

I

FORMAT OF ASSEMBLER LISTINGS

The CAL assembler generates a source statement listing and a cross
reference listing as determined by list pseudo instructions and by
options on the CAL control statement as discussed in section 4 and
section 5.

Every page of list output produced by the CAL assembler contains two
132-character header lines. The first line contains the title, type of
Cray mainframe, version of CAL, date and time of assembly, and a global
page number over all programs assembled by the current CAL assembly.

The title is taken from a TITLE pseudo instruction if present or from the
operand field of the IDENT pseudo instruction. The second line contains
the subtitle specified by a SUBTITLE pseudo if present, a local block
name if other than the nominal block, a symbol qualifier if in effect,
and a local page number which is reset for each new program until the
local page number is used in the cross-reference listings generated by
CAL and SYSREF.

Example of page header:

1 66 76 96 105 115
Ititle

I unused I Block :bname
Idate I time I Page n

Isubtitle
lapu type I CAL version

I Quaulifier:qualnamel (n)

SOURCE STATEMENT LISTING

The listing for the source statements of a CAL program is organized into
five columns of information.

error
a ode

title line
subtl"tle line

loaation
address

oatal aode sourae line sequenae

E

SR-OOOO E-l J-OI

Eppop eodes
The first column contains up to seven characters indicating
errors that have been detected for the current statement.
If all the errors do not fit in seven columns, the seventh
character is a +, indicating that all errors are not
shown. Error codes are described in Appendix C.

Loeation addpesses
The second column gives the parcel or word address at which
the current statement is assembled. If the statement is a
machine instruction, the address is listed as a parcel
address with the parcel identifier a, b, c, or d appended
to the word address. Parcels are lettered from left to
right in the word.

Oetal eode The third column of information contains the octal
equivalent of the instruction or value.

If the instruction or value represents an address, the
octal code has a suffix as follows:

+ Positive relocation in program block
Negative relocation in program block

C Common block
X External ~~l

None Absolute address

For a symbol defined through the SET, MICSIZE, or = pseudo
instruction, the column contains the octal value of the
symbol.

For a BSS or BSSZ instruction, the column contains the
octal value of the number of words reserved.

For an ALIGN instruction, the column contains the octal
value of the number of full parcels skipped.

For a MICRO, OCTMIC, or DECMIC instruction, the column
contains the octal value of the number of characters in the
micro string.

Soupee line
The fourth column presents columns I through 72 of each
source line.

Sequenee field
The rightmost columns either contain the information taken

SR-OOOO

from columns 73 through 90 of the source line image or
contain an identifier if the line is an expansion of a
macro or opdef.

E-2 J

CROSS REFERENCE LISTING

The assembler generates a cross reference table with the following
format. Symbols are listed alphabetically and grouped by qualifier.
Each qualified group of symbols is headed by the message SYMBOL QUALIFIER
IS qualname.

Global symbols which are not referenced are not listed in the cross
reference. Symbols of the form %%xxxxxx, where x is any ASCII
character, are not listed in the cross reference.

title line
subtitle line

value

~-
value

symbol

Iblockl

symbol Iblock! symbol pefepences

-
or

name
.J' v--- -- .-J -

Octal value of symbol

A symbol with parcel-address attribute has a, b, c, or d
appended to indicate the parcel in the word. A relocatable
symbol has a + suffix if it has positive relocation
relative to the program block, a - suffix if negative
relocation relative to the program block, and a C suffix if
it is relocated relative to a common block. An external
symbol has an X suffix. An undefined symbol has a U suffix.

A relocatable symbol relocated relative to a common block
has the common block name enclosed in slant bars. Blank
common is indicated by II.

name A global symbol defined by the user is indicated by
GLOBAL. A global symbol defined in a system text is
indicated by the system text dataset name. A symbol
defined in text between TEXT and ENDTEXT pseudo
instructions is indicated by the associated TEXT name.

symbol pefepences

SR-OOOO

One or more references to the symbol in the following
format:

page: line x

page Local decimal number, of page containing
reference. The local page number appears in
parentheses at the right end of the second title
line, which is also called the subtitle line.

E-3 J

line

x

SR-OOOO

Decimal number of line containing reference

Type of reference, as follows:

blank

D

E

F

R

S

Symbol value is used at this point.

Symbol defined at this reference; that
is, it appears in the location field of
an instruction or is defined by a SET,
=, or EXT pseudo instruction.

Declares the symbol as an entry name.

Symbol used in an expression on an IFE,
IFA, or ERRIF conditional pseudo
instruction.

Symbol used in an address expression in
a memory read instruction or as a B or
T register symbol in an instruction
which reads the B or T register.

Symbol used in an address expression in
a memory store instruction or as a B or
T register symbol in an instruction
which stores a new value in the B or T
register.

E-4 J

CHARACTER SET F

ASCII ASCII
CHARACTER OCTAL PUNCHED-CARD EBCDIC CDC DISPLAY

CODE CODE CODE

NUL 000 12-0-9-8-1 00 None

SOH 001 12-9-1 01 None

STX 002 12-9-2 02 None

ETX 003 12-9-3 03 None

EOT 004 9-7 37 None

ENQ 005 0-9-8-5 2D None

ACK 006 0-9-8-6 2E None

BEL 007 0-9-8-7 2F None

BS 010 11-9-6 16 None

HT 011 12-9-5 05 None

LF 012 0-9-5 25 None

VT 013 12-9-8-3 OB None

FF 014 12-9-8-4 OC None

CR 015 12-9-8-5 OD None

SO 016 12-9-8-6 OE None

SI 017 12-9-8-7 OF None

DLE 020 12-11-9-8-1 10 None

DCl 021 11-9-1 11 None

DC2 022 11-9-2 12 None

DC3 023 11-9-3 13 None

DC4 024 9-8-4 3C None

NAK 025 9-8-5 3D None

SYN 026 9-2 32 None

ETB 027 0-9-6 26 None

SR-OOOO F-l J

ASCII ASCII
CHARACTER OCTAL PUNCHED-CARD EBCDIC CDC DISPLAY

CODE CODE CODE

CAN 030 11-9-8 18 None

EM 031 11-9-8-1 19 None

SUB 032 9-8-7 3F None

ESC 033 0-9-7 27 None

FS 034 11-9-8-4 lC None

GS 035 11-9-8-5 ID None

RS 036 11-9-8-6 IE None

US 037 11-9-8-7 IF None

Space 040 None 40 55

! 041 12-8-7 5A 66

" 042 8-7 7F 64

043 8-3 7B 60

$ 044 11-8-3 5B 53

% 045 0-8-4 6C 63

& 046 12 50 67

I 047 8-5 7D 70

(050 12-8-5 4D 51

) 051 11-8-5 5D 52

* 052 11-8-4 5C 47

+ 053 12-8-6 4E 45

, 054 0-8-3 6B 56

- 055 11 60 46

. 056 12-8-3 4B 57

/ 057 0-1 61 50

0 060 0 FO 33

1 061 1 Fl 34

2 062 2 F2 35

3 063 3 F3 36

4 064 4 F4 37

SR-OOOO F-2 J

ASCII ASCII
CHARACTER OCTAL PUNCHED-CARD EBCDIC CDC DISPLAY

CODE CODE CODE

5 065 5 F5 40

6 066 6 F6 41

7 067 7 F7 42

8 070 8 F8 43

9 071 9 F9 44

: 072 8-2 7A 00

; 073 11-8-6 5E 77

< 074 12-8-4 4C 72

= 075 8-6 7E 54

> 076 0-8-66E 6E 73

? 077 0-8-7 6F 71

@ 100 8-4 7C 74

A 101 12-1 Cl 01

B 102 12-2 C2 02

C 103 12-3 C3 03

D 104 12-4 C4 04

E 105 12-5 C5 05

F 106 12-6 C6 06

G 107 12-7 C7 07

H 110 12-8 C8 10

I III 12-9 C9 11

J 112 11-1 01 12

K 113 11-2 02 13

L 114 11-3 03 14

M 115 11-4 04 15

N 116 11-5 05 16

0 117 11-6 06 17

P 120 11-7 07 20

Q 121 11-8 D8 21

SR-OOOO F-3 J

ASCII ASCII
CHARACTER OCTAL PUNCHED-CARD EBCDIC CDC DISPLAY

CODE CODE CODE

R 122 11-9 09 22

S 123 0-2 E2 23

T 124 0-3 E3 24

U 125 0-4 E4 25

V 126 0-5 E5 26

W 127 0-6 E6 27

X 130 0-7 E7 30

y 131 0-8 E8 31

Z 132 0-9 E9 32

[133 12-8-2 AD 61

\ 134 0-8-2 EO 75

] 135 11-8-2 BD 62

1\ 136 11-8-7 5F 76

137 0-8-5 60 65 -,
140 8-1 79 None

a 141 12-0-1 81 None

b 142 12-0-2 82 None

c 143 12-0-3 83 None

d 144 12-0-4 84 None

e 145 12-0-5 85 None

f 146 12-0-6 86 None

9 147 12-0-7 87 None

h 150 12-0-8 88 None

i 151 12-0-9 89 None

j 152 12-11-1 91 None

k 153 12-11-2 92 None

1 154 12-11-3 93 None

m 155 12-11-4 94 None

n 156 12-11-5 95 None

SR-OOOO F-4 J

ASCII ASCII
CHARACTER OCTAL PUNCHED-CARD EBCDIC CDC DISPLAY

CODE CODE CODE

0 157 12-11-6 96 None

p 160 12-11-7 97 None

q 161 12-11-8 98 None

r 162 12-11-9 99 None

s 163 11-0-2 A2 None

t 164 11-0-3 A3 None

u 165 11-0-4 A4 None

v 166 11-0-5 A5 None

w 167 11-0-6 A6 None

x 170 11-0-7 A7 None

y 171 11-0-8 A8 None

z 172 11-0-9 A9 None

{ 173 12-0 CO None
I
I 174 12-11 6A None

} 175 11-0 DO None

- 176 11-0-1 Al None

DEL 177 12-9-7 07 None

SR-OOOO F-5 J

CODING EXAMPLES

This appendlx gives examples of efficient coding methods for long
vectors, a loop counter, alternate tests on the contents of S registers,
and circular shifts.

LONG VECTORS

When vectors have more than 64 elements, the vector should be segmented
into groups of 64 elements and a residue before processing. The
following example shows an efficient way to do this.

Location Result Operand
1]'0 20

Al FWA
A2 LWA+l
AO AI-A2
A3 AI-A2
S2 <6
Sl A3
JAP ERROR
Sl #Sl&S2
A3 81

A3 A3+1
LOOP VL A3

...

Al Al+A3
AO AI-A2
A3 0 1 64
JAN LOOP

SR-OOOO G-l

Conunent
35

Vector first wo
Vector last wor
-vector length

Error if vector

rd address
d address+l

length<O

(A3)=63 if vect or length is
multiple of 64
First segment 1 ength
Set vector leng th, read vector

rform vector segment, and pe
computations

Store result

Increment curre nt position

Loop for all se gments

J

G

LOOP COUNTER

The following example shows an efficient way to count the number of
passes through loops when the number of passes does not exceed 64.

Location Result Operand Comment
1 10 20 35

SO >COUNT (mask with leng th=loop count)
LOOP SO SO<l Shift mask

Perform computa tions ...
JSM LOOP Loop required n umber of times

ALTERNATE TESTS ON THE CONTENTS OF S REGISTERS

Usually SO is used to test the contents of S registers to determine if
the contents are positive, negative, zero, or nonzero. The population
count and leading zero count instructions can be used to test the
contents of S registers for these conditions in AO. This is useful when
the contents of SO cannot be destroyed or when one S register test needs
to be made right after another.

Location Result Operand Comment
1 10 20 35

AO PS3
JAZ SZR If S3=0

AO PS3
JAN SNZ If S3,#0

AO ZS3
JAN SPL If S3>0 -
AO ZS3
JAZ SMI If S3<0

SR-OOOO G-2 J

CIRCULAR SHIFTS

The double shift instructions (056 and 057) can be used to shift an S
register circularly.

Location Result Operand Comment
1 10 20 35

S7 S7,S7<A2
or:

S7 S7, S7>A2

SR-OOOO G-3 J

I

STRUCTURED PROGRAMMING MACROS

The following structured programming macros which are contained in
$SYSTXT and are available for use in programs written in CAL are
described in the Macros and Opdefs Reference Manual, CRI publication
SR-OOl2.

• SGOSUB
• $GOTO
• $IF, $ELSEIF, $ELSE, and $ENDIF
• SJUMP
• $LOOP, $EXITLP, and $ENDLOOP
• SRETURN
• $SUBR

SR-OOOO H-l

H

J-Ol

CONDITIONS AND SPECIAL MACROS

CONDITIONS

Conditions such as those used by the $IF macros can be very complex.
Several classes of conditions are shown in the following paragraphs.

CONDITIONS ON AO AND SO

Condition

AZ •••
AN •••
AP •••
AM •••
SZ •••
SN •••
SP •••
SM •••

t

t

Meaning

(AO) equal to 0
(AO) not equal to 0
(AO) greater than or equal to 0
(AO) less than 0
(SO) equal to 0
(SO) not equal to 0
(SO) greater than or equal to 0
(SO) less than 0

In the above, " ••• " means any number (including zero) of letters. For
example, AZ means the same as AZero.

CONDITIONS ON A AND S REGISTERS

Condition Meaning

An [=operand] ,Z ••• (An) equal to 0
An[=operand],N ••• t (An) not equal to 0
An[=operand],P ••• (~) greater than or equal to 0
An[=operand],M ••• (An) less than 0
Sn[=operand] ,Z ••• (Sn) equal to 0
Sn[=operand],N ••• t (Sn) not equal to 0
Sn[=operand],P ••• (Sn) greater than or equal to 0
Sn[=operand],M ••• (Sn) less than 0

In the above, n is any integer between 0 and 7 inclusive, " ••• " is any
number of letters, and the portion in brackets is optional. If an

H

t Condition means not equal to 0; Ne, NE, Ng, or NG is not an acceptable
condition.

SR-OOOO H-l J

operand is specified, an instruction is generated to set the indicated
register to the operand's value. If an operand contains embedded commas
or blanks, then the entire assignment must be enclosed in parentheses.
For example, A3,Minus is true if (A3) is less than 0; AO=PS2,Zero is true
if the population count of (S2) is 0; (SO=JOE,O) ,Plus is true if the
content of memory word JOE is positive.

RELATIONAL CONDITIONS

Relational conditions are of the following forms:

Am[=operand],relation,An[=operand] and
Sm[=operand],relation,Sn[=operand]

The m and n are integers between 1 and 7 inclusive, operands are as
described in conditions on A and S registers, and relation is one of EQ,
NE, LT, LE, GT, or GE and has the same meaning as in FORTRAN.

For example, A2,EQ,A3 is true if (A2) equals (A3); (Sl=JOE,0},LT,S2=4 is
true if the content of memory word JOE is less than 4.

BIT SET CONDITIONS

Condition

constant,IN,Sm[=operand]

Sn[=operand],ALLIN,So[=operand]

Sn[=operand],ONEIN,So[=operand]

Meaning

True if bit number constant is
set in register "Sm". Bits are
numbered sequentially, with the
sign bit being o.

True if every bit set in register
"Sn" is also set in register
"So".

True if at least one bit set in
"Sn" is also set in "So".

In the above, constant is any CAL expression yielding an integer
constant; m is any integer between 0 and 7 inclusive; nand 0 are
any integers between 1 and 7 inclusive; and operands are as described in
Conditions on A and S registers. For example, D'63,IN,SO=T.JOE is true
if the content of T.JOE is odd; S2<3,ALLIN,S3 is true if the last 3
bits of S3 are set; Sl,ONEIN, (S2=ERROR,0) is true if any bit set in Sl is
also set in memory word ERROR.

SR-OOOO H-2 J

COMPOUND CONDITIONS

Conditions on AO and SO, conditions on A and S registers, relational
conditions, and bit set conditions are called simple conditions. Both
simple and compound conditions can be combined in various ways to form
new compound conditions:

Condition Meaning

NOT, (cond) cond is not true

(condl) ,AND, (cond2) condl and cond2 are both true

condl is true, cond2 is true, or both are true.

In the above, cond, condl , and cond2 are any conditions, simple or
compound. The parentheses are required. For example, NOT, (Sl,EQ,S2) is true
if (Sl) is not equal to S2; (AMinus) ,OR,(SMinus) is true if (AO) is less than
o or (SO)is less than 0 or both; and «Al,GE,A2='A'R) ,AND, (Al,LE,A2='Z'R» ,
OR ((Al,GE,A2='a'R) ,AND, (Al,LE,A2='z'R» is true if Al contains an uppercase
or lowercase letter.

SPECIAL MACROS

The following macros are contained in $SYSTXT and are available for use
in programs written in CAL. Unlike the majority of macros in $SYSTXT,
these are independent of the operating system.

$IF MACRO

The $IF macro operates in the same manner as the similar structure in
FORTRAN when used with the attendant $ELSEIF, $ELSE, and $ENDIF macros.
The $ELSEIF and $ELSE macros are optional. If both are included, an
$ELSEIF macro cannot follow a $ELSE macro.

The conditions that can be used with $IF or $ELSEIF are described under
conditions of this appendix.

$IF groups can be nested within other $IF groups up to a level of 10 deep.

The value of an IF or ELSEIF condition is treated as either true or
false. If true, the block that follows is executed; if false, it is
skipped. The ELSE statement, if present, must follow any ELSEIF
statements that belong to the same IF group. within each IF group, no

SR-OOOO H-3 J

more than one block is executed (once a block is executed, the remalnlng
blocks in the same IF group are skipped). If none of the blocks in a
group have been executed when an ELSE statement is encountered, then the
ELSE block is executed if present. A block can be null (that is, it can
contain no statements to be executed).

Example:

Location Result Operand
1 10 20

$IF condition

assembly
code

· · ·
$ELSEIF condition

assembly

code

·
· ·

$ELSE

assembly
code

·
· · $ENDIF

Comment
35

This code is ex ecuted if the $IF
condition is tr ue.

If the $IF cond ition is false
and
the $ELSEIF con dition is true,

ecuted. this code is ex

If both of
are false,
executed.

the
this

above conditions
code is

Examples of conditions used with $IF, $ELSEIF, and $ELSE are shown below.

SR-OOOO H-4 J

Example 1:

$IF AZ
51 A3
52 A4

$EL5EIF 5Z
Al S2
A2 53
$IF AP

Al A2
A3 S4

$ENDIF
$EL5E

Sl S2*F53
$ENDIF

Example 2:

$IF 52,LT,S4
Al 2

$EL5EIF AS,GE,Al
Al 5

$ELSEIF 51,EQ,S7=123
A2 6

$ELSE
$IF A2, NE, AS=ABC

A3 4
$EL5EIF 5S,GT,S7=LABEL

Al 5
$ENDIF

$ENDIF

$GOTO MACRO

The $GOTO macro offers CAL users a computed GO TO statement.

SR-OOOO

NOTE

Unlike the I-based FORTRAN computed GO TO, this GO TO
statement is O-based.

H-S J

Example:

Location Result Operand Comment
I 10 20 35

$GOTO Ai, (labelO' labell···labeln) , Aj

Register Ai is a scratch register, and register Aj holds a value that
determines to which label the jump takes place. For instance, if Aj=l
the jump is to labell. If Aj is greater than n, no jump takes
place, and control falls through to the next instruction.

SR-OOOO H-6 J

DATA GENERAL CAL

Data General CAL is a development tool used by Cray Research, Inc. and is
not a CRI supported product. It may be used on the MCU for the CRAY-l
Model A and B systems and for Models S/250, S/500 and S/lOOO of the S
Series CRAY-l Computer Systems.

SUMMARY OF DIFFERENCES BETWEEN CPU CAL AND DATA GENERAL CAL

• Expression evaluation

Data General CAL evaluates expressions from left to right without
regard for term operators. CPU CAL forms elements into a term and
incorporates the term into the sum of previously evaluated terms.

• Continuation lines

Data General CAL does not allow continuation lines.

• Operand field

CPU CAL handles the case where a result field extends beyond column
34 and an operand field begins after column 35. Data General CAL
does not handle this case.

• Line editing

Data General CAL does not support concatenation and micros.

• Qualified symbols

Data General CAL does not support qualified symbols.

• Special elements

The only special element supported by Data General CAL is *

• Data notation

SR-OOOO

Data elements in Data General CAL can be octal integers (0 prefix),
decimal integers (D prefix), or a character string (A prefix) that
can fit into 64 or fewer bits. The only suffix supported is for
character justification and fill (H, L, or R).

1-1 J

• Numeric base

For Data General CAL, if the 0 or D prefix is omitted from a
numeric element, it is assumed to be octal. For CPU CAL, the
default can be set by a BASE pseudo but is decimal if no BASE
pseudo is supplied.

• Register designators

The designators for A, S, and V registers for Data General CAL
must be numeric, not symbolic. Designators for Band T registers
may be symbolic but must be defined before their use in an
instruction.

• Pseudo instructions

Data General CAL supports the following subset of pseudo
instructions.

ABS Optional in Data General CAL which assembles only absolute
code

BSS Unused parcels are padded with pass instructions (Sl Sl&Sl)
not with zeros as in CPU CAL

BSSZ No differences

CON The operand field can contain only one entry in Data
General CAL

EJECT No differences

END No differences

ENTRY In Data General CAL, the operand field can contain only one
entry

IDENT In Data General CAL, statements preceding IDENT and between
END and IDENT are taken as comments

LIST A non-empty operand field enables the listing for Data
General CAL

ORG No differences for absolute assembly

• Symbolic machine instructions

SR-OOOO

Data General CAL symbol instructions are a subset of CPU CAL
symbolic machine instructions except for the following which are
recognized by Data General CAL but not by CPU CAL.

1-2 J

Location Result Operand Comment
1 10 20 35

, Bjk,Ai
, Tjk,Ai
Bjk,Ai ,
Tjk,Ai ,
, ,1 vi
, ,AD vi
vi "AD
vi ,,1

Special syntax forms for Data General CAL are a subset of CPU CAL
symbolic machine instructions. The following symbolic machine
instructions are recognized by CPU CAL but not by Data General CAL.

Location Result Operand Comment
1 10 20 35

ERR exp
VL 1
VM 0
EX exp
Ai -1
Bjk,Ai O,AO
O,AO Bjk,Ai
Tjk,Ai O,AO
O,AO Tjk,Ai
si Sj&SB
si iSB&Sj
si Sj\SB
si SB\Sj
si iSj\SB
si iSB\Sj
si iSB
si sj!Si&SB
si Sj!SB
si SB!Sj
si SB
si Si,Sj<l
si Sj,Si>l
si +Fsk
si -FSk

SR-OOOO 1-3 J

Location Result Operand Comment
1 10 20 35

Vi,Ak 0
Ai exp,
Ai ,Ah
exp, Ai
,Ah Ai
si exp,
si ,Ah
exp, si
,Ah si
vi 0
vi vk
vi #vM&vk
vi vj<l
vi vj>l
vi vj,vj<l
vi vj ,vj>l
vi Vj-Vk
vi +FVk
vi -FVk
VM vj,z
vi ,AO,l
,AO,l vj

• Execution of Data General CAL assembler

Name:

Format:

Purpose:

Switches:

Global:

SR-OOOO

CAL

CAL fi"lename

To assemble a CAL assembly language source file.
Output can be an absolute binary file, a listing
file, or both.

By default, output of an assembly is an absolute
binary file (no listing file). Switches other than
those specified are ignored.

IE - List only lines with errors on listing file; no
effect if L or P switches not selected.

IL - ~isting file is produced on fi"lename.LS.

IN - No absolute binary file is produced.

I-4 J

Local:

Extensions:

Examples:

/0 - Qverride effect of LIST pseudo-instructions; no
effect if L or P switches not selected.

/P - Listing on Erinter; overridden by L switch.

/X - Produce cross referencing of symbol table; no
effect if L or P switches not selected.

None

On input, search for filename.

On output, produce filename.sv for absolute binary
and filename.Ls for listing (global L switch
selected) •

The source file name specified on the call cannot
have an extension and is limited to ten characters.

In these examples, each statement must be terminated
with a carriage return.

CAL Z

This example causes assembly of CAL source file Z,
producing an absolute binary file called Z.SV.

CAL/N/L A

This example causes assembly of file A, producing as
output a listing file A.LS. No binary file is
produced.

CAL/P/X EXAMP

This example causes assembly of file EXAMP, producing
an assembly listing with cross-referenced symbol
table, output to the line printer, and an absolute
binary file EXAMP.SV.

• Execution of generated binary under COS

SR-OOOO

A binary generated by Data General CAL can execute on the CRAY-I
under COS if the following steps are taken.

1-5 J

SR-OOOO

1. Block the binary as a separate dataset using the B option.
(See BLOCK utility in Data General Station (DGS) Operator's
Guide, CR1 publication SG-0006.)

2. Stage the dataset to the CRAY-l.

3.. Access the dataset from a job.

4. Execute the dataset by specifying the dataset name as the verb
of a control statement. (Note that the LDR utility is not
able to load the dataset.)

1-6 J

INDEX

INDEX

24-bit integer arithmetic, 3-45
64-bit integer arithmetic, 3-48

pseudo, 4-29

A registers
24-bit integer arithmetic operations,

3-45
bit count instructions, 3-88
entry instructions, 3-9
inter-register transfer instructions,

3-15
load instructions, 3-42
special values, 3-4
store instructions, 3-38

ABS psuedo, 4-3
Absolute assembly, 4-3
Absolute expression, 2-19
Absolute symbol attribute, 2-6
Adding operators, 2-16
Addition

floating-point, 3-53
integer, 3-45

Address registers, see A registers or
B registers

ALIGN pseudo, 4-19
Arithmetic operation designator, 3-8
Arithmetic, floating-point, 3-51

addition, 3-53
description, 3-51
multiplication, 3-57
normalization, 3-52
range errors, 3-52
reciprocal approximation, 3-64
reciprocal iteration, 3-62
subtraction, 3-53

Arithmetic instruction format, 3-1
Arithmetic, integer

24-bit, 3-45
64-bit, 3-48
description, 3-45

Assembler
description, 1-1
execution, 1-2, 5-1
features, 1-1
listing format, E-l

cross reference listing, E-3
page headers, E-l
source statement listing, E-l

Assembly errors, C-l
fatal, C-l
warning, C-5

Assembly source stack, 4-45
Asterisk

first column, 2-1

SR-OOOO Index-l

multiplying operator, 2-16
special element, 4-12

Attribute
expression, 2-19
symbol, 2-5, 2-6
term, 2-17

B registers
inter-register transfer instructions,

3-29
load instructions, 3-40
store instructions, 3-37

BASE pseudo, 4-7
Bidirectional memory transfers, 3-35
Binary system text, 5-5
Bit count instructions, 3-88
BITP pseudo, 4-19
BITW pseudo, 4-18
Blank, name terminator, 2-4
Block control, 4-10

ALIGN pseudo, 4-19
BITP pseudo, 4-19
BITW pseudo, 4-18
BLOCK pseudo, 4-13
BSS pseudo, 4-16
COMMON pseudo, 4-14
counters, 4-12
force parcel boundary, 4-13
force word boundary, 4-12
LOC pseudo, 4-17
location counter, 4-12
ORG pseudo, 4-15
origin counter, 4-12
parcel-bit-position counter, 4-13
word-bit-position counter, 4-12

Block name, 4-10
BLOCK pseudo, 4-13
Blocks

blank common, 4-11
description, 4-10
labeled common, 4-11
literals, 4-10
local, 4-10
nominal, 4-10

Branch instructions
conditional format, 3-92
description, 3-91
error exit, 3-95
normal exit, 3-94
return jump, 3-94
unconditional format, 3-91

BSS pseudo, 4-16
BSSZ pseudo, 4-32

J-Ol

CA register, see Current Address register
CAL, see Cray Assembly Language
CE register, see Channel Error Flag register
Channel control monitor instruction, 3-96
Channel Error Flag register (CE)

clearing, 3-98
designator, 3-7

Channel Interrupt Flag register (CI)
clearing, 3-98
designator, 3-7

Channel Limit register
designator, 3-7
setting, 3-96

Character constants, 2-11
Character set, F-l
Chart method of expression attribute

evaluation, 2-21
CI register, see Channel Interrupt Flag

register
Circular shift coding examples, G-3
CL register, see Channel Limit register
Cluster number instructions, 3-103
Code duplication, 4-58

DUP pseudo, 4-58
ECHO pseudo, 4-59
ENDDUP pseudo, 4-60
examples, 4-61
STOPDUP pseudo, 4-61

Coding
alternate tests on contents of S

registers, G-2
circular shifts, G-3
conventions, 2- 2
data notation, 2-9, 2-14
examples, G-l
general rules, 2-1
long vectors, G-l
loop counter, G-2
symbolic notation, 3-5

Comma
continuation, 2-1
name terminator, 2-4

Comment field, 2-1, 2-2
COMMENT pseudo, 4-3
Comment statement, 2-1
COMMON pseudo, 4-14
Common relocatable symbol, 2-7
CON pseudo, 4-31
Concatenation, 2-3
Conditional assembly, 4-36

ELSE pseudo, 4-42
ENDIF pseudo, 4-41
examples, 4-44
IFA pseudo, 4-36
IFC pseudo, 4-40
IFE pseudo, 4-38
SKIP pseudo, 4-41

Conditional branch instructions, 3-92
Constants

character, 2-11
numeric, 2-10
prefixed, 2-14

Continuation line, 2-1
Counters, block control, 4-12
Cray Assembly Language (CAL), 2-1

SR-OOOO Index-2

control statement, 5-1
parameters, 5-2

description, 1-1
execution, 1-2, 5-1
features, 1-1
line editing, 2-1
listing format, E-l

cross reference listing, E-3
page headers, E-l
source statement listing, E-l

names, 2-3
register designators, 2-4
source line format, 2-1

comment statement, 2-1
continuation line, 2-1

statement format, 2-1
comment field, 2-2
location field, 2-2
operand field, 2-2
result field, 2-2

symbols, 2-5
attributes, 2-6
definition, 2-6

Cross reference listing, E-3
Current Address register (CA)

designator, 3-7
setting, 3-96

Data definition, 4-31
BSSZ pseudo, 4-32
CON pseudo, 4-31
DATA pseudo, 4-33
REP pseudo, 4-35
VWD pseudo, 4-34

Data General CAL, I-I
Data items, 2-12
Data notation

character constants, 2-11
format, 2-11

data items, 2-12
format, 2-12

description, 2-9
literals, 2-13
numeric constants, 2-9

format, 2-9
DATA pseudo, 4-33
DECMIC pseudo, 4-65
Division

floating-point, 3-52
integer, 3-53

DUP pseudo, 4-58
Duplicated sequences, 4-62

examples, 4-62

ECHO pseudo, 4-59
Editing, 4-25
EJECT pseudo, 4-26
Elements

description, 2-16
example, 2-16
expression, 2-16
special, 2-9

ELSE pseudo, 4-42

J-Ol

END pseudo
description, 4-3
required, 4-1

ENDDUP pseudo, 4-60
ENDIF pseudo, 4-41
ENDM pseudo, 4-53
ENDTEXT pseudo, 4-28
Entry instructions

description, 3-9
into A registers, 3-9
into S registers, 3-10
into Semaphore register, 3-16
into V registers, 3-15

ENTRY pseudo, 4-4
Equate pseudo, see = pseudo
ERRIF pseudo, 4-21
Error control, 4-20

ERRIF pseudo, 4-21
ERROR pseudo, 4-20

Error exit instruction, 3-95
ERROR pseudo, 4-20
Errors, assembly

fatal, C-l
warning, C-5

Exchange Address register (XA)
clearing, 3-99
designator, 3-7
setting, 3-99

Execution of the CAL assembler, 1-2
Expression
Expressions, 2-15, 4-50

adding operators, 2-16
attributes, 2-19

absolute, 2-19
external, 2-19
parcel address, 2-19
relocatable, 2-19
value, 2-19
word address, 2-19

chart method of evaluation, 2-21
diagramming, 2-15
elements, 2-9, 2-16
evaluation, 2-18
multiplying operators, 2-16
registers, 3-6, 4-50
term attributes, 2-17
terms, 2-16

EXT pseudo, 4-5
External expression attribute, 2-19
External symbol attribute, 2-7

Fatal assembly errors, C-l
Field

comment, 2-1, 2-2
location, 2-1, 2-2, 3-7
operand, 2-1, 2-2, 3-8
result, 2-1, 2-2, 3-7

Floating-point
addition, 3-53
arithmetic, 3-51
data formats, 3-51
data notation, 2-10
designator, 3-8
instructions, 3-52

SR-OOOO Index-3

Interrupt flag, 3-53
multiplication, 3-57
range errors, 3-52
subtraction, 3-53

Force parcel boundary, 4-13
Force word boundary, 4-12
Functional categories, 3-6

g field, 3-1
General form for instructions, 3-1
Global definitions, 2-8

h field, 3-1
Half-precision designator, 3-8
Header

macro, 4-38
opdef, 4-38

i field, 3-1
IDENT pseudo

description, 4-2
in program module, 4-1
required, 4-1

IFA pseudo, 4-36
IFC pseudo, 4-40
IFE pseudo, 4-38
Immediate constant instruction, 3-3
Instruction definition, 4-43

assembly source stack, 4-45
Instruction definition (continued)

body, 4-45
combinations, 4-51
definition body, 4-44
definition end, 4-45
definition header, 4-44
ENDM pseudo, 4-53
exceptions, 4-52
expressions, 4-50
formal parameters, 4-46
header, 4-45
LOCAL pseudo, 4-52
macro calls, 4-47

examples, 4-54
MACRO pseudo, 4-46
opdef calls, 4-53

ex.amples, 4-54
OPDEF pseudo, 4-49
OPSYN pseudo, 4-57
registers, 4-50
symbolic instruction syntax, 4-49

Instruction descriptions, 4-2
Instruction format, 3-1

l-parcel instruction format, 3-1
2-parcel instruction format, 3-3

Instruction, pseudo
block control, 4-10
definition, 4-1
listing, 4-2
loader linkage, 4-4
macro, 4-36
mode control, 4-7
program control, 4-2

J-Ol

required, 4-1
similar to macro, 4-36

Instruction summaries, A-l
Instruction summary by functional category,

3-6
Instruction summary for CRAY X-MP

computers, A-13
Instruction summary for CRAY-l computers,

A-l
Instruction, symbolic machine

definition, 3-1
format, 3-1
location field, 3-7
notation, 3-5
operand field, 3-8
register designators, 3-7
required, 4-1
result field, 3-7

Integer arithmetic operations, 3-45
Integer data formats, 3-45
Integer difference instruction

24-bit, 3-46
64-bit, 3-49

Integer product instructions
24-bit, 3-46

Integer sum instructions
24-bit, 3-46

Integer sum instructions (continued)
64-bit, 3-48

Inter-register transfer instructions, 3-18
to A registers, 3-18
to intermediate registers, 3-29
to S registers, 3-23
to Semaphore register, 3-35
to V registers, 3-31
to Vector Length register, 3-33
to Vector Mask register, 3-33

Intermediate registers, see B registers or
T registers

Interprocessor interrupt instructions
clear, 3-102
set, 3-102

Interrupt flag, 3-53

j field, 3-1

k field, 3-1

Leading zero count
designator, 3-8
instruction, 3-78

Line
comment, 2-1
continuation, 2-1
source, 2-1

Line editing, 2-3
concatenation, 2-3
micro substitution, 2-3

LIST pseudo, 4-22
Listing control, 4-22

EJECT pseudo, 4-26
ENDTEXT pseudo, 4-28

SR-OOOO Index-4

LIST pseudo, 4-22
SPACE pseudo, 4-26
SUBTITLE pseudo, 4-27
TEXT pseudo, 4-27
TITLE pseudo, 4-26

Literals
description of block, 4-10
notation, 2-13

Load instructions, 3-40
Loader Linkage, 4-4

ENTRY pseudo, 4-4
EXT pseudo, 4- 5
MODULE pseudo, 4-6
START pseudo, 4-6

LOC pseudo, 4-17
LOCAL pseudo, 4-52
Location counter, 4-12
Location field

description, 2-~
symbolic instruction, 3-7

Logfile messages, D-l
Logical operations

description, 3-66
designator, 3-8
differences, 3-72
equivalence, 3-74
merge, 3-76
products, 3-67
sums, 3-70
Vector Mask, 3-75

Long vector coding examples, G-l
Loop counter coding examples, G-2

m field, 3-1
Macro calls, 4-47
Macro instruction

description, 4-42
examples, 4- 5 4
expansion, 4-54
global, 2-9, 4-1, 4-36
header, 4-1
in program module, 4-1
structured, H-l

MACRO pseudo, 4-46
Mask instruction, 3-2
Master Clear

clearing, 3-98
designator, 3-7
setting, 3-98

Memory references, 3-35
Memory transfers

bidirectional, 3-35
description, 3-35
loads, 3-40
memory references, 3-36
stores, 3-37

Merge instruction, 3-76
Micro definition, 4-63

DECMIC pseudo, 4-65
MICRO pseudo, 4-64
OCTMIC pseudo, 4-65
predefined, 4-66

Micro references, 4-63
Micro substitution, 2-3

J-Ol

Micros
description, 4-60
global, 2-9, 4-1
in program module, 4-1
predefined, 4-66
references, 4-63

MICSIZE pseudo, 4-31
Mode control, 4-7

BASE pseudo, 4-7
QUAL pseudo, 4-8

MODULE pseudo, 4-6
Monitor instructions

channel control, 3-96
cluster number, 3-103
interprocessor interrupt, 3-102
operand range error interrupt, 3-104
programmable clock interrupt, 3-100
set exchange address, 3-99
set real-time clock, 3-99

Multiplication
address, 3-36
floating-point, 3-57

Multiplying operators, 2-16

Names, 2-3
Normal exit instruction, 3-94
Normalized floating-point number, 3-52
Numeric constants, 2-9

OCTMIC pseudo, 4-65
Ones complement operation designator, 3-8
Opdef calls, 4-53
Opdef instruction

definition, 4-49
examples, 2-9, 4-1, 4-54
expansion, 4-56
global, 4-52
header, 4-50
in program module, 4-1

OPDEF pseudo, 4-49
Operand field

description, 2-2
special characters, 3-8
symbolic instruction, 3-8

Operand range error interrupt instructions
disable, 3-104
enable, 3-104

Operation definition, see opdef
Operator

adding, 2-16
multiplying, 2-16

OPSYN pseudo, 4-57
ORG pseudo, 4-15
Origin counter, 4-12

Page header, E-l
Parameters

CAL control statement, 5-2
formal, 4-41

Parcel address
expression attribute, 2-19
pr~fix - .P, 2-14

SR-OOOO

symbol attribute, 2-6
Parcel-bit-position counter, 4-13
Pass one

expression evaluation, 4-11
function, 1-2

Pass two
expression evaluation, 4-12
function, 1-2

Population count
designator, 3-8
instructions

scalar, 3-76
vector, 3-76

Population count parity
designator, 3-8
instructions

scalar, 3-77
vector, 3-77

Position counter
description, 4-12
parcel bit, 4-13
word bit, 4-12

Predefined micros, 4-67
Prefix

parcel address - P., 2-14
word address - W., 2-15

Prefixed constants, 2-14
Prefixed special elements, 2-14
Prefixed symbols, 2-14
Program control, 4-2

ABS pseudo, 4-3
COMMENT pseudo, 4-3
END pseudo, 4-3
IDENT pseudo, 4-2

Programmable clock interrupt instructions
clear, 3-101
disable, 3-102
enable, 3-101
set, 3-100

Pseudo instructions
classifications, 4-2
descriptions, 4-2
index, B-1
rules, 4-1

QUAL pseudo, 4-8
Qualified symbols, 2-8

Range errors, floating-point, 3-52
Real-time Clock register (RT)

clearing, 3-99
designator, 3-7
setting, 3-99

Reciprocal approximation, 3-64
Reciprocal iteration

description, 3-62
designator, 3-8

Redefinable symbol, 2-7
Register designators, 2-4, 3-7

special prefixes, 3-8
supporting registers, 3-7

Register entry instructions
A registers, 3-9

Index-5 J-Ol

description, 3-9
S registers, 3-10
V registers, 3-15

Registers, 4-51
Relocatable expression attributes, 2-19
Relocatable symbol attribute, 2-7
REP pseudo, 4-35
Result field

description, 2-2
symbolic instruction, 3-7

Return jump branch instructions, 3-94
Rounded operation designator, 3-8
RT register, see Real-time Clock register
Rules for pseudo instructions, 4-1

S registers
64-bit integer arithmetic operations,

3-45
alternate tests on the contents, G-2
as special values, 3-4
bit count instructions, 3-88
entry instructions, 3-10
floating-point arithmetic operation~,

3-51
inter-register transfer instructions,

3-23
load instructions, 3-43
logical operations, 3-66
shift instructions, 3-80
store instructions, 3-39

SB, see Shared B registers
SB, see Sign bit
Scalar leading zero count, 3-91
Scalar population count, 3-88
Scalar population count parity, 3-89
Semaphore register (SM)

designator, 3-7
entry instructions, 3-16
inter-register transfer instructions,

3-35
Set exchange address monitor instruction,

3-99
SET pseudo, 4-30
Set real-time clock monitor instruction,

3-99
Shared B registers (SB),

inter-register transfer instructions,
3-30

Shared T registers (ST),
inter-register transfer instructions,

3-31
Shift instructions, 3-80
Shift operation designator, 3-8
Sign bit designator, 3-7
SKIP pseudo, 4-41
SM register, see Semaphore register
Source line format

comment statement, 2-1
continuation line, 2-1

Source statement listing, E-l
SPACE pseudo, 4-26
Special characters, 3-8

symbolic instruction syntax, 4-42
Special elements

SR-OOOO Index-6

force parcel boundary, 4-13
force word boundary, 4-13
general description, 2-14
location counter, 4-12
origin counter, 4-12
position counter, 4-12
prefixed, 2-14

Special expression elements 2-9
Special macros, H-3
Special register values, 3-4
Special syntax forms, 3-8
ST registers, see Shared T registers
START pseudo, 4-6
Statement format, 2-1

comment field, 2-1, 2-2
listing, E-l
location field, 2-2
operand field, 2-2
result field, 2-2

STOPDUP pseudo, 4-59, 4-61
Store instructions, 3-37
SUBTITLE pseudo, 4-27
Subtraction, floating-point, 3-53
Summary of differences between CPU CAL and

Data General CAL, I-I
Symbol attributes, 2-6
Symbol definition 2-6, 4-29

= pseudo, 4-29
MICSIZE pseudo, 4-31
SET pseudo, 4-30

Symbol reference, 2-8
Symbolic notation, 3-5

general requirements, 3-5
location field, 3-7
operand field, 3-8
register designators, 3-7
result field, 3-7

special characters, 3-8
Symbolic instruction syntax, 4-49
Symbolic machine instructions, 3-1
Symbols, 2-5

attributes, 2-6
absolute, 2-7
common, 2-7
external, 2-7
parcel address, 2-6
redefinable, 2-7
relocatable, 2-7
value, 2-6
word address, 2-6

definition, 2-6
global, 2-9, 4-1
prefixed, 2-14
qualified, 2-8

Syntax forms, 3-8
System text, 5-5

T registers
inter-register transfer instructions,

3-30
load instructions, 3-41
store instructions, 3-37

Terms, 2-16
attributes, 2-17

J-Ol

TEXT pseudo, 4-27
TITLE pseudo, 4-26
Transfer instructions

inter-register, 3-18
memory, 3-27
to A registers, 3-18
to intermediate registers, 3-29
to S registers, 3-23
to Semaphore register, 3-35
to V registers, 3-31
to Vector Length register, 3-33
to Vector Mask register, 3-33

Unconditional branch instructions, 3-91

V registers
64-bit integer arithmetic operations,

3-45
bit count instructions, 3-88
entry instructions, 3-15
floating-point arithmetic operations,

3-51
inter-register transfer instructions,

3-31
load instructions, 3-44
logical operations, 3-66
shift instructions, 3-80
store instructions, 3-40

Value address expression, 2-19
Value symbol attribute, 2-6
Values, special register, 3-5
Vector Length register (VL)

designator, 3-7
example, 3-8
inter-register transfer instructions,

3-33
Vector Mask register (VM)

designator, 3-7
inter-register transfer instructions,

3-33
logical operations, 3-75

Vector population count, 3-89
Vector population count parity, 3-90
Vector registers, see V registers
VL register, see Vector Length register
VM register, see Vector Mask register
VWD pseudo, 4-34

Warning assembly errors, C-5
Word Address

expression attribute, 2-19
prefix - W., 2-15
symbol attribute, 2-6

Word-bit-position counter, 4-12

XA register, see Exchange Address register

SR-OOOO Index-7 J-Ol

READERS COMMENT FORM

CAL Assembler Version 1 Reference Manual SR-OOOO J

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME __ _

JOB TITLE __________________ _

FIRM __ __
RESEARCH, INC.

ADDRESS _________________ __

CITY __________ STATE ____ ZIP ___ _

----------------------------------~

Attention:
PUBLICATIONS

111111

BUSINESS REPLY CARD
fiRST CLASS PERMIT NO 6184 ST PAUL. MN

POSTAGE WILL BE f'AIO BY AnORESSEE

RESEARCH. INC.

1440 Northland Drive
Mendota Heights, MN 55120
U.S.A.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

-------------------------------------,

~TADIr::

(')
c
~

> r
o
Z
C)

~
::r
iii
c:
z
m

READERS COMMENT FORM

CAL Assembler Version 1 Reference Manual SR-OOOO J

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ______________________________________ __

JOB TITLE _________________ _

FIRM ____________________________________ ___
RESEARCH, INC.

ADDRESS __________________________________ __

CITY __________ STATE ______ ZIP ____ _

- -- - - - --~

Attention:
PUBLICATIONS

111111

BUSINESS REPLY CARD
HRST CLASS PERMIT NO 61e4 ST PAUL. MN

POSTAGE Will BE i-'AID BY AnDRESSEE

RESEARCH. INC.

1440 Northland Drive
Mendota Heights, MN 55120
U.S.A.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

-------------------------------------,

STAPLF

(")

C
-i
~
r
o
2
Cl
-i
:r
Cii
r
Z
m

