributes - The prefixed-elements and multiply-operators
comprising a term determine the term's relative attributes. CAL assigns
every term a relative attribute determined by the following rules:

Rule Attribute

1 Absolute

2 Immobile

Description

A term assumes the attribute of absolute if every
prefixed-element is absolute.

A term assumes an attribute of immobile if it
contains one prefixed-element with immobile
attributes, zero or more prefixed-elements with
absolute attributes, and no prefixed-elements with
relocatable or external attributes. Thus an
immobile term can contain one immobile
prefixed-element with the remaining
prefixed-elements being absolute.

3 Relocatable A term assumes an attribute of relocatable if it

4

Examples:

2*4/3*4

SR-2003

External

contains one prefixed-element with relocatable
attributes, zero or more prefixed-elements with
absolute attributes, and no prefixed-elements with
immobile or external attributes. Thus a
relocatable term can contain one relocatable
prefixed-element with the remaining
prefixed-elements being absolute.

A term assumes the attribute of external if it
consists of one prefixed-element and the
prefixed-element is external.

Evaluation

Absolute (2) * absolute (4) is evaluated as absolute.
Absolute (2*4) 1 absolute (3) is evaluated as absolute.
Absolute (2*4/3) * absolute (4) is evaluated as absolute;
rule 1.

4-33

Term Evaluation

STKSYM*3 Immobile (STKSYM) * absolute (3) is evaluated as immobile;
rule 2.

2*SYM1*2 Absolute (2) * relocatable (SYM1) is evaluated as
relocatable. Relocatable (2*SYM1) * absolute (2) is
evaluated as relocatable; rule 3.

EXTl One external (EXT1) element is evaluated as external; rule
4.

EXT2*SYMl External (EXT2) * relocatable (SYM1) produces an error;
rule 4.

4*SYMl/4 Absolute (4) * relocatable (SYM1) is evaluated as
relocatable; relocatable (4*SYM1) / 4 produces an error.
All prefixed-elements to the left of the / must have a
relative attribute of absolute; see general rules for terms
in subsection 4.7.2, Terms.

Address attributes - CAL assigns every term one of the following address
attributes:

• Parcel-address

• Word-address

• Value

Figure 4-4 indicates how address attributes are assigned to terms and
partial terms. Pterm, Wterm, and Vterm denote the attribute of the
partial term resulting from all elements evaluated before the current
element. In figure 4-4, P, W, and V denote an element being incorporated
into the term and having an attribute of parcel-address, word-address, or
value, respectively.

If a partial term has the address attribute of the left column and is
multiplied or divided by a prefixed-element with the address attribute of
the top horizontal row, the resulting attribute is determined at the
intersection of the column and row by the arithmetic operator position in
the upper left corner of table.

The results for multiplication and division are given in the top (*) and
bottom (/) halves of each box on the chart, respectively. For example,
if partial term Vterm is multiplied by a prefixed-element with an address
attribute of word, the address attribute for the new partial term is word.

SR-2003 4-34

A two-digit value following an address attribute indicates that although
a result is specified, CAL issues a warning message that corresponds to
the two-digit superscript. For example, if the partial term Vterm is
divided by a prefixed element with an address attribute of parcel, the
result is value and message 84 is issued:

Partial term with value address is divided by parcel element

See appendix D, Diagnostic Messages, for the text that is associated with
messages 80 through 87.

Ie

/

Vterm

Pterm

Wterm

Partial
Term

v P

v P
------- -------

V V 84

P P 80

------- -------
P V

W V 81

------- -------
W V 85

W

W

V 86

V 82

V 87

V 83

V

2nd Term

V - Value
P - Parcel
W - Word

nn - Warning message number

Figure 4-4. Address Attribute Assignment Chart

SR-2003 4-35

4.8 EXPRESSION EVALUATION

Expressions are evaluated from left to right. Each term is evaluated
from left to right with CAL performing 64-bit integer multiplication or
division as each multiply-operator is encountered. Expressions are
defined as follows:

expression ::= embedded-argument
[add-operator] term { add-operator term } .

NOTE

The embedded-argument is intended for use with macros
and opdefs and should not be included in expressions.
Although the embedded-argument is syntactically
correct, the CAL expression evaluator cannot evaluate
expressions that contain embedded-arguments. For
example:

I Locationl Result IOEerand I Comment
11 11Q 12Q 135
I I I I
Isym1 1= 11 I ; Valid expression.
Isym2 1= 1(1) I ; Syntactically

I I I I ; correct, but CAL

I I I I ; issues error

I I I I ; message.

When a complete term has been evaluated, it is added or subtracted from
the sum of the previous terms. CAL does not check for overflow and
underflow.

The assembler treats each element as a 64-bit twos-complement integer.
Character constants are left- or right-justified within a field width
equal to the destination field. If the field width is shorter than the
length of the character constant a warning message is issued.
Complemented elements are complemented in the right-most bits in a field
width equal to the destination field.

SR-2003 4-36

Examples:

NOTE

CAL processes floating-constants as expected when they
are specified as single uncomplemented
prefixed-elements within an expression. If
floating-constants are used in any other way, an
appropriate warning message is issued and integer
arithmetic is used to evaluate the expression. CAL
processes the floating-constants within the expressions
of the following examples as expected.

I LocationlResult I Operand I Comment
11 110 120 135
I I I I
IA ICON 11.0 I
IB ICON 1-1.0 I
IC ICON 14.5 I
ID ICON 1·3 I
IE ICON 1-·75 I

CAL issues an appropriate warning message and evaluates the
floating-constants within the expressions of the following
examples using integer arithmetic:

ILocationlResult
11 110
I I
IG ICON
IH ICON
I I ICON

I Operand
120
I
11.0+2.0
1-1*3.4
1-#1.0

I Comment
135

1. The following example demonstrates how the result of a VWD with a
nine-bit destination field is stored; ~ represents a blank space.

ILocationlResult 1 Operand 1 Comment
11 110 120 135
I I I I
I IVWD ID'9/'abc'+1 I ; The terms of the expression
I I I I ; 'abc' and 1

SR-2003 4-37

Diagram 4-5. 64-bit ASCII Representation of 'abc', Left Justified

1 1 1 1 1 1 1 1 1
1000000001000000001000000001000000001000000001000000001000000001000000011
1 1 1 1 1 1 1 1 1

Diagram 4-6. 64-bit Representation of 1

Diagrams 4-5 and 4-6 contain the ASCII representations of the character
strings 'abc' and 1, respectively. Since the character constant is
left-justified by default within a field width equal to the 9 bits
specified in the example, the 64-bit representation of 'abc' is actually
as follows:

1 1 1 1 1 1 1 1 1
1000000001000000001000000001000000001000000001000000001000000001110000101
1 1 1 1 1 1 1 1 1

Diagram 4-7. ASCII Representation of 'abc', Left Justified
in 9 Bits

CAL adds the value 1 (diagram 4-6) to the value shown in diagram 4-7
(011000010), and stores it in the destination field (diagram 4-8). CAL
issues a warning message stating that the character string 'abc' has been
truncated. The destination field contains a value of 303 (011000011).

1 1
10110000111
1 1

Diagram 4-8. Result of VWD with 9-bit Destination Field

SR-2003 4-38

2. The following example demonstrates that complemented elements are
complemented in the right-most bits of a field width equal to the
destination field.

ILocationlResult
11 110

I I
I I~
I I
I I
I I

I Operand
120

I
ID'4/#1+1
1
1
1

I Comment
135

1
I; The terms of the expression
I; are the complement of 1 and
,; the value 1. The destination
I; field is 4 bits wide.

1 1 1 1 1 1 1 1 1
11101
1 I I 1 1 1 I I 1

Diagram 4-9. 64-bit Representation of the Complement of 1

1 1 1 1 1 1 1 1 1
1000000001000000001000000001000000001000000001000000001000000001000000011
1 1 1 1 1 1 1 I 1

Diagram 4-10. 64-bit Representation of 1

Diagrams 4-9 and 4-10 contain the complement of 1 and the ASCII
representation for the value 1 (0001), respectively. Diagram 4-11 shows
the actual value of the complement of 1 is stored in the right-most bits
of a word in memory.

1 1 1 1 1 1 1 1 1
1000000001000000001000000001000000001000000001000000001000000001000011101
1 1 I 1 I 1 1 I 1

Diagram 4-11. Complement of 1 Stored in the Right-most Bits
of a 4-bit Field

SR-2003 4-39

The character string 1110 (diagarm 4-11) is stored in the destination
field, CAL adds the value 1 to the destination field, and the result
(1111) is stored as shown in diagram 4-12.

I I
111111
I_I

Diagram 4-12. Result of VWD with 4-bit Destination Field

4.8.1 EVALUATING IMMOBILE AND RELOCATABLE TERMS WITH COEFFICIENTS

An immobile term has one immobile prefixed-element, no relocatable or
external prefixed-elements, and zero or more absolute prefixed-elements.
A relocatable term has one relocatable prefixed-element, no immobile or
external prefixed-elements, and zero or more absolute prefixed-elements.

An immobile term has a 64-bit integer coefficient associated with it,
equal to the value of the term obtained when a 1 is substituted for the
immobile element. The value of an immobile term is the value of the
immobile element multiplied by the coefficient.

A relocatable term has a 64-bit integer coefficient associated with it,
equal to the value of the term obtained when a 1 is substituted for the
relocatable element. The value of a relocatable term is the value of the
relocatable element multiplied by the coefficient.

Every section has two relative section coefficients, one representing an
immobile relative attribute and one representing a relocatable relative
attribute. These relative section coefficients are initialized to zero
before the evaluation of each expression. As each term is evaluated
within an expression, the term's coefficient is either added to or
subtracted from the corresponding coefficient of the corresponding
section depending on the sign immediately preceding the term. When each
term within an expression has been evaluated, the expression is assigned
a relative attribute as follows:

• Absolute; if the expression contains no external terms and all of
the coefficients for all of the sections are zero.

• Immobile; if the expression contains no external terms and all of
the coefficients for all of the sections are zero except for one
immobile coefficient that must have a value of 1. The expression
is immobile relative to the section with the coefficient of one.

SR-2003 4-40

• Relocatable; if the expressio~ contains no external terms and all
of the coefficients for all of the sections are zero except for
one relocatable coefficient that must have a value of 1. The
expression is relocatable relative to the section with the
coefficient of one.

• External; if the expression contains one external term and all of
the coefficients for all of the sections are zero.

• Invalid; all other cases.

If, for example, SYMBOL is assumed to be relocatable, SYMBOL*2+1-SYMBOL
is considered a valid expression when it is evaluated by CAL. Since
SYMBOL is relocatable, substituting one for SYMBOL generates three terms
(1*2, +1, and -1). The first term (1*2) includes the relocatable term
SYMBOL. A value of 2 is stored with the coefficient maintained by CAL
for the relocatable section to which SYMBOL is relative. The second term
(+1) is absolute and does not effect the evaluation of the relocatable
coefficient. The third term (-1) includes the relocatable term SYMBOL. A
one is subtracted from the coefficient maintained by CAL for the
relocatable section named SYMBOL.

When the entire term is evaluated, the coefficient associated with the
relocatable term SYMBOL equals one. Since all of the relocatable terms
within the expression are relative to a single section and the section's
final coefficient is one, the expression is relocatable relative to that
section.

Every relocatable symbol is relative to some section. All sections have
an initial coefficient of zero before expression evaluation. The
operator immediately preceding a relocatable term is the operator
associated with that term. For example, the coefficient for SYMBOL is
maintained as -1. When the sign of a coefficient is not indicated, it is
assumed to be positive. The coefficient for SYMBOL*l is maintained as
+1*1. If 1a (100) is substituted for SYMBOL in the following expression:

SYMBOL*2+1-SYMBOL

the binary to be evaluated is 100*010+001-100. CAL evaluates the string
from left to right. The following partial results are obtained:

100*010=1000
1000+0001=1001
1001-0100=0101=1b

The final result (1b) is the result that we would expect to be
generated. The following example demonstrates the correct and incorrect
use of a relocatable term.

SR-2003 4-41

Example:

Location Result
1 10

IDENT
SYMBOL =

SI

SI

END

Operand 1 Comment
20 135

1

1

* I; SYMBOL is given a value equal
I; to the current location
I; counter.

SYMBOL*2+1-SYMBOL; When evaluated, this

SYMBOL * 2 +1

1 ;
1 ;
1 ;

1 ;

expression produces a value
equal to the current location
counter plus 1. The value is
relocatable.

I; When evaluated, this
1 ;
1 ;

1 ;

1 ;

1 ;

1

expression produces a value
equal to twice the current
location counter plus 1. The
value is not relocatable.
CAL produces an error message.

The term SYMBOL*2+1 is not relocatable because the results generated are
dependent on the location where the loader puts the module. If the
loader puts the module at 400, SYMBOL*2+1=801. If the loader puts the
module at 200, SYMBOL*2+1=401. If a term is evaluated and found to be
not relocatable, CAL issues a message with a priority of error.

Example (relocatable):

Location Result
1 10

IDENT
SNAME1 SECTION
SYMBOL 1 BSS
SYMBOL 2 =

BSS
SECTION

SNAME2 SECTION
SYMBOL 3 BSS

SECTION
SYMBOL4 =

END

SR-2003

Operand
20

TEST

4

w. *
5

*
3

*

Comment
35

3*SYMBOL2+SYMBOL3-1-SYMBOL2-2*SYMBOL1

I

4-42

The expression 3*SYMBOL2+SYMBOL3-1-SYMBOL2-2*SYMBOL1 contains five terms,
four of which are

Term

3 * SYMBOL 2
+ SYMBOL 3
-1
-SYMBOL2
-2*SYMBOL1

relocatable,

Value of
Coefficient

3*1
+1

-1
-2*1

and is evaluated as follows:

Attribute

Relocatable (relative to SNAME1)
Relocatable (relative to SNAME2)
Absolute
Relocatable (relative to SNAME1)
Relocatable (relative to SNAME1)

In the previous example, the coefficients for the sections SNAME1, and
SNAME2 were initialized to zero before the expression was evaluated. The
main section has a coefficient of zero. When the coefficients for the
relocatable terms relative to SNAMEI are evaluated, the result is zero
(+3-1-2). When the coefficients for the relocatable terms for SNAME2 are
evaluated, the result (+1) is 1.

SYMBOL4 obtains a relative attribute of .relocatable because one
in the expression has a coefficient of 1 (SNAME2) and all other
(SNAME1) maintained for the expression have coefficients of O.
expression is relocatable relative to SNAME2, because SNAME2 is
section with the coefficient of 1.

section
sections
The final
the

The address attribute of the expression is evaluated as follows:

Term Partial Term Attribute

3 * SYMBOL 2 Value*word Word (see figure 4-4)
+ SYMBOL 3 Word Word (see figure 4-4)
-1 Value Value (see figure 4-4)
-SYMBOL2 Word Word (see figure 4-4)
-2 * SYMBOL 1 Value*word Word (see figure 4-4)

The address attribute for the entire expression is word. For a
description of the manner in which parcel-address, word-address, and
value attributes are assigned to entire expressions, see subsection 4.9,
Expression Attributes.

The value of the
is calculated as

Term

3 * SYMBOL 2

SYMBOL 3

-1

SR-2003

expression
follows:

Result

3*4=0'14

0

-1

3*SYMBOL2+SYMBOL3-1-SYMBOL2-2*SYMBOL1=O'7 and

Description

SYMBOL2 begins with word 4 in section
SNAME1; 4 is substituted for SYMBOL2.

SYMBOL3 begins with word 0 in section
SNAME2; 0 is substituted for SYMBOL3.

Term 3 is absolute; no substitution.

4-43

Term Result Description

-SYMBOL 2 -4 SYMBOL 2 begins with word 4 in section
SHAMEl; 4 is substituted for SYMBOL2.

-2 * SYMBOL 1 -2*0=0 SYMBOL 1 begins with word 0 in section
SHAMEl; 0 is substituted for SYMBOL1.

When the values for the terms (0'14+0-1-4-0) are substituted for the
expression (3*SYMBOL2+SYMBOL3-1-SYMBOL2-2*SYMBOL1), the result is 7.

Example (immobile):

I Locationl Result
11 110
I I
I
Itaskc
Itcsym
I
I symbol

lident
I section
Ibss
1 section
1=

I Operand I Comment
120 135

I
Itest I
Itaskcom I
14 1

1 * I
Itaskc+tcsym-taskc

The expression taskc+tcsym-taskc contains three terms, two that are
relocatable and one that is immobile. The expression is evaluated as
follows:

Term

taskc
+tcsym
-taskc

Value of
Coefficient

+1
+1
-1

Attribute

Relocatable (relative to taskc)
Immobile (relative to taskc)
Relocatable (relative to taskc)

In the previous example, the relative section coefficients for
relocatable taskc and immobile tcsym were initialized to zero before the
expression was evaluated. When the coefficients for the relocatable
terms relative to taskc are evaluated, the result is zero (+1-1=0). When
the coefficient for the immobile term (tcsym) is evaluated, the result
(+1) is 1. Since the term with the relative attribute of immobile has
the coefficient of 1, the entire expression is assigned a relative
attribute of immobile.

The address attribute of the expression is evaluated as follows:

Term Partial Term Attribute

taskc Word Word (see figure 4-4)
+tcsym Word Word (see figure 4-4)
-taskc Word Word (see figure 4-4)

SR-2003 4-44

The address attribute for the entire expression is word. For a
description of the manner in which parcel-address, word-address, and
value attributes are assigned to entire expressions, see subsection 4.9,
Expression Attributes.

The value of the expression taskc+tcsym-taskc is calculated as follows:

Term Result

taskc o

+tcsym o

-taskc o

Description

taskc is assigned a value of 0 relative to the
task common section taskc; 0 is substituted for
taskc.

tcsym begins with word 0 in taskcom section
taskc; 0 is substituted for tcsym.

taskc is assigned a value of 0 relative to the
task common section taskc; 0 is substituted for
taskc.

When the values for the terms (0+0-0) are substituted for the expression
(taskc+tcsym-taskc), the result is O.

4.9 EXPRESSION ATTRIBUTES

The expression attributes for a full expression are determined by
evaluating the terms within an expression. The assembler can assign the
following attributes to an expression:

• Relative

Absolute
Immobile
Relocatable
External

• Address

SR-2003

Parcel-address
Word-address
Value

4-45

4.9.1 ABSOLUTE, IMMOBILE, RELOCATABLE, or EXTERNAL

Every expression assumes one of the following relative attributes:

• Absolute
• Immobile
• Relocatable
• External

An expression is absolute if no external terms are present and the
coefficients of all other sections are O.

An expression is immobile if the coefficient for every section within the
current module represented in the expression is 0, except for one section
which must have a coefficient of +1 (positive relocation) and is
immobilely associated with that section. An expression is relocatable if
the coefficient for every section within the current module represented
in the expression is 0, except for one section which must have a
coefficient of +1 (positive relocation) and is relocatably associated
with that section. An expression error occurs if a coefficient does not
equal 0 or +1, or if more than one coefficient is nonzero.

An expression is external if the expression contains one external term
and if the coefficients of all sections are O. An expression error
occurs if more than one external term is present. All external terms
defined with the EXT pseudo have a value of 0 associated with them.

Examples:

Location Result
1 10

IDENT
EXT

SNAMEI SECTION
SYMI BSS
SYM2 =

BSS
SYM4

SYM5

END

SR-2003

Operand
20

TEST
EXT1

4
w.*
5
EXT1+SYM1

EXT1+SYM1-SYM2

4-46

Comment
35

Illegal; it is not permitted
to have an external term and
relocatable terms with
coefficients of 1 in the same
expression.
Legal; the coefficients for
SYMI (+1) and SYM2 (-1) cancel
each other and produce a
coefficient of 0 for the
expression. The value of the
expression EXTl+SYM1-SYM2 is
4 (0+0-4).

See section 3, The CAL Program, for a description of sections.

4.9.2 PARCEL-ADDRESS, WORD-ADDRESS, OR VALUE ATTRIBUTES

Every expression assumes one of the following attributes:

• Parcel-address
• Word-address
• Value

An expression has parcel-address attribute if at least one term has a
parcel-address attribute and all other terms have value or parcel-address
attributes.

An expression has word-address attribute if at least one term has a
word-address attribute and all other terms have value or word-address
attributes.

All other expressions have value attributes. A warning message is issued
if an expression has terms with both parcel-address and word-address
attributes.

4.9.3 TRUNCATING EXPRESSION VALUES

An expression value is truncated to the field size of the expression
destination.

Example:

Location Result
1 10

SYM1 BSS
SYM2 =

VWD
VWD

VWD

VWD

SR-2003

Operand
20

4
-1
5/-1
3/5

2/5

3/exp

4-47

Comment
35

. ,
; 64 bits
; 5 bi ts
; 3-bit destination field,
; value of 5
; 2-bit destination field,
; value of 5; truncation message

issued.
; 3-bit destination field,
; the range of values is as
; follows -4 ~ exp ~ 7

A warning message is issued if the left-most bits lost in truncation are
not all zeros or all ones with the left-most remaining bit also one (that
is, a negative quantity).

Truncation occurs in the statement VWD 5/-1 (diagram 4-13), but an error
message is not generated because the part that was truncated included all
ones and the left-most bit of the 5-bit field is also a one. The result
of the VWD is stored in 5 bits as shown in diagram 4-14.

I I I I I I I I I
111
I 1 1 1 1 1 1 1 I
t Truncated tResultt

Diagram 4-13. 64-bit Representation of -1

I I
1111111

1--_1

Diagram 4-14. Truncated Value of -1 Stored in a 5-bit Field

Truncation occurs in the statement VWD 3/5. An error message is not
generated, because the truncated part was all zeros. The result is
stored as shown in diagram 4-15 and then truncated and stored as shown in
diagram 4-16.

I I I I I I I I 1
1000000001000000001000000001000000001000000001000000001000000001000001011
I 1 1 1 1 1 1 1 I
t Truncated

Diagram 4-15. 64-bit Representation of 5

I I
11011

1--1

Diagram 4-16. Truncated Value of 5 Stored in a 3-bit Field

SR-2003 4-48

t t

Truncation occurs in the statement VWD 2/5. CAL generates a warning
message, because a combination of ones and zeros is truncated. The result
is stored as shown in diagram 4-17 and then truncated and stored as shown
in diagram 4-18.

1 1 1 1 1 1 1 1 1
1000000001000000001000000001000000001000000001000000001000000001000001011
1 I I I I I I I I
t Truncated t t

Diagram 4-17. 64-bit Representation of 5

I I
1011

1--1

Diagram 4-18. Truncated Value of 5 Stored in a 2-bit Field

If the values generated by the statement VWD 3/exp are in the range from
-4 through 7, a warning message is not generated.

Any message with a priority of error issued for an expression causes the
expression to have a relative attribute of absolute, an address attribute
of value, and a value of O.

Examples of expressions:

Expression

ALPHA

*W+BETA

GAMMA/4+DELTA*5

MU-NU*2+*

0'100+=0'100

SR-2003

Description

An expression consisting of a single term.

Two terms; *w and BETA.

Two terms; each consisting of two elements.

Three terms; the first consisting only of MO, the
second consisting of NU*2, and the third
consisting only of the special element *.

Two terms; a constant and the address of a
literal.

4-49

In the following examples, P and Q are immobile symbols in the same
section, Rand S are relocatable symbols in the same section, COM is
relocatable in a common section, X and Yare external, and A and Bare
absolute. The location counter is currently in the section containing R
and S.

The following expressions are absolute.

A+B
'A'R-1
2*R-S-* Relocation of terms all cancel.
1/2*R Equivalent to O*R.
A*{R-S} Error; parentheses not allowed.

The following expressions are immobile.

P+B
Q+3
COM+P-Q
X+P
R+P
P+Q
Q/16*16

P and Q cancel.
Error; external and immobile.
Error; relocatable and immobile.
Error; immobile coefficient of 2.
Error; division of immobile element is illegal.

The following expressions are relocatable.

*
W.*+B
R+2
COM+R-S
3**-R-S
=A'LITERAL'
X+R
R+S
Q+S
R/16*16

Rand S cancel.
3** cancels -R and -So
Relocatable.
Error; external and relocatable.
Error; relocation coefficient of 2.
Error; immobile and relocatable.
Error; division of relocatable element is illegal.

The following expressions are external.

X+2
Y-100
X+R-*
X+2**-R-S
-X+2
X+Y
X/Z

SR-2003

R, -* cancel relocation.
Relocatable terms 2**, -R, -S cancel each other.
Error; external cannot be negated.
Error; more than one external.
Error; division of an external element is illegal.

4-50

5. PSEUDO INSTRUCTIONS

Cray Assembly Language (CAL) includes a set of instructions known as
pseudo instructions that direct the assembler in its task of interpreting
the source statements and generating an object program.

Each program module begins with an IDENT pseudo instruction and ends with
an END pseudo instruction. Symbol, micro, macro, and opdef definitions
occurring within the program module are cleared before assembling the
next program module.

A symbol, micro, macro, or opdef can be defined before the first IDENT
pseudo instruction or between an END and a subsequent IDENT pseudo
instruction. Such a definition is global and can be referenced in any
subsequent program module. (Refer to Global Definitions, subsection
3.1.2.)

Redefinable micros and symbols can only be defined locally. Redefinable
micros and symbols appearing before the first IDENT or between an END and
subsequent IDENT pseudo instruction are cleared after assembling the next
program module.

Symbolic machine instructions and the pseudo instructions listed below
must appear within a program module. They are allowed outside of an
IDENT to END sequence only within opdef or macro definitions.

ALIGN
BITP
BITW
BLOCK

BSS
BSSZ
COMMENT
COMMON

CON
DATA
ENTRY
EXT

LOC
ORG
QUAL
SECTION

START
VWD

The LOCAL pseudo instruction must occur after a macro or opdef prototype
statement or DUP or ECHO pseudo instructions, except for intervening
comment statements. All other pseudo instructions, macro definitions,
and opdef definitions can appear anywhere.

Pseudo instructions are classified and described according to their
applications, as follows:

Class

Program control
Loader linkage
Mode control
Section control

Message control

SR-2003

Pseudo Instructions

IDENT, END, COMMENT
ENTRY, EXT, START
BASE, QUAL, EDIT, FORMAT
SECTION, BLOCK, COMMON, ORG, LOC, BITW,
BITP, BSS, ALIGN
ERROR, ERRIF, MLEVEL, DMSG

5-1

Class

Listing control

Symbol definition
Data definition
Conditional assembly
Micro definition
File control
Defined sequences

Pseudo Instructions

LIST, SPACE, EJECT, TITLE, SUBTITLE, TEXT,
ENDTEXT
=, SET, MICSIZE
CON, BSSZ, DATA, VWD
IFA, IFC, IFE, IFM, ENDIF, SKIP, ELSE
CMICRO, MICRO, OCTMIC, DECMIC
INCLUDE
MACRO, OPDEF, DUP, ECHO, ENDM, ENDDUP,
STOPDUP, LOCAL, OPSYN, EXITM, NEXTDUP

NOTE

Pseudo instructions can be specified in uppercase or
lowercase, but never in mixed case.

The syntax for pseudos is not presented in strict Backus-Naur Form
(BNF). In some cases, the BNF has been condensed to eliminate
unnecessary redundancy in the documentation.

Throughout this section, pseudos with ignored fields (location or
operand) are defined as follows:

ILocationlResult I Operand

I I
lignored Ipseudox

pseudox

ignored

Pseudo instruction with a blank location field

The location field of this statement is ignored by the
assembler. A message with a priority of CAUTION is issued
if the field is not empty and all of the characters in the
field are skipped until a blank character is encountered.
The first nonblank character following the blank character
is assumed to be the beginning of the result field.

ILocationlResult I Operand

I I I
I Ipseudoy I ignored

SR-2003 5-2

pseudoy

ignored

Pseudo instruction with a blank operand field

The operand field of this statement is ignored by the
assembler. A message with a priority of CAUTION is issued
if the field is not empty and all of the characters in the
field are skipped until a blank character is encountered.
The first nonblank character following the blank character
is assumed to be the beginning of the comment field.

5.1 PROGRAM CONTROL

The pseudo instructions described in this subsection define the limits of
a program module.

• IDENT Marks the beginning of a program module

• END Marks the end of a program module

• COMMENT Enters comment, generally a copyright, into the generated
binary load module.

5.1.1 IDENT - IDENTIFY PROGRAM MODULE

The IDENT pseudo instruction identifies a program module and marks its
beginning. The name of the module appears in the heading of the listing
produced by CAL (if the title pseudo has not been used) and in the
generated binary load module.

The IDENT pseudo must be specified in the global part of a CAL program.
If the IDENT pseudo instruction is found within a definition, it is
defined and is not recognized as a pseudo instruction. If the IDENT
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

Format:

I Location I Result I Operand

I I I
lignored IIDENT I name
lignored lident I name

name Name of the program module. name must meet the
requirements for identifiers as described in the BNF. For
a description of names, see subsection 4.2, Names.

SR-2003 5-3

Example:

I Location I Result I Operand I Comment
11 110 120 135

I I I
I I IDENT I EXAMPLE

5.1.2 END - END PROGRAM MODULE

The END pseudo instruction terminates a program segment (module initiated
with an IDENT pseudo) under the following conditions:

• If the assembler is not in definition mode

• If the assembler is not in skipping mode

• If the END pseudo does not occur within an expansion

If the END pseudo is found within a definition, a skip sequence, or an
expansion, a message is issued indicating that the pseudo is not allowed
within these modes and the statement is treated as follows:

• Defined if in definition mode

• Skipped if in skipping mode

• Do-nothing instruction if in an expansion

The END pseudo instruction can be specified from within a program module
only. If the END pseudo instruction validly terminates a program module,
it causes the assembler to take the following actions:

• Generate a cross reference for symbols if the cross reference list
option is enabled, and the listing is enabled

• Clear and reset the format option

• Clear and reset the edit option

• Clear and reset the message priority

• Clear and reset all list control options

• Clear and reset the default numeric base

• Discard all qualified, redefinable, nonglobal, and ~~ symbols

• Discard all qualifiers

SR-2003 5-4

• Discard all redefinable and nonglobal micros

• Discard all local macros, opdefs, and local pseudos (defined with
an OPSYN pseudo)

• Discard all sections

Format:

I Locationl Result

I I
lignored lEND
lignored lend

I Operand

I
I ignored
I ignored

5.1.3 COMMENT - ENTER COMMENT INTO GENERATED BINARY LOAD MODULE

The COMMENTt pseudo instruction defines a character string of up to 256
characters to be entered as an informational comment in the generated
binary load module.

If the operand field is empty, the comment field is cleared and no
comment is generated. If a comment is specified more than once, the last
specification is used. If a comment is specified more than once and the
current comment is different from the previous comment, a message with a
priority of caution is issued.

If a subprogram contains more than one COMMENT pseudo, the character
string from the last COMMENT pseudo is inserted into the binary load
module.

The COMMENT pseudo instruction must be specified from within a program
module. If the COMMENT pseudo instruction is found within a definition,
it is defined and is not recognized as a pseudo instruction. If the
COMMENT pseudo instruction is found within a skipping sequence, it is
skipped and is not recognized as a pseudo instruction.

Format:

ILocationlResult !Operand

I I I
lignored ICOMMENT I [del-char[string-oE-ASCII] del-char]
lignored Icomment I [del-char[string-oE-ASCII] del-char]

t CRAY-1 and CRAY X-MP Computer Systems only

SR-2003 5-5

string-of-ASCII
An optional ASCII character string of any length.

del-char Delimiter character; must be a single matching character
on both ends of the ASCII character string. A character
string can be delimited by a character other than an
apostrophe. Any ASCII character other than a space can be
used. Two consecutive occurrences of the delimiting
character indicate a single such character is to be included
in the character string.

Example:

ILocationlResult
11 110

I I
I I IDENT
I I COMMENT
I I COMMENT
I I COMMENT
I lEND

5.2 LOADER LINKAGE

I Operand I Comment
120 135

I I
I CAL I
I 'COPYRIGHT CRAY RESEARCH, INC. 1985'
I-CRAY X-MP Computer System­
I@ABCDEF@@FEDCBA@

I I

The pseudo instructions described in this subsection provide for loading
multiple object program modules, linking them into a single executable
program (ENTRY and EXT), and specifying the main program entry (START).

• ENTRY Specifies symbols, defined as addresses or values, so they
can be used by other program modules linked by a loader

• EXT Specifies linkage to addresses or values defined as entry
symbols in .other program modules

• START Specifies symbolic address where execution begins

5.2.1 ENTRY - SPECIFY ENTRY SYMBOLS

The ENTRY pseudo instruction specifies symbolic addresses or values that
can be referred to by other program modules linked by the loader. Each
entry symbol must be an absolute, immobile, or relocatable symbol defined
within the program module.

SR-2003 5-6

The ENTRY pseudo instruction is restricted to sections that allow
instructions, data, or instructions and data. If the ENTRY pseudo
instruction is found within a definition, it is defined and is not
recognized as a pseudo instruction. If the ENTRY pseudo instruction is
found within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

Format:

ILocationlResult 1 Operand

I I I
lignored IENTRY I [symbol] {", II [symbol]}
lignored lentry I [symbol] {", "[symbol]}

symbol Name of zero, one, or more symbols; each of the names must
be defined as an unqualified symbol within the same program
module. The corresponding symbol must not be redefinable,
external, or relocatable relative to either a stack or a
task common section.

symbol must meet the requirements for symbols as
described in the BNF. For a description of symbols, see
subsection 4.3.

Example:

ILocationlResult
11 /10

I I
I I ENTRY
I I .
I I .
I 1 •
1 EPTNME 1=
ITREG 1 =

I Operand
120

I
1 EPTNME,TREG

I
1

I
1*
10'17

5.2.2 EXT - SPECIFY EXTERNAL SYMBOLS

I Comment
/35

The EXT pseudo instruction specifies linkage to symbols that are defined
as entry symbols in other program modules. They can be referred to from
within the program module but must not be defined as unqualified symbols
elsewhere within the program module. Symbols specified on the EXT
instruction are defined as unqualified symbols having relative attributes
of external and the specified address attribute.

SR-2003 5-7

The EXT pseudo instruction can be specified anywhere within a program
module. If the EXT pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the EXT
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

Format:

I LocationlResult !Operand

I I I
lignored IEXT
lignored lext

I [symbol{tt:"[attribute]}]{tt,tt[symbol{tt:"[attribute]}]]
I [symbol{":"[attribute]}]{",tt[symbol{":"[attribute]}]]

symbol Name of zero, one, or more external symbols; each must be
an unqualified symbol having a relative attribute of
external and the corresponding address attribute.

symbol must meet the requirements for symbols as
described in the BNF. For a description of symbols, see
subsection 4.3.

attribute Specify one of the following attribute types:
address-attribute or linkage-attribute

SR-2003

address-attribute is the address attribute to be
assigned to the external symbol; can be one of the
following:

V or v
P or p
W or w

Value (default)
Parcel
Word

linkage-attribute is the linkage attribute to be
assigned to the external symbol. Linkage attributes can be
specified in uppercase, lowercase, or mixed case and can be
one of the following:

HARD (default)
SOFT

If the linkage-attribute is not specified on the EXT
pseudo, the default is HARD. All hard external references
are resolved at load time.

A soft reference for a particular external name is resolved
at load time if and only if at least one other module has
referenced that same external name as a hard reference.

5-8

Example:

A user conditionally references a soft external name at
execution time. If a soft external name has not been
included at load time and is referenced at execution time,
an appropriate message is issued.

If the operating system for which the assembler is
generating code does not support soft externals, a caution
level message is issued and soft externals are treated as
hard externals.

NOTE

SOFT saves memory and time by excluding
software packages, such as graphic routines,
debugging routines, and so on, that may be
available on your system but are not
required by your program. HARD is, however,
recommended for most users.

Location Result Operand Comment
1 10 20

VALUE

SR-2003

IDENT A

ENTRY

=

END

VALUE
2.0

IDENT B
EXT
CON

END

VALUE
VALUE

5-9

35

; The 64-bit external value 2.0
; is stored here by the loader.

5.2.3 START - SPECIFY PROGRAM ENTRY

The START pseudo instruction specifies the main program entry. The
program uses the START pseudo to specify the symbolic address where
execution begins following the loading of the program. The named symbol
can optionally be an entry symbol specified in an ENTRY pseudo
instruction.

The START pseudo instruction must be specified from within
module. If the START pseudo instruction is found within a
is defined and is not recognized as a pseudo instruction.
pseudo instruction is found within a skipping sequence, it
is not recognized as a pseudo instruction.

Format:

I LocationlResult I Operand

I I I
lignored ISTART I symbol
lignored Istart I symbol

a program
definition, it
If the START
is skipped and

symbol Name of a symbol; must be defined as an unqualified symbol
within the same program module. symbol must not be
redefinable, must have a relative attribute of relocatable,
and cannot be relocatable relative to any section other
than a section that allows instructions or a section that
allows instructions and data. The START pseudo cannot be
specified in a section with a type of data only.

symbol must meet the requirements for symbols as
described in the BNF. For a description of symbols, see
subsection 4.3.

Example:

I Locationl Result
11 110

I I
I IIDENT
, 'START
'HERE ,=
I I . , , .
, I •
, lEND

SR-2003

Operand
20

EXAMPLE
HERE
",

Comment
35

5-10

5.3 MODE CONTROL

Mode control pseudo instructions define the characteristics of an
assembly. The BASE pseudo determines whether notation for numeric data
is assumed to be octal or decimal. The QUAL pseudo instruction permits
symbols to be defined as qualified or unqualified. The EDIT pseudo
instruction contro"ls editing of assembler statements. The FORMAT pseudo
instruction controls the format that is used for interpreting assembly
source statements.

• BASE Specifies data as being octal, decimal, or a mixture of both

• QUAL Designates a sequence of code where symbols may be defined
with a qualifier, such as a common routine with its own
labels

• EDIT Turns editing on or off

• FORMAT Changes the format to old or new

5.3.1 BASE - DECLARE BASE FOR NUMERIC DATA

The BASE pseudo instruction allows specification of the base of numeric
data as being octal, decimal, or mixed when the base is not explicitly
specified by an 0', D' or H' prefix. The default is decimal.

The BASE pseudo instruction can be specified anywhere in a program
segment. If the BASE pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the BASE
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

Format:

ILocationlResult

1 1
lignored IBASE
lignored IBASE

1 I
lignored Ibase
lignored Ibase

SR-2003

I Operand

1
1 option
1*
I
I option
1*

5-11

option

*

Example:

Numeric base used for the integer. option is a required
single character as follows:

a or 0 Octal
D or d Decimal (default mode)
M or m Mixed; numeric data is assumed to be octal,

except for numeric data used for the following,
which is assumed to be decimal:

• Statement counts in DUP and conditional
statements

• Line count in the SPACE pseudo instruction

• Bit position or count in the BITW, BITP, or
VWD pseudo instructions

• Character counts as in CMICRO, MICRO,
OCTMIC, and DECMIC pseudo instructions

• Character count in data items (see data in
section 4, Cray Assembly Language)

Reverts to the prefix that was in effect prior to the
specification of the current prefix within the current
program segment. Each occurrence of a BASE pseudo
instruction other than BASE * can modify the current
prefix. Each BASE * releases the most current prefix and
reactivates the prefix that preceded the current prefix.
If all BASE pseudos specified have been released, a message
with a priority of CAUTION is issued, and the default mode
(decimal) is used.

LocationlResult Operand Comment
1 110

SR-2003

I
I BASE

I
I WID
I .
I ·
I ·
I BASE

I
I WID
I .
I .
I ·

20

o

50/12

D

49/19

35

5-12

Change base from default to
octal
Field size and constant
value both octal

Change base from octal to
decimal
Field size and constant
value both decimal

Example (continued) :

Location Result °Eerand Comment
1 10 20 35

BASE M ; Change from decimal to mixed
; base

VWD 39/12 ; Field size decimal; constant
; value octal.

BASE * Resume decimal base
BASE * . Resume octal base ,
BASE * ; Stack empty; resume decimal

base.

5.3.2 QUAL - QUALIFY SYMBOLS

A QUAL pseudo instruction begins or ends a code sequence in which all
symbols defined either are qualified by a qualifier specified by the QUAL
or are unqualified. Until the first use of a QUAL pseudo instruction,
symbols are defined as unqualified for each program segment. Global
symbols cannot be qualified. Thus, QUAL pseudo instructions must not
occur before an IDENT pseudo instruction.

A qualifier applies to symbols only. Names used for sections,
conditional sequences, duplicated sequences, macros, micros, externals,
formal parameters, and so on, are not affected.

The QUAL pseudo instruction must be specified from within a program
module. If the QUAL pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the QUAL
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

At the end of each program segment all qualified symbols are discarded.

Format:

1 LocationlResult
1 ,

lignored 'QUAL
lignored IQUAL
1 1
lignored Iqual
lignored Iqual

SR-2003

I Operand ,
, [name]
1* ,
1 [symbol]
1*

5-13

name

SR-2003

Optional name qualifier. Indicates whether symbols are to
be qualified or unqualified and, if qualified, indicates
the qualifier to be used. name must meet the
requirements for names as described in the BNF. For a
description of names and qualifiers, see section 4, Cray
Assembly Language.

name causes all symbols defined until the next QUAL
pseudo instruction to be qualified. A qualified symbol can
be referenced with or without the qualifier that is
currently active. If the symbol is referenced while some
other qualifier is active, the reference must be in the
following form:

/qualifier/symbol

When a symbol is referenced without a qualifier, CAL
attempts to find it in the currently active qualifier.
If the qualified symbol is not defined within the current
qualifier, CAL attempts to find it in the list of
unqualified symbols. The symbol is undefined if both of
these searches fail.

An unqualified symbol can explicitly be referenced using
the following form:

//symbol

If the operand field of the QUAL is empty, symbols are
unqualified until the next occurrence of a QUAL pseudo
instruction. An unqualified symbol can be referenced
without qualification from any place in the program module,
or in the case of global symbols, from any program segment
assembled after the symbol definition.

An * resumes use of the qualifier in effect before the most
recent qualification within the current program segment.
Each occurrence of a QUAL other than a QUAL * causes the
initiation of a new qualifier. Each QUAL * removes the
current qualifier and causes the most recent prior
qualification to be activated. If the QUAL * statement is
encountered and all specified qualifiers have been
released, a message with a priority of CAUTION is issued
and succeeding symbols are defined as being unqualified.

5-14

Example:

Location Result
1 10

ABC =
QUAL

ABC =
J

XYZ S1

QUAL
ABC

J

QUAL

QUAL

A IFA
B IFA

C IFA

O]2erand
20

1
QNAME1
2
XYZ
A2

QNAME2
3
IQNAME1/XYZ

*

*
DEF,ABC
DEF,/QNAME1/ABC

DEF,/QNAME2/ABC

Comment
35

. ,

Assembler default for symbols
is unqualified.

ABC is unqualified.
Symbol qualifier QNAME1.
ABC is qualified by QNAME1.

XYZ is qualified by QNAME1

Symbol qualifier QNAME2.

Resume the use of symbols
qualified with qualifier
QNAME1.

Resume the use of unqualified
symbols.
Test whether ABC is defined
Test whether ABC is defined
within qualifier QNAME1.
Test for IQNAME2/ABC being
defined within qualifier
QNAME2

5.3.3 EDIT - CHANGE STATEMENT EDITING STATUS

The EDIT pseudo allows you to turn editing off and on within a program
segment. Appending (A - new format) and continuation (, - old format)
are not effected by the EDIT pseudo. The current editing status is reset
at the beginning of each segment to the editing option specified on the
CAL invocation statement. See section 3, The CAL Program, for a
description of statement editing.

SR-2003 5-15

The EDIT pseudo can be specified anywhere within a program segment. If
the EDIT pseudo instruction is found within a definition, it is defined
and is not recognized as a pseudo instruction. If the EDIT pseudo
instruction is found within a skipping sequence, it is skipped and is not
recognized as a pseudo instruction.

Format:

ILocation!Result !Operand

I I I
lignored IEDIT
lignored IEDIT

1 [option]
1*

I I I
lignored ledit I [option]
lignored ledit 1*

option Turns editing on and off. option can be specified in
uppercase, lowercase, or mixed case and can be one of the
following:

ON Editing is enabled.

OFF Editing is disabled.

No entry Editing is enabled.

* An * resumes use of the edit option in effect before the
most recent edit option within the current program
segment. Each occurrence of an EDIT other than an EDIT *
causes the initiation of a new edit option. Each EDIT *
removes the current edit option and reactivates the edit
option that preceded the current edit option. If the
EDIT * statement is encountered and all specified edit
options have been released, a message with a priority of
CAUTION is issued and the default, ON, is used.

5.3.4 FORMAT - CHANGE STATEMENT FORMAT

CAL Version 2 supports both the CAL Version 1 statement format and a new
statement format. The FORMAT pseudo allows you to switch between
statement formats within a program segment. The current statement format
is reset at the beginning of each section to the format option specified
on the CAL invocation statement. For a description of the recommended
formatting conventions for the new format, see section 3, The CAL Program.

SR-2003 5-16

The FORMAT pseudo can be specified anywhere within a program segment. If
the FORMAT pseudo instruction is found within a definition, it is defined
and is not recognized as a pseudo instruction. If the FORMAT pseudo
instruction is found within a skipping sequence, it is skipped and is not
recognized as a pseudo instruction.

Format:

ILocation!Result !Operand

I I 1
lignored IFORMAT
lignored IFORMAT

1 [option]
1*

I I 1
lignored Iformat 1 [option]
lignored Iformat 1*

option Specifies old or new format. option can be specified in
uppercase, lowercase, or mixed case and can be one of the
following:

OLD Old format

NEW New format

No entry Statement format reverts to the format
specified on the CAL invocation statement. See
section 2, Operating Systems, for a description
of the options available with the CAL
invocation statement.

* An * resumes use of the format option in effect before the
most recent format option within the current program
segment. Each occurrence of a FORMAT other than a FORMAT *
causes the initiation of a new format option. Each FORMAT
* removes the current format option and reactivates the
format that preceded the current format. If the FORMAT *
statement is encountered and all specified format options
have been released, a message with a priority of CAUTION is
issued and the default is used.

5.4 SECTION CONTROL

Section control pseudo instructions control the use of sections and
counters in a CAL program.

SR-2003 5-17

• SECTION Defines specific program sections and replaces the BLOCK
and COMMON pseudos. SECTION is recommended over the
BLOCK and COMMON pseudo instructions because it has all
of the capablilities of BLOCK and COMMON plus many other
capabilities not available to BLOCK and COMMON.

• BLOCKt Defines local sections

• COMMONt Defines common sections that can be referenced by
another program module

• STACK Increments the size of the stack

• ORG Resets location and orgin counters

• LOC Resets location counter

• BSS Reserves memory

• BITW Sets the current bit position relative to the current

• BITP Sets the current bit position relative to the current
parcel

• ALIGNt Aligns code on an instruction buffer boundary

5.4.1 SECTION - SECTION ASSIGNMENT

word

The SECTION pseudo instruction establishes or resumes a section of code.
The section may be common or local, depending on the options found in the
operand field. Each section has its own location, origin, and bit
position counters.

The SECTION pseudo instruction must be specified from within a program
module. If the SECTION pseudo instruction is found within a definition,
it is defined and is not recognized as a pseudo instruction. If the
SECTION pseudo instruction is found within a skipping sequence, it is
skipped and is not recognized as a pseudo instruction.

t Available on the CRAY X-MP and CRAY-1 Computer Systems only

SR-2003 5-18

Format:

I Location! Result !Operand

I I 1
I [name] I SECTION I [type] [tI,"[location]]
I [name] I SECTION
I [name] I SECTION

1 [location] [tI,"[type]]
1*

I I 1
I [name] I section 1 [type] [1t,It[location]]
1 [name] I section
I [name] 1 section

1 [location] (tI,lt[type]]
1*

name

type

SR-2003

Optional name of the section. name must meet the
requirements for identifiers as described in the BNF. For
a description of names, see subsection 4.2.

Type of section; can be specified in upper, lower, or mixed
case. type can be one of the following:

MIXED - Defines a section that permits both instructions
and data. MIXED is the default type for the main section
initiated by the IDENT pseudo. If type is not specified,
MIXED is the default. A MIXED section is treated as a
local section by the loader. For a description of local
sections, see subsection 3.6.1.

CODE - Restricts a section to instructions only; data is
not permitted. A CODE section is treated as a local
section by the loader. For a description of local
sections, see subsection 3.6.1.

DATA - Restricts a section to to data only (CON, DATA,
BSSZ, and so on); instructions are not permitted. The DATA
section is treated as a local section by the loader. For a
description of local sections, see subsection 3.6.1.

STACK - Sets up a stack frame (designated memory area).
Neither data nor instructions are allowed. All symbols
that are defined using the location or origin counter and
are relative to a section that has a type of STACK are
assigned a relative attribute of immobile. These symbols
may be used as offsets into the STACK section itself.
These sections are treated like other section types except
relocation does not occur after assembly. Since relocation
does not occur, sections with a type of stack are not
passed to the loader.

5-19

SR-2003

Sections with a type of STACK conveniently indicate that
symbols are relative to an execution-time stack frame and
that their values correspond to an absolute location within
the stack frame relative to the base of the stack frame.
Symbols with stack attributes are indicated as such in the
debug tables produced by CAL. For a description of local
sections, see subsection 3.6.1.

NOTE

Accessing data from a stack section is not as
straight forward as accessing data directly
from memory. For more information about
stacks, see the Macros and Opdefs section of
the CRAY-2 UNICOS Libraries, Macros, and
Opdefs Reference Manual, publication SR-2013,
or the CRAY X-MP and CRAY-1 Computer Systems
Macros and Opdefs Reference Manual, CRI
publication SR-0012.

COMMON - Defines a common section that can be referenced by
another program module. Instructions are not allowed.

Data cannot be defined in a COMMON section without a name
(no name in location field); only storage reservation can
be defined in an unnamed COMMON section. The location
field that names a COMMON section cannot match the location
field name of a previously defined section with a type of
COMMON, DYNAMIC, or TASKCOM. If duplicate location field
names are specified, a message with a priority of error is
issued.

For a description of unnamed (blank) COMMON, see
subsection 3.6.2, Common Sections.

DYNAMIC - Allocates an expandable common section at load
time. DYNAMIC is a common section. Neither instructions
nor data are permitted within a DYNAMIC section; only
storage reservation can be defined in an unnamed DYNAMIC
section. The location field that names a DYNAMIC section
cannot match the location field name of a previously
defined section with a type of COMMON, DYNAMIC, or
TASKCOM. If duplicate location field names are specified,
a message with a priority of error is issued.

For a description of blank DYNAMIC, see subsection 3.6.2,
Common Sections.

5-20

TASKCOMt - Defines a task common section. Neither
instructions nor data are allowed at assembly time. At
execution time, TASKCOM is set up and can be referenced by
all subroutines local to a task. Data can also be inserted
at execution time into a TASKCOM section by any subroutine
that is executed within a single task.

When a section is defined with a type of TASKCOM, CAL
creates a symbol that is assigned the name in the location
field of the SECTION pseudo defining the section. This
symbol is not redefinable, has a value of zero, an address
attribute of word, and a relative attribute that is
relocatable relative to the section. This symbol is
relocated by the loader and is used as an offset into an
execution time task common table. The word at which it
points within this table will contain the address of the
base of the task common section in memory.

All symbols that are defined using the location or or1g1n
counter within a task common section are assigned a
relative attribute of immobile. These symbols are treated
like other symbols except relocation does not occur after
assembly. These symbols may be used as an offset into the
task common section itself.

Sections with a type of TASKCOM indicate that their symbols
are relative to an execution-time task common section, and
their values correspond to an absolute location within the
task common section relative to the beginning of the task
common section. These values are indicated as such in the
debug tables produced by CAL. For a description of local
sections, see subsection 3.6.1.

TASKCOM must always be named. The location field that
names a TASKCOM section cannot match the location field
name of a previously defined section with a type of COMMON,
DYNAMIC, or TASKCOM. If duplicate location field names are
specified, a message with a priority of error is issued.

NOTE

Accessing data from a task common section is
not as straight forward as accessing data
directly from memory. For more information
about task common, see publication SN-0222,
CRAY X-MP Multitasking Programmer's Manual.

t Available on the CRAY X-MP and CRAY-1 Computer Systems only

SR-2003 5-21

location The kind of memory to which the section is assigned, can
be upper, lower, or mixed case, and must be one of the
following:

*

Central or Common Memory. This is the default.
Extended Memory
Local Memory

The name, type, and location of the section in
control reverts to the name, type, and location of
the section in effect before the current section was
specified within the current program module. Each
occurrence of a SECTION pseudo instruction other than
SECTION * causes a section with the name, type, and
location specified to be allocated. Each SECTION *
releases the currently active section and reactivates the
section that preceded the current section. If all
specified sections have been released when a SECTION * is
encountered, CAL issues a message with a priority of
CAUTION and uses the main section.

When type and/or location are not specified, MIXED and
Common Memory are used by default.

If type, location, or type and location are not specified, the
defaults are MIXED for type and CM for location. Since a module
within a program segment is initialized without a name, with a type of
MIXED, and with a location of CM, a SECTION pseudo instruction used
without the specified location and operand fields forces this initial
section entry to become the current working section.

If the section name and attributes have been previously defined, the
SECTION pseudo makes the previously defined section entry the current
working section. If the section name and attributes have not been
defined, the SECTION pseudo attempts to create a new section with the
name and attributes. The following restrictions apply when a new section
is created:

• A type of TASKCOM must always have a location field name.

• If a section with a type of COMMON, DYNAMIC, or TASKCOM is being
created for the first time, it must never have a name that matches
a section that was created previously with a type of COMMON,
DYNAMIC, or TASKCOM.

t Available on CRAY X-MP Computer Systems only
tt Available on CRAY-2 Computer Systems only

SR-2003 5-22

Example:

Location Result
1 10

dsect

csect

SR-2003

ident

con

s1

section

con
bssz

s2

section

data

Operand
20

exsect

1

1

data

3
2

s3

common

'12345678'

5-23

Comment
35

; The Main section has by
; default a type of mixed and a
; location of Common Memory.

; Data and instructions are
permitted in the main section.
Data and instructions are
permitted in the main section.

This section is defined with a
name of dsect, type of data,
and a location of Common
Memory.

Data is permitted in dsect.
Data is permitted in dsect.

CAL generates a message with
a priority of error, because
instructions are not permitted
in a section with a type of
data.

This section is defined with
a name of csect, a type of
common, and by default a
location of Common Memory.

Data is permitted in a named
common section.

Example (continued):

Location Result Operand
1 10 20

s2 a1

section

section *

section *

con 2

section *

csect section common,cm

SR-2003 5-24

Comment
35

; CAL generates a message with
; a priority of error, because
; instructions are not permitted
; in a common section.

; This section is unnamed and
; is assigned by default a type
; of mixed and a location of
; Common Memory. When a

section is specified without
; a name, a type, and a
; location, the main section
; becomes the current section.

; The current section reverts
; to the previous section in
; the stack buffer; csect.
; The current section reverts
; to the previous section in
; the stack buffer; dsect.

; A memory location with a value
; of 2 is inserted into dsect.

; The current section reverts
; to the main section.

; The current section reverts
; to the section defined
; previously as csect. When a
; section is specified with the
; name, type, and location of a
; previously defined section,
; the previously defined section
; becomes the current section.

Example (continued):

I Location Result
11 10

section

dsect section

sl

con

section

SR-2003

Operand
20

code

s2

2

5-25

Comment
35

The current section reverts
to the main section.

CAL considers this section
specification unique and
different from the previously
defined section named dsect.
Sections with types of mixed,
code, data, and stack are
treated as local sections by
the loader. Local sections
that are specified with the
same name are, therefore,
considered unique if they are
specified with different
types.

Instructions are permitted in
dsect.

CAL generates a message with
a priority of error because
data is not permitted in a
section with a type of code.

The current section reverts
to the main section.

Example (continued):

Location Result Operand
1 10 20

csect section dynamic

end

5.4.2 BLOCKt - LOCAL SECTION ASSIGNMENT

Comment
35

CAL generates a message with
; a priority of error, because

sections with types of common,
; dynamic, and taskcom are not

treated as local sections by
; the loader. Specifying a

section with a previously
; defined name is illegal when

the accompanying type does
not define a local section.

The BLOCK pseudo instruction establishes or resumes use of a local
section of code within a program module. Each section has its own
location, origin, and bit position counters.

This pseudo defines a mixed local section in which both code and/or data
can be stored. The section is assigned to central, or common, memory.
See the SECTION pseudo in this section for more information.

The BLOCK pseudo instruction must be specified from within
module. If the BLOCK pseudo instruction is found within a
is defined and is not recognized as a pseudo instruction.
pseudo instruction is found within a skipping sequence, it
is not recognized as a pseudo instruction.

Format:

ILocationlResult

1 1
1 1 BLOCK
1 1 BLOCK
1 1
1
1

Iblock
Iblock

I Operand

1

1 [name]

1*
1
1 [name]

1*

t Available on CRAY X-MP and CRAY-1 Computer Systems only

SR-2003 5-26

a program
definition, it
If the BLOCK
is skipped and

name

*

Example:

Optional block name; indicates which section is used for
assembling code until the occurrence of the next BLOCK or
COMMON pseudo instruction.

name must meet the requirements for identifiers as
described in the BNF. For a description of names, see
subsection 4.2.

The section in control reverts to the section in effect
before the current section was specified within the current
program module. Each occurrence of a BLOCK pseudo
instruction other than BLOCK * causes a section to be
allocated. Each BLOCK * releases the currently active
section and reactivates the section that preceded the
current section. If all specified sections have been
released when a BLOCK * is encountered, CAL issues a
message with a priority of CAUTION and uses the main
section.

Location Result Operand Comment
1 10 20 35

; Main section in use

BLOCK A ; Use section A

BLOCK ; Use main section

BLOCK * Return to use of section A

5.4.3 COMMONt - COMMON SECTION ASSIGNMENT

The COMMON pseudo instruction establishes a common section or resumes a
previous section. Each section has its own location, origin, and bit
position counters.

t Available on the CRAY X-MP and CRAY-1 Computer Systems only

SR-2003 5-27

This pseudo defines a common section that can be referenced by another
program module. Instructions are not allowed. The section is assigned
to central, or common, memory. See the SECTION pseudo in this section
for more information.

Data cannot be defined in a COMMON section without a name (no name in
location field); only storage reservation can be defined in an unnamed
COMMON section. The location field that names a common section cannot
match the location field name of a previously defined section with a type
of COMMON, DYNAMIC, or TASKCOM. If duplicate location field names are
specified, a message with a priority of error is issued.

For a description of unnamed (blank) COMMON, see section 3, The CAL
Program.

The COMMON pseudo instruction must be specified from within a program
module. If the COMMON pseudo instruction is found within a definition,
it is defined and is not recognized as a pseudo instruction. If the
COMMON pseudo instruction is found within a skipping sequence, it is
skipped and is not recognized as a pseudo instruction.

Format:

ILocationlResult I Operand

1 1 1
1 ignored
1 ignored

1

1 COMMON
1 COMMON

1

1 [name]
1*
1

lignored Icommon
lignored Icommon

I [name]
1*

name

*

SR-2003

Optional name of the common section to be defined. name
must meet the requirements for identifiers as described in
the BNF. For a description of names, see subsection 4.2.

Unlabeled common sections have specific restrictions. For
a detailed description of blank COMMON sections, see
section 3, The CAL Program.

The section in control reverts to the section in effect
before the current section was specified within the current
program module. Each occurrence of a COMMON pseudo
instruction other than COMMON * causes a section to be
allocated. Each COMMON * releases the currently active
section and reactivates the section that preceded the
current section. If all specified sections have been
released when a COMMON * is encountered, CAL issues a
message with a priority of CAUTION and uses the main
section.

5-28

Example:

Location Result Operand
1 10 20

COMMON FIRST

COMMON

COMMON *

COMMON *

Comment
35

; Main section

; Labeled common section FIRST

Blank common

Return to labeled common
; section FIRST

Return to the main section

5.4.4 STACK - INCREMENT THE SIZE OF THE STACK

The STACK pseudo increases the size of the stack. Increments made by the
STACK pseudo are cumulative. Each time the STACK pseudo is used within a
module, the current stack size is incremented by the number of words
specified by the expression in the operand field of the STACK pseudo.

The STACK pseudo is used in conjunction with sections that have a type of
STACK. If either a STACK section or the STACK pseudo is specified within
a module, the loader tables produced by the assembler indicate that the
module uses one or more stacks. The stack size indicated in the loader
tables is the combined sizes of all STACK sections, if any, added to the
total value of all STACK pseudos, if any, specified within a module.

The STACK pseudo instruction must be specified from within a program
module. If the STACK pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the STACK
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

SR-2003 5-29

Format:

I Location!Result !Operand

I I I
lignored ISTACK
lignored Istack

I [expression]
I [expression]

expression
Optional expression. If expression is specified, it must
have an address attribute of word or value, a relative
attribute of absolute, a positive value, and all symbols
within it, if any, must have been previously defined.

If STACK is specified without expression, the stack is
not incremented.

expression must meet the requirements for an expression
as described in the BNF. For a description of expressions,
see subsection 4.1.

5.4.5 ORG - SET * AND *0 COUNTER

The ORG pseudo instruction resets the location and origin counters to the
value specified. ORG resets the location and origin counters to the same
value relative to the same section.

The ORG pseudo instruction forces a word boundary within the current
section and also within the new section specified by the expression.
These force word boundaries occur before the counter is reset. ORG can
change the current working section in use without modifying the section
stack.

The ORG pseudo instruction is restricted to sections that allow
instructions, data, or instructions and data. If the ORG pseudo
instruction is found within a definition, it is defined and is not
recognized as a pseudo instruction. If the ORG pseudo instruction is
found within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

Format:

I Location! Result

I I
lignored IORG
lignored lorg

SR-2003

!Operand

I
I [expression]
I [expression]

5-30

expression

Example:

An optional immobile or relocatable expression with
positive relocation within the section currently in use.
If the expression is blank, the word address of the next
available word in the section is used. A force word
boundary occurs before the expression is evaluated.

The expression must have a value or word-address
attribute. If the expression has a value attribute, it is
assumed to be a word address. If the expression exists,
all symbols, if any, must be previously defined. If the
current base is mixed, octal is used as the base.

The expression cannot have any of the following: an
address attribute of parcel, a relative attribute of
absolute or external, or a negative value.

expression must meet the requirements for an expression
as described in the BNF. For a detailed description of
expressions, see subsection 4.7.

ILocationlResult I Operand I Comment
11 110

I I
I IORG

5.4.6 BSS - BLOCK SAVE

120

I
IW.*+O'200

135

The BSS pseudo instruction reserves a block of memory in a section. A
force word boundary occurs and then the number of words specified by the
operand field expression is reserved. Data is not generated by this
pseudo instruction. The block of memory is reserved by increasing the
location and origin counters.

The BSS pseudo instruction must be specified from within a program
module. If the BSS pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the BSS
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

Format:

ILocationlResult !Operand

I I I
I [symbol]IBSS I [expression]
I [symbol]lbss I [expression]

SR-2003 5-31

symbol

expression

Optional symbol. Assigned the word address of the location
counter after the force word boundary occurs. symbol
must meet the requirement for symbols as described in the
BNF. For a description of symbols, see subsection 4.3,
Symbols.

An optional absolute expression with a word-address or
value attribute and with all symbols, if any, previously
defined. The value of the expression must be positive. A
force word boundary occurs before the expression is
evaluated.

expression must meet the requirements for an expression
as described in the BNF. For a description of expressions,
see subsection 4.7.

The left margin of the listing shows the octal word count.

Example:

I Location Result
11 10

I
I BSS

I
IA CON

I CON

I CON

I BSS

I

5.4.7 LOC - SET * COUNTER

Operand
20

4

'NAME'
1
2
16+A-W.*

Comment
35

; Reserve more words so that the
; total starting at A is 16

The LOC pseudo instruction resets the location counter to the first
parcel of the word address specified. The location counter is used for
assigning address values to location field symbols. Changing the
location counter allows code to be assembled and loaded at one location,
controlled by the origin counter, then moved and executed at another
address controlled by the location counter. The LOC pseudo instruction
forces a word boundary within the current section before the location
counter is modified.

The LOC pseudo instruction is restricted to sections that allow
instructions, data, or instructions and data. If the LOC pseudo
instruction is found within a definition, it is defined and is not
recognized as a pseudo instruction. If the LOC pseudo instruction is
found within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

SR-2003 5-32

Format:

I Locationl Result IOoerand

I I I
lignored ILOC I [expression]
lignored Iloc I [expression]

expression

Example:

Optional expression; represents the new value of the
location counter. If the expression does not exist, the
counter is reset to the absolute value of zero. If the
expression does exist, all symbols, if any, must be
previously defined. If the current base is mixed, octal is
used as the base.

expression cannot have an address attribute of parcel, a
relative attribute of external, or a negative value. A
force word boundary occurs before the expression is
evaluated.

expression must meet the requirements for an expression
as described in the BNF. For a description of expressions,
see subsection 4.7.

LocationlResult I Operand I Comment
1 110 120 135

* In this example, the code is generated and loaded at location
* W.*+10000 and must be moved by the user to absolute location
* 200 before execution.

IORG IW.*+10000
ILOC 1200

LBL IA1 10
I . I
I . I
I . I
IJ ILBL

5.4.8 BITW - SET *W COUNTER

The BITW pseudo instruction resets the current bit position, relative to
the bit 0 of the current word, to the value specified. A value of 64
(decimal) forces the following instruction to be assembled at the
beginning of the next word (force word boundary) if the current bit
position is not bit o.

SR-2003 5-33

If the current bit position is bit 0, the BITW pseudo instruction does
not force a word boundary, and the following instruction is assembled at
bit 0 of the current word.

If the origin and location counters are set lower than their current
value, any code previously generated in the overlapping portion of the
word is ORed with any new code.

The BITW pseudo instruction is restricted to sections that allow data or
instructions and data. If the BITW pseudo instruction is found within a
definition, it is defined and is not recognized as a pseudo instruction.
If the BITW pseudo instruction is found within a skipping sequence, it is
skipped and is not recognized as a pseudo instruction.

Format:

I Locationl Result I Operand

I I I
lignored IBITW
lignored Ibitw

I [expression]
I [expression]

expression
An optional expression. If expression is not specified,
the default is the absolute value of O. If expression is
specified, it must have an address attribute of value, a
relative attribute of absolute, and be a positive value in
the range from 0 to 64 (decimal). All symbols within
expression, if any, must have been previously defined.
If the current base is mixed, decimal is used.

expression must meet the requirements for expressions as
described in the BNF. For a description of expressions,
see subsection 4.7.

The value generated in the code field of the listing is equal to the
value of the expression.

Example:

ILocationlResult
11 110

I I
I IBITW

SR-2003

I Operand
120

I
ID'39

5-34

I Comment
135

5.4.9 BITP - SET *p COUNTER

The BITP pseudo instruction resets the bit position relative to bit 0 of
the current parcel to the value specified. A value of 16 forces a parcel
boundary. If the current bit position is in the middle of a parcel and a
value of 16 is specified, the bit position is set to the beginning of the
next parcel; otherwise, the bit position is not changed. If the origin
and location counters are set lower than its current value, any code
previously generated in the overlapping portion of the word is ORed with
any new code.

The BITP pseudo instruction is restricted to sections that allow
instructions or instructions and data. If the BITP pseudo instruction is
found within a definition, it is defined and is not recognized as a
pseudo instruction. If the BITP pseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a pseudo
instruction.

Format:

ILocationlResult 1 Operand

I 1 1

lignored IBITP 1 [expression]
lignored Ibitp 1 [expression]

expression
An optional expression. If expression is not specified,
the default is the absolute value of O. If expression is
specified, it must have an address attribute of value, a
relative attribute of absolute, and be a positive value in
the range from 0 to 16 (decimal). All symbols within
expression, if any, must have been previously defined.
If the current base is mixed, decimal is used.

expression must meet the requirements for an expression
as described in the BNF. For a description of expressions,
see subsection 4.7.

The value generated in the code field of the listing is equal to the
value of the expression.

Examples:

ILocationlResult
11 110

I 1
1 IBITP

SR-2003

I Operand
120

1

10'14

I Comment
135

5-35

In the following example, 0'14 and 0'12 are OR'ed and the result is 1110:

I Locationl Result IOEerand 1 Comment
11 110 I~O 135
I I I I
I Ivwd Id'16/0 I ; Fill first 16 bits with 0
I Ivwd 16/0'14 I ; Fill next 6 bits with 001100
I Ibitp 10 I ; Reset the pointer to bit 0
I I I I ; of parcel B
I Ivwd 16/0'12 I ; 001100 from the previou vwd
I 1 1 I ; is OR'ed with 001010

Diagrams 5-1 through 5-4 illustrate what happens when CAL assembles the
previous example. t represents the current bit position and ~ indicates
an unitialized bit in diagrams 5-1 through 5-4.

When CAL encounters the vwd d'16/0 instruction, the following is stored
in parcel a:

I I I 1
IOOOOOOOOIOOOOOOOOI~~~~~AAA ~AAAAAAA AAAAAAAA ~~A~AAAAIA~AAAAAA ~AA~AA~A

I 1 1 1
t

Diagram 5-1. BITP Example - Zeroing Parcel A

The following is stored in parcel b when vwd 6/0'14 is assembled:

I I I I IOOOOOOOOlOOOOOOOOl001100AA AAAAAA~A ~~~AAA~~ AAA~A~A~ A~A~AAAAIAAAAAAAA

I 1 1 1
t

Diagram 5-2. BITP Example - Parcel B Set by vwd Instruction

The pointer is reset to bit 0 of parcel b when the bitp 0 instruction is
encountered as follows:

1 1 I 1 100000000l00000000l001100AA AAAAAAAA A~AA~AAA ~AAAAAAA AAAAAAAAIA~AAAAAA

I I 1 1
t

Diagram 5-3. BITP Example - Resetting the Pointer

SR-2003 5-36

The next instruction, vwd 6/0'12, causes 001010 (0'12) to be OR'ed with
the first six bits of parcel b (001100), producing 001110, which is
stored as follows:

t

Diagram 5-4. BITP Example - Result of a Bitp Followed by a vwd

5.4.10 ALIGN - ALIGN ON AN INSTRUCTION BUFFER BOUNDARY

The ALIGN pseudo instruction ensures that the code following the
instruction is aligned on an instruction buffer boundary. An offset is
calculated to determine the next instruction buffer boundary from the
current location counter. The size of the offset (20 a or 40a words)
is determined by the type of machine for which CAL is targeting code (see
the cpu=primary option on the CAL invocation statement).

Machine Type

CRAY-2
CRAY X-MP
CRAY-1

Octal Offset
(words/parcels)

20/100
40/200
20/100

The calculated offset is added to the location and or1g1n counters within
the currently enabled section. Code is not generated within this offset.

The offset is calculated relative to the beginning of a section. Each
section encountering an ALIGN pseudo by means of the location counter is
aligned.

If the location counter is currently positioned at an instruction buffer
boundary, no alignment is performed. A warning message is issued if the
section that is being aligned has a type of STACK or TASK COMMON or has a
location of Local Memory.

The ALIGN pseudo instruction is restricted to sections that have a type
of instruction, data, or instructions and data. If the ALIGN pseudo
instruction is found within a definition, it is defined and is not
recognized as a pseudo instruction. If the ALIGN pseudo instruction is
found within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

SR-2003 5-37

Format:

ILocationlResult I Operand

I I I
I [symbol] I ALIGN I ignored
I [symbol] I align I ignored

symbol An optional symbol; it is assigned the parcel address of
the location counter after alignment.

If the optional symbol is specified in the location field,
it is assigned the value of the location counter and an
attribute of parcel address after alignment on the next
instruction buffer boundary.

symbol must meet the requirements for symbols as
described in the BNF. For a description of symbols, see
subsection 4.3.

The octal value in the output listing immediately to the left of the
location field indicates the number of full parcels skipped.

Example:

ILocationlResult
11 110

IL 1=
I IJ
IA I ALIGN

5.5 MESSAGE CONTROL

I Operand
120

1*
IA

I

I Comment
135

Two pseudo instructions, ERROR and ERRIF, allow you to generate an
assembly error condition. The MLEVEL pseudo allows you to change the
level of messages you receive in your source.

• ERROR Sets an assembly error flag

• ERRIF Sets an assembly error flag according to the conditions
being tested

• MLEVEL Sets the level at which messages are reported in the
source listing

SR-2003 5-38

5.5.1 ERROR - UNCONDITIONAL ERROR GENERATION

The ERROR pseudo instruction unconditionally issues a listing message.
If the priority is not specified, the ERROR pseudo issues an error level
message. If the condition is not satisfied (FALSE), no message is
issued.

The ERROR pseudo instruction can be specified anywhere within a program
segment. If the ERROR pseudo instruction is found within a definition,
it is defined and is not recognized as a pseudo instruction. If the
ERROR pseudo instruction is found within a skipping sequence, it is
skipped and is not recognized as a pseudo instruction.

Format:

I Locationl Result I Operand

I I I
I [prior] IERROR
I [prior] lerror

I ignored
I ignored

prior Optional error priority; can be one of the following
classes:

The following priorities can be entered in mixed case and
are directly mapped into a user-defined message of the
corresponding priority:

COMMENT, NOTE, CAUTION, WARNING, or ERROR

The following priorities are mapped into a message with a
priority of error:

C, D, E, F, I, L, N, 0, P, R, S, T, U, V, or X

The following priorites are mapped into messages with a
priority of warning:

W, WI, W2, W3, W4, W5, W6, W7, W8, W9, Yl, or Y2

Messages C through Y2 provide compatability with CAL
Version 1.

CAL is capable of producing five similar messages with differing
priorities (ERROR, WARNING, CAUTION, NOTE, or COMMENT). The ERROR pseudo
could be used to check for valid input and to assign an appropriate
message. In the following example, a user-defined message priority of
ERROR is specified.

SR-2003 5-39

Example:

I Locationl Result I Operand I Comment
11 110 120 135

I I I
I ERROR I ERROR I; ***ERROR*** Input is invalid

5.5.2 ERRIF - CONDITIONAL ERROR GENERATION

The ERRIF pseudo instruction conditionally issues a listing message. If
the condition is satisfied (true), the appropriate user-defined message
is issued. If the priority is not specified, the ERRIF pseudo issues an
error level message. If the condition is not satisfied (false), no
message is issued. If any errors are encountered while evaluating the
operand field, the resulting condition is handled as if true and the
appropriated user-defined message is issued.

The ERRIF pseudo instruction can be specified anywhere within a program
segment. If the ERRIF pseudo instruction is found within a definition,
it is defined and is not recognized as a pseudo instruction. If the
ERRIF pseudo instruction is found within a skipping sequence, it is
skipped and is not recognized as a pseudo instruction.

Format:

ILocationlResult I Operand

I I I
I [prior] IERRIF I [expression]", "condition", "[expression]
I [prior] lerrif I [expression]", "condition", " [expression]

prior

SR-2003

Optional error priority; can be one of the following
classes:

The following priorities can be entered in mixed case and
are directly mapped into a user-defined message of the
corresponding priority:

COMMENT, NOTE, CAUTION, WARNING, or ERROR

The following priorities are mapped into messages with a
priority of error:

C, D, E, F, I, L, N, 0, P, R, S, T, U, V, or X

The following priorites are mapped into messages with a
priority of warning:

W, W1, W2, W3, W4, W5, W6, W7, W8, W9, Yl, or Y2

5-40

Messages C through Y2 provide compatability with CAL
Version 1.

expression

condition

SR-2003

Zero, one, or two expressions to be compared by
condition. If one or both of the expressions are
missing, a value of absolute zero is substituted for every
expression that is not specified. Symbols found in either
of the expressions can be defined later in a seqrnent.

expression must meet the requirements for expressions as
described in the BNF. For a description of expressions,
see subsection 4.7, Expressions.

condition specifies the relationship between two
expressions that causes the generation of an error. For
LT, LE, GT, and GE, only the values of the expressions are
examined. condition can be entered uppercase, lowercase,
or in mixed case and can be one of the fOllowing:

condition Significance

LT Less than; the value of the first expression
must be less than the value of the second
expression.

LE

GT

GE

EQ

Less than or equal to; the value of the first
expression must be less than or equal to the
value of the second expression.

Greater than; the value of the first
expression must be greater than the value of
the second expression.

Greater than or equal to; the value of the
first expression must be greater than or equal
to the value of the second expression.

Equal; the value of the first expression must
be equal to the value of the second
expression. The expressions must both be one
of the following:

Absolute
Immobile relative to the same section
Relocatable in the program section or the
same common section
External relative to the same external
symbol.

The word-address, parcel-address or value
attributes must be the same.

5-41

condition Significance

NE Not equal. The first expression must not
equal the second expression. The expressions
cannot both be absolute, or both be external
relative to the same external symbol, or both
be relocatable in the program section or the
same common section. The word-address,
parcel-address or value attributes are not the
same.

The address and relative attributes are not compared by the ERRIF pseudo
instruction. A CAUTION level message is issued.

Example:

I Location I Result
11 110

I I
I P I ERRIF

I Operand
120

I
IABC,LT,DEF

5.5.3 MLEVEL - MESSAGE PRIORITY

I Comment
135

The MLEVEL pseudo changes the priority of messages that you receive in
your source listing. If the ML option on the CAL invocation statement
differs from the option on the MLEVEL pseudo, the invocation statement
overrides the pseudo.

If the option accompanying the MLEVEL pseudo is invalid, a diagnostic
message is generated and MLEVEL is set to the default value.

Format:

ILocationlResult I Operand

I I 1
lignored IMLEVEL I [option]
lignored IMLEVEL 1*
1 1 I
lignored Imlevel I [option]
lignored Imlevel 1*

SR-2003 5-42

The MLEVEL pseudo instruction can be specified anywhere within a program
segment. If the MLEVEL pseudo instruction is found within a definition,
it is defined and is not recognized as a pseudo instruction. If the
MLEVEL pseudo instruction is found within a skipping sequence, it is
skipped and is not recognized as a pseudo instruction.

option Optional message priority; can be entered in uppercase,
lowercase, or mixed case and must be one of the following:

ERROR enables ERROR level messages only.

WARNING enables WARNING and ERROR level messages
(default).

CAUTION enables CAUTION, WARNING, and ERROR level
messages.

NOTE enables NOTE, CAUTION, WARNING, and ERROR level
messages.

COMMENT enables COMMENT, NOTE, CAUTION, WARNING, and
ERROR level messages.

No entry; reset to default message level.

* Reactivates the message priority in effect before the
current message priority was specified within the current
program segment. Each occurrence of a MLEVEL pseudo
instruction other than MLEVEL * causes a new message
priority to be initiated. Each MLEVEL * releases the
current message priority and reactivates the message
priority that preceded the current message priority. If
all specified message priorities have been released when an
MLEVEL * is encountered, CAL issues a message with a
priority of caution and uses the default priority (WARNING).

5.5.4 DMSG - ISSUE DIAGNOSTIC MESSAGE

The DMSG pseudo issues a comment level diagnostic message containing the
string found in the operand field, if a string exists. If the string
contains more than 80 characters, a warning message is issued and the
string is truncated.

Comment level diagnostic messages might not be issued by default on the
operating system in which CAL is executing. See section 2, Binary
Definition Files, for more detailed information.

The assembler recognizes up to 80 characters within the string, but the
string may be truncated further when the diagnostic message is issued
(depending on the operating system in which the assembler is executing).

SR-2003 5-43

The DMSG pseudo instruction can be specified anywhere within a program
segment. If the DMSG pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the DMSG
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

Format:

ILocation!Result !Ooerand

I I I
lignored IDMSG
lignored Idmsg

I [del-char[string-of-ASCII] del-char]
I [del-char[string-of-ASCII] del-char]

del-char Delimiter character; must be a single matching character
on both ends of the ASCII character string. A character
string can be delimited by a character other than an
apostrophe. Any ASCII character other than a space can be
used. Two consecutive occurrences of the delimiting
character indicate a single such character is to be
included in the character string.

string-of-ASCII
An ASCII character string to be printed as the main title
on subsequent pages of the listing. A maximum of 80
characters is allowed.

NOTE

Using the DMSG pseudo for assembly timings may be
deceiving. For example, if the DMSG pseudo is
inserted near the beginning of an assembler segment,
more time may elapse (from the time that CAL begins
assembling the segment to the time the message is
issued) than you may have expected.

5.6 LISTING CONTROL

Listing control pseudo instructions allow you to control the content and
format of the listing produced by the assembler. The listing control
pseudo instructions are as follows: LIST, SPACE, EJECT, TITLE, SUBTITLE,
TEXT, and ENDTEXT. These pseudo instructions are not listed unless the
LIST pseudo instruction is specified with the LIS option.

SR-2003 5-44

• LIST Controls listing by specifying particular listing
features to be enabled or disabled

• SPACE Blank lines may be inserted in listing

• EJECT Begin new page

• TITLE Main title printed on each of listing

• SUBTITLE Subtitle printed on each page of listing

• TEXT Declare beginning of global text source

• ENDTEXT Terminate global text source

5.6.1 LIST - LIST CONTROL

The LIST pseudo instruction controls the listing. LIST is a list control
pseudo and is, by default, not listed. To include the LIST pseudo on the
listing, specify the LIS option on this instruction. An END pseudo
instruction causes options to be reset to the default values.

The LIST pseudo instruction can be specified anywhere within a program
segment. If the LIST pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the LIST
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

Format:

1 LocationlResult I Operand

1 1 1

1 [name] 1 LIST 1 [option]{","[option]}
1 [name] 1 LIST 1*
1 1 1
1 [name] Ilist I [option]{","[option]}
1 [name] Ilist 1*

name

SR-2003

Optional list name. name must meet the requirements for
identifiers as described in the BNF. For a description of
names, see subsection 4.2, Names.

If name is present, the instruction is ignored unless a
matching name is specified on the list parameter on the CAL
invocation statement. LIST pseudos with a matching name
are not ignored. LIST pseudos with a blank location field
are always processed.

5-45

[option]{","[option]}

ON
OFF

ED
NED

XRF
NXRF

XNS

NXNS

All of the option names given below can be specified in
some form as CAL invocation statement parameters. The
selection of an option on the CAL invocation statement
overrides the enabling or disabling of the corresponding
feature by a LIST pseudo.

If the no list option is used on the CAL invocation
statement, all LIST pseudos in the program are processed.

Listing option. Specifies that a particular listing
feature be enabled or disabled. There can be zero, one, or
more options specified or an *. The options allowed are
listed below. Defaults are underlined. If no options are
specified, OFF is assumed.

ON Enable source statement listing. Source
statements and code generated are listed.

OFF or blank operand field

ED

Disable source statement listing. Only statements
with errors are listed while this option is
selected. Listing control pseudo instructions are
also listed if LIS option is enabled.

Enable listing of edited statements

NED Disable listing of edited statements

XRF Enable cross-reference. Symbol references are
accumulated and a cross-reference listing is
produced.

NXRF Disable cross-reference. Symbol references are not
accumulated. If this option is selected when the
END pseudo is encountered, no cross-reference is
produced.

XNS Include nonreferenced local symbols in the
reference. Local symbols that were not referenced
in the listing output are included in the
cross-reference listing.

NXNS Exclude nonreferenced local symbols in the
cross-reference. If this option is selected when
the END pseudo is encountered, local symbols that
were not referenced in the listing output are not
included in the cross-reference.

SR-2003 5-46

LIS
NLIS

TXT
NTXT

MAC
NMAC

MBO
NMBO

MIC
NMIC

SR-2003

LIS Enable listing of the pseudo instructions LIST,
SPACE, EJECT, TITLE, SUBTITLE, TEXT, and ENDTEXT.

NLIS Disable listing of these pseudo instructions.

TXT Enable global text source listing. Each
statement following a TEXT pseudo instruction is
listed through the ENDTEXT instruction, if the
listing is otherwise enabled.

NTXT Disable global text source listing. Statements
following a TEXT pseudo instruction through the
following ENDTEXT instruction are not listed.

MAC Enable listing of macro and opdef expansions.
Statements generated by macro and opdef calls are
listed. Conditional statements and skipped
statements generated by macro and opdef calls are
not listed unless the macro conditional list
feature is enabled (MIF).

NMAC Disable listing of macro and opdef expansions.

MBO

Statements generated by macro and opdef calls are
not listed.

Enable listing of generated statements before
editing. Only statements that produce generated
code are listed. The listing of macro expansions
(MAC) or the listing of duplicated statements (DUP)
must also be enabled.

NMBO Disable listing of statements that produce
generated code. Statements generated by a macro or
opdef call (MAC), or by a DUP or ECHO (DUP) pseudo
instruction, are not listed before editing.

Source statements containing a micro reference or a
concatenation character are listed before editing
regardless of whether this option is enabled or disabled.

MIC Enable listing of generated statements before
editing. Statements which are generated by a macro
or opdef call, or by a DUP or ECHO pseudo
instruction, and which contain a micro reference or
concatenation character are listed before and after
editing. The listing of macro expansions or the
listing of duplicated statements must also be
enabled.

5-47

MIF
NMIF

DUP
NDUP

NMIC Disable listing of generated statements before
editing. Statements generated by a macro or opdef
call, or by a DUP or ECHO pseudo instruction, are
not listed before editing.

Conditional statements and skipped statements in source
code are listed regardless of whether this option is
enabled or disabled.

MIF Enable macro conditional listing. Conditional
statements and skipped statements generated by a
macro or opdef call, or by a DUP or ECHO pseudo
instruction, are listed. The listing of macro
expansions or the listing of duplicated statements
must also be enabled.

NMIF Disable macro conditional listing. Conditional
statements and skipped statements generated by a
macro or opdef call, or by a DUP or ECHO pseudo
instruction are not listed.

DUP Enable listing of duplicated statements.
Statements generated by DUP and ECHO expansions are
listed. Conditional statements and skipped
statements generated by DUP and ECHO are not listed
unless the macro conditional list feature is
enabled (MIF).

NDUP Disable listing of duplicated statements.
Statements generated by DUP and ECHO are not listed.

* Reactivates the LIST pseudo in effect before the current
LIST pseudo was specified within the current program
segment. Each occurrence of a LIST pseudo instruction
other than LIST * causes a new listing control to be
initiated. Each LIST * releases the current listing
control and reactivates the listing control that preceded
the current list control. If all specified listing
controls have been released when a LIST * is encountered,
CAL issues a message with a priority of CAUTION and uses
the defaults for listing control.

5.6.2 SPACE - LIST BLANK LINES

The SPACE pseudo instruction inserts the number of blank lines specified
into the output listing. SPACE is a list control pseudo instruction and
is, by default, not listed. To include the SPACE pseudo on the listing,
specify the LIS option on the LIST pseudo instruction.

SR-2003 5-48

The SPACE pseudo instruction can be specified anywhere within a program
segment. If the SPACE pseudo instruction is found within a definition,
it is defined and is not recognized as a pseudo instruction. If the
SPACE pseudo instruction is found within a skipping sequence, it is
skipped and is not recognized as a pseudo instruction.

Format:

I Locationl Result I Operand
I I I
lignored ISPACE
lignored Ispace

I [expression]
I [expression]

expression
An optional absolute expression specifying the number of
blank lines to insert in the listing. expression must
have an address attribute of value, a relative attribute of
absolute, and a value of 0 or greater.

If expression is not specified, the absolute value of one
is used and one blank line is inserted into the output
listing. If the current base is mixed, a default of
decimal is used for the expression.

expression must meet the requirement for an expression as
described in the BNF. For a description of expressions,
see subsection 4.7.

5.6.3 EJECT - BEGIN NEW PAGE

The EJECT pseudo instruction causes a page eject on the output listing.
EJECT is a list control pseudo and is, by default, not listed. To
include the EJECT pseudo on the listing, specify the LIS option on the
LIST pseudo instruction.

The EJECT pseudo instruction can be specified anywhere within a program
segment. If the EJECT pseudo instruction is found within a definition,
it is defined and is not recognized as a pseudo instruction. If the
EJECT pseudo instruction is found within a skipping sequence, it is
skipped and is not recognized as a pseudo instruction.

Format:

ILocationlResult
I I
lignored IEJECT
lignored leject

SR-2003

!Operand
I
I ignored
I ignored

5-49

5.6.4 TITLE - SPECIFY LISTING TITLE

The TITLE pseudo instruction specifies the main title to be printed on
the listing. TITLE is a list control pseudo and is, by default, not
listed. To include the TITLE pseudo on the listing, specify the LIS
option on the LIST pseudo instruction.

The TITLE pseudo instruction can be specified anywhere within a program
segment. If the TITLE pseudo instruction is found within a definition,
it is defined and is not recognized as a pseudo instruction. If the
TITLE pseudo instruction is found within a skipping sequence, it is
skipped and is not recognized as a pseudo instruction.

Format:

I LocationlResult I Operand

I I I
lignored ITITLE I del-char [string-of-ASCII] del-char
lignored Ititle I del-char [string-of-ASCII] del-char

del-char Delimiter character; must be a single matching character
on both ends of the ASCII character string. A character
string can be delimited by a character other than an
apostrophe. Any ASCII character other than a space can be
used. Two consecutive occurrences of the delimiting
character indicate a single such character is to be
included in the character string.

string-of-ASCII
An ASCII character string to be printed as the main title
on subsequent pages of the listing. A maximum of 72
characters is allowed.

5.6.5 SUBTITLE - SPECIFY LISTING SUBTITLE

The SUBTITLE pseudo instruction specifies the subtitle to be printed on
the listing. The instruction also causes a page eject. SUBTITLE is a
list control pseudo and is, by default, not listed. To include the
SUBTITLE pseudo on the listing, specify the LIS option on the LIST pseudo
instruction.

The SUBTITLE pseudo instruction can be specified anywhere within a
program segment. If the SUBTITLE pseudo instruction is found within a
definition, it is defined and is not recognized as a pseudo instruction.
If the SUBTITLE pseudo instruction is found within a skipping sequence,
it is skipped and is not recognized as a pseudo instruction.

SR-2003 5-50

Format:

I Locationl Result I Operand

I I I
lignored ISUBTITLE I del-char[string-of-ASCII] del-char
lignored Isubtitle I del-char[string-of-ASCII] del-char

del-char Delimiter character; must be a single matching character
on both ends of the ASCII character string. A character
string can be delimited by a character other than an
apostrophe. Any ASCII character other than a space can be
used. Two consecutive occurrences of the delimiting
character indicate a single such character is to be
included in the character string.

string-of-ASCII
An ASCII character string to be printed as the main title
on subsequent pages of the listing.

5.6.6 TEXT - DECLARE BEGINNING OF GLOBAL TEXT SOURCE

Source lines following the TEXT pseudo instruction through the next
ENDTEXT pseudo instruction are treated as text source statements.
These statements are listed only when the TXT listing option is enabled.
A symbol defined in text source is treated as a text symbol for
cross-reference purposes. That is, such a symbol is not listed in the
cross-reference unless there is a reference to the symbol from a listed
statement. The text name part of the cross-reference listing contains
the text name.

Symbols defined in text source are global if the text appears in the
global part of a program segment. Symbols in text source are local if
the text appears within a program module.

TEXT is a list control pseudo instruction and is, by default, not
listed. The TEXT pseudo is listed if the listing is on or if the LIS
listing option is enabled regardless of other listing options.

The TEXT and ENDTEXT pseudo instructions have no effect on a binary
definition file.

The TEXT pseudo instruction can be specified anywhere within a program
segment. If the TEXT pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the TEXT
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

SR-2003 5-51

Format:

ILocation!Result !Operand

I I I
I [name] I TEXT I [del-char [string-of-ASCII] del-char]
I [name] Itext I [del-char[string-of-ASCII]del-char]

name Optional name of text. name is used as the name of the
source following until the next ENDTEXT pseudo
instruction. The name found in the location field is the
text name for all defined symbols in the section, and is
listed in the text name part of the cross reference listing.

name must meet the requirements for names as described in
the BNF. For a description of names, see subsection 4.2.

del-char Delimiter character; must be a single matching character
on both ends of the ASCII character string. A character
string can be delimited by a character other than an
apostrophe. Any ASCII character other than a space can be
used. Two consecutive occurrences of the delimiting
character indicate a single such character is to be
included in the character string.

string-of-ASCII
An ASCII character string to be printed as the main title
on subsequent pages of the listing. A maximum of 72
characters is allowed.

5.6.7 ENDTEXT - TERMINATE GLOBAL TEXT SOURCE

The ENDTEXT pseudo instruction terminates text source initiated by a
TEXT instruction. An IDENT or END pseudo instruction also terminates
text source.

The ENDTEXT is a list control pseudo and by default is not listed unless
the TXT option is enabled. If the LIS option is enabled, the ENDTEXT
instruction is listed regardless of other listing options.

The ENDTEXT pseudo instruction can be specified anywhere within a program
segment. If the ENDTEXT pseudo instruction is found within a definition,
it is defined and is not recognized as a pseudo instruction. If the
ENDTEXT pseudo instruction is found within a skipping sequence, it is
skipped and is not recognized as a pseudo instruction.

SR-2003 5-52

Format:

ILocationlResult 1 Operand
I I I
lignored IENDTEXT I ignored
lignored lendtext I ignored

Example (with TXT option off):

Source listing:

Location Result
1 10

IDENT
A =
TXTNAME TEXT
B
C

ENDTEXT
A1
A2
END

Output listing:

ILocationlResult
11 110

I I
I IIDENT
IA 1=
I TXTNAME I TEXT
I IA1
I IA2
I lEND

5.7 SYMBOL DEFINITION

Operand
20

TEXT
2
'An example. '
3
4

A

B

I Operand
120

I
/TEXT
12
I 'An example. '
IA
IB
I

Comment
35

I Comment
135

The pseudo instructions =, SET, and MICSIZE define symbols used in the
program.

SR-2003 5-53

Requirements for symbols are given in subsection 4.3.

• Equates a symbol to a value; not redefinable.

• SET Sets a symbol to a value; redefinable.

• MICSIZE Equates a symbol to a value equal to the number of
characters in micro string; redefinable.

5.1.1 = - EQUATE SYMBOL

The = pseudo instruction defines a symbol with the value and attributes
determined by the expression. The symbol is not redefinable.

The = pseudo instruction can be specified anywhere within a program
segment. If the = pseudo instruction is found within a definition, it is
defined and is not recognized as a pseudo instruction. If the = pseudo
instruction is found within a skipping sequence, it is skipped and is not
recognized as a pseudo instruction.

Format:

ILocationlResult I Operand

I I
I [symbol] 1=

I
lexpression[If,If[attribute]]

symbol

expression

SR-2003

An optional unqualified symbol. The symbol is implicitly
qualified by the current qualifier. The symbol must not be
defined already. The location field can be blank.

symbol must satisfy the requirements for symbols as
described in the BNF. For a description of symbols, see
subsection 4.3.

All symbols found within expression must have been
previously defined.

expression must meet the requirements for an expression
as described in the BNF. For a desciption of expressions,
see subsection 4.7.

5-54

attribute An optional P, W, or V indicating parcel, word, or value
attribute. Attribute, if present, is used instead of the
expression's attribute. An expression with word-address
attribute is multiplied by four if a parcel-address
attribute is specified; an expression with parcel-address
attribute is divided by four if word-address attribute is
specified. A relocatable expression cannot be specified as
having value attribute.

Example:

ILocationlResult
11 110

i I
ISYMB 1=

5.7.2 SET - SET SYMBOL

I Operand
120
I
IA*B+I00/4

I Comment
135

The SET pseudo instruction resembles the = pseudo instruction. However,
a symbol defined by SET is redefinable.

The SET pseudo instruction can be specified anywhere within a program
segment. If the SET pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the SET
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

Format:

ILocationlResult I Operand

I I I
I [symbol] I SET I expression[", "[attribute]]
I [symbol]lset lexpression[","[attribute]]

symbol

SR-2003

Optional unqualified symbol. The symbol is implicitly
qualified by the current qualifier. The symbol must not be
defined already. The location field can be blank.

symbol must meet the requirements for symbols as
described in the BNF. For a description of symbols, see
subsection 4.3.

5-55

expression

attribute

Example:

All symbols found within expression must have been
previously defined.

expression must meet the requirements for an expression as
described in the BNF. For a description of expressions, see
subsection 4.7.

An optional P, W, or V indicating parcel, word, or value
attribute. Attribute, if present, is used instead of the
expression's attribute. An expression with word-address
attribute is multiplied by four if a parcel-address
attribute is specified; an expression with parcel-address
attribute is divided by four if word-address attribute is
specified. An immobile or relocatable expression cannot be
specified as having a value attribute.

ILocationlResult 1 Operand I Comment
11 110
1 1
1 SIZE I::
IPARAM ISET
1 WORD 1 SET
1 PARCEL ISET
1 SIZE I::
1 PARAM I SET

120
1
10'100
10'18
I*W
I*P
ISIZE+1
IPARAM+2

135
I
1

I
I
I
I(Illegal)
1 (Legal)

5.7.3 MICSIZE - SET REDEFINABLE SYMBOL TO MICRO SIZE

The MICSIZE pseudo instruction defines the symbol in the location field
as a symbol with an address attribute of value, a relative attribute of
absolute, and a value equal to the number of characters in the micro
string whose name is in the operand field. Another SET or MICSIZE
instruction with the same symbol redefines the symbol to a new value.

The MICSIZE pseudo instruction can be specified anywhere within a program
segment. If the MICSIZE pseudo instruction is found within a definition,
it is defined and is not recognized as a pseudo instruction. If the
MICSIZE pseudo instruction is found within a skipping sequence, it is
skipped and is not recognized as a pseudo instruction.

SR-2003 5-56

Format:

I Location! Result !Operand

I I I
I [symbol]IMICSIZE I name

I name I [symbollimicsize

symbol

name

Optional unqualified symbol. symbol is implicitly
qualified by the current qualifier. The location field can
be blank.

symbol must meet the requirement for a symbol as
described in the BNF. For a description of symbols, see
subsection 4.3.

The name of a micro string previously defined. name must
meet the requirements for identifiers as described in the
BNF. For a description of names, see subsection 4.2.

5.8 DATA DEFINITION

Data definition instructions are the only pseudo instructions that
generate object binary. The only other instructions that are translated
into object binary are the symbolic machine instructions. An instruction
that generates binary cannot be used with a section that does not allow
instructions, data, or instructions and data.

• CON
• BSSZ
• DATA

• VWD

Places an expression value into one or more words
Generates words that have been initialized to zero
Generates one or more words of numeric or character data
Generates a variable-width field of word-oriented data

5.8.1 CON - GENERATE CONSTANT

The CON pseudo instruction generates one or more full words of binary
data. This pseudo always causes a force word boundary.

The CON pseudo instruction is restricted to sections that have a type of
data or instructions and data. If the CON pseudo instruction is found
within a definition, it is defined and is not recognized as a pseudo
instruction. If the CON pseudo instruction is found within a skipping
sequence, it is skipped and is not recognized as a pseudo instruction.

SR-2003 5-57

Format:

ILocation/Result /Operand

I I I
I [symbol] I CON I [expression] {", "[expression]}
I [symbol] I con I [expression]{","[expression]}

symbol

expression

Example:

An optional symbol; assigned the word address value of the
location counter after the force word boundary occurs.
symbol must meet the requirements for a symbol as
described in the BNF. For a description of symbols, see
subsection 4.3.

An expression whose value is to be inserted into a single
64-bit word. If an expression is null, a single zero word
is generated. A force word boundary occurs before any
operand field expressions are evaluated. A
double-precision, floating-point constant is not allowed.

expression must meet the requirements for an expression
as described in the BNF. For a description of expressions,
see subsection 4.7.

ILocationlResult I Operand I Comment
11 110

I I
IA ICON
I ICON

120

I
10'7777017
IA

5.8.2 BSSZ - GENERATE ZEROED BLOCK

135

I
I
Ii Generates the address of A

The BSSZ pseudo instruction causes a block of words containing zeros to
be generated. When BSSZ is specified, a force word boundary occurs, and
the number of zero words specified by the operand field expression is
generated.

The BSSZ pseudo instruction is restricted to sections that have a type of
data or instructions and data. If the BSSZ pseudo instruction is found
within a definition, it is defined and is not recognized as a pseudo
instruction. If the BSSZ pseudo instruction is found within a skipping
sequence, it is skipped and is not recognized as a pseudo instruction.

SR-2003 5-58

Format:

/LocationlResult !Operand

/ / I
/ [symbol] / BSSZ I [expression]
/[symbol]/bssz I [expression]

.t::l1mhn 7
-~-----

Optional s}~bol; assigned the word~address value of the
location counter after the force word boundary occurs.
symbol must meet the requirements for a symbol as
described in the BNF. For a description of symbols, see
subsection 4.3.

expression
An optional absolute expression with an attribute of word
address or value and with all symbols previously defined.
The expression value must be positive and specifies the
number of 64-bit words containing zeros to be generated. A
blank operand field results in no data generation.

expression must meet the requirement for an expression as
described in the BNF. For a description of expressions,
see subsection 4.3.

The left margin of the listing shows the octal word count of a BSSZ.

5.8.3 DATA - GENERATE DATA WORDS

The DATA pseudo instruction generates zero or more bits of code for each
data item parameter found in the operand field. If a label exists in the
location field, a force word boundary occurs and the symbol is assigned
an address attribute and the value of the current location counter.

If a label is not included in the location field, a force word boundary
does not occur.

The DATA pseudo instruction is restricted to sections that have a type of
data or instructions and data. If the DATA pseudo instruction is found
within a definition, it is defined and is not recognized as a pseudo
instruction. If the DATA pseudo instruction is found within a skipping
sequence, it is skipped and is not recognized as a pseudo instruction.

SR-2003 5-59

The length of the field generated for each data item depends on the type
of constant involved. Data-items produce zero or more bits of absolute
value binary code as follows:

Data-item

Floating

Integer

Character

Description

One or two binary words, depending on whether the data item
is a single- or double-precision data item

One binary word

Zero or more bits of binary code depending on the following:

Character set specified
Number of characters in the string
Character count (optional)
Character suffix (optional)

A word boundary is not forced between data items.

Format:

ILocationlResult I Operand

I I I
I [symbol] I DATA I [data-item]{","[data-item]}
I [symbol] I data I [data-item]{","[data-item]}

symbol Optional symbol assigned the word address of the location
counter after a force word boundary. If no symbol is
present, a force word boundary does not occur.

symbol must meet the requirements for a symbol as
described in the BNF. For a description of symbols, see
subsection 4.3.

data-item A numeric or character data item. data-item must meet
the requirements for a data item as described in the BNF.
For a description of data items, see subsection 4.4, Data.

The DATA pseudo works with the actual number of bits given in the data
item.

SR-2003 5-60

Examples:

1. Unlabeled data items are stored in the next available bit position.

I LocationlResult IO:eerand 1 Comment
11 11Q I~Q 135
I I I I
I I IDENT IEXDAT I
I I DATA I' abed' * I ; Unlabeled data item 1

I I DATA I 'efgh'* I ; Unlabeled data item 2
I lEND I 1

1 1 1 1 1 1 1 I 1
1011000011011000101011000111011001001011001011011001101011001111101010001
I I 1 1 1 I I I 1

t Unlabeled data item number 1 t Unlabeled data item number 2 t

Diagram 5-5. Storage of Unlabeled Data Items

2. Labeled data items cause a force word boundary.

I LocationlResult IOEerand I Comment
11 11Q 120 135
I I I I
I 1 IDENT IEXDAT 1
I 1 DATA I' abcd' * I ; Unlabeled data item 1
I ALPHA 1 DATA I' efgb' * I ; Labeled data item 1
I BETA 1 DATA I'ijkl'* I ; Labeled data item 2
I I DATA I'mnop'* I ; Unlabeled data item 2

SR-2003 5-61

1 1 1 1 1 1 1 1 1
o 1011000011011000101011000111011001001000000001000000001000000001000000001

1 1 1 1 1 1 1 1 1
1 Unlabeled data item number 1 1

1 1 1 1 1 1 1 1 1
1 1011001011011001101011001111011010001000000001000000001000000001000000001

1 1 1 1 1 1 1 1 1
1 Labeled data item number 1 1

1 1 1 1 1 1 1 1 1
2 1011010011011010101011010111011011001011011011011011101011011111011100001

1 I 1 1 1 1 I 1 1
1 Labeled data item number 2 1 Unlabeled data item number 2 1

Diagram 5-6. Storage of Labeled and Unlabeled Data Items

3. Data is stored bit by bit in consecutive words, if no force word
boundary occurs. Note: The following data-item is defined with the
CDC character set (6 bits per character).

1 Locationl Result 1 Operand 1 Comment
11 110 120 135

I 1 1 1
I IIDENT IEXDAT 1
I I DATA IC'ABCDEFGHIJK'*I; Unlabeled data item 1
I lEND I I

I I 1 I 1 I I 1 1
o 1000001001001000001110001001000101001011000011110010001001001001101000101

1 1 I I I I I 1 I
First four bits of K 1 1

I I 1 I 1 I I I 1
1 1110000001000000001000000001000000001000000001000000001000000001000000001

1 I I I I I I 1 1
11 Last 2 bits of K

Diagram 5-7. Storage of CDC Character Data Item

SR-2003 5-62

Example:

Code generated Location Result Operand Comment
1 10 20 35

IDENT EXAMPLE
0000000000000000005252 DATA O'5252,A'ABC'R
0000000000000020241103
0405022064204010020040 DATA 'ABCD'
0425062164404010020040 DATA 'EFGH'
040502206420 DATA 'ABCD'*

10521443510 DATA 'EFGH'*
0000000000000000000000 DATA 'ABCD'12R
040502206420

10521443510 DATA 'EFGHIJ'*
044512
0405022064204010020040 LL2 DATA 'ABCD'

0000000000000000000144 DATA 100
0377435274616704302142 DATA 1.25E-9

0521102225144022251440 DATA 'THIS IS A MESSAGE'*L
0404402324252324640507 I
0424 I

000 VWD 8/0 I
END I

5.8.4 VWD - VARIABLE WORD DEFINITION

The VWD pseudo instruction allows data to be generated in fields from 0
to 64 bits wide. Fields can cross word boundaries. Data begins at the
current bit position unless a symbol is used. If a symbol is used, a
force word boundary occurs and the data begins at the new current bit
position.

Code for each subfield is packed tightly with no unused bits inserted.

The VWD pseudo instruction is restricted to sections that have a type of
instructions, data, or instructions and data. If the VWD pseudo
instruction is found within a definition, it is defined and is not
recognized as a pseudo instruction. If the VWD pseudo instruction is
found within a skipping sequence, it is skipped and is not recognized as
a pseudo instruction.

SR-2003 5-63

Format:

I LocationlResult !Operand

I I I
I [symbol] I VWD I [count"/"[expression]]{","[count"/"[expression]]}
I [symbol] I vwd I [count"/"[expression]]{","[count"/"[expression]]}

symbol

count

expression

Example:

Optional symbol. If present, a force word boundary
occurs. The symbol is defined with the value of the
location counter after the force word boundary and has an
address attribute of word.

symbol must meet the requirements for symbols as
described in the BNF. For a description of symbols, see
subsection 4.3.

Field width, specifying the number of bits in the field. A
numeric constant or symbol, with absolute and value
attributes. count must be positive and less than or
equal to 64.

If symbol is specified for count, it must have been
previously defined. If one or more count/ entries are
invalid, no code is generated for the entire set of
subfields in the operand field. Each subfield is still
evaluated, however.

An expression whose value is to be inserted in the field.
If expression is missing, the absolute value of zero is
used. If count is not equal to zero, the count is the
number of bits reserved to store the following expression,
if any.

expression must meet the requirement for expressions as
described in the BNF. For a description of expressions,
see subsection 4.7.

In the following example, the value of SIGN is 1, the value of FC is 0,
the value of ADD is 653 (octal), and the value of DSN is $IN in ASCII
code.

SR-2003 5-64

ICode generated ILocationlResult I Operand I Comment

1=====================d'~1======~'~1Q~========1~2Q~===========*13~5~========
I I I I I
I I I BASE 1M I
I I PDT 1 BSS I 0 I
11000000000000023440515 1 IVWD 11/SIGN,3/0,60/A'''NAM'''R
110000000653 1 IVWD 11/1,6/FC,24/ADDI
1 41 IREMDR 1= 164-*W I
1 00011044516 1 IVWD IREMDR/DSN I

5.9 CONDITIONAL ASSEMBLY

The instructions described in this section permit optional assembly or
skipping of source code. The conditional pseudo instructions IFA, IFC,
or IFE determine whether the sequence of instructions following the test
is to be skipped or assembled. The end of the conditional sequence is
determined by a count of instructions provided on the test instruction or
by an ENDIF pseudo instruction with a matching location field name.

The ELSE pseudo instruction provides a means of reversing the effect of a
previous IFA, IFE, IFC, SKIP, or ELSE instruction. The SKIP pseudo
instruction unconditionally skips following statements.

When skipping under the control of a statement count, comment statements
(asterisk in column 1) and continued lines are not included in the
statement count.

When skipping is initiated by an IFA, IFE, IFC, SKIP, or ELSE pseudo
instruction, editing is disabled. When the skip sequence has been
completed, the assembler returns to the editing mode in effect before
skipping was initiated.

To specify a conditional assembly, use the following pseudo instructions:

• IFA Tests expression attributes; address and relative
attributes.

• IFE Tests two expressions for some assembly condition; less
than, greater than, equal to.

• IFC Tests two character strings for assembly condition: less
than, greater than, equal to.

• SKIP Unconditionally skip subsequent statements.

• ENDIF Terminates conditional code sequence.

• ELSE Reverses assembly condition.

SR-2003 5-65

5.9.1 IFA - TEST EXPRESSION ATTRIBUTE FOR ASSEMBLY CONDITION

The IFA pseudo instruction tests an attribute of an expression. If the
expression has the specified attribute, assembly continues with the next
statement. If the result of the attribute test is false, subsequent
statements are skipped. If a location field name is present, skipping
stops when an ENDIF or ELSE pseudo instruction with the same name is
encountered. Otherwise, skipping stops when the statement count is
exhausted.

If any errors are encountered while evaluating the attribute-condition,
the resulting condition is handled as if true and the appropriate listing
message is issued.

The IFA pseudo instruction can be specified anywhere within a program
segment. If the IFA pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the IFA
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

Format:

I Location

I
I [name]
I [name]
I [name]
I [name]
I
I [name]
I [name]
I [name]
I [name]

name

"#"

SR-2003

Result

IFA
IFA
IFA
IFA

if a
if a
if a
if a

Operand

["i"]exp-attribute","expression[","[count]]
["i"]redef-attribute","symbol[","[count]]
["i"]reg-attribute","reg-arg-value[","[count]]
["i"]micro-attribute","mname[","[count]]

["i"]exp-attribute","expression[","[count]]
["i"]redef-attribute","symbol[","[count]]
["i"]reg-attribute", "reg-arg-value[", II [count]]
["i"]micro-attribute","mname[","[count]]

Optional name of conditional sequence of code. A
conditional sequence of code controlled by a name is
ended by an ENDIF pseudo with a matching name. The
condition of a conditional sequence of code controlled by a
name can be reversed by an ELSE pseudo with a matching
name. If both name and count are present, name takes
precedence.

name must meet the requirements for names as described in
the BNF. For a description of names, see subsection 4.2.

The optional i negates the condition. If errors occur in
the attribute condition, the condition is evaluated as if
it were true. While the # does not change the condition,
it does specify the "if not" condition.

5-66

exp-attribute","expression
Expression attribute; exp-attribute is a mnemonic
signifying an attribute of an expression. An expression
has only one address attribute (VAL, PA, or WA) and
relative attribute (ABS, IMM, REL, or EXT).

An attribute can also be any of the following mnemonics
preceded by a complement sign (#) indicating that the
second subfield does not satisfy the corresponding
condition. All of the following mnemonics can be specified
in mixed case.

Mnemonic Attribute

VAL Value; requires all symbols, if any, within the
expression to be previously defined.

PA Parcel address; requires all symbols, if any,
within the expression to be previously defined.

WA Word address; requires all symbols, if any,
within the expression to be previously defined.

ABS Absolute; requires all symbols, if any, within
the expression to be previously defined.

IMM Immobile; requires all symbols, if any, within
the expression to be previously defined.

REL Relocatable; requires all symbols, if any,
within the expression to be previously defined.

EXT External; requires all symbols, if any, within
the expression to be previously defined.

CODE Immobile or relocatable; relative to a code
section. CODE requires all symbols, if any,
within the expression to be previously defined.

DATA Immobile or relocatable; relative to a data
section. DATA requires all symbols, if any,
within the expression to be previously defined.

MIXED Immobile or relocatable; relative to a common
section. MIXED requires all symbols, if any,
within the expression to be previously defined.

COM Immobile or relocatable; relative to a common
section. COM requires all symbols, if any,
within the expression to be previously defined.

SR-2003 5-67

SR-2003

Mnemonic Attribute

COMMON Immobile or relocatable; relative to a common
section. COMMON requires all symbols, if any,
within the expression to be previously defined.

TASKCOM Immobile or relocatable; relative to a task
common section. TASKCOM requires all symbols,
if any, within the expression to be previously
defined.

DYNAMIC Immobile or relocatable; relative to a dynamic
section. DYNAMIC requires all symbols, if any,
within the expression to be previously defined.

STACK Immobile or relocatable; relative to a stack
section. STACK requires all symbols, if any,
within the expression to be previously defined.

CM Immobile or relocatable; relative to a section
that is placed into common memory. CM requires
all symbols, if any, within the expression to
be previously defined.

EM Immobile or relocatable; relative to a section
that is placed into extended memory. EM
requires all symbols, if any, within the
expression to be previously defined. If EM is
specified for a Cray Computer System other than
a CRAY X-MP Computer System, the condition
always fails.

LM Immobile or relocatable; relative to a section
that is placed into local memory. LM requires
all symbols, if any, within the expression to
be previously defined. If LM is specified for
Cray Computer System other than a CRAY-2
Computer System, the condition always fails.

DEF True if all symbols in the expression have been
previously defined, otherwise the condition is
false.

expression must meet the requirement for an
expression as described in the BNF. For a
description of expressions, see subsection 4.7.

5-68

redef-attribute","sgmbol
Redefinable attribute; the condition is true if the symbol
following redef-attribute is redefinable; otherwise, the
condition is false.

Mnemonic Attribute

SET The symbol in the second subfield is a
redefinable symbol.

symbol must meet the requirements for a symbol as
described in the BNF. For a description of symbols, see
subsection 4.3.

reg-attribute", "reg-arg-value
Register-attribute. If REG is specified, the condition is
true if the following string is a valid complex-register;
otherwise, the condition is false. Register-attribute is
defined as follows:

Mnemonic Attribute

REG The second subfield contains a valid A, 8, S,
T, or V register designator.

reg-arg-value is any ASCII character up to but not
including a legal terminator (blank character or semicolon;
new format) and element separator character (,).

micro-attribute", "mname

count

SR-2003

If MIC is specified, the condition is true if the following
identifier is an existing micro name; otherwise, the
condition is false. micro-attribute is defined as
follows:

Mnemonic Attribute

MIC The name in the second subfield is a micro name.

mname must meet the requirements for identifiers as
described in the BNF. For a description of names, see
subsection 4.2.

Statement count; must be an absolute expression with
positive value. All symbols in the expression, if any,
must be previously defined. A missing or null count
subfield gives a zero count.

5-69

Example:

I Location
11
I
ISYM1
ISYM2
I
I
I
ISYM2
I
I

count is only used when the location field is not
specified. If name is not present and count is present
in the operand field, skipping stops when count is
exhausted. If neither name nor count is present, no
skipping occurs.

Result
10

SET

=
IFA
81
S2

=
IFA
S3

Operand
20

1
2
SET,SYM1,2
SYM1
SYM2
1
SET,SYM2,1
SYM2

Comment
35

; If the condition is true,
include this statement
include this statement

If the condition is false,
skip this statement

5.9.2 IFC - TEST CHARACTER STRINGS FOR ASSEMBLY CONDITION

The IFC pseudo instruction tests a pair of character strings for a
condition under which code is to be assembled if the relation specified
by condition is satisfied (true). If the relationship is not satisfied
(false), subsequent statements are skipped. If a location field name is
present, Skipping stops when an ENDIF or ELSE pseudo instruction with the
same name is encountered. Otherwise, skipping stops when the statement
count is exhausted.

If any errors are encountered while evaluating the string condition, the
resulting condition is handled as if true and an appropriate listing
message is issued.

The IFC pseudo instruction can be specified anywhere within a program
segment. If the IFC pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the IFC
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

Format:

ILocationlResult I Operand

I I I
I [name] IIFC I [string]", "condition", "[string] [","[count]]
I [name] I ifc I [string]", "condition", " [string] [","[count]]

SR-2003 5-70

name

string

Optional name of a conditional sequence of code. A
conditional sequence of code controlled by a name is
ended by an ENDIF pseudo with a matching name. The
condition of a conditional sequence of code controlled by a
name can be reversed by an ELSE pseudo with a matching
name. If both name and count are present, name takes
precedence.

name must meet the requirements for identifiers as
described in the BNF. For a description of names, see
subsection 4.2.

Character strings to be compared. The first and third
subfields can be null (empty) indicating a null character
string.

The ASCII character code value of each character in the
first string is compared with the value of each character
in the second string. The comparison is from left to right
and continues until an inequality is found or until the
longer string is exhausted. A zero value is substituted
for missing characters in the shorter string. Micros and
formal parameters can be contained in the character
strings.

string is an optional ASCII character string that must be
specified with a single matching character on both ends. A
character string can be delimited by any ASCII character
other than a comma or space. Two consecutive occurrences
of the delimiting character indicate a single such
character is to be included in the character string. For
example,

AIF IFC =O'100=,EQ,*ABCD***

compares the character strings 0'100 and ABCD*.

condition Specifies the relation to be satisfied by the two strings.
condition can be entered in mixed case and must be one of
the following:

condition Description

LT Less than; the value of the first string must
be less than the value of the second string.

LE Less than or equal to; the value of first
string must be less than or equal to the
second string.

SR-2003 5-71

count

Examples:

condition Description

GT Greater than; the value of first string must
be greater than the value of the second string.

GE Greater than or equal to; the value of first
string must be greater than or equal to the
second string.

EQ Equal; the value of first string must be equal
to the value of the second string.

NE Not equal; the value of the first string must
not equal the value of the second string.

Statement count; must be an absolute expression with
positive value. All symbols in the expression, if any,
must be previously defined. A missing or null count
subfield gives a zero count.

count is only used when the location field is not
specified. If name is not present and count is present
in the operand field, skipping stops when count is
exhausted. If neither name nor count is present, no
skipping occurs.

1. In the following example, the first string is delimited by the @, and
the second string is delimited by %. The first string is equal to
the second string.

Location Result
1 10

IDENT
EX1 IFC

Sl
S2

EX1 ELSE

S3
EX1 ENDIF

END

SR-2003

Operand I Comment
20 135

1
TEST 1
@ABC@@D@,EQ,%ABC@D% ; The condition is true;

1
2

3

5-72

I; skipping does not occur.
I; Statement is included.
I; Statement is included.
I; Statements within the ELSE
1 ;
1 ;
1 ;
1 ;

1
1

sequence are included only if
the condition fails
Statement is skipped.
End of skip sequence EX1

2. In the following example, the first string is not equal to the second
string, the two statements following the IFC are skipped.

Location Result
1 10

IDENT
EX1 IFC

S1
S2

EX1 ENDIF
S3

END

Operand I Comment
20 135

I
TEST I
@ABBCD@,EQ,@ABCD@

1
2

3

I ;
I ;
I ;
I ;
I ;
I ;
I ;
I

; The condition is false;
skipping occurs
This statement is skipped
This statement is skipped
End of skip sequence
This statement is included
irregardless of whether the
condition is true or false

5.9.3 IFE - TEST EXPRESSIONS FOR ASSEMBLY CONDITION

The IFE pseudo instruction tests a pair of expressions for a condition.
Code is assembled if the relation (condition) specified by the
operation is satisfied. If the relationship between the expressions is
true, assembly resumes with the next statement. If the relationship
between the expressions is false, subsequent statements are skipped. If
a location field name is present, skipping stops when an ENDIF or ELSE
pseudo instruction with the same name is encountered. Otherwise,
skipping stops when the statement count is exhausted.

If any errors are encountered while evaluating the expression-condition,
the resulting condition is handled as if true and an appropriate listing
message is issued.

If an assembly error is detected, assembly continues with the next
statement.

The IFE pseudo instruction can be specified anywhere within a program
segment. If the IFE pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the IFE
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

Format:

I LocationlResult I Operand

I I I
I [name] lIFE I [expression]", "condition", " [expression] [","[count]]
I [name] life I [expression]", "condition", " [expression] [","[count]]

SR-2003 5-73

name

expression

Optional name of a conditional sequence of code. A
conditional sequenc~ of code controlled by a name is
ended by an ENDIF pseudo with a matching name. The
condition of a conditional sequence of code controlled by a
name can be reversed by an ELSE pseudo with a matching
name. If both name and count are present, name takes
precedence.

name must meet the requirements for identifiers as
described in the BNF. For a description of names,
subsection 4.2.

Expressions to be compared. All symbols in the expression
must be previously defined. If an expression is not
specified, the absolute value of zero is used.

Expressions must meet the requirements for expressions as
described the BNF. For a description of expressions, see
subsection 4.7.

condition Specifies the relation to be satisfied by the two strings.
condition can be entered in mixed case and must be one of
the following:

condition Description

LT Less than; the value of the first expression
must be less than the value of the second
expression; the attributes are not checked.

LE Less than or equal to; the value of first
expression must be less than or equal to the
second expression; the attributes are not
checked.

GT Greater than; the value of first expression
must be greater than the value of the second
expression; the attributes are not checked.

GE Greater than or equal to; the value of first
expression must be greater than or equal to
the second expression; the attributes are not
checked.

SR-2003 5-74

count

Example:

condition Description

EO

NE

Equal; the value of first expression must be
equal to the value of the second expression.
The expressions must both be one of the
following:

Absolute
Immobile relative to the same section
Relocatable reative to the same section
External relative to the same external symbol

The word-address, parcel-address, or value
attributes must be the same.

Not equal; the first expression and the second
expression do not satisfy the conditions
required for EQ described above.

Statement count; must be an absolute expression with
positive value. All symbols in the expression, if any,
must be previously defined. A missing or null count
subfield gives a zero count.

count is only used when the location field is not
specified. If name is not present and count is present
in the operand field, skipping stops when count is
exhausted. If neither name nor count is present, no
skipping occurs.

I LocationlResult I Operand I Comment
11 110

I I
I IIDENT
I SYM1 1=
I SYM2 1=
ISYM3 ISET
ISYM4 ISET

SR-2003

120

I
I TEST
10
1*
11000
1500

135

5-75

Example (continued):

I Location Result
11 10

I
I NOTEQ IFE

I Sl

I S2
I NOTEQ ELSE

I Sl

I S2
I NOTEQ ENDIF

I END

Operand
20

SYMl,EQ,SYM2
SYM1
SYM2

SYM3
SYM4

Comment
35

Condition fails, values are
the same, but the attributes

; are different
The ELSE sequence is assembled
Statement included
Statement included
End of conditional sequence

5.9.4 IFM - TEST MACHINE CHARACTERISTICS

The IFM pseudo instruction tests characteristics of the current target
machine. If the result of the machine condition is true, assembly
continues with the next statement. If the result of the machine
condition is false, subsequent statements are skipped. If a location
field name is present, skipping stops when an ENDIF or ELSE pseudo
instruction with the same name is encountered. Otherwise, skipping stops
when the statement count is exhausted.

If any errors are encountered while evaluating the string condition, the
resulting condition is handled as if true and an appropriate listing
message is issued.

The IFM pseudo instruction can be specified anywhere within a program
segment. If the IFM pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the IFM
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

Format:

ILocationlResult

I I
I [name] IIFM
I [name] IIFM

I I
I [name] I ifm
I [name] I ifm

SR-2003

I Operand

I
Ilogical-name[","[count]]
Inumeric-name","condition","[expression] [","[count]]
I
Ilogical-name[","[count]]
Inumeric-name","condition","[expression] [","[count]]

5-76

name Optional name of conditional sequence of code. A
conditional sequence of code controlled by a name is
ended by an ENDIF pseudo with a matching name. The
condition of a conditional sequence of code controlled by a
name can be reversed by an ELSE pseudo with a matching
name. If both name and count are present, name takes
precedence.

name must meet the requirements for names as described in
the BNF. For a description, see subsection 4.2, Names.

logical-name
Logical name; the mnemonic signifying a logical condition
of the machine for which CAL is currently targeting code.
For a detailed list of the mnemonics, refer to the logical
traits of the CPU option for the appropriate operating
system (section 2, Operating Systems)

numeric-name

condition

SR-2003

Numeric name; a mnemonic signifying a numeric condition of
the machine for which CAL is currently targeting code. For
a detailed list of the mnemonics, refer to the numeric
traits of the CPU option for the appropriate operating
system (section 2, Operating Systems). These mnemonics may
be specified in mixed case.

Specifies the relation to be satisfied between the numeric
name and the expression, if any. condition can be
entered in mixed case and must be one of the following:

condition Description

LT Less than; the value of the numeric name must
be less than the expression.

LE Less than or equal to; the value of the
numeric name must be less than or equal to the
expression.

GT

GE

EQ

NE

Greater than; the value of the numeric name
must be greater than the expression.

Greater than or equal to; the value of the
numeric name must be greater than or equal to
the expression.

Equal; the value of the numeric name must be
equal to the expression.

Not equal; the value of the numeric name must
not be equal to the expression.

5-77

expression

count

Example:

Expression to be compared to the numeric name. All symbols
in the expression must be previously defined and must have
an address attribute of value and a relative attribute of
absolute. If the current base is mixed, a default of
decimal is used. If an expression is not specified, the
absolute value of 0 is used.

Expressions must meet the requirements for expressions as
described in the BNF. For a description of expressions,
see subsection 4.7.

Statement count; must be an absolute expression with
positive value. All symbols in the expression, if any,
must be previously defined. A missing or null count
subfield gives a zero count.

count is only used when the location field is not
specified. If name is not present and count is present
in the operand field, skipping stops when count is
exhausted. If neither name nor count is present, no
skipping occurs.

Location Result Operand Comment
1 10

ex1

ex1
ex2

ex2

ident
ifm

endif
ifm

else

ex2 endif

end

SR-2003

20

test
vpop

numcpus,eq,4

5-78

35

Assuming the condition is
true, skipping does not
occur within the IFM part.

Assuming the condition is
false, skipping occurs.

Toggles the condition so
the else part is not skipped.

5.9.5 SKIP - UNCONDITIONALLY SKIP STATEMENTS

The SKIP pseudo instruction unconditionally skips subsequent statements.
If a location field name is present, skipping stops when an ENDIF or ELSE
with the same name is encountered; otherwise, skipping stops when the
statement count is exhausted.

The SKIP pseudo instruction can be specified anywhere within a program
segment. If the SKIP pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the SKIP
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

Format:

I Locationl Result I Operand
I I I
I [name] ISKIP
I [name] Iskip

I [count]
I [count]

name

count

Example:

Optional name of conditional sequence of code. If both
name and count are present, name takes precedence.
name must meet the requirements for identifiers as
described in the BNF. For a description of names, see
subsection 4.2.

Statement count; must be an absolute expression with
positive value. All symbols in the expression, if any,
must be previously defined. A missing or null count
subfield gives a zero count.

count is only used when the location field is not
specified. If name is not present and count is present
in the operand field, skipping stops when count is
exhausted. If neither name nor count is present, no
skipping occurs.

I Locationl Result I Operand I Comment
11
I
I
I
ISNAME1
I
I
I

SR-2003

110

I
ISKIP
I
ISKIP
I •
I •
I •

120

I
1

1

1

1 •

1 •

1 •

5-79

135
1

I; No skipping occurs
1

I; Statements are skipped until
I; an ENDIF or ELSE with a
I; location field label that
I; matches SNAMEl is found.

Example (continued):

Location Result
1 10

SNAME1 ENDIF

SNAME2 SKIP

SNAME2 ENDIF

SKIP

Operand
20

10

4

Comment
35

Statements are skipped until
an ENDIF or ELSE with a
location field label that
matches SNAME2 is found.

Four statements are skipped.

5.9.6 ENDIF - END CONDITIONAL CODE SEQUENCE

The ENDIF pseudo instruction terminates skipping initiated by an IFA,
IFE, IFC, ELSE, or SKIP pseudo instruction with the same location field
name. Otherwise, ENDIF acts as a do-nothing pseudo instruction. ENDIF
has no effect on skipping, which is controlled by a statement count.

The ENDIF pseudo instruction can be specified anywhere within a program
segment. Skipping is terminated by an ENDIF pseudo instruction with a
matching location field name. If the ENDIF pseudo is found within a
definition, it is defined and is not recognized as a pseudo instruction.

Format:

I Locationl Result

I I
I name
I name

SR-2003

IENDIF
lendif

I Operand

I
I ignored
I ignored

5-80

name Required name of conditional sequence of code. name must
meet the requirements for identifiers as described in the
BNF. For a description of names, see subsection 4.2.

NOTE

If an END pseudo instruction is encountered in a
skipping sequence, an error message is issued and
skipping is continued. An END should not be used
within a skipping sequence.

5.9.7 ELSE - TOGGLE ASSEMBLY CONDITION

The ELSE pseudo instruction terminates skipping initiated by an IFA, IFC,
IFE, ELSE, or SKIP pseudo instruction with the same location field name.
If statements are currently being skipped under control of a statement
count, ELSE has no effect.

The ELSE pseudo instruction can be specified anywhere within a program
segment. If the assembler is not currently skipping statements, ELSE
initiates skipping. Skipping is terminated by an ELSE pseudo instruction
with a matching location field name. If the ELSE pseudo instruction is
found within a definition, it is defined and is not recognized as a
pseudo instruction.

Format:

ILocationlResult I Operand

I I I
I name
I name

name

SR-2003

IELSE I ignored
lelse I ignored

Required name of conditional sequence of code. name must
meet the requirements given for names as described in the
BNF. For a description of names, see subsection 4.2.

5-81

Examples:

I Location
11
I
ISYM
IL
IDEF
IBUF
I
IA
IBTEST
WARNING

Result
10

=
MICRO
=
=
IFA
=
IFA
ERROR

BTEST ELSE

BTEST

A1

IENDIF
I

Operand
20

1
'LESS THAN'
1000
100
#DEF,A,l
10
EXT,SYM

SYM

Comment
35

; Generate warning message if
; SYM is absolute

; Assemble if SYM not absolute

* Assemble BSSZ instruction if W.* is less than BUF, otherwise
* assemble ORG

IFE
BSSZ

*

ERROR

*
x

x
y

*

Z

*

5.10 MICROS

SKIP
ORG
IFC
ERROR

IFC
Sl
S2
ENDIF
IFC

S3
S4
IFC

S5
S6

W.*,LT,BUF,2
BUF-W.*

1
BUF
, "L" , , EO, , 2

, ABCD' , GT, , ABC'
DEF
BUF

, " GT, ,2

DEF
BUF
, , , , , EO, * ' * , 2

5
6

Generate words of zero to
; address BUF
; Skip next statement

; Error message; if micro string
; defined by L is empty
; If ABCD is greater than ABC
; Statement is included
; Statement is included

; If single space is greater
; than null string.
; Statement is included
; Statement is included
; If single apostrophe equals
; single apostrophe

Through the use of micros, a programmer is able to assign a name to a
character string and subsequently refer to the character string through
use of its name. A reference to a micro results in the character string

SR-2003 5-82

being substituted for the name before assembly of the source statement
containing the reference.

• CMICRO

• MICRO

• OCTMIC

• DECMIC

Constant micro; assigns a name to a character string

Redefinable micro; assigns a name to a character string

Converts the octal value of an expression to a character
string, and assigns it a redefinable name.

Converts the decimal value of an expression to a
character string, and assigns it a redefinable micro name.

In addition to the micros previously listed, the CAL assembler provides
the following predefined micros.

$DATE Current date - 'mm/dd/yy'

$JDATE Julian date - 'yyddd'

$TIME Time of day - 'hh:mm:ss'

$MIC Micro character - double quote mark (")

$CNC Concatenation character - underscore ()

$QUAL Name of qualifier in effect; if none, then null string.

$CPU Target machine: 'CRAY I', 'CRAY XMP', or 'CRAY 2'

$CMNT Comment character used with the new format - semicolon (;)

$APP Append character used with the new format _ circumflex (A)

Example:

The following example illustrates the use of a predefined micro, $DATE.

I Locationl Result I Operand I Comment
11 110 120 135
I I I I
I I DATA I 'THE DATE IS II $DATE " ,
I I DATA I 'THE DATE IS 06/23/82't

t Generated by CAL

SR-2003 5-83

Micros can be referenced anywhere in a source statement, except a
comment, by enclosing the micro name in quotation marks. If column 72 of
a line is exceeded as a result of a micro substitution, the assembler
creates additional continuation lines. No replacement takes place if the
micro name is unknown or if one of the micro marks has been omitted.

Example:

A micro named PFX is defined as the character string ID. A reference to
PFX is in the location field of a line:

ILocationlResult
11 110

I I
I "PFX"TAGI SO
I I

I Operand
120
I
IS1
I

I Comment
135

I
I; Left-shifted three spaces
I; when edi ted

However, before the line is interpreted, CAL substitutes the definition
for PFX producing the following line:

ILocationlResult
11 110

I I
I IDTAG SO
I I

I Operand
120

Sl
I

I Comment
135

I
Left-shifted three spaces
I; when edi ted

5.10.1 CMICRO - CONSTANT MICRO DEFINITION

The CMICRO pseudo assigns a name to a character string. Once the name is
defined, it cannot be redefined.

If the CMICRO pseudo instruction is defined within the global definitions
part of a program segment, it can be referenced at any time after its
definition by any of the segments that follow. If the CMICRO pseudo
instruction is defined within a program module, it can be referenced at
any time after its definition within the module. However, a constant
micro defined within a program module is discarded at the end of the
module and cannot be referenced by any segments that follow.

If the CMICRO pseudo instruction is found within a definition, it is
defined and is not recognized as a pseudo instruction. If the CMICRO
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

SR-2003 5-84

Format:

ILocationlResult !Operand

I I I
I name
I name

name

string

ICMICRO I [string[tt,tt[exp] [tt,tt[exp] [tt,tt[case]]]]]
Icmicro I [string[tt,"[exp] [","[exp] [","[case]]]]]

Required micro name. name is assigned to the character
string found in the operand field and has nonredefinable
attributes. If name has been previously defined and the
string represented by the previous definition is not the
same string, an error message is issued and definition
occurs. If the strings match, no error message is issued
and no definition occurs.

name must meet the requirements for identifiers as
described in the BNF. For a description of names, see
subsection 4.2.

Optional character string, which can include previously
defined micros. If string is not specified, an empty
string is used.

A character string can be delimited by any character other
than a space. Two consecutive occurrences of the
delimiting character indicate a single such character. For
example, a micro consisting of the single character * could
be specified as '*' or ****.

exp Optional expressions. The first expression must be an
absolute expression indicating the number of characters in
the micro character string. All symbols, if any, must be
previously defined. If the current base is mixed, decimal
is used for the expression.

SR-2003

The micro character string is terminated by the value of
the first expression or the final apostrophe of the
character string, whichever occurs first. The string is
considered empty if the first expression has a 0 or
negative value. If the first expression is not specified,
the full value of the character string is used. In this
case the string is terminated by the final apostrophe.

The second expression must be an absolute expression
indicating the micro string's starting character. All
symbols, if any, must be previously defined. If the
current base is mixed, decimal is used for the expression.

5-85

case

The starting character of the micro string begins with the
character that is equal to the value of the second
expression, or with the first character in the character
string if the second expression is null or has a value of 1
or less.

The expressions must meet the requirements for expressions
as described in the BNF. For a description of expressions,
see subsection 4.7.

Optional character conversion case. case denotes how
uppercase and lowercase characters are interpreted when
they are read from string. Character conversion is
restricted to the letter characters (A-Z and a-z) specified
in string. case can be specified in uppercase,
lowercase, or mixed case and must be one of the following:

MIXED Default; No uppercase or lowercase conversions are
made; string is interpreted as entered.

UPPER If UPPER is specified, all lowercase letter
characters in string are converted to their
uppercase equivalents.

LOWER If LOWER is specified, all uppercase letter
characters in string are converted to their
lowercase equivalents.

5.10.2 MICRO - MICRO DEFINITION

The MICRO pseudo instruction assigns a name to a character string. The
assigned name can be redefined.

A redefinable micro can be referenced and redefined after its intitial
definition within a program segment. A micro defined with the MICRO
pseudo instruction is discarded at the end of a module and cannot be
referenced by any of the following segments.

The MICRO pseudo instruction can be specified anywhere within a program
segment. If the MICRO pseudo instruction is found within a definition,
it is defined and is not recognized as a pseudo instruction. If the
MICRO pseudo instruction is found within a skipping sequence, it is
skipped and is not recognized as a pseudo instruction.

SR-2003 5-86

Formats:

I Location! Result !Operand

I I I
I name
I name

name

string

I MICRO I [string[", II [exp] [", II [exp] ["," [case]]]]]
Imicro I [string["," [exp] [", II [exp] ["," [case]]]]]

Required micro name. name is assigned to the character
string found in the operand field and has redefinable
attributes. If name has been previously defined, the
previous micro definition is lost.

Optional character string, which can include previously
defined micros. If string is not present, an empty
string is used.

A character string can be delimited by any character other
than a space. Two consecutive occurrences of the
delimiting character indicate a single such character. For
example, a micro consisting of the single character • could
be specified as '.' or .*.*.

exp Optional expressions. The first expression must be an
absolute expression indicating the number of characters in
the micro character string. All symbols, if any, must be
previously defined. If the current base is mixed, decimal
is used for the expression.

SR-2003

The micro character string is terminated by the value of
the first expression or the final apostrophe of the
character string, whichever occurs first. The string is
considered empty if the first expression has a 0 or
negative value. If the first expression is not specified,
the full value of the character string is used. In this
case the string is terminated by the final apostrophe.

The second expression must be an absolute expression
indicating the micro string's starting character. All
symbols, if any, must be previously defined. If the
current base is mixed, decimal is used for the expression.

The starting character of the micro string begins with the
character that is equal to the value of the second
expression, or with the first character in the character
string if the second expression is null or has a value of 1
or less.

The expressions must meet the requirements for expressions
as described in the BNF. For a description of expressions,
see subsection 4.7.

5-87

case

Example:

Optional character conversion case. case denotes how
uppercase and lowercase characters are interpreted when
they are read from string. Character conversion is
restricted to the letter characters (A-Z and a-z) specified
in string. case can be specified in uppercase,
lowercase, or mixed case and must be one of the following:

MIXED Default; No uppercase or lowercase conversions are
made; string is interpreted as entered.

UPPER If UPPER is specified, all lowercase letter
characters in string are converted to their
uppercase equivalents.

LOWER If LOWER is specified, all uppercase letter
characters in string are converted to their
lowercase equivalents.

Location I Result °Eerand I Comment
1 110 20 135

I I
MIC IMICRO 'THIS IS A MICRO STRING'
MIC2 MICRO '''MIC''';1 I
MIC2t MICRO 'THIS IS A MICRO STRING',1
MIC3 MICRO '"MIC2''' I
MIC3t MICRO 'T' I
MIC4 MICRO '''MIC''',lO I ; Call to micro MIC2
MIC4t MICRO 'THIS IS A MICRO STRING',10
MICS MICRO '"MIC4''' I
MICSt MICRO 'THIS IS A

,
I

MIC6 MICRO '''MIC''',5,11 I
MIC6t MICRO 'THIS IS A MICRO STRING',S,11
MIC7 MICRO '"MIC6''' I
MIC7t MICRO 'MICRO' I
MIC8 MICRO '''MIC''',11,S I
MIC8t MICRO '-THIS IS A MICRO STRING',11,S
MIC9 MICRO '"MICa''' I
MIC9t MICRO , IS A MICRO' I

t These lines have been edited by CAL.

SR-2003 5-88

5.10.3 OCTMIC - OCTAL MICROS

The OCTMIC pseudo instruction converts a value of an expression into a
character string that is assigned a redefinable micro name. The
character string that is generated by the pseudo instruction is
represented as an octal number. The final length of the micro string is
inserted into the code field of the listing.

OCTMIC can be specified with zero, one, or two expressions. The value of
the first expression is converted to a micro string with a character
length equal to the second expression. If the second expression is not
specified, the minimum number of characters needed to represent the octal
value of the first expression is used.

If the second expression is specified, the string is equal to the length
specified by the second expression. If the number of characters in the
micro string is less than the value of the second expression, the
character value is right justified with the specified fill characters
(zeros or blanks) preceding the value. If the number of characters in
the string is greater than the value of the second expression, the
beginning characters of the string are truncated and a warning message is
issued.

The OCTMIC pseudo instruction can be specified anywhere within a program
segment. If the OCTMIC pseudo instruction is found within a definition,
it is defined and is not recognized as a pseudo instruction. If the
OCTMIC pseudo instruction is found within a skipping sequence, it is
skipped and is not recognized as a pseudo instruction.

Format:

ILocationlResult I Operand

I I I
I name
I name

name

IOCTMIC
loctmic

I [expressionl][tI,"[expression2[",tI[option]]]]
I [expressionl][","[expression2[","[option]]]]

Micro name. name must meet the requirements for
identifiers as described in the BNF. For a description of
names, see subsection 4.2.

expression!

SR-2003

Optional expression; micro string equal to the value of the
expression. If specified, expression! must have an
address attribute of value and a relative attribute of
absolute with all symbols, if any, previously defined. If
the current base is mixed, a default of octal is used. If
the first expression is not specified the absolute value of
zero is used in the creation of the micro string.

5-89

expression! must meet the requirements for expressions
as described in the BNF. For a description of expressions,
see subsection 4.7.

expression2

option

Example:

Optional expression. expression2 provides a positive
character count less than or equal to decimal 22. If this
parameter is present, leading zeros are zeros or blanks
(depending on option) are supplied, if necessary, to
provide the requested number of characters.

If specified, expression2 must have an address
attribute of value and a relative attriube of absolute with
all symbols, if any, previously defined. If the current
base is mixed, a default of decimal is used. If the
expression2 is not specified, the micro string is
represented in the minimum number of characters needed to
represent the octal value of the first expression.

expression2 must meet the requirements for expressions
as described in the BNF. For a description of expressions,
see subsection 4.7.

If the second expression is present and fill is needed,
option represents the type of fill characters (ZERO for
zeros or BLANK for spaces) to be used; the default is
ZERO. option can be entered in mixed case.

LocationlResult Operand I Comment
1 110 20 135

I
I IDENT
I BASE

ONE IOCTMIC

* I "ONE"
* 01
TWO IOCTMIC

* I "TWO" -
* 023
THREE IOCTMIC

* I "THREE"
* 00256000
FOUR IOCTMIC

* l~FOUR"
* 256000

lEND

SR-2003

EXOCT
o
1,2

5*7+60+700,3

I
I
I; The base is octal.
I ;
I; Returns 1 in two digits

Returns 1 in two digists

I; Returns 1023 in three digits
; Returns 1023 in three digits

256000,10,ZERO I
I; Zero filIon the left
; Zero filIon the left

256000,10,BLANKI

5-90

I; Blank fill (A) on the left
I ; Blank fill (A) on the left
I

5.10.4 DECMIC - DECIMAL MICROS

The DECMIC pseudo instruction converts the positive or negative value of
an expression into a positive or negative decimal character string that
is assigned a redefinable micro name. The final length of the micro
string is inserted into the code field of the listing.

DECMIC can be specified with zero, one, or two expressions. DECMIC
converts the value of the first expression into a character string with a
character length indicated by the second expression. If the second
expression is not specified, the minimum number of characters needed to
represent the decimal value of the first expression is used.

If the second expression is specified, the string is equal to the length
specified by the second expression. If the number of characters in the
micro string is less than the value of the second expression, and the
value of the first expression is positive, the character value is right
justified with the specified fill characters (zeros or blanks) preceding
the value.

If the number of characters in the string is less than the value of the
second expression, and the value of the first expression is negative, a
minus sign precedes the value. If zero fill is indicated, zeros are used
as fill between the minus sign and the value. If blank fill is
indicated, blanks are used as fill before the minus sign.

If the number of characters in the string is greater than the value of
the second expression, the characters at the beginning of the string are
truncated and a warning message is issued.

The DECMIC pseudo instruction can be specified anywhere within a program
segment. If the DECMIC pseudo instruction is found within a definition,
it is defined and is not recognized as a pseudo instruction. If the
DECMIC pseudo instruction is found within a skipping sequence, it is
skipped and is not recognized as a pseudo instruction.

Format:

I LocationlResult I Operand

I I I
I name
I name

name

SR-2003

IDECMIC
Idecmic

I [expression1] [","[expression2[","[option]]]]
I [expression1] [","[expression2[","[option]]]]

Required micro name. name is assigned to the character
string representing the decimal value of the
expression1 and has redefinable attributes.

name must meet the requirements for identifiers as
described in the BNF. For a description of names, see
subsection 4.2.

5-91

expressionl
Optional expression; micro string equal to the value of the
expression. If specified, expressionl must have an
address attribute of value and a relative attribute of
absolute with all symbols, if any, previously defined.

If the first expression is not specified, the absolute
value of zero is used. If the current base is mixed, a
default of octal is used. If the first expression is not
specified the absolute value of zero is used in the
creation of the micro string.

expression! must meet the requirements for expressions
as described in the BNF. For a description of expressions,
see subsection 4.7.

expression2

option

SR-2003

Optional expression. expression2 provides a positive
character count less than or equal to decimal 20. If this
parameter is present, leading zeros are zeros or blanks
(depending on option) are supplied, if necessary, to
provide the requested number of characters.

If specified, expression2 must have an address attribute
of value and a relative attriube of absolute with all
symbols, if any, previously defined. If the current base
is mixed, a default of decimal is used.

If expression2 is not specified, the micro string is
represented in the minimum number of characters needed to
represent the decimal value of the first expression.

expression2 must meet the requirements for expressions
as described in the BNF. For a description of expressions,
see subsection 4.7.

If the second expression is present and fill is needed,
option represents the type of fill characters (ZERO for
zeros or BLANK for spaces) to be used; the default is
ZERO. option can be entered in mixed case.

5-92

Examples:

1. The following example includes the DECMIC and MICSIZE pseudo
instructions:

I LocationlResult
11
I
IMIC
IV
I
I
IDECT

110
I
I MICRO
IMICSIZE
I
I
IDECMIC

I Operand
120
I
I'ABCD'
IMIC
I
I
IV,2

I Comment
135
I
I
I; The value of V is the number
I; of characters in the micro
I: string represented by MIC
I; DECT is a micro name.

1-* There are "DECT" characters in MIC.
1* There are 19 characters in MIC.t

2. The following example demonstrates the ZERO and BLANK options with
positive and negative strings:

LocationlResult
1 110

I
I BASE

ONE IDECMIC
* I "ONE"

* 01
TWO IDECMIC

* I "TWO"
* 000
THREE IDECMIC

* I "THREE"
* -000256000
FOUR IDECMIC

* !~~OUR"
* -256000
FIVE IDECMIC

* I "FIVE"
* 0000256000
SIX IDECMIC

* !~~!X" -
* 256000

lEND
SEVEN IDECMIC

* I "SEVEN"

* 56000
EIGHT IDECMIC

* I "EIGHT" -
* 777

t Generated by CAL

SR-2003

Operand
20

D
1,2

5*8+60+900,3

I Comment
135
I
I; The base is decimal.
I
I; Returns 1 in two digits
; Returns 1 in two digists
I; Decimal 1000
I; Returns 1000 as 3 digits (000)
: Returns 1000 as 3 digits (000)

-256000,10,ZERO; Decimal string with zero fill
I; Minus sign, zero fill, value
; Minus sign, zero fill, value

-256000,10,BLANK; Decimal string with blank fill
I; Blank fill, minus sign, value
I ; Blank fill, minus sign, value

256000,10,ZERO I
I : Zero filIon the left
1 ; Zero filIon the left

256000,10,BLANKI
I: Blank fill (A) on the left
I ; Blank fill (A) on the left
I

256000,5 I
I : Truncation warning issued

; Truncation warning issued
777777777,3 I

I; Truncation warning issued
; Truncation warning issued

5-93

5.11 FILE CONTROL (INCLUDE PSEUDO)

The INCLUDE pseudo inserts a file at the current source position. The
INCLUDE pseudo always prepares the file for reading by opening it and
positioning the pointer at its beginning.

Files can be included within other files. The same file can be included
more than once, although CAL does not allow a file that is currently
being included to be included again until it has been fully included.

The INCLUDE pseudo instruction can be specified anywhere within a program
segment. If the INCLUDE pseudo occurs within a definition, it is
recognized as a pseudo instruction and the named file is included in the
definition. If the INCLUDE pseudo instruction occurs within a skipping
sequence, it is recognized as a pseudo instruction and the named file is
included in the skipping sequence. The INCLUDE pseudo statement itself
is not inserted into a defined sequence of code.

Format:

NOTE

The INCLUDE pseudo can be forced into a definition or
skipped sequence of code although it is not recommended
for a definition. To do this, embed an underscore ()
anywhere within the pseudo as shown in the following
example:

IN CLUDE

If editing is enabled during expansion, the files
specified with the INLCUDE are included during
expansion. However, formal parameters are not
substituted into statements when these files are
included at expansion time.

ILocation!Result !Operand
I I I
lignored IINCLUDE I string
lignored linclude I string

SR-2003 5-94

string An ASCII character string that identifies the file to be
included. The ASCII character string must be a valid file
name depending on the operating system under which CAL is
executing. If the ASCII character string is not a valid
file name or CAL is not able to open the file, a listing
message is issued.

string must be specified with a single
on both ends. string can be delimited
character other than a comma or space.
occurrences of the delimiting character
such character is to be included in the

matching character
by any ASCII

Two consecutive
indicate a single
character string.

Examples:

1. In the following example, the module named INCTEST contains an
INCLUDE pseudo instruction. The file to be included is called DOG
and includes the file CAT.

ILocationlResult
11 110
I I
I I IDENT
I I INCLUDE
I lEND

File DOG:

ILocationlResult
11 110
I I
I 181
I I INCLUDE
I 182

File CAT:

I Locationl Result
11 110
I I
I 183

SR-2003

I Operand
120
I
IINCTEST
I*DOG*
I

I Operand
120
I
11
I 'CAT'
12

I Operand
120
I
13

5-95

I Comment
135
I
I
I; Call file DOG with INCLUDE
I

I Comment
135
I
I; Register 81 gets 1.
I; Call file CAT with INCLUDE
I; Register S2 gets 2.

I Comment
135
I
I; Register S3 gets 3.

Expansion:

I Location Result Operand Comment
11 10 ~o 35
I
I IDENT INCTE5T
I INCLUDE *DOG* · Call file DOG with INCLUDE I

I 51 1 · Register 51 gets 1. I

I INCLUDE 'CAT' · Call file CAT with INCLUDE I

I 53 3 · Register 53 gets 3. I

I 52 2 ; Register 52 gets 2.
I END

2. The following example demonstrates that it is illegal to include a
file from a file that was included by that file.

I LocationlResult
11 110
I I
I IIDENT
I I INCLUDE
I lEND

File DOG:

I LocationlResult
11 110
I I
1 151
I I INCLUDE
1 152

File CAT:

ILocationlResult
11 110
I I
I 153
I I INCLUDE
I I
I I

SR-2003

I Operand
120
I
IINCTE5T
I#DOG#
I

1 Operand
120
I
11
I*CAT*
12

1 Operand
120
I
13
I-DOG-
I
I

5-96

1 Comment
135

I
I
I; Call file DOG with INCLUDE
I

1 Comment
135
I
I; Register 51 gets 1.
I; Call file CAT with INCLUDE
I; Register 52 gets 2.

1 Comment
135

I
I
I; Illegal; If file B was
I; included by file A, it cannot
I; include file A.

3. The following example demonstrates that it is legal to include a file
more than once as long as it is not currently being included:

1 LocationlResult
11 110
1 1
I lident
I I include
1 I include
1 lend

File DOG:

1 LocationlResult
11 110
1 1
I 1 sl
1 Is2

Expansion:

I Location Result
11 10
I
I ident
I include
I sl
I s2
I include
I sl
I s2
I end

5.12 DEFINED SEQUENCES

1 Operand
120
I
linctest
Il?&dogC?&
Il?&dogl?&
I

1 Operand
120
I
11
12

Operand
20

inctest
dog
1
2
dog
1
2

1 Comment
135
I
I
I ; Call file dog with include
I ; Call file dog with include
I

1 Comment
135
I
I ; Register SI gets 1.
I ; Register S2 gets 2.

Comment
35

Call file dog with include
Register SI gets 1.
Register S2 gets 2.
Call file dog with include
Register SI gets 1.
Register S2 gets 2.

You can define sequences of instructions to be saved for assembly at a
later point in the source program. The four types of defined sequences
are as follows: MACRO, OPDEF, DUP, and ECHO. Defined sequences have
several functional similarities.

Since the ENDM, ENDDUP, and STOPDUP pseudo instructions terminate defined
sequences and the LOCAL and OPSYN pseudo instructions are associated with
definitions, they are included in this subsection. The following is a
brief description of the pseudo instructions included in this subsection.

SR-2003 5-97

• MACRO

• OPDEF

A sequence of source program instructions that are saved
by the assembler for inclusion in a program when called
for by the macro name. The macro call resembles a pseudo
instruction.

A sequence of source program instructions that are saved
by the assembler for inclusion in a program called for by
the OPDEF instruction. The opdef resembles a symbolic
machine instruction.

• DUP Introduces a sequence of code that is assembled
repetitively for a specific count; the duplicated code
immediately follows the DUP pseudo instruction.

• ECHO Introduces a sequence of code that is assembled
repetitively until an argument list is exhausted

• ENDM Ends a macro or opdef definition

• ENDDUP Terminates a dup or echo sequence of code

• STOPDUP Stops the duplication of a code sequence by overriding
the repetition condition

• LOCAL Specifies unique strings that are usually used as symbols
within a macro, opdef, dup, or echo

• OPSYN Defines a location field functional that is the same as a
named operation in the operand field functional

5.12.1 SIMILARITIES AMONG DEFINED SEQUENCES

Defined sequences have the following functional similarities:

• Editing
• Definition format
• Formal parameters
• Instruction calls
• Interact with the INCLUDE pseudo instruction

5.12.1.1 Editing

Editing is disabled by the assembler at definition time. The body of the
definition (see definition format) is saved before micros and
concatenation marks are edited. Editing occurs when the definition is
assembled each time it is called if editing is enabled. The ENDDUP,
ENDM, END, INCLUDE, and LOCAL pseudo instructions and prototype
statements should not contain any micros or concatenation characters,
because they may not be recognized at definition time.

SR-2003 5-98

When a sequence is defined, editing is disabled and cannot be explicitly
enabled. When a sequence is called, CAL performs the following
operations:

• Checks for all parameter substitutions that were marked at
definition time

• Edits the statement if editing is enabled

• Processes the statement

It is possible to take advantage of the fact that editing is disabled at
definition time. If, for example, the INCLUDE pseudo instruction is
specified with embedded blanks as shown in macro INC, a saving in program
overhead is achieved.

Example:

Location Result
1 10

MACRO
INC

IN CLUDE

INC ENDM

Operand
20

MYFILE

Comment
35

INCLUDE pseudo with an
embedded underscore

Since editing is disabled at definition time, concatenation does not
occur until INC is called. If editing is enabled when the macro is
called, MYFILE is included at that time.

Embedding blanks in an INCLUDE pseudo becomes desirable when the INCLUDE
pseudo identifies large files. Since files are included when the macro
is called and not at definition time, embedding blanks in the INCLUDE
pseudo instruction can reduce the overhead required for a program.

5.12.1.2 Definition format

Macro, opdef, dup, and echo use the same definition format. The format
consists of a header, body, and end.

SR-2003 5-99

The header consists of a MACRO, OPDEF, DUP, or ECHO pseudo instruction, a
prototype statement for a macro or opdef definition, and, optionally,
LOCAL pseudo instructions. For a macro, the prototype statement provides
a functional and a list of formal parameters. For an opdef, the
prototype statement supplies the syntax and the formal parameters.

LOCAL pseudo instructions identify parameter names that CAL must make
unique to the assembly each time the definition sequence is placed in a
program segment. Asterisk comments can be placed in the header and have
no affect on the way CAL scans the header. Asterisk comments are dropped
from the definition. To force asterisk comments into a definition, see
subsection 3.3.5, Comment.

The body of the definition begins with the first statement following the
header. The body can consist of a series of CAL instructions other than
an END pseudo. The body of a definition can be empty, or it may include
other definitions and calls. However, a definition used within another
definition is not recognized until the definition in which it is
contained is called. Therefore, an inner definition cannot be called
before the outer definition is called for the first time.

A comment statement identified by an asterisk in column 1 is ignored in
the definition header and the definition body. Such comments are not
saved as a part of the definition sequence. Comment fields on other
statements in the body of a definition are saved.

An ENDM pseudo instruction with the proper name in the location field
ends a macro or opdef definition. A statement count or an ENDDUP pseudo
instruction with the proper name in the location field ends a dup
definition. An ENDDUP pseudo instruction with the proper name in the
location field ends an echo definition.

5.12.1.3 Formal parameters

Formal parameters are defined in the definition header and recognized in
the definition body. Four types of formal parameters are recognized:
positional, keyword, echo, and local.

The characters that identify positional, keyword, echo, and local
parameters must all have unique names within a given definition. In
addition, positional, keyword, and echo parameters are case sensitive.
These parameters must be specified in the body of the definition exactly
as specified in the definition header to be recognized.

Parameter names must meet the requirements for identifiers as described
in the BNF. For a description of names, see subsection 4.2.

SR-2003 5-100

A formal parameter name can be embedded within the definition body.
However, embedded parameters must safisfy the following requirements:

• The first character of an embedded parameter must begin with a
legal initial-identifier-character.

• An embedded parameter cannot be preceded by an
initial-identifier-character. For example, PAR AM is a legally
embedded parameter within the string ABC_PARAM_DEF, because it is
preceded by an underscore character. PARAM is not a legally
embedded character within the string ABCPARAMDEF, because it is
preceded by an initial-identifier-character (C).

• An embedded parameter must not be followed by an
identifier-character. In the following example, the embedded
parameter is legal, because it is followed by a element separator
(blank character):

PARAM678

In the following example, the embedded parameter is illegal,
because it is followed by an identifier-character:

PARAM6789

Embedded parameters must contain eight or fewer characters.
PARAM6789 is illegal, because it is nine characters long. The
character that follows an embedded parameter (9) cannot be an
identifier-character.

• An embedded parameter must occur before the first comment
character (;) of each statement within the body, if and only if
the new format is specified.

• An embedded parameter must have a matching formal parameter name
in the definition header.

Formal parameter names should not be END, ENDM, ENDDUP, LOCAL, or
INCLUDE. If any of these are used as parameter names, substitution of
actual arguments occur when these names are contained in any inner
definition when the definition is referenced.

SR-2003

NOTE

Arguments are not substituted for formal parameters
into statements within included files if the file is
included at expansion time.

5-101

5.12.1.4 Instruction calls

Each time a definition sequence of code is called, an entry is added to a
list of currently active defined sequences within the assembler. The
most recent entry indicates the current source of statements to be
assembled. When a definition is called within a definition sequence
being assembled, another entry addition is made to the list of defined
sequences, and assembly continues with the new definition sequence
belonging to the inner, or nested, call.

When the end of a definition sequence is reached, the most recent list
entry is removed and assembly continues with the previous list entry.
When the list of defined sequences is exhausted, assembly continues with
statements from the source file.

An inner nested call can be recursive; that is, it can reference the same
definition that is referenced by an outer call. The depth of nested
calls permitted by CAL is limited only by the amount of memory available.

The sequence field in the right margin of the listing shows the
definition name and nesting depth for defined sequences being assembled.
Nesting depth numbers begin in column 89 and can be one of the
following: :1, :2, :3, :4, :5, :6, :7, :8, :9, :*.

If the nesting depth is greater than 9, CAL keeps track of the current
nesting level and an asterisk represents nesting depths of 10 or more.
Nesting depth numbers are restricted to two characters so that only the
two right-most character positions are overwritten.

If the sequence field (columns 73 through 90) is not empty in the source
file, CAL copies the existing field for a call into every statement
expanded by the call with columns 89 and 90 reserved for the nesting
level. For example, if the sequence field for MCALL was LQ5992A.112, the
sequence field for a statement expanded from MCALL would read as follows:

LQ5992A.112 :1

Additional nested calls within MCALL would change the nesting level, but
the sequence field would be unchanged during the MCALL. For example:

LQ5992A.112
LQ5992A.112
LQ5992A.112
LQ5992A.112

LQ5992A.112

LQ5992A.112

SR-2003

: 2
: 2
: 2
: 3

:*

: 1

5-102

If the sequence field (columns 73 through 90) is empty in the source
file, CAL inserts the name of the definition as follows:

• Macro The inserted name in the sequence field is the functional
found in the result field of the macro prototype statement.

• Opdef The inserted name in the sequence field is the name used in
the location field of the OPDEF pseudo instruction itself.

• Dup The inserted name in the sequence field is the name used in
the location field of the DUP pseudo, or if the count is
specified and name is not, the name is *Dup.

• Echo The inserted name in the sequence field is the name used in
the location field of the ECHO pseudo instruction.

In all cases, the first two columns of the sequence field contain ** to
indicate that CAL has generated the sequence field. Columns 89 and 90 of
the sequence field are reserved for the nesting level. If, for example,
the sequence field is missing for MCALL, it would read as follows:

** MCALL : 1

Additional nested calls within MCALL would change the nesting level, but
the sequence field number would be unchanged for the duration of MCALL.

Example:

** MCALL :1
** MCALL :2
** MCALL : 2
** MCALL : 2
** MCALL :3

** MCALL :*

** MCALL :1

5.12.1.5 INCLUDE pseudo instruction

The INCLUDE pseudo instruction operates with defined sequences as follows:

MACRO INCLUDE pseudo instructions are expanded at definition time.

OPDEF INCLUDE pseudo instructions are expanded at definition time.

SR-2003 5-103

DUP INCLUDE pseudo instructions are expanded at definition time.
If count is specified, the INCLUDE pseudo statement itself is
not included in the statements being counted.

ECHO INCLUDE pseudo instructions are expanded at definition time.

5.12.2 MACRO

A macro definition identifies a sequence of statements that is defined;
saved by the assembler for inclusion elsewhere in a program. A macro is
referenced at a later point in the source program by a single
instruction, the macro call. Each time the macro call occurs, the
definition sequence is placed into the source program.

The MACRO pseudo instruction can be specified anywhere within a program
segment. If the MACRO pseudo instruction is found within a definition,
it is defined. If the MACRO pseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a pseudo
instruction.

A macro definition is defined as global if it occurs within the global
definitions part of a program segment. Macro definitions are local if
they occur within a program module (an IDENT, END sequence). A global
definition can be redefined locally, but the global definition is
reenabled and the local definition is discarded at the end of the program
module. A global definition can be referenced anywhere within the
assembler program following the definition.

Example:

LocationlResult I Operand Comment
1 110 120 35

I
I MACRO I GLOBAL ; Globally defined

* GLOBAL DEFINITION IS USED.
GLOBAL IENDM I

I GLOBAL I Call to global definition
ILIST I MAC

* GLOBAL DEFINITION IS USED.
I IDENT I TEST
I GLOBAL I Call to global definition

* GLOBAL DEFINTION IS USED.
I MACRO I GLOBAL Locally defined

* Redefinition warning message is issued
* LOCAL DEFINTION IS USED.

SR-2003 5-104

Example (continued):

ILocationlResult
11 110

I I
I GLOBAL I ENDM
I I GLOBAL
1* LOCAL DEFINITION
I lEND
I I IDENT
I I GLOBAL
1* GLOBAL DEFINTION

I Operand
120

I
I
I

IS USED.

I
ITEST2

I
IS USED.

5.12.2.1 Macro definition

Comment
35

Call to local definition

Local definitions are discarded

Call to global definition

The macro definition header consists of the MACRO pseudo instruction, a
prototype statement, and optional LOCAL pseudo instructions. The
prototype statement provides a name for the macro and a list of formal
parameters and default arguments.

A comment statement, identified by an asterisk in column 1, is ignored in
the definition header or definition body. Such comments are not saved as
a part of the definition sequence. Comment fields on other statements in
the body of a definition are saved.

The end of a macro definition is signaled by an ENDM pseudo instruction
with a functional name that matches the functional name in the result
field of the macro prototype statement. For a description of the ENDM
pseudo instruction, see ENDM in this subsection 5.12, Defined Sequences.

Example:

The following macro transfers an integer in an A register to an S
register. Then it converts it to a normalized floating-point number.

ILocationlResult I Operand I Comment
11 110 I~O 135
I I I I
I Imacro I I
I lintconv Ip1,p2 I ; P1=A reg, P2=S reg

I Ip2 l+f_p1 I ; Transfer with special exp

I I I I ; and sign extension

I Ip2 l+f_p2 I ; Normalize the S register
lintconv lendm I I ; End of macro definition

SR-2003 5-105

As with every macro, INTCONV begins with the pseudo instruction MACRO.
The second statement is the prototype statement; names the macro and
defines the parameters. The next three statements are definition
statements. They identify what the macro is supposed to do. The ENDM
pseudo instruction ends the macro definition.

The format of the macro definition is as follows:

I LocationlResult I Operand I COmment
I I 1
lignored IMACRO I ignored I; Definition header
Ilac Ifunct 1 parameters I; Prototype statement
1 1 LOCAL I [name]{","[name]} ; Optional LOCAL pseudos
1 1 • 1 1
1 1 • 1 I; Definition body

I 1 • 1 1
I funct I ENDM I I; Definition end

I L~H:atiQn I Be~:u.J.t I QperanQ ICQmment
I I I
1 ignored Imacro I ignored I ; Definition header
Iloc Ifunct 1 parameters 1 ; Prototype statement
1 I local I [name]{","[name]} . Optional LOCAL pseudos ,
I I • I I
I I • I I ; Definition body
I I . I I
Ifunct lendm I I ; Definition end

The format of the macro prototype statement is as follows:

ILocationlResult IOperanQ
1 1 I
Iloc Ifunctional Ipositional-parameters[","[keyword-parameters]]
Iloc Ifunctional Ikeyword-parameters

positional-parameters and keyword-parameters are defined as follows:

positional-parameters •• -

SR-2003

[["!"]["*"]name] [","positional-parameters]
[["*"]["!"]name] [","positional-parameters] .

5-106

keyword-parameters ::=
U!U["·"]name"=U[expression-argument-value]
[U,U[kegword-parameters]] I
[If*"]"!"name"=U[expression-argument-value]
[If, "[keyword-parameters]] I
[If*"]name"="[string-argument-value]
[If, "[kegword-parameters]] .

expression-argument-value ::= expression.

string-argument-value ::= embedded-argument argument-charactert .

loc Optional location field parameter. loc must be
terminated by a space.

functional

loc must meet the requirements for names given in the
BNF. For a description of names, see subsection 4.2.

Name of the macro, must be a valid identifier or the equal
sign. If functional is the same as a currently defined
pseudo instruction or macro, this definition redefines the
operation associated with functional, and a message is
issued.

functional must meet the requirements for functionals as
described in the BNF. For a description of functionals,
see appendix A, Instruction Syntax.

positional-parameters
Positional-parameters must be specified with valid and
unique names. positional-parameters must meet the
requirements for names given in the BNF. For a description
of names, see subsection 4.2.

There can be none, one, or more positional-parameters.
Positional-parameters cannot be entered after
keyword-parameters. The default argument for a
positional-parameter is an empty string.

The positional-parameters defined in the macro definition
are case sensitive. Positional-parameters specified in the
definition body must identically match
positional-parameters defined by the macro prototype
statement.

t Any ASCII character, except a comma, space, or semicolon (new format
only), is permitted.

SR-2003 5-107

SR-2003

The! is optional. If the! is not included, the
positional-parameter can take one of the following forms
when the macro is called:

• Embedded-argument
• Character string
• Null string

Embedded-argument; a left parenthesis signals the beginning
of an embedded argument and must be terminated by a
matching right parenthesis. An embedded argument can
contain an argument as described in appendix A, Instruction
Syntax. Note that an embedded argument can also contain
pairs of matching left and right parentheses. If an
asterisk preceeds the positional parameter name, the
embedded argument is used in its entirety. If an asterisk
does not preceed the positional parameter name, the
outermost parentheses are stripped from the embedded
argument and the remaining string is used as the argument.

Character string; any character up to but not including a
legal terminator (space or semicolon for new format) or an
element separator (comma).

Null string; a null argument.

If the ! is included, the parameter can take one of the
following forms when the macro is called:

• Syntactically valid expression
• Null string

Syntactically valid expression; an expression can include a
legal terminator (space or semicolon for new format) or an
element separator (comma). The syntactically valid
expression satisfies the requirements for an expression,
but it is used only as an argument and is not evaluated in
the macro call itself. See the BNF for a description of
the syntax of an expression.

If the syntactically valid expression is an
embedded-argument, the following will occur. If an
asterisk preceeds the positional parameter name, the
embedded argument is used in its entirety. If an asterisk
does not preceed the positional parameter name, the
outermost parentheses are stripped from the embedded
argument and the remaining string is used as the argument.

Null string; a null argument.

5-108

Use of the syntactically valid expression, permits you to
enter a string (=', 'R) of characters that may contain one
or more spaces or comma. For example:

I Location Result °Eerand Comment
11 1Q 2Q 35
I
I MACRO

I JUSTIFY !PARAM Macro prototype

I
I
I
I JUSTIFY ENDM

I JUSTIFY , , 'R Macro call

I JUSTIFY 'R Macro call

When the following macro is called, the positional
parameter p1 receives a value of vI because an asterisk
does not preceed the parameter on the prototype statement.
The positional parameter p2, however, receives a value of
(v2) because an asterisk preceeds the parameter on the
prototype statement.

I Location Result °Eerand Comment
11 1Q 2Q 35
I
I macro

I paren pl,*p2 ; Macro prototype

I
I
I
Iparen endm

I paren (v1),(v2) Macro call

keyword-parameter

SR-2003

Keyword-parameters must be specified with valid and unique
names. Names within keyword-parmeter must meet the
requirements for names as described in the BNF. For a
description of names, see subsection 4.2.

There can be none, one, or more keyword-parameters. Names
within keyword-parameters can be entered in any order.
Default arguments can be provided for each
keyword-parameter at definition time and are used if the
keyword is not specified at call time.

The keyword-parameters defined in a macro definition are
case sensitive. The keyword-parameters specified in the
macro body must match the positional-parameters specified
in the macro prototype statement.

5-109

SR-2003

The ! is optional. If the ! is not included, the parameter
can take one of the following forms when the macro is
called:

• Embedded-argument
• Character string
• Null string

Embedded-argument; a left parenthesis signals the beginning
of an embedded argument and must be terminated by a
matching right parenthesis. An embedded argument can
contain an argument as described in appendix A, Instruction
Syntax.Note that an embedded argument can also contain
pairs of matching left and right parentheses. If an
asterisk preceeds the positional parameter name, the
embedded argument is used in its entirety. If an asterisk
does not preceed the positional parameter name, the
outermost parentheses are stripped from the embedded
argument and the remaining string is used as the argument.

Character string; any character up to but not including a
legal terminator (space or semicolon for new format) or an
element separator.

Null string; a null argument.

If the ! is included, the parameter can take one of the
following forms when the macro is called:

• Syntactically valid expression
• Null string

Syntactically valid expression; an expression can include a
legal terminator (space or semicolon for new format) or an
element separator (comma). The syntactically valid
expression satisfies the requirements for an expression,
but it is used only as an argument and is not evaluated in
the macro call itself. See the BNF for a description of
the syntax of an expression.

If the syntactically valid expression is an
embedded-argument, the following will occur. If an
asterisk preceeds the positional parameter name, the
embedded argument is used in its entirety. If an asterisk
does not preceed the positional parameter name, the
outermost parentheses are stripped from the embedded
argument and the remaining string is used as the argument.

Null string; a null argument.

If a default is provided for a keyword-parameter, it must
meet the requirements as described above.

5-110

5.12.2.2 Macro calls

A macro definition can be called by an instruction of the following
format:

ILocation!Result !Ooerand

I I I
I [locarg] I functional Ipositional-arguments [","[keyword-arguments]]
I [locarg] I functional I keyword-arguments

positional-arguments and keyword-arguments are defined as follows:

positional-argument ::= [argument][01,"[positional-arguments]] .

keyword-arguments ::= name 01 =01 [argument] [01,"[keyword-arguments]]

locarg

functional

Optional location field argument. locarg must be
terminated by a space. locarg can be any character up to
but not including a space.

If a location field parameter is specified on the macro
definition. A matching location field parameter can be
specified on the macro call. locarg is substituted
wherever the location field parameter occurs in the
definition. If no location field parameter is specified in
the definition, this field must be empty.

Macro functional name; an identifier or an equal sign.
functional must match the functional specified in the
macro definition.

functional must meet the requirements for functionals as
described in the BNF. For a description of the BNF for
functionals, see appendix A, Instruction Syntax.

positional-arguments

SR-2003

Positional-arguments; an actual argument string
corresponding to a positional-parameter that is specified
in the definition prototype statement. The requirements
for positional-arguments are specified by the corresponding
positional-parameter in the macro definition prototype
statement. Positional-arguments are not case sensitive to
positional-parameters on the macro call.

5-111

The first positional-argument is substituted for the first
positional-parameter in the prototype operand field, the
second positional-argument string is substituted for the
second positional-parameter in the prototype operand field,
and so on. If the number of positional-arguments is less
than the number of positional-parameters in the prototype
operand field, null argument strings are used for the
missing positional-arguments.

Two consecutive commas indicate a null (empty)
positional-argument string.

keyword-arguments
Keyword-arguments; an actual argument string corresponding
to a keyword-parameter that is specified in the macro
definition prototype statement. The requirements for
keyword-arguments are specified by the corresponding
keyword-parameter in the macro definition prototype
statement.

Keyword-arguments are not recognized until after n
subfields (n commas), where n is the number of
positional parameters in the operand field of the macro
definition.

Keyword-arguments can be listed in any order; matching the
order in which keyword-parameters are listed on the macro
prototype statement is unnecessary. However, the
keyword-parameter is case sensitive and must be specified
in the macro call exactly as specified in the macro
prototype statement to be recognized.

The default keyword-parameters specified in the macro
prototype statement are used as the actual
keyword-arguments for missing keyword-arguments.

argument All arguments must meet the requirements of the
corresponding parameters as specified in the macro
definition prototype statement.

The following restrictions are placed on the macro call:

• The ! is not permitted on the macro call statement. An!
specified in the prototype statement for positional-parameters or
keyword-parameters is remembered by CAL when the macro is called.

SR-2003 5-112

• If the first character of the actual argument is a left
parenthesis, the string must be terminated by a matching right
parenthesis. Such an argument is called an embedded-argument
consists of all characters between the enclosing parentheses.
embedded-argument can contain commas and blanks, and can also
contain pairs of matching left and right parentheses.

and
An

The actual argument string for each positional and keyword
parameter is substituted in the definition sequence wherever the
formal parameter occurs. Embedded argument strings are
substituted without the enclosing parentheses.

To call a macro, use its name in a code sequence. INTCONV can be called
as follows.

I Location Result Operand Comment
11 10

I
I MACRO

I INTCONV

I P2

I
I P2

20

P1,P2
+F P1

+F P2

35

P1=A. reg, P2=S reg
Transfer with special expression
and sign extension
Normalize the S register

I INTCONV ENDM End of macro definition

I LIST MAC

Call and expansion:

ILocationlResult \ Operand \ Comment
11
I
I
1

1

1

SR-2003

110 120

I 1
IINTCONV IA1,S3
IS2 I+FA1

I 1
IS2 I+FS2

NOTE

135

I
I; Macro call
; Transfer with special expression
I; and sign extension
; Normalize the S register

Comments preceded by an underscore and an asterisk are
included in the definition bodies of the following
macro examples. These comments are included to
illustrate the way in which parameters are passed from
the macro call to the macro definition. Since comments
are not assembled, _* comments allow arguments to be
shown without regard to hardware differences or
available machine instructions.

5-113

Macro examples:

1. The following examples illustrate the use of positional-parameters
and keyword-parameters.

a. Macro table contains positional and keyword parameters.

Location Result °Eerand 1 Comment
1 10 2Q 135

I
macro I
table tabn,val1=iO,vaI2=,vaI3=0

tables section data I
tabn con 'tabn'l I

con vall I
con val2 I
con val3 I
section * I ; Resume use of previous section

table endm I
list mac I

Call and expansion:

I Location Result °Eerand 1 Comment
Il 1Q 2Q 135
I I
I table taba,vaI3=4,vaI2=a Macro call
I tables section data I
I taba con 'taba'l I
I con #0 I
I con a I
I con 4 I
I section * I ; Resume use of previous section

b. Macro noorder demonstrates that keyword-parameters are not order
dependent.

I Location
11

SR-2003

Result
1Q

macro
noorder
sl
s2
s3
s4
list

°Eerand
2Q

1 Comment
135
I
I

param1,param2,param3=,param4=b
param1 I
param2 I
param3 I
param4 I
mac I

5-114

Call and expansion:

I LocationlResult I Operand I Comment
11 110 120 135

I I
I Inoorder I (1),2,param4=dog,param3=d
I I s1 11 I
I I s2 12 I
I I s3 Id I
I Is4 Idog I

2. Macros ONE, two, and THREE demonstrate that the number of parameters
specified in the macro call may be different than the number of
parameters specified in the macro definition.

I LocationlResult
11 110

I I
I I MACRO
I lONE
1_* PARAMETER 1:
1_* PARAMETER 2:
1_* PARAMETER 3:
lONE IENDM
I ILIST

Call and expansion:

ILocationlResult
11 110

I I
I lONE
1* PARAMETER 1:
1* PARAMETER 2:
1* PARAMETER 3:

ILocationlResult
11 110

I I
1 I two
1_* Parameter 1:
1_* Parameter 2:
1_* Parameter 3:
1 two I endrn
1 Ilist

SR-2003

Operand I Comment
20 135

I
I

PARAM1,PARAM2,PARAM3
PARAM1 I; SYMl corresponds to PARAM1
PARAM2 I; Null string
PARAM3 I; Null string

I
MAC I

I Operand
120

I
ISYM1
ISYMI
I
I

I Operand
120

I Comment
135

I
I; Call using one parameter
; SYMI corresponds to PARAMI
; Null string

Null string

I Comment
135

Iparam1,param2,param3
Iparam1 Sym1 corresponds to paraml
Iparam2 ; Sym2 corresponds to param2
Iparam3 Null string

I
Imac

5-115

Call and expansion:

I Location I Result
11 110

I I
I I two
1* Parameter 1:
1* parameter 2:
1* parameter 3:

I Locationl Result
11 110

I I
I I THREE
I * PARAMETER 1:
1_* PARAMETER 2:
1_* PARAMETER 3:
I THREE I ENDM
I ILIST

Call and expansion:

I LocationlResult

11 110
I I
I I THREE
1* PARAMETER 1:
1* PARAMETER 2 :

1* PARAMETER 3 :

I Operand
120

I
Isyml,sym2
Isyml
Isym2

I

I Operand
120

I Comment
135

I
I; Call using two parameters

syml corresponds to paraml
sym2 corresponds to param2
Null string

I Comment
135

IPARAMl,PARAM2,PARAM3
IPARAMI SYMI corresponds to PARAMI
IPARAM2 SYM2 corresponds to PARAM2
IPARAM3 SYM3 corresponds to PARAM3

I
I MAC

1 Operand 1 Comment
120 135
I I
ISYMl,SYM2,SYM3 I ; Call matching prototype
ISYMI SYMI corresponds to PARAMI
ISYM2 SYM2 corresponas to PARAM2
ISYM3 SYM3 corresponds to PARAM3

3. The following examples demonstrate the use of the optional !.

a. Macro BANG demonstrates the use of the embedded argument (1,2),
syntactically valid expressions for positional-parameters
('abc,def') and keyword-parameters (PARAM3=1+2) and the null
string.

I Locationl Result Operand Comment
11 110 20 35

I I
I I MACRO
I I BANG PARAMl,!PARAM2, PARAM3=,PARAM4=
I_*PARAMETER 1: PARAMI Embedded argument
I_*PARAMETER 2: PARAM2 Syntactically valid expression
I *PARAMETER 3: PARAM3 Syntactically valid expression
I_*PARAMETER 4: PARAM4 Null string
I BANG I ENDM
I ILIST MAC

SR-2003 5-116

Call and expansion:

I LocationlResult
11 110
I I
I I BANG
1* PARAMETER 1:
1* PARAMETER 2:
1* PARAMETER 3:
1* PARAMETER 4:

I Operand I Comment
120 135

I (1,2),'abc,def',PARAM3=1+2" ; Macro call
1,2 Embedded argument
'abc,def' ; Syntactically valid expression
1+2 ; Syntactically valid expression
I Null string

• If the argument for PARAM1 had been «(1,2»), Sl would have
gotten «1,2» at expansion.

• The ! specified on PARAM2 and PARAM3 permits commas and spaces
to be embedded within strings 'abc,def' and allows expressions
to be expanded without evaluation 1+2.

• PARAM4 passes a null string. A space or comma following the
equal sign specifies a null or empty character string as the
default argument.

b. The! is remembered from the definition in macro remem.

ILocationlResult
11 110

I I
I
I
I
Iremem
1

Imacro
Iremem
lsi
lendm
Ilist

Call and expansion:

ILocationlResult
11 110

I I
I
I

Iremem
Is1

I Operand
120

I
1

1 !param1=' 'r
Iparma1

I
Imac

1 Operand
120

I
I pararn1= ' , r
I' 'r

I Comment
135

I
I
I: Prototype statement includes

I
I
1

I Comment
135

I
I: Macro call does not include

I

4. The NULL and nullparm macros demonstrate the effect that null strings
have when parameters are passed.

a. NULL demonstrates the effect of a null string on macro
expansions. P2 is passed a null string. When NULL is expanded,
the resulting line is left-shifted two spaces; the difference
between the length of the parameter (P2) and the null string.

SR-2003 5-117

I Location Result Operand Comment
11 10 20 35
I
I MACRO
I NULL P1,P2,P3
I S1 P1
1_* S2 P2 Left-shifted two spaces
I S3 P3
I NULL ENDM
I LIST MAC

Call and expansion:

ILocationlResult I Operand I Comment
11 110 120 135
I I I I
I I NULL 11, ,3 I; Call
I IS1 11 I
1* S2 I Left-shifted three spaces
I IS3 13 I

b. Macro nullparm demonstrates how a macro is expanded when the
macro call does not include the location field name specified on
the macro definition.

ILocationlResult
11 110
I I
I I macro
I I nullparm
Ilongparml=
Inullparmlendm
I Ilist

Call and expansion:

ILocationlResult
11 110
I I
I I nullparm
1 1

SR-2003

I Operand
120
I
I
Ilongparm
11
I
Imac

I Operand
120

I Comment
135
I
I
I
I; Prototype statement
I
I

I Comment
135
I
I

; prototype statement

5-118

NOTE

The location field parameter was omitted on the macro
call in the previous example. The result and operand
fields of the first line of the expansion were shifted
left eight character positions because a null argument
was substituted for the 8-character parameter, LONGPARM.

If the old format is used, only one space appears
between the location field parameter and result field
in the macro definition. If a null argument is
substituted for the location parameter, the result
field is shifted into the location field in column 2.
Therefore, at least two spaces should always appear
between a parameter in the location field and the first
character in the result field in a definition.

If the new format is used, the result field is never
shifted into the location field.

5. DEFAULT illustrates how defaults are assigned for keywords when the
macro is expanded.

ILocationlResult
11 110
1 I
I I MACRO
1 1 DEFAULT
1 * PARAMI
1_* PARAM2
1_* PARAM3
IDEFAULT IENDM
1 ILIST

SR-2003

Operand
30

I Comment
135
I
1

PARAMl=(ABC DEF,GHI),PARAM2=ABC,PARAM3=
1

1

1

1
MAC 1

5-119

Calls and expansions:

I Locationl Result
1 110

I
I DEFAULT

* ARG11

* ARG21

* ARG31
I DEFAULT

* I

* ARG21

* ARG31
I
I DEFAULT

* (ARG1)

* I

* ARG31

Operand I Comment
30 135

I
PARAM1=ARG1,PARAM2=ARG2,PARAM3=ARG3 Macro call

I
I
1

PARAM1=,PARAM2=(ARG2),PARAM3=ARG3 Macro call
I
I
I
I

PARAM1=«ARG1»,PARAM2=,PARAM3=ARG3 Macro call
I
I
I

6. The following examples illustrate the correct and incorrect way to
specify a literal string in a macro definition.

a. WRONG illustrates the wrong way to specify a literal string in a
macro definition. The comments in the expansion are writer
comments and are not part of the expansion.

ILocationlResult I Operand I Comment
11 11Q 12Q 135
I I I I
I I MACRO I I
I I WRONG IPARAM1=' 'R , ; Prototype statement
, Ie PARAM1 , I
'WRONG IENDM , I
I ILIST I MAC 1 ; List expansion

Call and expansion (CAL erroneously expands WRONG; , 'R was intended):

I Locationl Result I Operand I Comment
11 11Q 12Q 135
I I I
1 I WRONG I; Call
1* I I

b. Macro right illustrates the right way to specify a literal string
in a macro definition.

SR-2003 5-120

1 Location 1 Result IOEerand IConunent
11 110 120 135
1 1 I I
1 Imacro I I ;
1 I right I !paraml=' 'r I ; Prototype statement
1_* paraml I I
I right lendm I I
I Ilist Imac I ; List expansion

Expansion (CAL expands RIGHT as intended because of the !):

ILocationlResult I Operand IConunent
11 110 120 135
I I I
I I right I; Call
1* .• r I

7. The following macros demonstrate the wrong and right methods for
replacing parameters on the prototype statement with parameters on
the macro call statement.

a. BAD demonstrates the wrong method for replacing parameters.

ILocationlResult
11 110
I I
I I MACRO
I I BAD
1_* PARAMETER 1:
1_* PARAMETER 2:
1_* PARAMETER 3:
I BAD I ENDM
ILIST I MAC

Call and expansion:

ILocationlResult
11 110
I I
I I BAD
1* PARAMETER 1:
1* PARAMETER 2:
1* PARMAETER 3 :

SR-2003

°Eerand 1 Comment
20 135

I
I

PARAM1,PARAM2,PARAM3=JJJ
PARAMl I
PARAM2 I
PARAM3 I

I
I

\ Operand I Comment
120 135
I I
IPARAM3=KKK 1 ; Macro
PARAM3=KKK 1
1 1
JJJ 1

5-121

call

b. Macro good demonstrates the right method for replacing parameters.

ILocationlResult
11 110
I I
I Imacro
I I good
I * parameter 1:
1_* parameter 2:
1_* parameter 3:
Igood lendm
I Ilist

Call and expansion:

I Locationl Result
11 110
I I
I I good
1* parameter 1:
1* parameter 2 :
1* parameter 3 :

Operand I Comment
20 135

I
I

param1,param2,param3=jjj
param1 I; Null string
param2 I; Null string
param3 I

I
mac I

I Operand I Comment
120 135
I I
1"param3=kkk I ; Macro call
I . Null string ,
I ; Null string
kkk I ;

8. ALPHA demonstrates the specification of an embedded parameter.

ILocationlResult
11 110
I I
I I MACRO
I I ALPHA
I * FORMAL PARM:
1_* EMBEDDED PARM:
I ALPHA I ENDM
I ILIST

Call and expansion:

ILocationlResult
11 110
I I
I I ALPHA
1* FORMAL PARM:
1* EMBEDDED PARM:

SR-2003

I Operand
120
I
I
I !PARAM
IPARAM
IABC_PARAM_DEFG
I
I MAC

I Operand
120
I
11
1
ABC1DEFG

5-122

I Comment
135
I
I; EDIT=ON
I; Appending a string
I
I; Concatenation off at call time
I
I

I Comment
135
I
I; Macro call
I ;
I ;

CAL processed the embedded parameter in macro ALPHA as follows:

1. CAL scans the string to identify the parameter. ABC cannot be a
parameter, because the underscore character is not defined as an
identifier character for a parameter.

2. CAL identifies PARAM as the parameter when the second underscore
character is encountered.

3. 1 is substituted for PARAM producing the string ABC_1_DEFG.

4. If editing is enabled, the underscore characters are removed and
the resulting string is ABC1DEFG.

If editing is disabled, the string is ABC 1 DEFG.

5. CAL processes the statement.

5.12.3 OPDEF - OPERATION DEFINITION

An opdef (operation definition) identifies a sequence of statements that
is called at a later point in the source program by a single instruction;
the opdef call. Each time the opdef call occurs, the definition sequence
is placed in the source program.

Opdefs resemble machine instructions and can be used to define new
machine instructions or to redefine current machine instructions.
Machine instructions map into opcodes that represent some hardware
operation. When an operation is required that is not available through
the hardware, an opdef can be written to perform that operation. When
the opdef is called, the opdef maps into the opdef definition body and
the operation is performed by the defined sequence specified in the
definition body.

Any existing CAL machine instruction can be replaced with an opdef.
Although opdef definitions should conform to meaningful operations that
are supported by the hardware, they are not restricted to such operations.

The opdef definition sets up the parameters into which the arguments
specified in the opdef call are substituted. Opdef parameters are always
expressed in terms of registers or expressions. The opdef call passes
arguments to the parameters in the opdef definition. Formal parameters
can be specified in any form that is permitted by the BNF. The syntax
for the opdef definition and the opdef call are identical with two
exceptions:

SR-2003 5-123

• The complex register has been redefined for the opdef definition
prototype statement as follows:

complex-register ::=
complex-register-mnemonic.register-parameter

• Expressions have been redefined for the opdef definition prototype
statement as follows:

expression ::= "@"[O to 7 character expression-parameter]

These two exceptions allow parameters to be specified in the place of
registers and expressions for an opdef definition.

The syntax defining a register-parameter and an expression-parameter is
case sensitive. Every character identifying the parameter on the opdef
prototype statement must identically match every character in the body of
the opdef definition. This match includes the case (uppercase,
lowercase, or mixed case) of each character.

Since the opdef can accept arguments in many forms, it can be more
flexible than a macro. Opdefs place a greater responsibility for parsing
arguments on the assembler. When a macro is specified, the
responsibility for parsing arguments is placed on the user in many
cases. Parsing a macro argument can involve numerous micro
substitutions. These substitutions greatly increase the number of
statements that are required to perform a similar operation with an opdef.

Defined sequences (macros, opdefs, dups, and echos) are costly in terms
of assembler efficiency. As the number of statements in a defined
sequence increases, the speed of the assembler decreases. This decrease
in speed is directly related to the number of statements that are
expanded and the number of times a defined sequence is called.

Limiting the number of statements in a defined sequence improves the
performance of the assembler. In some cases, an opdef can perform the
same operation that is performed by a macro and use fewer statements in
the process.

The following example demonstrates that an opdef can accept many
different kinds of arguments from the opdef call.

ILocation Result Operand Comment
11 10 20 35
I
IMANYCALL OPDEF

I A.REG1 A.REG2!A.REG3 Opdef prototype statement

I S1 A.REG2

I S2 A.REG3

I S3 S1!S2

I A.REG1 S3 Or of registers S1 and S2
IMANYCALL ENDM

SR-2003 5-124

Calls and expansions:

Location Result
1 10

A1
81
82
83
A.1 83
A.1
81
82
83
A.1 83
A.ONE
81
82
83
A.ONE
A1
81
82
83
A.l 83

I Operand
120

I
IA2!A3
IA.2
IA.3
181!82

IA.2!A.3
IA.2
IA.3
181!82

IA.TWO!A.THREE
IA.2
IA.3
181!82
83
IA.2!A.THREE
IA.2
I A. 3
ISl!82

;

I Comment
135

I
I; First call to opdef MANYCALL

I
I
I
Or of registers S1 and 82
I; Second call to Opdef MANYCALL

I
I
I
Or of registers S1 and 82
I; Third call to Opdef MANYCALL

I
I
I
; Or of registers S1 and 82
I; Fourth call Opdef MANYCALL

I
I
I
Or of registers S1 and 82

In the first and second calls to opdef MANYCALL, the arguments passed to
REG1, REG2, and REG3 are 1, 2, 3, respectively. In the third call to
opdef MANYCALL, the arguments passed to REGl, REG2, and REG3 are ONE,
TWO, and THREE, respectively. The fourth call to opdef MANYCALL
demonstrates that the form of the arguments can vary within one call to
an opdef as long as they take a form that is permitted by the BNF. The
arguments passed REGl, REG2, and REG3 in the fourth call are 1, 2, and
THREE, respectively.

The following example demonstrates how an opdef can be used to limit the
number of statements required for a defined sequence.

8R-2003 5-125

Location Result
1 10

MACRO
$IF

$IF ENDM

$IF

$ELSE

$ENDIF

Operand Comment
20 35

REG1,COND,REG2 Macro prototype statement

S6,EQ,S.3 Macro call

Parsing the parameters (S6,EQ,S3) passed to the definition requires many
micro substitutions within the definition body. These micros increase
the number of statements within the definition body.

The same function is performed in the following example, but an opdef is
specified instead of a macro. In this instance, specifying an opdef
rather than a macro reduces the number of statements required for the
function.

Since an opdef is called by its form, it is more flexible than a macro in
accepting arguments. The opdef expects to be passed two S registers and
the EQ mnemonic. The arguments for the registers can be specified in a
number of ways and still be recognized as S register arguments by the
opdef.

I Locationl Result
11 110

I I
I lopdef
lexample I$if
1_* Register1:
1_* Register2:
lexample lendm
I Ilist

SR-2003

I Operand I Comment
120 135

Is.regl,eq,s.reg2 Opdef definition statement
Ireg1 I
Ireg2 I
I I
Imac I

5-126

Calls and expansions:

I Location I Result
11 11Q
I I
I I$if
1* Register1:
1* Register2:

6
3

I Operand I Comment
120 135

I
Is6,eq,s.3

An opdef is defined as global if it occurs within the global definitions
part of a program segment. Opdef definitions are local if they occur
within a program module (an IDENT, END sequence). A global definition
can be redefined locally, but the global definition is reenabled and the
local definition is discarded at the end of the program module. A global
definition can be referenced anywhere within an assembler program after
it has been defined.

The OPDEF pseudo instruction can be specified anywhere within a program
segment. If the OPDEF pseudo instruction is found within a definition,
it is defined. If the OPDEF pseudo instruction is found within a
skipping sequence, it is skipped and is not recognized as a pseudo
instruction.

In the following example, the operand and comment fields of the expanded
line are shifted two positions to the left (difference between reg and 1):

ILocationlResult I Operand
11 110 120
I I I
I example lopdef I
I Is.reg I@exp
I la.reg I@exp
I example lendm I
I Ilist Imac

Call and expansion:

ILocationlResult I Operand
11 110 120
I I I
I Is1 12
I la.1 2

5.12.3.1 Opdef definition

I Comment
135

I
I
I; Prototype statement
I; New machine instruction
I ;
I

I Comment
135
I
I; Opdef call

; New machine instruction

The OPDEF pseudo instruction is the first statement of an opdef
definition. An opdef is constructed much like a macro. However, an
opdef is defined not by a functional name like a macro but by the form of
the opdef statement.

SR-2003 5-127

Opdef syntax is uniquely defined on the result field alone in which case
the operand field is not specified or on the result and operand fields.
The OPDEF prototype permits up to three subfields within the result and
operand fields. At least 1 field must be present within the result
field. No fields are required in the operand field.

The syntax for each of the subfields within the result and operand fields
of the opdef prototype statement is identical. There are no special
syntax forms for any of the subfields. The rules that apply for the
first subfield in the result field apply to the remainder of the
subfields within the result field and to all of the subfields within the
operand field.

Format:

ILQCatiQnlReSylt IQ~erand ICQmment

I I I I
I name IOPDEF 1 1 ; OPDEF macro header
1 [loc] Idefsynres Idefsynop I ; Prototype statement

I I LOCAL 1 [name]{","[name]} ; Optional LOCAL pseudos

1 I • I . 1 ;

1 1 • 1 • I ; Definition body

1 I • 1 • 1 ;
1 name IENDM 1 1 ; Definition end

ILQCatiQnlReSylt IOoerand ICQmment

1 1 1
1 name
1 [loc]
I
I
1

I
I name

name

loc

defsynres

SR-2003

lopdef
Idefsynres
I local
I .
I .
I .
lendm

I; OPDEF macro header
Idefsynop I; Prototype statement
1 [name]{","[name]} ; Optional LOCAL pseudos
1 • I ;
I. I; Definition body
I • I ;
1 I; Definition end

OPDEF definition name. name identifies the definition
and has no association with functionals appearing in the
result field of instructions. name must match the name
in the location field of the ENDM pseudo instruction, which
ends the definition.

Optional location field parameter; loc must meet the
requirements for names as described in the BNF. For a
description of names, see subsection 4.2.

Definition syntax for the result field; can be one, two, or
three subfields specifying a valid result field syntax.
The result field must be a symbolic.

5-128

Valid result subfields for opdefs can be one of the
following:

• Initial-register
• Mnemonic
• Initial-expression

Initial-register; to specify an initial-register on the
opdef prototype statement, use one of the four syntax forms
for initial-registers described below:

initial-register ::=
[prefix] [register-prefix] register
[register-separator[register-ending]]

initial-register ::=
[prefix] [register-prefix] register
[register-expression-separator [register-ending]]

initial-register ::=
[prefix] [register-prefix] register
[register-expression-separator [expression-ending]]

initial-register ::=
[prefix] [register-prefix] register
[special-register-separator [register-ending]]

Optional prefix; can be "(" or "["

Optional register-prefix; case insensitivet and one of
the following:

"<" ">" "#<" "#>" "i" "#F" "#f" "#H"
"#h" "#1" "#i" "#P" "#p" "#Q" "#q" "#R"
"#r" "#Z" "#z" "+" "+F" "+f" "+H" "+h"
"+1" "+i" "+P" "+p" "+Q" "+q" "+R" "+r"
"+Z" "+z" " - " " -F" " -f" " -H" " -h" " -I"
"-i" " -P" " _pIt " -Q" " -q" " -R" " _rtf " -Z"
"-z" "*" "*F" "*f" "*H" "*h" "'III" "'IIi"
"'liP" "*p" "*Q" "*q" "*R" "*r" "'liZ" "'liz"
"I" "IF" "If" "/H" "/h" "II" "Ii" "/P"

"/p" "/Q" "/q" "/R" "/r" "IZ" "/z" "F"
"f" "H" "h" "I" "i" "P" "p" "Q"
"q" "R" "r" "Z" "z"

t When a register-prefix is specified on an opdef call, it is recognized
by the opdef definition without regard to the case (uppercase or
lowercase) in which it was entered.

SR-2003 5-129

Required register; a simple-register or a
complex-register.

simple-register
"CA" I "CE" I "CI" "CL" I "MC" I "RT" I "SB" I

"XA"t "SM" I "VL" I "W"

The complex-register has been redefined for the opdef
prototype statement as follows:

register-designator ::=
complex-register-mnemonic.register-parameter

cornplex-register-mnemonic; case insensitivett
and one of the following:

"A" "B" I "SB" I "SM" I "SR" I "ST" I "s" I

"T" "V"

register-parameter is a one to eight character
identifier that is composed of
identifier-characters.

optional register-separator; case insensitivett and
one of the following:

"+F" "+f" "+H" u+h" "+1" "+i" "+P"
"+p" "+Q" "+q" "+R" "+r" "+Z" "+z"
" -F" "_f" " -H" " _hIt " -I" "-i" " -P"
" -pit "-Q" It -q" ., -R" " -r" " -Z" " _zIt

"*F It It*f" "*H" "*h" "*1" "*i" "*p"
"*p" "*Q" "*q" "*R" "*r" "*Z" "*z"
"IF" "If" "/H" "/h" "II" "Ii" "/P"
"/p" "/Q" "/q" "/R" "/r" "/Z" "/z"

Optional register-expression-separator; can be one
of the

")"
">"

following:

"]"
"+"

"&.,

"-"
"! " "'" I "i<" I "i>" I "<" I

"*" "I"

t When a simple-register or a complex-register-mnemonic is specified on
an opdef call, it is recognized by the opdef definition without regard
to the case (uppercase, lowercase, or mixed case) in which it was
entered.

tt When a register-separator is specified on an opdef call, it is
recognized by the opdef definition without regard to the case
(uppercase or lowercase) in which it was entered.

SR-2003 5-130

SR-2003

Optional special-register-separator; specified as
follows: "i"

Optional register-ending; to specify a
register-ending, use one of the three syntax forms
described below:

register-ending .. -
registerl [register-separator [register2 [
suffix 111

register-ending ::=
register [register-expression-separator [
register-or-expression [suffix 1 1 1

register-ending ::=
registerl [special-register-separator [
register2 [suffix 1] 1

Required register1; see register under
initial-register.

Optional register-separator; see
register-separator under initial-register.

Optional register2; see register under
initial-register.

Optional suffix; see suffix under
initial-register.

Required register; see register under
initial-register.

Optional register-expression-separator; see
register-express ion-separator under
initial-register.

Optional register-or-expression; can be a
register or an expression.

Required register if expression is not
designated; see register under initial-register.

Required expression if register is not
specified. Expression has been redefined for
the opdef prototype statement as follows:

expression ::= expression-parameter

5-131

SR-2003

expression-parameter is an identifier that
must begin with the @. The @ can be followed
by from zero to seven identifier-characters.

special-register-separator; specified as
follows: "#"

Optional expression-ending; specified as follows:

expression-ending ::=
expression [expression-separator [
register-or-expression [suffix]]]

Required expression. Expression has been
redefined for the opdef prototype statement as
follows:

expression ::= expression-parameter

expression-parameter is an identifier that
must begin with the @. The @ can be followed
by from zero to seven identifier-characters.

Optional expression-separator; one of the
following:

")" I "]" I "&" I "!" I "\" I "=" I "#<" I "#>"

Optional register-or-expression; can be a
register or an expression.

Required register if expression is not
designated; see register under initial-register.

Required expression if register is not
specified; see expression.

Optional suffix; see suffix under
initial-register.

Mnemoni6; one to eight character identifier that must begin
with a letter (A-Z or a-z), a decimal digit (0-9), or one
of the fOllowing characters: $, %, &, ., 'Ie, +, -, ., /, :,

=, ?, \, " I, or -. Optional characters 2 through 8 can
be @ or any of the above-mentioned characters.

5-132

Initial-expression; to specify an initial-expression on the
opdef prototype statement, use one of the following syntax
forms for initial-expressions:

initial-expression ::=
[prefix] [expression-prefix] expression
[expression-separator [register-ending]]

initial-expression ::=
[prefix] [expression-prefix] expression
[expression-separator [expression-ending]]

initial-expression ::=
expression [expression-separator [register-ending]]

initial-expression ::=
expression [expression-separator [expression-ending]]

Optional prefix; one of the following: "(" or "["

Optional expression-prefix; one of the following:

"<" I ">" I "#<" I "#>"

Required expression; redefined for the opdef prototype
statement as follow~:

expression ::= expression-parameter

expression-parameter is an identifier that must
begin with the @. The @ can be followed by from zero
to seven identifier-characters.

Optional expression-separator; one of the following:

")" I "]" I "&" I "!" I "\" I "<" I ">" I "#<" I "#>"

Optional register-ending. See register-ending under
initial-register.

Optional expression-ending. See expression-ending
under initial-register.

defsynop Definition syntax for the operand field; can be zero,
one, or two subfields specifying a valid operand field
syntax. If a subfield exists in the result field, the
first subfield in the operand field must be a symbolic.

SR-2003

The definition syntax for the operand field of an opdef is
the same as the definition syntax for the result field of
an opdef. See defsynres for a description of the
definition syntax for subfields.

5-133

5.12.3.2 Opdef calls

An opdef definition is called by an instruction that matches the syntax
of the result and operand fields as specified in the opdef prototype
statement.

The arguments on the opdef call are passed to the parameters on the opdef
prototype statement. The parameters on the opdef call can be entered in
any form that is consistent with the BNF. The special syntax for
registers and expressions that was required on the opdef definition does
not extend to the opdef call. Anything that is permitted by the BNF is
permitted on the opdef call.

Format:

I Location! Result !Operand

I I I
Iloc-arg Icallsynres Icallsynop

locarg Optional location field argument. locarg must be
terminated by a space. locarg can be any character up to
but not including a space.

If a location field parameter is specified on the opdef
definition. A matching location field parameter can be
specified on the opdef call. locarg is substituted
wherever the location field parameter occurs in the
definition. If no location field parameter is specified in
the definition, this field must be empty.

callsynres

SR-2003

Result field syntax for the opdef call. callsynres can
consist of one, two, or three subfields and must have the
same syntax as specified in the result field of the opdef
definition prototype statement. The result field must be a
symbolic as described in the BNF in appendix A, Instruction
Syntax.

The syntax of the result field call is the same as the
syntax of the result field definition with two exceptions.
The special syntax rules that are in effect for registers
and expressions on the opdef definition do not apply to the
opdef call. The syntax for registers and expressions used
on the opdef call is the same as the syntax for registers
and expressions stated in the BNF.

5-134

callsynop

The subfields in the result field on the opdef call can be
specified with one of the following:

• Initial-register
• Mnemonic
• Initial-expression

For a description of the syntax for the result field of the
opdef call, see the syntax for the result field of the
opdef definition.

Operand field syntax for the opdef call. callsynop can
consist of zero, one, two, or three subfields and must have
the same syntax as specified in the operand field of the
opdef definition prototype statement. The operand field
must be a symbolic as described in the BNF in appendix A,
Instruction Syntax.

The syntax of the operand field call is the same as the
syntax of the operand field definition with two
exceptions. The special syntax rules that are in effect
for registers and expressions on the opdef definition do
not apply to the opdef call. The syntax for registers and
expressions used on the opdef call is the same as the
syntax for registers and expressions stated in the BNF.

The subfields in the operand field on the opdef call can be
specified with one of the following:

• Initial-register
• Mnemonic
• Initial-expression

For a description of the syntax for the operand field of
the opdef call, see the syntax for the result field of the
opdef definition.

The following rules apply for opdef calls:

• The character strings callsynres and callsynop must be exactly
as specified in the opdef definition.

• An expression must appear whenever an expression @exp is indicated
in the prototype statement. The actual argument string is
substituted in the definition sequence wherever the corresponding
formal parameter @exp occurs.

SR-2003 5-135

• The actual argument string consisting of a
complex-register-mnemonic followed by a "." followed by a
register-parameter. A register-designator followed by a
register-parameter must appear wherever the register-designator
A.register-parameter, B.register-parameter,
SB.register-parameter, S.register-parameter,
T.register-parameter, ST. register-parameter,
SM. register-parameter, or v.register-parameter, respectively,
appeared in the prototype statement.

Examples:

If the register-parameter is of the form octal-integer, the
actual argument is the octal-integer part. The octal-integer
is restricted to four octal digits.

If the register-parameter is of the form "." integer-constant
or "." symbol, the actual argument is an integer-constant or
a symbol.

1. The following opdef definition illustrates a scalar floating-point
divide sequence.

Location Result
1 10

fdv
L

L

opdef
s.r1
errif
errif

s.r1
s.r2
s.r3
s.r1

fdv endm

Operand
20

s.r2/fs.r3
rl,eq,r2
rl,eq,r3

Ihs.r3
s.r2*fs.rl
s.r3*is.rl
s.r2*fs.r3

Opdef call and expansion:

I Location Result Operand
11 10 20

I
la s4 s3/fs2

I errif 4,eq,3

I errif 4,eq,2
la s.4 Ihs.2

I s.3 s.3*fs.4

I s.2 S.2*is.4

I s.4 S.3*fs.2

SR-2003 5-136

Comment
35

Scalar floating-point
divide prototype statement

Comment
35

; Divide S3 by S2, result to S4

2. The following opdef definition, call, and expansion define a
conditional jump where a jump occurs if the A register values are
equal.

Opdef definition:

ILocationlResult
11 110
I I
IJEQ IOPDEF
IL IJEQ
IL lAO
1_* IJAZ
IJEQ I ENDM
I ILIST

I Operand
120
I
I
IA.A1,A.A2,@TAG
IA_A1-A_A2
I@TAG
I
I MAC

I Comment
135
I
I
I; Opdef prototype statement

I
I; Expression is expected.

I
I

Opdef call and expansion. The expansion starts on line 2.

ILocationlResult
11 110
I I
I IJEQ
I AD
1* JAZ

I Operand
120
I
IA3,A6,GO
A3-A5
GO

I Comment
135
I
I; Opdef call

I
Expression is expected.

3. The opdef in the following example demonstrates how an existing
machine instruction can be redefined by an opdef.

ILocationlResult
11 110
I I
IEXAMPLE IOPDEF
I IS.REG
I I A.REG
IEXAMPLE IENDM
I ILIST

I Operand
120
I
I
I@EXP
I@EXP

I
I MAC

Opdef call and expansion:

ILocationlResult
11 110
I I
I I S1
I A.1

SR-2003

I Operand
120
I
12
2

5-137

I Comment
135
I
I ;
I; Opdef prototype instruction
I; New machine instruction
I ;
I ;

I Comment
135
~
I; Opdef call
; New machine instruction

4. The following example demonstrates how the expansion of an opdef is
affected when the opdef call does not include a label that was
specified in the opdef definition.

I Locationl Result IO:eerand I Comment
11 110 120 135
I I I I
Iregchg lopdef I I
Ilbl Is.regl Is.reg2 I ; Opdef prototype statement
Ilbl 1= 1* I ; Left-shifted if lbl is left
I Is.reg2 Is.regl I ; Register S2 gets register S1
Iregchg lendm 1 I
Ilist Imac I I

Opdef call and expansion:

ILocationlResult IO:eerand I Comment
11 110 120 135
I I I

Is2
I

I Isl I; Opdef call
I = * Left-shifted if lbl is left off

Register S2 gets register Sl I s.2 s.l

SR-2003

NOTE

The location field parameter was omitted on the opdef
call in the previous example. The result and operand
fields of the first line of the expansion were shifted
left three character positions because a null argument
was substituted for the 3-character parameter, lbl.

If the old format is used, only one space appears
between the location field parameter and result field
in the macro definition. If a null argument is
substituted for the location parameter, the result
field is shifted into the location field in column 2.
Therefore, at least two spaces should always appear
between a parameter in the location field and the first
character in the result field in a definition.

If the new format is used, the result field is never
shifted into the location field.

5-138

off

5. The following example illustrates the case insensitivity of the
register and register-prefix.

I LocationlResult IOEerand 1 Comment
11 110 120 135
I I I I
I CASE IOPDEF I I
I IS1 I#Pa2 I ; Prototype statement
I I . I . I
I I • I • I
I I . I • I
I CASE IENDM I I

Opdef calls:

I Location Result °Eerand Comment
11 10 20 35
I
I Sl #pa2 Recognized by CASE
I Sl #Pa2 Recognized by CASE
I Sl #pA2 Recognized by CASE
I Sl #PA2 Recognized by CASE
I sl #pa2 Recognized by CASE
I sl #Pa2 Recognized by CASE
I s1 #pA2 Recognized by CASE
I sl #PA2 Recognized by CASE

5.12.4 DUP - DUPLICATE CODE

The DUP pseudo instruction introduces the definition of a sequence of
code that is assembled repetitively immediately following the definition.
The dup sequence is assembled the number of times specified on the DUP
pseudo instruction. The dup sequence to be repeated consists of
statements following the DUP pseudo instruction and any optional LOCAL
pseudo instructions. Comment statements are ignored. The dup sequence
ends when the statement count is exhausted or when ENDDUP with a matching
location field name is encountered.

Only one type of formal parameter is accepted within a DUP and must be
specified with the LOCAL pseudo.

The DUP pseudo instruction can be specified anywhere within a program
segment. If the DUP pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the DUP
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

SR-2003 5-139

Format:

ILocation !Result !Operand

I I I
lexpression[","[count]] I [dupname] I DUP

I [dupname] I dup lexpression[","[count]]

dupname

expression

count

SR-2003

Optional name of the dup sequence; required if the count
field is null or missing. name must match an ENDDUP name
if no count field is present. The sequence field in the
DUP pseudo itself represents the nested dup level and
appears in columns 89 and 90 on the listing. For a
description sequence field nest level numbering, see
subsection 5.12.1, Similarities among defined sequences.

dupname must meet the requirements for names as described
in the BNF. For a description of names, see subsection 4.2.

An absolute expression with a positive value specifying the
number of times to repeat the code sequence. All symbols,
if any, must be previously defined. If the current base is
mixed, octal is used for the expression. If the value is
0, the code is skipped. A STOPDUP can be used to override
the given expression.

expression must meet the requirements for expressions as
described in the BNF. For a description of expressions,
see Expressions in subsection 4.7.

Optional absolute expression with positive value specifying
the number of statements to be duplicated. All symbols, if
any, must be previously defined. If the current base is
mixed, octal is used for the expression.

LOCAL pseudo instructions and comment statements (* in
column 1) are ignored for the purpose of this count.
Statements are counted before expansion of nested macro or
opdef calls or dup or echo sequences.

count must meet the requirements for expressions as
described in the BNF. For a description of expressions,
see subsection 4.7.

5-140

Examples:

1. In the following example, the number of dups is 3 and the number of
statements that are included in the dup definition is 5 :

I LocationlResult I Operand I Comment
11 110 120 135
I I I I
I IDUP 13,5 I ;
I I LOCAL ISYM1,SYM2 I; LOCAL pseudo; not counted
1* Asterisk comment; not counted I
I IS1 11 I; First statement in definition
1* Asterisk comment; not counted I
I 1 INCLUDE I ALPHA I; INCLUDE pseudo; not counted

File ALPHA:

I Location 1 Result I Operand I Comment
11 110 120 135
I I I I
1 IS2 13 I; Second statement in definition
I IS4 14 I; Third statement in definition
1* Asterisk comment; not included I
I ISS 15 I; Fourth statement in definition
I IS6 16 I; Fifth statement in definition

2. The following two con pseudos are duplicated three times immediately
following the definition.

1 Location 1 Result 1 Operand 1 Comment
11 110 120 135
I I I I
I Ilist Idup I
I example Idup 13 I ; Definition
I Icon 11 I
I Icon 12 I
I example lenddup I I

Expansion:

I LocationlResult 1 Operand I Comment
11 110 120 135
I I I I
I Icon 11 I
I Icon 12 I
I Icon 11 I
I Icon 12 I
I Icon 11 I
I Icon 12 I

SR-2003 5-141

5.12.5 ECHO - DUPLICATE CODE WITH VARYING ARGUMENTS

The ECHO pseudo instruction introduces the definition of a sequence of
code that is assembled zero or more times immediately following the
definition. On each repetition, the actual arguments are substituted for
the formal parameters until the longest argument list is exhausted. Null
strings are substituted for the formal parameters once shorter argument
lists are exhausted. The echo sequence to be repeated consists of
statements following the ECHO pseudo instruction and any optional LOCAL
pseudo instructions. Comment statements are ignored. The echo sequence
ends with an ENDDUP that has a matching location field name.

The STOPDUP pseudo instruction can be used to override the repetition
count determined by the number of arguments in the longest argument list.

The ECHO pseudo instruction can be specified anywhere within a program
segment. If the ECHO pseudo instruction is found within a definition, it
is defined and is not recognized as a pseudo instruction. If the ECHO
pseudo instruction is found within a skipping sequence, it is skipped and
is not recognized as a pseudo instruction.

Format:

ILocation!Result !Operand

I I I
Idupname IECHO
Idupname lecho

I [name"="argument]{"," [name"="argument]}
I [name"="argument]{"," [name"="argument]}

dupname

name

Required name of the echo sequence. dupname must match
the location field name in the ENDDUP instruction that
terminates the echo sequence.

dupname must meet the requirements for names as described
in the BNF. For a description of names, see subsection 4.2.

Formal parameter name; must be unique. There can be none,
one, or more formal parameters.

name must meet the requirements for names as described in
the BNF. For a description of names, see subsection 4.2.

argument List of actual arguments. The list can be a single
argument or a parenthesized list of arguments.

SR-2003

A single argument is any ASCII character up to but not
including the element separator, a space, or a semicolon
(new format only). The first character cannot be a left
parenthesis.

5-142

Examples:

A parenthesized list can be a list of one or more actual
arguments. Each actual argument can be one of the
following:

• An ASCII character string can contain embedded
arguments. If, however, an ASCII string is intended
the first character in the string cannot be a left
parenthesis. The following is a legal ASCII string:
4(5)

The following is an illegal ASCII string: (5)4(5)

• A null argument; an empty ASCII character string.

• An embedded-argument that contains a list of arguments
enclosed in matching parentheses. An embedded
argument can contain blanks or commas and matched
pairs of parentheses. The outermost parentheses are
always stripped from an embedded argument when an echo
definition is expanded.

An embedded-argument must meet the requirements for
embedded arguments as described in the BNF. For a
description of embedded-arguments, see subsection 4.7,
Expressions.

1. In the following example, the ECHO pseudo is expanded twice
immediately followng the definition:

I Locationl Result I Operand I Comment
11 110 120 135

I I I
I I LIST IDUP I
IEXAMPLE IECHO IPARAM=(1,3),PARAM=(2,4) ; Definition
I ICON IPARAM1 I; Gets 1 and 3
I ICON IPARAM2 I; Gets 2 and 4
IEXAMPLE IENDDUP I I

Expansion:

ILocationlResult I Operand I Comment
11 110 120 135

I I I I
I ICON 11 I ; Gets 1 and 3
I ICON 12 I ; Gets 2 and 4
I ICON 13 I ; Gets 1 and 3
I ICON 14 I ; Gets 2 and 4

SR-2003 5-143

2. In the following example, the echo pseudo is expanded once
immediately following the definition with 2 null arguments.

ILocationlResult
11 110

I I
I Ilist
lexample lecho

I I
1_* Parameter 1 is:
1_* Parameter 2 is:
lexample lenddup

Expansion:

ILocationlResult
11 110

I 1
1* Parameter 1 is:
1* Parameter 2 is:

I Operand I Comment
120 135

I I
Idup I
Iparaml=,param2=() ; ECHO with two null
I I; parameters
'paraml'
'param2'

I

I Operand
120

I
' ,
' ,

1

I
1

I Comment
135

1
1
1

5.12.6 ENDM - END MACRO OR OPDEF DEFINITION

The body of a macro or opdef definition is terminated by an ENDM pseudo
instruction. ENDM has no effect if used within a MACRO or OPDEF
definition with a different name.

The ENDM pseudo instruction can only be specified within a macro or opdef
definition. If the ENDM pseudo instruction is found within a skipping
sequence, it is skipped and is not recognized as a pseudo instruction.

Format:

ILocationlResult I Operand

I I 1

Ifunc IENDM 1 ignored
Ifunc lendm 1 ignored

func

SR-2003

Name of the macro or opdef definition sequence, must be a
valid identifier or the equal sign. func must match the
functional appearing in the result field of the macro
prototype or the location field name in an OPDEF
instruction.

5-144

If the ENDM pseudo instruction is encountered within a
definition but func does not match the name of an opdef
or the functional of a macro, the ENDM instruction is
defined and does not terminate the opdef or macro
definition in which it is found.

func must meet the requirements for functionals as
described in the BNF. For a description of functionals,
see appendix A, Instruction Syntax.

5.12.7 EXITM - PREMATURE EXIT OF A MACRO EXPANSION

The EXITM pseudo immediately terminates the innermost nested macro or
opdef expansion, if any, caused by either a macro or an opdef call. If
files were included within this expansion and/or one or more dup or echo
expansions are in progress within the innermost macro or opdef expansion,
they will also be terminated immediately. If such an expansion does not
exist, the EXITM pseudo issues a caution" level listing message and does
nothing.

The EXITM pseudo instruction can be specified anywhere within a program
segment. If the EXITM pseudo instruction is found within a definition,
it is defined and is not recognized as a pseudo instruction. If the
EXITM pseudo instruction is found within a skipping sequence, it is
skipped and is not recognized as a pseudo instruction.

Format:

ILocationlResult I Operand

I I I
lignored IEXITM I ignored
lignored lexitm I ignored

Example:

In the following macro call, the macro expansion is terminated
immediately as a result of the EXITM pseudo. Therefore, the second
comment is not included as part of the expansion.

SR-2003 5-145

I Locationl Result Operand Comment
11 110 20 35
I I
I Imacro
I I alpha
1_* First comment
I lexitm
1_* Second comment
I alpha lendm
I Ilist mac

Call and expansion:

I Locationl Result I Operand I Comment
11 110 120 135
I I I I
I I alpha I I ; Macro call

1* First comment I I
I lexitm I I

5.12.8 ENDDUP - END DUPLICATED CODE

The ENDDUP pseudo instruction ends the definition of the code sequence to
be repeated. An ENDDUP pseudo instruction terminates a dup or echo
definition with the sarne name. ENDDUP has no effect if used within a DUP
or ECHO definition with a different location field name. ENDDUP has no
effect on a dup definition that is terminated by a statement count.

The ENDDUP pseudo instruction is restricted to definitions (DUP or
ECHO). If the ENDDUP pseudo instruction is found on a MACRO or OPDEF
definition, it is defined and is not recognized as a pseudo instruction.
If the ENDDUP pseudo instruction is found within a skipping sequence, it
is skipped and is not recognized as a pseudo instruction.

Format:

ILocationlResult I Operand
I I I
Idupname IENDDUP I ignored
Idupname lenddup I ignored

dupname Required name of a dup sequence. name must meet the
requirements for names as described in the BNF. For a
description of names, see subsection 4.2.

SR-2003 5-146

5.12.9 NEXTDUP - PREMATURE EXIT OF THE CURRENT ITERATION OF A
DUPLICATION EXPANSION

The NEXTDUP pseudo stops the current iteration of a duplication sequence
indicated by a DUP or an ECHO pseudo instruction. Assembly of the
current repitition of the dup sequence is terminated immediately and the
next repitition, if any, is begun.

Assembly of the current iteration of the innermost duplication expansion
with a matching location field name is terminated immediately; however,
if the location field name is not present, assembly of the current
iteration of the innermost duplication expansion is terminated
immediately.

If other dup, echo, macro, or opdef expansions were included within the
duplication expansion to be terminated, these expansions are also
terminated immediately. In addition, if a file is being included at
expansion time within the duplication expansion to be terminated, the
inclusion of that file is terminated immediately.

The NEXTDUP pseudo instruction can be specified anywhere within a program
segment. If the NEXTDUP pseudo instruction is found within a definition,
it is defined and is not recognized as a pseudo instruction. If the
NEXTDUP pseudo instruction is found within a skipping sequence, it is
skipped and is not recognized as a pseudo.

Format:

ILocation !Result !Operand

I I I
I [dupname]INEXTDUP
I [dupname]lnextdup

I ignored
I ignored

dupname Name of a dup sequence. If the name is present but does
not match any existing duplication expansion, a caution
level listing messages is issued and the pseudo does
nothing. If the name is not present and a duplication
expansion does not currently exist, a caution level listing
message is issued and the pseudo does nothing.

5.12.10 STOPDUP - STOP DUPLICATION

The STOPDUP pseudo instruction stops duplication of a code sequence
indicated by a DUP or ECHO pseudo instruction. STOPDUP overrides the
repetition count. Assembly of the current dup sequence is terminated
immediately. STOPDUP terminates the innermost dup or echo sequence with
the same name as found in the location field. If there is no location

SR-2003 5-141

field name, STOPDUP will terminate the innermost dup or echo sequence.
STOPDUP does not affect the definition of the code sequence to be
duplicated.

Assembly of the innermost duplication expansion with a matching location
field name is terminated immediately; however, if the location field name
is not present, assembly of the innermost duplication expansion is
terminated immediately. If other dup, echo, macro, or opdef expansions
were included within the duplication expansion to be terminated, these
expansions are also terminated immediately. In addition, if a file is
being included at expansion time within the duplication expansion to be
terminated, the inclusion of that file is terminated immediately.

The STOPDUP pseudo instruction can be specified anywhere within a program
segment. If the STOPDUP pseudo instruction is found within a definition,
it is defined and is not recognized as a pseudo instruction. If the
STOPDUP pseudo instruction is found within a skipping sequence, it is
skipped and is not recognized as a pseudo instruction.

Format:

ILocation IResult

I I
/ [dupname]/STOPDUP
/ [dupname]/stopdup

I Operand

/
/ignored
I ignored

dupname Name of a dup sequence. If the name is present but does
not match any existing duplication expansion, a caution
level listing message is issued and the pseudo does
nothing. If the name is not present and a duplication
expansion does not currently exist, a caution level listing
message is issued and the pseudo does nothing.

name must meet the requirements for names as described in
the BNF. For a description of names, see subsection 4.2.

Examples:

1. The following example uses a DUP pseudo instruction to define an
array with values 0, 1, and 2.

ILocationlResult
11 110

I I
IS 1=
I IDUP
I ICON

SR-2003

I Operand
120

I
IW.*
13,1
IW.*-S

I Comment
135

5-148

DUP expansion:

ILocationlResult
11 110

I I
I ICON
I ICON
I ICON

I Operand
120

I
IW.*-S
IW.*-S
IW.*-S

I Comment
135

2. The ECHO and DUP pseudo instructions define a nested duplication in
the following example.

Location Result Operand I Comment
1 10 20 135

I
ECHO ECHO Rl=(A,S),RJK=(B,T)
I SET 0 I
DUPI DUP 8 I
JK SET 0 I
DUPJK DUP 64 I

RI.l RJK.JK I
I

JK SET JK+l I
DUPJK ENDDUP I
I SET 1+1 I
DUPI ENDDUP I
ECHO ENDDUP I

ECHO and DUP expansion. (The following expansion is not generated by
CAL, but is included to illustrate the expansion of the previously
nested duplication expansion.)

SR-2003 5-149

Location Result
1 10

A.O

A.O

A.1

A.7
S.O

S.o

S.8

Operand
20

B.O

B.64

B.O

I .

B.64
T.O

T.64

T.64

Comment
35

; In the first call of the echo,
; the A and B parameters are

used.
; DUPJK generates the register
; A.O gets register B.O through
; register A.O gets register
; B.64 instructions.

; DUPI increments the
; A register from A.1 to A.7

for succeeding passes through
DUPJK. DUPJK generates
register A.i gets register

; B.O through register A.i
gets register B.64
instructions; where i is 1 to 7
In the second expansion of the
echo pseudo , the Sand T

; parameters are used.

DUPJK and DUPI generate the
same series of register

; instructions for the Sand T
; registers that were generated

for the A and B registers.

3. The STOPDUP pseudo instruction terminates duplication.

I Location
11
I
I
IT
IA
IT
I
IA
I
IA

SR-2003

Result
10

LIST
SET
DUP
SET
IFE
STOPDUP
CON
ENDDUP

Operand
20

DUP
o
1000
T+1
T,EQ,3,1

T

Comment
35

Terminate duplication when T=3

5-150

Expansion:

ILocationlResult IO:eerand I Comment
11 110 120 135
I I I I
IT ISET IT+1 I
I ICON IT 1
IT ISET IT+1 I
I ICON IT I
IT ISET IT+1 I
IA ISTOPDUP I I

4. The following example uses a STOPDUP pseudo instruction to
immediately terminate a DUP.

ILocationlResult IO:eerand I Comment
11 11Q 12Q 135
I I I I
IDNAME IDUP 13 I
1_* First comment I I
I ISTOPDUP I 1
1_* Second comment 1 I
IDNAME IENDUP 1 I

Expansion:

ILocationlResult IO:eerand I Comment
11 110 120 135
I I I I
1* First comment I I
I ISTOPDUP I I

5. The following example is similar to example four except that in this
example, NEXTDUP replaces STOPDUP. The current iteration is
terminated immediately when the NEXTDUP pseudo is encountered.

ILocationlResult IO:eerand 1 Comment
11 11Q 12Q 135
I I I I
IDNAME IDUP 13 I
1_* First comment I I
I INEXTDUP I I
1_* Second comment I I
IDNAME IENDUP I I

SR-2003 5-151

Expansion:

I Locationl Result I Operand I Comment
11 110 120 135

I I I I
1* First comment I I
I INEXTDUP I I
1* First comment I I
I INEXTDUP I I
1* First comment I I
I INEXTDUP I I

5.12.11 LOCAL - SPECIFY LOCAL UNIQUE CHARACTER STRING

The LOCAL pseudo instruction specifies unique character string
replacements within a program segment that are defined only within the
macro, opdef, dup, or echo definition. These character string
replacements are only known in the macro, opdef, dup, or echo at
expansion time. The most common usage of the LOCAL pseudo is for
defining symbols, but the LOCAL pseudo is not restricted to the
definition of symbols. Local pseudos within a macro, opdef, dup, or echo
header are not part of the macro definition.

On each macr%pdef call and each repetition of a dup or echo definition
sequence, the assembler creates a unique a-character string (commonly
used for the definition of symbols by the user) for each local parameter
and substitutes the created string for the local parameter on each
occurrence within the definition. The unique character string created
for local parameters has the form %%nnnnnn, where n is a decimal
digit.

Zero or more LOCAL pseudo instructions can appear in the header of a
macro, opdef, dup, or echo definition. The LOCAL pseudo instructions
must immediately follow the macro or opdef prototype statement or DUP or
ECHO pseudo instructions, except for intervening comment statements.

The LOCAL pseudo instruction can only be specified within a definition.
If the LOCAL pseudo instruction is found within a skipping sequence, it
is skipped and is not recognized as a pseudo instruction.

Format:

ILocationlResult

I I
lignored ILOCAL
lignored Ilocal

SR-2003

I Operand

I
I [name]{","[name]}
I [name]{","[name]}

5-152

name

Examples:

Formal parameters that must be unique and are to be
rendered local to the definition. name must meet the
requirements for names as described in the BNF. For a
description of names, see subsection 4.2.

1. The following example demonstrates that all formal parameters must be
unique.

I Location
11
I
I
I
I
I
I
I
I UNIQUE

Result
10

MACRO
UNIQUE
LOCAL

ENDM

Operand
20

PARM2
PARM1,PARM2

Comment
35

PARM2 is defined within UNIQUE
Error; PARM2 previously
defined as a parameter in the

; macro prototype statement.

2. The following example demonstrates how a unique character string is
generated for each parameter defined by the local pseudo.

Location Result
1 10

macro
string
local

param1 =
s1

param2 =
s2

string endm
list

SR-2003

Operand
20

param1,param2

1
param1

2
param2

mac

5-153

Comment
35

Not part of the definition
body

Register s1 gets the value
defined by paraml.

Register s2 gets the value
defined by param2.

Call and expansion:

I Location Result °Eerand I Comment
11 1Q ~Q IJ5
I I
I string I ;
1%%262144 = 1 I ;
I sl %%262144 I . Register sl gets the value ,
I I ; defined by param1.
1%%131072 = 2 I ;
I s2 %%131072 I . Register s2 gets the value ,
I I ; defined by param2.

The call to the macro string generates unique strings for paraml
(~%262144) and for param2 (%%131072).

5.12.12 OPSYN - SYNONYMOUS OPERATION

The OPSYN pseudo instruction defines an operation that is synonomous with
another macro or pseudo operation. The functional in the location field
is defined as being the same as the functional in the operand field. Any
pseudo instruction or macro can be redefined in this manner.

The functional in the location field can be a currently defined macro or
pseudo in which case the current definition is replaced and a message is
issued informing you that a redefinition has occurred.

An operation defined by OPSYN is global if the OPSYN pseudo occurs within
the global part of an assembler segment, and it is local if the OPSYN
pseudo appears within an assembler module of a segment. Global
operations can be referenced in any program segment following the
definition. Every local operation is removed at the end of a program
module, making any previous global definition with the same name
available again.

If the OPSYN pseudo instruction occurs within a definition, it is defined
and is not recognized as a pseudo instruction. IF the OPSYN pseudo
instruction is found within a skipping sequence, it is skipped and is not
recognized as a pseudo instruction.

Format:

ILocationlResult 1 Operand

I I I
Ifunc1 IOPSYN I [func2]
I func1 lopsyn I [func2]

SR-2003 5-154

funcl

func2

Examples:

Required functional name; a valid functional. The name of
a defined operation such as a pseudo instruction or macro,
or the equal sign. funcl must not be blank.

funcl must meet the requirements for functionals as
described in the BNF. For a description of functionals,
see appendix A, Instruction Syntax.

Optional functional name The name of a defined operation
or the equal sign. If func2 is blank, funcl becomes a
do-nothing pseudo instruction.

1. The following macro definition includes the OPSYN pseudo instruction
that redefines the IDENT pseudo instruction.

OPSYN definition:

Location Result
1 10

IDENTT OPSYN
MLEVEL

MACRO
IDENT
LIST

NAME LIST

IDENTT
IDENT ENDM

Operand
20

IDENT
ERROR

NAME
LIS,OFF,NXRF
LIS,ON,XRF

NAME

Comment
35

Eliminates the warning error
that is issued because the
IDENT pseudo is redefined

Processed if LIST=NAME on CAL
control statement

OPSYN call and expansion. The expansion starts on line 2.

ILocationlResult 1 Operand 1 Comment

11 110 I~O 135
1 1 1 I
I IIDENT IA I
I ILIST ILIS,OFF,NXRF I
IA LIST LIS,ON,XRF I ; Process if LIST=NAME on CAL

I I I 1 ; control statement

I IIDENTT IA 1

SR-2003 5-155

2. Macro first illustrates that a functional can be redefined a number
of times.

I Location Result
11 10

I
I macro

I first

I s1

I s2

I s3
Ifirst endm
I second opsyn
I third opsyn

Opdef calls and

Location Result
1 10

first
s1
s2
s3
second
s1
s2
s3
third
s1
s2
s3

Operand
20

1
2
s1+s2

first
second

expansions:

Operand
20

1
2
s1+s2

1
2
s1+s2

1
2
s1+s2

Comment
35

second is the same as first
third is the same as second

Comment
35

; Macro call

3. In the following example the functional EQU is defined to perform the
same operation as -.

ILocationlResult
11 110

I I
IEQU IOPSYN
I I
I I

SR-2003

I Operand
120

I
1=
I
I

5-156

I Comment
135

I
I; EQU is defined to perform the
I; operation that the = pseudo
I; instruction performs.

APPENDIX SECTION

A. INSTRUCTION SYNTAX

This appendix lists the CAL instruction syntax that describes machine
instructions and opdefs. The syntax for pseudos and macros are described
in section 5, Pseudo Instructions. The instructions themselves are
described in one of the following appropriate symbolic machine
instruction manuals:

• Symbolic Machine Instructions Reference Manual, CRI publication
SR-0085

• CRAY-2 Computer System Functional Description, publication HR-2000.

Opdefs and the OPDEF pseudo instruction are described in subsection
5.12.3, OPDEF - Operation Definition.

A.1 INSTRUCTION SYNTAX CONVENTIONS

Each machine instruction and opdef can be defined syntactically using the
Backus-Naur Form (BNF). BNF is a hierarchy of definitions. The BNF
conventions used in this manual are described under Conventions in
section 1, Introduction.

A.2 CAL INSTRUCTION SYNTAX

This section contains the rules for the syntax of a symbolic machine
instruction or opdef, and a description of how the syntax is used. This
section also contains an alphabetical listing of all the symbols used in
the Backus-Naur Form for a CAL instruction.

A.2.1 SYNTAX DESCRIPTION

BNF requires a starting point. For the CAL syntax, the result field is
the starting point. The statement

result field ::= functional I symbolic.

SR-2003 A-1

identifies the result field as a nonterminal symbol that can be expanded
to include either functional or symbolic. Both functional and symbolic
are nonterminal symbols.

The second statement

functional ::= identifier I "_" - .
identifies functional as a nonterminal symbol that can be expanded to
include either the nonterminal symbol identifier or the terminal symbol

" " - .
The translation continues in this manner until every nonterminal symbol
is expanded to include only terminal symbols.

Generally, CAL evaluates the operand field of an instruction in the same
way that it evaluates the result field. If the result field of an
instruction is a functional (pseudos and macros), the operand field
syntax is dependent on the function. If the result field of an
instruction is a symbolic (machine instruction or opdef), the operand
field of the instruction must also be a symbolic.

A.2.2 INSTRUCTION SYNTAX (HIERARCHICAL VERSION)

The CAL instruction syntax begins with the result field and works through
all of the possible instructions.

NOTE

CAL uses the BNF rules while parsing statements.
Parsing is done statement by statement. Ambiguities
are resolved by scanning BNF productions in a left to
right order and accepting the first valid production
that matches currently defined pseudo, macro, machine,
or opdef instructions.

The following symbolic instruction syntax is presented in hierarchical
order.

result-field ::= functional I symbolic.

functional ::= identifier I "="

SR-2003 A-2

symbolic ::=
[subfield] [subfield-separator [subfield
[subfield-separator [subfield]]] .

subfield-separator .. -.. - " " ,

subfield ::=
initial-register mnemonic I initial-expression .

initial-register ::=
[prefix] [register-prefix] register
[register-separator [register-ending]] I
[prefix] [register-prefix] register
[register-expression-separator
[register-ending]] I
[prefix] [register-prefix] register
[register-expression-separator
[expression-ending]] I
[prefix] [register-prefix] register
[special-register-separator [register-ending]] .

initial-expression ::=
[prefix] [expression-prefix expression
[expression-separator [register-ending]]
[prefix] [expression-prefix] expression
[expression-separator [expression-ending]
expression [expression-separator
[register-ending]] I
expression [expression-separator
[expression-ending]] .

register-ending ::=
register [register-separator [register [suffix]]] I
register [register-expression-separator
[register-or-expression [suffix]]] I
register [special-register-separator
[register [suffix]]] .

expression-ending ::=
expression [expression-separator
[register-or-expression [suffix]]] •

prefix

suffix

.. -.. - "(" "[It

")" "]"

register-prefix ::=
expression-prefix
complement-character [prefixed-register-character
arithmetic-character [prefixed-register-character
prefixed-register-character .

SR-2003 A-3

expression-prefix ::=
prefixed-expression-character
complement-character prefixed-expression-character .

register-separator ::=
arithmetic-character prefixed-register-character .

special-register-separator ::= complement-character.

register-expression-separator ::=
expression-separator I arithmetic-character •

expression-separator ::=
suffix I logical-character I "=" I
[complement-character] prefixed-express ion-character .

prefixed-register-character
"F" I "f" I "H" I "h" I "r"
"Q" I "q" I "R" I "r" I "Z"

"i" "P" I "p" I
"z" •

prefixed-express ion-character ::= "<" ")" .
complement-character "#"

arithmetic-character ::= "+" "-" I "*" I "I" •

logical-character ::= "&" I "!" I "\" .

register-or-expression ::= register I expression.

register ::= complex-register simple-register •

complex register ::=
complex-register-mnemonic register-designator .

simple-register ::= simple-register-mnemonic •

complex-register-mnemonic ::=t
"A" I "B" I "SB" I "SM" I "SR" I "S" I "T" I "ST" I "V" .

simple-register-mnemonic ::=t
"CA" I "CE" I "cr" I "CL" I "MC" I "RT" I "SB" I "SM" I "VL" I "VM" I

"X.A," •

register-designator •• -
octal-digit [octal-digit [octal-digit [octal-digit]]] I
" " integer-constant I
" " symbol •

t All characters within these terminal symbols can be either uppercase or
lowercase.

SR-2003 A-4

symbol ::= unqualified-symbol I qualified-symbol.

unqualified-symbol ::= identifier.

qualified-symbol ::= "/" [identifier] "/" identifier.

identifier ::=
initial-identifier-character

identifier-character [identifier-character
identifier-character [identifier-character
identifier-character [identifier-character
identifier-character]]]]]]] .

initial-identifier-character ::= letter I "$" I "%" I "@" .

identifier-character ::=
initial-identifier-character I decimal-digit .

letter .. -.. -
"A" "B" "C" "D" "E" "F" "Gil "H"
"J" "K" "L" "M" "N" "a" "P" "Q"
.. s .. "T" "U" "V" "W" "X" "Y" "Z"
"a" "b" "c" "d" "e" "f" "gil "h"
"j" "k" "1" "m" "n" "0" "p" "q"
"s" "t" "u" "v" "w" "x" "y" "Z"

octal-digit .. -
"0" I "1" I "2" I "3" I "4" I "5" I "6" I "7"

decimal-digit .. - octal-digit I "8" I "9" .. -

.

.

hex-digit ::=
decimal-digit
"A" I "a" I "B"
"E" I "e" I "F"

"b" "C" I "c" I "D" I "d" I

expression ::=
embedded-argument

"f" .

[add-operator] term { add-operator term } .

embedded-argument ::= "(" { argument} ")" •

argument :: =
argument-character I embedded-argument •

SR-2003 A-5

"I"
"R"

"i"
"r"

argument character : =
" " "!" "" .. "i" "$ " "40" "&" .. , .. ,,* ..
"+" " - " "/" "0" "1" "2" "3" , .
"4" "5" "6" "7" "8" "9" ":" "." "{ .. ,
" =

.. ">" .. ? @" "A" "B" "c" "0" "E"
"F" "G" "H" "I" "J" "K" "L" "M" "N"
"0" "P" "Q" "R" .. s .. "T" "U" "V" "W"

~ ,
"X" "Y" "Z" "[" "]" " "
"a" "b" "c" "d" "e" "f" "g" "h" "i"
"j" "k" "I" "m" "n" "0" "p" "q" "r"
"s" "t" "u" "v" "w" "x" "y" "z" "{ "
"I" "}" "-"

term .. -.. -
prefixed-element { multiply-operator prefixed-element }

add-operator ::= "+" "_,,

multiply-operator ::= .. * .. II I" •

prefixed-element ::= ["i"] element-prefix] element.

element-prefix ::= "P." I "p." "W." I "w." .

element ::= special-element I constant I symbol I literal.

special-element .. -.. -
"*A" I "*a" I "*8"
,,* ..

constant ::=

"*b" I "*0" I "*0" I "*P" I "*p"

floating-constant I integer-constant
character-constant •

floating-constant ::=
[decimal-prefix] floating-decimal
[binary-scale decimal-integer].

floating-decimal ::=
decimal-integer decimal-fraction
[decimal-exponent decimal-integer
decimal-integer "."
[decimal-exponent decimal-integer
decimal-integer decimal-exponent decimal-integer
decimal-fraction [decimal-exponent decimal-integer

decimal-exponent ::=
"E" [add-operator
"0" [add-operator

"e"
"d"

add-operator
add-operator

decimal-fraction ::= " " decimal-integer.

SR-2003 A-6

.

"*W" "*w"

integer-constant •. -
base-integer [binary-scale base-integer
octal-prefix octal-integer
[binary-scale octal-integer]
decimal-prefix decimal-integer
[binary-scale decimal-integer
hex-prefix hex-integer [binary-scale hex-integer] •

base-integer decimal-integer

octal-prefix ::= "0'" "0'" .

decimal-prefix "D'" I "d'"

hex-prefix ::= "X'" "x'" .

octal-integer ::= octal-digit { octal-digit} .

decimal-integer ::= decimal-digit { decimal-digit} •

hex-integer ::= hex-digit { hex-digit} .

binary-scale ::=
"s" [add-operator

character-constant ::=
character-prefix

[character-suffix

"s" [add-operator]

character-string

character-prefix .. - "A" "a" "e" I "c" I "E" I "e" •

character-string "'" { string-character} "'" .

string-character .. -
I I "I" "#" "$" ''':j·o'' "&" ., ("

")" I "*" I "+" " " " - " " " "/" "0" "1" , .
"2" I "3" I "4" "5" "6" "7" "8" "9" ":"
". " I "(" I " = " ">" "?" "@" "A" "B" "e" ,
"0" I "E" I "F" "Gil "H" "I" "J" "K" "L"
"M" I "N" I "0" "P" "Q" "R" "S" "T" "U"

~

"V" I "W" I "X" "Y" "Z" "[" "\" "]" " " ,
I " " I "a" "b" "c" "d" "e" "f" "gil

"h" I "i" I "j II "k" "I" "m" "n" "0" "p"
"q" I "r" I "s" "t" "u" "v" "w" "x" "y"
liZ" I "{" I ">" "}" " - "

character-suffix ::=
"H" I "h" I "L" I "1" I "R" I "r" I "Z" I "z" .

SR-2003 A-7

literal ::= It=" data-item.

data-i tern :: =
floating-data

floating-data ::=

integer-data I character-data .

sign] floating-constant .

integer-data ::= [sign] integer-constant.

sign ::= It+" "_" I "i" .

character-data .. -.. -
character-prefix] character-string

[character-count] [character-suffix] •

character-count ::= base-integer I prefixed-integer I "." •

prefixed-integer ::=
octal-prefix octal-integer
decimal-prefix decimal-integer
hex-prefix hex-integer .

mnemonic ::=
initial-mnemonic-character

mnemonic-character [mnemonic-character
mnemonic-character [mnemonic-character
mnemonic-character [mnemonic-character
mnemonic-character]]]]]]] .

initial-mnemonic-character
letter I decimal-digit "$"

"." I "'" I ":"
"<?o" "&"
"=" "?"

"."
"\"

mnemonic-character ::= initial-mnemonic-character I "@" •

A.2.3 INSTRUCTION SYNTAX (SORTED VERSION)

"+" "_"

"I"

The CAL instruction syntax begins with the result field and works through
all the possible instructions. The following syntax is presented in
alphabetical order.

add-operator ::= "+" I "_" .

argument ::= argument-character I embedded-argument.

SR-2003 A-a

argument character .. -.. -
" " "'" , "i" "$" "%" "&"
"+" " " " - " , " " "/" "a" "1" "2" , .
"4" "5" "6" , "7" "8" "9" ":" "." ,
"=" ")" "?" , u@" "A" "B" "C" "0"

"F" "G" "H" , "I" "J" "K" "L" "M"
"0" "P" "Q" , "R" "S" "T" "U" "V" -"X" "Y" "Z" , "[" "]" " "
"a" "b" "c" -, "d" "e" "f" "g" "h"
"j" "k" "1" , "m" "n" "0" lip" "gil
"s" "t" "u" , "v" "w" "x" "y" "z"
"I" "}"

arithmetic-character .. - "+" " " - I "." , "/" .
base-integer .. - decimal-integer

binary-scale .• -
"S" [add-operator

character-constant ::=
character-prefix

[character-suffix

"s" [add-operator]

character-string

"*"
"3"
"<"
"E"
"N"
"W" ,
" "
"i"
"r"
"{ft

character-count ::= base-integer I prefixed-integer I "*" •

character-data ::
character-prefix] character-string

[character-count] [character-suffix] •

character-prefix ::= "A" "a" I "C" I "c" "E"

character-string .. -.. - { string-character} "'" •

character-suffix .. -
"H" , "h" "L" , "1" I "R" "r" I "Z" I "z" •

complement-character ::= "#" .

complex register ::=
complex-register-mnemonic register-designator •

complex-register-mnemonic ::=t

"e" .

"A" I "B" I "SB" , "SM" I "SR" "S" , "T" , "ST" I "V" .

constant ::=
floating-constant , integer-constant
character-constant .

t All characters within these terminal symbols can be either uppercase or
lowercase.

SR-2003 A-9

data-item :: =
floating-data I integer-data I character-data •

decimal-digit ::= octal-digit I "8" I "9" •

decimal-exponent ::=
"E" [add-operator
"0" [add-operator

"e"
"d"

add-operator]
add-operator] •

decimal-fraction ::= "." decimal-integer.

decimal-integer ::= decimal-digit { decimal-digit} •

decimal-prefix ::= "D'" I "d'" .

element ::= special-element I constant I symbol I literal.

element-prefix ::= "P." I "p." I "W." I "w." •

embedded-argument ::= "(" { argument} ")" .

expression ::=
embedded-argument
[add-operator] term { add-operator term } •

expression-ending ::=
expression [expression-separator
[register-or-expression [suffix]]] •

expression-prefix ::=
prefixed-expression-character
complement-character prefixed-express ion-character .

expression-separator ::=
suffix I logical-character I "=" I .
[complement-character] prefixed-expression-character •

floating-constant ::=
[decimal-prefix] floating-decimal
[binary-scale decimal-integer]] •

floating-data ::= [sign] floating-constant.

floating-decimal ::=
decimal-integer decimal-fraction
[decimal-exponent decimal-integer
decimal-integer
[decimal-exponent decimal-integer
decimal-integer decimal-exponent decimal-integer
decimal-fraction [decimal-exponent decimal-integer] .

SR-2003 A-10

functional ::= identifier I "="

hex-digit ::=
decimal-digit
"A" I "a" I "B"
"E" I "e" I "F"

"bit

"f" .
"C" I "c" I "0" I "d" I

hex-integer ::= hex-digit { hex-digit} .

hex-prefix

identifier .. -.. -
"X'" I "x'" .

initial-identifier-character
identifier-character [identifier-character
identifier-character [identifier-character
identifier-character [identifier-character
identifier-character]]]]]]] .

identifier-character ::=
initial-identifier-character I decimal-digit .

initial-expression ::=
[prefix] [expression-prefix expression
[expression-separator [register-ending]]
[prefix] [expression-prefix] expression
[expression-separator [expression-ending]
expression [expression-separator
[register-ending]] I
expression [expression-separator
[expression-ending]] .

initial-identifier-character ::= letter I "$" I "%" I "@" •

initial-mnemonic-character
letter I decimal-digit

I "/"

initial-register .. -

.. -.. -
"$"
":"

"%" "&"
"=" "?"

[prefix] [register-prefix] register

"'"

[register-separator [register-ending]] I
[prefix] [register-prefix] register
[register-expression-separator
[register-ending]] I
[prefix] [register-prefix] register
[register-expression-separator
[expression-ending]] I
[prefix] [register-prefix] register

"."

[special-register-separator [register-ending]] •

SR-2003 A-II

"+"

"I"

integer-constant ""-
base-integer [binary-scale base-integer] I
octal-prefix octal-integer
[binary-scale octal-integer]
decimal-prefix decimal-integer
[binary-scale decimal-integer
hex-prefix hex-integer [binary-scale hex-integer] "

integer-data ::= [sign] integer-constant"

letter .. -
"A" r "B" "C" "D" "E" "F" "G"
"J" I "K" "L" "M" "N" "0" "P"

"s" I "T" "U" "V" "W" "X" "Y"
"a" I "b" "c" "d" "e" "f" "g"
"j" I "k" "1" "m" "n" "0" "p"
"s" I "t" "u" "v" "w" "x" "y"

literal ::= "=" data-item

logical-character ::= "&" "!" I "\" .

mnemonic ::=
initial-mnemonic-character

mnemonic-character [mnemonic-character
mnemonic-character [mnemonic-character
mnemonic-character [mnemonic-character
mnemonic-character]]]]]]] "

"H" "I"
"Q" "R"
"Z"
"h" "i"
"q" "r"
"z" "

mnemonic-character ::= initial-mnemonic-character I "@" .

multiply-operator ::= "." I "I" "

octal-digit ::=
"0" I "1" I "2" I "3" I "4" I "5" I "6" "7" .

octal-integer ::= octal-digit { octal-digit} .

octal-prefix ::= "a'" I "a'" .

prefix ::= "(" I "[" .

prefixed-element "i"] [element-prefix] element .

prefixed-expression-character ::= "<" I ">" •

prefixed-integer ::=
octal-prefix octal-integer~ I
decimal-prefix decimal-integer
hex-prefix hex-integer .

SR-2003 A-12

prefixed-register-character
"F" I "f" I "H" I "h" I "I"
"Q" I "q" I "R" I "r" I "z"

"i"
liZ" •

qualified-symbol ::= "/" [identifier

"P" I "p" I

"/" identifier •

register ::= complex-register I simple-register.

register-designator ::=
octal-digit [octal-digit [octal-digit [octal-digit]]] I
" " integer-constant I
"." symbol.

register-ending ::=
register [register-separator [register [suffix]]] I
register [register-express ion-separator
[register-or-expression [suffix]]] I
register [special-register-separator
[register [suffix]]] .

register-expression-separator .. -
expression-separator I arithmetic-character •

register-or-expression

register-prefix ::=
expression-prefix

register I expression .

complement-character [prefixed-register-character
arithmetic-character [prefixed-register-character
prefixed-register-character .

register-separator ::=
arithmetic-character prefixed-register-character •

result-field ::= functional I symbolic.

sign ::= "+" I "_" I "#" .

simple-register ::= simple-register-mnemonic •

simple-register-mnemonic ::=t
"CA" I "CE" I "CI" I "eL" I "MC" I "RT" I "SB" I "SM" I "VL" I "VM" I

"XA" .

t All characters within these terminal symbols can be either uppercase or
lowercase.

SR-2003 A-13

special-element .. -.. -
"*A" I "*a" I "*B" I "*b" I "*0" I "*0" I "*p" I "*p" I "*w" I "*w" I
"*"

special-register-separator .. - complement-character

string-character .. -.. -
I " " I "!" I """ "i" "$" "0.0" "&" "("

")" I "*" I "+" I " " " - " " " "I" "0" "1" ,
"2" I "3" I "4" I "5" "6" "7" "8" "g" ":"
"." I "<" I "=" I ")" "?" "@" "A" "B" "C" ,
"D" I "E" I "F" I "G" "H" "I" "J" "K" "L"
"M" I "N" I "0" I "P" "Q" "R" "S" "T" "u"

" "V" I "W" I "X" I "Y" "Z" " [" "'" It]" " " ,
" " I " " I "a" I "b" "c" "d" "e" "f" "g"
"h" I "i" I "j" I "k" "I" "m" "n" "0" "p"
"q" I "r" I "s" I "t" "u" "v" "w" "x" "y"
"z" I " { " I "I" I "}" " - "

subfield ::=
initial-register mnemonic I initial-expression •

subfield-separator ::=

suffix · . -· . - ")" I "]" •

" " ,

symbol · . -· . - unqualified-symbol I qualified-symbol .

symbolic ::=
[subfield] [subfield-separator
[subfield-separator [subfield]

term ::=

subfield
] .

prefixed-element { multiply-operator prefixed-element } •

unqualified-symbol ::= identifier.

SR-2003 A-14

B. PSEUDO INSTRUCTION INDEX

Name

ALIGN
BASE
BITP
BITW
BLOCKt
BSS
BSSZ
CMICRO
COMMENTt
COMMONt
CON
DATA
DECMIC
DMSG
DUP
ECHO
EDIT
EJECT
ELSE
END
ENDDUP
ENDIF
ENDM
ENDTEXT
ENTRY
ERRIF
ERROR
EXITM
EXT
FORMAT
IDENT
IFA
IFC
IFE
IFM
INCLUDE
LIST

Definition

Equate symbol
Align on an instruction buffer boundary
Declare base for numeric data
Set *p counter
Set *W counter
Local section assignment
Block save
Generate zeroed block
Constant micro definition
Define Program Descriptor Table comment
Common section assignment
Generate constant
Generate data words
Decimal micros
Issue diagnostic message
Duplicate code
Duplicate code with varying arguments
Change statement editing status
Begin new page
Toggle assembly condition
End program module
End duplicated code
End conditional code sequence
End macro or opdef definition
Terminate global text source
Specify entry symbols
Conditional error generation
Unconditional error generation
Premature exit of a macro expansion
Specify external symbols
Change statement format
Identify program module
Test expression attribute for assembly condition
Test character strings for assembly condition
Test expressions for assembly condition
Test machine characteristics
Include files
List control

t Available on CRAY X-MP and CRAY 1 Computer Systems only

SR-2003 B-1

5-54
5-37
5-11
5-35
5-33
5-26
5-31
5-58
5-84
5-5
5-27
5-57
5-59
5-91
5-43
5-139
5-142
5-15
5-49
5-81
5-4
5-146
5-80
5-144
5-52
5-6
5-40
5-39
5-145
5-1
5-16
5-3
5-66
5-70
5-13
5-76
5-94
5-45

Name

LOC
LOCAL
MACRO
MICRO
MICSIZE
MLEVEL
NEXTDUP

OCTMIC
OPDEF
OPSYN
ORG
QUAL
SECTION
SET
SKIP
SPACE
STACK
START
STOPDUP
SUBTITLE
TEXT
TITLE
VWD

SR-2003

Definition

Set * counter
Specify local symbols
Macro definition
Micro definition
Set redefinable symbol to micro size
Message priority
Premature exit of the current iteration of a
duplication expansion
Octal micros
Operation definition
Synonymous operation
Set *0 counter
Qualify symbols
Section assignment
Set symbol
Unconditionally skip statements
List blank lines
Increment the size of the stack
Specify program entry
Stop duplication
Specify listing subtitle
Declare beginning of global text source
Specify listing title
Variable word definition

B-2

5-32
5-152
5-104
5-86
5-56
5-42

5-147
5-89
5-123
5-154
5-30
5-13
5-18
5-55
5-79
5-48
5-29
5-10
5-147
5-50
5-51
5-50
5-63

c. LISTING MESSAGES

Listing messages are generated by the assembler when a syntax or semantic
error is encountered. Table C-l lists and briefly describes the listing
messages that are generated by CAL.

Message Priority

6 Error

7 Error

8 Error

10 Error

11 Error

12 Error

13 Error

14 Warning

15 Warning

16 Error

17 Error

18 Error

19 Warning

SR-2003

Table C-l. Listing Messages

Description

Micro was previously defined with a
redefinable attribute

Micro was previously defined with a
nonredefinable attribute

Micro was previously defined

Assembler module is not terminated properly

Maximum allowable address was exceeded in the
literal section

Definition is not terminated properly

Skipping is not terminated properly

Symbol is not defined

Symbol matches the syntax of a register

Symbol was previously defined with a
redefinable attribute

Symbol was previously defined with a
nonredefinable attribute

Symbol was previously defined

Symbol is immobile or relocatable relative
to an empty section

C-1

Message

20

21

22

23

24

25

26

27

28

29

35

36

37

38

39

40

41

SR-2003

Table C-1. Listing Messages (continued)

Priority

Caution

Caution

Error

Warning

Error

Warning

Warning

Warning

Error

Error

Warning

Error

Error

Error

Error

Error

Warning

Description

Input line truncation has occurred

Micro character was not terminated

Micro character was not terminated after
embedded micros were edited

Micro name is undefined and ignored

Micro name is undefined after embedded micros
were edited

Last line of input file; no appending is
done.

Location field was not defined in the formal
definition

Field is ignored; a comment was expected.

Pseudo instruction is invalidly placed

Machine instruction is invalidly placed

Location field is ignored

Syntax error; null instruction is not
recognized.

Syntax error; instruction is not recognized.

Field contains too many subfield
representations

Character is not recognized as a subfield
separator

Empty result field in prototype statement
is not allowed

Functional in this prototype statement has
been defined previously

C-2

Message

42

43

44

45

46

47

48

49

50

51

52

53

56

57

58

59

60

SR-2003

Table C-1. Listing Messages (continued)

Priority

Warning

Error

Error

Error

Error

Error

Warning

Warning

Error

Error

Error

Error

Error

Error

Error

Error

Error

Description

Syntax of this prototype statement has been
defined previously

Parameter has been used previously within
this definition

Expression-argurnent-value syntax is invalid

Unrecognized characters are skipped after
expression-argument-value

Unrecognized characters are skipped after the
string-argument-value

Keyword parameter name is unknown

Keyword parameter has been used previously
within this call

Local parameter has been used previously
within this definition

Name was expected but not found

Name was expected but the end of the
statement was encountered

Name is terminated illegally

Name is terminated illegally by the end of
the statement

Expression was terminated illegally

Functional was expected but not found

Functional was terminated illegally

Functional was terminated illegally by the
end of the statement

Embedded-argument is semantically prohibited
in an expression

C-3

Message

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

SR-2003

Table C-1. Listing Messages (continued)

Priority

Error

Error

Warning

Warning

Warning

Warning

Error

Error

Error

Warning

Warning

Caution

Caution

Warning

Warning

Description

Only one external is allowed in an
expression

External term must never be preceded by a
minus operator

Term has parcel attribute but expression has
word attribute

Term has parcel attribute but expression has
mixture

Term has word attribute but expression has
parcel attribute

Term has word attribute but expression has
mixture

Expression is relative to more than one
location

Expression cannot be immobile or relocatable
and contain an element

External element must be the only element
within a term

Relocatable attribute changed to absolute;
zero width destination

External attribute changed to absolute;
zero width destination.

Destination of expression is shorter than
relocatable parcel width

Destination of expression is shorter than
relocatable word width

Positive expression result is truncated

Negative expression result is truncated

C-4

Message

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

SR-2003

Table C-1. Listing Messages (continued)

Priority

Error

Error

Error

Error

Warning

Warning

Warning

Warning

Warning

Warning

Warning

Warning

Error

Error

Error

Description

More than one immobile or relocatable was
found in the term

Partial term preceding the division operator
must be absolute

Element following a division operator must
be absolute

Division by zero is not allowed

Partial term with parcel address is
multiplied by parcel element

Partial term with word address is multiplied
by parcel element

Partial term with parcel address is
multiplied by word element

Partial term with word address is multiplied
by word element

Partial term with value address is divided by
parcel element

Partial term with word address is divided by
parcel element

Partial term with value address is divided by
word element

Partial term with parcel address is divided
by word element

Prefixed-element was expected, but the end
of the statement was encountered

Expression element was expected after #

Expression element was expected but not
found

C-5

Message

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

SR-2003

Table C-1. Listing Messages (continued)

Priority

Error

Error

Warning

Warning

Error

Warning

Error

Error

Warning

Warning

Warning

Warning

Error

Warning

Caution

Warning

Description

Expression element expected; but end of
statement was encountered

Special-element is allowed only within an
assembler module

Origin counter is not on a parcel boundary

Location counter is not on a parcel
boundary

Floating-constant cannot be complemented

Immobile attribute change to absolute; zero
width destination

Numeric base is not decimal, insert a
decimal-prefix

Floating-constant is too large to evaluate

Double precision floating-constant is
converted to single precision

Overflow was detected while evaluating
floating-constant

Exponent underflow was detected while
evaluating floating-constant

Exponent overflow was detected while
evaluating floating-constant

Binary-scale is too large to evaluate

Overflow was detected while evaluating
binary-scale

Binary-scale value is out of range

Exponent underflow is due to binary-scale
value

C-6

Message

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

SR-2003

Table C-l. Listing Messages (continued)

Priority

Warning

Error

Error

Warning

Error

Warning

Warning

Warning

Caution

Error

Caution

Error

Caution

Error

Caution

Error

Error

Description

Exponent overflow is due to binary-scale
value

Integer-constant is too large to evaluate

Integer-constant contains nonoctal digits;
the base is octal

Overflow was detected while evaluating
floating-integer

Binary-scale contains nonoctal digits; the
base is octal

ASCII character string is truncated

CDC character string is truncated

EBCDIC character string is truncated

Special-element is not on a word boundary

Special-element is not absolute and cannot
be complemented

Constant is not on a word boundary

Constant is not absolute and cannot be
complemented

Symbol is not on a word boundary

Symbol is not absolute and cannot be
complemented

Literal is not on a word boundary

Literal is not absolute and cannot be
complemented

Data-item of a literal must never have a
length of zero

C-7

Message

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

142

SR-2003

Table C-1. Listing Messages (continued)

Priority

Error

Error

Error

Error

Error

Error

Error

Error

Error

Error

Error

Error

Error

Error

Error

Error

Error

Warning

Description

Symbol is undefined

Unqualified symbol is undefined

Qualified symbol is undefined

Count symbol must have absolute value
attributes

Unqualified count symbol must have absolute
value attributes

Qualified count symbol must have absolute
value attributes

Expression cannot have a parcel attribute

Expression cannot have a word attribute

Expression cannot have an absolute
attribute

Expression cannot have an immobile attribute

Expression cannot have a relocatable
attribute

Expression cannot have an external
attribute

Expression cannot have a negative value

Count was expected but not found

Count was expected, but the end of the
statement was encountered

Count value is out of range; too low

Count value is out of range; too high

Integer evaluation of floating-constant
been performed

C-8

has

Message

143

146

159

160

161

162

163

164

165

166

167

168

170

171

172

173

174

175

SR-2003

Table C-l. Listing Messages (continued)

Priority

Warning

Caution

Error

Error

Error

Error

Error

Error

Error

Error

Error

Error

Warning

Warning

Caution

Error

Warning

Warning

Description

Floating-constant has been complemented

Expression is relocatable relative to a
task common and is nonzero

File cannot be opened

File can be used only once at a given time

Maximum number of allowable sections is
exceeded

Blank common name is already in use with
different attributes

Common name is already in use with different
attributes

Section attribute is not recognized

Type attribute can be specified only once

Location attribute can be specified only once

Task common section must be named

Maximum section memory size has been exceeded

Text mode is terminated due to the start of
an assembler module

Specified text name has replaced the current
text name

Text mode is not currently enabled

Unrecognizable attribute; "V", "P", or "W"
was expected

Immobile expression cannot be converted to a
value

Relocatable expression cannot be converted
to a value

C-9

Message

176

177

178

179

180

181

182

183

184

185

188

190

191

192

196

197

198

199

SR-2003

Table C-1. Listing Messages (continued)

Priority

Error

Error

Error

Error

Error

Error

Error

Error

Error

Error

Caution

Error

Error

Error

Error

Error

Error

Error

Description

Entry symbol is undefined

Maximum number of allowable entries was
exceeded

Entry symbol is not redefinable

Entry symbol is not relocatable relative to
a stack

Entry symbol is not relocatable relative to
a task common section

Entry symbol cannot be external

Primary entry was previously defined; only
one entry is allowed

Primary entry cannot be absolute

Primary entry cannot be immobile

Primary entry must be relative to either a
code or a mixed section

Pseudo was not found within a definition

Not supported when targeting for a CRAY-1
Computer System

Not supported when targeting for a CRAY X-MP
Computer System

Not supported when targeting for a CRAY-2
Computer System

Unrecognized characters were skipped

Final expression value is too large

"/" was expected after the count

Data-item was expected but not found

C-10

Message

200

201

202

203

204

205

206

207

209

210

214

215

218

220

221

222

223

SR-2003

Table C-1. Listing Messages (continued)

Priority

Warning

Error

Error

Error

Error

Error

Error

Error

Error

Caution

Error

Error

Error

Error

Error

Error

Error

Description

Instruction is redefined

Instruction is undefined

End of statement was not expected after the
numeric name

Comma was expected after the numeric name

End of statement was not expected after the
first expression

Comma was expected after the first
expression of the condition

Condition was expected after the comma

Comma was expected after the condition

Conditional relation was expected but not
found

Attributes of the two expressions do not
match

End of statement was not expected after the
first string

Comma was expected after the first string
of the condition

Invalid target machine characteristic is
specified

Attribute was expected, but the end of the
statement was encountered

Attribute was expected

Comma was expected after the attribute

Expression was expected after the comma

C-ll

Message

228

231

232

233

234

235

236

238

240

244

250

251

252

253

254

260

261

262

264

SR-2003

Table C-l. Listing Messages (continued)

Priority

Warning

Error

Comment

Note

Caution

Warning

Error

Caution

Warning

Error

Error

Warning

Error

Error

Error

Warning

Warning

Warning

Caution

Description

Skip count exists, but the skip name is used
instead

Message priority is not recognized

User-defined message

User-defined message

User-defined message

User-defined message

User-defined message

Corresponding expansion was not found

Duplication name exists, but the duplication
count is used instead

List of arguments was not terminated
properly

Invalid fill specification

Micro string is truncated due to character
count

Value of expression specifying the character
count is too large

Micro name has not been previously defined

Invalid case specification

Alignment is relative to task common section

Alignment is relative to stack section

Alignment is relative to Local Memory section

A comment has been previously specified

C-12

Message

270

271

272

273

274

275

276

277

280

281

282

283

284

285

286

287

290

291

SR-2003

Table C-1. Listing Messages (continued)

Priority

Caution

Caution

Warning

Error

Warning

Error

Warning

Warning

Caution

Caution

Warning

Caution

Caution

Caution

Warning

Caution

Error

Error

Description

Location field is ignored by this pseudo

Operand field is ignored by this pseudo

Location field was expected by this pseudo
but was not found

Location field is required by this pseudo
but was not found

Operand field was expected by this pseudo
but was not found

Operand field is required by this pseudo but
was not found

Matching delimiter character to terminate
the character string was not found

String is too long; the string is truncated

Stack is currently empty

Current stack entry is not redefinable

Invalid pseudo option is specified

Listing cannot be disabled

Option is not redefinable

Option is repeated

Option is ambiguous because of a previous
option in the list

List pseudo is not processed

Maximum number of allowable externals was
exceeded

External attribute is not recognized

C-13

Message

292

293

294

295

300

301

302

303

304

305

310

311

312

313

314

315

SR-2003

Table C-1. Listing Messages (continued)

Priority

Caution

Error

Error

Caution

Error

Error

Error

Error

Error

Error

Error

Error

Error

Error

Error

Error

Description

External attribute has been previously
specified

External address attribute has been
previously specified

External linkage attribute has been
previously specified

Soft externals are not supported within the
operating system

Expression must be "0"

Expression must be "1"

Expression must be either "0" or "1"

Relocatable expression must be relative to
Common Memory

Relocatable expression must be relative to
Local Memory

Relocatable expression must be relative to
a mixed or code section

Register designator value is too large

Register designator must have a value
attribute

Register designator must not have an immobile
attribute

Register designator must not have a
relocatable attribute

Register designator must not be an external

Register designator value does not fit into
a 3-bit opcode field

C-14

Message

316

320

321

322

323

324

325

326

327

328

340

341

SR-2003

Table C-1. Listing Messages (continued)

Priority

Error

Error

Error

Error

Warning

Error

Error

Warning

Comment

Warning

Warning

Warning

Description

Register designator value does not fit into
a 6-bit opcode field

Register designator does not equal that of
the first register

Register designator does not equal that of
the second register

Register designator must not equal zero

Register designator value is zero, possible
instruction error

Register designator value must not be
greater than octal 37

Register designator value must be zero

Vector recursion; designator equals that of
the first register

Vector recursion; designator equals that of
the first register

Zero vector; designator equals that of the
first register

Expression has a relative attribut of
immobile

Expression is relocatable relative to a task
common section

C-15

D. DIAGNOSTIC MESSAGES

CAL generates five levels of diagnostic messages that are divided into
two classes: user information about the assembly (comment, note, and
caution) and CAL assembler messages (warnings and errors).

Priority

Comment

Note

Caution

Warning

Error

Description

Comment priority messages are numbered in the range from
1 to 99 and provide general assembler introductions and
statistics.

Note priority messages are numbered in the range from 1
to 99 and provide information such as the number or
caution and warning messages found while assembling.

Caution priority messages are numbered in the range from
1 to 99 and indicate user errors.

Warning priority messages are numbered 100 and greater
and indicate incompatibility between different binary
load tables; assembly continues.

Error priority messages are numbered 100 and greater and
report diagnostic messages that were detected by the
assembler. After the message is issued, assembly is
aborted.

If you receive a diagnostic message with a priority of warning or error,
contact your local site analyst.

CAL diagnostic messages are always prefixed by the operating system as
follows:

cannn - [CAL]

where nnn is the number of the diagnostic message. For example:

ca001 - [CAL] CAL Version 2 - Release (month/day/year)

Warning and error messages are printed only if the assembler is
malfunctioning. Since this condition is rare, these messages are not
listed in this manual. For more information about diagnostic messages,
see section 2, Operating Systems.

Table D-1 lists and briefly describes diagnostic messages 1 through 99.

SR-2003 D-1

Message

1

2

3

4

5

20

21

22

23

24

25

26

27

28

29

30

31

SR-2003

Table 0-1. Diagnostic Messages

Priority

Conunent

Conunent

Conunent

Conunent

Conunent

Caution

Note

Caution

Caution

Caution

Caution

Caution

Caution

Caution

Caution

Caution

Caution

Description

CAL Version 2 Release version (mmlddlyy)

Total number of segments processed: n

Total number of source lines read: n

Total number of statements processed: n

Total time of assembly: n seconds

'option name' is not a valid type option

'parameter' invocation statement parameter
is no longer supported

Primary CPU option 'option name' is not
recognized; the default is used.

Conflicting trait CPU characteristic 'charac'
specified

'trait' expected to follow CPU characteristic
, charac'

Input file 'filename' was repeated on the
invocation statement

Attempt to open file 'filename' failed

Valid options 'options'

The 'option name' option has too many
arguments

The 'option name' option has been repeated

File 'filename' has been specified more
than once

An input file was required on the invocation
statement

0-2

Message

32

33

34

45

50

51

52

53

54

56

70

71

72

74

75

76

77

78

90

SR-2003

Table 0-1. Diagnostic Messages (continued)

Priority

Caution

Caution

Caution

Comment

Comment

Comment

Note

Note

Caution

Note

Caution

Caution

Caution

Note

Note

Note

Note

Note

Caution

Description

Only one input file is allowed on the
invocation statement

The 'option name' option contradicts a
prvevious 'option name' option

'option name' is not a valid option name

Segment 'name' -- user message

Segment 'name' has n comment messages

Segment 'name' has n note messages

Segment 'name' has n caution messages

Segment 'name' has n warning messages

Segment 'name' has n error messages

Message count was exceeded, n messages are
listed

Bad binary definition file 'file'

Incompatible version of binary definition
file 'file'

Binary definition file 'file' was not built
for this machine type

Symbol 'name' is redefined in file 'file'

Micro 'name' is redefined in file file

Macro 'name' in file 'file' replaces previous
definition

Opsyn 'name' in file 'file' replaces previous
definition

Opdef 'name' in file 'file' replaces previous
definition

Assembly errors were encountered

D-3

E. CHARACTER SET

ASCII EBCDIC CDC
Code Code Code

Character (Octal/Hex) (Hex) (Octal)

NUL 000/00 00 None

SOH 001/01 01 None

STX 002/02 02 None

ETX 003/03 03 None

EDT 004/04 37 None

ENQ 005/05 20 None

ACK 006/06 2E None

BEL 007/07 2F None

BS 010/08 16 None

HT 011/09 05 None

LF 012/0A 25 None

VT 013/0B OB None

FF 014/0C OC None

CR 015/00 00 None

SO 016/0E OE None

SI 017/0F OF None

OLE 020/10 10 None

DC1 021/11 11 None

DC2 022/12 12 None

DC3 023/13 13 None

DC4 024/14 3C None

NAK 025/15 3D None

SYN 026/16 32 None

ETB 027/17 26 None

SR-2003 E-1

SR-2003 E-2

ASCII EBCDIC CDC
Code Code Code

Character (Octal/Hex) (Hex) (Octal)

5 065/35 F5 40

6 066/36 F6 41

7 067/37 F7 42

8 070/38 F8 43

9 071/39 F9 44

072/3A 7A 00

073/3B 5E 77

< 074/3C 4C 72

= 075/3D 7E 54

) 076/3E 6E 73

? 077/3F 6F 71

@ 100/40 7C 74

A 101/41 C1 01

B 102/42 C2 02

C 103/43 C3 03

D 104/44 C4 04

E 105/45 C5 05

F 106/46 C6 06

G 107/47 C7 07

H 110/48 C8 10

I 111/49 C9 11

J 112/4A D1 12

K 113/4B D2 13

L 114/4C D3 14

M 115/40 04 15

N 116/4E 05 16

0 117/4F 06 17

P 120/50 07 20

Q 121/51 08 21

SR-2003 E-3

I
I ASCII EBCDIC CDC

I Code Code Code
Character I (Octal/Hex) (Hex) (Octal)

I

I
R I 122/52 D9 22

S 123/53 E2 23

T 124/54 E3 24

U 125/55 E4 25

V 126/56 E5 26

W 127/57 E6 27

X 130/58 E7 30

y 131/59 E8 31

Z 132/5A E9 32

133/5B AD 61

\ 134/5C EO 75

135/5D BD 62

136/5E 5F 76

137/5F 6D 65

140/60 79 None

a 141/61 81 None

b 142/62 82 None

c 143/63 83 None

d 144/64 84 None

e 145/65 85 None

f 146/66 86 None

g 147/67 87 None

h 150/68 88 None

i 151/69 89 None

j 152/6A 91 None

k 153/6B 92 None

1 154/6C 93 None

m 155/6D 94 None

n 156/6E 95 None

SR-2003 E-4

SR-2003 E-5

INDEX

INDEX

54-bit
ASCII representation of 'abc', left

justified (diagram), 4-38
representation of 1 (diagram), 4-38
representation of -1 (diagram), 4-48
representation of 5 (diagram), 4-48
representation of 5 (diagram), 4-49
representation of the complement of 1

(diagram), 4-39

::= (BNF convention), 1-4
_* (comments), 5-113

(equate symbol), 5-54
. (terminator), definition, 1-4

$ABD statement (JCL), 2-3
$APP (predefined micro), 5-83
ABORT (COS parameter), 2-5
Absolute

description, 4-10, 4-40, 4-45
example, 4-50

Accessing data from a stack section, 5-20
Accessing data from a task common section,

5-20
ACCOUNT control statement (JCL), 2-3
Actual statements, 3-11
Add-operator, 4-30
Address attribute assignment chart, 4-35
Address attributes

description, 4-9, 4-34
parcel address, 4-10
value, 4-10
word address, 4-10

Align on an instruction buffer boundary,
see ALIGN pseudo

ALIGN pseudo, 5-37
ALLSYMS (COS parameter), 2-5
Append, 3-10
Append character used with the new format,

($APP), 5-83
Appendix sections, A-1, B-1, C-1, D-1, E-1
Argument

embedded, 4-30
UNICOS, 2-12

as - CAL command line, 2-12
ASCII

54-bit ASCII representation of 'abc',
left justified (diagram), 4-38

54-bit ASCII representation of 'abc',
left justified (diagram), 4-38

SR-2003 Index-l

ASCII (continued)
54-bit representation of 1 (diagram) ,

4-38
54-bi t representation of 1 (diagram) ,

4-38
54-bit representation of 1 (diagram) ,

4-39
54-bit representation of -1 (diagram) ,

4-48
54-bit representation of 5 (diagram) ,

4-48
54-bit representation of 5 (diagram) ,

4-49
54-bit representation of the complement

of 1 (diagram), 4-39
ASCII representation of 'abc' left

justified in nine bits (diagram), 4-38
ASCII character with left justification

and blank fill (diagram), 4-23
ASCII character with left justification

and zero fill (diagram), 4-23
ASCII character with right

justification and zero fill (diagram),
4-24

ASCII character with right
justification in 8 bits (diagram),
4-24

ASCII Code, E-1
Assembler, see CAL
Assembler-defined instructions, 3-13
Assembler messages, 2-2
Attributes

address, 4-9
relative, 4-10
redefinable, 4-11
symbol, 4-9

avl (UNICOS logical trait), 2-14
AVL (COS logical trait), 2-5

b (UNICOS option), 2-15
B

COS parameter, 2-4
UNICOS option, 2-16

-b bdflist (UNICOS option), 2-13
-B (UNICOS option), 2-13
Backus-Naur Form (BNF), 1-3
bankbusy (UNICOS numeric trait), 2-15
BANKBUSY (COS numeric trait), 2-7
banks (UNICOS numeric trait), 2-15
BANKS (COS numeric trait), 2-7
Base-integer, 4-15, 4-16
BASE pseudo, 5-11

bdm (UNICOS logical trait), 2-14
BDM (COS logical trait), 2-6
Begin new page, see EJECT pseudo
Binary definition files

creating new binary definition files,
2-24

COS, 2-24
UNICOS, 2-25

defining a binary definition file, 2-21
macros, 2-22
micro, 2-24
opdefs, 2-24
opsyns, 2-24
symbols, 2-22

figure, 2-23
using binary definition files, 2-26

compatibility checking, 2-26
multiple references, 2-27

macros, 2-27
micro, 2-28
opdefs, 2-28
opsyns, 2-28
symbols, 2-27

Binary-scale, 4-16
Binary-scale decimal-integer, 4-14
BITP

parcel B set by VWD instruction
(diagram), 5-36

pseudo instruction, 5-35
resetting the pointer (diagram), 5-36
result of a Bitp followed by a VWD

(diagram), 5-37
zeroing parcel A (diagram), 5-35

BITW pseudo, 5-33
Blank

location field, 5-2
operand field, 5-3

BLOCK pseudo, 5-26
Block save, see BSS pseudo
BNF, 1-3
Boundary

force parcel, 3-24
force word, 3-24

BSS pseudo, 5-31
BSSZ pseudo, 5-58

$CMNT (predefined micro), 5-83
$CNC (predefined micro), 5-83
$CPU (predefined micro), 5-83
c (UNICOS option), 2-16
C (UNICOS option), 2-16
-c bdfile (UNICOS option), 2-13
-C cpu (UNICOS option), 2-13
CAL (Cray Assembly Language)

assembler execution, 1-2
command line (as command), 2-12
control statement, 2-3
data, 4-13

character-constants, 4-17
character-data item, 4-20
constants, 4-13
data items, 4-18
floating-constant, 4-13

SR-2003 Index-2

CAL (continued)
floating-data item, 4-18
integer-constant, 4-15
integer-data item, 4-19
literals, 4-21

definition, 3-1
description of features, 1-1
element prefixes for symbols,

constants, or special elements, 4-26
P. - Parcel address prefix, 4-27
W. - Word-address prefix, 4-28

expression attributes, 4-45
absolute, immobile, relocatable, or

external, 4-46
parcel-address, word-address, or

value attributes, 4-47
truncating expression values, 4-47

expression evaluation, 4-36
evaluating immobile and relocatable

terms with coefficients, 4-40
expressions, 4-29

add-operator, 4-30
multiply-operator, 4-32
prefixed-element, 4-31

complement-character (*), 4-31
element-prefix, 4-32
elements, 4-32

term attributes, 4-32
address attributes, 4-34
relative attributes, 4-33

terms, 4-30
format (syntax), 1-3
instructions, 3-12

assembler-defined instructions, 3-13
instruction syntax, 1-3
machine instructions, 3-13
pseudo instructions, 3-13
user-defined instructions, 3-13

introduction, 1-1
micros, 3-14
names, 4-3

valid and invalid (example), 4-4
organization, 3-2
program segment, 3-1

global definitions, 3-1
program module, 3-1

register designators, 4-1
complex registers, 4-1

complex-register-mnemonics, 4-2
register-designator, 4-2

simple registers, 4-3
sections, 3-19

common sections, 3-21
local sections, 3-19

literals section, 3-20
main section, 3-19
sections defined by the SECTION

pseudo, 3-20
section stack buffer, 3-21

force parcel boundary, 3-24
force word boundary, 3-24
location counter, 3-23
origin counter, 3-23
parcel-bit-position counter, 3-24
word-bit-position counter, 3-23

CAL (continued)
source statement, 3-4

header format, 1-4
new format, 3-4

comment field, 3-6
location field, 3-5
operand field, 3-6
result field, 3-5

old format, 3-7
comment field, 3-8
location field, 3-7
operand field, 3-8
result field, 3-7

special elements, 4-25
statement (JCL), 2-3
statement editing, 3-8

actual statements, 3-11
append, 3-10
comment, 3-11
concatenate, 3-10
continuation, 3-10
edited statements, 3-11
micro substitution, 3-10

symbols, 4-4
address attributes, 4-9

word address, 4-10
parcel address, 4-10
value, 4-10

qualified symbol, 4-7
redefinable attributes, 4-11
relative attributes, 4-10

Case

absolute, 4-10
external, 4-11
immobile, 4-10
relocatable, 4-10

symbol attributes, 4-9
symbol definition, 4-8
symbol reference, 4-12
symbol specification, 4-6
unqualified symbol, 4-6

rule for using uppercase, lowercase, or
mixed case for pseudo instructions,
5-2

how characters are interpreted when
read from string, 5-86, 5-88

Case-sensitivity
description, 3-4
example, 3-4
rules, 3-4

Caution message, 2-2
CDC character data item storage (diagram),

5-61
CDC Code, E-l
Change statement editing status, see EDIT

pseudo
Change statement format, see FORMAT pseudo
charac

default, 2-5 (COS), 2-14 (UNICOS)
definition, 2-10 (COS)
option, 2-6 (COS), 2-14 (UNICOS)

Character-constants
character-prefix, 4-17
character-string, 4-17
character-suffix, 4-17

SR-2003 Index-3

Character-data item, 4-20
Character-prefix, 4-17
Character set, E-l
Character-string, 4-17
Character-suffix, 4-17
cigs (UNICOS logical trait), 2-14
CIGS (COS logical trait), 2-6
clocktim (UNICOS numeric trait), 2-15
CLOCKTIM (COS numeric trait), 2-7
CMICRO pseudo, 5-84
Code sequences for binary definition files,

2-22
Command line, 2-12
Comment, 3-11
Comment character used with the new format

($CMNT), 5-83
Comment field, 3-6, 3-8
Comment message, 2-2
COMMENT pseudo, 5-5
COMMON pseudo, 5-27
Common section assignment, see COMMON pseudo
Common sections, 3-21
Compatibility checking, 2-26
Complement of 1 stored in the right-most

bits of a 4-bit field, 4-39
Complement-character (#), 4-31
Complex-register-designator, 4-2
Complex-register-mnemonic, 4-2
Complex registers, 4-1

complex-register-mnemonics, 4-2
register-designator, 4-2

CON pseudo, 5-57
Concatenation

description, 3-8, 3-10
character ($CNC), 5-83

Conditional assembly, 5-65
ELSE - Toggle assembly condition, 5-81
ENDIF - End conditional code sequence,

5-80
IFA - Test expression attribute for

assembly condition, 5-66
IFC - Test character strings for

assembly condition, 5-70
IFE - Test expressions for assembly

condition, 5-73
IFM - Text machine characteristics, 5-76
SKIP - Unconditionally skip statements,

5-79
Conditional error generation, see ERRIF

pseudo
Constant micro definition, see CMICRO pseudo
Constants, 4-13
Continuation, 3-10
Control parameter comparison between COS

and UNICOS, 2-18
Conventions

conventions used in the manual, 1-3
machine instruction syntax, A-I

cori (UNICOS logical trait), 2-14
CORI (COS logical trait), 2-6
COS

description, 2-1
environment, 2-9
files, 2-1

cos (continued)
logical traits, 2-5
NEWCAL control statement, 2-3
numeric traits, 2-7
parameters

comparison between COS and UNICOS
parameters (table), 2-18

description, 2-3
Counters

CPU

location, 3-23
origin, 3-23
parcel-bit-position, 3-24
word-bit-position, 3-23

COS parameter, 2-5
option instruction set (COS), 2-5

Cray Assembly Language, see CAL
Cray operating systems

COS, 2-1
JCL file, 2-2
CAL control statement, 2-3
COS environment, 2-9

UNICOS, 2-11
interactive assembly, 2-12
as - CAL command line, 2-12
UNICOS environment

comparison between COS and UNICOS, 2-18
Current date ($DATE), 5-83

$DATE (predefined micro), 5-83
d (UNICOS option), 2-16
D (UNICOS option), 2-16
Data, 4-13
Data definition, 5-57

BSSZ - Generate zeroed block, 5-58
CON - Generate constant, 5-57
DATA - Generate data words, 5-59
VWD - Variable word definition, 5-53

Data item
character-data item, 4-20
floating-data item, 4-18
integer-data item, 4-19
storage

CDC character data item storage
(diagram), 5-60

labeled data item storage (diagram),
5-60

unlabeled data item storage
(diagram), 5-60

DATA pseudo, 5-59
Decimal-exponent, 4-14
Decimal-integer, 4-14, 4-16
Decimal micros, see DECMIC pseudo
Decimal-prefix, 4-13, 4-16
Declare base for numeric data, see BASE

pseudo
Declare beginning of global text source,

see TEXT pseudo
DECMIC pseudo, 5-91
Defaults (for options/paramenters)

COS, 2-3
UNICOS, 2-12

SR-2003 Index-4

Defined sequences, 5-97
definition format, 5-99
DUP - Duplicate code, 5-139
ECHO - Duplicate code with varying

arguments, 5-142
editing, 5-98
ENDDUP - End duplicated code, 5-146
ENDM - End macro or opdef definition,

5-144
EXITM - Premature exit of a macro

expansion, 5-145
formal parameters, 5-100
INCLUDE pseudo instruction, 5-103
instruction calls, 5-102
LOCAL - Specify local unique character

string, 5-152
MACRO, 5-104
macro calls, 5-111
macro definition, 5-105
NEXTDUP - Premature exit of the current

iteration of a duplication expansion,
5-147

OPDEF - Operation definition, 5-123
opdef calls, 5-134
opdef definition, 5-127
OPSYN - Synonymous operation, 5-154
similarities among defined sequences,

5-98
STOPDUP - Stop duplication, 5-147

Definition format, 5-99
Designators for registers, 4-1
Diagnostic messages

descriptions, 2-2, 2-11, D-l
table of messages, D-2

Diagrams
64-bit ASCII representation of 'abc',

left justified, 4-38
64-bit representation of 1, 4-38
54-bit representation of the complement

of I, 4-39
64-bit representation of 1, 4-39
64-bit representation of -1, 4-48
64-bit representation of 5, 4-48
54-bit representation of 5, 4-49
ASCII character with left justification

and blank fill, 4-23
ASCII character with left justification

and zero fill, 4-23
ASCII character with right

justification and zero fill, 4-24
ASCII character with right

justification in 8 bits, 4-24
ASCII representation of 'abc' left

justified in nine bits, 4-38
BITP example - parcel B set by vwd

instruction, 5-36
BITP example - resetting the pointer,

5-35
BITP example - result of a Bitp

followed by a vwd, 5-36
BITP example - zeroing parcel A, 5-35
complement of 1 stored in the

right-most bits of a 4-bit field 4-39

Diagrams (continued)
result of VWD with 9-bit destination

field, 4-38
result of VWD with 4-bit destination

field, 4-40
storage of CDC character data item, 5-61
storage of labeled and unlabeled data

items, 5-60
storage of unlabeled data items, 5-60'
truncated value of -1 stored in a 5-bit

field, 4-48
truncated value of

field, 4-48
truncated value of

field, 4-49
DMSG pseudo, 5-43
DUP (COS option), 2-8
DUP pseudo, 5-139

5 stored

5 stored

Duplicate code, see DUP pseudo

in a 3-bit

in a 2-bit

Duplicate code with varying arguments, see
ECHO pseudo

e (UNICOS option), 2-15
E

COS parameter, 2-4
UNICOS option, 2-15

EBCDIC Code, E-1
ECHO pseudo, 5-142
ED (COS option), 2-8
EDIT (COS parameter), 2-9
EDIT pseudo, 5-15
Edited statements, 3-11
Editing, 5-98
EJECT pseudo, 5-49
Element-prefix, 4-32
Elements

description, 4-25, 4-32
prefixes for symbols, constants, or

special elements
P. - Parcel address prefix, 4-27
W. - Word-address prefix, 4-28

special elements, 4-25
ELSE pseudo, 5-81
ema (UNICOS logical trait), 2-14
EMA (COS logical trait), 2-6
Embed~ed-argument, 4-30
Embedded parameter

process, 5-123
requirements, 5-101

End conditional code sequence, see ENDIF
pseudo

End duplicated code, see ENDDUP pseudo
End macro or opdef definition, see ENDM

pseudo
End program module, see END pseudo
END pseudo, 5-4
ENDDUP pseudo, 5-146
ENDIF pseudo, 5-80
ENDM pseudo, 5-144
ENDTEXT pseudo, 5-52
Enter comment into generated binary load

module, see COMMENT pseudo

SR-2003 Index-5

ENTRY pseudo, 5-6
Equate symbol (=), 5-54
ERRIF pseudo, 5-40
Error messages

-description, 2-2
semantic, C-1
syntax, C-1

ERROR pseudo, 5-39
Evaluating immobile and relocatable terms

with coefficients
absolute, 4-40
external, 4-41
immobile, 4-40
invalid, 4-41
relocatable, 4-41

Execution of CAL, 1-2
EXITM pseudo, 5-145
Expression

attributes
address, 4-45

parcel-address, 4-45
value, 4-45
word-address, 4-45

relative, 4-45
absolute, 4-45
external, 4-45
immobile, 4-45
relocatable, 4-45

definition, 4-30, 4-36
diagram, 4-29
embedded-argument, 4-30
evaluation, 4-36
truncating values, 4-47

EXT pseudo, 5-7
External

description, 4-11, 4-41, 4-46
example, 4-50

-f (UNICOS option), 2-16
-F (UNICOS option), 2-17
Figures

address attribute assignment chart, 4-35
diagram of an expression, 4-29
diagram of a term, 4-29
sample organization of a CAL program,

3-2
symbols to be included in a binary

definition file, 2-23
word-parcel conversion for six words,

4-27
filename (UNICOS option), 2-17
File

binary definition files, 2-20
control, see INCLUDE pseudo
JCL files, 2-2

Floating-constant
binary-scale decimal-integer, 4-14
decimal-exponent, 4-14
decimal-integer, 4-14
decimal-prefix, 4-13
floating-decimal, 4-13

Floating-data item, 4-18

Floating-decimal, 4-13
Force parcel boundary, 3-24
Force word boundary, 3-24
Formal parameters, 5-100
FORMAT (COS parameter), 2-9
FORMAT pseudo, 5-16
Formats for source statements

new format, 3-4
old format, 3-1

-g symfile (UNICOS option), 2-13
-G (UNICOS option), 2-13
Generate constant, see CON pseudo
Generate data words, see DATA pseudo
Generate zeroed block, see BSSZ pseudo
Global definitions

definition, 3-1
example, 3-3

*HOST (COS option), 2-5
-h (UNICOS option), 2-15
-H (UNICOS option), 2-15
HARD, linkage attribute, 5-8
Hex-integer, 4-16
Hex-prefix, 4-16
Host, description, 2-10
hpm (UNICOS logical trait), 2-14
HPM (COS logical trait), 2-6

I (COS parameter), 2-3
-i nlist (UNICOS option), 2-15
-I options (UNICOS option), 2-15
ibufsize (UNICOS numeric trait), 2-15
IBUFSIZE (COS numeric trait), 2-1
IDENT pseudo, 5-3
Identify program module, see IDENT pseudo
IFA pseudo, 5-66
IFC pseudo, 5-10
IFE pseudo, 5-13
IFM pseudo, 5-16
Ignored field

location field, 5-2
operand field, 5-3

Immobile
description, 4-10, 4-40, 4-46
example, 4-50

INCLUDE pseudo, 5-94
Increment the size of the stack, see STACK

pseudo
Instructions, 3-12

assembler-defined, 3-13
calls, 5-102
machine, 3-13
pseudo, 3-13, B-1
syntax

conventions, A-1
description of syntax, A-1
hierarchical version, A-2
sorted version, A-8

user-defined, 3-13

SR-2003 Index-6

Integer-constant
base-integer, 4-16
binary-scale, 4-16
decimal-integer, 4-16
decimal-prefix, 4-16
hex-integer, 4-16
hex-prefix, 4-16
integer-constant, 4-15
octal-integer, 4-16
octal-prefix, 4-16

Integer-data item, 4-19
Interactive assembly, 2-12
Interfaces

operating systems, 2-1
Invocation statement for CAL

COS, 2-3
UNICOS, 2-12

Issue diagnostic message, see DMSG pseudo
Italics, 1-3

$JDATE (predefined micro), 5-83
-j (UNICOS option), 2-11
-J (UNICOS option), 2-11
JCL, 2-2
JCL statements (definitions), 2-3
JOB statment (JCL), 2-3
Julian date ($JDATE), 5-83

1 (UNICOS option), 2-15
L

COS parameter, 2-3
UNICOS option, 2-15

-1 lstfile (UNICOS option), 2-13
-L msgfile (UNICOS option), 2-13
Labeled data item storage (diagram), 5-60
Lines per page (LPP)

LPP default, 2-11
LPP parameter, 2-9
LPP shell variable, 2-11

LIS (COS option), 2-8
LIST (COS parameter), 2-1
List blank lines, see SPACE pseudo
List control, see LIST pseudo
LIST pseudo, 5-45
Listing control, 5-44

EJECT - Begin new page, 5-49
ENDTEXT - Terminate global text source,

5-52
LIST - List control, 5-45
SPACE - List blank lines, 5-48
SUBTITLE - Specify listing subtitle,

5-50
TEXT - Declare beginning of global text

source, 5-51
TITLE - Specify listing title, 5-50

Listing messages
description, 2-11
table, C-1

Literals, 4-21
Literals section, 3-20

Loader linkage, 5-6
ENTRY - Specify entry symbols, 5-6
EXT - Specify external symbols, 5-7
START - Specify program entry, 5-10

LOC pseudo, 5-32
LOCAL pseudo, 5-152
Local section assignment, see BLOCK pseudo
Local sections, 3-19
Location counter, 3-23
Location field, 3-5, 3-7
Location field, blank, 5-2
Logical traits

COS, 2-6
UNICOS, 2-14

Lowercase, see Case
LPP default, 2-17
LPP parameter, 2-9
LPP shell variable, 2-17

$MIC (predefined micro), 5-83
m (UNICOS option), 2-16
M (UNICOS option), 2-16
-m mlevel (UNICOS option), 2-16
MAC (COS option), 2-8
Machine instructions

description, 3-13
syntax, A-1

Macro
calls, 5-111
definition, 2-22, 2-27, 5-105

MACRO pseudo, 5-104
Main section, 3-19
Manual

conventions used in the manual, 1-3
execution of the CAL assembler, 1-2
introduction, 1-1
organization of the manual, 1-2

MBa (COS option), 2-8
MC (COS parameter), 2-9
memsize (UNICOS numeric trait), 2-15
MEMSIZE (COS numeric trait), 2-7
memspeed (UNICOS numeric trait), 2-15
MEMSPEED (COS numeric trait), 2-7
Message control, 5-38

DMSG - Issue diagnostic message, 5-43
ERRIF - Conditional error generation,

5-40
ERROR - Unconditional error generation,

5-39
MLEVEL - Message level, 5-42

Message
level

description, 2-2
MLEVEL pseudo, 5-42

priority, 2-2
table of listing messages, C-1

MIC (COS option), 2-8
Micro

description, 2-24, 2-28, 3-14, 5-82
character ($MIC), 5-83
definition, see MICRO pseudo
pseudos

SR-2003 Index-7

Micro (continued)
CMICRO - Constant micro definition,

5-84
DECMIC - Decimal micros, 5-91
MICRO - Micro definition, 5-86
OCTMIC - Octal micros, 5-89

substitution, 3-8, 3-10
substitution signaling, 3-9

MICRO pseudo, 5-86
MICSIZE pseudo, 5-56
MIF (COS option), 2-8
Mixed case, see Case
ML (COS parameter), 2-8
MLEVEL pseudo, 5-42
Mode control, 5-11

BASE - Declare base for numeric data,
5-11

EDIT - Change statement editing status,
5-15

FORMAT - Change statement format, 5-16
QUAL - Qualify symbols, 5-13'

Multiple references, 2-27
macros, 2-22, 2-27
micros, 2-24, 2-28
opdefs, 2-24, 2-28
opsyns, 2-24, 2-28
symbols, 2-22, 2-27

Multiply-operator, 4-32

n (UNICOS option), 2-16
N (UNICOS option), 2-16
n (OPTION control statement), 2-9
-n number (UNICOS option), 2-16
Name of qualifier in effect ($QUAL), 5-83
Names, 4-3

valid and invalid (example), 4-4
NDUP (COS option), 2-8
NED (COS option), 2-8
New format for source statement, 3-4
NEXTDUP pseudo, 5-147
NLIS (COS option), 2-8
NLIST (COS parameter), 2-7
NMAC (COS option), 2-8
NMBO (COS option), 2-8
NMIC (COS option), 2-8
NMIF (COS option), 2-8
noavl (UNICOS logical trait), 2-14
NOAVL (COS logical trait), 2-6
nobdm (UNICOS logical trait), 2-14
NOBDM (COS logical trait), 2-6
nocigs (UNICOS logical trait), 2-14
NOCIGS (COS logical trait), 2-6
nocori (UNICOS logical trait, 2-14
NOCORI (COS logical trait), 2-6
noema (UNICOS logical trait), 2-14
NOEMA (COS logical trait), 2-6
nohpm (UNICOS logical trait), 2-14
NOH PM (COS logical trait), 2-6
nopc (UNICOS logical trait), 2-14
NOPC (COS logical trait), 2-6
noreadvl (UNICOS logical trait), 2-14
NOREADVL (COS logical trait), 2-6
nostatrg (UNICOS logical trait), 2-14

NOSTATRG (COS logical trait), 2-6
Note message, 2-2
novpop (UNICOS logical trait), 2-14
NOVPOP (COS logical trait), 2-6
novrecur (UNICOS logical trait), 2-14
NOVRECUR (COS logical trait), 2-6
NSXNS (COS option), 2-8
NTXT (COS option), 2-8
numclstr (UNICOS numeric trait), 2-15
~UMCLSTR (COS numeric trait), 2-7
numcpus (UNICOS numeric trait), 2-15
NUMCPUS (COS numeric trait), 2-7
Numeric traits

COS, 2-7
UNICOS, 2-15

NXRF (COS option), 2-8

-0 objfile (UNICOS option), 2-12
Octal-integer, 4-16
Octal micros, see OCTMIC pseudo
Octal-prefix, 4-16
Octal word count, 5-32
OCTMIC pseudo, 5-89
OFF (COS option), 2-8
Old format for source statement, 3-7
ON (COS option), 2-8
Opdef

calls, 5-134
definition, 5-127
description, 2-24, 2-28

OPDEF pseudo, 5-123
Operand field

blank, 5-3
description, 3-6, 3-8

Operating systems
COS and UNICOS, see Cray operating

systems
interfaces, 2-1

Operation definition, see OPDEF pseudo
Opsyn, 2-24, 2-28
OPSYN pseudo, 5-154
OPTION (LPP parameter), 2-9
Options

comparison between COS and UNICOS, 2-18
COS, 2-3
UNICOS, 2-12

options (COS parameter), 2-7
ORG pseudo, 5-30
Organization

CAL program (figure), 3-2
manual, 1-2

Origin counter, 3-23

P (UNICOS option), 2-16
P (UNICOS option), 2-16
P. - Parcel address prefix, 4-27
Parameters

comparison between COS and UNICOS, 2-20
COS, 2-3
defaults, 2-3 (COS), 2-12 (UNICOS)
UNICOS, 2-12

Parcel address, 4-10, 4-47

SR-2003 Index-8

Parcel address prefix, 4-27
Parcel-bit-position counter, 3-24
Parcels (full) skipped, 5-38
pc (UNICOS logical trait), 2-14
PC (COS logical trait), 2-6
Predefined micros, 5-83
Prefixed-element, 4-31
Prefixes

for symbols, constants, or special
elements, 4-26

parcel address, 4-27
word-address, 4-27

Premature exit
of a macro expansion, see EXITM pseudo
of the current iteration of a

duplication expansion, see
NEXTDUP pseudo

primary
default, 2-5 (COS), 2-14 (UNICOS)
definition, 2-10 (COS)
option, 2-5 (COS), 2-14 (UNICOS)

Processing embedded parameters in a macro,
5-123

Program control, 5-3
COMMENT pseudo, 5-5
END pseudo, 5-4
IDENT pseudo, 5-3

Program module
description, 3-1
see also program control

Program segment, 3-1
Pseudo instructions

alphabetized list of all pseudo
instructions, B-1

conditional assembly, 5-65
ELSE - Toggle assembly condition,

5-81
ENDIF - End conditional code

sequence, 5-80
IFA - Test expression attribute for

assembly condition, 5-66
IFC - Test character strings for

assembly condition, 5-70
IFE - Test expressions for assembly

condition, 5-73
IFM - Text machine characteristics,

5-76
SKIP - Unconditionally skip

statements, 5-79
data definition, 5-57

BSSZ - Generate zeroed block, 5-58
CON - Generate constant, 5-57
DATA - Generate data words, 5-59
VWD - Variable word definition, 5-63

description, 3-13
defined sequences, 5-97

definition format, 5-99
DUP - Duplicate code, 5-139
ECHO - Duplicate code with varying

arguments, 5-142
editing, 5-98
ENDDUP - End duplicated code, 5-146
ENDM - End macro or opdef

definition, 5-144

Pseudo instructions (continued)
EXITM - Premature exit of a macro

expansion, 5-145
formal parameters, 5-100
INCLUDE pseudo instruction, 5-103
instruction calls, 5-102
LOCAL - Specify local unique

character string, 5-152
MACRO, 5-104
Macro calls, 5-111
Macro definition, 5-105
NEXTDUP - Premature exit of the

current iteration of a duplication
expansion, 5-147

OPDEF - Operation definition, 5-123
Opdef calls, 5-134
Opdef definition, 5-127
OPSYN - Synonymous operation, 5-154
similarities among defined

sequences, 5-98
STOPDUP - Stop duplication, 5-147

file control (INCLUDE pseudo), 5-94
index of pseudo instructions, B-1
listing control, 5-44

EJECT - Begin new page, 5-49
ENDTEXT - Terminate global text

source, 5-52
LIST - List control, 5-45
SPACE - List blank lines, 5-48
SUBTITLE - Specify listing subtitle,

5-50
TEXT - Declare beginning of global

text source, 5-51
TITLE - Specify listing title, 5-50

loader linkage, 5-6
ENTRY - Specify entry symbols, 5-6
EXT - Specify external symbols, 5-7
START - Specify program entry, 5-10

message control, 5-38
DMSG - Issue diagnostic message, 5-43
ERRIF - Conditional error

generation, 5-40
ERROR - Unconditional error

generation, 5-39
MLEVEL - Message level, 5-42

micros, 5-82
CMICRO - Constant micro definition,

5-84
DECMIC - Decimal micros, 5-91
MICRO - Micro definition, 5-86
OCTMIC - Octal micros, 5-89

mode control, 5-11
BASE - Declare base for numeric

data, 5-11
EDIT - Change statement editing

status, 5-15
FORMAT - Change statement format,

5-16
QUAL - Qualify symbols, 5-13

program control, 5-3
END - End program module, 5-4
COMMENT - Enter comment into

generated binary load module, 5-5
IDENT - Identify program module, 5-3

SR-2003 Index-9

Pseudo instructions (continued)
section control, 5-17

ALIGN - Align on an instruction
buffer boundary, 5-37

BITP - Set *p counter, 5-35
BITW - Set *w counter, 5-33
BLOCK - Local section assignment,

5-26
BSS - Block save, 5-31
COMMON - Common section assignment,

5-27
LaC - Set * counter, 5-32
ORG - Set * and *0 counter, 5-30
SECTION - Section assignment, 5-18
STACK - Increment the size of the

stack, 5-29
symbol definition, 5-53

= - Equate symbol, 5-54
MICSIZE - Set redefinable symbol to

micro size, 5-56
SET - Set symbol, 5-55

pseudox, 5-2
pseudoy, 5-3

$QUAL (predefined micro), 5-83
QUAL pseudo, 5-13
Qualified symbol, 4-7
Qualify symbols, see QUAL pseudo

readvl (UNICOS logical trait), 2-14
READVL (COS logical trait), 2-6
Redefinable attributes, 4-11
Redefinable micros, 5-1
References

multiple references for a definition,
2-27

Register
complex, 4-1
designators, 4-1
simple, 4-3

Register designators, 4-2
Register mnemonics, 4-2, 4-3
Relative attributes

absolute, 4-10
description, 4-33
external, 4-11
immobile, 4-10
relocatable, 4-10

Relocatable
description, 4-10, 4-40, 4-46
example, 4-50

Result field, 3-5, 3-7

s (UNICOS option), 2-15
S

COS parameter, 2-4
UNICOS option, 2-15

SECTION pseudo, 5-18
Sections

assignment, see SECTION pseudo
control, 5-17

Sections (continued)
ALIGN - Align on an instruction

buffer
boundary, 5-37

BITP - Set *p counter, 5-35
BITW - Set *w counter, 5-33
BLOCK - Local section assignment,

5-26
BSS - Block save, 5-31
COMMON - Common section assignment,

5-27
LOC - Set * counter, 5-32
ORG - Set * and *0 counter, 5-30
SECTION - Section assignment, 5-18
STACK - Increment the size of the

stack, 5-29
defined by the SECTION pseudo, 3-20
literals, 3-20
local, 3-19
main, 3-19
stack buffer, 3-21

SEGLDR statement (JCL), 2-3
Semantic error, C-1
Set * and *0 counter, see ORG pseudo
Set * counter, see LaC pseudo
Set *p counter, see BITP pseudo
Set *w counter, see BITW pseudo
SET pseudo, 5-55
Set redefinable symbol to micro size, see

MICSIZE pseudo
Set symbol, see SET pseudo
Similarities among defined sequences, 5-98
Simple registers, 4-3
Simple-register-mnemonic, 4-3
SKIP pseudo, 5-79
SOFT, linkage attribute, 5-8
Source statement

new format, 3-4
old format, 3-7

SPACE pseudo, 5-48
Special elements, 4-25
Specify

entry symbols, see ENTRY pseudo
external symbols, see EXT pseudo
listing subtitle, see SUBTITLE pseudo
listing title, see TITLE pseudo
local unique character string, see

LOCAL pseudo
program entry, see START pseudo

STACK pseudo, 5-29
START pseudo, 5-10
Statement editing, 3-8
Statements

actual, 3-11
control, 2-3
edited, 3-11
source, 3-4

statrg (UNICOS logical trait), 2-14
STATRG (COS logical trait), 2-6
Stop duplication, see STOPDUP pseudo
STOPDUP pseudo, 5-147
SUBTITLE pseudo, 5-50
SYM (COS parameter), 2-4

SR-2003

Symbol
attributes, 4-9
definition

= - Equate symbol, 5-54
description, 2-22, 2-2, 4-4, 4-8
MICSIZE - Set redefinable symbol to

micro size, 5-56
SET - Set symbol, 5-55

example, 4-9
included in a binary definition file

(figure), 2-23
qualified, 4-7
reference, 4-12
specification, 4-6
unqualified, 4-6

Synonymous operation, see OPSYN pseudo
Syntax

conventions, A-1
description of syntax, A-1
error, C-1
hierarchical version, A-2
machine instruction conventions, A-1
sorted version, A-8

System-defined binary definition file, 2-20

$TIME (predefined micro), 5-83
*TARGET (COS option), 2-5
t (UNICOS option), 2-15
T

COS parameter, 2-4
UNICOS option, 2-15

Tables
comparison of COS and UNICOS

parameters, 2-18
diagnostic messages, D-1
listing messages, C-1

TARGET control statement, 2-10
Target

description, 2-10
machine ($CPU), 5-83

Task common, 5-21
Terminate global text source, see ENDTEXT

pseudo
Terms

address attributes, 4-34
attributes, 4-32
complement character, 4-31
definition, 4-31
diagram, 4-29
elements, 4-32
element-prefix, 4-32
example, 4-31
figure, 4-32
multiply-operator, 4-32
prefixed-elements
relative attributes, 4-33
term attributes, 4-32

Test character strings for assembly
condition, see IFC pseudo

Test expression attribute for assembly
condition, see IFA pseudo

Test expressions for assembly condition,
see IFE pseudo

Index-10

Text machine characteristics, see IFM
pseudo

TEXT pseudo, 5-51
Time of day ($TIME), 5-83
TITLE pseudo, 5-50
Toggle assembly condition, see ELSE pseudo
Truncated values

truncated value of -1 stored in a 5-bit
field (diagram), 4-48

truncated value of 5 stored in a 3-bit
field (diagram), 4-48

truncated value of 5 stored in a 2-bit
field (diagram), 4-49

Truncating expression values, 4-47
TXT (COS option), 2-8

Unconditional error generation, see ERROR
pseudo

Unconditionally skip statements, see SKIP
pseudo

Underlining, 1-3
UNICOS

arguments, 2-12
description, 2-11
environment, 2-17
logical traits, 2-14
numeric traits, 2-15
options, 2-12

Unlabeled data item storage (diagram), 5-60
Unqualified symbol, 4-6
Uppercase, see Case
User-defined binary definition file, 2-20
User-defined instructions, 3-13

-v (UNICOS option), 2-17
Value, 4-10
Value attributes, 4-47
Variable word definition, see VWD pseudo
vpop (UNICOS logical trait), 2-14
VPOP (COS logical trait), 2-6
vrecur (UNICOS logical trait), 2-14
VRECUR (COS logical trait), 2-6
VWD

pseudo instruction, 5-63
result of VWD with 4-bit destination

field (diagram), 4-40
result of VWD with 9-bit destination

field (diagram), 4-38

W. - Word-address prefix, 4-28
Warning message, 2-2
Word address, 4-10, 4-47
Word-address prefix, 4-27
Word-bit-position counter, 3-23
Word count, octal, 5-32
Word-parcel conversion for six words

(figure), 4-27

SR-2003 Index-l1

"x", definition, 1-4
[x], definition, 1-4
x

x

definition, 1-4
UNICOS option, 2-16

COS parameter, 2-4
UNICOS option, 2-16

x I y, definition, 1-4
XNS (COS option), 2-8
XRF (COS option), 2-8

READER COMMENT FORM

CAL Assembler Version 2 Reference Manual SR-2003

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ____________________________________ __

JOB TITLE _______________________________ _

FIRM ____________________ __
RESEARCH. INC.

ADDRESS ________________________________ _

CITY _________________ STATE _______ ZIP ______ _

DATE --

---~

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUL. MN

POSTAGE WILL BE PAID BY ADDRESSEE

RESEARC INC.

2520 Pilot Knob Road
Attention: Suite 350

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

PUBLICATIONS Mendota Heights, MN 55120 i
U.S.A. I

---~

n
c
-l

l>
r o
Z
G)

-l
I
en
c
Z
m

READER COMMENT FORM

CAL Assembler Version 2 Reference Manual SR-2003

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ____________________________________ ___

JOB TITLE _________________ _

FIRM ______________________________________ ___
RESEARCH. INC.

ADDRESS _______________________ ___

CITY ___________ STATE ____ ZIP ____ _

DATE --

---~

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUL. MN

POSTAGE WILL BE PAID BY ADDRESSEE

RESEARCH. INC.

2520 Pilot Knob Road
Attention: Suite 350

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

PUBLICATIONS Mendota Heights, MN 55120 I
U.S.A. I

---~

n
c
~

:t>
r o
z
G>
~
I
u;
r
Z
m

