
�

a

><
J:.Ll
> z
0
u

•

•

•

•
..

- >

(-Series Architecture

Seventh Edition

•
•

•
•

•
•

•

• •
i .

EDTX 2-04-CV-120
51 056DOC065300

�

CONVEX Computer Corporation
3000 Waterview Parkway
P.O. Box 833851
Richardson, TX 75083-3851
United States of America
(214)497-4000

EDTX 2-04-CV-120
51 056DOC065301

�

.............................. • .. , , , ...•..• I •. ".·'·~--C'o•.N''"·-'"'''.'"~--.,

I

-.,.L

CONVEX
C-Series Acrhitecture

~------

Order No. DSW-300

Seventh Edition
March 1994

CONVEX Press
Richardson, Texas
United States of America

--=-­~----e..= ----

i
i

EDTX 2-04-CV-120
51 056DOC065302

�

CONVEX
C-Series Architecture

Order No. DSW-300

Copyright© 1994 CONVEX Computer Corporation
All rights reserved.

This document is copyrighted. This document may not, in whole
or part, be copied, duplicated, reproduced, translated,
electronically stored, or reduced to machine readable form
without prior \o\'litten consent from CONVEX Computer
Corporation.

Although the material contained herein has been carefully
reviewed, CONVEX Computer Corporation does not warrant it to
be free of errors or omissions. CONVEX reserves the right to make
corrections, updates, revisions or changes to the information
contained herein. CONVEX does not warrant the material
described herein to be free of patent infringement.

CONVEX and the CONVEX logo ("C") are registered trademarks of CONVEX Computer
Corporation.
UNIX is a registered trademark of UNIX System Laboratories, Inc., a wholly owned subsidiary
of Novell, Inc.

()This book is recyclable.

Printed in the United States of America

EDTX 2-04-CV-120
51 056DOC065303

�

. -·. -. ~· ~·
. . __ ._., •.. ,. ··••··. :,\; , •.• , __ ,,, __ ,·'-">i.;,.,~~

Revision information for
CONVEX
C-Series Architecture

Edition Document No.

Seventh 081-011830-001

Sixth 081-011830-QOO

Fifth 081-000050-203

Fourth 081-000050-202

Third 081-000050-201

Second os1-ooooso-200

First 080-000120-000

Description

Released March 1994. Documents C4600 Series as part of the
C-Series architecture. Changes the document name to C-Series
Architecture.

Released March 1993. Separates the assembly language
instruction set to the new CONVEX Assembly Language Reference
Manual (C Series), from the CONVEX Architecture Reference Manual
(C100, C200 Series), renamed the CONVEX Assembly Language
Reference Manual (C Series). Documents C3400 and C3800 Series
CPUs as part of the C Series architecture and clarifies the
separation of CIOO Series CPUs (single-processor operation) from
multiprocessing CPU operation.

Released May 1990. Updates the fourth edition of CONVEX
Architecture Reference Manual (C100, C200 Series). Documents the
addition of the load cache bypass instruction.

Released May 1989. Updates the third edition of CONVEX
Architecture Reference Manual (ClOD, C200 Series). Documents the
addition of the memory instruction duals.

Released October 1988. Updates the version 2.0 of CONVEX
C1/C120/C210 Architecture Reference Manual. Changes document
name to CONVEX Architecture Reference Manual (C100, C200
Series). Documents the C100 Series architecture (Cl and Cl20
CPUs) and the C200 Series architecture (C201, C202, C210, C220,
C230, and C240 CPUs).

Released February 1988, version 2.0. Updates version 1.2 of
CONVEX Architecture Handbook. Changes document name to
CONVEX C1fC120/C210 Architecture Reference Manual. Documents
the expansion of the original instruction set, transparent changes
to the interrupt structure, and changes to the C210A architecture
and generic Cl Series architecture.

Released 1984. Version 1.0 (initial release) of the CONVEX
Architecture Handbook.

EDTX 2-04-CV-120
51 056DOC065304

�

Contents

Using this manual. xix
Purpose and audience .. xix
Notational conventions .. xix

Text notation .. xix
Command syntax ... xxii
Data notation ... xxiii
Notes, cautions, and warnings ... xxv

Associated documents ... xxvi
Ordering documents .. xxvi
Technical assistance .. xxvi

1 Introduction .. 1
The CONVEX C-Series architecture .. 2
Chapter summaries ... 4

Data representations .. 4
Register sets .. 5
Memory management ... 6
Multiprocessor management .. 7
Exceptions and interrupts .. 7
Implementation-specific features .. 8

Instruction set ... 9

2 Data representations 11
Basic data representations .. 12

Data representation memory alignment 12
Virtual addresses .. 13
Mixed mode arithmetic ... 13

Signed fixed-point integer representations 14
Unsigned fixed-point integer representations 16
Floating-point representations ... 17

Native floating-point implementation 18
Native single-precision floating-point format 18
Native double-precision floating-point format 20
Native reserved operands ... 21
Native floating-point zero ... 21
Native rounding ... 21

Native operations ... 23

Contents v

EDTX 2-04-CV-120
51 056DOC065305

�

: · ..

Native compare operations ... 23
Native add or subtract ... 25
Native multiply operations ... 25
Native divide operations ... 26
Native square root operations 26
Native min/max operations ... 27
Native conversion operations 27

IEEE floating-point implementation 29
IEEE single-precision floating-point format 29
IEEE double-precision floating-point format 31
IEEE special operands .. 32
IEEE floating-point zero .. 32
IEEE rounding ... 33

IEEE operations .. 34
IEEE compare operations .. 34
IEEE add or subtract operations 34
IEEE multiply operations .. 34
IEEE divide operations .. 34
IEEE min/max operations .. 35
IEEE square root operations .. 41
IEEE conversion operations .. 41

Native and IEEE floating-point algorithms 44
Add or subtract ... 44
Multiply ... 46
Divide ... 46
Conversions ... 47

3 Register sets ... 49

vi CONVEX C-Series Architecture

Address registers .. 51
Scalar registers .. 52
Vector registers ... 53

Vector accumulators ... 53
Array (vector) terminology ... 54
Vector length register ... 56
Vector stride register .. 56
Vector merge register ... 57
Vector first register - C4600 .. 57

Special purpose registers .. 58
Program counter ... 58
Processor status word .. 59

Universal PSW bit definitions 60
Extended PSW bit definitions 63

Scalar stride registers- C4600 ... 66
Privileged flags ... 67

Interrupts on ... 67
Realtime interrupts on ... 67
Vector valid ... 67

EDTX 2-04-CV-120
51 056DOC065306

�

I
J

. .. : . ,_.:,_,, :.:~:-:,·:,: .. :.-~''"''"'"' •··~· ...

4 Memory management 69
Physical address space .. 69
Virtual address space ... 70
Addressing modes ... 73
Process structures ... 74
Process control .. 76

Stacks and stack frames ... 76
Stack operations .. 77
Process return blocks 78
Stack frame structures 83
Stack switching ... 84

Resource structures .. 87
Shared resource structures 87
Stack resource structures ... 89
System resource structures .. 91

Virtual memory management .. 94
Multiprocessing extensions .. 95

Shared and unshared memory 97
Segment descriptor register .. 98

SDR format - C100 .. 98
SDR format- C3200/C3400/C3800 99
SDR format - C4600 .. 100

Page table entries .. 101
PTE format- ClOD ... 101
PTE format- C3200/C3400/C3800 103
PTE format- C4600 ... 107
Thread-level PTE Operation 109

Virtual-to-physical address translation 110
ClOO .. 111
C3200/C3400/C3800/C4600 112
Referenced and modified bits 116

Virtual memory protection ... 117
Ring maximization ... 117
Access Validation ... 119
Memory protection notes .. 120
Inter-ring procedure call and return 121

Corrupted pointers ... 122
Reserved virtual memory ... 124

Page 0- ClOO ... 124
Page 0- C3200/C3400/C3800/C4600 128

Power up addressing mode .. 131

Contents vii I
_j

EDTX 2-04-CV-120
51 056DOC065307

�

~

5 Multiprocessor management 133
lightly-coupled synunehic multiprocessing ----------------------- 135

Automatic self-allocating processors 135
Communication registers .. 136

viii CONVEX C-Series Architecture

Communication index register ----------------------------------·------ 137
CIR - C3200 .. 138
CIR- C3400/C3800/C4600 ... 139

Communication register virtual addressing 142
Communication register physical addressing 145
Communication register address translation 148

CMR address translation- C3200 148
CMR address translation- C3400/C3800/C4600 149

Communication register modified bits - C3200 151
Hardware communication registers 154

Hardware communication registers- C3200 155
Hardware communication registers- C3400/C3800 156
Hardware communication registers - C4600 157
Fork event communication registers 158
Segment descriptor registers ---·----------------------------------- 159
Trap instruction registers ... 161
Thread allocation mask and count ----------------------------- 162
CPU execution dock registers 163
Hardware reserved CMR- C3200 165

Control registers- C3400 ... 166
Interrupt control register ... 168
Time of century register ... 168
Time of century delta time register 168
Interval timers ... 168
Interval timer indicators .. 169
Process trap mail box -------·--·-- 169
Interval timer interrupt indicators 170
CPU exist indicators ... 170
Realtime indicators ... 170
Deadlock indicators-- 170
Global enable register ·--- 170
Local enable registers .. 171
Broadcast enable registers .. 172
Interrupt/trap source indicators 173
Interrupt/trap acknowledge indicators -------------------- 174
Interrupt/trap request indicators 174
SIB intermpt request indicators 175
ION bit --- 175
RT_ION bit .. 175
Intexval status register ... 175
Idle indicators ------------------------------··--···--·--··--·····--·········· 176
Communication interrupt registers 176

·,J,.

.l, .. _·-~-·.-~··-·····--~-·--.. ------..,.----~······-···~.,-·····----.~~~-·-"'-· ----------------..---~----

EDTX 2-04-CV-120
51 056DOC065308

�

1
T ·~"~

TOC write complete ... 177
Post bit register ... 177 I
TER trap enable register .. 177 1

Control registers- C3800/C4600 179 1

Lockbit shift register ····-·;······-··-·----···------····-~-·····uu-----· 180 i

Time of century register ... 180
Trap corrunand register .. 180
Posted thread CIR ... 180
Next ITC register .. 180
Interval timer counter 180
ITC status register ... 181
ITC interrupt channel register 181
IO INSTALL register .. 181
CPU INSTALL register .. 181
Communication index registers 181
IDLE registers .. 181
Globally pending interrupt register 182
Global enable register .. 182
Memory base pointer register 182
Local enable registers ... 182
Broadcast enable registers ... 182
Traps and interrupts ... 183

Communication register primitive operations 184
Locking memory structures .. 186

Multithreaded execution ... 188
CPU states ... 189
CPU scheduling .. 189
CPU allocation and deallocation 190
ConvexOS I Secure .. 192
Parallel processing 193

Symmetric parallel processing 193
Asymmetiic parallel processing 195
Privileged CPU control operations 197

Forking operations ... 198
Forking commands ... 200
Idle CPU allocation .. 203

CPU deadlock detection .. 206
Process deadlock ... 206

6 Exceptions and interrupts 209
Exception system .. 209

Process exceptions 212
Arithmetic trap ... 212
Instruction trace trap ,. 215
Sequential execution .. 218
Breakpoints .. 219

System exceptions .. 220

Contents ix

EDTX 2-04-CV-120
51 056DOC065309

�

Error exit trap .. 220
Undefined op code trap ... 220
Vector valid trap ... 221
Ring violation traps and faults 222
Page table entry violation faults 223
Noruesident page faults .. 224
Process deadlock traps ... 224
Invalid communication address exception 225
Process traps and process breakpoints 226
System exception processing 229
Global hard error trap .. 235
CXBASE registers ... 236

Machine exceptions .. 237
Interrupt system ... 239

Interrupt processing- ClOD ... 242
Base-level processing ... 243
Interrupt-level processing ... 244
Common interrupt processing sequence 244
General interrupt processing notes - ClOO 245

Interrupt Processing - Multiprocessing CPUs 246
Interrupt flow- C3200 .. 250
Interrupt flow- C3400 .. 252
Interrupt flow- C3800/C4600 254
Interrupt context blocks .. 256
Servicing interrupts .. 256
Virhial memory restrictions .. 257
Idle CPU interrupt processing 257
Active CPU intermpt processing 259
Returning from a base---level intermpt 261
General interrupt notes -multiprocessing CPUs 262

7 Implementation-specific features 263

x CONVEX C-Series Architecture

Physical address space .. 264
Power-up addressing mode- CIOO 264
Physical address space- C100, 265
Physical address space - C3200 .. 266
Physical address space- C3400/C3800/C4600 267

I/0 address space .. 268
1/0 address space- CIOO .. 269
1/0 address space- C3200 .. 269

Referenced and modified bits ... 270
R&M bits- ClOO .. 270
R&M bits - C3200 .. 271
R&M bits- C3400/C3800 .. 272
R&M bits- C4600 .. 273

Physical configuration map .. 275
Physical configuration map- ClOO 276

EDTX 2-04-CV-120
51 056DOC06531 0

�

-~--

Physical configuration map- C3200 276
Physical configuration map- C3400/C3800/C4600 277

Timers .. 278
Interval timers ... 279

Interval timers - ClOO ... 279
Interval timers- C3200 ... 281
Interval timers- C3800/C4600 283
Interval timers- C3400 .. 284

Time of century clocks ... 287
TOC - C3200 ... 287
TOC- C3400/C3800/C4600 .. 288

CPU execution timer .. 289
Thread timer .. 290
CIR and TfR manipulation ... 292
Event counter- C4600 .. 294

Memory and cache management ... 295
Cache management - ClOD .. 295
Cache management- C3200/C3400/C3800 296

PTE cache management ... 296
Instruction cache management 297
Data cache management .. 299

Cache management- C4600 .. 301
PTE cache management ... 301
Instruction cache management 302
Data cache management .. 302
Cache coherency ... 303

Memory interleave ... 305
Interleave- ClOO ... 306
Interleave- C3200/C3400 .. 307
Interleave- C3800 ... 310

8 Glossary .. 313

Contents xz

EDTX 2 -04-CV -120
51056DOC065311

�

xii CONVEX C-Series Architecture

...... '.

EDTX 2-04-CV-120
51 056DOC065312

�

Figures

Figure 1
Figure 2
Figure 3
Figure4
Figure 5
Figure6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Figure 15
Figure16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29

Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35

....... ·'.·."\•-'·:- _. j.

Memory longword structure xxiii
Memory longword structure...................................... 12
Virtual address format.. ... 13
Signed fixed-point integer representations 14
Unsigned fixed-point integer representations 16
Native single-precision floating-point format.. 18
Native double-precision floating-point format 20
IEEE single-precision floating-point format 29
IEEE double-precision floating-point format.. 31
Internal floating-point format..................................... 44
Vector terminology... 55
Program counter formaL.. 58
Processor status word-ClOD Series CPUs............... 59
Processor status word-C3200, C3400, C3800,
C4600 Series CPUs ... 59
Ring structure ofthe virtual address space.............. 70
Virtual address format... 70
Process, system, and ring structures.......................... 75
Push and pop stack operations 77
Short return block... 79
Long return block... 80
ClOO and C3200/C3400/C3800 Extended return
block ... 81
C4600 Extended return block 82
Stack frame structure for subroutine entry 83
Stack structure after a short call................................. 84
Word and longword shared resource structures 88
Stack resource structure ... 90
Stack resource structure with two pushed entries... 90
System resource structure... 91
Accessing the system resource structure for
multiprocessing C-Series CPUs 92
SDR Format-ClOD Series CPUs 98
SDR format--C3200/C3400/C3800 Series CPUs 99
SDR format-C4600 series CPUs 100
Resident PTE format-ClOO Series CPUs 101
Nonresident PTE format-ClOG Series CPUs 103
Resident PTE format-C3200/C3400/C3800
Series CPUs ... 104

Figures xiii

---~·--·-·---.--------· -~--

EDTX 2-04-CV-120
51 056DOC065313

�

I ·. I
. ,.

Figure 36 Nonresident PTE format--C3200/C3400/C3800
Series CPUs ... 104

Figure 37 Resident PTE format-C4600 Series CPUs 107
Figure 38 Virtual-to-physical address translation-

C100 Series CPUs ... 111
Figure 39 Address translation step for unshared

pages-multiprocessing C -Series CPUs 113
Figure 40 Virtual-to-physical address translation for

unshared pages----multiprocessing C-Series CPUs 115
Figure 41 Gate array structure .. 121
Figure 42 Page 0 virtual memory organization-

ClOG Series CPUs ... 125
Figure 43 Page 0 virtual memory

organization-multiprocessing C-Series CPUs 128
Figure 44 Conununication register partitions by CIR

index--C3200 Series CPUs .. 139
Figure 45 Conununication register partition.<; by CIR

index--C3400/C3800/C4600 Series CPUs 140
Figure 46 Binding a communication register set to a CPU 141
Figure 47 Communication register virtual address space 143
Figure 48 Physical communication register address

mapping--C3200 Series CPUs l46
Figure 49 Physical communication register address

mapping-C3400/C3800/C4600 Series CPUs 147
Figure 50 ldcrnr I stcmr memory map 153
Figure 51 Hardware communication registers-

C3200 Series CPUs ... 155
Figure 52 Hardware communication registers-

C3400/C3800 Series CPUs .. 156
Figure 53 Hardware Communication Registers-

C4600 Series CPUs ... 157
Figure 54 Fork event registers-C3200 Series CPUs 158
Figure 55 Fork event registers-C3400/C3800/C4600

Series CPUs ... 58
Figure 56 Segment descriptor registers-C3200 Series CPUs 160
Figure 57 Segment descriptor registers-

C3400/C3800/C4600 Series CPUs 160
Figure 58 Trap instruction registers-C3200 Series CPUs 161
Figure 59 Trap instruction registers--C3400/C3800/C4600

Series CPUs .. 161
Figure 60 Thread allocation register-C3200 Series CPUs 162
Figure 61 Thread allocation register and CPU

mask-C3400/C3800/C4600 Series CPUs 162
Figure 62 CPU execution clock registers-

C3200 Series CPUs .. 163
Figure 63 CPU execution clock registers-

C3400/C3800 Series CPUs .. 164

xiv CONVEX C-Series Architecture

.:.=

....................... .-.... ···-····~· .. -----------~~~~--~---

EDTX 2-04-CV-120
51 056DOC065314

�

Figure 64 CPU execution clock registers-
C4600 Series CPUs ------------------------------··-··········-····------164

Figure 65 Hardware reserved communication registers-
C3200 Series CPUs .. 165

Figure 66 Control register mapping-C3400 Series CPUs ·---- 166
Figure 67 Control register layout-C3400 Series CPUs 167
Figure 68 Symmetric parallel processing 193
Figure 69 Example of a multithreaded symmetric process 194
Figure 70 Asymmetric parallel processing---------------------···------- 196
Figure 71 Trap instruction register partitioning---------------------- 227
Figure 72 Interrupt control register (ICR)-

C3200 Series CPUs .. 248
Figure 73 Interrupt control register (ICR)-

C3400/C3800/C4600 Series CPUs 248
Figure 74 Interrupt flow-C3200 Series CPUs 250
Figure 75 Interrupt flow---C3400 Series CPUs ------------------------ 253
Figure 76 Interrupt flow-C3800/C4600 Series CPUs 255
Figure 77 Interrupt context block. __ 256

Figure 78 Physical address space-C120 CPUs ----------------------- 265
Figure 79 Physical address space-C3200 Series CPUs 266
Figure 80 Physical address space-C3400/C3800/C4600

Series CPUs _. ___ 267

Figure 81 Memory page referenced and modified bits-
C3200 Series CPUs ___________________________________ 271

Figure 82 Referenced and modified bit addresses-
C3400/C3800 Series CPUs .. 272

Figure 83 Referenced/Modified Bits ... 273
Figure 84 Physical configuration map entry 275
Figure 85 Interval timer registers-ClOD Series 279
Figure 86 Interval timer registers-C3200 Series 281
Figure 87 Interval timer registers-C3800/C4600

Series systems ... 283
Figure 88 64-bit TOC clock-C3200 Series CPUs -------------------- 287

Figures xv

EDTX 2-04-CV-120
51 056DOC065315

�

01
om
010
0>--1
o><
Or:-:> oo
of> mo
01<
w~
-"1'0 mo

. ~ .
, ... ~---.....;..,._.:.• ·.

�

Tables

- .:.. .• .

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24
Table 25
Table 26
Table 27

Table 28
Table29
Table 30
Table31
Table32

Table33

Native single-precision input operands 19
Native single-precision dynamic range 19
Native double-precision input operands 20
Native double-precision dynamic range 21
Native floating-point nomenclature 24
Native operation results-add or subtract ·----------··--- 25
Native operation results-multiply············--···-·----·-·-· 25
Native operation results-divide 26
Native operation results-square root----------------------· 26
Native operation results-min/max operations 27
Native operation results-float-to-fixed conversions 27
Native operation results-fixed-to-float conversions 28
Native operation results-float-to-float conversions 28
IEEE single-precision input operands........................ 30
IEEE single-precision dynamic range _________________________ 30
IEEE double-precision input operands 31
IEEE double-precision dynamic range....................... 32
IEEE floating-point nomenclature 36
IEEE operation results-add or subtract.................... 37
IEEE operation results-multiply 38
IEEE operation results-divide----------------------------------- 39
IEEE operation results-min/max 40
IEEE operation results-square root 41
IEEE operation results-float-to-fixed conversions.. 42
IEEE operation results-fixed-to-float conversions .. 42
IEEE operation results-float-to-float conversions... 43
Intermediate result rounding- add, subtract,
multiply ___ 45

Intermediate result rounding- divide------------------------ 47
C-Series architecture virtual address space 72
C-Series addressing modes .. 73
Ring maximization for source and target 118
Conununication register address mapping-
C3200 Series CPUs ... 148

C3200CIR physical address base assignment-
C3200 ·-----··-···---------··-·-------··-- 149

· ,_._;;

Table 34 Communication register address
mapping-C3400/C3800/C4600 Series CPUs 150

Table 35 CIR physical address base--C3400/C3800/C4600 .. 150

Tables xvii

EDTX 2-04-CV-120
51 056DOC065317

�

·i

I
I
1.

L. -·

Table 36 MBOX action codes--C3400 Series CPUs 169
Table 37 Bit assigrunents-global and local enable registers 171
Table 38 Bit assigrunent-Interrupt/trap source registers 173
Table 39 TER operations d iag instruction subcodes 177
Table 40 C3800/C4600 Series control registers in X space 179
Table 41 Deadlock detection instructions 206
Table 42 Arithmetic exceptions and corresponding

PSW bits 214
Table 43 Trace trap class codes and qualifiers 216
Table 44 Process deadlock class codes and qualifiers 224
Table 45 System exception class codes and qualifiers-

ClOD Series CPUs ··············-·--·-------- 230
Table 46 System exception class codes and qualifiers-

C3200/C3400/C3800 Series CPUs 231
Table 47 System exception class codes and qualifiers-

C4600 Series CPUs -------------- .. ·------··················--··---·-····-233
Table 48 Machine exceptions _______________________________ 238

Table 49 Realtime interrupt channels------C3400 Series CPUs .. 240
Table 50 Realtime virtual channels-C3400 Series CPUs 247
Table 51 Full and overflow bit values and events-

Cl 00 Series ------·--··-------------- ___ 281
Table 52 Values for EVSEL register ... 294
Table 53 Icache, Dcache, and ATUcache purges-

ClOG Series CPUs ... 295
Table 54 Instruction and PTE cache management-

C3200/C3400/C3800 Series CPUs --------------------- .. ·----296
Table 55 C4600 cache summary ... 301
Table 56 C4600 cache management. .. 304
Table 57 Memory interleave------CIOO Series CPUs ------------------· 306
Table 58 Memory subsystem bandwidth and

interleaving---c.3200/C3400 Series CPUs 309
Table 59 Memory subsystem band width and

interleaving------C3800 Series CPUs 311

xviii CONVEX C-Series Architecture '
I
I

------~~~ ------·· . -~-~~-··--_....i..,.__

EDTX 2-04-CV-120
51 056DOC065318

�

I

I
l

Using this manual

Purpose and
audience

Notational
conventions

The CONVEX C-Series Architecture describes the architecture of
the CONVEX C-Series supercomputers. It is a companion to the
CONVEX Assembly Language Reference Manual (C Series).

This document applies to all CONVEX C-Series architecture
CPUs, including the C100, C3200, C3400, C3800, and C4600
Series CPUs. It serves as a tool to help engineers and software
developers make maximum use of any CONVEX processor's
facilities.

Notational conventions are those characters, symbols,
terminology, or abbreviated expressions used in this manual.

Text notation

Text notation conventions set apart special items.

• Monos pace type represents computer output, binary or
hexadecimal numbers, commands, instructions or
mnemonics.

Example:

ERROR; Unknown command. Reenter.

Using this manual xix

EDTX 2 -04-CV -120
51 056DOC065319

�

1

• :Bold monospace type represents your response to a
program or utility prompt.

Example:

Do you really want to exit? y

• Bold uppercase names designate keycap names.

Example:

RETURN

• If two keycap names are separated by a space, they are
pressed sequentially.

Example:

ESCQ

• If two keycap names are separated by a hyphen, they are
pressed simultaneously.

Example:

CTRL-C

• The word "enter" followed by a command, means to type
the command and then press RETURN.

• Italicized words in an example command sequence are
representative of a user-supplied name, such as a file name.

Example:

corrunand filename

• Angle brackets(<>) designate unprintable ASCII
characters.

Example:

<19 7 > is an ern dash

xx CONVEX C-Series Architecture

'• ~- .

EDTX 2-04-CV-120
51 056DOC065320

�

• Angle brackets(<>) are used to designate bits as fields in a
byte, word, register, and so forth_

Example:

PSW <6 ... 0>

• Square brackets ([]) in a command sequence designate
optional letters, characters, subcomrnands or other
command elements. Brackets may be nested, indicating
optional subelements. If there are two or more options, they
are separated by vertical slashes or pipe symbols.

Example:

corn [mand] [filename I devicename]

• Braces ({ l) in a command sequence designate mandatory
input, which must be one of two or more possible options.
These options are separated by vertical slashes or pipe
symbols.

Example:

corn[mand] (albic)

• A vertical slash (I), also known as the pipe symbol, in a
command sequence indicates "or," giving you a choice
between optional elements of a command.

Example:

con f [i g ure] [command I alias]

• Horizontal ellipses (. __)in a command sequence show that
the element immediately preceding them can be repeated.

Example:

ad[d] [[[board] ___] I all]

Using this manual xx1

EDTX 2 -04-CV -120
51 056DOC065321

�

• Vertical ellipses in a command sequence show that lines of
an example have been left out.

Example:

Verifying image 99
verifying image 199

Verifying image 999

Command syntax

The previous conventions are used in the example that follows
to define the commands in the user interface.

Example:

com[mand] { .tl.fJ [-al-b] input.Jile [...] [output.Jile]

In the example:

• conunand is required and may be abbreviated to com (square
brackets indicate optional portion).

• If a command option (indicated by a list in braces, separated
by a vertical slash) is used, then either . tor . f, if required.

• If a command option (indicated by a list in square brackets,
separated by a vertical slash) is used, then either -a or - b is
optional.

• input _file, indicated by italics with no square brackets, is a
required file name supplied by the user.

• Additional input _file names, indicated by ellipses in square
brackets, may optionally be supplied by the user.

• output _file, indicated by square brackets and italics, is an
optional file name supplied by the user.

xxu CONVEX C-Series Architecture

-.-.... :·.----·::·.···

EDTX 2-04-CV-120
51 056DOC065322

�

;
l

I
! Data notation

The following data notation conventions identify specific
definitions in CONVEX supercomputer architecture:

• A bit is a single binary value or entity.

• A nibble is 4 bits.

• A byte is 8 bits.

• A halfword is 16 bits.

• A word is 32 bits.

• A Iongword is 64 bits.

• Single-precision is a 32-bit floating-point word.

• Double-precision is a 64-bit floating-point longword.

• An instruction is a multi-halfword operand.

• A bit is set when it contains a binary value of 1.

• A bit is clear when it contains a binary value of 0.

• Bit numbering is from left to right, n-1 through 0. The most
significant numerical bit is n-1, the least-significant is 0. The
bit numbering represents the binary weight of a position.

• Byte numbering is from left to right, 0 through n-1.

• Byte order in a 64-bit longword is interpreted with
increasing byte addresses associated with higher order
bytes within a longword. The most-significant bit is
associated with the least significant byte number.

Figure 1 represents the ordering of each addressable entity
within a 64-bit longword.

Figure 1 Memory longword structure

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

I Byte 0 I Byte 1 I Byte 2 I Byte :3 I Byte 4 I Byte 5 I Byte 6 I Byte 7 I
7 0 7 0 7

Addr 0 Addr: 1

···----...--,-~·--·-·-~----· ... ,. '

0 7 a 7 0 7

Addr 2 Addr 3 Addr 4

0 7

Addr 5 Addr: 6

0 7 0

Addr 7
AH300001
12/1/93

• A register is a programmer-visible hardware storage element
internal to the CPU.

Using this manual xxiii

EDTX 2-04-CV-120
51 056DOC065323

�

• All register contents are written in hexadecimal notation,
unless explicitly stated otherwise.

• Bit fields are specified with decimal numbers as

reg_narne<x .. y>

where the bit field is reg_name from bits x through y.

• Individual bit positions within a register are specified as

"reg_narne<l5,4,0>

where 15, 4, and 0 are bits within reg_narne.

• An instruction is a group of halfwords.

- For ClOO Series CPUs, only the standard instruction can
be used. In the standard instruction, the first ha!fword is
an op code and the remaining halfwords are operands.

For multiprocessing C-Series CPUs (C3200, C3400, C3800,
and C4600 Series CPUs), either the standard or the
extended instruction can be used. In the extended
instruction, the first halfword is an op code prefix, another
halfword is an op code, and the remaining halfwords are
operands.

• All memory and l/0 addresses are written in hexadeciiRal
notation unless explicitly stated otherwise.

• Physical memory is the physical storage (main memory)
actually installed with the CPU.

• Virtual memory is the perceived amount of main memory as
seen by the application programmer.

• The symbol k is an abbreviation for kilo or 1,024.

• The symbol M is an abbreviation for mega or 1,048,576.

• The symbol G is an abbreviation for giga or 1,073,741,824.

• A stack is a data structure in which memory is allocated and
deallocated from one end, usually called the top, on a last-in,
first-out basis (LIFO).

• A return block is a collection of register contents that are
pushed on or popped off a stack in response to an instruction
or other event.

• Reserved or undefined indicate what, if anything, to expect
from unused fields in registers, reserved memory, or resenred
1/0 space. Algorithm implementation based on the use of
reserved fields is not recommended.

xx1v CONVEX C-Series Architecture

EDTX 2-04-CV-120
51 056DOC065324

�

I
l
J
l
l
i
l
I
l

I

Note

Caution

Warning

Notes, cautions, and warnings

This document presents notes, cautions, and warnings in the
following formats.

A Note highlights supplemental information.

A Caution highlights information necessary to avoid damage to
the system.

A warning highlights information necessary to avoid injury to
personnel.

Using this manual xxv

:."·.'

EDTX 2-04-CV-120
51 056DOC065325

�

Associated
documents

Ordering
documents

Technical
assistance

The following is a partial list of other manuals or books that may
provide more detailed information on the topics presented in
this manual:

• CONVEX Assembly Language Reference Manual (C Series),
Order No. DSW-301-This manual is a reference guide for
developing sofhvare for CONVEX C-Series processors. It
contains the formats for the CONVEX C-Series instruction set.

• CONVEX Processor Diagnostics Manual (C Series), Order
No. DSW-302-This manual documents the service
processor unit (SPU)-based processor diagnostics for
CONVEX supercomputers.

• CONVEX System Manager's Guide, Order No. DSW-004-
This manual is written for system managers who are
responsible for administering resources on CONVEX
systems. Included are descriptions for configuring devices,
authorizing users, setting up mail and communications,
performing backups and system accounting functions, and
monitoring system resources.

To order the current edition of this or any other CONVEX
document, send requests to:

CONVEX Computer Corporation
Customer Service
PO Box 833851
Richardson, TX 75083-3851
USA

Include the order number or exact title with the request. The
order number is on the title page of the manual and begins with
the letters "DSW-" or "DHW-."

The order number for the CONVEX C Series Architecture is
DHW-300.

Hardware and sofhvare support can be obtained through the
CONVEX Techmcal Assistance Center (TAC)_

• From all locations in the United States, customers call
(800)952-0379.

• From all locations in the United States, CONVEX employees
call (800)545-4839.

xxvi CONVEX C-Series Architecture

EDTX 2-04-CV-120
51 056DOC065326

�

l
!
l
j
!
j

l
I
I
i

• . • From locations in Canada, customers and CONVEX
....... -employees call (800)345-2384.

• From all other locations, contact the nearest CONVEX office.

Using this manual xxvii

...,.,..,...,_,.. ___ --.-_______ ···-~----~-- -
. ·;._.. ._. .

EDTX 2-04-CV-120
51 056DOC065327

�

01
om
010
0>--1
o><
Or:-:> oo
of> mo
01<
w~
1\.)1'0
000

- ·>.

�

Introduction 1
This document is a reference for the CONVEX C -Series
architecture. As new model numbers are added to any series, the
material in this document may apply in whole or in part. These
lists should not be considered exclusive.

The CIOO Series includes the Cl and C120 CP Us.

The implementation of the C-Series architecture on the C200
Series and C3200 Series CPUs is identical, therefore references in
this book are written for the C3200 Series CPUs. The C3200 Series
includes the C210, C220, C230, C240, C3210, C3220, C3230,
C3240 CPUs.

The C3400 Series includes the C3410ES, C3420ES, C3410, C3420,
C3430, C3440, C3460, and C3480 CPUs.

The C3800 Series includes the C3810, C3820, C3830, C3840,
C3460, and C3880 CPUs.

The C4600 Series includes the C4610, C4620, C4630, and C4640
CPUs

All ClOO Series CPUs are single processors. Multiprocessing
C-Series CPUs include the C3200, C3400, C3800, and C4600
Series CPUs.

Chapter 1 Introduction 1

-:--..~....;.-~----.~-···-·---···" ._ -~-~---·
~

EDTX 2-04-CV-120
51 056DOC065329

�

The CONVEX
c-series
architecture

The architecture presented in this manual defines the
specifications of the central processing unit (CPU) of the
CONVEX supercomputers.

The term architecture is defined as the attributes of a system as
seen by the programmer (the conceptual structure and functional
behavior), as distinct from the organization of the data flow and
controls, the logical design, and the physical implementation.
Within this context, an architectural specification defines the
following attributes, as perceived by the programmer and the
hardware designer:

• Data representations

• Register sets

- General registers

- Communication registers

• Instruction set

• Memory management

- Physical address space

- Virtual address space

- Process structure and control

- Virtual memory management

- Virtual mernory protection

- Caches

• Multiprocessor management

- Automatic self-allocating processors

- Parallel processing mechanisms

- Forking and spawning mechanism

- Memory protection mechanisms

• Exception and interrupt mechanisms

The instruction set is described in the CONVEX Assembly
Language Reference Manual (C Series).

The CONVEX C-Series architecture incorporates the following
features:

• An integrated vector processor incorporated within the
system for high-speed operation

• A full range of fixed and floating-point data types

2 CONVEX C-Series Architecture

···:·:·~r-:""':"".--... -. ---..-~·-

.L ..

EDTX 2-04-CV-120
51 056DOC065330

�

4

i
--.~- :;··~,-...-.-~..........--~~.

• A total capacity of four Gbytes of virtual memory- two
Gbytes available to support large user programs and data,
and two Gbytes to support the operating system

• Large, high-speed register sets (address, scalar, and vector)
that support high-performance operation for address
calculations in parallel with scalar and vector calculations

• Communication registers and multiprocessing structures (in
the multiprocessing C-Series CPUs)

• Multilevel protection systems that support and separate
users, thereby enhancing system reliability and increasing
the performance of operating system functions

All CONVEX C-Series CPUs share a common architecture, in
most respects. However, some software, such as the ConvexOS
operating system, use features whose implementation varies
among different CONVEX CPUs. Although not immediately
visible to the user, the fine detail and construction of these
features are visible to the ConvexOS software.

Chapter 1 Introduction 3

EDTX 2-04-CV-120
51 056DOC065331

�

Chapter
summaries

This section contains brief summaries of the chapters that follow.
In addition, a brief summary of the instruction set is found in the
CONVEX Assembly Language Instruction Set (C Series).

• Data representations and operations

• General registers

• Memory management

• Multiprocessor management

• Exceptions and interrupts

• Implementation-specific features

Data representations

There are three binary numeric data representations:

• Signed fixed point integer

• Unsigned fixed point integer

• Floating point

The CONVEX processors support four fixed-point integer
precisions. Signed fixed-point numbers are interpreted as two's
complement representations. Integer quantities exist in four
lengths:

• Byte-S bits

• Halfword-16 bits

• Word-32 bits

• Longword---64 bits

The CONVEX CPUs support both native and IEEE standard
floating point number representations in two formats:
single-precision word (32 bits) and double-precision longword
(64 bits). Both formats are interpreted as binary, normalized
fractions with an implicit value of "1" in the most-significant bit
of the fraction. The exponent is a biased power of two, scale factor.

An address or logical value is treated as an unsigned 32-bit
integer usually contained in the address registers. For numeric
purposes, an address register may be treated as a signed or
unsigned 32-bit integer.

Virtual addresses are byte-granular. Instruction operands in
memory may begin on any byte boundary that allows all byte
locations within a given data type to be used, even though the
operands may be unrelated.

4 CONVEX C-Series Architecture

.;... .. ' ...

I'

EDTX 2-04-CV-120
51 056DOC065332

�

I

j
I
.j

I
l

l
/

1
1

I
l
;

~.,·-~-·.----,-.--

-. ·· .. ·,::. · .. · ·,·,.;. ... -~-.. :..:... ..

Operations are performed in integer and floating-point.
Floating-point operations are performed in native and IEEE
modes. The differences are delineated for add, subtract,
multiply, divide, square root, compare, and conversion
operations.

Register sets
There are three general register sets and several status registers_
The three register sets are partitioned according to the type of
operand to be manipulated:

• Address registers

• Scalar registers

• Vector register

There are four general status registers and three privileged flags.
The four status registers are:

• Program counter (PC)

• Processor status word (PSW)

• Scalar stride zero (SSO - C4600 Series CPUs only)

• Scalar stride one (SSl - C4600 Series CPUs only))

The three privileged flags are:

• Interrupt on (ION)

• Realtime interrupt on (RT_ION - C3400 Series CPUs only)

• Vector valid flag (VV)

Clwpter 1 Introduction 5

······----·-----· - --~~,.--.·-==·=·=~·=-···· "'·····~-·~-------~· ····-···--------.---------------· -·-·· ...

EDTX 2-04-CV-120
51 056DOC065333

�

Memory management

The memory management unit (MMU) supports the operating
system in providing a versatile and reliable virtual memory
programming environment. The CONVEX C-Series architecture
provides 4 Gbytes of virtual memory in its virtual address space
partitioned into eight 512-Mbyte segments. Four segments are
allocated to the operating system and four segments to the user.
The maximum size of a user program (instructions and data) is
limited to 2 Gbytes. The operating system data structures and
instructions necessary to manage the user program occupy the
remaining 2 Gbytes of virtual storage.

Because the address space of the CONVEX system architecture
is virtual, an address may be a valid logical address, but the
referenced data may or may not be in physical memory. Memory
is managed as pages on a fixed-size basis.

Since the operating system is embedded within the user-virtual
address space, it must be protected from the user. The memory
protection system protects the user's programs from other users'
programs, while supporting time-sharing and operating system
structures.

This system is based on hierarchical structures called rings and

• supports embedding the operating system in the user's
virtual address space,

• contains certain access violations to the user's process,

• permits implementing the operating system efficiently, and

• enhances operating system call processing by reducing the
time for context switching.

6 CONVEX C-Series Architecture

~- ..:.. r

EDTX 2-04-CV-120
51 056DOC065334

�

~-···--.-~
., .. -. · .. '

Multiprocessor management

Multiprocessing is the creation and scheduling of individual
processes on any subcomplex. The multiprocessor management
hardware incorporated in each C-Series architecture CPU
provides the operating system and user a simple and flexible set
of instructions for dynamic allocation, deallocation, and
communication. Each CPU in a C-Series architecture complex
operates independently as a 64-bit supercomputer. The
multiprocessor management hardware binds these CPUs into a
tightly coupled set with shared memory. This implements a
multi-instruction multi-data (MIMD) architecture that provides
a parallel execution environment for user applications.

Exceptions and interrupts

Exceptions occur when a currently executing program
encounters event such as arithmetic inconsistencies, address
translation faults, or some asynchronous event (such as an
interrupt). When an exception occurs, control is transferred to a
predetermined address whose value is a function of the
exception.

Interrupts are the result of events that occur asynchronously and
belong to the system, not to the executing process. When an
interrupt occurs, the processor jumps to a particular interrupt
handler determined by the interrupt source.

All I/0 data references by the CPU are memory mapped. There
are no explicit I/0 instructions. The 1/0 registers and memory
status bits are referenced through the appropriate logical-to­
physical address mapping.

Chapter1 Introduction 7

EDTX 2-04-CV-120
51 056DOC065335

�

Implementation-specific features

Some CONVEX CPUs implement some CPU functions through
registers located in the I/0 address space. However, the CPU
uses only a fraction of l/0 address space for physical
implementation of registers. Registers in I/0 address space are
addressed in much the same way as elements of main memory.
This allows access to a number of subsystems required for
proper operation of the various machines. The I/0 address
space is implementation specific, resulting in significant
differences between the single processor and multiprocessor
implementations.

The C3400, C3800, C4600 Series CPUs do not have I/0 address
space.

8 CONVEX C-Series Architecture

''

EDTX 2-04-CV-120
51 056DOC065336

�

Instruction set The CONVEX C-Series architecture includes an instruction set
that provides minimum functionality per instruction.

The instruction set is projected orthogonally, that is, each
instruction op code is defined so that it is a constant hexadecimal
address distance from another op code. Orthogonally specifying
the instruction set simplifies instruction decoding by hardware.

Even though the fundamental addressable unit is the byte,
instructions are addressed on a halfword (even byte) boundary.
An instruction may be one, two, three, or four halfwords in
length, equivalent to 16, 32, 48, or 64 bits, respectively.

A standard instruction is one to three halfwords in length. An
extended instruction is two to four halfwords in length, since the
extended instructions contain a halfword prefix of either 7 EFO or
7EF8, prior to the op code itself. See the CONVEX Assembly
Language Reference Manual (C Series) for details about the
instruction set.

Chapter 1 Introduction 9

EDTX 2-04-CV-120
51 056DOC065337

�

. . ~; ..

10 CONVEX C-Series Architecture

i . I .
I .
I .
i
I ..

i
i

I.·

EDTX 2-04-CV-120
51 056DOC065338

�

Data representations 2

I
·;+~-~-

CONVEX C-Series CPUs support three data representations:

• Signed numeric fixed-point integer

• Unsigned numeric fixed-point integer

• Numeric floating-point integer

An address or logical value is treated as unsigned. The C-Series
architecture supports the IEEE and native floating-point data
representations with a 64-bit, double-precision format and a
32-bit, single-precision format However, the complete IEEE
floating-point specification is not supported in the C-Series
architecture. Specifically, the C-Series architecture uses the same
algorithms to compute both IEEE and native floating-point
values.

Instructions that manipulate the data representations found in
this chapter are discussed in the CONVEX Assembly Language
Reference Manual (C Series).

Chapter 2 Data representations 11

EDTX 2-04-CV-120
51 056DOC065339

�

Basic data
representations

The C -Series architecture has four basic addressable data
representations. Each data representation must start on an
addressable byte boundary:

• Byte---8 contiguous bits

• Halfword-16 contiguous bits

• Word-32 contiguous bits

• Longword-64 contiguous bits

Bit numbering is left to right, n-1 through 0, where n is the
number of bits in the data type. The most-significant numerical bit
is n-1, the least-significant is 0. The bit numbering represents the
binary weight of a position.

Byte numbering is left to right, 0 through 7. The most-significant
bit is associated with the leftmost byte. Figure 2 shows the
ordering of bits and bytes within a 64-bit longword.

Figure 2 Memory longword structure

63 56 55 48 47

I Byte 0 I Byte 1 I
7 0 7 0 7

Addr 0 Addr

40 39 32: 31 24 23 16 15 8 7 0

Byte 2 I Byte 3 I Byte 4 I Byte 5 I Byte 6 I Byte 7 I
0 7 0 7 D 7 0 7 0 7 D

Addr 2 Addr 3 Addr 4 Addr 5 Addr 6 Addr 7

Data representation memory alignment

AH300001

12/1/9:3

The C-Series virtual address space is byte granular, meaning that
operands can begin on any byte boundary; unless otherwise noted
in a particular instruction definition. Overall system performance
may degrade when operands do not begin on appropriate
boundaries.

Data representations should be aligned on a boundary address
as specified in the following alignment rules, to ensure
maximum execution speed:

• Byte (8 bits)-No preference

• Halfword (16 bits)-Least-significant address bit= 0

• Word (32 bits)-Least-significant two address bits= 0

• Longword (64 bits)-Least-significant three address bits = 0

12 CONVEX C-Series Architecture

EDTX 2-04-CV-120
51 056DOC065340

�

Figure 3 Virtual address format

31

Note

Virtual addresses

Many virtual addresses reside either in instructions or in
memory as indirect addresses. They are always unsigned, 32-bi t
integers.

Figure 3 shows the virtual address format.

Virtual address

Mixed mode arithmetic

0

AH30000Z
12/1/93

Unless otherwise specified, mixed mode arithmetic on data
representations or manipulations on operands in registers must
follow the provided conventions. Results that can be reproduced
from one implementation to another cannot be guaranteed if
defined conventions are circumvented.

Any attempt to circumvent these conventions through knowledge
of an internal representation can produce inaccurate results and
is not recommended.

Chapter 2 Data representations 13

-=-~....,-~~~-----~-- -- ·······---~----------------~--------··· -.-

EDTX 2-04-CV-120
51 056DOC065341

�

Signed fixed-point
integer
representations

The C-Series architecture defines four signed fixed -point integer
representations: 8, 16, 32, and 64 bits.

The formats of these four fixed-point data types are shown in
Figure 4.

Figure 4 Signed fixed-point integer representations

Byte lD
7 0

0

Halfword Is I
15

0

Word Is I
31

0

Longword Is I
53

0

2

0

2 3 i. 5 6

0
AH300003

12/!/93

In Figure 4, Sis the sign bit. A binary 0 denotes positive. A
binary 1 denotes negative_ Signed fixed-point numbers use the
two's complement numbering system.

If 0 ~ i :::; n-2, where n is the number of bits in the data item, then
bit i has weight 2i.

The most-significant bit, the sign bit has a weight equal to
-1 x 2n-I, where n is the number of bits in the data item_

14 CONVEX C-Series Architecture

I

l
EDTX 2-04-CV-120

51 056DOC065342

�

I.
~·---.. -_ -. --~---

Both of the previous statements can be combined and
represented as the following expression for signed fixed-point
integers:

n-2

l 2n-l b "\:"' ?i b
~x xn-l+..L,.-Xi

1=0

where

• n is the number of bits in the data item, and

• bi"' 0 if bit i is clear, and bi= 1 if bit i is set.

Chapter 2 Data representations 15

i
1

EDTX 2-04-CV-120
51 056DOC065343

�

Unsigned
fixed-point integer
representations

The C-Series architecture defines four unsigned fixed-point
integer representations: 8, 16, 32, and 64 bits.

The formats of these four fixed-point data types are shown in
Figure 5.

Figure 5 Unsigned fixed-point integer representations

ByteD
7 0

0

Halfword

15

0

Word

J1

0

Longword

63

0

2: 3

0

0
AH400004

12/1/93

If 0 :s; i < (n-1) where n is the number of bits in the data item, then
bit i has weight 2i.

An unsigned fixed-point integer is represented as

n-1

l:Zixb;
i= 0

where

• n is the number of bits in the data type, and

• bi"' 0 if bit i is dear, and bi = 1 if bit i is set.

i
i

16 CONVEX C-Series Architecture I
-~-

EDTX 2-04-CV-120
51 056DOC065344

�

Floating-point
representations

The C-Series architecture supports native and IEEE-standard
floating-point number representations in two formats:

• A single-precision word (32 bits)

• A double-precision longword (64 bits)

Both formats have biased binary exponents and normalized
binary fractions. The fractions have an implicit 1 bit in the
most-significant bit position.

The C-Series architecture does not support the complete IEEE
floating-point specification. Specifically, it does not support the
following:

• Gradual underflow

• IEEE rounding algorithms

• Directed rounding

The C-Series architecture uses the same algorithms to compute
IEEE and native floating-point values. However, some
floating-point exception conditions are treated differently:

• Not a number (NaN)

• Infinity

• Overflow

• Underflow

These algorithms are presented in this chapter following the
native floating-point format and IEEE floating-point format
discussions.

Chapter 2 Data representations 17

EDTX 2-04-CV-120
51 056DOC065345

�

Native floating-point implementation

The C-Series native floating-point formats define the following
operands as valid input:

• Normalized-The exponent is not all zeros.

• Reserved-The exponent is all zeros, the fraction can be
anything, the sign is L

Native single-precision floating-point format
The format of the single-precision (32-bit) floating-point number
is shown in Figure 6.

Figure 6 Native single-precision floating-point format

IS I Exponent

31 30 23 22

s

Exponent

Fraction

18 CONVEX C-Series Architecture

Fraction

0

AH300005

12/1/93

The sign bit. A binary 0 denotes positive, a
binary 1 denotes negative. This form is termed
the sign-magnitude representation.

A binary-biased exponent. The algebraic value
of the exponent is determined by subtracting
128 from the unsigned binary value of bits
<30 .. 23>.

A fractional value. An implicit 1 bit is to the left
of bit <22>. The binary point is to the left of the
implicit 1 bit.

EDTX 2 -04-CV -120
51 056DOC065346

�

The input operands of a native single-precision (32-bit)
floating-point number are shown in Table 1.

Table 1 Native single-precision input operands

Sign (S) Exponent (e)

1 0

0 0

0 0

1/0 1 ... 255

Fraction (f) Value Name

NA None Reserved operand

NA 0 Boating-point zero
I

0 0 True zero

NA (-1)5 (2e-128) (2-1 + fraction) Normalized number

The dynamic range of a native single-precision (32-bit)
floating-point number is shown in Table 2.

Table 2 Native single-precision dynamic range

Value Hexadecimal Approximate value

Largest positive 7FFF FFFF + 1.7014117 X 10+3S

Smallest positive 0080 0000 +2.9387359 x w-39

'
Zero 0000 0000 0

Smallest negative 8080 0000 -2.9387359 x w·39

Largest negative FFFF FFFF -1.7014117 X 10+38

Chapter 2 Data representations 19

EDTX 2 -04-CV -120
51 056DOC06534 7

�

Native double-precision floating-point format
The format of the double-precision (64-bit) floating-point
number is shown in Figure 7.

Figure 7 Native double-precision floating-point format

lsi Exponent

63 62 52 51

s

Exponent

Fraction

Fraction

0

11!{300006
12/1/93

The sign bit. A binary 0 denotes positive, a
binary 1 denotes negative. This form is termed
the sign-magnitude representation.

An 11-bit binary-biased exponent. The decimal
value of the exponent is determined by
subtracting 1,024 from the unsigned binary
value of bits <62 .. 52>.

A fractional value. An implicit 1 bit is to the left
of bit <51>. The binary point is to the left of the
implicit 1 bit.

The input operands of a native double-precision (64-bit)
floating-point number are shown in Table 3.

Table 3 Native double-precision input operands

Sign (S) Exponent (e)] Fraction <O Value Name

1 0 NA None Reserved operand

0 0 NA 0 Floating-point zero

0 0 0 lo True zero

1/0 1...2047 NA (-1)s (2e-1024) (2"1 +fraction) Normalized number

20 CONVEX C-Series Architecture

'

i

I
l

.1

EDTX 2-04-CV-120
51 056DOC065348

�

i-

The input operands of a native double-precision (64-bit)
floating-point number are shown in Table 4.

Table 4 Native double-precision dynamic range

Value

Largest positive

Smallest positive

Zero

Smallest negative

Largest negative

Hexadecimal Approximate value

7FFF FFFF FFFF FFFF +8.988465674311579 X 10+307

0010 0000 0000 0000 +5.562684646268003 X 10-309

0000 0000 0000 0000 I 0
i
I

-5.562684646268003 x to-309 8010 0000 0000 0000

FFFF FFFF FFFF FFFF -8.988465674311579 X 10+307

Native reserved operands
There are certain reserved or special operands within the native
floating-point format. In particular, these operands initiate an
exception when used as input to a floating-point operation. A
native floating-point number (single or double) that has a sign
bit of 1 and an exponent of 0 is defined as a reserved operand. The
value of the fraction bits is unimportant. A reserved operand
exception is detected if a reserved operand is encountered during
a native floating-point numeric operation (for example, add,
subtract, compare, or max).

A reserved operand is the result of a floating-point overflow. A
reserved operand is also generated from illegal operations
(divide-by-zero, for example). In cases where the input operand
or operands are representable numbers, but where a reserved
operand is returned as the result, no reserved operand exception
is generated. However, a reserved operand exception is
generated if the result is then used as an input operand to a
subsequent operation.

Native floating-point zero
A native zero is a floating-point number with an exponent of 0 and
a sign of 0. The value of the fraction is unimportant.

True zero is a native floating-point zero with a fraction of all zeros.

True zero is always returned when the result of an operation is
zero. If two floating-point zeros with different fractions are
compared for floating-point equality, the result is true.

Native rounding
All floating-point operations may be thought of as calculating
the infinitely precise result based on the operands and the
operation (add or subtract, for example). The value returned is

Chapter 2 Data representations 21

i
J

EDTX 2-04-CV-120
51 056DOC065349

�

the representable result (normalized number or true zero) that is
closest to the infinitely precise result If the infinitely precise
result is exactly halfway between hvo possible representations,
the one that has a least-significant bit of zero is returned. This
method is sometimes called rounding to nearest or unbiased
rounding to e-ven, denoted as R*.

For all operations except divide and square root, this rounding
is implemented by first calculating three additional result bits
that are less significant than the LSB of the mantissa. The three
bits are called the guard, round, and sticky bit, from MSB to LSB
respectively. The sticky bit indicates whether any binary ones
were shifted right and out of the round bit during any alignment
operation. If the guard bit is set and either the round bit, the
sticky bit, or the LSB of the result is set, a one is added to the LSB
of the result.

For divide and square root operations, only the guard and round
bits are calculated. Rounding is performed by adding one to the
LSB of the result if the guard bit is set and either the round or the
LSB of the result is set.

The 4600 Series CPUs support an alternate rounding mode for
division and square root. This mode is based on the fact that the
infinitely precise result of a divide or square root can never be
exactly half way between two possible representable values.
Therefore, if the guard bit of a divide or square root intermediate
result is set, then either the round bit or the uncalculated sticky
bit must also be set. Rounding is then performed by adding one
to the LSB of the result, if the guard bit alone is set. This
rounding mode is scan selectable at boot.

22 CONVEX C-Series Architecture

EDTX 2-04-CV-120
51 056DOC065350

�

Native operations

The following subsections detail the results rehuned and the
exceptions generated (if any) for native-mode floating-point
operations. They contain details that are specific to the current
implementation but are not part of the architecture. In particular,
when the reserved operand is returned, it can be in one of two
specific forms in the current implementation. These two forms
are the RSVO and RSVl and are described in Table 5.

When a reserved operand is returned as a result, the C-Series
architecture specifies that any legal form of the reserved operand
may be returned. The two specific forms of the reserved
operands that are currently returned are
implementation-specific, and may be changed in the future.
Table 5 lists the abbreviations used during each IEEE aritlunetic
operation.

In the native-mode definitions (specifically with respect to
operands and results), the descriptions imply the positive or
negative form of the value. When the symbols used for these
definitions are preceded by+ or-, the specific value is positive or
negative. For example, NORM represents a positive or negative
normalized number, while -NORM represents a negative
normalized number only.

Native compare operations
Only a comparison status is returned for compare operations.
Input operands versus exceptions generated are identical to add
or subtract operations, except that UN and OV exceptions are
not possible.

Chapter 2 Data representations 23

EDTX 2-04-CV-120
51 056DOC065351

�

Table 5 Native floating-point nomenclature

Nomenclature type Symbol

NORM

ZERO

Input operands
RSV

INT

INTO

NORM

0

RSVO

Operation results RSVI

INT

TRN

(NM)

(OV)

Result conditions (UN)

(IN)

(IO)

RO

SQRN

FDZ

Exceptions SIV

OV

UN

FIN

0
Exception states

I

24 CONVEX C-Series Architecture

Description

A normalized number.

Any form of zero. True zero where all bits are 0 or a dirty
zero where the sign and exponent bits are 0, but one or more
mantissa bits are 1.

Any form of the reserved operand.

A nonzero two's-complement integer.

Integer zero.

A normalized number.

True zero, or integer zero.

A form of the reserved operand where the sign is a 1, all
exponent bits are 0, and all mantissa bits are 0.

A form of the reserved operand where the sign is a I, all
exponent bits are 0, and all mantissa bits are 0, except the
LSB, which is a I.

A nonzero representable integer.

The least significant bits of an integer whose value contains
more bits of precision than can be stored in the result.

If result is a normalized number.

If overflow results.

If underflow results.

If result is a representable integer.

If integer overflow results.

Illegal input operand.

Square root of a negative number.

Floating-point divide-by-zero.

Integer overflow.

Floating-point overflow.

Floating-point underflow.

Floating-point intrinsic error.

Exception did not occur.

Exception did occur.

···---~~~-~~~-------,-----------~-.,..._---

EDTX 2-04-CV-120
51 056DOC065352

�

Native add or subtract
Table 6 lists the exceptions encountered for each respective
operand combination used in a native add or subtract operation.

Table 6 Native operation results-add or subtract

' '

Operand A Operand B

ZERO ZERO

ZERO NORM

ZERO RSV

NORM ZERO

NORM NORM

NORM NORM

NORM NORM

NORM RSV

RSV ZERO

RSV NORM

RSV RSV

Result RO SQRN FDZ SIV ov UN

0 0 0 0 0 0

NORM 0 0 0 0 0

RSV1 1 0 0 0 0

NORM 0 0 0 0 0

{NM)NORM 0 0 0 0 l 0

(OV) RSVO 0 0 0 0 1

(UN) 0 0 0 0 0 0

RSV1 1 0 0 0 0

RSVl 1 0 0 0 0

I RSVl 1 0 0 0 0 I
RSVI I 0 0 0 0

Native multiply operations
Table 71ists the exceptions encountered for each respective
operand combination used in a native multiply operation.

0

0

0

0

0

0

1

0

0

0

0

Table 7 Native operation results-multiply

Operand A Operand B Result RO

ZERO ZERO 0 0

ZERO NORM 0 0

ZERO RSV RSVI 1

NORM ZERO 0 0

NORM NORM I (NM)NORM 0

NORM NORM (OV)RSVO 0

NORM NORM (UF)O 0

NORM RSV , RSVl 1

RSV ZERO RSVI I

RSV NORM RSV1 1

RSV RSV RSVl 1

SQRN DZ SIV ov UN

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Chapter 2 Data representations 25 I
I····

EDTX 2-04-CV-120
51 056DOC065353

�

Native divide operations
Table Slists the exceptions encountered for each respective
operand combination used in a native divide operation.

Table 8 Native operation results-divide

Numerator Denominator

ZERO ZERO

ZERO NORM

ZERO RSV

NORM ZERO

NORM NORM

NORM NORM

NORM NORM

NORM RSV

RSV ZERO

RSV NORM

RSV RSV

Note

Result RO SQRN DZ SIV ov UN

RSVO 0 0 1 0 0 0

0 .o 0 0 0 0 0

RSV1 1 0 0 0 0 0

RSVO 0 0 1 0 0 0

(NM)NORM 0 0 0 0 0 0

(OV)RSVO 0 0 0 0 1 0

(UF)O 0 0 0 0 0 1

RSV1 1 0 0 0 0 0

RSVl 1 0 1 0 0 0
I

RSVl 1 0 0 0 0 0

RSVI 1 0 0 0 0 0

Native square root operations
lists the exceptions encountered for each operand type used in
a native square root operation.

The square root operation is not part ofthe Cl 00 Series. The square
root operation is performed in hardware on an multiprocessing
CPUs.

Table 9 Native operation results-square root

Operand Result RO SQRN FDZ SIV ov UN

ZERO 0 0 0 0 0 0

+NORM NORM 0 0 0 0 0

-NORM NORM1 0 1 0 0 0

RSV RSVI 1 0 0 0 0

1Result returned is the square root of the absolute VCllue of NORM when
NORM is negative.

0

0

0

0

26 CONVEX C-Series Architecture l
.. ----c:--.. --·····

EDTX 2-04-CV-120
51 056DOC065354

�

4
l ,,

i
l

!

I
I
I
l
i

~ .

i

j

J

..... ·, ... , ... _.,.

Native min/max operations
Table 10 lists the exceptions encountered for each operand type
used in native min/max operations.

Table 10 Native operation results-min/max operations

Operand A Operand B

ZERO ZERO

ZERO NORM

ZERO RSV

NORM ZERO

NORM NORM

NORM RSV

RSV ZERO

RSV NORM

RSV RSV

Result RO SQRN FDZ SIV ov UN

0 0 0 0 0 0
i

0

NORM orO 0 0 0 0 0 0

RSV1 1 0 0 0 0 0

NORM orO 0 0 0 0 0 0

NORM 0 0 0 0 0 0

RSV1 1 0 0 0 0
!

0

RSVl 1 0 0 0 0 0

RSV1 1 0 I 0 0 0 0

RSV1 1 0 0 0 0 0

Native conversion operations
Table 11. Table 12, and Table 13 list the exceptions encountered
for each operand type used in each type of native conversion
operation.

Table 11 lists the exceptions encountered for each operand type
used in a native float-to-fixed conversion.

Table 11 Native operation results-float-to-fixed conversions

Operand Result RO SQRN FOZ SIV ov UN

ZERO 0 0 0 0 0 i 0 0

NORM (IN) INT 0 0 0 0 0 0

NORM (IO)TRN 0 0 0 1 0 0

RSV None 1 0 0 l I 0 0

If integer overflow occurs, the result returned is the
least-significant bits of the exact result. The number of
least-significant bits returned is dependent on the size of the
result. For example, when converting to a word integer, the 32
least-significant bits of the exact result are returned. When the

Chapter 2 Data representations 27
' i

·-----------~- .. ··-------·· ----~------
_______ _j

EDTX 2-04-CV-120
51 056DOC065355

�

Note

input operand is RSV, the result of the operation is
implementation-dependent.

Some early C1 and C200 implementations do not write to the
result register of a scalar conversion if an exception is
encountered during the execution of the conversion.

Table 12 lists the exceptions encountered for each operand type
used in a native fixed-to-float conversion.

Table 12 Native operation results-fixed-to-float conversions

Operand Result RO SQRN FDZ SIV ov UN
I

INT NORJ\.1 0 0 0 0 0 0

INTO 0 0 0 0 0 0 0

Table 13 lists the exceptions encountered for each operand type
used in a native float-to-float conversion.

Table 13 Native operation results-float-to-float conversions

Operand Result RO SQRN FDZ SIV ov UN

ZERO 0 0 0 0 0 0 0

NORM (NM) 0 0 0 0 0 0
NORM

I

NORM (OV) RSVO 0 0 0 0
I
' 1 0

'NORM (UN)O 0 0 0 0 0 1

RSV RSVI 1 0 0 0 0 0

Overflow and underflow are only possible when converting
double-precision to single-precision values. When the operand
is RSV, the result returned is RSV-translated to the format of the
output operand.

28 CONVEX C-Series Architecture J
EDTX 2-04-CV-120

51 056DOC065356

�

IEEE floating-point implementation

The C-Series implementation of the IEEE floating-point standard
defines the following operands as valid input:

• Normalized-The exponent is not all zeros or all ones.

• Denonnalized-The exponent is all zeros, the fraction is
nonzero, and the sign is 1 or 0. C-Series architecture always
treats this number as true zero.

• NaN-The exponent is all ones, the fraction is nonzero, and
the sign is 1 or 0.

• Infinity-The exponent is all ones, the fraction is zero, and the
sign is 1 or 0.

• Tme zero--The exponent is all zeros, the fraction is all zeros,
and the sign is 1 or 0.

IEEE single-precision floating-point format
The format of the single-precision (32-bit) floating-point number
is shown in Figure 8.

Figure 8 IEEE single-precision floating-point format

EDTX 2-04-CV-120
51 056DOC065357

�

The input operands found in a IEEE single-precision (32-bit)
floating-point number are shown in Table 14.

Table 14 IEEE single-precision input operands

Sign (S) Exponent {e) Fraction <O Value Name

1/0 255 NotO None NaN (not a number)

1/0 255 0 (-1)5 xoo Infinity

1/0 1...254 NA (-1)5 (2e-l27) (2° + fraction) Normalized number

1/0 0 Nota { -1)5 (2e-126) (0 + fraction) Denormalized number1

1/0 0 0 0 Floating-point zero

1The C-Series architecture always treats this number as true zero.

The dynamic range of an IEEE single-precision (32-bit)
floating-point number is shown in Table 15.

Table 15 IEEE single-precision dynamic range

Value Hexadecimal Approximate value

Largest positive 7F7F FFFF +3.4028235 X 10+38

Smallest positive 0080 0000 + 1.1754944 X 10-3S

Zero 0000 0000 0

Smallest negative 8080 0000 -1.1754944 X 10-38

Largest negative FF7F FFFF -3.4028235 X 10+38

30 CONVEX C-Series Architecture

...,.,..,.~'""""'-~~~-~---· ·····--· ··--·····~---·· "'"""''""""•-·--· ----- -- -----
.. -

EDTX 2-04-CV-120
51 056DOC065358

�

~·: ----------llliilill--iiiliillllililliliilllllllllllllllliil. ····'·'·C~:.,co:···:·'"'""iil" . ., .. ;.

I

IEEE double-precision floating-point format
The format of the double-precision (64-bit) floating-point
number is shown in Figure 9.

Figure 9 IEEE double-precision floating-point format

lsi Exponent

6?> 62 52 51

5

Exponent

Fraction

Fraction

0

AJI300006
12/1/93

The sign bit. A binary 0 denotes positive, a
binary 1 denotes negative. Numbers in this
form are termed sign magnitude.

An 11-bit, binary-biased exponent. The decimal
value of the exponent is determined by
subtracting 1,023 from the unsigned binary
value of bits <62 . .52> and using the result as a
power of2.

A fractional value. An implicit 1 bit is to the left
of bit <51>. The binary point is to the right of
the implicit 1 bit.

The input operands found in an IEEE double-precision (64-bit)
floating-point number are shown in Table 16.

Table 16 IEEE double-precision input operands

Sign (5) Exponent (e) Fraction (0 Value

1/0 2047 NatO None

'1/0 2047 0 H)sx oo

1/0 1 ... 2046 NA (-1)5 (2€-1023) (2° +fraction)

1/0 0 NotO (-1)5 (2'""1022) (0 +fraction)

1/0 0 0 0

1The C-Sectes architecture always treats this number as true zero.

Chaptcr 2

Name

NaN (not a number)

Infinity

Normalized number

Denormalized number1

Floating-point zero

Data representations 31

EDTX 2-04-CV-120
51 056DOC065359

�

The dynamic range of a IEEE double-precision (64-bit)
floating-point number is shown in Table 17.

Table 17 IEEE double-precision dynamic range

Value

Largest positive

Smallest positive

Zero

Smallest negative

Largest negative

Hexadecimal Approximate value

7FEF FFFF FFFF FFFF + 1.797693134862316 X 10+308

0010 0000 0000 0000 +2.225073858507201 x w-308

0000 0000 0000 0000 0

i
!

8010 0000 0000 0000 -2.225073858507201 X 10·308

FFEF FFFF FFFF FFFF -1.797693134862316 X 10+308

IEEE special operands
There are certain special operands within the IEEE
floating-point format. In particular, these operands indicate
values that cannot be accurately represented within the format
or initiate exception processing if that value is used as an
operand to a subsequent arithmetic computation.

A number that has an exponent of all ones and a fraction of all
zeros is called infinity. This value is generally produced when the
result of a computation is too large to be represented within the
format (larger than largest). The sign of this number is generally
maintained as the correct sign for the operation of the result. If a
large positive number is multiplied by a large negative number
and the result is out of the range of resolution, infinity is returned
and the sign bit is set (negative, since the true answer is negative).

A number that has an exponent of all ones and a fraction that is
not all zeros is called not a number (NaN). This value is
generally produced when no computation was possible, such as
an attempt to divide-by-zero, or if one of the operands of the
operation was NaN.

While infinity is produced by certain operations, it is treated as
NaN when it is used as an input to an operation. Thus, if NaN or
infinity is used as an operand, the reserved operand exception is
generated.

IEEE floating-point zero
An IEEE zero is a floating-point munber with an exponent of 0 and
a sign of either 1 or 0. If the fraction is all zeros, this value is said
to be true zero. Otherwise, it is a denormalized number. In the
C-Series implementation of IEEE floating-point format, it is
always treated as true zero. When true zero or a denormalized

32 CONVEX C-Series Architecture

EDTX 2-04-CV-120
51 056DOC065360

�

4
-~

I
l
l
' ·1
~
!
!
'i
~

I
J

·~
[

number is used as an operand of a computation, any nonzero
·fraction bits are forced to zero and the hidden bit is not inserted.

True zero is always returned when the result of an operation is
zero. In addition, when exponent underflow occurs, true zero is
returned, and the UN bit in the PSW is set. The sign of any true
zero returned is implementation-specific. However, for all
current implementations, the following rules apply:

1. For IEEE add and subtract operations, the sign bit of any
zero result is always a zero.

2. For multiply and divide operations, the sign bit of any zero
result is the exclusive OR of the sign bits of the two
operands.

IEEE rounding
Rounding in IEEE mode is identical to rounding in Native mode.
Refer to the "Native rounding" section on page 21.

Chapter 2 Data representations 33

EDTX 2-04-CV-120
51 056DOC065361

�

IEEE operations

The following subsections detail the results returned and the
exceptions generated (if any) for IEEE-mode floating-point
operations. This subsection contains details that are specific to
the current implementation but are not part of the architecture.

When NaN is returned as a result, the C-Series architecture only
specifies that any legal form of NaN may be returned. The
specific form of NaN currently returned is
implementation-specific.

When zero is returned as a result, the architecture only requires
that it be a true zero (that is, the sign of the true zero may be
either 1 or 0). Thus, any reference to the sign of a zero result
described in this subsection is implementation-specific and
subject to change in other implementations of this architecture.
Table 18lists the abbreviations used during each IEEE
arithmetic operation.

In the IEEE-mode definitions, specifically with respect to
operands and results, the descriptions imply the positive or
negative form of the value. When the symbols used for these
definitions are preceded by+ or -, the specific value is positive
or negative. For example, NORM represents a positive or
negative normalized number, while -NORM represents a
negative normalized number only.

IEEE compare operations
No result other than comparison status is returned for IEEE
compare operations. Any exceptions generated as a result of an
input operand combination are identical to the exceptions
generated for the IEEE add or subtract operations except that
UN and OV exceptions are not possible.

IEEE add or subtract operations
Table 19 lists the exceptions encountered for each respective
operand combination used in an IEEE add or subtract
operation.

IEEE multiply operations
Table 20 lists the exceptions encountered for each respective
operand combination used in an IEEE multiply operation.

IEEE divide operations
Table 21lists the exceptions encountered for each respective
operand combination used in an IEEE divide operation.

34 CONVEX C-Series Architecture

··-~-.-..... :·:-.-..

EDTX 2-04-CV-120
51 056DOC065362

�

J .. ···---·-···

IEEE min/max operations
Table 22lists the exceptions encountered for each respective
operand combination used in an IEEE min/max operation.

Chapter 2 Data representations 35

EDTX 2 -04-CV -120
51 056DOC065363

�

Table 18 IEEE floating-point nomenclature

Nomenclature type Symbol

INT

INTO

DEN

Input operands INF

NaN

NORM

ZERO

INFs

NaNl

lo
Operation results Os

NORM

INT

TRN

(NM)

(OV)

Result conditions (UN)

(IN)

(!0)

RO

SQRN

FDZ
Exceptions

SIV

ov
UN

0
Exception states

1

36 CONVEX C-Series Architecture

Description

A nonzero two's-complement integer.

Integer zero. I

A denormalized number. i
Infinity.

Not a number.

A normalized number.

True zero, sign bit is 1 or 0.

\ Infinity where the sign bit is the sign of the numerical result.

1 A particular form of NaN where the sign bit is a 1, the
exponent bits are all ones, and the fraction bits are all zeroes
except for the least-significant bit, which is a 1.

True zero with a sign bit of 0, or an integer zero.

True zero where the sign bit is the exclusive or of the sign
bits of the input operands.

A normalized number_

A nonzero representable integer.

The least-significant bits of an integer whose exact value
contains more bits than can be stored in the result.

If result is a normalized number.

If overflow results.

If underflow results.

If result is a representable integer.

If integer overflow results.

Illegal input operand.

Square root of a negative number.

Floating-point divide--by-zero.

Integer overflow.

Floating-point overflow.

Floating-point underflow.

Exception did not occur.

Exception did occur.

I

I
I
I
l

.J__

EDTX 2-04-CV-120
51 056DOC065364

�

Table 19 IEEE operation results-add or subtract

j

I
i
I

Operand A

ZERO

ZERO

ZERO

ZERO

ZERO

DEN

DEN

DEN

DEN

DEN

NORM

NORM

NORM

NORM

NORM

NORM

NORM

INF

INF

INF

INF

INF

NaN

NaN

NaN

NaN

NaN

.J~.--.. ---·

Operand B Result

ZERO +0

DEN +0

NORM NORM

INF NaN1

NaN NaN1

DEN +0

INF NaNl

NaN NaN1

ZERO +0

NORM NORM

ZERO NORM
' DEN NORM

INF NaN1

NaN NaNl

NORM (OV) INFs

NORM (NM)NORM

NORM (UN) +0

ZERO NaNl

DEN 1 NaN1

NORM NaN1

INF NaN I

NaN NaNI

NaN NaNI

ZERO NaN I

DEN NaN1

NORM NaN1

INF NaN1

RO
I

0

0

0

1
I

1

0

1

1

0

0

0
i '

0

1

1

0

0

0

1
'

1

1

1
' i

1

1

1

1

1

1

SQRN FDZ SIV ov UN

0 0 0 0 0

0 0 0 0 0

0 I 0 0 0 I 0 I
I
I

0 0 0 0 0
I

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
'

0 0 0 0 0

0 0 0 0 0
I

0 0 0 0 0

0 I 0 0 0 0 I

0 0 0 0 0

0 0 i 0 1 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 ! 0 0 0 0

0 0 0 0 0
!

0 0 0 0 0

0 ! 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Chapter 2 Data representations 37

EDTX 2-04-CV-120
51 056DOC065365

�

Table 20 IEEE operation results-multiply

Operand A Operand B I Result RO SQRN

ZERO ZERO Os 0 0

ZERO DEN Os 0 0

ZERO NORM Os 0 0

ZERO INF NaNl 1 0

ZERO NaN NaN1 1 0

DEN ZERO Os 0 0

DEN DEN Os 0 0

DEN NORM Os 0 0

DEN INF NaN I 1 0

DEN NaN NaN1 1 0

NORM ZERO Os 0 0

NORM DEN Os 0 0

NORM NORM (OV) INFs 0 0

NORM NORM (NM)NORM 0 0

NORM NORM (UN) Os 0 0

NORM INF NaN1 1 0

NORM NaN NaNl 1 0

INF ZERO NaN1 1 0

INF DEN NaNl 1 0

INF NORM NaN I 1 0

INF INF NaN1 1 0

INF NaN NaN1 1 0

NaN ZERO NaN I 1 0

NaN DEN NaN1 1 0

NaN NORM NaN1 I 0

NaN INF NaN1 1 0

NaN NaN NaN1 1 0

38 CONVEX C-Series Architecture

FDZ SIV

0 0

0
I

0 i

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 I 0

0 0

0 0

0 0

0
I

0

0 0

0 0

0 0

0 I 0

0 0

0 0

0 0

0 I 0
I

0 0

0 0

0 0

0 0

0 0

ov

0

0

0

0

0

0
F

0

0

0

0

0

0

1

0
'

0

0

0

0
!

0

0

0

0 I

0

0

0

0

0

UN

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

I
I .

EDTX 2-04-CV-120
51 056DOC065366

�

Table 21 IEEE operation results-divide

i Operand A Denominator Result

ZERO ZERO NaN1

ZERO DEN NaN1

ZERO NORM Os
!

ZERO INF NaNl

ZERO NaN NaN1

DEN ZERO NaN1

DEN DEN NaN I

DEN 1 NORM Os

DEN INF NaNl

DEN NaN NaN!

NORM ZERO INFs

NORM 1 DEN INFs

NORM NORM (OV) INFs
'

NORM NORM (NM)NORM

NORM NORM (UN)Os

NORM INF NaN1
'

NORM NaN NaN1

INF ZERO NaN1

INF DEN NaN1

INF NORM NaN1

INF 1 INF NaN1

INF NaN NaN I

NaN ZERO NaN I

NaN DEN NaNl

NaN NORM NaN!

NaN INF NaN!

NaN NaN NaN1

RO l SQRN FDZ I '
SIV ov UN

I
0 I 0 1 0 0 0

0 0 1 0 I 0 0

0 0 0 0 0 i 0

1 0 0 0 0 0

1 0 0 0 0 0

0 0 1 0 I 0 0

0 0 1 0 0
I

0

0 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0
I

0 0 1 0 0 I 0 '

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 1

1 0 0 0 0 i 0

1 0 0 0 0 0

1 0 1 0 0 0

1 0 1 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 1 0 0 0

1 0 1 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 I 0

Chapter 2 Data representations 39

EDTX 2-04-CV-120
51 056DOC065367

�

;

·. :
ii

I

Table 22 IEEE operation results-min/max

Operand A Operand B Result

ZERO ZERO +0

ZERO DEN +0

ZERO NORM NORMor+O

ZERO INF NaNl

ZERO NaN NaN1

DEN ZERO +0

DEN DEN +0

DEN NORM NORMor+O

DEN INF NaNl

DEN NaN NaN1

NORM ZERO NORMor+O

NORM DEN NORMor+O

NORM NORM NORM
I

NORM INF NaN1

NORM NaN NaN I

INF ZERO NaNl

INF DEN NaN1

INF NORM NaN1

INF INF NaNl

INF NaN NaN1

NaN ZERO NaNl

NaN DEN NaN1

NaN NORM NaN1

NaN INF NaN1

NaN NaN NaN1

40 CONVEX C-Series Architecture

,,ooOOhHO•.---~-----....,..-·-···· ··----,·:··-·:·--.,...,...,..,---.-- ··--

RO

0

0

' 0

1

1

0

0

0

1

1

0 '

0

0

1

1

1

1

1

1

I

I

1

I

1

1

SQRN FDZ SIV

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 I 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

.... ":•.·.<··.·

ov

0

0

0
I

0

0

0

0

0 '

0

0

0

0
'

0

0

0

0

0

0

0

0

0

0

0

0

0

UN

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
I

0

0

0

0

0

EDTX 2-04-CV-120
51 056DOC065368

�

Note

~---c--~-····----·· ,. .
~ ' .

IEEE square mot operations
Table 23 lists the exception encountered for each operand type
used in an IEEE square root operation.

Table 23 IEEE operation results-square root

Operand Result RO SQRN FDZ SIV ov UN

+ZERO 0 0 0 0 I 0 t 0 0
!

-ZERO 0 0 0 0 0 0 0

+DEN 0 0 0 0 0 0 0

-DEN 0 0 0 0 0 0 0

+NORM NORM 0 0 0 0 0 I 0

-NORl\1 NORM1 0 1 0 0 0 0

INF NaNl 1 0 0 0 0 0
I

NaN NaN1 1 0 0 i 0 0 0 l
1The result returned is the square root of the absolute value of NORM when
NORM is negative.

The square root operation is not part of the C 1 00 Series. The square
root operation is performed in hardware on all multiprocessing
C-Series CPUs.

IEEE conversion operations
Table 24, Table 25, and Table 26 list the exceptions encountered
for each operand type used in IEEE conversion operations.

Table 24lists the exceptions encountered for each operand type
used in an IEEE float-to-fixed conversion.

Chapter 2 Data representations 41

EDTX 2-04-CV-120
51 056DOC065369

�

. ·:.·_: .. ' '

Note

Table 24 IEEE operation results-float-to-fixed conversions

Operand Result RO SQRN FDZ SIV ov UN

ZERO 0 0 0 0 0 0 0
'

DEN 0 0 ! 0 0 0 0 0

NORM (IN) INT 0 0 0 0 0 0

NORlv.l (IO)TRN 0 0 0 1 0 I 0

INF None 1 0 0 1 0 0

NaN None 1 0 0 I 0 0

If integer overflow occurs, the result returned is the
least-significant bits of the exact result. The number of
least-significant bits returned is dependent upon the size of the
result. For example, when converting to a word integer, the 32
least-significant bits of the exact result are returned. When the
input operand is NaN or infinity, the result of the operation is
implementation dependent.

Some early Cl and C200 (C3200) implementations do not write to
the result register of a scalar conversion if an exception is
encountered during the conversion.

Table 25 lists the exceptions encountered for each operand type
used in an IEEE fixed-to-float conversion.

Table 25 IEEE operation results-fixed-to-float conversions

Operand Result RO SQRN FDZ SIV OV UN

INT NORM 0 0 0 0 0 0
I

INTO 0 0 0 0 0
i

0 0 I
Table 26 lists the exceptions encountered for each operand type
used in an IEEE float-to-float conversion .

i

42 CONVEX C-Series Architecture l ------------------------------

EDTX 2-04-CV-120
51 056DOC065370

�

Table 26 IEEE operation results-float-to-float conversions

Operand Result RO SQRN i FDZ SIV ov UN

1ZERO 0 0 0 0 0 0 0

DEN 0 0 0 0 0 0 0
'

NORM (NM)NORM 0 0 0
I 0 0 0 !

NORM (OV) INFs 0 0 0 0 i 1 0

NORM (Ul\.1) Os 0 0 0 0 0 1

INF NaN I I I 0 I 0 0 0 0

NaN NaNI I 1 0 0 0 0 0

Overflow and underflow are possible only when converting
double-precision values to single-precision values. When the
operand is infinity or NaN, the result returned is NaN-translated
to the format of the output operand.

i

Chapter 2 Data representations 43

EDTX 2-04-CV-120
51 056DOC065371

�

Native and IEEE floating-point algorithms

This section details the floating-point algorithms used by the
C-5eries instruction set for both IEEE and native mode
aritlunetic. The C-Series architecture does not support the
complete IEEE floating-point specification, only the IEEE
floating-point format is used. These algorithms involve
rounding, sequencing of operations, and other considerations.
The following exceptions are defined in the algorithms:

• Input exception-In native mode, an input-reserved
operand. In IEEE mode, an NaN or infinity value.

• Output exception-An output-reserved operand in native
made or a NaN or infinity value in IEEE mode.

Add or subtract
To add or subtract:

1. The fractions of the floating-point operands are expanded
internally as follows:

- A 1 is appended to the higher bit position of the fraction.

- Two guard bits are appended to the right of the
least-significant fraction bit. These bits are referred to as
G and R, respectively.

- A sticky bit is appended to the right of the two guard
bits. The sticky, or S, bit is the OR of all bits to the right of
the R bit.

- An additional bit is appended to the higher fraction, the
V bit, for overflow. The internal floating-point format is
illustrated in Figure 10, where the initial values of the V,
G, R, and S bits are all 0.

Figure 10 Internal floating-point format

v Operand fraction G

t
Least significant bil

R s

A!i::JOOOOil
12/1/93

2. The exponents of the two fractions are compared. The
fraction of the smaller exponent is shifted right by an
amount equal to the absolute difference of the exponents.
All right-shifted bits are shifted through the G, R, and S
bits.

44 CONVEX C-Series Architecture
i
i
I

l~

EDTX 2-04-CV-120
51 056DOC065372

�

· .. ~ .. : . . · ..

3. Any binary ones shifted past the two guard bits are
remembered in 5.

4. If any of the input operands are zero, all fraction bits are set
to zero.

5. If any of the input operands is an input exception,

- No shifting occurs and there is an output exception. The
output of the add or sub is an output exception.

- Otherwise, the two fractions are algebraically added or
subtracted according to the sign and op code.

6. If the result is zero, the exponent is set to zero and not
normalized. Otherwise, the result is normalized

- If V becomes 1, the intermediate result is right-shifted by
one bit position, an OR operation is performed on Rand
5, and the result is placed inS.

- If a generated subtract was performed, the intermediate
result is left-shifted until a normalized intermediate
result is obtained. Zero or S may be shifted into R from
the right. G is loaded with R; Sis always unchanged.

7. The intermediate result is rounded as shown in Table 27.

Table 27 Intermediate result rounding- add, subtract, multiply

G R s ROUNDING PERFORMED (TO LSB)

0 0 i 0 AddO

0 0 1 AddO

0 1 0 AddO

0 1 1 AddO

1 0 i 0 Add LSB of fraction (round to nearest even)

1 0 1 Add 1

1 1 0 Add 1

1 1 1 Add 1

8. The rounded intermediate result is normalized again, and
the exponent is adjusted, if necessary, to yield the final
result.

I

Chapter 2 Data representations 45

EDTX 2-04-CV-120
51 056DOC065373

�

l
1

Multiply
Multiplying two normalized floating-point numbers produces
an intermediate result that is either normalized or at most
requires one left shift To multiply,

L If either of the two operands is an input exception, the
result is an output exception.

2. If either of the two operands is zero, the result is a true
zero.

3. Otherwise, the exponents are added, keeping an extra bit
of precision to account for a normalization shift that could
correct an exponent overflow.

4.

5.

6.

The two fractions are multiplied right to left.

The G, R, and S bits are maintained during intermediate
calculations.

The result is post-normalized, if required.

7.

8.

The intermediate result is rounded, as outlined in Table 27.

The rounded intermediate result is normalized again and
the exponent adjusted, if necessary, to yield the final result.

Divide
Dividing two normalized floating-point numbers produces an
intermediate result that is normalized. To divide,

1. If either of the two operands is an input exception, the
result is an output exception.

2. If the divisor is zero, the result is an output exception. Also,
PSW (FDZ), the floating divide-by-zero bit, is set to 1.

3. The exponents are subtracted, producing the result's
exponent.

4. The numerator mantissa is divided by the denominator
mantissa. An (n+2)-bit quotient is generated where n is the
length of the mantissas of the operands. The two additional
quotient bits represent the G and R bits. The state of the S bit
is implementation specific. The S bit may always be
assumed to be 0, or may represent the OR of some portion
of, if not the entire remainder.

5. The intermediate result is rounded, as outlined in Table 28.

6. The rounded intermediate result is normalized again and
the exponent adjusted, if necessary, to yield the final result.

46 CONVEX C-Series Architecture

EDTX 2-04-CV-120
51 056DOC06537 4

�

.,..
~-
:·~

J

·: :_. -:~.:;. "·.:.- ;. :. ' ,.,...._ .. ,.,..,;: . .;:.

Table 28 Intermediate result rounding- divide

Rounding performed

G R C Series compatible Industry compatible

0 0 AddO AddO

0 I 1 AddO AddO
!

1 0 Add LSB Add 1

1 1 Add 1 Add 1

Conversions
The following rules apply when converting an arithmetic value
from one data type to another.

1. When converting from floating-point to fixed-point,
always round toward zero (truncate).

2. When converting from floating-point to fixed-point,
properly normalize the integer. If this results in more
mantissa bits than are available, round the mantissa to its
appropriate size.

3. Rounding from floating-point to fixed-point can be
achieved by adding 0.5 to the floating-point operand, then
executing the floating-point to fixed-point instruction. The
sign used on the 0.5 value should be the same as the sign
on the operand. Thus:

- RND (3.4) equals TRUNCATE (3.9) ""3

- RND (3.5) equals TRUNCATE (4.0) = 4

Chapter 2 Data representations 47

EDTX 2-04-CV-120
51 056DOC065375

�

48 CONVEX C-Series Architecture

--·· .·--~~--·-

.•. ' .• : . , '· ···' .:~. :~~ ... ·:.,., . ;.::-:, ;~ .• : . ·-: :i" ·r .: •.. ·: ·. : ·-<' . ,· .§..

EDTX 2-04-CV-120
51 056DOC065376

�

j
i

I
I
I
~
j
I

i
l
~

Register sets

· ... ;·.:::

3
The CONVEX C -Series architecture allows for asynchronous and
overlapped fetch and execute functions by partitioning both
addresses and operands into three general register sets.

• Address registers

• Scalar registers

• Vector registers

This partitioning of the general registers enables address, scalar,
and vector calculations to be performed in paralleL

The architecture has four special purpose registers.

• Program counter (PC)

• Processor status word (PSW)

• Scalar stride zero (SSO- C4600 Series CPUs only)

• Scalar stride one (SSI- C4600 Series CPUs only)

For the multiprocessing C-Series CPUs (CPUs other than the
ClOO Series), the C-Series architecture has an additional register
set used for CPU communications in the multiprocessing
environment. These registers are presented in the
"Communication registers" section in Chapter 5.

The CONVEX C -Series architecture also uses three privileged
flags:

• Interrupt on (ION)

• Realtime interrupt on (RT_ION- C3400 Series CPUs only)

• Vector valid (VV)

Chapter 3 Register sets 49

EDTX 2-04-CV-120
51 056DOC065377

�

. , ,.,.·

All address, scalar, and vector registers support multiple data
lengths, which occupy the following bit positions:

• Byte-bits <7 .. 0>

• Halfword-bits <15 .. 0>

• Word-bits <3LO>

• Longword-bits <63 .. 0>

• Single-precision-bits <3L0>

• Double-precision-bits <63 .. 0>

When an operand with precision less than the destination
register is loaded, the remaining unused bits of the destination
register are left unchanged. For example, when a 16-bit integer is
loaded into a 32-bit address register, the 16 high order bits of the
register (bits <3 L 16>) are undisturbed. Each data type is accessed
in a specific way:

• A byte is loaded into or read from bits <7 .. 0> of a register.

• A halfword is loaded into or read from bits <15 .. 0> of a
register.

• A word (integer or single-precision) is loaded into or read
from bits <31..0> of a register.

• A longword (integer or double-precision) is loaded into or
read from bits <63 .. 0> of a register.

50 CONVEX C-Series Architecture

EDTX 2-04-CV-120
51 056DOC065378

�

Address registers

J
• T • • • .:--~----.-- ,....,...•-••-"

. ·,. ··--...• ,.,_ · , : . : .. : .. ~· .. ;:....: :.". :; ' ···.·~·=· ., .'-.• ~.:, :,; ;•-'!..,..,., __ _. .. ·

All CPUs, except the C4600 Series, have eight 32-bit address (A)
registers, AO through A7. Although the registers in the following
list have specific, predefined functions, all except register AO can
also be used as general purpose address registers.

• AO is the stack pointer (SP).

• A3, A4, and AS are implicitly used by some trap handlers
(for example, page fault, system exceptions, and so forth).

• AS is implicitly used by some instructions.

• A6 is the argument pointer (AP).

• A7 is the frame pointer (FP).

Register AO is used in two additional ways. When register AO is
specified in an addressing operation, zero is used in place of the
true value contained in register AO. When register AO is used as a
source or destination for an arithmetic operation, the true value is
used.

The following can be loaded into address registers:

• Signed or unsigned fixed-point integers

• Operands used as addresses or index values

• Operands that are manipulated in parallel with a
computation performed in scalar or vector registers

Longword operands cannot be loaded into an address register,
since address registers are only 32 bits in length.

C4600 Series
The C4600 Series CPUs contain thirty-two 32-bit address
registers, AO to A31. Address registers AO, A6 and A7 retain their
use as Stack Pointer, Argument Pointer, and Frame Pointer
respectively. New instructions for C4600 Series CPUs perform all
byte, halfword and word operations on AO to A31. The C-Series
Assembly Language Reference describes these instructions.

Chapter 3 Register sets 51

EDTX 2-04-CV-120
51 056DOC065379

�

Scalar registers All CPUs, except the C4600 Series, contain eight 64-bit scalar (5)
registers, SO through 57. The S registers can contain logical,
fixed-point integer, or floating-point operands.

A signed or unsigned scalar fixed -point integer value can be
loaded into either an address or scalar register. Generally,
operands used only for numeric processing are loaded into the
scalar registers.

C4600 Series
C4600 series CPUs contain 28 64-bit scalar registers, SO to 527.
C4600 series-specific instructions perform all integer and
floating-point operations on scalar registers SO to 527.

·:(

52 CONVEX C-Series Architecture

-----~-··

EDTX 2-04-CV-120
51 056DOC065380

�

!
~

;~
l

l
j
l

I
I
j
:
!

i
I
!

Vector registers

. · .. -~.: ... · ; -"-: .. '. ~: . .;;,::, :,,.~ : ... ·· ., : ,,.,....,,,.,.~.

There are five types of registers in the vector register set:

• Vector accumulators (V)

• Vector length {VL)

• Vector stride (VS)

• Vector merge (VM)

• Vector firs(>(VF, C4600 only)

Vector accumulators
All CPUs, except C4600 Series, contain eight vector
accumulators (V), VO through V7. Each vector accumulator may
contain up to 128 64-bit register operands or elements. These
operands can be integer, logical, or floating-point values. When an
operand less than 64 bits is loaded into a 64-bit element, the unused
bits are unchanged.

Individual elements within a vector accumulator are referenced
by appending the element number to the designated vector
accumulator. The first element of Vl is referenced as Vl<O>
(origin 0 indexing). The 22nd element of Vl is referenced as
V1<21>.

C4600 Series
The C4600 Series CPU's vector register set consists of 16 vector
accumulators, VO to VIS. Each vector accumulator may contain
up to 128 64-bit registers. C4600 series-specific instructions
perform vector and vector/scalar operations using VO to VIS
and SO to 527.

J ... ,:.l.~~~---------------------------c-h __________ s3 apter 3 Register sets

... ·.·····~----.. ----,---··· . .;... •'

EDTX 2-04-CV-120
51 056DOC065381

�

Array (vector) terminology
An array (vector) is a data structure composed of elements.
Arrays have four general characteristics:

• Data type-This is the way in which bits are grouped and
interpreted. The data type identifies the size of the operand
and the significance of the bits in the operand.

• Dimension-This is the number of indices necessary to
reference a particular element. For example, an array with
three rows and four columns is a two-dimensional array.

• Length-This is the total number of elements in the array and
is limited by the compiler and virtual address space. For
example, an array with three rows and four columns has a
length of twelve.

• Stride-This is the distance in bytes between adjacent array
elements along the same dimension. For example, a
one-dimensional word vector has a stride of four bytes.

Figure 11 illustrates an example of the vector terminology used
in vector processing when manipulating a 3 x 4 array of words
called a (3,4).

54 CONVEX C-Series Architecture

EDTX 2-04-CV-120
51 056DOC065382

�

!
.I

j
j

.. -J?

:.·: ·:····.

Figure 11 Vector terminology

0

4

8

Oc

10

2c

l'\OTE

Dimension = 2

Length ::: 12

Stride = 4 or 12

', ' ,·,,._,··., ... ,.

Dimenslon a(3,4)

B EJ~

EJ I a241

I a331 B

Store in virtual memory
(FORTRAN convention)

J

2 indices (row and column)

12 elements

Distance between elements in the same dimension:
Along columns, stride is 4 bytes.
Along rows, stride is 12 bytes.

AH300010

12/1/93

Chapter 3 Register sets 55

. ~: ..;.. -. ' ' ······-···--·--.------· . ·-. -···--········--·-··- - ~~ ~ .

EDTX 2-04-CV-120
51 056DOC065383

�

. ~ .

• • • •• ' • ' ' • y" •• ••••"•.•·••.~'•••c "• • •··~· ·~ •. •.~· .. =, ,;;;•;_.,

Vector length register
A vector accumulator can contain a maximum of 128 elements of
the same data representation and precision. The vector length
register (VL) is used to specify the exact number of elements
stored in a vector accumulator.

VL may contain any value from 0 to 128. An attempt to load VL
with a negative value results in setting VL to Q_ When VL is 0, no
vector operation is performed.

An attempt to load VL with a value greater than 128 results in
setting VL to 128. This allows arrays of up to 128 elements to be
handled directly with vector instructions.

Even though the VL register has a maximum value of 128, a
vector in memory can be any arbitrary length up to the user
virtual address space limit of 2 Gbytes_ Arrays longer than 128
elements or variable arrays that could exceed 128, are handled in
software by coding a loop around a group of vector instructions
that handles up to 128 elements at a time. This is called strip
mining and is generated automatically by CONVEX vectoring
compilers.

Vector stride register
The 32~bit vector stride register (VS) specifies the distance in
bytes between adjacent array elements as they are accessed in
memory. If VS contains a positive value, adjacent vector register
elements are loaded and stored from memory by adding
sequential multiples ofVS to the initial address of the array base.
If VS contains a negative value, adjacent vector register elements
are loaded and stored from memory. This is done by subtracting
sequential multiples of the absolute value of VS from the initial
address of the array base. In the latter case, logically adjacent
elements reside in decreasing locations in virtual memory.

Unpredictable results may occur on store operations if the
absolute value of VS is nonzero but smaller than the width ofthe
operands_ If VS is 0, the referenced operand is correctly used
repetitively as a source or destination .

...•... - ·~.i;

56 CONVEX C-Series Architecture

·r ~·---~-.-·:-. :········-.

EDTX 2-04~CV-120
51 056DOC065384

�

;1.

'• . ' ..•. · .•.. :,: , .. ·,;;.>',.o.'·.:.,", ... :-... =: ;···~·'·• ~ ~~ J:.

Vector merge register
The vector merge register (VM) holds the status of
element-by-element array comparisons and controls array
manipulations such as compress, expand, merge and
operate-under-mask. The VM register is 128 bits in length,
with one bit position for each element in a V register. In a vector
compare operation, a bit is set if the result of the corresponding
compare is true. Otherwise, each respective bit is cleared. Typical
uses of the VM register (as supported by the CONVEX instruction
set) are

• Vector clipping

• Population count (the number of successful compares)

• Sparse vector manipulation

• Array compression, expansion, and merging

• The number and location of zero or threshold crossings

• Support operations that are performed under mask (under
mask operations are not available on ClOO Series CPU)

Vector first register - C4600
The vector register set of the C4600 Series CPUs contains an
additional vector register called the vector first register (VF).

VF specifies the first element of vector register Vi, Vj or Vk
accessed by a vector instruction, provided that the MSB of the
corresponding 5-bit register select field of the instruction is set.
VF cannot be applied to operations on VM.

VF is seven bits in length and may contain a value between 0 and
127. If the value of VF plus the value of VL is greater than 128,
the effective value ofVL for vector instructions that use VF is 128
minus VF. This effective VL value determines the number of
results written to a vector register or VM, or the number of
elements stored to memory.

If the value of VF plus Sj is greater than 127 in the mov
Vi, Sj, Sk and rnov Si, Sj, Vk instructions, then the selected
element of the vector register is equal to (VF plus Sj) mod 128.
Therefore, the vector register wraps for these two instructions only.

If Vi or Vj of an instruction specifies the same register as Vk of
the instruction, and VF is applied to Vk, and VL is greater than
VF, then elements of the shared register may be written (as Vk)
before they are read (as Vi or Vj, depending of the hard ware
implementation). In this case, the result in Vk is architecturally
undefined. The instruction merg. x Vi, Vj, Vk has the same
behavior if Vi or Vj are the same as Vk.

Chapter 3 Register sets 57

EDTX 2-04-CV-120
51 056DOC065385

�

... ·····."·· .. ·.·.·,

Special purpose
registers

The C-Series architecture uses up to four 32-bit special purpose
registers.

• Program counter (PC)

• Processor status word (PSW)

• Scalar stride registers (SSO and SSl - C4600 only)

Program counter
The program counter (PC) contains the address pointing to the
next executable instruction in a process. It is not part of the
address register set. 1his separation permits address generation
without regard to the true state of the PC.

C Series processors are highly pipelined. While they support
PC-relative branching, there is no general support for
PC-relative addressing.

The structure of the PC is shown in Figure 12.

Figure 12 Program counter format

Seg Segment byte offset

31 29 28

jo I
1 0

AH3ll0011
12/l/93

When the PC increments to reference the next instruction, the
specific bits incremented are a function of PC<3l>.

If PC<31> is set1 then PC<30 .. 1> are incremented.

If PC<31> is dear, then PC<28 .. 1> are incremented.

PC<O> is treated as zero.

58 CONVEX C-Series Architecture

.......,._,..~---.--

· ····· '··· ~

EDTX 2-04-CV-120
51 056DOC065386

�

Ill•.. ~~~~-~~~~~--------lliiliill-···· lllilli,; ... ,.;_•. ·•··.· ···
I
l

l

;i

.. _it:.

Processor status word
The processor status word (PSW) is a user-accessible, 32-bit
status register that indicates the processor state. This register
contains flags that enable or disable exception processing and
indicate the results of numerical operations. The PSW contains
no privileged mode bits.

The structure of the PSW for ClOD Series CPUs is shown in
Figure 13.

Figure 13 Processor status word-ClOD Series CPUs

c I AIV lAnzi rvE I TR I FRL !sEQ! sc I SIV jsoz jnzE! UN I ov I Ro jFDzj
31 30 29 28 27 26 25 2L 23 22 21 20 19 18 17 16

Reserved

IS 14 13 12 0

AH3000L2
12/1/93

The structure of the PSW for the C3200, C3400, C3800, C4600
Series CPUs is shown in Figure 14.

Figure 14 Processor status word-C3200, C3400, C3800, C4600 Series CPUs

3 I 30 29 28 27 26 25 2L 23 22 21 20 19 18 17 16

IEC

1s 1.1. t3 12 11 to s a 7 6 5 4- 3 0

AH30001:J
3/7/94

Chapter 3 Register sets 59

EDTX 2-04-CV-120
51 056DOC065387

�

Universal PSW bit definitions
Each bit of the PSW defined in the following subsections applies
to all implementations of the C-Series architecture.

Bit <31>-Carry (C)
This bit, also known as address carry, is set to the carry-out value
for specified operations involving the address (A) registers,
including arithmetic operations, compare operations, and
conununication register instructions (using the A registers). For
compare operations, if the comparison is false, the carry bit is
cleared; if it is true, the carry bit is set.

In the 4600 Series CPUs, bit <31> is also called CCO. This
synonym is used for convenience only, and the bit continues to
function as C.

Bit <30>-Address overflow (AIV)
This bit indicates a fixed-point integer overflow occurred during
specified operations on the address (A) registers. If AIV is clear,
no overflow has occurred since this bit was last cleared. If AIV is
set, at least one overflow has occurred since this bit was last
cleared.

Bit <29>-Address divide-by-zero (ADZ)
This bit indicates an address divide-by-zero occurred during an
operation using the address (A) registers. If ADZ is dear, no
integer division with a zero divisor occurred since this bit was
last cleared. If ADZ is set, at least one integer division with a
zero divisor has occurred since this bit was last cleared.

Bit <28>-Integer overflow trap enable (IVE)
If this bit is set, and either SIV (bit <22>) or AIV (bit <30>) is set,
an integer trap occurs. If IVE is clear, no trap occurs.

Bit <27>--Trace (TR)
If this bit is set, an instruction trace trap occurs after the
processor executes one instruction. The process context is saved,
which includes the contents of the program counter (PC). When
execution returns from the trace trap handler, the process
context is restored, and the instruction referenced by the PC is
executed before a trace trap occurs again. For the trace mode to
function properly, you must also set SEQ (bit <24>).

60 CONVEX C-Series Architecture

-,------.--~~--

~

EDTX 2-04-CV-120
51 056DOC065388

�

......... _ ... ___ _.~ -·-.· .. ,.llillllll ·~-~

\~

J_,_

Bit <26 .. 25>-Frame length (FRL)
These bits indicate the type of frame created by the last call
instruction, trap, or fault:

11 Short frame

10 long frame

01 Extended frame

00 Context return block

These bits in the PSW on the top of the stack are used by the rtn
(return) instruction to unwind the stack after a subroutine call or
exception. When PSW (FRL) indicates a context return block, the
current ring must be ring 0, and the rtnc (return from a context
block) instruction must be used. Frame lengths and return blocks
are discussed in the "Resource structures" section in Chapter 4.

Bit <24> Sequential (SEQ)
This bit controls pipelining within the processor. If this bit is
dear, the processor operates with maximum pipelining and
overlap. If this bit is set, the processor executes all instructions
sequentially; that is, the execution of the next instruction is
initiated only after the previous instruction has been executed.

Bit <23>-Scalar carry (SC)
This bit is set to the carry-out value for operations involving the
scalar (S) registers, including aritlunetic operations, compare
operations and communication register instructions (using the S
registers). For compare operations' if the comparison is false, the
scalar carry bit is cleared; if it is true, the scalar carry bit is set.

In the C4600 CPUs, bit <23> is also called CCL This synonym is
used for convenience only, and the bit continues to function as
sc.
Bit <22>-Integer overflow (SIV)
This bit indicates a fixed-point integer overflow occurred during
specified operations on a scalar {S) or vector (V) register. If SIV is
clear, no overflow occurred since this bit was last cleared. If SIV
is set, at least one overflow occurred since this bit was last
cleared.

Bit <21>-lnteger divide-by-zero (SDZ)
This bit indicates an integer divide-by-zero occurred during an
operations using a scalar (5) or vector (V) register. If SDZ is dear,
no integer division with a zero divisor occurred since this bit was
last cleared. If SDZ is set, at least one integer division with a zero
divisor occurred since this bit was last cleared.

Chapter 3 Register sets 61

.. ---.--·-- ..

EDTX 2-04-CV-120
51 056DOC065389

�

Bit <20>-Divide-by-zero trap enable (DZE)
If this bit is set, and either SDZ (bit <21>) or ADZ (bit <29>) is
set, a trap occurs. If DZE is clear, no trap occurs.

Bit <19>-Fioating-point underflow (UN)
This bit indicates a floating-point underflow occurred during
specified operations on a scalar (S) or vector (V) register. If UN
is clear, no floating-point underflow occurred since this bit was
last cleared. If UN is set, at least one floating-point underflow
occurred since this bit was last cleared.

Bit <18>-Floating-point overflow (OV)
This bit indicates a floating-point overflow occurred during
specified operations on a scalar (5) or vector (V) register. If OV is
clear, no floating-point overflow occurred since this bit was last
cleared. If OV is set, at least one floating-point overflow occurred
since this bit was last cleared.

Bit <17>-Reserved operand (RO)
This bit indicates a floating-point operation on a reserved
operand (Native mode), infinity, or NaN (IEEE mode) was
detected during an operation on a scalar (S) or vector (V)
register. If RO is clear, a reserved operand was not detected since
this bit was last cleared. If RO is set, at least one floating-point
operation on a reserved operand occurred since this bit was last
set.

Bit <16>--Floating-point divide-by-zero (FDZ)
This bit indicates a floating-point divide-by-zero occurred
during a divide operation on a scalar (S) or vector (V) register. If
FDZ is dear, no floating-point division with a zero divisor
occurred since this bit was last cleared. If FDZ is set, at least one
floating-point division with a zero divisor occurred since this bit
was last cleared.

Bit <15>-Floating-point trap enable (FE)
If this bit is set and either OV, RO, or FDZ are set, a
floating-point trap occurs. If FE is clear, no trap occurs.

Bit <14>-Floating-point underflow trap enable (FUE)
If this bit is set and UN is set, a floating-point underflow trap
occurs. If FUE is clear, a floating-point underflow trap does not
occur. In both cases, if a floating-point underflow is detected,
true zero is the result.

Bit <13>-IEEE floating-point format (IEEE)
This bit enables and disables IEEE floating-point operations. If
IEEE is set, IEEE floating-point operations are enabled.IfiEEE is
clear, native floating-point operations are enabled. This PSW bit
allows an upgraded ClOO Series CPU to process IEEE-format
arithmetic.

62 CONVEX C-Series Architecture

_j __
·L----------~--··-·- ..

EDTX 2-04-CV-120
51 056DOC065390

�

Reserved (RES)

Bits <12 .. 0> (for ClOO Series CPUs)

Bits <7 .. 5> (for C200/C3200 CPUs)

Bits <7 .. 4> (for C3400/C3800 Series CPUs)

Bits <5 . .4> (for C4600 Series CPUs)

Extended PSW bit definitions
In addition to the previously defined universal PSW bits, the
following sections define PSW bits exclusively for
multiprocessing C-Series CPUs.

Bit <12>-Sequential store enable (SQS)
If this bit is clear, stores to memory may occur in non-sequential
order. If this bit is set, all stores to memory occur in instruction
execution order.

This bit is ignored by the C4600 Series architecture, because all
stores are sequential by default.

Bit <11>-Intrinsic error (FIN)
This bit indicates an intrinsic instruction detected an error. If this
bit is set, the IEC bits (PSW <3 .. 0>) contain a code that specifies
the type of error.

Bit <10>-lntrinsic error trap enable (INE)
If this bit is set, and FIN (bit<ll>) is set, a floating-point
exception trap occurs. If this bit is clear, no trap occurs.

Bit <9>-Trace thread concurrency trap (TIC)
This bit causes a trace trap any time a thread is created or
terminated. If this bit is set, an instruction trace trap occurs prior
to a CPU entering the hardware idle state and after leaving the
hardware idle state. The wfork, idle, and join instructions can
cause the CPU to enter the idle state. Acceptance of a posted fork
causes the hardware to leave the idle state. Refer to the
"Instruction trace trap" section in Chapter 6 for more information.

Bit <8>-Thread initialization trap (TIT)
This bit causes a trace trap any time a CPU picks up a fork. If this
bit is set when a CPU picks up a fork, a trace trap will be taken
to allow a handler to initialize the user-indicated code. A code of
Ox80 0 (class 8, no qualifier) is placed in register A5 to distinguish
this trap from the other trace traps. This trap is based on the PSW
in the fork block in the communication registers. 1bis is a user
trap, that is, it occurs in the ring where it was executed. The CPU
does not have to be in sequential mode for TIT traps to function
correctly.

Chapter 3 Register sets 63

EDTX 2-04-CV-120
51 056DOC065391

�

. ;.;, ·.: ·

Bit <7>-Condition code 3 (CC3)
This bit can be used as the target of C4600-specific compare
instructions, and as the branch condition of C4600-specific
branch instructions.

Bit <6> - Condition Code 2 (CC2)
This bit can be used as the target of C4600-specific compare
instructions, and as the branch condition of C4600-specific
branch instructions.

Bit <4>-Communication address trap (CAT)
On C200/C3200 Series CPUs only, this bit is set whenever the
CPU detects an invalid communication register address, which
causes a system exception (ring violation) to occur. This bit is not
used on C3400/C3800/C4600 Series CPUs.

This bit remains set until the trap is recognized, in order to allow
a trap to be remembered in the event of ring crossing (sysc,
interrupt, and so forth). This ensures that the trap is attributed to
the correct ring of execution. The hardware clears this bit in the
extended frame passed to the system exception handler when the
trap is processed.

Bit <3 .. 0>-lntrinsic error code (IEC)
When FIN (bit<ll>) is set, IEC (bits <3 .. 0>) contains a code that
specifies the type of error encountered by the intrinsic
instruction. Each intrinsic instruction that encounters an error
first clears these bits, if they were set from a previous error that
occurred with INE (bit <10>) dear. The new code is entered in
these bits, and FIN is set. If INE is set, an arithmetic trap occurs.
If INE is clear, no trap occurs. If INE is clear, only the last
intrinsic trap is meaningfuL Other intrinsic traps may have
occurred, but were disregarded.

Intrinsic traps are processed by the same trap handler as the
other PSW arithmetic traps, RO, FDZ, and UN. For arithmetic
traps that can be enabled, the enable bit must be examined to
determine the type of the current trap. Specifically, if some types
oftrapsare enabled (that is, FUE (bit<l4>) or FE{bit <15>) is set)
and intrinsic traps are not (that is, INE (bit<10>) is clear), the
enable bit must be examined.

64 CONVEX C-Series Architecture i

I
-------. -. __ -----~;;;

EDTX 2-04-CV-120
51 056DOC065392

�

I

I

..... . -·- .•. ·:

The valid meaning of the IEC bits when there is no trap is:

0 0 0 o A square root operation with a negative operand
(vector or scalar) was attempted.

o 0 01 An overflow occurred when an exponential operation
(exp. s, exp. d) was attempted.

0010 An argument to a logaritlunic operation (ln. s, ln. d)
was less than or equal to zero.

0110 The absolute value of an argument to a sine operation
{sin. s, sin. d) was too large.

0111 The absolute value of an argument to a cosine
operation {cos . s, cos . d) was too large.

l ___ ~ ~---,--~~~----- ---------·-···· ······----------------
Chapter 3 Register sets 65

-

EDTX 2-04-CV-120
51 056DOC065393

�

Scalar stride registers - C4600

The C4600 Series CPUs contain two 32-bit Scalar Stride
Registers, SSO and SSL The ldO and ldl instructions use these
registers to permit explicit cache prefetching under software
control. An ldO loads the data addressed by <effa> into the
specified destination register, and accelerates the data addressed
by <effa>+SSO to the data cache. An ldl performs the same
function using SSL This mechanism greatly improves the data
cache hit rate for non-vectorizable routines operating on large
data sets.

66 CONVEX C-Series Architecture

EDTX 2 -04-CV -120
51 056DOC065394

�

!
;~
t

Privileged flags

l _____ ---.-,-.
~ .;,. ' . .

The interrupts on (ION), realtime interrupts on (RT_ON), and
vector valid (VV) flags are privileged binary flags that control
certain operations.

Interrupts on

The interrupts on (ION) flag enables and disables external
interrupts. The instructions bri. f, bri. t, jmp. f, and jmp. t
test the state of the ION flag. The privileged instructions eni and
ds i enable and disable the interrupts by setting and clearing ION
(respectively). See the "Interrupt system" section in Chapter 6 for
more detaiL

Realtime interrupts on
The realtime interrupts on (RT_ION) flag is a privileged binary
flag that enables and disables realtime external interrupts on the
C3400 Series CPUs in realtime mode. It is used in the same way
that ION is used. Details of C3400 Series realtime support are
discussed in the "Interrupt system" section in Chapter 6.

Vector valid
The vector valid {VV) flag is used by the operating system for
saving and restoring the vector accumulators in a demand mode.

The mov Sk, vv instruction loads the VV flag from Sk. This
instruction is privileged in the ClOO Series CPUs. On
multiprocessing CPUs, it may be executed in any ring, but
performs no operation when performed from rings 1 through 4.

The tstvv instruction loads the value of VV into PSW (SC).

Chapter 3 Register sets 67

EDTX 2-04-CV-120
51 056DOC065395

�

68 CONVEX C-Series Architecture

~-·~--······-~-·· ---~~-

EDTX 2-04-CV-120
51 056DOC065396

�

Memory management 4

Physical address
space

The CONVEX C~Series architecture allows 4 Gbytes of virtual
(logical) address space. This virtual memory is partitioned into
eight 512-Mbyte segments. Four segments are allocated to the
user and four to the operating system (OS). This division means
that a user program (instructions and data) can occupy up to 2
Gbytes of virtual storage.

The memory management system controls an extremely flexible
and reliable virtual memory programming environment.
Although the address space of the C-Series architecture is
byte-addressable, memory is managed on a fixed-size page
basis. Even though an address may be a valid virtual address,
the referenced data may or may not be in physical memory.

The CONVEX C-Series architecture implements a process the
same way that the UNIX operating system defines a process in
that a CONVEX process has a protected address space, context,
and a state. A CONVEX process exists as a single thread in the
ClOO Series architecture. However, in the multiprocessing
architectures, a CONVEX process exits as one or more threads,
unlike a UNIX operating system process. Therefore, it cannot be
considered an atomic structure. A process is controlled by
maintaining a process stack. These stack entries are called return
blocks and contain vital information for controlling the
execution of a process.

C-Series CPUs have implementation-specific physical address
and 1/0 space. Chapter 7, "Implementation-specific features,"
describes the details of each implementation's physical and 1/0
address space.

Chapter 4 Memory management 69

EDTX 2-04-CV-120
51 056DOC065397

�

!

Virtual address
space

The virtual address space for a C-Series CPU is 4 Gbytes. This
address space is logically divided into eight 512-Mbyte
segments (see Table 29). These eight segments are distributed
through five partitions called rings of execution or just rings. These
five rings are illustrated in Figure 15.

Figure 15 Ring structure of the virtual address space

\
1

)

Virtual addresses are generated by using the program counter
(PC) or any of six different operand addressing modes. The
format of a virtual address is shown in Figure 16.

Figure 16 Virtual address format

SEG
31 29 28

70 CONVEX C-Series Architecture

Segment byte offset

0

AEi3000 14
11/10/93

.;_~···¥---.... --·, -·.---··"''''' ___ j_

EDTX 2-04-CV-120
51 056DOC065398

�

.... ,,,. ··>---··-···· ·' ·' . -''·~· :.;:·

The SEG field (bits <31..29>) of the virtual address defines the
segment (0 through 7t and is assigned as follows:

• Segment 0 is always assigned to ring 0, which contains the
operating system kernel. A set of instructions, called
privileged instructions, can only be executed in Ring 0.

• Segment 1 is always assigned to ring 1.

• Segment 2 is always assigned to ring 2.

• Segment 3 is always assigned to ring 3.

• Segments 4, 5, 6, and 7 are always assigned to ring 4.

By allocating virtual memory segments to a ring structure, the
architecture provides the memory protection system with a
simple means of preventing, detecting, and handling memory
protection violations. The operating system kernel and data
structures are located in the innermost ring (ring 0), other kernel
data structures are located in rings 1, 2, and 3, and all user
processes are located in the outermost ring (ring 4). The
privilege-level of a ring is inversely related to the ring number.
Ring 0 has the highest privilege level. Therefore, the operating
system (in ring 0) has all the privileges necessary to perform its
functions.

Each CONVEX process has a protected address space with a
corresponding privilege-level, achieved by segmenting virtual
memory with a ring structure. By segmenting memory, the
architecture supports individual address partitions for user
code, static data, dynamic data (stacks), and memory protection.

Four segments are allocated for user processes (2 Gbytes), and
four to the operating system (2 Gbytes). This allocation scheme
permits a user process to locate instruction code in one segment,
static data in a second segment, and dynamic data (stacks) in a
third segment. Table 29 shows the structure of the C-Series
architecture virtual address space.

Chapter 4 Memory management 71

EDTX 2-04-CV-120
51 056DOC065399

�

Table 29 C-Series architecture virtual address space

I

Ring Virtual address

0000 0000
0

lFFF FFFF

2000 0000
1

! 3FFF FFFF
I 4000 0000

2
I

SFFF FFFF

6000 0000
3

7FFF FFFF

8000 0000

9FFF FFFF

AOOO 0000

BFFF FFFF
4 cooo 0000

I DFFF FFFF

EOOO 0000

FFFF FFFF

Virtual address
Owner

Ring execution
space (segment) priority

0 HIGHEST(O)

1

SYSTEM

2

3

4
i

5

USER

6 , ..
7 LOWEST(4)

Data referenced by a byte-virtual address can begin on any
arbitrary byte boundary. A 64-bit operand can begin on any one
of eight byte boundaries. The byte address generated by an
instruction references the first byte (byte 0) of an operand.
However, where storage allocation is not controlled by the
system, the best CPU performance is obtained if certain memory
alignment rules are followed. The recommended boundaries for
aligning each respective data representation in memory are:

• Byte-Not applicable.

• Halfword-Least-significant address bit is 0.

• Word-Least-significant two address bits are 00.

• Longword-Least-significant three address bits are 000.

72 CONVEX C-Series Architecture

····-·····--- ··---------~-----. ----··------.,~------~------,--,---------------,-~-....._

EDTX 2-04-CV-120
51 056DOC065400

�

Addressing modes C -Series instructions that reference main memory must generate
one or more main memory addresses. Many of these instructions
explicitly generate an address called the effective address, or effa.
Several different addressing modes can generate an effa. These
modes use different combinations of address registers, the
immediate field of the instruction, and the contents of memory
to form the effa. These addressing modes are listed in Table 30.

Table 30 C-Series addressing modes

Addressing mode Assembler form Address

Absolute address address

Deferred (Aj) Aj

Indexed offset(Aj) Aj +offset i

Indexed Deferred (C4600 only) (Ai,Aj) Ai + Aj

Indirect Absolute @addr Mern(address)

Indirect Deferred @CAj) Mem(Aj)

Indirect Indexed @offset(Aj) Mem(Aj +offset)

Indirect Indexed Deferred (C4600 only) @(Ai,Aj) Mem(Ai +Aj)

In Table 30, address and offset refer to the 16-bit or 32-bit
immediate encoded in the instruction, Ai and Aj refer to the
contents of a register, and Mem(x) refers to the contents of
memory location x.

The Indexed Deferred and Indirect Indexed Deferred modes are
only supported on the C4600 Series CPUs.

See the CONVEX Assembly Reference Manual for additional
information, including a description of how these modes are
encoded in an instruction.

Chapter 4 Memory management 73

EDTX 2-04-CV-120
51 056DOC065401

�

Process structures A process is a collection of one or more tl:ueads and associated data
within a virtual address space defined by a context. A process
includes the current values of the PC, PSW, A, S, V, and
communication registers, and variables for the tl:ueads at any
given time during execution.

A thread is a single stream of execution. The ClOD Series CPUs
support only one thread per process, while the multiprocessing
C-Series CPUs support up to 32 multiple threads of execution per
process (25 in TID <4 .. 0>). The maximum number of threads that
can execute simultaneously in a process is a function of the number
of CPUs in a complex.

A process consists of a protected address space, a state, a
hardware context, and a software context.

The state of a process is the condition of a process at any given
instant. The state of a process changes in response to system
events. The process states are defined as:

• Executing-A process that is actually using a CPU at a given
instant.

• Sleeping-A process that is idle and not executing on a CPU.

• Blocked-A process that cannot continue execution and is
waiting for an external system event to occur before the
process can continue execution.

• Ready-A process that is temporarily stopped in order for
some other process to continue execution.

The context of a process consists of a hardware context and a
software context. The hardware context consists of the contents of
all or part of a CPU's general and status register sets. The software
context consists of all or part of the program's variables and other
data structures within the program and in the operating system
on behalf of the program.

A C-Series process is constructed with two general partitions.
One partition is the user program which resides in ring 4. Ring 4
is comprised of segments 4 through 7, and spans 2 Gbytes.

The other partition is the operating system kernel, its data
structures, and other shared resources that are shared by all user
processes. This kernel part of the operating system includes the
page tables used for address translation, buffers for disk or
terminal records, and the various control blocks created by the
operating system for the user.

The shared part of the operating system resides in ring 0. The
operating system's kernel data structures reside in rings 0, 1, 2,

74 CONVEX C-Series Architecture

. ·- ------. ------------~--

EDTX 2-04-CV-120
51 056DOC065402

�

i
I
I
I

l.

and 3. These data structures vary with the operating system
implementation and are not part of the C-Series architecture.

Since ring 0 is system-wide and not process-wide, every process
shares the same ring 0. Interrupt processing is an example of a
system-wide service that is performed in ring 0.

The partitioned structure of a CONVEX process is shown in
Figure 17.

Figure 17 Process, system, and ring structures

Ring 4

Process Process
0 l

I System wide -

• •

Ring 0

Process • N

I
I..H3000!7

ll/15/93

Chapter4 Memorymanugement 75

EDTX 2 -04-CV -120
51 056DOC065403

�

Process control The process control mechanism uses stacks, stack frames, and
process return blocks to manage process activity. These data
structures contain the software and hardware context
information used for controlling the execution of a process.

Stacks and stack frames

Stacks are generally used as dynamic storage allocated and
deallocated during the execution of a user program. Stacks
contain the hardware and software context. This process state
information is managed in units called stack frames. A stack frame
typically consists of an area that contains the register contents
from the previous execution context, an area that contains storage
for temporary variables local to this context, and values necessary
to manage the current stack frame, as well as a link to the previous
frame.

A stack is an array organized as a last-in-first-out (LIFO) buffer. It
is sometimes called a push-down stack The C-Series architecture
implements a stack as an array of 32-bit words, although
longword operands can be used in stack operations. This means
that all instruction set primitives that manipulate the stack
increment or decrement the stack pointer (SP) by four or eight.

The architecture defines three registers to maintain a stack:

• The stack pointer (SP, AO) is discussed in the "Stack
operations" section on page 77

• The argument pointer (AP, A6) references the first argument
contained in a stack frame that is pushed on the stack when
a subroutine is entered.

• The frame pointer (Ff', A7) provides dynamic linkage
between frames contained on a stack.

One, two, or all three of these registers are affected, depending
on the type of operation performed on the stack. Generally,
subroutine entry and exit use all three registers.

The following subsections describe some of the types of
operations performed on a stack, stack frames, process return
blocks, and stack structure for subroutine entry and exit.

Refer to the CONVEX Assembly Language Reference Manual (C
Series) for specific details about instructions used in stack
operations and management.

76 CONVEX C-Series Architecture

···-···-~ ----------··-·"':""""""""-·~-:--­··.-... --.-- .. ---,.,...------·

EDTX 2-04-CV-120
51 056DOC065404

�

Stack operations
The C-Series architecture supports two primitive operations on
a stack_ A push operation, using a psh instruction, stores an
operand on the stack and decrements the SP (AO) by 4 or 8.
Pushing a word will decrement the current value in SP by 4- The
word is then stored in the location referenced by the new value of
the SP. Address register SP (AO) points to the top element of the
stack (the last location used).

A pop operation, using a pop instruction, removes an operand
from the stack and increments the SP (AO) by 4 or 8. Popping a
word from the stack will fetch the top element from memory and
increment the stack pointer by 4.

The example in Figure 18 shows the top of the stack is initially at
byte 68 (hex).

Figure 18 Push and pop stack operations

AO after push 64

AO before push 68

t
Direction of
stack growth

65 66

69 6A

Stack

67

6B

t
Decreasing
addresses

l\ew top of stack, AO is 64

Previous lop of stack, AO is 68

AH300018

11/10/93

Pushing a word onto the stack requires that the stack pointer
(AO) first be decremented by 4 (68- 4 = 64)_ The word to be
pushed is then stored into bytes 64, 65, 66, and 67_

Popping a word from the top of the stack fetches bytes 64, 65, 66,
and 67. Then it increments the stack pointer (AO) by 4
(64 + 4"' 68).

Only 32-bit and 64-bit quantities are supported in the C-Series
instruction sets for push and pop operations on a stack The
stack should be initialized to begin on an integral4-byte address
boundary. Overt modification of the SF (by instructions that
manipulate AO) by quantities other than multiples of four is not
recommended. Even though the processor will continue to
function, performance will be degraded_

Chapter 4 Memory management 77

EDTX 2 -04-CV -120
51 056DOC065405

�

No explicit stack overflow or stack underflow detection is
performed by the hard ware. Stack overflow and underflow may
be detected by surrounding the allocated stack with inaccessible
pages. Software-reserved bits in the protection fields of the
no-access PTEs may be used to differentiate this type of access
violation from other possible causes. Consequently, the
protection trap handler can determine the reason for invocation.

Process return blocks
The hardware context of a process is managed with a data
structure called return blocks. Depending upon the return block
type, the information contained in a stack frame may include the
contents of all or part of a CPU's general and status register sets
(hardware context), and the contents of all or part of the program's
variables (software context).

The C-Series architecture defines four types of return blocks:

• Short-A short return block is formed as a result of executing
a calls instruction. The return address, PSW (FRL<l..O> =
11), A7, and A6 are saved.

• Long-A long return block is formed as a result of executing
a call instruction. The return address, PSW (FRL<l .. O> = 10),
registers Al, A2, ... , A7, and scalar registers 51, 52, ... , 57 are
saved.

• Extended-An extended return block is formed as a result of
a system call, trap, or breakpoint. The return block contains
the return address, PSW (FRL<l..O> = 01), all A registers, all S
registers, plus some additional registers on multiprocessing
C-5eries CPUs. The saved SP (AO) references the value of AO
prior to the saving of the extended return block. The frame
pointer (A7) that is saved in the extended return block
references the value of A7 prior to the extended return block
being saved.

• Context-A context return block may be formed as a result of
a system exception. The context return block contains an
extended return block plus internal CPU state. This internal
CPU state information is unique to each CPU
implementation. A context return block is pushed on the Ring
0 process stack.

The respective lengths of the short and long return blocks are
identical for all CPU implementations in the C Series.

The length of an extended return block and the length of the
context return block are both CPU-specific. That is, the ClOO
Series, the C3200/C3400/C3800 Series, and the C4600 Series
CPUs have different extended return block lengths.

78 CONVEX C-Series Architecture

. ---:-::::--··:-·-. -----:-.

EDTX 2-04-CV-120
51 056DOC065406

�

1

>4-':'

Figure 19 Short return block

t 00

04

Direction of DB
slack growth oc

Short return block
A short return block is formed as a result of executing a calls
instruction. The return address (PC), PSW (FRL=ll), frame
pointer (A7), and argument pointer (A6) are saved on the current
stack.

After the short rerum block is pushed on the stack, the frame
pointer (FP) is set equal to the stack pointer (SP). The format of a
short return block is shown in Figure 19.

PC

PSW

FP (A7)

AP (A6)

Long return block

0 -- New lop of stack

A.B300019
11/10/S:l

A long return block is formed as a result of executing a call
instruction. The return address (PCt PSW (FRL:olO), address
registers AI through A7, and scalar registers 51 through 57 are
saved. AO and SO are not saved.

After the long return block is pushed on the stack, the frame
pointer (FP) is set equal to the stack pointer (SP). The format of a
long return block is shown in Figure 20.

Chapter 4 Memory management 79

I
''" "'' ,._. ___ .. , ___ ,, ______ ,.,_,,"' ,_, .. _____ , ·~---....... , ... ,J

EDTX 2-04-CV-120
51 056DOC065407

�

Figure 20 Long return block

Direction of
stack growth

FP offset 3l

00

04

DB

oc

2.0

Z4

zc

54

PC
PS\\'

FP (A7)

AP (AS) . . .
Al

87

S6

. . .

Sl

0 -
I

i

New top of stack

AH:J[}0020

11/10/93

Extended return block ~ ClOO and C3200/C3400/C3800
An extended return blockis formed as a result of a system call (sysc
instruction), an exception, or a breakpoint.

The extended return block contains the return address (PC),
PSW (FRL=Ol), all the A registers, all the S registers and the
thread timer. The stack pointer (AO) that is saved in the extended
return block references is the value of AO prior to the extended
return block being saved.

After the extended return block is pushed on the stack, the frame
pointer (A7) is set equal to the stack pointer (SP). The format of
an extended return block is shown in Figure 21.

· .. ,

80 CONVEX C-Series Architecture

EDTX 2-04-CV-120
51 056DOC065408

�

Figure 21 ClOO and C3200/C3400/C3800 Extended return block

t
I

Direction of
slack growlh

FP offs"t 31 0

00 PC - New top of slack

OL PSW

08 FP (A7)

oc AP (A6}

. . .
2L SP (AO)

28

S7

30

S6

. . .
60

so

68

Thread timer
1 (Mulliprocessing C series oniy)

I

Extended return block- C4600

AH300021

ll/10/93

The C4600 CPU's extended return block contain the 32 address
registers, the 28 scalar registers, the PC, PSW, SSl, SSO, thread
timer, EVCNT, and EVSEL. The structure of an extended relurn
block is shown in Figure 22. Note that the header of the C4600
series extended return block is identical to a
C3200/C3400/C3800 extended return block.

Chnpter 4 Memory management 81

EDTX 2 -04-CV -120
51 056DOC065409

�

Figure 22 C4600 Extended return block

63 32 31 7 0

oxooo ~-----P_C _____ t ____ P_S_l_¥ ------11
Ox008 A7 A6

L--------------------L------------------~ • • •
0•020 \1--------A-l _____ _,__ _____ A._0 _____ --;1

o.oza S7
L---------------------------------------~

• • •

::::: II---------T-h_re_a_!_,0,...T_i_m_e_r _________ --;l
Ox07o A31 A30 L_ _____________ ~---------------~

•••
OcOCB ~---------A_9 _____ __._ _____ A_8 _____ -l
O>:DDO S27

L----------------------------~

Ox16B

Ox170

0•180

• • •
sa

SSl l
EVCNT

0

Context block

sso

IEVSEL

Afl300090
11/11/93

A context block may be formed as a result of a system exception.
The context block is an extended return block with internal
machine state pushed prior to the extended return block. This
internal state, or context portion of the return block, is
implementation-dependent. A context block is always pushed
on a ring 0 process stack. The only field that distinguishes a
context return block from an extended return block is the frame
length bits in the PSW, FRL==OO.

Return from a return block
The following instructions are used to return using each of these
return blocks:

• The rtn instruction is used to return using the short, long and
extended return blocks

• The rtnc instruction is used to return using a context return
block

... ·.·.-··

EDTX 2-04-CV-120
51 056DOC06541 0

�

1
j
I

i

i
I
1

J.

Stack frame structures
The structure of a stack frame for subroutine entry and exit is
described in Figure 23.

The return block shown as part of the stack frame structure is
one of the standard return blocks described in this section.

Figure 23 Stack frame structure for subroutine entry

SP

Callee FP
after call

AP

Caller's FP

--
_______...

--

--

31 0

Callee's
automatic

storage

Callee's LSI 2

Callee's RTN address (PC)
----~------~--~~~~-----

Return block

Caller's LSI 1

Argument[OJ

Argument[n]

Caller's
automatic

storage

Caller's LSI 2

Caller's RTN address

~

Direction of
stack growth

Increasing
addresses

AH3DIJ022

ll/10/93

Chapter 4 Memory management 83

EDTX 2-04-CV-120
51 056DOC065411

�

Figure 24 illustrates two short stack frames, generated by a
calls instruction, and how they are linked together.

Figure 24 Stack slTucture after a short call

sP-

FP-

Callee's
frame

AP-

Caller's
I

frarne

31 0

Automatic
slorage

Caller's return address (PC)

PSW

Saved FP (A7)

Saved AP (A6)

Language specific information

Argument[OJ . . .
Argument[n]

Automatic
storage

Caller's return address {PC)

PSW

Saved FP (A7)

Saved AP (A6)

Language specific information

Argument[OJ . . .
Argument[n]

Stack switching

r--

D

u
f---

0
'

Direction of
stack growth

lnct"easing
addresses

AH:J001}23

11/10/93

There is one stack per ring, with the exception of ring 0 (the
highest priority ring) which can have more. Since each ring has
at least one stack, the stack allocated to ring 4 is logically
different from the stack for ring 3, for ring 2, and so on. A ring 0
stack is allocated for each thread that enters the kernel to handle
subroutine calls, exceptions, and interrupts.

The ring 0 stack must always be aligned on a 4-byte word
boundary. A machine exception occurs if it is not properly
aligned. Ring 0 also has several other stacks used by the system
for interrupt and exception processing.

EDTX 2-04-CV-120
51 056DOC065412

�

I
I

l
;
~ .. ---·

A system call performs the follo\lliing procedure for switching
stacks;

1. After a successful system call, a new stack frame is created
in the target ring, and an extended subroutine return block
is pushed onto the target stack (the called routine's stack).

2. The stack pointer of the new stack is:

a. For ClOO Series CPUs-initially loaded from byte
address o 0 0 0 0 0 4 8 of page 0 of the called ring.

b. For multiprocessing C-Series CPUs-initially loaded
from the system resource structure. A pointer to this
structure located at byte address 0000 0048 of page 0
of ring 0.

3. After the extended return block is pushed, the SP (AO) is
copied into the FP (A7).

4. The PC is loaded with the value from the gate referenced
by sysc. Refer to the sysc instruction description in the
CONVEX Assembly Language Reference Manual (C Series).
Refer to the discussion on gate processing in the "Inter-ring
procedure call and return" section on page 121.

The stack pointer value saved in the extended return block
represents the value of the caller's stack pointer at the time of the
system calL The stack pointer value is saved in order to make a
proper return from a multiplexed stack resource structure. It is
the link back to the outer ring's stack and is contained within the
extended return block pushed on the inner ring's stack.

Arguments for the system call are maintained in a
programmer-defined area, such as an argument packet or on the
stack. Additional details for an inward system call are covered in
the description of the sysc instruction and in the section on
inner-ring procedure calls and returns.

The converse of a system call is a system return, which is
implemented with a rtn instruction. Unlike a system call, no gate
processing is necessary.

An inner ring (the kernel) can unconditionally access an outer
ring (a process), so memory protection is not required. A system
return is similar to a normal return with the following
differences;

• The PC ring field can change

• All returns must be the same ring or outward (away from
ring 0)

Chapter 4 Memory management 85

EDTX 2-04-CV-120
51 056DOC065413

�

• The return block popped off the stack must be an extended
or context type

• After the return block is popped from the stack:

- For ClOO Series CPUs-The updated SP of the inner ring
is restored to byte address 0 0 0 0 0 0 4 8 of page 0 of the ring
containing the rtn instruction.

- For multiprocessing C-Series CPUs-The updated SP of
the inner ring is restored to the system resource structure
pointed to by the system resource structure pointer located
at byte address 0 0 0 0 0 0 4 8 of page 0 of ring 0.

This guarantees that the stack will be initialized to the proper
values (with subsequent system calls to the same ring).

86 CONVEX C-Series Architecture
I
I
I

---···---···· "' , _ _._, __ ,,,.__, ____ ,, _ ____L_

EDTX 2-04-CV-120
51 056DOC065414

�

Resource structures
Resource structures are pre-determined memory locations used
to store specific registers, flags and lock bits.

Shared resource structures
In multiprocessing C-Series CPUs, the communication registers
can be viewed as a form of fully semaphored memory, available
in considerably smaller quantities than virtual memory.
Communication registers and related operations are described
in the "Communication registers" section in Chapter 5. One of
the primary functions of communication registers is providing
software a means to relocate frequently accessed data from
virtual memory to a location with internal locks.

Memory duals of the communication instructions perform
primitive functions using virtual memory that are analogous to
functions that manipulate communication registers. Software
can use the memory duals of the communication instructions to
create data structures in memory, then relocate the critical data
structures to a communication register set.

These memory duals operate on a data structure called a shared
resource structure. A shared resource structure is a simple shared­
access memory structure used by the multiprocessing C-Series
CPUs. The shared resource structure defines a two or three 32-bit
word memory format that includes a data word or longword, and
synchroruzation bytes to synchronize access to the strucrure.

For operations on data words, the first word of the structure is
the synchronization word, and the second is a data word. For
operations on longword data, the first word of the structure is
the synchronization word, the second is the most-sigruficant
word of the data longword, and the third word is the
least-significant word of the data longword. For both structure
types, the synchronization word contains a lock byte and a valid
byte.

The lock byte is the first-level of semaphoring, and is set to OxFF
while the shared resource structure is in transition. A structure is
in transition when data is being written to the structure or read
from the structure. Since the shared resource structure is
semaphored, the lock byte must be successfully "test-and<-Set" as
the first-level access of semaphoring. Test-and-set is an indivisible
operation provided by the memory system.

An atomic operation is an indivisible operation. That is, once the
operation begins, no other operation or event, such as interrupts,
may intervene until the operation is complete.

Chapter 4 Memory management 87

.. '-··---·····--~ J

EDTX 2 -04-CV -120
51 056DOC065415

�

The shared resource structure is specifically used by some
instructions when atomically incrementing and decrementing
memory, or when pushing and popping a shared resource.

The next synchronization byte is the valid byte, which is set if
valid data follows the synchronization (lock) byte. The valid byte
is used by the s ndr, rcvr, and incr instructions to indicate that
valid data is present in the shared resource stn.lcture. The
increment instructions, incr. wand incr. 1, operate on a
resource shucture by incrementing or decrementing the data field
by the contents of an address register.

These two synchronization bytes model the semaphoring
inherent in the communication registers. The lock byte models
the inherent indivisible access to the communication registers
provided by their primitive functions. That is, the memory
system doesn't provide primitive operations like send and receive.
The valid byte models the communication lock bit, showing
whether valid data is in the register, that is, the shucture is
"valid."

The format of the word and longword shared resource structures
is shown in Figure 25.

Figure 25 Word and longword shared resource structures

Word structure
31 24 23 8 7 0

D0 ~ ~------Lo_c_k ______ ~\ ____________ s_~_-__ re_s_e_r_v_e_d ____________ ~I ______ V_a_li_d ____ ~l
~ . Data word .

Longword structure
31 24 23 8 7 0

oo ~i ______ Lo_c_k ______ ~l ___________ s_,_Y __ re_s_e_r_v_e_d ____________ ~l _____ v_a_li_d ____ ~
04 Data MSW

DB
~--4

Data LSW
~--~

AH300024
ll/10/93

As an example of how this structure works, consider the rcvr _ w
efta, Ak instruction. This instruction is the memory dual of the
rev . w Ceffa, Ak instruction in the "Communication registers"
section in Chapter 5.

88 CONVEX C-Series Architecture

EDTX 2-04-CV-120
51 056DOC065416

�

'

l~

First, a test-and-setisperformed on the lock byte. If this succeeds
(the lock byte was initially 00), the valid byte is read. Next, the
data word is read into address register Ak. If the valid byte is
OxFF, then valid data exists and a success status of 1 is returned in
carry (C). Otherwise, a failure status of 0 is returned.

If the test-and-set of the lock byte succe-eds, the data is always read
into register Ak. 1bis occurs, regardless of the state of the valid
byte, because the rev. w communication register instruction
always reads the contents of the corrununication register into
register Ak. A single-level of synchronization is required for the
communication registers as previously mentioned.

Stack resource structures
An extension of the shared resource structure, called a stack
resource structure, is provided to allow stack operations, such as
push and pop, on a stack of word resource structures. The
resource instructions, pshr and popr, perform these stack
operations. These instructions make the word resource structure
operate as a stack, with the header located at the base of the stack.
As shown in Figure 26, this stack grows "upwards," that is, the
addresses of stack entries increase with stack growth, which is the
reverse of the process stack.

These instructions use the second word of the word resource
structure as a stack index to a contiguous array of elements
immediately following the resource structure in the stack. Since
these instructions ignore the valid byte (bits <7 .. 0>) in the word
resource structure, this byte is reserved for future use by
hardware.

Instead of the valid byte, the word resource structure contains a
depth word (index) that shows the number of elements in the
structure.

The pshr Ak, <efta> instruction pushes data onto this structure
by successfully test-and-setting the lock byte, then adding 4 to the
index, and writing the pushed value to the base address+ 4 +new
index count. The value of 4 is added to the index to increment past
the index word.

The popr <efta>, Ak instruction pops data from this structure by
successfully test-and-setting the lock byte, reading data from base
address + 4 + index, and then decrementing the index by 4.

Figure 26 shows the stack resource structure as used by the
pshr and popr resource instructions.

Chapter4 Memory management 89

EDTX 2 -04-CV -120
51 056DOC065417

�

' l
l

!
I
1
I

!
I
l

I

I
~ :
i
'

Figure 26 Stack resource structure

31 24 23

00 Lock I
04

08

SW reserved

Index

Entry 0

Direction of stack growth
and increasing add<esses

!

8 7

I
0

HW reserved

AH300025
l L/l0/93

Figure 27 shows an example of a stack resource structure
containing two pushed entries.

Figure 27 Stack resource structure with two pushed entries

31 24 23

DO Lock I
04

08

oc

SW reserved

8

Entry 0

Entry 1

Direction of 5tack growth
and increasing addresses

8 7

I HW
0

reserved

AH300026

11/ll/93

The address of the top of the stack is 4 + 8 =C. The address of the
top of the resource stack is always located by taking the address
of the stack resource structure index plus the contents of the
stack resource structure index.

Executing a popr instruction would return the value "Entry 1" in
the specified register and decrement the index by 4 making the
top of the stack now 4 + 4 = 8. A ps hr adds 4 to the index and then
writes the entry to the structure at its new top. The popr
instruction returns an underflow status and the value returned in
register Ak is invalid if the index in the resource structure is zero.

90 CONVEX C-Series Architecture

EDTX 2-04-CV-120
51 056DOC065418

�

System resource structures
When a process enters ring 0 (called ring crossing), the state of that
process is pushed onto a stack in ring 0. This state is either an
extended frame for interrupts, system calls and exceptions, or a
context frame for page faults.

The ClOO Series CPUs have a stack pointer in page 0 that points
to this stack. It is loaded from page 0 during a ring crossing. If a
fault occurs in ring 0, a context frame is pushed on a stack that is
always available with a separate context stack pointer.

However, since more than one thread in a process could be
crossing rings or faulting at the same time, the multiprocessing
C -Series CPUs define a system resource structure to manage
allocation of available stacks in ring 0. The system resource
structure is a stack of pointers to available stacks that are allocated
to threads. Accesses to the system resource structure are
synchronized by placing part of this stn.Icture in a communication
register with the other part contained in memory. The
communication register lock bit is used as the semaphore in order
to control contention between multiple threads. Refer to the
"Communication registers" section in Chapter 5, "Multiprocessor
management," for more information concerning communication
register operations.

The system resource structure for ring 0 is managed differently
than a process stack resource structure in ring 4. Whenever a
thread either crosses a ring or faults (in any ring), the virtual
address of the communication register contained in address
0 000 004 8 of page 0 (of the ring being entered) is read. Ring 0 is
for faults, interrupts, and system exceptions.

This communication register contains the base address and stack
index to a list of available stack pointers located in memory.

These stack pointers point to system stacks used for cross ring
calls and returns, and for saving and restoring context blocks.

Figure 28 shows the base address and index of the system
resource structure contained in this communication register.

Figure 28 System resource structure

Base address

63 32 31

[ndex

0

AH300027

11/10/93

Chapter4 Memory management 91

-:--:--..,..,...~-~~~--- ···-·-·--··--~-·--·-~.--~---.~----·-·-~···--------- I

EDTX 2 -04-CV -120
51 056DOC065419

�

Figure 29 shows how a stack is allocated and deallocated from
the system resource structure.

Figure 29 Accessing the system resource structure for multiprocessing C-Series CPUs

Page 0

System
resource

46 structure
pointer

System resource structure

r------------------------1
I I
I Communication 1

register

I 63 32 31 o I
I I3ase address [ndex J I

I v I I I

: Memory :

I +Add I
I I
I ' I
I Stack N -1 Base address I
I Stack N Base address + index I
I I
I I
I _________________________ I

AH300028
11/L0/9:3

After the address of the communication register is read, the
communication register shown in Figure 28 and Figure 29 must
be successfully received. If this register cannot be received
immediately, the receive operation retries until the register is
successfully received.

The 64-bit data portion of this register is subdivided into two
words. The most-significant word is the base address which
contains the virtual memory address of a list of stack pointers for
available stacks. The least-significant word is the stack index
which is the byte offset from the virtual address of the next
available stack pointer plus 4.

When a stack is allocated from the list, the stack pointer is
fetched by decrementing the stack index by 4 and the contents
(base address + decremented index) are read. The decremented
value of the index is sent back to the communication register,
making the system resource structure available for access by
other threads.

92 CONVEX C-Series Architecture

... . :·._.,..

EDTX 2-04-CV-120
51 056DOC065420

�

I
L
o~R~~-------,.-•00

When the thread eventually exits ring 0 via the rtn or rtnc
instructions, the stack is returned to the structure in the following
sequence:

1. Address 0000 0048 in page 0 is read to fetch the
communication register address that must subsequently be
received.

2. The stack pointer to be returned is written to memory at
address (base address + index).

3. The index is incremented by 4 to reflect the stack pointer
being "pushed" onto the structure_

4. The incremented value is sent back to the communication
registers, making the structure available for access by other
threads.

Clmpter 4 Memory management 93

~·~.. . .

EDTX 2-04-CV-120
51 056DOC065421

�

Virtual memory
management

The address space of the C-Series architecture is implemented as
a virtual address space. Since the virtual address space normally
spans a larger range of memory addresses than the physical
address space, a virtual address may not be associated with a
valid physical address at any given time. Therefore, the
referenced data may or may not be in physical memory.

Virtual-to-physical address translation is performed by the
Address Translation Unit {ATU). The ATU accelerates the
translation of virtual addresses to physical memory by an
internal address cache. The ATU is described in
''Virtual-to-physical address translation" section on page 110.

The C -Series architecture manages this type of memory structure
by implementing the following memory management
mechanisms and structures:

• Segment-A virtual-address contiguous 512-Mbyte block of
memory.

• Segment descriptor register (SDR)-A 32-bit register
containing information necessary to begin translating a
virtual address offset to an address in physical memory.

• Ring of execution-corresponds to a memory segment or
range of segments with respect to the virtual address space of
a process.

• Page-A contiguous 4-Kbyte block of memory that is both
virtual-address and physical-address contiguous.

• Page frame-A page stored in physical memory.

• Page frame base-The beginning address (zero based) of a
page in memory.

• Page table-A table that contains 4-byte entries called page
table entries (PTEs). It begins on an integral page boundary
and is contained in one page frame or less.

• Page table entry (PTE)-One of several32-bit entries
containing information necessary to translate a virtual
address to a physical address. Other status bits within a PTE
determine if a page is resident in physical memory and
determine the validity of the memory reference from a
protection viewpoint. A PTE is aligned on an integral word
boundary. Refer to "Page table entries" section on page 101.

• Referenced bit-A bit associated with a page frame that
indicates a valid read or write has occuned. Referenced bits
are discussed in the "Referenced and modified bits" section in
Chapter 7.

94 CONVEX C-Series Architecture

EDTX 2-04-CV-120
51 056DOC065422

�

• Modified bit-A bit associated with~ page frame that
indicates a valid write has occurred. Modified bits are
discussed in the "Referenced and modified bits" section in
Chapter7.

• Address translation unit (ATU)-A programmer- invisible
address cache that is maintained in hardware. The ATU
contains the most recently used virtual-to-physical address
translations.

Although the entire virtual address space is always available to
a user process, much less physical memory may be installed in
the processor, and even less memory may be available to a given
process. Consequently, the CPU contains an address translation
mechanism that dynamically maps the virtual memory pages of
a process onto physical memory page frames during process
execution. This mechanism uses a hierarchical tree of lookup
tables to perform the required address translation.

Multiprocessing extensions

The following subsections present the extensions added to the
C-Series architecture that deal with virtual memory
management. All of these architectural extensions ~re required
to support the ability to multiprocess, or run a process on two or
more CPUs simultaneously.

The extensions for multiprocessing CPU complexes add and
define the following memory management attributes:

• CPU-One central processing unit, consisting of a scalar and
vector subsystem.

• Complex-The entire set of one or more CPUs in a
configuration.

• Subcomplex-Any subset of a complex.

• Process-A collection of instruction streams within a single
virtual address space, that is, sharing the same SDRs.

• Thread-Any single instruction stream executing within a
process.

As previously defined, a process is a collection of one or more
threads. A supercomputer with more than one CPU in a complex
could have a process executing on the entire complex, with one
thread executing on each CPU.

Chapter 4 Memory management 95

EDTX 2-04-CV-120
51 056DOC065423

�

Each CPU contains two registers which help define the memory
management scheme for tlu'eads:

• Communication index register

The communications index register (CIR) defines which set
of the communication registers is being used by the process
executing on a CPU. Each CPU has one CIR. The working
relationship of processes, CIRs, and the communication
registers is described in the "Communication registers"
section in Chapter 5.

The CIR defines which segment descriptor registers (SDRs)
are in use by a processor, since the SDRs reside in the
communication registers.

The C3200 Series complexes implement a CIR as a 3-bit
register field, allowing eight different index values to be
represented. A 3-bit CIR does not limit a C3200 Series
complex to only eight processes, but allows a maximum of
eight processes to be loaded in the communication registers
at one time.

The C3400 /C3800 /C4600 Series complexes implement a CIR
as a 5-bit register field, allowing 32 different index values to
be represented. A 5-bit CIR does not limit a
C3400/C3800/C4600 Series complex to only 32 processes,
but allows a maximum of 32 processes to be loaded in the
communication registers simultaneously.

• Thread identifier register

96 CONVEX C-Series Architecture

The C3200/C3400/C3800 Series complexes use a 5-bit
thread identifier register (TID) register to subdivide a
process into disjointed threads. Up to 32 tlu'eads may exist in
the same process, that is, have the same CIR. The TID makes
the threads unique. The TID is primarily used for
implementing unshared memory in the multiprocessing
implementation.

The C4600 Series complexes use a 5-bit TID register, but only
three bits (<bits2_.0>) are supported. Bits <4.-3> are ignored.
Therefore, only eight threads can exist in the C4600 Series
complexes.

The manner in which a processor becomes a particular TID is
described in the UMultithreaded execution" section in
Chapter 5.

i

I
I
~ ···. .

EDTX 2-04-CV-120
51 056DOC065424

�

Shared and unshared memory
As stated earlier, a process is a collection of up to 32 threads. A
process can view each page of virtual memory as either shared or
unshared.

Shared memory means that more than one thread may use the
same virtual address to access the same physical location in
memory. Proper synchronization must be maintained by software
in this case.

Unshared memory means that each thread uses the same virtual
address to access different physical locations in memoryi for
example, the stack. A process that may or may not execute in
parallel (depending on whether idle CPUs are available) needs
to be able to use the stack without additional software overhead.
This ensures that one CPU is not popping something that
another CPU pushed, and so forth.

The CIR identifies a process and its respective
virtual-to-physical memory address translation. The
multiprocessing CPU implementation expands the address
translation mechanism by adding a level to the multilevel tree of
lookup tables in order to acconunodate multiple threads within
a process. The PTE has 32 thread-level entries. In order for each
thread within a process to have a unique address space, a
thread-level PTE is indexed by the TID. The TID modifies the
virtual-to-physical address translation for the thread to allow
each thread of a process to have private (unshared) physical
memory for unshared variables. Since threads are created and
terminated by the hardware, independent of the operating
system, the hardware must perform the equivalent of dynamic
memory allocation. At the time a process is loaded for execution,
the operating system defines a "pool" of available thread
identifiers within the communication registers of the process.
The operating system also marks the address translation
descriptors (in memory) for all unshared pages per thread of
execution, and allocates a page of memory for each TID in the
"pool" for each unshared page. The hardware then allocates
TIDs and corresponding unshared memory from this pool as
CPUs enter and exit the process. Refer to Chapter 5,
"Multiprocessor management," for more information regarding
thread identification.

Chapter 4 Memory management 97

··- ······-·~-~---------

EDTX 2-04-CV-120
51 056DOC065425

�

Segment descriptor register

The first level of virtual-to-physical address translation involves
a set of eight segment descriptor registers (SDR), one for each
segment of physical memory numbered 0-7 (see Table 29).

Each SDR has a page frame base that points to the beginning of
a first-level page table. The SDR also contains validity protection
information. When a process is loaded for execution, the
appropriate information is loaded into a CPU's SDRs. Although
functionally identical, the format for an SDR is different between
the ClOO Series implementation and the multiprocessing
implementations.

SDR format- ClOO
Figure 30 shows the format of a ClOO Series SDR.

Figure 30 SDR Format-ClOD Series CPUs

v 0

31 50 29

Page frame base HW

9 B 7 6

Bit <31>-Valid segment (V)

SW
0

AH300029

11/10/93

If this bit is clear, this segment is not valid. A segment is invalid
when no translated virtual addresses can be associated with any
pages in this segment.lf an invalid segment is referenced, a
system exception is generated and an error code is loaded into
address register A5 after a context block is saved.

Bit <30>-Hardware reserved (0)
Must be zero.

Bits <29 .. 9>-Page frame base (PFB)
The PFB is the high order 21 bits <29 .. 9> of a 3G-bit physical
address, which points to the beginning of a first-level page table
in physical memory. Bits <8 .. 2> of this physical address come
from bits <28 .. 22> of the virtual address to be translated. Bits
<1..0> of the physical address are zero. The first-level page table
for a process requires 512 bytes. A single 4~Kbyte page frame
contains all the first-level page tables for the eight segments of a
single process.

98 CONVEX C-Series Architecture

EDTX 2-04-CV-120
51 056DOC065426

�

j

1

Bits <8 .. 7>-Hardware reserved (HW)
These bits have no meaning at this time. System software must
not use these bits.

Bits <6 •• 0>-Software reserved (SW)
The page frame bits in the SDR permit the operating system to
indicate alternate structures for the 4-Kbyte page containing the
first-level page table.

One possible structure is to only allocate 512 bytes rather than4
Kbytes to the first-level lookup.

Another possible structure is to configure the 512-byte page as
one of the eight possible 512-byte partitions in a 4-Kbyte page.
This permits multiple first-level lookups to be physically
contained in one page frame.

SDR format- C3200/C3400/C3800
Figure 31 shows the format of the C3200/C3400/C3800 Series
CPUSDR.

Figure 31 SDR format--C3200/C3400/C3800 Series CPUs

Page frame base I sw I PM I CIO I I/O I v
9 8 7 6 5 4 3

Bits <31 .. 9>-Page frame base

SW
0

AH300030
ll/10/93

If a valid reference to a segment occurs1 then bits <31..9> become
the most-significant 23 bits of a 32-bit physical address, which
points to the beginning of a first-level page table in physical
memory. Bits <8 .. 2> of this physical address come from bits
<28 .. 22> of the virtual address to be translated. Bits <1..0> of the
physical address are zero. The first-level page table for a process
requires 512 bytes. A single 4-Kbyte page frame contains all the
first-level page tables for the eight segments of a single process.

Bit <8>-Software reserved (SW)
This bit has no meaning at this time. System software may use
these bits in the future.

Bit <7>-Process monitor (PM)
Process monitoring is enabled when this bit is set to 1, and
disabled when it is cleared to 0. This function is not generally
available because special test equipment is required.

Chapter 4 Memory management 99

EDTX 2-04-CV-120
51 056DOC065427

�

Bit <6>-Channell/0 (CIO)
When this bit is set, it indicates that the target segment is valid
for l/0 references from a channel processor.

Bit <5>-lnput/Output (110)
When this bit is set, it indicates that the target segment is to be
interpreted as part of I/0 address space and not physical
memory. This bit is implemented on the C3200 Series CPUs only.

Bit <4>-Valid segment (V)
When this bit is cleared, this segment is not valid. A segment is
invalid if no translated virtual addresses can be associated with
any pages in the segment.

If an invalid page is referenced, a system exception is signaled, a
context block is saved, and an error code is loaded into address
register AS.

Bits <3 .. 0>-Software reserved (SW)
These bits have no meaning at this time. System software may
use these bits.

SDR format- C4600
Figure 32 shows the format of the C4600 Series CPU SDR.

Figure 32 SDR format-C4600 series CPUs

31

Page frame base

9 8

Bits <31..9>-Page Frame Base

HW
7 5 5 4 3 2 0

AWJ00092
!1/15/93

If a valid reference to a segment occurs, these bits become the
most-significant 23 bits of the physical address, which points to
the beginning of a first-level page table in physical memory.

Bits <8 .. 7>-Hardware reserved

Bit <6>-Channel I/0 (CIO)
When this bit is set it indicates that the target segment is valid
for I/0 references from a channel processor.

Bits <5>-Hardware reserved

Bit <4>-Valid segment (V)
When this bit is cleared, this segment is not valid. A segment is
invalid if no translated virtual addresses can be associated with
any pages in the segment.

100 CONVEX C-Series Architecture I
I

.L

EDTX 2-04-CV-120
51 056DOC065428

�

Bits <3 .. 0>-Hardware reserved

Page table entries

The second and third levels of virtual-to-physical address
translation are accomplished using first- and second-level page
table entries (PTEs). These are similar in function to segment
descriptors. Like the SDRs, the format of the PTE for each
architecture is slightly different.

A PTE is a 32-bit word aligned on an integral32-bit boundary.
The least-significant two bits of the byte address are 00. There are
128 PTEs in a first-level page table and 1,024 PTEs in a
second-level page table. A PTE determines the validity of a
memory reference and the physical memory location of a valid
reference. A valid reference meets two requirements. First, the
PTE must be valid. Second, the type of access being made (read,
write, or execute) must be allowed by the appropriate protection
bit of the PTE.

PTE format- ClOO
Figure 33 shows the formats of resident first- and second-level
PTEs for CIOO Series CPUs.

Figure 33 Resident PTE format-ClOG Series CPUs

v 0

31 30 29

v
31 30

I
J

First-level PTE

Page frame base HW c
12 11 9 8 7

Second-level PTE

Page frame base HW c
12 11 8 7

sw

sw

I RD I WR I EX I R
2

4 3 2

0

0

AH30003l
11/10/93

The following subsections describe the meaning of the bits in
Figure 33.

Bit <31>-Valid PTE (V)
This bit indicates the validity of the PTE. If this bit is clear, any
reference to this PTE while attempting to reference the
associated page frame is an invalid reference. Conversely, if this
bit is set, any reference to this PTE is a valid reference.

Chapter 4 Memory management 101

EDTX 2-04-CV-120
51 056DOC065429

�

I
I

l

I
i
~

I
•:

I
J

1.

,,

i
''., l I

l
t
f

When bit <31> and bit <30> are both set, bit <0> is ignored. A
valid PTE that references 1/0 space is always assumed to be
resident.

Bit <30 .. 12>-Page frame base (PFB)
If a valid reference to a resident page occurs, then bits <30 .. 12>
become the most-significant 19 bits of a 31-bit physical address.
The page frame base is modulo 4 Kbytes. For a first-level PTE, bit
<30> is always 0. For a second-level PTE, bit <30> may be 0 or 1.

Bit <11 .. 9>-Hardware reserved (HW}
These bits are reserved for potential use by hardware and are not
interpreted. It is recommended that software not use these bits.

Bit <8>-Encached (C)
When this bit is clear, the data associated with the reference is
encached in the CPUs data cache. When this bit is set, the
referenced data is not encached.

Bit <7 .. 4>-Software reserved (SW)
These bits are reserved for potential software use.

Bit <3>-Read access (RD)
This bit indicates the validity of a read access to the referenced
page frame. A 0 indicates that no read access is permitted. A 1
indicates that a read access is permitted to the referenced page
frame. If a read access is attempted and this bit is cleared, a
system exception is signaled and an error code is loaded into
address register A5.

Bit <2>-Write access (WR)
This bit indicates the validity of a write access to the referenced
page frame. A 0 indicates that no write access is permitted. A 1
indicates that a write access is permitted to the referenced page
frame. If a write access is attempted and this bit is cleared, a
system exception is signaled, and an error code is loaded into
address register AS.

Bit <1>-Execute access (EX)
This bit indicates the validity of an execute access (branch or
jump to instruction) to the referenced page frame. A 0 indicates
that no execute access is permitted. A 1 indicates that an execute
access is permitted to the referenced page frame. If an execute
access is attempted and this bit is cleared, a system exception is
signaled, and an error code is loaded into address register AS.

Bit <0>-Resident page (R)
A 1 indicates the presence of the referenced page frame in the
physical address space of the process. A 0 indicates the absence
of the referenced page frame in physical memory. In this case, a
page fault occurs and causes a system exception. If the
referenced page frame is present, bits <30 .. 12> are used as the

102 CONVEX C-Series Architecture

EDTX 2-04-CV-120
51 056DOC065430

�

1

_l

Note

.... :"'-.,;:.,_:.:, .. ,,.,.;_\::,.; .. ,.;i:·i~"!)~~ .

page frame address of the referenced page frame. Bit <0> is
interpreted for valid PTEs only.

Segment out-of-bounds errors may be detected by clearing all
unused PTE valid bits to zero. Thus, during virtual-to-physical
address translation for invalid pages, an out-of-bounds reference
causes a system exception.

Figure 34 shows the format of a nonresident PTE for CIOO Series
CPUs.

Figure 34 Nonresident PTE format--ClOO Series CPUs

31 30 29

Note

Software reserved I RD I WR lEX \R=OI
4 3 2 0

AH300032
11/10/93

Bit <30> must be cleared. If bit <30> is set, an I/O reference can
occur. The read, write, and execute bits are then interpreted to
determine if the reference is valid.

PTE format- C3200/C3400/C3800
The C3200/C3400/C3800 Series CPU implementation expands
the address translation mechanism by adding a level to the
multilevel tree of lookup tables. The additional level of lookup
tables is needed in order to accommodate multiple treads within
a process. There are 32 thread-level PTE entries.

In order for each thread within a process to have a unique
address space, a thread-level PTE is indexed by the thread
identification register (TID).

Figure 35 shows the format of a resident PTE for the
C3200/C3400/C3800 Series CPUs. Notice the thread-level PTE.
If the level3 (LT) bit (bit <7>) of the second-level PTE is set. the
page frame base in the second-level entry is expanded to bits
<31..8> and is used as the base address of a TID-indexed table of
thread-level entries. These thread-level entries provide the final
level of translation to the data page. If the LT bit is cleared, the
pages do not require any thread-level translation.

The LT bit determines whether data pages are shared or
unshared between threads. When the LT bit is set, the data pages
for different threads in a process are unshared. When the LT bit
is clear, the data pages are shared between all threads in a
process.

Chapter 4 Memory management 103

EDTX 2-04-CV-120
51 056DOC065431

�

·-.. -.. -. -;-·

Figure 35 Resident PTE forrnat-C3200/C3400/C3800 Series CPUs

31

31

31

31

first-level PTE

Page frame base SW I HW I CIO I I/0 I v I RD I WR I EX I R
12 11 8 7 & 5 4 2 0

Second -level PTE, shared page (LT=O)

Page frame base I SW j CLB j SW j LT I CIO I I/0 I V I RD I WR I EX I R

12 11 10 5I 5 7 6 5 4 3 2 0

Second-level PTE, unshared page (LT=l)

Page frame base I LT I era lvo! v I RD I WR I EX I R

Page frame base

8 7 6 5 4 D

Thread-level PTE

I sw I CLB I sw I HW I CIO I I/0 I v I RD I WR I EX I R I
12 11 10 9 8 7 6 s 4 0

AH300033
ll/ !0/93

The format of nonresident PTE for the C3200/C3400/C3800
Series CPUs is shown in Figure 36.

Figure 36 Nonresident PTE forrnat-C3200/C3400/C3800 Series CPUs

31

Note

Software reserved I I/O Jv= 1j RD I WR f EX IR=ol
6 5 4 3 2 0

AH3000:l4
11/10/93

In Figure 35 and Figure 36, all software-reserved fields are not
interpreted by hard ware when a PTE is valid (valid bitis set) and
nonresident (resident bit is cleared). The read, write, and execute
bits are interpreted by the hardware whenever a reference is
made to a PTE with the valid bit set

A segment out-of-bounds error is detected when an invalid PTE is
accessed. A reference to an invalid PTE results in a system
exception.

104 CONVEX C-Series Architecture

~~-~~~-- .. -----·--· ... _ ...

EDTX 2-04-CV-120
51 056DOC065432

�

The following subsections describe the meaning of the bits in
Figure 35 and Figure 36.

Bits<31..12> or bits <31 .. 8>-Page frame base (PFB)
If a valid reference to a resident shared page occurs, then bits
<31..12> become the most-significant 20 bits of a 32-bit physical
byte address. The page frame base is modulo 4,096 bytes. For
unshared pages, bits <31..8> become the most-significant 24 bits
of a 32-bit physical address of the thread-level PTE.

Bits<11 .. 8>-PTE dependent
For unshared data pages, these bits are part of the page frame
base of the thread level PTE. The PTE-dependent bits are defined
as follows:

• Bikll>-Software reserved (SW)
This bit is reserved for potential use for software.

• Bit<10>-Cache load bypass (CLB), or
software reserved bit (SW)
For level 2 PTEs of shared pages and thread-level PTEs, this
bit determines whether the data cache is bypassed (when set
to 1), or not (set to 0) on load operations from the target page
frame, forcing the load operation to reference physical
memory. The CLB bit does not keep the data from being
encached on stores.

For all other page table entries, this bit is reserved for potential
use by software.

In some situations the operating system views the cache
consistency rules to be too stringent. That is, the overhead for
full synchronization is too expensive, or in some cases
impossible to enforce. Therefore, the multiprocessing
implementations use the CLB bit as part of the bottom-level
PTE (PTE2 or PTET) to force the referenced page frame to
appear not encacheable.

• Bits<9 .. 8>-Software reserved bits (SW)
These bits are reserved for potential use for software.

Bit<7>-Level3 (LT)/thread-level, or
hardware reserved (HW)
For level 2 PTEs, this bit determines whether the data page is
shared (zero) or unshared (one). For first and thread-level
entries, these bits are reserved for potential use by hardware.

Bit<6>-Channel I/0 (CIO)
This bit indicates that the target page frame is valid for 1/0
references from a channel processor.

Chapter 4 Memory management 105

EDTX 2-04-CV-120
51 056DOC065433

�

Bit<5>-lnput/Output (1/0)
For C3200 Series CPUs only, this bit indicates that the target page
frame is to be interpreted as part of I/0 address space and not
physical memory.

Bit<4>-Valid PTE (V)
This bit indicates whether or not the PTE is valid. When this bit
is set, the PTE is valid. When this bit is cleared, the PTE is
invalid. Accessing an invalid PTE results in a segment
out-of-bounds error and a system exception.

Bit<3>-Read access (RD)
This bit indicates the validity of a read access to the referenced
page frame. When this bit is cleared, it indicates that no read
access is permitted. When this bit is set, it indicates that a read
access is permitted to the referenced page frame. If a read access
is attempted, and bit <3> is 0, a system exception is signaled, and
an error code is loaded into address register AS.

Bit<2>-Write access (WR)
This bit indicates the validity of a write access to the referenced
page frame. When this bit is cleared, it indicates that no write
access is permitted. When this bit is set, it indicates that a write
access is permitted to the referenced page frame. If a write access
is attempted and bit <2> is 0, a system exception is signaled and
an error code is loaded into address register AS.

Bit<l>-Execute access (EX)
This bit indicates the validity of an execute access to the
referenced page frame by branching or jumping to an
instruction, or sequentially executing instructions (that is,
"falling" across a page boundary). When this bit is cleared, it
indicates that no execute access is permitted. When this bit is set,
it indicates that an execute access is permitted to the referenced
page frame. If an execute access is attempted, and bit <1> is 0, a
system exception is signaled and an error code is loaded into
address register A5.

Bit<O>-Resident page (R)
When this bit is set, it indicates the presence of the referenced
page frame in the physical address space of the process. When
this bit is cleared, it indicates the absence of the referenced page
frame in physical memory. In this case, a page fault occurs and
causes a system exception. If the referenced page frame is
present, bits <31..12> are used as the page frame address of the
referenced page frame. Bit <0> is interpreted for valid PTEs only.

106 CONVEX C-Series Architecture

i

I
i

···-_l_

EDTX 2-04-CV-120
51 056DOC065434

�

PTE format - C4600
The C4600 series CPUs use the same two/three-level page table
structure as the other multiprocessing (C3200/C3400/C3800
Series) CPUs. However, the format for the PTE uses different bit
assignments, mainly additional HW reserved bits. Figure 37
shows the format of a resident PTE for the C4600 Series CPUs.

Figure 37 Resident PTE format-C4600 Series CPUs

.31

.31

31

31

First-level PTE

Page frame base HW I CIO I HW I v HW R

12 11 10 9 8 7 6 5 4 2 0

Second-level PTE (LT:=:O)

Page frame base I HW !LT=olcro I cB I v I RD I wR I EX I R
12 11 10 9 8 6 4 3 2 0

Second-level PTE (LT=l)
Page frame base ILT=llcwl HW I V HW R

Page frame base

12 11 10 9 8 6 5 4 3 2 0

Thread -level PTE

HW 0 I CIO I CB I v I RD I WR I EX I R
12 11 10 9 8 7 6 5 4 3 2 0

AH:l00091

IL/15/93

The following subsections describe the meaning of the bits in
Figure 37. All bits labeled "HW" are hard ware reserved bits and
are reserved for future use. The OS should avoid using these bits.

Bits<31 .. 12> or bits <31 .. 8>--Page frame base (PFB)
If a valid reference to a resident shared page occurs, bits <31..12>
become the most-significant 20 bits of a 32-bit physical byte
address. The page frame base is modulo 4,096 bytes. For
unshared pages, bits <31 .. 8> become the most-significant 24 bits
of a 32-bit physical address of the thread-level PTE.

Bil<7>-Level3 (LT)/thread-level
For second-level PTEs, this bit determines whether the data page
is shared (zero) or unshared (one).

Bit<6>-Channel 110 (CIO)
This bit indicates that the target page frame is valid for I/0
references from a channel processor.

Chapter 4 Memory management 107

--"':-:--~-~-----····· -----~-·-···-··---~--"------~----------------

EDTX 2-04-CV-120
51 056DOC065435

�

Bit 5---Cache Bypass
For the second-level PTE, this bit indicates that the page frame
base points to a page that must not be encached in the
processor's data cache. When this bit is set, data loaded from or
stored into this page is not accelerated into the CPU's data cache.

Bik4>-Valid PTE (V)
This bit indicates the validity of the PTE. A 0 indicates an invalid
PTE. When this bit is set, it indicates a valid PTE. A segment
out-of-bounds error is generated when an invalid PTE is
accessed. A reference to an invalid PTE results in a system
exception.

Bit<3>-Read access (RD)
This bit indicates the validity of a read access to the referenced
page frame. When this bit is cleared, it indicates that no read
access is permitted. When this bit is set, it indicates that a read
access is permitted to the referenced page frame. If a read access
is attempted and bit <3> is 0, a system exception is generated,
and an error code is loaded into address register AS.

Bit<2>-Write access (WR)
This bit indicates the validity of a write access to the referenced
page frame. When this bit is cleared, it indicates that no write
access is permitted. When this bit is set, it indicates that a write
access is permitted to the referenced page frame_ If a write access
is attempted, and bit <2> is 0, a system exception is generated,
and an error code is loaded into address register AS.

Bit<l>-Execute a~~ess (EX)
This bit indicates the validity of an execute access to the
referenced page frame by branching or jumping to an
instruction, or sequentially executing instructions (that is,
"falling" across a page boundary). When this bit is cleared, it
indicates that no execute access is permitted. When this bit is set,
it indicates that an execute access is permitted to the referenced
page frame. If an execute access is attempted and bit <1> is 0, a
system exception is generated and an error code is loaded into
address register A5.

Bit<O>-Resident page (R)
When this bit is set, it indicates the presence of the referenced
page frame in the physical address space of the process. When
this bit is cleared, it indicates the absence of the referenced page
frame in physical memory. In this case, a page fault occurs and
causes a system exception. If the referenced page frame is
present, bits <3L12> are used as the page frame address of the
referenced page frame. Bit <0> is interpreted for valid PTEs only.

108 CONVEX C-Series Architecture

...

. .·, . :~ ·,.

·-...

EDTX 2-04-CV-120
51 056DOC065436

�

·. ·

J.

Thread-level PTE Operation
The C3200/C3400/C3800/C4600 Series implementation
supports hard ware-implemented unshared memory by adding
another level of page table entry (PTE) in the address translation
process. The second-level PTE contains the base address of a
third-level table of PTEs called the thread-level PTE. If the level
3 (LT) bit in the second-level PTE is set, the table of thread-level
PTEs pointed to by the second-level PTE is traversed using the
processor's TID to find the page frame base. The format of a valid
thread-level PTE for the C3200/C3400/C3800 Series CPUs is
shown in Figure 35. The format of a valid thread-level PTE for
the C4600 Series CPU is shown in Figure 37.

The indexing into this table is based on TID. The extra
translation is performed by the processor's PTE miss resolution
mechanism. When the second-level PTE is returned from
memory, the state of the LT bit is examined. If the LT bit is not set,
the referenced page is shared memory, so the second-level PTE is
encached in the ATU cache as the final-level PTE, since that
particular second-level PTE includes the page frame base.

If LT is set, the page is unshared and the processor uses the page
frame bits of the second-level PTE to request the thread-level
PTE for the processor's current TID. The thread-level PTE is then
encached in the ATU cache as the final-level PTE. In this manner,
two processors executing as different TIDs in the same CIR
(process) can use the same virtual address and still have unique
physical memory.

Chapter 4 Memory maiUlgement 109

.· .. : ...

. . : .. ." .. ~--

. ''·.

: •:

EDTX 2-04-CV-120
51 056DOC065437

�

Virtual-to-physical address translation

The virtual-to-physical address translation is performed by an
address translation unit (ATU) implemented in hardware. The
ATU accelerates the translation of virtual-to-physical addresses
by way of maintaining an internal address cache of recently
translated virtual addresses. Once a translation occurs, the
translated addresses are placed in the address cache for the
following reasons.

• The steps necessary to translate the virtual addresses require
machine cycles that would otherwise be used to execute
instructions.

• Programs exhibit temporal and spatial locality of reference.
It is probable that once a virtual-to-physical translation is
accomplished and encached, subsequent virtual addresses
will reference the same page associated with the initial
translation.

The ATU accelerates address translations by associating a virtual
address with an ATU entry that contains the bottom-level PTE
(PTE2 or PTETl associated with the virtual address. The high
order bits of the virtual address are used to select the correct
ATU entry. The ATU entry provides a convenient place to store
these privileges. Some characteristics of the ATU are relevant to
the system programmer because:

• The size and structure of the ATU are implementation­
dependent.

• Individual entries within the ATU are not explicitly
addressable.

• Modification of a PTE in memory does not necessarily have
an immediate effect on ATU entries.

• There are several privileged instructions that permit a level
of control over ATU address translation in a manner that is
ATU implementation-independent. These instructions
purge the entire ATU or selective entries. Purging an ATU
simply involves marking all entries as invalid so that no
encached translations exist. Purging the entire ATU is
necessary for process multiplexing. Purging selective ATU
entries is used when selective PTE modifications occur, for
example, when an address translation fault finds the page
frame in physical memory, but not in the physical space of
the process.

Virtual addresses can be identical in more than one process and
do not translate to the same physical address. As a result of this

110 CONVEX C-Series Architecture

.. - --- -~---·

Jl

.

.

EDTX 2-04-CV-120
51 056DOC065438

�

."· ··: ·.
I

l

virtual address space structure, the ATU must be purged when a
new user process is scheduled, has its context loaded, and begins
execution.

ClOO
The virtuaHo-physical address translation process interprets the
structure of a 32-bit virtual address as shown in Figure 38.

Figure 38 Virtual-to-physical address translation-ClOO Series CPUs

SDR PTE 1

.... -32 bits- ... -32 bits.._.

tr 0 ,-
,-

... . . . I

7

Physical address

-
...

127

Physical address

PTE 2

-32 bits-

0 ,------

...

-
-

. . .
1023

Physical address

-

MEM
8

l)its
:---

r----

...

-

-

...

d

0

4095

-1 bits- - 10 bits---- ~--- 12 bits -----.~

I IIIII! I II II 1111111 Ill II I IIIII II
Segment Level 1 PTE offset Level 2 PTE offset

Virtual page number

Virtual address

Byte offset

AH3000S5
11/10/93

Chapter 4 Memory management 111

.. ~· '
I
J

EDTX 2-04-CV-120
51 056DOC065439

�

The following attributes of this address translation process
should be noted:

• The page table referenced by the first-level index is always
resident in physical memory.

• The page table referenced by the second-level index may not
be resident in physical memory. A page fault can occur when
referencing a second-level page table page.

• The access bits in the first-level PTE are never interpreted,
that is, no protection access checks are performed when a
first-level PTE is used to reference a second-level PTE.

• If a PTE is invalid, no further translation occurs.

• A page fault occurs only for valid references.

C3200/C3400/C3800/C4600
This section describes the virtual-to-physical translation process
for multiprocessing C-Series CPUs.lt also describes the
additional properties of the ATU in multiprocessing C-Series
CPUs, as well as additional system programming concerns.

This translation process applies to all multiprocessing C-Series
implementations (C3200/C3400/C3800/C4600), even though
the PTE bit positions are different for some of the
implementations.

The address translation process is expanded to accommodate
multiple threads in a process, including unshared and shared
memory. For virtual-to-physical address translation purposes,
the multiprocessing implementation treats the translation of a
shared byte address in the same manner as the ClOO Series
implementation performs address translation.

Figure 39 shows the translation process from a level-2 PTE to a
physical address for unshared pages.

112 CONVEX C-Series Architecture

(=· --:----=-----~~-.,..--~~~~~~........-.,..,.---:----~---~~---~~
~·

EDTX 2-04-CV-120
51 056DOC065440

�

'·.· ...

Figure 39 Address translation step for unshared pages--multiprocessing C-Series CPUs

Level 2 page table entry

I I l I l I I I Ill I I l I I l I II I I ! II
Level T PTE page frame base

"---

I I I I I l
Tm

3
liit?" ----7 bits__.

PTE T

---32 bits---->-

Thread 0 0

...
-

...
Thread 31 127

Unused

255

Physical address

------10 bits--~

D l I IIIII I
LT Protection

MEM
8

hils
,---

0
r--

...
r---- -

...

I--
4095

~

-------12 bits-----

[[[] I l l I Ill I I II \ I I II II I II II II I II I I I
Segment Level l PTE offset Level 2 PTE offset

Virtual page number

Virtual address

-·~-. ····-·~ .. -. ----··-··-

· · .. ·

Byte offset

AH300037
12/?/93

Chapter 4 Memory management 113

::..-: ...

-- .· ..

:_······

EDTX 2-04-CV-120
51 056DOC065441

�

The following attributes of this address translation should be
noted in addition to the notes presented in the previous section
describing the translation process for the CIOO Series CPUs:

• The page table referenced by the second or thread-level
index may not be resident in physical memory. A page fault
can occur when referencing a second or thread-level page
table page.

• The access bits in the first-level PTE are never interpreted,
that is, no protection access checks are performed when a
first-level PTE references a second-level PTE. This is also
true for second-level entries used to reference thread-level
entries.

• The page frame base from the second-level entry accesses a
table of 64 thread-level entries. The initial multiprocessing
implementation supports only 32 threads (5-bit TID); half of
the level T table is unused.

The ATU accelerates address translations by associating an ATU
entry with a <virtual address, CIR, TID> tag. The ATU entry
contains the following information.

• All significant bits of the PTE (PTE2 or PTET). This includes
the page frame base plus all access control bits.

• The higher order bits of the virtual address encached. Since
the page-offset field of the virtual address is not translated,
this entry contains, at most, the most-significant 20 bits of
the translated virtual address.

• The CIR and TID used to access the PTE.

The characteristics of the multiprocessing C-Series ATU that are
relevant to the system programmer, in addition to the
characteristics previously described for the CIOO Series, are:

• Each CPU within the complex has an independent ATU
cache.

• Several privileged mode instructions exist to permit a level
of control over ATU address translation in a manner that is
ATU implementation independent. These instructions purge
the entire ATU in every CPU v.rithin the complex (pa tu), or
a selective ATU entry (pate Ak). Purging the entire ATU in
every CPU is necessary for process multiplexing between
CPUs. Purging selective ATU entries within every CPU is
necessary when selective PTE modifications occur within a
single process. This purging will ensure all threads within the
process that are executing concurrently on other CPUs
acquire the new translation as soon as possible.

114 CONVEX C-Series Architecture

EDTX 2 -04-CV -120
51 056DOC065442

�

Unshared address translation allows the same virtual address to
reference different physical memory locations. This capability
permits parallel invocations of re-entrant code to retain separate
values for local variables and their own stack. Implementation of
unshared address translation for private data pages of threads is
built into the virtual-to-physical address translation function.
Virtual memory addresses that are thread-private are marked as
such in the corresponding PTE.

During address translation, unshared memory addresses require
an additional page table level to resolve the physical address,
based not only on the virtual address but also on the thread ID
(TID) of the thread that initiated the memory access. Page frames
used to hold thread-private data pages are allocated
dynamically by the hardware ASAP mechanism when a new
thread is created. These pages come from a pool of free pages
allocated when the system is booted. Memory management of
unshared data pages is managed in hardware.

Figure 40 shows the relationship of the address translation of
shared memory with the additional level of translation needed
for unshared memory.

Figure 40 Virtual-to-physical address translation for unshared pages-multiprocessing C-Series
CPUs

Standard
I Virtual address l page table

translation

I
I
I
I
I
I
I
I
I
I

t
Unshared
memory

translation
based on
thread ID

J
Physical
memory

------ ___ ..,.. --- ----- - --~
~ - - --,..
~ -~ -....

AH300036

ll/10/93

' i·.

Chapter4 Memorymanagement 115

EDTX 2 -04-CV -120
51 056DOC065443

�

Translation of a virtual address to a physical address is usually a
one-to-one function. However, implementing unshared memory
for threads requires a one-to-many function that translates a
virtual address to a physical address. A virtual address
designated as unshared memory uses the requesting CPU's
thread ID (TID) value when translated to a final physical
address.

Referenced and modified bits
Each page frame is associated with a pair of status bits called the
referenced and modified (R&M) bits. Their purpose is to
dynamically track references to physical memory.

The referenced bit indicates whether a successful memory
reference has been made to a page frame since the last time the
bit was cleared.

The modified bit indicates whether a successful write was made.
A write affects both the referenced and modified bits.

Implementation of the referenced and modified bits is
machine-specific. Refer to the "Referenced and modified bits"
section in Chapter 7, "lmplementation-specific features," for a
discussion of the machine-specific features of R&M bits.

116 CONVEX C-Series Architecture

,._.·· .. :
. ·(:

I

I

I

_1 .. -.
EDTX 2-04-CV-120

51 056DOC065444

�

I
I

l

'

Virtual memory
protection

The memory protection system protects the virtual address space of
a process, the operating system structures, and shared resources.
The memory protection system is designed around the ring
structure of the virtual address space. The functions of the
memory protection system:

• Permit efficient implementations of virtual machine
mechanisms

• Support the operating system located in user virtual address
space

• Contain certain violations to a user's process that allow only
the user's process to be modified

Two additional structures complete the basic structure of the
memory protection system. These structures are the access
brackets (for ring maximization) pertaining to the enforcement of
the virtual address space ring structure and the access field (for
access validity) contained within a page table entry (PTE}.

Ring maximization

The access bracket structure directly implements ring
maximization. Ring maximization means that the memory
references are always at the access priority of the instruction. The
memory reference compares the ring number in the access bracket
(ring) field of the program counter, PC <31..29> (effective source),
to the ring number of the referenced operand (effective target, if
one exists) to determine the validity of the reference. In this ring
mechanism, higher ring numbers have lower priority than rings
with lower numbers.

Table 31 shows the valid virtual address references that satisfY
the ring maximization.

Chapter 4 Memory management 117

l,....-,-·~--~~- ----------
:·>:.

EDTX 2-04-CV-120
51 056DOC065445

�

l
I

"• . ·, ·.

·.· -·.··--·-f.

I
~
i

Table 31 Ring maximization for source and target

Effective Source

RingO

Ring 1

Ring2

Ring3

Ring4

Effective Target

RingO Ring 1 Ring2 Ring3 Ring4

Valid

*
It-

..
*

Valid Valid Valid Valid

Valid Valid
I

Valid Valid

.. Valid Valid Valid

* * Valid Valid

.. ,.
* Valid

The memory protection system uses two constructions called
effective source and effective target, which have the following
properties:

• If direct addressing is specified:

- The effective source is the ring of the program counter
(PC).

- The effective target is the ring of the address of the
referenced operand.

• If indirect addressing is specified:

- The effective source is the ring of the program counter
(PC).

- The effective target is the ring of the effective address
referenced by the indirect pointer.

A memory reference that satisfies ring maximization is a valid
access with respect to memory protection. If an invalid reference
is detected, a system exception occurs and an error code is
loaded into address register AS.

118 CONVEX C-Series Architecture

I
I
I ~

I

~

··. -::. ···:·:·~ ...

fl----:_:-_::-;--:-~-.. ---"'"' __ , ------.. -- .. -.-~ -- .- ·····---- .uf
·:·;_.

· .. _.._ · ·
.. : .·,-

EDTX 2-04-CV-120
51 056DOC065446

�

Access Validation

After a memory reference has been found to satisfy ring
maximization, the validity of the access is checked using the
access protection bits in the corresponding PTE. If an invalid
reference is detected, a system exception occurs and an error
code is loaded into address register AS.

First, the valid bit of the PTE is examined. If this bit is set, the
reference is valid. If this bit is cleared, the reference is invalid, a
segment out-of-bounds error is detected, and a system exception
occurs.

Next, the PTE's read, write, or execute bit is examined,
depending on the type of memory reference. If the reference is a
read, the read access bit of the valid PTE is examined. If it is set
the read is permitted. If it is cleared, the read is not permitted
and a system exception occurs. If the reference is a write, the
write access bit of the valid PTE is examined. If it is set, the write
access is permitted. If it is cleared, the write is not permitted and
a system exception occurs. If the reference is an instruction fetch,
the execute access bit of the valid PTE is examined. If it is set,
instructions can be fetched and executed from this page. If it is
cleared, instruction execution is not permitted and a system
exception occurs.

After all validity checks have passed, the resident bit in the PTE
is checked to determine if the referenced page is currently
resident in memory.

Chapter4 Memorymanagement 119

EDTX 2 -04-CV -120
51 056DOC06544 7

�

Memory protection notes

The following notes will help users take maximum advantage of
the virtual memory protection mechanisms:

• Addresses relative to the PC are granted no special
privileges. The appropriate read, write, and execute
privileges apply, as previously specified.

• Access checking is only performed if the PTE associated
with a virtual address is valid. If the PTE is invalid, the state
of the read, write, execute, and resident bits is ignored.

• An access violation can be detected for nonresident pages.

• If an access privilege is changed for a process after that
process has already established a context in the ATU, the
ATU must be purged upon completion of the alteration.
ATU entries are not altered automatically when a PTE is
modified.

• lf an instruction specifies an immediate operand, (for
example, add immediate), the read access privilege of the
page containing the immediate operand is not interpreted. It
is treated as an execute access.

• A ring check is not performed for instructions that produce
effective addresses but do not immediately use them. For
example, if a load effective address instruction executed in
ring 3 develops a ring 1 address, no ring violation occurs. If
that ring 1 address is subsequently used by a ring 3 program
to make an operand reference, a ring violation occurs.

• The intermediate addresses of all instructions that can make
multiple memory references (for example, vector load)
are always ring maximized with the current ring to
determine the validity of the reference, that is, the address of
each vector element is loaded.

• When indirection is specified, the page containing the
indirect pointer must satisfy ring maximization and permit
read access. This read access is independent of the
instruction type, for example, load, store, or jump.

• 1/0 space operands must be addressed as single bytes or
halfwords. Refer to Chapter 7, "Implementation-specific
features," for the sizes of operands when accessing registers
located in I/0 address space. A protection violation occurs
if a valid l/0 reference is made using a nonvalid operand.

120 CONVEX C-Series Architecture

EDTX 2 -04-CV -120
51 056DOC065448

�

,-·
···.·''

Figure 41 Gate array structure

I
i
I
I

__ _1.,_
. · _ :

.... .:·=·· ·.:

Byte
address

0000 001C

c ll d . a e nng

y

Increasing
addresses

Inter-ring procedure call and return

Ring crossing can only occur as a result of an explicit attempt by
a program control instruction to cross rings, or by a system
exception. The explicit program control instruction is a system
call (sysc) instruction, a return instruction (rtn with
PSW(FRL) "'01, extended return block), or the privileged
instruction (rtnc, return from context block). All other program
control instructions stay within the current ring of execution, that
is, the ring of the program counter. The appropriate higher order
bits of the target effective address are essentially ignored.

The direction of a system call is inward, toward ring 0. Outward
calls are trapped as ring violations. The direction of all system
returns is outward, away from ring 0. Inward returns are
trapped as system exceptions only when the return block is an
extended return block. Short and long subroutine calls always
return within the same ring.

The immediate field of the system call instruction is interpreted
as an index into a table within the called ring. This index is
referred to as a gate number. The table contained within the called
ring is referred to as a gate array. The base of the gate array is
pointed to by the segment entry point contained in byte address
0000 004C of page 0 ofthe called ring. Figure 41 shows the gate
array strucrure.

31 .29 28 16 IS

Max no. of gates I Unused

Brae I PC offset ...
Brae I PC offset

Gate array

0

lo

lo

Gate 0

Gate n- t

AH30QD38
11/10/93

Inward ring crossings function in the following manner:

1. The gate index field (G field) of the sysc instruction indicates
the desired entry point. See the sysc instruction description
in CONVEX Assembly Language Reference Manual (C Series),
"Instruction set," for a more detailed description of s ys c.

' [:

···, .:

! ...•...
!

I
... ·-~~--~-----·-·--- _____ c_ha_p_t-er-4-Memory manag._em_,_e~nt=1=;2c=1""=---_____jj. > •

:.,..: .. ·.-;: .. : ..;:. , ·

-. ~: .. ·. ': ..

EDTX 2-04-CV-120
51 056DOC065449

�

2. This G field is compared with the Max number of gates
(bits <31..16>) in the first word of the gate array pointed to
by the segment entry point contained in address 0000
0 0 4 c, page 0 of the target ring.

If the G field is greater than or equal to bits <31..16>, a ring
violation occurs and the ring crossing does not occur (the
gate is not defined).

3. If the G field is less than bits <31..16>, the ring number of
the segment containing the sysc instruction (current ring)
is compared with the bracket field (Brae), bits <31..29> of the
referenced gate.

If the current ring is greater than the bracket field, the PC
is not loaded, the ring crossing does not take place, and a
system exception occurs.

4. If the current ring is less than or equal to the bracket field,
then bits <28 .. 1> of the gate are loaded into the PC, and bits
<31..29> of the PC are loaded with the target ring.

For example, assume that the operating system kernel has n
gates. All gates other than gate Mare reserved for calls from rings
3, 2, and 1. However, gate M (due to the nature of this kernel call)
can be directly called by ring 4. All gates in the kernel other than
M have the value 3 in their bracket field. Gate M has the value 4
in its bracket field. If a ring 4 caller attempts to call a kernel gate
other than M, the call fails (4 is greater than 3). If a ring 4 caller
attempts to call kernel gate M, the call succeeds (4 is less than or
equal to 4).

This mechanism permits individual segments to have entry
points with unique gate brackets. Thus, a particular operating
system call can be restricted to a particular ring of origin. These
actions are performed by the CPU. There is no software
overhead or operating system kernel involvement unless an
explicit kernel call is made.

Corrupted pointers
Corrupted pointers can occur on system calls when a passed
pointer references the operating system's data space. The system
process invoked as part of the inward ring call uses a passed
pointer as part of system call processing. The system process
expects these pointers to reference the virtual address space of
the caller, that is, the ring of the user executing the sysc
instruction. If a passed pointer references the system process data
space, unexpected (and usually undetected) disasters can occur.
The following facilities are provided to prevent such problems:

: . . ·_ .• ,: ,·:··~.-,->·.

' ; 122 CONVEX C-Series Architecture

~--~. <".-. ····-··

-::·;-, .. _ .. -·

.' ~-. .-.. __ ._.;

--·-·. -.:_·_.' ,:._ . . ,

EDTX 2-04-CV-120
51 056DOC065450

�

• An instruction that checks to see that the ring maximization
is satisfied for passed pointers (compare immediate)

• A load physical instruction to obtain the access bits of
appropriate PTEs

• Instructions that access data backwards (decreasing virtual
memory) to always perform the ring maximization
dynamically, ensuring that a corrupted pointer is not created

All of these actions can occur outside the operating system (OS)
kernel. One of the objectives of the memory management and
protection structures is to reduce the size of the OS kerneL Since
the OS kernel is smaller, it is more reliable and secure. In
addition, virtual machine structures are easier to construct.

Generally, there is no algoritlun to guarantee that corrupted
pointers do not occur. To minimize corrupted pointers, copy
arguments into the called ring's virtual address space, then
initiate corrupted pointer checking.

Chapter 4 Memory management 123

~~.....,_, _________________ .. ". ---~--------- -------·------·· ····-··--------·-· . ~ ·--~----.--,.-· ·-··-:-:- ··;--·-··:····:

. ·.;,' :·.·

. < ·,.,;:,: .· -~ ·.::/::·: .. ·.·.
. . . '.:_ : ~ . : · :

~--·

l ·. ·.:

EDTX 2-04-CV-120
51 056DOC065451

�

Note

Reserved virtual memory

Reserved virtual memory locations are used to obtain addresses
or status when exceptions occur. Generally, when one of these
conditions occurs, an implicit subroutine call occurs. The
processor provides the subroutine call op code, and the reserved
area in memory provides the address. Because a stack has
already been defined, arguments may be passed, and a handler
routine executed.

The virtual address oxoooo oooo is reserved and may not be used
by software. In addition, the virtual address Oxnooo oooo is a
reserved location in virtual page 0 of each ring.

The reserved area in virtual memory is the first page in the
segment referenced by the ring field of the program counter.
This page is referred to as page 0. Since there are five rings, there
are five page Os. For ring 4, page 0 is always in segment 4. The only
page 0 that must be memory resident is page 0 of ring 0.

Page 0 is used in one of two ways, depending on the
classification of the exception (trap or fault) that has occurred.
The two types of exceptions that access page 0 are process
exceptions and system exceptions. Interrupts also access page 0.

PageO- ClOO
Figure 42 shows the ClOO Series virtual memory organization of
page 0. Refer to Chapter 6, "Exceptions and interrupts," for
some operational definitions of the page 0 locations.

124 CONVEX C-Series Architecture

-~ ..

... ~ . -.. .

::-

.... · .. '.·'· ~ .. : ' .

=. -·~··. .

EDTX 2-04-CV-120
51 056DOC065452

�

Figure 4.2 Page 0 virtual memory organization-ClOD Series CPUs

31 16 15 0

oo Reserved

04 Interrupt level I Reserved

oa Device interrupt handler

oc System exception handler

10 Interval timer interrupt handler

14 Reserved

18 Reserved
~--------------------------------~

1c Vector valid trap handler

20 interrupt stack pointer

24 Context slack pointer

28 Reserved

2C Previous stack pointer

30 .. 3C Reserved

4o Instruction trace trap handler

44 Arithmetic exception trap handler
~------------~------~---------1

~a Stack pointer
~-------------------------------1

4C Segment entry point
~--------~------~~-----------1

so Breakpoint trap handler
L---------~--------------------~

System
(Ring 0 only)

P!""ocess
(All l""ings)

!
AH300039
11/10/93

The entries from 0 0 0 0 0 000 to 000 0 0 0 3C are valid for ring 0
only. In all other rings, these entries are reserved. All other entries
are valid for all rings.

Each entry in Figure 42 is defined in ascending order according
to the byte address offset associated with each entry. The high
order nibble of several addresses in Figure 42 is marked x in
order to denote that these byte addresses are applicable to any
virtual memory page 0 regardless of the ring indicated in the
segment field of the program counter.

Chapter 4 Memory management

EDTX 2-04-CV-120
51 056DOC065453

�

. ··: .,

. ·.·.·
:, ...

0000 0000

0000 0004

0000 0008

0000 oooc

0000 0010

0000 0014

0000 0018

0000 001C

0000 0020

0000 0024

0000 0028

126 CONVEX C-Series Architecture

Reserved-Should not be used by software.

Interrupt level-A 16-bit memory-based
counter that indicates the number of nested
interrupts currently being processed. If the
interrupt level is 0, no interrupts are being
processed. If the interrupt level is not 0,
interrupts are being processed and the ring 0
stack is the interrupt stack.

Device interrupt handler-A byte pointer to
the handler for device interrupts other than
the interval timer.

System exception handler-A byte pointer to
a system exception handler. The exceptions
that transfer control to this system exception
handler are: error exit trap, undefined op code
trap, ring violation, PTE violation, and
nonresident page.

Interval timer interrupt handler-A byte
pointer to the interrupt handler that responds
to an interval timer interrupt.

Reserved-Should not be used by software.

Reserved-Should not be used by software.

Vector valid trap handler-A byte pointer to
a trap handler that responds to the vector
valid trap. A vector valid trap occurs if an
attempt to execute a vector instruction occurs
and the vector valid bit is 0. A vector
instruction is an instruction that manipulates
the V, VL, VS, or VM registers.

Interrupt stack pointer-A byte pointer that
specifies the stack to be used when an
interrupt occurs.

Context stack pointer-A byte pointer that
specifies the stack to be used when a system
exception occurs.

Reserved-Should not be used by software.

.. ··:-·:· ..

. .. ~ '· . . '.·= :~ :·· : :_':.<" .
····.;··

·· .. ;···· .• · · ... · ·- /
·· .. ,.·

EDTX 2-04-CV-120
51 056DOC065454

�

t
I
I

0000 002C

0000 0030

0000 0034

0000 0038

0000 003C

xOOO 0040

Previous stack pointer-A save area used for
interrupt processing. When an interrupt first
occurs and the ring 0 stack is initialized to the
value of the interrupt stack pointer, the
previous stack pointer is saved in byte
address 0 0 0 0 0 0 2C. This ensures that there is
a proper linkage for stack s·witching in ring 0
for interrupt processing.

Reserved-Should not be used by software.

Reserved-Should not be used by software.

Reserved-Should not be used by software.

Reserved-Should not be used by software.

Instruction trace trap handler-A byte
pointer to the handler that responds to an
instruction trace trap. Refer to the "Instruction
trace trap" section of Chapter 6 ..

xOOO 0044 Arithmetic exception trap handler-A byte
pointer to the handler that responds to an
arithmetic exception. The PSW contains bits
that indicate the type of arithmetic
exception(s) that occurred.

xOOO 0048 Stackpointer-Asaveareathatmaintainsthe
stack pointer for cross ring call processing.

xOOO 004C Segment entry point-A byte pointer to the
base of the gate array defined in the called
ring. Each ring has a unique entry point and
associated gate array.

xOOO 0050 Breakpoint trap handler-A byte pointer to
the handler that is executed when the bkpt
instruction is executed. Refer to the
"Breakpoints" section of Chapter 6 ..

xOOO 0054- Reserved-Available for use by software.
xOOO OFFF

Chapter4 Memorymanagement 127

. ·. ·:·· .·>.;.••

::.-·

·. ::.;
. ~ . ·~

EDTX 2·04·CV·120
51 056DOC065455

�

Page 0 - C3200/C3400/C3800/C4600
Figure 43 shows the virtual memory organization of page 0 that
is reserved for the multiprocessing implementation. Refer to the
"Interrupt context blocks" section in Chapter 6, "Exceptions and
interrupts," for some operational definitions of the page 0
locations.

Figure 43 Page 0 virtual memory organization-multiprocessing C-Series CPUs

31 16 15 0

oo Reserved

04 Reserved

as Interrupt handler

oc System exception handler

10 Process deadlock trap handler

u Interrupt context block pointer

18 I/O register painter 1

1 c Vector valid trap handler 2

20 Global hard error trap handler

24 Reserved

u Ree"ed

K Ree"ed

30 .• 3C Reserved

40 histruclion trace trap handler

44 Arithmetic exception trap handler

48 System resource structure
~----~------------------------~

4C Segment entry point

50 Breakpoint trap handler

1 - C3200 only
2 - C4600 only

System

Process

!
AH300040
12/7/93

The entries from 0000 0000 to 0000 003C are valid for ring 0
only. In all other rings, these entries are reserved. All other entries
are valid for all rings.

Each entry in Figure 43 is defined in ascending order according
to the byte address offset associated with each entry. The
high-order nibble of several addresses in Figure 43 is marked x
to denote that these byte addresses are applicable to any virtual

128 CONVEX C-Series Architecture

. ·· ;.· -~. . . ·. . ..

. :·:-
.··>:····

.··.· ··· .. :
..· .· .. - .. '·,·.·.:::-• ...

EDTX 2-04-CV-120
51 056DOC065456

�

1.~---···-·····-·--·-·--····--· · ... • .. • ·.
·· ..

memory page 0, regardless of the ring indicated in the segment
field of the program counter.

0000 0000

0000 0004

0000 0008

0000 oooc

0000 0010

0000 0014

0000 0018

0000 OOlC

0000 0020

0000 0024

··:_, . .--···.

Reserved-Should not be used by software.

Reserved -Should not be used by software.

Interrupt handler-A byte pointer to the
handler for all interrupts including the
interval timer.

System exception handler-A byte pointer
to a system exception handler. The exceptions
that transfer control to this system exception
handler are: error exit trap, undefined op
code trap, ring violation, PTE violation, and
nonresident page.

Process deadlock trap handler-A byte
pointer to a trap handler that is called
whenever a process deadlock occurs.

Interrupt context block pointer- A pointer
to a set of interrupt context blocks that
contain all of the CPU specific context
required for interrupt processing. Refer to the
"Interrupt processing ~CWO" section in
Chapter6.

1/0 register pointer (C3200 Series only)-A
virtual address that is mapped to the timer
registers located within I/0 address space.
Timer registers are described in the "Timers"
section in Chapter 7.

Vector valid trap handler-A byte pointer to
a trap handler that responds to the vector
valid trap. A vector valid trap occurs if an
attempt to execute a vector instruction occurs
and the vector valid bit is 0. A vector
instruction is an instruction that manipulates
the V, VL, VS, or VM registers.

Global hard error trap handler (C4600
only)-A byte pointer to a trap handler that
is called whenever a hard error on any CPU
occurs. Refer to Chapter 6, "Exceptions and
interrupts," for more on the global hard error
trap error.

Reserved-Should not be used by software.

Chapter4 Memory management 129

EDTX 2-04-CV-120
51 056DOC065457

�

0000 0028

0000 002C

0000 0030

0000 0034

0000 0038

0000 003C

xOOO 0040

xOOO 0044

xOOO 0048

xOOO 004C

xOOO 0050

xOOO 0054-
xOOO OFFF

!30 CONVEX C-Series Architecture

::-: . .-.

Reserved-Should not be used by software.

Reserved-Should not be used by software.

Reserved-Should not be used by software.

Reserved-Should not be used by software.

Reserved-Should not be used by software.

Reserved-Should not be used by software.

Instruction trace trap handler-A byte
pointer to the handler that responds to an
instruction trace trap. Refer to the
"Instruction trace trap" section of Chapter 6.

Arithmetic exception trap handler-A byte
pointer to the handler that responds to an
arithmetic exception. The PSW contains bits
that indicate the type of arithmetic
exception(s) that occurred.

System resource structure-The virtual
address of a communication register that
contains a pointer to a list of available stack
pointers. Refer to the discussion of system
resource structures for the multiprocessing
implementation in this chapter for more
information.

Segment entry point-A byte pointer to the
base of the gate array defined in the called
ring. Each ring has a unique entry point and
associated gate array.

Breakpoint trap handler-A byte pointer to
the handler that is executed when the bkpt
instruction is executed. Refer to the
"Breakpoints" section of Chapter 6.

Reserved-Available for use by software.

:· ~· .' ..

i

I
I
l
I

i
I
I
I;

I

.. ~~-

EDTX 2-04-CV-120
51 056DOC065458

�

Power up addressing mode

Physical addresses are normally generated by
virtual-to-physical address translation. The exception to this
process occurs during the bootstrap process at powerup. Prior to
cold start, the service processor unit (SPU) must create a
bootstrap page table entry (PTE) structure. The PTE structure is
used by the CPU's cold start microcode to make the address
translation mechanism operationaL

Chapter4 Memorymanagement 131

·····------····-~------···--···-. .-··-··- . -----,--.--~-

. . ~ . ·.,.

:. --.. ··-

EDTX 2-04-CV-120
51 056DOC065459

�

.· .. ·· ... :·:_.,.

··. · .. ,
.. :.:_ ·_ .. _

132 CONVEX C-Series Architecture

·--..... - .. -·· .. ·:. __ .

-.-_.:_ ... ·.

., .. ·

:' ·'··."·->--···.

.· ,_.::---·

-· . - '.:: .. . -t
:. .. : .. _· ·

EDTX 2-04-CV-120
51 056DOC065460

�

I

I
I
I
I
I

Multiprocessor
management 5

The C3200, C3400, C3800, and C4600 Series systems implement
a multiprocessing architecture. These systems support a
multiple instruction stream/multiple data stream (MIMD)
parallel architecture in which each CPU operates as an
independent 64-bit supercomputer.

The automatic self-allocating processors (ASAP) multiprocessor
management scheme binds the CPUs of a CONVEX complex
into a tightly coupled, shared memory set. With ASAP, the CPUs
function independently by automatically allocating themselves.

This scheme also provides a simple and flexible set of
instructions for dynamic CPU allocation, deallocation, and
communication. It allows the user to exploit software
parallelism by allocating multiple threads of execution within a
single process. The operating system provides simultaneous
execution of multiple processes for system load balancing and
timesharing.

The C-Series architecture defines and supports the following:

• Complex-The entire set of one or more physical CPUs in a
configuration

• Sub complex-Any subset of a complex

• Process-A collection of one or more threads executing
within a single virtual address space

• Thread-Any single instruction stream executing within a
process

• Multiprocessing-The creation and scheduling of processes
on any subcomplex

Chapter 5 Multiprocessor management 133

....1_~~~

EDTX 2-04-CV-120
51 056DOC065461

�

·

. ~

'··· .·:.·.

The C-Series multiprocessor management architecture

• Provides a set of instructions for thread creation, which
requires no knowledge of the physical CPU configuration.
These instructions implement fast thread creation and
termination functions so users can take advantage of small
regions of parallelism within programs without involving
the operating system.

• Optimizes CPU execution cycles. The instruction set allows
each CPU never to wait for another CPU to become
available.

• Supports any nwnber of CPUs within a complex for
configuration, software compatibility, performance, and
future expansion.

134 CONVEX C-Series Architecture

.. -··· -·----. -----··--··
. ·>~ .. : .· .

·· .. '.,.

EDTX 2-04-CV-120
51 056DOC065462

�

Tightly-coupled
symmetric
multiprocessing

..... ~."- ·- '.

The C-Series architecture provides a tightly-coupled, symmetric
multiprocessor system. All CPUs within a complex share the
same physical address space, and are equivalent in design and
function.

The instruction set supports parallel execution but does not
require it. Also, parallel execution is independent of the number
of CPUs available. Therefore, the instruction set supports
writing software for the C-Series architecture that is
independent of the number of CPUs.

The C-Series architecture does not guarantee that CPUs will be
allocated to a process when requested. CPUs will join a process
if they are currently idle. However, OS calls exist to guarantee
that all CPUs not currently executing the process are made idle
whenever that process is scheduled to execute, thereby
guaranteeing parallel execution when requested.

Automatic self-allocating processors
The automatic self-allocating processors (ASAP) mechanism
assigns crus to processes and threads using both hardware and
software during process execution. The multiprocessing
C-Series architecture implements ASAP as a special case of
dynamic scheduling through distributed control. The CPUs
determine which processes or threads to execute next. User
software also has some degree of resource control, requesting
and releasing CPU resources using the CPU control (forking)
instructions.

The ASAP mechanism switches a CPU from one process context
to another without operating system knowledge or intervention
so that both serial and parallel processes may execute
simultaneously. Parallel processes may use multiple CPUs
within parallel code regions without idling the CPUs during
serial code regions. For example, a process could be executing on
an entire complex, with one thread executing on each CPU.

The fundamental principle of operation for multiprocessing is
that each CPU within the complex is solely responsible for
scheduling itself, that is, associating and disassociating itself
from an executing process. A master process that finds idle CPUs
and schedules processes or threads on them does not exist. Each
thread posts the need for another CPU to join in its computation,
or in the case of the operating system, switch from one process
context to another.

Chapter 5 Multiprocessor management 135

.· ·
. .-....... .-: · __ :'_: .. ·.,. ··.·

.. _·_: :·_ .. ·.:.--: ·.: :-~ -· '
·, -.-~-- : ...

. ~- :

·' ... :-:-·

EDTX 2-04-CV-120
51 056DOC065463

�

Communication
registers

The multiprocessing C-Series architecture provides a set of
hardware structures called communication registers (CMR) to
assist in the multithreaded execution of a process across multiple
CPUs in the complex. The conununication registers are a single,
globally shared, special-purpose register set used by the entire
complex for communication between threads. The register set can
be accessed equally by all CPUs in the complex. Threads
communicate by sending and receiving data through these
communication registers using communication register
instructions.

The communication registers are a form of semaphored memory,
available in much smaller quantities than virtual memory. One
of the primary functions of communication registers is giving
software a means to relocate frequently accessed data from
virtual memory into a semaphored location.

Memory duals of the communication instructions can relocate
data from the conununication registers by performing primitive
functions that are analogous to functions that manipulate
communication registers. Using virtual memory, software can
use these memory duals to create critical data structures in
memory, then relocate these dual structures to a communication
register set. These data structures and related operations on
them are described in more detail in the "Process structures"
section on page 74.

A communication register is visible from software as a word- or
longword-addressable register with an associated
hardware-maintained lock bit. The lock bit is used by both
software and hardware as a binary semaphore on the contents of
the register, and manipulated by the communication register
instruction set to control and synchronize access by multiple
CPUs to each communication register. The data portion may also
be manipulated by some instructions that do not examine the
state of the lock bit.

The C3200 Series hardware implements the communication
registers as 1,024 64-bit longwords, with associated lock bits,
modified bits, and parity. This provides eight communication
register sets of 128 registers each.

The C3400/C3800/C4600 Series hardware implements the
communication registers as 4,096 64-bit longwords, with
associated lock bits and parity. This provides 32 communication
register sets of 128 longword registers each. The
C3400/C3800/C4600 Series CPUs do not implement the
modified bits.

136 CONVEX C-Series Architecture

EDTX 2-04-CV-120
51 056DOC065464

�

Communication index register

The communication index register (CIR) is the focal point of a
ConvexOS process. Each CPU in a complex has one CIR. The
CIR which is not accessible by a user process, defines the
address mapping between a particular physical communication
register subset (partition) and the communication register
addresses generated by a process. The CIR points to a partition
of communication registers that is located within the
communication register virtual address space. Only a single
partition of the communication registers is visible to a user
process at a time.

The value contained in the CIR is the CIR index. The CIR index
points to one of n identical partitions of the communication j
register set (n equals 8 for C3200 Series complexes, and n equals 32 ·
for C3400/C3800/C4600 Series complexes), each of which I .· ..
contains the current state of a single process. Since the CIR defines
a UNIX operating system process, the communication register
partition associated with that CIR index becomes a part of the
process state.

Except for a special physical addressing scheme that is
independent of the CIR, the CIR restricts each processor to one
partition of the communication registers. The CIR index
translates to a base address of a unique region of communication
registers.

A CIR index is a virtual process identifier managed by the CPU,
under the direction of either the operating system or
automatically via the ASAP mechanism. Each executing process
is associated with its own CIR index. When the CIR index
changes, the entire process context changes.

A process is mounted on the CPU complex when its current state
is represented by a partition of the communication register set.
Any CPU in the complex can execute any mounted process by
changing the index value in its CIR to reference the partition
describing the process. This action binds a communication register
set to a CPU when a CPU mounts and begins executing a thread.
When multiple CPUs in the complex are executing multiple
threads of a parallel code region of a process, these threads must
perform atomic operations on this register partition to
communicate and synchronize with each other.

Both the operating system and the hardware ASAP mechanism
may access the communication registers either virtually, that is,
under control of the current CIR index, or physically, that is,
independent of the CIR. The virtual and physical method of CIR

r: -..:·

Chapter 5 Multiprocessor management 137

.. ··~.

EDTX 2-04-CV-120
51 056DOC065465

�

: ... ·:

access is described in the "Corrununication register address
translation" section on page 148-

The SDRs, resource structures, and other frequently accessed
data structures are stored in the communication registers. With
respect to communication registers, the CIR perfonns a function
similar to the function of the SDRs and PTEs in the virtual
memory management scheme. This function of the CIR defines
which SDRs are in use by a process, since the SDRs reside in the
communication registers.

Within any multiprocessing C-Series architecture, at least twice
as many physical communication register sets as CPUs exist.
This number of register sets permits one conununication register
partition (pointed to by a CIR index) to be mounted and
executing, and another communication register partition to be
loading, so the operating system can quickly reschedule a thread
by changing the CIR index.

CIR -C3200
In a C3200 Series complex, the CIR is a 3-bit register. Therefore,
a CIR may contain any one of eight different index values from
0-7. A 3-bit CIR does not limit a C3200 Series complex to
managing and executing a total of only eight processes. Rather,
a maximum of eight processes can be mounted at any given
time.

138 CONVEX C-Series Architecture

---· ·--·---~-··- ·::_-.

.. ··

..
. ·.: ..

· .. :.·.;__._.·_/:"

EDTX 2-04-CV-120
51 056DOC065466

�

I
)
I
I
J

Figure 44 shows the division of the communication registers for
the C3200 Series.

Figure 44 Communication register partitions by CIR index-C3200 Series CPUs

Physical
address 63

000

07F

080

OfF

100

17F

180

lf>

zoo

27F

280

2FF

300

37F

380

3FF

Communication registers

CIR - C3400/C3800/C4600

0

Lock
bit em

0

2

3

4

5

6

7

AH300042

H/18/93

In the C3400/C3800/C4600 Series complexes, the OR is a 5-bit
register. A CIR may therefore contain any one of 32 different
index values from 0-31. A 5-bit CIR index does not limit these
complexes to managing and executing a total of only 32
processes. Rather, a maximum of 32 processes can be mounted at
any given time.

Figure 45 shows the division of the communication registers for
the C3400/C3800/C4600 Series CPUs.

Chapter 5 Multiprocessor management 139

EDTX 2 -04-CV -120
51 056DOC065467

�

,_.:·.· .,.

Figure 45 Communication register partitions by CIR index-C3400/C3800/C4600 Series CPUs

Physical
address 63

000

07F

080

OFF

100

17F

180

Iff

I
I
I

080

DFF

FOO

;7r

F80

F"fF I

Communication registers 0

Lock
bit CIR

0

2

3

29

30

31

AH300063
ll/18/93

Two or more CPUs can execute threads of a process by binding
the same communication register partition. Conversely, multiple
CPUs are bound to the same conununication register partition
when each CPU loads its CIR with the same index value.

Figure 46 shows the register binding relationships of the CIR
index and the communication register partitions for a C3400/
C3800 Series system. Since C3200 Series CPUs only have 8 CIRs,
and the C3200/C4600 Series systems have only four CPUs, the
binding for those CPUs is a subset of this relationship.

!

I
140 CONVEX C-Series Architecture I

~-··---~~·-.-....
""··-·: .:

,-:.
.. ·.,-:

..... · .. --. · ~ : .· :

·---~

EDTX 2-04-CV-120
51 056DOC065468

�

Figure 46 Binding a corrununication register set to a CPU

Communication index
registers (CIR)

CPU

0

0 Index = 5

1 Index = 5

2 Index = 2

3 Index = 0

4 Index = 31

5 Index 4

6 Index 1

7 Index = 3

··:·'-. ·:
·.·_·:;, __ .

-: ·. ···.

. .. :-~->

Communication register
set partitions {CMR)

Physical

63 0
address

000

07F
080

OFT
100

17F

180

1FF

200

27F
260

2rr

I
I
I

FBD

fFT

CMR

0

2

3

4

5

31

AH30004:l
11/18/9:l

Chapter 5 Multiprocessor management 141

. ... · ·. ·· ... ~ .: :· ·-···.

:

J ' . ·· ..

EDTX 2-04-CV-120
51 056DOC065469

�

"; · .. ;

Communication register virtual addressing

Communication registers are addressed with a 16-bit virtual
address supplied in the instruction, the communication register
effective address (Ceffa). This virtual address is mapped, using
the CPU's CIR, to a physical communication register address. This
physical address defines a unique 64-bit communication register.

Each communication register has an associated lock bit that is
maintained by hardware or independently manipulated with
communication register lock instructions. The lockbit allows
semaphore operations on communication registers. The logical
interpretation of the physical sense (1 or 0) of the lock bit depends
on the operation involved.

The Ceffa is developed in the same way as a memory address,
using any of the addressing modes described in the "Addressing
modes" section on page 73. The 16 least-significant bits of the
developed address become the Ceffa, while the 16 most-significant
bits are ignored. A communication register address may be
generated using a 32-bit immediate, but code that always uses
16-bit immediates operates identically to code that uses 32-bit
imrnediates and is more efficient.

A communication register set is divided into three distinct
regions within the communication register virtual address
space. One region of the address space is allocated to Ring 4,
another to ring 0, and the last to hardware.

Virtual memory addresses have five rings: 0, 1, 2, 3, and 4.
Communication register virtual addressing has only two distinct
rings: ring 4 and ring 0. A process executing in rings 1, 2, 3, or 4
only has access to ring 4 communication registers. There are 32
registers each in the hardware and ring 0 regions, and 64
registers in the ring 4 region.

142 CONVEX C-Series Architecture

······.·.'·
·.· .. ··•.•.

··,·: ,.

:. ·.
~ .; . . · ... : ..

EDTX 2-04-CV-120
51056DOC065470

�

Figure 47 shows the ring partitioning of the communication
register virtual address space.

Figure 47 Communication register virtual address space

I v __

. ·.=., ...

Ceffa 63 0

0000 -~----~-----------------------------,

Hardware
001F

~~--------------------------------~

32 Registers

1 Future growth

i ,l
3fFf 1

4000'1 ----------------~----------------~
Ring 0

401 f software 32 Registers

~~----------------------------------~
1 Future growth

7fFF i l
6000 1------'------i
B0.3F

Ring 4
software

~I ----------------------------------~
1 Future growth
I
I
I
I
I
I
I
1
I

64 Registers

!TF"F I
1------------------------------J

:: ...
~:

AH300041
11/19/93

The hardware-specific registers are allocated from address 0 0 0 0
towards 3FFF, and the registers for ring 0 software are always
allocated from 4000 towards 7FFF. This convention ensures that
for any given hardware implementation of the C-Series
architecture, the hardware register requirements do not conflict
vvith the software register requirements. The ring 4
communication registers are located from 8000 to FFFF, which
ensures sufficient space is available for additional user
communication registers.

Communication register addressing is governed by a protection
scheme similar to that of memory addressing. All
communication register virtual addresses generated explicitly by
instructions are checked by the hardware. If an address is out of
range, a system exception occurs.

Chapter 5 Multiprocessor management 143

I

I

EDTX 2-04-CV-120
51056DOC065471

�

·.' :'··

:.• .. :-

'

;· .-.· . :·, -.1 .,
- i

:-"".

An invalid conununication address system exception is
generated if a process executing in rings 1, 2, 3, or 4 violates this
ring protection. For example, if a user (ring 4) process (thread)
references the communication addresses 0 0 0 0 or 4 0 0 0, the
thread will cause a system exception.

The multiprocessing C-Series hardware does not define the
virtual address ranges 0020 to 3FFF, 4020 to 7FFF, and 8040 to
FFFF. Attempting to access these address ranges also causes an
invalid communication address trap. There are two exceptions:
the C3200 Series CPUs use the address range 3CO 0 to 3 FFF and
the C3400/C3800/C4600 Series CPUs use the addresses range
3000 to 3FFF to implement the special physical addressing
scheme. See the next section.

Refer to the communication register instruction definitions and
related material in the CONVEX Assembly Language Reference
Manual (C Series) for more information.

144 CONVEX C-Series Architecture

'•."

.·-.·' ..

. :_. .. ··

.... ·: . :•·,

EDTX 2-04-CV-120
51 056DOC0654 72

�

I

_1

Communication register physical addressing
Although each CPU has direct access to a portion of the
communication registers based on the CPU's current CIR index,
hardware and ring 0 software can also access communication
registers in partitions other than their own via an additional
special address mapping called communication physical addressing.
This type of physical addressing should not be confused with the
physical address that results from the virtual-to-physical memory
address translation process described in Chapter 4.

Each physical conununication register set is accessible through
the communication register virtual address space from ring 0, I
regardless of the current communication register set mapping.
Physical addressing is accomplished by defining a fixed
virtual-to-physical translation for a portion of the virtual)
address space assigned to the hardware communication I
registers. Figure 48 shows the fixed virtual-to-physical mapping .
of all register sets within the hardware virtual address space for
C3200 Series CPUs. Figure 49 shows the mapping for 1

C3400/C3800/C4600 Series CPUs. This mapping allows ring 0 I
software to access all communication register sets, regardless of ,I

which communication register set is currently bound to the CPU .
through its CIR index.

Therefore, each communication register is addressable with two
communication addresses. One is CIR-based (virtual) and one is
CIR-independent (physical). The C ~Series architecture sets aside
a range of virtual communication register addresses spanning
enough address space to provide a second one-to-one address
mapping. Since this one-to-one address mapping is independent
of the CIR, this range of addresses may be physically addressed
by ring 0 software. In addition, this second mapping always
ends at virtual address 3FFF, which places it in the (privileged)
ring 0 communication address space.

The C3200 Series hardware has 1,024 communication registers.
The physical address mapping is located in the range of 3C00 to
3FFF. Figure 48 shows this mapping broken into 128-register
partitions, assigned by CPU (C!R).

Chapter 5 Multiprocessor management 145

EDTX 2 -04-CV -120
51 056DOC0654 73

�

I

I
I :!

.... I

Figure 48 Physical communication register address mapping-c3200 Series CPUs

Ceffa

63 Communication registers 0

Mapped hardware registers

Future growth

l
3COO

3C7F
3C80 1---------------------l

3CFF
3DOOr------------------~

.307F
3080~~~~~~--~~-----------~

30fT
.3[00 r---------------------1

3E7F
3[80 r--------------------1

3£FF
3FOO r--------------------1

3F7F
3FBOr----------------------j

3FF>

146 CONVEX C-Series Architecture

... ----~---. --. -­·------,-.---. ····--.
··:."

Lock
bil

•.;: ... - ·.

....... ··

···: .. _ . .;-·.

CIR

0

2

3

4

5

B

7

. .. :~ ·' .:

· ... ·;· .::: .. :. :· _ ···. _,_.

AH30004S
11/1!1/93

EDTX 2-04-CV-120
51 056DOC0654 7 4

�

..• ~ •. ·;.~ .. ;.,.,, .•. ••ro .•

The C3400/C3800/C4600 Series have 4,096 communication
registers. The physical address mapping is located in the range
of 300 0 to 3FFF. Figure 49 shows this mapping broken into
128-register partitions, assigned by CPU (CIR).

Figure 49 Physical communication register address mapping--C3400/C3800/C4600 Series CPUs

i

I
_l~

.. ,•.- --. .

Ceffa

63 Communication registers 0

Mapped hardware registers

Future growth

!
3000

307F

3080 ~---------------------------------4

30Ff
3100 1--------------------------------------1

317F
31801------------------------------------1

31FF
1---------------------------------~

3E80

3EFF

3FOO ~-----------------------------------1

3F7F

3F80
1--------------------------------------1

3FFF
L-------------------------------~

Lock
bit

em

0

2

3

29

30

31

AH300007
11/18/93

..... ;_,:.·.

·· .. : ... ·

Chapter 5 Multiprocessor management 147

:-...•.. ·- ·r ;·

r.,·.

--·---·--------·--·-·· .. . ' ·. ' - ·~ .: ...

. ;.-: ~ ...
.. .. ;, ~ ..

EDTX 2-04-CV-120
51 056DOC0654 75

�

Communication register address translation

Virtual-to-physical communication register address translation
is a function of the CIR and communication register offset.

CMR address translation - C3200
In C3200 Series complexes, the 1,024 physical communication
registers are accessed using a 10-bit physical register address.
These physical registers are divided into eight sets of 128
communication registers, which are accessed using a 3-bit CIR
index. The communication register virtual address and the 3-bit
CIR index are combined in various ways to result in the 10-bit
physical address.

Table 32 shows how a hardware register address is developed by
using a 16-bit virtual address and translating the virtual address
into a 10-bit physical address.

Table 32 Communication register address mapping---C3200 Series CPUs

Virtual address Virtual address bits used Physical address Description (hexadecimal) (binary)

0000 - OOlF 0000 oooo oooa aaaa cccOOaaaaa Ring 0 hardware

0020 - 3BFF NA NA Reserved2

3COO - 3FFF 0011 llaa aaaa aaaa aaaaaaaaaa Ring 0 software
(CIR independent)

4000 - 401F OHIO 0000 OOOa aaaa cccOlaaaaa Ring 0 software
t (CIR dependent)
I

4020 - 7FFF NA NA Reserved1

8000 - 803F 1000 0000 OOaa aaaa ccclaaaaaa Ring4
(CIR dependent)

8040 - FFFF NA NA Reserved1

1 Any access to these address ranges violates the communication address ring protection and will cause an invalid
communication address system exception.

The first column in Table 32 defines a range of virtual
communication addresses that are mapped to a valid physical
communication address.

The second column shows which virtual address bits are used to
form the physical address.

The third column shows how the bits in the 16-bit virtual
address are used when the virtual communication address is

148 CONVEX C-Series Architecture

I
-I

l
I

-----.-. -. -__ -_-;· ---. --- ---------~-, -.,.--...,------------,----,-... ,• -~---.. --------,..,.-.~--­
···-:··;-: . .-; ... :.·,·
· .. · .. - :·.

EDTX 2-04-CV-120
51 056DOC0654 76

�

: .-~: ._. ·. ' .
:1

····.

translated to a physical conununicationaddress (where the c bits
are the CIR index, and the a bits are the relevant bits from each
virtual address range).

The physical address base used in the communication physical
addressing mechanism for each 3-bit CIR is shown in Table 33.

Table 33 C3200CIR physical address base assignment-C3200

CIRindex Physical address base
assignment

0 3COO

1 3C80

2 3DOO

3 3D80

4 3EOO

5 3E80

6 3FOO

7 3F80

CMR address translation - C3400/C3800/C4600
In C3400/C3800/C4600 Series complexes, the 4,096 physical
communication registers are accessed using a 12-bit physical
register address. These physical registers are divided into 32 sets
of 128 communication registers, which are accessed using a 5-bit
CIR index. The communication register virtual address and the
5-bit CIR index are combined in various ways to result in the
12-bit physical address.

Table 34 shows how a hardware register address is developed
for the C3400, C3800, and C4600 Series complexes by using a
16-bit virtual address and translating the virtual address into a
12-bit physical address.

Chapter 5 Multiprocessor management 149

I

EDTX 2 -04-CV -120
51 056DOC0654 77

�

'· ...•.... ; ..

.· '· :
' - : .. ~

·:· .. · ...
·"··,';·.·

Table 34 Communication register address mapping-C3400/C3800/C4600 Series CPUs

Virtual address
Virtual address bits used

Physical address Description
(hexadecimal) (binary)

0000 - OOlF 0000 0000 OOOa aaaa cccccOOaaaaa Ring 0 hardware

0020 - 2FFF NA NA Reserved1

3000 - 3FFF 0011 aaaa aaaa aaaa aaaaaaaaaaaa Ring 0 software
(CIR independent)

4000 - 401F 0000 0000 OOOa aaaa cccccOlaaaaa Ring 0 software
(CIR dependent)

4020 - 7FFF NA NA Reserved1

8000 - 803F 1000 0000 OOaa aaaa ccccclaaaaaa Ring4
{CIR dependent)

8040 - FFFF NA NA Reserved1

1 Any access to these address ranges violates the communication address ring protection and will cause an invalid
communication address system exception.

The physical address base used in the communication physical
addressing mechanism for each 5-bit CIR is shown in Table 35.

Table 35 CIR physical address base--C3400/C3800/C4600

CIRindex
Physical address base

assignment

0 3000

1 3080

2 3100

3 3180

••• •••
lD 3E80

IE 3FOO

lF 3F80

150 CONVEX C-Series Architecture

-----·-----·~-.,.....---;-....,....--· ..•.. --· ·. --·--·..---:--_--:-:--:~··--···-
·:· . .-:.: .:·:

· .. · : ::·: .·~.: < ... · .. · ...
. ~ . . .

..... ·

EDTX 2-04-CV-120
51 056DOC0654 78

�

q,

Note

.. · ·:."·'·:-~':

Communication register modified bits - C3200

Since the CIR defines an operating system process, the
communication registers become a part of the process state.
Therefore, the communication registers are saved and restored
by the operating system when the process is rescheduled, that is,
the process relinquishes its CIR (communication register
partition) and another process's state is mounted in the
communication register partition indexed by the CIR.

On a C3200 Series complex, the communication register
hardware provides and maintains a structure called modified bits
to accelerate save and restore operations for the communication
registers. These modified bits are similar in function to the
memory referenced and modified bits. The hardware uses these
bits to save and restore only those communication registers that
have been modified.

The C3400/C3800/C4600 Series CPUs do not implement the
modified bits.

In general, each register does not have a modified bit. Instead, a
modified bit covers a subregion of the communication register
address space. Any time a communication register or lock bit in
the particular region is modified with put,lck, ulk, snd, or
rev primitive operations, the modified bit corresponding to that
region is set. The following instructions will set the modified bit
whenever executed, regardless of success of the operation.

put.!, put.w
lck, ulk
snd.l, snd.w
rcv.l, rcv.w
inc.l, inc.w

In addition, any instruction that internally performs any of the
preceding operations (for example, pfork), will set the modified
bits associated with the communication registers that the
instruction uses.

The C -Series architecture provides two privileged instructions to
implement operations for saving and restoring communication
registers: the stcrnr instruction copies communication registers
for a specified CIR to memory, and ldcmr loads a specified CIR's
communication registers from memory.

The stcmr instruction examines the communication register
modified bits to store only the modified region of communication
registers, and then stores the modified bits, along with the

Chapter 5 Multiprocessor management 151

.... , ~-- ·.· .:
·-.:··· . .-·.

··. ··.-:-;

EDTX 2-04-CV-120
51 056DOC0654 79

�

::~.-· '. . :

': ·.::.:

associated communication registers. Since a receive operation is
used to implement the read operation, all of the lock bits are
cleared after the stcmr is complete.

The subsequent 1 dcmr instruction that restores the
communication registers will only load the registers that were
actually saved by the s tcmr. The memory copy of the modified
bits are referred to as the valid bits to avoid confusion. The
operating system may alter these bits in memory to force a ldcmr
instruction to restore more or less of the communication registers
than the previous stcmr instruction saved.

The C3200 Series CPUs contain 1,024 communication registers,
with 128 allocated to each of the eight CIRs. Up to 128 registers
per CIRare stored and loaded, along with two longwords oflock
bits and one long word containing the communication register
set modified bits. The CPUs implement 16 modified bits, two per
CIR. These modified bits are maintained by the CPUs that
control which registers are stored to (via stcmr) and loaded
from (via ldcmr) memory.

For each C3200 Series CIR, one modified bit corresponds to the
hardware and ring 0 communication registers, and another
modified bit corresponds to the ring 4 communication registers.
When the modified bits are stored to memory, bit <0> of the
register set valid bits longword is the hardware/ring 0 modified
bit, and bit <32> is the ring 4 modified bit. The remaining bits are
hardware reserved.

For C3200 Series CPUs, eight of the ten reserved hardware
communication registers are not stored by stcmr or loaded by
ldcmr. These registers are reserved as physical CPU-bound
quantities. The other two reserved registers may be
process-bound, and are saved.

The longword of lock bits corresponding to hardware and ring 0
software from the MSB has eight Os (reserved). The longword
contains the lock bits for the hardware registers (virtual address
0008 to OOlF) in bits <55 .. 32>. It contains the lock bits for ring 0
software (virtual address 4000 to 401F) in bits <31..0>.

The longword of lock bits corresponding to ring 4 contains the
lock bit for the lower communication register address (8000) in
the MSBs and lock bit for the highest communication register
address (8 0 3F) in the LSBs.

Figure 50 shows the memory format of the communication
register lock and valid (modified) bits, with respect to the stcmr
and 1 dcmr instructions, that are used by the C3200 Series CPUs.

152 CONVEX C-Series Architecture

... ·-.. ;·:_-__ .
··, ·_ ·.

._,,_ ... :

EDTX 2-04-CV-120
51 056DOC065480

�

Figure 50 ldcmr I stcrnr memory map

63

<effo> - 0018

<effo> - 00!0

<effo> - 0008

<etta>

<effo> + 0100

<effo> + 0200

32 31

Lock bits - ring 4 SW

Lock bits - HW & RING 0
Register set valid bits

Hardware

Ring 0 software

Ring 4 software

0

sw

Length
(longwords)

32

32

64

<effo> + 0400 I I
L~-------~-----------~-~-------1

AH300080

11/19/93

For C3200 Series CPUs, the valid bit longword contains the
memory copy of the modified bit for ring 4 registers in bit <32>
and the modified bit for ring 0 registers in bit <0>_ The block of
longwords that store the data portion of the communication
registers are arranged with numerically lower addressed
communication registers in numerically lower memory.

C3400/C3800/C4600 Series CPUs use the same memory map
shown in Figure 50, but ignore the register set valid bits
longword.

Chapter 5 Multiprocessor management 153

EDTX 2-04-CV-120
51 056DOC065481

�

... -.. ·

.· ·.
: ·. ' .. :.:_.·.

. ~:, . :.

Hardware communication registers

The C-Series architecture allocates half of ring 0 communication
address space for hardware (see Figure 47). These registers are
used by the hardware and ring 0 software to provide
multithreaded execution. In the following figures, the notation
Ceffa denotes a communication register address xxxx . _

The hardware communication register set contains all
process-specific states necessary to schedule a process and create
or terminate executing threads. This register set is only
accessible from ring 0 and is the primary structure for process
scheduling. Hard ware enforces protocols on the sense of the lock
bits on some of these registers.

The communication registers include a set of universal (except
for implementation-specific addressing) registers that are
applicable to all multiprocessing C-Series complexes, plus
specific control registers for C3200 Series implementations. The
C3400 Series CPUs have an additional set of control registers
that are integrated into the communication register address
space. The C3800/4600 Series CPUs also have an additional set
of control registers, but these are not integrated into the
communication register address space .

154 CONVEX C-Series Architecture

. , '. ··. ·:,· 'i·,:·:·:" -...... :~ :· ... · :: . : .

EDTX 2-04-CV-120
51 056DOC065482

�

Hardware communication registers - C3200
C3200 Series CPUs use the hardware communication registers
illustrated in Figure 51, which include the hardware reserved
registers illustrated in Figure 65.

Figure 51 Hardware communication registers--C3200 Series CPUs

Ceffa

0000

0001

0009

OOOA

OOOB

oooc

0000

OOOE

OOOF

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

001A

0018

001C

0010

001E

001f

63

Register
32 31

Reserved

Hardware reserved

fork.FP fork.AP

fork. PC fork.PSW

Reserved fork.source_PC

fork. type fork.SP

SDR[O] SDR[l]

SDR[2) SDR[3}

SDR[4] SDR[5]

SDR[6] SDR[7]

Trap instruction register ring 0

Trap inslruclion register ring 1

Trap instruction register ring 2

Trap instruction register ring 3

Trap instruction register ring 4
Thread

0

allocation mask
Soft-.ra~e I Allocated
reserv<>d thread count

CPU 0 execution clock/ring 0-3

CPU 0 execution clock/ring 4

CPU 1 execution clock/ring 0-3

CPU 1 execution clock/ring 4

CPU 2 execution clock/ring 0-3

CPU 2 execution clock/ring 4

CPU 3 execution clock/ring 0-3

CPU 3 execution clock/ring 4

Lock bit

forklck

forkposted

AH300048
11/18/93

. -~ ..

Chapter 5 Multiprocessor management 155

.... ,,.-~--------=-~. -.-~ .. -.-~·-···

EDTX 2-04-CV-120
51 056DOC065483

�

Hardware communication registers~ C3400/C3800
C3400/C3800 Series CPUs use the hardware communication
registers illustrated in Figure 52.

Figure 52 Hardware conununication registers-C3400/C3800 Series CPUs

Ceffa

000()

0001

0002

0003

0004

0005,

0{)06

0007

0008

0009

OOOA

0008

oooc
0000

OOOE

OOOf

0008

0011

{)0\2

0013

0014

0015

0016

0017

0018

0019

001A

0018

001C

0010

001E

001f

63

I
I

Trap

Trap

Trap

Trap

Trap

Register
32 31

Control registers

Control registers

instruction register

instruction register

instruction register

instruction register

instruction register
Thread CPU

0

ring 0

ring 1

ring 2

ring 3

ring 4

allocation mask In.a:!5k
I Allocated
thread count

fork.FP fork.AP

fork.PC fork.PSW

Reserved fork. source_ PC

fork. type fork.SP

SDR[O] SDR[1]

SDR[2] SDR[3]

SDR[4] SDR[5]

SDR[6] SDR[7]

CPU 0 execution clock/ring 0-:3

CPU 0 execution clock/ring 4

CPU 1 execution clock/ring 0-:3

CPU 1 execution clock/ring 4

CPU 2 execution clock/ring 0-3

CPU 2 execution dock/ring 4

CPU 3 execution clock/ring 0-3

CPU 3 execution clock/ring 4

CPU 4 execution clock/ring 0-3

CPU 4 execution clack/ring 4

CPU 5 execution clock/ring 0-3

CPU 5 execution clock/ring 4

CPU 6 execution clock/ring 0-3

CPU 6 execution clock/ring 4

CPU 7 execution clock/ring 0-3

CPU 7 execution clock/ring 4

156 CONVEX C-Series Architecture

.. -· -- ~ -
-.:_

Lockbit

forklck

forkposted

AH:JOOOM
11/15/!!3

EDTX 2-04-CV-120
51 056DOC065484

�

Hardware communication registers - C4600
C4600 Series CPUs use the hardware communication registers
illustrated in Figure 53.

Figure 53 Hardware Communication Registers-C4600 Series CPUs

Ceffa

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

OOOA

OOOB

oooc
0001)

ooot
ooor
0010

001 1

9

B

0012

0013

0014

0015

0016

0017

0018

001

001A

001

ODIC

001 0

001 E

001 F

63

Trap

Trap

Trap

Trap

Trap

Register
.32 31

Control registers

Control registers

instruction register

instruction register

instruction register

instruction register

instruction register
CPU

0

ring 0

ring 1

ring 2

ring 3

ring 4

Thread allocation mask mask
1 Allocated
thread count

fork.FP fork.AP

fork.PC fork.PSW

Reserved fork .source_ PC

fork. type fork.SP

SDR[O) SDR[l)

SDR[2] SDR[3]

SDR[4] SDR[5]

SDR[6] SDR[7]

CPU 0 execution clock/ring 0-3

CPU 0 execution clock/ring 4

CPU 1 execution clock/ring 0-3

CPU 1 execution clock/ring 4

CPU 2 execution clock/ring 0-3

CPU 2 execution clock/ring 4

CPU 3 execution clock/ring 0-3

CPU 3 execution clock/ring 4

Reserved

Reserved

Reserved

Reserved.·

Reserved

Reserved

Reserved

Reserved

Lockbit

forklck

forkposted

AH300094
11/18/93

Chapter 5 Multiprocessor management 157

EDTX 2-04-CV-120
51 056DOC065485

�

·. ·: : ~:

Fork event communication registers
The fork event registers are used for holding information
required to create an independent thread of execution.
Figure 54 and Figure 55 show the fork event registers.

Figure 54 Fork event registers-C3200 Series CPUs

Ceffa
63

OOOA fork.FP

0008 fork.PC

oooc Reserved

OOOD fork. type

Register
.52 51

fork.AP

fork.PSW

fork.source_PC

fork.SP

Lockbit

H forklck

8 forkposted
AH300048
11/IB/93

Figure 55 Fork event registers--C3400/C3800/C4600 Series CPUs

Ceffa
63

OOOB

0009

OGOA

0008

fork.FP

fork.PC

Reserved

fork. type

Register
32 31

fork.AP

fork.PSW

fork.source_PC

fork.SP

Lockbit

R forklck

8 forkposted
AH30006B
11/19/93

One process executing on a CPU requests another CPU by
storing information in the fork event registers. An idle CPU then
creates a thread and exerutes it on behalf of the process by
loading this information from the fork event registers into its
own state registers.

The fork event registers are defined as:

• fork. FP-The initial frame pointer for the thread.

• fork.AP-The initial argument pointer for the thread.

• fork. PC-The program counter to begin execution of the
thread.

• fork. Psw-The initial PSW for the thread.

• fork. source_PC-The PC for the thread posting the fork.

• fork. type--A parameter passed from posting to
acceptance of the fork.

158 CONVEX C-Series Architecture

····----··.~·~.--·-··-. -·-· ·--···-··-: -.·,~···--.·-·-

., ___ ;.··.

·.·~. : .. : ··: ..

··. -''··-.-_.;

- ,.:~

·:.·J

EDTX 2-04-CV-120
51 056DOC065486

�

The possible hexadecimal fork. type values are:

- PFORKED 0000 0000

SPAWNED

STOPPED

0000 OOOA

0000 OOOB

This parameter defines the fork type of a posted fork, so
pfork, spawn, and join instructions cannot be mixed in a
multithreaded process. Refer to the "Multithreaded
execution" section in this chapter, and to the pfork, spawn,
and join instruction definitions in the CONVEX Assembly
Language Reference Manual (C Series) for more information.

• fork. SP-The initial stack pointer for the thread.

When a fork is posted with pfork or spawn, the PC of the
instruction following the pfork or spawn instruction is loaded
into fork. source_PC, which is located in the fork event
registers.

When a fork is taken, the value in fork. source_PC is loaded
into an idle CPU's PC to establish a current ring of execution as the
CPU transitions to the active state. A current ring of execution
must be established since an idle CPU has no state. The CPU then
performs a jump to fork. PC with ring wrapping enabled. The
ring wrapping prevents a pfork 0, SP instruction in ring 4 from
accessing ring 0.

The lock bits on the fork event registers, called forklck and
forkposted, are used to convey the state of the fork during its
transitions from cleared to posted to taken and to cleared. The fork
event registers are defined as:

• fork~ck-This bit is a lock bit on the fork. FP and
fork. AP combination. When this lock bitis 1, the hardware
is transitioning the fork from clear to posted or posted to
taken.

• forkposted-This bit is a lock bit on the fork. type and
fork. SP combination. When this lock bit is 1, there is a
valid fork posted to be taken.

This protocol implies that the first and last fork event registers
are manipulated with snd and rev operations. Refer to the
uForking operations" section on page 198 for more information on
how the forklck and forkposted lock bits are manipulated.

Segment descriptor registers
The segment descriptor registers (SDR) define the extent of the
virtual address space associated with a process. Locating the
SDRs in the communication registers causes the entire address
translation for a CPU to change whenever the CIR index is

Chapter 5 Multiprocessor management 159

EDTX 2-04-CV-120
51 056DOC065487

�

changed. Lock bits on these registers are ignored. These registers
should be accessed with put and get operations.

A put or send to the SDRs in a communication register does not
change the copies of the SDRs that a CPU may have accelerated,
because the SDRs are accelerated only when the CPU changes
the CIR.

Figure 56 and Figure 57 show the segment descriptor registers.

Figure 56 Segment descriptor registers-C3200 Series CPUs

Ceffa

63

ODOE SDR[O]

OOOF SDR[2]

0010 SDR[4]

0011 SDR[6]

Register
32 31

SDR[l]

SDR[3]

SDR[5)

SDR[7]

Lockbit

0

Figure 57 Segment descriptor registers--<=3400/C3800/C4600 Series CPUs

Ceffa

01JOC

OOOD

OQOE

OOOF

I
I
I
I

63

SDR[O]

SDR[2]

SDR[4]

SDR(6]

160 CONVEX C-Series Architecture

Register
32 31

!
I

Lockbit

SDR[l]

SDR[!.l]

SDR[5]

SDR[7]

AH300049
11/19/93

AH300069
11/IB/93

EDTX 2-04-CV-120
51 056DOC065488

�

Trap instruction registers
There is one 64-bit trap instruction register (TIR) for each ring. It
is used by the trap and pbkpt instructions, which can set
specific bits in this register to cause a process-wide system
exception. The lock bits on the TIRs are ignored. The TIR is
primarily used for asynchronously trapping thread breakpoints
or for thread scheduling. The TIR and the trap and pbkpt
instructions are described in detail in the Chapter 6, 'Exceptions
and interrupts,' on page 209. Figure 58 and Figure 59 show the
trap instruction registers.

Figure 58 Trap instruction registers--C3200 Series CPUs

Ceffa

0012

OOL3

0014

0015

0016

63

Trap

Trap

Trap

Trap

Trap

Register

32 31

instruction register

instruclion register

instruction ,;egister

instruction register

instruction register

ring 0

ring 1

ring 2

ring 3

ring 4

Lock bit

0

i

AH300050
11/lB/93

Figure 59 Trap instruction registers--C3400/C3800/C4600 Series CPUs

Ceffa

0002

0003

0004

0005

0006

~ •. ; -:
··· .. ,·· ..

63

Trap

Trap

Trap

Trap

Trap

. ; .• _:~~ -.. · . ." · .. ··. .

Register
32 31

instruction register

instruction register

instruction register

instruction register

instruction register

··--;;::· ... --::(···._.-. :-

. .. --·-.. :

ring 0

ring 1

ring 2

ring 3

ring 4

Lockbit

0

AH300070
11/HI/93

' .. · .. ·:.:_: .: :··
ChapterS Multiprocessormanagement 161

·· .. _.:· ___ :--

EDTX 2-04-CV-120
51 056DOC065489

�

Thread allocation mask and count
The thread allocation mask is a 32-bit mask and is the primary
means for defining the multithreading extent of a process. Each 1

1
.

bit position in the thread allocation mask represents a unique . j
thread ID that allows a process to create up to 32 unique threads.
Each bit that is set defines a thread that can be created. By l
limiting the number of bits in the mask, a process is forced to run
with a limited number of threads.

Figure 60 and Figure 61 show the thread allocation registers.

Figure 60 Thread allocation register-C3200 Series CPUs

Ceffa Register

32

Lock bit

63
Thread

0017~--~al~lo~c~at~w~n~m~as~k~--~~~~~~~~~~ D AH300051
11/18/93

Figure 61 Thread allocation register and CPU rnask--C3400/C3800/C4600 Series CPUs

Ceffa
63

0007
Thread

a.Uoc:a.tion mask

Register
32

Lockbit

0
AH300071

11/18/93

In order for a thread to be created (CPU transition from idle to
allocated), a unique thread ro is generated. This is done by
atomically clearing a single bit in the thread allocation mask as a
function of the CPU idle loop. The CPU idle loop searches the
communication register sets for a posted fork event. The CPU's
thread ID (TID) register is then loaded with the allocated thread
ID to identify the new thread throughout its existence.

When a CPU transitions from allocated to idle, it atomically sets
the bit associated with the CPU's TID register in the thread
allocation mask as a function of the CPU idle loop.

The allocated thread count is a 16-bit integer. It is a count of the
number of thread IDs allocated from the thread allocation mask.
When a thread is created, the thread count is incremented, and
when a thread terminates, the thread count is decremented. The
thread allocation count is used by the join instruction. It can
also be used to determine the current extent of process
multithreading.

The lock bit for the thread mask and thread count (thread
allocation register) is interpreted as a "valid" bit, allowing this

162 CONVEX C-Series Architecture

·····-·:-;-::...-:-···;.·
,. : ~ ·:.. . .. ='·. :·. ·_ .

.. < . .--::. ___ :;··_·_ .. · -: ... :
· ... '

·····:.·,
.. ··.

- ... _._.··.:..,,

. ... -~ ..

:-.. ,._,_-

EDTX 2-04-CV-120
51 056DOC065490

�

~- · .
. · .. _., ..

·····: ":

register to be manipulated with snd and rev operations. This
lock bit is the central synchronization point of all fork operations.
An idle CPU waits until it can successfully receive this register to
ensure that a valid fork is taken, then allocates a thread to the fork
By locking the thread mask or count (that is, making the thread
count or mask unreceivable), software can ensure that no forks are
accepted in that communication register set.

The CPU mask is an 8-bit mask that enables a CPU to pick up
forks in that process. Bit 0 refers to CPU 0, bit 1 refers to CPU 1,
and so forth. If the CPU's bit is set, then the CPU rna¥ pick up the
fork.

CPU execution clock registers
Each CPU has a 64-bit microsecond clock register that provides
the exact execution time per CPU within each ring. The CPU
execution clock registers are updated on ring crossings, CIR
changes, and communication register state stores. The ctrsg
instruction forces an update of these registers. Software must
ensure that these registers are updated before they are examined.
These clock registers are maintained on a per-CPU basis, so
synchronization is not necessary for operations that update them.
The lock bits for the CPU execution clock registers are ignored.

Figure 62, Figure 63, and Figure 63 show the CPU execution
registers.

Figure 62 CPU execution clock registers-c3200 Series CPUs

Ceffa

0018

0019

001A

0018

001C

0010

001E

001F

63

Register
32 31

CPU 0 execulion clock/ring 0-3

CPU 0 execulion clock/ring 4

CPU 1 execution clock/ring 0-3

CPU 1 execution clock/ring 4

CPU 2 execution clock/ring 0-3

CPU 2 execution clock/ring 4

CPU 3 execution clock/ring 0-3

CPU 3 execution clock/ring 4-

Lockbit

0

AH300D52
ll/18/93

Chapter 5 Multiprocessor management 163

.. ·--···------..--~...:...-...~~---·-
.· ··:. ·:·

"·;·> :_.;: ...

.. ~ '

EDTX 2-04-CV-120
51 056DOC065491

�

Figure 63 CPU execution clock registers--C3400/C3800 Series CPUs

Ceffa

63

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

DOl A

0018

OO!C

0010

OOIE

OOIF

CPU 0

Register

32 31

execution clock/ring 0-3

CPU 0 execution clock/ring 4

CPU 1 execution clock/ring 0-3

CPU l execution clock/ring 4

CPU 2 execution clock/ring 0-3

CPU 2 execution clock/ring 4

CPU 3 execution clock/ring 0-3

CPU 3 execution clock/ring 4

CPU 4 execution clock/ring 0-3

CPU 4 execution clock/ring 4

CPU 5 execution clock/ring 0-3

CPU 5 execution clock/ring 4

CPU 6 execution clock/ring 0-3

CPU 6 execution clock/ring 4

CPU 7 execution clock/ring 0-3

CPU 7 execution clock/ring 4

Figure 64 CPU execution clock registers-C4600 Series CPUs

Ceffa

0010

0011

0012

0013

0014

0015

0016

0017

63

CPU 0

CPU 0

CPU 1

CPU 1

CPU 2

Register
32 31

execution clock/ring 0-3

execution clock/ring 4

execution clock/ring 0-3

execution clock/ring 4

execution clock/ring 0-3

CPU 2 execution clock/ring 4

CPU 3 execution clock/ring 0-3

CPU 3 execution clock/ring 4

Lockbits

0

Lockbit

0

AH300072

11/lB/93

AH300095

11/23/93

Refer to the "CPU execution timer" section in Chapter 5 for more
information about the CPU execution clock registers.

164 CONVEX CSeries Architecture

•c-••-,••~·---"-";""'"'"­

",,--•,
-----~- -. ··--·- -------~---

I

I
l

EDTX 2-04-CV-120
51 056DOC065492

�

Hardware reserved CMR · C3200
For the C3200 Series CPUs, the communication virtual address
space from 0000 to 0009 is reserved for hardware reserved
registers that are used primarily as shadow copies of complex-wide
write-only registers. These registers (in the conummication
address range) are indexed by CIR = 0, as shown in Figure 65. The
conununication virtual address range 3COO to 3C09 places these
registers at the communication address range 0 0 0 0 to 0 0 0 9
indexed by CIR = Q_

Figure 65 Hardware reserved communication registers-C3200 Series CPUs

Ceffa

0000

0001

0002

0003

0004

0005

0009

63

Register
32 31

Reserved

Interrupt control register

TCPU shadow

Processor trap mailbox

Global enable shadow

Unused

Lockbit

0

AH300017
11/18/93

For example, the target CPU register {TCPU) is a hardware
reserved register in the interrupt logic. This register is explained
in Chapter 6, 'Exceptions and interrupts,' on page 209. The
C -Series architecture defines instructions to both write (mov Sk ,

TCPU) and read (mov TCPU, Sk) this register. When the TCPU is
written with mov Sk, TCPU, the register Skis also written to one
of the hardware reserved communication registers. This shadow
copy value is independent of the CIR A mov TCPU, Sk
instruction writes register Sk from the shadow copy in the
hardware reserved communication registers.

Chapter 5 Multiprocessor management 165

EDTX 2 -04-CV -120
51 056DOC065493

�

I

I

I
. I

Control registers - C3400

Control registers used by C3400 Series complexes are not
contiguous, and are integrated within the conununication
register space. The control registers are the first two entries in
each communication register set (CIR). They should be accessed
with physical addresses, since the functions of the control
registers are independent of the CIR set of which they are a part.
Most registers are accessed with microcode (firmware) invoked
by dedicated assembly language commands.

Figure 66 describes the mapping of the C3400 Series control
registers from within the communication registers.

Figure 66 Control register mapping-C3400 Series CPUs

ClR

1

2

3

Communication
registers

Physical
address 5 0

,.---------,
3000 1-----------i

307f
3080 1--------l

l
30ff i
31CO i-_ --------j

3l7F
1------------l/

31 ao 1----------1
I
I

I I
1 I
! ____________ __!

Control register
group

Physical
0 address

,.----------, 3000

l-----------l3080
~--------13100
~----------13180

1------------1 3F80
L_ ______ ...J 3f81

AH3000B5

11/19/93

I
[__ """"""166 CONV:-~~--5-er-ie-s-Arc~ltecture ------------~-- l -"

... --,-~ .. -.:·-~- .

. . • ..

.· ·. ~

EDTX 2-04-CV-120
51 056DOC065494

�

l
I
I

I
I

..1:

Figure 67 describes the layout of the C3400 Series control
registers.

Figure 67 Control register layout-C3400 Series CPUs

Ceffa

000

080

100

180

200

280

300

380

400

480

sao

580

600

680

700

780

800

880

900

980

AOO

A80

BOO

880

coo

C80

000

080

EOO

E8 0

FO

F8

100

0

0

0

nc_2

Ntrc_<:

BE_7 I BE_S

8E_E:fl"2 I BE_ EXT!

Regi~ter

Reserved.

Res~i"'\'ed

70C

l"l'Ll

""""-"'<d

NlTC_I

tPU_XlS"r Rf;.ll.._TIUE

BE_, BE....~ Bf;._3

OE_Elml DE_TDIZ BE_ Till!

"=n-ed

!!=rve<l

~etv-td

Roerv-:d

Re.c!l!::tvtd

Rt::'lt!rved

R.oorve<l

P..nerved

Re~~ervl':d

R~~c:rT-c:d

Rellll:r'Pr:d

k.e~~rv-ed

Re!lt.':"r:d

!k:!'ll'!n-ed

Resen-ed

Jh~l'I~TT-e"d

Re~ened

lleoom:d

l!=I"TOd

R=""'d

TOC_DELTA

Reserved

Resen-ed I
n:a.

rrc_n

NITLO

GE

l
I

!Cl!:

rrc_u

I MBOX

mN_U

BE_~ BE_ I

BE_TIMO BE_FD

I NltT_SOUl!CE

I RT_SDlJRC£

l.£...0

I.E._ I

LE._2

l.£...3

1.£3

L£...5

LE....6

L£...7

POST_ BITS

NITC_U LOCK

I
I

l>UI.K..WAIT

BE_O

BE_FC

NR"LTRAP _AO:

RT_ TRAP _ACK

NRT_TRAP _REQ

RT_TRJ.P_R!:q

ITSR

NRT_th"T_REq

RT_INT_REQ

!DI.EO I CIRO

mu:r CIRl

m=l C!R2

tDI.E:l CIR3

EDLE< Cl!U

mu:s CIR5

lbl.£6 Cll11!

mm CIR7

ITSlLO

!TS!LI

ITS1L2

T•lLDDNE

LOCK

LOCK

LOCK

LOCK

LOCK

LOCK

LOCK

I ON

RT_ION

LOCK

LOCK

LOCK

AH300066
11/l!l/93

Chapter 5 Multiprocessor management 167

EDTX 2-04-CV-120
51 056DOC065495

�

.. _,:: ,:

Control registers refer specifically to the registers the C3400 Series
CPU and utilities board (CUJ) use to implement global
functions. These registers are used to control interval timers,
request system interrupt bus (SID) interrupts, store time of
century (TOC), and provide status for process deadlock detect.

The following subsections describe the control register bit
assignments within communication register space as shown in
Figure67.

Interrupt control register
The interrupt control register (ICR) contains the interrupt mode
and interrupt CIR Refer to the "Interrupt system" section in
Chapter 6. The interrupt mode portion is a shadow of a
write-only hard ware register. The interrupt CIR is not a shadow.
It is implemented entirely in conununication registers.

ICR<4 .. 0>

Time of century register
The time of century (TOC) register is a 64-bit counter that can be
loaded by the CPUs. It is always on.

TOC<63 .. 0>

Time of century delta time register
The time of century delta time (TOC_DELTA) register is a 64-bit
counter that accurately maintains timers across TOC writes.

TOC_DELTA<63 .. 0>

lnteiVal timers
When the CUJ decrements the 16-bit interval timers, it updates
this control register. The ITC_U interval timer is intended to
support the same functions as the C3200 Series interval timer. It
is docked every 10 !JS. The remaining 3 interval timers are
intended to support the new realtime ftmctions. Their clocks are
individually selectable to be 10 !JS or 100 J.lS. This selection is
made in the interval timer status register (ITSR).

ITC_U<l5 .• 0>
ITC_0<15 .. 0>
ITC_l<15 .. 0>
ITC_2 <15 .. 0 >

168 CONVEX C-Series Architecture

··~-:-:-::..:.:::-::"··-,-·--~ -·---------o-.-. -····
. . ·.·., ... ··:

.•: .:.· .. -:

EDTX 2-04-CV-120
51 056DOC065496

�

-- .. '·:

Interval timer indicators
As with C3200 Series complexes, NITC is the load value for the
interval timer. The NITC_U interval timer is intended to support
the same functions as the C3200 Series interval timer. The
remaining three interval timers are intended to support the new
realtime functions.

NITC_U<15 .. 0>
NITC_0<15 .. 0>
NITC_l<l5 .. 0>
NITC_2<15 .. 0>

Process trap mail box
The processor trap mailbox (MBOX) is used by the hardware to
communicate between CPUs for instructions such as pa tu
where one CPU executing the instruction must cause other CPUs
to perform an action. MBOX stores SIB interrupt channel bits (one
bit per channel), and instructions for CPU traps.

MBOX<17> Deadlock
MBOX<l6 .. 9> SIB interrupt channel
MBOX<8> CPU trap request
MBOX<7 .. 3> reserved
MBOX<2 .. 0> Encoded CPU trap

MBOX bits <16 .. 9> correspond to CPU7-CPUO.

MBOX bits <2 .. 0> are listed in Table 36.

Table 36 MBOX action codes-C3400 Series CPUs

Code Meaning

7 Trap instruction

6 TOCwrite

5 Update CPU timers

4 Purge ATU reference bits

3 Purge ATU modified bits

2 PurgeATU

1 Purge ATIJ entry

Chapter 5 Multiprocessor management 169

! .-

!· ·'
' i ~.
I·.
~ . .

.... -~-J

EDTX 2-04-CV-120
51 056DOC065497

�

[

· .. r

I
l
l

I

Interval timer interrupt indicators
The system interval timer sends an interrupt over the system
interrupt bus (SIB) when it is on and underflows. ffiN_U is
intended to support the same functions as the C3200 Series ITIN,
that is, it stores the SIB channel to be used for this interrupt.

ITIN_U<:7 .. 0>

CPU exist indicators
CPU_XIST stores CPUs currently in the system. The CUJ uses
this information to determine which CPU-specific control
registers to monitor. In C3200 Series complexes, this register is
read-only and is loaded by scan. In C3400 Series complexes, this
register is in communication register space, and can be written
by the CPUs.

CPU_XIST<7 .. 0>

CPU_XIST bits <7 .. 0> correspond to CPU7-CPUO.

Realtime indicators
A CPU updates a control register bit to indicate whether it is a
realtime or non-realtime (timeshare) CPU. The CUJ uses this
information to determine which CPUs receive realtime
PROC_TRAPs and which receive non-realtime PROC_TRAPs.

REAL_TIME<7 .. 0>

REAL_ TIME bits <7 .. 0> correspond to CPU7-CPUO.

Deadlock indicators
Once the CUJ has detected a deadlock in a CIR it counts down
from this number before requesting a deadlock trap. This is done
to allow time for any transient deadlock conditions to settle.

DDLK_WAIT<7 .. 0>

Global enable register
The global enable (GE) register can globally enable or disable
any interrupt that is destined for the CPUs. The GE register
accommodates the additional realtime interrupts in C3400
complexes. The bit assignments are the same as local enable
register.

170 CONVEX C-Series Architecture

': '

T···

I
I
I

EDTX 2-04-CV-120
51 056DOC065498

�

l
I
!
I

l
I
!

I
l

I
1
l

l
l
l
1

l
!
j

local enable registers
C3200 Series CPUs have local enable (LE) registers to enable or
disable specific interrupts to each CPU. This includes all realtime
and non-realtime system interrupt bus (SIB) interrupts, the
realtime interval timer interrupts, and the realtime external
interrupts.

LE_0<15 .. 0>
LE_l<l5 .. 0>
LE_2<15 .. 0>
LE_3<15 .. 0>
LE_4<15 .. 0>
LE_5<15 .. 0>
LE_6<15 .. 0>
LE_7<15 .. 0>

The local enable bit assignments are listed in Table 37.

Table 37 Bit assignments-global and local enable registers

Bit number Description

0 SIBO

1 SIB 1

2 SIB2

3 SIB3

4 I SIB4

5 SIBS

6 SIB6

7 I SIB7

8 SIBFC

9 SIBFD

10 TIM_O

11 TIM_1

12 TIM_2

13 EXT_O

14 EXT_l

15 EXT_2

Chapter 5 Multiprocessor management 171

EDTX 2 -04-CV -120
51 056DOC065499

�

Broadcast enable registers
The broadcast enable (BE) registers replace the TCPU (target
CPU) and MODE (broadcast/ target mode) registers in the C3200
Series CPUs. TheBEs make the interrupt broadcast selection
more flexible. This includes SIB interrupt channels, realtime
interval timers, and realtime external interrupts.

The eight bits can be set in any combination to allow interrupts
to be broadcast to any set of CPUs. If none of the BE bits are set,
the CUJ will choose a target CPU, based on which CPUs are idle.
It is assumed that theBEs will be set to broadcast to only realtime
CPUs or to only non-realtime CPUs.

BE_0<7 .. 0>

BE_l<7 .. 0>

BE_2<7 .. 0>

BE_3<7 .. 0>

BE_4<7 .. 0>
BE_5<7 .. 0>

BE_6<7 .. 0>

BE_7<7 .. 0>

BE_FC<7 .. 0>

BE_FD<7 .. 0>
BE_TIM0<7 .. 0>

BE_TIM1<7 .. 0>
BE_TIM2<7 .. 0>

BE_EXT0<7 .. 0>
BE_EXTl <7 .. 0>

BE_EXT2<7 .. 0>

BE bits <7 .. 0> correspond to CPU7-CPUO.

172 CONVEX C-Series Architecture

EDTX 2-04-CV-120
51 056DOC065500

�

.· .. · ..

.. ·., _ _..·.

Interrupt/trap source indicators
In C3400 Series complexes, there is only one interrupt/trap
(PROC_1RAP) signal on each CPU. Before the CUJ issues a
PROC_TRAP to the CPUs, it first writes the source of the
PROC_TRAP to one of these registers. The sources could be
deadlock traps, CPU traps, SIB interrupts, interval timer
interrupts, or external interrupts. Thus, when a CPU receives a
PROC_TRAP, it must check a source register to determine the
appropriate action to take. The CPUs may use another
communication register to communicate the source of a CPU
trap. Realtime CPUs should check RT_SOURCE and
non-realtime (timesharing) CPUs should check NRT_SOURCE.
The bit assignments of these registers correspond to the
priorities, with CPU-requested traps at bit 0.

NRT_SOURCE<9 .. 0>
RT_SOURCE<9 .. 0>

The interrupt/trap source bit assignments are listed in Table 38.

Table 38 Bit assignment-Interrupt/trap source registers

Bit number NRT_TRAP _SOURCE RT_TRAP _SOURCE

0 CPU trap CPU trap

1 SIBO SIBOxFC

2 SIB 1 SIBOxFD

3 SIB2 Interval timer 0

4 SIB3 Interval timer 1

5 SIB4 Interval timer 2

6 SIBS External interrupt 0

7 SIB6 External interrupt 1

8 SIB7 External interrupt 2

9 Deadlock trap Deadlock trap

Chapter 5 Multiprocessor management 173

. ~ ·· .. :
··::' :·· ... --.. ·

.... ;. • .. '··· ·~· . ·:

: · ... ·

EDTX 2-04-CV-120
51 056DOC065501

�

·· .•. ·,.

·. ;:-. :.··

Interrupt/trap acknowledge indicators
When the CUJ sends a non-realtime PROC_TRAP
(interrupt/trap) to a set of CPUs, it sets the non-realtime
NRT_TRAP _ACK bits corresponding to those same CPUs. The
CPUs acknowledge receipt of the PROC_ TRAP by clearing their
assigned NRT_TRAP _ACK bit When all of the
NRT _TRAP _ACK bits are cleared, the CUJ is free to send
another non-realtime PROC_TRAP. acknowledgment

Realtime RT_TRAP _ACK bits function identically.

Non-realtime CPUs should only acknowledge non-realtime
PROC_TRAPs, and realtime CPUs should only acknowledge
realtime PROC_TRAPs.

NRT_TRAP_ACK<7 .. 0>
RT_TRAP_ACK<7 .. 0>

TRAP _ACK bits <7 .. 0> correspond to CPU7-CPUO.

Interrupt/trap request indicators
These registers are used for CPU-requested traps. A CPU must
first check the lock bit. If it is clear, the CPU may load a broadcast
enable (BE) into bits 0-7 and set the lock bit. If it is set, it indicates
a pending CPU trap request. The CUJ uses this information in its
PROC_TRAP arbitration.

Once the CPU-requested trap has won the PROC_ TRAP
arbitration, the CUJ clears the lock bit. Non-realtime CPUs
should use NRT_TRAP _REQ, and realtime CPUs should use
RT_TRAP _REQ.

A communication register can be set so that the CPUs post
whether they are available to accept traps. The requesting CPU
can then set up its BE based on which CPUs are available. The BE
for NRT_TRAP _REQ should select only non-realtime CPUs and
the BE for RT_TRAP _REQ should select only realtime CPUs.

NRT_T~.P_REQ<7 .. 0> +LOCK
RT_TRAP_REQ<7 .. 0> +LOCK

TRAP _REQ bits <7 .. 0> correspond to CPU7-CPUO.

:.;., -· ~ · .. -

174 }:ONVEX C-Series Architecture

·····--~·---··-·

·: -·:_.:. . ' .. .:--:_:; .. :. :. ":- ,·_..-
.. ..

-<
.... ·: . . ::· · .. : ... ·~·: : .. ~ ..·-...

EDTX 2-04-CV-120
51 056DOC065502

�

l ,
. -- .. -·--·-· ----·-«·•-

..... _

SIB interrupt request indicators
The CPUs use these registers to request SIB interrupts. A CPU
must first check the lock bit. If it is clear, the CPU loads an
interrupt channel into bits 0-7 and sets the lock bit. The set lock
bit indicates a pending SIB interrupt request. The CUJ then
initiates an SIB interrupt using the predefined SIB protocol. Once
the interrupt has been accepted, the CUJ clears the lock bit. If the
requesting CPU cancels its SIB request, it sets bit 8 of this
register.

The CUJ then cancels the request at the next available
opportunity by clearing the lock bit and bit 8. If the SIB request
is serviced before the CUJ is able to cancel it, the CPU is not
notified. Non-realtime CPUs should use NRT_INT_REQ and
realtime CPUs should use RT_INT_REQ.

NRT_INT_REQ<9 .. 0> +LOCK
RT_INT_REQ<9 .. 0> +LOCK

ION bit
This (lock) bit is used to enable or disable non-realtime
(timesharing) SIB interrupt channels 0-7. It serves the same
function in C3200/C3800 Series complexes. The ION bit is
global, as is the RT_ION bit. Non-realtime CPUs use ION and
realtime CPUs (C3400 Series only) use RT_ION.

ION

RT_ION bit
This (lock) bit (C3400 Series CPUs only) is equivalent to ION, but
is used to enable or disable realtime interrupts. This includes SIB
interrupts Oxfc and Oxfd, three interval timer interrupts, and
three external interrupts.

RT_ION

Interval stotus register
ITSR is the status register for the interval timer.
In C3200 Series complexes, the ITSR is a global register in I/0
space and bits 0-1 are cleared when the register is read. In C3400
Series complexes, the ITSRs are in communication register space,
which means that a copy of the ITSR resides on each CPU.

In order to clear the ITSR on all of the CPUs simultaneously, a
CPU must perform a write. The write automatically occurs
whenever a CPU reads its copy of the ITSR, so this difference is
transparent to the operating system.

Chapter 5 Multiprocessor management 175

EDTX 2-04-CV-120
51 056DOC065503

�

The ITSR timer is intended to perform the function of the C200
Series complex's interval timer. The remaining timers are
intended to support the new realtime functionality.

Bits 0-2 have the same meaning as in C3200 complexes. ITSR<O>
indicates that an underflow has occurred since the last read of
this register. ITSR<l> indicates that 2 or more underflows have
occurred since the last read of this register. ITSR<2> turns the
timer off or on. ITSR <3> selects the clock interval for the realtime
interval timers C0=10 IJ.S, 1=100 IJ.S).

ITSR<3 .. 0>
ITSR~0<3 .. 0>
ITSR_l<3 .. 0>
ITSR_2<3 .. 0>

Idle indicators
A CPU updates a control register bit when it switches in or out
of the idle state. This information is used on the CUJ to select a
target CPU for an interrupt or trap, if none has been specified in
the broadcast enable (BE) register.

IDLE0<7 .. 0>
IDLE1<7 .. 0>
IDLE2<7 .. 0>
IDLE3<7 .. 0>
IDLE4<7 .. 0>
IDLES-<7 .. 0>
IDLE6<7 .. 0>
IDLE7 <7 .. 0>
IDLE bits <7 .. 0> correspond to CPU7-CPU0.

Communication interrupt registers
Each CPU writes its current CIR (process) to a corresponding
control register. Five bits are needed because there are 32
possible ClRs. The CUJ uses this information to detect CIR
deadlock.

CIR_O<S .. 0>
CIR_l<S .. 0>
CIR_2<5 .. 0>
CIR_3<5 .. 0>
CIR_4<5 .. 0>
CIR_5<5 .. 0>
CIR_6<5 .. 0>
CIR_7<5 .. 0>

176 CONVEX C-Series Architecture

EDTX 2-04-CV-120
51 056DOC065504

�

.·. <.····

TOC write complete
These bits provide synchronization for TOC write bits.

TOC_DONE<7 .. 0>

TOC_DONE bits <7 .. 0> correspond to CPU7-CPUO.

Post bit register
If the POST_BITS bit corresponding to a CIR is set, the CIR is
examined by idle heads for work otherwise, the CIR is skipped.
This speeds up the idle loop processing.

POST_BITS<31 .. 0>

POST_BITS bits <31 .. 0> correspond to CIR31-CIRO.

TER trap enable register
A single TER exists for the complex, and is manipulated by the
diag instruction subcodes listed in Table 39.

Table 39 TER operations diag instruction subcodes

diag subcode Description

37 read TER: SO ;:;;: TER

38 write TER: TER =SO

39 pate local head only, address in A5

40 patu local head only

TER bits <7 .. 0> correspond to CPU7-CPUO. On C3200 Series
CPUs (maximum of four CPUs), bits <7 . .4> do not apply.

If a bit in the TER is clear (0}_ the following traps or commands
are disabled on the corresponding CPU:

• pate

• patu

• ctrsg timer update

• trap and pbkpt handling

• pref (C3400/C3800 Series only)

• pmod (C3400/C3800 Series only)

If the bit in the TER is set, the traps or commands are enabled.
All traps are enabled on cold start.

Chapter 5 Multiprocessor management 177

. . . ~ -~

... · .. ·:..: ... -: ..

i ••

I

! ..

EDTX 2-04-CV-120
51 056DOC065505

�

.. . . · ·~·.

The processor executing the trap-generating instruction does not
check the TER. For example, if CPUO has traps disabled via the
TER and executes a pate instruction, its PTE cache is purged.

The TER is not controlled by an internal locking semaphore. It is
assumed the diag instruction to write the TER is executed by the
kernel in a single-threaded region.

178 CONVEX C-Series Architecture

EDTX 2-04-CV-120
51 056DOC065506

�

Control registers - C3800/C4600

Control registers used by C3800/C4600 Series complexes are
contiguous and are not integrated within the conununication
register space. The control registers are in an address space
separate from the conununication registers, referred to as X
space. The registers are accessed with microcode (firmware)
invoked by dedicated assembly language commands.

Table 40 describes the layout of the C3800/C4600 Series control
registers in X space.

Table 40 C3800/C4600 Series control registers in X space

Addr <9 .. 3> Register nome

00 LCKB

01 TOC
02 TRPCMD

03 PCIR

04 NITC

05 lTC

06 ITSR

07 mN

08 Spare

09 IOINSTALL

OA CPU INSTALL

OB-OF Spare

10-17 PO-P7CIR

18-lF Spare

20-27 PO-P7IDLE

28·2F Spare

30 GP

31 GE

32 ~p

33·37 Spare

38-3F PO-P7LE

40-47 Spare

48·4F LO-L7BE

50-7F Spare

Description

Lockbit shift register and lock bit

Time of century register

Trap corrunand register and lock bit

Posted thread CIR (ASAP) and status bit

Next ITC value

Interval timer counter

ITC status register

lTC interrupt channel

Unused

Map of ports containing NIAs

Map of ports CPUs

Unused

CIR index, CPUs 0-7

Unused

Idle status, CPUs 0-7

Unused

Global pending traps

Global channel enables

Memory base pointer

Unused

Local channel enable, CPUs 0-7

Unused

CPUs broadcast enable, channels 0-7

Unused

Chapter 5 Multiprocessor management 179

EDTX 2 -04-CV -120
51 056DOC065507

�

Control registers refer specifically to the registers the
C3800/C4600 Series CPUs and utilities board use to implement
global functions. These registers control interval timers, request
system interrupt bus (SIB) interrupts, store time of century
(TOC), provide status for process deadlock detect, and so on.

The following subsections describe the control register bit
assignments within communication register space as shown in
Table 40.

Lockbit shift register
The lockbit shift register (LCKB) is used when dumping,
restoring, or initializing a bank of 64 CMRs. It contains 64 bits,
one for each lockbit in a CIR block. Tiris register itself has a
lockbit to prevent corruption when multiple processors try to
use it.

Time of century register
The time of century (TOC) register is a 64-bit counter which
counts in microseconds. There is no enable to start and stop the
counting, but the CPUs may write or read it at any time. The
TOC is always on.

Trap command register
The trap command register (TRPCMD) contains 32 bits used to
issue commands to the trap logic.

Posted thread CIR
The posted thread CIR (PCIR) is not really a register, but the
read-only value of the ASAP accelerator output calculated
during the read request. An idle CPU typically reads the PCIR to
find a CIR index that has a thread available for that processor. If
the read status is 0, no threads are available for that particular
processor. If the read status is 1, the value of PCIR is the CIR
index that has the available posted thread.

Next lTC register
The Next ITC register (NITC) contains a 16-bit value. When the
interval timer counter (ITC) reaches zero, it is reloaded with the
value in the NITC.

Interval timer counter
The interval timer counter (lTC) is a 16-bit value that decrements
every ten microseconds. When it reaches zero, it may trigger an
interrupt. It will automatically reload with the value in the NITC
register, or it may be written at any time. The ITC will only count
when bit <2> of the ITSR is set.

180 CONVEX C-Series Architecture J
EDTX 2-04-CV-120

51 056DOC065508

�

lTC status register
The ITC stahis register (ITSR) is a 3-bit register. The most
significant, bit <2>, may be written, and the lower two are read
only. When bit <2> is set, the ITC is enabled. Bit <0> is set when
the lTC rolls over. Bit <1> is set if the ITC rolls over again. It
indicates that the ITC has rolled over more than once without
being serviced. When the ITSR is read, the two least significant
bits are reset.

lTC interrupt channel register
The lTC interrupt channel register (ITIN) contains an 8-bit
interrupt channel number. If the ITC rolls over to zero, it will set
an interrupt flag. When the TRPCMD register is available
(unlockedt it is loaded with an XMTI trap command with the
channel number from the ITIN.

10 INSTALL register
The IO INSTALL register contains a 9-bit value. Each bit location
corresponds to each of the nine ports where an NIA can reside.
Bits <8 .. 0> correspond to ports 8-0. Ports 7-0 can contain CPUs or
NIAs. Port 8 always contains an NIA. A bit is set only when an
active NIA is attached to the corresponding port. This register
determines where XMTI traps above channelS can be sent

CPU INSTALL register
The CPU INSTALL register contains an 8-bit value. Each bit
location corresponds to each of the eight ports where a CPU can
reside. Ports 7-0 correspond to bits <7 .. 0> in this register. A bit is
set only when an active CPU is attached to the corresponding
port. This register determines which CPUs can participate in
trap dispatches and deadlock checking.

Communication index registers
There are eight communication index registers (CIR), one for
each of the eight possible CPUs in the complex. Each register is
five bits wide for the 32 possible CIR values. The processors
maintain these registers to shadow the values in the CIRs. These
registers are used for deadlock checking on the CU.

IDLE registers
There are eight IDLE registers, one for each of the eight possible
CPUs in the complex. Each register is one bit wide. The CPUs
maintain the IDLE registers and set a register when the
corresponding CPU is idle. The IDLE registers are used in the
interrupt arbitration.

Chapter 5 Multiprocessor management 181

EDTX 2 -04-CV -120
51 056DOC065509

�

I

I
l

Globally pending interrupt register
The globally pending interrupt register (GP) is an 8-bit,
read-only register. Bits <7 .. 0> correspond to interrupt channels
7-0. Bits are set by XMTI commands being sent to the TRPCMD
register for the corresponding channels. Bits in this register are
reset when the corresponding interrupts are dispatched.
Interrupt channels greater than seven are sent as XMTI traps to
the NIA(s) for the 10 system and have no effect on this register.

Global enable register
The global enable register (GE) is an 8-bit, read/write register.
Bits <7 .. 0> are used to enable interrupts on channels 7-0,
respectively. When a bit is set, the corresponding interrupt
channel is globally enabled. The interrupt channel is not
necessarily enabled for dispatching, since the LE and BE
registers also control the channels. This register provides the
capability to enable interrupts on a channel by channel basis.

Memory base pointer register
The memory base pointer register (MBP) is a 64-bit read/write
register used to store the memory base pointer, an OS variable.
It is only a centrally located storage register and performs no
special function as a control register.

Local enable registers
There are eight Local enable registers {LE) that have eight bits
each. Each register corresponds to one of the eight possible
CPUs. Bits <7 .. 0> of each register enable a corresponding
interrupt channel 7-0 to issue interrupts to that processor.

For example, if P4 LE has a value of Ox31, then channels 4, 5, and
0 may interrupt processor 4. Channels 1, 2, 3, 6, and 7 cannot
interrupt processor 4, even if these channels are otherwise
enabled.

Broadcast enable registers
There are eight Broadcast enable registers (BE) that have eight
bits each. Each register corresponds to one of the eight interrupt
channels. Usually (in non-broadcast operations) an interrupt
channel only interrupts one processor, even if several are locally
enabled on that channel. In the case of broadcast, several
processors receive the interrupt when it is dispatched. A channel
is placed in broadcast mode by having a nonzero value in its BE
register. In this case, the eight bits in each BE register correspond
to the eight possible CPUs that can receive the interrupt when it
is dispatched.

182 CONVEX C-Series Architecture

-- ... :.<.,._ .. _-_;

::_ , ..

r
!

EDTX 2-04-CV-120
51 056DOC06551 0

�

For example, if L6 BE has a value of Ox 58, then processors 4, 6,
and 3 will get a simultaneous interrupt when channel6 interrupts,
if these processors are all locally enabled on channel 6. If they are
not all locally enabled, the interrupt will remain pending.

Traps and interrupts
Traps allow the CPUs and l/ 0 Adapters (IA) to signal each other
about events that need to be serviced. Interrupts are basically
traps in the C3800/C4600 Series complexes. Interrupts to CPUs
have some channel arbitration functions, but they are dispatched
as traps.

In order to issue a trap, a CPU performs a microcode operation
(SND _X) to the TRPCMD register. If a status of 1 is returned, the
write was successful and the CPU can assume that the trap will
be dispatched eventually. If a 0 status is returned, the TRPCMD
register is locked, and the CPU must try again to issue the trap.

When a trap is dispatched, one or more trap ready (TRAP _RDY)
signals are sent to the CPU ports or IA ports. The trap type is
determined by the value written to TRPCMD <27 .. 24>.

When a port has finished processing its trap, it sends back a trap
complete (TRAP _COMP). This clears its busy bit in the trap state
machine. When all of the ports have completed their traps, the
CPU Utilities (CU) subsystem may return an MT_COMP.

Traps are usually sent to all ports with active CPUs, except for
the port that initiated the trap. The active CPU ports are
identified in the CPU INSTALL register. An exception to this is
the DLCK trap, which goes only to the deadlocked CPU(s).
Another exception to this is the XMTI trap, which invokes a
complex and flexible arbitration scheme.

Chapter 5 Multiprocessor management 183

EDTX 2 -04-CV -120
51056DOC065511

�

......... :.::·;;,·:·:.:,:;..;:.•·, ..

Communication register primitive operations

This section describes the set of primitive operations performed
on the communication registers and on associated structures
indirectly. The multiprocessing implementation includes
instructions that execute these primitive operations directly, as
well as some instructions that use more than one of these
operations to perform their function. These primitive operations
and related instructions are:

• put-Write the conununication register, regardless of lock bit.
The instructions are put. w Ak, Ceffa and put. 1 Sk, Ceffa.

• get-Read the communication register regardless of lock bit.
The instructions are get. w Ceffa, Ak and get. 1 Ceffa, Sk.

• send-Write the communication register if the lock bit is
clear, then set the lock bit. The send operation fails if the lock
bit was already set indicating valid data was in the register. A
carry (Cor SC) status of 1 is returned if the send operation is
successful (that is, the lock bit was initially clear), and 0 if the
send operation fails (that is, the lock bit was initially set,
indicating data was already sent there). The instructions are
snd. w Ak, Ceffa and snd. l Sk, Ceffa.

• receive-Read the communication register if the lock bit is
set, then clear the lock bit. The receive operation fails if the
lock bit was clear, indicating no valid data was in the register.
A carry (Cor SC) status of 1 is returned if the receive
operation is successful (that is, the lock bit was initially set),
and a status of 0 is returned if the receive operation fails (that
is, the lock bit was initially clear, indicating the register
contained no valid data to receive). The instructions are
rev. w Ceffa 1 Ak and rev . 1 Ceffa 1 Sk.

• lock-Set the lock bit. The lock operation fails if the lock bit
was already set. A carry {C) status of 1 is returned if the lock
bit is successfully set (that is, the lock bit was initially clear),
and a status of 0 is returned if the lock bit could not be
successfully set and the operation fails (that is, the lock bit
was initially set, indicating the bit was already locked). The
instruction is lck Ceffa.

• unlock--Clear the lock bit. The unlock operation fails if the
lock bit was already dear. A carry (C) status of 1 is returned if
the unlock operation is successful (that is, the lock bit was
initially set), and a status of 0 is returned if the unlock
operation fails (that is, the lock bit was initially clear,
indicating the lock bit was already unlocked). The instruction
is ulk Ceffa.

184 CONVEX C-Series Architecture

···------~ .. ·····--·.·· ···-~-. ···-··~····--· ·····-~--·-.. -· -:---

· . .::
.·-. ·, _ _.::···

:··~· ... · ...

I

l
EDTX 2-04-CV-120

51 056DOC065512

�

j

I
I
I

I
j

... : .. ··. ·:.-~ .. :., .. ; ·..:,,:· .. ~.: ·~· .,,< ·~--

• test-Read the lock bit into the carry (C) bit The instruction is
tst Ceffa.

Communication registers are managed in two ways:

• lock and unlock operations-These operations execute lck
and ulk primitive operations on structures. The hard ware bit
is considered a lock bit. When it is set to l, the register is
locked, which means the register is inaccessible or in
transition.

• send and receive operations--These operations execute snd
and rev primitive operations on structures. The hardware bit
is considered a valid bit. When it is set to 1, the register is
receivable, which means the register contains valid data.

With one exception, these two classes of operations, the lock and
unlock operations, and the send and receive operations, should
not be mixed in the same communication register. The lock and
unlock operations may be used to establish appropriate initial
conditions for send and receive operations. Otherwise, a lck
operation and a snd and rev operation should not be performed
together on a communication register, or proper synchronization
may not be maintained.

The status returned for instructions such as rev. w Ceffa, Ak is
loaded into the carry (C) or the scalar carry (SC) bit, and the flow
of execution may change in the usual manner (using a branch
instruction), based on the returned status.

A receive or branch pair of instructions is typically used to pass
information with semaphoring. For example, one CPU may wait
for data from another CPU by executing the sequence:

1$: rcv.w Ceffa,Ak
bra.f 1$

This sequence will fall out of the loop with a successful receive
when another CPU executes a snd. w Ak, Ceffa instruction.

An example of a communication register instruction that uses
multiple primitive operations is inc. w Ceffa, Ak. This
instruction increments the communication register at address
Ceffa by the contents of Ak if the corrununication register is
receivable (that is, the lock bit is set, indicating valid data has been
sent). This instruction is implemented internally with a receive,
add, and send combination, with the add and send primitives
executed only if the receive primitive succeeds.

Chapter 5 Multiprocessor management 185

· .. ·~ .. · .. - '

·:.-:·

''··.

EDTX 2-04-CV-120
51 056DOC065513

�

~ ': f.

Locking memory structures

The locking operations provided in the communication registers
are used to synchronize struch1res located in memory. Since the
communication register and memory pipes are disjointed,
memory must be synchronized by software before the
communication register lock can be manipulated.

For example, the lock bits on two communication registers can
be used when passing valid data between two or more CPUs
operating in a producer-consumer relationship. The following
code sequence, while appearing to be correct, actually contains a
memory synchronization problem, discussed in the text
following the example.

Producer

Pl: lck Ox8000
bra.f Pl
(store to memory)
lck Ox8001

Consumer

Cl: ulk Ox8001
bra.f Cl
(load from memory)
ulk OxBOOO

This code sequence was adapted from Dykstra [Dykstra, E. W.
"Co-operating Sequential Processes," Programming Languages,
edited by F. Genuys. 1968. Academic Press. pp. 43-112.]. L (8 00 0)
and L (8001) control two critical regions, within which the
communication occurs. Onl)' one producer or one consumer
critical region may be active at a time.

When L(8000) is unlocked, the producer is free to store new
data. The producer cannot store new data until the consumer has
loaded the data previously stored by the producer. When
L { 8 0 01) is locked, the consumer is free to load new data. The
consumer cannot load new data until the producer completes
storing the new data. The initial conditions are that L (800 0) and
L (8001) are unlocked. These conditions force the consumer to
wait for the producer to store data to memory.

The producer enters its critical region by locking L (8 0 0 0),
producing (stores) its data, and locking L (8 0 01) to indicate that
data has been produced. The consumer, which may have been
spinning at Cl while waiting for the producer to store data to
memory, is now free to enter its critical region and consume (load)
the data. When the consumer completes loading of the new data,
it unlocks L (8000) to signal the producer to produce new data.

In the previous code, however, the consumer could see the lock
set on the communication register located at L(8001) and load
old data from the memory system before the producer's memory

I
I
i

I
I
l
I
)

l
I
I

I
I
!
I

186 CONVEX C-Series Architecture

. .. ~ .· : ··

.. :·':

--------·· ···-··

.. : .. ,"·":···

EDTX 2-04-CV-120
51 056DOC065514

�

store reached the memory system. Likewise, the producer could
see the lock clear on the corrununication register located at
L (8 0 0 0) and store new data to the memory system before the
consumer's memory load was performed.

To remedy this problem, msync instructions must be inserted just
after the memory operations. The msync instruction waits for the
CPU to complete all store operations to memory, and for all data
from load operations to arrive from memory. The correct code is
shown in the following code sequence:

Producer

Pl: lck OxSOOo
bra.f Pl
(store to memory)
msync
lck Ox8001

Consumer

Cl: ulk Ox8001
bra.f Cl
msync (C3400/C3800/C4600 only)
{load from memory)
rnsync
ulk Ox8000

If this is a single producer-consumer data transfer, the consumer
does not need to synchronize memory, since the producer will
not be trying tore-execute the lck Ox8000. When the
consumer sees L (8001) set, the producer's store has reached
memory (the producer executed an msync) and the consumer can
load the data the producer stored.

IC however, the producer code is continually sending data to the
consumer through the same memory locations whenever the
lock bit at L (8000) is clear, the conswner code must perform an
msync instruction before unlocking L { 8 00 o). By unlocking the
communication register lock bit at L (80 00), the consumer
informs the producer that loading from memory is complete, so
the producer may store more data in memory.

On the C3400, C3800, and C4600 series CPUs only, a second
msync must be inserted in the consumer code. This msync is
required to purge shared data from the data cache. Without the
msync, the load from memory could read stale data from the
CPU's data cache, instead of the correct data which resides in
memory.

Chapter 5 Multiprocessor management 187
··.;·:···

EDTX 2-04-CV-120
51 056DOC065515

�

Multithreaded
execution

A thread is any single-instruction stream executing within a
process. Multithreaded execution occurs when more than one
CPU is executing on behalf of the same process. The ASAP
scheduling mechanism used by the system to implement
multithreaded execution is called forking.

The ASAP mechanism performs two major tasks: it divides the
workload and allows programs to exploit process
multithreading. A process that takes ten seconds of CPU time
will take ten seconds of wall clock time on a single CPU
(assuming the process is allowed to execute without
intervention). Under ideal conditions, if two CPUs are available
and the work is equally divided, each half of that same process
will execute in five seconds of wall clock time. When programs
exploit multithreading, processes run on one or any number of
processors with no software modification.

The multithreading mechanism is closely associated with the
operating system. The hardware allows the operating system to
observe and maintain some control over the thread, since the
operating system must also schedule threads to perform process
multiplexing. The control instructions can create and terminate
threads without operating system involvement, and vice versa,
since these instructions are not privileged.

The multitlu-eading mechanism is a software and hardware
interface, not just instructions for the operating system. Both
sides of the hardware and software interface have protocol that
must be observed to ensure that parallel execution functions
correctly.

In order for the multiprocessing management system to support
upwardly compatible software, each CPU within a complex
operates as an independent CONVEX 64-bit supercomputer. All
CPU events generated localiy, such as system calls or page faults,
are processed within the CPU that initiated those events.
Externally generated events, such as interrupts, are delivered to
any available CPU that is currently accepting interrupts. This
permits each CPU to execute independently of every other,
without requiring a master CPU.

188 CONVEX C-Series Architecture

.... ~ ---~ ~--. -----­- .· ..

EDTX 2-04-CV-120
51 056DOC065516

�

j

CPU states
A CPU within the C -Series architecture functions in one of two
states:

• Allocated-A CPU is executing a thread v..':ithin a process

• Idle-A CPU is attempting to find a posted fork and creates a
thread of execution within a process

An allocated CPU always contains valid thread state (statefull)
and requires all local CPU states to be saved prior to preempting
the currently executing thread on the CPU. IdleCPUs are always
stateless, and require only that a CPU state be loaded to begin
execution of a thread.

CPU scheduling

A CPU is scheduled using one of two independent types of
scheduling in order for a CPU to begin execution on behalf of a
process. The first type is the transition of the CPU from idle to
allocated (thread creation). The second type is the transition
from executing on behalf of one process to executing on behalf of
another (context switching}.

The hardware communication registers provide these two
transition types. All process context necessary for a thread's
execution becomes available to a CPU when a communication
register set is bound to it. The fundamental action of binding a
CPU to a communication register set establishes a process
context for creating a thread of execution on behalf of a process.
A communication register set is bound by loading the
communication index register located in the CPU with a
communication register set index. Once the CIR is loaded, it
immediately shares all process context with any other CPU
whose CIR contains the same index.

Chapter 5 Multiprocessor management 189

··:· ... _.

. , -..... ~-~-------.... ----· ····· -· -····· ... ~

. . :. :. ~ :_: .-··

EDTX 2-04-CV-120
51 056DOC065517

�

CPU allocation and deallocation

In the C-Series architecture, the act of allocating another CPU to
initiate an additional thread on behalf of a process is called
forking. The fork event allows a user to post the need for a CPU
to execute on behalf of a process (create a thread), clear the need
for a CPU, or force the current CPU back into the idle state
(terminate a thread). C3200 C3200

The fork event has two possible states: cleared or posted. Posted
means there is a current need for another processor to begin a
thread. Cleared means there is no pending work to be done.

A CPU posts a fork when more CPU s can assist with the parallel
execution of a process. A posted fork means that a CPU requests
assistance from other CPUs. If there are no available CPUs, the
posting CPU does not wait until another CPU becomes
available. The CPU continues with its thread of execution. This
mechanism allows a parallel process to execute as a single thread
if only one CPU is available. Refer to the subsequent sections on
forking operations for more information.

All user CPU management functions are supported by the
following five instructions:

• pfork-Post a fork event (request allocation of a CPU)

• spawn-Post a fork event for multiple CPUs (request
allocation of CPUs)

• cfork-Clear a fork event (clear need for CPU allocation).

• wfork-Wait for a fork event (deallocate CPU and wait for
a pfork)

• j a in-Wait for a fork event if the executing thread is not the
last thread (conditional deallocation of a CPU)

A CPU can post two types of forks by using the preceding
instructions. The first type is a request for a single CPU to initiate
a thread and is posted by the pfork efta, Ak instruction. The
second type is a request for all available CPUs to initiate threads
and is posted by the spawn efta , Ak instruction. These
instructions load a group of communication registers (the fork
event registers) with enough process state to start a thread. This
state consists of a PC from which to execute, an initial value of
PSW, and stack, frame, and argument pointers to define local
memory structures.

The communication register addressing is based on a CIR index..
so the fork is posted relative to a particular process. Idle CPUs
scan through the fork event registers in each CIR as a function of

l
I
I
!
I

I
i
!
!
i
l
I
' i

I
I
l

190 CONVEX C-Series Architecture

I
l -------.-.... --~-:-:--:-:;:----:---··

'·.·.-::' : . .

. .
.. . . ·. ·. :-,: .~--~. · .. ·:

<:"·

EDTX 2-04-CV-120
51 056DOC065518

�

the CPU idle loop, looking for a posted fork. If a posted fork is
found, the idle CPU binds itself to that CIR by loading the state
contained in that CIR's fork event registers into its own CPU
registers. If the fork was posted with pfork, the fork is cleared.
If the fork was posted with spawn, itis left posted in the fork event
registers for other available CPUs to take.

The cfork instruction explicitly dears a fork posted by a pfork
instruction or a spawn instruction. However, proper
synchronization between threads may not be maintained if a fork
is explicitly cleared with cfork and not join.

At the end of thread execution, each CPU may terminate its
thread (relinquish and deallocate the CPU). There are three
instructions to do this-wfork, join, and the privileged idle
Sk instruction. Refer to the descriptions of forking operations in
this chapter for a discussion of mixing multithreading "models,"
that is, synunetric and asymmetric. These instructions are
described in detail in subsequent sections.

The wfork instruction terminates a thread begun with the
acceptance of a fork posted through pfork, that is, a single thread
of execution. The CPU returns to the idle state, where it looks for
more posted forks in other CIRs.

Forks posted through spawn should be terminated with join. If
the processor is not the last thread to reach the join, the CPU
returns to the idle state. If it is the last thread, execution continues
at the instruction following the join. The process continues
executing as a single thread after the join instruction executes.

These CPU control instructions allow a process to allocate and
deallocate CPUs without operating system intervention. The
operating system is involved only when the user requires an
operating system service. It does not intervene when a CPU joins
a process that has executed a spawn or pfork instruction,
executes the thread, and then returns the CPU via join or
wfork.

This mechanism provides a fast CPU allocation/ deallocation
scheme that permits the parallelization of small code regions. If
at any time one of the CPUs within the process requires
operating system services, only that CPU must incur the
overhead required for such a request, not the entire process.

Chapter 5 Multiprocessor matuigement 191

"""'"'iiiO"'=-~~~--~--.,.--~·--·-····-~ . . ~ ... ·····-..,..--.....:-·-------·-··-·-· -.......,----.,.------

'

! :.

.. -._· __ ~ ..

EDTX 2-04-CV-120
51 056DOC065519

�

ConvexOS/Secure

The ConvexOS/Secure operating system includes additional
control over the creation of a thread. When an additional thread
is created, the vector valid (VV) flag is cleared.

If the ConvexOS/Secure operating system determines that a
vector valid trap has occurred, the operating system reserves the
address and scalar registers, in addition to reserving the vector
registers, to the user process. The address, scalar, and vector
registers for the created thread are initialized to a known state.

For more information about the VV flag and the vector valid
trap, refer to Chapter 6, "Exceptions and interrupts."

192 CONVEX C-Series Architecture

: .·

I
\
j
j

I
I
i

I
I
I

J
EDTX 2-04-CV-120

51 056DOC065520

�

I

I
J

Parallel processing

The forking instructions provide two types of parallel
processing.

Symmetric parallel processing
The spawn instruction is used to implement symmetric parallel
processing, in which threads in a process execute the same
instruction stream. Upon completion, each thread executes a
join instruction that forces a multithreaded process back to a
single thread.

Figure 68 shows the concept of a symmetric parallel process.

Figure 68 Symmetric parallel processing

Thread A Thread B Thread C

AH300053
I L/19/93

In Figure 68, a single process transitions from sequential (a
single thread) to parallel (multithreaded) and back to sequential.
The initial single thread posts a need for more threads to enter
the process by executing a spawn instruction. Each thread that
enters the process in response to the spawn leaves the fork posted.

Chapter 5 Multiprocessor management 193

EDTX 2 -04-CV -120
51 056DOC065521

�

The code between the spawn and join instructions must be such
that all necessary operations are completed, regardless of the
number of threads actually created.

When the first thread completes its job, it executes the join
instruction_ The join instruction marks the fork event registers
by setting fork. type to STOPPED. This indicates that no more
threads are required, so that no additional threads "'<ill accept the
fork- Successive join instructions eventually bring the process
back to a single thread, when the last thread executes a join
instruction which dears the fork A symmetric process using the
symmetric processing paradigm that is shown in Figure 68 is also
shown in Figure 69.

Figure 69 Example of a multithreaded symmetric process

.spawn
Ptocess A

D CPU 0

idle 0 CPU I

Process 8
CPU 2

idle
CPU 3

lO ll

joln interrupt. return·
Process A

D
idle DConvexOSD Process C

join
Proc~ss A 0 idle

goes idle join

D
Proce-s-s A

D
Process A serial

Interrupt retu["n join

t2

idle

t3 l4 t5 t6 t7 l8 l9 llO l11 t12

AH300054
11/19/93

Figure 69 shows one possible time sequence for a parallel region
of code executing in a four-CPU complex.

At time tO, process A is executing a single threaded process on
CPUO and a second process, B, is executing on CPU2. At tl,
process A executes the spawn instruction, which is immediately
accepted by CPUs 1 and 3, which were idle, and process B
performs a normal termination, which idles CPU2. At t2, CPU2
also enters process A At t3, CPU3 accepts an interrupt, suspends
its thread of execution, enters ring 0, and executes operating

!

I

-19_4 __ C_O_N_V_E_X_C _____ --:--=-~--~s-A ____ -rc-h-it-ec_t_u-re----------------------- _j-
EDTX 2-04-CV-120

51 056DOC065522

�

i
I
i
!

1

j

system code. After processing the interrupt CPU3 is returned to
process A at t5. At t6, the thread executing on CPUO completes
and performs the first join, followed by CPUs 1 and 3 at t 7. At t8,
CPU2 completes the execution of the last thread in process A,
executes the j a in instruction, and resumes execution of the serial
thread of process A. At t9, an interrupt occurs and frees process
C to resume execution. The interrupt is taken by idle CPUO, and
process Cis resumed at tlL

Asymmetric parallel processing
The p fork instruction is used to implement asymmetric parallel
processing, which creates an additional thread when another CPU
takes the fork. Each thread in an asynunetric process executes a
different instruction stream from the other threads in the same
process. Multiple threads within a process execute different
functions by creating a single additional thread of execution
analogous to the fork system calL The child thread may or may
not communicate with the parent. The parent thread may
terminate while leaving the child thread in execution. Either
thread may fork additional threads.

An asymmetric process is forced back to a single thread with the
wfork or cfork instructions.

In general_ asymmetrical threads are disjointed, executing
different code streams with different data, but within the same
process address space. Asymmetric processing differs from the
multithreaded execution in symmetric processing in that the
posting thread usually requires another thread to accept the fork
to perform the specific task, then communicates with the created
task. An asymmetrical thread is initiated with a CPU requesting
the execution assistance of one other CPU as opposed to a CPU
requesting execution assistance of all available CPUs as
implemented by the spawn or join instruction pair.

Chapter 5 Multiprocessor management 195

EDTX 2 -04-CV -120
51 056DOC065523

�

Figure 70 shows a three-threaded asymmetric process.

Figure 70 Asymmetric parallel processing

Thread A

Thread B

Thread C

AH300055

11/19/93

In Figure 70, thread B posts the need for an independent
(disjointed) thread to execute concurrently. Thread A is started,
and notifies B that it is executing when the microcode sets the
lock bits on the fork event registers. Thread B completes
execution and terminates by relinquishing the CPU (wfork)
after determining that other threads in this process are still
executing (threadcount > 1). Thread A posts the need (pfork) for
a new thread C to perform another task. Thread C starts, posts a
fork, and notifies thread A that it is executing. Thread A completes
execution (wfork) and terminates in the same manner as thread
B. Thread C determines all other threads have completed
execution and examines the fork event registers to check the
status of the fork that it posted. The fork was never taken, so

196 CONVEX C-Series Architecture

I

I
_ _l_

EDTX 2-04-CV-120
51 056DOC065524

�

I
I

I
i
!
I
l
l
j

I
l
I
i
j

I
' ~:

~ ••• ,J • •

-.= •..

thread C clears the need for another thread by clearing the fork
(cfork), and continues on as a single-threaded process.

As indicated in Figure 70, the asymmetric processing paradigm
requires additional software overhead to establish thread
synchronization and conununication than does synunetric
processing (spawn or join). The asymmehic processing
paradigm assumes that each child thread communicates all status
information with its parent and each parent thread communicates
all status information \'\r:ith its child via send or receive operations.
In addition, all threads that post a fork via pfork are assumed to
check the status of the fork, and clear the fork that it posted upon
termination with cfork if that fork was not taken by another
CPU. Otherwise, all parent threads are assumed to terminate with
wfork if_ upon examination of the fork event registers, it finds
that the posted fork was taken.

Privileged CPU control operations
The C-Series architecture defines several privileged instructions
associated with the CPU control functions that manage the
execution of a C3200 Series complex. These privileged
instructions are:

• mov CIR, Sk-Moves the contents of the CIR into Sk This
instruction enables the operating system to determine the
current communication register set binding. It is not
privileged, but is included in this section since it is most
often used by the operating system.

• mov Sk, CIR-Moves the communication register set index
in Sk into the CIR. It enables the operating system to
transition the current CPU context from one process to
another by switching hardware communication register sets.

• ldcmr efta, Ak-Loads the communication register set
indexed by Ak from memory.

• stcmr Ak, efta-Stores the communication register set
indexed by Ak to memory.

• idle Sk-Forces a CPU to enter the CPU idle loop to search
for another posted fork. This instruction is privileged and is
used by the operating system (ring 0).

The operating system uses the ldcmr efta, Ak and the
s tcmr Ak , efta instructions to context switch a communication
register set by saving and restoring the conununication register set
to and from memory. To ensure that the register set is atomically
saved, the operating system makes the thread count unreceivable,
which prevents more forks from being taken and forces the
process to become single threaded.

Chapter 5 Multiprocessor management 19 7

.· .; __ --:-···

•.:::.···.

EDTX 2-04-CV-120
51 056DOC065525

�

. ~· ·:. .:. ' .:. . : .

~- _:; .. ·~· .. : : : :.'"

·:. :·· . :·~.~ :_. .'~: .. ''

~ ")

!:!
H
!:
i:
i:

L
1:

'
/

Forking operations

This section explains the forking instructions (pfork, spawn,
cfork, join, wfork, idle) and the microcode idle loop in
detail, providing information to augment the descriptions of these
instructions in the CONVEX Assembly Language Reference Manual
(C Series).

These instructions all perform basic operations on the fork event
registers. Figure 54 and Figure 55 show the format of the fork
event registers.

The lock bits, forklck and forkposted, are used to control
access to the fork event registers between CPUs that may be
attempting to post or accept forks at the same time. These two lock
bits operate as a two-part semaphore.

CPUs attempting to post forks must first successfully lock the
top, (forklck), write fork state into the conununication
registers, then lock the bottom, (forkposted). The locking
operations performed by the pfork and spawn instructions are a
snd operation to forklck, and, if successful, a s nd operation to
forkposted. CPUs attempting to accept forks must first unlock
the bottom (forkposted), read all the fork state from the
communication registers, then unlock the top (forklck).

The microcode idle loop uses forks as a way of searching the
CIRs for posted fork events. This is true, in some cases, for the
wfork and idle instructions, described later in a subsection. The
locking operations performed during fork acceptance are a rev
from forkposted and, if successful, fork a rev from forklck.
lbis protocol makes the fork event registers operate like a queue,
that is, they are written from the forklck end and read from the
forkposted end.

The four possible states of the two lock bits are:

• forklck = 0, forkposted = 0- No fork posted, ready for
forks to be posted

• forklck == 1, forkposted==O-In transitioninoneoftwo
ways:

- CPU beginning to post a fork -Any other CPU
attempting to post will fail, any CPU attempting to receive
will fail until the fork is completely posted.

CPU beginning to accept a fork- Any other CPU
attempting to post will fail until the fork is completely
accepted, any CPU attempting to receive will faiL

'

I
I

I
l
l
j

I
I
1

I
I
I

--~--~-1-9-~---_c-_o---N~V~E~X~C~-~S~er~ie~s-A-rc-Jz-it-ec-t-ur<-e--------------------- J
: -:···

: ' -~:

· .. ·· .. ~ ' ..

EDTX 2-04-CV-120
51 056DOC065526

�

• forklck = L forkposted == 1- Fork posted ready for
acceptance. Any other CPU attempting to post will fail, and
any CPU attempting to receive will succeed.

• forklck = 0, forkposted = 1- Undefined state

The thread allocation register contains the allocated thread count
and thread allocation mask. It is manipulated as part of fork
acceptance. The thread count is incremented each time a thread
is created by fork acceptanc~"'decremented each time a thread is
terminated, and it may range in value from 0 to 32. The thread
count allows the microcode to determine whether the thread is
the last in the process. This directly affects the operation of the
wfork and join instructions. It also allows the operating system
to determine how many threads are currently in existence.

The thread mask is a 32-bit mask with each bit corresponding to
one of the possible threads in a process. The least-significant bit
corresponds to thread 0, the next to thread 1, and so on up to
thread 31.

If a bit in the thread mask is set, the corresponding thread may
be allocated by the microcode when creation of a thread is
required by a process. If the bit is clear, the thread is already
allocated so microcode may not allocate it again.

A snd or rev locking protocol governs the thread mask and
thread count. This locking protocol forces the microcode or the
operating system to receive the registers before manipulation and
send them back when the manipulation is complete as part of the
process to examine or modify these registers.

The microcode performs the following actions when attempting
to create a thread:

1. The mask or count is received.

2. The mask is searched for the least significant set bit, using
a trailing zero count operation.

3. If there are no set bits, there are no threads available for
creation. The remaining steps are skipped. If a set bit is
found, it is cleared, marking it allocated.

4. The bit index of the set bit is written to the CPU thread ID
(TID) register.

5. The thread count is incremented.

6. The thread mask and thread count is sent back to the
communication registers.

Chapter 5 Multiprocessor management 199

EDTX 2-04-CV-120
51 056DOC065527

�

·. · .. -: ..
... · ..
.. ··_..y·._ ... ·

When a thread is terminated, the following occurs:

I. The mask or count is received.

2. The contents of the TID register are used as a bit index to
set a bit in the thread mask.

3. The thread count is decremented.

4. The thread mask and thread count is sent back to the
communication registers.

The operating system can block any further creation of threads
in a process by receiving the thread mask or count in that CIR,
clear the entire thread mask, and send it back. Since the thread
mask has been cleared, no more threads can be allocated.

Forking commands
The following commands are used to initiate and control forking
operations. .-----

pfork <effa>,Ak
This instruction posts a fork for a single CPU to accept if
available. The new child thread begins with a PC value of efta,
using a stack pointer specified in Ak, and inheriting the PSW, FP,
and AP from the parent thread. First, the current frame pointer
and argument pointer are assembled into a longword and sent to
the fork_ FP I fork_ AP fork event register, attempting to lock
forklck.

If this send operation fails, a fork has already been posted, so
carry (C) is cleared, indicating failure and the instruction is
complete_ This failure status allows the thread to determine that
it was unable to post a fork.

If the snd succeeds, posting continues by assembling the e.ffu from
the instruction and the current PSW into a longword and putting
it into fork_ PC/ fork_ PSW. Next, the current program counter
(PC) is put into fork. source_PC. This action sets the ring bits
of the PC when the fork is accepted. Finally, the constant
PFORKEDis concatenated withAk for assembly into a longword,
and sent to fork_ type/ fork. SP, setting the lock on
forkposted. The return status on this snd is not checked since
it always succeeds. The success status from the fust snd is
returned in carry (C), signaling that the pfork instruction
successfully posted the fork

spawn <ef/a>,Ak
This instruction works identically to the pfork <efta>, Ak
instruction except the constant SPAWNED is put in fork_ type_
This lets accepting CPUs know the fork was spawned and is
intended for multiple CPUs if any are available.

200 CONVEX C-Series Architecture

··--.~-,··-··---::-... -.-. --·-·~·· .. -~--~-- .. , .. -----··--···· .,,_ .,:

····-_ ..• :_._
. :'·::., _:=' ..

-~--

(

I
I
~

j . ·: --.:~ •·-; .-- .

EDTX 2-04-CV-120
51 056DOC065528

�

cfork
The cfork instruction explicitly clears a posted fork, that is, it
removes it from the fork event registers without accepting it and
creating a new thread. This instruction first receives the value in
the forkposted register. If this rev operation fails, there is no
posted fork to dear, so the cfork instruction returns a failure
status of 0 in carry (C). If the rev succeeds, this success status is
returned and the forklck is also received, making the status of the
fork event register lock bits forklck"" 0, forkposted = 0.

wfork
The wfork instruction terminates the current thread of execution
and returns the CPU to the idle state. First, the wfork attempts to
receive the thread mask or count. If the rev operation fails, the
wfork cannot continue since the mask or count is required to
deallocate the current thread. The wfor k instruction does not wait
for it because the CPU would not be able to take interrupts, since
interrupts are only delivered to the CPU at instruction dispatch
boundaries. The microcode restarts the wfork instruction until
the rev operation succeeds.

When the rev eventually succeeds, the thread count is checked
for a value of 1. This means the terminating thread is the last
thread in the process, so the current CIR is checked for a posted
fork. If the posted fork is of type PFORKED, it is taken.

Althol.Jgh a thread has been deallocated and reallocated, the
microcode still accepts the fork in the current CIR as the current
TID. The specifics of fork acceptance are discussed in the "Idle
CPU al1ocation" section on page 203.

If a posted fork of type SPAWNED or STOPPED is found, it
means the thread was started with a spawn, and should have
been terminated with a join. Since the spawn and pfork
instructions should not be mixed in the same process without
proper synchronization, a deadlock is reported to the operating
system through a system exception. Deadlocks are described in
the "Process deadlock" section on page 206. If there is no fork
posted at all, the process has ended erroneously, so a deadlock
trap is invoked_

If the thread count > 1, it means a child thread is terminating
correctly. The thread count is decremented and the bit in the
thread mask corresponding to the current TID is set, indicating
the terminating thread is now available for allocation. The
thread mask/ count are sent back to the communication
registers, and the CPU enters the microcode idle loop.

Chapter 5 Multiprocessor management 201 I
~--------.. ·--·.-·-···---.----.. __ , __________ -~~-~--------.-- .. ---.---.-~. -------------

. . ··:~ .

EDTX 2-04-CV-120
51 056DOC065529

�

202

join
The join instruction reduces the process to a single thread of
execution. All threads in the process that have accepted the
spawned fork reach a join at the execution termination. Each
CPU either terminates its current thread of execution and returns
to the idle state or continues execution after the join as a single
threaded process.

The spawn/join mechanism may be viewed as a race from
spawn to join, where the first N-1 threads to reach the join
terminate, and the Nth thread continues executing after the join
instruction. Once one thread has joined, any idle CPUs do not
accept the fork. since the region of code between the spawn and
join instructions has been completed by one thread and should
soon be completed by all threads.

First the join instruction attempts to receive the thread
mask/ count,_If the rev fails, the instruction is restarted as
described in the "wfork" section. When the rev succeeds, the
CPU waits for all stores in the current CPU to reach the memory
system by performing an msync operation. This ensures that the
single thread continuing after the join will see all operands
stored by all spawned threads if the single thread loads these
operands. Next, the constant value STOPPED is sent to the
fork. type for event register. This value signals other threads
within the process that at least one thread has reached the join
instruction, meaning the process is reducing to a single thread
which prevents other CPUs from accepting the fork Next, the
thread count is checked for a value of 1. If the thread count > 1,
a spawned thread is correctly terminating. The thread count is
decremented and the bit in the thread mask corresponding to the
current TID is set, indicating an allocatable thread. The thread
mask/ count are sent back to the communication registers, and
the CPU enters the microcode idle loop. If the thread count is 1,
it means this thread was the last to reach the join so the thread
mask/ count are sent back to the communication registers and the
thread continues after the j o in instruction.

idle Sk
The privileged idle Sk instruction allows the operating system
to send a CPU to the idle state. The idle state is a microcode loop
that searches all CIRs for posted forks.

The idle loop is the common end of the wfork, join, and
idle Sk instructions. The wfork and join instructions search
the current CIR for a posted fork before idling. The idle Sk
instruction searches the CIR specified by Sk before idling, and
does not deallocate the thread the idle instruction executed
from.

CONVEX C-Series Architecture

EDTX 2-04-CV-120
51 056DOC065530

�

l
!

Note

The following steps describe the idle instruction:

1. The CIR is switched to the value specified in Sk.

2. The idle instruction attempts to receive the thread mask
and thread count. If the rev operation fails, the idle loop is
entered.

3. The thread mask is searched for the leftmost set bit,
indicating an allocatable thread. If no bits are set, the
thread mask and thread count are sent back to the
communication registers and the idle loop is entered.

4. If an available thread is found, the CPU attempts to accept
a fork by first receiving forkposted. The specifics of fork
acceptance are discussed in the "Idle CPU allocation".

5. If a fork of type STOPPED is found, then the process in that
CIR is attempting to join, so the fork is ignored, the thread
mask or count is sent back, and the idle loop is entered.

6. If a fork of type SPAWNED or PFORKED is found, it is
taken in the new thread. The updated thread mask and
thread count (thread allocated and count incremented) are
sent back to the communication registers and execution
begins at the PC of the fork.

Idle CPU allocation
The idle state of a CPU consists of a microcode sequence referred
to as the idle loop.

The following idle loop sequence details the implementation on
the C3200 Series CPUs as an example of idle loop processing. Idle
loop processing is not guaranteed to be identical to this for all
multiprocessing CPUs. The exact ordering of the idle loop is
implementation specific, not architecturally defined.

The algorithm loops sequentially through all CIRs in search of a
posted fork. There are four conditions that must be met in order
for a fork to be taken. The C3200 Series CPUs check these
conditions in the following order:

1. The thread mask/count communication register must be
receivable, that is, have its lock bit set.

2. The thread mask must be nonzero, indicating that at least
one thread is available for allocation.

3. There must be a fork posted, that is, forkposted must be
locked.

4. The posted forkmust notbe.o£ type STOPPED.

EDTX 2-04-CV-120
51 056DOC065531

�

If any of these conditions are not met, the CIR is skipped and the
next CIR is searched.

If these conditions are all met, the fork is accepted in the
following manner:

1. The successful rev of forkposted not only shows the
availability of a fork but also fetches the fork, type and
fork. SP.

2. The CPU's address register AO (stack pointer) is loaded
with fork. SP, and fork. type is checked to ensure it is
not of fork type STOPPED.

3. If fork. type is a STOPPED type, the process running in
the candidate CIR is attempting to join to a single threaded
state, so the fork is ignored.

4. Assuming the fork is not ignored, the fork. source_PC is
fetched with a get and loaded into the program counter.
This sets the ring bits for the new thread of execution.

5. The fork. PC and fork. PSW are fetched with a get
operation and loaded into the program counter and PSW.
The PC is loaded the second time with the least significant
29 bits only, that is, the ring bits are not loaded.

To understand why the program counter is loaded twice,
consider the case where a pfork 0, sp is executed in ring
4. If a fork. PC of value 0 was simply loaded into PC by the
accepting CPU, an illegal entry into ring 0 would be
implied. To avoid an illegal ring 0 entry, the program
counter of the posting thread is written to the
fork. source_PC to set the ring bits (establishing a current
ring of execution) for the accepting CPU. This makes the
posting and acceptance of forks consistent with the jmp
instructions.

6. If the fork is of type SPAWNED, the accepting CPU's frame
and argument pointers are loaded with a get from
fork. FP and fork. AP. The forkposted is locked with a
lck operation, leaving it posted.

7, If the fork is of type PFORKED, the accepting CPU's frame
and argument pointers are loaded with an rev of fork . FP
and fork. AP. This rev dears forklck, which dears the
fork.

8. A thread is allocated as described earlier, and the thread
mask/ count is sent back to the communication registers.
The new thread begins execution at fork. PC in the ring of
fork. source_PC.

l
!
i

204 CONVEX C-Series Architecture ··~· J
EDTX 2-04-CV-120

51 056DOC065532

�

'•< .:··

. _-:

.·.··.,,· •... ·:h

Fork acceptance is one of two events that can forces a CPU to
leave the idle state. The second event is an l/0 interrupt. An idle
CPU is always able to respond to interrupts. Interrupt
processing is fully described in Chapter 6, "Exceptions and
interrupts."

The CPU microcode idle loop employs an equitable round-robin
scheduling algorithm. CPUs take forks from different processes
(CIRs) by binding to the interrupt service process context (setting
the CPU's CIR index equal to the interrupt CIR index) and looping
through the other communication register sets using physical
communication addressing.

If the idle CPU always began searching for forks in the fork event
registers at CIR = 0 and progressed sequentially through to CIR
= 7, the lower CIR index values would be treated more favorably.
To circumvent this inequity, each time a CPU accepts a fork, it
saves the CIR index from which it accepted the fork. The next
time that CPU goes idle, it begins searching at the next one.

The CPU checks for interrupts after one complete pass of the
eight ORs. If there are no pending interrupts, another pass of the
CIRs begins. The interrupt CIR (ICIR) must be entered during
the idle loop to give the idle CPU enough context from which to
take an interrupt or trap instruction trap.

Chapter 5 Multiprocessor management 205

........

.. ·:· · ... ·

. ·:· ··:. :·- . ·.. -.' ~- : : .
. :·.. . .. : ·, ~- . ' .. ;"

•. ~· ·.' . -~ _ ...

·.,. ~· .· . :: ..

EDTX 2-04-CV-120
51 056DOC065533

�

· ;. ·.·,.: :··

CPU deadlock detection

C3200 Series CPUs (only) are capable of detecting when the
currently executing threads within a process have reached a
deadlock condition. A deadlock occurs when all the currently
executing threads of a process are performing a
"synchronization" instruction followed by a branch back to that
instruction. Synchronization instructions are those instructions
attempt to change the value of a lock and return status on the
success or failure of that operation. Examples of such
instructions are thetas, snd, rev, and inc instructions.

Deadlocks are system exceptions and pass through page 0 of
ring 0 to the process deadlock handler. The system then
determines if any other threads within the process can be run
and schedules them accordingly.

Process deadlock
A process deadlock usually occurs when all threads of an executing
process are in a synchronization instruction sequence. When any
of the deadlock detection instructions are followed by a branch
back to the same instruction, they have the potential of triggering
a process deadlock. The group of instructions listed in
Table 41 are classified as synchronization or deadlock detection
instructions.

Table 41 Deadlock detection instructions

Instruction Description

casr Compare and swap a word between a resource structure and memory

getr Get contents of resource structure into a register

inc Increment a communication register

incr Increment the data field of a resource structure

lck Lock a communication register

mat Compare an address register with a communication register

matr Compare a register with the contents of a resource stmcture

popr Pop an address register off a resource sbucture

pshr Push an address register onto a resource structure

putr Copy contents of a register into a resource structure

rev Receive a value from a communication register

206 CONVEX C-Series Architecture

.. _,.~~-~~--. ·.~~-~~~--~····-·-·

. '"···":

= .. ·. ; · ·· .

. · .. ;:-::· ..

i

!
I
I
!

J

EDTX 2-04-CV-120
51 056DOC065534

�

Table 41 Deadlock detection instructions

I
~
I
I
I
l

Instruction

rcvr

snd

sndr

tas

tac

ulk

1. l Note

r
I
!
l
!

I Note
I
!
!
!
-~
~·

~·

"
t r

I
I
i

I
I
' ~
~
!
l
I

1 . ·,. ' .. --~-....__ __ -:'_,_

. ~' ~ ; ... :

Description

Receive a value from a synchronized resource structure in memory

Send a value to a communication register

1 Send a value to a synchronized resource structure in memory

Test and set a memory byte

Test and dear a memory byte

Unlock a communication register

·;::.

C3800/C4600 Series CPUs do not implement hardware-detected
deadlock on these or any other instructions.

Synchronization instructions are those instructions that attempt
to set the value of a lock and return status on the success or
failure of the lock. All data representations of these basic
instructions are implemented in the deadlock detection
instructions, for example, snd includes snd. wand snd _ l.

These instructions all perform some type of semaphore or
synchronization operation and return status in carry (C) or scalar
carry (SC).

Whenever a CPU executes one of these instructions immediately
followed by a branch back to the same instruction (that is, the
same op code at the same program counter where the branch
displacement must be the negative of the size of the
synchronization instruction), the thread is deadlocked. If all
threads currently executing in a process are deadlocked, the entire
process is deadlocked.

When a deadlocked process is detected, each thread within the
process immediately enters the ring 0 process deadlock handler
pointed to by location 0000 0010 of ring 0 page 0. The process
deadlock handler schedules other threads within the process to
resolve the deadlock condition. An example code sequence would
be:

1$: rcv.w
bra.f

Ox8000,a2
1$

If the rev instruction fails in this code sequence and returns a
carry (C) of 0, a backward branch is taken. The deadlock handler
is dispatched, instead of retrying the rev operation_

Chapter 5 Multiprocessor management 207

EDTX 2-04-CV-120
51 056DOC065535

�

···:i.

.. ··.:

....... ::· .. ·;::":,,.;::; ...•... ::·

The concept of deadlock also extends to certain cases of thread
termination and fork acceptance. Deadlock is detected if the last
thread in a process attempts to terminate, or a thread that should
have executed a join executes a wfork instead. The process
deadlock mechanism is used with a separate qualifier code to
notify the operating system of these cases.

Specifically, if the last thread in a process executes a wfork
instruction (that is, the entering thread count is 1) and a fork is not
posted in the CIR, a last thread termination deadlock is signaled.
However, if a fork is found posted by the last thread executing a
wfork instruction, and the fork is a STOPPED or SPAWNED type,
the process executed a spawn or join instruction pair mixed with
a wfork instruction without proper synchronization.

The last thread of a process should never execute a wfork since
the process cannot continue. The acceptance of a fork in the
current CIR is provided as a last opportunity to avoid deadlock,
but if the fork is of the wrong type, it still causes deadlock.

208 CONVEX C-Series Architecture J
··~-----· --· ------··

··-····---~-··-··--

: .. _·,.-:· · ... ~\ . .-

EDTX 2-04-CV-120
51 056DOC065536

�

... ···•··· ... ; .. ,.:: · .. ,·,~~···.·~. -·~·

Exceptions and interrupts 6

Note

Exception system

I

I
i
I

-~J~·········--··

Exceptions occur as a result of some asynchronous event that
disrupts an executing process or thread, such as arithmetic
inconsistencies or address translation faults. They also occur
within an executing process, such as deadlock or execution of a
trap instruction. An exception event results in the transfer of
control to a predefined routine known as an exception handler. The
starting addresses of the exception handlers are located in jump
tables in reserved virtual memory referred to as "virtual memory
page 0." Process and system state information is saved on the
appropriate stacks.

The primary objectives of exception processing for the C-Series
architecture are

• Involvement of the operating system (OS) kernel is kept to a
minimum.

• The hardware is structured so that the exceptions are as
asynchronous OS kernel calls.

• The hardware indicates the cause of the exception, if
possible.

• Some exceptions that are under user control can be masked
out by hardware.

Chapter 6 Exceptions and interrupts 209
... '~ .. '

EDTX 2-04-CV-120
51 056DOC065537

�

The primary objectives of exception processing for the C-Series
multiprocessing implementations only are

• Only the single thread causing an exception in a CPU
complex is involved in that thread's exception processing.
Other threads within the process may continue execution.

• Exceptions in each exception class can be one of the
following:

- Local-Local exceptions are related to the currently
running thread within a process and may be handled with
an exception handler in that process.

Global-Global exceptions are related to every thread
within a process and must be handled by the operating
system in ring 0.

The C-Series architecture exceptions are grouped into one of
following three classes:

1. Process exceptions

• For all C-Series CPUs-These exceptions belong to an
executing process and may be handled with an exception
handler in that process. The exception handler is in the
current ring of execution.

• For multiprocessing C-Series CPUs-Each exception
handler is invoked by the thread causing the exception in
the current ring of execution.

2. System exceptions

• For ClOO Series CPUs-System exceptions cannot be
handled by an executing process and require intervention
by the kernel executing in ring 0.

• For multiprocessing C-Series CPUs-System
exceptions are either local or global and cannot be
handled by an executing process. Local system
exceptions are thread specific and require explicit
operating system intervention. Global system exceptions
are associated with an entire process and require
intervention by the kernel executing in ring 0.

3. Machine exceptions

210 CONVEX C-Series Architecture

• For all C-Series CPUs-Machine exceptions include fatal
errors in the system that cannot be handled by operating
system software.

EDTX 2-04-CV-120
51 056DOC065538

�

i
!

!
j
!

i
~
j
!
!

I
l
i
I
I
I
t

I
I

l . - .. -.. ~-~.,.,--:---..---·····

In general, when an exception occurs, the value of the program
counter (PC) is the address pointing to the next executable
instruction that would have been executed if the exception had
not occurred. The PC is saved in a return block and pushed on
the process stack before the exception handler begins executing.
The formats of the return blocks are described in Chapter 4.

If exceptions of different classes are simultaneously pending,
machine exceptions have the highest priority, followed by
system exceptions, and finally process exceptions. Exceptions
may also be subdivided according to how the exception handler
normally treats them. In many situations, the exception handler
can correct the underlying cause of an exception and signal the
original process to resume execution. However, in some
situations, the exception handler may not be able to correct the
cause of the exception and cannot return control to the original
process.

There are two distinct types of exceptions:

• A trap is an exception that occurs at an instruction boundary.
All state information necessary to resume execution is
architecturally defined and contained in the extended return
block that is pushed when the trap occurs.

• A fault is an exception that cannot occur at an instruction
boundary. State information, in addition to the extended
return block, must be saved in order to later resume
execution. Currentlrr all faults are caused by problems that
occur during the virtual-to-physical address translation
process for memory and communication register addresses.

A trap frame is a stack frame containing an extended return block
(extended frame) that is pushed on the process stack as result of a
trap. For example, when an arithmetic exception occurs, the
hardware pushes an extended frame and jumps to the trap
handler. This extended frame is referred to as a trap frame.

Chapter 6 Exceptions and interrupts 211

EDTX 2-04-CV-120
51 056DOC065539

�

Process exceptions

All process exceptions occur at the process level (ClOO Series
CPUs) or thread level (multiprocessing C -Series CPUs). The user
can handle these exceptions without operating system
intervention. The exception handler that resides in the current
ring of execution is invoked by the process (or thread) that
caused the process exception. The stack frames are pushed on
the process stack in the current ring before entering the
exception handler. In addition, many process exceptions, such as
aritlunetic traps, can be disabled (masked out)_ The process
exceptions are

• Arithmetic trap-This exception type results when a process
produces arithmetic errors. The exception handler can return
control to a user process after the trap has been processed.
This trap can be masked out

• Instruction trace trap-lbis feature allows a single
instruction to execute between each exception.

• Breakpoint-This feature uses a breakpoint (bkpt)
instruction to cause a transfer of control when executed.

• Process breakpoints-This feature uses a process breakpoint
(pbkpt) instruction to cause a transfer of control when
executed.

Instruction trace, sequential execution, and breakpoints all
support process debugging. The following subsections describe
each process exception.

Arithmetic trap
An arithmetic trap occurs when an arithmetic operation
encounters or produces an illegal value. An illegal value is one
that is not within the representable range of numbers for the
machine. Refer to Chapter 2 for a description of the bit
representation of arithmetic floating-point operands_ The
following are charact€ristics of each type of aritlunetic
exception:

• Integer overflow-This occurs when a result is too large to
occupy the specified destination_ When an integer overflow
occurs, the AIV or SIV bit in the PSW is set. The result loaded
into the destination is correct in the least significant bits.

212 CONVEX C-Series Architecture

When an integer overflow exception occurs for integer
longword multiplication (64 bits), the result is correct in the
least significant 53 bits. Bits <63 . .53> are undefined.

i
i

J
EDTX 2-04-CV-120

51 056DOC065540

�

I

I
I
I

l
j

1

i
!
l
l
I i
I
I

I
I
j

..... · ... :.- ·:· ,

• Integer divide by zero-When the divisor is zero, the
processor sets the appropriate divide by zero bit (ADZ or
SDZ) in the PSW. The output of the divide is the dividend.

• Floating divide by zero (native, IEEE)-When the divisor is
zero, the processor sets the FDZ bit in the PSW. The output of
the divide is a reserved operand in native mode, or Not a
Number (NaN) in IEEE mode.

• Floating-point overflow (native, IEEE)-When the resulting
exponent requires more positive precision than is allowed, a
floating-point overflow occurs. The resultant operand is
forced to a reserved operand in native mode, or infinity in
IEEE mode. The overflow (OV) bit in the PSW is set.

• Floating-point underflow (native, IEEE) -When the
resulting exponent requires more negative precision than is
allowed, a floating-point underflow occurs. The resulting
operand is forced to true zero. True zero is forced regardless
of the value of the underflow trap enable bit. The underflow
(UN) bit in the PSW is set.

• Reserved operand (native)-When an input to a
floating-point arithmetic operation has a sign "" 1 and an
exponent"" 0, a reserved operand exception is detected. The
fraction value is irrelevant The output of an arithmetic
operation with a reserved operand input is a reserved
operand output A reserved operand output has a 0 fraction.
The reserved operand (RO) bit in the PSW is set.

• NaN (IEEE)-When an input to a IEEE floating-point
arithmetic operation has an interpreted value equal to an IEEE
NaN value, an arithmetic trap occurs. The reserved operand
(RO) bit in the PSW is set.

• Infinity (IEEE)-When an input to a IEEE floating-point
arithmetic operation has an interpreted value equal to an IEEE
infinity value, an arithmetic trap occurs. The reserved
operand (RO) bit in the PSW is set.

Enable bits in the PSW can selectively enable groups of
arithmetic exceptions. These groups are listed in Table 42.
Exceptions may be ignored by clearing the appropriate trap
enable bit in the PSW.

Chapter 6 Exceptions and interrupts 213

... ;:.:.

EDTX 2-04-CV-120
51 056DOC065541

�

- -.·· .. ·
' . ~· ·: ... •'

Table 42 Arithmetic exceptions and corresponding PSW bits

PSW arithmetic trap
Trap description

PSW arithmetic
enable bit exception bit

IVE Integer overflow trap enable SIV, AIV

DZE Integer divide by zero trap enable ADZ,SDZ

FE Floating-point trap enable 0\!, RO, FDZ
I

FUE Floating-point underflow enable UN

INE1 Intrinsic error enable FIN

1Does not apply to ClOO Series CPUs.

Once an arithmetic exception bit in the PSW is set, it remains set
until cleared by software. This permits the PSW to record the
occurrence of an exception that is masked out, but is explicitly
tested later.

Floating-point exceptions are serviced by two trap enables, one
for underflow and one for all other floating-point exceptions.
These two trap enables exist because continued computation
may still be possible after an underflow occurs. Underflow
forces a true zero result that is sufficient in most circumstances.
All other floating-point exceptions force either a reserved
operand result (native) or a NaN or infinity result (IEEE).
Reserved operands are generally markers for other trap
handlers. These two trap enables allow the application
programmer to choose the appropriate reaction to a
floating-point exception.

The processing sequence for arithmetic traps that prepare a
process to enter an exception handler are

1. The CPU sets the appropriate bits in the PSW to indicate
the type of arithmetic exception. Since a C-Series CPU has
multiple arithmetic units, arithmetic operations can result
in multiple arithmetic exceptions. These types of
arithmetic exceptions are reflected in the CPU state by
setting the respective bit in the saved PSW. Multiple
exceptions types can be identified simultaneously, because
each exception type has an assigned bit in the PSW.

2. When a CPU detects an arithmetic exception that requires
a trap (that is, it is enabled by the PSW), it suspends all
pending instructions.

3. Because of the pipelined nature of the machine, more than
one instruction may be executing when a trap occurs, so

214 CONVEX C-Series Architecture

· ·· ...
.. -· ... ··
. ... ·.

EDTX 2-04-CV-120
51 056DOC065542

�

l
j
~
I
l
l
!

!
' ~

1 Note
l
j

I
!

I
!
!
i·
' ' !
I

I
l
i

j_~-----
··'·."' ·-·-.·:..,-:-

the CPU completes execution of all currently executing
instructions.

4. The CPU recognizes the trap only after completing Steps 1
through 3, and only if there are no events pending with a
higher priority (such as interrupts).

5. The CPU pushes an extended return block onto the current
stack (no ring crossing occurs).

6. The CPU clears the following bits of the newly generated
PSW: C SC AIV, ADZ, UN, OV, FDZ, RO, SIV, SDZ, FRL,
and FIN.

7. Instruction execution for the aritlunetic exception trap
handler begins at the address contained at byte address
0 0 0 0 0 04 4 of page 0 of the current ring.

Instruction trace trap
The instruction trace trap allows a single instruction to execute
between each trap. Trace traps can be directly controlled by
setting the appropriate (implementation-specific) enable bits in
the PSW. After the execution of each instruction, the processor
pushes an extended return block onto the stack in the current
ring. The pushed PC references the next instruction to be
executed. The trace trap handler is located at the address
contained at address offset 0000 0040 ofthe current ring. Since
the trace trap handler is located in the current ring, no ring
crossing occurs and the operating system is not involved in trap
processing.

On some C~Series implementations, instruction trace traps fail to
occur around certain instructions, causing a failure to single-step
correctly. C3200 systems cannot single-step through a sysc
instruction. C3800 systems cannot single-step through a jump,
call, or return instruction.

When the PSW 's TR bit is set, instruction tracing is enabled and
a trace trap occurs after an instruction is executed. In addition,
the PSW's SEQ bit must be set for the instruction trace to
function properly. SEQ forces instructions to execute one at a
time without overlap.

The following paragraphs describe an additional capability that
exists on the multiprocessing CPUs.

The trace thread concurrency bit, PSW (TIC), can be used to
monitor all thread creation and termination that occurs within a
process as a result of pfork or spawn instructions when the TIC
bit is set. An instruction trace trap occurs after the execution of a
wfork, idle, or join instruction prior to the CPU entering the

Chapter 6 Exceptions and interrupts 215

EDTX 2-04-CV-120
51 056DOC065543

�

· .. ·~·

hardware idle loop. The PC that is pushed on the stack references
the next instruction to be executed, (the instruction after the
wfork, idle, or join instruction). The thread is not deallocated
by the wfork, idle, or join, because the trap handler must have
a thread identification in order to actually process the trap.

Before the trace trap handler returns, it is expected to backup the
PC in the extended return block to the wfork, idle, or join
instruction and re-execute the instruction again with TIC
cleared {to allow the thread to properly terminate).

The TIC bit being set also causes an instruction trace trap to
occur prior to the first instruction executed by a newly created
hardware thread that accepted either a pfork or a spawn.

The trap class qualifier loaded into address register AS may be
used to decode the cause of the trace trap. Table 43lists the class
codes and qualifiers placed in register A5 for each type of trace
trap.

Table 43 Trace trap class codes and qualifiers

Trace trap type

Instruction Trace

Trace thread concurrency

Thread initialization trap

Note

Class Qualifiers (byte 2) (byte 3) Priority
(hexadecimal)

I

00 None Highest

04 0 - thread creation

I (pfork/ spawn accepted)
1- j a in instruction executed
2-wfork instruction executed
3- idle instruction executed

08 None Lowest

The test tor trace thread concurrency is performed based on
fork. PSW after the fork is token. The PC in the trap frame is
fork. PC, the starting address of the new thread.

216 CONVEX C-Series Architecture

··-----·--···--------··-:-----""_-~~-·-·

.. ·'· ..

i

EDTX 2-04-CV-120
51 056DOC065544

�

.· . .-·.· .. ·. :.". -'·.>···

. --~

The conditions which can cause each kind of trace thread
concurrency (TIC) trap are

Code Condition

04 0 0 Any ofthe following:
-An idle CPU picks up fork and sees PSW (TIC) set

in fork. PSW.
-An idle instruction is executed, a fork found in

CIR specified in Sk, and PSW (TIC) is set in
fork.PSW.

-A wfork instruction is executed by the last thread, a
fork is found in the current CIR, and PSW (TIC) is
set in fork. PSW.

04 01 The join instruction was executed by a thread other
than the last thread, so the CPU traps instead of
entering the idle loop.

0402 The wfork instruction was executed by a thread other
than the last thread, so the CPU traps instead of
entering the idle loop.

0403 The idle instruction finds no fork to take in CIRSk
and goes to the CPU idle loop, after determining that
the CPU's PSW ('ITC) is set, and traps rather than enter
the CPU idle loop. When a CPU cannot find a fork to
take, this means
- No fork is posted,
-The CPU cannot receive (rev) thread count or mask,
-No allocatable threads exist in the thread mask, or
-The posted fork is marked STOPPED (another

thread has joined).

In order for a process to continue after all its threads are joined
in the trap handler and to keep the PSW (TIC) set after the last
thread continues as the serial thread, the trap handler should
initiate the following trap processing sequence:

1. A j a in instruction executes in the trace trap handler.

2. The trace trap handler returns from the TIC trap frame.

For example, consider a two-threaded trap process. The first
thread executes a j a in instruction and traps before terminating,
so the trace handler is called without deallocating the thread. The
second thread (normally the last thread) encounters the j a in
instruction, sees the thread count of 2, and also trace traps. Since
all threads have trace-trapped, the serial thread continues

CJu:lpter 6 Exceptions and interrupts 217

~~~~~- _. 
: . . -·~ ::_·:..... ·. . 

· .•... 

EDTX 2-04-CV-120 
51 056DOC065545 



�

Note 

execution after the join in the trap handler completes with the 
PSW (TIC) bit cleared. 

A join instruction must always be executed to allow all but one 
thread to terminate with PSW (TIC) clear. All threads are joined 
in the trace trap handler and the trace trap handler returns with a 
serial thread. Only the last thread executes the return. This thread 
continues after the join operation with the PSW (TIC) bit set, 
which was reloaded when the extended frame popped. 

The thread initialization trap allows a thread state to be 
initialized as the thread begins execution. This trap is primarily 
for vector registers permitting each thread to be forced to start 
with a known vector register state. If the PSW (TIT) bit is set 
when a CPU picks up a fork, a trace trap is taken to allow a 
user-defined handler to initialize the desired state. Table 43 lists 
the class code and qualifier placed in address register AS. 

The thread initialization trap is based on the PSW contained in the 
fork block (fork.PSW) located in the communication registers. 
The TIT is a user trap-this trap occurs in the ring where it was 
executed. The PC in the trap frame is fork. PC, the starting 
address of the new lhreod. A CPU does not have to be in 
sequential mode for TIT traps to function correctly. 

Sequential execution 
Although sequential execution does not cause an exception, it 
affects the operation of the machine and perhaps the specific 
conditions that exist when an exception occurs. The PSW has 
two bits that control sequential execution: the SEQ bit and the 
SQS bit. 

SEQ bit 
All overlapped execution in the processor is disabled when a 
process sets the PSW (SEQ) flag. The PSW (SEQ) flag forces serial 
execution for both hard ware and software. The numerical results 
produced by any arithmetic operations are the same, regardless 
of the setting of the SEQ flag. Setting SEQ only affects 
performance and the serial nature of the execution. This bit may 
be free! y set or reset. 

SQS bit 
When the sequential store bit SQS is set, memory store 
operations are done in instruction. execution order. This ability to 
force all memory stores to be sequential allows debugging 
parallel executing programs that rely on memory store order. 
The rules for locking memory structures still apply for multiple 
CPUs executing a multithreaded process. Only performance and 
the serial nature of the execution are affected. The user may 
freely set or reset this bit. 

218 CONVEX C-Series Architecture 

-----.,..--~~~- _________...... .. ·-----~.----· ----~-------~----

EDTX 2-04-CV-120 
51 056DOC065546 



�

,. 
j. 

I 
! 
l 

j 
·, . -~- ',.. 

Breakpoints 
Although the breakpoint instruction (bkpt) is not a true 
exception, execution of this instruction results ina trap. Execution 
of the bkpt instruction 

• Causes a call to the breakpoint trap handier pointed to by the 
byte address pointer at 0000 0050 of the current ring, and 

• Pushes an extended return block on the stack 

For multiprocessing C-Series CPUs, execution of the process 
breakpoint (pbkpt) instruction results in a system exception, 
because these breakpoints cause a ring crossing to the ring 0 
exception handler. The process breakpoint instruction is described 
in the "Process traps and process breakpoints" section on 
page226. 

Chapter 6 Exceptions and interrupts 219 

EDTX 2 -04-CV -120 
51 056DOC06554 7 



�

.. ....... 

· .. ·~~· :· =: • 

.·- : ~ .: . 

..... _.·:,, 

System exceptions 

A system exception normally cannot be handled by the user 
process and must involve the operating system. Examples of 
system exceptions are address translation faults and ring-crossing 
traps. 

All system exceptions have the following characteristics: 

• System exceptions are not maskable. 

• System exceptions always result in a ring crossing to ring 0. 

• Ring 0 has residency and alignment requirements. The ring 
0 stack must always be aligned on a 32-bit (word) boundary, 
and ring 0, page 0 must be in resident memory. A machine 
exception results if either requirement is not met. 

The processing sequence for system exceptions is: 

1. The hardware performs a ring crossing to ring 0. 

2. A return block is pushed on the ring 0 process stack. The 
return block saved in each case is either an extended return 
block (FRL"' 01) or a context return block (FRL"' 00). 

For multiprocessing C-Series CPUs, almost all system 
exceptions are local to a CPU. The only global system exceptions 
are process deadlock, and process trap. Local and global system 
exceptions are defined at the beginning of this chapter. 

The following sections describe each of the system exceptions. 
Refer to Tables 45, 47, and 47 for the corresponding exception 
class codes and qualifiers . 

Error exit trap 
An error exit trap occurs if the CPU encounters an all-zero op 
code. This trap occurs, assuming that the memory in question 
has been previously cleared, if the CPU attempts to execute code 
from memory that resides beyond the boundaries of a program. 
An error exit trap results in a system call to the system exception 
handler pointed to by the address 0000 OOOC of page 0 of ring 
0. 

Undefined op code trap 
An undefined op code trap occurs whenever the CPU attempts 
to execute an illegal (undefined) instruction and results in a 
system exception. An undefined op code is a syntactically 
correct instruction with an op-code field (binary bit pattem) that 
has no associated definition of an actual machine instruction . 

220 CONVEX C-Series Architecture 

·-~r-,---~--~---.__.·-··- .. ,-.,•,•••~ ---~·~·-~·-~--• "" 

'··'-· _, 
.. ',;''. 

··· .. 

----------- ··--·---·-······ ·--------------·----~.....___ 

EDTX 2-04-CV-120 
51 056DOC065548 



�

Note 

·' . ~ .. : . . . 

.:,: •.... _.· 

An undefined op code trap results in a system call to the system 
exception handler pointed to by the pointer at address 
0000 oooc of page 0 of ring 0. A class code of 1 is loaded into 
byte 2 of address register AS after an extended return block is 
pushed on the stack. No qualifier code is loaded into byte 3 of 
address register AS. 

Vector valid trap 
Under control of the vector valid (VV) flag, a vector valid trap 
can be programmed to occur the first time a vector instruction is 
used. A vector instruction is any instruction that reads or writes 
a vector register (VO- V7 or VO- V15), VL, VS, VM, or VF (C4600 
only). This includes implicit reads, as in the ste instruction. The 
occurrence of a vector valid trap permits the operating system to 
save and restore the vector registers on demand (for any process 
or thread that uses vector instructions). Refer to Chapter 3 and 
the definitions of the mov Sk, VV and tstvv instructions in the 
CONVEX Assembly Language Reference Manual (C Series) for more 
information on the vector valid trap and the VV flag. 

For example, assume that ten processes are running, but that 
only two use the vector registers. Upon interrupt during one of 
these two processes, the system does not save the vector registers 
since the interrupt service routine does not use them. If 
subsequent processes do not use the vector registers (either 
statically because there is no need, or dynamically because the 
particular code segment is not vector in nature), no CPU time is 
wasted in saving the vector machine state. 

However, if one of these subsequent processes attempts to use 
vector instructions (which would alter the vector machine state), 
a recoverable vector valid trap occurs. When this trap occurs, the 
operating system saves a previous process's vector machine 
state. Once this machine state is saved, the affected process 
resumes. 

The description of the algorithm used to process vector valid traps 
is a funcHon of the operating system implementation and not part 
of the C~Series architecture. 

A vector valid trap may be generated in all C-Series CPUs when 
a process uses vector instructions. The state of theW flag 
determines whether a vector valid trap is generated. When the 
operating system determines that the vector trap has occurred, 
the operating system reserves the vector register set (VM, VL, 
VS, and VQ-V7) to the user process. The general algorithm used 
to process the vector valid trap may behave differently 
depending on the number of CPUs involved. 

Chapter 6 Exceptions and interrupts 221 

... ·~~. ·-· -.-.--·~---·-·--····· 
.':•;·;· 

.. ' 

EDTX 2-04-CV-120 
51 056DOC065549 



�

The vector valid trap occurs if the following two conditions are 
met: 

• The vector valid (VV) flag is clear. 

• The CPU attempts execution of a vector instruction. 

If the two preceding conditions are met, the vector valid trap is 
processed in the following sequence: 

1. The hardware performs a ring crossing to ring 0, and 
pushes an extended return block on the ring 0 stack. 

2. The CPU jumps to the starting address of the exception 
handler pointed to by the byte address pointer located at 
0000 OOlCofpageOofringO. 

Ring violation traps and faults 
Ring violation traps and faults are system exceptions concerning 
invalid access to rings. 

The following ring violations are defined for all C-Series CPUs, 
arranged by the qualifier code returned in address register A5: 

0 Privileged instmction-A CPU attempted to execute a 
privileged instruction outside of ring 0. 

1 Inward address-A CPU attempted to reference an address 
contained in an inner ring. 

2 Outward system call-A system call (sysc) attempted to 
call an outer ring. All system calls must call the current ring 
or an inner ring. 

3 Inward return-A return instruction attempted to return to 
an inward ring. All returns must be to the same or to an 
outward ring. This violation occurs only when the return 
block is an extended frame. Short and long return blocks 
always return within the same ring. 

4 Invalid gate-An incorrect gate number is specified in a 
sysc instruction. 

5 Invalid frame length on return instruction-A return 
instruction encounters a frame length which does not agree 
with the type for the return. 

222 CONVEX C-Series Architecture 

J 
·-~ .. ~·;--· 

EDTX 2-04-CV-120 
51 056DOC065550 



�

........ : ... ;.·.,:.·,: .. ··;-· ........ ___ _ 

The following ring violations are defined for multiprocessing 
C-Series CPUs only: 

6 Invalid communication register access-A reference is 
made to an inner ring's communication register, or to an 
invalid virtual communication register address. This is 
valid only on C3400/C3800/C4600 Series CPUs. 

7 Invalid trap instruction-A trap instruction is executed 
with an invalid ring field or invalid bit field. 

Page table entry violation faults 
PTE violation faults encompass a group of illegal PTE accesses. 
The following PTE violations are defined for all C-Series CPUs, 
arranged by the qualifier code returned in address register AS. 

1 Read protect-The system attempted a read access to a 
page whose valid PTE did not allow reads. 

2 Write protect-A CPU attempted a write access to a page 
whose valid PTE did not have write enabled. 

3 Execute protect-A CPU attempted an instruction fetch on 
a page without execute enabled in its valid PTE. 

4 Invalid SDR-A CPU attempted a memory access to a 
segment whose SDR valid bit was not set. 

5 Invalid Ievel-l PTE-A memory reference was attempted 
to an address that had an invalid first-level PTE. A 
first-level PTE is not valid if the PTE valid flag is not set. 

6 Invalid level-2 PTE-A memory reference was attempted 
to an address that had an invalid second-level PTE. A 
second-level PTE is not valid if the PTE valid flag is not set. 

The following PTE violation is defined for multiprocessing 
C-Series CPUs only: 

7 Invalid level T PTE-If the corresponding level-T PTE for 
an address is not valid, an invalid level-T PTE exception 
occurs. 

The following violation is defined for C3200/C3400 Series CPUs 
only: 

8 Invalid 1/0 access-If an I/0 access is not valid, an invalid 
I/0 access exception occurs. 

····'-: .. :· .. ·· .· 

Chapter 6 Exceptions and interrupts 223 

EDTX 2-04-CV-120 
51 056DOC065551 



�

Note 

Nonresident page faults 
A nonresident page fault occurs when a CPU attempts to 
reference a memory location that is part of the virtual address 
space, but is not part of the physical address space. The system 
initiates a page fault only after it has interpreted the validity and 
appropriate access bits in a PTE. The nonresident page fault has 
two forms: 

• Nonresident data page-The actual data page that 
corresponds to the virtual address is not in physical memory. 

• Nonresident page-table page-A CPU attempted to 
reference a virtual address that accessed a nonresident page 
table (when translated to a physical address). A nonresident 
page table may be a second-level page table or a thread-level 
page table. 

It a CPU detects another page fault while responding to a page 
fault as described in the preceding sequence (faults on a 
reference pushing the context frame), a machine exception 
(hard error) occurs. This check prevents generation of an infinite 
number of page faults. 

Process deadlock traps 
A process deadlock trap results in a system call to the process 
deadlock trap handler pointed to by the pointer at address 0 0 0 0 
0010 of page 0 of ring 0. A class code and qualifier for an 
exception are placed in address register A5. The class codes and 
qualifiers for the deadlock exceptions are listed in Table 44. Refer 
to "CPU deadlock detection" section in Chapter 5 for more 
information on the deadlock process. 

Table 44 Process deadlock class codes and qualifiers 

Class 
Process deadlock (Hexadecimal) 

(Byte 2) 

Last thread 0 
termination 

Hardware deadlock 4 
detected 

224 CONVEX C-Series Architecture 

--~~--,r·---~---

Qualifiers 
(Byte 3) 

None 

0-All threads branching to 
synchronizing instruction 

I -Mixed wfork and join 

Priority 

Highest 

I 
Lowest 

\ 
! 
I 
I 

. _______ _j_ 

EDTX 2-04-CV-120 
51 056DOC065552 



�

Note 

.. ·-... -... 
,._ ·. 

·.·_: ·- . .-:· .... :·: 

Invalid communication address exception 
An invalid communication register address exception is 
generated when a communication register operation is executed 
using an invalid communication register address. This exception 
is implemented as a trap on the C3200 Series CPUs and as a fault 
on the C3800/C4600 Series CPUs. In general, an invalid 
communication register address can be one of the following: 

• Unimplemented address-For example, specifying the 
address Ox8040 on theC3200/C3400/C3800/C4600 Series 
complexes (the implemented address range ends at Ox803F). 

• Ring-protected address-For example, a ring 4 (user) 
program specifying the address OxOOOO, which may be 
referenced by ring 0 only. 

When an invalid communication register address is detected on 
a C3200 Series CPU, the PSW (CAT) bit is set. At the next 
instruction boundary, the microcode jumps to a trap routine that 
pushes an extended frame, dears the PSW, places the 
appropriate class code in AS, and enters the ring 0 system 
exception handler. The exception is deferred through the PSW 
because of the pipelined nature of C3200 Series machines. A ring 
0 operation that pushes the PSW may be dispatched before a ring 
4 operation that contains an invalid address completes. 

For example, consider the following sequence: 

get .1 OxOOOO, sO 
sysc #0, #l 

If the sysc had been dispatched before the invalid address was 
detected, the crossing to ring 0 may have already been made. By 
placing the trap condition in the PSW, the sysc pushes the PSW 
with the CAT bit set, and the exception is deferred until after the 
rtn from the sysc. 

When the system exception handler is entered, AS contains the 
code oxooooooso6, identifying the type of exception, but the 
invalid communication register address is not specified. 

When an invalid communication address is detected on a C3400 
Series CPU, the trap occurs immediately after the 
communication register instruction that caused the trap and 
before the next sequential instruction is executed. Therefore, the 
PSW (CAT) bit is not used in the C3400 Series CPUs. When the 
trap occurs, the hardware pushes an extended frame onto the 
appropriate ring 0 stack, clears the PSW, places the appropriate 
class code in A5, and enters the ring 0 system exception handler. 

Chapter 6 Exceptions and interrupts 225 

EDTX 2-04-CV-120 
51 056DOC065553 



�

. ·----······: 

.. :-:::--~:· ... ·~~::. 

When an invalid communication register address is detected on 
a C3800/C4600 Series CPU, the hardware pushes a fault context 
block onto the appropriate ring 0 stack, clears the PSW, places 
the appropriate class code in A5, and enters the ring 0 system 
exception handler. 

Process traps and process breakpoints 
The trap instruction, trap # rrn, #b, and the process breakpoint 
instruction, pbkpt, provide the only means, other than deadlock, 
for gaining control of all threads within a process in a timely 
fashion. The trap and pbkpt instructions are detailed in the 
CONVEX Assembly Language Reference Manual (C Series). 

When a trap instruction is executed, each CPU executing the 
process (within the rings specified) immediately traps to the ring 
0 system exception handler. Any CPU that subsequently attempts 
to enter a ring that has a process trap exception pending enters the 
ring 0 system exception handler. 

The # rrn field is a 5-bit ring mask used to select which rings it is 
forced to trap. This mask defines which of the five 64-bit trap 
instruction registers (TIR) in the hardware communication 
register set are to be modified. The most significant bit of #rrn 
specifies ring 4, down to the least significant bit which specifies 
ring 0. The ilb field is a bit number between Q-63 that is set in all 
the trap instruction registers specified by the #rm field. Refer to 
Chapter 5 for more information on the trap instruction registers. 

All accesses to the TIRs by the trap instruction are protected by 
ring maximization as shown in Figure 71. 

226 CONVEX C-Series Architecture 

...... · ... ·.·: .-' . .-··.·-:; .. 

I 
i. 

EDTX 2-04-CV-120 
51 056DOC065554 



�

··· .. , .. 

.. :·· .. ~-: :· .. :-: .: :._. :··,,~"···'···-

Figure 71 Trap instruction register partitioning 

Trap registers 

Ring 0 

Ring 

Ring 2 

Ring 3 

Ring 4 

Trap instruction ring of execution 

Ring 0 Ring 1 Ring 2 Ring 3 Ring 4 

Valid 

63 

1 

1 Invalid 
I 
I 
I 1 
I I 

Valid I I : 1 I 
I Valid I I 
I I I 
I I Valid I I I I 

I I I Valid I I I I I I I I 

56 55 48 47 40 39 32 31 0 

AH300056 
11/21/93 

The height of the boxes show the validity of the target ring 
references based on ring of execution. The width shows which 
bits may be set by the trap instruction within each ring of 
execution. The occurrence of any set bit in the TIR causes a trap of 
all threads associated with, or entering, the ring shown on the left. 

The execution of a trap instruction can only change the TIRs of 
greater than or equal to rings. Each ring may only modify a fixed 
set of bits within any TIR. The bit positions associated with the 
dashed boxes are reserved for use by the process breakpoint 
(pbkpt) instruction. For example, a trap instruction executed in 
ring 3 can only set bits <39 . .33> in the TIRs for rings 3 and 4. Any 
trap instruction executed with an invalid ring or bit field causes 
the executing thread to enter the system exception handler with 
an invalid trap instruction exception code. 

By providing the protection in this way, ring 0 is able to 
determine which ring executed the trap instruction by the 
position of the bit in the TIR. 

When a valid trap occurs, the system exception handler is 
entered with a trap instruction class code in AS. The trap 
condition remains outstanding until the associated bit that 
caused the exception is cleared in the TIR. The program counter 
of the ring that trapped and the value of the TIR can be used to 
determine the trap instruction register and permit dearing of the 
exception. 

Chapter 6 Exceptions and interrupts 227 

---------·--········-········ 

f .. ·,. 

EDTX 2-04-CV-120 
51 056DOC065555 



�

No locking protocol exists on the TIRs. In order to clear the TIRs 
in a communication register set, the exception handler reduces 
the process running in that communication register set to a 
single thread to ensure that no traps are missed. Therefore, the 
exception handler must wait until all threads have entered the 
exception handler before dearing the TIRs. 

The process trap mechanism is also used to implement a process 
breakpoint facility. A 16-bit process breakpoint instruction 
pbkpt is defined that causes all rings greater than or equal to the 
current ring of execution to trap. This is done by setting the 
appropriate bits (reserved for process breakpoint) in the TIRs for 
all rings greater than or equal to the ring of execution. Figure 71 
shows which bit for each ring of execution is set by the process 
breakpoint instruction. For example, if ring 2 executes a pbkpt 
instruction, bit <40> is set in the trap instruction registers for rings 
2, 3, and4. 

The TIRs set by the trap and pbkpt instructions are checked 
upon entering a ring, except when entering ring 0 for an interrupt. 
Whenever a ring crossing is executed, the TIR for the target ring is 
checked for any set bits. If any of the TIR bits of the target ring are 
set, the system exception handler is entered with a trap instruction 
class code in AS, instead of performing the original function of the 
ring crossing {enter exception handler, do sysc, and so on). The 
trap condition remains outstanding until all bits in the TIR are 
cleared. If a thread attempts to enter a ring that has any bits set 
in its TIR, the thread immediately enters the ring 0 system 
exception handler. The PC in the trap frame for this exception 
points to the intended target instruction of the original ring 
crossing. 

For example, a two-threaded process running with one thread in 
ring 0 and one thread in ring 4. 

L The ring 0 thread executes a trap instruction to trap ring 0, 
but the other thread does not trap, because it is in ring 4. 

2. Next, the ring 4 thread takes a page fault. 

3. While jumping to the exception handler for the page fault, 
the ring 4 thread determines that the TIR bit is set, pushes 
a frame pointing to the system exception handler (to 
handle the page fault), and enters the system exception 
handler. 

4. After the TIR trap is processed, the return from the 
exception handler causes a second entry to the exception 
handler for the page fault. 

5. After the page fault is processed, the context return sends 
the thread to ring 4. 

228 CONVEX C-Series Architecture 

EDTX 2-04-CV-120 
51 056DOC065556 



�

Note 

I 

Although a trap instruction cannot set the "invalid" bits shown 
in Figure 71, a put instruction can set them in ring 0. On the next 
ring crossing into that ring, a trap occurs because the hardware 
checks the TIR on ring crossings. If the TIR is nonzero, the CPU 
traps. 

The invalid bits should not be set with a put instruction, os it 
subverts the intent of the trap or pbkpt mechanism. 

System exception processing 
When a CPU detects a system exception for C-Series CPUs, the 
appropriate exception handler is determined by the following: 

• If the exception is a vector valid trap, the vector valid trap 
handler pointed to by address 0000 001C of page O,ring 0 
is executed. 

• If the exception is a process deadlock trap, then the process 
deadlock trap handler pointed to by address 0000 0010 of 
page 0 is executed. 

• If the exception is a global hard error trap, the global hard 
error trap handler pointed to by address 0000 0020 of page 
0, ring 0 is executed. 

• All other system exceptions are served by the system 
exception handler pointed to by address 0 0 00 OOOC of page 
0, ring 0. 

The information passed in address registers AS, A4, and A3 
describes the exact type of exception. As soon as the CPU pushes 
a return block on the current ring 0 stack, it loads a 32-bit 
exception code into register AS. Bytes 0 and 1 of this code are 
always 0. Byte 2 specifies the class of the exception, and byte 3 is 
an optional qualifier for that particular class. In addition to the 
class codes loaded into address register A5, the CPU loads the 
virtual address of the failure into address register A4 and the 
length of the fault context block into A3 for certain types of 
exceptions. 

Exceptions - ClOO 
ClOO Series CPUs exceptions are listed on Table 45. It lists the 
class codes and qualifiers placed in address register A5 for each 
exception. Usually, a return block of some type must be pushed 
on the ring 0 stack. The CPU loads the number of bytes stored in 
the return block into address register A3 if a context block is 
saved (FRL "" 00). The 2-bit FRL field of the corresponding PSW 

~. . . 

i 
f 
1 
' l 
i 

j Chapter 6 Exceptions and interrupts 229 _j·. 
I 

·------~------~----------~------------------~~~~--~~· 

!-. 

; : 

:.: .. ·::.~>. :· .... 

EDTX 2-04-CV-120 
51 056DOC065557 



�

that is pushed on the stack specifies the type of return block 
(extended or context). 

Table 45 System exception class codes and qualifiers-ClOD Series CPUs 

System 
Class 

Qualifiers Memory 
(Byte 2) Priority 

Exception type 
(Hexadecimal) 

(Byte 3) fault 

Error exit 00 None No Highest 

Undefined op 04 None No 
code 

Ring violation 08 0- Privileged instruction No 
1- Inward address Yes 
2-0utward system call No 
3-Inward return No 
4 ~Invalid gate No 
5- Invalid frame length on No 

return instruction 

PTE violation oc 0- Read protect Yes 
1 -Write protect Yes 
2- Execute protect Yes 
4- Invalid SDR Yes 
5- Invalid Ievell PTE Yes 
6- Invalid level 2 PTE Yes 

Nonresident 10 0- Levell PTE2 page Yes Lowest 
page I- Level 2 DATA page Yes 

230 CONVEX C-Ser-ies Architecture 

EDTX 2-04-CV-120 
51 056DOC065558 



�

Exceptions - C3200/C3400/C3800 

C3200/C3400/C3800 Series CPU's exceptions are listed in 
Table 47. It lists the class codes and qualifiers placed in address 
register A5 for each exception. 

Table 46 System exception class codes and qualifiers-C3200/C3400/C3800 Series CPUs 

System Class Qualifiers Memory (Byte 2) Priority 
exception type (Hexadecimal) 

(Byte 3) fault 

Error exit 00 

Undefined op 04 
code 

Ring violation 08 

PTE violation oc 

Nonresident 10 
page 

Trap instruction 14 

1 For C3800 Series CPUs 
2Does not exist on C3300 Series CPUs_ 

None No Highest 

None No 

0- Privileged instruction No 
1-Inward address Yes 
2 -Outward system call No 
3- Inward return No 
4- Invalid gate No 
5- Invalid frame length on No 

return instruction 
6- Invalid corrununication No/Yes1 

register address No 
7- Invalid trap instruction 

0- Read protect Yes 
1-Write protect Yes 
2- Execute protect Yes 
4- Invalid SDR Yes 
5- Invalid Ievell PTE Yes 
6- Invalid level 2 PTE Yes 
7- Invalid 1/0 access2 Yes 
8- Invalid level T PTE Yes 

0- Levell PTE2 page Yes 
1- Levell DATA page Yes 
2- Level 2 PTET page Yes 

None No 
Lowest 

For all exceptions resulting in memory faults (defined in 
Table 47), or other exceptions that cross to ring 0, a ring 0 stack 
must be allocated from the ring 0 system resource structure. 
After a stack is allocated and a return block is pushed (if 
necessary), an exception code is loaded into address register AS. 

Chapter 6 Exceptions and interrupts 231 

--···-.---------

EDTX 2 -04-CV -120 
51 056DOC065559 



�

Byte 0 (most significant byte) and byte 1 of this code are always 
a binary 0 0. Byte 2 specifies the class of the exception, and Byte 3 
is an optional qualifier for that particular class. 

For memory faults (defined in Table 47), in addition to the codes 
loaded into A5, the processor loads the virtual address of the 
failure into A4 and the number of bytes stored in the return block 
into A3, since a context block is saved (FRL = 00). The FRL field 
of the corresponding PSW specifies the type of return block. 
Whereas, the number of bytes in an extended return block is 
invariant, the size of a context block is implementation-specific. 

The preceding exception processing sequence does not apply to 
a special case of process traps and process breakpoints. This 
special case is described in the following sequence: 

L Some type of fault occurs in an outer ring. 

2. The CPU pushes a context return block onto the ring 0 
stack, enters the exception handler in ring 0, and processes 
this fault. 

3. A process trap or breakpoint occurs in the same outer ring 
in which the fault occurred. 

4. The CPU finishes processing the fault and executes the 
rtnc instruction to return to the outer ring. The rtnc 
microcode detects a process trap pending in the outer ring. 

In this situation, an extended return block is not pushed on the 
ring 0 stack as the exception handler is entered to handle the 
process trap, since the state of the outer ring has already been 
saved on the same stack during the original exception handler 
entry. Instead, the rtnc microcode jumps directly to the system 
exception handler with AS set to indicate a process trap. The 
context return block is not popped, nor is an extended return 
block pushed. Register A3 is set to the size of the context frame. 

For this reason, the system exception handler should always 
check the frame length bits in the PSW to determine if a return 
(rtn) or context return (rtnc) should be executed to exit the 
exception handler. 

Exceptions- C4600 
Table 47lists the class codes and qualifiers placed in address 
register AS for the C4600 Series CPUs. The C4600 Series CPUs 
also generate an Undefined opcode trap if an attempt is made to 
execute a nonlongword aligned Format 8 instruction. 

232 CONVEX C-Series Architecture 

~ . .. . : .·. - :, ... ·· . . -

'·' .:-·.: 

EDTX 2-04-CV-120 
51 056DOC065560 



�

Table 47 System exception class codes and qualifiers---C4600 Series CPUs 

i 
I 

! 

Exception type 

Error exit 

Undefined op 
code 

Ring violation 

PTE violation 

Nonresident 
page 

Trap instruction 

Global hard error 

_j_ ... -·---··--··-·· 

Class Qualifiers Memory (Byte 2) Priority 
(Hexadecimal) 

(Byte 3) fault 

00 

04 

08 

oc 

10 

14 

3C 

None No Highest 

None No 

0- Privileged instruction No 
1-lnward address Yes 
2 -Outward system call No 
3- Inward return No 
4-Invalid gate No 
5-Invalid frame length on No 

return instruction 
6- Invalid communication Yes 

register address 
No 7- Invalid trap instruction 

0- Read protect Yes 
1-Write protect Yes 
2-Execute protect Yes 
4- Invalid SDR Yes 
5- Invalid Ievell PTE Yes 
6- Invalid level2 PTE Yes 
8-lnvalid level T PTE Yes 

0-Levell PTE2 page Yes 
1-Level 2 DATA page Yes 
2-Level 2 PTET page Yes 

None No 

0 - dsi failed No 

1 - dsi succeeded Lowest 

In the C4600 Series CPUs, a portion of the fault context block is 
rwt pushed onto a stack acquired from the System Resource 
Structure. Instead, the physical address of the fault context area 
of each CPU is placed into its CXBASE registers. Refer to the 
"CXBASE registers" section on page 236 for a description of 
these registers. The context stored in this physical address space 

Chapter 6 Exceptions and interrupts 233 

'':·.·-:"· 

.: ... :.;· 

:":.r 

EDTX 2-04-CV-120 
51 056DOC065561 



�

is the non-architectural state (hardware context) when a fault 
occurs. The non-architectural state is reloaded when a rtnc 
instruction is executed. When a fault occurs, the OS is 
responsible for moving the physical address of a new context 
area into the CXBASE registers before any subsequent fault may 
occur. 

The following steps occur when a fault is detected: 

1. The processor stores most non-architectural state to the 
area of physical memory area pointed to by the CXBASE 
registers. 

2. It then acquires a stack from the system resource structure, 
and pushes a context frame onto this stack. The context 
frame consists of an extended frame followed by all 
remaining non-architectural state. The FRL bits of the PSW 
in this extended frame are 00. 

3. The size of the context block which has been pushed onto 
the stack is placed into A3, the faulting address is placed 
into A4, and the fault code is placed into AS. 

4. The processor then begins execution of the system 
exception handler pointed to by address OxOOOOOOOc of 
page 0 of ring 0. 

A second fault cannot occur during step 1 above, since all 
addresses are physical. If a second fault occurs during steps 2 to 
4 above, then the CPU takes a hard error. 

The following steps occur when a rtnc instruction is executed: 

1. The microcode verifies that the FRL bits of the PSW on the 
top of the current stack are 00. 

2. It then pops the context frame from the current stack, and 
pushes the stack pointer onto the system resource 
structure. 

3. The microcode will load the necessary non-architectural 
state from the physical memory area pointed to by the 
CXBASE registers. 

4. If a fault occurs during steps 1 to 2 above, the CPU takes a 
hard error. A second fault cannot occur during step 3, since 
all addresses are physicaL 

234 CONVEX C-Series Architecture 

EDTX 2-04-CV-120 
51 056DOC065562 



�

l 
I· 
~ 
l 

.·--.-l._ ... -----· --- ~ .. , ------· -. 

· .. -· 

Global hard error trap 
When a hard error occurs on a C4600 Series CPU, the hardware 
issues a nonrnaskable exception (trap) to all CPUs in the 
complex. 1his trap enables the operating system, executing on 
the surviving CPUs to try to recover from the hard error without 
taking the entire system down. 

When an active CPU takes a global hard error trap, it pushes an 
extended return block on the ring 0 stack and jumps to the global 
hard error handler. Location Ox20 of page 0, ring 0 is a pointer 
to the global hard error handler. 

When an idle CPU takes a global hard error trap, the idle stack 
pointed to by the ICB is used. Nothing else in the ICB is used for 
the global hard error trap. The microcode steps for taking a 
global hard error trap on an idle CPU are: 

1. Set CIR ~ ICIR 

2. Set TID ~ CPUID 

3. Set SP to the idle stack address from the CPU's ICB. 

4. Push an extended frame on this stack with a return PC of 
zero and with a PSW having FRL bits equal 01 (indicating 
an extended frame). The return PC== zero indicates that 
the global hard error trap occurred on an idle CPU. The rest 
of the extended frame is undefined, due to the idle CPU's 
lack of a real state. 

5. LeaveSP=FP=idle_stack_base­
extended_frarne_length. This is different than the use 
of the idle stack on an interrupt, where the interrupted 
CPU pushes the dummy state on the idle stack and loads 
SP with the interrupt stack. 

6. Attempt to disable interrupts (issue a microcode dsi). 

7. If the ds i succeeds (interrupts were previously on), set A5 
= Ox00003c01. If the dsi fails (interrupts already off), set 
AS ::::: Ox00003c00. 

8. Start execution at the PC referenced by the contents of 
memory location Ox20 in page 0, ring 0. 

Chapter 6 Exceptions and interrupts 235 

····.··-:"· • . . :.· 

. ··:·-:.;.· 

I 
J 
l ,_ 
: 

. . . . :~. : ·. 

EDTX 2-04-CV-120 
51 056DOC065563 



�

CXBASE registers 
Three 32-bit CXBASE registers hold the physical memory 
addresses used for saving and restoring CPU dependent 
hard ware context during faults and returns from faults. The first 
4,096 bytes of context are stored in the physical page addressed 
by CXBASE[OL the next 4,096 bytes are stored in the physical 
page addressed by CXBASE[l], and the .final4,096 bytes are 
stored in the physical page addressed by CXBASE[2]. 

These registers are loaded from ring 0 only. The format of these 
registers is similar to the format of PTEs. Bits <31..12> specify 
physical address bits <31..12>. All other bits are unused. The 
CXBASE registers point to the start of physical pages. 

236 CONVEX C-Series Architecture 

EDTX 2-04-CV-120 
51 056DOC065564 



�

J 
. . ;~.-.. . ... -. . . 

Machine exceptions 

Machine exceptions include hardware failures that cannot be 
corrected by the operating system, for example, memory errors 
or parity errors. The following conditions also result in machine 
exceptions: 

1 Page fault during a page fault-A PTE violation trap or a 
nonresident page fault occurred while the machine js 
changing context to service one of these two exceptions. 
This exception prevents an infinite number of page faults. 

2 Nonresident data for SDRs-A nonresident page fault 
occurred for the data read when either the kernel SDRs were 
loaded by a Load Kernel SDR (ldkdr) instruction or the 
process segment descriptor registers were loaded by an 
ldsdr instruction. 

3 Execution of ldkdr after virtual memory is 
enabled-The load kernel SDRs (ldkdr) instruction was 
executed after virtual memory enabled. 

4 Invalid SDRO after virtual memory is enabled- The 
SDRO register was accessed while invalid. 

5 Unaligned ring 0 stack-The stacks in ring 0 are not 
aligned on a 32·bit boundary. 

6 Unaligned data for SDRs-The data to be loaded into an 
SDR by either an ldkdr or an ldsdr is not word·aligned 
on a 32-bit boundary. 

7 Nonresident communication register data - A 
nonresident page fault occurred while loading (ldcmr) or 
storing (stcrnr) data in the conununication registers in the 
currentCIR 

8 Ring 0 system resource structure underflow-A fault 
occurred and a ring 0 stack could not be allocated to save 
machine context. 

Chapter 6 Exceptions and inte,-rr,_u,_p-ts,..--~23_,7-,--.-~--J ... ' ' 

. \ .. : ~ :· .. .. ·':··.:. · .. .. ... , 

.... ··< .. :~· ... : .. 

. -~- .... ·. -

EDTX 2-04-CV-120 
51 056DOC065565 



�

··;.-;.4 

Table 48lists the applicable machine exceptions (1 through 8) by 
CPU type. 

Table 48 Machine exceptions 

Machine 
Exception 

Description 

1 Page fault during a page fault 

2 Nonresident data for SDRs 

3 Execution of ldkdr after virtual memory is 
enabled 

4 Invalid SDRO after virtual memory is enabled 

5 Unaligned ring 0 stack 

6 Unaligned data for SDRs 

7 Nonresident conununication register data 

8 Ring 0 system resource structure underflow 

238 CONVEX C-Series Architecture 

Architecture 

ClOO Series Multiprocessor 
CPUs CPUs 

Yes Yes 

Yes Yes 

Yes Yes 

Yes Yes 

Yes No 

Yes No 

No Yes 

No Yes 

i 
I 

----~---. 

EDTX 2-04-CV-120 
51 056DOC065566 



�

Interrupt system 

Note 

The C-Series architecture provides the operating system with a 
means to control I/O requests and other asynchronous events 
that require changing the explicit flow of controL These events 
are called interrupts. An interrupt is an asynchronous exception 
that requires a response by the operating system (ring 0 
software) and not the executing process or thread. They belong 
to the system and not to the executing process. 

Interrupts are processed on an interrupt stack in ring 0. They are 
nested if additional interrupts occur during interrupt processing. 
When an interrupt occurs, the processor jumps to a particular 
interrupt handler as a function of the source of the interrupt. 

Unless specifically stated otherwise, descriptions of interrupts and 
intenupt processing are applicable to all implementations of the 
C-Series architecture. 

The interrupt system consists of 

• Interrupt channels, 

• Interrupt enable registers, and 

• Interval timer 

AU C-Series CPUs have 256 interrupt channels, except the C3400 
Series CPUs, which have 259. There are l:vvo types of channels 

• Timesharing CPU virtual channels, and 

• I/0 virtual channels 

Eight channels are allocated to the CPU and are addressed as 
channels 0 through 7 of the 256 system-wide channels. 

The remaining 248 interrupt channels within the C -Series CPUs 
are allocated to I/0 processors. The number of 1/0 processors 
and the number of virtual interrupt channels allocated to 1/0 
processors are specific to each complex configuration. The 
instruction set for each processor includes instructions to allow 
any one channel to interrupt any other channeL 

The C3400 Series CPUs have 259 interrupt channels. These 
channels are of three types 

• Timesharing CPU virtual channels, 

• Realtime CPU virtual channels, and 

• 1/0 virtual channels 

The group of CPUs dedicated to realtime applications is called 
the realtime subcomplex, and the group of CPUs running 
ConvexOS (non-realtime) is called the timesharing subcomplex. 

Chapter 6 Exceptions and interrupts 239 

~ . . 

··~----·""""·-~----:-:--:::·--.. -. -· _, 
·-.··.·: .. ,_._::: .. 

EDTX 2-04-CV-120 
51 056DOC065567 



�

.... ·•··· ... • ,~.:_;.,·:,~,. ''-'-);.:·.::.·..,. ~..,. .. _ 

Eight channels are allocated to the timesharing (non-realtime) 
subcomplex, as in all other multiprocessing C-Series CPUs, and 
are addressed as channels 0 through 7 of the 256 system-wide 
channels. 

Another eight channels are specifically allocated to the realtime 
subcorriplex, and are referred to as virtual channels (Ox£9-0xfd, 
and OxlOO-Ox102). Channels Oxfc and Oxfd can be accessed by 
any I/0 device, or by any CPU in the complex. Interrupt channels 
Oxf9-0xfb, and Oxl00-0x102, are reserved for interval timers 
and external interrupts. 

Table 49 shows how the C3400 Series CPU realtime virtual 
channels are mapped. 

Table 49 Realtime interrupt channels--C3400 Series CPUs 

Virtual channel Physical channel Priority 

Oxfc SIB interrupt Oxfc Highest 

Oxfd SIB interrupt Oxfd ' 

OxlOO Interval timer 0 

Ox101 Interval timer 1 

Ox102 Interval timer 2 

Ox£9 External interrupt 0 

Oxfa External interrupt 1 1r 

Oxfb External interrupt 2 Lowest 

The remaining 243 interrupt channels within a C3400 Series CPU 
are allocated to 1/0 processors. The number of l/0 processors 
and the number of virtual interrupt channels allocated to I/0 
processors are specific to each complex configuration. The 
number of CPU virhlal channels is independent of the number 
of achlall/0 channels. 

All external devices and controllers, regardless of their local 
intelligence, interrupt a multiprocessing C-Series CPU on one of 
the eight CPU virtual channels (or, on C3400 Series, one of eight 
timesharing or eight realtime CPU virtual channels, depending 
on the mode of the CPU). 

For example, a physical I/O controller may use only one l/0 
channel to initiate interrupts using more than one CPU virtual 
channel. In some cases, the CPU may interpret one physical I/ 0 
controller as multiple 1/0 channels. Conversely, there may be up 
to 248 I/0 virtual channels (243 for C3400 Series CPUs) 

240 CONVEX C-Series Architecture 

··-· ··:· .. 

. · .. · ... , ... 

'~· .-.... 

EDTX 2-04-CV-120 
51 056DOC065568 



�

l 

competing for eight CPU virtual channels. The CPU can 
individually interrupt any 1/0 channel by using the xmti 
instruction. 

On multiprocessing C -Series CPUs, all virtual interrupt channels 
are complex-wide virtual channels. All external devices and 
controllers, regardless of their local intelligence, interrupt the CPU 
complex on one of eight complex-wide virtual channel ports. 

Chapter 6 Exceptions and interrupts 241 

. -·.· .. :.· 
···-•• ·.: =_.·,_ 

. . : . 

' . - . -~. . 

.... ~ ... · . :-· 

EDTX 2-04-CV-120 
51 056DOC065569 



�

Interrupt processing- ClOO 

The xmti instruction enables a CPU in the complex to 
individually interrupt any of the If 0 channels in the complex. In 
some cases, one physical I/0 controller may be viewed as 
multiple I/0 channels. Any CPU can intermpt another CPU in 
the complex by addressing channels 0 through 7. 

The number of complex-wide virtual channels has no 
relationship to the number of actual 1/0 channels. For example, 
one I/0 channel may initiate interrupts using more than one 
complex-wide virtual channel. Conversely, as many as all the 
I/0 channels may be competing for eight complex-wide virtual 
channels. 

The mski instTuction is used by the CIOO Series CPUs to mask out 
interrupts selectively from a particular CPU virtual channel. 

There are two causes of interrupt: an I/0 device via a virtual 
channel and an interval timer. When one of these causes initiates 
an interrupt, the following events take place: 

L A ring crossing to ring 0 is executed if the current ring is 
not ring 0. 

2. The 16-bit halfword containing the CPU interrupt level, 
located at 0 000 0004 of page 0, ring 0, is fetched. If this 
halfword is 0, the current interrupt is the first interrupt 
processed. This condition is referred to as base-level interrupt 
processing. 

3. If this halfword is not zero, the current interrupt is not the 
first interrupt, and the CPU is already executing at interrupt 
level. 

4. Once the CPU determines the interrupt level by 
interpreting the contents of the interrupt-level halfword, 
the interrupt-level halfword is incremented by one and 
stored back into the interrupt-level halfword. The CPU 
cannot be interrupted while the interrupt-level halfword is 
being incremented by one. 

The fundamental difference between the two classifications of 
interrupt processing is the existence of an interrupt stack. When 
the interrupt level is zero, a unique stack is established in ring 0 
for interrupts. This unique interrupt stack is different from the 
ring 0 process stack, in that it is used exclusively for interrupt 
processing. 

Regardless of the level of interrupt processing, the program 
counter (PC) is pushed onto the stack. It references the 

242 CONVEX C-Series Architecture 

EDTX 2-04-CV-120 
51 056DOC065570 



�

instruction that would have been executed had the interrupt not 
occurred. In addition, all further interrupts are kept pending by 
disabling interrupts-the interrupt on (ION) flag is cleared 
during the subsequent interrupt processing sequences. 

Base-level processing 
Base-level processing occurs when the interrupt level is 0. The 
actions that subsequently occur are determined by the current 
ring of execution. 

When a return to base level is performed, the interrupt dismissal 
routine moves the previous process stack pointer (SP) {contained 
in byte address offset 0 0 0 0 0 0 2 c of ring 0) to address register AO 
prior to executing the rtn instruction. 

Base-level processing-Ring 0 
Assume that the stack pointer (SP) is already initialized to the 
ring 0 address space. Since the interrupt is at base levet stack 
multiplexing to the interrupt stack must occur, and the following 
interrupt processing sequence is initiated: 

• The frame length, PSW (FRL), is set toOl, indicating an 
extended retum block is used. 

• The extended return block is saved on the current ring 0 
stack. 

• The PSW is cleared. 

• The updated stack pointer is saved in the previous stack 
pointer contained in byte address 0 0 0 0 0 0 2 c of page 0 of 
ring 0. This previous stack pointer is at the top of the ring 0 
process stack. This procedure is preparatory to stack 
multiplexing the interrupt stack. 

• The SP (AO) and FP (A7) are loaded from byte address offset 
0 0 0 0 0 0 2 0 of page 0 of ring 0. This is the interrupt stack 
pointer. 

• A common hardware interrupt sequence is executed. 

Base-level processing-Non-ring 0 
In this case, the hardware performs a crossing to ring 0 and 
establishes an interrupt stack. 

• A ring crossing to ring 0 is executed (as though the sysc 
instruction were executed). 

• The steps described in the base-level ring 0 processing are 
executed. 

Chapter 6 Exceptions and interrupts 243 

EDTX 2 -04-CV -120 
51 056DOC065571 



�

. . ·:: 

I · ... ::.:! 

:, -.·;_.:_· .. ·-

: ~-·:. : . . . ·~:--~. 

- .:· 

Interrupt-level processing 
At interrupt level, the ring 0 stack has already been initialized to 
the interrupt stack. 

Intenupt-level processing-ring 0 
An extended return block is pushed onto the current stack and 
the common interrupt sequence is entered. 

Interrupt-level processing-non-ring 0 
In this case, the following actions are taken: 

• A ring crossing to ring 0 is executed. 

• Since the ring 0 stack has already been initialized to the 
interrupt stack, an extended return block is pushed on the 
ring 0 stack and the common interrupt sequence is entered. 

Common interrupt processing sequence 
The following processing sequence describes the actions taken 
by a ClOO series CPU after a crossing to ring 0 and an interrupt 
stack is established: 

1. Byte address offsets 0000 0008 and 0000 0010 ofringO 
contain the address of the appropriate interrupt handler. 
This interrupt handler address is selected by hardware and 
loaded into the PC 

2. The identification of the interrupting device is loaded into 
address register AS after the return block is pushed. This 
identification value format is 29 zero bits followed by a 
three-bit encoding. This three-bit encoding identifies 
which CPU virtual channel initiated the interrupt. The 
channel number is always loaded in A5, since the interval 
timer uses one of the eight channels. 

3. The interrupt handler executes the first instruction. Since 
all interrupts have been disabled, the interrupt handler 
must explicitly enable the interrupts during the course of 
execution . 

244 CONVEX C-Series Architecture 

EDTX 2-04-CV-120 
51 056DOC065572 



�

General interrupt processing notes- ClOO 
The following items should be taken into consideration during 
interrupt processing: 

1. The interrupt return sequence determines whether or not 
the return is to base level or interrupt level as a function of 
the interrupt-level halfword in page 0 of ring 0. 

2. The return to base level is achieved by executing a rtn 

instruction. The return to interrupt level is also achieved by 
executing an rtn instruction. 

3. In order to return from an interrupt, the following steps 
must be taken by the software. 

- The interrupt level is decremented by one. 

- If the level is now zero, address register A7 (FP) is loaded 
from the previous stack pointer contained in byte address 
0 0 0 0 0 0 2C of page 0, and the rtn instruction is executed. 

- If the level is not zero, the rtn instruction is executed. 
Register A7 need not be restored, since the ring 0 stack must 
still be the interrupt stack 

4. The process stack pointer contained in address 0 0 0 0 0 0 4 8 
in page 0, ring 0 is not modified during hardware-initiated 
interrupt processing. 

5. If the interrupt is initiated by an I/0 device interrupting a 
CPU virtual channel, the CPU virtual channel interrupt is 
reset after the processor responds to the interrupt. 

Chapter 6 Exceptions and interrupts 245 

EDTX 2 -04-CV -120 
51 056DOC065573 



�

Interrupt Processing - Multiprocessing CPUs 

On multiprocessing CPUs, the xrnti instruction functions as on 
the ClOD CPU. 

Multiprocessing C-Series systems use additional registers to 
process interrupts, since more than one CPU are available for 
servicing them. 

Interrupt enable flags 
The ION flag is a single interrupt enable flag for the entire CPU 
complex. It is updated by the eni (enable interrupt) and dsi 
(disable interrupt) instructions. When ION is disabled, all 
interrupts sent to the CPU complex are deferred until ION is 
enabled. The dsi instruction atomically disables interrupts and 
returns the previous interrupt state. This enables dsi to be used 
as a simple lock for protecting critical code sections within the 
entire CPU complex. 

In the C3400 Series CPUs, the ION flag is the interrupt enable 
flag for the timeshare CPU subcornplex. The RT _ION flag has the 
same function for the realtime subcomplex. Only one of these 
flags is used at a time. 

The RT_ION flag (for C3400 Series CPUs) is a single CPU 
realtime subcomplex interrupt enable flag. It is updated by the 
en i (enable interrupt) and ds i (disable interrupt) instructions. 
When RT_ION is disabled, all interrupts sent to the realtime CPU 
subcomplex are deferred until RT_ION is enabled. The dsi 
instruction atomically disables interrupts and returns the 
previous interrupt state. This enables ds i to be used as a simple 
lock for protecting critical code sections within the entire CPU 
complex. 

Interrupt enable registers 
Each C3200/C3400/C3800/C4600 Series CPU has an 8-bit local 
enable register. The entire CPU complex shares an 8-bit global 
enable register. These registers selectively permit each channel 
to interrupt the CPU. Bits <7 .. 0> correspond to virtual channels 
7 to 0 respectively. 

In the C3200/C3800/C4600 Series CPUs, the enal instruction 
updates the local enable register. The enag instruction updates 
the global enable register. If a bit is set, that channel is enabled. If 
a bit is clear, that channel is disabled (masked out) from that CPU. 

Each C3400 Series CPU has a 16-bit local enable register and a 
16-bit global enable register that selectively permit each channel 
to interrupt the CPU. The low order eight bits <7 .. 0> of each 
register are for the timesharing subcornplex, and are mapped 
identically to the interrupt enable bits for other multiprocessing 

246 CONVEX C-Series Architecture 

.--··-••-u~~ ..... o"••-.---··· ···---·---·-····........------------·· 
·:··.: .-.~ , .. 

.. .-···· ·: __ .. · .. . ;. 

:--· .... 

';."_:-;. .· ; . 

-. ,·. 

··- ···.··.-.· : ~ 

! 

I - . 
- --~.-:o .. ----,-~···---1...... 

_, ~-< ·,. 
-< .-:-:.: ;.·:· .. 

EDTX 2-04-CV-120 
51 056DOC06557 4 



�

i 
'·· 

C-Series CPUs (see Table SO). The high order eight bits <15 .. 8> 
are for the realtime subcomplex. 

Table 50 shows how the realtime subcomplex virtual channels 
are mapped in the local and global interrupt enable registers. 

Table 50 Realtime virtual channels-C3400 Series CPUs 

Virtual channel Enable/disable bit 

OxlOO 2 

OxlOl 3 

Oxl02 4 

Oxf9 5 

Ox fa 6 

Oxfb 7 

Oxfc 8 

Oxfd 9 

If the CPU is in timesharing mode, the timesharing bits are used; 
if the CPU is in the realtime mode, the realtime bits are used. 

In the C3400 Series CPUs, the enal instruction updates alll6 bits 
of the local enable register. The enag instruction updates all16 
bits of the global enable register. If a bit is set (1), that channel is 
enabled. If a bit is dear (0), that channel is disabled (masked out) 
from that CPU. 

Target CPU register 
An additional register, the interrupt target CPU (TCPU) register, 
is found only in the C3200 Series CPUs. 

The TCPU is a single complex register that contains the 
identification of the target CPU that services all global 
intermpts. This register allows one CPU to serve as the nesting 
point for interrupts. The target CPU (TCPU) register is a 3-bit 
register that contains the CPUID of the CPU where all interrupts 
must be delivered. If the target CPU register contains all binary 
ones (the value -1), any CPU within the complex can be selected 
as the target CPU for interrupt delivery. 

Chapter 6 Exceptions and interrupts 247 

-------······--·-··-···-~·-··~"-~··~--
_.·.;.:. ···.·.: 

- :·-=· 
. -· ; .. : ... _·· .. ~- .... 

EDTX 2-04-CV-120 
51 056DOC065575 



�

Interrupt control register 
The interrupt control register (ICR) within the multiprocessing 
C-Series CPU complex defines the operating modes of each 
interrupt channel and the communication register set used 
during interrupt processing. 

Figure 72 and Figure 73 show the format of the interrupt control 
register. 

Figure 72 Interrupt control register (ICR}-C3200 Series CPUs 

Base address I IMODE 
65 40 59 32 .31 

Index I ICIR I 
3 2 0 

AH300057 
12/1/93 

Figure 73 Interrupt control register (ICR)--C3400/C3800/C4600 Series CPUs 

63 

Reserved ICIR 

5 4 0 

AH300067 
12/1/93 

The interrupt mode (!MODE, C3200 Series CPUs only) in the 
interrupt control register is an 8-bit field in which bits <7 .. 0> 
correspond to complex virtual channels 7 through 0. The 
interrupt mode controls the mode of operation for each CPU 
complex-wide interrupt channeL Any complex-wide virtual 
channel can be selected to operate in one of the following modes: 

• Local interrupt mode-A single CPU within the complex is 
selected to receive the interrupt. The interrupt is delivered to 
the selected CPU when the interrupt occurs. 

• Broadcast interrupt mode--All CPUs within the complex are 
selected to receive the interrupt. The interrupt is delivered to 
all CPUs when the interrupt occurs. 

If the bit associated with the virrual channel is clear, the channel 
is a local interrupt channel. If the bit is set, the channel is a 
broadcast interrupt channeL 

Both broadcast and local interrupts can be selectively enabled or 
disabled with one of the two interrupt channel enable 

248 CONVEX C-Series Architecture 

.. :. : -.~ :· 

:· ·:· ... -:· ... ~ . -:·· 

I 
I 
i 
' I ' . 

.... .......ld 

EDTX 2-04-CV-120 
51 056DOC065576 



�

. . ~ 

· ........ . 

instructions. The global CPU enable instruction, enag, is used to 
enable or inhibit interrupt delivery to all CPUs within the 
complex. A global complex interrupt channel is enabled or 
disabled by setting or clearing, respectively, the appropriate bit in 
the global enable interrupt register. 

For broadcast (global) interrupts, the global interrupt handler 
ensures that all CPUs have entered the interrupt handler before 
executing an eni instruction at the end of the handler and 
returning (idling). Othervvise, a hardware race condition could 
exist where one CPU may execute an en i instruction before the 
other CPUs have received the interrupt causing the other CPUs to 
lose the intermpt. 

The local CPU enable instruction, enal, is used to enable or 
inhibit delivery to a single CPU. A local complex interrupt 
channel is enabled or disabled by setting or clearing, respectively, 
the appropriate bit in the local enable interrupt register. These two 
instructions allow any single CPU within the complex to enable or 
disable interrupt reception locally or for the entire complex. 

The interrupt communication index register (ICIR) is a three-bit 
field (C3200 Series CPUs) or a five-bit field (C3400, C3800 C4600 
Series CPUs) that defines the communication register set is 
mapped when servicing interrupts. This communication register 
set provides the process context necessary for an idle CPU to 
service an interrupt. 

Broadcast enable registers 
The C3400/C3800/C4600 CPUs contain a separate set of 
broadcast enable (BE) registers for the CPU interrupt channels 0 
through 7. There are eight BE registers, one for each of the eight 
CPU interrupt channels. Each register contains one bit per CPU. 
If any bit in a BE register is set, the corresponding interrupt 
channel is a broadcast intermpt, and the bits set identify the 
CPUs to receive the broadcast interrupt. If no bits are set in a BE 
register, the corresponding interrupt channel is a single CPU 
interrupt. Bits 7 through 0 correspond to CPUs 7 through 0 
respectively. Only bits 3 through 0 are used on the C4600. 

For example, by clearing bit <3> of register 2, CPU number thre€ 
will not receive any interrupt broadcast on channel 2. The mov 
Sk, BE ( s j ) and mov BE ( S j ) , Sk instructions are used for 
writing and reading these registers. 

Chapter 6 Exceptions and interrupts 249 

I .....••. 

1 .. 

~--_ ... 

I > 

------·---~··---:-c:--__.,.....,...____,.... _______ j . 
:_.·:'--· 

. .. ·· .. - .;-

.. _,.:· 

EDTX 2-04-CV-120 
51 056DOC065577 



�

···. ~- , .. : .. -:: ·:.:::,;..::::,.; ... ;;.:, .. :>·-' 

Interrupt flow- C3200 
Figure 74 presents the basic implementation of the interrupt 
system for a C3200 complex. For clarity, only two CPUs are 
shown. 

Interrupts enter the complex when the corresponding bit is set in 
the eight-bit global pending register. Each bit in this register 
corresponds to one of the eight virtual channels to which the 
CPUs respond. Before a target CPU can recognize an interrupt in 
theglobal pending register, it mu~t perfor-m a series of enables 
and destination checks. I{ all these checks are satisfied, the 
interrupt is registered in the local pending register of the target 
CPU(s). 

.. '·.:". 

,··.·: 
i 
! 

Figure 74 Intenupt flow--C3200 Series CPUs 

I Global pending 
7 ! 

Complex level 

I Global enable acceptance 

7 0 
logic 

l 
CPU 0 idle 

Target 
CPU 

CPU 1 idle decision 
logic 

I Local enable CPU 0 
7 0 

J I I I 

! 
I Channel ID I I CPU 0 local pending I I CPU 1 
2 0 7 0 7 

250 CONVEX C-Series Architecture 

I 
0 

! 
local 

ION 

0 

TCPU I 
1 0 

Interrupt mode I 
7 0 

Local enable CPU l J 
7 

pending I 
0 

0 

I Channel ID I 
2 0 

All30GO:i8 
ll/21/93 

. . . . . ~ . ~- .. 
·.··-"·: :-

.. : ....... ·- .. . 

' .. •··· . 

. . : .... ~·,.. . ··. 

EDTX 2-04-CV-120 
51 056DOC065578 



�

The first level of interrupt checking is at the complex level, 
shown as the complex-level acceptance logic in Figure 74. 

L If the ION flag is zero, interrupts are disabled for the 
complex and the interrupt stays in the global pending 
register. The ION flag must be cleared to allow software to 
modify the state of the subsequent interrupt control 
hardware. 

2. The next check is the global enable register. Each bit in this 
register enables the corresponding bit in the global 
pending register. 

When the complex-level checks are complete, the destination 
CPU is chosen by using the following decision logic: 

1. If the bit in the interrupt mode register corresponding to 
the global pending bit is set, the interrupt is considered a 
broadcast interrupt, and must be sent to all CPUs. 

2. If the target CPU (TCPU) register is set to 0, 1, 2, or 3, the 
interrupt must be sent to CPU 0, 1, 2, or 3, respectively. In 
this case, the target CPU must also have the corresponding 
local enable bit set. 

3. If TCPU is -1 (binary 11), either CPU may be chosen. In this 
case, an idle CPU (designated by the CPU "n" idle signal 
and shown in Figure 74) is chosen, if the correct bit in the 
idle CPU's local enable is set. 

4. If all CPUs are idle and locally enabled, CPU 0 is chosen. 

If all the preceding conditions are met, the bit in the selected 
CPU's local pending register is set the bit is cleared in the global 
pending register and the ION flag is cleared. 

The bit in the global pending register remains set if the interrupt 
cannot be taken all the way to a local pending register. These 
checks are performed on every system dock. If the interrupt is 
taken, the ION flag is reset to zero, disabling interrupts until they 
are explicitly re-enabled with the eni instruction. 

Chapter 6 Exceptions and interrupts 251 

EDTX 2 -04-CV -120 
51 056DOC065579 



�

.... · ... · .. \.. ·, :· ~= . .,~·..:···,., ~ 

Interrupt flow - C3400 
Figure 75 is representative of a C3400 Series complex. For clari~ 
only two CPUs are shown. 

Interrupts enter the complex when the corresponding bit is set in 
the 16-bit global pending register. Eight bits are for the realtime 
subcomplex, and eight bits are for the timesharing subcomplex. 
These bits are indexed depending on the mode of the CPU. Each 
bit of the eight timesharing bits in this register corresponds to 
one of the eight virtual channels to which the CPU responds. 
Before a CPU can recognize an interrupt in the global pending 
register. a series of enables and destination checks must be made 
by the target CPU. If all of these checks are satisfied, the 
interrupt is registered in the local pending register for the 
CPU(s) that responded to the interrupt. 

The bit in the global pending register remains set if the interrupt 
cannot be taken all the way to a local pending register. These 
checks are performed on every system clock. If the interrupt is 
taken, the ION flag is reset to zero, disabling interrupts until 
they are explicitly re-enabled with the eni instruction. 

Figure 75 shows the flow of interrupts in a C3400 Series CPU. 

252 CONVEX C-Series Architecture 

: :::; ·· ..... ·• ··.:··::···.· .. 

.. , ...... 
:··:-.··:;· 

·<·. ~ :·:· 

..:._. ... ··· 

EDTX 2-04-CV-120 
51 056DOC065580 



�

figure 75 Interrupt flow-C3400 Series CPUs 

I Global pending I 
7 

1 
0 

Complex level 

l Global enable I acceptance 'ION/RT_ION I 
7 0 logic 

0 

! 
CPU 0 idle 

CPU 1 idle Target ~ Local enable CPU 1 
CPU 

I f-- decision 7 0 
Local enable CPU 0 

logic 
~-i Broadcast 

7 0 
enable channel ' I 

I Broadcast of-- 7 0 
enable channel 

7 0 

I I 

j ~ ! 
! Channel ml I CPU 0 local pending CPU 1 local pending I / Channel ID / 

' ' ' i 

2 

----"--.,--~~~ 

0 7 0 7 0 2 0 

AH300063 

12/12/93 

I. 

Chapter 6 Exceptions and interrupts 253 I 

.. •."' 

EDTX 2 -04-CV -120 
51 056DOC065581 



�

"<.;/:.-:~,~;;. : ••. ,· . - ~, .• ., . ,., ... 

lntenupt flow - C3800/C4600 
Figure 76 is representative of a C3800/C4600 Series complex. For 
clarity, only two CPUs are shown. 

Interrupts enter the complex when the corresponding bit is set in 
the eight-bit global pending register. Each bit in this register 
corresponds to one of the eight virtual channels that the CPU 
responds to. Before a CPU can recognize an interrupt in the 
global pending register, a series of enables and destination 
checks must be made. If all of these checks are satisfied, the 
interrupt is registered in the local pending register for the 
CPU(s) that respond to the interrupt. 

The first level of interrupt checking is at the complex level, 
shown as the complex level acceptance logic in Figure 76. 

1. If the ION flag is zero, interrupts are disabled for the 
complex and the interrupt stays in the global pending 
register. The ION flag must be cleared to allow software to 
modify the state of the subsequent interrupt control 
hardware. 

2. The next check is the global enable register. Each bit in this 
register enables the corresponding bit in the global 
pending register. 

When the complex level checks are complete, the destination 
CPU is chosen by using the following decision logic: 

1. If the broadcast enable register corresponding to the global 
pending bit has any bit set, the interrupt is considered a 
broadcast interrupt- When all CPUs selected by the 
broadcast enable register have enabled the interrupt in 
their local enable register, then the interrupt is transferred 
to the local pending register of all selected CPUs. 

2. If the broadcast enable register corresponding to the global 
pending bit is all zeros, the interrupt is considered 
non-broadcast, and a single CPU is selected as follows: 

- If any idle CPUs have the interrupt enabled in their local 
enable register, the lowest numbered idle CPU is selected. 

- If any active CPUs have the interrupt enabled in their 
local enable register, the lowest numbered active CPU is 
selected. Otherwise, the interrupt remains in the global 
pending register. 

If all the preceding conditions are met, the bit in the selected 
CPU's local pending register is set, the bit is cleared in the global 
pending register and the ION flag is cleared. 

The bit in the global pending register remains set if the interrupt 
cannot be taken all the way to a local pending register. These 

254 CONVEX C-Series Architecture I 

EDTX 2-04-CV-120 
51 056DOC065582 



�

checks are performed on every system clock. If the interrupt is 
taken, the ION flag is reset to zero, disabling interrupts until they 
are explicitly re-enabled with the eni instruction_ 

Figure 76 Interrupt flow-C3800/C4600 Series CPUs 

Global pending 
7 

l 
0 

Complex level 

l Global enable acceptance ION 
7 0 

logic 
0 

J 
CPU 0 idle 

CPU 1 idle Target ---L Local enable CPU I I CPU 

I 1--- decision 7 0 
Local enable CPU 0 

logic 
7 0 H Broadcast enable channel , I 

7 0 I Broadcast enable channel 0~ 
7 0 

l I 
I j ~ ~ 1 

l Channel ml I CPU 0 local pending I CPU 1 local pending I I Channel mj 
0 7 0 7 0 0 

AH300084 
L2/2/93 

Clulpter 6 Exceptions and interrupts 255 

EDTX 2 -04-CV -120 
51 056DOC065583 



�

Interrupt context blocks 
While servicing an interrupt, each multiprocessing C-Series 
CPU locates its associated interrupt context block (ICB) in 
unshared (that is, thread-local) memory. Each CPU indexes into 
memory based on thread ID (TID= CPUID) as described in 
Chapter 4. The pointer to the interrupt context block is located in 
the interrupt context block pointer contained in location 0 0 0 0 
0 014 of ring 0 page 0. 

Figure 77 shows the format of an interrupt context block. 

Figure 77 Interrupt context block 

OD 

DB 

oc 

10 

14-

31 16 15 

Reserved 

Interrupt level I Previous 

Previous TID 

Previous stack pointer 

interrupt slack pointer 

Idle slack pointer 

Servicing interrupts 

{] 

CIR 

AH:J00059 

ll/21/93 

When an interrupt occurs on a multiprocessing C-Series CPU, 
the 16-bit halfword located at bytes 4 and 5 of the ICB is fetched. 
If this halfword is 0, then the interrupt is the first interrupt 
processed. This condition is referred to as base-level interrupt 
processing. If this halfword is not 0, then the interrupt is not the 
first interrupt, and the processor is already at interrupt leveL The 
current ring 0 stack used is the interrupt stack In effect, the ring 
0 process stack pointer has temporarily become the interrupt 
stack pointer. 

The fundamental difference between the two interrupt-level 
classifications is the existence of the interrupt stack and 
interrupt communication register set. When the interrupt level is 
0, an interrupt stack and the interrupt process context must be 
established in ring 0. Once-the determination is made-, the 
interrupted level halfword is incremented by one and stored 
back into bytes 4 and 5 (the increment by 1 cannot be 
interrupted). 

In the following sections, the program counter (PC) that is 
pushed onto the stack references the instruction that would have 
been executed had the interrupt not occurred. The interrupt 
handler is entered with all CPU complex interrupts disabled. 

256 CONVEX C-Series Architecture 

EDTX 2-04-CV-120 
51 056DOC065584 



�

The complex virtual channel interrupt is always reset after a 
CPU responds to the interrupt. 

Virtual memory restrictions 
Some restrictions are placed on virtual memory mapping due to 
existence of a separate interrupt CIR. The interrupt service 
microcode must deal with both process context (the extended 
frame pushed on the ring 0 stack) and ICB context (interrupt 
level, and so on). 

The I CBs must be resident at all times. A machine exception 
occurs if they are not resident. In addition, the ICBs must be 
mapped in all CIRs, so that while the interrupt service microcode 
is transitioning the CPU from the process CIR to the interrupt CIR, 
both process and ICB context may be accessed in the process CIR. 

The interrupt CIR does not require access to all process context. 
Each process may have a unique page 0. However, the interrupt 
handler whose address is found in the process's page 0, must be 
mapped in all CIRs. When the interrupt handler is entered, the 
stack pointer is always equal to the frame pointer. 

These memory-mapping restrictions become apparent in the 
following sections describing CPU interrupt processing. Note 
carefully where the transition from a process CIR to an intermpt 
CIRis made. 

Idle CPU interrupt processing 
When an idle CPU takes an interrupt, it must be at base level 
(interrupt level 0). An idle CPU has no state, so the CPU state is 
not saved or restored. An idle stack provides the operating system 
a consistent entry and exit mechanism. The process context 
referenced by an idle CPU is mapped to the interrupt CIR 

The interrupt service for an idle CPU performs the following 
interrupt processing sequence: 

1. The interrupt CIR is fetched from the interrupt control 
register (ICR) and loaded into the CPU's CIR. The TID is 
set to the CPUID. The CPU assumes that this thread is 
always allocated. The TID is set before any memory 
references to the ICB occur to allow the ICBs to use 
unshared memory for multiple CPUs entering the 
intermpt handler simultaneously in different threads. 

2. The interrupt context block (ICB) pointer is fetched from 
page 0 of the process address space. The ICB must be 
mapped into the interrupt CIR because the CPU has 
already entered the interrupt CIR. 

Chapter 6 Exceptions and interrupts 257 

EDTX 2 -04-CV -120 
51 056DOC065585 



�

3. The interrupt handler address is fetched from page 0 of the 
process address space. The interrupt handler must be 
mapped into the interrupt CIR because the CPU has 
already entered the intenupt CIR. 

4. The stack pointer is loaded with the value contained in the 
idle stack pointer in the ICB. Whenever the interrupt 
handler is entered, the stack pointer is always equal to the 
frame pointer. 

5. The interrupt level in the ICB is set to 1 (incremented from 
0 or base level). 

6. The previous CIR in the ICB is set to -1, which means that 
an idle CPU serviced the interrupt. Setting the CIR in the 
ICB to -1 means that the previous TID in the ICB is 
meaningless. In this case, the TID is ignored on the 
subsequent rtn or idle instruction. 

7. A PC of zero and PSW (FRL) containing a binary 01 
(extended frame) is pushed on the stack (idle stack). The 
stack pointer is updated as if an entire extended frame had 
been pushed. 

8. The stack pointer (reflecting the push of the extended 
frame) is stored in the previous stack pointer in the ICB. 

9. The stack pointer and frame pointer are now loaded from 
the interrupt stack pointer in the ICB, establishing the 
interrupt stack. 

10. The PSW is cleared. 

11. The channel JD of the interrupting virtual channel is 
placed in address register AS. 

12. The PC is loaded with the interrupt handler address that 
was previously fetched. Execution continues in the 
interrupt handler (still within the interrupt CIR), with a 
newly established thread. 

258 CONVEX C-Series Architecture 

EDTX 2-04-CV-120 
51 056DOC065586 



�

.. · . ."·.-· .... -.".>-,·~·~. ·,:,,~.:-.:· 

Active CPU interrupt processing 
An active CPU responds to both base and interrupt-level 
interrupts_ If the interrupt is base level, the CPU is not already 
using the interrupt CIR, and the referenced process context 
belongs to a different CIR An active CPU may have to cross 
rings to enter ring Q_ Interrupt-level interrupts are already in the 
interrupt CIR in ring Q_ Both cases follow this common 
processing sequence: 

L The interrupt context block (ICB) pointer is fetched from 
page 0 of the process address space. 

2. The interrupt level is fetched from the ICB and tested.lf the 
interrupt level is 0, an active CPU continues with 
base-level processing. The interrupt-level fetch occurred in 
the process CIR, which requires that the ICB be mapped in 
all CIRs. If the interrupt level is nonzero, execution 
continues with interrupt-level processing. 

Active CPU base-level processing 
Active CPU base-level processing follows this sequence: 

L The interrupt ORis fetched from the interrupt control 
register (ICR) and loaded into the CPU's CIR. The TID is 
set to the CPUID. The CPU assumes that this thread is 
always allocated. Before any memory references to the ICB 
occur, the TID is set to allow the I CBs to use unshared 
memory for multiple CPUs that are entering the interrupt 
handler simultaneously from different threads. 

2- The incremented interrupt level is stored in the ICB (while 
still executing within the process CIR). 

3. If the interrupted process was not executing in ring 0, the 
CPU crosses to ring 0 and allocates a ring 0 stack from the 
shared resource structure (SRS). If the interrupt occurred 
while in ring 0, a ring 0 stack already exists. 

4. The address of the interrupt handler is fetched from page 0 
of the process address space. 

5. An extended frame is pushed on the ring 0 stack. 

6. The updated stack pointer is stored in the previous stack 
pointer field of the ICB (still in process CIR). 

7. The interrupt stack is established by initializing the stack 
and frame pointers from the interrupt stack field of the ICB 
{still in process CIR). 

B- The CIR is loaded from the interrupt CIR field of the 
interrupt control register. A new thread is allocated and the 

Chapter 6 Exceptions and interrupts 259 

------....... --------.,--------~·-····-----·------ ··-·.-~-,-.. -. ----.. , 
:,i . . ··· 

EDTX 2-04-CV-120 
51 056DOC065587 



�

thread count incremented in the new (interrupt) CIR The 
TID is set to the CPUID. 

9. The PSW is cleared. 

10. The channel ID of the interrupting virtual channel is 
placed in address register A5. 

11. The PC is loaded with the interrupt handler address that 
was fetched earlier. Execution continues in the interrupt 
handler with a newly established thread (while still within 
the interrupt CIR). 

Active CPU interrupt-level processing 
During interrupt-level processing, an active CPU is already 
executing in ring 0, within the interrupt CIR, with the thread 
established at the base-level interrupt. 

Active CPU interrupt-level processing follows this sequence: 

1. The incremented intenupt level is stored in the ICB. 

2. The address of the interrupt handler is fetched from page 
0 of the process's address space. 

3. An extended frame is pushed on the ring 0 stack. 

4. The updated stack pointer is stored in the previous stack 
pointer field of the ICB. 

5. The PSW is cleared. 

6. The channel ID of the interrupting virtual channel is 
placed in address register AS. 

7. The PC is loaded with the interrupt handler address that 
was previously fetched. Execution continues in the 
interrupt handler while still within the interrupt CIR. 

260 CONVEX C-Series Architecture 

EDTX 2-04-CV-120 
51 056DOC065588 



�

Retuming from a base-level interrupt 
After an interrupt is processed, executing the rtn or idle (for 
C3200 Series CPUs) or the eni_rtn or eni_idle (for 
C3400/C3800/C4600 Series CPUs) instruction returns from a 
base-level interrupt. 

The software performs the following operations: 

1. [f the previous CIR field in the ICB is -1, (the interrupt was 
serviced by an idle CPU), the CPU returns to the idle state 
by an idle instruction. Since an idle CPU has no state, an 
extended frame is not popped. 

2. If returning to a CPU which was previously executing, the 
CIR and TID are restored with the previous CIR and 
previous TID fields in the ICB. Address register A7 is then 
loaded from the previous stack pointer in the ICB. A 
standard subroutine performs an extended return 
sequence, because the FRL bits in the pushed PSW indicate 
that an extended return block was pushed. 

3. Software always leaves N threads allocated in the interrupt 
CIR (where N is the number of CPUs in the complex) to 
allow each CPU to set TID equal to the CPUID as it services 
an interrupt. 

Chapter 6 Exceptwns and interrupts 261 

·.·;· 
:. ;;.;:.: . 

... _:···· 

. :_-"·:7·· . 
..... · 

: ~ 

.:',.. · .. 

EDTX 2-04-CV-120 
51 056DOC065589 



�

General interrupt notes - multiprocessing CPUs 

1. The identification of the interrupting device loaded into 
address register A5 after the return block is pushed is a 
32-bit value. This value takes the form of 29 zero bits 
followed by a three-bit encoding. This three-bit encoding 
identifies which CPU complex virtual channel initiated the 
interrupt. 

2. All CPU-complex interrupts are disabled when the 
interrupt handler is entered. The interrupt handler must 
explicitly re-enable interrupts. 

3. The interrupt return sequence determines if the return is to 
base level or interrupt level as a function of the interrupt 
level in the ICB. 

4. A CPU returning from base level is returned to the idle 
state or the previous context based on the previous CIR in 
the interrupt context block. 

5. In order to return from an interrupt, the following steps 
must be taken by software; 

262 CONVEX C-Series Architecture 

a. The interrupt level is decremented by one. 

b. If the level is now 0, the frame pointer (A7) is loaded 
from the previous stack pointer in the ICB. The rtn or 
idle (for C3200 Series CPUs) or the eni_rtn or 
eni_idle (for C3400 /C3800/C4600 Series CPUs) 
instruction is now executed. 

c. If the level is not zero, the rtn instruction is executed. 
Address register A7 is not restored since the ring 0 stack 
must still be the interrupt stack. 

EDTX 2-04-CV-120 
51 056DOC065590 



�

Implementation -specific 
features 

. . ·., . :; , ... ,.: .•.... -~····.,·=·~, ....... - ... 

7 
The addressing methods for the physical address space differ 
slightly between the ClOO Series CPUs and the multiprocessing 
C-Series CPUs. 

The l/0 address space is implementation-specific, resulting in 
significant differences between the ClOO Series and the 
multiprocessing C-Series implementations. 

C3200 Series CPUs implement some machine functions through 
registers physically located in the 1/0 address space. These 
registers are addressed in much the same way as elements of 
main memory. This allows access to a number of subsystems 
required for proper operation of the CPUs. 

C3400/C3800/C4600 Series CPUs do not have explicit I/0 space 
defined in physical memory, and use special instructions for 
these functions. 

Chapter 7 Implementation-specific features 263 

--------------------~------- ~--~~-··-:-···.··--

I •· 

I 
I:·· 
! 
I . 
I •·-· i. 

1 
! 

~ 

(-

,. ··~ .. :. ' :' 

EDTX 2-04-CV-120 
51 056DOC065591 



�

Physical address 
space 

..... .. -..·: ·.: .. ,:.-.::·: .•. :.' ~·-·~····-·- . 

The physical address space in all C-Series CPUs spans physical 
memory. The physical address space definitions vary between 
theCIOO Series CPUsand themultiprocessingC-Series CPUs. In 
C3200 Series CPUs, it also spans a set of 1/0 registers that 
implement numerous system control and overhead functions. 
Data access at the program level uses virtual addresses. 
However, these virtual addresses are translated to physical 
addresses in hardware to access the physical hardware features. 
The possible range of these physical addresses describes the 
physical address space. 

Power-up addressing mode - Cl 00 

Physical addresses are normally generated by 
virtual-to-physical address translation. The exception to this 
process occurs during the bootstrap process at power up. Prior 
to cold start, the Service Processor Unit (SPU) must create a 
bootstrap Page Table Entry (PTE) structure. The PTE structure is 
used by the CPU's cold start microcode to make the address 
translation mechanism operationaL 

264 CONVEX C-Series Architecture 

···.·.· :-

--=-:·.,:-. :·.· 
..... 

.··.:· __ 

• "." .. c 

. :··~.---

EDTX 2-04-CV-120 
51 056DOC065592 



�

Physical address space- ClOO 

Cl CPUs have a maximum physical memory configuration of 
128 Mbytes. This memory may be accessed with physical 
addresses in the range 0000 0 000 to 07FF FFFF. 

The C120 CPU has a maximum physical memory configuration 
of 1 Gbyte. This memory may be accessed with physical 
addresses in the range 0000 0000 to 3FFF FFFF. 

Figure 78 shows the physical address space for C120 CPUs. 

Figure 78 Physical address space-C120 CPUs 

0000 0000 

3VFF FFFF 

4000 0000 

7FFF FFFF 

Physical memory 
( 1 Gbyte) 

l/0 registers 
( 1 Gbylc} 

Increasing physical 
addresses 

I>.H300060 

12/1/93 

! .· 

Chapter 7 Implementation-specific features 265 

EDTX 2 -04-CV -120 
51 056DOC065593 



�

Physical address space- C3200 

C3200 Series CPUs have a maximum physical memory 
configuration of 4 Gbytes. Physical memory may be accessed 
with physical addresses in the range 0 00 0 0 0 0 0 to FFFF FFFF. 

This address range references either physical memory or l/0 
registers, depending on the state of the I/0 bit flag contained in 
the second-level PTE used to form a physical address. This 1/0 
flag bit must be clear before physical memory can be accessed in 
C3200 Series CPUs. 

Figure 79 shows the physical address space for C3200 Series 
crus. 

Figure 79 Physical address space---C3200 Series CPUs 

DODO 0000 

PTE2<I/0>=0 

FFFF fFff 

0000 0000 

PTE2<I/0>= i 

FFF FfFF 

Physical memory 
(4 Gbyte) 

I/0 registers 
(4 Gbyte) 

266 CONVEX C-Series Architecture 

Increasing physical 
addresses 

j 

Increasing physical 
addresses 

j 
AH30006l 
12/1/93 

EDTX 2-04-CV-120 
51 056DOC065594 



�

, .. ·- :.,·_,,;.~ .. : .... : ·-,_·ft·--· .. 

Physical address space - C3400/C3800/C4600 

C3400/C3800/C4600 Series CPUs have a maximum physical 
memory configuration of four Gbytes. Physical memory may be 
accessed with physical addresses in the range 0 0 0 0 0 0 0 0 to 
FFFF FFFF. This address range references only physical memory. 

C3800/C4600 Series CPUs do not have explicit I/0 space 
defined in physical memory. 

Figure 80 shows the physical address space for 
C3400/C3800/C4600 Series CPUs. 

Figure 80 Physical address space-C3400/C3800/C4600 Series CPUs I 
I 

0000 0000 

rFTF FFTF 

Increasing physical 
addresses 

Physical memory 
(4 Gbyle) 

I y 
AH300062 

12/l/93 

C-Series physical memory is not always contiguous. Physical 
memory address space usually contains large areas of 
nonexistent memory, like physical memory that is not installed. 
The location of installed physical memory is maintained by 
hardware in the physical configuration map (PCM). Any attempt 
to access nonexistent memory causes a machine exception. 

Chapter 7 Implementation-specific features 267 

I 

l 
) 

.,.....,---~~~~----~----· ·····-. ------····-···· ···------,-------
'.•.' .. 

·~·: . . . ·, . . : ... :. 
. .. --:,·.··· 

- .. : 

. ·_ ·._, ~--~ 

EDTX 2-04-CV-120 
51 056DOC065595 



�

1/0 address space 

Caution 

The I/0 address space definitions vary between the CIOO Series 
CPUs and the multiprocessing C-Series CPUs. 

All I/0 operations inC-Series CPUs are memory mapped. The 
architecture does not define instructions to directly reference 
I/0 registers. I/0 registers and status bits are referenced 
through virtual-to-physical address mapping.l/0 register data 
is never accelerated into a cache, which eiiminates multiple copy 
problems. 

The l/0 address space in the C-Series architecture allows access 
to a set of machine-specific functions and registers. Only a 
fraction of the available address space implements physical 
registers. 

As a result of using memory mapped I/0, certain types of 
operand references may cause undesirable side effects. 
Generally, I/0 operand references should be on an integral byte 
or halfword boundary, so that the least-significant address bits 
equal to the precision of the referenced operand are all zeros. 

Depending on the CPU and architecture, the I/0 address space 
is used to implement the following: 

• A set of memory management referenced and modified bits 
(R&M bits) 

• A physical configuration map (PCM) that identifies the 
amount and location of installed physical memory 

• An interval timer (refer to the "Interval timers" section on 
page 279 for more information) 

• A time of century (TOC) clock (refer to the "Time of century 
clocks" section on page 287 for more information) 

The only operations allowed on 1/0 mapped pages are loads and 
stores of the correct size. 1/0 mapped pages are always 
protected for ring 0 access only. Test-and-set (tas) instructions 
executed on l/0 pages outside of ring 0 are trapped and result in 
a fatal system exception. 

268 CONVEX C-Series Architecture 

-c -------·-,----------- ----•• ····---------..,---" ---
·- ----------·-·---

EDTX 2-04-CV-120 
51 056DOC065596 



�

.. 

- ·-. 
·· ...... . 

·· .. ·.,.·,; .. ·.·. 

1/0 address space- ClOD 

ClOO Series CPUs define 1 Gbyte of I/0 address space in the 
range from 400 0 0000 to 7FFF FFFF. The I/0 address space is 
accessed by a 31-bit physical address where the most-significant 
bit is 0. 

1/0 address space - C3200 

C3200 Series CPUs define four Gbytes of l/0 address space in 
the range from 0000 0000 to FFFF FFFF. The I/O address 
space is accessed by a 32-bit physical address. This address space 
is accessed by a translated virtual address whose second-level 
PTE defines the page as being in I/0 address space (the 1/0 flag 
bit is set). 

Attempting to access a nonexistent 1/0 address causes a 
machine exception. The restrictions to the alignment and size of 
operands applying to 1/0 address space accesses are described 
in each l/0 register functional description. 

Chapter 7 Implementation-specific features 269 

.: . .... :. . ... 
. . . .~ 

j 

I 
I 
I 
1 

·-- ~ j 

EDTX 2-04-CV-120 
51 056DOC065597 



�

I 
.I 

·I 

' 

Referenced and 
modified bits 

The physical address referenced and modified (R&M) bits are 
used by the operating system to track memory utilization_ There 
is one reference bit and one modified bit for each 4-Kbytes page 
of physical memory. Each C -Series system implements these bits 
differently_ 

The R&M bits are implicitly modified by successful accesses to 
main memory_ A read, write, or execute access sets the 
referenced bit A write access also sets the modified bit. In 
addition, both R&M bits may be explicitly accessed by reading 
or writing a byte operand in I/0 address space for C100/C3200 
Series CPUs, or main memory for C3400/C3800/C4600 Series 
CPUs-

On ClOO Series CPUs, the R&M bits reflect only memory accesses 
from the CPU. Memory access via the peripheral bus (PBUS) has 
no effect on the referenced or modified bits- They cannot be 
accessed explicitly by the I/0 system_ 

The multiprocessing C-Series CPUs treat CPU and PBUS 
memory accesses differently. All multiprocessing CPU memory 
ports have explicit access to the 1/0 registers in general. and the 
R&M bits in particular_ Although the PBUS has I/0 access to the 
R&M bits, memory accesses through the PBUS are not reflected 
in the R&M bits_ 

R&M bits- ClOO 

Cl CPUs have a maximum physical memory configuration of 
128 Mbytes. The physical cache unit (PCU) contains 32 Kbytes of 
referenced bits and 32 Kbytes of modified bits. The addresses of 
these bits are byte granular and are located in previously 
undefined I/ 0 address space_ R&M bits are densely packed with 
eight bits in a byte, with bit <0> corresponding to the 
least-significant page address- For example, bit <0> of physical 
byte address 4 0 0 0 0 00 0 reflects the referenced history of page o_ 

The data path is one byte wide, allowing the addresses to be 
accessed only through a byte load or store instruction. Attempts to 
read or write the addresses using other operand sizes produce 
incorrect and unspecified results. Attempts to access addresses 
with invalid contents produce a fatal system error_ 

Cl20 CPUs have a maximum physical memory configuration of 
1 Gbyte. The physical cache unit (PCU) contains 256 Kbytes of 
referenced bits and 256 Kbytes of modified bits. The addresses of 
these bits are byte granular and are located in previously 
undefined I/0 address space. The C120 mechanism is identical 

270 CONVEX C-Series Architecture I 
i 
i 

·.··--:-,------,.------..L..__ 

EDTX 2-04-CV-120 
51 056DOC065598 



�

~ ... : 

in all respects to the Cl, except for the larger number of bits 
required. 

R&M bits - C3200 

On C3200 Series CPU s, the R&M bits are implemented in the II 0 
address space. An access to the I/0 address space in a C3200 
Series CPU complex is defined by the I/0 bit flag in the 
second-level PTE. Any I/0 memory references through the 
PBUS do not affect the state of the R&M bits. When power is first 
applied, the state of the R&M bits is indeterminate. 

The R&M bits are sparsely packed with one referenced bit and 
one modified bit per longword of I/0 register space. Only byte 
1 and byte 0 of each longword are defined. Bit <0> of byte 0 
contains the modified bit, and bit <0> of byte 1 contains the 
referenced bit for a given page. All other bits contain random data. 
This data must be accessed with either a byte or a halfword 
operand. Word or longword accesses will produce a fatal system 
error. 

The R&M bits for each page are located together in the 
most-significant 16 bits of each 64-bit I/0 location, in the format 
shown in Figure 81. 

Figure 81 Memory page referenced and modified bits-C3200 Series CPUs 

63 

Reserved 

Byte 0 

56 55 48 47 0 

I M I Reserved Reserved 
1 0 7 Byte 1 1 0 Byteo <2 .. 7> 

AH3Q()008 
12/1/'<13 

C3200 Series CPUs have a maximum physical memory 
configuration of 4Gbytes (1024 k pages). Since each page has one 
referenced bit and one modified bit, eight Mbytes (1024 k 
longwords) of I/0 address space are required to accommodate 1 
Mbit of referenced bits and 1 Mbit of modified bits. 

R&M bits are maintained by hardware. These registers are 
located in eight Mbytes of reserved 1/0 address space (from 
0000 0000 through 007F FFF8). 

Chapter 7 Implementation-specific features 271 

EDTX 2 -04-CV -120 
51 056DOC065599 



�

R&M bits - C3400/C3800 

In the C3800/C3400 Series complexes, the R&M bits are located 
in a dedicated area of physical memory. This 2 Mbytes of main 
memory is contiguous and begins on a 2 Mbyte boundary, set by 
the SPU and loaded into a base address register of each CPU. Bits 
<31..21> of this base address are loaded into bits <31..21> of each 
R&M bit address. Bits <31..12> of the data operand are loaded 
into bits <20 .. 1> of each R&M bit address. 

Figure 82 shows the determination of the R&M bit addresses. 

Figure 82 Referenced and modified bit addresses-C3400/C3800 Series CPUs 

Base address<3I..2l> Operand physical address<31..12> IRI 
31 21 20 1 0 

R = 0 for modified bits, and 1 for referenced bits. 
AH300073 

12/1/93 

The R&M bits are sparsely packed with the modified bits 
residing in bit <0> of even addresses, and the referenced bits 
residing in bit <0> of odd addresses. The other bits of the 
referenced and modified bytes are indeterminate. Bit <0> of each 
R&M bit address is 0 (even) for the modified byte and 1 (odd) for 
the referenced byte. This type of interleaving allows the CPU to 
set both R&M bits for a page in a single access. 

When a memory access could cause a change in the R&M bit 
status, the CPU issues an additional transparent (to the 
program) memory write cycle to properly maintain these bits. 

The R&M bits are also accelerated in a CPU's PTE cache. When a 
CPU issues a write cycle to set an R&M bit, the corresponding bit 
in the CPU's PTE cache is also updated. This cache is used to 
determine if an access could cause a change in the R&M bit 
status. If the appropriate cache bit is set for an access, the R&M 
bits in memory are not altered. But if the cache bit is not set for 
an access, an additional write is issued and the bit in that CPU's 
PTE cache is set. 

Two privileged instructions, pref and pmod, are available on 
C3400/C3800 Series CPUs to maintain cache consistency for the 
reference and modified bits. Anytime software dears the 
modified bits, pmod must be used to purge the modified bits in the 
PTE cache of the entire complex. If a referenced bit is cleared, 
pref must be used to purge the referenced bits in the complex. 

272 CONVEX C-Series Architecture 

_._._.·.·· ... ·.··· . ,_.,-

·.-.• 

···.··----·· ~-........ 

EDTX 2-04-CV-120 
51 056DOC065600 



�

Refer to the CONVEX Assembly Language Reference Manual (C 
Series) for specific information about these two instructions_ 

R&M bits - C4600 

In the C4600 Series complexes, the R&M bits are located in a 
dedicated area of physical memory. The R&M Base address 
register (MRBASE) supplies bits <34 .. 24>, and bits <34 .. 12> of 
the data operand address are loaded into bits <23 .. 1> of the R&M 
bit address. The R&M bits begin on a 16-Mbyte boundary. The 
MRBASE register can be set only by scan. 

There is one modified and one referenced bit in main memory for 
each physical page available to the system. The modified bit is 
set for every successful write to a physical page, and the 
referenced bit is set for every successful read, write or execute to 
a physical page. A successful read, write or execute is one that 
does not result in a PTE access fault. In order to avoid a 
referenced or modified bit write for every memory reference, 
each CPU maintains referenced and modified flags in its PTE 
cache. The integrity of these flags must be maintained by 
software. 

The format of the hardware modified/referenced bits for a single 
page is shown in Figure 83. 

Figure 83 Referenced/Modified Bits 

0 0 0 0 0 0 0 M 0 0 0 0 0 0 0 R 

15 14 13 12 11 10 g B 7 6 5 3 2 0 

AH300096 
i2/2/9:J 

The referenced and modified bits are allocated one bit per byte 
shown above with modified bits occupying even byte locations 
and referenced bits occupying odd byte locations. 

• Modified- When set, the physical page associated with this 
modified bit has been modified. 

• Referenced- When set, the physical page associated vvith 
this referenced bit has been validly accessed. 

Chapter 7 Implementation-specific features 273 

EDTX 2 -04-CV -120 
51 056DOC065601 



�

: ... · 

.... ~ ... 

.. ·i 

To ensure the PTE cache's R&M bits agree with the R&M bits in 
memory, the PTE cache's R&M bits must be purged using the 
pa tu instruction anytime software changes the state of the R&M 
bits in memory. A pate instruction may be used to purge the 
R&M bits for a single PTE cache entry. 

The pref and pmod instructions do not exist on the C4600. 

274 CONVEX C-Series Architecture 

---~·-··---··· 

·. _,_: . ~ ·. ; ·. : ::.; 

·. __ ...-:·-.· 
·:· _. 

EDTX 2-04-CV-120 
51 056DOC065602 



�

Physical 
configuration map 

InC-Series CPUs, the physical configuration map (PCM) in 1/0 
address space contains the CPU type and the amount and 
location of physical memory installed. The size of this region 
(number of entries) is machine-specific, but all C-Series CPUs 
implement the same format for the PCM entry. 

On C3400/C3800/C4600 Series CPUs, the PCM is not a 
software-readable entity. 

Every PCM entry contains a 3-bit code describing the CPU type. 

Memory is configurable in 2-Mbyte blocks. There is an entry in 
the PCM for each block. If the block is installed, the present (P) 
bit in the corresponding PCM entry is set. · 

Figure 84 shows the format of a PCM entry for a 2-Mbyte block 
of memory. 

Figure 84 Physical configuration map entry 

63 so 
Reserved CPU_ TYPE Reserved 

51 50 48 47 0 

All:l00077 
12/1/93 

The following subsections define he PCM entry fields: 

Bit <63>-Present (P) 
This bit indicates whether or not the 2-Mbyte block of physical 
memory associated with this entry is installed in the machine. 

Bit <62 .. 51>-Reserved 
These bits contain random data. 

Bits <50 •• 48>-CPU_TYPE 
This 3-bit field indicates the CPU type. The hexadecimal codes 
are: Ox7 for C100 Series and Ox6 for C3200 Series. Any other code 
is undefined (there is no code for C3400, C3800, or C4600 Series 
CPUs). 

Bits <47 •. 0>-Reserved 
These bits contain random data. 

Chapter 7 Implementation-specific features 275 

.--. --··---,--------,-------
··· .''' ··,, ·. 

·~· 

. ."·:·.,_ ... 

i 

I 
l 
I 
l i-
' 

EDTX 2-04-CV-120 
51 056DOC065603 



�

.·· .... :._:--: Note 

·,· .. <•' .:.. ' "·<•~·~. ·•····· 

Physical configuration map - C 100 

Cl CPUs have a maximum main memory capacity of 128 
Mbytes. The PCM on C1 CPUs is a 64-longword region from 1/0 
address 6FFF FCOO to 6FFF FDFB. The Pbitinthefirstlocation 
(6FFF FCO 0) corresponds to the 2-Mbyte block starting at 
physical address 0000 0000, and so forth. 

This region is only accessible on Cl CPUs from the PBUS. 

C120 CPUs have a maximum main memory capacity of 1 Gbyte. 
The PCM on C120 CPUs is a 512-longword region from I/0 
address 6FFF 8000 to 6FFF 8FFF. The P bitin the first location 
(6FFF 8000) corresponds to the 2-Mbyte block starting at 
physical address 0000 0000, and so forth. 

To provide backward compatibility with Cl software, the 1/0 
addresses from 6FFF FCOO to 6FFF FDFB are mapped by the 
hardware to addresses 6FFF 8000 to 6FFF 81F8. 

This region is only accessible on C120 CPUs from the PBUS (in 
the same manner as Cl CPUs). 

Physical configuration map - C3200 

C3200 Series CPUs have a maximwn main memory capacity of 4 
Gbytes. The PCM for these complexes is a 2,048-longword 
region from 6FFF 8000 to 6FFF BFF8. The Pbit in the first 
location (6FFF 8000) corresponds to the 2-tvlbyte block starting 
at physical address 0 00 0 000 0, and so forth. 

The C3200 Series CPUs ignore bits <3 .. 0> of the PCM access 
address. The four least-significant bits of any PCM access 
address can either be 0 or a. For example, a write access to both 
6FFF 8000 and 6FFF 8008 write to the same PCM longword, 
even though these two longword addresses apparently describe 
two different blocks of physical memory. 

Even though the granularity of the C3200 Series PCM is a 
longword, these CPUs restrict access to only the upper halfword. 
Any accesses to the PCM to determine CPU type should be done 
only to the upper halfword. AHempts to read or write a word or 
longword to this area will result in a fatal system error. 

276 CONVEX C-Series Architecture 

. ' ...... ·:· 

. . . . . . . : . . . 

. . . ~ ... ' ; .• 

EDTX 2-04-CV-120 
51 056DOC065604 



�

'-:·:: .:· ...... . 

. ··._':: ... · .. 
.. : .. . :.·; 

In addition to the explicit access method, an implicit read occurs 
during each access to main memory. Before any physical address 
is accessed, it is tested to ensure it contains a valid block. An I/0 
reference to nonpresent memory results in an aborted transfer 
and an error status being returned to the device initiating the 
request. A CPU reference to nonpresent memory results in a 
system fatal hard error. 

Physical configuration map - C3400/C3800/C4600 

The C3400/C3800/C4600 Series CPUs do not support a 
software-readable PCM. 

Chapter 7 Implementation-specific features 277 

·. . . .-: ~·=., . : . 

; 

! 
I 
! 

EDTX 2-04-CV-120 
51 056DOC065605 



�

··.·. 

Timers The C-Series architecture has several timers provided to permit 
fine grain, accurate accounting of CPU execution time and to 
assist in process scheduling. There are four timers in the 
multiprocessing C-Series architecture. 

• Interval timer counter (ITC)-All C-Series CPUs 

All C -Series CPUs contain an interval timer counter (ITC) 
used to interrupt the processor at a programmable rate. The 
implementation of the interval timer is processor-specific, 
but the logical structure of the interval timer is the same on 
all C-Series systems. Each system contains an ITC- a next 
interval timer count register {NITC), and an interval timer 
status register (ITSR). The ITC advances (increments or 
decrements) at a fixed processor-specific rate. Each time the 
ITC reaches zero, it is loaded from the NITC. 

There is only one ITC in each C-Series system, regardless of 
the number of CPUs in the system. 

The ITSR controls the operation of the counter and the 
generation of interrupts. The ION flag enables and disables 
the interval timer only in the ClOO Series architecture. 

• Time of century clock (TOC)-CIOO CPUs 

In the ClOO Series architecture, the operating system 
software implements a TOC clock via the CIOO Series 
interval timers. 

• Time of century clock (TOC)-All multiprocessing CPUs 

The multiprocessing C -Series architecture implements a 
TOC clock in hardware that can be both read and written. 
This clock keeps "wall clock time/' not user time. 

• CPU execution timer (CTR)-All multiprocessing CPUs 

The multiprocessing C-Series architecture includes CPU 
execution timers (CTR) for each process that maintain 
microsecond timing for each CPU's time spent in rings 0-3 
(system time) and ring 4 (user time). 

• Thread timer (TTR)-All multiprocessing CPUs 

The Multiprocessing C -Series architecture has a thread timer 
that measures the elapsed CPU time for executing a thread. 
This thread timer can be both read from and written to. 

278 CONVEX C-Series Architecture 

••••--•"••"-•YOJ_....__~,..~--··--··--·. ·-·. ·- ··- -···-·--···--

·:, -... 

EDTX 2-04-CV-120 
51 056DOC065606 



�

Interval timers 
All C -Series systems contain an interval timer counter (lTC). The 
implementation of the interval timer is processor-specific. 

Interval timers- ClOO 
The ClOO Series interval timer is not located in 1/0 address space. 
It is internal to the CPU, and the actual structure is only visible to 
microcode. The interval timer has a programmable interrupt 
frequency range of 1 MHz to slightly greater that 1 Hz. The ION 
interrupt flag enables and disables the ClOO Series interval timer, 
depending on the logic sense of this flag. 

The ClOO Series interval timer is implemented by a 2Q-bit 
interval timer counter {lTC}, a 20-bit next interval timer register 
(NITC), and an interval timer status register (ITSR). A 2-MHz 
clock, divided by two, increments the CIOO ITC counter every 
microsecond. When the counter increments to the maximum 
count value (OFFF FFOO), the lTC is reloaded from the NITC on 
the next dock and the full bit in the ITSR is set. If the full bit is 
already set, the overflow bit is also set. 

At the macro-instruction level, a single 64-bit register represents 
the interval timer. It is manipulated by a set of three instructions. 
Two of these instructions access the whole 64 bits, the third is 
used for interrupt servicing and writes only the control bits: 

• mov ITR, Sk-The contents of the interval timer registers 
(ITC NITC and ITSR) are moved (copied) to a scalar register. 

• mov Sk, ITR-The contents of a scalar register are moved to 
the interval timer registers (lTC NITC and ITSR). 

• mov Sk, ITSR-The four most-significant bits of a scalar 
register are moved (copied) to the ITSR register. 

Figure 85 presents the format of ClOO Series architecture interval 
timer registers. 

Figure 85 Interval timer registers-ClOD Series 

IITSR I NITC Reserved 
63 60 59 40 .39 

ITC 
28 27 

I Reserved I 
8 7 0 

AH3DD074 

12/1/93 

Chapter 7 Implementation-specific features 279 

... --~ 

: - -··-··------.-~··-. -----

EDTX 2-04-CV-120 
51 056DOC065607 



�

;.'_-:. 

The following subsections define these fields. 

Bits <63 .. 60>-lnterval timer status register (ITSR) 
Controls the operation of the interval timer counter and controls 
the generation of interrupts. The interval timer status register 
(ITSR) contains four individual bits. These bits are defined as: 

• Bit <63>-0n 
When this bit is set, the interval timer will count. When this 
bit is cleared, the interval timer stops. 

• Bit <62>-lnterrupt enable 
When this bit is set, an interrupt is signaled to the CPU when 
the full bit (<61>) is set. When bit<62> is cleared, no interrupt 
is generated. 

• Bit <61>--Full or decrement 
This is the full status bit during reads and the decrement 
control bit during writes. 

• Bit <60>-0verflow 
This bit is the overflow status bit. 

Bits <59 •. 40>-Next interval timer counter (NITC) 

A 20-bit register loaded into the ITC when it reaches terminal 
count. The NITC register is not affected by loading the lTC with 
the value in the NITC. The value in the NITC can be used 
repeatedly. 

Bits <38 •. 28>-Reserved 
Reserved for future use. 

Bits <27 .. 8>-Interval timer counter (lTC) 
A 20-bit count-up timer that increments every microsecond. On 
the count that clears the ITC to zero, the lTC is loaded with the 
value from the NITC and signals the control logic that a terminal 
count (ITC cycle) has occurred. 

Bits <7 .. 0>-Reserved 
Reserved for future use. 

The overflow and full bits form a 2-bit pseudocounter, with the 
full bit as the least-significant bit of the counter. Whenever the 
ITC reaches terminal count, this pseudocounter counts up one 
step. Whenever the ITSR or ITR is written with data in which 
bit<61> is set, this pseudocounter counts down. The actual 
occurrence of interval timer interrupts has no effect on the full or 
overflow bits. 

I 
i 280 CONVEX C-Series Architecture 

. --------~----~--------

.. . : '':~-:- ' . ·:' ~- :, . . 

I 
___ __...l,.;.__ 

EDTX 2-04-CV-120 
51 056DOC065608 



�

The values of the full and overflow bits and corresponding 
events are listed in Table 51. 

Table 51 Full and overflow bit values and events-ClOD Series 

Event 

ITC terminal count 

Write with ITSR<61> = 1 

Current values New values 

Overflow bit Full bit Overflow bit Full bit 

0 0 0 1 

0 1 1 1 

1 1 1 1 

1 1 0 1 

0 1 0 0 

0 0 0 0 

Interval timers- C3200 
The interval timer on the C3200 Series systems is accessed via 
I/0 address space. The interrupt frequency of this interval timer 
is programmable from 100 kHz to about 1.6 Hz. This timer is 
controlled by a set of four 16-bit registers, longword aligned at 
1/0 addresses 2000 0000 to 2000 0018. The interval timer 
decrements by one at ten microsecond intervals_ Because this 
timer is located in 1/0 address space, no special instructions are 
required to service iL 

Figure 86 presents the address locations and format of the 
interval timer registers for the C3200 Series systems. 

I, 

Figure 86 Interval timer registers---(3200 Series 

ljo address 15 

2000 0000 

2000 0008 

2000 0010 

2000 0018 

a 7 

Reserved 

NITC 

lTC 

Reserved I 

3 2 0 

IITSR 

ITIN 

AH300078 
12/1/93 

Chapter 7 Implementation-specific features 281 

EDTX 2-04-CV-120 
51 056DOC065609 



�

Interval timer status register (ITSR) 
A 16-bit register located at I/0 address 2000 0000. Only the 
least-significant three bits of the ITSR are valid. These bits of the 
interval timer status register are defined as: 

• Bits <15 .. 3>-Reserved 
Reserved for future use. 

• Bit <2>-0n 
When this bit is set the interval timer (ITC) is active and 
counts by decrementing in bit 0. When this bit is cleared, the 
interval timer is halted. Interrupts generated by the interval 
timer are disabled by disabling the virtual interrupt channel 
specified in the ITIN. 

• Bit <1>-Underflow 
This bit is read only and is set when the ITC underflows and 
the Empty bit has already been set by a previous ITC cycle. 
The ITC completes a cycle by reaching the terminal count 
value located in the NITC. The underflow bit is cleared by 
reading the ITSR. 

• Bit <0>-Empty 
This bit is read only and is set when the lTC underflows. This 
bit is cleared at the same time as the underflow bit (when the 
ITSR is read as a normal part of the interrupt service). This bit 
is set when the ITC completes a cycle by reaching terminal 
count and underflm.ving. 

Next interval timer counter (NITC) 
A 16-bit register located at I/0 address 2000 0008. The NITC 
contains the count value to be loaded into the lTC upon 
underflow. It can be both read and vvritten to. 

Interval timer counter (lTC) 
A 16-bit countdown timer located at I/0 address 2000 0010. 
The lTC is loaded from the NITC each time it decrements to zero. 
It can be both read and written to. 

Interval timer interrupt number (ITIN) 
A 16-bit register located at I/0 address 2000 0018. Only the 
least-significant byte is valid, and it contains the virtual interrupt 
channel number that receives timer underflow interrupts. The 
interval timer interrupts can be disabled by disabling the 
corresponding virtual interrupt channeL 

282 CONVEX C-Series Architecture 

EDTX 2-04-CV-120 
51 056DOC06561 0 



�

Interval timers - C3800/C4600 
The interval timer on the C3800/C4600 Series is accessed via 
special instructions. The interrupt frequency of this interval 
timer is programmable from 100 kHz to about 1.6 Hz. This timer 
is controlled by a 64-bit register. The interval timer decrements 
by one at ten microsecond intervals. The instruction mov ITR, 
Skis used to place the contents of the interval timer registers into 
a scalar register. The instruction mov Sk , ITR is used to write to 
the interval timer registers. The interval timer status register may 
be written separately with the instruction rnov Sk, ITSR, which 
copies the highest four bits of Sk into ITSR 

Figure 87 presents the format of the interval timer for the 
C3800/C4600 Series systems. 

Figure 87 Interval timer registers-C3800/C4600 Series systems 

NITC 
63 60 59 56 55 

... __ ._-: .. 
... ·. _ ........ -. 

. .. : -~. ·, 

Reserved ITC 
4C 39 24 23 8 7 

I TIN 
0 

AH300076 
12/1/93 

Bits <63 .. 60>--lnterval timer status register (ITSR) 
Controls the operation of the interval timer counter and controls 
the generation of interrupts. The interval timer status register 
(ITSR) contains four individual bits. These bits are defined as: 

• Bit <63>-Reserved 
Reserved for future use. 

• Bit <62>-0n 
When this bit is set, the interval timer (ITC) is active and 
counts by decrementing in bit 0. When this bit is cleared, the 
interval timer is halted. Interrupts generated by the interval 
timer are disabled by disabling the virtual interrupt channel 
specified in the ITIN. 

• Bit <61>-Underflow 
This bit is read only and is set when the ITC underflows and 
the empty bit has already been set by a previous ITC cycle. 
The ITC completes a cycle by reaching the terminal count 
value located in the NITC. The underflow bit is cleared by 
reading the ITSR. 

Chapter 7 Implementation-specific features 283 

I 

I 
L .. 

I.·· I. 

' 

EDTX 2-04-CV-120 
51 056DOC065611 



�

• Bit <60>-Ernpty 
This bit is read only and is set when the lTC underflows. It is 
cleared at the same time as the underflow bit (when the ITSR 
is read as a normal part of the interrupt service. It is set when 
the ITC completes a cycle by reaching terminal connt and 
underflowing. 

Bits <59 .. 56>-Reserved 
Reserved for future use. 

Bits <55 .. 40>-Next interval timer counter (NITC) 
Loaded into the lTC when it reaches terminal count. The NITC 
register is not affected by loading the lTC with the value in the 
NITC. The value in the NITC can be used repeatedly. Since the 
ITC is incremented every ten microseconds, the count period 
loaded into the NITC should be set at a multiple of 10 J..IS. 

Bits <39 .. 24>-Reserved 
Reserved for future use. 

Bits <23 .. 8>-Interval timer counter (ITC) 
A 16-bit countdown timer that is decremented every 10 
microseconds. Each time the ITC decrements to zero, it is loaded 
with the value from the NITC. It can be both read and written. 

Bits <7 .. 0>-lnterval timer interrupt number (ITIN) 
An eight-bit field of the ITR. It contains the virtual interrupt 
channel number that receives timer underflow interrupts. The 
interval timer interrupts can be disabled by disabling the 
corresponding virtual interrupt channel. 

Interval timers - C3400 
The C3400 Series CPUs have four interval timers. One of these 
timers is dedicated for the timesharing subcomplex, and three 

·are for the real-time subcomplex. The registers for these timers 
are in the control registers for the communication registers. See 
the "Control registers- C3400" section in Chapter 5 for details on 
the physical layout. 

Timesharing interval timers 
The timesharing subcomplex interval timer has four registers 
associated with it: ITSR_U, NITC_U, ITC_U, and ITIN_U. 

• Interval timer status register (ITSR) 

284 CONVEX C-Series Architecture 

The interval timer status register (ITSR) controls the 
operation of the interval timer counter and controls 
interrupt generation. 

EDTX 2-04-CV-120 
51 056DOC065612 



�

The timesharing ITSR contains three bits. These bits are 
defined as: 

- Bit<2>-0n 

..... ;: .... · .. : .... · .. · .... ·-~-~---····· 

When this bit is set, the interval timer (ITC) is active and 
counts by decrementing in bit 0. When this bit is clear, the 
interval timer is halted. Interrupts generated by the 
interval timer are disabled by disabling the virtual 
interrupt channel specified in the ITIN. 

- Bit <1>-Underflow 
This bit is read only and is set by incrementing whenever 
the lTC underflows and the empty bit has already been set 
by a previous lTC cycle. The ITC completes a cycle by 
reaching the terminal count value located in the NITC. 
The underflow bit is cleared by reading the ITSR. 

- Bit <0>-Empty 
This bit is read only and is set whenever the lTC 
underflows. It is cleared at the same time as the underflow 
bit, when the ITSR is read as a normal part of the interrupt 
service. It is set when the ITC completes a cycle by 
reaching terminal count and underflowing. 

• Next interval timer counter (NITC) 

This 16-bit register is loaded into the lTC when it reaches 
terminal count. The NITC register is not affected by loading 
the ITC with the value in the NITC. The value in the NITC 
can be used repeatedly. 

• Interval timer counter (lTC) 

This 16-bit count-down register is decremented every 10 or 
100 microseconds depending on bit 3 of the ITSR. Each time 
the ITC decrements to zero, it is loaded with the value from 
the NITC. It can be both read and written to. 

• Interval timer interrupt number (ITIN) 

The interval timer interrupt number (ITIN) is a 16-bit field of 
the ITR. It contains the virtual interrupt channel that receives 
timer underflow interrupts. The interval timer interrupts 
can be disabled by disabling the corresponding virtual 
interrupt channel. 

Chapter 7 Implementation-specific features 285 

EDTX 2-04-CV-120 
51 056DOC065613 



�

;_: 

· ..... :·..;,";,.- ... :. 

Realtime interval timers 
The three realtime subcomplex interval timers (0, 1, 2) have three 
associated registers, ITSR, NITC, and ITC. These timers are 
dedicated to an interrupt channeC therefore an ITIN is not 
needed. 

• Interval timer status register (ITSR) 

This register controls the operation of the interval timer 
counter and controls the generation of interrupts. The ITSR 
contains four individual bits. These bits are defined as: 

- Bit <3>-lnterval 
This bit sets the dock interval for the interval timers. 
When this bit is set, the timers increment each ten 
microseconds. When this bit is reset the timers increment 
every 100 !J.S. 

- Bit<2>-0n 
When this bit is set, the interval timer (ITC) is active and 
counts by decrementing in bit 0. When this bit is dear, the 
interval timer is halted. Interrupts generated by the 
interval timer are disabled by disabling the virtual 
interrupt channel specified in the ITIN. 

- Bit <1>-Underfl.ow 
This bit is read only and is set by incrementing whenever 
the lTC underflows and the empty bit has already been set 
by a previous ITC cycle. The ITC completes a cycle by 
reaching the terminal count value located in the NITC. 
The underflow bit is cleared by reading the ITSR. 

- Bit <0>-Empty 
This bit is read only and is set when the lTC underflows. It 
is cleared at the same time as the underflow bit, when the 
ITSR is read as a normal part of the interrupt service. It is 
set when the lTC completes a cycle by reaching terminal 
count and underflowing. 

• Next interval timer counter (NIT C) 

This 16-bit register is loaded into the ITC when it reaches 
terminal count. The NITC register is not affected by loading 
the lTC with the value in the NITC. The value in the NITC 
can be used repeatedly. 

• Interval timer counter (lTC) 

286 CONVEX C-Series Architecture 

This 16-bit count-down register is decremented every 10 or 
100 microseconds, depending on bit 3 of the ITSR. Each time 
the ITC decrements to zero, it is loaded with the value from 
the NITC. It can be both read and written to. 

EDTX 2-04-CV-120 
51 056DOC065614 



�

. . :; ,· ··. '"····--~-......... 

Time of century clocks 

The time of century clock (TOC) keeps "wall clock" time, not 
user time. It is not saved and restored during context switches. It 
is, therefore, not altered by context switches and will keep time 
indefinitely. 

The multiprocessing C-Series CPUs implement a 64-bit time of 
cenrury clock (TOC) that keeps time in 1-!JS increments and 
overflows every 500,000 years. 

TOC- C3200 
The C3200 Series TOC clock is implemented as four 16-bit I/0 
locations for the counter, and one 16-bit l/0 location for the 
counter status. All 1/0 addresses are developed from the page 0, 
ring 0 1/0 register pointer. Refer to the "Virtual address space" 
section on page 70 for more information regarding the I/0 
register pointer. Refer to the"l/0 address space" section on 
page 268 for information about other uses of I/0 address space. 

Figure 88 presents the logical structure of the C3200 Series TOC, 
with the actual physical I/0 addresses for the C3200 Series 
architecture. 

Figure 88 64-bit TOC dock-c3200 Series CPUs 

1/0 addre55 

2000 0100 

2000 0108 

2000 0110 

20000118 

2000 0120 

15 

Reserved 

TOC<15 ... 0> 

TOC<31...l6> 

TOC<47 ... 32> 

TOC<63 .. .48> 

0 

joN 

AH3D0079 

3/4/94 

The most-significant bit of the C3200 Series TOC clock is 
contained in the most-significant bit of I/0 address 2000 0120 
The least-significant bit is located in the least-significant bit of I/0 
address 2000 0108. 

The TOC increments every microsecond. Before the TOC can be 
written, it must be hlrned off by dearing the on bit (0). All four 
remaining dock locations should then be written to, and the 
TOC set to continue counting by setting the on bit (1). 

The TOC should be disabled by clearing the control register 
(which disables counting) until loading the TOC is completed. 
This action avoids having the TOC incorrectly loaded while it 
continues to increment. 

Chapter 7 Implementation-specific features 287 

----~----·--·-... •········ 

•":·. ,. 

EDTX 2-04-CV-120 
51 056DOC065615 



�

. . ·: .. . : ~ .:· :_. 

· ... ·. · .. < ·. 

The TOC must be written to 16 bits at a time. To correctly load a 
64-bit value in the TOC counter, the TOC must be written at four 
separate locations, with four separate instructions. 

A special instruction, mov TOC, Sk, simplifies the process of 
reading the TOC. This instruction will atomically read the TOC 
information by performing the actual I/0 accesses in microcode. 
The mov TOC, Sk instruction cannot be interrupted when the 
TOC is actually being read. 

TOC - C3400/C3800/C4600 
TheC3400/C3800/C4600 Series implements the TOC inX-space 
as a single 64-bit counter. It can be initialized using the 
privileged instruction mov Sk, TOC. The TOC should be 
initialized immediately after the processor is powered up. 

The TOC will count continuously thereafter by incrementing in 
TOC <0> in 1-llS intervals. 

There is no way to tum off the TOC on C3400/C3800/C4600 
Series CPUs. 

A special instruction, mov TOC, sk, is used for reading the TOC 
information. The mov TOC, Sk can be executed by user code, 
and it is an atomic operation . 

288 CONVEX C-Series Architecture 

.,.: .. · ... . .·:. 

EDTX 2-04-CV-120 
51 056DOC065616 



�

CPU execution timer 

In order to provide accurate accounting information to the 
operating system, the multiprocessing C-Series CPUs include 
CPU execution timers (CTRs) for each process that maintain 
microsecond timing for each CPU's time spent in rings Q-3 
(system time) and ring 4 (user time). The CTRs are visible to the 
operating system in the hard ware communication registers. In a 
CIR-dependent manner, there is a set of CTRs for each CIR. Refer 
to the "CPU execution clock registers" section in Chapter 5 for 
the format of these timers. 

These timers are maintained by microcode on a demand basis. 
This means that if a CPU is running in ring 0 and executes a get 
of the ring 0 CTR for the CPU, the time will not be the up-to-date 
time. The demand events that cause the microcode to update a 
particular timer are primarily ring crossings and execution of the 
ctrsg instruction (a privileged instruction). 

The operating system uses ctrsg to instruct all CPUs to update 
their CTRs, that is, the timer for that CPU and ring. For example, 
on a C3200 Series CPU, if one thread of a process is the operating 
system kernel executing on CPUO (in ring 0) and the other thread 
is a user program in ring 4, the operating system thread can 
execute ctrsg and then read the ring 4 or ring 0 CTR and know 
that the time is accurate. This global timer updating is 
implemented with the processor trap mechanism. 

On C3200/C3800/C4600 Series complexes, the CPU execution 
timer is implemented with a single, hardware delta timer on 
each CPU. This resettable timer counts up by microseconds. An 
update of the CTR is done by reading the current CTR value 
from the communication register, adding the current delta time 
to that value, writing the sum back to the CTR, and dearing the 
delta timer. 

The C3400 Series CPUs use the TOC and a communication 
register (CTR). The delta value is the difference between the TOC 
and the CTR value. After access, the CTR is loaded with the 
current TOC to provide the delta value the next time it is 
accessed. 

Chapter 7 Implementation-specific features 289 

EDTX 2 -04-CV -120 
51 056DOC065617 



�

Thread timer 

The multiprocessing C -Series CPUs have one 64-bit microsecond 
_ timer per thread, implemented in microcode (not in a register), 
that is accessed by nonprivileged instructions_ The thread timer 
(TTR) allows each thread to determine the CPU execution time 
of any code region without the overhead of a system call. This 
register only reflects the CPU time on a ring-specific basis and 
cannot be used to time inner ring calls. It increments in bit <0> 
whenever a CPU is executing a thread. It can be read or written 
to at any time by the currently executing thread. 

The C3200/C3800/C4600 Series complexes implement the 
thread timer on each CPU and update it using the same 
hardware delta timer used to implement the CTRs. The delta 
timer is a microsecond timer that exists on each CPU. It is used 
to time intervals between accesses to the TTR or CTR The thread 
timer is updated by adding the delta timer to the current TIR's 
value and clearing the delta timer. 

The C3400 Series complexes use the TOC and a communication 
register. On demand, the delta value is the difference between 
the TOC and the communication register value. After access, the 
communication register is loaded with the current TOC to 
provide the delta value for the next time it is accessed. 

The rnov TTR, Sk instruction reads the thread timer by updating 
the TIR's value and copying the updated value to Sk. The mov 

sk, TTR instruction writes the thread timer by copying Sk to the 
current TfR' s value and clearing the delta timer. Refer to the 
CONVEX Assembly Language Refermce Manual (C-Series) for more 
detailed information on the instructions used to access the thread 
timer register. 

The thread timer is primarily used for timing sections of code 
running in ring 4, without including time spent in asynchronous 
events such as interrupts and page faults. The thread timer is not 
as effective in ring 0, since there are many events that can change 
CIR and TID in ring 0 and not affect the thread timer. These 
events do not affect the TTR since the old CIR or TID's thread 
timer is not saved, as it is in the extended frame on ring 
crossings. 

The thread timer register is saved on the stack on all cross-ring 
calls, and restored from the stack on all cross-ring returns. This 
enables the timer to track a particular thread's context if the 
thread migrates between CPUs during its execution. 

290 CONVEX C-Series Architecture 

I 
---,-,-:--____J.,;__ 

EDTX 2-04-CV-120 
51 056DOC065618 



�

On entry to the inner ring, the thread timer is cleared, although 
the CPU maintains the same TID. The outer ring timer value is 
saved in the return block, and the value is restored when control 
is returned to the outer ring. If an extended frame is pushed on 
the stack without a ring crossing (that is, a system call to ring 0 
from ring 0, and so on), the thread timer value in the extended 
frame is undefined. The subsequent rtn instruction examines the 
PC and determines no ring crossing occurred, so the thread timer 
is not popped from the extended frame. 

For example, if the thread takes an interrupt, the TfR is saved on 
the extended frame before entering the ring 0 interrupt handler. It 
is restored on the subsequent return from the interrupt handler. 

Chapter 7 Implementation-specific features 291 _j •.... ··· 

EDTX 2-04-CV-120 
51 056DOC065619 



�

CTR and TTR manipulation 

The multiprocessing C-Series CPU execution timers (CTR) and 
the thread timers (TfR) timers are closely related since both 
timers are maintained with the same delta timer. When an event 
forces the CTR to be updated, the delta timer is cleared, so the 
TTR must be updated at the same time. Similarly, when an event 
forces the TTR to be updated, the CTR must be also updated. 

Because these timers are so closely related, the specific order of 
actions that manipulate the CTR and TI'R are organized by 
event, rather than by each timer, and are as follows: 

• Power-up (cold start)-The TIR and delta timer are cleared. 

• Push extended frame (interrupts, exceptions)-If a ring 
crossing occurs, the CTR and TIR are updated, the TIR is 
pushed, and the delta timer is cleared. 

• Pop extended frame (rtn)-If a ring crossing occurs, the TTR 
is popped from the extended frame, the CTR is updated, and 
the delta timer is cleared. 

• Page fault-The TfR is pushed to the context block. If a ring 
crossing occurs, the CTR is updated, and the TTR and delta 
timer are cleared. 

• rtnc-If a ring crossing occurs, the TTR is popped from 
context block, the CTR is updated, and the delta timer is 
cleared. 

• ctrs g-The CTR and TTR are updated, and the delta timer 
is cleared (all CPUs). 

• rnov s k, TTR-The TTR is written, the CTR is updated, and 
the delta timer is cleared. 

• rnov TTR, Sk-The ITR and CTR are updated, and the delta 
timer is cleared. 

• mov Sk,CIR-TheCTRisupdated(intheoldCIR),andthe 
delta timer is cleared. The TTR is not modified. 

• mov Sk, TID-No action is taken. The TTR is not modified. 

• stcrnr-The CTR is updated (so the CTR is stored 
correctly), the TIR is updated, and the delta timer is cleared. 

• ldcmr-The CTR is updated (after loading, in case the 
current CIR is loaded), the TIR is updated, and the delta 
timer is cleared. 

292 CONVEX C-Series Architecture 

~: ·, · .... 
'. ··~- . ~-· 

EDTX 2-04-CV-120 
51 056DOC065620 



�

• idle Sk-TheCTR is updated (in the old, pre-SkCIR), and 
the delta timer is cleared.lf the fork is accepted in CIR Sk, the 
TTR is cleared. 

• wfork-The current CIR accepts a fork. No action is taken. 

• Enter the CPU idle loop (thread termination)-The CTR is 
updated. The event relies on subsequent thread creation to 
clear the delta timer. 

• Idle CPU takes interrupt-The delta timer is cleared. 

• Idle CPU accepts fork-The TTR and delta timer are cleared. 

• Base level interrupt-The CTR is updated, and the delta 
timer is cleared, regardless of whether or not a ring crossing 
occurred. 

Chapter 7 Implementation-specific features 293 

.. .... ····---··-·-·········---~--~--------,----

.. --:·· .. 

EDTX 2-04-CV-120 
51 056DOC065621 



�

Event counter - C4600 
The C4600 Series CPUs have a 64-bit event counter (EVCNT) 
that counts the number of occurrences of an event selected by an 
event select register (EVSEL)_ EVCNT and EVSEL may be 
written to or read by the user at any time. The events that may 
be selected by EVSEL are shown in Table 52. These registers are 
saved on the extended return block during inward ring 
crossings, and restored during outward ring crossings. 

Table 52 Values for EVSEL register 

t 

EVSEL3 __ 0 

0 

1 

2 

3 

4 

5 

6 

7-15 

Event 

Data Cache misses - increments by one for each Data Cache miss. A miss occurs 
any time that data is not found in the Data Cache for a Data Cache candidate read. 
A Data Cache candidate read includes: A and S register ld, ldO, ldl, pop; 
loads of VM and VLS; all indirect cell loads; all resource structure loads; and all 
return instructions. 

PTE cache misses - increments by one for each PTE Cache miss. 

Data Cache accesses- increments by one for each Data Cache candidate read 
(see Data Cache misses above)_ 

Vector Processor load/store elements- increments by VL each time a vector 
load, store, ldvi, stvi or ste occurs. For instructions under mask, 
increments by the number of asserted VM bits within the first VL bits of the VM 
register_ 

System clocks- increments by one each system clock (every -7.14 ns). 

Instruction Cache misses -increments by one for each Instruction Cache miss. 

Floating point operations- increments by: one for each floating point scalar add, 
sub, mul,div, neg, frint, sqrt, eq, gt, ge, cvt instruction; VLfor each 
floating point vector add, sub, mul, d i v, neg, fr int, sqrt, eq, gt, ge, cvt, 
sum, prod, min, max instruction; 2*VL for each floating point vector axpy, 
xypa, and dot. Also increments by an implementation dependant amount for 
scalar sin, cos, atan, expand ln. For vector floating-point instructions under 
mask, increments by the number of asserted VM bits ·within the first VL bits of 
the VM register (or twice this number for axpy, xypa, dot)_ 

Reserved 

The extended return block for the C4600 Series CPUs is 
described in the "Stack operations" section in Chapter 4. 

294 CONVEX C-Series Architecture 

I 
! 

I 
i 
I 
l , 
l 
I 
I 
I 
l 
I 
\ 
! 

EDTX 2-04-CV-120 
51 056DOC065622 



�

Memory and 
cache 
management 

CONVEX CPUs have implementation-specific cache 
management mechanisms. These mechanisms require purging 
the instruction, logical, ATU (ClOO series CPUs), and PTE 
(multiprocessing CPUs) caches under certain conditions. This 
section describes the cache management mechanisms for both 
the ClOO series CPUs and the multiprocessing CPUs. 

Cache management - C 100 

The ClOO Series CPUs perform a variety of implicit cache purges. 
They purge the instruction cache (!cache) for the following traps: 

• Instruction trace traps 

• Vector valid traps 

• Arithmetic traps 

• Interrupts 

• Conditions other than traps. 

Table 53 shows the general conditions under which !cache, 
Dcache, and ATU purges are performed by the ClOO CPUs. 

Table 53 Icache, Dcache, and ATUcache purges-CIOO Series CPUs 

Condition I cache 

pa tet execution Yes 

pate execution Yes 

pich execution Yes 

plch execution No 

ldsdr, ldkdr 
Yes 

execution 

trap/ Yes 
interrupt 

Dcache ATUcache ATU entry 

Yes Yes No 

Yes No Yes 

No No No 

Yes No No 

Yes Yes No 

No No No 

Chapter 7 Implementation-specific features 295 

EDTX 2 -04-CV -120 
51 056DOC065623 



�

Cache management - C3200/C3400/C3800 

In the ClOO series CPUs, the ATU is responsible for the 
virtual- to-physical address translation. The results of an address 
translation are encached in the ATU cache for future access. In 
multiprocessing C-Series CPUs, this cache is referred to as the 
PTE cache. 

Table 54 shows the general conditions under which !cache, and 
PTE cache purges are performed on C3200/C3400/C3800 series 
CPUs. 

Table 54 lnstnlction and PTE cache management---C3200/C3400/C3800 Series CPUs 

Condition 

ldcrnr execution 

thread termination 

mov sk, CIR 
execution 

mov Sk, TID 
execution 

patu execution 

pate execution 

pich execution 

ldsdr, ldkdr 
execution 

before rtnc 

interrupt handler 

idle 

pich patu pate 

Software invalidate Software invalidate NA CIR_PREV CIR_PREV 

Hardware NA NA 

Software NA NA 

Software NA NA 

NA Hardware NA 

NA NA Hardware 

Hardware NA NA 

Hardware invalidate Hardware invalidate NA 
CIR_PREV CIR_PREV 

NA NA Software 

Software NA NA 

Hardware 

PTE cache management 
The following sections describe PTE cache management for the 
C3200, C3400, and C3800 Series CPUs. 

PTE cache management - C3200 
Two sets of validity bits are maintained for the PTE cache. This 
means the entire PTE cache should not be purged more than 
once every 1,023 CPU cycles. The PTE cache entries are tagged 
with CIR and TID. The PTE cache does not require purging when 
these values are changed. 

296 CONVEX C-Series Architecture 

...... ,, ..... ,-... -~~-------------,---,------,-,---;-___,..,..,---.,.--

EDTX 2-04-CV-120 
51 056DOC065624 



�

Note 

Conversely, the PTE cache must be purged when the SDRs 
change. The SDRs change implicitly when the ldcmr instruction 
is executed. Since the ldcmr, ldsdr, ldkdr, patu, or pate 
instructions do not purge the PTE, software has the flexibility to 
control how often the cache is purged. 

For example, the operating system loads multiple 
communication register sets with repeated ldcmr instructions to 
initialize all processes before allowing them to execute. The 
required cache purging is performed before execution of the mov 
Sk, CIR instruction which transfers control to a new process. 

Execution of a pate instruction does not require the instruction 
cache to be purged. The pate is usually due to the validation of a 
page of resident data or text (in which case the data is correct if it 
is in the cache), or the invalidation of a page (a fault will occur). 

The interrupt handler needs only to purge the instruction cache 
(because it has changed to the interrupt CIR) if page zero ring 0 
interrupt context is not mapped globally to all CIRs. The interrupt 
handler executes with multiple threads and may execute different 
code streams. 

PTE cache management - C3400 
The C3400 Series CPUs have a two level PTE cache. The outer 
level cache contains a purgable cache RAM with 2 k entries. The 
inner cache is 256 entries, and is on the chip for the scalar unit. 

PTE cache management - C3800 
The C3800 Series CPUs have both a level one PTE cache and a 
level two PTE cache. The pate instruction purges one entry in 
the level two cache. This instruction does not modify the level 
one cache. If the level one page tables are modified, then a pa tu 
must be executed to purge the entire level one cache and the 
entire level two cache. 

Instruction cache management 
The scalar processor fetches both scalar and vector instructions 
from the instruction cache (Icache). Each CPU in the complex 
maintains an Icache of recently prefetched and executed 
instructions. This increases performance for programs that 
frequently access the same virtual memory locations, such as 
frequently called subroutines. 

The entries in the !cache are associated by virtual address only. 
They are not tagged with CIR or thread ID, so the instruction 
cache must be purged any time these values change. 

Chapter 7 Implementation-specific features 297 

EDTX 2-04-CV-120 
51 056DOC065625 



�

. ·.] 

' .. ·.--·.· 

· .. ·.·.: 

Sometimes the lcache is purged without an explicit software 
command, for example, when a CPU leaves the idle loop and 
takes a fork in a new CIR (with a new TID). Otherwise, the 
management of the lcache is primarily controlled by using the 
pich instruction. 

The lcache is purged on a per-CPU basis, using the pich 
instruction. A process must be single-threaded to execute pich 
and to ensure that the !cache for the entire process is purged. 

A CPU purges the Icache for a posted fork The idle Sk 
instruction always purges the !cache, because the Icache is also 
purged when a wfork, cfork, or idle instruction kills the 
current thread (new_CIRis not equal to old_CIR)_ 

The CPU purges the !cache if a fork is taken directly in CIR Sk 
(where Sk specifies which CIR to enter next). If there is no fork in 
CIR Sk, the CPU must purge the Icache before entering the idle 
state, even though the thread is not deallocated. Although a fork 
may not exist in CIR Sk, the CPU idle loop may take a fork in 
another CIR. 

Instruction cache management - C3ZOO 
The C3200 Series CPUs maintain two sets of validity bits for the 
lcache entries. At any given time, one set is used for Icache 
accesses and the other is cleared. When the Icache is purged, the 
hardware switches to the second set and clears the other. The 
second set then becomes the first. 

It takes 1,024 CPU cycles to clear the unused copy. If a purge is 
initiated within 1,024 machine cycles of a previous purge, 
execution is halted until a cleared copy can be prepared. Software 
should avoid this situation. 

Instruction cache management • C3400/C3800 
The C3400/C3800 Series CPUs use a purgable instruction 
validity RAM allowing the Icache to be purged quickly. The 
C3800 Series Icache is 16 Kbytes, and the C3400 Series Icache is 
4k instructions. 

The look·ahead address generator tries to remain ahead of the 
instruction processor. If the instruction processor must be 
restarted, the look-ahead address generator is also restarted. 

298 CONVEX C-Series Architecture 

: .. :. 

EDTX 2-04-CV-120 
51 056DOC065626 



�

Data cache management 
The multiprocessing C-Series CPUs use a multipart memory 
system. The I/0 subsystem has a separate port to main memory 
since it performs many of the same functions as a CPU. Because 
the memory system is multiported, a CPU complex with shared 
memory must maintain the consistency of each CPU's data 
cache. This is done by ensuring that when one CPU has loaded 
data and caused a local encachement, it is notified when another 
CPU stores data to that address location. In this manner, both 
CPUs maintain a consistent view of physical memory. 

Data cache management - C3200 
The data cache size on the C3200 is one page, or 4 Kbytes. C3200 
CPUs use a technique called remote invalidation, in which each 
CPU monitors all memory ports for data stores and invalidates its 
local data cache when they occur. There are some cases when 
invalidates are missed. For example, if one CPU is in a loop, 
loading and comparing a word of memory, the data could become 
stuck in that CPU's data cache and not be invalidated when 
another CPU stores data to the same address location. This would 
also happen if the remote invalidate from the storing CPU was 
received by the loading CPU before the load data returned from 
memory and wrote the cache. 

Following these software guidelines for communication through 
shared memory can avoid missing remote invalidates. 

• A lock byte with full semaphoring must be maintained 
around the region of shared memory. 

• A tas ef fa instruction must be successfully performed (the 
carry bit (C) returns as 1) before writing or reading the shared 
region. 

• A tac ef fa instruction must be performed after reading or 
writing is complete. Since thetas instruction ensures the lock 
byte is set when it succeeds, the return status from the tac 
instruction need not be checked before continuing. 

Both of these instructions perform an msync instruction. 
They wait for all stores on the processor to reach the memory 
system boundary before performing the test and modify (set 
for tas, dear for tac). 

The C3200 Series CPUs provide an explicit msync instruction in 
case it is needed for other shared memory applications. One such 
application is memory structures locked with communication 
registers, described in detail in Chapter 5. 

Data cache management - C3400/C3800 
The data cache size on a C3400/C3800 Series CPUs is four pages. 
The cache is tagged with a virtual address instead of a physical 

. ~- ·. . 

Chapter 7 Implementation-specific features 299 

·- .. ' "' ··•. · ... ~-

·:· . ..... 

EDTX 2-04-CV-120 
51 056DOC065627 



�

·.·.· .. :·· 

, .··.·I 

address. To avoid an aliasing problem, an encache bit exists in the 
PTEs. This bit should be set when a physical page has more than 
one virtual mapping. 

A separate set of validity bits is maintained for threaded and 
non threaded cache cells. Both sets of validity bits must be 
purged explicitly by software when the mapping between 
processes and CIRs change. All operations that require memory 
synchronization such as msync, tas, and tac will purge the 
nonthreaded validity set. The threaded validity set must be 
purged by software when the CPUs TID register is changed. 

300 CONVEX C-Series Architecture 

... . ·. ·~. 
:.: 

EDTX 2-04-CV-120 
51 056DOC065628 



�

I 

I 
._.l . 

. ···.:.-:-:-.•.. -~· 

Cache management - C4600 

Each C4600 CPU has a set of caches that is an integral part of the 
system complex. Each cache on a CPUs is tagged with enough 
information to ensure proper ownership of data contained 
within the cache. 

The size, address, and tag of each C4600 cache are summarized 
in Table 55. 

Table 55 C4600 cache summary 

Cache Size 

Cache Address 

Address 

CIR 

TID 

Cache Tag 

Address 

ClR 

TID 

PTE Cache Data Cache Instruction Cache 

32K Entries 16KBytes 256K Bytes 

VA31,26 .. 12 VAt3 .. 0 VA17 .. 0 

Yes No No 

No No No 

VA3L27 VA31..14 VA31 .. 1s 

Yes No No 

Yes No No 

PTE cache management 
The C4600 PTE cache is a per CPU cache that maintains recently 
used virtual-to-physical address translations. Whenever a CPU 
makes a virtual address reference, the hardware examines the 
PTE cache to determine if the virtual address associated with the 
executing process and thread has already been translated to a 
physical address. If the virtual-to-physical translation does not 
exist in the PTE cache, the hard ware traverses the page tables to 
determine the virtual-to-physical association. Once the 
virtual-to-physical association is made, the hardware places the 
second or thread-level PTE describing the virtual-to-physical 
association into the PTE cache and tags it with the CIR (and the 
TID if the page is thread-local) .. 

To insure proper virtual-to-physical translations when 
multiplexing different processes onto a CPU, a specific PTE 
cache entry can be purged using the pate instruction, while the 
entire PTE cache can be purged using the patu instruction. 

PTEs are accelerated onto the C4600 PTE cache from memory in 
blocks of eight. A pate instruction removes all PTEs within a 

Chapter 7 Implementation-specific features 301 

EDTX 2-04-CV-120 
51 056DOC065629 



�

··:.: ... ' 

block from the PTE cache. This is significantly different from the 
C3800, where PTEs are brought into the PTE cache one PTE at a 
time. 

Instruction cache management 
The instmction cache is a per CPU cache that contains the most 
recently fetched and executed instructions from memory. This 
cache enables quick access to recently executed instructions 
without having to access the main memory subsystem for the 
instructions. The instruction cache entries are tagged with 
virtual address only. This means that whenever CIR is changed, 
the entire instruction cache must be purged. (The assumption is 
that thread-local text segments do not occur.) The pich 
instruction will purge the instruction cache .. 

Data cache management 
The data cache is a per CPU, write-through cache that contains 
the most recently used data from memory. This cache enables 
quick access to recently used data without having to access the 
memory subsystem for the data. The data cache entries are 
tagged with virtual address only. There is no attempt in 
hardware to maintain data cache integrity among multiple CPUs 
in a system complex. Data cache consistency with multiple CPUs 
is the responsibility of the software, and is performed in the 
same manner as for the C3800. The plch instruction will also 
purge the data cache .. 

302 CONVEX C-Series Architecture 

... :·.<· 

EDTX 2-04-CV-120 
51 056DOC065630 



�

Scalar loads that hit the data cache are not checked for read 
validity by the PTE cache mechanism. However, in order to 
maintain system security, the ring maximization check is 
performed on all memory accesses, including scalar loads that 
hit the data cache. 

Cache coherency 
C4600 systems maintain cache coherency by purging caches on 
specific events. Some of these purges are performed by the 
hardware (microcode), while others must be performed by the 
software. Table 56 identifies the events that cause purges of the 
C4600 caches. In this table, H indicates that the cache is purged 
in hardware by the indicated event, while S indicates that the 
cache was possibly made invalid by the event and may need to 
be purged by software. 

Chapter 7 lmpfementation-specific features 303 

EDTX 2 -04-CV -120 
51 056DOC065631 



�

~ · ....... : 

, :, ,_ r 

-I 
t 

· .. ' 
··, :··· 

"::., 

Table 56 C4600 cache management 

Instruction/Microcode Sequence PTE cache Dcache Dcache 
I cache Thread Non-Thread 

tas/tac H i 
; 

swap 
mat H 
sndr/rcvr/ getr /incr /matr H 
pshr/popr H 
casr H 

msync H 
plch H H 
psch H 
pich H 
patu H9 ss ss 
pate H-block9 ss ss 
mov 5k,CIR (& accel SDRs) 57 57 57 

movSk,TID H 
thread creation 2 3 

join (and go idle) H H 
join (and continue) H 
wfork H H 
idle Sk/ eni_idle Sk H H 3 

ldcmrw S4 s s s 
ldsdrH H H H H 
System Resource Structure unlock 5 :> 

1Where possible, on semaphoring instructions, purges will be avoided if the lock fails. For example, incr.w need not 
purge if the opening tas fails.. 

2since the PTE cache is tagged with CIR and TlD, it does not have to be purged when a CPU picks up a fork. 
3Each CPU's microcode will retain the previous value of CIR. Titis value represents the state of the accelerated SDRs 
and !cache. When the microcode picks up a fork, the new CIR value is checked to determine if it is different from the 
previous va \ue. If CIR is different, the SDRs are accelerated and the I cache is purged. 
~ftware purges the PTE Cache when a ldcmr is executed for a OR th<lt may have PTE entries encached anywhere 
within the svstem. 

SReads of th~ system resource structure (page 0 pointer and subsequent stack pointer) are done in cache bypass mode 
to avoid purging. 

"The C4600 data cache size cannot be changed on ring crossing. It is assumed that any aliasing problems caused by a 
> 4kbyte data cache in the kernel lllill be solved via software. 

7These were purged by microcode on C3200/C3400/C3800, but are left up to software on C4600 systems. This was 
done to allow the OS to avoid lcache/Dcache purges on a change of CIR when only Ring 0 data (that is, mapped the 
same in all processes) is to be touched. 

8If the virtual-to-physical mapping is ch<lnged for a virtual page that may be accelerated into the data cache, then the 
data cache must be purged to avoid cache coherency problems; this is bee.; use the PTE cache is not se.;rched on a data 
cache hit. 

9Purges PTE cache or c:ache block immediate! y on a II CPUs. 
1D:It is assumed that no CPU is in the specified OR when a ldcmr is executed. 
nit is assumed th<lt the process is single threaded when a ldsdr is executed. 

304 CONVEX C-Series Architecture l .. 
1-l 

··············-··-··-----~ 

EDTX 2-04-CV-120 
51 056DOC065632 



�

Memory 
interleave 

Memory interleave is the process of swapping address bits to 
determine which physical memory bank to access. 

Interleave is desirable because the dynamic RAMs (DRAMs) in 
memory require multiple CPU dock cycles (depending on 
DRAM speed) to perform all read and full write operations. A 
full write refers to any word-aligned word or longword store. A 
word-aligned address is an address with the two least-significant 
bits equal to zero. For example, 0000 2000 or 8000 4FFC. 

Through interleaving, a different bank may be accessed on each 
dock cycle, allowing sequential requests to ascending banks to 
proceed at full speed. The C-Series memory subsystems may be 
interleaved in a variety of ways. 

A minimum of eight independent memory banks (16 for C3800 
Series CPUs) are required to make the memory system return 
data at the rate of one word per CPU clock cycle. The number of 
banks should be chosen to match the cycle time. 

For example, a read instruction takes eight clock cycles to return 
data (dear a busy bank on C3800 Series CPUs). If eight 
successive read requests are made (at one per clock and one per 
bank), the first word of read data will return, beginning eight 
CPU clock cycles after the first request and one word more with 
each successive clock cycle. If as many banks as clock cycles 
exist, the system can sustain a data return rate of one word per 
clock. 

If a multiprocessing C -Series CPU is making a stream of adjacent 
longword requests, each request goes to a different bank. 1bis 
allows requests to be processed with some overlap. 

Chapter 7 Implementation-specific features 305 

I 
I 
t 

EDTX 2-04-CV-120 
51 056DOC065633 



�

.. ::: .. .-· 

Interleave - C 100 

A ClOO Series memory subsystem supports 4-, 8-, 16-, and 
32-way interleave. In order to achieve an interleave above 4, all 
memory access units (MAUs) must be the same size (all16 
:Mbyte, all32 Mbyte, or all 128 Mbyte). 

Four-way interleave is achieved by switching between the four 
memory banks present on each MAU. Interleaves greater than 
four are achieved by switching between MAUs. In order for this 
interleaving scheme to work, the number of MAUs present must 
be a power of two. Otherwise, only 4-way memory interleave 
can be obtained. 

If all (MAUs) are the same size, the interleave obtained is a 
function of the number of MAUs, as shown in Table 57. 

Table 57 Memory interleave-ClOO Series CPUs 

Number of Memory 
MAUs interleave 

1 4 

2 8 
i 

3 4 

4 16 

5 4 

6 4 

7 4 

8 32 

306 CONVEX C-Series Architecture 

EDTX 2-04-CV-120 
51 056DOC065634 



�

· .... ·· 
·~ .. 

Interleave - C3200/C3400 

The C3200/C3400 Series memory subsystem can be interleaved 
with more flexibility than the ClOO Series. Each memory control 
module (MCM/MCM3) contains eight independent memory 
word banks with from one to four 32-bit wide rows of memory. 
A module or board with all of its banks is installed as either even 
or odd. There can be eight MCMs and 64 banks per complex. 

There are a maximum of four memory ports on the C3400 Series 
complex. Normally, complexes with up to four CPUs have a port 
available for each CPU. Complexes with more than four CPUs 
share the four memory ports. 

If two CPUs share a port, as is the case in a complex with more 
than four CPUs, and both CPUs on a port are attempting to 
access memory simultaneously, they must share the throughput 
on that port 

C3200/0400 Series CPUs use address bits <7 . .3> to select 
memory banks for interleaving. Bits <7 .. 6> select the memory 
board pair and bits <5 . .3> select the bank_ 

With a rate of one word per bank {or one longovord per two 
banks), the C3200 Series complexes can have up to 64 word 
banks (or 32 longword banks), allowing up to four CPUs to 
receive data at the rate of one per clock. An eight-clock cycle 
allows eight words (=64 words per bank/8 clocks) of data, or 
four longwords (a longword from each memory board pair) of 
data to be returned per cycle from the memory. 

With one word per bank, or one longword per two banks, the 
C3400 Series CPUs can have up to 64 word banks or 32longword 
banks, allowing up to four CPUs to receive data at the rate of one 
per dock. 

The eight memory banks on each MCM are completely 
independent. This independence allows the memory system to 
be interleaved to support a pipelined access rate of one cycle or 
one full write per clock cycle (not including memory refresh). 
Using a 40-ns clock rate, this corresponds to a memory 
bandwidth of 200 Mbytes per second {2 words/ clock cycle) from 
a single pair of MCMs. 

All processors (CPU or l/0) attempting to access the same pair 
of MCMs will be competing for the same 200 Mbytes per second 
of available bandwidth. The entire bandwidth is available to one 
processor only if no other processors make requests to a single 
port. 

Chapter 7 Implementation-specific features 307 

I 
I. 
I 
I 
i 

EDTX 2-04-CV-120 
51 056DOC065635 



�

By interleaving memory at the board level as well as at the bank 
level, the bandwidth available from a fully configured system of 
four pairs of MCMs is 800 Mbytes per second. Although there 
are five ports (four CPU and one I/0) to access memory, only 
four can be in use at a time. Therefore, 800 Mbytes per second is 
the maximum bandwidth available. The 800 Mbytes per second 
access rate can be sustained provided that any accesses to the 
same bank of the 64 word bank memory system occur at least 
eight clock cycles apart. 

A read cycle or a full write cycle can complete in eight clock 
cycles. Partial word write cycles and test-and-modify cycles take 
11 clock cycles. A partial write refers to any byte or halfword 
store. A partial write is also any word or longword store to an 
address with either of the two least-significant bits not equal to 
zero. For example, a longword stored to 0000 2002, or a word 
stored to 8000 EEEl. 

Although the C3200 /C3400 Series memory sys_tem can consist of 
any number of MCM pairs up to a total of four pairs, installing 
less than four pairs of MCMs decreases the degree of bank-level 
interleaving, which causes a reduction in the available memory 
system bandwidth. 

In addition, board-level interleaving is possible only over 
combinations of two or four pairs of MCMs. For example, if 
three pairs of MCMs are in use, the least-significant two-thirds 
of the address space would be 16-way interleaved over board 
pairs 0 and 1, and the most-significant one-third of the address 
space would be S-way interleaved over board pair. 

Although the memory system can consist of any number of 
MCM pairs up to a total of four pairs, installing less than four 
pairs of MCMs decreases the degree of interleaving which 
causes a reduction in the available memory system bandwidth. 
Additionally, board-level interleaving is possible only over 
combinations of two or four pairs of MCMs. If three pairs of 
MC:tvis are in use, the least-significant two-thirds of the address 
space would be 16-way interleaved over board pairs zero and 
one, and the most-significant one-third of the address space 
would be eight-way interleaved over board pair two. 

I 

308 CONVEX C-Series Architecture ~-~·=J 
EDTX 2-04-CV-120 

51 056DOC065636 



�

Table 58 shows the available bandwidth in Mbytes per second 
and the interleaving possible for various combinations of MCMs 
for C3200/C3400 Series complexes. 

Table 58 Memory subsystem bandwidth and 
interleaving---C3200/C3400 Series CPUs 

Number of 
Bandwidth Interleave factor 

MCMpairs 
(Mbytes per 

second) 64bit 32bit 

1 200 8 16 

2 400 16 32 

3 600 16and8 32 and 16 

4 I 800 32 64 

I 
! 

Chapter 7 Implementation-specific features 309 

.... lli!lllll'!' ..... -------........ ---------------:-:---,--~-,--~··-····- ~-J 

EDTX 2-04-CV-120 
51 056DOC065637 



�

Interleave - C3800 

The C3800 Series memoty control module, referred to as the 
Memory Board (MB), contains 32 independent memoty word 
banks (16 even and 16 odd) with from one to four 32-bit wide 
rows of mernoty. There can be eight NMBs and 256 word banks 
per complex. 

C3800 Series CPUs use address bits <9 . .3> to select memory 
banks for interleaving. Bits <9 .. 7> select the memoty board pair 
and bits <6 .. 3> select the bank. 

With one word per bank, or one longword per two banks, the 
C3800 Series CPUs machines can have up to 256 word banks, or 
128 longword banks, allowing up to eight CPUs to receive data 
at the rate of one per dock. A 12-clock cycle allows eight words 
or four longwords of data to be returned per cycle from the 
memoty. 

The 32 memory banks on each NMB are completely 
independent. This allows the memoty system to be interleaved 
to support a pipelined access rate of one read or one full word 
write per clock cycle (not including memory refresh). Using a 
16.67-ns dock rate, this corresponds to a memory bandwidth of 
480 Mbytes per second (2 words/clock cycle) from a single 
NMB. 

All processors (CPU or 1/0) attempting to access the same NMB 
will be competing for the same 480 Mbytes per second of 
bandwidth available to a single port. The entire bandwidth is 
available to one processor only if no other processors make 
requests to that NMB. 

By interleaving memory at the board level as well as at the bank 
level, the bandwidth available from a fully configured system of 
eight NMBs is the number of CPU ports times the bandwidth 
available to a single port, or 3840 Mbytes per second. 

Although there are nine ports (typically, eight CPUs and one 
1/0) to access memoty, only eight can be in use at a time. 
Therefore, 3840 Mbytes per second is the maximum bandwidth 
available. The 3840 Mbytes per second access rate can be 
sustained, provided that any accesses to the same bank of the 256 
word bank memory system occur at least eight dock cycles 
apart. 

A read cycle or a full word write cycle can complete in eight clock 
cycles. Partial write cycles and test-and-modify cycles take 20 
dock cycles. 

310 CONVEX C-Series Architecture 

···.•_.':"·, .. ·, .· 

EDTX 2-04-CV-120 
51 056DOC065638 



�

:· 

Although the C3800 Series memory system can consist of any 
number of NMBs (up to a total of eight), installing less than eight 
NMBs decreases the degree of interleaving, which causes a 
reduction in the available memory system bandwidth. 

In addition, board-level interleaving is possible only over 
combinations of two, four, or eight NMBs. For example, if three 
NMBs are in use, the least-significant two-thirds of the address 
space would be 64 word-way interleaved over boards zero and 
one, and the most-significant one-third of the address space 
would be 32 word-way interleaved over board pair two. 

Table 59 shows the available bandwidth in Mbytes per second 
and the interleaving possible for various combinations of NMBs 
for C3800 Series CPUs. 

Table 59 Memory subsystem bandwidth and 
interleaving-C3800 Series CPUs 

Number of 
Bandwidth Interleave factor 

NMBs 

1 

2 

3 

4 
I 
I 

5 

6 

7 

8 

(Mbytes per I 
second) 64bit I 32 bit 

480 I 16 16 

960 32 32 

1440 32 and16 64and32 

1920 64 64and 32 

2400 64 and 16 I 128 

2880 ! 64and 32 128and 32 

3360 64, 32, and 16 128, 64, and 32 

3840 128 256 

Chapter 7 Implementation-specific features 311 

EDTX 2-04-CV-120 
51 056DOC065639 



�

.. .;-.-. 

312 CONVEX C-Series Architecture 

. -~ .. '· c . 

EDTX 2-04-CV-120 
51 056DOC065640 



�

Glossary 

A 

The terms in this glossary are defined as they are used at 
CONVEX. Standard acronyms are also included. Boldfaced 
The terms in this glossary are defined as they are used at 
CONVEX. Standard acronyms are also included. Boldfaced 
terms within a definition are found in separate entries. 

A registers 
See address registers. 

ac power-controller 
The device that regulates ac power from the cabinet circuit 
breaker to the computer's internal electronic and 
electromechanical components. 

access modes 
Any of the five processor access modes in which software 
executes. On the CONVEX system, processor access modes are 
(in order from most to least privileged and protected): 

• Kernel (mode 0) 

• Executive (mode 1) 

• Supervisor (mode 2) 

• Agent (mode 3) 

• User (mode 4) 

The operating system uses access modes to define protection 
levels for software executing in the context of a process. 

address 
A user-assigned number used by the operating system to 
identify a storage location. 

313 

;.. . . 

EDTX 2-04-CV-120 
51 056DOC065641 



�

:. ·: j 

i 

I 
! 

address registers (A registers) 
A set of registers intended primarily for memory address 
manipulation. 

address space 
Memory space, either physical or virtual, available to a process. 

address translation faults (ATF) 
Exceptions that results from a page table entry violation or a 
nonresident page. 

address translation unit (ATU) 
An address cache that accelerates the generation of physical 
addresses. 

addressing modes 
How the effective address of an instruction operand is calculated 
using the general registers. 

agent 
Processor access mode 3. 

ALU 
See arithmetic logic unit. 

architecture 
The physical structure of a computer's internal operations, 
including its registers, memory, instruction set, input/ output 
structure, and so on. 

argument pointer 
An address register specifically dedicated (by convention) to 
point to the subroutine argument portion of a program. This 
program portion can either be in the stack or in part of logical 
memory pre-allocated by the compiler. 

arithmetic logic unit (ALU) 
A basic element of the central processing unit (CPU) where 
arithmetic and logical operations are performed. 

array 
An ordered structure of operands of the same data type. The 
structure of an array is defined as length, rank (or dimension), 
stride, and data type. 

Atomic operation 
An atomic operation is an indivisible operation. That is, once the 
operation begins, no other operation or event, such as 
interrupts, may intervene until the operation is complete. 

314 CONVEX C-Series Architecture 

.... .··-.· 

·'):· :·':····· 

EDTX 2-04-CV-120 
51 056DOC065642 



�

B 

: OL0• 

:c;_.·· 

ATF 
See address translation fault_ 

ATU 
See address translation unit. 

b 
See byte_ 

backplane 
The circuitry and mechanical elements used to connect the 
boards of a system. Also called the motherboard. 

backplane (VMEbus) 
A printed circuit (PC) board with 96-pin connectors and signal 
paths that bus the connector pins. Some VMEbus systems have a 
single PC board, called the Jl backplane. It provides the signal 
paths needed for basic operation. Other VMEbus systems also 
have an optional second PC board, called a J2 backplane. It 
provides the additional 96-pin connectors and signal paths 
needed for wider data and address transfers. Still others have a 
single PC board that provides the signal conductors and 
connectors of both the Jl and J2 backplanes. 

base-level interrupts 
Interrupts that occurs when the kernel stack is the process stack; 
thus, a base-level interrupt occurs when no other interrupts are 
pending or currently being processed. 

bit (b) 
A binary digit. 

bit complement 
Exchanging Os and ls in the binary representation of a number. 
Also known as one's complement 

block 
To stop the flow of execution. Execution cannot begin until the 
block no longer exists. Also called a hazard. 

boot 
The procedure (bootstrap) by which a program is initiated the 
first time. Typically, a boot is performed when power is first 
applied to the processor. 

branch 
A class of instructions, specifically relative to the program 
counter, used to transfer control of a program. 

315 

EDTX 2 -04-CV -120 
51 056DOC065643 



�

c 

breakpoint 
An instruction that aids in the debugging of a program. In 
particular, a breakpoint is a specific location in a program where 
one would desire to determine the various values of 
programmer-defined variables. 

byte (b) 
Eight contiguous bits starting on an addressable byte boundary. 
The smallest addressable unit in a CONVEX computer. 

Clanguage 
The programming language of the ConvexOS operating system. 

c 
Address carry, PSW (C)_ 

c shell 
The standard shell provided with Berkeley standard versions of 
UNIX and ConvexOS. 

cache memory 
A small, high-speed buffer memory used in computer systems to 
temporarily hold a portion of the contents of the main memory 
that are, or believed to be, currently in use. CONVEX computers 
contain many separate caches, including logical cache (lcache), 
data cache (Dcache), instruction cache (!cache), ATE cache, and 
PTE cache. 

cache purge 
The act of invalidating or removing entries in a cache memory. 

central processing unit <CPU> 
That portion of a computer that recognizes and executes the 
instruction set. 

central processing unit bulkhead 
A special panel on the CPU cabinet Because the CONVEX 
supercomputer is electromagnetic interference (EMI) shielded, 
cables that connect internal components to the components or 
devices that are external to the CPU cabinet must pass through 
EMI shielded connectors mounted in a special panel called the 
CPU bulkhead. 

chaining 
The ability to overlap vector operations in the CPU_ For instance, 
in the case of a vector load foilowed by a vector add, the add may 
be started as soon as the first operands are available, rather than 
waiting for the load to complete_ 

316 CONVEX C-Series Architecture 

EDTX 2-04-CV-120 
51 056DOC065644 



�

D 

chassis 
The physical box where the computer is housed. 

compiler 
A software tool used to translate the source code of a high-level 
language, such as C or FORTRAN, into object code (machine 
language), understandable to the computer. 

context (processor) 
The entire, current state of the machine associated with the 
executing process. 

ConvexOS 
The CONVEX version of the UNIX operating system. 

CPU 
See central processing unit. 

d 
See double-precision. 

data types 
The ways in which bits are grouped and interpreted. For 
processor instructions, the data types identify the size of the 
operand and the significance of the bits in the operand. 

destination 
The register or memory locatibn that receives the result of the 
operation. 

displacement 
A derived 32-bit value used to indicate the distance in bytes 
between the referenced data and some base value. This base 
value can either be 0 or the contents of an address register. Note 
that 16-bit displacement values are sign extended to 32 bits. 

double-precision (d) 
This is a double-precision floating-point number that is stored in 
64 bits. See also single-precision. 

drawer bulkhead 
The multibus drawer for the CONVEX supercomputer is 
electromagnetic interference (EMI) shielded. Cables that connect 
the internal components of the drawer to the components or 
devices that are external to the drawer must pass through 
EMI-shielded connectors mounted in a panel in the rear of the 
drawer. This panel is the drawer bulkhead. 

--·-··--·------·--- ---- ·····-····--·······--------------,-,.,---,· 

317 

EDTX 2-04-CV-120 
51 056DOC065645 



�

E 

F 

EBUS 
There are five ports on the memory system. These are referred to 
as ports A, B, C, D, and E. Ports A-D feed processors A-D; port 
E feeds the I/0 system. Thus, EBUS is the bus to portE of the 
memory system. 

electrostatic discharge (ESD) 
The release of static electricity from a charged object to a 
grounded object. 

EPROM 
Erasabk programmable read-only memory. 

EEPROM 
Electronically erasable, programmable read-only memory. 

ESD 
See electrostatic discharge. 

exceptions 
Hardware-detected events that disrupts the running of a 
program, process, or system. See also faults, interrupts. 

executive mode 
Processor access mode 1. 

expansion cabinet 
A secondary cabinet designed' to house peripheral computer 
equipment, such as tape drives, disk drives, and controllers. See 
also processor cabinet. 

faults 
Exceptions that halt the instruction, but leave the registers and 
memory in a consistent state. The instruction can often resume its 
course when the cause of the fault is corrected. See also exceptions. 

FIFO 
Abbreviation for a first-in, first-out queue. 

firmware 
Software (computer programs) that reside in a physical device, 
such as EEPROMs or ROMs. 

firsHn, first-out (FIFO) queue 
See queue. 

flags 
1-bit operands used to indicate the true or false results of an 
operation, or to enable or disable an operation. 

318 CONVEX C-Series Architecture 

EDTX 2-04-CV-120 
51 056DOC065646 



�

G 

I 

1 

floating point numbers 
A numerical representation with a sign {positive or negative) bit, 
an exponent part, and a fraction part. The fraction is a fractional 
representation. The exponent is the value used to produce a 
power of tv.•o scale factor (or portion) that is subsequently used to 
multiply the fractions to produce an unsigned value. See also 
fraction, guard bit. 

forced faulting mode 
A mode of operation where the CPU diagnostics cause simulated 
page faults to occur. In forced faults mode, a bit is set in hardware 
so that some percentage of the time data is accessed in main 
memory, the entire context of the processor is saved off and then 
restored. This process thoroughly exercises the buses that are used 
to capture and restore the context of the machine as well as the 
entire memory system. 

FORTRAN language 
A high-level software language used mainly for scientific 
applications. 

fraction 
A part of a floating point number. The fraction is the unsigned 
fractional part that denotes the magnitude of the operand. 

frame 
See page frame. 

fsck utility 
A file systems check program used for maintenance and repair 
of data stored on disk. 

function unit 
A part of the CPU that performs a set of operations on quantities 
stored in registers. 

gate arrays 
Structure a used by the ring protection mechanism to define the 
enlry points from a lower privileged ring to a higher privileged 
ring. 

gather 
Loading a vector register using another vector of indices 
instruction. See the ldv i instruction in the CONVEX Assembly 
Language Reference Manual (C Series). 

319 

···<.< .-

i. 

EDTX 2-04-CV-120 
51 056DOC06564 7 



�

H 

guard bits 
A bit to the right (least significant bit) of a floating point fraction. 
The guard bit is used in intermediate calculations using floating 
point operands. See also round bits. 

h 
Abbreviation for halfword. 

halfword (h) 
Two bytes (16 bits). See also longword; word. 

hazard 
A block in the flow of execution that cannot be passed until the 
hazard no longer exists. Also called block 

Huffman's encoding 
A binary encoding scheme that results in the densest packing of 
information. 

I cache 
See instruction cache. 

immediates 
These are literal operands (numbers) contained within the 
instruction stream. 

indexing 
The process of adding a displacement to the contents of an 
address register. 

indirection 
The process of obtaining the address of an operand by first 
referencing a word contained within memory. 

input/output processor (VIOP) 
The standard input/ output device in the CONVEX 
supercomputer. The VIOP performs all the functions required to 
move data between main memory and the VMEbus subsystems, 
including logical-to-physical address translation and 
64-bit-to-16-bit data path conversions. 

instruction 
Instructions are used by prograrruners to direct operations on the 
system's register set and memory. 

instruction cache (!cache) 
A cache that contains the most recently accessed instructions. 
The Icache accelerates the decoding of instructions to permit the 

320 CONVEX C-Series Architecture 

EDTX 2-04-CV-120 
51 056DOC065648 



�

J 

K 

L 

simultaneous decoding on one instruction with the execution of 
another instruction. 

interrupts 
Occurrences, other than exceptions, that change the normal flow 
of instruction execution. Interrupts originate from hardware, such 
as an l/0 device. See also masko.ble interrupts. 

interval timer counter (lTC) 
A privileged register used to generate interrupts based on the 
passage of time. 

jump 
A departure from normal one-step incrementing of the program 
counter (PC). See branch. 

kernel 
The part of the ConvexOS operating system that resides in ring 
0. The kernel typically manages process creation and deletion, 
scheduling, and other high-level, system-wide features. 

keyswitch 
A four-way electrical switch that controls the application of 
electricity to the central processing unit (CPU) boards. 

See longword. 

language specific information (LSI) 
The area in the stack that is created as part of a subroutine call. It 
is language-dependent and may be zero. 

last-in, first-out stock 
See stack. 

least significant bit (LSB> 
The right-most bit in a field. The bit with the least weight in a 
calculation. 

UFO 
Last-in, first-out stack. See also stack. 

linker 
A software tool that links separate software modules into one 
module. 

load instruction 
An instruction that moves data from memory to a register. 

321 

I·.· 
i 
I 

EDTX 2-04-CV-120 
51 056DOC065649 



�

M 

locality of reference 
An attribute of a memory reference pattern that refers to the 
likelihood of an address of a memory reference being 
numerically close to a recent memory reference address, or the 
likelihood of a subsequent memory reference being identical to 
a previous memory reference within a given period of time. 

logical cache (Lcache) 
A cache that is accessed with logical (virtual) addresses for fast 
retrieval of data. It resides in the CPU. 

longword (I) 
Eight bytes (64 bits), the largest integer data type directly 
supported by hard ware in the CONVEX computer. See also 
halfword; word. 

LSB 
See least significant bit. 

LSI 
See language specific information. 

machine exceptions 
Machine exceptions include fatal errors in the system that cannot 
be handled by the operating system. See also exceptions. 

main memory 
See physical memory. 

maskable interrupts 
Interrupts the operating system does not respond to at this time 
because they have been disabled. 

Mbyte 
See megabyte. 

megabyte (Mbyte) 
220 (approximately one million) bytes. 

memory management 
The hardware and software features that control page mapping 
and protection. 

microcode 
A control program in firmware that resides within the CPU. 
Microcode provides the necessary control to map assembly 
language instructions onto processor hardware. 

322 CONVEX C-Series Architecture 

EDTX 2-04-CV-120 
51 056DOC065650 



�

N 

0 

.-L.-... -.----

mode 
See access mode. 

mode switch 
A three-way electrical switch that controls power to the system 
monitor board (SMB) on ClOO Series models, or the system 
control monitor (SCM) on C200/C3200/C3400 Series models. 
The mode switch is located on the ac power~controller. 

modified bits 
Bits in I/0 address space that record all valid write references to 
page frames. Modified bits are used by the operating system for 
memory management. 

most significant bit (MSB) 
The left-most bit in a field. The bit with the most weight in a 
calculation. 

MSB 
See most significant bit. 

multiuser mode 
The normal operating mode for ConvexOS, where the 
supercomputer is being run in a general timesharing environment 
with multiple users. See single-user mode. 

negate 
An instruction that performs a two's complement on a number. 

normalization 
This is the process of left-shifting a fraction until the leading bit 
is a one. 

op code 
The code or sequence of bits in an instruction that determines the 
operation to be performed. 

operand 
The code or sequence of bits in an instruction that references the 
register or memory location containing the data to be operated on. 

optimize 
Arranging instructions or data in storage so a minimum amount 
of machine time is spent accessing and executing those 
instructions or data. 

323 

··-··-·· ··---~------.-.-.-.---~---.. 

····,. ,-._ .. ·_ 

! 
! 
I 

EDTX 2-04-CV-120 
51 056DOC065651 



�

p 

orthogonal 
The relationship of instructions and the operands they 
manipulate where a change in one property does not necessitate 
changes in other related properties. 

pockets 
Groups of related data items, for example, groups of bytes being 
transmitted over a network. 

page 
A page is the unit of logical (virtual) memory controlled by the 
memory management algorithms. In the CONVEX computers, a 
page is a contiguous area of 4 kbytes. See logical (virtual) 
memory. 

page fault 
A page fault occurs when a process requests data that is not 
currently in main memory. The machine first saves off the state 
of all controllers onto a context stack in main memory. The 
operating system creates a free page of physical memory to 
bring the data in from the disk The appropriate page table 
entries (PTEs) are set up so that the proper logical-to-physical 
translation occurs. The machine reads back from memory the state 
of the machine from the context stack, and restores the processor 
to the same state it was in when it determined that the data it 
needed was nonresident. The CPU then continues with normal 
operation of the process. 

page frame 
The unit of physical (main) memory in which pages are placed. 
Referenced and modified bits associated with each page frame 
aid in memory management. 

page table entry (PTE) 
A word in a page table that contains various flags and fields that 
are used in translation of logical-to-physical addresses. Address 
translation uses two levels of page table indexing. 

PBUS 
The primary internal interface between the I/0 CCUs and other 
subsystem components. 

physical addresses 
Hard ware-identified addresses in physical (main) memory 
consisting of the page frame number and the byte number within 
the page. 

PC 
See program counter. 

324 CONVEX C-Series Architecture 

EDTX 2-04-CV-120 
51 056DOC065652 



�

l 

JL~-

physical cache 
Any cache with physical addresses to access operands more 
quickly than in main memory. 

physical memory 
Main memory. 

pipelining 
An overlapping operating system cycle function used to increase 
the speed of computers by allowing multiple operations to occur 
concurrently. 

pop 
Retrieving an operand from a last-in first-out stack. 

porting software 
Moving software from one type of machine to another and 
making any required adjustments to the programs. 

priority 
The ordering of events. In ConvexOS the term may be applied to 
protection levels as well as to 1/0 interrupt levels. 

privileged instructions 
Instructions used by the operating system or privileged systems 
programs. They must execute in ring 0, or an exception occurs. 
See also exceptions. 

process 
The fundamental unit of a program managed by the job 
scheduler. 

process exceptions 
Exceptions that belong to the currently running process and rna y 
be handled with an exception handler in that process, in the 
current ring of execution. 

processor cabinet 
The cabinet designed to hold the central processing units 
(CPUs), as well as the ac and de electrical devices, and a system 
control module (SCM). 

processor status word (PSW) 
A process structure that contains flags used to control and 
indicate the states of various computations and sequences within 
the processor. 

325 

EDTX 2-04-CV-120 
51 056DOC065653 



�

Q 

R 

program counter (PC) 
A process structure that contains the address pointing to the next 
executable instruction of a process. 

PROM 
Programmable read-only memory. 

prompts 
A character or character string sent from a computer system to a 
terminal to indicate to the user that the system is ready to accept 
input. TypicalCONVEXpromptsare: ( fp) >, Jt,%,: ,and (spu) >. 

protection 
A mechanism provided by hardware and software that ensures 
that one user is protected from another user, or to ensure that a 
user does not perform an unsafe computation. 

PSW 
See processor status word. 

PTE 
See page table entry. 

push 
The act of storing an operand on a last-in, first-out stack. 

queue (FIFO) 
A data structure in which data enters at one end and leaves out 
the other (first-in, first-out). 

read 
A non-destructive memory operation in which the contents of a 
memory location are accessed and passed to another part of the 
machine. 

recursion 
Continued repetition of the same operation or group of 
operations from within the operation itself. 

reduced instruction set computer (RISC) 
An architectural concept that applies to the definition of the 
instruction set of a processor. A RISC instruction set is an 
orthogonal instruction set that is easy to decode in hardware and 
for which a compiler can generate highly optimized code. 

reduction 
An arithmetic operation that performs a transformation on an 
array to produce a scalar result. 

326 CONVEX C-Series Architecture 

· : · ~.·c.· c; . 

. ... -::·,-_:. 

EDTX 2-04-CV-120 
51 056DOC065654 



�

register 
A hardware entity used to contain addresses, operands, or 
status. 

reservation 
The process of managing the various function units in the CPU. 
A reservation table is used to record the current status and 
availability of the function units. 

reset 
The process of establishing a known state in a machine register 
or flag. 

RESET SWitch 
A manually operated switch used to force a hardware reset on 
the service processor unit (SPU). 

rings 
The unit of logical memory used for protection purposes. See 
also scan rings. 

There are five rings in CONVEX machines: four for system level 
usage and one for users. Each system ring (ring 0-ring 3) 
corresponds to one segment of logical memory (segment 
0-segment 3t while the user ring (ring 4) contains four segments 
(segment 4-segment 7). 

ring maximization 
The mechanism used to enforce priority access in the logical 
(virtual) address space. 

RISC 
See reduced instruction set computer. 

ROM 
Read-only memory. 

root directory 
The base directory in ConvexOS from which all other directories 
stem, directly or indirectly. 

round bits 
One of the two guard bits used in the intermediate representation 
of a floating point number. 

rounding 
The process of transforming the intermediate representation of a 
floating point number to the memory representation. Unbiased 
rounding uses the round, guard, and sticky bits to determine the 
exact nature of this transformation. Truncation (as used in 

327 i 
i 

.. J 

EDTX 2 -04-CV -120 
51 056DOC065655 



�

s 

converting floating point to fixed point integer) does not use the 
round, guard, or sticky bits. 

runtime 
A software module that is referenced as a procedure. A runtime 
routine represents a required function that is not directly 
supported by the hardware, but is required by the software. 

scaHer 
Storing a vector register using another vector of indices. See the 
stvi instruction in the CONVEX Assembly Language Reference 
Manual (C Series). 

SCM 
See system control module. 

SDR 
See segment descriptor register. 

segment 
The basic 512-Mbyte partition of the logical (virhlal) memory 
space. 

segment descriptor registers (SDR) 
Each segment of virtual memory has a segment descriptor 
register (SDR) associated with it. Each SDR contains information 
pertinent to the access and mapping of virhlal addresses. 

segmented ALU 
A logic design technique that permits multiple arithmetic 
operations of the same type to be pipelined. 

service processor unit (SPU) 
In a CONVEX CPU complex, an additional processor dedicated 
to monitoring the operation of the complex. Booting the 
complex, operator communication, and diagnostic software are 
three of the most common functions of the SPU. 

shift instructions 
A class of instructions used to shift the contents of a register right 
or left. 

single-precision (s) 
A single-precision floating point number stored in 32 bits. See 
also double-precision. 

single-user mode 
In ConvexOS, the mode of operation where the supercomputer 
is being controlled by a single system manager or operator. This 

328 CONVEX C-Series Architecture 

· .... ·: . ·. _- .... -~ 

EDTX 2-04-CV-120 
51 056DOC065656 



�

I 
I 

.L,-~,~· ~· ,··· ... · .... _, 

- .. -~-. ~. ':_ .: -

mode is used primarily for maintenance and system 
administrative functions. See also multiuser mode. 

SMB 
See system monitor board. 

soft front panel 
EPROM-based software that controls certain booting, internal 
testing, and communications functions in CONVEX 
supercomputers. 

software device driver 
A CONVEX-supplied or user-written program that controls the 
operation of attached I/0 peripheral devices. 

source 
A register or memory location used as an input to a CONVEX 
instruction. 

spatial reference 
An attribute of a memory reference pattern that pertains to the 
likelihood of a subsequent memory reference address being 
numerically close to a previous address. 

SPU tape cartridge 
The magnetic tape cartridge containing the SPU programs, files, 
and utilities. 

SPU tape drive 
The tape drive installed on the service processor unit (SPU). 

SPU OS 
The CONVEX-developed, UNIX-based operating system 
software used to direct certain supervisory functions on the 
service processor unit (SPU) on CONVEX supercomputers. 

stack 
A data structure in which the last item entered is the first to be 
removed. Also referred to as last-in, first-out (LIFO) stack. In 
particular, stacks are used by the call and return instructions. See 
also push and pop. 

sticky bit 
A bit used in the intermediate calculation of a floating point 
operand. The sticky bit remembers whether any binary ones are 
shifted out during an alignment or partial product operation. 

store 
An instruction used to move the contents of registers to memory. 

·:: .· .... _,: . ':•.· --~.:.:-

:·. ·_,· 

.,.·, .. ·. 

329 

... --_:· 

EDTX 2-04-CV-120 
51 056DOC065657 



�

T 

subroutine 
A frequently used software module that is called from various 
places in a program. 

superuser 
The operating system term referring to the ultimate access and 
priority rights allowed anyone with the proper login and 
password, usually reserved for the system manager. 

supervisor mode 
Processor access mode 2. 

system console 
The CRT or printer terminal that serves as a communication 
device to the operating system on CONVEX supercomputers. 

system control module (SCM) 
An electronic safety mechanism that monitors hardware and 
environmental conditions on CONVEX C200 Series 
supercomputers. When an error condition is detected, the SCM 
transmits a hexadecimal status code to the system status display 
(SSD) on the processor cabinet front panel. See also system status 
display (SSD). 

system exceptions 
Exceptions that cannot be handled by the current process, but 
require intervention by the kernel executing in ring 0. See also 
exceptions. 

system manager 
The person responsible for the management and operation of a 
CONVEX supercomputer. 

system monitor board (SMB) 
An electronic safety mechanism that monitors hardware and 
environmental conditions on CONVEX supercomputers. When 
an error condition is detected, one of the 16 LED indicators on 
the SMB is lit. 

system status display (SSD) 
A two-digit LED display located on the front panel of CONVEX 
supercomputers. It is used to display hexadecimal status codes 
transmitted by the SCM. 

tag 
A marker or label. 

330 CONVEX C-Series Architecture 

.:,.::"- ... '·· ... ···· · ..... ': 

EDTX 2-04-CV-120 
51 056DOC065658 



�

u 

v 

( 
\ 
~ . 

..JL --.-.-.. -- -·-··. 

trace 
A common debugging technique where the execution of every 
instruction of a program is tracked. 

traps 
Out-of-sequence branches due to the occurrence of an abnormal 
condition (such as the result of unexpected arithmetic results), a 
predetermined test condition, an interrupt, or an exception. See 
also interrupts, exceptions. 

trojan horse pointers 
An address that is passed from one ring to another as part of a 
system call. In particular, this passed pointer references the more 
privileged ring, as contrasted to the less privileged ring. This is 
unexpected and undesirable. 

true zero 
A floating point number with the sign bit with a value of zero, the 
exponent with a value of zero, and the fraction with a value of 
zero. 

unbiased rounding 
The process of interpreting the round, guard, and sticky bits. 
Unbiased rounding, as contrasted to biased rounding, rounds to 
even in the event that the intermediate floating point result is 
exactly midway between two floating point representations. 

UNIX 
An operating system developed by AT&T Bell Laboratories 
(now UNIX Systems Laboratories, Inc.). ConvexOS and SPU OS 
are both UNIX-based operating systems. 

unsigned integer 
An integer value that is always positive. 

user 
Processor access mode 4. 

VIOP 
See input/output processor. 

valid bits 
Bit used for the control of caches. The valid bit is used to 
determine if a cache entry contains an entry that can be used. 

valid PTE reference 
A reference that meets two requirements: First, the PTE must 
have the valid bit (bit <31>} set to I; Second, the type of access 

331 

·:·. , _ _..,. 

.··. 
·.!. 

1.- __ -_, _.-,-

_________ , _______ -=-------'-

• ..... 
> ~-... :: .. -

EDTX 2-04-CV-120 
51 056DOC065659 



�

w 

z 

being made (read, write, or execute) must be allowed by the 
appropriate protection bits (bits <3 .. 1> of the PTE). 

vector 
An array with one dimension. 

virtual address 
The address space seen by the application programmer. 

virtual memory 
That memory seen by the programmer. The logical (virtual) 
memory of a CONVEX computer is 4 Gigabytes. See also page. 

VMEbus 
A 16-/32-bit backplane bus. 

word 
Four bytes (32 bits), the fundamental data width of items in the 
CONVEX family of computers. See also halfword; long-..vord. 

working set 
That portion (subset) of a user program currently in physical 
memory 

write 
A destructive memory operation in which the contents of a 
memory location is replaced with new data. 

zero 
In floating point number representations, zero is represented by 
the sign bit with a value of zero and the exponent with a value of 
zero. See also true zero. 

332 CONVEX C-Series Architecture 

EDTX 2-04-CV-120 
51 056DOC065660 



�

A 
A registers 

See address registers 
ac power-controller, defined 313 
access 

invalid, and system exceptions 223 
access bracket 

in memory protection system 118 
access modes, defined 313 
access violations 

in stack management 78 
add or subtract operations 

IEEE floating point 34 
add or subtract oper~ tions (exceptions) 

IEEE floating point 34 
add or subtract operations (table) 

IEEE floating point 34 

addition 
rounding in floating point 44 

address 
defined 313 
length 4 
unsigned values 4 

address access errors 270 
address carry bit (C) 60 
address divide-by-zero bit (ADZ) 60 
address overflow bit (AIV) 60 
address register sets 

partitioning 49 
address registers 4, 5, 51 

AO and fixed point (signed or unsigned) 51 
AO in addressing operations 51 
AO in arithmetic operations 51 
additional instructions (A5) 51 
argument pointer (AP) 51 
defined 314 
frame pointer (FP) 51 
names 51 
number 51 
operands 52 
size 51 
special uses of AO 51 
stack pointer (SP) 51 
trap handlers (faults, exceptions) 51 

address space 
communication registers 136, 143 
defined 314 
I/0 registers 268 
virtual 69 

address translation 110 
communication registers 

C3200 148 
C3400/C3800/C4600 149 

memory mapping and 95 
unshared memory and 103 

virtual-to-physical 111, 112, 114 
virtual-to-physical, attributes 112 
virtual-to-physical, unshared memorr 115 

address translation cache 
C3200 297 

address translation fault (ATF) 209, 220 
defined 314 

address translation unit 110, 114 
access privilege 120 
ClOO 110 
defined 314 
memory management 6 
multiprocessing C Series CPUs 110 

addresses, 1/0 
hexadecimal notations for xxiv 

addresses, memory 
hexadecimal notations for xxiv 

addresses, virtual 
See virtual addresses 

addressing 
physical address space 

ClOO 264 
C3200 266 
C3400/C3800/C4600 267 

addressing modes 73 
address and offset 73 
defined 314 
virtual addresses 70 

ADZ 
See address divide-by-zero bit 

agent, defined 314 
AlV 

See address overflow bit 
algori tl:uns 

for floating point 44 
native and IEEE floating point 44 

angnment 
instru<:t:ions 4 
logkal data 4 

allocation 
CPUs 7 
thread fork ac<:eptance 199 

ALU 
See arithmetic logic unit 

angle brackets (<60> <62>) 
used for ASCII <:hara<:ters xx, xx.i 

AP 
See argument pointer 

a rchi te<:ture 
addressable units 9 
ASAP 2 
CIOO 1 
C3200 
C3400 
C3800 1 
C4600 1 
caches 2 

Index 333 

i ·. : 
.. ·: :·: 

·:.·. 

:~ ..... 

I 

i· -, 
·--~----,---,..,,----·--J 

EDTX 2-04-CV-120 
51 056DOC065661 



�

common elements 3 
oommunication registers 2, 3 
data representations 2, 4, 11 
data types 2 
defined 2, 314 
exception system mechanisms 2 
general registers 2 
high execution speeds 3 
1/0 address space 8 
implementation-specific features 3 
instruction set 2 
memory management 2 
memory protection mechanisms 2 
multiprocessing C Series 1 
multiprocessing structures 3 
overview 1 
parallel processing mechanisms 2 
physical address space 2 
process structures 2 
register sets 2, 3, 5 
single-processing C Series 1 
system reliability 3 
vector processor 2 
virtual address space 2 
virtual memory capacity 3 

argument pointer 76 
address register 51 
defined 314 

arithmetic 
mixed mode 13 

arithmetic exception 
page 0 127, 130 

ilrithmetic logic unit (ALU), defined 314 
arithmetic traps 212 

Icache purges 295 
processing sequence 214 

arrays 
data representations 11 
defined 314 
vectors 54 

ASAP 
See automatic self-allocating processors 

Assembly Language Instruction Set (C Series} 4, 9 
associated documents 

how to order xxvi 
asymmetric parallel processing 195, 197 
asymmetric parallel processing (example) 197 
asymmetric thread 195 

instructions 1% 
asynchronous exceptions 209 
ATF 

See address translation fault 
atomic operations 

defined 314 
shan:d resource structures 88 

ATIJ 
See address translation unit 

334 CONVEX C-Series Architecture 

automatic self-allocating processors (ASAP) 2, 133, 
135 

multithreaded execution 188 

B 
b 

See byte 
backplane (VMEbus), defined 315 
backplane, defined 315 
base address registers 272 
base-level-interrupt processing 256 

non-ring 0 242 
ringO 242 

base-level interrupts 
defined 315 
idleCPU 257 
return from 261 

base-level processing 243 
active CPU 259 
non-ring 0 243 
ringO 243 

binary fraction 
floating point 17 

binary normalized fractions 4 
binary number system 

and unsigned fixed point integers 16 
binding 137 

communication register set 197 
communication register set to a CPU 140 
CPU and communication register set 137 
current communication registers 197 
relationship of CIR to CPU 140, 141 

bit 
to CPU (example) 140 

clear, defined xxiii 
defined xxiii, 315 
set, defined xxiii 

bit complement, defined 315 
bit fields 

specifying xxiv 
bit numbering 12 

defined xxiii 
bkpt 212, 219 
block, defined 315 
blocked state 74 
bold mono space type 

used in describing user response xx 
boot, defined 315 
bootstrap 

See boot 
braces ({)) 

used in describing commands xxi 
branch, defined 315 
breakpoint 212, 219 

defined 316 

:· .. ·, 

.I 
l 

l 
I 

I 

EDTX 2-04-CV-120 
51 056DOC065662 



�

pageO 130 
process 219 

breakpoint trap 
pageO 127 

breakpoint trap handler 219 
broadcast enable registers 

0400 172 
C3800/C4600 182 

broadcast intenupt channel 248 
broadcast interrupt mode 248 
bulkhead 

CPU, defined 316 
See drawer; drawer bulkhead 

byte 12 
access 50 
boundary addressing 12 
data alignment 72 
data registers 50 
defined. xxiii, 316 
fixed point integer 4 
signed fixed point integer 14 
unsigned fixed point integer 16 

byte boundaries 
virtual addresses 72 

byte granular 12 
byte numbering 

defined xxiii 
longword 12 

byte operands 
l/0 address space 270 

byte order 
longword xxiii 

byte pointer 
pageO 126 

c 
c 

See address carry bit 
C language, defined 316 
C sheH, defined 316 
CIOO Series CPUs 

cache management 295 
interrupt processing 242 
interval timers 279, 280 
memory access 270 
memory interleave 306 
modified bits 270 
physical configuration map 276 
processor status word (PSW) 60 
referenced bits 270 

C3200 Series CPUs 
data cache monagernent 299 
instruction cache management 297 
instruction cache purges 298 
interval timer counter 282 

interval timer interrupt number 282 
interval timer status registers 281 
interval timer status registers (illustrated) 281 
interv ill timers 281 
memory interleave and bandwidth 307 
modified bits 271 
next interval timer counter 282 
PCM longword access 276 
physical configuration map 276 
physical memory capacity 271 
processor status word (PSW) 59, 60, 63 
PTE cache management 296 
PTE cache purges 297 
referenced bits 271 
time of century clock 287 
time of century clock (figure) 287 

C3400 Series CPUs 
data cache management 299, 300 
instruction cache management 297 
instruction cache purges 298 
interval timer counter 285, 286 
interval timer interrupt number 285 
interval timer status registers 285, 286 
memory interleave and bandwidth 307 
modified bits 272 
next interval timer count 286 
next interval timer counter 285 
physical configuration map 277 
processor status word (PSW) 59, 60, 63 
PTE cache management 296 
PTE cache purges 297 
realtime interval timers 286 
realtime subcomplex 239 
realtime support 67 
referenced bits 272 
lime of century clock 288 
timesharing subcomplex 239 

C3800 Series CPUs 
data cache management 299, 300 
instruction cache management 297 
instruction cache purges 298 
interval timer counter 284 
interval timer interrupt number 284 
interval timer status register 283 
interval timers 283 
interval timers (illustrated) 283 
modified bits 272 
next interval timer counter 284 
physical configuration map 277 
processor status word (PSW) 59, 60, 63 
PTE cache management 296 
PTE ache purges 297 
referenced bits 272 
lime of century dock 288 

C4600 Series CPUs 
cache management 301 
cache purges 303 

.:::··.:. 

Index 335 

EDTX 2-04-CV-120 
51 056DOC065663 



�

cache purges (table) 304 
data cache man~gement 302 
instruction cache management 302 
intenral timer counter 284 
intenral timer interrupt number 284 
intenral timer status register 283 
intenral timers 283 
intenral timers (illustrated) 283 
modified bits 273 
next intenral timer counter 284 
pate instruction, for PTE purges 302 
physical configuration map 277 
plch instruction, for Dcache purges 302 
processor status word (PSW) 59, 63 
PTE cache management 301 
referenced bits 273 
scalar registers 52 
scalar stride register 66 
time of century dock 288 

cache load bypass bit 105 
cache management 

C100 295 
C3200 296, 297 
C3400 296 
C3800 2% 
C4600 301 
multiprocessing C Series CPUs (table) 296 

cache memory, defined 316 
cache prefetching 66 
cache purges 

C3200 297 
C4600 302 
defined 316 

caches 2 
Canada 

reporting problems from xxvii 
carry bit (C) 

address cany bit 60 
CAT 

See communication address trap bit 
central processing unit 

defined 316 
interrupt cha!'lllels 239, 245 
intenral timers 284 
spedfication 2 
utility card 284 
utility card and interval timers 281, 283 

central processing unit bulkhead, defined 316 
cfork 201 
chaining, defined 316 
channel I/0 bit 105, 107 

SDR 100 
chapter summaries 4 
chassis, defined 317 
CIR 

base physical addresses 
C3200 149 

336 CONVEX C-Series Architecture 

C3400/C3800/C4600 150 
binding 189 
C4600 instruction cache 302 
CPU idle loop 203 
CPU schEduling 189 
memory management and 96 
TIR modification 290 

clock 
See CPU execution timer (CTR) 
See interval timer counter (ITC) 
See interval timer status register UTSR) 
See next interval timer counter (NITC) 
See thread timer {TIR) 
See time of century clock {TOC) 

clocks 
multiprocessing CPU execution 163 

commands 
syntax conventions xxii 

communication 
CPUs 7 
registers and locking memory structures 186 

communication address 
invalid 64 
ring violation 64 

communication address trap bit (CAT) 64 
communication index register (CIR) 137, 205 

length 
C3200 138 
C3400/C3800/C4600 139 

process definition 137 
communication interrupt registers C3400 176 
communication register sets 

CPU binding 137 
number 

C3200 138 
C3400/C3800/C4600 139 

communication negisteJ:S (CMR) 2, 3, 136 
address mapping 143 

C3200 148 
C3400/C3800/C4600 150 

address mapping and C!R 142 
address protection 145 
address space (example) 136, 143 
address translation 143 

C3200 148 
C3400/C3800/C4600 149 

addressing and CIR 145 
allocation 136, 143 
binding modification 197 
binding sets to a CPU 140 
C3200 138, 139 
C3400/C3800/C4600 139, 140 
dearing lock bits 152 
control registers 

C3400 166 
C3800/C4600 179 

critical data structures and 136 

.. ·· .. ·.·>.·.· .. 

EDTX 2-04-CV-120 
51 056DOC065664 



�

q 

current binding, instntction 197 
data stntctures 138 
disjointed memory pip€$ 186 
division of 142 
effe<:tive address 142 
fork events 158 
format (illustrated) 91 
hardware 154 

C3200 {illustrated) 155 
C3400/C3800 (illustrated) 156 
C4600 {illustrated) 157 

hardware reserved 165 
invalid access 223 
invalid communication address trap 145 
length of 136 
lock bits 136, 142, 156 
memory duals 87, 136 
modified bits 151 
modified bits, list of instructions 151 
multithreaded execution 136 
nonresident data 237 
offset 142 
partitioning, CIR and 143 
physical access 138 
physical address base 

C3200 149 
C3400/C3800/C4600 149 

physical address mapping 
C3200 145 
C3400/C3800/C4600 147 

physical addressing 145 
physical addressing and ClR 145 
primitive operations 184 
process creation 154 
protection 143 
resource stntctures 87, 136 
ring violations 142 
saving and restoring 152 
segment descriptor registers 138 
sets, partitioning of 143 
shadow copies 165 
system exceptions 144 
target CPU 165 
thread creation 154 
thread termination 154 
valid bits 152 
virtual access 136 
virtual address 142 
virtual address space 143 
virtual addressing 142 

communication trap register 
partitioning (illustration) 227 

communications index register (CIR) 
defined 96 

communications register space 
C3400 166 
C3800/C4600 179 

•'.·,:··· 

compare operations 
IEEE floating point 34 
native floating point 23 

compiler, defined 317 
complex 

defined 95 
multiprocessor 133 

complex virtual channels 241 
context 74 
context (processor), defined 317 
context retum block 78, 82 

system exceptions 220 
context stack pointer 

pageD 126 
context switching 189 
control registers C3400 166 

broadcast enable registers 172 
communication interntpt registers 176 
CPU exist indicators 170 
deadlock indicators 170 
global enable registers 170 
idle indicators 176 
interrupt/ trap acknowledgment indicators 174 
interrupt/trap request indicators 174 
interntpt/trap source indicators 173 
interval status register 175 
interva ( timer indica tors 169 
interval timer interrupt indicators 170 
interval timers 168 
IONbit 175 
local enable registers 171 
post bit register 177 
process trap mail box 169 
realtime indicators 170 
RT_ION bit 175 
SIB intem.tpt request indicators 175 
TER trap enable register 177 
time of century clock 168 
time of century delta lime register 168 
TOC write complete 177 

control registers C3800/C4600 
broadcast enable registers 182 
communication index registers 181 
CPU INSTALL register 181 
global enable registers 182 
globally pending interropt register 182 
IDLE registers 181 
interval timer counter 180 
10 INSTALL register 181 
lTC interrupt channel register 181 
lTC status register 181 
local enable registers 182 
lockbit shift register 180 
memory base pointer register 182 
next ITC register 180 
posted thread CIR 180 
time of century clock 180 

-l 

I 

I 

.... :·.~ 

Index 337 

EDTX 2-04-CV-120 
51 056DOC065665 



�

trap command register 180 
traps and interrupts 183 

conversion operations 
IEEE floating point 41 
native floating point 27 

conversion operations (exceptions) 
IEEE floating point 41 
native flo«ting point 27 

convetsions 
between data types 47 

CONVEX Assembly Language Instruction Set (C 
Series) 4, 9 

CONVEX Assembly Language Reference Manual (C 
Series) xxvi, 2, l1 

CONVEX Processor Diagnostics Manual (C Series) 
xxvi 

CONVEX System Manager's Guide xxvi 
ConvexOS, defined 317 
corrupted pointers 122 
counter 

event 294 
interrupt level 126 
interval timer 179, 180, 278, 279, 280, 282, 283, 
284, 285, 286 
next interval timer 280, 282, 284, 285, 286 
program {PC) 70, 117, 118, 121, 124, 125, 129, 
158, 200, 204, 211, 227, 242, 256 
time of century (TOC) 168, 180, 287, 288 
time of century deHa time 168 

CPU 
active 

base-level processing 259 
interrupt-level processing 259, 260 

allocated states 189 
automatic scheduling 135 
binding (example) 140 
communication register set binding 137 
deadlock detection 206 
defined 95 
execution timer 289 
idle loop 

ASAP 203 
fork events 203 
scheduling 205 

idle loop and ring of execution 204 
idle state, leaving for fork aoceptance 205 
idle state, leaving for interrupt 205 
idle states 189 
idle, thread creation 159 
management instructions 190 
multiprocessing tlu'ead timer 290 
multiprocessing, execution timer 289 
privileged control instructions 197 
process mounting 137 
See central processing unit 
statefull 189 
stateless 189 

338 CONVEX C-Series Architecture 

synchronization 206, 207 
thread timer 290 

CPU allocation 
fork events 190, 203 

CPU complex interrupt enable flag (ION) 246 
CPU complex interrupt enable flag (RT_ION) 246 
CPU execution clock registers 

C3200 (illustrated) 163 
C3400/C3800 (illustrated) 164 
C 4600 (illustrated) 164 

CPU exist indicators C3400 170 
CPU idle loop 

example 203 
scheduling 205 

CPU INSTALL register C3800/C4600 181 
CPU mask 

realtime, 163 
CPU scheduling 

ClR 189 
transition types 189 

CPU virtual channel interrupt 244 
CPU_TYPE 

physical configuration map 276 
CPUs 

allocation 7 

CIOO 1 
C3200 1 
C3400 1 
C3800 1 
C4600 1 
communication 7 
deallocation 7 
multiprocessing C Series 1 
multiprocessor management 7 
single-processing C Series 1 

creation protocol 
thread 199 

critical data structures 
communication registers 136 

CTR 
delta timer 290 

D 
d 

See double-precision 
data access 263 
data cache management 

C3200 299 
C34QO 299 
C3800 299, 300 
C4600 302 

data pages 
shared 103 
unshared 103 

data registers 

.·:':·. 
··.:-;.· .. 

EDTX 2-04-CV-120 
51 056DOC065666 



�

byte 50 
double-precision 50 
halfword 50 
longword 50 
single-precision 50 
vector 51 
word 50 

data representations 2, 11 
address boundaries 12 
arrays 11 
bit numbering 12 
byte 12 
byte granular 12 
fixed point integer 11 
floating point 11 
halfword 12 
IEEE floating point 11 
listed 12 
longword 12 
memory alignment 12 
mixed mode arithmetic 13 
native floating point 11 
virtual addresses 13 
word 12 

data structures 
communication registers 138 

data types, defined 317 
deadlock 206, 207 

forking operations 201 
hardwaredetected 224 
improper synchronization 201 
joinand 208 
process 206, 224 
process, example of 207 
process, fork acceptance and 208 
process, resolution of 207 
process, termination and 208 
spawn and 208 
system exceptions and 206 
thread, cause of 207 
thread, example of 207 
thread, fork acceptance and 208 
thread, resolution of 207 
thread, termination and 208 
wfork and 208 
wfork, caution 208 

deadlock detection 
instructions for 206 

deadlock indicators C3400 170 
deallocation 

CPUs 7 
delta timer 

CfR 290 
TIR 290 

denormalized number 
IEEE floating point 33 

destination, defined 317 

.. ··;._ 

disjointed memory pipes 
communication registers 186 

displacement, defined 317 
divide operations 

IEEE floating point 34, 35 
divide-by-zero bit (ADZ) 

address divide-by-zero bit 60 
divide-by-zero bit (FDZ) 

floating divide-by-zero bit 62 
divide-by-zero bit (SDZ) 

integer divide-by-zero bit 61 
divide-by-zero enable bit (DZE) 62 
division 

rounding in floating point 46 
double-precision 

data registers 50 
defined xx.iii, 317 
floating point 17 
longword 4 
See single-precision 

drawer bulkhead, defined 317 
dynamic data 

stack 74 
dynamic scheduling 135 
dynamic storage 

stacks 76 
DZE 

See divide-by-zero enable bit 

E 
EBUS, defined 318 
EEPROM 

electronically erasable, programmable read-only 
memory 318 

effective source 118 
effectivetarget 118 
electrostatic discharge, defined 318 
ellipses 

horizontal 
used in describing comm;~nds xx:i 

vertical 
used in desaibing commands xxii 

enag 247, 248 
enal instruction 

local interrupt enable register, to manipulate 246 
encache bit 102 
eni 249, 251, 252, 255 
eni instruction 246 
enter 

used in describing commands xx 
EPROM 

erasable, programmable read-only memory 318 
error exit traps 220 

chart 
C100 230 

Index 339 

: ~ .:. 

EDTX 2-04-CV-120 
51 056DOC065667 



�

. I 

C3200/C3400/C3800 231 
C4600 232, 233 

errors 
segment out-of-bounds 103 
when accessing physical addresses '177 

errors, fatal 
when accessing addresses 270 

ESD 
See e!ectrosta tic discharge 

event select registers 294 
exception handlers 209, 210, 211, 229 

context return 232 
return 232 
types 211 

exception processing 209 
operating system 209 

exception system mechanisms 2 
exceptions 7, 209, 210 

arithmetic traps 212 
as debugging tools 212 
asynchronous 209 
breakpoints 212 
classes defined 210 
defined 7, 318 
floating divide-by-zero 213 
floating point overflow 213 
floating point underflow 213 
global 210 
IEEE floating point special oper<~nds 32 
infinity 213 
input 

native and IEEE floating point 44 
integer divide by zero 213 
integer overflow 212 
interrupts 239 
invalid communication register address 225 
local 210 
machine (defined} 210 
masking out 212 
NaN 213 
native floating point reserved operands 21 
output 

native and IEEE floating point 44 
priorities of pending classes 211 
process 212 
process (defined) 210 
process and system types 124 
process breakpoints 212 
processor response 7 
reserved operands 213 
See faults 
See interrupt systems 
See interrupt systems faults 
sequential 212 
system (defined) 210 
system handler 126 
traps (defined) 211 

340 CONVEX C-Series Architecture 

true zero 213 
execute access 

immediate operand 120 
referenced bit 270 
valid memory references 119 

execute access bit 
PTE 102, 106, 108 

execute protect 223 
executing state 74 
execution timer 289 
executive mode, defined 318 
expansion cabinet, defined 318 
exponent 

floating point 17 
extended frame 

trap frame (defined) 211 
extended return blocks 78, 85 

base-level processing 243 

F 

CIOO and C3200/C3400/C3800 80 
C4600 81 
illustrated 80 
system exceptions 220 

fault return blocks 232 
faults 

defined 318 
ring violations 222, 223 
See exceptions 

FDZ 
See floating divide-by-zero bit 

FE 
See floating point trap enable bit 

FIFO 
See queue 

FIN 
See intrinsic error bit 

finn ware, defined 318 
first-in, first-out queue 

See queue 
fixed point integers 

byte 4 
data representations 11 
halfword 4 
loading operands 50 
longword 4 
scalar (signed and unsigned) 52 
signed 4, 14, 15 
signed (illustrated) 14 
unsigned 4, 16 
unsigned (illustrated) 16 
word 4 

fixed-to-float conversion operations (exceptions) 
IEEE floating point 42 
native floating point 28 

I 
t 

EDTX 2-04-CV-120 
51 056DOC065668 



�

______ ___; _______________________________ _ 

fixed-to--float conversion operations (table) 
IEEE floating point 42 
native floating point 28 

flag, defined 318 
floating divide-by-zero bit (FDZ) 62 
floating divide-by-zero, exceptions 213 
floating point 17 

algoritluns 44 
algorithms (IEEE) 44 
algoritluns (native) 44 
binary fraction 17 
data representations 11 
double-precision 17 
exponent 17 
fraction 17 
IEEE dE'normalized number 33 
IEEE denormalized standard 29 
IEEE double-precision format range 32 · 
IEEE double-precision illustrated 31 
IEEE double-precision operands (table) 31 
IEEE double--precision standard 31 
IEEE implementation 17, 29 
IEEE infinity standard 29 
IEEE NaN standard 29 
IEEE normalized standard 29 
IEEE operands 29 
IEEE single-predsion format range 30 
IEEE special operands 32 
IEEE true zero 33 
IEEE true zero standard 29 
IEEEzero 32 
IEEE, single-predsion operands (table) 29 
illegal operations 21 
input exceptions (IEEE) 44 
input exceptions (native) 44 
internal, format (table) 44 
native double--precision (illustrated) 20 
native double-precision operands (table) 20 
native double-precision standard 20 
native implementntion 17, 18 
native normalized standard 18 
native operands 18 
native reserved operands 21 
native reserved standard 18 
native single--precision format range 19 
native single--precision illustrata:! 18 
native single--precision operands (table) 19 
native single--precision standard 18 
native true zero 21 
native zero 21 
NORM (IEEE) 34 
NORM (native) 23 
numeric operations 21, 32 
output exceptions (IEEE) 44 
output exceptions (native) 44 

· single-precision 17 
values in addition 44 

values in division 46 
values in multiplication 46 
values in subtraction 44 

floating point arithmetic 
IEEEmode 4 
native mode 4 

floating point exceptions 
in processor status word 214 

floating point numbers 4 
defined 319 

floating point overflow 
and reserved operands 21 
exceptions 213 

floating point overflow bit (QV) 62 
floating point trap enable bit (FE) 62 
floating point underflow 

exception 213 
floating point underflow bit (UN) 62 
floating point underflow enable bit (FUE) 62 
float-to--fixed conversion operations (exceptions) 

IEEE floating point 41 
native floating point 27 

float-to--fixed conversion operations (table) 
IEEE floating point 41 
native floating point 27 

float-to--float conversion operations (exceptions) 
IEEE floating point 42 
native floating point 28 

float-to--float conversion operations (table) 
IEEE floating point 42 
native floating point 28 

flow of control 
changing {interrupt) 239 

forced faulting mode, defined 319 
fork acceptance 

CPU idle state 205 
fork event registers 198 

rev 159 
snd 159 

fork events 
acceptance of 196 
acceptance of, deadlock and 206 
acceptance operation 198 
clearing 201 
communication register set 158 
CPU allocation 203 
CPU idle loop 203 
joining 202 
mixing types, caution 159 
PC and creation 159 
PFORKED 159 
posting 190, 200 
registers 158, 198 
registers, lock bits 159 
SPAWNED 159/ 
spawning 200 
states 190 

.... · 
· .. 

Index 341 

EDTX 2-04-CV-120 
51 056DOC065669 



�

STOPPED 159 
thread creation 158 
types 190 

fork.AP 158 
fork.FP 158 
fork.PC 158 
fork.PSW 158 
fork.source_PC 158 
fork.SP 159 
fork.type 158 

PFORKED 159 
SPAWNED 159 
STOPPED 159 

forking 
asymmetric, cfork 201 
asymmetric, pfork <effa>,Ak 200 
asymmetric, wfork 201 
operations, dearing a fork 201 
operations, deadlock 201 
operations, spawning a fork 200 
posting a fork 200 
symmetric, join 202 
symmetric, spawn <effa>,Ak 200 
thread termination 

asymmetric 201 
forking operations 198 

fork event registers 198 
idleCPU 163 
multithreaded execution 188 
spawning a fork 202 
synchronization point 163 

forkkk 159, 198 
forkposted 159, 198 
format 

virtu a I addresses 71 
FORTRAN language, defined 319 
FP 

See frame pointer 
fraction 

defined 319 
floating point 17 

frame 
See page frame 

frame length bit (FRL) 61 
context return block 61 
extended fnroe 61 
long frame 61 
rtn (return} instruction 61 
rtnc (return from a context block) instruction 61 
short frame 61 

frame pointer 76 
address register 51 
in stack management 76 

FRL 
See frame length bit 

fsc:k utility, defined 319 
FUE 

342 CONVEX C-Series Architecture 

See floating point underflow trap enable bit 
function unit, defined 319 

G 
G 

abbreviation for giga xxiv 
gate arrays 121 

defined 319 
pageO 127 
structure (illustrated) 121 

gate index field 121 
sysc instruction 121 

gate number 121 
gather, defined 319 
general registers 2 
get 184 
giga 

G ilbbre\'ia tion for xxiv 
global enable registel' 254 

C3400 170 
C3800/C4600 182 

global exceptions 210 
global hard error C4600 233 
global pending register 250, 251, 252, 254 
globallypendinginterruptregisterC3800/C4600 182 
guard bits 

H 
h 

defined 320 
in addition or subt!'action 44 
unbiased rounding ([EEEJ 33 

See haifword 
halfword 12 

access 50 
boundary addressing 12 
data alignment 72 
data registers 50 
defined xxiii, 320 
fixed point integer 4 
See longword 
See word 
signed fixed point integer 14 
unsigned fixed point integer 16 

hardware communication registers 154 
C3200 155 
C3400/C3800 156 
C4600 157 
protocol enforcement 154 

hardware context 74 
hardware detected deadlock 224 
hardware reserved bits 

PTE 102, 105 
SDR 98, 99, 100 

EDTX 2-04-CV-120 
51 056DOC065670 



�

J 

I 
l 
I 
I 

I 
I 
1 

l 
' 

' 

l 
' > 
~--

f. 
' 

hazard 
defined 320 
See block 

hexadedmal notations xxiv 
Huffman's encoding, defined 320 

I/0 address space 269 
alignment restrictions 269 
byte granular 268 
ClOD 269 
C3200 281 
l/0 registers 268 
illegal access 269 
interval timers 268, 278 
memory management 268 
modified bits 268, 270 

ClOO 270 
C3200 271 
C3400 272 
C3800 272 
C4600 273 

nonexistent 1/0 address access 269 
operand size restrictions 269 
physical configuration map 268 
referenced bits 268, 270 

ClOD 270 
C3200 271 
C3400 272, 281, 263 
C3800 272 
C4600 273 

successful access 270 
tas not permitted 268 
time of century clock 268, 287 
llSes for, outlined 268 

I/0 bit 
SDR 100 

l/0 channels 
interrupts 239 

I/O device 
interrupts 242 

1/0 intemrpt 
pageO 126 

I/0 interrupt channels 239 
l/0 operations 

memory mapped 268 
1/0 register pointer 

pageO 129 
timers 129 

I/0 registers 266, 269 
access 268 
memory mapped 268 
status bits 268 

l/0 requests 209, 239 
!cache 

See instruction cache 
Icache purges 

ClOO 295 
ICB 

See interrupt context blocks 
ICIR 

See interrupt communication index register 
ICR 

See interrupt control register 
idle 203 
idle CPU 

interrupt processing 257 
thread creation 159 

idle indic,1tors C3400 176 
IDLE registers C3800/C4600 181 
IEC 

See intrinsic error code bit 
IEEE 

See IEEE floating point format bit 
IEEE floating point 

add or subtract operations 34 
add or subtract operations (exceptions) 34 
i'dd or subtract operations (table) 34 
algorithms 44 
compare operations 34 
conversion operations 41 
conversion operations (exceptions) 41 
data representations 11 
denormalized number 33 
denormalized standard 29 
divide by zero 213 
divide operations 34, 35 
double-precision dynamic range (table) 32 
double-precision illustrated 31 
double-predsion operands (table) 31 
double-precision standard 31 
fixed-to-float conversion opera lions (exceptions) 42 
fixed-to-float conversion operations (table) 42 
.float-to-fixed conversion operations (exceptions) 41 
float-to-fixed conversion operations (table) 41 
float-to-float conversion operations (exceptions) 42 
float-to-float conversion operations (table) 42 
implementation 17 
infinity standard 29 
input exceptions 44 
multiply operations 34 
multiply operations (exceptions) 34 
multiply operations (table) 34 
NaN 34 
NaN standard 29 
NORM: 34 
normalized standard 29 
output exceptions 44 
overflow 213 
single-precision dynamic range (table) 30 
single-precision operands (table) 29 
special operands 32 

<:·., , .. 
-;_;;· 

. ... ·. 

Index 343 

l 
i 
! 
.j 

-!= 

'f 
r 
!: 
-~ 

I· 

I 
t 

.;_ . 

EDTX 2-04-CV-120 
51 056DOC065671 



�

squ~re root operations 41 
square root operations (exceptions) 41 
square root operations (table) 41 
true zero 33 
true zero standard 29 
underflow 213 
zero 32 

IEEE floating point format bit (IEEE} 62 
IEEE implementation 

floating point 29 
IEEE infinity 

exceptions 213 
IEEE integer 

divide-by-zero 213 
overflow 212. 

IEEE NaN 
exceptions 2.13 

illegal instruction 220 
immediates, defined 320 
indexing, defined 320 
indirection 

defined 320 
read access 120 

INE 
See intrinsic error enable bit 

infinity 
defined 32 
exceptions 213 

input exceptions 
native and IEEE floating point 44 

input/output processor, defined 320 
instruction alignment 

See alignment 
mstruction ca clle 

clearung of 298 
defined 32.0 
entries, validity bits for 298 
purging 298 
valid entries 298 
validity bits 298 
validity bits, dean copy 298 

instruction cache management 
C32.00/C3400/C3800 297 
C4600 302 

instruction cache purges 
C3200/C3400/C3800 298 
C3200/C3400/C3800 (table) 296 

instruction set 2, 9 
functionality 9 
hardware decoded 9 

instruction trace bit (TR) 60 
instruction tr;:Jce exception 

page 0 12.7 
instruction trace traps (TR) 212, 215, 216 

[cache purges and 295 
pageO 130 

instructions 

344 CONVEX C-Series Architecture 

boundaries 9 
CPU privileged control 197 
defined xxiii, xxiv, 320 
extended (multiprocessing C Series) 9 
lengths 9 
orthogonal 9 
prefixes 9 
standard (C Series) 9 

integer divide-by-zero 2.13 
integer divide-by-zero bit (SOZ) 61 
integer overflow 

exception 212 
integer overflow bit (SIV) 61 
integer overflow enable bit (lYE) 60 
integers, fixed point, signed 

See fixed point integers 
integers, fixed point, unsigned 

See fixed point integers 
interleaving 

modified bits 2.72 
referenced bits 272 

internal floating point 
format (table} 44 

inter-ring procedure call 
return 12.1 

interrupt 
CPU idle state 2.05 

interrupt channels 239 
central processing unit 245 
1/0 239 
rea !time 239 
timesharing 239 
virtual 2.39 

interrupt communication index register (ICIR) 249 
interrupt communication register (ICR) 2.56 
interrupt context block (!CB) 256, 258 

format 256 
illustra lion 256 

interrupt context block pointer 
pageO 129 

interrupt control register (ICR) 248, 257, 259 
format 248 

C3200 248 
C3400/C3800/C4600 2.48 

illustration 248 
interrupt enable register 

global 2.47, 2.48 
local 246, 2.47 

interrupt flow 
C3200 250 
C3400 252, 253 
C3800/C4600 254, 2.55 

interrupt handler 244 
page 0 129 

interrupt levels 
See interrupt processing 

interrupt mode (!MODE) C3200 248 

EDTX 2-04-CV-120 
51 056DOC065672 



�

interrupt mode register 251 
interrupt on flag (ION) 49 
interrupt processing 242 

active CPU 259, 260 
base-level 256 
base-level, non-ring 0 242, 243 
base-level, ring 0 242 
ClOO 242 
general 2 45 
pageO 126 
sequence 244 
stacks 244 

interrupt processing arbitration C3200 246 
interrupt processing sequence 244 
interrupt stack 239, 242, 256 
interrupt stack pointer 243 
interrupt stack pointer, page 0 126 
interrupt stacks 242 

at interrupt-level 244 
interrupt system 239 

l/0 channels 239 
processing 242 
See machine exceptions 
virtual channds 239 

interrupt systems 
See machine exceptions 

interrupt/trap request indicators C3400 174 
interrupt/trap source indicators C3400 173 
interrupt-level classifications 

difference between 256 
interrupt-level processing 

active CPU 260 
interrupts 124, 239, 246 

base-level 
defined 315 

broadcast channel 248 
broadcast mode 248 
causes of 242 
control flow 

C3200 250 
C3400 252 
C3800/C4600 254 

defined 7, 321 
global enable 248 
!cache purges 295 
idle CPU, base-level 257 
interval timer 126 
local cha!Ulel 248 
local enable 248 
local mode 248 
processor response 7 
See maskable interrupts 
target CPU (TCPU) register 247 
virtual memory 257 

interval status register C3400 175 
interval timer counter (lTC) 18D, 278, 280, 284 

C3200 282 

C3400 285, 286 
C3800 284 
C46QO 284 
defined 321 

interval timer indicators C3400 169 
interval timer interrupt indicators C3400 170 
interval timer interrupt number (!TIN) 282, 284, 285 
interval timer interrupt, page 0 126 
interval timer register (lTC) 283 
interval timer status register(ITSR) 278, 279, 280, 282, 

283, 284, 286 
ClOD 280 
C3200 282 
C3400 285, 286 
C3800/C4600 283 

interval timers 278 
ClOO 279, 280 
C3200 281 
C3200 {illustrated) 
(3400 284 
C3SOO 283 
C3800 (illustrated) 
(4600 283 
(4600 {illustrated) 
1/0 address space 
interrupts 242 

interval timers C3400 

281 

283 

283 
268 

168 
intrinsic error bit (FIN) 63 
intrinsic error code bit (IEC) 64 

intrinsic error enable bit (INE) 63 
invalidcommunicationregisteraddressexception 225 
invalid communication register address trap 225 
invalid frame length 222 
invalid gate 222 
invalid Ievel-l page table entry 223 
invalid level-2 page table entry 223 
invalid SDR 223 
invalid SDRO 237 
invalid trap instruction 227 
inward address 222 
inward return 222 
inward system calls 85 
10 INSTALL register C3800/C46QO 181 
ION 

See interrupt on flag 
ION bit C3400 175 
ION flag 5, 243, 246 
lOP 

See input/output processor 
italidzed words 

used in describing commands xx 
ITC 180 

See interval timer counter 
lTC interrupt channel register C3800/C4600 lSI 
lTC register, next 180 
lTC status register C3800 /C4600 181 
!TIN 

Index 345 

EDTX 2 -04-CV -120 
51 056DOC065673 



�

See interval timer interrupt number 
ITSR 

See interval timer status register 
IVE 

See integer overflow enable bit 

J 
join 202, 203 

thread count 162 
joining a fork 202 
jump 

K 
k 

defined 321 
See branch 

abbreviation for kilo xxiv 
kernel 

defined 321 
gates 122 
operating system 123 

keyswitch, defined 321 
kilo 

kabbreviation for xxiv 

L 

See longword 
language specific information (LSI) 83 

defined 321 
last thread termination 224 
last-in, first·out stack 

See stack 
ldcmr effa, Ak 197 
ldcmr, modified bits 152 
ldkdr 237 
ldsdr 237 
level3 bit 105, 107 
level T bit 103 
LIFO 

See stack 
linker, defined 321 
load instruction, defined 321 
local enable registers 

C3400 171 
C3800/C4600 182 

local exceptions 210 
local interrupt channel 248 
local interrupt mode 248 
local pending register 250, 251, 252, 254 
locality of reference, defined 322 
lock 184, 185 

346 CONVEX C-Series Architecture 

lock bits 
binary semaphore 136 
communication registers 158 
forklck 159 
forkposted 159 

lockbyte 89 
resource structures 87 

lockbit shift register C3800/C4600 180 
locking protocol, thread count and mask 199 
locking, memory structures and communication 

registers 186 
logical (virtual) address, defined 332 
logical (virtual) memory, defmed 332 
logical cache (Lcache), defined 322 
logical cache purges 

multiprocessing C Series CPUs (table) 296 
logical data aligrunent 

See alignment 
logical unsigned value 4 
long return block 78, 79 

illustrated 79 
longword 12 

access 50 
boundary addressing 12 
data alignment 72 
data registers 50 
defined xxiii, 322 
double-precision 4 
fixed point integer 4 
l/0 address space 

C3400 272 
C3800 272 

I/0 address space and 271 
illustrated 12 
signed fixed point integer 14 
unsigned fixed point integer 16 

lookup tables 95 
l.SB 

SEe least significant bit 
LSI 

See language specific information 

M 
M 

abbreviation for mega xxiv 
machine exceptions 210, 237 

defined 322 
See process exceptions 
See system exceptions 

machine state 
vector 221 

main memory 
See physical memory 

management 
stack frames 76 

·:·.:-.·:· 
.'···· .. 

EDTX 2-04-CV-120 
51056DOC065674 



�

mask 
thread, fork acceptance 199 

maskable interrupts, defined 322 
Mbyte 

See megabyte 
mega 

M abbreviation for xxiv 
megabyte, defined 322 
memory 

shared, defined 97 
synchronization problems 187 
thread 116 
unshared 116 

memory access 
C100 270 
multiprocessing C Series CPUs 270 

memory alignment 
data representations 12 

memory allocation 
dynamic 103 

memory base pointer register C38DO/C4600 182 
memory duals 

communication registers and 136 
instructions 87 

memory faults 232 
memory interleave 

C1DO 306 
ClOO (table) 306 
C3200/C3400 307 
C3200/C3400 (table) 309 
C3800 310 
C3800 (ti!ble) 311 
defined 305 

memory management 2 
I/0 address space 268 
summary 6 
virtual address space 70 

memory management unit 
purpose 6 

memory management, defined 322 

memory map 
ldcmr/stcmr, illustrated 152 

memory protection medcanisms 2 
memory protection system 117 

access checking 120 
and ring 0 111 
design 6 
functions 117 
notes 120 
unconditional ring access 85 

memory references 
valid access 117 

memory structures 
locking and communication registers 186 

memory, physical 
defined xxiv 
See physical memory 

memory, virtual 
defined xx:iv 

microcode, defined 322 
MIMD 

multiprocessor management 7 
See multiple instruction stream, multiple data stream 

MMU 
See memory management unit 

mode 
See access mode 

mode bit (SEQ) 
sequential mode bit 61 

mode switch, defined 323 
modified bits 116 

ClOO 270 
C3200 271 
C3400 272 
0800 272 
C4600 273 
communication register, list of instructions 151 
communication registers 151 
defined 94, 323 
1/0 iJddress space 268, 270 
interleaving 272 
ldcmr 152 
peripheral bus effects on 270 
PTE cache 272, 273 
stcmr 152 
successful accesses 270 

monospace type 
representing binary or hexadedmal numbers xix 
representing commands, instructions x.ix 
representing computer output xix 

mounting 137 
process on a CPU 140 

mov CIR, Sk 197 
mov Sk, CIR 197 
mov Sk, TCPU 165 
mov TOC, Sk 288 
MPS 

See memory protection system 
MRBASE register 273 
MSB 

See most significant bit 
mski 242 
msync 187 

example 187 
synchronization and 187 

multiple instruction stream, multiple data stream 
(MIMD) 133 

multiplication 
rounding in 46 

multiply operations 
IEEE floating point 34 
native floating point 25 

multiply operations (exceptions) 
IEEE floating point 34 

Index 347 

EDTX 2 -04-CV -120 
51 056DOC065675 



�

multiply operations (table) 
IEEE floating point 34 

multiprocessing 133 
communication registers 136, 142 
complex configuration 135 
CPU allocation 135 
CPU execution docks 163 
lock bits 142 
process 133 
subcomplex 133 
thread 133 
thread allocation 162 
thread allocation mask 162 
thread ID 162 

multiprocessing execution timer 289 
multiprocessing thread timer 290 
multiprocessor 

complex 133 
subcornp!ex 133 
tightly-coupled symmetric 135 

multiprocessor management 7, 133, 134 
discussed 7 
hardware 7 
operating system 7 

multithreaded execution 
communication registers 136 
forking operations 188 

multithreading 
extent of process 162 

multiuser mode 
defined 323 
See single-user mode 

N 
NaN 

defined 32 
exceptions 213 

native floating point 
algorithms 44 
compare operations 23 
conversion operations 27 
conversion operations (exceptions) 27 
data representations 11 
divide by zero 213 
double-precision (illustrated) 20 
double-precision dynamic range {table) 21 
double-precision operands (table) 21 
double-precision standard 20 
fixed-to-float conversion operations (exceptions) 28 
fixed-to-float conversion operations (table) 28 
float-to-fixed conversion operations (exceptions} 27 
float-to-fixed conversion operations (table) 27 
float-to-float conversion operations (exceptions) 28 
float-to-float conversion operations (table) 28 
illegal operations 21 

348 CONVEX C-Series Architecture 

implementation 17, 18 
input exceptions 44 
multiply operations 25 
multiply operations (exceptions) 25 
multiply operations (table) 25 
native single-precision illustrated 18 
NORM 23 
normalized standard 18 
numedc operations 21, 32 
operands 18 
operations 23 
output exceptions 44 
overflow 213 
reserved operands 21, 23 
reserved standard 18 
RSVO and RSVl 23 
single-precision dynamic range (table) 19 
single-precision operands {table) 19 
single-precision standard 18 
square root operations 26 
square root operations (exceptions) 26 
square root operations (table} 26 
true zero 21 
underflow 213 
zero 21 

native integer 
divide-by-zero 213 
overflow 212 

m~tive reserved operands 213 
negate 

defined 323 
See two's complement 

next interval timer counter (NlTC) 278, 279, 280, 
282, 285 

C3200 282 
C3400 286 
C3800 180, 284 
C4600 180, 284 

nibble, defined xxiii 
NITC 

See next interval timer counter 
nonresident communication register data 237 
nonresident data for SDRs 237 
nonresident data page 224 
nonresident page faults 224 

C100 230 
C3200/C3400/C3800 231 
C4600 232, 233 

nonresident page table 224 
non-ringO 

inteaupt-level 244 
normalization, defined 323 
numbers, floating point 

See floating point numbers 

EDTX 2-04-CV-120 
51 056DOC065676 



�

0 
one's complement, defined 315 
op code, defined 323 
opcodes 

undefined 220 
oper<~nds 

and address registers 52 
defined 323 
l/0 address space 270 
loading (fixed point integers) 50 
pop 77 
pop (itlustra tion) 77 
push 77 
push (illustr;~tion) 77 
stack 77 
used as address or index value 52 

operating system 74 
ca II processing 6 
exception processing <~nd 209 
exceptions 220 
implementing 6 
interrupt stack 242 
kernel 122, 123 
memory protection system 6 
memory uS<lge 270 
partitions in process structures 74 
vector valid faults and 221 
virtual address space 6 

operating system interrupts 7 
operating system kernel 

virtual address space 72 
operating system partition 

virtual address space 69 
optimize, defined 323 
orthogonal. defined 324 
output exceptions 

native and IEEE floating point 44 
outward system call 222 
ov 

See floating point overflow bit 
overflow 

stack, detection of 78 
overflow bit (AIV) 

address overflow bit 60 
overflow bit (OV) 

floating point overflow bit 62 
overflow bit (SIV) 

integer overflow bit 61 
overflow bits 

in addition and subtraction 44 
overflow enable bit (OVE) 

integer overflow enable bit 60 

p 

packets, defined 324 
page 

defined 324 
virtual address space 94 

pageO 
arithmetic exception 130 
breakpoint 130 
l /0 register pointer 129 
instruction trace 130 
interropt context block pointer 129 
interropt handler 129 
process deadlock handler 129 
reserved virtual memory 124 
residency and alignment requirements 220 
segment entry point 130 
stack resource structures 91 
system exception handler 129 
system resource structure 130 
vector valid handler 129 
vector valid trap 126 
\'irtua I memory (for exception handlers) 2Cl9 
virtual memory organization ClOO 124 

page faults 
defined 324 
during a page fault 237 
See nonresident page faults 

pagefrome 
defined 324 
R&Mbits 270 
virtual address space 94 

page frame base 102, 105, 107 
page frame base bits 98, 99 
page table entry 99, 101 

access field 118 
access flags 123 
access violations 78, 270 
channel I/O bit 105, 107 
defined 94, 324 
execute access 106, 1 OS 
execute access bit 102 
faults, execute protect 223 
faults, read protect 223 
faults, write protect 223 
for multiprocessing C Series CPUs 97 
format (illustration) 104 
l/0 address accessing 

C3200 271 
(3400 272 
C3800 272 
C4600 273 

!/Obit 106 
I /0 flag C3200 269 
invalid Ievell faults 223 
invalid level 2 fau Its 223 

Index 349 

EDTX 2-04-CV-120 
51 056DOC065677 



�

invalid SDR faults 223 
memory protection system 117 
nonresident format for C100 103 
nonresident format for C3200/C3400/C3800 104 
powerup 131 
read access bit 102, 106, lOS 
resident formats for ClOO 101 
resident formats for C3200/C3400/C3800 104 
resident formats for C4600 107 
thread-level 103 
thread-level (multiprocessing C Series CPUs) 109 
trap handler 78 
valid bits 106, 108 
violations 

C100 230 
C3200/C3400/C3800 231 
C4600 233 

violations, pi!ge 0 126 
write access 106, 108 
write access bit 102 

page t<Jbles 
defined 94 
segment desert ptor registers and 99 

parallel execution 135 
communica lion registers 136 

parallel processing 
asymmetric 195, 197 
asymmetric (example) 197 
introduction 193 
symmetric 193 
symmetric (exam pie) 194 

parallel processing mechanisms 2 
partitioning 

virtual address space 69 
partitions 

process structures 74 
pate instruction, C4600 302 
pbkpt 219, 226 
pbkpt instruction 212 
PBUS 

defined 324 
See peripheral bus 

PC 
See program counter 

PCM 
See physical configuration map 

PCM longword access 
C3200 276 

PCU 
See ph)•sical cache unit 

peripheral bus 
memory access not affected by 270 

PFB 
See page frame base bits 

pfork <effa>,Ak 200 
physical address accesses 

errors 277 

350 CONVEX C-Series Architecture 

physical address space 2, 264, 267 
2 Mbyte blocks 275 
ClOD 265 
Cl 00 (illustrated) 265 
(3200 266 
C3200 (illustrated) 266 
C3400/C3800/C4600 267 
C3400/C3800/C4600 (illustrated) 267 

physical addresses 263 
defined 324 
mapping to virtual address space 94 

physical addressing 
CIR 145 
communication registers 145 

physical cache unit 
R&M bits 270 

physical cache, defined 325 
physical configuration map 275 

ClOD 276 
C3200 275, 276 
C3400 275 
C3800 275 
C4600 275 
CPU type 275, 276 
example 275 
l/0 address space 268 
memory mapping 275 
present bit (P) 275 

physical configuration map (PCM) 266 
physical memory 

amount. determining 275 
defined 325 

physical memory ca padty C3200 271 
pipe symbol (I) 

used in describing commands xxi 
pipelining, defined 325 
plch instruction, C4600 302 
pointer 

corrupted dyromic 123 
pop operands 77 

illustration 77 
pop, defined 325 
porting software, defined 325 
post bit register C3400 177 
posted thread CIR C3800/C4600 180 
posting a fork event 200 
power up addressing mode 

C100 131 
previous stack pointer 

pageD 127 
primitive operations 

class of, send 185 
communication registers 88 
memory system 88 
mixing classes 185 
returning status and PSW 185 
tst 185 

.-:; 

EDTX 2-04-CV-120 
51 056DOC065678 



�

priority, defined 325 
privileged flags 49, 67 

interrupt on (ION) 49, 67 
realtime interrupt on (RT_ION} 49, 67 
vector valid (VV) · 49, 67 

privileged instruction traps 222 
privileged instructions 71, 110 

bri.f, bri.t, jmp.f, and jmp.t 67 
CPU control 197 
defined 325 
eni and dsi 67 
memory protection system 117 
movSk,VV 67 
ring 0 67 
tstvv 67 

process 74 
CIR and definition 137 
context and CIR 137 
context modification 137 
deadlock 206 
deadlock, example of 207 
deadlock, fork acceptance and 208 
deadlock, resolution of 207 
deadlock, termination and 208 
defined 95, 96, 325 
extent of multithreading 162 
maximum number 

C3200 138 
C3400/C3800/C4600 139 

mounting 137 
mounting on a CPU 140 
multiprocessing 133 
scheduling 7 
scheduling and CPU idle loop 205 
state and CIR 137 
synchronization (example) 185 
synchronization instructions 185 
virtual identifier, CIR and 137 

process access violations 6 
process breakpoints 212, 219, 226 

mechanism 228 
process context 74 
process control 76 

stack frame structures 83 
stackswitching 84 
stacks, frame management 76 
stacks, mechanism 76 
stacks, operations 77 
stacks, return blocks 78 

process creation 154 
process deadlock 220, 224 

dass codes 224 
qualifiers 224 

process deadlock handler 
pageO 129 

process disruptions 209, 239 
process exceptions 124, 210, 211, 212 

arithmetic traps 212 
breakpoints 219 
defined 325 
instruction trace traps 215, 216 
See interrupt systems exceptions 
See system exceptions 
sequential executions 218 

process page 0 
ClOD 124 

process scheduling 154 
process state 7 4 
process structures 2 

illustrated 74 
process trap 219, 220, 226 

exception handler 226 
exception pending 226 
instruction for 226 
ring entry 226 
thread control and 226 

process trap mail box C3400 169 
process trap mechanism 228 
processing 

base-level 243 
base-level, ring 0 243 
interrupt-level 244 

processing sequence 
arithmetic traps 214 

processor cabinet, defined 325 
processor monitor bit 99 
processor status word (PSW) 5, 49, 59 

ClOO 59, 60 
0200 59, 60, 63 
C3400 59, 60, 63 
C3800 59, 60, 63 
C4600 59, 63 
defined 325 
exceptions 213 
exceptions, floating point 214 
instruction trace traps (TR) 215 
pageO 127 
sequential (SEQ) 215 
trap enable bits 213 
universal PSW bit definitions 60 

program control 
instruction 121 

program counter (PC) 5, 49, 58, 70, 117, 118, 120, 
124, 125, 129, 243 

arguments 85 
bits defined 58 
defmed 326 
gates and 121 
illustrated 58 
memory protection system and 118 
operation 58 
PC-relative addressing 58 
reserved virtual memory 124 
separated from registers 58 

Index 351 

EDTX 2-04-CV-120 
51 056DOC065679 



�

PROM, defined 326 
prompts, defined 326 
protection system 

address space 71 
virtual memory 117 

protection system and system performance 3 
protection, defined 326 
protocol 

hardware communication registers 154 
locking, thread count and mask 199 

PSW 
See processor status word 

PTE 
hardware reserved bits 102 
See page table entry 
software reserved bits 102, 105 
valid bits 102, 106, 108 

PrE cache 
C3200 297 
modified bits 272, 273 
referenced bits 272, 273 

PrE cache management 
C3200/C3400/C3800 296 
C3400 297 
C3800 297 
C4600 301 

PrE cache purges 
C3200/C3400/C3800 297 
C3200/C3400/C3800 (table) 296 

PrE dependent bits 105 
PI'E2·to-physical translation 

unshared pages (illustrated) 116 
PI'ET 

See thread-level page table entry 
purging cache 

C4.600 303 
purging instruction cache 

C3200/C3400/C3800 298 
purging PTE cache 

C3200/C3400/C3800 297 
push operands 77 

illustration 77 
push, defined 326 
put IS4 

Q 

queue 

R 

defined 326 
See stack 

R&Mbits 
See referenced and modified bits 

read access 

352 CONVEX C-Series Architecture 

indirection 120 
referenced bit 270 
valid memory references 119 

read access bit 
PTE 102, 106, 108 

read protect 223 
read, defined 326 
read-only memory (ROM) 327 
ready state 74 
realtime indicators C3400 170 
realtime interrupt channels 239 
realtime interrupt on flag (RT_lON) 49 
realtime subcomplex 

C3400 239 
receive 1S4, 185 
recursion, defined 326 
reduced instruction set computer (RISC), defined 326 
reduction, defined 326 
referenced and modified bits (R&M) 268, 270, 271, 

272, 273 
C3200 (illustrated) 271 
See modified bits 
See referenced bits 

referenced bits 116 
ClOO 270 
C3200 271 
C3400 272 
C3800 272 
C4600 273 
defined 94 
I/0 address space 268, 270 
interleaving 272 
peripheral bos effects on 270 
PTE cache 272, 273 
successful accesses 270 

regjster sets 2 
general 5 
operations 3 
partitioning (address) 49 
partitioning (scalar) 49 
partitioning (vector) 49 

registers 
address 3, 4, 5, 51, 216, 218, 221, 224, 229, 231, 
232, 243, 245, 258, 260 

AO 204 
AO, additional uses 51 
AS (class code qualifiers) 218 
AS (process deadlock trap) _p.4 
AS (trap class qualifiers) 216 
A7 245, 261 
addressing modes 73 
as stack pointers 51, 77 
used as general purpose 51 
used in extended return block 80, 81 
used in long return block 79 
used in short return block 79 
values that can be loaded into 51 

··.··.f. =-. 
;;;< .. · 

EDTX 2-04-CV-120 
51 056DOC065680 



�

address and offset 73 
argument pointers 76 
base address 272 
broadcast enable (BE} 172, 182, 249 
CIR 189 
CIR binding 189 
collection of, return blocks xxiv 
communication 2, 3, 74, 87, 88, 91, 97, 136, 149, 
151, 174, 186, 187, 189, 197, 198, 201, 203, 211, 
223, 297 

fork event 158 
hardware 154, 155, 156, 157, 189 
invalid communication address exception 225 
lockbit 187 
modified bits 151 
physical addressing 145 
protection scheme 143 
virtual addressing 142 

communicationindex(CIR) 96, 137, 138, 139, 142, 
181, 190, 205, 249 
communication interrupt 176 
contained in stack frames 76 
control 

C3400 166 
C3800/C4600 179 

CPU execution clock 163 
CPU execution timer 289 
CPU exist indicators 170 
CPU INSTALL 181 
CXBASE 233, 236 
deadlock detection 206 
deadlock indicators 170 
defined xxiii, 327 
event select 294 
execution dock, CPU 163 
forkevent 158, 190, 194, 196, 197, 198, 200, 201, 
202, 205 
fork event set 158 
fork event, lock bits 159 
fork posted 201 
frame pointer 76 
general 2 
global enable (GE) 170, 182, 247, 254 
global interrupt enable 247, 248 
global pending 250, 251, 252, 254 
globally pending interrupt 182 
hardware reserved 165 
hardware-specific 143 
l/0 7, 268, 270, 271 
IDLE 181 
idle indicators 176 
individual bit positions within xxlv 
interrupt communication index (ICIR) 249 
interrupt control (ICR) 168, 248, 257, 259 
interrupt enable 239 
interrupt mode 251 
interrupt target CPU (TCPU) 247 

interrupt/trap ilcknowledge indicators 174 
interrupt/trap request indicators 174 
interrupt/trap source indicators 173 
interval status 175 
interval timer 168, 281, 283, 284 
interval timer counter ([TC) 180, 285 
interval timer indicators 169 
interval timer interrupt number (ITIN) 282 
interval timer status (ITSR) 278, 279, 280, 282, 283, 
284, 286 
10 INSTALL 181 
ITC interrupt channel (lTIN) 181 
ITC status (ITSR) 181 
local enable (LE) 171, 182, 246 
local enable interrupt 249 
local int!.!rrupt enable 246, 247 
IOCiil pending 250, 251, 252, 254 
lockbit shift (LCKB) 180 
memory base pointer (MBP) 182 
multiple data lengths 50 
next interval timer counter (NITC) 180, 278, 279, 
280, 282, 284, 285 
nonresident communication data 237, 238 
notation for contents xxiv 
partitioning 5 
post bit 177 
primitive operations 184 
process segment descriptor 237 
processor trap mailbox (MBOX) 169 
R&M Base address (MRBASE) 273 
realtime indicators 170 
scalar 3, 5, 52, 192, 279, 283 

values that can be loaded into 52 
scalar stride C4600 66 
SDRO 237 
segment descriptor (SDR) 94, 98, 99, 100, 159, 160 
SIB interrupt request indicators 175 
some located in 1/0 address space 263 
special purpose 58 

extended PSW bit definitions 63 
processor status word (PSW) 59 
program counter (PC) 58 
universal PSW bit definitions 60 

stack pointer 76, 204 
status 5, 58, 74 
system interval timer interrupt 170 
target CPU (fCPU) 251 
TERtrapenable 177 
thread allocation 199 
thread allocation mask and count 162 
thread identifier mDl %, 199, 300 
thread timer 290 
time of cen!ul)' (TOC) 168, 180, 287, 288 
time of centul)' delta time (TOC_DELTA} 168 
timer 129 
TOC write complete 177 
trap command register CTRPCMD) 180 

Index 353 

----------- -:----~--.,-~---~~-

. ·._:_; ... ·· 

EDTX 2-04-CV-120 
51 056DOC065681 



�

trap instruction 161, 226, '127 
unused fields in xxiv 
used in return blocks 78 
vector 3, 5, 53, 192.. 218, 221 
vector accumulator 53, 126, 129 
vector first (VF) 57 
vector length (VL) 56, 126, 129, 294 
vector merge (VM) 57, 126, 129, 294 
vector stride (VSl 126, 129 
vector valid trap 221 

registers, address 
See address registers 

registers, vector 
See vector registers 

remote invalidation 299 
reporting problems xxvi 
reservation, defined 327 
reserved field 

defined xxiv 
reserved operand bit (UN) 62 
reserved operands 

exceptions 213 
trap handlers 214 

reserved virtual memory 124 
pageO 124 

RESET switch, defined 327 
reset, defined 327 
resident bit 103 
resource control 

usersoftware 135 
resource structures 

communication registers 87, 138 
instructions 87 
memory duals 87 
shared 87, 88 
stack 89, 91 
system 91, 92 
valid byte 88 

return blocks 78, 86, 211, 213, 219, 220, 221, 222, 
229, 232 

ClOO 230 
C3200/C3400/C3800 231 
C4600 232, 233 
defined xxiv 
fault 232 
length of 78 
rtn 82 
rtnc 82 
types listed 78 

ringO 117, 220, 242 
and memory protection system 111 
context return block 78 
hardware communication registers 154 
interrupt-level 242, 244 
inward and outward calls 121 
privilege level 71 
privileged instructions 67 

354 CONVEX C-Series Architecture 

·-··---···-··---""":"-.:....__ _____ ... 

process structures 7 4 
stack resource structures 91 
stacks 84 
unaligned 237 
virtual address space 72 

ring checking 120 
ring crossings 121, 122, 215, 219, 220, 222, 225, 

228, 229, 242 
base-level processing 243 
rtn 121 
rtnc 121 
sync 121 
traps 220 

ring maximization 118 
access validity, table 118 
defined 327 
passed pointers 123 

ring of execution 
idleCPU 204 
virtual address space 94 

ring structure 
vi rtua I address space 70 

ring viola lions 
faults 223 
invalid communication address 64 
traps 223 

ClOO 230 
C3200/C3400/C3800 231 
C4600 232, 233 

rings 117, 222, 223 
defined 327 
invalid access 223 
memory protection system 6 
See scan rings 
segment assignments 71 
unconditional access 85 
violations 222 
virtual address space 70 

rings 1, 2, and 3 
virtual address space 72 

RlSC 
See reduced instruction set computer 

RO 
See reserved operand bit 

root directory, defined 327 
round bits 

defined 327 
unbiased rounding {IEEE) 33 

rounding 
defined 328 
in data type conversions 47 

rounding, unbiased, defined 331 
RT_lONbitC3400 175 
RT_ION flag 5, 246 

See realtime interrupt on flag 
rtn 86, 243, 245 

inter-ring procedures 121 

-:-.· .. 

i :· 
; ~ 

EDTX 2-04-CV-120 
51 056DOC065682 



�

l 

1 

}: 

! 
l 

return blocks 82 
system return 85 

rtnc 
inter-ring procedures 121 
return blocks 82 

runtime, defined 328 

5 
5 registers 

See scalar registers 
SCillar carry bit (SC) 67 
scalar register sets 

partitioning 49 
sea lar registers 5, 52 

C4600 52 
data types, bit positions 50 

scalar stride register 
C4600 66 
cache prefetchlng 66 
non-vectorizing routines and large data sets 66 

scalar stride register one (551) 5 
scalar stride register zero (550) 5 
scatter 

defined 328 
See stvi 

scheduling 
CPU 189 
CPU idle loop process 205 
dynamic 135 
thread and CPU idle loop 205 

SDR 
See segment descriptor register 
See segment descriptor registers 
valid bits 98, 100 

SDZ 
See integer divide-by-zero bit 

segment 
defined 328 
memory 74 
virtual address space 69, 94 

segment assignments 
rings 71 

segment descriptor register (SOR) 98, 138 
address translation 160 
CIOO 98 
C3200 99, 160 
C3400 99, 160 
C3800 99, 160 
C4600 100, 160 
changing the ClR 160 
communication registers 138 
defined 328 
virtu a I address space 94 

segment entry point 
page 0 127, 130 

segment out-of-bounds error 102, 103 
segment out-of-bounds error bit 106, 108 
segment structures 

iUustrated 74 
segmentation 

memory 74 
segmented ALU, defined 328 
send 184 
SEQ 

See sequential mode bit 
sequential exceptions 212 
sequential executions 218 
sequential mode bit (SEQ} 61 
sequential store enable bit (5QS) 63, 2.18 
service processor unit 

PTE creation 131 
shared d~ta pages 103 
shared memory 

defined 97 
synchronization and 97 

shared resource structures 
format (illustrated) 88 
lock byte 87 
multiprocessing c Series crus 87 
stacks 89 
synchronization word 87 

shift, defined 328 
short frame 

stack resource structures (illustrated) 84 
short return block 78, 79 

illustrated 79 
SIB interrupt request indicators C3400 175 
single-precision 

data registers 50 
defined xxiii, 328 
floating point 17 
word 4 

single-user mode 
defined 328 
See multiuser mode 

srv 
See integer overflow bit 

size 
v1rtual address space 69, 70 

sleeping state 74 
SMB 

See System Monitor Board 
soft front panel, defined 329 
software context 7 4 
software dev1ce driver, defined 329 
software reserved bits 

PTE 102, 105 
SDR 99, 100 

source, defined 329 
SP 

See stack pointer 
spatial reference, defined 329 

Index 355 

EDTX 2-04-CV-120 
51 056DOC065683 



�

spawn <effa>,Ak 200 
spawning a fork 200 
SPU 

See service processor unit 
SPU OS, defined 329 
SPU tape cartridge, defined 329 
SPU tape drive, defined 329 
SQS 

See sequential store enable bit 
square brackets ([ ]) 

used in describing commands xxi 
square root operations 

IEEE floating point 41 
native floating point 26 

sso 
See scalar stride register zero 

551 
See scalar stride register one 

stack 
defined xxiv, 329 
dynamic storage 76 
interrupt 239 
overflow detection 78 
See queue 
underflow dete<::tion 78 

stack frame 76 
trap frame (defined) 211 

stack frame management 76 
stack frame structures 

subroutine entries 83 
stack index 

stack resource structures 89 
stack management 

cautions 77 
stack operations 77 
stack pointer 76, 204, 243 

address register AO 51 
arguments 85 
in stack management 76 
modification of 77 
pageO 127 

stack resource structures 89 
after calls (illustrated) 84 
for multiprocessing C Series CPUs 89 
header (illustrated) 89 
multiprocessing C Series CPUs 91 
pageO 91 
short frame (illustrated) 84 
stack index 89 
subroutine entries (illustrated) 83 

stack switching 84 
state 74 
states 

allocated CPU 189 
idleCPU 189 

static data, 
process 74 

356 CONVEX C-Series Architecture 

status registers 
processor state 58 
processor status word (PSW) 49 
program counter (PC} 49 

stcmr 
modified bits !52 

stcrnr effa, Ak 197 
sticky bits 

defined 329 
in addition or subtraction 44 
unbiased rounding ([EEE} 33 

storage allocation 
virtual address space 72 

store, defined 329 
strip mining 

ve<::tor terminology 56 
subcornplex 

defined 95 
multiprocessor 133 

subroutine 
defined 330 
entries for stack frame structures 83 
entries for stack resource structures (illustrated) 83 
entry and exit 76 

subtraction 
rounding in floating point 44 

superuser, defined 330 
supervisor mode, defined 330 
symmetric parallel processing 193 
synchroniZation 207 

communication (example} 185 
communication instructions 185 
CPU 206 
improper deadlock 201 
instruction sequence (example) 186 
of consumer 186 
of producer 186 
passing data 186 
shared memory and 97 
structures in memory 186 
thread 137, 206 
threads 137 

synchronization problems 
memory 187 

synchronization word 
shared resource structures 87 

sysc 85 
corrupted pointers 122 
gate index field 121 
inter-ring procedures 121 

system calls 121 
arguments 85 

system console, defined 330 
system control module (SCM:) 

defined 330 
See system status display 

system exception handler 

EDTX 2-04-CV-120 
51 056DOC065684 



�

page 0 126, 129 
system exceptions 124, 210, 220, 237 

C100 210 
C3200/C3400/C3800 /C4600 210 
characteristics of 220 
classes and qualifiers 

CIOO 230 
C3200 231 
C3400 231 
C3800 231 
C4600 232, 233 

communication registers 144 
defined 330 
error exit traps 220 
global 220 
invalid communication address 144 
local 220 
nonresident page faults 224 
process breakpoints 219 
processing 229 
ring violation faults 222 
ring violation traps 222 
See traps 
undefined op code traps 220 

system manage.;. defined 330 
system monitor board, defined 330 
system page 0 125 
system resource structures 85, 86 

accessing (illustrated) 92 
format (illustrated) 91 
illustrated 92 
multiprocessing C Series CPUs 130 
pageD 130 
ring 0 91 

system returns 85 
system status display, defined 330 
system structures 

illustrated 74 

T 
TAC 

reporting problems to xxvi 
tag, defined 330 
target CPU (TCPU) register 251 

interrupts 247 
tas 

not permitted on 1/0 pages 268 
technical assistance xxvi 
TER trap enable registerC3400 177 
termination algoritlun 

thread 200 
test-and-~t 89 
thread 74 

allocation, locking protocol 199 
asymmetric 195 

·,:_:. 

asymmetric, instructions 196 
count, locking protocol 199 
creation 154 

asymmetric 200 
blocking of 200 
symmetric' 200 

creation algorithm of 199 
deadlock 

causeof 207 
exampleof 207 
fork acceptance and 208 
resolution of 207 
termination and 208 

defined 95 
idle CPU and creation 159 
mask 

fork acceptance 199 
locking protocol 199 

mask and count, locking and 163 
maximum number 

C3200 138 
C3400/C3800/C4600 139 

multiprocessing 133 
scheduling and CPU idle loop 205 
synchronization 137, 206 

example 185 
instructions 185 

termination 154 
asymmetric 201 
symmetric 202 

termination algorithm 200 
thread allocation 

fork ac(;eptance 199 
valid bit 163 

thread allocation count 162 
thread allocation mask 162 
thread allocation registers 

C3200 (illustrated) 162 
C3400/C3SOO/C4600 (illustrated) 162 

thread control 
process traps and 22h 

thread count 162 
fork acceptance 199 
join 162 

thread creation 189 
fork event registers 158 

thread ID 115, 162, 216, 256, 297 
thread allocation mask 162 

thread identifier register (TID) 74, 96, 162 
thread initialization trap (fiT) 218 

bit 63, 218 
thread memory 116 
thread termination 191 

last 224 
thread termination instructions 191 
thread termination trap 217 
thread timer 290 

Index 357 

EDTX 2-04-CV-120 
51 056DOC065685 



�

cross-ring calls 290 
delta timer 290 
implementation 290 
inner ring entry 291 
ringO 290 
saving 290 

threaded trap process 
example 218 

thread-level 
PTE 103 

thread-level page table entry 
for multiprocessing C Series CPUs 109 

threads 
and memory alloc~tion 103 
CIRand 96 
unshared memory and 96 

TID 
CIR modification 290 
See thread identifier register 
TTR modification 290 

tightly-coupled symmetric multiprocessor 135 
time of century dock (TQC) 268, 287, 288 

ClOO 278 
C3200 278 
C3200 (figure) 287 
C3400 168, 278 
C3800 180, 278 
C4600 180, 278 
l/0 address space 268 

time of century delta time register C3400 168 
timers 

1/0 register pointer 129 
timesh~ring channels 

interrupts 239 
timesharing interrupt channels 239 
timesharing subcomplex 

C3400 239 
TIR 

See trap instruction register 
TIT 

See thread initialization trap bit 
TOC 

See time of century dock 
TOCdock 

wall clock time 287 
TOC write complete bits C3400 177 
TR 

See instruction trace bit 
trace bit (TR) 

instruction trace bit 60 
trace thread concurrency (TICl 216 

bit 216 
trap 217 
trap, class codes and qualifiers 216 

trace thread concurrellcy' rrap bit {TTC) 63 
trace thread initialization 

trap, class codes and qualifiers 216 

358 CONVEX C-Series Architecture_ 

trace trap 215, 216 
class codes and qualifiers 216 
instruction 216 
process exceptions 215, 216 

trace trap handler 218 
trace, defined 331 
trap #rm,#b 226 
trap command register C3800/C4600 180 
trap enable bits 

pwcessor status word 213 
trap frame 211 
trap handlers 

address register 51 
trap handling sequence 214 
trap instruction 227 

C3200/C3400/C380G 231 
C4600 233 
invalid 227 
protection 227 
ring of execution 227 

trap instruction registers 161 
C3200 (illustrated) 161 
C3400/C3800/C4600 (illustrated} 161 

trap instruction registers (TIR) 
modified 226 
partitioning (illustration) 227 
protection 226 
ring crossing 228, 229 
source of trap 226 
validity of ring references 226 

traps 211 
arithmetic 212 
defined 331 
instruction trace 216 
invalid communication register address 225 
privileged instructions 222 
ring violations 222, 223 
See exceptions 
thread initialization 218 
valid 227 
vector valid 221 

traps and interrupts C3800/C4600 183 
trojan horse pointers 

defined 331 
See corrupted pointers 

trouble reports xxvi 
true zero 

defined 331 
floating point underflow 213 
IEEE floating point 33 
native floating point 21 

TIC 
See trace thread concurrency trap bit 

TIR 
delta timer 290 
TID modification 290 

two's complement number system 

EDTX 2-04-CV-120 
51 056DOC065686 



�

~: ____ .. 

signed fixed point integers 4, 14 

u 
UN 

See floating point underflow bit 
unaligned data for SDRs 237 
unbiased rounding, defined 331 
undefined field 

defined xxiv 
undefined op code traps 

system exceptions and 220 
undefined op code traps (chart) 

ClOO 230 
C3200/C3400/C3800 231 
C4600 232, 233 

underflow 
floating point 213 
stack, detection of 78 

underflow bit (UN} 
floating point underflow bit 62 

UNIX, defined 331 
unlock 184, 185 
unshared data pages 103 
unshared memory 116 
unsigned integer, defined 331 
uppercase names 

used in describing keycap names xx 
user partition 

virtual address space 69 
user processes 

virtual address space 72 
user program 

maximum size 6 
user, defined 331 

v 
v 

See vector accumulators 
valid bits 

communication register 152 
defined 331 
PTE 102, 106, 108 
SDR 98, 100 

valid byte 
resource structures 88 

valid memory references 117 
execute access 119 
read access 119 
write access 119 

valid PTE reference, defined 332 
vector 

defined 11, 332 
vector accumulators (V) 53, 126, 221 

C4600 53 

interrupt processing and 221 
number of elements 53 
referendng elements 53 
size 53 
VO through V7 53 
vector length register 56 

vector first register (VF) 53, 57 
usesof 57 
values 57 

vector length register (VL) 53, 56, 126 
values 56 

vector machine state 221 
vector merge register (VMl 53, 57, 126 

usesof 57 
values 57 

vector register sets 
partitioning 49 

vector registers 5, 53 
data types, bit positions 50 

vector stride register (VS) 53, 56, 126 
values 56 

vector terminology 54 
data type 54 
dimension 54 
illustration 54 
length 54 
stride 54 
strip mining 56 

vector valid flag 49, 221 
vector valid handler 

pageO 129 
vector valid traps 221 

example 221 
Icache purges 295 
processing sequence 222 

vertical slash (I) 

used in describing commands xxi 
VF 

See vector first register 
violations 

process access 6 
virtual address space 2, 54, 69, 70, 74, 117 

and virtual memory, multiprocessing C Series CPU 
extensions 95 
corrupted pointers 122 
mapping to physical address space 94 
memory management 70 
memory protection system 6, 117 
operating system kernel 72 
operating system partition 69 
page 94 
page frame 94 
partitioning 6, 69 
ringO 72 
ring of execution 94 
ring structure 70 
rings 70 

Index 359 

EDTX 2-04-CV-120 
51 056DOC065687 



�

. .__ -~ ~ 

rings 1, 2, and 3 72 
See logical address space 
segment 94 
segment descriptor register 94 
segments 69 
size 69, 70 
storage allocation 72 
user partition 69 
user processes 72 
virtual memory management 94 

virtual addresses 13, 263 
addressing modes 70 
ATU 111 
byte boundaries 72 
format 71 
format (illustrated) 70 

references (table) 118 
virtual addressing 

commurrica tion registers 142 
virtual channel ports 241 
virtual channels 

i nterro pts 239 
virtual interrupt channels 239 
virtual memory 

capadty 3 
ldkdr 237 
mapping of 95 
pageO 209 
page 0 C100 124 
reserved 124 

virtual memory and operating system 6 
virtual memory management 

attributes, defined 95 
multiprocessing C Series CPU extensions 95 
virtual address space 94 

virtual memory mapping 257 
virtual-to-physical address translation 111 

attributes 112 
C4600 PTE cache 301 
multiprocessing C Series CPUs 112 
unshared memory 115 

VL 
See vector length register 

VM 
See vector merge register 

VMEbus, defined 332 
VS 

See vector stride register 
vv 

See vector valid flag 
VV flag 5 

w 
wfork 201, 203 
word 12 

360 CONVEX C-Series Architecture 

access 50 
boundary addressing 12 
data alignment 72 
data registers 50 
defined xxji i, 332 
fixed point integer 4 
See ha!fword 
See longword 
signed fixed point integer 14 
single-predsion 4 
unsigned fixed point integer 16 

word resource structures 
with two pushed entries, illustrated 90 

working set, defined 332 
write access 

modified bits 270 
referenced bit 270 
valid memory referen<:es 119 

write access bit 
PTE 102, 106, 108 

write protect 223 
write, defined 332 

X 
xmti 241 

z 
zero 

Se€ true z:ero 
zero,defined 332 
zero, true 

See true zero 

l 
' ~~ 

f 
~-

' 

I 
l 
r 
I 
r 
I 
1 
r 
' J 

EDTX 2-04-CV-120 
51 056DOC065688 



�

-~. ... . :.: ·: : ·. 

..... ; . ·· .. : ·,! . 

ORDER NUMBER 
ct-IW-300 

DOCUMENT NUMBER 
OSl-011830-00l 

... >"· 

EDTX 2-04-CV-120 
51 056DOC065689 


