
Assetnbler 68000
ASM68K

Programmer's
Reference Manual

Corvus ConceptTM

*** CORVUS SYSTEMS
* *

DISCLAIMER OF ALL WARRANTIES & LIABILITIES
Corvus Systems, Inc. makes no warranties, either expressed or implied, with respect to
this manual or with respect to the software described in this manual, its quality, per
formance, merchantability, or fitness for any particular purpose. Corvus Systems, Inc.
software is sold or licensed "as is:' The entire risk as to its quality or performance is with
the buyer and not Corvus Systems, Inc., its distributor, or its retailer. The buyer assumes
the entire cost of all necessary servicing, repair, or correction and any incidental or
consequential damages. In no event will Corvus Systems, Inc. be liable for direct,
indirect, incidental or consequential damages, even if Corvus Systems, Inc. has been
advised of the possibility of such damages. Some states do not allow the exclusion or
limitation of implied warranties or liabilities for incidental or consequential damages, so
the above limitation may not apply to you.

Every effort has been made to insure that this manual accurately documents the opera
tion and servicing of Corvus products. However, due to the ongoing modification and
update of the software along with future products, Corvus Systems, Inc. cannot
guarantee the accuracy of printed material after the date of publication, nor can Corvus
Systems, Inc. accept responsibility for errors or omissions.

NOTICE
Corvus Systems, Inc. reserves the right to make changes in the product described in this
manual at any time without notice. Revised manuals and update sheets will be published
as needed and may be purchased by writing to:

Corvus Systems, Inc.
2029 O'Toole Avenue
San Jose, CA 95131

Telephone: (408) 946-7700
TWX 910-338-0226

This manual is copyrighted and contains proprietary information. All rights reserved.
This document may not, in whole or in part be copied, photocopied, reproduced, trans
lated or reduced to any electronic medium or machine readable form without prior
consent, in writing, from Corvus Systems, Inc.

Copyright© 1982 by Corvus Systems, Inc. All rights reserved.

Mirror® patent pending, The Corvus Concept,'· Transporter,'· Corvus OMNINET,~
Corvus Logicalc,~ Time Travel Editing,~ EdWord,~ Constellation,~ Corvus,~ Corvus
Systems,~ Personal Workstation,~ Tap Box,~ Passive Tap Box,'· Active Junction Box,'·
Omninet Unit~ are trademarks of Corvus Systems, Inc.

FCC WARNING
This equipment generates, uses, and can radiate radio frequency energy and if not
installed and used in accordance with the instruction manual, may cause interference to
radio communications. As temporarily permitted by regulation it has not been tested for
compliance with the limits for Class A computing devices pursuant to Subpart J of Part
15 of FCC Rules, which are designed to provide reasonable protection against such inter
ference. Operation of this equipment in a residential area is likely to cause interference
in which case the user at his own expense will be required to take whatever measures
may be required to correct the interference.

ASMK68
68000 ASSEMBLER

REFERENCE MA'NUAL

PART NO.: 7100-03035

DOCUMENT NO.: CCC/37-33/1.1

RELEASE DATE: November, 1982

Corvus Concept™

Corvus Concepf" is a trademark of Corvus Systems.

TABLE OF
CONTENTS

CHAPTER 1 INTRODUCTION 3
Overview and Layout of this Manual
Notation and Conventions Used in this Manual
Applicable Documents ;

CHAPTER 2 LAYOUT OF AN ASSEMBLER PROGRAM .

3
4
4
5

Character Set Recognized by the Assembler 5
Identifiers 5
Numeric Constants .. 6

Decimal Constants 6
Hexadecimal Constants 6

Character String Constants. .. 7
Format of a Source Statement. .. 8

Label Field .. 8
Operation Field .. 8

Operation Code Size Attributes 9
Operand Field 10
Comment Field 10

CHAPTER 3 OPERAND FORMATION 11
Register Operands 11

Register Range Specification 11
Symbolic Operands 12
Immediate or Literal Operands 12
Operand Expressions 12

Operator Precedence 13
Relocatable and Absolute Operands 13
Addressing Modes 14

Register Direct Addressing Modes 1~
Data Register Direct 14
Address Register Direct 14

Memory Addressing Modes 15
Address Register Indirect 15
Address Register Indirect with Post Increment 15
Address Register Indirect with Pre Decrement 15
Address Register Indirect with Displacement 15
Address Register Indirect with Index 16

Special Addressing Modes 16
Absolute Short Address 16
Absolute Long Address 16
Program Counter with Displacement 16
Program Counter with Index 17
Immediate Data 17
Condition Codes or Status Register 17

Addressing Modes for Branch Instructions 18
Addressing Categories 18

CHAPTER 4 ASSEMBLER DIRECTIVES 21
IDENT-Name an Assembly Unit 21
END-Signal End of an Assembly Unit 21
GLOBAL-Define a Global Entry Point 21
EXTERN-Define an Externally Referenced Symbol 22
EQU-Define a Symbolic Constant 22
DATA-Declare Data Items 22
PAGE-Issue a Page Eject on Listing 23
LIST-Turn Listing On or Off 23
Include ... 24

CHAPTER 5 ASSEMBLER OPERATION CODES 25
ABCD-Add Decimal with Extend 25
ADD-Add Binary . 26
ADDA-Add Address 26
ADDI-Add Immediate .. 26
ADDQ-Add Quick 27
ADDX-Add Extended 27
AND-Logical AND . 28
ANDI-Logical AND Immediate 28

ANDI to CCR or SR 29
ASL and ASR-Arithmetic Shifts 29
Bee-Branch Conditionally 29
BCHG-Test a Bit and Change 31
BCLR-Test a Bit and Clear 32
BRA-Branch Always 32
BSET-Test a Bit and Set 33
BSR-BranchtoSubroutine 33
BTST-Test a Bit 34
CHK-Check Register against Bounds 34
CLR-Clear an Operand ·35
CMP-Compare 35

CMPA-Compare Address 36
CMPI-Compare Immediate 36
CMPM-Compare Memory ~ 37
DBcc-Test Condition, Decrement and Branch 37
DIVS-Signed Divide 38
DIVU-Unsigned Divide ... , 39
EOR-Logical Exclusive OR 40
EORI-Logical Exclusive OR Immediate 40

EORltoCCRorSR 41
EXG-Exchange a Pair of Registers 41
EXT-Sign Extend 41
JMP-Jump 42
LEA-Load Effective Address 42
LINK-Allocate Stack Space . 42
LSL and LSR-Logical Shifts 43
MOVE-Move Data from Source to Destination 44
MOVE to CCR-Move to Condition Codes 44
MOVE to SR-Move to Status Register (Privileged) 45
MOVE from SR-Move from Status Register 45
MOVE USP-Move User Stack Pointer (Privileged) 45
MOVE A-Move Address 46
MOVEM-Move Multiple Registers 46
MOVEP-Move Peripheral Data 47
MOVEQ-Move Quick 48
MULS-Signed Multiply 48
MULU-Unsigned Multiply 49
NBCD-Negate Decimal with Extend 49
NEG-Negate ... , 50
NEGX-Negate with Extend 50
NOP-No Operation 50
NOT-Logical Complement 51
OR-Logical Inclusive OR 51
ORI-Logical Inclusive OR Immediate 52

ORI to CCR or SR 52
PEA-Push Effective Address 52
RESET-Reset External Devices . 53
ROL and ROR-Rotate without Extend 53
ROXL and ROXR-Rotate with Extend 54
RTE-Return from Exception (Privileged) 55
RTR-Return and Restore Condition Codes 55
RTS-Return from Subroutine 56

SBCD-Subtract Decimal with Extend 56
Sec-Set According to Condition 57
STOP-Load Status Register and Stop (Privileged) 57
SUB-Subtract Binary 58
SUBA-Subtract Address 59
SUBI-Subtract Immediate 59
SUBQ-Subtract Quick 59
SUBX-Subtract Extended 60
SWAP-Swap Register Halves 60
TAS-Test and Set '. 61
TRAP-Trap 61
TRAPV-Trap on Overflow 61
TST-TestanOperand 62
UNLK-Deallocate Stack Space 62

CHAPTER 6 USING THE ASSEMBLER 63
CHAPTER 7 ASSEMBLER OUTPUT AND MESSAGES . 65

Object Code File 65
Listing File 65
Assembler Error Messages 66

Appendix A Alphabetical Instruction Summary 71
Appendix B Alphabetical List of Directives 77
Appendix C List of Operands 79
Appendix D Sample Problem 80

PREFACE

This Assembler Reference Manual describes the ASM68K
assembly language used by the Corvus Concept. This version was
implemented by Silicon Valley Software Incorporated.

This is a user reference manual for ASM68K, and not a
tutorial. Readers should have some grasp of programming
concepts, terminology, and an understanding of assembly level
programmIng.

1

2

INTRODUCTION

ASM68K is an assembler for 68000 based computer
systems. ASM68K reads 68000 assembly language
statements, and generates relocatable object code for
the linking loader.
This Manual describes the assembly language that is
acceptable to ASM68K, and in addition describes how
to use ASM68K on 68000 based computer systems.

Overview and Layout of this Manual
Chapter 1 (this chapter) is a general introduction to
ASM68K, the notation used to describe the assembler
instructions and directives, and a short list of applicable
documents.
Chapter 2 contains the overview of the assembly
language, character set, format of source programs,
syntax, and so on.
Chapter 3 describes the rules for formation of operands,
operand expressions, addressing modes and categories.
Chapter 4 describes the assembler directives which
introduce symbolic constants, reserve data, and control
the actions of the assembler.
Chapter 5 describes the instruction syntax in detail for
the individual instructions and provides a short
description of each instruction's actions and effects on
condition codes.
Chapter 6 describes how to use the assembler under
control of the CCOS operating system.
Chapter 7 describes the files that the assembler uses, and
describes the messages that the assembler generates for
errors found during the assembly.
Appendix A contains an alphabetical list of instructions,
and affecte<;l condition codes.
Appendix B contains an alphabetical list of assembler
directives.

3

Appendix C is a quick reference summary of reserved
operand names.

Notation and Conventions Used in this Manual
This section describes the syntactic notation used in this
manual to describe assembler language elements.
An element enclosed in lIangle brackets" < > is a syntactic
entity that is defined in terms of other such entities.
Eventually, the definition process gets to a stage where the
entities are defined in terms of basic elements such as
letters and digits.
The construct: : = is to be read as lIis defined to be", and is
used to define one syntactic element in terms of others.
A construct enclosed in square brackets [] is an optional
element.
The IIvertical bar" character I is used as an II or" symbol
when describing choices among syntactic constructs.
A construct followed by an ellipsis ... is taken to be
repeated some number of times.
It is recognized that the syntactic description method used
here is not completely rigorous in that it does not consider
semantic issues. On such occasions, the descriptions lapse
into narrative English, supplemented with examples, to
clarify matters.

Applicable Documents
MC68000 16-bit Microprocessor User's Manual. Published
by Motorola. Motorola publication number MC68000UM
(AD2).
Linker and Library utility manual. Describes the linker and
the library management utility. Published by Corvus
Systems, Inc.

4

LAYOUT OF AN
ASSEMBLER PROGRAM

This chapter describes the basic layout of a program
written in the assembler language. Covered here are the
basic elements such as identifiers, constants, comments,
and so on. The next chapter describes the rules for
operands and operand expressions.

Character Set Recognized by the Assembler
ASM68K recognizes the following character set:

the letters A through Z and a through z,
the digits a through 9,
the ASCII ! @ # $ % " & * () +
graphic ," < > ? / I "-
characters [] { }
ASCII non graphics: space, tab, carriage return and
line feed.

Identifiers
An identifier consists of up to eight characters, selected
from the set of characters:

upper case letters A through Z,
lower case letters a through z,
digi ts a through 9,

the characters percent % and underline _ .
<identifier> : : = <letter> 1 <identifier> <letter> ... 1

<identifier> <digit> .. .

Upper and lower case letters are treated identically for the
purpose of identifiers.
The underline _character and the percent % character are
considered to be letters in the context of identifiers-an
identifier can start with or contain either of those characters.

An identifier may not begin with a digit.

5

widget
SUVET
knothead,
KNOTHEAD,
and KnOtHeAd
try_ more
try_3_on
%_pcent

5th_time
over_long

:j:ofttimes

Numeric Constants

Examples of Identifiers

in all lower case,
in all upper case,
are all equivalent,

is a valid identifier, and so is:
and also the identifier:
illustrating that identifiers can start with % signs
or _ signs, but:
is wrong because it starts with a digit, and:
is wrong because it contains more than eight
characters, and:
is wrong because of the # sign.

ASM68K accepts numeric constants in either decimal
(base 10), or hexadecimal (base 16) notation.

Decimal Constants
A Decimal Constant consists of one to 10 decimal digits
o through 9, with an optional plus (+) or minus (-) sign.
<decimal constant> : : = [<sign>] <decimal digit> ...
<sign> : : = + I -
Although a 32-bit quantity can represent numbers up to
ten decimal places, the actual range of (signed) decimal
numbers is from - 2,147,483,648 to + 2,147,483,647.

Numeric constants can not have embedded comlnas,
even if it would make long ones more readable as in the
paragraph just above.

Hexadecimal Constants
A Hexadecimal Constant starts with a dollar ($) sign,
and contains up to eight hexadecimal digits 0 through 9,
A through F, or a through f.
<hexadecimal constant> :: = $ <hexadecimal digit> ...
Negative hexadecimal constants are represented by an
8 character constant with the sign bit set to one. For
example:

$££ffff80 represents the value -128

6

Character String Constants
There are essentially two distinct forms,of Character String
Constants. A Character String Literal generates a string of
bytes the same length as the literal. A String Data Item
generates a length delimited string, where the first byte of
the string contains the length and the rest of the string
follows the length byte.
A character string literal is enclosed in apostrophe signs '.
<character string literal> : : = ' <ASCII character> ... '
The length of a character string literal depends on the
context of the specific operand type. A byte operand can
have at most one character in the string. A word operand
can have at most two characters in the string. A long word
operand can have at most four characters in the string.
The apostrophe sign itself is represented by a pair of
juxtaposed apostrophe signs in the string.
A STRING DATA ITEM is a string of characters enclosed in
quotes instead of apostrophes.
<string data item> : : = " <ASCII character> ... "
A quote is represented by a pair of juxtaposed quotes in
the string.

The maximum length of a string data item is 256
characters.

Examples of Character and String Constants

'A' is a one byte character literal,
'PO' is a two byte character literal,
'HELP' is a four byte character literal,
"Drawn Out" is a string data item,
'MN' 'a' is a four byte character literal with an embedded

apostrophe,
"Ten 0" "Clock" is a string data item with an embedded quote.

7

Format of a Source Statement
An Assembler source statement, in general, consists of an
optional (but sometimes required, as for example in an
EQU statement) label field, an operation field, an operand
field (if applicable to the specific operation) and an
optional comment field.

<source statement> : : = [<label>] <operation>
<operand> [<comment>]

Examples of Source Statements

BozeNite equ $100 example of an EQU directive
ble.s NotAgain a short conditional branch

Label Field
The Label Field of a source statement consists of an
identifier starting in column one on the statement line. If a
space (blank), or a comment delimiter (see the section on
comments below) character appears in column one, the
source statement is considered to be unlabelled.

<label> : : = <identifier>

Examples of Label Field

ThisLine ;This line has a label called "ThisLine".
ThreeOog ;"ThreeOog" is not a label because there is a space in

;column one. It will generate an error.
;This source statement is
; unlabelled because of the comment.

Operation Field
The Operation Field of a source statement consists of a
valid assembly language operation code or a valid
assembler directive starting in column two onwards on
the source line.
<operation field> : : =

<operation code> : : =

<assembler directive> : : =

8

<operation code> I
<assembler directive>
discussed in Chapter 5 and
in the alphabetical summary
in Appendix A
discussed in Chapter 4 and
in the alphabetical list in
AppendixB.

Operation Code Size Attributes

Many of the operation codes have an associated size
attribute. This indicates the size of the operand upon
which that instruction operates. The sizes are indicated by
a qualifier following the operation code field. The size
attributes are Byte (eight bits), Word (16 bits) and Long (32
bits). The size attribute field is a period immediately
following the operation code, followed by the letter B for
byte, W for word and L for long, For branch instructions,
the size attribute field is S for short. The long form of the
relative branch does not have a qualifier field.

NOP
RTS
MOVEW
SEQ.S

Operand Field

Examples of Operation Field

; is a no-operation instruction.
;is a return from subroutine.
;is a word move instruction.
;is a short relative branch.

The operand field of an assembler statement line varies
widely depending on the particular operation code or
assembler directive. The next chapter covers the rules for
forming operands, operand expressions and addressing
modes in detail.

Comment Field

<operation field> : : = <operation code> I
<assembler directive>

<operation code> : : = discussed in Chapter 5 and in
the alphabetical summary in
Appendix A

<assembler directive> : : = discussed in Chapter 4 and in
the alphabetical list in
AppendixB.

Operation Code Size Attributes
Many of the operation codes have an associated size .
attribute. This indicates the size of the operand upon
which that instruction operates. The sizes are indicated
by a qualifier following the operation code field. The size
attributes are Byte (eight bits), Word (16 bits) and Long
(32 bits). The size attribute field is a period immediately

9

following the operation code, followed by the letter B for
byte, W for word and L for long. For branch instructions,
the size attribute field is S for short. The long form of the
relative branch does not have a qualifier field.

Examples of Operation Field
NOP ;is a no-operation instruction.
RTS ;is a return from subroutine.
MOVE.W;is a word move instruction.
SEQ.S ;is a short relative branch.

Operand Field
The operand field of an assembler statement line varies
widely depending on the particular operation code or
assembler directive. The next chapter covers the rules for
forming operands, operand expressions and addressing
modes in detail.

Comment Field
The Comment Field of a source statement starts with a
semicolon and is any sequence of ASCII characters. An
end of line terminates a comment. There is no provision
for "block comments".

A blank line is equivalent to a comment. A statement line
which contains only a comment, or only a label followed
by a comment, is a valid statement line.

Examples of Comments in Statements
; This line is a comment line.

; This line is also a comment line.
; The next line is all blank and is considered a comment line.
LineTag ; Label followed by comment is a valid statement.

10

OPERAND
FORMATION

This chapter describes the rules for forming operands.
The syntax for operands is discussed, followed by the
rules for operand expressions. Finally, there is a discussion
on addressing modes.

Register Operands
A register operand for an instruction may be either:

• one of the Data Registers DO through D7,
• one of the Address Registers AO through A7,
• one of the Special Registers such as CCR (the Condition

Code Register), SR (the Status Register) and so on. The
Stack Pointer (either User or System) is in fact register
A7 in both cases, but it may also be referred to as SP.

<data register> : : = Dn where:n is 0 through 7
<address register> : : = An where n is 0 through 7
Throughout the remainder of this manual, the notation
"Dn" means a data register, "An" means an address
register and "Rx" means any kind of register.
In supervisor mode the User Stack Pointer may be
addressed separately by the naIne USP in certain
ins tructions.

Register Range Specification
The MOVEM (Move Multiple) instruction can have its
register operands specified as ranges, or as a list of ranges.
<register range>
<low register>
<high register>
<register range list>

<low register>-<high register>
<register>
<register>
<register range>
<register range Iist>l<register range>

Example of Register Ranges

This example moves register 01, 03 through 05, 06, and registers A2
through A6 to a save area called "savearea".

MOVEM d1/d3-d5/d6/A2-A6,savearea

11

Symbolic Operands

A symbolic operand uses an identifier as described in
chapter 2 to reference a data item or a program instruction
location. Symbolic operands are considered relocatable
unless they are specifically stated as EXTERNAL (see the
section below on absolute and relocatable operands and
expressions) .
A symbolic operand can have a size attribute following
it. The size attribute can be W for word or L for long. This
topic is covered below in the discussion on addressing
modes.

Immediate or Literal Operands

Immediate Operands are signalled by placing a # sign in
front of the operand.
<immediate operand> : : = #<label> I #<numeric
constant

Examples of Immediate Operands

OIVU #9,00 divides dO by 9
MOVEQ #diskwryt,05 place disk write command in 05
MOVE.W #$48,$a (a1) move 48 hex to (al) + 10

Operand Expressions

Operands may be combined with arithmetic operators to
form Operand Expressions.
When forming operand expressions, there are four valid
operators:
+ plus or adding operator. This may occur as a unary

operator or a binary operator.

*

/

minus or subtracting operator. This may occur as a
unary operator or a binary operator.
multiply operator. This can only be a binary
operator.
divide operator. This can only be a binary
operator.

12

Operator Precedence
Expressions are evaluated left to right. The multiply and
divide operators have a higher precedence (bind tighter)
than the add and subtract operators. Parentheses may be
used to alter the precedence. Operators of equal prece
dence are evaluated left to right.

Examples of Operand Expressions
124*1024
Board*128
MBufFrst + (BufrSize/PageSize-1)*PMaplncr
UARTRead-UARTTabl

Relocatable and Absolute Operands
Terms in an operand expression are absolute, relocatable
or external.

A relocatable value bears a fixed relationship to the current
value of the program counter, such that moving the entire
section of code to a different place in memory does not
alter the value of that expression.

An absolute value is independent of the program counter
and refers either to absolute mernory locations or to
immediate operands.

An external reference is filled in by the linker.

Operand expressions containing absolute and relocatable
terms evaluate to absolute, relocatable or malformed. If
"X' is an absolute term and "R" is a relocatable term, the
following relationships hold:
R+A->R
A+R->R
R-R->A
A + A, A - A, A * A and A / A -- > A
R + R, R * Rand R / R are all malformed.
Terms may be parenthesized such that a relocatable term
can be added to the difference of two relocatable terms to
yield a relocatable term:
R + (R - R) - > R,
R + (R - ,R) + (R - R) and so on.

13

External references are filled in at link time. The linker
either generates a program counter relative address or it
generates an indexed JMP relative to A4, where A4 points
to the start of the jump table for a particular segment.

Addressing Modes
This section covers the different addressing modes that the
MC68000 can process, and describes the assembler syntax
for each mode. Here is a summary of the addressing
modes:

• Register Direct,
• Address Register Indirect,
• Address Register Indirect with Post-Increment,
• Address Register Indirect with Pre-Decrement,
• Address Register Indirect with Displacement,
• Address Register Indirect with Index,
• Absolute Short Address,
• Absolute Long Address,
• Program Counter with Displacement,
• Program Counter with Index,
• Immediate Data,
• Condition Codes or Status Register.

Register Direct Addressing Modes
Data Register Direct
The Data Register Direct addressing mode uses one of the
eight data registers as an operand. The syntax of the
operand is:

On

where In' is a number between a and 7.
Address Register Direct

The Address Register Direct addressing mode uses one of
the eight address registers as an operand. The syntax of
the operand is:

An

where In' is a number between a and 7. In general, if the
size field of the instruction specifies a byte operation, the
address register direct addressing mode cannot be used.

14

Memory Addressing Modes
Address Register Indirect
The Address Register Indirect addressing mode specifies
that the address of the operand is in one of the 8 address
registers. The syntax is:

(An)

where In' is a number between 0 and 7.

Address Register Indirect with Post Increment
The Address Register Indirect with Post-increment speci
fies that the address of the required operand is in one of the
eight address registers. When the operation is complete,
the specified address register is incremented by the size
field of the operation. The syntax of the operand is:

(An) +
where In' is a number between 0 and 7. If the address
register specified is A7 (the Stack-Pointer), it is always
incremented by two-the Stack-Pointer always aligns to
a word boundary.

Address Register Indirect with Pre Decrement
The Address Register Indirect with Pre-decrement speci
fies that the address of the required operand is in one of the
eight address registers. When the operation is complete,
the specified address register is decremented by the size
field of the operation. The syntax of the operand is:

-(An)

where In' is a number between 0 and 7. If the address
register specified is A7 (the Stack-Pointer), it is always
decremented by two-the Stack-Pointer always aligns to
a word boundary.

Address Register Indirect with Displacement
The Address Register Indirect with Displacement
addressing mode specifies that a displacement is added to
the contents of one of the eight address registers to form
the final address. The syntax is:

disp(An)

where I disp' is a 16-bit signed displacement and In' is a
number between 0 and 7. The displacement I disp' must be
an absolute expression.

15

Address Register Indirect with Index
The Address Register Indirect with Index addressing
mode specifies that a displacement plus the contents of a
specified index-register are added to the contents of a
specified address register to form the final address. The
syntaxis:

disp(An,Ri)

where Idisp' is a signed 8-bit displacement, IRi' is the
signed word or long word contents of any address of data
register and 'An' is any of the eight address registers. The
index register 'Ri' can be followed by an optional. W
meaning that the low order 16 bits are to be used or . L
meaning that the entire 32 bits of the register are to be used
for indexing.

Special Addressing Modes
The special addressing modes include the absolute short,
absolute long and program counter relative modes. These
modes are indicated by a size attribute following the
operand. The size attribute is W for absolute short and L
for absolute long. They are covered in the subsections
below.

Absolute Short Address
The Absolute Short addressing mode uses a signed 16 bit
value to form the final address. The syntax is:

.W

where 'xxx. W' specifies a 16-bit value.

Absolute Long Address
The Absolute Long addressing mode uses a signed 32-bit
value to form the final address. The syntax is:

.L

where 'xxxx. L' specifies a signed 32-bit value.
Program Counter with Displacement
The Program Counter with Displacement addressing
mode is used for PC-relative addressing. The displacement
field is indicated in the size field of the instruction itself. A

16

size field of UB" (Byte) indicates an 8-bit displacement. If
the size field is omitted or specified as UW" (Word), the
displacement is assumed to be a 16-bit displacement. For
example:

MOVE. W CloseBy,DO ; Obtain data relative to PC.

some more instructions

CloseBy DATA 10

Program Counter with Index
The Program Counter with Index addressing mode uses
an index register to add an offset to the program-counter
relative address. The syntax of this addressing mode is:

expr(Ri)

where' expr' is a relocatable expression and 'Ri' is any
address register or data register. The index register 'Ri' can
be followed by an optional. W meaning that the low order
16 bits are to be used or . L meaning that the entire 32 bits of
the register are to be used for indexing.

While this addressing mode is superficially similar to the
Address ~egister Indirect with Displacement addressing
mode, it differs in that the displacement expression 'expr'
must be relocatable instead of absolute.

Immediate Data
An Immediate Data addressing mode is signalled by
placing the # sign before an operand, as discussed
previously. Immediate operands do not need any size
attributes-immediate operands are automatically
promoted to long operands if needed.
Condition Codes or Status Register
Several instructions refer to the Condition Code Register
(CCR) or the Status Register (SR). The SR and CCR are
both parts of the same 16-bit register, with the SR being the
high order byte and the CCR being the low order byte.
Only programs running ih supervisor state can alter the
contents of the SR, whereas a program running in either
supervisor or user state can alter the CCR.

17

Addressing Modes for Branch Instructions
The branch instructions-Bee (Branch on Condition), BRA
(Branch Always) and B5R (Branch to 5ubroutine)-are
all variants of the same instruction. This instruction has a
PC relative displacement as part of the instruction. The
displacement is either 8-bit or 16-bit. The 8-bit displacement
can fit into the instruction word. The 16-bit displacement
requires an extension word whose presence is signalled
by the 8-bit displacement part of the instruction being zero.
The short form (8-bit displacement) of the branch instruc
tions is signalled by a size indicator of "5" (short). The long
form (16-bit displacement) is the default-there is no size
indicator required.
Because of the way that the instruction works, there is one
special case, namely that if the destination of the branch is
to the next instruction, the short form cannot be used.
Thus it is invalid to code the instruction:

BR5.5 NextDoor
NextDoor the next instruction

To achieve the desired result-branch to the next
instruction-the long form (16-bit displacement must
be used).

Addressing Categories
Effective address modes are grouped into several
categories which derive from the ways that they are used
to address operands. The addressing categories are given
below. The table on the next page summarizes which
addressing modes belong to which categories.
Data If an effective address mode is used to refer to

data operands, it is called a data addressing
mode.

Memory If an effective address mode can refer to
memory operands, it is called a memory
addressing mode.

Alterable If an effective address mode can refer to
alterable (writable) operands, it is called an
alterable addressing mode.

18

Control If an effective addressing mode can refer to
memory operands without any size
specification, it is called a control addressing
mode.

The addressing modes can be combined. In the description
of the operation codes, a phrase such as "data alterable
addressing modes" means that the particular instruction
can use either the data addressing mode or the alterable
addressing mode.

Addressing Assembler
Mode Syntax Data Memory Control Alterable

D-Register On X X
Direct

A-Register An X
Direct

A-Register (An) X X X X
Indirect

A-Register (An) + X X X
Indirect
with Post-
Increment

A-Register -(An) X X X
Indirect
with Pre-
Decrement

A-Register d(An) X X X X
Indirect with
Displacement

A-Register d(An, Ri) X X X X
Indirect with
Index

Absolute Short xxx.W X X X X
Absolute Long xxxxxx.L X X X X
PC Relative <label> X X X
PC Relative <label>+Ri X X X
with Index

Immediate Data #<data> X X

Table 3-1
Addressing Categories

19

20

ASSEMBLER
DIRECTIVES

Assembler Directives control assembler operation and
declare data, as opposed to generating instructions for the
machine to execute.

IDE NT-Name an Assembly Unit
The IDENT directive is an optional component of an
assembly program. When present, it serves to give a name
to the unit that is being assembled so that that unit can be
handled by other utility programs such as the linker.

[IDENT <identifier>]
Where the <identifier> must be a valid name in the
context of the linker and other system utilities.
If an assembly unit does not have an IDENT directive, the
assembler gives the unit the name NONAME by default.

END-Signal End of an Assembly Unit
The END directive signals the end of the current assembly
unit.

END [<label>]
If the optional <label> is present on an END directive, it
serves to identify the address at which the program should
start when loaded.
If there are multiple assembly units in one run of the
assembler, the label given as the operand of the last
labelled END directive is the label which is considered as
the transfer symbol.

GLOBAL-Define a Global Entry Point
The GLOBAL directive is used to declare labels in this
assembly unit that can be referenced from outside by other
units that are independently assembled or compiled.

GLOBAL <label> [, <label> ...]
All global labels appearing in a GLOBAL list must be
defined as program labels in the current assembly unit.

21

EXTERN-Define an Externally Referenced Symbol
The EXTERN directive is used to declare labels which exist
in other independently assembled or compiled units and
are referenced within the current assembly unit.

EXTERN <label> [, <label> ...]
EQU-Define a Symbolic Constant

The EQU directive is used to associate a symbolic identifier
with the value of an expression. Thereafter, every time
that the symbolic identifier is encountered in an operand
expression, the value of the associated expression is
substituted.

<label> EQU <expression>
The <expression> may involve both literal constants and
other symbolically defined constants, the symbol %
(percent) is used to define the current location counter.

DATA-Declare Data Items
The DATA directive is used to initialize storage locations
with data values. The format of the DATA statement is:

[<label>] DATA[.<size>]
<expression> [, <expression> ...]

The <label> field is optional in a DATA statement. If
present, it serves to identify that storage location in
memory. If a label field is present, it also forces the location
counter to a word boundary for word and long data items.
The DATA statement itself may have a size indicator, which
serves to define the size of the data elements being
defined. The size field may be one of the following:
B means that the data' elements are byte (8-bit)

quantities.
W means that the data elements are word (16-bit)

quantities. If the size field is omitted from the DATA
statement, word is the default data size.

L means that the data elements are long word (32-bit)
quantities.

22

PAGE-Issue a Page Eject on Listing
The PAGE directive is used to cause a page eject or form
feed on the assembly print file. This enables the
programmer to produce a more readable printout by
spacing things out.

<PAGE directive>:: =
[<label>] PAGE [<operand>]

The PAGE directive does not require either a <label> field
or an <operand> field. The <label> field is ignored if
present. If the <operand> field is present it must be an
arithmetic expression which indicates the number of lines
onapage.

LIST-Turn Listing On or Off
The LIST directive determines whether the assembler
generates an output listing. The format of the LIST
directive is:

LIST <expression>

If the value of <expression> evaluates to zero, the listing
is turned off. If the listing is already off, or if no listing file
was specified on the assembler command line, the LIST
directive has no effect.

If the value of <expression> evaluates to non-zero, the
listing is turned on. If the listing is already on, the LIST
directive has no effect.

ON equ 1
OFF equ 0

LIST OFF ; turn off the listing
LIST ON ; turn listing

on agaIn
Include-To insert other files

The Include directive will cause the content of different
text files to be included into the current assembly file.

Include expression
The expression is in the form' Ivolumelfilename'. The
Ivolumel is optional, the single quote is required.

23

24

A.SSEMBLER
OPERATION CODES

This chapter describes the instruction mnemonics and the
forms of the operands which ASM68K accepts. There is a
concise alphabetically ordered summary of all the
instruction codes in Appendix A.
This manual is not intended as a detailed blow-by-blow
description of generated object code and so on. For a
detailed description of operation codes, object codes,
affected status flags and so on, the reader is referred to the
Motorola publication "MC68000 16-bit Microprocessor
User's Manual."

ABeD-Add Decimal with Extend
Syntax: ABCD Dy,Dx

ABCD - (Ay), - (Ax)

Size: Byte
Condition Codes:

N-Undefined
Z-Cleared if the result is non-zero, otherwise

. unchanged.
V-Undefined.
C-Set if a (decimal) carry was generated,

otherwise cleared.
X-Set the same as the carry bit.

The source operand plus the X (extend) bit is added to
the destination operand and the result is stored in the
destination. The operands are addressed in one of two
ways:
• Data register to data register. The operands are

contained in the specified data registers .
• Memory to memory. The operands are addressed via

the Address Register Indirect with Pre-decrement
addressing mode, using the address registers specified
in the instruction.

25

ADD-Add Binary
Syntax: ADD <ea>,Dn

ADD Dn,<ea>

Size: Byte, Word or Long

Condition Codes:
N-Set if the result is negative, otherwise cleared.
Z-Set if the result is zero, otherwise cleared.
V-Set if an overflow is generated, otherwise

cleared.
C-Set if a carry is generated, otherwise cleared.
X-Set the same as the carry bit.

The source operand is added to the destination operand
and the result is stored in the destination operand.

If the <ea> field is the source, all addressing modes may
be used. The Address Register Direct addressing mode
may not be used for a byte size operation. If the <ea> field
is the destination, only alterable memory addressing
modes may be used.

ADDA-Add Address
Syntax: ADDA <ea> ,An
Size: Word or Long

The ADDA instruction does not affect any condition
codes.
The source operandis added to the destination address
register and the result is stored in the address register. All
addressing modes can be used for the source operand.

ADDI-Add Immediate
Syntax: ADD I #<data> ,<ea>
Size: Byte, Word or Long
Condition Codes:

N-Set if the result is negative, otherwise cleared.
Z-Set if the result is zero, otherwise cleared.
V-Set if an overflow is generated, otherwise

cleared.
C-Set if a carry is generated, otherwise cleared.
X-Set the same as the carry bit.

26

The immediate data field is added to the destination
operand and the result is stored in the destination
location. Only data alterable addressing modes can
be used.

ADDQ-Add Quick
Syntax: ADDQ #<data>,<ea>

Size: Byte, Word or Long

Condition Codes:
N-Set if the result is negative, otherwise cleared .

. Z-Set if the result is zero, otherwise cleared.
V-Set if an overflow is generated, otherwise

cleared.
C-Set if a carry is generated, otherwise cleared.
X-Set the same as the carry bit.

The immediate data field is added to the destination
operand and the result is stored in the destination
location. The data field must lie in the range 1 .. 8. Only
data alterable addressing modes can be used. The Address
Register Direct addressing mode may not be used for byte
size operations.

ADDX-Add Extended
Syntax: ADDX Dy,Dx

ADDX - (Ay), - (Ax)

Size: Byte, Word or Long

Condition Codes:
N-Set if the result is negative, otherwise cleared.
Z-Set if the result is zero, otherwise cleared.
V-Set if an overflow is generated, otherwise

cleared.
C-Set if a carry is generated, otherwise cleared.
X-Set the same as the carry bit.

The source operand plus the X (extend) bit is added
to the destination operand and the result is stored in the
destination location. The operands can be addressed in
one of two ways:

• Data register to data register. The operands are
contained in the specified data registers.

27

• Memory to memory. The operands are addressed via
the Address Register Indirect with Pre-decrement
addressing mode, using the address registers specified
in the instruction.

AND-Logical AND
Syntax: AND <ea>,Dn

AND Dn,<ea>
Size: Byte, Word or Long
Condition Codes:

N-Set if the most significant bit of the result is
set, otherwise cleared.

Z-Set if the result is zero, otherwise cleared.
V-Always cleared.
C-Always cleared.
X-Not affected.

The source and destination operands are logically ANDed
and the result is stored in the destination location.
Address registers may not be used as operands. If the
<ea> field is a source operand, only data addressing
modes can be used. If the <ea> field is a destination
operand, only alterable memory addressing modes can
be used.

AND I-Logical AND Immediate
Syntax: ANDI #<data>, <ea>
Size: Byte, Word or Long
Condition Codes:

N-Set if the most significant bit of the result is
set, otherwise cleared.

Z-Set if the result is zero, otherwise cleared.
V-Always cleared.
C-Always cleared.

The immediate data field is logically ANDed with the
destination operand. The result is stored in the destination
location.

28

ANDI to CCR or SR
The effective address field <ea> in the AND! instruction
can refer to either the condition codes register (CCR) or the
status register (SR). Access to the status register is in one of
two modes:
• If the size field of the instruction is byte, the operation

only affects the condition codes register-the low order
bits of the status register.

• If the size field of the instruction is word, the operation
affects the entire status register. This is a privileged
operation and can only be issued by a program running
in supervisor state.

ASL and ASR-Arithmetic Shifts
Syntax: ASd Dx,Dy

ASd #<data> ,Dy
ASd <ea>

Size: Byte, Word or Long
Condition Codes:

N-Set if the most significant bit of the result is
set, otherwise cleared.

Z-Set if the result is zero, otherwise cleared.
V-Set if the most significant bit changes at any

time during the shift, otherwise cleared.
C-Set according to the last bit shifted out of the

operand. It is cleared for a shift count of zero.
X-Set according to the last bit shifted out of the

operand. Unaffected by a shift count of zero.
Bits of the operand are arithmetically shifted in the
direction specified by 'd'-R for right and L for left.
Either a data register or a memory location can be shifted.
If the operand is a memory location, the shift count is 1.
Only memory alterable addressing modes can be used for
this form.

29

If the operand is a data register, the shift count can be
specified in one of two ways:

Immediate The shift count is specified by the immediate
<data> field in the instruction. In this case,
the shift count must lie in the range 1 .. S.
This is the second form of the instruction
given in the syntax above.

Register The shift count is contained in data register
specified in the instruction. This is the first
form of the instruction given in the syntax
above.

Bee-Branch Conditionally
Syntax: Bcc <label>
Size: Short (S-bit displacement) or default (16-bit

displacement)

The Bcc instruction does not affect any condition codes.
If the condition specified by ICC' is satisfied, a branch is
made to the location specified by <label>. The ICC' is one
of the following:
CC-Carry clear LO-Lower (U)
CS -Carry set LS -Low or same (U)
EQ-Equal LT -Less than (S)
GE-greater than or equal (S) MI -Minus
GT-greater than (S) NE-Not equal
HI -High (U) PL -Plus
HS-High or same (U) VC-No overflow
LE -Less than or equal (S) VS -Overflow
The notations (U) and (S) mean that the condition codes
apply the Unsigned and Signed operations, respectively.
If the destination of the branch is to the next instruction,
the short form of the instruction must not be used.

30

BCHG-Test a Bit and Change
Syntax: BCHG Dn,<ea>

BCLR #<data>, <ea>

Size: Byte or Long

Condition Codes:
N-Unaffected.
Z-Set if the tested bit is zero, otherwise cleared.
V-Unaffected.
C-Unaffected.
X-Unaffected.

A bit in the destination operand is tested. If the bit is zero,
the Z condition code is set. If the bit is non-zero, the Z
condition code is cleared. The bit is then inverted in the
destination operand.

If the destination operand is a data register, bit numbering
is modulo 32.

If the destination operand is a memory location, the size of
the operation is implicitly byte, and bit numbering is
modulo 8.

The bit number for the operation can be specified in one of
two ways:

Immediate The immediate <data> field in the
instruction specifies the bit number.

Register The bit number is contained in a data register
specified in the instruction.

Only data alterable addressing modes can be used in this
instruction.

31

BCLR-Test a Bit and Clear
Syntax: BCLR Dn, <ea>

BCLR #<data>, <ea>

Size: Byte or Long
Condition Codes:

N-Unaffected.
Z-Set if the tested bit is zero, otherwise cleared.
V-Unaffected.
C-Unaffected.
X-Unaffected.

A bit in the destination operand is tested. If the bit is zero,
the Z condition code is set. If the bit is non-zero, the Z
condition code is cleared. The bit is then cleared in the
destination operand.
If the destination operand is a data register, bit numbering
is modulo 32.

If the destination operand is a memory location, the size of
the operation is implicitly byte, and bit numbering is
modulo 8.

The bit number for the operation can be specified in one of
two ways:
Immediate The immediate <data> field in the

instruction specifies the bit number.
Register The bit number is contained in a data register

specified in the instruction.
Only data alterable addressing modes can be used in this
instruction.

BRA-Branch Always
Syntax: BRA <label>
Size: Byte or Word
The BRA instruction does not affect any condition codes.
Program execution continues at the location specified by
<label>.
Note that the BRA instruction cannot perform a short
offset branch to the next location.

32

BSET-Test a Bit and Set
Syntax: BSET Dn, <ea>

BSET #<data>, <ea>

Size: Byte or Long
Condition Codes:

N-Unaffected.
Z-Set if the tested bit is zero, otherwise cleared.
V-Unaffected.
C-Unaffected.
X-Unaffected.

A bit in the destination operand is tested. If the bit is zero,
the Z condition code is set. If the bit is non-zero, the Z
condition code is cleared. The bit is then set to one in the
destination operand.

If the destination operand is a data register, bit numbering
is modulo 32.

If the destination operand is a memory location, the size of
the operation is implicitly byte, and bit numbering is
modulo 8.

The bit number for the operation can be specified in one of
two ways:
Immediate The immediate <data> field in the

instruction specifies the bit number.

Register The bit number is contained in a data register
specified in the instruction.

Only data alterable addressing modes can be used in this
instruction.

BSR-Branch to Subroutine
Syntax: BSR <label>
Size: Byte or Word
The BSR instruction does not affect any condition codes.
The address of the instruction immediately following
the BSR instruction is pushed onto the stack. Program
execution then continues at the location specified
by <label>.
Note that the BSR instruction cannot perform a short
offset branch to the next instruction.

33

BTST-Test a Bit
Syntax: BTST Dn, <ea>

BTST #<data>,<ea>
Size: Byte or Long
Condition Codes:

N-Unaffected.
Z-Set if the tested bit is zero, otherwise cleared.
V-Unaffected.
C-Unaffected.
X-Unaffected.

A bit in the destination operand is tested. If the bit is zero,
the Z condition code is set. If the bit is non-zero, the Z
condition code is cleared.
If the destination operand is a data register, bit numbering
is modulo 32.
If the destination operand is a memory location, the size of
the operation is implicitly byte, and bit numbering is
modulo 8.

The bit number for the operation can be specified in one of
two ways:
Immediate The immediate <data> field in the

instruction specifies the bit number.
Register The bit number is contained in a data register

specified in the instruction.
Only data alterable addressing modes can be used in this
instruction.

CHK-Check Register against Bounds
Syntax: CHK <ea> ,Dn
Size: Word
Condition Codes:

N-SetifDn < 0, clearedifDn > «ea),
otherwise undefined.

Z-Undefined.
V-Undefined.
C-Undefined.
X-Unaffected.

34

The CHK instruction checks the contents of a data register
against boundaries. The lower bound is always considered
zero. The upper bound is contained in the <ea>. If the
contents of Dn are less than zero or greater than the
contents of <ea>, a trap is generated to the CHK vector.
Only data addressing modes can be used for the <ea>
field of the CHK instruction.

CLR-Clear an Operand
Syntax: CLR <ea>
Size: Byte, Word or Long

Condition Codes:
N-Always cleared.
Z-Always set.
V-Always cleared.
C-Always cleared.
X-Unaffected.

The destination operand specified by <ea> is cleared to all
zeros. Only data alterable addressing modes can be used.

eMP-Compare
Syntax: CMP <ea> ,Dn
Size: Byte, Word or Long

Condition Codes:
N-Set if the result is negative, otherwise cleared.
Z-Set if the result is zero, otherwise cleared.
V-Set if an overflow is generated, otherwise

cleared.
C-Set if a borrow is generated, otherwise

cleared.
X-Unaffected.

The source operand is subtracted from the destination
operand without changing the destination operand. The
condition codes are set appropriately. All addressing
modes are allowed for the <ea> field. The Address
Register Direct addressing mode may not be used for byte
size operands.

35

CMPA-Compare Address
Syntax: CMPA <ea> ,An
Size: Word or Long

Condition Codes:
N-Set if the result is negative, otherwise cleared.
Z-Set if the result is zero, otherwise cleared.
V-Set if an overflow is generated, otherwise

cleared.
C-Set if a borrow is generated, otherwise

cleared.
X-Unaffected.

The source operand is subtracted from the destination
address register without changing the destination address
register. The condition codes are set appropriately. All
addressing modes are allowed for the <ea> field.

CMPI-Compare Immediate
Syntax: CMPI #<data>, <ea>
Size: Byte, Word or Long
Condition Codes:

N-Set if the result is negative, otherwise cleared.
Z-Set if the result is zero, otherwise.cleared.
V-Set if an overflow is generated, otherwise

cleared.
C-Set if a borrow is generated, otherwise

cleared.
X-Unaffected.

The immediate <data> field is subtracted from the
destination operand without changing the destination
operand. The condition codes are set appropriately. Only
data alterable addressing modes are allowed for the
<ea> field.

36

CMPM-Compare Memory
Syntax: CMPM (Ay) + ,(Ax) +
Size: Byte, Word or Long

Condition Codes:
N-Set if the result is negative, otherwise cleared.
Z-Set if the result is zero, otherwise cleared.
V-Set if an overflow is generated, otherwise

cleared.
C-Set if a borrow is generated, otherwise

cleared.
X-Unaffected.

The source operand is subtracted from the destination
operand without changing the destination operand. The
condition codes are set appropriately. Both operands are
always addressed using the Address Register Indirect with
Post-increment addressing mode, using the address
registers specified in the instruction.

DBcc-Test Condition, Decrement and Branch
Syntax: DBcc Dn, <label>

Size: Word

The DBcc instruction does not affect any condition codes.

The DBcc instruction is a loop-control primitive. There are
three parts to the instruction: A condition to be tested
(specified by ICC'), a data register used as a counter
(specified by Dn) and a label used as the target of a branch
(specified by <label».

The condition specified by 'cc' is tested first to see if the
termination condition has been met. If it has, program
execution continues with the next instruction in sequence.
If the termination condition has not been satisfied, the low
order 16 bits of the data register 'Dn' are decremented by

37

one. If the result is -1, program execution continues with
the next instruction in sequence. If the result is not equal to
-1, program execution continues at the location specified
by <label>. The condition ICC' is one of the following:

CC-Carry clear LS -Low or same (U)
CS -Carry set LT -Less than (S)
EQ-Equal MI -Minus
F -False (never true) NE-Not equal
GE-greater than or equal (S) PL -Plus
GT-greater than (S) RA-Always (same as F)
HI -High (U) T -Always True
HS-High or same (U) VC-No overflow
LE -Less than or equal (S) VS -Overflow
LO-Lower (U)

The notations (U) and (S) denote the condition codes for
operations which are Unsigned and Signed, respectively.

DIVS-Signed Divide
Syntax: DIVS <ea> , Dn
Size: Word

Condition Codes:
N-Set if the quotient is negative, otherwise

cleared.
Z-Set if the quotient is zero, otherwise cleared.
X-U ndefined if overflow occurs.
V-Set if division overflow is detected, otherwise

cleared.
C-Always cleared.
X-U naffected.

The destination data register is divided by the source
operand and the result is stored in the destination data
register. The destination data register is treated as a long
(32-bit) operand and the source operand is a word (16-bit)
operand. The operation is performed using signed
division.
The result appears in the specified data register with the
quotient in the least significant 16 bits and the remainder
in the most significant 16 bits.

38

The sign of the remainder is always the same as the sign
of the dividend, unless the remainder is zero. Two special
cases must be noted:

• Division by zero causes a trap.
• If overflow is detected during the division, the overflow

condition code is set and the operands are unchanged.
Only data addressing modes can be used to specify the
<ea> field in the DIVS instruction.

DIVU-Unsigned Divide
Syntax: DIVU <ea>,Dn
Size: Word

Condition Codes:
N-Set if the most significant bit of the quotient is

set, otherwise cleared.
Z-Set if the quotient is zero, otherwise cleared.
V-Set if division overflow is detected, otherwise

cleared.
C-Always cleared.
X-Unaffected.

The destination data register is divided by the source
operand and the result is stored in the destination data
register. The destination data register is treated as a long
(32-bit) operand and the source operand is a word (16-bit)
operand. The operation is perfonned using unsigned
division.
The result appears in the specified data register with the
quotient in the least significant 16 bits and the remainder
in the most significant 16 bits.
The sign of the remainder is always the same as the sign
of the dividend, unless the remainder is zero. Two special
cases must be noted:

• Division by zero causes a trap.
• If overflow is detected during the division, the overflow

condition code is set and the operands are unchanged.
Only data addressing modes can be used to specify the
<ea> field for the DIVU instruction.

39

EOR-Logical Exclusive OR
Syntax: EaR Dn, <ea>

Size: Byte, Word or Long
Condition Codes:

N-Set if the most significant bit of the result is
set, other\tvise cleared.

Z-Set if the result is zero, otherwise cleared.
V-Always cleared.
C-Always cleared.
X-Unaffected.

The source data register is exclusive ORed with the
destination operand and the result is stored in the
destination operand. Note that this instruction restricts
the source operand to a data register.
Only data alterable addressing modes can be used to
specify the destination operand.

EORI-Logical Exclusive OR Immediate
Syntax: EaRl #<data>, <ea>
Size: Byte, Word or Long
Condition Codes:

N-Set if the most significant bit of the result is
set, otherwise cleared.

Z-Set if the result is zero, otherwise cleared.
V-Always cleared.
C-Always cleared.
X-Unaffected.

The immediate <data> field is exclusive ORed with
the destination operand and the result is stored in the
destination operand.
Only data alterable addressing modes can be used to
specify the destination operand.

40

EORI to CCR or SR
The effective address field <ea> in the EORI instruction
can refer to either the condition codes register (CCR) or the
status register (SR). Access to the status register is in one of
two modes:

• If the size field of the instruction is byte, the operation
only affects the condition codes register-the low order
bits of the status register.

• If the size field of the instruction is word, the operation
affects the entire status register. This is a privileged
operation and can only be issued by a program running
in supervisor state.

EXG-Exchange a Pair of Registers
Syntax: EXG Rx,Ry
Size: Long
The EXG instruction does not affect any condition codes.
The EXG instruction can work in one of three ways:

• exchange a pair of data registers,
• exchange a pair of address registers, or,
• exchange a data register with an address register.
The Rx field specifies either a data register or an address
register. If the exchange is petween a data register and an
address register, the Rx field must be a data register.
The Ry field specifies either a data register or an address
register. If the exchange is between a data register and an
address register, the Ry field must be an address register.

EXT-Sign Extend
Syntax: EXT Dn
Size: Word or Long
Condition Codes:

N-Set if the result is nOegative, otherwise cleared.
Z-Set if the result is zero, otherwise cleared.
V-Always cleared.
C-Always cleared.
X-Unaffected.

41

The specified data register is sign extended from a byte to a
word or from a word to a long word, depending on the
size field of the instruction. If the size field is W, bit 7 of the
specified data register is copied into bits 8 thru 15. If the
size field is L, bit 15 is copied into bits 16 thru 31.

JMP-Jump
Syntax: JMP <ea>
Size: Unsized
The JMP instruction does not affect any condition codes.
Program execution continues at the location specified by
the effective address field <ea>.

LEA-Load Effective Address
Syntax: LEA <ea> ,An
Size: Long
The LEA instruction does not affect any condition codes.
The effective address is loaded into the specified address
register.

LINK-Allocate Stack Space
Syntax: LINK An, # <Displacement>
The LINK instruction does not affect any condition codes.
The contents of the specified address register are pushed
onto the stack. The updated stack pointer is then moved to
the address register. The sign-extended displacement is
then added to the stack pointer. See the UNLK instruction.

42

LSL and LSR-Logical Shifts
Syntax: LSd Dx,Dy

LSd #<data> ,Dy
LSd <ea>

Size: Byte, Word or Long
Condition Codes:

N-Set if the result is negative, otherwise cleared.
Z-Set if the result is zero, otherwise cleared.
V-Always cleared.
C-Set according to the last bit shifted out of the

operand. It is cleared for a shift count of zero.
X-Set according to the last bit shifted out of the

operand. Unaffected by a shift count of zero.
Bits of the operand are logically shifted in the direction
specified by 'd'-R for right and L for left.
Either a data register or a memory location can be shifted.
If the operand is a memory location, the shift count is 1.
Only memory alterable addressing modes can be used for
this form.
If the operand is a data register, the shift count can be
specified in one of two ways:
Immediate The shift count is specified by the immediate

<data> field in the instruction. In this case,
the shift count must lie in the range 1 .. 8.
This is the second form of the instruction
given in the syntax above.

Register The shift count is contained in data register
specified in the instruction. This is the first
form of the instruction given in the syntax
above.

43

MOVE-Move Data from Source to Destination
Syntax: MOVE <source ea>, <destination ea>
Size: Byte, Word or Long
Condition Codes:

N-Set if the result is negative, otherwise cleared.
Z-Set if the result is zero, otherwise cleared.
V-Always cleared.
C-Always cleared.
X-Unaffected.

The operand at <source ea> is moved to the location at
<destination ea>. The data is examined as it is moved and
the condition codes set appropriately.
All addressing modes can be used for the <source ea>
with the exception that Address Register Direct
addressing cannot be used for byte size operations.
Only data alterable addressing modes can be used for the
<destination ea>.

MOVE to CCR-Move to Condition Codes
Syntax: MOVE <ea> ,CCR
Size: Word
Condition Codes:

N-Set according to the source operand.
Z-Set according to the source operand.
V-Set according to the source operand.
C-Set according to the source operand.
X-Set according to the source operand.

The contents of the source operand are moved to the
condition codes register. Although the source operand is a
word, only the low order eight bits are used to update the
condition codes register. Only data addressing modes can
be used in this instruction.

44

MOVE to SR-Move to Status Register (Privileged)
Syntax: MOVE <ea> ,SR
Size: Word
Condition Codes:

N-Set according to the source operand.
Z-Set according to the source operand.
V-Set according to the source operand.
C-Set according to the source operand.
X-Set according to the source operand.

The contents of the source operand are moved to the
condition codes register. The source operand is a word
all bits of the status register are affected. Only data
addressing modes can be used in this instruction.
This is a privileged instruction and can only be issued by a
program running in supervisor state.

MOVE from SR-Move from Status Register
Syntax: MOVE SR,<ea>
Size: Word
The MOVE from SR instruction does not affect any
condition codes.
The contents of the status register are moved to the
destination location specified by the <ea> field. The
operand size is a word. Only data alterable addressing
modes can be used in this instruction.

MOVE USP-Move User Stack Pointer (Privileged)
Syntax: MOVE USP,An

MOVE An,USP
Size: Long
The MOVE USP instruction does not affect any condition
codes.
The contents of the user stack pointer are moved to or from
the specified address register.
The MOVE USP instruction is privileged and may only be
issued by a program running in supervisor state.

45

MOVEA-Move Address
Syntax: MOVEA <ea> ,An

Size: Word or Long

The MOVEA instruction does not affect any condition
codes.
The contents of the source operand are moved to the
specified address register. All addressing modes can be
used in this instruction.

MOVEM-Move Multiple Registers
MOVEM moves multiple registers to memory or moves
multiple words of memory to registers. It is used as a high
speed register save and restore mechanism.

Syntax: MOVEM <Register List> ,<ea>
MOVEM <ea>, <Register List>

Size: Word or Long
The MOVEM instruction does not affect any condition
codes.
Selected registers are moved to or from consecutive
memory locations starting at the location specified by the
effective address. Registers to be moved are selected by a
register selection mask which is described below. The size
field of the instruction selects how much of a register is to
be moved. Either the entire register is moved or just the
low order word. If a word sized transfer is being made to
the registers, each word is sign-extended to 32 bits and the
resulting long word is moved to the register.
MOVEM can use control addressing mode, post
increment mode or pre-decrement mode. If the effective
address is in one of the control modes, the registers are
moved starting at the effective address and up through
higher addresses. The registers are transferred in the
order DO through D7, then AO through AZ
If the effective address is the post-increment mode, only
memory to register moves are allowed. The order of
transfer is the same as for the control modes as described
in the previous paragraph. The incremented address
register is updated to contain the address of the last word
loaded plus two.

46

If the effective address is the pre-decrement mode, only
register to memory moves are allowed. The registers are
moved starting at the specified address minus two, and
down through lower addresses. The order of storing the
registers is from A7 down to AO, then from 07 down to DO.
The decremented address register is updated to contain
the address of the last word stored.
The register list mask list is a bit map which controls which
registers are to be moved. The low order bit corresponds to
the first register to be moved, while the high order bit
corresponds to the last register to be moved. For control
and post-increment addressing modes, the mask
correspondence is:
bit~ 15 0

A7 A6 A5 A4 A3 A2 A1 AO 07 06 05 04 03 02 01 00

For the pre-decrement address nlode, the mask
correspondence is:
bit~ 15 o

00 01 02 03 04 05 06 07 AO A1 A2 A3 A4 A5 A6 A7

The register list is specified by giving lists of register
names separated by slashes. A range of registers can be
specified by giving two register names separated by a
hyphen.

MOVEP-Move Peripheral Data
Syntax: MOVEPDx,d(Ay)

MOVEP d(Ay),Dx
Size: Word or Long
The MOVEP instruction does not affect any condition
codes.
Data is moved between a data register and alternate
bytes of memory, starting at the specified location and
incrementing by two. The high order byte of the data
register is moved first and the low order byte is moved last.
The memory address is specified using the Address
Register Indirect with Displacement addressing mode.

47

If the address is even, all data transfers are made on
the high order half of the data bus. If the address is odd,
all data transfers are made on the low order half of the
data bus.

MOVEQ-Move Quick
Syntax: MOVEQ #<data> ,Dn
Size: Long
Move <data> to a data register. The data must be in the
range -128 .. + 127. The data is sign-extended to a long
operand and all 32 bits are moved to the data register.
Condition Codes:

N-Set if result is negative; cleared otherwise.
Z-Set if result is zero; cleared otherwise.
V and C-always cleared.
X-not affected.

MULS-Signed Multiply
Syntax: MULS <ea> ,Dn
Size: Word
Condition Codes:

N-Set if the result is negative, otherwise cleared.
Z-Set if the result is zero, otherwise cleared.
V-Always cleared.
C-Always cleared.
X-Unaffected.

The low order word of the destination data register and the
source operand are multiplied together using signed
arithmetic. The 32-bit product is stored in the destination
data register. Only Data addressing modes can be used for
the source operand specified by the <ea> field.

48

MULU-Unsigned Multiply
Syntax: MULU <ea>,Dn
Size: Word
Condition Codes:

N-Set if the most significant bit of the result is
set, otherwise cleared.

Z-Set if the result is zero, otherwise cleared.
V-Always cleared.
C-Always cleared.
X-Unaffected.

The low order word of the destination data register, and
the source operand indicated by the <ea> field are
multiplied together using unsigned arithmetic. The 32-bit
product is stored in the destination data register. Only data
addressing modes can be used for the source <ea> field.

NBCD-Negate Decimal with Extend
Syntax: NBCD <ea>
Size: Byte
Condition Codes:

N-Undefined.
Z-Cleared if the result is non-zero, otherwise

unchanged.
V-Undefined.
C-Set if a (decimal) borrow was generated,

otherwise cleared.
X-Set the same as the carry bit.

The destination operand specified by the <ea> field and
the extend bit are subtracted from zero and the result is
stored in the destination location. The subtraction is done
using binary-coded-decimal (BCD) arithmetic. If the
extend bit is clear, the operation produces the ten's
complement of the operand. If the extend bit is set, the
operation generates the nine's complement of the
operand. Only data alterable addressing modes can be
used in this instruction.

49

NEG-Negate
Syntax: NEG <ea>

Size: Byte, Word or Long

Condition Codes:
N-Set if the result is negative, otherwise cleared.
Z-Set if the result is zero, otherwise cleared.
V-Set if an overflow is generated, otherwise

cleared.
C-Set if a borrow is generated, otherwise

cleared.
X-Set the same as the carry bit.

The destination operand specified by the <ea> field is
subtracted from zero and the result is stored in the
destination location. Only data alterable addressing modes
can be used in this instruction.

NEGX-Negate with Extend
Syntax: NEGX <ea>

Size: Byte, Word or Long

Condition Codes:
N-Set if the result is negative, otherwise cleared.
Z-Set if the result is zero, otherwise cleared.
V-Set if an overflow is generated, otherwise

cleared.
C-Set if a borrow is generated, otherwise

cleared.
X-Set the same as the carry bit.

The destination operand specified by the <ea> field and
the extend bit are subtracted from zero and the result is
stored in the destination location. Only data alterable
addressing modes can be used in this instruction.

NOP-No Operation
Syntax: NOP

Size: U nsized

The NOP instruction does not affect any condition codes.
This instruction performs no operation. No processor state
other than the program counter are affected.

50

NOT-Logical Complement
Syntax: NOT <ea>
Size: Byte, Word or Long
Condition Codes:

N-Set if the result is negative, otherwise cleared.
Z-Set if the result is zero, otherwise cleared.
V-Always cleared.
C-Always cleared.
X-Unaffected.

The destination operand specified by the <ea> field is
logically complemented and the result is stored in the
destination location. Only data alterable addressing modes
can be used in this instruction.

OR-Logical Inclusive OR
Syntax: OR <ea>,Dn

OR Dn,<ea>
Size: Byte, Word or Long
Condition Codes:

N-Set if the most significant bit of the result is
set, otherwise cleared.

Z-Set if the result is zero, otherwise cleared.
V-Always cleared.
C-Always cleared.
X-Unaffected.

The source and destination operands are logically ORed
and the result is stored in the destination location.
Address registers may not be used as operands. If the
<ea> field is a source operand, only data addressing
modes can be used. If the <ea> field is a destination
operand, only alterable memory addressing modes can
be used.

51

ORI-Logical Inclusive OR Immediate
Syntax: OR! #<data>, <ea>
Size: Byte, Word or Long
Condition Codes:

N-Set if the most significant bit of the result is
set, otherwise cleared.

Z-Set if the result is zero, otherwise cleared.
V-Always cleared.
C-Always cleared.

The immediate data field is logically ORed with the
destination operand. The result is stored in the destination
location.

ORI to CCR or SR
The effective address field <ea> in the ORI instruction can
refer to either the condition codes register (CCR) or the
status register (SR). Access to the status register is in one of
two modes:
• If the size field of the instruction is byte, the operation

only affects the condition codes register-the low order
bits of the status register.

• If the size field of the instruction is word, the operation
affects the entire status register. This is a privileged
operation and can only be issued by a program running
in supervisor state.

PEA-Push Effective Address
Syntax: PEA <ea>
Size: Long
The PEA instruction does not affect any condition codes.
The effective (long word) address is computed, then
pushed onto the top of the stack.

52

RESET-Reset External Devices
Syntax: RESET

Size: Unsized

The RESET instruction does not affect any condition
codes.

The RESET instruction asserts the reset line on the
processor bus, causing all external devices to be reset. This
instruction is a privileged instruction and can only be
issued by a program running in supervisor state.

ROL and ROR-Rotate without Extend
Syntax: ROd Dx,Dy

ROd #<data>,Dy
ROd <ea>

Size: Byte, Word or Long

Condition Codes:
N-Set if the most significant bit of the result is

set, otherwise cleared.
Z-Set if the result is zero, otherwise cleared.
V-Always cleared.
C-Set according to the last bit shifted out of the

operand. It is cleared for a rotate count of
zero.

X-Unaffected.

Bits of the operand are rotated in the direction specified by
'd'-R for right and L for left. Bits shifted out one end of
the operand are shifted back in at the other end. The
extend bit is not included in the rotate.

Either a data register or a memory location can be rotated.
If the operand is a memory location, the rotate count is 1.
Only memory alterable addressing modes can be used for
this form.

If the operand is a data register, the rotate count can be
specified in one of two ways:
Immediate The rotate count is specified by the immediate

<data> field in the instruction. In this case,
the rotate count must lie in the range 1 .. 8.
This is the second form of the instruction
given in the syntax above.

53

Register The rotate count is contained in data register
specified in the instruction. This is the first
form of the instruction given in the syntax
above.

ROXL and ROXR-Rotate with Extend
Syntax: ROXd Dx,Dy

ROXd #<data> ,Dy
ROXd<ea>

Size: Byte, Word or Long
Condition Codes:

N-Set if the most significant bit of the result is
set, otherwise cleared.

Z-Set if the result is zero, otherwise cleared.
V-Always cleared.
C-Set according to the last bit shifted out of the

operand. Set to the value of the extend bit for
a rotate count of zero.

X-Set according to the last bit shifted out of the
operand. Unaffected by a rotate count of zero.

Bits of the operand are rotated in the direction specified by
'd'-R for right and L for left. Bits shifted out one end of
the operand go into the carry and extend bits. The
previous value of the extend bit is shifted into the other
end of the operand.
Either a data register or a memory location can be rotated.
If the operand is a memory location, the rotate count is 1.
Only memory alterable addressing modes can be used for
this form.
If the operand is a data register, the rotate count can be
specified in one of two ways:
Immediate The rotate count is specified by the immediate

<data> field in the instruction. In this case,
the rotate count must lie in the range 1 .. 8.
This is the second form of the instruction

Register
given in the syntax above.
The rotate count is contained in data register
specified in the instruction. This is the first
form of the instruction given in the syntax
above.

54

RTE-Return from Exception (Privileged)
Syntax: RTE
Size: Unsized

Condition Codes:
N-Set per the contents of the word on the stack.
Z-Set per the contents of the word on the stack.
V-Set per the contents of the word on the stack.
C-Set per the contents of the word on the stack.
X-Set per the contents of the word on the stack.

The RTE instruction is used to effect a return to the
previous program state after processing any form of
exception (interrupt, trap and such). The status register
and program counter are popped from the system stack.
The previous contents of the status register and program
counter are overwritten. All bits of the status register are
affected by this instruction.
This is a privileged instruction and may only be issued by a
program running in supervisor state.

RTR-Return and Restore Condition Codes
Syntax: RTR
Size: Unsized

Condition Codes:
N-Set per the contents of the word on the stack.
Z-Set per the contents of the word on the stack.
V-Set per the contents of the word on the stack.
C-Set per the contents of the word on the stack.
X-Set per the contents of the word on the stack.

This instruction is used to effect a return from a
subroutine. The main difference from the RTS instruction
is that the condition codes are popped from the stack and
are loaded into the condition codes register, overwriting
the previous contents.

55

RTS-Return from Subroutine
Syntax: RTS
Size: Un sized

The RTS instruction does not affect any of the condition
codes.
The RTS instruction is used to effect a return from a
subroutine. The program counter is popped from the top
of the stack. The previous value of the program counter is
lost.

SBeD-Subtract Decimal with Extend
Syntax: SBCDDy,Dx
Size: Byte
Condition Codes:

N-Undefined.
Z-Cleared if the result is non-zero, otherwise

unchanged.
V-Undefined.
C-Set if a (decimal) borrow was generated,

otherwise cleared.
X-Set the same as the carry bit.

The source operand plus the X (extend) bit is subtracted
from the destination operand and the result is stored in the
destination. The subtraction is done using binary-coded
decimal (BCD) arithmetic. The operands are addressed in
one of two ways:
• Data register to data register. The operands are

contained in the specified data registers.
• Memory to memory. The operands are addressed via

the Address Register Indirect with Pre-decrement
addressing mode, using the address registers specified
in the instruction.

56

Sec-Set According to Condition
Syntax: Scc <ea>
Size: Byte
The Scc instruction does not affect any condition codes.
The Scc instruction tests the condition code specified by
'cc'. If the condition is true, the byte specified by the
effective address <ea> is set to all ones. If the condition is
false, the destination byte is set to all zeros. Only data
alterable addressing modes can be used in the Scc
instruction. The condition specified by ICC' can be one of
the following:
CC-Carry clear La-Lower (U)
CS -Carry set LS -Low or same (U)
EQ-Equal LT -Less than (S)
F -False (never true) MI -Minus
GE-greater than or equal (S) NE-Not equal
GT-greater than (S) PL -Plus
HI -High (U) T -Always True
HS-High or same (U) VC-No overflow
LE -Less than or equal (S) VS -Overflow
The notations (U) and (S) apply to operations which are
Unsigned and Signed, respectively.

STOP-Load Status Register and Stop (Privileged)
Syntax: STOP #<data>
Size: U nsized
Condition Codes:

N-Set per the immediate operand.
Z-Set per the immediate operand.
V-Set per the immediate operand.
C-Set per the immediate operand.
X-Set per the immediate operand.

The STOP instruction executes a "dynamic halt". The
immediate <data> operand is treated as a 16-bit value, is
moved to the entire status register and the CPU stops
fetching and executing instructions. Program execution
resumes when a trace, interrupt or reset exception occurs.

57

If the STOP instruction is executed during trace state, a
trace exception is raised.

Interrupts are accepted if the priority of the interrupt is
higher than that of the current processor priority.

If the bit of the immediate <data> field which
corresponds to the S (supervisor state) bit is off, a privilege
violation interrupt occurs.

External reset always initiates reset-exception processing.

This is a privileged instruction and may only be issued by a
program running in supervisor state.

SUB-Subtract Binary
Syntax: SUB <ea> ,Dn

SUB Dn,<ea>

Size: Byte, Word or Long

Condition Codes:
N-Set if the result is negative, otherwise cleared.
Z-Set if the result is zero, otherwise cleared.
V-Set if an overflow is generated, otherwise

cleared.
C-Set if a borrow is generated, otherwise

cleared.
X-Set the same as the carry bit.

The source operand is subtracted from the destination
operand and the result is stored in the destination
operand.
If the <ea> field is the source, all addressing modes may
be used. The Address Register Direct addressing mode
may not be used for a byte size operation. If the <ea> field
is the destination, only alterable memory addressing
modes may be used.

58

SUBA-Subtract Address
Syntax: SUBA <ea> ,An
Size: Word or Long
The SUBA instruction does not affect any condition codes.
The source operand is subtracted from the destination
address register and the result is stored in the address
register. All addressing modes can be used for the source

. operand.

SUB I-Subtract Immediate
Syntax: SUBI #<data>, <ea>
Size: Byte, Word or Long
Condition Codes:

N-Set if the result is negative, otherwise cleared.
Z-Set if the result is zero, otherwise cleared.
V-Set if an overflow is generated, otherwise

cleared.
C-Set if a borrow is generated, otherwise

cleared ..
X-Set the same as the carry bit.

The immediate data field is subtracted from the destination
operand and the result is stored in the destination
location. Only data alterable addressing modes can be
used.

SUBQ-Subtract Quick
Syntax: SUBQ #<data>, <ea>
Size: Byte, Word or Long
Condition Codes:

N-Set if the result is negative, otherwise cleared.
Z-Set if the result is zero, otherwise cleared.
V-Set if an overflow is generated, otherwise

cleared.
C-Set if a borrow is generated, otherwise

cleared.
X-Set the same as the carry bit.

59

The immediate data field is subtracted from the destination
operand and the result is stored in the destination
location. The data field must lie in the range 1 .. 8. Only
data alterable addressing modes can be used. The Address
Register Direct addressing mode may not be used for byte
size operations.

SUBX-Subtract Extended
Syntax: SUBX Dy,Dx

SUBX - (Ay), - (Ax)
Size: Byte, Word or Long
Condition Codes:

N-Set if the result is negative, otherwise cleared.
Z-Set if the result is zero, otherwise cleared.
V-Set if an overflow is generated, otherwise

cleared.
C-Set if a borrow is generated, otherwise

cleared.
X-Set the same as the carry bit.

The source operand plus the X (extend) bit are subtracted
from the destination operand and the result is stored in the
destination location. The operands can be addressed in
one of two ways:
• Data register to data register. The operands are

contained in the specified data registers.
• Memory to memory. The operands are addressed via

the Address Register Indirect with Pre-decrement
addressing mode, using the address registers specified
in the instruction.

SWAP-Swap Register Halves
Syntax: SWAP Dn
Size: Word
Condition Codes:

N-Set if the most significant bit of the 32-bit
result is set, otherwise cleared.

Z-Set if the 32-bit result is zero, otherwise
cleared.

V and C-Always cleared.
X-Not affected.

60

SWAP exchanges the 16-bit words in a 32-bit data register.
It is useful for exchanging the quotient and remainder after
a divide instruction.

TAS-Test and Set
Syntax: TAS <ea>

Size: Byte
Condition Codes:

N-Set if the most significant bit of the operand is
set, otherwise cleared.

Z-Set if the operand is zero, otherwise cleared.
V-Always cleared.
C-Always cleared.
X-Unaffected.

The byte operand specified by the <ea> field is tested,
and then the high order bit of the operand is set, all in one
indivisible (uninterruptible) operation. The Nand Z
condition code bits are set according to the state of the
operand when the test isperforrned. Only data alterable
addressing modes can be used in the TAS instruction.

TRAP-Trap
Syntax: TRAP #<vector>
Size: U nsized
The TRAP instruction does not affect any condition codes.
The TRAP instruction initiates exception processing. The
specific exception vector selected is detennined by the trap
vector number supplied as the immediat~ <vector>
operand of the instruction. The <vector> number is a
val ue in the range 0 .. 15.

TRAPV-Trap on Overflow
Syntax: TRAPV
Size: Unsized
The TRAPV instruction does not affect any condition
codes.
If the overflow condition is set, the TRAPV instruction
initiates exception processing to the TRAPV exception
vector. If the overflow condition is off, the TRAPV
instruction acts as a no-op~

61

TST-Test an Operand
Syntax: TST <ea>

Size: Byte, Word or Long

Condition Codes:
N-Set if the operand is negative, otherwise

cleared.
Z-Set if the operand is zero, otherwise cleared.
V-Always cleared.
C-Always cleared.
X-Unaffected.

The operand specified by <ea> is compared with zero and
the condition codes set as a result of the test. Only data
alterable addressing modes can be used by the TST
instruction.

UNLK-Deallocate Stack Space
Syntax: UNLK An
The UNLK instruction does not affect any condition codes.
The stack pointer is loaded from the specified address
register. The long word on the top of the stack is then
popped into the specified address register. See the LINK
instruction.

62

USING THE ASSEMBLER

ASM68K is a relocatable assembler for the Motorola
MC68000 processor. This chapter is a description of how to
run the assembler on MERLIN.
ASM68K accepts source programs written in the
Assembler Language as defined in this manual and
generates self-relocatable object-code output. An optional
listing file can be generated that contains the source
statements, hexadecimal object-code, error diagnostics (if
any) and a symbol cross-reference. The Assembler is run
by giving the following command line:
asm68k sfile -llfile -oofile - -
where "sfile" is the name of a file containing the assembler
source program. The source is expected to be on a file with
a ". text" suffix. If the user omits the". text" suffix from the
source file name on the command list, ASM68K appends a
II. text" suffix to the name before accessing the source file.

Command line options are designated by a " - " sign
followed by a letter (shown underlined in the command
line above). The argument for that option immediately
follows the option letter as shown. The options are:
"Hile" Is the optional name of the file to receive the

assembler generated listing. No suffix is
appended to the listing filename. If omitted, a
listing is not generated. In this case, errors are
directed to the standard output and the standard
input is polled for a "continue" or an "abort"
response.

"ofHe" Is the optional name of the file to receive the
generated relocatable object-code. The generated
object-code is placed on a file with an ". obj"
suffix. If omitted from the command line, the
object code output is written to a file with the
same name as the source file (minus the ". text"
suffix) with a suffix of ".obj" appended.

63

Examples of Running the Assembler
asm68k bookshelf
In this example, ASM68K assembles the source in the file
"bookshelf. text". There is no listing file, so any errors are
directed to the standard output. The generated object-code
is placed on the file "bookshelf.obj".
asm68k cabinet -ldrawers.list -omodules
This example illustrates the use of the command line
options. The source text is on a file called "cabinet. text",
the listing appears on a file called "drawers.list" and
the relocatable object code appears on a file called
"modules. obj".
The object-code that ASM68K generates is not directly
executable, but must be linked, using the linker, before it
can be executed.

64

ASSEMBLER OUTPUT
AND MESSAGES

This chapter describes the output files that the assembler
generates, and contains the error messages that are
generated when errors are encountered in the assembler
source code.

Object Code File
ASM68K generates an object-code file containing
relocatable object-code. The object-code file is not directly
executable on the computer, but must be linked, using the
linker, before it can be executed. Alternatively, the object
code file can be an input to the library utility, for
incorporation into an object code library. Details of the
linker and library utilities can be found in the linker
manual.

Listing File
ASM68K generates an optional listing file which contains
the source code as read, plus generated object code, error
messages (if any) and a cross reference of the symbols in
the assembly unit. The listing is paginated with page
headings at the top of each page. Each line in the listing
has a line number attached to it. A fragment of a listing file
(not to scale) is shown here:

001 FOOOO 46* IOBase68 EOU $lfOOOO ;Base address of 68K I/O.
001F0080 47* MSCBase eou IOBase68 +$80

...... lots more assembler statements

001E 7400 245* NextTrak moveq #O,dl ; Cylinder Number.
246*;

0020 1602 247* NextHead move.b d2,d3 ; Shift head number ..

........ then a line with an error message

***** Error 7- v Undefined Symbol
0044 41 FA FFBA 262* leaSuccess,aO ; Finished-display message.

1 2 3 4 5 6 ~Field Reference.

The significance of the fields in the above illustration are:
1. Shows the address of this code relative to the start of

the assembly unit.

65

2. Shows the generated object code for the instruction. In
the case of an EQU directive, the code field shows the
value of the operand for the equate.

3. Shows the line number in that assembly unit.

4. Shows the opcode field.

5. Is the operand field for the instruction.

6. Is the comment field.

With the exception of the line number, all numbers are in
hexadecimal.

At the end of the assembly listing, ASM68K generates an
alphabetical list of all symbols defined in the assembly:

• Relocatable symbols are marked with a + sign.

• Multiply defined symbols are flagged with the word
IIDOUBLE" .

• External symbols are marked by a row of asterisks:

• Global symbols are preceded by a single asterisk
character.

• Undefined symbols do not appear in the list.

Assembler Error Messages

Illegal Character in Label
A label contains a character that is not valid in the
context of a label. Remember that labels can only
contain the letters A thru Z, a through z, the digits 0
through 9, and the characters _ and %. All other
characters are invalid in labels.

Illegal Character
The assembler read a character that was unexpected
at that point. Check if a string literal or data item was
correctly written.

66

Opcode Expected
The assembler read something that was not an
operation code, in a place where an operation code or
assembler directive was expected. Check the opcode
field to see if it is a valid opcode. Maybe there is a label
that does not start in column one.

Absolute Value(s) Expected
The operand expression is either relocatable or it
references an external symbol where the assembler
expected an absolute expression. For example, the
ADDI (Add Immediate) instruction expects an
absolute expression for an operand.

I)' Expected
A close parenthesis was expected to be read, and
'something else was found instead.

Illegal Symbol in Expression
An expression contains characters that are not part of
the valid set of symbols that can appear in an
expression. Check the rules for operand expressions.

Undefined Symbol
A symbol used as an operand is undefined. Check to
see if it is defined, or check for possible spelling
mistakes.

Absolute or Relocatable Value Expected
An external symbol is referenced when the assembler
expects only an absolute or relocatable expression.

Illegal Extension
The I size' extension of an operation or operand is not
a valid extension, or is not valid in the particular
context. Valid extensions are B, W, Land S. For
example, the B size attribute cannot be used as the
extension of a BRA instruction.

I,' Expected
Missing comma in an argument list.

Data Register Expected
A data register designator in the range DO through D7
is expected.

67

Label Required
The particular operation or directive requires a label
field. For example, the EQU directive must have a
label field.

Multiply Defined Symbol
A label has been encountered that is already defined
previously. Check for possible spelling mistakes .

. W or . L Expected
The specific operation code requires a size designator
ofWorL.

Address Register Expected
An address register in the range AO through A7 (or
SP) is expected as the operand of the instruction.

I (' Expected
An opening parenthesis is expected at this point in
the operand field.

Register Expected
The instruction operand should be either an address
register, a data register, or one of the system special
registers.

Value Must be in Range -128 .. 127
Some instructions (such as MOVEQ-Move Quick),
can only accept single byte operands. Check the
operand field or expression for validity.

Relocatable Value Expected
An absolute or external-valued expression occurs
where the assembler is expecting to find a relocatable
expression. For example, the BRA instruction expects
a relocatable operand, not an absolute or external
operand.

Strings Not Allowed
A string constant cannot be used as the operand of
this instruction. For example, the JMP instruction
expects an address not a string.

I #' Expected
A literal or immediate operand must be Signalled by
placing a # sign in front of it.

68

Value Must be in Range 1 .. 8
Instructions such as ASL (arithmetic shift left) only
accept literal or immediate operands in the range 1
through 8. If a greater shift count is required, multiple
shift instructions must be used or the shift count must
be placed in a register.

Illegal Operand Mode
The operand used in this instruction is the wrong
kind. For example, in the CMPM (Compare Memory)
instruction, the operands must be addressed using
the Address Register Indirect with Post-increment
addressing mode.

Unterminated String
A character string data item or literal does not have a
correct closing string delinliter.

Object File Full
There is no more room on the output storage device
for the file that is accumulating the generated object
code. At this juncture, consider splitting the program
into smaller modules.

Cannot EQU to an External
An EQU directive cannot have an external label as its
operand.

Identifier Expected
An identifier is the only valid object which can occur
at this point. For example, the GLOBAL directive
expects only identifiers and not expressions.

Value Must be in Range 0 .. 15
The TRAP instruction only accepts a trap number in
the range a through 15.

Extra Junk at End of Line
There is text on the statement line, after the
instruction is considered 'complete', that is not
required in the context of the particular instruction.
Check to see if there is a comment on the line without
a comment delimiter in front of it.

69

Missing END Statement
The assembler read the end-of-file in the assembly
unit before an END statement was found.

Cannot Have Zero Offset
The BRA (Branch Always), Bcc (Branch on Condition)
and BSR (Branch to Subroutine) instructions must not
have an offset which is zero. In practical terms this
means that these instructions must not branch to the
location immediately following the branch instruction
itself.

Hex Constants Begin with $
The assembler started to read what it assumed was a
decimal number and the number turned out to have
hexadecimal digits in it (72A for example).

70

Appendix A

ALPHABETICAL
INSTRUCTION SUMMARY

Here is an alphabetical summary of the instructions I their
operand forms and the condition codes affected. The entries
under the condition code field have the following meanings:

- Unaffected. * Set or cleared.
U Undefined. 0 Always cleared.

Condition
Codes

Mnemonic Operation Assembler Syntax X N Z V

ABCD Add Decimal with ABCDDy,Dx * U * U
Extend ABCD - (Ay), - (Ax)

ADD Add Binary ADD <ea>,Dn * * * *

ADD Dn,<ea>

ADDA Add Address ADDA <ea> ,An - -
ADDI ADD Immediate ADDI * * * *

#<data>,<ea>

ADDQ Add Quick ADDQ * * * *

#<data>,<ea>

ADDX Add Extended ADDXDy,Dx * * * *

ADDX - (Ay), - (Ax)

AND AND Logical AND <ea>,Dn * * 0
AND Dn,<ea>

ANDI AND Immediate ANDI * * 0
#<data>,<ea>

ASL,ASR Arithmetic Shift ASd Dx,Dy * * * *

ASd #data,Dy
ASd <ea>

71

C

*

*

-
*

*

*

0

0

*

Condition
Codes

Mnemonic Operation Assembler Syntax X N Z V C

Bcc Branch Conditionally Bcc<label> - - - - -
BCHG Test a Bit and Change BCHG Dn,<ea> *

BCHG
#<data>,<ea>

BClR Test a Bitand Clear BClR Dn,<ea> *

BClR
#<data>,<ea>

BRA Branch Always BRA <label> - - - - -
BSET Test a Bit and Set BSET Dn,<ea> *

BSET
#<data>,<ea>

BSR Branch to Subroutine BSR<label> - - -
BTST Testa Bit BTST Dn, <ea> *

BTST
#<data>,<ea>

CHK Check Register Against CHK<ea>,Dn * U U U
Bounds

ClR Clear an Operand ClR<ea> - 0 1 0 0

CMP Arithmetic Compare CMP<ea>,Dn * * * *

CMPA Arithmetic Compare CMPA <ea> ,An * * * *

Address

CMPI Compare Immediate CMPI * * * *

#<data>,<ea>

CMPM Compare Memory CMPM (Ay) + ,(Ax) + * * * *

DBcc Test Condition, DBcc Dn, <label> - - -
Decrement and Branch

DIVS Signed Divide DIVS<ea>,Dn * * * 0

DIVU Unsigned Divide DIVU <ea>,Dn * * * 0

72

Condition
Codes

Mnemonic Operation Assembler Syntax X N Z V C

EOR Logical Exclusive OR EORDn,<ea>
., ., 0 0

EORI Exclusive OR Immediate EORI #<data>,<ea>
., ., 0 0

EXG Exchange Registers EXG RX,Ry - - -
EXT Sign Extend EXTOn

., ., 0 0

JMP Jump JMP<ea> - - -
JSR Jump to Subroutine JSR<ea> - - - - -
LEA Load Effective Address LEA <ea>,An - - - - -
LINK Link and Allocate LINK An,#<disp> - - - - -
LSL, LSR Logical Shift LSd DX,Dy

., ., ., 0 .,

LSd #<data>,Dy
LSd <ea>

MOVE Move Data from Source to MOVE <ea>,<ea> *
.,

0 0
Destination

MOVE to CCR Move to Condition Codes MOVE <ea>,CCR *
.,

* * *

MOVEtoSR Move to Status Register MOVE <ea> ,SR
., ., ., ., .,

MOVEfromSR Move from Status Register MOVE SR, <ea> - - - - -
MOVEUSP Move User Stack Pointer MOVEUSP,An - - - - -
MOVEA Move Address MOVEA <ea> ,An - - -
MOVEM Move Multiple Registers MOVEM<rlist>, <ea> - - -

MOVEM<ea>, <rlist>

MOVEP Move Peripheral Data MOVEP Dx,d(Ay) - - - - -
MOVEP d(AY),Dx

MOVEQ Move Quick MOVEQ #<data>,Dn * ., 0 0

73

Condition
Codes

Mnemonic Operation Assembler Syntax X N Z V C

MULS Signed Multiply MULS <ea>,Dn * * 0 0

MULU Unsigned Multiply MULU <ea> ,Dn * * 0 0
NBCD Negate Decimal with Expand NBCD <ea> * U * U
NEG Two's Complement Negate NEG <ea> * * * * *

NEGX Negate with Extend NEGX<ea> * * * * *

NOP No Operation NOP - - - - -
NOT Logical Complement NOT <ea> * * 0 0

OR Logical Inclusive OR OR <ea>,Dn * * 0 0
OR Dn,<ea>

ORI Inclusive OR Immediate ORI #<data>,<ea> * * 0 0
PEA Push Effective Address PEA <ea> - - - - -
RESET Reset External Devices RESET - - - - -
ROL,ROR Rotate without Extend ROd DX,Dy * * 0 *

ROd #<data>,Dy
ROd <ea>

ROXL, ROXR Rotate with Extend ROXdDx,Dy * * * 0 *

ROXd #<data> ,Dy
ROXd <ea>

RTE Return From Exception RTE * * * * *

RTR Return and Restore RTR * * * * *

Condition Codes

RTS Return From Subroutine RTS - - - - -

74

Condition
Codes

Mnemonic Operation Assembler Syntax X N Z V C

SBCD Subtract Decimal with Extend SBCDDy,Dx * U * U *

SBCD - (Ay), - (Ax)

Scc Set According to Codes Sec <ea> - - - - -
STOP Stop Program Execution STOP #<data> - - - - -
SUB Subtract Binary SUB <ea>,Dn * * * * *

SUB Dn,<ea>

SUBA Subtract Address SUBA <ea> ,An - - - - -
SUBI Subtract Immediate SUBI * * * * *

#<data>,<ea>

SUBQ Subtract Quick SLJBQ * * * * *

#<data>,<ea>

SUBX Subtract with Extend SUBXDy,Dx * * * * *

SUBX - (Ay), - (Ax)

SWAP Swap Register Halves SWAPDn - * * 0 0

TAS Test and Set an Operand TAS<ea> * * 0 0

TRAP Trap TRAP #<vector> - - - - -
TRAPV Trap on Overflow TRAPV - - - - -
TST

UNLK

Test an Operand TST<ea> * * 0 0

Unlink UNLKAn - - - - -

<rlist> in the MOVEM instruction specifies the registers
selected for transfer to or from memory. <rlist> may be:

• a single register,
• a range of consecutive" registers indicated by low-high.
• Any combination of the above two items. Each element

in the list is separated from the next by a slash.

75

76

Appendix B

ALPHABETICAL LIST
OF DIRECTIVES

DATA

END

EQU
EXTERN

defines and intializes data items.
signals the end of an assembly unit.
associates a value with an identifier.
defines an identifier external to the current
assembly unit that is referenced in that unit.

GLOBAL defines an identifier in the current assembly

IDENT

LIST
PAGE

unit that is referenced from outside that unit.
specifies the name of an assembly unit.
controls assembler listing on or off.
produces a page eject on the assembler listing.

77

78

Appendix C

LIST OF OPERANDS

An Address Register. In' may be 0 .. 7. A7 is also the
Stack Pointer.

Dn Data Register. In' may be 0 .. 7.

SP Stack Pointer, A7.
USP
CCR

SR

User Stack Pointer.
Condition Codes Register. The CCR is an 8-bit
register. It is actually the low order eight bits of the
status register.
Status Register. The SR is a 16-bit register which
includes the CCR. The status bits (most significant)
portion of the SR can only be changed by a program
running in supervisor state.

Writing Characters to the Screen
CONOUT MOVE.W #CONSOLE,-(SP) ; push unit # of device

PEA OUTSTR ; push address of string to write
MOVE.W #STRLEN,-(SP) ; push # of chars to write
CLR.W -(SP) ; push block # (N/A for console)
CLR.W -(SP) ; push mode
CLR.W DO ; DO = offset of unitwrite vector
MOVE.L PSYSCOM.W,AO ; AO= = > syscom
MOVE.L SYSVECT(AO),AD ; AD = = > system vector table
MOVE.L O(AO,DO.W),AO ; AO = = > unitwrite routine
JSR (AO) ; call unitwrite
RTS ; done

CONSOLE EQU 1 ; unit number of /CONSOLE device
OUTSTR DATA.B 'This is a test.' ; string to write

DATA.B $OD,$OA ; carriage return, linefeed
STRLEN EQU %-OUTSTR ; length of string
PSYSCOM EQU $180 ; address of syscom pointer
SYSVECT EQU 8 ; offset of vector table pOinter

END CONOUT

79

Making Unitxxxx System Calls From 68KAssembler

function data to push, length vector offset
--
UnitRead, unit number W 4 (read)
UnitWrite buffer address L a (write)

buffer length W
block number W
mode W

UnitStatus unit number W 100
buffer address L
command W

UnitClear unit number W 8

UnitBusy unit number W 12 ***returns byte
on stack
(boolean T = 1,F = 0)

80

81

82

	001
	002
	003
	004
	005
	006
	007
	008
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82

