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Using this manual

Purpose and
audience

The CONVEX C-Series Architecture describes the architecture of
the CONVEX C-Series supercomputers. It is a companion to the
CONVEX Assembly Language Reference Manual (C Series).

This document applies to all CONVEX C-Series architecture
CPUs, including the C100, C3200, C3400, C3800, and C4600
Series CPUs. It serves as a tool to help engineers and software
developers make maximum use of any CONVEX processor’s
facilities.

Notational
conventions

Notational conventions are those characters, symbols,
terminology, or abbreviated expressions used in this manual.

Text notation
Text notation conventions set apart special items.

* Monospace type represents computer output, binary or
hexadecimal numbers, commands, instructions or
mnemonics.

Example:

ERROR: Unknown command. Reenter,

Using this manual  xix

EDTX 2-04-CV-120
51056DOC065319



Bold monospace type represents your response to a
program or utility prompt.

Example:

Do you really want to exit? y

Bold uppercase names designate keycap names.
Example:

RETURN

If two keycap names are separated by a space, they are
pressed sequentially.

Example:
ESCQ

If two keycap names are separated by a hyphen, they are
pressed simultaneously.

Example:
CTRL-C

The word “enter” followed by a command, means to type
the command and then press RETURN.

Italicized words in an example command sequence are

representative of a user-supplied name, such as a file name.

Example:
command filename

Angle brackets (< >) designate unprintable ASCII
characters.

Example:

<197> is an em dash

xx CONVEX C-Series Architecture
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* Angle brackets (< >) are used to designate bits as fields ina
byte, word, register, and so forth.

Example:
PSW <6...0>

¢ Square brackets ([]1) in a command sequence designate
optional letters, characters, subcommands or other
command elements. Brackets may be nested, indicating
optional subelements. If there are two or more options, they
are separated by vertical slashes or pipe symbols.

Example:
com[mand] {filename|devicename]

* Braces ( {})in a command sequence designate mandatory
input, which must be one of two or more possible options.
These options are separated by vertical slashes or pipe
symbols.

Example:
comfmand] {al|blc}

* A verfical slash ( | ), also known as the pipe symbol, ina
command sequence indicates “or,” giving you a choice
between optional elements of a command.

Example:

conf{igure] {command | alias]

* Horizontal ellipses ( .. .) in a command sequence show that
the element immediately preceding them can be repeated.

Example:

ad{dl [ [{board] ...]1 | all]

1 Using this manual  xxi
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» Vertical ellipses in a command sequence show that lines of
an example have been left out.

Example:

Verifying image 99
vVerifying image 19%

Verifying image 999

Command syntax
The previous conventions are used in the example that follows
to define the commands in the user interface.
Example:
com[mandl{.t|.£} [-al-b] inpui_file [...]1 [output_file]

In the example:

* command is required and may be abbreviated to com (square
brackets indicate optional portion).

* Ifacommand option (indicated by a list in braces, separated
by a vertical slash) is used, then either .t or . f, if required.

¢ I1f a command option (indicated by a list in square brackets,
separated by a vertical slash} is used, then either -a or -bis
optional.

o input_file, indicated by italics with no square brackets, is a
required file name supplied by the user.

* Additional input_file names, indicated by ellipses in square
brackets, may optionally be supplied by the user.

= output_file, indicated by square brackets and italics, is an
optional file name supplied by the user.

CONVEX C-Series Architecture
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Data notation

The following data notation conventions identify specific
definitions in CONVEX supercomputer architecture:

*» A bit is a single binary value or entity.

* A nibble is 4 bits.

* A byteis 8 bits.

¢ A halfword is 16 bits.

s A word is 32 bits.

* A longword is 64 bits.

* Single-precision is a 32-bit floating-point word.

* Double-precision is a 64-bit floating-point longword.
¢ An instruction is a multi-halfword operand.

* A bit is sef when it contains a binary value of 1.

* A bit is clear when it contains a binary value of 0.

* Bit numbering is from left to right, n-1 through 0. The most
significant numerical bit is 71-1, the least-significant is 0. The
bit numbering represents the binary weight of a position.

* Byte numbering is from left to right, 0 through n-1.

* Byte order in a 64-bit longword is interpreted with
increasing byte addresses associated with higher order
bytes within a longword. The most-significant bit is
associated with the least significant byte number.

: Figure 1 represents the ordering of each addressable entity
within a 64-bit longword.

Figure 1 Memory longword structure

83 £6 55 48 47 40 39 32 31 24 23 18 15 8 7 s}
Byte 0 | Byte I | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byie 6 | Byte 7
7 ¢ 7 o 7 o 7 o 7 o 7 o 7 0 7 0

Addr O Addr 1 Addr 2 Addr 3 Addr 4 Addr 5 Addr 6 Addr 7

AH300001
12/1/93

* A register is a programmer-visible hardware storage element
internal to the CPU.
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» All register contents are written in hexadecimal notation,
unless explicitly stated otherwise.

* Bit fields are specified with decimal numbers as

reg_name<x. .y?>

where the bit field is reg_name from bits x through y.

¢ Individual bit positions within a register are specified as

£

reg_name<l15,4,0>

where 15, 4, and 0 are bits within reg_name.

* An instruction is a group of halfwords.

- For C100 Series CPUs, only the standard instruction can
be used. In the standard instruction, the first halfword is
an op code and the remaining halfwords are operands.

— For multiprocessing C-Series CPUs (C3200, C3400, C3800,
and C4600 Series CPUs), either the standard or the
extended instruction can be used. In the extended
instruction, the first halfword is an op code prefix, another
halfword is an op code, and the remaining halfwords are
operands.

¢ All memory and 1/0 addresses are written in hexadecimal
notation unless explicitly stated otherwise.

© Physical memory is the physical storage (main memory)
actually installed with the CPU.

e Virtual memory is the perceived amount of main memory as
seen by the application programmer.

e The symbol k is an abbreviation for kilo or 1,024
¢ The symbol M is an abbreviation for mega or 1,048,576.
* The symbol G is an abbreviation for giga or 1,073,741,824.

* A stack is a data structure in which memory is aliocated and
deallocated from one end, usually called the top, on a last-in,
first-out basis (LIFO).

e A return block is a collection of register contents that are

pushed on or popped off a stack in response to an instruction
or other event.

* Reserved or undefined indicate what, if anything, to expect i
from unused fields in registers, reserved memory, or reserved
1/0O space. Algorithm implementation based on the use of
reserved fields is not recornmended.
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Note

Caution

|

Notes, cautions, and warnings

This document presents notes, cautions, and warnings in the
following formats.

A Note highlighis supplemental information.

A Caution highlights information necessary to avoid damage to
the system.

A warning highlights information necessary io avoid injury to
personnel.
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Associated
documents

The following is a partial list of other manuals or books that may
provide more detailed information on the topics presented in
this manual:

* CONVEX Assembly Language Reference Manual (C Series), i
Order No. DSW-301—This manual is a reference guide for 5
developing software for CONVEX C-Series processors. [t ‘
contains the formats for the CONVEX C-Series instruction set. !

¢ CONVEX Processor Diagnostics Manual (C Series), Order
No. DSW-302—This manual documents the service
processor unit (SPU)-based processor diagnostics for
CONVEX supercomputers.

* CONVEX System Manager’s Guide, Order No. DSW-004—
This manual is written for system managers who are
responsible for administering resources on CONVEX
systems. Included are descriptions for configuring devices,
authorizing users, setting up mail and communications,
performing backups and system accounting functions, and
monitoring system resources.

Ordering
documents

To order the current edition of this or any other CONVEX
document, send requests to:

CONVEX Computer Corporation
Customer Service

PO Box 833851

Richardson, TX 75083-3851

USA

Include the order number or exact title with the request. The
order number is on the title page of the manual and begins with
the letters “DSW-" or “DHW-.”

The order number for the CONVEX C Series Architecture is
DHW-300.

Technical
assistance

Hardware and software support can be obtained through the
CONVEX Technical Assistance Center (TAC). i

* From all locations in the United States, customers call
(800)952-0379.

¢ From all locations in the United States, CONVEX employees
call (800)545-4839.

xxvi CONVEX C-Series Architecture

EDTX 2-04-CV-120
51056D0OC065326



s From locations in Canada, customers and CONVEX
“employees call (800)345-2384.

» From all other locations, contact the nearest CONVEX office.
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Infroduction

This document is a reference for the CONVEX C-Series
architecture. As new model numbers are added to any series, the
material in this document may apply in whole or in part. These
lists should not be considered exclusive.

The C100 Series includes the C1 and C120 CP Us.

The implementation of the C-Series architecture on the C200
Series and C3200 Series CPUs is identical, therefore references in
this book are written for the C3200 Series CPUs. The C3200 Series
includes the C210, C220, C230, C240, C3210, C3220, C3230,
(3240 CPUs.

The C3400 Series includes the C3410ES, C3420ES, C3410, C3420,
(3430, C3440, C3460, and C3480 CPUs.

The C3800 Series includes the C3810, C3820, C3830, C3840,
(3460, and C3880 CPUs.

The C4600 Series includes the C4610, C4620, C4630, and C4640
CPUs

Al C100 Series CPUs are single processors. Multiprocessing
C-Series CPUs include the C3200, C3400, C3800, and C4600
Series CPUs.

Chapter 1 Introduction 1
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The CONVEX
C-Series
architecture

The architecture presented in this manual defines the

specifications of the central processing unit (CPU) of the
CONVEX supercomputers.

The term architecture is defined as the attributes of a system as
seen by the programmer (the conceptual structure and functional
behavior), as distinct from the organization of the data flow and
controls, the logical design, and the physical implementation.
Within this context, an architectural specification defines the

following attributes, as perceived by the programmer and the
hardware designer:

* Data representations
¢ Register sets

~ General registers

—~ Communication registers
¢ Instruction set

* Memory management

Physical address space

Virtual address space

Process structure and control

Virtual memory management

Virtual memory protection
Caches

¢ Multiprocessor management

Automatic self-allocating processors

Parallel processing mechanisms

Forking and spawning mechanism

Memory protection mechanisms
¢ Exception and interrupt mechanisms

The instruction set is described in the CONVEX Assembly
Language Reference Manual (C Series).

The CONVEX C-Series architecture incorporates the following
features:

* Anintegrated vector processor incorporated within the
system for high-speed operation

* A full range of fixed and floating-point data types

2 CONVEX C-Series Architecture
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* A total capacity of four Gbytes of virtual memory - two
Gbytes available to support large user programs and data,
and two Gbytes to support the operating system

» Large, high-speed register sets (address, scalar, and vector)

that support high-performance operation for address
calculations in parallel with scalar and vector calculations

+ Communication registers and multiprocessing structures (i
the multiprocessing C-Series CPUs)

* Multilevel protection systems that support and separate
users, thereby enhancing system reliability and increasing
the performance of operating system functions

All CONVEX (C-Series CPUs share a common architecture, in

n

most respects. However, some software, such as the ConvexQ5

operating system, use features whose implementation varies
among different CONVEX CPUs. Although not immediately
visible to the user, the fine detail and construction of these
features are visible to the ConvexQS software.

Chapter1 Introduction
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Cha pter This section contains brief summaries of the chapters that follow.
H In addition, a brief summary of the instruction set is found in the
summaries CONVEX Assembly Language Instruction Set (C Series).

» Data representations and operations
* General registers

* Memory management

Multiprocessor management

* Exceptions and interrupts

Implementation-specific features

Data representations
There are three binary numeric data representations:

s Signed fixed point integer

» Unsigned fixed point integer
* Floating point
The CONVEX processors support four fixed-point integer

precisions. Signed fixed-point numbers are interpreted as two's

complement representations. Integer quantities exist in four
lengths:

* Byte—8 bits

* Halfword—16 bits
» Word—32 bits

° Longword—o64 bits

The CONVEX CPUs support both native and IEEE standard
floating point number representations in two formats: !
single-precision word (32 bits) and double-precision longword
(64 bits). Both formats are interpreted as binary, normalized
fractions with an implicit value of “1” in the most-significant bit
of the fraction. The exponent is a biased power of two, scale factor.

An address or logical value is treated as an unsigned 32-bit
integer usually contained in the address registers. For numeric
purposes, an address register may be treated as a signed or
unsigned 32-bit integer.

Virtual addresses are byte-granular. Instruction operands in
memory may begin on any byte boundary that allows all byte
locations within a given data type to be used, even though the
operands may be unrelated.

4 CONVEX C-Series Architecture
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Operations are performed in integer and floating-point.
Floating-point operations are performed in native and IEEE
modes. The differences are delineated for add, subtract,
multiply, divide, square root, compare, and conversion
operations.

Register sets

There are three general register sets and several status registers.
The three register sets are partitioned according to the type of
operand to be manipulated:

» Address registers
* Scalar registers
» Vector register

There are four general status registers and three privileged flags.
The four status registers are:

¢ Program counter (PC) |
¢ Processor status word (PSW) ]
» Scalar stride zero (SS0 - C4600 Series CPUs only) |
¢ Scalar stride one (S51 - C4600 Series CPUs only))

The three privileged flags are:
* Interrupt on (ION)
* Realtime interrupt on (RT_ION - C3400 Series CPUs only)
¢ Vector valid flag (VV)

i Chapter1 Introduction 5
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Memory management

The memory management unit (MMU) supports the operating
system in providing a versatile and reliable virtual memory
programming environment. The CONVEX C-Series architecture
provides 4 Gbytes of virtual memory inits virtual address space
partitioned into eight 512-Mbyte segments. Four segments are
allocated to the operating system and four segments to the user.
The maximum size of a user program (instructions and data) is
limited to 2 Gbytes. The operating system data structures and
instructions necessary to manage the user program occupy the
remaining 2 Gbytes of virtual storage.

Because the address space of the CONVEX system architecture
is virtual, an address may be a valid logical address, but the
referenced data may or may not be in physical memory. Memory
is managed as pages on a fixed-size basis.

Since the operating system is embedded within the user-virtual
address space, it must be protected from the user. The memory
protection systern protects the user’s programs from other users’
programs, while supporting time-sharing and operating system
structures.

This system is based on hierarchical structures called rings and

» supports embedding the operating system in the user’s !
virtual address space,

¢ contains certain access violations to the user’s process,
® permits implementing the operating system efficiently, and

= enhances operating system call processing by reducing the
time for context switching,.

6 CONVEX C-Series Architecture
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Multiprocessor management

, Multiprocessing is the creation and scheduling of individual

| processes on any subcomplex. The multiprocessor management
| hardware incorporated in each C-Series architecture CPU :
i !
I
{
j

provides the operating system and user a simple and flexible set
of instructions for dynamic allocation, deallocation, and
communication. Each CPU in a C-Series architecture complex
operates independently as a 64-bit supercomputer. The
multiprocessor management hardware binds these CPUs into a
tightly coupled set with shared memory. This implements a
multi-instruction mult-data (MIMD) architecture that provides
a parallel execution environment for user applications.

Exceptions and interrupts

Exceptions occur when a currently executing program
encounters event such as arithmetic inconsistencies, address
translation faults, or some asynchronous event (such as an
interrupt). When an exception occurs, control is transferred to a
predetermined address whose value is a function of the
exception.

i Interrupts are the result of events that occur asynchronously and :
belong to the system, not to the executing process. When an '
interrupt occurs, the processor jumps to a particular interrupt ‘
handler determined by the interrupt source.

All1/0 data references by the CPU are memory mapped. There
are no explicit I/O instructions. The I/O registers and memory
status bits are referenced through the appropriate logical-to-
physical address mapping.

i Chapterl Introduction 7
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Implementation-specific features |

Some CONVEX CPUs implement some CPU functions through
registers located in the I/O address space. However, the CPU
uses only a fraction of I/O address space for physical
implementation of registers. Registers in I/O address space are
addressed in much the same way as elements of main memory.
This allows access to a number of subsystems required for
proper operation of the various machines. The I/O address
space is implementation specific, resulting in significant
differences between the single processor and multiprocessor
implementations.

The C3400, C3800, C4600 Series CPUs do not have I/0 address
space.

8 CONVEX C-Series Architecture
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instruction set The CONVEX (-Series architecture includes an instruction set
that provides minimum functionality per instruction.

The instruction set is projected orthogonally, that is, each

instruction op code is defined so thatitis a constant hexadecimal
address distance from another op code. Orthogonally specifying
the instruction set simplifies instruction decoding by hardware.

Even though the fundamental addressable unit is the byte,
instructions are addressed on a halfword {even byte) boundary.
An instruction may be one, two, three, or four halfwords in
length, equivalent to 16, 32, 48, or 64 bits, respectively.

A standard instruction is one to three halfwords in length. An
extended instructionis two to four halfwords in length, since the
extended instructions contain a halfword prefix of either 7EF0 or
7EF8, prior to the op code itself. See the CONVEX Assembly
Language Reference Manual (C Series) for details about the

| instruction set.

Chapter1 Introduction 9
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Data representations

CONVEX C-Series CPUs support three data representaﬁons:
* Signed numeric fixed-point integer
* Unsigned numeric fixed-point integer
* Numeric floating-point integer

An address or logical value is treated as unsigned. The C-Series
architecture supports the IEEE and native floating-point data
representations with a 64-bit, double-precision format and a
32-bit, single-precision format. However, the complete IEEE
floating-point specification is not supported in the C-Series
architecture. Specifically, the C-Series architecture uses the same
algorithms to compute both IEEE and native floating-point
values.

Instructions that manipulate the data representations found in
this chapter are discussed in the CONVEX Assembly Language
Reference Manual (C Series).

Chapter 2 Data representations 11
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Basic data
representations

The C-Series architeckure has four basic addressable data
representations. Each data representation must start on an

addressable byte boundary:
* Byte—S contiguous bits

» Halfword—16 contiguous bits
* Word—32 contiguous bits
» Longword-—64 contiguous bits

Bit numbering is left to right, #-1 through 0, where n is the

number of bits in the data type. The most-significant numerical bit l

is n-1, the least-significant is 0. The bit numbering represents the ! .
!

binary weight of a position.

Byte numbering is left to right, O through 7. The most-significant
bit is associated with the leftmost byte. Figure 2 shows the
ordering of bits and bytes within a 64-bit longword.

Figure 2 Memory longword structure

63 56 55 £8 47 4D 38 3z 31 24 23 18 15 & 7 s}
Byte o} Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5Tsyte 6 | Byte 7
7 0 7 o 7 a 7 a 7 o 7 Q 7 D 7 v}
Addr 0 Addr | Addr 2 Addr 3 Addr 4 Addr 5 Addr 6  Addr 7

AH300001
12/1/93

i
Data representation memory alignment i
|
|

The C-Series virtual address space is byte granular, meaning that
operands can beginonany byte boundary, unless otherwise noted
in a particular instruction definition. Overall system performance
may degrade when operands do not begin on appropriate
boundaries.

Data representations should be aligned on a boundary address
as specified in the following alignment rules, to ensure
maximum execution speed:

¢ Byte (8 bits)—No preference

* Halfword (16 bits)—Least-significant address bit = 0

* Word (32 bits)—Least-significant two address bits =0

* Longword (64 bits)—Least-significant three address bits = 0

12 CONVEX C-Series Architecture
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Figure 3 Virtual address format

Virtual addresses

Many virtual addresses reside either in instructions or in
memory as indirect addresses. They are always unsigned, 32-bit
integers.

Figure 3 shows the virtual address format.

Virtual address 1

31

0

AH300002
12/1/93

Note

Mixed mode arithmetic

Unless otherwise specified, mixed mode arithmetic on data
representations or manipulations on operands in registers must
follow the provided conventions. Results that can be reproduced
from one implementation to another cannot be guaranteed if
defined conventions are circumvented.

Any attempt to circumvent these conventions through knowledge
of an internal representation can produce inaccurate results and
is not recommended.

Chapter 2 Data representations 13

EDTX 2-04-CV-120
51056D0OC065341



Signed fixed-poinf The C-Series architecture defines four signed fixed-point integer

in’reger representations: 8, 16, 32, and 64 bits.
representahons The formats of these four fixed-point data types are shown in
Figure 4.
Figure 4 Signed fixed-point integer representations
Byte |S
7 0
0 1
I
Halfword |S
1
15 0
0 1 2 3
i | I
; Word |$
i i | [
! 30 o
‘ 0 1 2 3 4 5 6 7
' f L I I I I [
Longword |S
| | | i | i I
63 c
AH300003
12/1/93

In Figure 4, S is the sign bit. A binary 0 denotes positive. A
binary 1 denotes negative. Signed fixed-point numbers use the
two’s complement numbering system.

If 0 < i < n-2, where n is the number of bits in the data item, then
bit 1 has weight 2.

The most-significant bit, the sign bit, has a weight equal to
-1x2™1 \where 7 is the number of bits in the data item.

14 CONVEX C-Series Architecture
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Both of the previous statements can be combined and
represented as the following expression for signed fixed-point
integers:

n-2
—1x2 xp, + ¥ 2%,
i=0

where
¢ 7 is the number of bits in the data item, and

¢ b; = 0if bitiis clear, and b= 1 if bitiis set.

!
i
Chapter 2 Data representations 15 [ ‘
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Unsigned The C-Series architecture defines four unsigned fixed-point
ﬁxed'pOini iniegel' integer representations: 8, 16, 32, and 64 bits.

representqﬁons The formats of these four fixed-point data types are shown in
Figure 5.
Figure 5 Unsigned fixed-point integer representations
Byte
7 0
0 1 i
I
Halfword |
| :
15 Q
0 1 2 3
I I I
Word
{ ! |
31 §]
Q 1 Z 3 4 5 5] 7
f i I [ [ i I
Longword
l ! | ! ! |
63 0
AH400004
12/1/93

If 0 <i<(n-1) where n is the number of bits in the data item, then
bit 1 has weight 2".

An unsigned fixed-point integer is represented as

where
* nis the number of bits in the data type, and

e b;=0if bitiis clear, and b; = 1 if biti is set.

16 CONVEX (-Series Architecture
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Floqﬁng-poinf The C-Series architecture supports native and IEEE-standard
[ epreseniati ons floating-point number representations in two formats:

* A single-precision word (32 bits)
* A double-precision longword (64 bits)

Both formats have biased binary exponents and normalized
binary fractions. The fractions have an implicit 1 bit in the
most-significant bit position.

The C-Series architecture dees not support the complete IEEE
floating-point specification. Specifically, it does not support the
following:

¢ Gradual underflow
» IEEE rounding algorithms
* Directed rounding

The C-Series architecture uses the same algorithms to compute
IEEE and native floating-point values. However, some
floating-point exception conditions are treated differently:

« Not a number (NaN)
* Infinity

s Qverflow

¢ Underflow

These algorithms are presented in this chapter following the
native floating-point format and IEEE floating-point format
discussions.
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Native floating-point implementation

The C-Series native floating-point formats define the following
operands as valid input:

» Normalized—The exponent is not all zeros.

* Reserved—The exponent is all zeros, the fraction can be
anything, the signis 1.

Native single-precision floating-point format
The format of the single-precision (32-bit) floating-point number
is shown in Figure 6.

Figure 6 Native single-precision floating-point format

!S] Exponent

Fraction

31 30 23 22

0

AH300005
12/1/93

Exponent

Fraction

The sign bit. A binary 0 denotes positive, a
binary 1 denotes negative. This form is termed
the sign-magnitude representation.

A binary-biased exponent. The algebraic value
of the exponent is determined by subtracting
128 from the unsigned binary value of bits
<30..23>.

A fractional value, Animplicit 1 bitis to the left
of bit <22>. The binary point is to the left of the
implicit 1 bit.
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The input operands of a native single-precision (32-bit)
floating-point number are shown in Table 1.

Table 1 Native single-precision input operands

Sign (8) | Exponent (e) | Fraction (f) Value Name

1 0 NA None Reserved operand

o 0 NA 0 Floating-point zero
0 0 0 0 True zero

1/0 1..255 NA (-1)° (251%8) (2" + fraction) | Normalized number

The dynamic range of a native single-precision (32-bit)
floating-point number is shown in Table 2.

Table 2 Native single-precision dynamic range

Vaiue Hexadecimal Approximate vaiue
Largest positive 7FFF FFFF +1.7014117 x 10+38
Smallest positive 0080 0000 +2.9387359 x 10
Zero 0000 0000 0
Smallest negative 8080 0000 29387359 x 10°%
Largest negative FFFF FFFF -1.7014117 x 10%38
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Native double-precision floating-point format ;
The format of the double-precision (64-bit) floating-point |
number is shown in Figure 7.

Figure 7 Native double-precision floating-point format

:
|
Lo
1§{ Exponent | Fraction !
63 62 52 51 o '
4H300006
12/1/93
5 The sign bit. A binary 0 denotes positive, a

binary 1 denotes negative. This form is termed
the sign-magnitude representation.

Exponent An 11-bit binary-biased exponent. The decimal
value of the exponent is determined by
subtracting 1,024 from the unsigned binary
value of bits <62..52>,

Fraction A fractional value. An implicit 1 bit is to the left
of bit <51>. The binary point is to the left of the
implicit 1 bit.

The input operands of a native double-precision (64-bil)
floating-point number are shown in Table 3.

Table 3 Native double-precision input operands

Sign (8) | Exponent (e) | Fraction (f) Value Name

1 0 NA None Reserved operand

0 0 NA 0 Floating-point zero
0 0 0 0 True zero

1/0 1...2047 NA (-1)° (22192 (21 4 fraction) | Normalized number
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The input operands of a native double-precision (64-bit)
floating-point number are shown in Table 4.

Table 4 Native double-precision dynamic range

Value Hexadecimai Approximate value
Largest positive 7PFF FFFF FFFF FFEFF +8.988465674311579 x 10+3%7
Smallest positive 0010 0000 0600 0000 +5.562684646268003 x 10737
Zero 0000 D000 000D 0000 0
Smallest negative 8010 0000 0000 0000 -5.562684646268003 x 10°%
Largest negative FFFF FFFF FFFF FEFF -8.988465674311579 x 107307

Ndtive reserved operands

There are certain reserved or special operands within the native
floating-point format. In particular, these operands injtiate an
exception when used as input to a floating-point operation. A
native floating-point number (single or double) that has a sign
bit of 1 and an exponent of 0 is defined as a reserved operand. The
value of the fraction bits is unimportant. A reserved operand
exception is detected if a reserved operand is encountered during
a native floating-point muneric operation (for example, add,
subtract, compare, or max).

A reserved operand is the result of a floating-point overflow. A
reserved operand is also generated from illegal operations
(divide-by-zero, for example). In cases where the input operand
or operands are representable numbers, but where a reserved
operand is returned as the result, no reserved operand exception
is generated. However, a reserved operand exception is
generated if the result is then used as an input operand to a
subsequent operation.

Native floating-point zero
A native zero is a floating-point number with an exponent of 0 and
a sign of 0. The value of the fraction is unimportant.

True zero is a native floating-point zero with a fraction of all zeros.

True zero is always returned when the result of an operation is
zero. If two floating-point zeros with different fractions are
compared for floating-point equality, the result is true.

Native rounding

All floating-point operations may be thought of as calculating
the infinitely precise result based on the operands and the
operation (add or subtract, for example). The value returned is
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the representable result (normalized number or true zero) thatis |
closest to the infinitely precise result. If the infinitely precise
result is exactly halfway between two possible representations,
the one that has a least-significant bit of zero is returned. This
method is sometimes called rounding to nearest or unbiased
rounding to even, denoted as R*.

For all operations except divide and square toot, this rounding
is implemented by first calculating three additional result bits
that are less significant than the LSB of the mantissa. The three
bits are called the guard, round, and sticky bit, from MSB to LSB
respectively. The sticky bit indicates whether any binary ones
were shifted right and out of the round bit during any alignment
operation. If the guard bit is set and either the round bit, the
sticky bit, or the LSB of the result is set, a one is added to the LSB
of the result.

For divide and square root operations, only the guard and round
bits are calculated. Rounding is performed by adding one to the
LSB of the result if the guard bitis set and either the round or the
LSB of the result is set.

The 4600 Series CPUs support an alternate rounding mode for
division and square root. This mode is based on the fact that the
infinitely precise result of a divide or square root can never be
exactly half way between two possible representable values.
Therefore, if the guard bit of a divide or square root intermediate
result is set, then either the round bit or the uncalculated sticky
bit must also be set. Rounding is then performed by adding one
to the LSB of the result, if the guard bit alone is set. This
rounding mode is scan selectable at boot.
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Native operations

The following subsections detail the results returned and the
exceptions generated (if any) for native-mode floating-point
operations. They contain details that are specific to the current
implementation but are not part of the architecture. In particular,
when the reserved operand is returned, it can be in one of two
specific forms in the current implementation. These two forms
are the R5V0 and RSV1 and are described in Table 5.

When a reserved operand is returned as a result, the C-Series
architecture specifies that any legal form of the reserved operand
may be returned. The two specific forms of the reserved
operands that are currently returned are
implementation-specific, and may be changed in the future.
Table 5 lists the abbreviations used during each IEEE arithmetic
operation.

In the native-mode definitions (specifically with respect to
operands and results), the descriptions imply the positive or
negative form of the value. When the symbols used for these
definitions are preceded by + or -, the specific value is positive or
negative. For example, NORM represents a positive or negative
normalized number, while -NORM represents a negative
normalized number only.

Native compare operations
Only a comparison status is returned for compare operations.
Input operands versus exceptions generated are identical to add

or subtract operations, except that UN and OV exceptions are
not possible.
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Table 5 Native floating-point nomenclature

Nomenclature type | Symbol Description
NORM | A normalized number.
ZERO Any form of zero. True zero where all bits are 0 or a dirty

zero where the sign and exponent bits are 0, but one or more

Input operands mantissa bits are 1.

RSV Any form of the reserved operand.

INT A nonzero two's-complement integer.

INTO Integer zero.
NORM A normalized number.

0 True zero, or integer zero.
RSVO A form of the reserved operand where the signisa 1, all
exponent bits are 0, and all mantissa bits are 0.
Operation results RSV1 A form of t?le reserved operand ‘fvhere_ thesignisai,all
exponent bits are 0, and all mantissa bits are 0, except the
LSB, whichisa 1.
INT A nonzero representable integer. i
TRN The least significant bits of an integer whose value contains |
more bits of precision than can be stored in the result.
(NM) If result is a normalized number.
OV) If overflow results.
Result conditions UN) . If underflow results.
{IN) If result is a representable integer.
{10) If integer overflow results.
RO Illegal input operand.
SQRN Square root of a negative number.
FDZz Floating-point divide-by-zero.
Exceptions SV Integer overflow.
oV Floating-point overflow.
UN Floating-point underflow.
FIN Floating-point intrinsic error.
Exception states 0 Exception did not occur.
Exception did occur.
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Native add or subtract
Table 6 lists the exceptions encountered for each respective
operand combination used in a native add or subtract operation.

Table 6 Native operation results—add or subtract

Operand A Operand B Resuit RO |SQRN| FDZ | SIV oV UN
ZERO ZERQO 0 0 0 0 0 0 0
ZERO NORM NORM 0 0 0 0 0 0
ZERO RSV R5V1 1 0 0 0 0 0
NORM ZERO NORM 0 0 0 0 0 0
NORM NORM (NM) NORM 0 0 0 0 0 0
NORM NORM (OV) RSVQ 0 0 0 0 1 0
NORM NORM (UN) O 0 0 0 0 0 1
NORM RSV RSV1 1 0 0 0 0 0
RSV ZERO RSV1 1 ] 0 0 0 0
RSV NORM RSV1 1 0 0 0 0 0
RSV RSV RSV1 1 0 0 0 0 0

Native multiply operations
Table 7 lists the exceptions encountered for each respective
operand combination used in a native multiply operation.

Table 7 Native operation results—multiply

stv | OV

Operand A Operand B Result RO [SQRN| Dz UN
ZERO ZERO 0 0 0 0 0 0 0
ZERO NORM 0 0 0 0 0 0 0
ZERO RSV RSV1 1 0 0 0 0 0
NORM ZERO 0 0 0 0 0 ] 0
NORM NORM (NM) NORM 0 0 0 0 0 0
NORM NORM (OV)RSVO 0 0 0 0 1 0
NORM NORM (UB)0 0 0 0 0 0 1
NORM RSV RSV1 1 0 0 0 0 0
RSV ZERO RSV1 1 0 0 0 0 0
RSV NORM RSV1 1 0 0 0 0 0
RSV RSV RSV1 1 0 0 0 0 0
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Native divide operations
Table 8 lists the exceptions encountered for each respective
operand combination used in a native divide operation.

Table 8 Native operation results—divide

Numerator | Denominator Result RO |SQRN| Dz SV oV UN
ZERO ZERO RSV(Q 0 0 1 0 0 0
ZERO NORM 0 -0 0 0 0 0 ¢
ZERO RSV RSV1 1 0 0 0 0 0
NORM ZERO RSVO 0 0 1 0 0 0
NORM NORM (NM) NORM 0 0 0 0 0 ]
NORM NORM (OV) R5V0 0 Q 0 0 1 Q
NORM NORM (UF) 0 0 0 Y 0 0 1
NORM RSV RSV1 1 0 0 0 0 0
RSV ZERO RSV1 1 0 1 0 0 0
RSV NORM R5V1 1 0] 0 o 0 0
RSV RSV RSV1 i 0 o 0 0 0

Native square root operations
lists the exceptions encountered for each operand type used in
a native square root operation.

Not The square root operation is not part of the C100 Series. The square
ore root operation is performed in hardware on all multiprocessing
CPUs.

Table 8 Native operation results—square root

Operand Result | RO |SQRN | FDZ |SIV |OV | UN
ZERO 0 0 0 0o |olo]o
+NORM NORM 0 0 0 ] 000
-NORM NORM! 0 1 0 fjojo]o
RSV RSV1 1 0 0 {00 o0

Result returned is the square root of the absolute value of NORM when
NORM is negative.
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Native min/max operations
Table 10 lists the exceptions encountered for each operand type
used in native min/max operations.

Table 10 Native operation results—min/max operations
Operand A | Operand B Result RO SQRN FDZ | SiVv | OV | UN i‘
ZERO ZERO 0 0 0 0 0 0 0 |
ZERO NORM NORM or 0 0 0 0 0 0 0
ZERO RSV RSV1 1 0 a 0 0 0 ;
NORM ZERO NORM or 0 0 0 0 0 0 0
NORM NORM NORM 0 0 0 0 0 0
NORM RSV RSV1 1 0 0 0 0 0
RSV ZERO RSV1 1 0 0 0 0 0
RSV NORM R5V1 1 0 0 0 a 0
RSV RSV RSV1 1 0 0 0 0 0
Native conversion operations
Table 11, Table 12, and Table 13 list the exceptions encountered
for each operand type used in each type of native conversion

operation.

Table 11 lists the exceptions encountered for each operand type
used in a native float-to-fixed conversion.

Table 11 Native operation results—float-to-fixed conversions

Operand Result RO [|SQRN | FDZ | SIV | OV | UN
ZERO 0 0 0 0 0 0 0
NORM (IN) INT 0 0 0 0 0 0
NORM [UO)TRN | 6 | 0 | 0 [ 1] 0|0 1
RSV None 1 0 0 \ 1 0 0 ’

If integer overflow occurs, the result returned is the
least-significant bits of the exact result. The number of
least-significant bits returned is dependent on the size of the
result. For example, when converting to a word integer, the 32
least-significant bits of the exact result are returned. When the
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input operand is RSV, the result of the operation is
implementation-dependent.

N f e Some early C1 and C200 implementations do not write to the
o result register of a scalar conversion if an excepflion is
encountered during the execution of the conversion.

Table 12 lists the exceptions encountered for each operand type
used in a native fixed-to-float conversion. !

Table 12 Native operation results—fixed-to-float conversions

Operand Result RO [SQRN | FDZ | SIV [ OV | UN

INT NORM 0 0 0 0 0 Y
INTO 0 0 0 0 0 0 0

Table 13 lists the exceptions encountered for each operand type
used in a native float-to-float conversion.

Table 13 Native operation results—float-to-float conversions !

Operand Result RO |SQRN | FDZ | SIV | OV | UN

ZERQO 0 0 0 0 0 0 0

NORM (NM) 0 0 0 0 0 0
NORM

NORM (OVIRSVO 0 0 0 0 1 0]

| NORM (UN) 0 0 0 0 L0 0|1

RSV RSV1 1 0 0 0 0 0

Overtlow and underflow are only possible when converting
double-precision to single-precision values. When the operand
is RSV, the result returned is RSV-translated to the format of the
output operand.
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IEEE floating-point implementation

The C-Series implementation of the IEEE floating-point standard
defines the following operands as valid input:

+ Normalized—The exponent is not all zeros or all ones.

¢ Denormalized—The exponent is all zeros, the fraction is
nonzero, and the sign is 1 or 0. C-Series architecture always
treats this number as true zero.

* NaN—The exponent is all ones, the fraction is nonzero, and
the signis 1 or 0.

¢ Infinity—The exponent is all ones, the fractionis zeto, and the
signis 1 or 0.

» True zero—The exponent is all zeros, the fraction is all zeros,
and the signis 1 or 0.

|EEE single-precision floating-point format
The format of the single-precision (32-bit} floating-point number
is shown in Figure 8.

Figure 8 IEEE single-precision floating-point format

ISI Exponent Fraction
31 30 23 22 Q
AH300005
12/1/93
S The sign bit. A binary 0 denotes positive, a

binary 1 denotes negative. Numbers in this
form are termed sign magnitude.

Exponent A binary biased exponent. The decimal value
of the exponent is determined by subtracting
127 from the unsigned binary value of bits
<30..23> and using the resuit as a power of 2.

Fraction A fractional value. An implicit 1 bit is to the
ieft of bit <22>. The binary point is to right of
the implicit 1 bit.
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The input operands found in a IEEE single-precision (32-bit)
floating-point number are shown in Table 14.

Table 14 IEEE single-precision input operands

Sign (S) | Exponent (e) | Fraction () Value Name

1/0 255 Not 0 None NaN (not a number)
1/0 255 0 (1% x Infinity

1/0 1..254 NA (-1)° (2¢1%) 2° + fraction) | Normalized number
1/0 0 Not 0 (-1)° (2¢°12%) (0 + fraction) | Denormalized number!
1/0 0 0 0 Floating-point zero

I The C-Series architecture always treats this number as true zero.

The dynamic range of an IEEE single-precision (32-bit)
floating-point number is shown in Table 15.

Table 15 IEEE single-precision dynamic range

Value Hexadecimal Approximate value
Largest positive 7F7F FFEF +3.4028235 x 10+38
Smallest positive 0080 0000 +1.1754944 x 107
Zero 000Q 0000 0
Smallest negative 8080 0000 -1.1754944 x 1078
Largest negative FF7F FFFF -3.4028235 x 10*38
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1EEE double-precision floating-point format
The format of the double-precision (64-bit) floating-point
number is shown in Figure 9.

Figure 9 IEEE double-precision floating-point format

[LSL Exponent I Fraction
63 62 52 51 0
ATE300006
: 12/1/93
1
S The sign bit. A binary 0 denotes positive, a
binary 1 denotes negative. Numbers in this

form are termed sign magnitude.

Exponent An 11-bit, binary-biased exponent. The decimal
value of the exponent is determined by
subtracting 1,023 from the unsigned binary
value of bits <62..52> and using the resultas a
power of 2.

Fraction A fractional value. Animplicit 1 bitis to the left
of bit <51>. The binary point is to the right of
the implicit 1 bit.

The input operands found in an IEEE double-precision (64-bit)
floating-point number are shown in Table 16.

Table 16 IEEE double-precision input operands

Sign (5) | Exponent (e) | Fraction (f) Value Name

1/0 2047 Not 0 None NaN {not a number)
1/0 2047 0 (-1)°x e Infinity

1/0 1..2046 NA (-1)° 2%1923) (2% + fraction) | Normalized munber
1/0 0 Not 0 -1)° (221922 (0 + fraction) | Denormalized number?
1/0 0 0 0 Floating-point zero

I The C-Series architecture always treats this number as true zero.
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The dynamic range of a IEEE double-precision (64-bit)
floating-point number is shown in Table 17.

Table 17 IEEE double-precision dynamic range

Value Hexadecimal Approximate vaiue
Largest positive JFEF FFFF FFFF FFFF | +1.797693134862316 x 10*305
Smallest positive 0010 0000 0G0O0 0000 +2.225073858507201 x 10-308
Zero 0000 0000 0000 0000 0
Smallest negative 8010 0000 0000 0000 -2.225073858507201 x 10~
Largest negative FFEF FFFF FFFF FFFF -1.797693134862316 x 10+3%¢

IEEE special operands

There are certain special operands within the IEEE
floating-point format. In particular, these operands indicate
values that cannot be accurately represented within the format
or initiate exception processing if that value is used as an
operand to a subsequent arithmetic computation.

A number that has an exponent of all ones and a fraction of all
zeros 1s called infinity. This value is generally produced when the
result of a computation is too large to be represented within the
format (larger than largest). The sign of this number is generally
maintained as the correct sign for the operation of the result. If a
large positive number is multiplied by a large negative number
and the resulit is out of the range of resolution, infinity is returned
and the sign bit is set (negative, since the true answer is negative).

A number that has an exponent of all ones and a fraction that is
not all zeros is called not a number (NalN). This value is
generally produced when no computation was possible, such as
an attempt to divide-by-zero, or if one of the operands of the
operation was NalN.

While infinity is produced by certain operations, it is treated as
NaN when it is used as an input fo an operation. Thus, if NaN or
infinity is used as an operand, the reserved operand exception s
generated.

{EEE floating-point zero

An [EEE zero is a floating-point number with an exponent of 0 and
a sign of either 1 or 0. If the fraction is all zeros, this value is said
to be true zero. Otherwise, it is a denormalized number. In the
C-Series implementation of IEEE floating-point format, it is
always treated as true zero. When true zero or a denormalized
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number is used as an operand of a computation, any nonzero
‘fraction bits are forced to zero and the hidden bit is not inserted.

True zero is always returned when the result of an operation is
zero. In addition, when exponent underflow occurs, true zero is
returned, and the UN bit in the PSW is set. The sign of any true
zero returned is implementation-specific. However, for all
current implementations, the following rules apply:

1. For IEEE add and subtract operations, the sign bit of any
zero result is always a zero.

2. Formultiply and divide operations, the sign bit of any zero
result is the exclusive OR of the sign bits of the two
operands.

{EEE rounding
Rounding in IEEE mode isidentical to rounding in Native mode.
Refer to the “Native rounding” section on page 21.
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IEEE operations

The following subsections detail the results returned and the
exceptions generated (if any) for IEEE-mode floating-point
operations. This subsection contains details that are specific to
the current implementation but are not part of the architecture.

When NaNl is returned as a result, the C-Series architecture only
specifies that any legal form of NaN may be returned. The
specific form of NaN currently returned is
implementation-specific.

When zero is returned as a result, the architecture only requires
that it be a true zero (that is, the sign of the true zero may be
either 1 or 0). Thus, any reference to the sign of a zero result
described in this subsection is implementation-specific and
subject to change in other implementations of this architecture.
Table 18 lists the abbreviations used during each IEEE
arithmetic operation.

In the IEEE-mode definitions, specifically with respect to
operands and results, the descriptions imply the positive or
negative form of the value. When the symbols used for these
definitions are preceded by + or -, the specific value is positive
or negative. For example, NORM represents a positive or
negative normalized number, while -NORM represents a
negative normalized number only.

IEEE compare operations

No result other than comparison status is returned for IEEE
compare operations. Any exceptions generated as a result of an
input operand combination are identical to the exceptions |
generated for the IEEE add or subtract operations except that
UN and OV exceptions are not possible.

{EEE add or subtract operations

Table 19 lists the exceptions encountered for each respective
operand combination used in an IEEE add or subtract
operation.

{EEE mutltiply operations
Table 20 lists the exceptions encountered for each respective
operand combination used in an IEEE multiply operation.

IEEE divide operations
Table 21 lists the exceptions encountered for each respective
operand combination used in an IEEE divide operation.
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{EEE min/max operdations
Table 22 lists the exceptions encountered for each respective
operand combination used in an IEEE min/max operation.
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Table 18 IEEE floating-point nomenclature

Nomenclature type | Symbol Description 3
INT A nonzero two’s-complement integer. |
INTO Integer zero.
DEN A denormalized number.
Input operands INF Infinity.
NaN Not a number.

NORM A normalized number.
ZERQO True zero, sign bitis 1 or 0.

INFs Infinity where the sign bit is the sign of the numerical result.

NaN1 A particular form of NaN where the sign bitisa 1, the
exponent bits are all ones, and the fraction bits are all zeroes
except for the least-significant bit, whichis a 1.

0 True zero with a sign bit of 0, or an integer zero.

Operation results 0Os True zero where the sign bit is the exclusive or of the sign
bits of the input operands.

NORM A normalized number.

INT A nonzero representable integer.
TRN The least-significant bits of an integer whose exact value
contains more bits than can be stored in the result.

(NM) If result is a normalized number.
OV) If overflow results.

Result conditions (UN) If underflow results.
(IN) If result is a representable integer.
10) If integer overflow results.
RO Illegal input operand.
SQRN Square root of a negative number.

. FDZ Floating-point divide-by-zero.

Exceptions
SV Integer overflow.
ov Floating-point overflow.
UN Floating-point underflow.

. 0 Exception did not occur.

Exception states -

1 Exception did occur.
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Table 19 IEEE operation results—add or subtract

Operand A Operand B Result RO | SQRN | FDZ | SIV | OV | UN
ZERO ZERO +0 0 0 0 0 0 0
ZERO DEN +( 0 0 0 0 0 0
ZERO NORM NORM 0 0 0 0 0 0
ZERO INF NaN1 1 0 0 0 0 0
ZERQO NaN NaN1 1 0 0 0 0 0
DEN DEN +0 0 0 0 0 0 0
DEN INF NalN1 1 0 0 0 0 0
DEN NaN NaN1 1 0 0 g 0 0
DEN ZERO +0 0 0 0 0 0 0
DEN NORM NORM 0 0 0 0 0 0
NORM ZERO NORM 0 0 0 0 0 0
NORM DEN NORM 0 0 o 0 0 0
NORM INF NaNN1 1 Y 0 0 0 0
NORM NaN NaNI1 1 0 0 0 0 0
NORM NORM (OV) INFs 0 0 0 0 1 0]
NORM NORM {NM) NORM 0 0 0 Y 0 0
NORM NORM (UN) +0 0 0 0 0 0 1
INF ZERO NalN1 1 0 0 0 0 g
INF DEN NaN1 1 0 0 0 0 0
INF NORM NaN1 1 0 0 0 0 0
INF INF NaN1 1 0 0 0 0 0
INF NaN NaN1 1 0 0 0 0 0
NaN NalN NaN1 1 0 0 0 0 0
NaN ZERO NaN1 1 0 0 0 0 0
NalN DEN NaN1 1 0 0 0 0 0
NalN NORM NaN1 1 0 0 0 0 0
NaN INF NaN1 1 0 0 0 0 0
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Table 20 IEEE operation results—multiply

Operand A Operand B Result RO | SQRN | FDZ | SIV | OV | UN
ZERO ZERO Os 0 0] 0 0 0 0
ZERO DEN 0s 0 0 0 0 0 0
ZERO NORM Os 0 0 0 0 0 0
ZERO INF NaN1 1 0 0 0 0 0
ZERO NaN NalN1 1 0 0 0 0 0
DEN ZERO = 0 0 0 0 0 0
DEN DEN Os 0 0 0 0 0 0
DEN NORM Os 0 0 0 0 0 0
DEN INF NaN1 1 0 0 0 0 0
DEN NalN NalN1 1 o 0 0 0 0
NORM ZERO 0Os 0 0 0 Q 0 0
NORM DEN Os 0 0 0 0 0 0
NORM NORM (OV) INFs 0 4] 0] 0 1 0
NORM NORM (NM) NORM 0 0 0 0 0 0
NORM NORM (UN) 0s 0 0 0 0 0 1
NORM INF NaN1 1 0 0 ] 0 0
NORM NaN NalN1 1 0 0 0 0 0
INF ZERO NalN1 1 0 0 0 0 0
INF DEN NaN1 1 0 0 0 0 0
INF NORM NaN1 1 0 0 0 0 0
INF INF NaN1 1 0 0 0 0 0
INF NaN NaN1 1 0 0 0 ) 0
NaN ZERO NalN1 1 0 0 0 0 0
NaN DEN NaN1 1 0 0 0 0 0
NalN NORM NaN1 1 0 0 0 0 0
NaN INF NaN1 1 ¢ 0 0 0 0
NalN NaN NaN1 1 0 0 0 0 0
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Table 21 IEEE operation results—divide

Operand A | Denominator Result RO | SQRN | FDZ | SIV | OV | UN
ZERO ZERO NaN1 0 0 i 0 0] ]
ZERO DEN NaN1 0 0 1 0 0 0
ZERO NORM Os ¢ 0 0 0 0 0
ZERO INF NaNN1 1 0 0 0 0 0
ZERO NaN NaN1 1 G 0 0 0 0]
DEN ZERQO NaN1 0 0 1 0 0 0
DEN DEN NaN1 0 0 1 0 0 0
DEN NORM 0Os 0 0 0 0 0 0
DEN INF NalN1 1 0 0 0 0 0
DEN NaN NaNN1 1 0 0 0 0 0
NORM ZERQ INFs 0 0 1 0 0 0
NORM DEN INFs 0 0 1 0 0 0
NORM NORM {OV) INFs 0 0 0 0 1 0
NORM NORM {(NM) NORM 0 0 0 0 0 0
NORM NORM (UN) 0s 0 0 0 0 0 1
NORM INF NaN1 1 0 0 0 0 0
NORM NaN NaN1 1 0 0] 0 0 0
INE ZERO NaN1 1 0 1 Y 0 0
INF DEN NaN1 1 0 1 0 0 0
INF NORM NaN1 1 0 0 0 0 0
INF INF NaN1 1 0 0 0 0 0
INF NaN NalN1 1 0 0 0 0 0
NaN ZERO NalN1 1 0 1 0 0 0
NaN DEN NaN1 1 0 1 0 0 0
NaN NORM NalN1 1 0 0 0 0 0
NaN INF NalN1 1 0 0 0 0 0
NaN NaN NalN1 1 0 0 0 0 0
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Table 22 IEEE operation results—min/max

Operand A Operand B Result RO | SQRN | FDZ | SIV | OV | UN
ZERO ZERO +0 0 0 0 0 Y G
ZERO DEN +0 a 0 0 0 0 0
ZERO NORM NORM or +0 0 0 0 0 0 0
ZERO INF NaN1 1 0 Y 0 0 ¢
ZERO NaN NaN1 1 0 0 0 0 0
DEN ZERO +0 0 0 0 0 0 0
DEN DEN +0 0 0 0 0 0 0
DEN NORM NORM or +0 0 0 0 0 0 0
DEN INF NaN1 1 0 0 0 0 0
DEN NalN NaN1i 1 0 0 0 0 0
NORM ZERO NORM or +0 0 0 0 0 0 0
NORM DEN NORM or +0 0 0 0 0 0 0
NORM NORM NORM 0 0 0 0 0 0
NORM INF NalN1 1 0 0 0 0 0
NORM NaN NaN1 1 0 0 0 0 0
INF ZERO NaN1 1 0 0 0 0 0
INF DEN NaN1 1 0 0 0 0 0
INF NORM NaN1 1 0 0 0 0 0
INF INF NaN1 1 0 0 0 0 0
INF NaN NaN1 1 0 0 0 0 0
NalN ZERO NaN1 1 0 0 0 0 0
NaN DEN NaN1 1 0 0 0 0 0
NaN NORM NaN1 1 0 0 0 0 0
NalN INE NalN1 1 0 0 0 0 0
NaiN NaN NalN1 1 0 0 0 0 Q
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|EEE square root operations
Table 23 lists the exception encountered for each operand type
used in an IEEE square root operation.

Table 23 IEEE operation results—square root

Operand | Result RO |SQRN | FDZ | SIV | OV | UN

+ZERO 0 0 0 0 0 0 Y

-ZERO 0 0 0 0 0 0 0

+DEN 0 0 0 g 0 0 0

-DEN 0 0 0 0 0 0 0 :
SNORM |NORM | 0 | 0 | o0 | 0 | 0 | o
-NORM |NORM' | 0 1 000 o0
INF NaN1 1] o [ ol olo]oao
NaN NaN1 1 0] 0 0 0 0 i
UThe result returned is the square root of the absolute value of NORM when
NORM is negative. :

Note The square root operation is not part of the C100 Series. The square

root operaiion is performed in hardware on all multiprocessing
C-Series CPUs.

IEEE conversion operations
Table 24, Table 25, and Table 26 list the exceptions encountered
for each operand type used in IEEE conversion operations.

Table 24 lists the exceptions encountered for each operand type
used in an IEEE float-to-fixed conversion,
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Table 24 [EEE operation results—float-to-fixed conversions

Operand Result RO |S@QRN | FDZ | SIV | OV | UN
ZERO 0 0 0 0 0 0 0
DEN 0 0 0 0 0 0 0
NORM (IN) INT 0 0 0 0 0 0
NORM (I0) TRN 0 0 0 1 0 0
INF None 1 0 0 1 0 0
NaN None 1 Q 0 1 0 0

If integer overflow occurs, the result returned is the
least-significant bits of the exact result. The number of

: least-significant bits returned is dependent upon the size of the
result. For example, when converting to a word integer, the 32
least-significant bits of the exact result are returned. When the
input operand is NaN or infinity, the result of the operation is
implementation dependent.

Not Some aarly C1 and C200 (C3200) implementations do not write to
: ote the resuif register of a scalar conversion if an exception is
encountered during the conversion.

Table 25 lists the exceptions encountered for each operand type
used in an IEEE fixed-to-float conversion.

Table 25 IEEE operation results—fixed-to-float conversions

Operand | Result | RO [S@RN | FDZ | SIV | OV | UN
INT NORM 0 0 0 0 0 0
INTO 0 0 0 0 0 0 0

Table 26 lists the exceptions encountered for each operand type
used in an IEEE float-to-float conversion.
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Table 26 IEEE operation results—float-to-float conversions

Operand Result RO |SQRN | FDZ | SIV | OV | UN
ZERO 0 0 0 0 0 0 0
DEN 0 0 0 0 0 0 a
NORM (NM)NORM | 0 0 0 0 0 0
NORM (OV) INFs 0 0 0 0 1 0
NORM (UN) 0s 0 0 0 0 0 1
INF NaN1 1 0 0 0 0 0
NaN NaN1 | 1 0 0 0 0 0

Overflow and underflow are possible only when converting
double-precision values to single-precision values. When the
operand is infinity or NaN, the result returned is NaN-translated
to the format of the output operand.
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Nafive and [EEE flogting-point algorithms i

This section details the floating-point algorithms used by the
C-Series instruction set for both IEEE and native mode
arithmetic. The C-Series architecture does not support the
complete IEEE floating-point specification, only the IEEE
floating-point format is used. These algorithms involve
rounding, sequencing of operations, and other considerations.
The following exceptions are defined in the algorithms:

* Input exception—In native mode, an input-reserved
operand. In IEEE mode, an NaN or infinity value.

* Output exception—An output-reserved operand in native
mode or a NaN or infinity value in IEEE mode.

Add or subtract
To add or subtract:

1. The fractions of the floating-point operands are expanded
internally as follows:

— Alisappended to the higher bit position of the fraction.

— Two guard bits are appended to the right of the
least-significant fraction bit. These bits are referred to as
G and R, respectively.

— A sticky bit is appended to the right of the two guard
bits. The sticky, or S, bit is the OR of all bits to the right of
the R bit.

— An additional bit is appended to the higher fraction, the
V bit, for overflow. The internal floating-point format is
illustrated in Figure 10, where the initial values of the V,
G, R, and S bits are all 0.

Figure 10 Internal floating-point format

v E 1 ; Operand fraction [ G i R r S ]

T )

Least significant bit

AH300009
12/1/93

2. The exponents of the two fractions are compared. The
fraction of the smaller exponent is shifted right by an
amount equal to the absolute difference of the exponents.
All right-shifted bits are shifted through the G, R, and S
bits.
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7.

Any binary ones shifted past the two guard bits are
remembered in S.

Ifany of the input operands are zero, all fraction bits are set
to zero,

If any of the input operands is an input exception,

— No shifting occurs and there is an output exception. The
output of the add or sub is an output exception.

— Otherwise, the two fractions are algebraically added or
subtracted according to the sign and op code.

If the result is zero, the exponent is set to zero and not
normalized. Otherwise, the result is normalized

— If V becomes 1, the intermediate result is right-shifted by
one bit position, an OR operation is performed on R and
S, and the result is placed in S.

— If a generated subtract was performed, the intermediate
result is left-shifted until a normalized intermediate
result is obtained. Zero or 5 may be shifted into R from
the right. G is loaded with R; S is always unchanged.

The intermediate result is rounded as shown in Table 27.

Table 27 Intermediate resuit rounding - add, subtract, multiply

G

S ROUNDING PERFORMED (TO LSB)

Add 0

Add 0

Add 0

el o|l o] o

Add o

Add LSB of fraction (round to nearest even)

Add 1

Add1

o e

mil=mlololm|=|lolol @
it || e O e | D | O

Add1

8.

The rounded intermediate result is normalized again, and
the exponent is adjusted, if necessary, to yield the final
result.

o R S
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Multiply

Multiplying two normalized floating-point numbers produces
an intermediate result that is either normalized or at most
requires one left shift. To multiply,

RSO LS s SO A S

1. If either of the two operands is an input exception, the :
result is an output exception. ]

2. If either of the two operands is zero, the result is a frue
Zero. :

3. Otherwise, the exponents are added, keeping an extra bit
of precision to account for a normalization shift that could
correct an exponent overflow.

4. The two fractions are multiplied right to left.

The G, R, and S bits are maintained during intermediate
calculations.

The result is post-normalized, if required.
The intermediate result is rounded, as outlined in Table 27.

The rounded intermediate result is normalized again and
the exponent adjusted, if necessary, to yield the final result.

Divide
Dividing two normalized floating-point numbers produces an
intermediate result that is normalized. To divide,

1. If either of the two operands is an input exception, the ]
result is an output exception. ;

2. Ifthedivisoris zero, the result is an output exception. Also,
PSW (FDZ), the floating divide-by-zero bit, is set to 1.

3. The exponents are subtracted, producing the result’s
exponent.

4. The numerator mantissa is divided by the denominator
mantissa. An (n+2)-bit quotient is generated where n is the ,
length of the mantissas of the operands. The two additional ]
quotient bits represent the G and R bits, The state of the Sbit |
is implementation specific. The S bit may always be
assumed to be 0, or may represent the OR of some portion
of, if not the entire remainder.

5. The intermediate result is rounded, as outlined in Table 28. :

6. The rounded intermediate result is normalized again and
the exponent adjusted, if necessary, to yield the final result.
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Table 28 Intermediate result rounding - divide

1.

Rounding performed
G | R | C Series compatible Industry compatible
0ol o Add 0 Add 0
0 1 Add { Add 0
1 0 Add LSB Add1
1 1 Add 1 Add 1
Conversions

When converting from floating-point to fixed-point,
always round toward zero (truncate).

When converting from floating-point to fixed-point,
properly normalize the integer. If this results in more
mantissa bits than are available, round the mantissa to its

appropriate size.

Rounding from floating-point to fixed-point can be
achieved by adding 0.5 to the floating-point operand, then
executing the floating-point to fixed-point instruction. The
sign used on the 0.5 value should be the same as the sign

on the operand. Thus:

— RND (3.4} equals TRUNCATE (3.9) = 3
— RND (3.5) equals TRUNCATE (4.0) = 4

The following rules apply when converting an arithmetic value
from one data type to another.

: ‘g.,_u,mw«,.4@.wm.,,.,..ww. i o
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- Register sets

The CONVEX C-Series architecture allows for asynchronous and
overlapped fetch and execute functions by partitioning both
addresses and operands into three general register sets.

¢ Address registers
® Scalar registers
* Vector registers

This partitioning of the general registers enables address, scalar,
and vector calculations to be performed in parallel.

The architecture has four special purpose registers.
* Program counter (PC)
¢ Processor status word (PSW)
» Scalar stride zero (S50 - C4600 Series CPUs only)
¢ Scalar stride one (SS1 - C4600 Series CPUs only)

For the multiprocessing C-Series CPUs (CPUs other than the
C100 Series), the C-Series architecture has an additional register
set, used for CPU communications in the multiprocessing
environment. These registers are presented in the
“Communication registers” section in Chapter 5.

The CONVEX C-Series architecture also uses three privileged
flags:

¢ Interrupt on (ION)

* Realtime interrupt on (RT_ION - C3400 Series CPUs only)
» Vector valid (VV)
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All address, scalar, and vector registers support multiple data
lengths, which occupy the following bit positions:

¢ Byte—bits <7..0>
Halfword—bits <15..0>
* Word—bits <31..0>

* Longword—bits <63..0> |
* Single-precision—bits <31..0>
* Double-precision—bits <63..0>

When an operand with precision less than the destination
register is loaded, the remaining unused bits of the destination
register are left unchanged. For example, when a 16-bit integer is
loaded into a 32-bit address register, the 16 high order bits of the
register (bits <31..16>) are undisturbed. Each data type is accessed
in a specific way:

* Abyteis loaded into or read from bits <7..0> of a register.

i' « A halfword is loaded into or read from bits <15..0> of a
: register. i

¢ A word (integer or single-precision} is loaded into or read
from bits <31..0> of a register.

* Alongword (integer or double-precision) is loaded into or
read from bits <63..0> of a register.
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Address regisfers All CPUs, except the C4600 Series, have eight 32-bit address (A)
registers, A0 through A7. Although the registers in the following
list have specific, predefined functions, all except register AQ can
also be used as general purpose address registers. ’

¢ A0 is the stack pointer (SP).

A3, A4, and A5 are implicitly used by some trap handlers
(for example, page fault, system exceptions, and so forth).

» A5 is implicitly used by some instructions.

Ab is the argument pointer (AP).

A7 is the frame pointer (FP).

Register A0 is used in two additional ways. When register AQ is
specified in an addressing operation, zero is used in place of the
true value contained in register AQ. When register AQis used asa
source or destination for an arithmetic operation, the true value is
used.

The following can be loaded into address registers:
*» Signed or unsigned fixed-point integers
* Operands used as addresses or index values

* Operands that are manipulated in parallel with a
computation performed in scalar or vector registers

Longword operands cannot be loaded into an address register,
since address registers are only 32 bits in length.

C4600 Series

The C4600 Series CPUs contain thirty-two 32-bit address
registers, AC to A31. Address registers A0, A6 and A7 retain their
use as Stack Pointer, Argument Pointer, and Frame Pointer
respectively. New instructions for C4600 Series CPUs perform ail
byte, halfword and word operations on AQ to A31. The C-Series
Assembly Language Reference describes these instructions.
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Scaiar fegisfers All CPUs, except the C4600 Series, contain eight 64-bit scalar (S)
registers, SO through S7. The S registers can contain logical,
fixed-point integer, or floating-point operands.

A signed or unsigned scalar fixed-point integer value can be
loaded into either an address or scalar register. Generally,

operands used only for numeric processing are loaded into the
scalar registers.

C4600 Series
C4600 series CPUs contain 28 64-bit scalar registers, 50 to 527.

C4600 series-specific instructions perform all integer and
floating-point operations on scalar registers S0 to 527.
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Vector registers There are five types of registers in the vector register set:

Vector accumulators (V)
Vector length (VL)
Vector stride (VS)

*

* Vector merge (VM)
Vector first (VE, C4600 only)

Vector accumulators

All CPUs, except 4600 Series, contain eight vector
accumulators (V), VO through V7. Each vector accumulator may
contain up to 128 64-bit register operands ox elements. These
operands can beinteger, logical, or floating-point values. Whenan
operand less than 64 bits is loaded into a 64-bit element, the unused
bits are unchanged.

Individual elements within a vector accumulator are referenced i
by appending the element number to the designated vector
accumulator. The first element of V1 is referenced as V1<0>

(origin 0 indexing). The 22nd element of V1 is referenced as
V1<21>.

C4600 Series

The C4600 Series CPU’s vector register set consists of 16 vector
accumulators, VO to V15. Each vector accumulator may contain
up to 128 64-bit registers. C4600 series-specific instructions
perform vector and vector/scalar operations using V0 to V15
and S0 to 527.
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Array (vector) terminology
An array (vector) is a data structure composed of elements.
Arrays have four general characteristics:

+ Data type—This is the way in which bits are grouped and
interpreted. The data type identifies the size of the operand
and the significance of the bits in the operand.

¢ Dimension—This is the number of indices necessary to
reference a particular element. For example, an array with
three rows and four columns is a two-dimensional array. ]

¢ Length—This s the total number of elements in the array and
is limited by the compiler and virtual address space. For i
example, an array with three rows and four columns has a
length of twelve.

¢ Stride——This is the distance in bytes between adjacent array
elements along the same dimension. For example, a
one-dimensional word vector has a stride of four bytes.

Figure 11 illustrates an example of the vector terminology used
in vector processing when manipulating a 3 x 4 array of words
called a (3,4).

54 CONVEX C-Series Architecture

|
|

EDTX 2-04-CV-120
51056DOC065382



Figure 11 Vector terminology

.
all al2 al3 al4
a2l a2 a23 a24
a3l a32 a33 ad4
P
~
¢ all
4 afl Store in virtual memory
(FORTRAN convention}
8 adl
O¢ al2
10 a22
2c ad4
-~
NOTE
Dimension = 2 2 indices (row and column)
Length = 12 12 elements
Stride = 4 or 12 Distance between elements in the same dimension:

Dimension a(3,4)

Along columns, stride is 4 bytes.

Along rows, stride is 12 bytes.
AH300010
12/1/93
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Vector iength register

A vector accumulator can contain a maximum of 128 elements of
the same data representation and precision. The vector length
register (VL) is used to specify the exact number of elements
stored in a vector accumulator.

VL may contain any value from 0 to 128. An attempt to load VL
with a negative value results in setting VL to 0. When VLis 0, no
vector operation is performed.

An attempt to load VL with a value greater than 128 results in
setting VL to 128. This allows arrays of up to 128 elements to be
handled directly with vector instructions.

Even though the VL register has a maximum value of 128, a
vector in memory can be any arbitrary length up to the user
virtual address space limit of 2 Gbytes. Arrays longer than 128
elements or variable arrays that could exceed 128, are handled in
software by coding a loop around a group of vector instructions
that handles up to 128 elements at a time. This is called strip
mining and is generated automatically by CONVEX vectoring
compilers.

Vector stride register

The 32-bit vector stride register (VS) specifies the distance in
bytes between adjacent array elements as they are accessed in
memory. If VS contains a positive value, adjacent vector register
elements are loaded and stored from memory by adding
sequential multiples of VS to the initial address of the array base.
If VS contains a negative value, adjacent vector register elements
are loaded and stored from memory. This is done by subtracting
sequential multiples of the absolute value of VS from the initial
address of the array base. In the latter case, logically adjacent
elements reside in decreasing locations in virtual memory.

Unpredictable results may occur on store operations if the
absolute value of VS is nonzero but smaller than the width of the
operands. If VS is 0, the referenced operand is correctly used
repetitively as a source or destination.
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Vector merge register

The vector merge register (VM) holds the status of
element-by-element array comparisons and controls array
manipulations such as compress, expand, merge and
operate-under-mask. The VM register is 128 bits in length,
with one bit position for each element in a V register. In a vector
compare operation, a bit is set if the result of the corresponding
compare is true. Otherwise, each respective bit is cleared. Typical
uses of the VM register (as supported by the CONVEX instruction
set} are

¢ Vector clipping

Population count (the number of successful compares)
¢ Sparse vector manipulation

+ Array compression, expansion, and merging

¢ The number and location of zero or threshold crossings

* Support operations that are performed under mask (under
mask operations are not available on C100 Series CPU}

Vector first register - C4600
The vector register set of the C4600 Series CP'Us contains an
additional vector register called the vector first register (VF).

VF specifies the first element of vector register Vi, Vjor Vk
accessed by a vector instruction, provided that the MSB of the
corresponding 5-bit register select field of the instruction is set.
VF cannot be applied to operations on VM.

VFis seven bitsin length and may contain a value between 0 and
127. I the value of VF plus the value of VL is greater than 128,
the effective value of VL for vector instructions that use VF is 128
minus VFE. This effective VL value determines the number of
results written to a vector register or VM, or the number of
elements stored to memory.

if the value of VF plus Sj is greater than 127 in the mov
Vvi,Sj,Skand mov Si,S8j,Vkinstructions, then the selected
element of the vector register is equal to (VF plus Sj) mod 128.
Therefore, the vector register wraps for these two instructions only.

If Vi or Vj of an instruction specifies the same register as Vk of
the instruction, and VF is applied to Vk, and VL is greater than
VE, then elements of the shared register may be written (as Vk)
before they are read (as Vi or Vj, depending of the hardware
implementation). In this case, the result in Vk is architecturally
undefined. The instruction mexrg.x Vi, Vi, Vk has the same
behavior if Vi or Vj are the same as Vk.
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Special purpose
registers

The C-Series architecture uses up to four 32-bit special purpose
registers.

* Program counter (PC)
» Processor status word (PSW)

* Scalar stride registers (550 and 551 - C4600 only)

Program counter

The program counter (PC) contains the address pointing to the
next executable instruction in a process. It is not part of the
address register set. This separation permits address generation
without regard to the true state of the PC.

C Series processors are highly pipelined. While they support
PC-relative branching, there is no general support for
PC-relative addressing.

The structure of the PC is shown in Figure 12.

Figure 12 Program counter format

Segment byte offset IO}

10

AH300011
12/1/93

When the PC increments to reference the next instruction, the
specific bits incremented are a function of PC<31>.

If PC<31> is set, then PC<30..1> are incremented.
If PC<31> is clear, then PC<28..1> are incremented.

PC<0> is treated as zero.

58 CONVEX C-Series Architecture

EDTX 2-04-CV-120

51056D0OC065386



Processor status word

The processor status word (PSW) is a user-accessible, 32-bit
status register that indicates the processor state. This register

% contains flags that enable or disable exception processing and
indicate the results of numerical operations. The PSW contains
no privileged mode bits.

The structure of the PSW for C100 Series CPUs is shown in
Figure 13.

Figure 13 Processor status word—C100 Series CPUs

| ¢ [awv]apz[ve] TR ] FRL |SEQ|sc [siv]spz[pzE] U [ ov [ Ro [FDZ]

% 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 18

i

i

| FE [FUEJIEEE] Reserved

! 1S 14 13 12 o

AH300012
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The structure of the PSW for the C3200, C3400, C3800, C4600
Series CPUs is shown in Figure 14.

Figure 14 Processor status word—C3200, C3400, C3800, C4600 Series CPUs

[ ¢ Jarv[apz[ve| TR | FrL [SEQ|sc [s1v[spz[pzE| UN [ ov | RO [FDZ]
31 9 28

30 2 27 26 25 24 23 22 21 20 18 18 17 18

[ FE [FuEfieeg{Ses|FIN [INE[TTC| TIT [cC3[cc2] R [caT IEC j
‘ 15 124 i3 12 11 10 9 8 7 6 5 4 3 ol
f AH300013
; 3/7/94

Chapter 3  Register sets 59

EDTX 2-04-CV-120
21056DOC065387



Universal PSW bit definitions
Each bit of the PSW defined in the following subsections applies
to all implementations of the C-Series architecture.

Bit <31>—Carry (C)

: This bit, also known as address carry, is set to the carry-out value

Ff:i for specified operations involving the address (A) registers,
including arithmetic operations, compare operations, and

communication register instructions (using the A registers). For

3 compate operations, if the comparison is false, the carry bit is

i cleared; if it is true, the carry bit is set.

In the 4600 Series CPUs, bit <31> is also calied CCQ. This

synonym is used for convenience only, and the bit continues to
function as C.

Bit <30>—Address overflow (AIV)

This bit indicates a fixed-point integer overflow occurred during
specified operations on the address (A) registers. If AIV is clear, f
no overflow has occurred since this bit was last cleared. If AIV is i
set, at least one overflow has occurred since this bit was last
cleared.

Bit <29>—Address divide-by-zero (ADZ)

This bit indicates an address divide-by-zero occurred during an
operation using the address (A) registers. If ADZ is clear, no

i integer division with a zero divisor occurred since this bit was
last cleared. If ADZ is set, at least one integer division with a
zero divisor has occurred since this bit was last cleared.

Bit <28>—Integer overflow trap enable (IVE)
If this bit is set, and either SIV (bit <22>) or AIV (bit <30>) is set,
an integer trap occurs. If IVE is clear, no trap occurs.

Bit <27>—Trace (TR)
If this bit is set, an instruction trace trap occurs after the 1
processor executes one instruction. The process context is saved, f
which includes the contents of the program counter {PC). When
execution returns from the trace trap handler, the process
context is restored, and the instruction referenced by the PC is
executed before a trace trap occurs again. For the trace mode to
function properly, you must also set SEQ (bit <24>).
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Bit <26..25>—Frame length (FRL)
These bits indicate the type of frame created by the last call
Instruction, trap, or fault:

i1  Short frame
10 Long frame
01 Extended frame

00 Context return block

These bits in the PSW on the top of the stack are used by the rtn
{return) instruction to unwind the stack after a subroutine call or
exception. When PSW (FRL) indicates a context return block, the
current ring must be ring 0, and the rtnc (return from a context
block) instruction must be used. Frame lengths and return blocks
are discussed in the “Resource structures” section in Chapter 4.

Bit <24> Sequential (SEQ)

This bit controls pipelining within the processor. If this bit is
clear, the processor operates with maximum pipelining and
overlap. If this bit is set, the processor executes all instructions
sequentially; that is, the execution of the next instruction is
initiated only after the previous instruction has been executed.

Bit «23>—Scalar carry (SC)

This bit is set to the carry-out value for operations involving the
scalar (S) registers, including arithmetic operations, compare
operations and communication register instructions {using the §
registers). For compare operations’ if the comparisonis false, the
scalar carry bit is cleared; if it is true, the scalar carry bit is set.

In the C4600 CPUs, bit <23> is also called CC1. This synonym is

used for convenience only, and the bit continues to function as
SC.

Bit <22>—Integer overflow (SIV)

This bit indicates a fixed-point integer overflow occurred during
specified operations on a scalax () or vector (V) register. If SIV is
clear, no overflow occurred since this bit was last cleared. If SIV
is set, at least one overflow occurred since this bit was last
cleared.

i
!
¢
f
H

Bit <21>—Integer divide-by-zero (SDZ)

This bit indicates an integer divide-by-zero occurred during an
operations using a scalar (5) or vector (V) register. If SDZ is clear,
no integer division with a zero divisor occurred since this bit was
last cleared. [f SDZ is set, at least one integer division with a zero
divisor occurred since this bit was last cleared.
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Bit <20>—Djivide-by-zero trap enable (DZE)
[f this bit is set, and either SDZ (bit <21>) or ADZ (bit <29>) is
set, a trap occurs. If DZE is clear, no trap occurs.

Bit <19>—Floating-point underflow (UN)

This bit indicates a floating-point underflow occurred during
specified operations on a scalar (5) or vector (V) register. If UN
is clear, no floating-point underflow occurred since this bit was
last cleared. If UN is set, at least one floating-point underflow
occurred since this bit was last cleared.

Bit <18>—Floating-point overflow (OV)

This bit indicates a floating-point overflow occurred during
specified operations on a scalar (S) or vector (V) register. If OV is
clear, no floating-point overflow occurred since this bit was last
cleared. If OV is set, atleast one floating-point overflow occurred
since this bit was last cleared.

Bit <17>—Reserved operand (R0)

This bit indicates a floating-point operation on a reserved
operand (Native mode), infinity, or NaN (IEEE mode) was
detected during an operation on a scalar (S) or vector (V)
register. If RO is clear, a reserved operand was not detected since
this bit was last cleared. If RO is set, at least one floating-point
operation on a reserved operand occurred since this bit was last
set.

Bit <16>—Floating-point divide-by-zero (FDZ)

This bit indicates a floating-point divide-by-zero occurred
during a divide operation on a scalar (S) or vector (V) register. If
FDZ is clear, no floating-point division with a zero divisor
occurred since this bit was last cleared. If FDZ is set, at least one
floating-point division with a zero divisor occurred since this bit
was last cleared.

Bit <15>—Floating-point trap enable (FE)
If this bit is set, and either OV, RO, or FDZ are set, a
floating-point trap occurs. If FE is clear, no trap occurs.

Bit <14>—Floating-point underflow trap enable (FUE)

If this bit is set and UN is set, a floating-point underflow trap
occurs. If FUE is clear, a floating-point underflow trap does not
occur. In both cases, if a floating-point underflow is detected,
true zero is the result.

Bit <13>—IEEE floating-point format (IEEE)

This bit enables and disables IEEE floating-point operations. If
[EEE is set, IEEE floating-point operations are enabled. If IEEE is
clear, native floating-point operations are enabled. This PSW bit
allows an upgraded C100 Series CP'U to process IEEE-format
arithmetic.
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Reserved (RES)

Bits <12..0>  (for C100 Series CPUs)

Bits <7..5>  (for C200/C3200 CPUs)

Bits <7..8>  (for C3400/C3800 Series CPUs)
Bits <5..4>  {for C4600 Series CPUs)

Extended PSW bit definitions

In addition to the previously defined universal PSW bits, the
following sections define PSW bits exclusively for
multiprocessing C-Series CPUs.

Bit <12>—Sequential store enable (SQ}S)

If this bit is clear, stores to memeory may occur in non-sequential
order. If this bit is set, all stores to memory occur in instruction
execution order.

This bit is ignored by the C4600 Series architecture, because all
stores are sequential by default.

Bit <11>—1Intrinsic error (FIN)

This bit indicates an intrinsic instruction detected an error. If this
bit is set, the IEC bits (PSW<3..0>) contain a code that specifies
the type of error.

Bit <10>—Intrinsic error trap enable (INE)
If this bit is set, and FIN (bit<11>) is set, a floating-point
exception trap occurs. If this bit is clear, no trap occurs.

Bit «9>—Trace thread concurrency trap {TTC)

This bit causes a trace trap any time a thread is created or
terminated. If this bit is set, an instruction trace trap occurs prior
to a CPU entering the hardware idle state and after leaving the
hardware idle state. The wfork, idle, and join instructions can
cause the CPU to enter the idle state. Acceptance of a posted fork
causes the hardware to leave the idle state. Refer to the
“Instruction trace trap” section in Chapter 6 for more information.

Bit <8>—Thread initialization trap (TIT)

This bit causes a trace trap any time a CPU picks up a fork. If this
bit is set when a CPU picks up a fork, a trace trap will be taken
to allow a handler to initialize the user-indicated code. A code of
0x800 (class 8, no qualifier) is placed in register A5 to distinguish
this trap from the other trace traps. This trap is based on the PSW
in the fork block in the communication registers. This is a user
trap, that is, it occurs in the ring where it was executed. The CPU
does not have to be in sequential mode for TIT traps to function
carrectly.
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Bit <7>—Condition code 3 (CC3)

This bit can be used as the target of C4600-specific compare
instructions, and as the branch condition of C4600-specific
branch instructions. i

Bit <6> - Condition Code 2 (CC2) !
This bit can be used as the target of C4600-specific compare
instructions, and as the branch condition of C4600-specific
branch instructions.

Bit <4>—Communication address trap (CAT)

On C200/C3200 Series CP’Us only, this bit is set whenever the
CPU detects an invalid communication register address, which
causes a system exception (ring violation) to occur. This bit is not
used on C3400/C3800/C4600 Series CPUs.

This bit remains set until the trap is recognized, in order to allow
a trap to be remenibered in the event of ring crossing (sysc,
interrupt, and so forth). This ensures that the trap is attributed to
the correct ring of execution. The hardware clears this bit in the
extended frame passed to the systemn exception handler when the
trap is processed.

Bit <3..0>—Intrinsic error code (IEC)

When FIN (bit<11>) is set, [EC (bits <3..0>) contains a code that
specifies the type of error encountered by the intrinsic
instruction. Each intrinsic instruction that encounters an error
first clears these bits, if they were set from a previous error that ;
occurred with INE (bit <10>) clear. The new code is entered in |
these bits, and FIN is set. If INE is set, an arithmetic trap occurs. '
[f INE is clear, no trap occurs. If INE is clear, only the last
intrinsic trap is meaningful. Other intrinsic traps may have :
occurred, but were disregarded. |

Intrinsic traps are processed by the same trap handler as the ]
other PSW arithmetic traps, RO, FDZ, and UN. For arithmetic
traps that can be enabled, the enable bit must be examined to
determine the type of the current trap. Specifically, if some types
of traps are enabled (thatis, FUE (bit<14>) or FE (bit <15>) is set)
and intrinsic traps are not (that is, INE (bit<10>) is clear), the
enable bit must be examined.
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The valid meaning of the IEC bits when there is no trap is:

0000 A square root operation with a negative operand
(vector or scalar) was attempted. i

0001 Anoverflow occurred when an exponential operation
(exp.s, exp.d) was attempted.

0010 Anargument to a logarithmic operation (In.s, in.4d)
was less than or equal to zero.

0110 The absolute value of an argument to a sine operation
(sin.s, sin.d) was too large.

0111 The absolute value of an argument to a cosine
operation (cos . s, cos . d) was too large.
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Scaiar stride registers - C4600

The C4600 Series CPUs contain two 32-bit Scalar Stride 3

Registers, 5S0 and SS1. The 1d0 and 141 instructions use these ;
: registers to permit explicit cache prefetching under software
' control. An 140 loads the data addressed by <effa> into the
specified destination register, and accelerates the data addressed
by <effa>+SS0 to the data cache. An 1d1 performs the same
function using 551. This mechanism greatly improves the data
cache hit rate for non-vectorizable routines operating on large
data sets.
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Privi]eged ﬂqgs The interrupts on (ION), realtime interrupts on (RT_ON), and
vector valid (VV) flags are privileged binary flags that control
certain operations.

Interrupts on

The interrupts on (ION) flag enables and disables external
interrupts. The instructions bxi.f, bri.t, jmp.£, and jmp.t
test the state of the ION flag. The privileged instructions eni and
ds1i enable and disable the interrupts by setting and clearing ION
(respectively). See the “Interrupt system” section in Chapter 6 for
more detail.

s g Bl e

Redltime interrupts on

i LN S £

The realtime interrupts on (RT_ION) flag is a privileged binary
flag that enables and disables realtime external interrupts on the
(3400 Series CPUs in realtime mode. It is used in the same way
that ION is used. Details of C3400 Series realtime support are
discussed in the “Interrupt system” section in Chapter 6.

Vector valid

The vector valid (VV) flag is used by the operating system for
saving and restoring the vector accumulators in a demand mode.

The mov Sk, VV insttuction loads the VV flag from Sk. This
instruction is privileged in the C100 Series CPUs. On

multiprocessing CPUs, it may be executed in any ring, but !
performs no operation when performed from rings 1 through 4.

The tstvv instruction loads the value of VV into PSW (SC).

i
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Memory management

The CONVEX C-Series architecture allows 4 Gbytes of virtual
(logical) address space. This virtual memory is partitioned into
eight 512-Mbyte segments. Four segments are allocated to the
user and four to the operating system (OS). This division means
that a user program (instructions and data) can occupy up to 2
Gbytes of virtual storage.

The memory management system controls an extremely flexible
and reliable virtual memory programming environment.
Although the address space of the C-Series architecture is
byte-addressable, memory is managed on a fixed-size page

! basis. Even though an address may be a valid virtual address,
the referenced data may or may not be in physical memory.

The CONVEX C-Series architecture implements a process the
same way that the UNIX operating system defines a process in
that a CONVEX process has a protected address space, context,
and a state. A CONVEX process exists as a single thread in the
C100 Series architecture. However, in the multiprocessing
architectures, a CONVEX process exits as one or more threads,
unlike a UNIX operating system process. Therefore, it cannot be
considered an atomic structure. A process is controlled by
maintaining a process stack. These stack entries are called return
blocks and contain vital information for controlling the
execution of a process.

Physical address C-Series CPUs have implementation-specific physical address

space and I/O space. Chapter 7, “Implementation-specific features,”
describes the details of each implementation’s physical and 1/0
address space.
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Virtual address The virtual address space for a C-Series CPU is 4 Gbytes. This

space address space is logically divided into eight 512-Mbyte
segments (see Table 29). These eight segments are distributed
through five partitions called rings of execution or just rings. These
five rings are illustrated in Figure 15.

Figure 15 Ring structure of the virtual address space

Virtual addresses are generated by using the program counter
(PC) or any of six different operand addressing modes. The
format of a virtual address is shown in Figure 16.

Figure 16 Virtual address format

SEG ] Segment byte offset

31 29 28 0

AH300014
11/10/93
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The SEG field (bits <31..29>) of the virtual address defines the
segment (0 through 7), and is assigned as follows:

+ Segment 0 is always assigned to ring 0, which contains the
operating system kernel. A set of instructions, called
privileged instructions, can only be executed in Ring 0.

* Segment 1 is always assigned to ring 1.
* Segment 2 is always assigned to ring 2.
. Segmenf 3 is always assigned to ring 3.
¢ Segments 4, 5, 6, and 7 are always assigned to ring 4.

By allocating virtual memory segments to a ring structure, the
architecture provides the memory protection system with a
simple means of preventing, detecting, and handling memory
protection violations. The operating system kernel and data
structures are located in the innermost ring {ring 0), other kernel
data structures are located in rings 1, 2, and 3, and all user
processes are located in the outermost ring {ring 4). The
privilege-level of a ring is inversely related to the ring number.
Ring 0 has the highest privilege level. Therefore, the operating
system (in ring 0) has all the privileges necessary to perform its
functions.

Each CONVEX process has a protected address space with a
corresponding privilege-level, achieved by segmenting virtual
memory with a ring structure. By segmenting memory, the
architecture supports individual address partitions for user
code, static data, dynamic data (stacks), and memory protection.

Four segments are allocated for user processes (2 Gbytes), and
four to the operating system (2 Gbytes). This allocation scheme
. permits a user process to locate instruction code in one segment,
| static data in a second segment, and dynamic data (stacks) ina
third segment. Table 29 shows the structure of the C-Series
architecture virtual address space.
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Table 29 (C-Series architecture virtual address space :

. . Virtual address Ring execution
Ring Virtual address space (segment) Owner priority |
0 0000 0000 0 HIGHEST (0) |
1FFF FFFF '
2000 0000 A
1 1 !
3FFF FFFF
SYSTEM i
4000 0000 ;
2 2 l
SFFF FPFF |
6000 0000 |
3 3 !
7FFF FFFF J
8000 0000 . -
9FFF FFEF }'
2000 0000 s i
BEFFF FEFF ?
4 USER !
c000 0000 ‘ i
6 ;
DFFF FFFF Y ;
E000 0000 ; g
FFFF FFEFF LOWEST (4) |

Data referenced by a byte-virtual address can begin on any
arbitrary byte boundary. A 64-bit operand can begin on any one
of eight byte boundaries. The byte address generated by an
instruction references the first byte (byte 0) of an operand.
However, where storage allocation is not controlled by the i
system, the best CPU performance is obtained if certain memory
alignment rules are followed. The recommended boundaries for
aligning each respective data representation in memory are:

* Byte—Not applicable.

* Halfword—Least-significant address bit is 0.

* Word—Least-significant two address bits are 00.

¢ Longword—Least-significant three address bits are 000.
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Addressing modes

C-Series instructions that reference main memory must generate
one or more main memory addresses. Many of these instructions
explicitly generate an address called the effective address, or effa.
Several different addressing modes can generate an effa. These
modes use different combinations of address registers, the
immediate field of the instruction, and the contents of memory
to form the effa. These addressing modes are listed in Table 30.

Table 30 C-Series addressing modes

Addressing mode Assembter form Address
Absolute address address

Deferred ' (23) Aj

Indexed offset(Aj) Aj + offset
Indexed Deferred (C4600 only) (Ai,Rn7j) Al + Aj

Indirect Absolute daddr Merm(address)
Indirect Deferred @dqa3) Mem(Aj)
Indirect Indexed @offset(ai) Mem(A]j + offset)
Indirect Indexed Deferred (C4600 only) | @(2i,27) Mem(Ai + Aj)

In Table 30, address and offset refer to the 16-bit or 32-bit
immediate encoded in the instruction, A1 and Aj refer to the
contents of a register, and Mem(x) refers to the contents of
memory location x.

The Indexed Deferred and Indirect Indexed Deferred modes are
only supported on the C4600 Series CPUs.

See the CONVEX Assembly Reference Manual for additional
information, including a description of how these modes are
encoded in an instruction.
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Process structures

A process is a collection of one or more threads and associated data
within a virtual address space defined by a confexf. A process
includes the current values of the PC, PSW, A, S, V, and
communication registers, and variables for the threads at any
given time during execution.

A thread is a single stream of execution. The C100 Series CPUs
support only one thread per process, while the multiprocessing
C-Series CPUs support up to 32 multiple threads of execution per
process (2° in TID <4..0>). The maximum number of threads that
can execute simultaneously in a process is a function of the number
of CPUs in a complex.

A process consists of a protected address space, a state, a
hardware context, and a software context.

The state of a process is the condition of a process at any given
instant. The state of a process changes in response to system
events. The process states are defined as:

* Executing—A process that is actually using a CPU at a given
instant.

¢ Sleeping—A process that is idle and not executing ona CPU.

* Blocked—A process that cannot continue execution and is
waiting for an external system event to occur before the
process can continue execution.

* Ready—A process that is temporarily stopped in order for
some other process to continue execution.

The context of a process consists of a hardware context and a
software context. The hardware context consists of the contents of
all or part of a CPU's general and status register sets. The software
context consists of all or part of the program'’s variables and other
data structures within the program and in the operating system
on behalf of the program.

A C-Series process is constructed with two general partitions.
One partition is the user program which resides in ring 4. Ring 4
is comprised of segments 4 through 7, and spans 2 Gbytes.

The other partition is the operating system kernel, its data
structures, and other shared resources that are shared by all user
processes. This kernel part of the operating system includes the
page tables used for address translation, buffers for disk or
terminal records, and the various control blocks created by the
operating system for the user.

The shared part of the operating system resides in ring 0. The
operating system's kernel data structures reside in rings 0, 1, 2,
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and 3. These data structures vary with the operating system
implementation and are not part of the C-Series architecture.

Sincering 0 is system-wide and not process-wide, every process
shares the same ring 0. Interrupt processing is an example of a
system-wide service that is performed in ring 0.

The partitioned structure of a CONVEX process is shown in
Figure 17.

Figure 17 Process, system, and ring structures

Ring 4

Process Process Process
0 1 . & & N

L

System wide — Ring 0

AH300017
11/15/93
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Process control

The process control mechanism uses stacks, stack frames, and
process return blocks to manage process activity. These data
structures contain the software and hardware context
information used for controlling the execution of a process.

Stacks and stack frames

Stacks are generally used as dynamic storage allocated and
deallocated during the execution of a user program. Stacks
contain the hardware and software context. This process state
information is managed in units called stack frames. A stack frame
typically consists of an area that contains the register contents
from the previous execution context, an area that contains storage
for temporary variables local to this context, and values necessary
to manage the current stack frame, as well as a link to the previous
frame.

A stack is an array organized as a last-in-first-out (LIFO) buffer. It
is sometimes called a push-down stack. The C-Series architecture
implements a stack as an array of 32-bit words, although
longword operands can be used in stack operations. This means
that all instruction set primitives that manipulate the stack
increment or decrement the stack pointer (SP) by four or eight.

The architecture defines three registers to maintain a stack:

» The stack pointer (SP, A0) is discussed in the “Stack
operations” section on page 77

* The argument pointer (AP, A6) references the first argument
contained in a stack frame that is pushed on the stack when
a subroutine is entered.

* The frame pointer (FP, A7) provides dynamic linkage
between frames contained on a stack.

Ore, two, or all three of these registers are affected, depending
on the type of operation performed on the stack. Generalily,
subroutine entry and exit use all three registers.

The following subsections describe some of the types of
operations performed on a stack, stack frames, process return
blocks, and stack structure for subroutine entry and exit.

Refer to the CONVEX Assembly Language Reference Manual (C
Series) for specific details about instructions used in stack
operations and management.
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Stack operations

The C-Series architecture supports two primitive operations on
a stack. A push operation, using a psh instruction, stores an
operand on the stack and decrements the SP (AQ) by 4 or 8.
Pushing a word will decrement the current value in SP by 4. The
word is then stored in the location referenced by the new value of
the SP. Address register SP (A0) points to the top element of the
stack (the last location used).

A pop operation, using a pop instruction, removes an operand
from the stack and increments the SP (A0) by 4 or 8. Popping a
word from the stack will fetch the top element from memory and
increment the stack pointer by 4.

The example in Figure 18 shows the top of the stack is initially at
byte 68 (hex).

Figure 18 push and pop stack operations

A0 after push

A0 before push

1
Direction of Decreasing
stack growth addresses
64 65 66 67 New top of stack, 40 is 64
68 69 6A 6B Previous top of stack, A0 is 68
Stack
AH300018
11/10/93

Pushing a word onto the stack requires that the stack pointer
(AQ) first be decremented by 4 (68 - 4 = 64). The word to be
pushed is then stored into bytes 64, 65, 66, and 67.

Popping a word from the top of the stack fetches bytes 64, 65, 66,
and 67. Then it increments the stack pointer (A0) by 4
(64 + 4 = 68).

Only 32-bit and 64-bit quantities are supported in the C-Series
instruction sets for push and pop operations on a stack. The
stack should be initialized to begin on an integral 4-byte address
boundary. Overt modification of the SP (by instructions that
manipulate AQ) by quantities other than multiples of four is not
recommended. Even though the processor will continue to
function, performance will be degraded.
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No explicit stack overflow or stack underflow detection is
performed by the hardware. Stack overflow and underflow may
be detected by surrounding the allocated stack with inaccessible
pages. Software-reserved bits in the protection fields of the
no-access PTEs may be used to differentiate this type of access
violation from other possible causes. Consequently, the
protection trap handler can determine the reason for invocation.

Process return blocks

The hardware context of a process is managed with a data
structure called return blocks. Depending upon the return block
type, the information contained in a stack frame may include the
contents of all or part of a CPU's general and status register sets

(hardware context), and the contents of all or part of the program's
variables (software context).

The C-Series architecture defines four types of return blocks:

» Short—A short return block is formed as a result of executing
a calls instruction. The return address, PSW (FRL<1..0> =
11), A7, and A6 are saved.

* Long—A long return block is formed as a result of executing
acallinsitucton. The returnaddress, PSW (FRL<1..0> =10),
registers Al, A2,..., A7, and scalar registers 51, 52,..., 57 are
saved.

¢ Extended-—An extended return block is formed as a result of
a system call, trap, or breakpoint. The return block contains
the return address, PSW (FRL<1..0> = 01), all A registers, all S
registers, plus some additional registers on multiprocessing
C-Series CPUs. The saved SP (A0) references the value of A0
prior to the saving of the extended return block. The frame
pointer (A7) that is saved in the extended return block
references the value of A7 prior to the extended return block
being saved.

¢ Context—A context return block may be formed as a result of
a system exception. The context return block contains an
extended return block plus internal CPU state. This internal
CPU state information is unique to each CPU ,
implementation. A context return block is pushed on the Ring
0 process stack.

The respective lengths of the short and long return blocks are
identical for alil CPU implementations in the C Series.

The length of an extended return block and the length of the
context return block are both CPU-specific. That is, the C100
Series, the C3200/C3400/C3800 Series, and the C4600 Series
CPUs have different extended return block lengths.
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Short return block |
A short return block is formed as a result of executing a calls :
instruction. The return address (PC), PSW (FRL=11), frame

pointer (A7), and argument pointer (A6) are saved on the current

stack.

After the short return block is pushed on the stack, the frame
pointer (FP) is set equal to the stack pointer {SP). The format of a
short return block is shown in Figure 19.

Figure 19 Short return block

FF offset 31 0
00 PC «—— New top of stack
04 PSW
! Direction of 08 FP (A7)
‘ stack growth oe AP (6)
AH300019
11/10/93

Long return block

A long return block is formed as a result of executing a call
instruction. The return address (PC), PSW (FRL=10), address
registers Al through A7, and scalar registers 51 through 57 are
saved. AQ and 50 are not saved.

After the long return block is pushed on the stack, the frame
g pointer (FP) is set equal to the stack pointer (SP). The format of a
i long return block is shown in Figure 20.
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Figure 20 Long return block i
FP offset 31 0
A 00 PC ~—— New top of stack
04 PSW
08 FP (47)
oc AP [A8) i
20 Al ;
24 |
S7 !
Direction of
stack growth
2C
s6
!
!
1
}
i
54 '|
st |
i
AH300020 i
11/10/93 :

Extended return biock - C100 and C3200/C3400/C3800
Anextended return blockis formed as aresult of asystemcall (sysc
instruction), an exception, or a breakpoint.

The extended return block contains the return address (PC),
PSW (FRL=01), all the A registers, all the S registers and the
thread timer. The stack pointer (A0) thatissaved in the extended
return block references is the value of AQ prior to the extended
return block being saved.

After the extended return block is pushed on the stack, the frame E
pointer (A7) is set equal to the stack pointer (SP). The format of i
an extended return block is shown in Figure 21. '
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Figure 21 C100 and C3200/C3400/C3800 Extended return block

FP offset 31 Q
0o PC e—— New top of stack
04 PSW
i 08 FP (A7)
oc AP (AS6)
24 SP (A0)
28
SY

Direction of
stack growth

30

S6

&0

S0

EE

Thread timer
{Multiprocessing C series only)

AH300021
11/10/93

Extended return block ~ C4600

The C4600 CPU’s extended return block contain the 32 address
registers, the 28 scalar registers, the PC, PSW, 551, S50, thread
timer, EVCNT, and EVSEL. The structure of an extended return
block is shown in Figure 22. Note that the header of the C4600
series extended return block is identical to a
(C3200/C3400/C3800 extended return block.
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Figure 22 (C4600 Extended return block

63 32 31 7 0
0x000 PC PSW 1‘
0%008 A7 AB !
L B !
0x020 At AD |
0x028 S7 ;
L 2N BN ;'
0x060 S0 :
Ox0D68 Thread Timer !
0x070 A31 ] A30
* e [i
0c0C8 A9 | AB !
0x0DO S27 %
{
> e k
Ox168 S8 ]
0x170 SS1 ] S50
ox178 EVCNT i
0x180 0 EVSEL !
AH300D9C «:
11/11/93

Context block

A context block may be formed as a result of a system exception.
The context block is an extended return block with internal
machine state pushed prior to the extended return block. This
internal state, or context portion of the return block, is
implementation-dependent. A context block is always pushed
on a ring 0 process stack. The only field that distinguishes a |
context return block from an extended return block is the frame
length bits in the PSW, FRL=00.

Return from a return block

The following instructions are used to return using each of these
return blocks:

* The rtninstructionis used to return using the short, long and
extended return blocks

¢ The rtncinstruction is used to return using a context return
block
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Stack frame structures
The structure of a stack frame for subroutine entry and exit is
described in Figure 23.

The return block shown as part of the stack frame structure is
one of the standard return blocks described in this section.

Figure 23 Stack frame structure for subroutine entry
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Figure 24 illustrates two short stack frames, generated by a
calls instruction, and how they are linked together.

Figure 24 Stack structure after a short call
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Stack switching

There is one stack per ring, with the exception of ring 0 (the
highest priority ring) which can have more. Since each ring has
at least one stack, the stack allocated to ring 4 is logically
different from the stack for ring 3, for ring 2, and so on. A ring 0
stack is allocated for each thread that enters the kernel to handle
subroutine calls, exceptions, and interrupts.

The ring 0 stack must always be aligned on a 4-byte word
boundary. A machine exception occurs if it is not properly
aligned. Ring 0 also has several other stacks used by the system :
for interrupt and exception processing. i
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A system call performs the following procedure for switching
stacks:

1. After a successful system call, a new stack frame is created
in the target ring, and an extended subroutine return block
is pushed onto the target stack (the called routine's stack).

g
i
i
i
i
|
[
[

2. The stack pointer of the new stack is:

a. For C100 Series CPUs—initially loaded from byte
address 0000 0048 of page 0 of the called ring.

b. For multiprocessing C-Series CPUs—initially loaded
from the system resource structure. A pointer to this
structure located at byte address 0000 0048 of page 0

; of ring 0.

3. After the extended return block is pushed, the SP (A0) is
copied into the FI’ (A7).

4. The PC is loaded with the value from the gate referenced

| by sysc. Refer to the sysc instruction description in the
CONVEX Assembly Language Reference Manual (C Series).
Refer to the discussion on gate processing in the “Inter-ring
procedure call and return” section on page 121.

The stack pointer value saved in the extended return block
represents the value of the caller's stack pointer at the time of the
system call. The stack pointer value is saved in order to make a
proper return from a multiplexed stack resource structure. It is
the link back to the outer ring's stack and is contained within the !
extended return block pushed on the inner ring’s stack.

Arguments for the system call are maintained in a
programmer-defined area, such as an argument packet or on the
stack. Additional details for an inward system call are covered in
the description of the sysc instruction and in the section on
inner-ring procedure calls and returns.

The converse of a system call is a systen return, which is
implemented with a rtn instruction. Unlike a system call, no gate
processing is necessary.

An inner ring (the kernel} can unconditionally access an outer
T ring (a process), so memory protection is not required. A system
return is similar to a normal return with the following
differences:

» The PC ring field can change

* All returns must be the same ring or outward (away from
ring 0)
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¢ The return block popped off the stack must be an extended
or context type

s After the return block is popped from the stack:

i

- For C100 Series CPUs—The updated SP of the inner ring 1
isrestored to bvte address 0000 0048 of page 0 of the ring '
containing the rtn instruction. :

~ For multiprocessing C-Series CPUs—The updated SP of
the inner ring is restored to the system resource structure
pointed to by the system resource structure pointer located
at byte address 0000 0048 of page 0 of ring 0.

This guarantees that the stack will be initialized to the proper
values (with subsequent system calis to the same ring). i
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Resource structures

Resource structures are pre-determined memory locations used
to store specific registers, flags and lock bits.

Shared resource structures

In multiprocessing C-Series CPUs, the communication registers
can be viewed as a form of fully semaphored memory, available
in considerably smaller quantities than virtual memory.
Communication registers and related operations are described
in the “Communication registers” section in Chapter 5. One of
the primary functions of communication registers is providing
software a means to relocate frequently accessed data from
virtual memory to a location with internal locks.

Memory duals of the communication instructions perform
primitive functions using virtual memory that are analogous to
functions that manipulate communication registers. Software
can use the memory duals of the communication instructions to
create data structures in memory, then relocate the critical data
structures to a communication register set.

These memory duals operate on a data structure called a shared
resource structure. A shared resource structure is a simple shared-
access mermory structure used by the multiprocessing C-Series
CPUs. The shared resource structure defines a two or three 32-bit
word memory format that includes a data word or longword, and
synchronization bytes to synchronize access to the structure.

For operations on data words, the first word of the structure is
the synchronization word, and the second is a data word. For
operations on longword data, the first word of the structure is
the synchronization word, the second is the most-significant
word of the data longword, and the third word is the
least-significant word of the data longword. For both structure
types, the synchronization word contains a lock byte and a valid
byte.

The lock byte is the first-level of semaphoring, and is set to OXFF
while the shared resource structure is in transition. A structure is
in transition when data is being written to the structure or read
from the structure. Since the shared resource structure is
semaphored, the lock byte must be successfully “test-and-set” as
the first-level access of semaphoring. Test-and-setis an indivisible
operation provided by the memory system.

An atomic operation is an indivisible operation. That is, once the
operation begins, no other operation or event, such as interrupts,
may intervene until the operation is complete.
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Figure 25

The shared resource structure is specifically used by some
instructions when atomically incrementing and decrementing
memory, or when pushing and popping a shared resource.

The next synchronization byte is the valid byte, which is set if
valid data follows the synchronization (lock) byte. The valid byte
is used by the sndr, rovr, and incr instructions to indicate that
valid data is present in the shared resource structure. The
increment instructions, incr.wand incr. 1, operate ona
resource structure by incrementing or decrementing the data field
by the contents of an address register.

These two synchronization bytes model the semaphoring
inherent in the communication registers. The lock byte models
the inherent indivisible access to the communication registers
provided by their primitive functions. That is, the memory
system doesn't provide primitive operations like send and receive.
The valid byte models the communication lock bit, showing
whether valid data is in the register, that is, the structure is
“valid.”

The format of the word and longword shared resource structures
is shown in Figure 25.

Word and longword shared resource structures

00

04

04

08

0o |

Word structure

31 24 23 8 7 o
Lock ', SW reserved Valid
Data word
Longword structure
31 24 23 8 7 0
Lock SW reserved Valid
Data MSW
Data LSW
AH300024
11/10/93

As anexample of how this structure works, consider thercvr . w
effa, 2k instruction. This instruction is the memory dual of the
rev.w Ceffa, Ak instruction in the “Communication registers”
section in Chapter 5.

i
i
)
)
b
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First, a test-and-set is performed on the lock byte. If this succeeds
(the lock byte was initially 00), the valid byte is read. Next, the
data word is read into address register Ak. If the valid byte is
OXFF, then valid data exists and a success status of 1 is returned in
carry (C). Otherwise, a failure status of 0 is returned.

If the test-and-set of the lock byte succeeds, the data is always read
into register Ak. This occurs, regardless of the state of the valid
byte, because the rcv.w communication register instruction
always reads the contents of the communication register into
register Ak. A single-level of synchronization is required for the
communication registers as previously mentioned.

Stack resource structures

An extension of the shared resource structure, called a stack
resource structure, is provided to allow stack operations, such as
push and pop, on a stack of word resource structures. The
resource instructions, pshr and popr, perform these stack
operations. These instructions make the word resource structure
operate as a stack, with the header located at the base of the stack.
As shown in Figure 26, this stack grows “upwards,” that is, the
addresses of stack entries increase with stack growth, which is the
reverse of the process stack.

These instructions use the second word of the word resource
structure as a stack index to a contiguous array of elements
immediately following the resource structure in the stack. Since
these instructions ignore the valid byte (bits <7..0>} in the word
resource structure, this byte is reserved for future use by
hardware.

Instead of the valid byte, the word resource structure contains a
depth word (index) that shows the number of elements in the
structure.

The pshr Ak, <effa> instruction pushes data onto this structure
by successfully test-and-setting the lock byte, then adding 4 to the
index, and writing the pushed value to the base address + 4 + new
index count. The value of 4 is added to the index to increment past
the index word.

The popr <effa>, Ak instruction pops data from this structure by
successfully test-and-setting the lock byte, reading data from base
address + 4 + index, and then decrementing the index by 4.

Figure 26 shows the stack resource structure as used by the
pshr and popr resource instructions.
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Figure 26 Stack resource structure
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Figure 27 shows an example of a stack resource structure
containing two pushed entries.

AH300025
11/10/93

Figure 27 Stack resource structure with two pushed entries
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AH300026
11/11/93

The address of the top of the stack is 4 + 8 = C. The address of the
top of the resource stack is always located by taking the address
of the stack resource structure index plus the contents of the
stack resource structure index.

Executing a popr instruction would return the value “Entry 17 in
the specified register and decrement the index by 4 making the
top of the stack now 4 + 4 =8. A pshr adds 4 to theindexand then
writes the entry to the structure at its new top. The popr
instruction returns an underflow status and the value returned in
register Ak is invalid if the index in the resource structure is zero.
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System resource shuctures |
When a process enters ring 0 (called ring crossing), the state of that '
process is pushed onto a stack in ring 0. This state is either an i
extended frame for interrupts, system calls and exceptions, or a :
context frame for page faults. ‘

The C100 Series CPUs have a stack pointer in page 0 that points
to this stack. It is loaded from page 0 during a ring crossing. If a !
fault occurs inring 0, a context frame is pushed on a stack that is
always available with a separate context stack pointer.

However, since more than one thread in a process could be ]
crossing rings or faulting at the same time, the multiprocessing |
C-Series CPUs define a system resource structure to manage
allocation of available stacks in ring 0. The system resource |
structure is a stack of pointers to available stacks that are allocated
to threads. Accesses to the system resource structure are
synchronized by placing part of this structure ina communication
register with the other part contained in memory. The
communication register lock bit is used as the semaphore in order
to control contention between multiple threads. Refer to the
“Communication registers” sectionin Chapter 5, “Multiprocessor
management,” for more information concerning communication
register operations.

The system resource structure for ring 0 is managed differently
than a process stack resource structure in ring 4. Whenever a
thread either crosses a ring or faults {(in any ring), the virtual
address of the communication register contained in address
0000 0048 of page 0 (of the ring being entered) is read. Ring 0 is
for faults, interrupts, and system exceptions.

This communication register contains the base address and stack
index to a list of available stack pointers located in memory.

These stack pointers point to system stacks used for cross ring
calls and returns, and for saving and restoring context blocks.

Figure 28 shows the base address and index of the system
resource structure contained in this communication register.

Figure 28 System resource structure

Base address [ndex
63 32 31 0

AH300027
11/10/93
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Figure 29 shows how a stack is allocated and deallocated from
the system resource structure.

Figure 29 Accessing the system resource structure for multiprocessing C-Series CPUs
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AH300028
11/10/93

After the address of the communication register is read, the
communication register shown in Figure 28 and Figure 29 must
be successfully received. If this register cannot be received
immediately, the receive operation retries until the register is
successfully received.

The 64-bit data portion of this register is subdivided into two
wortds. The most-significant word is the base address which
contains the virtual memory address of a list of stack pointers for
available stacks. The least-significant word is the stack index
which is the byte offset from the virtual address of the next
available stack pointer plus 4.

When a stack is allocated from the list, the stack pointer is
fetched by decrementing the stack index by 4 and the contents
(base address + decremented index) are read. The decremented
value of the index is sent back to the communication register,
making the system resource structure available for access by
other threads.
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When the thread eventually exits ring 0 via the rtn or rtnc
instructions, the stack is returned to the structure in the following
sequence:

1. Address 0000 0048 in page 0is read to fetch the
communication register address that must subsequently be
received.

2. The stack pointer to be returned is written to memory at
address (base address + index).

3. The index is incremented by 4 to reflect the stack pointer
being “pushed” onto the structure.

4. The incremented value is sent back to the communication
registers, making the structure available for access by other
threads.
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| Virtual memory The address space of the C-Series architecture is implemented as

' manag ement a virtual address space. Since the virtual address space normally
spans a larger range of memory addresses than the physical
address space, a virtual address may not be associated with a
valid physical address at any given time. Therefore, the
referenced data may or may not be in physical memory.

Virtual-to-physical address translation is performed by the

i Address Translation Unit (ATU). The ATU accelerates the

; translation of virtual addresses to physical memory by an
internal address cache. The ATU is described in
“Virtual-to-physical address translation” section on page 110.

The C-Series architecture manages this type of memory structure
by implementing the following memory management
mechanisms and structures:

* Segment—A virtual-address contiguous 512-Mbyte block of
MEmory-

¢ Segment descriptor register (SDR)—A 32-bit register
containing information necessary to begin translating a
virtual address offset to an address in physical memory.

* Ring of execution—Corresponds to a memory segment or
range of segments with respect to the virtual address space of
a process.

» Page—A contiguous 4-Kbyte block of memory that is both
virtual-address and physical-address contiguous. ’

¢ Page frame—A page stored in physical memory.

+ Page frame base—The beginning address (zero based} of a
page in memory.

¢ Page table—A table that contains 4-byte entries called page
table entries (PTEs). It begins on an integral page boundary
and is contained in one page frame or less.

+ Page table entry (PTE)—One of several 32-bit entries
containing information necessary to translate a virtual
address to a physical address. Other status bits within a PTE
determine if a page is resident in physical memory and
determine the validity of the memory reference from a
protection viewpoint. A PTE is aligned on an integral word
boundary. Refer to “Page table entries” section on page 101.

* Referenced bit—A bit associated with a page frame that
indicates a valid read or write has occurred. Referenced bits
are discussed in the “Referenced and modified bits” sectionin
Chapter 7.
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* Modified bit—A bit associated with a page frame that
i indicates a valid write has occurred. Modified bits are

} discussed in the “Referenced and modified bits” section in
| Chapter 7.
|

i

* Address translation unit (ATU)—A programmer- invisible
address cache that is maintained in hardware. The ATU
contains the most recently used virtual-to-physical address
translations.

Although the entire virfual address space is always available to
a user process, much less physical memory may be installed in
the processor, and even less memory may be available to a given
process. Consequently, the CPU contains an address translation
mechanism that dynamically maps the virtual memory pages of
a process onto physical memory page frames during process
execution. This mechanism uses a hierarchical tree of lookup
tables to perform the required address translation.

Muitiprocessing extensions

The following subsections present the extensions added to the
C-Series architecture that deal with virtual memory
management. All of these architectural extensions are required
to support the ability to multiprocess, or run a process on two or
more CPUs simultaneously.

The extensions for multiprocessing CPU complexes add and
define the following memory management attributes:

* CPU—One central processing unit, consisting of a scalar and
vector subsystem.

¢ Complex—The entire set of one or more CPUsina
configuration.

* Subcomplex—Any subset of a complex.

i » Process—A collection of instruction streams within a single
| virtual address space, that is, sharing the same SDRs.

= Thread—Any single instruction stream executing within a
process. .

i As previously defined, a process is a collection of one or more
threads. A supercomputer with more than one CPU in a complex
could have a process executing on the entire complex, with one

; thread executing on each CPU.
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Each CPU contains two registers which help define the memory
management scheme for threads:

* Communication index register

The communications index register (CIR) defines which set
of the communication registers is being used by the process
executing on a CPU. Each CPU has one CIR. The working
relationship of processes, CIRs, and the communication
registers is described in the “Communication registers”
section in Chapter 5.

The CIR defines which segment descriptor registers (SDRs)
are in use by a processor, since the SDRs reside in the
communication registers.

The C3200 Series complexes implement a CIR as a 3-bit
register field, allowing eight different index values to be
represented. A 3-bit CIR does not limit a C3200 Series
complex to only eight processes, but allows a maximum of
eight processes to be loaded in the communication registers
at one time.

The C3400/C3800/C4600 Series complexes implementa CIR
as a 5-bit register field, allowing 32 different index values to
be represented. A 5-bit CIR does not limit a
(C3400/C3800/C4600 Series complex to only 32 processes,
but allows a maximum of 32 processes to be loaded in the
communication registers simultaneously.

¢ Thread identifier register

The C3200/C3400/C3800 Series complexes use a 5-bit
thread identifier register (TID) register to subdivide a
process into disjointed threads. Up to 32 threads may existin
the same process, thatis, have the same CIR. The TID makes
the threads unique. The TID is primarily used for
implementing unshared memory in the multiprocessing
implementation.

The C4600 Series complexes use a 5-bit TID register, butonly
three bits (<bits2..0>) are supported. Bits <4..3> are ignored.
Therefore, only eight threads can exist in the C4600 Series
complexes.

The manner in which a processor becomes a particular TID is
described in the “Multithreaded execution” sectionin
Chapter 5.
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Shared and unshared memory

As stated earliex, a process is a collection of up to 32 threads. A
process can view each page of virtual memory as either shared or
unshared.

Shared memory means that more than one thread may use the
same virtual address to access the same physical locat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>