-
a

Burrough's

XE 500
CENTIX™

Operations
Reference
Manual

Volume 3: System =
Operations, Part 1

Relative To Release Level 6.0 Distribution Code SA
Priced Item Printed in U S America
November 1986 1192192

W

urroughs

XE 500
CENTIX™

Operations
Reference
Manual

Copyright © 1986, Burroughs Corporation, Detroit, Michigan 48232

TMTrademark of Burroughs Corporation

Volume 3: System
Operations, Part 1

Relative To Release Level 6.0 Distribution Code SA
Priced ltem Printed in U S America
November 1986 1192192

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any
product and related material disclosed herein are only furnished pursuant and subject
to the terms and conditions of a duly executed Program Product License or Agree-
ment to purchase or lease equipment. The only warranties made by Burroughs, if any,
with respect to the products described in this document are set forth in such License
or Agreement. Burroughs cannot accept any financial or other responsibility that may
be the result of your use of the information or software material, including direct,
indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software
material complies with the laws, and regulations of the jurisdictions with respect to
which it is used.

The information contained herein is subject to change without notice. Revisions may
be issued to advise of such changes and/or additions.

Correspondence regarding this publication should be forwarded, using the Product
Improvement Card at the back of this manual, or remarks may be addressed directly
to Burroughs Corporation, Corporate Product Information East, 209 W. Lancaster
Ave., Pacli, PA 19301, US.A.

About This Manual

Purpose

The purpose of the XE 500 CENTIX Operations Reference
Manual is to provide a comprehensive reference for the
XE 500 CENTIX operating system.

Scope

This manual describes the commands, system calls, libraries,
data files, and device interfaces that make up the CENTIX
Operating System running on the XE 500 computer.

Audience

Volumes 1 and 2 of this manual are intended for all users of
the CENTIX operating system. CENTIX system programmers
are the primary audience for Volumes 3 and 4.

Prerequisites

General users of the CENTIX system should be familiar with
the particular environments in which they will be working. A
section called Getting Started, preceding the Shell Command
descriptions in Volumes 1 and 2, provides a generic CENTIX
tutorial.

Programmers should have an understanding of the CENTIX
operating system structure and should be experienced at
writing programs in the C programming language.

1192192

vi About This Manual

How to Use This Manual

Use this manual as a starting point to find the documentation
for a CENTIX feature with which you are unfamiliar. To find
the entry you need, refer to the following:

o Permuted Index. This indexes each significant word in each
entry’s description. A complete Permuted Index for the
whole manual is in each volume. :

o Contents Listing. Included in the Contents Listing is an
alphabetical list of entries, under the appropriate sections,
together with the entry descriptions. Each volume contains
the Contents Listing.

o Related Shell Command Entries. This section, for Volumes
1 and 2 only, groups together related shell command
entries that are in Section 1.

Organization
This manual consists of six sections:

Section 1, Shell Commands, describes programs that are
intended to be invoked directly by the user through the
CENTIX System shell.

Section 2, System Calls, describes the entries into the
CENTIX kernel, including the C language interfaces.

Section 3, Library Functions, describes the available
library functions and subroutines.

Section 4, Special File Formats, documents the structure
of particular kinds of files.

Section 5, Miscellaneous Facilities, includes descriptions
of macro packages, character set tables, and so on.

Section 6, Device Files, describes various device files
that refer to specific hardware peripherals and CENTIX
System device drivers.

About This Manual vii

Related Product Information

XE 500 CENTIX Administration Guide

XE 500 CENTIX centrEASE Operations Reference Manual

XE 500 CENTIX C Language Programming Reference Manual
XF 500 CENTIX Programming Guide

XE 500 CENTIX Operations Guide

1192192

ix

Contents

Volume 1: Shell Operations, Part 1

Section 1: Shell Commands

intro
accept
adb
admin
allre
apnum
ar

as

at, batch
awk
banner
basename
batch

be
hcheckre
becopy
hdiff

bfs

bre

cal
calendar
cancel
cat

ch

3

cd

cde

1192192

introduction to shell commands
allow LP requests

absolute debugger

create and administer SCCS files
system initialization shell script

print Application Processor number

1-1

archive and library maintainer for portable object code archives

mc68010 assembler

execute commands at a later time
pattern scanning and processing language
make posters

deliver portions of path names

execute commands at a later time
high-precision arithmetic language

system initialization shell script
interactive block copy

big diff

big file scanner

system initialization shell script

print calendar

reminder service

cancel requests to an LP line printer
concatenate and print files

C program beautifier

C compiler

change working directory

change the delta commentary of an SCCS delta

X

Contents

centreCAP
centreWINDOW
cflow
chgrp
chmod
chown
chroot
clear
clri
emp
col
comb
comm
conre
console
convert
cp

cpio
cpp
cpset
cron
crontab
crup
esplit
ct
ctrace
cu

cut
cxref
date

de

function key shell for unskilled users
window management

generate C flow graph

change group

change mode

change owner

change root directory for a command

clear terminal screen

clear inode

compare two files

filter reverse line-feeds

combine SCCS deltas

select or reject lines common to two sorted files
system initialization shell script

control Application Processor pseudoconsole
convert object and archive files to common formats
copy files

copy file archives in and out

the C language preprocessor

install object files in hinary directories
clock daemon

user crontab file

create file system partition

context split

spawn getty to a remote terminal

C program debugger

call another computer system

cut out selected fields of each line of a file
generate C program cross reference

print and set the date

desk calculator

Contents

deopy copy file systems for optimal access time
dd convert and copy a file

delta make a delta {change) to an SCCS file
devnm device name

df report number of free disk blocks

diff differential file comparator

diff3 3-way differential file comparison
dircmp directory comparison

dirname deliver portions of path names

disable disable LP printers

du summarize disk usage

dump dump selected parts of an object file
echo echo- arguments

ed, red text editor

edit text editor

egrep search a file for a pattern

enable enable LP printers

env set environment for command execution
ex, edit text editor

expr evaluate arguments as an expression
factor factor a number

false false

it list file names and statistics for a file system
fgrep search a file for a pattern

file determine file type

fine fast incremental backup

find find files

fold fold long lines for finite width output device
fpsar File Processor system activity reporter
frec recover files from a backup tape

1192192

Xii

Contents

fsck
fsdb
fwtmp
get
getopt
getty
grep
grpek
gtdl
halt
hd
head
help
hyphen
icode
id

init
install
iperm
ipcs
join
keystate
kill
kiliall
labelit
Id

lex
line
link

lint

file system consistency check and interactive repair
file system debugger

manipulate connect accounting records

get a version of an SCCS file

parse command options

set terminal type, modes, speed, and line discipline
search a file for a pattern

group file checker

RS-232-C terminal download

terminate all processing

hexadecimal and ASCIl file dump

give first few lines

ask for help for SCCS commands

find hyphenated words

process control initialization

print user and group IDs and names

process control initialization

install commands

femove a message queue, semaphore set or shared memory id

report inter-process communication facilities status
relational database operator

print XE 550 front panel keyswitch setting
terminate a process

kill all active processes

file system label checking

link editor for common object files

generate programs for simple lexical tasks

read one line

exercise fink and unlink system calls

a C program checker

Contents

Xiii
In link files
Iogfn sign on
logname get login name
lorder find ordering relation for an object library
Ip send requests to an LP line printer
Ipadmin configure the LP spooling system
Ipmove move LP requests
Ipr line printer spooler
Ipsched start the LP request scheduler
Ipset set parallel line printer options
Ipshut stop the LP request scheduler
Ipstat print LP status information
Is list contents of directories
Volume 2: Shell Operations, Part 2
Section 1: Shell Commands (Cont.) 1-283
mé macro processor
machid mc68k, pdp11, u3b, vax, iAPX286 - processor type
mail- send or read mail
make maintain, update, and regenerate groups of programs
mesg permit or deny messages
mkboot reformat CENTIX kernel and copy it to BTOS
mkdir make a directory
mkfs construct a file system
mklost+found make a lost+found directory for fsck
mknod build special file
more text perusal
mount mount and dismount file system
mv move files
mvdir move a directory

1192192

Xiv Contents
mvtpy move PT/GT local printer device files
ncheck generate names from i-numbers

newform change the format of a text file

newgrp log in to a new group

news print news items

nice run a command at low priority

nl line numbering filter

nm print name list of common object file

nohup run a command immune to hangups and quits
od octal dump

ofcli command line interpreter for interactive BTOS JCL
ofcopy copy to or from the BTOS file system

ofed edit BTOS files

ofls list BTOS files and directories

ofvi edit BTOS files

pack compress and expand files

page text perusal

passwd change login password

paste merge same lines of several files or subsequent lines of one file
path locate executable file for command

pbuf print the kernel print buffer

perc describe BTOS error return code (erc)

Py file perusal filter for soft-copy terminals
pmon display statistics for an Application Processor
pr print files

prfde operating system profiler

prld operating system profiler

pripr . operating system profiler

prfsnap operating system profiler

pristat operating system profiler

Contents

Xv

prof
profiler
prs

ps
pstat
ptdl
ptx
pwek
pwd

rc

red
regcmp
reject
renice

m

sar
sarpkg
scesdiff
seript
sdh
sdiff

1192192

display profile data

operating system profiler

print an SCCS file

report process status

ICC statistics for processor

RS-232-C terminal download
permuted index

password file checker

working directory name

system initialization shell script
restricted version text editor

regular expression compiler

prevent LP requests

alter priority of running process by changing nice
remove files

remove a defta from an SCCS file
remove directories

shell, restricted command programming language
system activity reporter

system activity reporter

print current SCCS file editing activity
system activity reporter

disk access profiler

system activity graph

system activity reporter

system activity report package
compare two versions of an SCCS file
make typescript of terminal session
symbolic debugger

side-by-side difference program

xvi Contents

sed stream editor

setmnt establish mount table

setuname set name of system

sh shell, the standard/restricted command programming language
shutdown terminate all processing

size print section sizes of common object files

sleep suspend execution for an interval

sort sort and/or merge files

spawn execute a process on a specific Application Processor
spawnsry service spawn execution requests

spell hashmake, spellin, hashcheck - find spelling errors

split split a file into pieces

strip strip symbol and line number information from a common object file
stty set the options for a terminal

su become super-user or another user

sum print checksum and block count of a file

sync update the super block

tabs set tabs on a terminal

tail deliver the last part of a file

tar tape file archiver

tdl RS-232-C terminal download

tee pipe fitting

telinit process control initialization

test condition evaluation command

tic terminfo compiler

tide display decompiled version of terminfo entry

time time a command

timex time a command; report process data and system activity
touch update access and modification times of a file

tput query terminfo data base

Contents

Xxvii

tr

true
tset
tsort
tty
umask
umount
uname
unget
uniq
units
update
uuclean
uucp
uulog
uuname
uupick
uustat
uusub
uuto
uux

val

ve

vi

view
volcopy
wait
wall
we

what

1192192

translate characters

provide truth values

set terminal, terminal interface, and terminal environment
topological sort

get the terminal’s name

set file-creation mode mask

dismount file system

print name of system

undo a previous get of an SCCS file

report repeated lines in a file

conversion program

provide disk synchronization

uucp spool directory clean-up

copy files between computer systems

query a summary log of uucp and uux transactions
list uucp names of known systems

accept or reject files transmitted by uuto

uucp status inquiry and job control

monitor uucp netwerk

public computer system-to-computer system file copy
computer system to computer system command execution
validate SCCS file

version control

screen-oriented (visual) display editor

visual editor

copy file systems with label checking

await completion of process

write to all users

word count

identify SCCS files

xviii Contents
who who is on the system

whodo who is doing what

wm window management

write write to another user

wtmpfix manipulate connect accounting records

xargs construct argument list(s) and execute command

yacc yet another compiler-compiler

Volume 3: System Operations, Part 1

Section2: SystemCalls

intro

access

acct

alarm

brk

chdir

chmod

chown

chroot

close

creat

dup
exAllocExch
exCall
exchanges
exCheck
exCnxSendOnDealloc
exCpRequest
exCpResponse

exDeallocExch

introduction to system calls and error nubmers
determines the accessibility of a file

enable or disable process accounting

set a process alarm clock

change data segment spaced allocation
changes the current working directory
change mode of file

changes the owner and/or group of a file
change the root directory

close a file descriptor

create a new file or rewrite an existing one
duplicate an open file descriptor

allocate exchange

send a request and wait for the response
obtain and abandon exchanges

examine an ICC message queue

make final requests

remove a request from an exchange

remove a response from an exchange

deallocate exchange

211

Contents

Xix

exDiscard
exec

exec)
execle
execlp
execv
execve
execvp
exfinal
exit
exReject
exRequest
exRespond
exSendOnDealloc
exServeRq
exWait
fentl

fork

tstat
getegid
geteuid
getgid
getpgrp
getpid
getppid
getuid

ioctl
kill
link
locking

1192192

remove a response from an exchange
execute files

execute files

execute a file

execute a file

execute a file

execute a file

execute a file

make final requests

terminate process

remove a request from an exchange
send a message to a server

send a message to a client

make final requests

appropriate a request code

examine an ICC message queue

file control

create a new process

get file status

get effective group 1D

get effective user 1D

get real group 1D

get process group 1D

get process, process group, and parent process IDs
get parent process ID

get real user, effective user, real group, and effective
group 1Ds

control device
send a signal to a process or a group of processes
link to a file

exclusive access to regions of a file

XX Contents
Iseek move read/write file pointer

mknad makes a directory, or a special or ordinary file
mount mount a file system

msget! message control operations

msgget get message queue

msgop message operations

nice change priority of a process

open open a file for reading or writing
pause suspend process until signal

pipe create an interprocess channel

plock lock process, text, or data in memory
profil execution time profile

ptrace process trace

read read from a file

shrk change data segment space allocation
semctl semaphore control opeations

semget get set of semaphores

semop semaphore operations

setgid get group ID

setpgrp set process group 1D

setuid set user ID

shmetl shared memory control operations
shmget get shared memory segment

shmop shared memory operations

signal specify what to do upon receipt of a signal
stat get file status

stime set time

swrite synchronous write on a file

sync update super-block

syslocal special system requests

Contents

time
times
ulimit
umask
umount
uname
unlink
ustat
utime
wait

write

Section 3:

intro
ab4l
abort
abs
assert
atof
Bessel
bsearch
clock
conv
crypt
ctermid
ctime
ctype
curses
cuserid
dial

1192192

get time

get process and child process times

get and set user limits

set and get the file creation mask

unmount a file system

get name of current CENTIX system

remove directory entry

get file system statistics

set file access and modification times

wait for a child process to stop or terminate

write on a file

Library Functionst

introduction to libraries and subroutines
convert between long integer and base-64 ASCI string
generate an 10T fault

return integer absolute value

verify program assertion 7
convert ASCII string to floating-point number
Besse! functions

binary search a sorted table

report CPU time used

translate characters

generate DES encryption

generate file name for terminal

convert date and time to string

classify characters

CRT screen handling and optimization package
get character login name of the user

establish and release an out-going terminal line connection

XXii Contents
drand48 generate uniformly distributed pseudo-random numbers
ecvt convert floating-point number to string

end last locations in programs

erf error function and complementary error function
exp exponential, logarithm, power, square root functions
fclose tlose or flush a stream

ferror stream status inquiries

floor floor, ceiling, remainder, absolute value functions
fopen open a stream

fread binary input/output

frexp manipulate parts of floating-point numbers

fseek reposition a file pointer in a stream

ftw walk a file tree

gamma log gamma function

getc get character or word from a stream

getcwd get the path-name of the current working directory
geteny return value for environment name

getgrent get group file entry

getlogin get login name

getopt get option letter from argument vector

getpass read a password

getpw get name from UID

getpwent get password file entry

gets get a string from a stream

getut access utmp file entry

hsearch manage hash search tables

hypot Euclidean distance function

13tol convert between 3-byte integers and long integers
Idahread read the archive header of a member of an archive file
Idclose close a common obiect file

Contents xxiii

Idfhread read the file header of a common object file

Idgetname retrieve symbol name for common object file symbol table entry

Idiread manipulate line number entries of a common object file function
. ldiseek seek to line number entries of a section of a common object file

Idohseek seek to the optional file header of a common object file

Idopen open a common object file for reading

Idrseek seek to relocation entries of a section of a common object file

ldshread read an indexed/named section header of a common object file

ldsseek seek to an indexed/named section of a common object file

Idthindex compute the index of a symbol table entry of a common object file

ldthread read an indexed symbol table entry of a common object file

Idtbseek seek to the symbol tsble of a common object file

lockf record locking on files ‘

logname return login name of user

Isearch linear search and update

malloc (fast fast main memory allocator

version)

malloc main memory allocator

matherr error-handling function

memory memory operations

mktemp make a unique file-name

monitor prepare execution profile

nlist get entries from the name list

geurse optimized screen functions

ofCreate allocate BTOS files

ofDir BTOS directory functions

ofOpenFile access BTOS files

ofRead input/output on a BTOS file

ofRename rename a BTOS file

ofStatus BTOS file status

perror system error messages

1192192

XXiv Contents
popen initiate pipe to/from a process

printf print formatted output

putc put character or word on a stream

putenv change or add value to environment

putpwent write password file entry

puts put a string on a stream

gsort quicker sort

quAdd add a new entry to a BTOS queue

quRead examine BTOS queue

guRemove take back a BTOS queue request

rand simple random number generator

regcmp compile and execute regular expression

scanf convert formatted input

sethuf assign buffering to a stream

setjimp non-local goto

sinh hyperbslic functions

sleep suspend execution for interval

spawn execute a process on a specific Application Processor
sputi access long integer data in a machine-dependent fashion
spwait wait for a spawned process to terminate

ssignal software signals

stdio standard buffered input/output package

stdipc standard interprocess communication package (ftok)
string string operations

strtod convert string to double-precision number

strtol convert string to integer

swah swap bytes

swapshort translate byte orders to Motorola/Intel

system issue a shell command

termcap terminal independent operations

Contents XXV

tmpfile create a temporary file

tmpnam create a name for a temporary file

trig trigonometric functions

tsearch manage binary search trees

ttyname find name of a terminal

ttyslot find the slot in the utmp file of the current user
ungetc push character back into input stream

vprintf print formatted output of a varargs argument list
wmgetid get window D

wmlayout get terminal’s window layout

wmop window management operations

wmsetid assaciate a file descriptor with a window

Volume 4: System Operations, Part 2

Section 4: Special File Formats 4-1
intro introduction to special file formats

a.out common assembler and link editor output
ar common archive file format

checklist list of file systems processed by fsck
core format of core image file

cpio format of cpio archive

dir format of directories

filehdr file header for common object file

fs format of file system

fspec format specification in text file

gettydefs speed and terminal settings used by getty
group group file

inittab script for the init file

inode format of an i-node

issue issue identification file

1182192

Xxvi Contents
Idfen common cbject file access routines

linenum line number entries in a common object file

master master device information table

mnttab mounted file system table

passwd password file

profile setting up an environment at login time

reloc reiocation information for a common object file
scesfile format of SCCS file

scnhdr section header for a comon object file

syms common object file symbol table format

term format of compiled term file

termcap terminal capability data base

terminfo terminal capability data base

utmp utmp and wtmp entry formats

Section 5: Miscellaneous Facilities 5-1
intro introduction to miscelfany

environ user environment

fontl file control options

math math functions and constants

modemcap smart modem capability data base

pilf performance improvement in large files and direct 1/0
prof profile within a function

regexp regular expression compile and match routines

stat data returned by stat system call

term conventional names for terminals

types primitive system data types

values machine-dependent values

varargs handle variable argument list

Contents

Section 6: DeviceFiles

intro intreduction to device files

console console terminal

dsk winchester, cartridge, and floppy disks
fp winchester, cartridge, and floppy disks
Ip parallel printer interface

mem core memory

mt interface for magnetic tape

null the null file

prf operating system profiler

termio general terminal interface

tp controlling terminal’s local RS-232 channels
tty controlling terminal interface

window window management primitives

1192192

XXix

Tables

11 ex Command Names and Abbreviations 1-1M
1-2 Determination of SCCS ldentification String 1-207
1-3 Identification Keywords and Their Values 1-209
1-4 SCCS Files Data Keywords 1-373
i-5 Octal Codes and Statuses 1-522
3-1 Library Functions 34
3-2 Curses Routines 3-39
3-3 Terminfo Level Routines 3-43
3-4 Termcap Compatibility Routines 3-44
3-5 Video Attributes 3-44
3-6 Curses Function Keys 3-45
3-7 Default Error Handling Procedures 3-136
3-8 BTOS File Status Codes 3-160
41 Standard Terminal Capabilities 4-65
4-2 Terminal Name Suffixes 4-76
4-3 Capnames and lLeodes 4-17
5-1 Errors and Meanings e 5-17
5-2 Terminal Names 5-24
6-1 Naming Conventions for Built-In Disk Drives 6-3
6-2 Naming Conventions for SMD Disk Drives 6-4
6-3 Naming Conventions for Tape Drives 6-6

1192192

Section 2 2-1
System Calls

intro

intro - introduction to system calls and error numbers

Format

#include <errno.h>

Description

This section describes all of the XE 500 CENTIX system
calls. System calls are functions that call the CENTIX kernel.
They are used to perform a variety of system-dependent
tasks, such as accessing files, opening pipes, and controlling
your CENTIX environment. System calls are handled in a way
similar to C language library functions (see Section 3),
although they are accessible from other languages, as well.

Most system calls have one or more error returns. An error
condition is indicated by an otherwise impossible return
value, which is almost always -1; the individual descriptions
specify the details. An error number is also made available in
the external variable erro (see perror in Section 3). errno is not
cleared on successful calls, so it should be tested only after
an error has been indicated.

Each system call description attempts to list all possible error
numbers. The following is a complete list of the error
numbers and their names as defined in <errno.h>.

1 EPERM Not owner

Typically, this error indicates an attempt to modify a file in
some way forbidden except to its owner or the super-user.
It is also returned for attempts by ordinary users to do
things allowed only to the super-user.

1192192

2-2 System Calls

intro
2 ENOENT No such file or directory

This error occurs when a file name is specified and the file
should exist, but doesn't. It also occurs when one of the
directories in the path name does not exist.

3 ESRCH No such process

No process can be found corresponding to that specified
by pid in a kill.

4 EINTR Interrupted system call

An asynchronous signal (such as interrupt or quit), which
the user has chosen to catch, has occurred during a -
system call. If execution is resumed after the signal is
processed, it will appear as if the interrupted system call
returned this error condition.

5 EIO I/O error

Some physical I/0O error has occurred. This error may, in
some cases, occur on a call following the one to which it
actually applies.

6 ENXIO No such device or address

I/O on a special file refers to a subdevice that does not
exist, or beyond the limits of the device. It may also occur
when, for example, a tape-drive is not on—line or no disk
pack is loaded on a drive. On local terminals, it may
indicate that the host terminal lacks the specified channel.

7 E2BIG Arg list too long

An argument list longer than 10K bytes is presented to a
member of the exec family, or an item (such as a file) would
become too large.

8 ENOEXEC Exec format error

A request is made to execute a file that, although it has
the appropriate permissions, does not start with a valid
magic number (see a.out in Section 4).

System Calls 2-3

intro

9

10.

"

12

13

14

15

EBADF Bad file number

Either a file descriptor refers to an unopen file, or a read (or
write) request is made to a file that is only open for writing
(or reading).

ECHILD No child processes

A wait was executed by a process that had no existing or
unwaited-for child processes.

EAGAIN No more processes

A fork failed because the system’s process table is full or
the user is not allowed to create any more processes.

ENOMEM Not enough space

During an exec, brk, or sbrk, a program asks for more space
than the system is able to supply. The maximum allocation
is 3.5 megabytes; a program that gets this condition with
a smaller allocation may work at another time when other
large programs are not hogging the swap file. If this
problem recurs, the system administrator may want to
consider enlarging the swap file.

The error may also occur if the arrangement of text, data,
and stack segments requires too many segmentation
registers, or if there is not enough swap space during a fork.

EACCES Permission denied

An attempt was made to access a file in a way forbidden
by the protection system. From locking, an attempt was
made to do a checking lock on bytes already under a lock.

EFAULT Bad address

The system encountered a bad pointer in attempting to
use an argument of a system call.

ENOTBLK Block device required

A non-block file was mentioned where a block device was
required (such as in mount).

1192192

2-4 System Calls

intro

16

17

18

19

20

21

22

23

EBUSY Device or resource busy

An attempt was made to mount a device that was already
mounted, or an attempt was made to dismount a device
on which there is an active file (open file, current directory,
mounted-on file, active text segment). It will also occur if
an attempt is made to enable accounting when it is already
enabled. The device or resource is currently unavailable.

EEXIST File exists

An existing file was mentioned in an appropriate context,
such as link.

EXDEV Cross-device link
A link to a file on another device was attempted.
ENODEV No such device

An attempt was made to apply an inappropriate system
call to a device (for example, read a write-only device).

ENOTDIR Not a directory

A non-directory was specified where a directory is

required {for example, in a path prefix or as an argument to
chdir).

EISDIR Is a directory
An attempt was made to write on a directory.
EINVAL Invalid argument

Some invalid argument (such as dismounting a
non—mounted device, mentioning an undefined signal in
kill, reading or writing a file for which Iseek has generated a
negative pointer). Also set by the math functions
described in the math library functions in Section 3 of this
manual.

EINFILE File table overflow

The system table file is full, and temporarily no more opens
can be accepted.

System Calls 2-5

intro

24

25

26

27

28

29

30

3

32

EMFILE Too many open files

No process may have more than 20 file descriptors open
at a time.

ENOTTY Not a character device

An attempt was made to perform an ioctl call to a file that
is not a special character device.

ETXTBSY Text file busy

An attempt was made to execute a pure-procedure
program that is currently open for writing. Also, an
attempt to open for writing a pure-procedure program that
is being executed.

EFBIG File too large

The size of a file exceeded the maximum file size
{1,082,201,088 bytes).

ENOSPC No space left on device

During a write to an ordinary file, there is no free space
left on the device. This can occur in a PILF file when the
file system lacks unallocated clusters as big as the file's
cluster size. On tape files, it indicates a read past the end
of the tape.

ESPIPE lllegal seek
An Iseek was issued to a pipe.
EROFS Read-only file system

An attempt to modify a file or directory was made on a
device mounted read-only.

EMLINK Too many links

An attempt to make more than the maximum number of
links (1000) to a file.

EPIPE Broken pipe

A write on a pipe for which there is no process to read
the data. This condition normally generates a signal; the
error is returned if the signal is ignored.

1192192

2-6 System Calls

intro

33

34

35

36

37
38
39
40
a1
42
43
44
50

51

EDOM Math argument

The argument of a function in the math package (see intro
to Section 3) is out of the domain of the function.

ERANGE Result too large

The value of a function in the math package (see intro to
Section 3) is not representable within machine precision.

ENOMSG No message of desired type

An attempt was made to receive a message of a type that
does not exist on the specified message queue.

EIDRM ldentifier removed

This error is returned to processes that resume execution
due to the removal of an identifier from the file system’s
name space.

ECHRNG Channel number out of range.
EL2NSYNC Level 2 not synchronized.
EL3HLT Level 3 halted.

EL3RST Level 3 reset.

ELNRNG Link number out of range.
EUNATCH Protocol driver not attached.
ENOCSI No CSI structure available.
EL2HLT level 2 halt.

EBADE Invalid exchange

Use of an invalid Inter-CPU Communication exchange
descriptor.

EBADR Invalid request descriptor

Use of an invalid Inter-CPU Communication request
descriptor.

System Calls 2-1

intro
52 EXFULL Exchange full

An Inter-CPU Communication request failed because an
exchange is full. The exchange might be the request’s
response exchange or the service exchange.

53 ENOANO No anode

The Application Processor has as many files open as it can
handle.

54 EBADRQC Invalid request code

No CENTIX or BTOS process is servicing the specified
request code.

56 EDEADLOCK Deadlock error

Call cannot be honored because of potential deadlock or
because lock table is full. See locking.

Definitions

The following definitions describe terms that are used
frequently throughout the system call and library function
documentation.

Directory

Directory entries are called links. By convention, a directory
contains at least two links, . and .., referred to as “dot” and
“dot-dot.” “Dot” refers to the directory itself and “dot-dot”
refers to its parent directory.

Effective User ID and Effective Group ID

An active process has an effective user ID and an effective

group ID that are used to determine file access permissions
(see below). The effective user ID and effective group ID are
equal to the process'’s real user ID and real group ID, unless
the process or one of its ancestors evolved from a file that

had the set—user—ID bit or set-group-ID bit set; see exec.

1192182

2-8

System Calls

intro

File

Access Permissions

Read, write, and execute/search permissions on a file are
granted to a process if one or more of the following are true:

File

The effective user ID of the process is super-user.

The effective user ID of the process matches the user ID
of the owner of the file and the appropriate access bit of
the “owner” portion (0700) of the file mode is set.

The effective user ID of the process does not match the
user ID of the owner of the file, and the effective group
ID of the process matches the group of the file and the
appropriate access bit of the “group” portion (070) of the
file mode is set.

The effective user ID of the process does not match the
user ID of the owner of the file, and the effective group
ID of the process does not match the group ID of the file,
and the appropriate access bit of the “other” portion (07)
of the file mode is set.

Descriptor

A file descriptor is a small integer used to do 1/O on a file.
The value of a file descriptor is from O to 19. A process may
have no more than 20 file descriptors (0-19) open
simultaneously. A file descriptor is returned by system calls
such as open or pipe. The file descriptor is used as an
argument by calls such as read, write, ioctl, and close.

System Calls 2-9

intro

File Name

Names consisting of 1 to 14 characters may be used to
name an ordinary file, special file, or directory. These
characters may be selected from the set of all character
values excluding \O (null) and the ASCII code for / (slash).
Note that it is generally unwise to use *, ?, [, or] as part of
file names because of the special meaning attached to these
characters by the shell (see sh in Section 1). Although
permitted, avoid the use of unprintable characters in file names.

Message Queue Identifier

A message queue identifier (msgid) is a unique positive
integer created by an msgget system call. Each msqid has a
message queue and a data structure associated with it. The
data structure is referred to as msgid_ds and contains the
following members:

struct msqid_ds {

struct ipc_perm msg_perm; /*operation permiss. struct’/
ushort msg_qnum; /*number of msgs on q°/
ushort msg_qbytes; /*max number of bytes on q*/
ushort msg_lspid; /*pid of last msgsnd oper."*/
ushort msg_Jlrpid; /*pid of last msgrcv oper.*/
time_t msg_stime; /*last msgsnd time*/

time_t msg_rtime; /*tast msgrcv time*/

time_t msg_ctime; /*last change time"/

/*Times measured in seconds” /
[*since 00:00:00 GMT, 1/1/70°/

}

Msg_perm is an ipc_perm structure that specifies the
message operation (see below). This structure includes the
following members:

struct msg_perm {

ushort cuid; /*creator user ID*/
ushort «cgid: /*creator group ID*/
ushort wuid; /*user D/

ushort gid; /*group 1D/

ushort mode; /*r/w permission®/

1192182

2-10 System Calls

intro

Msg_gnum is the number of messages currently on the
queue. Msg_gbytes is the maximum number of bytes allowed
on the queue. Msg_Ispid is the process ID of the last process
that performed an msgsnd operation. Msg_lrpid is the
process ID of the last process that performed an msgrev
operation. Msg_stime is the time of the last msgsnd operation,
msg_rtime is the time of the last msgrev operation, and
msg.ctime is the time of the last msgetl operation that
changed a member of the above structure.

Message Queue Operation Permissions

In the msgop and msgetl system call descriptions, the
permission required for an operation is given as “{token},”
where “token” is the type of permission needed, interpreted
as follows:

00400 Read by user.
00200 Write by user.
00060 - Read, Write by group.
00006 Read, Write by others.

Read and Write permissions on a message queue identifier
are granted to a process if one or more of the following are true:

The effective user ID of the process is super-user

The effective user ID of the process matches
msg_perm.[cjuid in the data structure associated with
msqid and the appropriate bit of the “user” portion
(0600) of msg_perm.mode is set.

The effective user ID of the process does not match
msg_perm.[cjuid and the effective group ID of the process
matches msg_perm.([c]gid and the appropriate bit of the
“group” portion (060) of msg_perm.mode is set.

System Calls 2-11

intro

The effective user ID of the process does not match
msg_perm.[cjuid and the effective group ID of the process
does not match msg_perm.[c/gid and the appropriate bit
of the “other” portion (06) of msg_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Parent Process ID

A new process is created by a currently active process; see
fork. The parent process ID of a process is the process ID of
its creator.

Path Name and Path Prefix

A path name is a null-terminated character string starting
with an optional slash (/), followed by zero or more directory
names separated by slashes, optionally followed by a file name.

More precisely, a path name is a null-terminated character
string constructed as follows:

<path-name>::=<file-name> <path-prefix><file-name> /
<path-prefix>::m<rtprefix> J<rtprefix>
<rtprefix>::=<dirname>/ <rtprefix><dirname>/

where <file-name> is a string of 1 to 14 characters other
than the ASCII slash and null, and <dirname> is a string of 1
to 14 characters (other than the ASCIl slash and null) that
names a directory.

If a path name begins with a slash, the path search begins at
the root directory. A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is
treated as if it named a non-existent file.

1192192

212 System Calls

intro

Process Group ID

Each active process is a member of a process group that is’
identified by a positive integer called the tty group ID. This ID
is the process ID of the group leader. This grouping permits
the signaling of related processes; see kill. '

Process 1D

Each active process in the system is uniquely identified by a
positive integer called a process ID. The range of this ID is
from 1 to 30,000.

Real User 1D and Real Group ID

Each user allowed on the system is identified by a positive
integer called a real user ID. Each user is also a member of a
group. The group is identified by a positive integer called the
real group ID.

An active process has a real user ID and a real group ID that
are set to the real user ID and real group ID of the user
responsible for the creation of the process.

Root Directory and Current Working Directory

Each process has associated with it a concept of a root
directory and a current working directory for the purpose of
resolving path name searches. The root directory of a
process need not be the root directory of the root file system.

System Calls

2-13

intro

Semaphore Identifier

A semaphore identifier (semid) is a unique positive integer
created by a semget system call. Each semid has a set of
semaphores and a data structure associated with it. The data
structure is referred to as semid_ds and contains the
following members:

struct semid_ds {

struct

ushort
time_t
time_t

}

sem_nsems;
sem_otime;
sem_ctime;

ipc_perm sem_perm; |*operation permiss. struct*/

/*number of sems in set*/
/*last operation time*/
/*ltast change time*/

/*Times measured in seconds”*/

J*since 00:00:00 GMT, 1/1/70°]

Sem_perm is an ipc_perm structure that specifies the
semaphore operation permission (see below). This structure
includes the following members:

struct sem_perm

}

ushort
ushort
ushort
ushort
ushort

cuid;
cgid;
uid;
gid;
mode ;

{

/*creator user 1D/
/*creator group I1D*/
/*user 1D*/

[*group 1D/

]*r]a permission®/

The value of sem_nsems is equal to the number of
semaphores in the set. Each semaphore in the set is
referenced by a positive integer referred to as a sem_num.
Sem_num values run sequentially from O to the value of
sem_nsems minus 1. Sem_otime is the time of the last semop
operation, and sem._ctime is the time of the last semctl
operation that changed a member of the above structure.

11021072

2-14 System Calls

intro

A semaphore is a data structure that contains the following
members:

struct {

ushort semval: /*semaphore value*/

short sempid; /*pid of the last operation*/
ushort semncnt; /*# awaiting semval > cval*/
ushort semzcnt; /*# awaiting semval = 0*/

}

Semval is a non-negative integer. Sempid is equal to the
process ID of the last process that performed a semaphore
operation on this semaphore. Semncnt is a count of the
number of processes that are currently suspended awaiting
this semaphore’s semval to become greater than its current
value. Semzent is a count of the number of processes that
are currently suspended awaiting this semaphore’s semval to
become zero.

Semaphore Operation Permissions

In the semop and semctl system call descriptions, the
permission required for an operation is given as “{token},”
where “token” is the type of permission needed, interpreted
as follows:

00400 Read by user.
00200 Alter by user.
00060 Read, Alter by group.
00006 Read, Alter by others.

Read and Alter permissions on a semid are granted to a
process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches
sem_perm.[cluid in the data structure associated with
semid and the appropriate bit of the “user” portion
(0600) of sem_perm.mode is set.

System Calls 2-15

intro

The effective user ID of the process does not match
sem_perm.[cjuid and the effective group ID of the process
matches sem_perm.[c]gid and the appropriate bit of the
“group” portion (060) of sem_perm.mode is set.

The effective user ID of the process does not match
sem_perm.[cjuid and the effective group ID of the process
does not match sem_perm.[c]gid and the appropriate bit
of the “other” portion (06) of sem_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory ldentifier

A shared memory identifier (shmid) is a unique positive
integer created by a shmget system call. Each shmid has a
segment of memory (referred to as a shared memory
segment) and a data structure associated with it. The data
structure is referred to as shmid_ds and contains the
following members:

struct shmid_ds {

struct ipc_perm shm_perm; /*operation permiss. struct*/
int shm_segsz; /*size of segment*/

ushort shm_cpid; J"creator pid*/

ushort shm_ipid; /*pid of last operation®/
short shm_nattch; /*number of current attaches”’/
time__t shm_atime; /*last attach time*/

time_t shm_dtime; /*last detach time*/

time_t shm_ctime; /*last change time*/

[*Times measured in seconds”/
/*since 00:00:00 GMT, 1/1/70°%/
}

Shm_perm is an ipc_perm structure that specifies the shared
memory operation permission (see below). This structure
includes the following members:

struct shm_perm {

ushort cuid; /*cresator user iD*/
ushort cgid; /*creator group 1D°/
ushort uid; /*user 1D"/

ushort gid; j*group 1D*/

ushort mode; [*rlw permission®/

1192192

2-16 System Calls

intro

Shm_segsz specifies the size of the shared memory segment.
Shm_cpid is the process ID of the process that created the
shared memory identifier. Shm_pid is the process ID of the
last process that performed a shmop operation. Shm_nattch is
the number of processes that currently have this segment
attached. Shm_atime is the time of the last shmat operation,
shm_dtime is the time of the last shmdt operation, and
shm_ctime is the time of the last shmetl operation that
changed one of the members of the above structure.

Shared Memory Operation Permissions

In the shmop and shmetl system call descriptions, the
permission required for an operation is given “{token},”
where “token” is the type of permission needed, interpreted
as follows: :

00400 Read by user.
00200 Write by user.
00060 Read, Write by group.
00006 Read, Write by others.

Read and Write permissions on a shmid are granted to a
process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches
shm_perm.[cjuid in the data structure associated with
shmid and the appropriate bit of the “user” portion
(0600) of shm_perm.mode is set.

The effective user ID of the process does not match
shm_perm.[c]uid and the effective group ID of the process
matches shm_permj{cjgid and the appropriate bit of the
“group” portion (060) of shm_perm.mode is set.

System Calls 2-11

intro

The effective user ID of the process does not match
shm_perm.[cjuid and the effective group ID of the process
does not match shm_perm.[c]gid and the appropriate bit
of the “other” portion (06) of shm_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Special Processes

The processes with a process ID of O and a process ID of 1
are special processes and are referred to as procO and proc1.

ProcO is the scheduler. Proc1 is the initialization process (init).
Proc1 is the ancestor of every other process in the system
and is used to control the process structure.

Super-user

A process is recognized as a super-user process and is
granted special privileges if its effective user ID is O.

tty Group 1D

Each active process can be a member of a terminal group
that is identified by a positive integer called the tty group iD.
This grouping is used to terminate a group of related
processes upon termination of one of the processes in the
group (the group header); see exit.

See Also

apnum, devnm in Section 1; close, ioctl, open, pipe, read, write;
intro in Section 3.

1192192

2-18 . System Calls

access

access - determines the accessibility of a file

Format

int access (path, amode)
char ‘path;
int amode;

Description

Path points to a path name naming a file. access checks the
named file for accessibility according to the bit pattern
contained in amode. It uses the real user ID in place of the
effective user ID and the real group ID in place of the
effective group ID. The bit pattern contained in amode is
constructed as follows:

04 read

02 write

01 execute (search)

00 check existence of file

Access tothe file is denied if one or more of the following is true:

[ENOTDIR) A component of the path prefix is not a directory.

[ENOENT] Read, write, or execute (search) permission is requested for
a null path name.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[EROFS] Write access is requested for afileon a read-only file system.

System Calls 2-19

access

[ETXTBSY} Write access is requested for a pure procedure {shared
text) file that is being executed.

[EACCESS] Permission bits of the file mode do not permit the requested
access.

[EFAULT] Path points outside the allocated address space of the process.

The owner of a file has access permission checked with
respect to the owner read, write, and execute mode bits.
Other members of the file group have permission checked
with respect to the group mode bits. All others have
permission checked with respect to the other mode bits.

Returns

If the requested access is permitted, a value of O is returned.
Otherwise, a value of -1 is returned and errno is set to
indicate the error. ‘

See Also

chmod, stat.

11021072

2-20 System Calls

acct

Name
acct - enable or disable process accounting

Format

int acct (path)
char *path;

Description

The acet function is used to enable or disable the system
process accounting routine. If the routine is enabled, an
accounting record will be written on an accounting file for
each process that terminates. Terminations can be caused by
one of two things: an exit call or a signal; see exit and signal.
The effective user ID of the calling process must be
super-user to use this call.

Path points to a path name naming the accounting file. The
accounting file format is given in acet in Section 4.

The accounting routine is enabled if path is non-zero and no
errors occur during the system call. It is disabled if path is
zero and no errors occur during the system call.

The acct function will fail if one or more of the following are true:

[EPERM] The effective user of the calling process is not super-user.

[EBUSY] An attempt is being made to enable accounting when it is
already enabled.

[ENOTDIR) A component of the path prefix is not a directory.

[ENOENT] One or more components of the accounting file path name

do not exist.

System Calls

2-21

acct

[EACCES])
[EACCES]
[EACCES)
[EISDIR]
[EROFS}]
[EFAULT]

Returns

A component of the path prefix denies search permission.
The file named by path is not an ordinary file.

Mode permission is denied for the named accounting file.
The named file is a directory.

The named file resides on a read-only file system.

Path points to an illegal address.

Upon successful completion, a value of Ois returned.
Otherwise, a value of -1 is returned and ermo is set to

indicate the error.

See Also

exit, signal; acct in Section 4.

1182192

2-22 System Calls

alarm

alarm - set a process alarm clock

Format

unsigned atarm (sec)
unsigned sec;

Description

The alarm system call instructs the alarm clock of the calling
process to send the signal SIGALRM to the calling process
after the number of real time seconds specified by sec have
elapsed; see signal.

Alarm requests are not stacked; successive calls reset the
alarm clock of the calling process.

If sec is O, any previously made alarm request is canceled.

Returns

The alarm call returns the amount of time previously remaining
in the aiarm clock of the calling process.

See Also

pause, signal; sleep in Section 1.

System Calls 2-23

brk

Name

brk, shrk - change data segment space allocation

Format

int brk (endds)
char *endds;:

char *sbrk (incr)
int incr;

Description

The brk and shrk system calls are used to dynamically change
the amount of space allocated for the data segment of the
calling process (see exec). The change is made by resetting
the process’s break value and allocating the appropriate
amount of space. The break value is the address of the first
location beyond the end of the data segment. The amount of
allocated space increases as the break value increases. The
newly allocated space is set to zero.

brk sets the break value to endds and changes the allocated
space accordingly.

shrk adds incr bytes to the break value and changes the
allocated space accordingly. /ncr can be negative, in which
case the amount of allocated space is decreased.

brk and shrk will fail without making any change in the
allocated space if one or more of the following are true:

o Such a change would result in more space being allocated
than is allowed by a system-imposed maximum (see ulimit).
Note that due to a lack of swap space this may be less
than what ulimit reports. [ENOMEM|]

o Such a change would result in the break value being
greater than or equal to the start address of any attached
shared memory segment (see shmop).

1192182

2-24 System Calls
brk

Returns

Upon successful completion, brk returns a value of O and shrk
returns the old break value. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

See Also

exec.

System Calls 2-25

chdir

Name

chdir - changes the current working directory.

Format

int chdir (path)
char *path;

Description

Path points to a path name of a directory. The chdir system
call causes the named directory to become the current
working directory, the starting point of path searches for
path names not beginning with /.

chdir fails and the current working directory is not changed if
one or more of the following are true:

[ENOTDIR] A component of the path name is not a directory.

{ENOENT) The named directory does not exist.

{EACCES] Search permission is denied for any component of the path
name.

[EFAULT] Path points outside the allocated address space of the process.

Returns

Upon successful completion, a value of O is returned.
Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

See Also

chroot.

1192192

2-26 System Calls

chmod

chmed - change mode of file

Format

int chmod (path, mode)
char *path;
int mode;

Description

Path points to a path name naming a file. The chmod system
call sets the access permission portion of the named file
mode according to the bit pattern contained in mode.

Access permission bits are interpreted as follows:

04000 Set user 1D on execution.

02000 Set group !D on execution.

01000 Save text image after execution.

00400 Read by owner.

00200 Write by owner.

00100 Execute (or search if a directory) by owner.
00070 Read, write, execute (search) by group.
00007 Read, write, execute (search) by others.

The effective user of the process must be the file owner or
the super-user to change the mode of a file.

If the effective user of the process is not the super-user,
mode bit 01000 (save text image on execution) is cleared.

If the effective user of the process is not super-user and the
effective group ID of the process does not match the group
ID of the file, mode bit 02000 (set group ID on execution) is
cleared.

System Calls 2-21

chmod

If an executable file is prepared for sharing, then mode bit
01000 prevents the system from abandoning the
swap-space image of the program-text portion of the file
when its last user terminates. Thus, when the next user of
the file executes it, the text does not have to be read from
the file system. It can simply be swapped in, thus saving time.

chmed fails and the file mode is unchanged if one or more of
the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES} Search permission is denied on a component of the path prefix.

[EPERM] The effective user 1D does not match the owner of the file
and the effective user D is not super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Pathpoints outside the allocated address space of the process.

Returns

Upon successful completion, a value of O is returned.
Otherwise, a value of -1 is returned and erme is set to
indicate the error.

See Also

chown, mknod.

1192192

2-28 System Calls

chown

chown - changes the owner and/or group of a file.

Format

int chown (path, owner, group)
char ‘path;
int owner, group;

Description

Path points to a path name naming a file. The owner ID and
group ID of the named file are set to the numeric value
contained in owner and group, respectively.

Only processes with an effective user ID equal to the file
owner or the super-user may change the ownership of a file.

If chown is invoked by other than a super-user, the set-user-ID
and set-group-ID bits of the file mode, 04000 and 02000
respectively, will be cleared.

chown fails and the owner and group of the named file remain
unchanged if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.
[ENGENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path prefix.
[EPERM} The effective user ID does not match either the owner of

the file or the superuser.
[EROFS] . The named file resides on a read-only file system.
[EFAULT] Path points outside the allocated address space of the process.

System Calls 2-29

chown

Returns

Upon successful completion, a value of O is returned.
Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

See Also

chown in Section 1; chmod.

1192192

2-30 System Calls
chroot

chroot - change the root directory.

Format

int chroot (path)
char *path;

Description

Path points to a path name naming a directory. The chroot
system call causes the named directory to become the root
directory; the starting point of path searches for path names
beginning with /. The user’'s working directory is unaffected
by the chroot system call.

The effective user of the process must be the super-user to
change the root directory.

The .. entry in the root directory is interpreted to mean the
root directory itself. Thus, .. cannot be used to access files
outside the subtree rooted at the root directory.

chroot fails and the root directory remains unchanged if one or
more of the following are true:

[ENOTDIR) Any component of the path name is not a directory.
[ENOENT] The named directory does not exist
[EPERM] The effective user ID is not that of the super-user.

[EFAULT) Pathpoints outside the allocated address space of the process.

System Calls 2-31

chroot

Returns

Upon successful completion, a value of O is returned.
Otherwise, a value of -1 is returned and errno is set to
indicate the error.

See Also
chdir.

1192192

2-32 System Calls

close

close - close a file descriptor.

Format

Int close (fildes)
int fildes;

Description

Fildes is a file descriptor obtained from a creat, open, dup, fentl,
or pipe system call. The close system call closes the file
descriptor indicated by fildes.

close fails if fildes is not a valid open file descriptor. [EBADF]

Returns

Upon successful completion, a value of O is returned.
Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

See Also

creat, dup, exec, fcntl, open, pipe.

System Calls 2-33

creat

Name

creat - create a new file or rewrite an existing one.

Format

int creat (path, mode)
char “path;
int mode;

Description

The creat system call creates a new ordinary file or prepares
to rewrite an existing file named by the path name indicated
by path.

If the file exists, its length is truncated to O and the mode
and owner are unchanged; if a PILF file, the cluster size
exponent is also unchanged. Otherwise, the file’s owner IDis
set to the process's effective user ID, the file’s group ID is
set to the process’s effective group ID, and the low-order 12
bits of the file mode are set to the value of mode and
modified as follows:

o All bits set in the process’s file mode creation mask are
cleared. See umask.

o The “save text image after execution bit” of the mode is
cleared. See chmod.

The process's cluster size exponent determines the cluster
size of files created on PILF file systems. See syslocal.

Upon successful completion, the file descriptor, which is a
non—negative integer, is returned and the file is opened for
writing, even if the mode does not permit writing. The file
pointer is set to the beginning of the file. The file descriptor
is set to remain open across exec system calls. See fentl. No
process may have more than 20 files open simultaneously. A
new file may be created with a mode that forbids writing.

1192182

2-34

System Calls

creat

creat fails if one or more of the following are true:

{ENOTDIR]
[ENOENT]
[EACCES]
[ENDENT]
[EACCES]

[EROFS]
[ETXTBSY]

[EACCES]
[EISDIR]
[EMFILE]
[EFAULT]
[ENFILE]

Returns

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

Search permission is denied on a component of the path prefix.
The path name is null.

The file does not exist and the directory in which the file is
to be created does not permit writing.

The named file resides or would reside on a read-only file
system.

The file is a pure procedure (shared text) file that is being
executed.

The file exists and write permission is denied.

The named file is an existing directory.

Twenty file descriptors are currently open.

Pathpoints outside the allocated address space of the process.
The system file table is full.

Upon succesful completion, a non-negative integer, namely
the file descriptor, is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

See Also

chmod, close, dup, fentl, locking, Iseek, open, read, umask, write.

System Calls - 2-35

dup

Name

dup - duplicate an open file descriptor.

Format

int dup (fildes)
int fildes;

Description

Fildes is a file descriptor obtained from a creat, open, dup, fentl,
or pipe system call. The dup system call returns a new file
descriptor having the following in common with the original:

o Same open file (or pipe).

o Same file pointer (that is, both file descriptors share one
file pointer).

o Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec
systems calls. See fentl.

The file descriptor returned is the lowest one available.

dup fails if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.
[EMFILE] 20 file descriptors are currently open.
Returns

Upon successful completion, a non-negative integer, namely
the file descriptor, is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

See Also

creat, close, exec, fentl, open, pipe.

1192192

2-36

System Calls

exAllocExch

Name

exAllocExch - allocate exchange

Format

#include <exch.h>

unsigned char exAllocExch ();

Description
See Exchanges.

System Calls 2-31

exCall

exCall - send a request and wait for the response

Format

#include <exch.h>

exCall (reqgbl):
struct reqheader °reqbl;

Description

The exCall system call sends a request and waits for the
response. Regb/ must point to a request block that describes
the message. The request block has four parts: a request
header, control information, request PbCbs, and response
PbCbs.

The ICC user include file defines a request header in the
following way:

struct rqheader {
unsigned short r_sCntinfo;
unsigned char r_nReqPbCb;
unsigned char r_nRespPbCb;
unsigned short r_userNum;
unsigned short r_exchResp;
unsigned short r_ercRet;
unsigned short r_rqCode;

};

The client sets the following fields: r_sCntinfo (which must be
even), r-nReqPbCh, and r_nRespPbCb specify the size of the
rest of the request block; r_exchResp specifies where the
response must be sent; and r_rqCode specifies the
destination of the request. The kernel and server ignore any
values in r_userNum or r_ercRet. Each request code requires
specific values for r_sCntinfo, r_nReqPbCb, and r_nRespPbCb.

1192192

2-38 System Calls

exCall

The client uses the control information to send fixed-length
data fields to the server.

A PbCb has the following structure:

struct PbCb {
char *pc_offset;
unsigned short pc_count;

}i

The client uses Request PbCbs to send blocks of data to the
server. Each PbCb gives the location (pc_offset) and size
(pc—count) of a data block.

The client uses Response PbCbs to pass response data
areas (pc_offset) and maximum lengths (pc_count) to the
server and kernel. If the server ignores the restrictions, the
kernel right-truncates the offending fields.

The memory containing the variable-length fields need not
immediately follow the request block.

Returns

-1 indicates an error, with an error code in errno. See perror in
Section 3.

Cautions

If the service is provided by BTOS, integer data must have
Intel byte ordering. See shortswap in Section 3.

The lint shell command may complain that exCall argument
types are inconsistent, especially if the client uses more than
one kind of request block. To suppress these complaints,
cast the argument to its official type:

exCall((struct rgheader*) reqbl);
Use of this cast does not affect the object code.

System Calls 2-39

exCall

If an exCall is being used by a program that also traps signals,
users must beware when a -1 is returned with errno equal to
EINTR. In this case, the exCall has effectively done an
exRequest. The user must then do an exWait and an
exCpResponse (and correctly handle the interrupted exWait by
restarting it). Otherwise, your program will lose one of its
responses and will consume valuable kernel heap space to
hold the response until your program exits.

See Also
exchanges in the XE 500 CENTIX Programming Guide

1192192

2-40 System Calls

exchanges

Name

exAllocExch, exDeallocExch - obtain and abandon exchanges.

Format

#include <exch.h>
unsigned char exAllocExch ();

exDeallocExch (ex)
unsigned char ex;

Description

A process must own exchanges in order to receive
messages. Each exchange has an exchange descriptor, which
is unique to the owner of the exchange.

exAllocExch allocates a new exchange and returns its exchange
descriptor. The calling process can use this exchange to
receive both requests and responses.

exDeallocExch deallocates the specified exchange. Any
requests still waiting or on their way to the exchange are
rejected with a return code of OxFF. Any responses still
waiting or on their way to the exchange are discarded.

A process’s death deallocates all its exchanges, but an exec
has no effect on exchanges.

Returns

-1 indicates error, with an error code in ermo. See perror in
Section 3.

System Calls 2-41

exCheck

Name

exCheck - examine an ICC message queue

Format

#include <exch.h>

exCheck (ex, mstat);

unsigned char ex;

struct msgret °"mstat;
Description

See exWait.

1192192

2-42

System Calls

exCnxSendOnDealloc

exCnxSendOnDealloc - make final requests

Format

#include <exch.h>
exCnxSendOnDeal loc (req)

unsigned short regq;

Description
See exfinal.

System Calls 2-43

exCpRequest

exCpRequest, exReject - remove a request from an exchange.

Format

#include <exch.h>

exCpRequest (regdes, reqst)
unsigned short reqdes;
struct rqheader ‘regst;

exReject (reqdes, r_ercRet)
unsigned short reqdes;
unsigned short r_ercRet;

Description

The exCpRequest and exReject system calls both remove a
request from a server's exchange. A server that wants to
examine the request uses exCpRequest; a server that has no
interest in the message’s contents uses exReject.

exCpRequest copies the message indicated by the request
descriptor, reqdes. The kernel places the request block and
request data blocks together at the location pointed to by
regst. Regst must be an even address; each data block
appears at an even address. (The amount of memory the
message requires is returned by a check on the message
queue; see exWait.) The kernel sets the request PbCbs to
point to the server’s copies of the data blocks.

exReject discards the contents of the indicated message. It
sends the response, with the return code {m_ercRet in the
request block header) set to r_ercRet.

1192192

2-44 System Calls

exCpRequest

Returns

-1 indicates error, with an error code in ermo. See perror in
Section 3.

Files
Jusr/include/exch.h - ICC user include file

System Calls 2-45

exCpResponse

exCpResponse, exDiscard - remove a response from an
exchange.

Format

#include <exch.h>

exCpResponse (reqdes, regst)
unsigned short reqdes;
struct rqheader °regst;

exDiscard (reqdes)
unsigned short reqgdes;:

Description

The exCpResponse and exDiscard system calls both remove a
response from an exchange. A client that wants to examine
the response uses exCpResponse; a client that has no interest
in the message’s contents uses exDiscard.

exCpResponse copies the message indicated by the request
descriptor reqdes. The kernel uses the request block pointed
to by regst to place the parts of the response:

o The error code goes in the r_ercRet field of the request
block header.

o The kernel examines each response PbCb in the request
block. The pc_offset field should be set to the location
reserved for the data; pc_count should be set to the
number of bytes available at that location. If the server
provided more than pc_count bytes, the kernel
right-truncates the data to fit. The kernel overwrites
pc_count with the number of bytes actually transferred.

1192192

2-46 System Calls

exCpResponse

exDiscard discards the contents of the indicated message. It
returns the message’s return code field {m_ercRet in the
request block header).

Returns

-1 indicates error, with an error code in ermo. See perror in
Section 3.

Caution

If the service is provided by BTOS, integer data has Intel
byte ordering. See shortswap in Section 3.

Files

Jusr/include/exch.h - ICC user include file.

System Calls 2-41

exDeallocExch

exDeallocExch - deallocate exchange

Format

#include <exch.h>

exDeal locExch (ex)
unsigned char ex;

Description
See Exchanges.

1192192

2-48 System Calls

exDiscard

Name

exDiscard - remove a response from an exchange

Format

#include <exch.h>

exDiscard (reqdes)
unsigned short reqdes;

Description
See exCpResponse.

System Calls 2-49

exec

Name

execl, execv, execle, execve, execlp, execvp - execute files

Format
int exect (path, arg0, argt, ..., argn, 0)
char *path, *arg0, *argl, ..., *argn;

int execv (path, argv)
char *path, *argvil:

int execle (path, arg0, argt, ..., argn, 0, envp)
char *path, *arg0, *argt, *argn, *envpll;

int execve (path, argv, envp)

char *file, *arg0, *argl, ..., rargn;
int execlp (file, arg0, arg?, argn, 0)
char *file, *arg0, *argl, targn;

int execvp (file, argv)
char *file, *argvi]

Description

The exec system call in all its forms transforms the calling
process into a new process. The new process is constructed
from an ordinary, executable file called the new process file.
This file consists of a header (see a.out in Section 4), a text
segment, and a data segment. The data segment contains an
initialized portion and an uninitialized portion (bss). There can
be no return from a successful exec because the calling
process is overlaid by the new process.

1192192

2-50 ‘ System Calls

exec

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of
character pointers to the arguments themselves. As
indicated, argc is conventionally at least 1, and the first
member of the array points to a string containing the name
of the file.

Path points to a path name that identifies the new processfile.

File points to the new process file. The path prefix for this
file is obtained by a search of the directories passed as the
environment line “PATH=" (see environ in Section 5). The
environment is supplied by the shell (see sh in Section 1).

Arg0, arg1, ..., argn are pointers to null-terminated character
strings. These strings constitute the argument list available
to the new process. By convention, at least arg0 must be
present and point to a string that is the same as path (or its
last component).

Argv is an array of character pointers to null-terminated
strings. These strings constitute the argument list available
to the new process. By convention, argv must have at least
one member, and it must point to a string that is the same
as path (or its last component). Argv is terminated by a null
pointer.

Envp is an array of character pointers to null-terminated
strings. These strings constitute the environment for the new
process. £nvp is terminated by a null pointer. For execl and
execv, the C run-time start-off routine places a pointer to the
environment of the calling process in the global cell:

extern char **environ;

and is used to pass the environment of the calling process to
the new process.

System Calls 2-51

exec

File descriptors opened in the calling process remain open in
the new process, except for those whose close-on-exec flag
is set: see fentl. For those file descriptors that remain open,
the file pointer is unchanged.

Signals set to terminate the calling process are set to
terminate the new process. Signals set to be ignored by the
calling process are set to be ignored by the new process.
Signals set to be caught by the calling process are set to
terminate the new process. See signal.

If the set-user-ID mode bit of the new process file is set (see
chmod), exec sets the effective user ID of the new process
equal to the owner ID of the new process file. Similarly, if the
set—group-ID mode bit of the new process file is set, the
effective group ID of the new process is set t0 the group ID
of the new process file. The real user ID and real group ID of
the new process remain the same as those of the calling
process.

Profiling is disabled for the new process, see profil.

The new process also inherits the following attributes from
the calling process:

nice value (see nice)

process ID

parent process ID

process group ID

ICC exchanges, with unremoved messages addressed to
them

semadj values (see semop)

tty group ID (see exit and signal)

trace flag (see ptrace request O)

time left until an alarm clock signal (see alarm)
current working directory

root directory

file mode creation mask (see umask)

file size limit (see ulimit)

utime, stime, cutime, and cstime (see times)

PILF cluster size exponent for this process

1192192

2-52 System Calls

exec

An exec fails and returns to the calling process if one or more
of the following are true:

[ENOENT) One or more components of the new process file path name
do not exist.

[ENOTDIR] A component of the new process file path prefix is not a
directory.

[EACCES]) Search permission is denied for a directory listed in the new
process file path prefix.

[EACCES] The new process file is not an ordinary file.

[EACCES) The new process file mode denies execution permission.

[ENOEXEC) The exec is not an execlp or execvp, and the new

process file has the appropriate access permission but an
invalid magic number in its header.

[ETXTBSY] The new process file is a pure procedure (shared text) file
that is currently open for writing by some process.

[ENOMEM] The new process requires more memory than is allowed by
the system-imposed maximum MAXMEM.

[E2BIG} The number of bytes in the new process argument list is
greater than the system-imposed limit of 10,240 bytes.

{EFAULT] The new process file is not as long as indicated by the size
values in its header.

[EFAULT] path, argv, or envp peint to an illegal address.

Returns

If exec returns to the calling process, an error has occurred;
the return value will be -1 and errne will be set to indicate the
error.

See Also

sh in Section 1; alarm, exit, fork, nice, ptrace, semop, signal,
times, ulimit, umask; a.out in Section 4; environ in Section 5.

System Calls

2-53

execl

execl - execute files

Format

int exec! (path, arg0, argt,
char *path, *arg0, "argft,

Description
See exec.

1192192

., argn,
targn;

0)

2-54

System Calls

execle

execle - execute a file

Format

int execle (path, argo, argft,

char *path, *arg0, *argt,

Description
See exec.

., argn, 0, envp)

*argn,

‘envp(]:

System Calls

2-55

execlp

Name

execlp - execute a file

Format

int exectp (file, arg0, argl, argn, 0)
char *file, *arg0, ‘*argft, ., ‘argn;

Description

See exec.

1192192

2-56

System Calls

execv

execv - execute a file

Format

int execv (path, argv)
char *path, *argv[];

Description

See exec.

System Calls

2-51

execve

Name

execve - execute a file

Format

int execve (path, argv, envp)
char *path, *argv[l, *envpll]:

Description

See exec.

1192192

2-58

System Calls

execvp

execvp - execute a file

Format

int execvp (file, argv)
char *file, *argvl]:

Description

See exec.

System Calls 2-59

exfinal

exSendOnDealloc, exCnxSendOnDealloc - make final requests.

Format

#include <exch.h>

unsigned short exSendOnDealloc (reqblk)
struct reqheader *regblk;

exCnxSencOnDeal loc (req)
unsigned short req:

Description

The exSendOnDealloc system call specifies a request and
returns a request descriptor in precisely the same manner as
exRequest. But where exRequest dispatches the request
immediately, exSendOnDealloc puts a hold on the request.
When the client process deallocates the request’s response
exchange (either by dying or by a call to exDealloc; see
exchanges), the kernel delivers the message.

The exCnxSendOnDealloc system call cancels the specified
message. Req must be a value returned by a call to
exSendOnDealloc.

Returns

-1 indicates error, with an error code in errno. See perror in
Section 3.

1192192

2-60 System Calls

exfinal

Cautions

The server must respond to the message, even though there
is no one to read the response.

Files

/usrfinclude/exch.h - ICC user include file

System Calls 2-61

exit

exit, _exit - terminate process

Format

void exit (status)
int status;

void _exit (status)
int status;

Description

The exit system call terminates the calling process with the
following consequences:

o All of the file descriptors opened in the calling process are
closed.

o If the parent process of the calling process is executing a
wait, it is notified of the calling process termination and the
low order eight bits (that is, bits 0377) of status are made
available to it; see wait.

o If the parent process of the calling process is not executing
a wait, the calling process is transformed into a zombie
process. A zombie process is a process that occupies a
slot only in the process table; it has no other space
allocated either in user or kernel space. The process table
slot that it occupies is partially overlaid with time
accounting information (see <sys/proc.h>) to be used by times.

o The parent process ID is set to 1 for all of the child
processes and zombie processes created by the calling
process. This means the initialization process inherits each
of these processes.

o All ICC exchanges are deallocated. This is the only way to
deallocate the default response exchange.

o If the process ID, tty group ID, and process group ID of the
calling process are equal, the SIGHUP signal is sent to each
process that has a process group ID equal to that of the
calling process.

1192192

2-62 System Calls

exit
The C function exit may cause cleanup actions before the
process exits. The function _exit circumvents all cleanup.

See Also

acct, intro, exchanges, semop, signal, wait.

System Calls 2-63

exReject

Name

exReject - remove a request from an exchange

Format

#include <exch.h>
exReject (reqdes, r_ercRet)

unsigned short reqdes;
unsigned short r_ercRet;

Description
See exCpRequest.

1192192

2-64

System Calls

exRequest

exRequest - send a message to a server

Format

#include <exch.h>

unsigned short exRequest (regbl);
struct reqheader *regb!;

Description

The exRequest system call sends a message to a server. regb/
points to a request block that describes the message.
exRequest returns a request descriptor; this descriptor appears

in subsequent references to
kernel.

the request by the client or the

The request block has four parts: a request header, control

information, request PbCbs,

and response PbCbs.

A request header has the following structure.

struct rqheader f{
unsigned short
unsigned char
unsigned char
unsigned short
unsigned short
unsigned short
unsigned short

r_sCntinfo;

r_nReqPbCb;
r_nRespPbCb;
r_userNum;
r_exchResp;
r_ercRet; -
r_rqCods;

System Calls 2-65

exRequest

The client sets the following fields: r_sCntinfo (which must be
even), r-nReqPbCh, and r_nRespPbCb specify the size of the
rest of the request block; r_exchResp specifies where the
response must be sent; and r_rqCode specifies the
destination of the request. The kernel and server ignore any
values in r_userNum or r—_ercRet. Each request code requires
specific values for r_sCntinfo, r_nReqPbCb, and r_nRespPbCb.

The client uses the control information to send fixed-length
data fields to the server.

A PbCb has the following structure:

struct PbCb {
char *pc_offset;
unsigned short pc_count;

}s

The client uses Request PbCbs to send request data blocks
to the server. Each PbCb gives the location (pc_offset) and
size (pc_count) of a data block.

The client uses Response PbCbs to pass response
data-length restrictions to the server. The client sets the
pc_count field of each response PbCb to the maximum length
for that data block.

The locations containing the client request data need not
immediately follow the request block.

The kernel copies the complete message immediately. Once
exRequest returns, it is safe to modify the message.

After the client has sent the request, it must watch for the
corresponding response (exWait) and specify the response’s
disposition (exCpResponse)

1192192

2-66 System Calls

exRequest

Returns

-1 indicates error, with an error code in ermo. See perror in
Section 3.

Cautions

Use of exRequest requires more client-kernel interaction than is
necessary for most requests. Compare exCall.

If the service is provided by BTOS, integer data must have
Intel byte ordering. See shortswap in Section 3.

The lint compiler may complain the exRequest argument types
are inconsistent, especially if the client uses more than one
kind of request block. To suppress these complaints, cast
the argument to its official type:

exRequest((struct rgheader *) reqbl);
Use of this cast does not affect the object code.

System Calls 2-67

exRespond

Name

exRespond - send a message to a client

Format

#include <exch.h>

exRespond (reqdes, reqbl)
unsigned short reqdes;
struct reheader ‘reqgbl;

Description

The exRespond system call issues a response to a specific
request. The request descriptor reqdes specifies that request.
regbl points to a request block that dsecribes the response.
This request block has the same format as the request block
that described the request (see exRequest). The server sets
only the error return code fields and each of the response PbCbs.

The kernel copies the complete message immediately. Once
exRespond returns, it is safe to modify the message.

The memory containing the server's variable-length response
fields need not directly follow the request block.

Returns

-1 indicates error, with an error code in errno. See perror in
Section 3.

1192192

2-68 System Calls

exSendOnDealloc

exSendOnDealloc - make final requests

Format

#include <exch.h>
unsigned short exSendOnDeal loc (reqblk)

struct rqheader *regblk;

Description
See exfinal

System Calls 2-69

exServRq

Name

exServeRq - appropriate a request code

Format

#include <exch.h>

exServeRq (exch, code);
unsigned char exch;
unsigned short code;

Description

A server (a process that receives requests) must own a
request code for use by clients (processes that send
requests). exServeRq appropriates code as a request code and
assigns the request to the exchange specified by exch. If
exch is zero, the process gives up code, which can then be
appropriated by another server.

Any process can appropriate a request code, but only one
can own it at a time.

Codes O through OxBFFF (49151) are reserved for Burroughs
system services. Each installation should reserve additional
codes for local system services. User services must not use
reserved codes, even if they do not currently identify a service.

Returns

-1 indicates error, with an error code in errmo. See perror in
Section 3.

1192192

2-70 System Calls

exWait

exWait, exCheck - examine an ICC message queue.

Format

#include <exch.h>

exWait (ex, mstat)
unsigned char ex;
struct msgret *mstat;

exCheck (ex, mstat);
unsigned char ex;
struct msgret *mstat;

Description

Each call to exWait or exCheck returns with information on the
oldest unnoticed message waiting at the exchange whose
descriptor is ex. An unnoticed message is one that exWait
and exCheck have not reported on since the last time a
message was removed from the exchange. When an
exchange’s owner removes a message, all messages still
waiting become “unnoticed” again; see exCpResponse and
exCpRequest. exCall never affects the “noticed” status of any
message.

exWait and exCheck write a report to the memory pointed to
by mstat. The report has the following structure:

struct msgret f{
unsigned short m_rqCode;
unsigned short m_reqdes;
int m_size;
char m_flag;
unsigned short m_ercRet;
unsigned char m_cputype;
unsigned char m_slot;
struct request *"m_offset;

System Calls 7 2-11

exWait

When the process takes further action on this message
(copying it from the message queue; if it's a request, sending
a response) it passes the kernel m_reqdes to identify the
specific message.

exWait and exCheck differ only in their “no messages” action. If
no unnoticed messages wait at the specified exchange,
exWait waits for a new one to arrive; exCheck returns
immediately with an error code.

The calling process must specify some action on each
message. See exCpResponse and exCpRequest.

Returns

If exWait or exCheck terminate unsuccessfully, a value of -1is
returned and ermo is set to indicate the error.

1192192

2-72 : System Calls

fentl

fentl - file control

Format

#include <fcntl.h>

int fentl (fildes, cmd, arg)
int fildes, cmd, arg;

Description

The fentl system call provides for control over open files.
Fildes is an open file descriptor obtained from a creat, open,
dup, fentl, or pipe system call.

The commands available are:

F_DUPFD Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than or
equal to arg.

Same open file {or pipe) as the original file.

Same file pointer as the original file (that is, both file
descriptors share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (that is, both file descriptors share
the same file status flags)

The close-on-exec flag associated with the new file
descriptor is set to remain open across exec system calls.

F_GETFD Get the close-on-exec flag associated with the file descriptor
fildes. If the low-order bit is 0, the file remains open across
exec; otherwise the file is closed upon execution of exec.

F_SETFD Set the close-on-exec flag associated with fildes to the
low-order bit of arg (0 or 1 as above).

System Calls 2-73

fentl

F_GETFL Get file status flags.

F_SETFL Set file status flags to arg. Only certain flags can be set.
See fentl in Section 5.

F_GETLK Get the first lock that blocks the lock description given by

the variable of type struct flock pointed to by arg. The
information retrieved overwrites the information passed to
fentl in the flock structure. If no lock is found that would
prevent this lock from being created, then the structure is
passed back unchanged except for the lock type (which will
be set to F_UNLCK).

F_SETLK Set or clear a file segment lock according to the variable of
type struct flock pointed to by arg (see fentl in Section
5). The command F_SETLK is used to establish read
(F_RDLCK) and write (F_WRLCK) locks, as well as to
remove either type of lock (F_UNLCK). If a read or write
lock cannot be set, fentl will return immediately with an
error value of -1.

F_SETLKW This is the same as F_SETLK, except that if a read or
write lock is blocked by other locks, the process will sleep
until the segment is free to be locked.

A read lock prevents any process from write-locking the
protected area. More than one read lock may exist for a
given segment of a file at a given time. The file descriptor on
which a read lock is being placed must have been opened
with read access.

A write lock prevents any process from read-locking or
write-locking the protected area. Only one write lock may
exist for a given segment of a file at a given time. The file
descriptor on which a write lock is being placed must have
been opened with write access.

The structure flock describes the type (/_type), starting offset
(l_whence), relative offset (/_start), size (/fen), and process id
(L_pid) of the segment of the file to be affected. The process
id field is used only with the F_GETLK command to return the
value for a blocking lock. Locks may start and extend beyond
the current end of a file, but may not be negative relative to
the beginning of the file. A lock may be set to always extend
to the end of file by setting /_Jen to zero.

1192192

2-14 System Calls

fentl

If such a lock also has /_start set to zero, the whole file will
be locked. Changing or unlocking a segment from the middle
of a larger locked segment leaves two smaller segments for
either end. Locking a segment that is already locked by the
calling process causes the old lock type to be removed and
the new lock type to take affect. All locks associated with a
file for a given process are removed when a file descriptor
for that file is closed by that process or the process holding
that file descriptor terminates. Locks are not inherited by a
child process in a fork system call.

The fentl call fails if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.
[EMFILE] Cmd is F_DUPFD and 20 file descriptors are currently open.
[EMFILE]} Cmd is F_SETLK or F_SETLKW, the type of lock is a read

or write lock and there are no more file-locking headers
available (too many files have segments locked).D

{EINVAL] Cmd is F_DUPFD and arg is negative, greater than or equal
to 20.

[EINVAL] Cmd is F_GETLK, F_SETLK, or F_SETLKW and arg or the
data it points to is not valid.

[EACCES] Cmd is F_SETLK, the type of lock (L_type) is a read

{F_RDLCK) or write (F_WRLCK) lock, and the segment of a
file to be locked is already write-locked by another process,
or the type is a write lock and the segment of a file to be
locked is already read- or write-locked by anether process.

[ENOSPC) Cmd is F_SETLK or F_SETLKW, the type of lock is a read
or write lock and there are no more file-locking headers
available (too many files have segments locked), or there
are no more record locks available (too many file segments
locked).

[EDEADLK] Cmd is F_SETLK, when the lock is blocked by some lock
from another process and sleeping {waiting) for that lock to
become free; this causes a deadlock situation.

System Calls 2-75

fentl

Returns

Upon successful completion, the value returned depends on
cmd as follows:

F_DUPFD A new file descriptor.
F_GETFD The value of flag (only the low-order bit is defined).
F_SETFD A value other than -1.
F_GETFL The value of file flags.
F_SETFL A value other than -1.
F_GETLK A value other than -1.
F_SETLK A value other than -1.
F_SETLKW A value other than -1.

Otherwise, a value of -1 is returned and errno is set to
indicate the error.

See Also

close, exec, open; fentl in Section 5.

1192192

2-76 System Calls
fork

fork - create a new process.

Format

int fork ()

Description

The fork system call causes creation of a new process. The
new process (child process) is an exact copy of the calling
process (parent process). This means the child process
inherits the following attributes from the parent process:

environment

close-on-exec flag (see exec)

signal handling settings (such as SIG_DFL, function

address)

set-user-ID mode bit

set-group-ID mode bit

profiling on/off status

nice value (see nice)

process group ID

tty group ID (see exit)

current working directory

root directory

file mode creation mask (see umask)

file size limit

PILF cluster size exponent (see pilf in Section 5)

The child process differs from the parent process in the
following ways:

o The child process has a unique process ID.

o The child process has a different parent process ID {the
process ID of the parent process).

o The child process has its own copies of its parent process
file descriptors. Each child process file descriptor shares a
common file pointer with the corresponding file descriptor
of the parent.

System Calls 2-77

fork

o The child process inherits no ICC exchanges from the
parent. Initially, the child’s only exchange is the default
response exchange.

The fork call fails and no process is created if one or more of
the following are true:

{EAGAIN] The system-imposed limit on the total number of processes
under execution would be exceeded.

[EAGAIN] The system-imposed fimit on the total number of processes
under execution by a single user would be exceeded.

[EXFULL) A default response exchange cannot be allocated for the
process. .

Returns

Upon successful completion, fork returns a value of O to the
child process and returns the process ID of the child process
to the parent process. Otherwise, a value of -1 is returned to
the parent process, no child process is created, and errno is
set to indicate the error.

See Also

exchanges, exec, nice, plock, ptrace, semop, shmop, signal, times,
ulimit, umask, wait.

1182192

2-78

System Calls

fstat

fstat - get file status

Format

#include <sys/types.h>
#include <sys/stat.h>

int fstat (fildes, buf)

int fildes;
struct stat *buf;

Description
See stat.

System Calls

2-79

getegid

Name
getegid - get effective group ID

Format

unsigned short getegid ()

Description
See getuid.

1192192

2-80

System Calls

geteuid

geteuid - get effective user ID

Format

unsigned short geteuid ()

Description
See getuid.

System Calls 2-81

getgid

Name
getgid - get real group ID

Format

unsigned short getgid ()

Description
See getuid.

1192192

2-82

System Calls

getpgrp

Name
getpgrp - get process group ID

Format

int getpgrp ()

Description
See getpid.

System Calls 2-83

getpid

getpid, getpgrp, getppid - get process, process group, and
parent process IDs

Format

int getpid ()
int getpgrp ()

int getppid ()

Description

The getpid system call returns the process ID of the calling
process.

getpgrp returns the process group ID of the calling process.
getppid returns the parent process ID of the calling process.

See Also

exec, fork, intro, setpgrp, signal.

1192192

2-84

System Calls

getppid

Name
getppid - get parent process ID

Format

int getppid ()

Description
See getpid.

System Calls 2-85

getuid

getuid, geteuid, getgid, getegid - get real user, effective user,
real group, and effective group IDs

Format

unsigned short getuid ()
unsigned short geteuid ()
unsigned short getgid ()

unsigned short getegid ()

Description
The getuid call returns the real user ID of the calling process.

The geteuid call returns the effective user ID of the calling
process.

getgid returns the real group ID of the calling process.
getegid returns the effective group ID of the calling process.

See Also

intro, setuid.

1192192

2-86 System Calls

ioctl

ioctl - control device

Format

loctl (fildes, request, arg)
int fildes, request;

Description

The ioctl system call performs a variety of functions on
character special files (devices). The write-ups of various
devices in Section 6 discuss how ioctl applies to them.

ioct! will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[ENOTTY) Fildes is not associated with a character special device.
[EINVAL] Request or arg is not valid. See Section 6.

[EINTR] A signal was caught during the ioctl system call.
Returns

If an error has occurred, a value of -1 is returned and ermno is
set to indicate the error.

See Also

termio in Section 6.

System Calls 2-87
kill

kill - send a signal to a process or a group of processes

Format

int kill (pid, sig)
int pid, sig;

Description

The kill system call sends a signal to a process or a group of
processes. The process or group of processes to which the
signal is to be sent is specified by pid. The signal that is to
be sent is specified by sig, which can be O or one from the
list given in signal.

if sig is O (the null signal), error checking is performed but no
signal is actually sent. This can be used to check the validity
of pid.

The real or effective user ID of the sending process must
match the real or effective user ID of the receiving process,
unless the effective user ID of the sending process is super-user.

The processes with a process ID of O and a process ID of 1
are special processes (see intro) and will be referred to below
as procO and proc1, respectively.

If pid is greater than zero, sig is sent to the process whose
process ID is equal to pid. Pid may equal 1.

If pid is O, sig is sent to all processes (excluding procO and
proc1) whose process group IDs are equal to the process
group ID of the sender.

If pid is -1 and the effective user ID of the sender is not that
of the super-user, sig is sent to all processes (excluding
procO and proc1) whose real user IDs are equal to the
effective user ID of the sender.

1192192

2-88 System Calls

kill
If pid is -1 and the effective user ID of the sender is that of

the super-user, sig is sent to all processes excluding procO
and proc].

If pid is negative but not -1, sig is sent to all processes
whose process group ID is equal to the absolute value of pid.

The kill call fails and no signal is sent if one or more of the
following are true:

[EINVAL] sig is not a valid signal number.

[EINVAL] sig is SIGKILL and pid is 1 {proc1).

[ESRCH) No pracess can be found corresponding to that specified by pid.
[EPERM] The user ID of the sending process is not super-user, and

its real or effective user ID does not match the real or
effective user ID of the receiving process.

Returns

Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 i returned and errno is set to
indicate the error.

See Also

kill in Section 1; getpid, setpgrp, signal.

System Calls 2-89

link

link - link to a file

Format

int link (path1, path2)
char *patht, *path2;

Description

Path1 points to a path name of an existing file. Path2 points
to a path name of the new directory entry to be created. The
link system call creates a new link (directory entry) for the
existing file.

The link call fails and no link is created if one or more of the
following are true:

[ENOTDIR] A component of either path prefix is not a directory.

[ENOENT] ‘A component of either path prefix does not exist.

[EACCES] A component of either path prefix denies search permission.

[ENOENT} The file named by path] does not exist.

[EEXIST] The link named by path2 exists.

{EPERM] The file named by path1 is a directory and the effective
user iD is not super-user.

[EXDEV] The link named by path2 and the file named by path7 are
on different logical devices (file systems).

[ENOENT) Path2 points to a null path name.

{EACCES] The requested link requires writing in a directory with a
mode that denies write permission.

{EROFS] The requested link requires writing in a directory on a
read-only file system.

[EFAULT] Path points outside the allocated address space of the process.

[EMLINK] The maximum number of links to a file would be exceeded.

1192192

2-90 System Calls
link

Returns

Upon successful completion, a value of O is returned.
Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

See Also

unlink.

System Calls 2-91

locking

locking - exclusive access to regions of a file

Format

int tocking (filedes, mode, size);
int filedes, mode;
long size;

Description

The locking system call places or removes an advisory lock on
a region of a file.

Parameters specify the file to be locked or unlocked, the kind
of lock or unlock, and the region affected:

o Filedes specifies the file to be locked or unlocked. It is a file
descriptor returned by an open, creat, pipe, fentl, or dup
system call

o Mode specifies the action: O for lock removal, 1 for
blocking lock, 2 for checking lock. Blocking and checking
locks differ only if the attempted lock is itself locked out: a
blocking lock waits until the existing lock or locks are
removed; a checking lock immediately returns an error.

o The region affected begins at the current file offset
associated with filedes and is size bytes long. If size is zero,
the region affected ends at the end of the file (size should
be positive).

Locking imposes no structure on a CENTIX file. A process
can arbitrarily lock any unlocked byte and unlock any locked
byte. However, creating a large number of noncontiguous
locked regions can fill up the system’s lock table and make
further locks impossible. It is advisable that a program'’s use
of the locking call segment the file in the same way as does
the program’s use of a read and write.

1192192

2-92 System Calls

locking

A process is said to be deadlocked if it is sleeping until an
unlocking which is indirectly prevented by that same sleeping
process. The kernel will not permit a blocking locking if such a
call would deadlock the calling process. Ermo is set to
EDEADLOCK. The standard response to such a situation is
for the program to release all its existing lock areas and try
again. If a locking call fails because the kernel’s table of locked
areas is full, again, ermo is set to EDEADLOCK and, again, the
calling program should release its existing locked areas.

Special files and pipes can be locked, but no input/output is
blocked.

Locks are automatically removed if the process that placed
the lock terminates or closes the file descriptor used to place
the lock.

Returns

A return value of -1 indicates an error, with the error value in
errno.

[EACCES] A checking lock on a region already locked.

[EDEADLOCK] A lock that would cause deadlock or overflow the system's
lack table.
Caution

Do not apply any standard input/output library function to a
locked file: this library does not know about locking.

The lock is purely advisery. Users who wish to can still read,
write, creat, and open the file. The locking system call is the only
system call that checks locks.

See Alse

creat, close, dup, open, read, write.

System Calls 2-33

Iseek

Name

Iseek - move read/write file pointer

Format
tong lseek (fildes, offset, whence)
int fildes;

long offset;
int whence;

Description

Fildes is a file descriptor returned from a creat, open, dup, or
fentl system call. The Iseek system call sets the file pointer
associated with fildes as follows:

o If whence is O, the pointer is set to offset bytes.

o If whence is 1, the pointer is set to its current location plus
offset.

o If whence is 2, the pointer is set to the size of the file plus
offset.

Upon successful completion, the resulting pointer location, as
measured in bytes from the beginning of the file, is returned.

Iseek will fail and the file pointer will remain unchanged if one
or more of the following are true:

[EBADF] Fildes is not an open file descriptor.
[ESPIPE] Fildes is associated with a pipe or fifo.
[EINVAL and Whence is not 0, 1 or 2.

SIGSYS signal)

[EINVAL] The resulting file pointer would be negative.

1192192

2-94 System Calls

Iseek

Returns

Upon successful completion, a non-negative integer
indicating the file pointer value is returned. Otherwise, a value
of -1 is returned and ermno is set to indicate the error.

Caution
Not all block devices support Iseek.

See Also

creat, dup, fcntl, open.

System Calls 2-95

mknod

Name

mknod - makes a directory, or a special or ordinary file

Format

int mknod (path, mode, dev)
char *path;
int mode, dev;

Description

The mknod system call creates a new file named by the path
name pointed to by path. The mode of the new file is
initialized from mode. The value of mode is interpreted as
follows:
0170000 file type; one of the following:
0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 000000 ordinary file
0004000 seot user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the following:
0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner ID is set to the process’ effective user ID. The
group ID is set to the process’ effective group ID.

Values of mode other than those presented are undefined
and should not be used. The low-order 9 bits of mode are
modified by the process’ file mode creation mask: all bits
set in the process file mode creation mask are cleared. See
umask. If mode indicates a block or character special file, dev
is a configuration-dependent specification of a character or
block 1/0 device. If mode does not indicate a block special
or character special device, dev is ignored.

1192192

2-96 System Calls

mknod

The mknod system call may be invoked only by the super-user
for file types other than FIFO special.

The mknod command fails and the new file is not created if
one or more of the following are true:

[EPERM] The process's effective user ID is not super-user.

[ENOTDIR) A component of the path prefix is not a directory.

[ENOENT) A component of the path prefix does not exist.

[EROFS) The directory in which the file is to be created is located on
a read-only file system.

[EEXIST) The named file exists.

[EFAULT] Pathpoints outside the allocated address space of the process.

Returns

Upon successful completion, a value of O is returned.
Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

See Also

mkdir in Section 1; chmod, exec, umask; fs in Section 4.

System Calls 2-97

mount

Name

mount - mount a file system

Format

int mount (spec, dir, rwfig)
char *spec, *dir;
int rwflg;

Description

The mount system call requests that a file system contained
on the block special file identified by spec be mounted on the
directory identified by dir. Spec and dir are pointers to path
names.

Upon successful completion, references to the file dir will
refer to the root directory on the mounted file system.

The low-order bit of wflag is used to control write
permission on the mounted file system; if 1, writing is
forbidden, otherwise writing is permitted according to
individual file accessibility.

mount may be invoked only by the super-user. Note that the
system call mount (as well as umount) does not update the
mount table file /etc/mnttab. This means that the system
calls can not be used interchangeably with the mount and
umount shell commands.

mount will fail if one or more of the following are true:

[EPERM] The effective user ID is not super-user.
[ENOENT] Any of the named files do not exist.
[ENOTDIR} A component of a path prefix is not a directory.
{ENOTBLK] Spec is not a block special device.

[ENXIO] The device associated with spec does not exist.
[ENOTDIR] Dir is not a directory.

1192182

2-98 System Calls

mount

[EFAULT] Spec or dir points outside the allocated address space of
the process.

[EBUSY] Dir is currently mounted on, is someone’s current working
directory, or is otherwise busy.

[EBUSY] The device associated with spec is currently mounted.

[EBUSY} There are no more mount table entries.

[EROFS] The low-order bit of rwilag is zero and the volume
containing the file system is physically write-protected.

Returns

The mount command returns an integer. Upon successful
completion, a value of O is returned and references to the file
dir refer to the root directory on the mounted file system.
Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

See Also

umount.

System Calls 2-99

msgctl

msgetl - message control operations

Format

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgct! (msqid, cmd, buf)
int msqid, cmd;
struct msqid_ds °‘buf;

Description

The msgetl system call provides a variety of message control
operations as specified by cmd. The following cmds are
available:

IPC_STAT Place the current value of each member of the data structure
associated with msgid into the structure pointed to by buf. The
contents of this structure are defined in intro. {READ}

IPC_SET Set the value of the following members of the data
structure associated with msgid to the
corresponding value found in the structure pointed
to by buf

msg.perm.uid

msg_perm.gid

msg_perm.mode /* only low 9 bits */
msg_qbytes

This cmd can only be executed by a process that has an effective
user 1D equal to either that of super user or to the value of
msg_perm.uid in the data structure associated with msgid. Only
super user can raise the value of msg_gbytes.

1192192

2-100

System Calls

msgctl

IPC_RMID

msgetl will fail

[EINVAL]
[EINVAL]
[EACCES]

[EPERM]
[EPERM]

{EFAULT)

Returns

Remove the message queue identifier specified by msgid from the
system and destroy the message queue and data structure
associated with it. This cmd can only be executed by a process
that has an effective user ID equal to either that of super user or
to the value of msg_perm.uid in the data structure associated with
msgid. '

if one or more of the following are true:

Msgid is not a valid message queue identifier.
Cmd is not a valid command.

Cmd is equal to IPC_STAT and {READ} operation
permission is denied to the calling process (see intro.

Cmd is equal to IPC_RMID or IPC_SET. The effective user ID of
the calling process is not equal to that of super user and it is not
equal to the value of msg_perm.uid in the data structure
associated with msgid,

Cmd is equal to IPC_SET, an attempt is being made to increase
to the value of msg_gbytes, and the effective user ID of the
calfing process is not equal to that of super user.

Buf points to an illegal address.

Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and errno is set to
indicate the error.

See Also

intro, msgget, msgop.

System Calls 2-101

msgget

Name

msgget - get message queue

Format

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgfig)
key_t key;
int msgflg:

Description

The msgget system call returns the message queue identifier
associated with key.

A message queue identifier and associated message queue
and data structure (see intro) are created for key if one of the
following are true:

10 Key is equal to IPC_PRIVATE.

Key does not already have a message queue identifier associated with it,
and (msgflg & IPC_CREAT) is “true”.

Upon creation, the data structure associated with the new
message queue identifier is initialized as follows:

Msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and
msg_perm.gid are set equal to the effective user ID and
effective group ID, respectively, of the calling process.

The low-order 9 bits of msg_perm.mode are set equal to
the low-order 9 bits of msgflg.

Msg_qgnum, msg_ispid, msg_lrpid, msg_stime, and
msg_rtime are set to 0.

Msg_ctim is set to the current time.

Msg_gbytes is set equal to the system limit.

1192192

2-102 System Calls

msgget

msgget will fail if one or more of the following are true:

[EACCES) A message queue identifier exists for key, but operation
permission (see intro) as specified by the low-order 9 bits
of msgflg would not be granted.

[ENQOENT) A message queue identifier does not exist for key and -
{msgfly & IPC_CREAT) is “false.”
[ENOSPC] A message queue identifier is to be created but the

system-imposed limit on the maximum number of allowed
message queue identifiers system wide would be exceeded.

[EEXIST] A message queue identifier exists for key but {{msgflg &
IPC_CREAT) & (msgflg & IPC_EXCL)) is “true.”

Returns

Upon successful completion, a non-negative integer, namely
a message queue identifier, is returned. Otherwise, a value of
-1 is returned and ermo is set to indicate the error.

See Also

intro, msgetl, msgop.

System Calls 2-103

msgop

msgop - message operations

Format

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgtig)
int msqid:

struct msgbuf *msgp:

int msgsz, msgflig;

int msgrcv (msqid, msgp., msgsz, msgtyp., msgflig)
int msqid;

struct msgbuf *msgp.

int msgsz;

long msgtyp;

int msgfig:

Description

The msgsnd call is used to send a message to the queue
associated with the message queue identifier specified by
msqid. {WRITE} Msgp points to a structure containing the
message. This structure is composed of the following
members:

long mtype; /* message type °/
char mtext([]: /* message text °/

Miype is a positive integer that can be used by the receiving
process for message selection (see msgrev below). Mtext is
any text of length msgsz bytes. Msgsz can range fromOtoa
system-imposed maximum.

1192192

2-104 System Calls

msgop

Msgflg specifies the action to be taken if one or more of the
following are true:

The number of bytes already on the queue is equal to
msg_qbytes (see intro).

The total number of messages on all queues
system-wide is equal to the system-imposed limit.

These actions are as follows:

If (msgfig & IPC_NOWAIT) is “true,” the message will not
be sent and the calling process will return immediately.

If (msgfig & IPC_NOWAIT) is “false,” the calling process will
suspend execution until one of the following occurs:

The condition responsible for the suspension no
longer exists, in which case the message is sent.

Msqid is removed from the system (see msgctl).
When this occurs, ermo is set equal to EIDRM, and a
value of -1 is returned.

The calling process receives a signal that is to be
caught. In this case the message is not sent and the
calling process resumes execution in the manner
prescribed in signal.

msgsnd will fail and no message will be sent if one or more of
the following are true:

[EINVAL) Msgid is not a valid message queue identifier.

[EACCES] Operation permission is denied to the calling process (see intro).

[EINVAL] Mtype is less than 1.

[EAGAIN] The message cannot be senf for one of the reasons cited
above and (msgfig & IPC_NOWAIT) is “true.”

[EINVAL) IMSI{SI is less than zero or greater than the system-imposed
imit.

[EFAULT] Msgp points to an illegal address.

System Calls 2-105

msgop

Upon successful completion, the following actions are taken
with respect to the data structure associated with msqid (see
intro).

Msg_qgnum is incremented by 1.

Msg_ispid is set equal to the process 1D of the calling
process.

Msg_stime is set equal to the current time.

The msgrev call reads a message from the queue associated
with the message queue identifier specified by msgid and
places it in the structure pointed to by msgp. {READ} This
structure is composed of the following members:

long mtype . /* message type °/
char mtext{]: /* message text °/

Mtype is the received message’s type as specified by the
sending process. Mtext is the text of the message. Msgsz
specifies the size in bytes of mtext. The received message is
truncated to msgsz bytes if it is larger than msgsz and (msgflg
& MSG_NOERROR) is “true.” The truncated part of the message
is lost and no indication of the truncation is given to the
calling process.

Msgtyp specifies the type of message requested as follows:

If msgtyp is equal to O, the first message on the queue is
received.

If msgtyp is greater than O, the first message of type
msgtyp is received.

If msgtyp is less than O, the first message of the lowest
type that is less than or equal to the absolute value of
msgtyp is received.

Msgflg specifies the action to be taken if a message of the
desired type is not on the queue. These are as follows:

If (msgflg & IPC_NOWAIT) is “true,” the calling process will
return immediately with a return value of -1 and ermo set
to ENOMSG.

1192192

2-106 System Calls

msgop

If (msgflg & IPC_NOWAIT) is “false,” the calling process will
suspend execution until one of the following occurs:

A message of the desired typeis placed on the queue.

Msqid is removed from the system. When this
occurs, ermo is set equal to EIDRM, and a value of -1
is returned.

The calling process receives a signal that is to be
caught. In this case a message is not received and
the calling process resumes execution in the manner
prescribed in signal.

msgrev will fail and no message will be received if one or
more of the foilowing are true:

[EINVAL] Msgid is not a valid message queue identifier.

[EACCES) Operation permission is denied to the calling process.

[EINVAL) Msgsz is less than 0.

[E2BIG} Mtext is greater than msgsz and {msgfig &
MSG_NOERROR) is “false.”

- [ENOMSG) The queue does not contain a mesage of the desired type
and (msgtyp & IPC_NOWAIT) is “true.”

[EFAULT] Msgp points to an illegal address.

Upon successful completion, the following actions are taken
with respect to the data structure associated with msqid (see
intro).

Msg_gnum is decremented by 1.
Msg_lipid is set to the current time.
Msg_rtime is set to the current time.

System Calls 2-107

msgop

Returns

If msgsnd or msgrev return due to the receipt of a signal, a
value of -1 is returned to the calling process and erro is set
to EINTR. If they return due to removal of msgqid from the
system, a value of -1 is returned and ermo is set to EIDRM.

Upon successful completion, the return value is as follows:
msgsnd returns a value of O. ‘

msgrev returns a value equal to the number of bytes
actually placed into mtext.

Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

See Also

intro, msgctl, msgget, signal.

1192192

2-108 System Calls

nice

Name

nice - change priority of a process

Format

int nice (incr)
int incr;

Description

The nice system call adds the value of incr to the nice value
of the calling process. A process’ nice value is a positive
number. A higher nice value results in a lower CPU priority.

The system allows nice values only from -8 to 39. The nice
system call grants nice values from -8 to -1 only to
super-user processes. These negative nice values cause the
CPU priority of the process to be fixed independently of CPU
usage of the process. nice values from O to 39 allow the
system to adjust dynamically the actual CPU priority of the
process, temporarily lowering it in proportion to the process’
recent level of CPU usage. If a super-user process requests a
nice value below -8, or if any other process requests a nice
value below O, the system imposes a nice value of 0. If any
process requests a nice value above 39, the system imposes
a nice value of 39.

[EPERM] The nice call fails and does not change the nice value if
incr is negative and the effective user ID of the calling
process is not super-user.

Returns

Upon successful completion, nice returns the new nice value
minus 20. Otherwise, a value of -1 is returned and errno is set
to indicate the error. To receive the current nice value, use O
as /ncr.

See Also

nice in Section 1; exec.

System Calls

2-109

open

Name

open - open a file for reading or writing

Format

#include <tcntl.h>

int open (path, oflagl. mode})

char

int oflag, mode;

Description

Path points to a path name naming a file. The open system
call opens a file descriptor for the named file and sets the file
status flags according to the value of oflag. Oflag values are
constructed by or-ing flags from the following list (only one
of the first three flags may be used):

0_RDONLY
0_WRONLY
0_RDWR

O_NDELAY

1192192

Open for reading only.
Open for writing only.
Open for reading and writing.

This flag may affect subsequent reads and writes. See read
and write.

When opening a FIFO with 0_RDONLY or O_WRONLY set:

If O_NDELAY is set:

An open for reading-only will return without delay.
An open for writing-only will return an error if no
process currently has the file open for reading.

If O_NDELAY is clear:

An open for reading-only will biock until a process
opens the file for writing. An open for writing-only
will block until a process opens the file for reading.

2-110

System Calls

open

0_APPEND

0_NODIRECT

When opening a file associated with a communication line:
If O_NDELAY is set:
The open will return without waiting for a carrier.
If O_NDELAY is clear:

The open will block until carrier is present. If you
want to configure an RS-232 modem entry, you must
declare the async line in the CP or TP configuration
file (for example, CP00.cnf) as a modem. To do this,
enter:

Async 1, speed=9600, modem

When an OpenTerminal request is received, the code
in the TP or CP raises data terminal ready (DTR) and
asserts request to send (RTS). It then waits for data
set ready (DSR) to be asserted. BTOS will wait up to
3 seconds for DSR. If DSR is not received in that
time, the request is rejected with an erc 11010
(ercDSRNotDetected). Assuming that DSR is
recognized, the pracessor will then begin to wait for
data carrier detect (DCD). There is no timeout
waiting for DCD. The OpenTerminal will return only
when DCD has been asserted.

After a successful OpenTerminal, ReadTerminal
requests will return the ercCarrierLoss error if the
carrier has dropped since the last request. The
fCarrierDetect flag in the terminal output structure
will follow the current value of the DCD RS-232 signal,

CloseTerminal drops RTS and DTR and pauses 0.25
second to allow DSR time to drop on mechanically
switched modems.

If set, the file pointer is set to the end of the file prior to
each write.

Do not perform direct 1/G for this file, even if a transfer
satisfies the system default criteria.

System Calls

2-11

open
0_SYNC

0_CREAT

C-TRUNC

0_EXCL

If set, all writes will be synchronous. This option applies
only to regular files.

If the file exists, this flag has no effect. Otherwise, the file
owner 1D is set to the process's effective user ID, the file
group 1D is set to the process’s effective group 1D, and the
low-order 10 bits of the file mode are set to the value of
mode, modified as follows (see creat):

Al bits set in the process file mode creation mask
are cleared. See umask.

The “save text image after execution” bit of the mode
is cleared. See chmod.

The process’s default cluster size exponent determines the
cluster size of files created on PILF file systems.

If the file exists, its length is truncated to 0 and the mode
and owner are unchanged.

If O_EXCL and O_CREAT are set and the file exists, open
fails. 0_EXCL has no meaning unless it is used with 0_CREAT.

The file pointer used to mark the current position within the
file is set to the beginning of the file.

The new file descriptor is set to remain open across exec
system calls. See fentl.

The named file is opened unless one or more of the following

are true:

[ENOTDIR]
{ENOENT]
[EACCES]
[EACCES)
[EISDIR]
[EROFS]

. 1982182

A component of the path prefix is not a directory.
O_CREAT is not set and the named file does not exist.
A component of the path prefix denies search permission.
Offag permission is denied for the named file.

The named file is a directory and offag s write or read/write.

The named file resides on a read-only file system and oflag
is write or read/write.

2-112

System Calls

open

{EMFILE]
[ENXIO]

[ETXTBSY]

{EFAULT]
[EEXIST)
[ENXI0]

[EINTR)
[ENFILE]

Returns

Twenty file descriptors are currently open.

The named file is a character special or block special file,
and the device associated with this special file does not exist.

The file is a pure procedure (shared text) file that is being
executed and oflag is write or read/write.

Pathpoints outside the allocated address space of the process.
C_CREAT and O_EXCL are set, and the named filg exists.

O_NDELAY is set, the named file is a FIFO, O_WRONLY is
set, and no process has the file open for reading.
A signal was caught during the open system call.

The system file table is full.

Upon successful completion, the file descriptor is returned.
Otherwise, a value of -1 is returned and ermo is set to

indicate the error.

See Also

chmod, close, creat, dup, fentl, locking, Iseek, pipe, read, umask,
write; pilf in Section 5.

System Calls 2-113

pause

Name

pause - suspend process until signal

Format

pause ()

Description

The pause system call suspends the calling process until it
receives a signal. The signal must be one that is not currently
set to be ignored by the calling process.

If the signal causes termination of the calling process, pause
will not return.

If the signal is caught by the calling process and control is
returned from the signal-catching function (see signal), the
calling process resumes execution from the point of
suspension; with a return value of -1 from pause and errmo set
to EINTR. :

See Also

alarm, kill, signal, wait.

1102192

2-114 System Calls
pipe

pipe - create an interprocess channel

Format

int pipe (fildes)
int fildes(2};

Description

The pipe system call creates an /O mechanism called a pipe
and returns two file descriptors, fildes[0] and fildes[1].
Fildes{O}is opened for reading and fildes{1]is opened for writing.

Up to 5120 bytes of data are buffered by the pipe before the
writing process is blocked. A read on file descriptor fildes{0]
accesses the data written to fildes{1)] on a first-in-first-out
(FIFO) basis.

The call will fail if one or both are true:

[EMFILE} 19 or more file descriptors are currently open.
[ENFILE) The system file table is full.
Returns

Upon successful completion, a value of O is returned.
Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

See Also

sh in Section 1; read, write.

System Calls 2-115

plock

Name

plock - lock process, text, or data in memory

Format

#include <sys/lock.h>

int plock (op)
int op:

Description

The plock system call allows the calling process to lock its
text segment (text lock), its data and stack segments (data
lock), or both its text and data segments (process lock) into
memory. Locked segments are immune to all routine
swapping. plock also allows these segments to be uniocked.
For 407 object modules, TXTLOCK and DATLOCK are
identical. The effective user ID of the calling process must be
super-user to use this call. Op specifies the following:

PROCLUCK Lock text and data segments into memory (process lock).
TXTLOCK Lock text segment into memory {text lock).

DATLOCK Lock data segment into memory (data lock).

UNLOCK Remove locks.

Shared regions (that is, text) may be locked by anyone using
the text, but they may be unlocked only if the caller is the
last one using the region. Note that sticky-bit text that is not

explicitly unlocked will remain locked in core even after the
last process using it terminates.

1192192

2-116

System Calls

plock

The plock call fails and does not perform the requested
operation if one or more of the following are true:

[EPERM]
[EINVAL]

[EINVAL)
[EINVAL}

[EINVAL)

Returns

The effective user ID of the calling process is not super-user.

Op is equal to PROCLOCK and a process lock, a text lock, or a
data lock already exists on the calling process.

Op is equal to TXTLOCK and a text lock, or a process lock already
exists on the calling process.

Op is equal to DATLOCK and a data lock, or a process lock
already exists on the calling process.

Opis equal to UNLGCK and no type of lock exists on the calling process.

Upon successful completion, a value of O is returned to the
calling process. Otherwise, a value of -1 is returned and errno
is set to indicate the error.

See Alsg

exec, exit, fork.

System Calls 2-117

profil

Name

profil - execution time profile

Format

void profil (bufft, bufsiz, offtset, scalte)
char °buff;
int butsiz, oftset, scale;

Description

Buff points to an area of core whose length (in bytes) is
given by bufsiz. After this call, the user’s program counter
(pc) is examined each clock tic, (60th second); offset is
subtracted from it, and the result is multiplied by scale. If the
resulting number corresponds to a word inside buff, that
word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction
with binary point at the left; 0177777 (octal) gives a 1-1
mapping of pc’s to words in buff; 077777 (octal) maps each
pair of instruction words together. 02(octal) maps all
instructions onto the beginning of buff {producing a
non-interrupting core clock).

Profiling is turned off by giving a scale of O or 1. 1tis
rendered ineffective by giving a bufsiz of 0. Profiling is turned
off when an exec is executed, but remains on in child and
parent both after a fork. Profiling will be turned off if an
update in buff would cause a memory fault.

Returns
Not defined.

See Also

prof in Section 1; monitor in Section 3.

1192192

2-118 System Calls

ptrace

ptrace - process trace

Format

Int ptrace (request, pid, addr, data);
int request, pid, addr, data;

Description

The ptrace system call provides a means by which a parent
process may control the execution of a child process. Its
primary use is for the implementation of breakpoint
debugging; see sdb in Section 1. The child process behaves
normally until it encounters a signal (see signal for the list), at
which time it enters a stopped state and its parent is notified
by wait. When the child is in the stopped state, its parent can
examine and modify its “core image” using ptrace. Also, the
parent can cause the child either to terminate or continue,
with the possibility of ignoring the signal that caused it to stop.

The request argument determines the precise action to be
taken by ptrace and is one of the following:

0 This request must be issued by the child process if it is to be
traced by its parent. It turns on the child's trace flag that
stipulates that the child should be left in a stopped state upon
receipt of a signal rather than the state specified by func; see
signal. The pic, addr, and data arguments are ignored, and a
return value is not defined for this request. Peculiar results will
ensue if the parent does not expect to trace the child.

The remainder of the requests can only be used by the
parent process. For each, pid is the process ID of the child.
The child must be in a stopped state before these requests
are made.

System Calls

2-119

ptrace

1,2

4,5

1192192

With these requests, the word at location addr in the address
space of the child is returned to the parent process. itland D
space are separated (as on PDP-11s), request 1 returns a word
from | space, and request 2 returns a word from D space. If | and
D space are not separated {as on Burroughs 68000-family
processors, the 3B 20S computer, and VAX-11/780), either
request 1 or request 2 may be used with equal results. The data
argument is ignored. These two requests will fail if addr is not the
start address of a word, in which case a value of -1 is returned to
the parent process and the parent’s errno is set to EID.

With this request, the word at location addr in the child's USER
area in the system's address space (see <sys/user.h>) is
returned to the parent process. Addresses in this area range from
0 to 8192 on Burroughs 68000-family processors, 0 to 1024 on
the PDP-11s and O to 2048 on the 3B 20 computer and VAX.
The data argument is ignored. This request will fail if addr is not
the start address of a word or is outside the USER area, in which
case a value of -1 is returned to the parent process and the
parent’s errno is set to EID.

With these requests, the value given by the data argument is
written into the address space of the child at location addr. If 1
and D space are separated (as on PDP-11s), request 4 writes a
word into | space, and request 5 writes a word in to D space. If |
and D space are not separated (as on Burroughs 68000-family
processors, the 3B 20 computer, and VAX), either request 4 or
request 5 may be used with equal results. Upon successful
completion, the value written into the address space of the child is
returned to the parent. These two requests will fail if addris a
focation in a pure procedure space and another process is
executing in that space, or addr is not the start address of a
word. Upon failure a value of -1 is returned to the parent process
and the parent’s ermo is set to EID.

With this request, a few entries in the child's USER area can be
written. Data gives the value that is to be written and addr is the
location of the entry. The few entries that can be written are:

2-120

System Calls

ptrace

The general registers (that is, registers 0-15 on Burroughs
68000-family processors, registers 0-11 on the 3B 20S
computer, registers 0-7 on PDP-11s, and registers 0-15 on
the VAX).

The condition codes of the Processor Status Word on the
3B 20 computer.

The floating point status register and six floating point
registers on PDP-11s.

certain bits of the Processor Status Word on PDP-11s {that
is, bits 0-4, and 8-11).

Certain bits of the Processor Status Longword on the VAX
(that is, bits 0-7, 16-20, and 30-31).

Burroughs 68000-family processors: all processor status bits
except 8, 9, 10, and 13.

This request causes the child to resume execution. If the data
argument is 0, all pending signals, including the one that caused
the child to stop, are canceled before it resumes execution. If the
data argument is a valid signal number, the child resumes
execution as if it had incurred that signal, and any other pending
signals are canceled. The addr argument must be equal to 1 for
this request. Upon successful completion, the value of data is
returned to the parent. This request will fail if data is not O or a
valid signal number, in which case a value of -1 is returned to the
parent process and the parent’s errno is set to EIQ.

This request causes the child to terminate with the same
consequences as exit.

This request sets the trace bit in the Pracessor Status Word of
the child (i.e., bit 15 on Burroughs 68000-family processors, bit 4
on PDP-11s; bit 30 on the VAX) and then executes the same
steps as listed above for request 7. The trace bit causes an
interrupt upon completion of one machine instruction. This
effectively allows single stepping of the child. On the 3B 20S
computer there is no trace bit and this request returns an error.
Note that the trace bit remains set after an interrupt on PDP-11s
but is turned off after an interrupt on the VAX.

System Calls 2-121

ptrace

To forstall possible fraud, ptrace inhibits the set-user-id facility
on subsequent exec calls. If a traced process calls exec, it will
stop before executing the first instruction of the new image
showing signal SIGTRAP.

ptrace will in fail if one or more of the following are true:

[€10) Reguest is an illegal number.

[ESRCH) Pid identifies a child that does not exist or has not executed
a ptrace with request 0.

See Also

exec, signal, wait.

1192192

2-122 System Calls

read

read - read from a file

Format

int read (fildes, buf, nbyte)
int fildes;

char ‘*buf;

unsigned nbyte;

Description

Fildes is a file descriptor obtained from a creat, open, dup, fentl,
or pipe system call.

read attempts to read nbyte bytes from the file associated
with fildes into the buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in
the file pointer associated with fi/des. Upon return from read,
the file pointer is incremented by the number of bytes
actually read.

Devices that are incapable of seeking always read from the
current position. The value of a file pointer associated with
such a file is undefined.

Upon successful completion, read returns the number of bytes
actually read (a non-negative integer) and placed in the
buffer; this number may be less than nbyte if the file is
associated with a communication line (see ioctl; see termio in
Section 6), or if the number of bytes left in the file is less
than nbyte bytes. A value of O ig returned when an end-of-file
has been reached.

When attempting to read from an empty pipe (or FIFO):
o If O_NDELAY is set, the read returns a 0.

o If O_NDELAY is clear, the read blocks until data is written
to the file or the file is no longer open for writing.

System Calls 2-123

read

When attempting to read a file associated with a tty that has
no data currently available:

o If O_NDELAY is set, the read returns a O.

o If O_NDELAY is clear, the read blocks until data becomes
available.

The read call fails if one or more of the following are true:

[EBADF) Fildes is not a valid file descriptor open for reading.
[EFAULT]) Buf points outside the allocated address space.
[EDEADLOCK) A side effect of a previous locking call.
Returns

Upon successful completion, a non-negative integer is
returned indicating the number of bytes actually read. If read
terminates unsuccessfully, a value of -1 is returned and errno
is set to indicate the error.

Caution

Large data reads that are 4K (4096 bytes), or exact multiples
of 4K, will pad the remaining portion of the read buffer with
zeros when the data transferred does not completely fill the
buffer. A data read that is not a multiple of 4K, however, will
not pad the read buffer with zeros.

See Also

create, dup, fentl, ioctl, locking, open, pipe; termio in Section 6.

1192192

2-124 System Calls
shrk

sbrk - change data segment space allocation

Format

char °*sbrk (incr)
int incr;

Description
See brk.

System Calls 2-125

semctl

Name

semetl - semaphore control operations

Format

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, cmd;

int sempum;

union semun f

int val;
struct semid_ds °buf;
ushort ‘array;

} arg:

Description

The semectl system call provides a variety of semaphore
control operations as specified by cmd.

The following cmds are executed with respect to the
semaphore specified by semid and semnum:
GETVAL Return the value of semval (see intro). {READ}

SETVAL Set the value of semval to arg.val. {ALTER} When this
cmd is successfully executed, the semadj value
corresponding to the specified semaphore in all processes is

cieared.
GETPID Return the value of sempid. {READ}
GETNCNT Return the value of semncnt. {READ}
GETZCNT Return the value of semzent. {READ}

1192192

2-126 System Calls

semctl

The following cmds return and set, respectively, every semval
in the set of semaphores.

GETALL Place semvals into array pointed to by arg.array. {READ)

SETALL Set semvals according to the array pointed to by arg.array.
{ALTER} When this cmd is successfully executed, the
semad values corresponding to each specified semaphore in
all processes are cleared.

The following cmds are also available:

IPC_STAT Place the current value of each member of the data
Structure associated with semid into the structure painted to
by arg.buf. The contents of this structure are defined in
intro. {READ}

IPC_SET Set the value of the following members of the data
structure asociated with semid to the corresponding value
found in the structure pointed to by arg.buf.

sem_perm.uid
sem_perm.gid
sem_perm.mode /* oniy low 9 bits */

This cmd can only be executed by a process that has an
effective user ID equal to either that of super-user or to the

value of sem_perm.uid in the data structure associated with
semid.

IPC_RMID Remove the semaphore identifier specified by semid from the
system and destroy the set of semaphores and data structure
associated with it. This cmd can only be executed by a
process that has an effective user ID equal to either that of
super-user or to the value of sem_perm.uid in the data
structure associated with semid.

semetl will fail if one or more of the following are true:

[EINVAL] Semid is not a valid semaphore identifier.
[EINVAL} Semnum is less than zero or greater than sem_nsems.
[EINVAL] Cmd is not a valid command.

System Calls

2-121

semctl

[EACCES}
[ERANGE]

[EPERM]

[EFAULT]

Returns

Operation permission is denied to the calling process (see intro).

Cmd is SETVAL or SETALL and the value to which semval
is to be set is greater than the system imposed maximum.

Cmd is equal to IPC_RMID or IPC_SET and the effective
user 1D of the calling process is not equal to that of
super-user and it is not equal to the value of sem_perm.uid
in the data structure associated with semid.

Arg.buf points to an illegal address.

Upon successful completion, the value returned depends on

cmd as follows:

GETVAL
GETPID
GETNCNT
GETZCNT
All others

The value of semval.
The value of sempid.
The value of semncnt.
The value of semzcnt.
A value of 0.

Otherwise, a value of -1 is returned and errno is set to

indicate the error.

See Also

intro, semget, semop.

1192192

2-128 System Calls

semget

semget - get set of semaphores

Format

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semtig)
key_t key;
int nsems, semflig;

Description

The semget system call returns the semaphore identifier
associated with key.

A semaphore identifier and associated data structure and set
containing nsems semaphores (see intro) are created for key if
one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a semaphore identifier
associated with it, and (semflg & IPC_CREAT) is “true.”

Upon creation, the data structure associated with the new
semaphore identifier is initialized as follows:

Sem_perm.cuid, sem_perm.uid, sem_perm.cgid, and
sem_perm.gid are set equal to the effective user ID and
effective group ID, respectively, of the calling process.

The low-order 9 bits of sem_perm.mode are set equal to
the low-order 9 bits of semfig.

Sem_nsems is set equal to the value of nsems.

Sem_otime is set equal to O and sem_ctime is set equal
to the current time.

System Calls 2-129

semget

semget will fail if one or more of the following are true:

[EINVAL] Nsems is either less than or equal to zero or greater than
the system-imposed limit.

[EACCES]) A semaphore identifier exists for key, but operation
permission (see intro) as specified by the low-order 9 bits
of semflg would not be granted.

[EINVAL] A semaphore identifier exists for key, but the number of
semaphores in the set associated with it is less than nsems
and nsems is not equal to zero.

[ENGENT] A semaphore identifier does not exist for key and (semflg &
IPC_CREAT) is “false.”
[ENOSPC] A semaphore identifier is to be created but the

system-imposed limit on the maximum number of allowed
semaphore identifiers system wide would be exceeded.

{ENOSPC} A semaphore identifier is to be created but the
system-imposed limit on the maximum number of allowed
semaphores system wide would be exceeded.

[EEXIST] A semaphore identifier exists for key but {{semflg &
IPC_CREAT) and (semflg & IPC_EXCL)) is “true.”

Returns

Upon successful completion, a non-negative integer, namely
a semaphore identifier, is returned. Otherwise, a value of -1
is returned and ermo is set to indicate the error.

See Also

intro, semctl, semop.

1192192

2-130 System Calls

semop

Name

semop - semaphore operations

Format

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;

struct sembuf **sops;

int nsops;

Description

The semop system call is used to automically perform an array
of semaphore operations on the set of semaphores
associated with the semaphore identifier specified by semid.
Sops is a pointer to the array of semaphore-operation
structures. Nisops is the number of such structures in the
array. The contents of each structure include the following
members:

short sem_num /* semaphore number i
short sem_op /® semaphore operation)
short sem_flg /* operation flags */

Each semaphore operation specified by sem_op is performed
on the corresponding semaphore specified by semid and
sem_num.

System l;alls 2-131

semop

Sem_op specifies one of three semaphore operations as follows:

If sem_op is a negative integer, one of the following will
occur: {ALTER}

1192192

If semval (see intro) is greater than or equal to the
absolute value of sem_op, the absolute value of
sem_op is subtracted from semval. Also, if (sem_flg
& SEM_UNDO) is “true,” the absolute value of sem_op
is added to the calling process’s semadj value (see
exit) for the specified semaphore. All processes
suspended waiting for semval are rescheduled.

If semval is less than the absolute value of sem_op
and (sem_flg & IPC-NOWAIT) is “true,” semop will
return immediately.

If semval is less than the absolute value of sem_op
and (sem_flg & IPC_NOWAIT) is “false,” semop will
increment the semncnt associated with the specified
semaphore and suspend execution of the calling
process until one of the following conditions occur:

Semval becomes greater than or equal to the
absolute value of sem_op. When this occurs,
the value of semncnt associated with the
specified semaphore is decremented, the
absolute value of sem_op is subtracted from
semval and, if (sem_flg & SEM_UNDO) is “true,”
the absolute value of sem_op is added to the
calling process’s semadj value for the specified
semaphore, and all the operations are tried again.

The semid for which the calling process is
awaiting action is removed from the system
(see semetl). When this occurs, ermo is set equal
to EIDRM, and a value of -1 is returned.

2-132

System Calls

semop

The calling process receives a signal that is to
be caught. When this occurs, the value of
semncnt associated with the specified
semaphore is decremented, and the calling
process resumes execution in the manner
prescribed in signal.

If sem_op is a positive integer, the value of sem_op is
added to semval/ and, if (sem_flg & SEM_UNDO) is “true,”
the value of sem_op is subtracted from the calling
process’s semadj value for the specified semaphore.

{ALTER}

If sem_op is zero, one of the following will occur: {READ}

If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem_fig &
IPC_NOWAIT) is “true,” semop will return immediately.

If semval is not equal to zero and (sem_flg &
IPC_NOWAIT) is “false,” semop will increment the
semzcnt associated with the specified semaphore
and suspend execution of the calling process until
one of the following occurs:

Semval becomes zero, at which time the value
of semzcnt associated with the specified
semaphore is decremented.

The semid for which the calling process is
awaiting action is removed from the system.
When this occurs, ermo is set equal to EIDRM,
and a value of -1 is returned.

The calling process receives a signal that is to
be caught. When this occurs, the value of
semzcnt associated with the specified
semaphore is decremented, and the calling
process resumes execution in the manner
prescribed in signal.

System Calls 2-133

semop

semop will fail if one or more of the following are true for any
of the seamphore operations specified by sops:

[EINVAL] Semid is not a valid semaphore identifier.

[EFBIG) Sem_num is less than zero or greater than or equal to the number
of semaphores in the set associated with semid.

[E2BIG) Nsops is greater than the system-imposed maximum.

{EACCES] Operation permission is denied to the calling process (see intro).

[EAGAIN] The operation would result in suspension of the calling process but
(sem_fig & IPC_NOWAIT) is “true.”

[ENOSPC] The limit on the number of individual processes requesting a
SEM_UNDO would be exceeded.

[EINVAL] The number of individual semaphores for which the calling process
requests a SEM_UNDO would exceed the limit.

[ERANGE] An operation would cause a semval to overflow the
system-imposed limit.

[ERANGE] An operation would cause a semadj value to overflow the
system-imposed limit.

[EFAULT] Sops points to an illegal address.

Upon successful completion, the value of sempid for each
semaphore specified in the array pointed to by sops is set
equal to the process ID of the calling process.

Returns

If semop returns due to the receipt of a signal, a value of -1 is
returned to the calling process and errno is set to EINTR. If it
returns due to the removal of a semid from the system, a
value of -1 is returned and ermo is set to EIDRM.

Upon successful completion, the value of zero is returned.
Otherwise, a value of -1 is returned and errno is set to indi-
cate the error.

1192192

2-134 System Calls

semop

See Also

exec, exit, fork, intro, semctl, semget.

System Calls 2-135

setgid

Name
setgid - set group ID

Format

int setgid (gid)
int gid;

Description

setgid is used to set the real group ID and effective group ID
of the calling process.

if the effective user ID of the calling process is super-user,
the real group ID and effective group ID are set to gid.

if the effective user ID of the calling process is not
super-user, but its real group ID is equal to gid, the effective
group ID is set to gid.

If the effective user ID of the calling process is not
super-user, but the saved set-group ID from exec is equal to
gid, the effective group ID is set to gid.

setgid will fail if the real group ID of the calling process is not
equal to gid and its effective user ID is not super-user. [EPERM]

Returns

Upon successful completion, a value of O is returned.
Otherwise, a value of -1 is returned and errmo is set to
indicate the error.

See Also

getuid, intro, setuid.

1192192

2-136 ' System Calls

setpgrp

Name
setpgrp - set process group ID

Format

int setpgrp ()

Description

Setpgrp sets the process group ID of the calling process to
the process ID of the calling process and returns the new
process group ID.

Returns
Setpgrp returns the value of the new process group ID.

See Also

exec, fork, getpid, intro, kill, signal.

System Calls ' 2-1317

setuid

Name

setuid - set user 1D

Format

int setuid (uid)
int uid;

Description

setuid is used to set the real user ID and effective user ID of
the calling process.

If the effective user ID of the calling process is super-user,
the real user ID and effective user ID are set to uid.

If the effective user ID of the calling process is not
super-user, but its real user ID is equal to uid, the effective
user ID is set to u/d.

If the effective user ID of the calling process is not
super-user, but the saved set-user ID from exec is equal to
uid, the effective user ID is set to uid.

setuid will fail if the real user ID of the calling process is not
equal to uid and its effective user ID is not super-user
[EPERM], or if the uid is out of range [EINVAL].

Returns

Upon successful completion, a value of O is returned.
Otherwise, a value of -1 is returned and errmo is set to
indicate the error.

See Also

getuid, intro.

1192192

2-138 System Calls

shmetl

Name

shmetl - shared memory control operations

Format

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmet! (shmid, cmd, buf)
int shmid, cmd;
struct shmid_ds *buf;

Description

The shmetl system call provides a variety of shared memory

control operations as specified by cmd. The following cmds
are available:

IPC_STAT Place the current value of each member of the data
Structure associated with shmid into the structure pointed to

by buf. The contents of this structure are defined in intro.
{READ}

IPC_SET Set the value of the following members of the data
structure associated with shmid to the corresponding value
found in the structure pointed to by buf.

shm_perm.uid
shm_perm.gid
shm_perm.mode /* only low 9 bits */

This cmd can only be executed by a process that has an
effective user ID equal to either that of super-user or to the

value of shm_perm.uid in the data structure associated with
shmid.

System Calls 2-139

shmetl

IPC_RMID Remove the shared memory identifier specified by shmid
from the system and destroy the shared memory segment
and data structure associated with it. This cmd can only be
executed by a process that has an effective user 1D equal to
either that of super-user or to the value of shm_perm.uid in

the data structure associated with shmid.

shmetl will fail if one or more of the following are true:

[EINVAL] shmid is not a valid shared memory identifier.

[EINVAL]} Cmd is not a valid command.

[EACCES] Cmd is equal to IPC_STAT and {READ} operation
permission is denied to the calling process (see intro).

[EPERM] Cmd is equal to IPC_RMID or IPC_SET and the effective

user ID of the calling process is not equal to that of
super-user and it is not equal to the value of shm_perm.uid
in the data structure associated with shmid.

[EFAULT] Buf points to an illegal address.

Returns

Upon successful completion, a value of O is returned.
Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

See Also

intro, shmget, shmop.

1192192

2-140 System Calls

shmget

shmget - get shared memory segment

Format

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmiig)
key_t key:
int size, shmfig;

Description

The shmget system call returns the shared memory identifier
associated with key.

A shared memory identifier and associated data structure
and shared memory segment of size size bytes (see intro) are
created for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a shared memory identifier
associated with it, and (shmflg & IPC_CREAT) is “true.”

Upon creation, the data structure associated with the new
shared memory identifier is initialized as follows:

Shm_perm.cuid, shm_perm.uid, shm_perm.cgid, and
shm_perm.gid are set equal to the effective user ID and
effective group ID, respectively, of the calling process.

The low-order 9 bits of shm_perm.mode are set equal to
the low-order 9 bits of shmflg. Shm_segsz is set equal to
the value of size.

Shm_ipid, shm_nattch, shm_atime, and shm_dtime are set
to O.

Shm_ctime is set equal to the current time.

System Calls 2-141

shmget

shmget will fail if one or more of the following are true:

[EINVAL) Size is less than the system-imposed minimum or greater than the
system-imposed maximum.

[EACCES] A shared memory identifier exists for kéy but operation permission
(see intro) as specified by the low-order 9 bits of shmflg would
not be granted.

[EINVAL] A shared memory identifier exists for key but the size of the
segment associated with it is less than size and size is not equal
to zero.

[ENOENT] A shared memory identifier does not exist for key and (shmflg &
IPC_CREAT) is “false.”

[ENOSPC) A shared memory identifier is to be created but the

system-imposed limit on the maximum number of allowed shared
memory identifiers system wide would be exceeded.

[ENOMEM] A shared memory identifier and associated shared memory segment
are to be created but the amount of available physical memory is
not sufficient to fill the request.

[EEXIST] A shared memory identifier exists for key but ((shmflg &
IPC_CREAT) and {shmflg & IPC_EXCL)) is “true.”

Returns

Upon successful completion, a non-negative integer, namely
a shared memory identifier, is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

See Also

intro, shmetl, shmop.

11221Q7

2-142 System Calls

shmop

shmop - shared memory operations

Format

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char °*shmat (shmid, shmaddr, shmflg)
int shmid;

char *shmaddr

int shmfig;

int shmdt (shmaddr)
char *shmaddr

Description

shmat attaches the shared memory segment associated with
the shared memory identifier specified by shmid to the data
segment of the calling process. The segment is attached at
the address specified by one of the following criteria:

If shmaddr is equal to zero, the segment is attached at
the first available address as selected by the system.

If shmaddr is not equal to zero and (shmflg & SHM_RND) is
“true,” the segment is attached at the address given by
(shmaddr - (shmaddr modulus SHMLBA)).

If shmaddr is not equal to zero and (shmflg & SHM_RND) is

“false,” the segment is attached at the address given by
shmaddr.

The segment is attached for reading if (shmflg &
SHM_RDONLY) is “true” {READ}, otherwise it is attached for
reading and writing {READ/WRITE}.

System Calls

2-143

shmop
-[ENOMEM]

[EINVAL]

[EINVAL]

[EMFILE]

[EINVAL]

[EINVAL)

Returns

The available data space is not large enough to
accommodate the shared memory segment.

Shmaddr is not equal to zero, and the value of (shmaddr -
{shmaddr modulus SHMLBA)) is an illegal address.

Shmaddr is not equal to zero, (shmfly & SHM_RND) is
“false,” and the value of shmaddr is an illegal address. With
the initial resease, this value is 64K. This value can be
changed by customizing the CENTIX kernel.

The number of shared memory segments attached to the
calling process would exceed the system-imposed limit.

shmdt detaches from the calling process’s data segment
the shared memory segment located at the address specified
by shmaddr.

shmdt will fail and not detach the shared memory segment
if shmaddr is not the data segment start address of a
shared memory segment.

Upon successful completion, the return value is as follows:

shmat returns the data segment start address of the
attached shared memory segment.

shmdt returns a value of O.

Otherwise, -1 is returned and erme is set to indicate the error.

Caution

Processes that share a segment of memory on an
Application Processor must be executing on that AP.
Memory cannot be shared across Application Processors.

See Also

exec, exit, fork, intro, shmectl, shmget.

1182192

2-144 System Calls

signal

signal - specify what to do upon receipt of a signal

Format

#include <signal.h>

int (*signal (sign, func))()
int sig;
void (*tunc)();

Description

The signal system call allows the calling process to choose
one of three ways in which it is possible to handle the
receipt of a specific signal. Sig specifies the signal and func
specifies the choice.

Sig can be assigned any one of the following except SIGKILL:

SIGHUP 01 Hangup.

SIGINT 02 Interrupt.

siGauit : 03 Quit.

SIGILL 04 Illegal instruction (not reset when caught).
SIGTRAP 05 Trace trap (not reset when caught).
siGloT 06 10T instruction.

SIGEMT 07 EMT instruction.

SIGFPE 08 Floating point exception.

SIGKILL 09 Kill {cannot be caught or ignored).
SIGBUS 10 Bus error.

SIGSEGV " Segmentation violation.

SIGSYS 12 Bad argument to system call.

SIGPIPE 13 Write on a pipe with no one to read it.
SIGALRM 14 Alarm clock.

SIGTERM 15 Software termination signal.

SIGUSR1 16 User-defined signal 1.

SIGUSR2 17 User-defined signal 2.

SIGCLD 18 Beath of a child (reset when caught).
SIGPWR 19 Power fail (not reset when caught).

See below for the significance of the asterisk {(*)in the above list.

System Calls

2-145

signal

Func is assigned one of three values: SIG_DFL, SIG_IGN, or a
function address. The actions prescribed by these values are

as follows:

SIG_DFL

SIG_IGN

function address

1192192

Terminate process upon receipt of a signal.

Upon receipt of the signal sig, the receiving process is to be
terminated with all of the consequences outlined in exit. In
addition a “core image” will be made in the current working
directory of the receiving process if sig is one for which an
asterisk appears in the above list and the following
conditions are met:

The effective user ID and the read user 1D of the
receiving process are equal.

An ordinary file named core exists and is writable or
can be created. If the file must be created, it will
have the following properties:

A mode of 0666 modified by the file creation
mask (see umask(2))

A file owner ID that is the same as the
effective user ID of the receiving process.

A file group ID that is the same as the
effective group ID of the receiving process.

Ignore signal.

The signal sig is to be ignored. Note that the signal
SIGKILL cannot be ignored.

Catch signal.

Upon receipt of the signal sig, the receiving process is to
execute the signal-catching function pointed to by func. The
signal number sig will be passed as the only argument to
the signal-catching function. Before entering the
signal-catching function, the value of func for the caught
signal will be set to SIG_DFL unless the signal is SIGILL.
SIGTRAP, or SIGPWR.

2-146 System Calls

signal

Upon return from the signal-catching function, the receiving
process will resume execution at the point it was
interrupted.

When a signal that is to be caught occurs during a read, a
write, an open, or an ioctl system call on a slow device
{like a terminal; but not a file), during a pause system call,
or during a wait system call that does not return
immediately due to the existence of a previously stopped or
zombie process, the signal catching function will be
executed and then the interrupted system call may return a
-1 to the calling process with errno set to EINTR. Note
that the signal SIGKILL cannot be caught.

A call to signal caricels a pending signal sig except for a
pending SIGKILL signal.

signal will fail if sig is an illegal signal number, including
SIGKILL. [EINVAL].

Returns

Upon successful completion, signal returns the previous value
of func for the specified signal sig. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Caution

Two other signals that behave differently than the signals
described above exist in this release of the system. They are:

SIGCLD 18 Death of a child (reset when caught).
SIGPWR 19 Power fail (not reset when caught).

There is no guarantee that, in future release of the CENTIX
system, these signals will continue to behave as described
below; they are included only for compatibility with some
versions of the UNIX system. Their use in new programs is
strongly discouraged.

System Calls

2-147

signal

For these signals, func is assigned one of three values:

SIG_DFL, SIG_IGN, or a function address. The actions prescribed

by these values are as follows:

SIG_DFL

SIG_IGN

function address

Ignore signal.
The signal is to be ignored.
Ignore signal.

The signal is to be ignored. Also, if sig is SIGCLD, the
calling process’s child processes will not create zombie
processes when they terminate; see exit.

Catch signal.

If the signal is SIGPWR, the action to be taken is the
same as that described above for func equal to function
address. The same is true if the signal is SIGCLD except
that while the process is executing the signal-catching
function, any received SIGCLD signals will be queued and
the signal-catching function will be continually reentered
until the queue is empty.

The SIGCLD affects two other system calls (wait, and exit) in
the following ways:

wait

exit

1192192

If the func value of SIGCLD is set to SIG_IGN and a wait is

executed, the wait will block until all of the calling process’s child

processes terminate; it will then return a value of -1 with errno
set to ECHILD.

If in the exiting process’s parent process the func value of
SIGCLD is set to SIG_IGN, the exiting process will not create a
zombie process.

2-148 ‘ System Calls

signal

kKnown Problems

A user process cannot catch a signal caused by an invalid
memory reference during a partially completed instruction.
Thus SIGSEGV can be ignored or be allowed to terminate the
process, but cannot be caught. This bug is due to a
temporary implementation problem.

See Also

kill in Section 1; kill, pause, ptrace, wait, setjmp in Section 3.

System Calls 2-143

stat

Name

stat, fstat - get file status

Format

#include <sys/types.h>
#include <sys/stat.h>

int stat (path, buf)
char °path;
struct stat °buf;

int fstat (fi/ldes, buf)
int fiildes;
struct stat °*buf;

Description

Path points to a path name naming a file. Read, write, or
execute permission of the named file is not required, but all
directories listed in the path name leading to the file must be
searchable. stat obtains information about the named file. stat
works with all files, but does not obtain information peculiar
to PILF files (see syslocal; see pilf in Section 5).

Similarly, fstat obtains information about an open file known
by the file descriptor fildes, obtained from a successful open,
creat, dup, fentl, or pipe system call.

Buf is a pointer to a stat structure into which information
about the file is placed.

The contents of the structure pointed to by buf include the
following members:

ushort st_mode; J*File mode; see mknod*°/
ino_t st_ino; /*1-node number*/
dev__t st_dev; j*ID of device containing*/

/*a directory entry for this file*/

1192192

2-150

System Calls

stat

dev_t

short

ushort
ushort
off_t

time_t
time_t
time__t

st_atime
st_mtime

st_ctime

st_rdev,;

st_nlink;
st_uid;
st_gid;
st_size;
st_atime;
st_mtime;
st_ctime:

/1D of device*/

/*This entry Is defined only for*/
/*character special or block*/
/*special tiles*/

/ *Number of finks*/

/*User 1D of the file's owner*/
/*Group ID of the file's group*/
/*Flle size In bytes*/

/°Time of last access*/

/*Time of last data modification®*/
/[*Time of last file status change*/
/*Times measured In seconds since*/
/°00:00:00 GMT, Jan. 1, 1970°/

Time when file data was last accessed. Changed by the
foliowing system calls: creat, mknod, pipe, and read.

Time when data was last modified. Changed by the following
system calls: creat, mknod, pipe, and write.

Time when file status was first changed. Changed by the
following system calls: chmod, chown, creat, link, mknod,
pipe, unlink, and write.

Note that when recreating a file that already exists and the
existing file is more than zero bytes in length, only the
modification time (sz_mtime) and the file status time
(st_ctime) are updated. The file data access time is not
updated since this field in the buffer changes only when
data from the file is actually accessed. If you recreate an
existing file that is zero bytes in length, the modification
time, file status time, and file data access time will not be

updated.

The stat call fails if one or more of the following are true:

[ENOTDIR]
(ENOENT)
[EACCES]
[EFAULT)

A component of the path prefix is not a directory.
The named file does not exist.
Search permission is denied for a component of the path prefix.

Buf or path points to an invalid address.

System Calls 2-151

stat

The fstat call fails if one or more of the following are true:
{EBADR} Fildes is not a valid open file descriptor.

[EFAULT) Buf points to an invalid address.

Returns

Upon successful completion, a value of O is returned.
Otherwise, a value of -1 is returned and ermno is set to
indicate the error.

See Also

chmod, chown, creat, link, mknod, pipe, read, syslocal, time,
unlink, utime, write.

1192192

2-152 System Calls

stime

stime - set time

Format

int stime (tp)
long “tp;

Description

The stime system call sets the system’s idea of the time and
date. 7p points to the value of time as measured in seconds
from 00:00:00 GMT, January 1, 1970.

stime fails if:

[EPERM] The effective user ID of the calling process is not super-user.

Returns

Upon successful completion, a value of O is returned.
Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

See Also

time.

System Calls 2-153

swrite

swrite - synchronous write on a file

Format

int swrite (fildes, buf, nbyte)
int fildes;

char “buf;

unsigned nbyte;

Description

The swrite system call has the same purpose and conventions
as write. The two differ solely in the handling of disk
input/output. swrite, unlike write, does not give a normal
return before physical output is complete. A program that
executes an swrite can assume that the data is on the disk,
not waiting in a buffer pool.

See Also

creat, dup, Iseek, open, pipe, write.

1192192

2-154 ' System Calls

sync

sync - update super-block

Format

void sync ()

Description

The sync system call causes all information in memory that
should be on disk to be written out. This includes modified
super blocks, modified i-nodes, and delayed block 1/0.

It should be used by programs which examine a file system,
for example fsck and df. It is mandatory for a boot.

The writing, although scheduled, is not necessarily complete
upon return from sync.

System Calls 2-155

syslocal

syslocal - special system requests

Format
#include <syslocal.h>
int syslocatl (cmd{, arg] ...)
int cmd;

Description

The syslocal system call executes certain special system calls.
The specific call is indicated by the first argument.

System Type
int sysiocal (SYSL_SYSTEM);
Return SYSL_XE for the XE 500.

Superblock Synchronization

int sysiocal (SYSL_RESYNC, devnum)
short devnum

Preserve current contents of the superblock. Devnum
specifies the file system: the high order byte contains the
major device number of the character special device; the low
order byte contains the minor device number. The superblock
is reread, replacing the current in-RAM copy of the
superblock. Both actions have the effect of preventing the
system from writing out the superblock, undoing, for
example, the effects of file system repair.

Application Processor Number
syslocal {SYSL_APNUM)

Return the processor number of the Application Processor on
which this process is executing.

1192192

2-156 System Calls

syslocal

Total Application Processors

sysiocal (SYSL_TOTAPS)

Return the total number of Application Processors currently
running.

Console Control

sysloca! (SYSL_CONSOLE, typs, action)
int type, action;

Manage Application Processor console. Affects AP on which
this process is running. Type specifies the type of action,
action the specific action. Values of type are: O to query
console status, 1 to associate the terminal with a terminal, 2
to control kernel prints, and 3 to control entry to the kernel
debugger.

If type is O and action is 1, the return value indicates the
terminal association of the console: a positive value is the
terminal number of the associated terminal; -1 indicates that
no terminal is associated with the console.

If type is O and action is 2, the return value gives the status
of kernel diagnostic prints: O for off, 1 for on.

If type is O and action is 3, the return value tells whether
entry to the kernel debugger is enabled: O for no, 1 for yes.

If type is O and action is 4, the contents of the console’s
circular buffer are written to standard output.

If type is 1, action indicates a new terminal association for
the console. If action is 0, terminal association is removed. If
action is -1, the console is associated with the UART kludge
port. If action is positive, it must be the file descriptor for an
open terminal special file; the console is associated with that
terminal. If the terminal is under window management, then
the file descriptor refers to one of the windows in that
terminal; the console is associated with that particular
window. A return value of O indicates a successful _
association, a -1 indicates an unsuccessful association, with
the error value set in ermo.

System Calls 2-157

syslocal

If type is 2, action controls diagnostic prints: O disables, any
other value enables.

If type is 3, action controls access to the kernel debugger: O
disables, 1 enables, and any other value must be a process
group whose terminal/window is to have kernel prints
enabled. When access to the kernel debugger is enabled,
entering a CTRL-B or CODE-B on the console terminal enters
the kernel debugger.

Maximum Number of Users
syslocal (SYSL_MAXUSERS)

Returns maximum number of concurrent logins on the
processor on which this process is executing.

PILF File Status

Note that the following calls must be compiled with the -D
PILF option.

#include <prof.h>
#inctude <stat.h>
#include <types.h>

syslocal (SYSL_PSTAT, name, st_buf)
char °“name
struct p_stat °st_buf;

sys!ocal(SYSL_PFSTAT. ftd, st_but)
int fd;
struct p_stat *st_buf;:

struct p_stat

{

dev_t st_dev;
ino_t st_ino;
ushort st_mode;
short st_niink;

ushort st_uid;
ushort st_gid;
dev_t st_rdev;

1192192

2-158 System Calls

syslocal
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;
char st_cluster;

}

These calls work exactly like stat and fstat (see stat), except
that the status structure has one additional field, st_cluster,
which gives the cluster size exponent of the file.

Get Process's Cluster Size Exponent
syslocal (SYSL_GETCLUS)

syslocal (SYSL_SETCLUS, cluster)
int cluster;

A process’s cluster size exponent sets the cluster size
exponent of any files the process creates on PILF file
systems. A process’s cluster size exponent can be -1,
indicating that the new file's cluster size exponent should be
taken from the file system’s default cluster size exponent. A
new process inherits its parent’s exponent.

syslocal SYSL_GETCLUS returns a posifive value if a previous
SYSL_SETCLUS was issued; otherwise, -1 is returned.

syslocal SYSL_SETCLUS sets the process’s cluster size
exponent to cluster.

Caution

Kernel prints and the kernel debugger syslocal calls that
support them may disappear without notice. Use of kernel
prints degrades system performance. Use of the kernel
debugger halts normal processing.

See Also

apnum, fsck in Section 1; openi; pilf in Section 5: console in
Section 6.

System Calls 2-159

time

Name

time - get time.

Format

long time((long °) 0)

long time (tloc)

long *tloc:
Description

The time system call returns the value of time in seconds
since 00:00:00 GMT, January 1, 1970.

If tloc (taken as an integer) is non-zero, the return value is
also stored in the location to which tloc points.

[EFAULT) time will fail if t/oc points to an illegal address.

Returns

Upon successful completion, time returns the value of time.
Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

See Also

stime.

1192192

2-160 System Calls

times

Name

times - get process and child process times

Format

#include <sys/types.h>
#include <sys/times.h>

long times (butfer)
struct tms ‘*buffer;

Description

The times system call fills the structure indicated by buffer
with time-accounting information. The structure takes the
following form:

struct tms {
time_t tms_utime;
time_t tms_stime;
time_t tms_cutime;
time_t tms_cstime;

).

The time accounting information comes from the calling
process and each of its terminated child processes for which
it has executed a wait. Times are in 60ths of a second.

Tms_utime is the CPU time used while executing instructions
in the user space of the calling process.

System Calls 2-161

times

Tms_stime is the CPU time used by the system on behalf of
the calling process.

Tms_cutime is the sum of the tms_utimes and tms_cutimes of
the child processes.

Tms_cstime is the sum of the tms_stimes and tms_cstimes of
the child processes.

The times call will fail if

[EFAULT]) Buffer points to an illegal address.

Returns

Upon successful completion, times returns the elapsed real
time, in 60ths of a second, since an arbitrary point in the
past (such as system start-up time). This point does not
change from one invocation of times to another. If times fails,
a -1 is returned and ermo is set to indicate the error.

See Also

exec, fork, time, wait.

1192192

2-162 System Calls

ulimit

ulimit - get and set user limits

Format

long ulimit (cmd, newlimit)
int cmd;
long newlimit;

Description

This system call provides for control over process limits. The
cmd values available are:

1 Get the file size fimit of the process. The limit is in units of
512-byte blocks and is inherited by child processes. Files of any
size can be read.

2 Set the file size limit of the process to the value of newlimit. Any
process may decrease this limit, but only a process with an
effective user ID of super-user may increase the limit. ulimit will
fail and the limit will be unchanged if a process with an effective
user ID other than super-user attempts to increase its file size
limit. [EPERM]

3 Get the maximum possible break value. See brk.

Returns

Upon successful completion, a non-negative value is
returned. Otherwise, -1 is returned and ermo is set to indicate
the error.

See Also

brk, write.

System Calls 2-163

umask

Name

umask - set and get the file creation mask

Format

int umask (cmask)
int cmask;

Description

The umask system call sets the process file mode creation
mask to cmask. Only the low-order 9 bits of cmask and the
file mode creation mask are used.

Returns

The previous value of the file mode creation mask is returned.

See Also

mkdir, sh in Section 1; chmod, creat, mknod, open.

1192192

2-164 System Calls

umount

umount - unmount 3 file system

Format

int umount (spec)
char *spec;

Description

The umount system call requests that a previously mounted
file system contained on the block special device identified
by spec be unmounted. Spec is a pointer to a path name.
After unmounting the file system, the directory upon which
the file system was mounted reverts to its ordinary
interpretation.

umount may be invoked only by the super-user.
umount fails if one or more of the following are true:

[EPERM] The process’s effective user ID is not super-user.
[ENXIO) Spec does not exist.

[ENOTBLK] Spec is not a block special device.

[EINVAL] Spec is not mounted.

[EBUSY] A file on spec is busy.

[EFAULT) Spec points to an illegal address.

Returns

Upon successful completion, a value of O is returned.
Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

See Also

mount.

System Calls 2-165

uname

Name

uname - get name of current CENTIX system

Format

#include <sys/utsname.h>

int uname (name)
struct utsname °“nama;

Description

uname stores information identifying the current CENTIX
system in the structure pointed to by name.

uname uses the structure defined in <sys/utsname.h> whose
members are:

char sysname[3};
char nodenamef{3];
char release{9];
char version[9];
char machine[9];

uname returns a null-terminated character string naming the
current CENTIX system in the character array sysname.
Similarly, nodename contains the name that the system is
known by on a communications network. Release and version
further identify the operating system. Machine contains a
standard name that identifies the hardware that the CENTIX
system is running on.

[EFAULT] uname will fail if name points to an invalid address.

1192192

2-166 System Calls

uname

Returns

Upon successful completion, a non-negative value is
returned. Otherwise, -1 is returned and ermo is set to indicate
the error.

See Also

uname in Section 1.

System Calls 2-167

unlink

Name

unlink - remove directory entry

Format

int unlink (path)
char "path;

Description

The unlink system call removes the directory entry named by
the path name pointed to by path.

The named file is unlinked unless one or more of the
following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENDENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] Write permission is denied on the directory containing the
link to be removed.

[EPERM] The named file is a directory and the effective user ID of
the process is not super-user.

[EBUSY] The entry to be unlinked is the mount point for a mounted
file system.

[ETXTBSY] The entry to be unlinked is the last link to a pure procedure
(shared text) file that is being executed.

[EROFS] The directory entry to be unlinked is part of a read-only file
system.

[EFAULT] Pathpoints outside the allocated address space of the process.

When ail links to a file have been removed and no process
has the file open, the space occupied by the file is freed and
the file ceases to exist. If one or more processes have the
file open when the last link is removed, the removal is
postponed until all references to the file have been closed.

1192182

2-168 System Calls

unlink

Returns

Upon successful completion, a value of O is returned.
Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

See Also

rm in Section 1; close, link, open.

System Calls 2-169

ustat

Name

ustat - get file system statistics

Format

#include <sys/types.h>
#include <ustat.h>

int ustat (dev, buf)
int dev,
struct ustat “buf;

Description

The ustat system call returns information about a mounted file
system. Dev is a device number that identifies the device
containing a mounted file system. Buf is a pointer to a ustat
structure that includes the following elements:

daddr__t f_tfree; /*Total free blocks*/

no_t t_tinode: | *Number of free i-nodes"/
char f_tname[6]: /*Filsys name"/

char t_tpack(68]; J*Filsys pack name*/

ustat fails if one or both of the following are true:

{EINVAL} Dev is not the device number of a device containing a
mounted file system.

[EFAULT]) Buf points outside the alocated address space of the process.

Returns

Upon successful completion, a value of O is returned.
Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

See Also

stat; fs in Section 4.

1192192

2-170 System Calls

utime

Name

utime - set file access and modification times

Format

#include <sys/types.h>
#include <user.h>
#include <ufs.h>

int utime (path, times)
char *path;
struct times *tm;

Description

Path points to a path name naming a file. The utime system
call sets the access and modification times of the named file.

If times is NULL, the access and modification times of the file
are set to the current time. A process must be the owner of
the file or have write permission to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a
utimbuf structure and the access and modification times are
set to the values contained in the designated structure. Only
the owner of the file or the Super-user may use utime this way.

The times in the following structure are measured in seconds
since 00:00:00 GMT, Jan. 1, 1970.

struct times {
time_t acc_time; /* access time /!
time_t mod_time; /* modification time *

System Calls 2-1Nn

utime

utime will fail if one or more of the following are true:

[ENOENT] The named file does not exit.

(ENOTDIR) A component of the path prefix is not a directory.

(EACCES]) Search permission is denied by a component of the path prefix.

[EPERM] The effective user 1D is not super-user and not the owner of the
file and times is not NULL.

[EACCES] The effective user ID is not super-user and not the owner of the
file and times is NULL and write access is denied.

[EROFS)] The file system containing the file is mounted read-only.

[EFAULT] Times is not NULL and points outside the process’s allocated
address space.

{EFAULT] Path points outside the process's allocated address space.

Returns

Upon successful completion, a value of O is returned.
Otherwise, a value of -1 is returned and errno is set to
indicate the error.

See Also

stat.

1192192

2-172 System Calls

wait

Name

wait - wait for a child process to stop or terminate

Format

int wait (stat_loc)
int *stat_loc;

int wait ((int *)0)

Description

The wait system call suspends the calling process until one of
the immediate children terminates or until a child that is being
traced stops because it has hit a break point. The call will
return prematurely if a signal is received: if a child process
stopped or terminated prior to the call on wait, return is
immediate.

If stat._Joc (taken as an integer) is non-zero, 16 bits of
information called status are stored in the low order 16 bits
of the location pointed to by stat_Joc. Status can be used to
differentiate between stopped and terminated child
processes. If the child process has terminated, status
identifies the cause of termination and passes useful
information to the parent. This is accomplished in the
following manner:

If the child process stopped, the high order 8 bits of
status contain the number of the signal that caused the
process to stop and the low order 8 bits are set equal to
0177.

If the child process terminated due to an exit call, the low
order 8 bits of status are zero and the high order 8 bits
contain the low order 8 bits of the arguments that the
child process passed to exit. See exit.

System Calls 2-113

wait
If the child process terminated due to a signal, the high
order 8 bits of status are zero and the low order 8 bits
contain the number of the signal that caused the

termination. In addition, if the low order seventh bit (for
example, bit 200) is set, a core image is produced.

If a parent process terminates without waiting for its child
processes to terminate, the parent process ID of each child
process is set to 1. This means that the initialization process
inherits the child processes. See intro.

wait fails and returns immediately if one or both of the
following are true:

[ECHILD] The calling process has no existing unwaited-for child
processes.

{EFAULT] Stat_loc points to an illegal address.

Returns

If wait returns due to receipt of a signal, a value of -1is
returned 1o the calling process and erme is set 1o EINTR. ¥f
wait returns due to a stopped or terminated child process,
the process ID of the child is returned to the calling process.
Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

Caution

SIGCLD (termination of a created process) affects wait. If the
func of SIGCLD is set to SIG_IGN (ignore signal) and a wait is
executed, the wait blocks until all created processes of the
calling process terminate. It then returns a value of -1 with
erro set to ECHILD.

See Also

exec, exit, fork, intro, pause, ptrace, signal.

1192192

2-174 System Calls

write

write - write on a file

Format

int write (fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

Description

Fildes is a file descriptor obtained from a creat, open, dup, fentl,
or pipe system calil.

The write system call attempts to write nbyte bytes from the
buffer pointed to by buf to the file associated with fildes.

On devices capable of seeking, the actual writing of data
proceeds from the position in the file indicated by the file
pointer. Upon return from write, the file pointer is incremented
by the number of bytes actually written.

On devices incapable of seeking, writing always takes place
starting at the current position. The value of a file pointer
associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file
pointer is set to the end of the file prior to each write.

write fails and the file pointer remains unchanged if one or
more of the following are true:

[EBADF] Fildes is not a valid file descriptor open for writing.

[EPIPE and An attempt is made to write to a pipe that is not open for
SIGPIPE signal] reading by any process.

[EFBIG) An attempt was made to write a file that exceeds the

process’s file size limit or the maximum file size. See ulimit.
[EFAULT] Buf points outside the process's allocated address space.
[EINTR) A signal was caught during the write system call.

System Calls 2-175

write

[ENOSPC] Additional blocks cannot be allocated to the file because the
file system has no free blocks or because a PILF file's
cluster size exceeds the size of the unallocated clusters.

[EDEADLOCK] A side effect of a previous locking call.

If a write requests that more bytes be written than there is
room for (that is, the ulimit or the physical end of a medium),
only as many bytes as there is room for are written. For
example, suppose there is space for 20 more bytes in a file
before reaching a limit. A write of 512 bytes will return 20.
The next write of a non-zero number of bytes results in a
failure return (except as noted below).

If the file being written is a pipe (or FIFQ), no partial writes
are permitted. Thus, the write fails if a write of nbyte bytes
exceeds a limit.

If the file being written is a pipe (or FIFO), and the
O_NDELAY flag of the file flag word is set, then a write to a
full pipe returns a count of O. Otherwise (O_NDELAY clear),
writes to a full pipe block until space becomes available.

Returns

Upon successful completion, the number of bytes actually
written is returned. Otherwise, -1 is returned and ermo is set
to indicate the error.

See Also

creat, dup, Iseek, locking, open, pipe.

1192192

Section 3 | 31

Library Functions
intro

Name

intro - introduction to libraries and subroutines

Description

This section describes functions found in various libraries
(other than those functions that directly invoke CENTIX
system primitives, which are described in Section 2). The
functions are divided into four major categories:

o The Standard C Library functions. These functions, along
with those in Section 2 and those in the Standard /O
Package (below), constitute the Standard C Library, libc.
The libc library is automatically loaded by the C compiler,
cc (see Section 1). The link editor Id (Section 1) searches
this library under the -lc option. Declarations for some of
these functions may be obtained from #include files
indicated on the appropriate pages.

o The Math Library functions. These functions constitute the
Math Library, libm. They are not automatically loaded by
the C compiler, c¢; however, the link editor searches this
library under the -Im option. Declarations for these
functions may be obtained from the #include file
<math.h>.

o The Standard 1/O Package functions. These functions are in
the library libc, mentioned earlier. Declarations for these
functions may be obtained from the #include file
<stdio.h>.

o Various specialized libraries. The files in which these
libraries are found are given on the appropriate pages.

Two groups of entries represent direct communication with
BTOS. Functions whose names begin with of (outside file
system) provide BTOS-style input/output. Functions whose
names begin with qu (queue) provide access to BTOS queue
management.

1192182

3-2 Library Functions

intro

For convenience, many of the functions in this section are
grouped under single headings. The following table lists all
functions in each of the above categories, along with the
entries under which the functions should be referenced.

Table 3-1 Library Functions
In the C Library:

Function Reference Description

ab4l a4l Convert between long integer and base-64
ASCH string.

abort abort Generate an 10T fault.

abs abs Return integer absolute value.

asctime ctime Convert date and time to string.

atof atof Convert ASCII string to floating-point number.

atof strtod Convert string to double-precision number.

atoi strtol Convert string to integer.

atol strtol Convert string to integer.

bsearch bsearch Binary search a sorted table.

calloc malloc Main memory allocator.

clock clock Report CPU time used.

crypt crypt Generate DES encryption.

ctime ctime Convert date and time to string.

dial dial Establish an out-going terminal line connection.

drand48 drand48 Generate uniformly distributed pseudo-random
numbers.

ecvt ecvt Convert floating-paint number to string.

edata end Last locations in programs.

encrypt crypt Generate DES encryption.

end end Last locations in programs.

Library Functions

33

intro
Table 3-1
Function
endgrent
endpwent
endutent
erand48

ermo
etext

fowt

fgetc
fgetgrent
fgetpwent
free

frexp

ftw

gevt

gete
getchar
getewd

getenv
getgrent
getgrgid
getgrnam
getlogin
getopt

getpass

1192192

Library Functions (Cont.)

Reference
getgrent
getpwent
getut
drand48

perror
end

ecvt

getc
getgrent
getpwent
malloc
frexp

ftw

ecvt

getc

getc
getcwd

getenv

getgrent
getgrent
getgrent
getlogin
getopt

getpass

Description

Close group file entry.
Close password file entry.
Close utmp file entry.

Generate uniformly distributed pseudo-random
numbers.

System error messages.

Last locations in programs.

Convert floating-point number to string.
Get character from a stream.

Get group file entry.

Get password file entry.

Main memory allocator.

Manipulate parts of floating-point numbers.
Walk a file tree.

Convert floating-point number to string.
Get character from a stream.

Get character from a stream.

Get the path-name of the current working
directory.

Return value for environment name.
Get group file entry.

Get group file id.

Get group file name.

Get login name.

Get option letter from argument vector.

Read a password.

3-4

Library Functions

intro
Table 3-1
Function
getpw
getpwent
getpwnam
getpwuid
getutent
getutid
getutline
getw
gmtime
gsignal
hcreate
hdestroy
hsearch
isalnum
isalpha
isascii
isatty
iscntrl
isdigit
isgraph
islower
isprint

ispunct

isspace

Library Functions (Cont.)

Reference
getpw
getpwent
getpwent
getpwent
getut
getut
getut
getc
ctime
ssignal
hsearch
hsearch
hsearch
ctype
ctype
ctype
ttyname
ctype
ctype
ctype
ctype
ctype
ctype

ctype

Description

Get name from UID.

Get password file entry.

Get password file name.

Get password file user id.

Access utmp file entry.

Access utmp file entry.

Access utmp file entry.

Get word from a stream.

Convert date and time to string.

Software signals.

Create hash tables.

Destroy hash tables.

Search hash tables.

Determine if a character is alphanumeric.
Determine if a character is alphabetic.
Determine if an integer is an ASCIl character.
Find name of a terminal.

Determine if a character is a control character.
Determine if a character is a decimal digit.
Determine if a character is printable.
Determine if a character is a lower case letter.
Determine if a character is printable.

Determine if a character is a punctuation
character.

Determine if a character is a white space
character.

Library Functions

3-5

intro
Table 3-1
Function
isupper
isxdigit
jrand48

13tol
164a
Icong48

Idexp
Ifind
localtime
longjmp
Irand48

Isearch
Itol3

malloc
memeccpy

memchr

memcmp
memepy
memset

mktemp

1192192

Library Functions (Cont.)

Reference
ctype
ctype
drand48

i3tol
ab4l
drand48

frexp
Isearch
ctime
setjmp
drand48

Isearch
13tol

malloc
memory

memory

memory
memory
memory

mktemp

Description
Determine if a character is an upper case letter.
Determine if a character is 3 hexadecimal digit.

Generate uniformly distributed pseudo-random
numbers.

Convert between 3-byte integers and long
integers.

Convert between long integer and base-64
ASCH string.

Generate uniformly distributed pseudo-random
numbers.

Manipulate parts of floating-point rumbers.
Linear search and update.

Convert date and time to string.

Non-local goto.

Generate uniformly distributed pseudo-random
numbers.

Linear search and update.

Convert between 3-byte integers and long
integers.

Main memory allocator.
Copy characters from one memory area to another.

Search for specified character in a block of
memory.

Compare blocks of memory.
Copy one block of memory to another.
Set a block of memory to a specified value.

Make a unique file name.

3-6

Library Functions

intro
Table 3-1
Function
modf
monitor
mrand48

nlist
nrand48

perror
putenv

putpwent
pututline

gsort
rand
realloc
seed48

setgrent
setjmp
setkey
setpwent

setutent
sleep
srand
srand48

ssignal

Library Functions (Cont.)

Reference
frexp
monitor
drand48

niist
drand48

perror
putenv
putpwent
getut

gsort
rand
malloc
drand48

getgrent
setjmp
crypt
getpwent

getut
sleep
rand
drand48

ssignal

Description
Manipulate parts of floating-point numbers.
Prepare execution profile.

Generate uniformly distributed pseudo-random
numbers.

Get entries from the name list.

Generate uniformly distributed pseudo-random
numbers.

System error messages.
Change or add value to environment.
Write password file entry.

Write out supplied utmp structure into the
utmp file.

Quicker sort.
Random number generator.
Main memory allocator.

Seed uniformly distributed pseudo-random
number generator.

Reset group file to allow repeated searches.
Non-local goto.
Generate DES encryption.

Reset password file to allow repeated
searches.

Reset input stream to beginning of utmp file.
Suspend execution for interval.
Simple random number generator.

Generate uniformly distributed pseudo-random
numbers.

Software signals.

Library Functions 3-7

intro

Table 3-1 Library Functions (Cont.)

Function Reference Description

stdipc stdipc Standard interprocess communication package
{ftok).

streat string Concatenate two strings.

strchr string Search a string for a character.

strcmp string Compare two strings.

strepy string Copy a string over another string.

strespn string Determine the length of an initial segment of a
string.

strien string Determine the length of a string.

strncat string Append one string to another.

strncmp string Compare two strings.

strncpy string Copy one string over another string.

strpbrk string Search a string for a specified set of
characters. :

strrchr string Search a string in reverse order for a specified
character.

strspn string Determine the length of an initial string.

strtod strtod Convert string to double-precision number.

strtok string Search a string for a token.

strtol strtol Convert string to long integer.

swab swab Swap bytes.

sys_errlist perror System error messages.

sys_nerr perror System error messages.

tdelete tsearch Delete a node from a binary search tree.

tfind tsearch Search for data in a binary search tree.

toascii conv Translate characters to ASCII.

tolower conv Convert a character to lower case.

_tolower conv Convert an upper case letter to lower case.

1192192

3-8

Library Functions

intro
Table 3-1
Function
toupper
_toupper
tsearch
twalk
ttyname
ttyslot
tzset
undial

utmpname

Library Functions (Cont.)

Reference
conv

conv
tsearch
tsearch
ttyname
ttyslot
ctime

dial

getut

In the Math Library:

acos
asin
atan
atan2
ceil
cos
cosh
erf
erfc
exp
fabs
floor
fmod
gamma

hypot

trig
trig
trig
trig
floor
trig
sinh
erf
erf
exp
floor
floor
floor
gamma

hypot

Description

Convert a character to upper case.

Convert a lower case letter to upper case.
Build and access binary search tree.

Walk a binary search tree.

Find name of a terminal.

Find the slot in the utmp file of the current user.
Convert date and time to string.

Release an out-going terminal line connection.

Change utmp file name.

Arccosine function.
Arcsine function.
Arctangent function.
Arctangent function.
Ceiling function.

Cosine function.
Hyperbolic cosine function.
Error function.
Compleméntary error function.
Exponential function.
Absolute value function.
Floor function.

Remainder function.

Log gamma function.

Euclidean distance function.

Library Functions 3-9

intro

Table 3-1 Library Functions (Cont.)

Function Reference Description

i0 Bessel Bessel function.

il Besse! Bessel function.

in Bessel Bessel function.

log exp Logarithm function.

log10 exp Logarithm base ten function.
matherr matherr Error handling function.
pow exp Power function.

sin trig Sine function.

sinh sinh Hyperbolic sine function.
sqrt exp Square root function.

tan trig Tangent function.

tanh sinh Hyperbolic tangent function.
y0 Bessel Bessel function.

y1 Bessel Bessel function.

yn Bessel Bessel function.

In the Standard 1/O Package:

clearerr ferror Stream status inquiry.

ctermid ctermid Generate file name for terminal.
cuserid cuserid Get character login name of the user.
fclose fclose Close a stream.

fdopen fopen Open a stream.

feof ferror Stream status inquiry.

ferror ferror Stream status inquiry.

fflush fclose Flush a stream.

fgetc getc Get a character from a stream.

fgets gets Get a string from a stream.

1192192

3-10 Library Functions

intro

Table 3-1 Library Functions (Cont.)

Function Reference Description

fileno ferror Stream status inquiry.

fopen fopen Open a stream.

fprintf printf Print formatted output.

fputc putc Put a character on a stream.

fputs puts put a string on a stream.

fscanf scanf Convert formatted input.

fseek fseek Reposition a file pointer in a stream.
fread fread Read from binary input.

freopen fopen Open a stream.

fedl fseek Repasition a file pointer in a stream.
fwrite fread Write to binary output.

getc getc Get character from a stream,
getchar getc Get character from a stream.

gets gets Get a string from a stream.

getw getc Get a word from a stream.

pclose popen Close a stream opened by popen.
popen popen Initiate pipe to/from a process.
printf printf Print formatted output.

putc putc Put character on a stream.

putchar putc Put character on a stream.

puts puts Put a string on a stream.

putw putc Put a word on a stream.

rewind fseek Reposition a file pointer in a stream.
scanf scanf Convert formatted input.

setbuf setbuf Assign buffering to a stream.
setubuf setbuf Assign buffering to a stream.

sprintf printf Print formatted output.

Library Functions

-1

intro

Table 3-1 Library Functions (Cont.)
Function Reference
sscanf scanf
stdio stdio
system system
tempnam tmpnam
tmpfile tmpfile
tmpnam tmpnam
ungete ungetc
viprintf vprintf
vprintf vprintf
vsprintf vprintf

In Various Specialized Libraries:

assert assert

calloc malloc (fast version)
curses curses

free malloc (fast version)
Idaclose Idclose

Idahread |dahread

Idaopen Idopen

Idclose Idclose

Idthread Idfhread

Idgetname Idgetname

Idlinit Idiread

1192192

Description

Convert formatted output.

Standard buffered input/output pai:kage.
Issue a shell command.

Create a name for a temporary file.
Create a temporary file.

Create a name for a temporary file.
Push character back into input stream.

Print formatted output of a varargs
argument list.

Print formatted output of a varargs
argument list.

Print formatted output of a varargs
argument list.

Verify program assertion.
Fast main memory allocator.

CRT screen handling and optimization
package.

Fast main memory allocator.
Close a common object file.

Read the archive header of a member of
an archive file.

Open a common object file for reading.
Close a common object file.

Read the file header of a common object
file.

Retrieve symbol name for common object
fite symbol table entry. .

Manipulate fine number entries of a
common object file function.

3-12

Library Functions

intro

Table 3-1 Library Functions (Cont.)
Function Reference

Idlitem Idiread

Idiread Idiread

Idiseek idlseek

Idniseek ldiseek

Idnrseek Idrseek

ldnshread Idshread

ldnsseek ldsseek

Idohseek Idohseek

Idopen Idopen

Idrseek ldrseek

idshread Idshread

Idsseek ldsseek

Idthindex ldtbindex

Idtbread idtbread

{dtbseek ldtbseek

logname logname

mallinfo malloc (fast version)
malloc malloc (fast version)

Description

Manipulate line number entries of a
common object file function.

Manipulate line number entries of a
common object file function.

Seek to line number entries of a section
of a common object file.

Seek to line number entries of a section
of a common object file.

Seek to relocation entries of a section af
a commaon object file.

Read an indexed/named section header
of a common object file.

Seek to an indexed/named section of a
commoen object file.

Seek to the optional file header of a
common object file.

Open a common object file for reading.

Seek to relocation entries of a section of
a common object file.

Read an indexed/named section header
of a common object file.

Seek to an indexed/named section of a
common cbject file.

Compute the index of a symbol table
entry of a common object file.

Read an indexed symbol table entry of a
common object file.

Seek to the symbol table of a common
object file.

Return login name of user.

Provide instrumentation describing space
usage for malloc (fast version).

Fast main memory allocator.

Library Functions 3-13

intro

Table 3-1 Library Functions (Cont.)

Function Reference Description

mallopt malloc (fast version) Provide for control over the
malloc(1) allocation algorithm.

ocurse ocurse Optimized screen functions.

ofChangeFileLength ofCreate Reset length of a BTOS file.

ofCloseAllFiles ofOpenFile Close all BTOS files.

ofCloseFiie ofOpenFile Close a BTOS file.

ofCrDir of Dir Create a BTOS directory.

ofCreate ofCreate Create a BTOS file.

ofDelete ofCreate Delete a BTOS file.

of DIDir of Dir Delete an empty BTOS directory.

of GetFileStatus ofStatus Get BTOS file information.

of OpenFile ofOpenfFile Open a BTOS file.

ofRead ofRead Input one or more sectors from a
BTOS file.

ofReadDirSector ofDir Read a single BTOS 512-byte
directory sector.

ofRename ofRename Rename a BTOS file.

ofSetFileStatus ofStatus Set BTOS file information.

ofWrite ofRead Output one or more sectors to a
BTOS file.

quAdd quAdd Add a new entry to a BTOS queue.

quReadKeyed quRead Examine a BTOS queue.

guReadNext quRead Examine a BTOS queue.

quRemove quRemove Take back a BTOS queue request.

regemp regemp Compile a regular expression.

regex regemp Execute a regular expression.

sgetl sput! Access long integer data in a

machine-dependent fashion.

1192132

3-14

Library Functions

intro
Table 3-1
Function

spawnlp
spawnvp
sputl
spwait
swaplong
swapshort

tgetent
tgetflag

tgetnum
tgetstr

tgoto
tputs

wmgetid
wmlayout
wmop

wmsetid

wmsetids

Library Functions (Cont.)
Reference

spawn
spawn
sputl
spwait
swapshort
swapshort

termcap

termcap
termcap
termcap

termcap

termcap

wmgetid
wmlayout
wmop

wmsetid

wmsetids

Description

Execute a process on a specific
Application Processor.

Execute a process on a specific -
Application Processor.

Access long integer data in a
machine-dependent fashion.

Wait for a spawned process to
terminate.

Translate byte orders to
Motorola/Intel.

Translate byte orders to
Motorola/intel.

Get terminal entry.

Determine if a terminal has boolean
capability.

Get value of terminal numeric
capability.

Interpret value of terminal string
capability.

Move cursor.

Direct output of string returned by
tgetstr or tgoto.

Get window ID.
Get terminal’s window layout.
Window management operations.

Associate a file descriptor with a
window.

Associate a file descriptor with a
window.

Library Functions

intro

Definitions
character

null character
character array

null-terminated
character array

string
null string
NULL pointer

NULL

Files

/lib/libc.a
/lib/libm.a

Diagnostics

Any bit pattern able to fit into a byte on the machine.
A character with value 0, represented in the C fanguage as "\0.’
A sequence of characters.

A sequence of characters, the last of which is the null character.

a designation for a null-terminated character array.
A character array containing only the null character.

The value that is obtained by casting O into a pointer. The
C language guarantees that this value will not match that of
any legitimate pointer, so many functions that return
pointers do so to indicate errors.

Defined as 0 in <stdio.h>; you can include your own
definition if you are not using <stdio.h>.

Functions in the Math Library may return the conventional
values O or HUGE (the largest single-precision floating-point
number) when the function is undefined for the given
arguments or when the value is not representable. In these
cases, the external variable errno (see intro in Section 2) is set
to the value EDOM or ERANGE.

1192192

3-16 Library Functions

intro

Caution

Many of the functions in the libraries call and/or refer to
other functions and external variables described in this
section and in Section 2 (System Calls). If a program
inadvertantly defines a function or external variable with the
same name, the presumed library version of the function or
external variable may not be loaded. The lint program
checker (see Section 1) reports name conflicts of this kind as
“multiple declarations” of the names in question. Definitions
for Section 2 and for Standard C Library and Standard /0
functions of Section 3 are checked automatically. Other
definitions can be included by using the -I option (for
example, -Im includes definitions for the Math Library, libm).
Use of lint is highly recommended.

See Also

ar, cc, Id, nm in Section 1; intro in Section 2; stdio.

Library Functions 3-17

ab4l

ab4l, 164a - convert between long integer and base-64
ASCIi string

Format

long a64l (s)
char °s;

char *164a (/)
long I

Description

These functions are used to maintain numbers stored in
base-64 ASCIl characters. This is a notation by which long
integers can be represented by up to six characters; each
character represents a “digit” in a radix-64 notation.

The characters used to represent “digits” are . for O, / for 1,
0 through 9 for 2-11, A through Z for 12-37, and a through
z for 38-63.

ab4l takes a pointer to a null-terminated base-64
representation and returns a corresponding long value. if the
string pointed to by s contains more than six characters, a64l
will use the first six.

I64a takes a long argument and returns a pointer to the
corresponding base-64 representation. if the argument is O,
I64a returns a pointer to a null string.

Known Problems

The value returned by 164a is a pointer into a static buffer,
the contents of which are overwritten by each call.

1192192

3-18 Library Functions

ahort

Name
abort - generate an 10T fault

Format

int abort ()

Description

The abort function first closes all open files, if possible, then
causes an 10T signal to be sent to the process. This usually
results in termination with a core dump.

It is possible for abert to return if SIGIOT is caught or ignored,
in which case the value returned is the same as that of the
kill system call.

Diagnostics

If SIGIOT is neither caught nor ignored, and the current
directory is writable, a core dump is produced, and the
message “abort - core dumped” is written by the shell.

See Also

adb in Section 1; exit, kill, signal in Section 2.

Library Functions 3-19

ahs

abs - return integer absolute value

Format

int abs (/)
int i;
Description

The abs function returns the absolute value of its integer
operand.

Known Problems

In two's-complement representation, the absolute value of
the negative integer with the largest magnitude is undefined.
Some implementations trap this error, but others simply
ignore it.

See Also

floor.

1192192

3-20 Library Functions

assert

Name

assert - verify program assertion

Format
#include <assert.h>
assert (expression)

int expression;

Description

This function is useful for putting diagnostics into programs.
When it is executed, if expression is false (zero), assert prints

“Assertion failed: expression, file xyz, line nnn”

on the standard error output and aborts. In the error
message, xyz is the name of the source file and nnn is the
source line number of the assert statement.

Compiling with the preprocessor option -DNDEBUG {see cpp in
Section 1), or with the preprocessor control statement
“#define NDEBUG" ahead of the “#include <assert.h>"

statement, will stop assertions from being compiled into the
program.

See Also

cpp in Section 1; abort.

Library Functions 3-21

atof

Name

atof - convert ASCII string to floating-point number

Format

double atot (nptr)
char ‘*nptr.

Description

The atof function converts a character string pointed to by
nptr to a double-precision floating-point number. The first
unrecognized character ends the conversion. atof recognizes
an optional string of white-space characters, then an optional
sign, then a string of digits optionally containing a decimal
point, then an optional e or E followed by an optionally
signed integer. If the string begins with an unrecognized
character, atof returns the value zero.

Diagnostics

When the correct value would overflow, atof returns HUGE,
and sets ermo to ERANGE. Zero is returned on underflow.

See Also

scanf.

1182192

3-22 Library Functions

Bessel

Name
i0, j1, jn, y0, y1, yn - Bessel functions

Format

#include <math.h>

double jO (x)
double x;

double j1 (x)
double «x;

double jn (n, x)
int n;
double «x;

double y0 (x)
double x;

double y1 (x)
double x;

double yn (n, x)
int n;
double «x;

Description

j0 and j1 return Bessel functions of x of the first kind of
orders O and 1 respectively. jn returns the Bessel function of
x of the first kind of order n.

y0 and y1 return Bessel functions of x of the second kind of
orders O and 1 respectively. yn returns the Bessel function of
x of the second kind of order n. The value of x must be positive.

Library Functions 3-23

Bessel

Diagnostics

Non-positive arguments cause y0, y1 and yn to return the
value -HUGE and to set errmo to EDOM. In addition, a
message indicating DOMAIN error is printed on the standard
error output.

Arguments too large in magnitude cause j0, j1, y0 and y1 to
return zero and to set errmoe to ERANGE. In addition, a
message indicating TLOSS error is printed on the standard
error output.

These error-handling procedures may be changed with the
function matherr.

See Also

matherr.

1192192

3-24 Library Functions

hsearch

Name

bsearch - binary search a sorted table

Format

#include <search.h>

char *bsearch ((char *) key, (char *) base, nel,
sizeof (*key), compar)

unsigned ne!;

int (*compar)();

Description

The bsearch function is a binary search routine generalized
from Knuth (6.2.1) Algorithm B. It returns a pointer into a
table indicating where a datum may be found. The table must
be previously sorted in increasing order according to a
provided comparison function. Key points to a datum
instance to be sought in the table. Base points to the element
at the base of the table. MVe/ is the number of elements in the
table. Compar is the name of the comparison function, which
is called with two arguments that point to the elements
being compared. The function must return an integer less
than, equal to, or greater than zero as, accordingly, the first
argument is to be considered less than, equal to, or greater
than the second.

Example

The following example searches a table containing pointers
to nodes consisting of a string and its length. The table is
ordered alphabetically on the string in the node pointed to by
each entry.

This code fragment reads in strings and either finds the
corresponding node and prints out the string and its length,
Or prints an error message.

Library Functions 3-25

hsearch

#include <stdio.h>
#include <search.h>

#define TABSIZE 1000

struct node { /*these are stored in table*/
char *string;
int length;

¥
struct node table[TABSIZE]: /"table to be searched"/

{
struct node °*node_ptr, node;
int node_compare(). /{*routine to compare 2 nodes"*/
char str_space[20]; /*space to read string into*/
node.string = str_space;
while (scanf("%", node.string) != EOF) {
node_ptr = (struct node °*)bsearch((char *)(&node),
(char *)table, TABSIZE,
sizeof(struct node). node_compare) .
it (node_ptr l= NULL) {
(void)printf(~string = %20s, length = %d\n",
node_ptr->string, node_ptr->length);
} else {
(void)printf("not found: %s\n", node.string);:
}
}
}
/"
This routine compares two nodes based on an
alphabetical ordering of the string field.
)
int

node_compare(nodet, node2)
struct node °‘nodel, *node2;
{
return strcmp(nodetl->string, node2->string).

}

1192192

3-26 Library Functions

hsearch

The pointers to the key and the ‘element at the base of the
table should be of type pointer-to-element, and cast to type
pointer-to-character.

The comparison function need not compare every byte, so
arbitrary data may be contained in the elements in addition to
the values being compared. ‘

Although declared as type pointer-to-character, the value
returned should be cast into type pointer to element.

Diagnostics
A NULL pointer is returned if the key cannot be found in the table.

See Also

hsearch, Isearch, gsort, tsearch.

Library Functions 3-27

clock

Name

clock - report CPU time used

Format

long clock ():

Description

The clock function returns the amount of CPU time (in
microseconds) used since the first call to clock. The time
reported is the sum of user and system times of the calling
process and its terminated child processes for which it has
executed a wait system call or system library function. The
return value will vary based on system usage.

The resolution of the clock is 16.667 microseconds on
CENTIX processors.

Known Problems

The value returned by clock is defined in milliseconds for
compatibility with systems that have CPU clocks with a
much higher resolution. Because of this, the value returned
will wrap around after accumulating 2147 seconds of CPU
time (approximately 36 minutes).

See Also

times, wait in Section 2; system.

1192192

3-28 Library Functions

conv

Name

toupper, tolower, _toupper, _tolower, toascii - translate
characters

Format

#include <ctype.h>

int toupper (c)
int ¢

int tolower (c)
int ¢;

int _toupper (c)
int ¢,

int _tolower (c)
int ¢;

int toascii (¢)
int ¢;

Description

The toupper and tolower functions have as domain the range of
the gete library function: the integers from -1 through 255. If
the argument of toupper represents a lower case letter, the
result is the corresponding upper case letter. If the argument
of telower represents an upper case letter, the result is the
corresponding lower case letter. All other arguments in the
domain are returned unchanged.

The macros _toupper and _tolower accomplish the same thing
as toupper and tolower but have restricted domains and are
faster. _toupper requires a lower case letter as its argument;
its result is the corresponding upper case letter. The macro
tolower requires an upper case letter as its argument; its
result is the corresponding lower case letter. Arguments
outside the domain cause undefined results.

Library Functions 3-29

conv

toascii yields its argument with all bits turned off that are not
part of standard ASCHl character; it is intended for
compatibility with other systems.

See Also
ctype, getc.

11921972

3-30 Library Functions

crypt

Name
crypt, setkey, encrypt - generate DES encryption

Format

char ‘crypt (key, salt)
char ‘key, *salt;

void setkey (key)
char ‘key;

void encrypt (block, edflag)
char *block;
int edflag;

Description

The crypt function is the password encryption function. It is
based on the NBS Data Encryption Standard (DES), with
variations intended (among other things) to frustrate use of
hardware implementations of the DES of key hardware
implementations of the DES for key search.

Key is a user's typed password. Salt is a two-character string
chosen from the set [a-zA-Z0-9./]; this string is used to
perturb the DES algorithm in one of 4096 different ways,
after which the password is used as the key to repeatedly
éncrypt a constant string. The returned value points to the
encrypted password. The first two characters are the saltitself.

The setkey and encrypt entries provide (rather primitive) access
to the actual DES algorithm. The argument of setkey is a
character array of length 64 containing only the characters
with numerical value O and 1. if the string is divided into
groups of 8, the low-order bit in each group is ignored; this
gives a 56-bit key which is set to the machine. This is the
key that will be used with the above mentioned algorithm to
encrypt or decrypt the string block with the function encrypt.

Library Functions 3-3

crypt

The argument to the encrypt entry is a character array of
length 64 containing only the characters with numerical value
0 and 1. The argument array is modified in place to a similar
array representing the bits of the argument after having been
subjected to the DES algorithm using the key set by setkey. If
edflag is zero, the argument is encrypted; if non-zero, it is
decrypted.

Known Problems

The return value points to static data that are overwritten by
each call.

See Also

login, passwd in Section 1; getpass; passwd in Section 4.

1192192

3-32 Library Functions

ctermid

Name

ctermid - generate file name for terminal

Format

#include <stdio.h>

char ‘ctermid (s)
char °s;

Description

The ctermid function generates the path name of the
controlling terminal for the current process, and stores it in a
string.

If s is a NULL pointer, the string containing the path name is
stored in an internal static area, the contents of which are
overwritten by the next call to ctermid, and the address of
which is returned. Otherwise, s is assumed to point to a
character array of at least L _ctermid elements; the path
name is placed in this array and the value of s is returned.
The constant L _ctermid is defined in the <stdio.h> header file.

The difference between ctermid and ttyname is that ttyname
must be handed a file descriptor and returns the actual name
of the terminal associated with that file descriptor, while
ctermid returns a string (/dev/tty) that will refer to the terminal
if used as a file name. Thus, ttyname is useful only if the
process already has at least one file open to a terminal.

See Also

ttyname.

Library Functions 3-33

ctime

Name

ctime, localtime, gmtime, asctime, tzset - convert date and
time to string

Format

#include <time.h>

char *ctime (clock)
tong “clock;

struct tm °*localtime {clock)
long *clock:

struct tm ‘gmtime (clock)
ltong *clock:

char *asctime (tm)
struct tm °tm;

extern long timezone
extern int daylight
extern char *tzname[2]:

void tzset ()

Description

The ctime function converts a long integer, pointed to by
clock, representing the time in seconds since 00:00:00 GMT,
January 1, 1970, and returns a pointer to a 26-character
string of the following form. All fields have constant width.

Sun Sep 16 01:03:52 1973\n\0

localtime and gmtime return pointers 10 "tm” structures,
described below. localtime corrects for the time zone and
possible Daylight Savings Time; gmtime converts directly to0
Greenwich Mean Time (GMT), whichis the time CENTIX uses.

asctime converts a “tm” structure 1o a 26-character string, 3s
shown in the above example, andreturns a pointer to the string.

1192192

3-34 Library Functions

ctime

Declarations of all the functions and externals, and the “tm”
structure, are in the <time.h> header file. The structure
declaration is:

struct tm {

int tm_sec: /‘soconds(O-SQ)'/

int tm_min; /’minutes(0-59)'/

int tm_hour /'hours(0-23)'/

int tm_mday ; /*day of month(1-31)+y

int tm_mon; /[*month of year(0-11)-y

Int tm_year; /‘yesar - 1900°*/

int tm_wday; /‘day of week (Sunday = g)*y/
Int tm_yday; /*day ot year(0-365)°y

int tm_isdst;

}
Tm_isdst is nonzero if Daylight Savings Time is in effect.

The external long variable timezone contains the difference in
seconds between GMT and local standard time (in EST,
timezone is 5*60*60). The external variable daylight is
nonzero if and only if the standard U.S. A Daylight Savings
Time conversion should be applied. The program knows
about the peculiarities of thig conversion in 1974 and 1975;
if necessary, a table for these years can be extended.

If an environment variable named TZ (time zone) is present,
asctime uses the contents of the variable to override the
default timezone. The value of TZ must be a three-letter
timezone name, followed by a number representing the
difference between local time and Greenwich Mean Time in
hours, followed by an optional three-letter name for a
daylight time zone. For example, the setting for New Jersey
would be EST5EDT, Setting TZ changes the value of the
external variables timezone and daylight;in addition, the time
zone names contained in the external variable

char *tzname[2] = {"EST","EDT"};

are set from the environment variabel TZ. The function tzset
sets these external variables from TZ; tzset is called by
asctime and may also be called explicitly by the user.

Note that in most installations, TZ is set by default when the -
user logs in, to a value in the local /etc/profile file (see profile
in section 4).

Library Functions 3-35

ctime

Known Problems

The return values point to static data whose content is
overwritten by each call.

See Also

time in Section 2; getenv; profile in Section 4; environ in
Section 5.

1192182

3-36 Library Functions

ctype

Name

isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace,
ispunct, isprint, isgraph, iscntrl, isascii - classify characters

Format

#include <ctype.h>

int isalpha (c)
int ¢;

Description

These macro functions classify character-coded integer
values by table lookup. Each is a predicate returning nonzero
for true, zero for false. The function isascii is defined on all
integer values; the rest are defined only where isascii is true
and on the single non-ASCl value EQF (-1 - see stdio).

isalpha cis a letter.

isupper cis an upper case letter.

islower cis a lower case letter.

isdigit cis a digit [from 0 to 9].

isxdigit cis a hexadecimal digit {0-9), [A-F] and {a-f].

isalnum cis an alphanumeric (letter or digit).

isspace cis a space, tab, carriage return, new-ling, vertical tab, or
form-feed.

ispunct ¢ is a punctuation character (neither control nor
alphanumeric).

isprint cis a printing character, ASCH octal code 040 {space)

through 0176 (tilde).

isgraph cis a printing character, like isprint except it is false for spacs.

Library Functions 3-37

ctype

iscntr! ¢ is a delete character (0177) or an ordinary control
character {less than 040).

isascii cis an ASCIl character code less than 0200.

Diagnostics

If the argument to any of these macros is not in the domain
of the function, the result is undefined.

1192182

3-38 Library Functions

curses

curses - CRT screen handling and optimization package

Format

#include <curses.h>
cc [flags] files -lcurses [libraries)

Description

These routines give the user a method of updating screens
with reasonable optimization. In order to initialize the
routines, the routine initser() must be called before any of the
other routines that deal with windows and screens are used.
The routine endwin() should be called before exiting. To get
character-at-a-time input without echoing (most interactive,
screen-oriented programs want this), after calling initser{) you
should call “nonl(); cbreak(); noecho();”

The full curses interface permits manipulation of data
structures called windows, which can be thought of as two
dimensional arrays of characters representing all or part of a
CRT screen. A default window called stdscr is supplied, and
others can be created with newwin. Windows are referred to
by variables declared “WINDOW *,” the type WINDOW is
defined in curses.h to be a C structure. These data structures
are manipulated with functions described below, among
which the most basic are move and addch. (More general
versions of these functions are included with names
beginning with w, allowing you to specify a window. The
routines not beginning with w affect stdscr.) Then refresh(} is
called, telling the routines to make the user's CRT screen
look like stdscr.

Mini-Curses is a subset of curses which does not allow
manipulation of more than one window. To invoke this
subset, use -DMINICURSES as a c¢ option. This level is
smaller and faster than full curses.

Library Functions 3-39

curses

If the environment variable TERMINFO is defined, any
program using curses will check for a local terminal definition
before checking in the standard place. For example, if the
standard place is /usr/lib/terminfo, and TERM is set to
“vt100,” then normally the compiled file is found in
Jusr/lib/terminfo/v/vt100. {The "v" is copied from the first
letter of “vt100” to avoid creation of huge directories.)
However, if TERMINFO is set to /usr/mark/myterms, curses
will first check /usr/mark/myterms/v/vt100, then, if that
fails, /usr/lib/terminfo/v/vt100. This is useful for developing
experimental definitions or when write permission in
Jusr/lib/terminfo is not available.

Functions

Routines listed in Table 3-2 may be called when using the full
curses. Those marked with an asterisk may be called when
using Mini-Curses

Table 3-2 Curses Routines

addstr(ch)* Add a character to stdscr {like putchar)
{wraps to next line at end of line).

addstr(str)* Calls addch with each character in str.

attroff(attrs)*® Turns off attributes named.

attron{attrs)*® Turns on attributes named.

attrset(attrs)” Set current attributes to attrs.

baudrate()* Current terminal speed.

beep()* . Sound beep on terminal.

box(win, vert, hor) Draw a box around the edges of win. Vert and
hor are chars to use for vert. and horiz. edges
of box.

clear(} Clear stdscr.

clearok(win, bf) Clear screen before next redraw of win.

clrtobot() Clear to bottom of stdscr.

clrtoeol() Clear to end of line on stdscr.

chreak()*® Set break mode.

delay_output(ms)* Insert ms millisecond pause in output.

1192192

3-40

Library Functions

curses

Table 3-2 Curses Routines (Cont.)

delch()
deleteln()
delwin(win)
doupdate()
echo()*
endwin()*
erase()
erasechar()
fixterm()
flash()
flushinp()*
getch()*
getstr{str)
gettmode()
getyx{win, y, x)
has_.ic()
has_il()
idlok{win, bf)*
inch()

initscr()*
insch{c)
insertin()
intrflush(win, bf)
keypad(win, bf)
kilichar(}
leaveok(win, flag)

longnamef)
meta(win, fiag)*
move(y, x)*
mvaddch(y, x, ch)
mvaddstr(y, x, str)

mveur{oldrow, oldcol,

newrew, newcol)

Delete a character.

Delete a line.

Delete win. .

Update screen from all wnoutrefresh.

Set echo mode.

End window modes.

Erase stdscr.

Return user’s erase character.

Restore tty to “in curses” state.

Flash screen or beep.

Throw away any typeahead.

Get a character from tty.

Get a string through stdscr.

Establish current tty modes.

get {y,) co-ordinates.

True if terminal can do insert character.
True if terminal can do insert line.

Use terminal’s insert/delete line if 4f |- 0.
get char at current {y, x) co-ordinates.
Initialize screens.

Insert a char.

Insert a line.

Interrupts fiush output if bf is TRUE.
Enable keypad input.

Return current user's kill character.

OK to leave cursor anywhere after refresh if
flag !~ 0 for win, otherwise cursor must be
left at current position.

Return verbose name of terminal.

Allow meta characters on input if flag != 0.
Move to (y, x) on stdscr,

move(y, x} then addch(ch).

Similar...

Low level cursor motion.

Library Functions

3-41

curses

Table 3-2 Curses Routines (Cont.)

mvdelch(y, x)

mvgetchiy, x)

mvgetstr{y,x)

mvinch{y,x}

mvinschly, x, ¢)

mvprintw(y, x, fmt, args)
mvscanwl(y, x, fmt, args)
mvwaddch(win, y, x, ch}
mvwaddstr{win, y, X, str}
mvwdelch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr{win, y, x)
mvwin(win, by, bx)
mvwinch{win, y, x)
mvwinsch{win, vy, x, ¢)
mvwprintw(win, y, x, fmt, args)
mvwscanw(win, y, x, fmt, args)
newpad|nlines, ncols)
newterm(type, fd)

newwin{lines, cols, begin_y,
begin_x}

nl{)*

nochreak()®

nodelay{win, bf)

noecho(}*

nonl{)*

noraw()"

overlay(win1, win2)
overwrite{win1, win2)
pnoutrefreshpad, pminrow,
pmincol, sminrow, smincal,
smaxrow, smaxcol)
prefresh(pad, pminrow, pmincol,
sminrow, smincol, smaxrow,
smaxcol}

printw({fmt, arg1, arg2, ...)
raw()®

refresh{)®

resetterm()”

resetty()”

saveterm()*

1192192

Like delch, but movely, x) first.
And so on...

Create a new pad with given dimensions.

Set up a new terminal of given fype to output
on fd.

Create a new window.

Set newline mapping.

Unset cbreak mode.

Enable nodelay input mode through getch.
Unset echo mode.

Unset newline mapping.

Unset raw mode.

Overlay win! on win2.

Dverwrite win on top of win2.

Like prefresh, but with no output until
doupdate called.

Refresh from pad starting with given upper left
corner of pad with output to given portion of
screen.

printf on stdscr.

Set raw mode.

Make current screen look like stdscr.

Set tty modes to “out of curses” state.

Reset tty flags to stored value.

Save current modes as “in curses” state.

3-42

Library Functions

curses

Table 3-2 Curses Routines {Cont.)

savetty()*
scanw(fmt, arg1, arg2, ..)
scroll(win)

scrollek{win, flag)
set_term(new)

setscrreg(t, b)
setterm{type)
setupterm(term, filenum, errret)
standend()*

standout()*

subwin(win, lines, cols, begin_y,
begin_x)

touchwin{win)

traceoft()

traceon()

typeahead(fd)

unctrl{ch)*

waddch(win, ch)
waddstr{win, str)
wattroff(win, attrs)
wattron(win, attrs)
wattrset(win, attrs)
wclear(win)
welrtobot(win)
welrtoeol{win)
wdelch{win, ¢)
wdeleteln{win)
werase{win)

wgetch{win)

wgetstr(win, str)
winch{win)

winsch({win, ¢)
winsertin{win)
wmove{win, y, x)
whnoutrefresh{win)
wprintw(win, fmt, arg1, arg2, ...)
wrefresh({win)
wscanw(win, fmt, arg1, arg2, ...)
wsetscrreg(win, t, b)
wstandend({win)
wstandout(win)

Store current tty flags.

scanf through stdscr.

Scroll win one line.

Allow terminal to scroll if flag !~ 0.
Now talk to terminal new.

Set user scrolling region to fines t through b.
Establish terminal with given type.
Set up terminal.

Clear standout mode attribute.

Set standout mode attribute.

Create a subwindow.

Change all of win.

Turn off debugging trace output.
Turn on debugging trace output.
Use file descriptor fd to check typeahead.
Printable version of ch.

Add char to win,

Add string to win.

Turn off attrs in win,

Turn on attrs in win.

Set attributes in win to attrs,
Clear win.

Clear to bottom of win.

Clear to end of line on win,

Delete char from win.

Delete fine from win.

Erase win.

Get a char through win,

Get a string through win.

Get a char at current (y, x) in win.
Insert char into win,

Insert line into win.

Set current {y, x) co-ordinates on win.
Refresh but no screen output.
printf on win.

Make screen look like win,

scanf through win.

Set scrolling region of win.

Clear standout attribute in win,
Set standout attribute in win.

Library Functions 3-43

curses

Terminfo Level Routines

The routines in Table 3-3 should be called by programs
wishing to deal directly with the terminfo database. Due to
the low level of this interface, it is discouraged. Initially,
setupterm should be called. This will define the set of terminal
dependent variables defined in terminfo (see Section 4). The
include files <curses.h> and <term.h> should be included to
get the definitions for these strings, numbers, and flags.
Parameterized strings should be passed through tparm to
instantiate them. All terminfo strings (including the output of
tparm) should be printed with tputs or putp. Begore exiting,
resetterm should be called to restore the tty modes. (Programs
desiring shell escapes or suspending with control Z can call
resetterm before the shell is called, and fixterm after returning
from the shell.)

Table 3-3 Terminfo Level Routines

fixterm() Restore tty modes for terminfo use {called by
setupterm).

resetterm() Reset tty modes to state before program entry.

setupterm(term, fd, rc) Read in database. Terminal type is the

character string term, all output is to CENTIX

file descriptor fd. A status value is returned in
the integer pointed to by rc: 1 is normal. The
simplest call would be setupterm(0, 1, 0),
which uses all defaults.

tparm(str, p1, p2, ..., p9) Instantiate string str with parms pi.

tputs{str, affent, putc) Apply padding info to string str. Affent is the
number of lines affected, or 1 if not applicable.
Putc is a putchar-like function to which the
characters are passed, one at a time.

putp(str) Handy function that calls tputs(str, 1,
putchar).
vidputs{attrs, putc) Output the string to put terminal in video

attribute mode aters, which is any combination
of the attributes listed below. Chars are
passed to putchar-like function putc.
vidattr{attrs) Like vidputs but outputs through putchar.

1192192

3-44 Library Functions

curses

Termcap Compatibility Routines

These routines were included as a conversion aid for
programs that use termcap. Their parameters are the same
as for termcap. They are emulated using the terminfo
database. They may go away at a later date.

Table 3-4 Termcap Compatibility Routines

tgetent(bp, name) Look up termcap entry for name.
tgetflag(id) Get boolean entry for id.

tgetnum(id) Get numeric entry for id,

tgetstr(id, area) Get string entry for id

tgoto(cap, col, row) < Apply parms to given cap.

tputs(cap, affent, fn) Apply padding cap calling fn as putchar.
Attributes

The video attributes in Table 3-5 can be passed to the
functions attron, attroff, attrset.

Table 3-5 Video Attrihutes

A_STANDOUT Terminal's best highlighting mode.
A_UNDERLINE Underfining.

A_REVERSE Reverse video.

A_BLINK Blinking.

A_DIM Half bright.

A_BOLD Extra bright or bold.

A_BLANK Blanking {invisible).

A_PROTECT Protected.

A_ALTCHARSET Alternate character set.

Library Functions 3-45

curses

Function Keys

The function keys in Table 3-6 might be returned by getch if
keypad has been enabled. Note that not all of these are
currently supported, due to lack of definitions in terminfo or
the terminal not transmitting a unique code when the key is
pressed.

Table 2-6 Curses Function Keys

Name Value Key Name

KEY_BREAK 0401 Break key (unreliable).

KEY_DOWN 0402 The four arrow keys...

KEY_UP 0403

KEY_LEFT 0404

KEY_RIGHT 0405

KEY_HOME 0406 Home key (upward + left arrow).

KEY_BACKSPACE 0407 Backspace (unreliable).

KEY_FO 0410 Function keys. Space for 64 is
reserved.

KEY_Fin) (KEY_FO + (n}} Formula for fn.

KEY_DL 0510 Delete lire.

KEY_IL 0511 Insert line.

KEY_DC 0512 Delete character.

KEY_IC 0513 Insert char or enter insert mode.

KEY_EIC 0514 Exit insert char mode.

KEY_CLEAR 0515 Clear screen.

KEY_EOS 0518 Clear to end of screen.

KEY_EOL 0517 Ciear to end of line.

KEY_SF 0520 Scrolt 1 line forward.

KEY_SR 0521 Scroll 1 line backwards {reverse).

KEY_NPAGE 0522 Next page.

KEY_PPAGE 0523 Previous page.

KEY_STAB 0524 Set tab.

KEY_CTAB 0525 Clear tab.

KEY_CATAB 0528 Clear all tabs.

KEY_ENTER 0527 Enter or send (unreliable).

KEY_SRESET 0530 Soft {partial) reset {unreliable).

KEY_RESET 0531 Reset or hard reset {unreliable).

KEY_PRINT 0532 Print or copy.

KEY_ILL 0533 Home down or bottom left.

1192182

3-46 Library Functions

curses

Caution

The plotting library plot and the curses library curses both use
the names erase() and move(). The curses versions are
macros. If you need both libraries, put the plet code in a
different source file than the curses code, and/or #undef
move() and erase() in the plot code.

See Also

terminfo in Section 4; XE 500 CENTIX System Programming
Guide.

Library Functions 3-47

cuserid

Name

cuserid - get character login name of the user

Format

#incliude <stdio.h>

char *cuserid (s)
char *s;

Description

The cuserid function gets the user’s login name as found in
/etc/utmp. If the login name cannot be found, cuserid gets the
login name corresponding to the user ID of the process. If s
is a NULL pointer, this representation is generated in an
internal static area, the address of which is returned.
Otherwise, s is assumed to point to an array of at least

L _cuserid characters; the representation is left in this array.
The constant L _cuserid is defined in the <stdio.h> header file.

Diagnostics

If the login name cannot be found and the process’s owner
lacks a password file entry, cuserid returns a NULL pointer; if s
is not a NULL pointer, a NULL character (\O) will be placed at s[O].

See Also

getlogin, getpwent.

1192192

3-48 Library Functions
dial

dial, undial - establish and release an out-going terminal
line connection.

Format

#inctude <dial.h>

Iint diat (callt)
CALL call;

void undial (fd)
int fd;

Description

The dial library function returns a file descriptor for a terminal
line open for read/write. The argument to dial is a CALL
structure (defined in the <dial.h> header file).

When finished with the terminal line, the calling program
must invoke undial to release the semaphore that has been
set during the allocation of the terminal device.

The definition of CALL in the <dial.h> header file is:

typedet struct f

struct termio *attr; /*pointer to termio
attribute struct*/

int baud; /*transmission data rate*/

int speed; /*212A modem: 1ow=300,
high=1200°/

char ‘line; /*device name for out-going
line*/

char - *teino /*pointer to telno digits
string*/

int . modem; /*specity modem control for
direct lines*/

char “device; /*will hold the name of the

device used to make
a connection*/

int dev_len; /*the length of the device
used to make

connection*/
} CALL;

Library Functions 3-49

dial

The CALL element speed is intended only for use with an
outgoing dialed call, in which case its value should be either
300 or 1200 to identify the 113A modem, or the high or
low speed setting on the 212A modem. Note that the 113A
modem or the low speed setting of the 212A modem will
transmit at any rate between O and 300 bits per second.
However, the high speed setting of the 212A modem
transmits and receives at 1200 bits per second only. The
CALL element baud is for the desired transmission baud rate.
For example, one might set baud to 110 and speed to 300

(or 1200). However, if speed is set to 1200, baud must be
set to high (1200).

If the desired terminal line is a direct line, a string pointer to
its device-name should be placed in the /ine element in the
CALL structure. Legal values for such terminal device names
are kept in the L-devices file. In this case, the value of the
baud element need not be specified as it will be determined
from the L-devices file.

The telno element is for a pointer to a character string
representing the telephone number to be dialed. The number
must consist of the following codes:

0-9 Dial 0-9.

®or: Dial *.

#or; Dial #.

- 4 second delay for second dial tone.
WOl = Wait for secondary dial tone.

f Flash off hook for 1 second.

On a smart modem, these symbols are translated to modem
commands using the modem description in
/Jusr/lib/uucp/modemcap.

The CALL element modem is used to specify modem control
for direct lines. This element should be non-zero if modem
control is required. The CALL element attr is a pointer to a
termio structure, as defined in the termio.h header file. A
NULL value for this pointer element may be passed to the dial
function, but if such a structure is included, the elements
specified in it will be set for the outgoing terminal line before
the connection is established. This is often important for
certain attributes such as parity and baud-rate.

1192192

3-50 Library Functions

dial

The CALL element device is used to hold the device name
(cul..) that establishes the connection.

The CALL element dev /en is the length of the device name
that is copied into the array device.

Files

Jusr/lib/uucp/modemcap
fusr/lib/uucp/L-devices
/usr/spool/uucp/LCK tty-device

Diagnostics

On failure, a negative value indicating the reason for the
failure will be returned. Mnemonics for these negative indices
as listed here are defined in the <dial.h> header file.

INTRPT -1 /*interrupt occurred*/

D_HUNG -2 /{*diater hung (no return from write)*/

NO_ANS -3 /*no answer within 10 seconds*/

ILL_BD -4 /*illegal baud rate*/

A_PROB -5 /*acu problam (open() failure)"y

L_PROB -8 /*line probiem (open() tailure)*/

NO_Ldv -7 /*cannot open LDEVS tite*/

DV_NT_A -8 /*requested device not available"/

DV_NT_K -9 /*requested device not known*/

NO_BD_A <10 /*no device available at request baud®/

NO_BD_K -11 /*no device known at request baud*/
Cautions

Including the <dial.h> header file automatically includes the
<termio.h> header file.

The above routine uses <stdio.h>, which causes it to
increase the size of programs, not otherwise using standard
1/O, more than might be expected. ~

See Also

uucp in Section 1; alarm, read, write in Section 2; modemcap
in Section 5; termio in Section 6.

Library Functions 3-51

drand48

Name

drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48,
seed48, Icongd8 - generate uniformly distributed
pseudo-random numbers

Format

double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3}:

tong lrand48 ()

long nrand48 (xsubi)
unsigned short xsubi{3]:

long mrand48 ()

long jrand48 (xsubl)
unsigned short xsubi[3]:

void srand48 (seedval)
long seedval;

unsigned short ‘*seed48 (seed16v)
unsigned short seed?6v[3]:

void lcongd48 (param)
unsigned short param(7];:

Description

This family of library functions generate pseudo-random
numbers using the well-known linear congruential algorithm
and 48-bit integer arithmetic.

The drand48 and erand48 functions return non-negative
double-precision floating-point values uniformly distributed
over the interval [0.0, 1.0).

Irand48 and nrand48 return non-negative long integers
uniformly distributed over the interval [0, 2%7).

1192192

3-52 Library Functions

drand48

mrand48 and jrand48 return signed long integers uniformly
distributed over the interval [-23', 231),

The srand48, seed48, and lcongd8 functions are initialization
entry points, one of which should be invoked before either
drand48, lrand48, or mrand48 is called. (Although it is not
recommended practice, constant default initializer values will
be supplied automatically if drand48, Irand48, or mrand48 is
called without a prior call to an initialization entry point.)
Functions erand48, nrand48, and jrand48 do not require an
initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit
integer values, X, according to the linear congruential formula

X, ,=@X + ¢

The parameter m = 248; hence 48-bit integer arithmetic is
performed. Unless Icong48 has been invoked, the multiplier
value a and the addend value c are given by

a - 5DEECEG6D,, = 273673163155,
C =B, =13,

The value returned by any of the functions drand48, erand48,
irand48, nrand48, mrand48, or jrand48 is computed by first
generating the next 48-bit X.in the sequence. Then the
appropriate number of bits, according to the type of data
item to be returned, are copied from the high-order (leftmost)
bits of X, and transformed into the returned value.

The functions drand48, Irand48, and mrand48 store the last
48-bit X, generated in an internal buffer; that is why they
must be initialized prior to being invoked. The functions
erand48, nrand48, and jrand48 require the calling program to
provide storage for the successive X. values in the array
specified as an argument when the functions are invoked.
That is why these routines do not have to be initialized; the
calling program merely has to place the desired initial value
of X into the array and pass it as an argument. By using
different arguments, functions erand48, nrand48, and jrand48
allow separate modules of a large program to generate
several independent streams of pseudo-random numbers,
that is, the sequence of numbers in each stream will not
depend upon how many times the routines have been called
to generate numbers for the other streams.

where n >= 0

modm

Library Functions 3-53

drand48

The initializer function srand48 sets the high-order 32-bits of
X to the 32 bits contained in its argument. The low-order 16
bits of X, are set to the arbitrary value 330E,.

The initializer function seed48 sets the value of X; to the 48-bit
value specified in the argument array. In addition, the
previous value of X is copied into a 48-bit internal buffer
used only by seed48, and a pointer to this buffer is the value
returned by seedd8. This returned pointer, which can be
ignored if it is not needed, is useful when restarting a
program from a given point at some future time. For
example, use the pointer to get and store the last X, value,
and then use this value to reinitialize via seed48 when the
program is restarted.

The initialization function lcongd8 allows the user 10 specify
the initial X, the multiplier value a, and the addend value c.
Argument array element param/0-2] specifies X, param(3-5]
specifies the multiplier a, and param/6] specifies the 16-bit
addend c¢. After lcongd8 has been called, a subsequent call to
either srand48 or seed48 will restore the “standard” multiplier
and addend values, a and ¢, specified previously.

See Also

rand.

1192192

3-54 Library Functions

ecvt

Name

ecvt, feut, gevt - convert floating-point number to string

Format

char ‘*ecvt (value, ndigit, decpt, sign)
double valuse;

Int ndigit, ‘decpt, "sign;

char *fcvt (value, ndigit, decpt, sign)
double value;

int ndigit, ‘decpt, *sign;

char *gcvt (value, ndigit, buft)
doublie value;

int ndigit;

char *buf;

Description

The ecvt function converts value to a null-terminated string of
ndigit digits and returns a pointer thereto. The high—order
digit is non-zero, unless the value is zero. The low—order
digit is rounded. The position of the decimal point relative to
the beginning of the string is stored indirectly through decpt
{negative means to the left of the return digits). The decimal
point is not included in the returned string. If the sign of the
result is negative, the word pointed to by sign is non-zero;
otherwise, it is zero.

fevt is identical to ecvt, except that the correct digit has been
rounded for printf “%f" (FORTRAN F-format) output of the
number of digits specified by ndigit.

The gevt function converts the value to a null-terminated
string in the array pointed to by buf and returns buf. It
attempts to produce ndigit significant digits in FORTRAN
F-format if possible; otherwise, E-format, ready for printing.
A minus sign, if there is one, or a decimal point will be
included as part of the returned string. Trailing zeros are
suppressed.

Library Functions 3-55

ecvt

Known Problems

The values returned by eevt and fevt point to a single static
data array whose content is overwritten by each call.

See Also

printf.

1192192

3-56 Library Functions

end

Name

end, etext, edata - last locations in programs

Format

extern end;
extern etext;

extern edata;

Description

These names refer neither to routines nor to locations with
interesting contents. The address of etext is the first address
above the program text, edata above the initialized data
region, and end above the uninitialized data region.

When execution begins, the program break (the first location
beyond the data) coincides with end, but the program break
may be reset by the routines of brk (see Section 2), malloc,
standard input/output (stdio), the profile (-p) option of cc (see
Section 1), and so on. Thus, the current value of the program
break should be determined by sbrk(0) (see brk in Section 2).

See Also

brk in Section 2; malloc.

Library Functions 3-57

erf

Name

erf, edc - error function and complementary error function

Format

#include <math.h>

double erf (x)
double x;

double erfc (x)

double x;

Description

The erf function returns the error function of x, defined as

—72-—fc"2dt.
To

erfc, which returns 1.0 - erf(x), is provided because of the
extreme loss of relative accuracy if erf(x) is called for large x
and the result subtracted from 1.0 (for example, for x - 5,12
places are lost).

See Also

exp.

1192192

3-58 Library Functions

exp

Name

exp, log, log10, pow, sgrt - exponential, logarithm, power,
square root functions

Format

#include <math.h>

double exp («x)
double x;

doublie log (x)
doubie x;

double log10 (x)
double x;

double pow (x, y)
double x, y;

doublie sqgrt (x)
double x;

Description
exp returns the exponential function (e,).

log returns the natural logarithm of x. The value of x must be
positive.

log10 returns the logarithm base ten of x. The value of x must
be positive.

pow returns x . If x is zero, y must be positive. If x is negative,
y must be an integer.

sqrt returns the non-negative square root of x. The value of x
may not be negative.

Library Functions 3-59

exp

Diagnostics

exp returns HUGE when the correct value would overflow, or
0 when the correct value would underflow, and sets errmo to
ERANGE.

log and log10 return -HUGE and set errno to EDOM when x is
non-positive. A message indicating DOMAIN error (or SING
error when x is 0) is printed on the standard error output.

pow returns O and sets errno to EDOM when x is O and y is
non—positive, or when x is negative and y is not an integer.
In these cases a message indicating DOMAIN error is printed
on the standard error output. When the correct value for pow
would overflow or underflow, pow returns + /-HUGE or O,
respectively, and sets ermo to ERANGE.

sqrt returns O and sets errno o EDOM when x is negative. A
message indicating DOMAIN error is printed on the standard
error output.

These error handling procedures may be changed with the
function matherr.

See Also

hypot, matherr, sinh.

1192182

3-60 Library Functions

fclose

Name

fclose, fflush - close or flush a stream

Format

#include <stdio.h>

int fciose (stream)
FILE *stream;

int fftlush (stream)
FILE *stream:;

Description

The felose function causes any buffered data for the named

Stream to be written out, and the stream to be closed. fclose
is performed automatically for all open files upon calling the
exit system call.

The fflush function causes any buffered data for the named
Stream to be written to that file. The Strearn remains open.

Diagnostics

These functions return O for success, and EOF if any error
(such as trying to write to a file that has not been opened for
writing) is detected.

See Also

close, exit in Section 2: fopen, setbuf.

Library Functions 3-61

ferror

Name

ferror, feof, clearerr, fileno - stream status inquiries

Format

#include <stdio.h>

int terror (stream)
FILE *stream,;

int feof (stream)
FILE °stream;

void clearerv (stream)
FILE stream;

int tileno (stream)
FILE ‘stream;

Description

The ferror function returns non-zero when 1/O error has
previously occurred reading from or writing to the named
strean; otherwise, it returns zero.

The feof function returns non-zero when ECF has previously
been detected reading the named input stream; otherwise, it
returns zero.

clearerr resets the error indicator and EOF indicator to zero on
the named stream.

fileno returns the integer file descriptor associated with the
named stream; see open in Section 2.

All of these functions are implemented as macros; they
cannot be declared or redeclared.

See Also

open in Section 2; fopen

1192182

3-62 Library Functions

floor

floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute
value functions

Format

#include <math.h>

doubie floor (x)
double «x;

double ceil (x)
double x;

double ftmod (x, y)
double x, y;

double fabs (x)
doubie x;

Description

The floor function returns the largest integer (as a
double-precision number) not greater than x.

ceil returns the smallest integer not less than x

fmod returns the floating-point remainder of the division of x
by y: zero if y is zero or if x/y would overflow; otherwise the
number f with the same sign as x, such that x = iy + ffor
some integer /, and |f| < |y].

fabs returns the absolute value of x, |x|.

See Also

abs.

Library Functions 3-63

fopen

Name

fopen, freopen, fdopen - open a stream

Format

#inciude <stdio.h>

FILE *fopen (file-name, type)
char *file-name, °‘type;

FILE "freopen (file-name, type, stream)
char *fiie-name, “typé;
FILE *stream;

EILE *fdopen (fildes, type)
int fildes;
char type;

Description

The fopen function opens the file named by file-name and
associates a stream with it. fopen returns a pointer 10 the FILE
structure associated with the stream.

File-name points to a character string that contains the name
of the file to be opened.

Type is a character string having one of the following values:

" Open for reading.

“w” runcate or create for writing.

“a" Append; open for writing at end of file, or create for writing.
“r+" Open for update {reading and writing).

"W+ Truncate or create for update.

“a+” Append; open or create for update at end-of-file.

The freopen function substitutes the named file in place of the
open stream. The original stream is closed, regardless of
whether open ultimately succeeds. freopen returns a pointer to
the FILE structure associated with stream.

1192192

3-64 Library Functions

fopen

The fdopen function associates a stream with a file descriptor
obtained from open, dup, creat, or pipe system calls, which will
open files but not return pointers to a FILE structure streamn,
which is necessary input for many of the standard 1/0 library
functions. The type of stream must agree with the mode of
the open file.

When a file is opened for update, both input and output may
be done on the resulting stream. However, output may not
be directly followed by input without an intervening fseek or
rewind, and input may not be directly followed by output
without an intervening fseek, rewind, or an inpur operation that
encounters end-of-file.

When a file is opened for append (that is, when type is “a” or
“a+"), it is impossible to overwrite information already in the
file. fseek may be used to reposition the file pointer to any
position in the file, but when output is written to the file, the
current file pointer is disregarded. All output is written at the
end of the file and causes the file pointer to be repositioned
at the end of the output. If two Separate processes open the
same file for append, each process may write freely to the
file without fear of destroying output being written to by the
other. The output from the two processes will be intermixed
in the file in the order in which it is written.

Diagnostics

fopen and freopen return a NULL pointer on failure.

See Also

open in Section 2; fclose.

Library Functions 3-65

fread

Name
fread, fwrite - binary input/output

Format

#include <stdio.h>

int tread (ptr, size, nitems, stream)
char *ptr.

int size, nitems;

FILE "stream;

int twrite (ptr, size, nitems, stream)
char *ptr;

int size, nitems;

FILE *stream;

Description

The fread function copies, into an array pointed to by ptr,
nitems of data from the named input stream, where an item
of data is a sequence of bytes (not necessarily terminated by
a null byte) of length size. fread stops appending bytes if an
end-of-file or error condition is encountered while reading
stream, or if nitems have been read. fread leaves the file
pointer in stream, if defined, pointing to the byte following
the last byte read, if there is one.

The fwrite function appends at most nitems items of data
from the array pointed to by ptr to the named output stream.
fwrite stops appending when it has appended nitems items of
data or if an error condition is encountered on stream. fwrite
does not change the contents of the array pointed to by ptr.

The argument size is typically sizeof(*ptr), where the
pseudo-function sizeof specifies the length of an item pointed
to by ptr. If ptr points to a data type other than char it should
be cast into a pointer to char.

1192192

3-66 Library Functions

fread

Diagnostics

fread and fwrite return the number of items read or written. If
size or nitems is non-positive, no characters are read or
written and O is returned by both fread and fwrite.

See Also

read, write in Section 2; fopen, getc, gets, printf, putc, puts, scanf.

Library Functions 3-67

frexp

Name

frexp, Idexp, modf - manipulate parts of floating-point numbers

Format

doublte trexp (value, eptr)
doubie value;
int “eptr;

double ldexp (value, exp)
double value;
int exp.

double modf (value, iptr)
double value, “iptr;

Description

Every non-zero number can be written uniquely as x * 2,
where the “mantissa” (fraction) x is in the range 0.5 -< | x|
< 1.0, and the “exponent” n is an integer. The frexp function
returns the mantissa of a double value, and stores the
exponent indirectly in the location pointed to by eptr. If value
is zero, both results returned by frexp are zero.

The ldexp function returns the quantity value * 2°°.

The medf function returns the signed fractional part of value
and stores the integral part indirectly in the location pointed
to by iptr.

Diagnostics

if Idexp would cause overflow, +/-HUGE is returned
(according to the sign of value), and ermo is set to ERANGE.

If idexp would cause underflow, zero is returned and ermo is
set to ERANGE.

1192192

3-68 Library Functions

fseek

Name

fseek, rewind, fteli - reposition a file pointer in a stream

Format

#inciude <stdio.h>

int fseek (stream, offset, ptrname)
FILE “stream;

long offset;

int ptrname;

Void rawind {straam)
FILE *stream;

fong ftsil (stream)
FILE °stream;

Description

The fseek function sets the position of the next input or
output operation on the stream. The new position is at the
signed distance offset bytes from the bginning, from the
current position, or from the end of the file, according as
ptrame has the value 0, 1, or 2.

rewind(strean) is equivalent to fseek{stream, OL, 0), except that
no value is returned.

fseek and rewind undo any effects of the ungete function.

After fseek or rewind, the next operation on a file opened for
update may be either input or output.

The fell funciion returns the offset of the current byte
relative to the beginning of the file associated with the
named stream.

Library Functions 3-89

fseek

Diagnostics

fseek returns non-zero for improper seeks; otherwise, zero.
An improper seek can be, for example, an fseek done on a
file that has not been opened via fopen; in particular, fseek
may not be used on a terminal, or on a file opened via popen.

Caution

On CENTIX, the value returned by ftell is a number of bytes,
and a program can use this value to seek relative 10 the
current offset. Such programs are not portable to systems
where file offsets are not measured in bytes.

See Also

Iseek in Section 2; fopen.

1182192

3-70 , Library Functions

ftw

Name

ftw - walk a file tree

Format

#include <!ftw.h>

int ftw (path, fn, depth)
char ‘path;

int (*fn)():

int depth;

Description

The ftw function recursively descends the directory hierarchy
rooted in path. For each object in the hierarchy, ftw calis fn,
passing it a pointer to a null-terminated character string
containing the name of the object, a pointer to a stat
structure (see stat in Section 2) containing information about
the object, and an integer. Possible values of the integer,
defined in the <ftw.h> header file, are FTW_F for a file,
FTW_D for a directory, FTW_DNR for a directory that cannot
be read, and FTW_NS for an object for which stat could not
successfully be executed. If the integer is FTW_DNR,
descendants of that directory will not be processed. If the
integer is FTW_NS, that stat structure will contain garbage.
An example of an object that would cause FTW_NS to be
passed to fn would be a file in a directory with read but
without execute (search) permissions.

The ftw function visits a directory before visiting any of its
descendants.

The tree traversal continues until the tree is exhausted, an
invocation of fn returns a non-zero value, or some error is
detected within ftw (such as an I/O error). If the tree is
exhausted, ftw returns zero. If fn returns a non-zero value, ftw
stops its tree traversal and returns whatever value was
returned by fn. If ftw detects an error, it returns -1, and sets
the error type in errno.

Library Functions 3-N1

ftw

ftw uses one file descriptor for each ievel in the tree. The
depth argument limits the number of file descriptors so used.
If depth is zero or negative, the effect is the same if it were
1. Depth must not be greater than the number of file
descriptors currently available for use. ftw will run more
quickly if depth is at least as large as the number of levels in
the tree.

Known Problems

Because ftw is recursive, it is possible for it to terminate with
a memory fault when applied to very deep file structures.

it could be made to run faster and use less storage on deep
structures at the cost of considerable complexity.

ftw uses the malloc function to allocate dynamic storage
during its operation. If ftw is forcibly terminated, such as by
longimp being executed by fn or an attempted routine, ftw will
not have a chance to free that storage, so it will remain
permanently allocated. A safe way to handle interrupts is to
store the fact that an interrupt has occurred, and arrange to
have fn return a non-zero value at its next invocation.

See Also

stat in Section 2; malloc.

1192192

3-72 Library Functions

gamma

Name

gamma - log gamma function

Format

#inciude <math.h>

double gamma (x)
double x;

extern int signgam;

Description

The gamma functionreturns In(| T (x)|), where T'(x)is defined as
Jetez-tdr.
0

The sign of T (x) is returned in the external integer signgam.
The argument x may not be a non-positive integer.

The following C program fragment might be used to calculate T :

it ((y = gamma(x)) > LN_MAXDOUBLE)
error();
y = signgam * exp(y);

where LN_MAXDOUBLE is the least value that causes the exp
function to return a range error, and is defined in the
<values.h> header file.

Diagnostics

For non-negative integer arguments, HUGE is returned and
erro is set to EDOM. A message indicating SIGN error is
printed on the standard error output.

If the correct value would overflow, gamma returns HUGE and
sets errno to ERANGE.

Library Functions 3-713

gamma

These error-handling procedures may be changed with the
function matherr.

See Also

exp, matherr; values in Section 5.

1192192

3-74 Library Functions

getc

Name

getc, getchar, fgetc, getw - get character or word from a stream

Format

#include <stdio.h>

int getc (stream)
FILE *stream;

int getchar ()

int fgetc (stream)
FILE *stream;

int getw (stream)
FILE *stream;

Description

The getc function returns the next character (or byte} from the
named input stream, as an integer. It also moves the file
pointer, if defined, ahead one character in stream. The getchar
function is defined as gete(stdin). getc and getchar are macros.

fgetc behaves like gete but is a genuine function. fgetc runs
more slowly than gete, but it takes less space per invocation
and its name can be passed as an argument to a function.

getw returns the next word (integer) from the named input
Stream. getw increments the associated file pointer, if defined,
to point to the next word. The size of the word is the size of
an integer and varies from machine to machine. getw
assumes no special alignment in the file.

Diagnostics

These functions return the constant EQF at end-of-file or
upon an error. Because EOF is a valid integer, the ferror
function should be used to detect getw errors.

Library Functions 3-75

getc

Caution

If the integer value returned by getc, getchar, or fgetc is stored
into a character variable and then compared against the
integer constant EOF, the comparison may never succeed,
because sign-extension of a character on widening to an
integer is machine-dependent.

Known Problems

Because it is implemented as a macro, getc incorrectly treats
a stream argument with side effects. In particular, getc(*f+ +)
does not work sensibly. fgetc should be used instead.
Because of possible differences in word length and byte
ordering, files written using the putw function are
machine-dependent, and may not be read using getw on a
different processor.

See Also

fclose, ferror, fopen, fread, gets, putc, scanf.

1192192

3-76 Library Functions

getcwd

Name

" getewd - get the path-name of the current working directory

Format

char *getcwd (buft, size)
char “*but;
int size;

Description

The getewd function returns a pointer to the current directory
path-name. The value of size must be at least two greater
than the length of the path-name to be returned.

If buf is a NULL pointer, getewd will obtain size bytes of space
using the mallec function. In this case, the pointer returned by
getewd may be used as the argumentina subsequent call to free.

The function is implemented by using popen to pipe the
output of the pwd shell command into the specified string space.

Example

char ‘*cwd, getcwd();

I'f ((cwd = getcwd((char®)NULL, 64)) == NULL)
perror(“pwd");
exit(1);

}

printf{ %s\n",cwd);

Diagnostics

Returns NULL with ermo set if size is not large enough, or if
an error occurs in a lower-level function.

See Also

pwd in Section 1; malioc, popen.

Library Functions 3-77

getenv

Name

getenv - return value for environment name

Format

char °*getenv {(name)
char °*name;

Description

The getenv function searches the environment list (see environ
in Section 5) for a string of the form name=value, and returns
a pointer to the value in the current environment if such a
string is present, otherwise a NULL pointer.

See Aiso

exec in Section 2; putenv; environ in Section 5.

1192192

3-78 Library Functions

getgrent

Name
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get
group file entry

Format

#include <grp.h>
struct group ‘*getgrent ()

struct group *getgrgid (gid)
int gid;

struct group *getgrnam (name)
char *namse;

void setgrent ()
‘void endgrent ()
struct group *fgetgrent (1)
FILE °ft;
Description

The getgrent, getgrgid, and getgrname functions each return
pointers to objects with the following structure containing
the broken-out fields of a line in the /etc/group file. Each line
contains a “group” structure, defined in the <grp.h> header file.

struct group {

char ‘gr_name; /* name of the group)

char ‘gr_passwd; /® encrypted group passwd */
int gr_gid; /* numerical group ID */
char **gr_mem; /* vector of pointers to

member names */

1B

When first called, getgrent returns a pointer to the first group
structure in the file; thereafter, it returns a pointer to the next
group structure in the file; so, successive calls may be used
to search the entire file. getgrgid searches from the beginning

Library Functions 3-79

getgrent

of the file until a numerical group ID matching g/d is found
and returns a pointer to the particular structure in which it
was found. getgrnam searches from the beginning of the file
until a group name matching name is found a returns a
pointer to a particular structure in which it was found. If an
end-of-file or an error is encountered on reading, these
functions return a NULL pointer.

A call to setgrent has the effect of rewinding the group file to
allow repeated searches. endgrent may be called to close the
group file when processing is complete.

The fgetgrent function returns a pointer to the next group
structure in the stream f, which matches the format of
/etc/group.
Files

Jetc/group

Diagnostics
A NULL pointer is returned on EOF or error.

Caution

The above routines use <stdio.h>, which causes them to
increase the size of programs, not otherwise using standard
1/0, more than might be expected.

Known Problems

All information is contained in a static area, so it must be
copied if it is to be saved.

See Also

getlogin, getpwent; group in Section 4.

1192192

3-80 Library Functions

getlogin

Name

getlogin - get login name

Format

char *getlogin ().

Description

The getlogin function returns a pointer to the login name as
found in /etc/utmp. It may be used in conjunction with
getpwnam to locate the correct password file entry when the
same user ID is shared by several login names.

If getlogin is called within a process that is not attached to a
terminal, it returns a NULL pointer. The correct procedure for
determining the login name is to call cuserid, or to call getlogin,
and, if it fails, call getpwuid.

Files
/etc/utmp

Diagnostics

Returns the NULL pointer if name is not found.

Known Problems

The return values point to static data whose content is
overwritten by each call.

See Also

cuserid, getgrent, getpwent; utmp in Section 4.

Library Functions 3-81

getopt

Name

getopt - get option letter from argument vector

Format
int getopt (argc, argv, optstring)
int argc.

char *‘*argv, optstring;

extern char “optarg:
extern Int optind, opterr;

Description

The getopt function returns the next option letter in argv that
matches a letter in optstring. Opstring is a string of
recognized option letters. If a letter is followed by a colon,
the option is expected to have an argument that may or may
not be separated from it by white space. Optarg is set to
point to the start of the option argument on return from getopt.

The getopt function places in optind the argv index of the next
argument to be processed. Because optind is external, it is
normally initialized to zero automatically before the first call
to getopt.

When all options have been processed (that is, up 1o the first
non-option arguments), getopt returns EOF. The special option
- may be used to delimit the end of the options. EOF will be
returned and - will be skipped.

Diagnostics

getopt prints an error message on the stderr file and returns a
question mark ('?) when it encounters an option letter not
included in optstring. This error message may be disabled by
setting opterr to a non-zero value.

1192192

3-82 Library Functions

getopt

Example

main (argc, argv)

int argc;

char *‘*argv;

{
int c;
extern char ‘optarg;
extern int optind;

while ((c¢c = getopt(argc, argv, "abt:o0:")) != EOF)
switch (c¢) |

case ‘a’' -
if (bfilg)
errfig++;
else
aflg++;
break;
case 'b’
it (aflg)
errfig++;
else
bproc();
break;
case 'f°
ifile = optarg;
break;
case ‘o'
ofite = optarg;
break;
case 7'
errflig++;
}
if (errtig) {
fprintf(stderr, "usage: ")
exit (2);

}
for (: optind < argc; optind++) {
it (access(argvloptind], 4)) {

Library Functions 3-83

getopt
See Also

getopt in Section 1.

1192192

3-84 Library Functions

getpass

Name

getpass - read a password

Format
char *‘getpass (prompt)
char "prompt;
Description

The getpass function reads up to a new-line or EQF from the
file /dev/tty, after prompting the standard error output with
the null-terminated string prompt and disabling echoing. A
pointer is returned to a null-terminated string of at most 8
characters. If /dev/tty cannot be opened, a NULL pointer is
returned. An interrupt will terminate input and send an
interrupt signal to the calling program before returning.

Files
/dev/tty

Caution

The above routine uses <stdio.h>, which causes it to
increase the size of programs, not otherwise using standard
I/O, more than might be expected.

Known Problems

The return value points to static data whose content is
overwritten by each call.

See Also
crypt.

Library Functions 3-85

getpw

getpw - get name from UID

Format

int getpw (uid, but)
int vwid;
char °buf;

Description

The getpw function searches the password file for a user id
number that equals uid, copies the line of the password file
in which uid was found into the array ponted to by buf, and
returns O. getpw returns non-zero if uid cannot be found.

This routine is included only for compatibility with older
systems and should not be used; see getpwent for routines to
use instead.

Files
/etc/passwd

Diagnostics
getpw returns non-zero on error.

Caution

The above routine uses <stdio>, which causes it to increase
the size of programs, not otherwise using standard 1/O, more
than might be expected.

See Also

getpwent; passwd in Section 4.

1192192

3-86 : Library Functions

getpwent

Name
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent -
get password file entry

Format

#include <pwd.h>
struct passwd °*getpwent ()

struct passwd ‘getpwuid (uid)
int uid;

struct passwd °*getpwnam (name)
char *name;

void setpwent ()
void endpwent ()

struct passwd *fgetpwent (f)
FILE °f;

Description

The getpwent, getpwuid, and getpwnam functions return a pointer
to an object with the following structure containing the
broken-out fields of a line in the /etc/passwd file. Each line in
the file contains a “passwd” structure, declared in the
<pwd.h> header file:

struct passwd {

char *pw_name;
char *pw_passwd;
int pw_ulid;

int pw_gid;

char *pw_age;
char ‘pw_comment ;
char ‘pw_gecos;
char ‘pw_dir;
char ‘pw_shel | ;

HE

This structure is declared in <pwd.h>, so it is not necessary
to redeclare it.

Library Functions 3-87

getpwent

The pw_comment field is unused; the others have meanings
described in passwd (see Section 4).

The getpwent function, when first called, returns a pointer to
the first passwd structure in the file; thereafter, it returns a
pointer to the next passwd structure in the file; so
successive calls can be used to search the entire file. getpwuid
searches from the beginning of the file until a numerical user
ID matching wid is found, then returns a pointer to the
particular structure in which it was found. getpwnam searches
from the beginning of the file until a login name matching
name is found, then returns a pointer to the particular
structure in which it was found. If an end-of-file or an error is
encountered on reading, these functions return a NULL pointer.

A call to setpwent has the effect of rewinding the password
file to allow repeated searches. endpwent may be called to
close the password file when processing is complete.

The fgetpwent function returns a pointer to the next passwd
structure in the stream £, which matches the format of
Jetc/passwd.

Files
/etc/passwd

Diagnostics
A NULL pointer is returned on EOF or error.

Caution

The above routines use <stdio.h>, which causes them to
increase the size of programs, not otherwise using standard
I/O, more than might be expected.

1192192

3-88 Library Functions

getpwent

Known Problems

All information is contained in a static area, so it must be
copied if it is to be saved.

See Also

getlogin, getgrent; passwd in Section 4.

Library Functions 3-89

gets

Name

gets, fgets - get a string from a stream

Format

#include <stdio.h>

char °gets (s)
char °s;

char *fgets (s, n, stream)
char °s;

int n;

FILE °*stream;

Description

The gets function reads characters from the standard input
stream, stdin, into the array pointed to by s, until a new-line
character is read or an end-of-file condition is encountered.
The new-line character is discarded and the string is
terminated by a null character.

The fgets function reads characters from stream into the array
pointed to by s, until n-1 characters are read, or a new-line
character is read and transferred to s, or an end-of-file
condition is encountered. The string is then terminated with a
NULL character.

Diagnostics

If end-of-file is encountered and no characters have been
read, no characters are transferred to s and a NULL pointer is
returned. If a read error occurs, such as trying to use these
functions on a file that has not been opened for reading, a
NULL pointer is returned. Otherwise, s is returned.

See Also

ferror, fopen, fread, getc, scanf.

1192192

3-90 Library Functions

getut

getutent, getutid, getutline, pututline, setutent, endutent,
utmpname - access utmp file entry

Format

#include <utmp.h>
struct utmp ‘getutent ()

struct utmp °"getutid (id)
struct utmp *id;

struct utmp *getuline (line)
struct utmp *line;

void pututiine (utmp)
struct utmp *utmp;

void setutent ()
void endutent ()

void utmpname (file)
char *file;

Library Functions 3-91

getut

Description

The getutent, getutid, and getutline functions return a pointer to
a structure of the following type:

struct utmp {

char ut_user[8];: /{*User login name*/
char ut_idf4); /*/etc/inittab id
(usually line number)*/
char ut_line[12]: J*device name (console,
Inxx)*/
short ut_pid; /*process id*/
short ut_type; /°type of entry*/
struct exit_status f{
short e_termination; [°*Process term. status*/
short e_exit; |*Process exit status*/
} ut_exit; /°The exit status of a

process marked as
DEAD_PROCESS*/
time_t ut_time: /*time entry was made°®/

}s

The getutent function reads in the next entry from a utmp-like
file. If the file is not already open, getutent opens it. If it
reaches the end of the file, it fails.

getutid searches forward from the current point in the utmp
file until it finds an entry with a ut_type matching /id->ut_type
if the type specified is RUN_LVL, BOOT_TIME, OLD_TIME, or
NEW_TIME. If the type specified in /id is INIT_PROCESS,
LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutid returns a pointer to the first entry whose type is one
of these four and whose ut_id field matches id->ut_id. If the
end of the file is reached without a match, it fails.

The getutline function searches forward from the current point
in the utmp file until it finds an entry of the type
LOGIN_PROCESS or USER_PROCESS which also has a ut_fine .
string matching the /ine->ut_line string. If the end of the file

is reached without a match, it fails.

1192192

3-92 Library Functions

getut

pututline writes out the supplied utmp structure into the utmp
file. It uses getutid to search forward for the proper place if it
finds that it is not already at the proper place. It is expected
that normally the user of pututline will have searched for the
proper entry using one of the getut routines. If so, pututline will
not search. If pututline does not find a matching slot for the
new entry, it will add a new entry to the end of the file.

setutent resets the input stream to the beginning of the file.
Do this before each search for a new entry if the entire file
must be examined.

endutent closes the currently open file.

utmpname allows the user to change the name of the file
examined, from /etc/utmp to any other file. Most often, this
file will be /etc/utmp. If the file does not exist, this will be
apparent after the first attempt to reference it, not on the
utmpname call. This function does not open the file, it just
closes the old utmp file, if currently open, and saves the new
file name.

Files
/etc/utmp, /etc/wtmp

Diagnostics

A NULL pointer is returned upon failure to read, whether due
to permissions or to having reached the end of the file, or
upon failure to write.

Library Functions 3-93

getut

Known Problems

The most current entry is saved in a static structure. Multiple
accesses require that it be copied before further accesses
are made. Each call to either getutid or getutline sees the
routine examine the static structure before performing more
1/0. If the contents of the static structure match what it is
searching for, it looks no further. For this reason, to use
getutline to search for multiple occurrences, it is necessary to
zero out the static after each success, or getutline would just
return the same pointer over and over again. There is one
exception to the rule about removing the structure before
further reads are done. The implicit read done by pututline (if it
finds that it is not already at the correct place in the file) will
not hurt the contents of the static structure returned by the
getutent, getutid, or getutline routines, if the user has just
modified those contents and passed the pointer back to pututline.

These routines use buffered standard I/O for input, but
pututline uses an unbeffered non-standard write to avoid race
conditions between processes trying to modify the utmp and
wtmp files.

See Also

ttyslot; utmp in Section 4.

1192192

3-94 Library Functions

hsearch

hsearch, hcreate, hdestroy - manage hash search tables

Format
#include <search.h>
ENTRY *hsearch (item, action)
ENTRY item;

ACTION action;

Int hcreate (netl)
unsigned nel;

void hdestroy ()

Description

The hsearch function is a hash-table search routine generalized
from Knuth (6.4) Algorithm D. It returns a pointer to a hash
table indicating the location at which an entry can be found.
Item is a structure of type ENTRY (defined in the <search.h>
header file) containing two pointers: item.key points to the
comparison key, and item.data points to any other data
associated with that key. (Pointers to types other than
character should be cast to type pointer-to-character.) Action
is @ member of an enumeration type ACTION indicating the
disposition of the entry, if it cannot be found in the table.
ENTER indicates that the item should be inserted in the table
at the appropriate point. FIND indicates that no entry should
be made. Unsuccessful resolution is indicated by the return
of a NULL pointer.

The hereate function allocates sufficient space for the table,
and must be called before hsearch is used. Nel is an estimate
of the maximum number of entries that the table will contain.
This number may be adjusted upward by the algorithm in
order to obtain certain mathematically favorable
circumstances.

Library Functions 3-95

hseatch

The hdestroy function destroys the search table, freeing the
memory used by the table. it may be followed by another
call to hcreate.

hsearch uses “open addressing” with a “multiplicative” hash
function. However, its source code has many other options
available which the user may select by compiling the hsearch
source with the following symbols defined to the
preprocessor:

DIv Use remainder modulo table size as the hash function
instead of the multiplicative algorithm.

USCR Use a User Supplied Comparison Routine for ascertaining
table membership. The routine should be named hcompar
and should behave in @ manner similar to stremp (see string).

CHAINED Use a linked list to resolve collisions. If this option is
selected, the following options become available.

START Place new entries at the beginning of
the linked list (default is at the end).

SORTUP Keep the linked list sorted by key in
ascending order.

SORTDOWN Keep the linked list sorted by key in
descending order.

Additionally, there are preprocessor flags for obtaining
debugging printout (-DDEBUG) and for including a test driver in
the calling routine (-DDRIVER). The source code should be
consulted for further details.

Example

The following example will read in strings followed by two
numbers and store them in a hash table, discarding the
duplicates. It will then read in strings and find the matching
entry in the hash table, then print it out.

1192192

3-96 Library Functions

hsearch

#include <stdio.h>
#include <search.h>

struct info { /*this Is the info stored in table*/
int age, room; /*other than the key.*/
)

#define NUM_EMPL 5000 /*# of elements in search table*/

main()

{
/*space to store strings*/
char strIng_space[NUM_EMPL'?O];
/°space to store emplioyee into°*/
struct into lnfo_space[NUM_EMPL];
/*next available space in string_space*/
char *str_ptr « string_space;
/"next available space in into_space*/
struct info ‘info_ptr = info_space;
ENTRY |tem, *tound_item, *hsearch();
/*name to look for in table*/
char name_to_find[30]);
int i = 0;

/*create table*/
(void) hcreate (NUM_EMPL) ;
while (scant ("%s%d%d", str_ptr, &lnfo_p!r->age.
&info_ptr->room) I« EOF a& i++ < NUM_EMPL) {
/*put into in Structure, and structure in item*/
ltem.key = str_ptr;)
Item.data = (char “)into_ptr;
Str_ptr +e strlen(str_ptr) + 1;
info_ptr++;
/*put item into table*/
(void) hsearch(item, ENTER) ;
}
/*access table*/
item.key = name_to_tfind;
while (scanf("%s", Item.key) != EOF) {
it ((found_item = hsearch(item, FIND)) la NULL) {
/*it item is in the table*/
(vold)printt('lound %8, age = %d,
room = %d\n-, found_item->kay.
((struct Into ')1ound_ltem~>data)->ago.
((struct info ')found_ltem->data)->room);
} else {
(void)printf(~"no such employee %s\n-",
name_to_find)

Library Functions 3-97

hsearch

Diagnostics

hsearch returns a NULL pointer if either the action is FIND and
the item could not be found, or the action is ENTER and the
table is full.

hereate returns zero if it cannot allocate sufficient space for
the table.

Caution

hsearch and hcreate use the malloc function to allocate space.

Known Problems

Only one hash search table may be active at any given time.

See Also

hsearch, Isearch, malloc, string, tsearch.

1192192

3-98

Library Functions

hypot

Name
hypot - Euclidean distance function

Format

#include <math.h>

double hypot (x, y)
double x, y;

Description
The hypot function returns
sqrtx " x +y *y),

taking precautions against unwarranted overflows.

Diagnostics

When the correct value would overflow, hypot returns HUGE

and sets ermo to ERANGE.

These error-handling procedures may be changed with the

matherr function.

See Also

matherr, exp.

Library Functions 3-99

13tol

13tol, Itol3 - convert between 3-byte integers and long
integers

Format
void 13tol (Ip, ¢cp, n)
long °*Ip:
char ‘*cp;
int n;

void 1tol3 (cp, Ip, Nn)
char *cp:

tong °*Ip;

int n;

Description

The 13tol function converts a list of n three-byte integers
packed into a character string pointed to by ¢p into a list of
long integers pointed to by /p.

The Itol3 function performs the reverse conversion from long
integers (/p) to three-byte integers (cp).

These functions are useful for file-system maintenance where
the block numbers are three bytes long.

Known Problems

Because of possible differences in byte ordering, the
numerical values of the long integers are machine-dependent.

See Also

fs in Section 4.

1192192

3-100 Library Functions

Idahread

Name
Idahread - read the archive header of a member of an
archive file

Format

#include <stdio.h>
#include <ar.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldahread (/dptr, arhead)
LDFILE */idptr;
ARCHDR ‘arhead;

Description

If TYPE(/dptr) is the archive file magic number, the Idahread
function reads the archive header of the common object file
currently associated with /dptr into the area of memory
beginning at arhead.

Idahread returns SUCCESS or FAILURE. The function will fail if
TYPE(/dptr) does not represent an archive file, or if it cannot
read the archive header.

The program must be loaded with the object file access
routine library libld.a.

Files
/usr/lib/iibld.a

See Also

Idclose, Idopen; Idfen, ar in Section 4.

Library Functions 3-101

Idclose

Idclose, ldaclose - close a common object file

Format

#include <stdio.h>
#include <filehdr.h>
#include <idtcn.h>

int idclose (/dptr)
LOFILE *ldptr;

int ldaclose (/dptr)
LOFILE *ldptr;

Description

The ldopen and Idelose functions are designed to provide
uniform access to both simple object files and object files
that are members of archive files. Thus an archive of
common obiject files can be processed as if it were a series
of simple common object files.

If TYPE(/dptr) does not represent an archive file, ldclose will
close the file and free the memory allocated to the LDFILE
structure associated with /dptr. If TYPE(/dptr) is the magic
number of an archive file, and if there are any more files in
the archive, ldclose will reinitialize OFFSET (/dptr) to the file
address of the next archive member and return FAILURE. The
LDFILE structure is prepared for a subsequent Idopen. In all
other cases, ldclose returns SUCCESS.

ldaclose closes the file and frees the memory allocated to the
LDFILE structure associated with /dptr regardiess of the value
of TYPE{/dptr). ldaclese always returns SUCCESS. The function
is often used in conjunction with Idaopen.

The program must be loaded with the object file access
routine library libld.a.

1192192

3-102

Library Functions

Idclose

Files
Jusr/lib/libld.a

See Also

fclose, Idopen; Idfcn in Section 4.

Library Functions 3-103

Idfhread

Name

ldfhread - read the file header of a common object file

Format

#include <stdio.h>
#include <filehdr.h>
#include <idfcen.h>

int tdfthread (/dptr, filehead)
LDFILE °*idptr;
FILHDR *filehead;

Description

The ldfhread function reads the file header of the common
object file currently associated with /dptr into the area of
memory beginning at filehead.

\dfhread returns SUCCESS or FAILURE. The function will fail if
it cannot read the file header.

In most cases, the use of Idfhread can be avoided by using
the macro HEADER(/dptr), defined in Idfcn.h (see idfen in
Section 4). The information in any field, fieldname, of the file
header may be accessed using HEADER(/dptr).fieldname.

The program must be loaded with the object file access
routine library libld.a.

Files
Jusr/lib/libld.a

See Also

idclose, Idopen; ldfcn in Section 4.

1192192/

3-104 Library Functions

Idgetname

Name

ldgetname - retrieve symbol name for common object file
symbol table entry

Format

#include <stdio.h>
#include <tfilehdr.h>
#include <syms.h>
#include <ldfcn.h>

char ‘ldgetname (/dptr, symbol)
LDFILE *Idptr;
SYMENT *symbol;

Description

The Idgetname function returns a pointer to the name
associated with symbo/ as a string. The string is contained in
a static buffer local to Idgetname that is overwritten by each
call to Idgetname, and therefore must be copied by the caller if
the name is to be saved.

As of UNIX System release 5.0, which corresponds with the
first release of CENTIX, the common object file format has
been extended to handle arbitrary length symbol names with
the addition of a “string table.” Idgetname will return the
symbol name associated with a symbol table entry for either
a pre-UNIX System 5.0 object file or a UNIX System 5.0
object file. Thus, ldgetname can be used to retrieve names
from object files without any backward compatibility
problems. ldgetname will return NULL (defined in stdio.h) for a
UNIX System 5.0 object file if the name cannot be retrieved.
This situation can occur: :

o if the “string table” cannot be found, ,
o if not enough memory can be allocated for the string table,

Library Functions 3-105

ldgetname

o if the string table appears not to be a string table (for
example, if an auxiliary entry is handed to ldgetname that
looks like a reference to a name in a non-existent string
table, or

o if the name's offset into the string table is past the end of
the string table.

Typically, ldgetname will be called immediately after a
successful call to idtbread to retrieve the name associated
with the symbol table entry filled by Idtbread.

The program must be loaded with the object file access
routine library libid.a.

Files
Jusr/lib/libld.a

See Also

Idclose, Idopen, Idtbread, ldtbseek; Idfcn in Section 4.

1192192

3-106 Library Functions

IdIread

Idiread, Idlinit, ldlitem - manipulate line number entries of a
common object file function

Format

#include <stdio.h>
#include <tilehdr.h>
#include <l inenum.h>
#include <ldfcn.h>

int Idlread (/dptr, fcnindx, linenum, Iinent)
LDFILE “*/dptr;

long fcnindx;

unsigned short /inenum;

LINENO /inent;

int tdlinit (idptr, fenindx)
LDFILE *1t1dptr;
long fcnindx;

tnt Idiitem (/dptr, linenum, Iinent)
LDFILE *ldptr;

unsigned short /inenum:

LINENO Iinent;

Description

The ldiread function searches the line number entries of the
common object file currently associated with ldptr. \diread
begins its search with the line number entry for the beginning
of a function and confines its search to the line numbers
associated with a single function. The function is identified
by fcnindx, the index of its entry in the object file symbol
table. Idiread reads the entry with the smallest line number
equal to or greater than /inenum into linent.

Library Functions 3-107

Idiread

idlinit and Idlitem together perform exactly the same function
as Idlread. After an initial call to idiread or Idlinit, ldlitem may be
used to retrieve a series of line number entries associated
with a single function. ldlinit simply locates the line number
entries for the function identified by fcnindx. ldlitem finds and
reads the entry with the smallest line number equal to or
greater than /inenum to linent.

idiread, Idlinit, and Idlitem each return either SUCCESS or
FAILURE. Idiread will fail if there are no line number entries in
the object file, if fcnindx does not index a function entry in
the symbol table, or if it finds no line number equal to or
greater than /inenum. Mdlinit will fail if there are no line number
entries in the object file or if fcnindx does not index a
function entry in the symbol table. ldlitem will fail if it finds no
line number equal to or greater than /inenum.

The programs must be loaded with the object file access
routine library libld.a.

Files
Jusr/lib/libld.a

See Also

Idclose, Idopen, Idtbindex; Idfcn in Section 4.

1182192

3-108 Library Functions

Idiseek

Name

Idiseek, ldniseek - seek to line number entries of a section
of a common object file

Format

#include <stdio.h>
#include <filehdr.h>
#include <!dfcn.h>

int ldliseek (/dptr, sectindx)
LDFILE “*1ldptr;
unsigned short sectindx;

int Idniseek (!dptr, sectname)
LDFILE °*/dptr;
char *sectname;

Description

The Idiseek function seeks to the line number entries of the
section specified by sectindx of the common object file
currently associated with /dptr.

ldnlseek seeks to the line number entries of the section
specified by sectname.

ldiseek and ldniseek return SUCCESS or FAILURE. Idiseek will fail
if sectindx is greater than the number of sections in the
object file; Idniseek will fail if there is no section name
corresponding with *sectname. Either function will fail if the
specified section has no line number entries or if it cannot
seek to the specified line number entries.

Note that the first section has an index of one.

The program must be loaded with the object file access
routine library libld.a.

Library Functions 3-109

Idiseek

Files
Jusr/lib/libld.a

See Also

Idclose, idopen, Idshread; Idfen in Section 4.

1192192

3-110 . Library Functions

Idohseek

Idohseek - seek to the optional file header of a common
object file

Format

#include <stdio.h>
#include <tilehdr.h>
#include <ldfcn.h>

int Idohseek (/dptr)
LDFILE *1dptr;

Description

The Idohseek function seeks to the optional file header of the
common object file currently associated with ldptr.

Idohseek returns SUCCESS or FAILURE. It will fail if the object
file has no optional header or if it cannot seek to the optional
header.

The program must be loaded with the object file access
routine library libld.a.

Files
Jusr/lib/libld.a

See Also

ldclose, ldopen, Idfhread; idfen in Section 4.

Library Functions -1

Idopen

Name

Idopen, Idaopen - open a common object file for reading

Format

#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

LDFILE *idopen (f/lename, Ildptr)
char *filename;
LDFILE *!dptr;

LDFILE °*lidaopen (filename, oldptr)
char *filename;
LDFILE ‘oldptr;

Description

The ldopen and ldclose functions are designed to provide
uniform access to both simple object files and object files
that are members of archive files. Thus, an archive of
common object files can be processed as if it were a series
of simple common object files.

If /dptr has the value NULL, then Idopen will open filename and
allocate and initialize the LDFILE structure, and return a
pointer to the structure to the calling program.

If /dptr is valid and if TYPE(/dptr) is the archive magic number,
Idopen will reinitialize the LDFILE structure for the next archive
member of filename.

Idopen and ldclose are designed to work together. ldclose will
return FAILURE only when TYPE(/dptr) is the archive magic
number and there is another file in the archive to be
processed. Only then should ldopen be called with the current
value of /dptr. In all other cases, in particular whenever a new
filename is opened, ldopen should be called with a NULL /dptr
argument.

1182192

3-112 , Library Functions

Idopen

The following is a prototype for the use of Idopen and ldclose.

/[*ftor each filename to be processed”/

ldptr = NULL;
do
{ .
it ((ldptr = tdopen(filename, Idptr)) != NULL)
{
/°check magic number*/
/*process the file*/

}
} while (ldclose(ldptr) == FAILURE);

If the value of o/dptr is not NULL, ldaopen will open a new
filename and allocate and initialize a new LDFILE structure,
copying the TYPE, OFFSET, and HEADER fields from oldptr.
Idaopen returns a pointer to the new LDFILE structure. This
new pointer is independent of the old pointer, oldptr. The
two pointers may be used concurrently to read separate
parts of the object file. For example, one pointer may be
used to step sequentially through the relocation information,
while the other is used to read indexed symbol table entries.

Both Idopen and Idaopen open filename for reading. Both
functions return NULL if filename cannot be opened, or if
memory for the LDFILE structure cannot be allocated. A
successful open does not insure that the given file is a
common object file or an archived obiject file.

The program must be loaded with the object file access
routine library libld.a.

Files
Jusr/lib/libld.a

See Also

fopen, Idclose; ldfen in Section 4.

Library Functions 3-113

Idrseek

Idrseek, Idnrseek - seek to relocation entries of a section of
a common object file

Format

#include <stdio.h>
#include <flliehdr. h>
#include <ldfcn.h>

int Idrseek (/dptr, sectindx)
LDFILE °*ldptr;
unsigned short sectindx;

int ltdnrseek (/dptr, sectname)
LDFILE °*/dptr;
char *sectname;

Description

The ldrseek function seeks to the relocation entries of the
section specified by sectindx of the common object file
currently associated with /dptr.

Idnrseek seeks to the relocation entries of the section
specified by sectname.

Idrseek and ldnrseek return SUCCESS or FAILURE. ldrseek will
fail if sectindx is greater than the number of sections in the
object file; idnrseek will fail if there is no section name
corresponding with sectname. Either function will fail if the
specified section has no relocation entries or if it cannot seek
to the specific relocation entries.

Note that the first section has an index of one.

The program must be loaded with the object file access
routine library libid.a.

1192192

3-14

Library Functions

Idrseek

Files
Jusr/lib/libld.a

See Also

ldclose, Idopen, ldshread; ldfen in Section 4.

Library Functions 3-115

Idshread

Name

Idshread, Idnshread - read an indexed/named section header
of a common object file

Format

#include <stdio.h>
#include <filehdr.h>
#include <scnhdr.h>
#include <ldfcn.h>

int Idshread (/dptr, sectindx, secthead)
LDFILE *ldptr;

unsigned short sectindx;

SCNHDR ®secthead:;

int tdnshread (/dptr, sectname, secthead)
LDFILE °*ldptr;

char *sectname;

SCNHDR *secthead;

Description

The Ildshread function reads the section header specified by
sectindx of the common object file currently associated with
ldptr into the area of memory beginning at secthead.

ldnshread reads the section header specified by sectname into
the area of memory beginning at secthead.

ldshread and ldnshread return SUCCESS or FAILURE. ldshread will
fail if sectindx is greater than the number of sections in the
object file; ldnshread will fail if there is no section name
corresponding with sectname. Either function will fail if it
cannot read the specified section header.

Note that the first section header has an index of one.

The program must be loaded with the object file access
routine library libld.a.

1192192

3-116

Library Functions

Idshread

Files
Jusr/lib/libld.a

See Also

ldclose, Idopen; Idfen in Section 4.

Library Functions 3-117

Idsseek

Name

Idsseek, ldnsseek - seek to an indexed/named section of a
common object file

Format

#include <stdio.h>
#include <filehdr.h>
#include <lidfcn.h>

int 1dsseek (/dptr, sectindx)
LOFILE *“ldptr;
unsigned short sectindx;

int tdnsseek (/dptr. sectname)
LDFILE *ldptr;
char *sectname;

Description

The ldsseek function seeks to the section specified by sectindx
of the common object file currently associated with /dptr.

The ldnsseek function seeks to the section specified by sectname.

Idsseek and Idnsseek return SUCCESS or FAILURE. ldsseek will
fail if sectindx is greater than the number of sections in the
object file; ldnsseek will fail if there is no section name
corresponding with sectname. Either function will fail if there
is no section data for the specified section or if it cannot
seek to the specified section.

Note that the first section has an index of one.

The program must be loaded with the object file access
routine library libld.a.

1192192

3-118 Library Functions

ldsseek

Files
Jusr/lib/libld.a

See Also

idclose, Idopen, Idshread; ldfen in Section 4.

Library Functions 3-119

Idtbindex

Name

Idthindex - compute the index of a symbol table entry of a
common object file

Format

#include <stdio.h>
#include <fllehdr.h>
#include <syms.h>
#include <idtcn.h>

long ldtbindex (/dptr)
LOFILE *ldptr;

Description

The Idtbindex function returns the (long) index of the symbol
table entry at the current position of the common object file
associated with /dptr.

The index returned by ldthindex may be used in subsequent
calls to the Idtbread function. However, since idthindex returns
the index of the symbol table entry that begins at the current
position of the object file, if ldthindex is called immediately
after a perticular symbol table entry has been read, it will
return the index of the next entry.

Idthindex will fail if there are no symbols in the object file, or if
the object file is not positioned at the beginning of a symbol
table entry.

Note that the first symbol in the symbol table has an index of
zero.

The program must be loaded with the object file access
routine library libld.a.

1192192

3-120 Library Functions

Idthindex

Files
Jusr/lib/libld.a

See Also
ldclose, Idopen, Idthread, ldtbseek; ldfcn in Section 4.

Library Functions ‘ 3121

Idthread

Name

ldtbread - read an indexed symbol table entry of a
common object file

Format

#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#inctude <lIdfcn.h>

int Idtbread (/dptr, symindex, symbol)
LDFILE *ldptr;

long symindex;

SYMENT *symbol;

Description

The Idtbread function reads the symbol table entry specified
by symindex of the common object file currently associated
with /dptr into the area of memory beginning at symbol.

ldtbread returns SUCCESS or FAILURE. It will fail if symindex is
greater than the number of symbols in the object file, or if it
cannot read the specified symbol table entry.

Note that the first symbol in the symbol table has an index of
zero.

The program must be loaded with the object file access
routine library libld.a.

Files
/Jusr/lib/libid.a

See Also

Idclose, Idopen, ldtbseek; ldfen in Section 4.

1182192

3-122 Library Functions

Idthseek

ldthseek - seek to the symbol table of a common object file

Format

#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int idtbseek (/dptr)
LOFILE */dptr;

Description

The Idthseek function seeks to the symbol table of the object
file currently associated with /dptr.

ldthseek returns SUCCESS or FAILURE. It will fail if the symbol
table has been stripped from the object file, or if it cannot
seek to the symbol table.

The program must be loaded with the object file access
routine library libld.a.

Files
/usr/lib/libid.a

See Also

Idclose, ldopen, Idthread; Idfcn in Section 4.

Library Functions 3-123

lockf

lockf - record locking on files

Format

#include <unistd.h>

lockf (fildes, function, size)
long slze;
int fildes, function;

Description

The lockf function will allow sections of a file to be locked
(advisory write locks). (Mandatory or enforcement mode
record locks are not currently available.) Locking calls from
other processes that attempt to lock the locked file section
will either return an error value or be put to sleep until the
resource becomes unlocked. All the locks for a process are
removed when a process terminates. (See fentl in Section 2
for more information about record locking.)

Fildes is an open file descriptor. The file descriptor must have
O_WRONLY or O_RDWR permission on order to establish
lock with this function call.

Function is a control value that specifies the action to be
taken. The permissible values for function are defined in
<unistd.h> as follows:

#define F_ULOCK 0

/*Untock a previously locked section”/
#define F_LOCK 1

/*Lock a section for exclusive use*’/
#detine F_TLOCK 2

/*Test and lock a section for exclusive use*/
#define F_TEST 3

/*Test section for other processes’ locks*/

All other values of function are reserved for future extensions
and will result in an error return if not implemented.

1192182

3-124 Library Functions

lockf

F_TEST is used to detect if a lock by another process is
present on the specified section. F_LOCK and F_TLOCK both
lock a section of a file if the section is available. F_UNLOCK
removes locks from a section of the file.

Size is the number of contiguous bytes to be locked or
unlocked. The resource to be locked starts at the current:
offset in the file and extends forward for a positive size and
backward for a negative size. If size is zero, the section from
the current offset through the largest file offset is locked
(that is, from the current offset through the present or any
future end-of-file). An area need not be allocated to the file in
order to be locked, as such locks may exist past the end-of-file.

The sections locked with F_LOCK or F_TLOCK may, in whole
or in part, contain or be contained by a previously locked
section for the same process. When this occurs, or if
adjacent sections occur, the sections are combined into a
single section. If the request requires that a new element be
added to the table of active locks and this table is already
full, an error is returned, and the new section is not locked.

F_LOCK and F_TLOCK requests differ only by the action
taken if the resource is not available. F_LOCK will cause the
calling process to sleep until the resource is available.
F_TLOCK will cause the function to return a -1 and set ermo
to [EACCESS] error if the section is already locked by
another process.

F_ULOCK requests may, in whole or in part, release one or
more locked sections controlled by the process. When
sections are not fully released, the remaining sections are still
locked by the process. Releasing the center section of a
locked section requires an additional element in the table of
active locks. If this table is full, an [EDEADLK] error is
returned and the requested section is not released.

A potential for deadlock occurs if a process controlling a
locked resource is put to sleep by accessing another
process’s locked resource. Thus, calls to lock or fentl scan for
a deadlock prior to sleeping on a locked resource. An error

return is made if sleeping on the locked resource would
cause a deadlock.

Library Functions 3-125

lockf

Sleeping on a resource is interrupted with any signal. The
alarm system call may be used to provide a timeout facility in
applications that require this facility.

The lockf utility fails if one or more of the following are true:

[EBADF] Fildes is not a valid open descriptor.

[EACCESS] Cmd is F_TLOCK or F_TEST and the section is already focked by
another process.

{EDEADLK] Cmd is F_LOCK or F_TLOCK :;nd a deadlock would occur.

[ENOLCK] The cmd is F_LOCK, F_TLOCK, or F_ULOCK and the number of

entries in the lock table would exceed the number allocated on the
system. (Note that this differs from EDEADLOCK.)

Returns

Upon successful completion, a value of O is returned.
Otherwise, a value of -1 is returned and ermo is set 10
indicate the error.

Cautions

Unexpected results may occur in processes that do buffering
in the user address space. The process may later read/write
data that is or was locked. The standard 1/O package is the
most common source of unexpected buffering.

See Also

close, creat, fentl, intro, open, read, write in Section 2.

1192192

3-126 Library Functions

logname - return login name of user

Format

char *logname ()

Description

The logname function returns a pointer to the null-terminated
login name; it extracts the $LOGNAME variable from the
user’s environment.

This routine is kept in /lib/libPW .a.

Files
/etc/profile

Known Problems

The return values point to static data whose content is
overwritten by each call.

This method of determining a login name is subject to forgery.

See Also

env, login in Section 1; profile in Section 4, environ in
Section 5.

Library Functions 3-127

Isearch

Name
Isearch, Ifind - linear search and update

Format

#include <stdio.h>
#include <search.h>

char °*isearch ((char *)key., (char *)base, nelp,
sizeof(*key), compar)

unsigned ‘nelp;

int ("compar)():

char *1find ((char *)key, (char *)base, nelp, sizeof(‘key),
compar)

unsigned *nelp;

int (*compar)():

Description

The Isearch function is a linear search routine generalized from
Knuth (6.1) Algorithm S. It returns a pointer to a table
indicating where a datum can be found. If the datum is not
found, it is added to the end of the table. Key points to the
datum to be sought in the table. Base points to the first
element in the table. Nelp points to an integer containing the
current number of elements in the table. The integer is
incremented if the datum is added to the table. Compar is the
name if the comparison function that the user must supply
(stremp, for example). It is called with two arguments that
point to the elements being compared. The function must
return zero if the elements are equal; non-zero, otherwise.

ifind is the same as Isearch except that if the datum is not
found, it is not added to the table. Instead, a NULL pointer is
returned.

The pointers to the key and the element at the base of the
table should be of type pointer-to-element, and cast to type
pointer-to-character.

1192192

3-128 Library Functions

Isearch

The comparison function need not compare every byte, so
arbitrary data may be contained in the elements in addition to
the values being compared.

Although declared as type pointer-to-character, the value
returned should be cast into type pointer-to-element.

Example

This fragment will read ~< TABSIZE strings of length =<
ELSIZE and store them in a table, eliminating duplicates.

#include <stdio.h>
#include <search.h>

#define TABSIZE 50
#define ELSIZE 120

char |ine[ELSIZE], tab[TABSIZE][ELSIZE], “Isearch();
unsigned nel = 0;
int stremp();

while (fgets(line, ELSIZE, stdin) I= NULL &&
nel < TABSIZE)

(void) Isearch(line, (char “)tab, &nel,
ELSIZE, strcmp);

Diagnostics

If the searched for datum is found, both Isearch and Ifind
return a pointer to it. Otherwise, Ilfind returns NULL and Isearch
returns a pointer to the newly added element.

Known Problems

Undefined results can occur if there is not enough room in
the table to add a new item.

See Also

bsearch, hsearch, tsearch.

Library Functions 3-129

malloc (fast version)

malloc, free, realloc, calloc, mallopt, mallinfo - fast main
memory allocator

Format

#inctude <malloc.h>

char *mailloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char °ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int emd, value;

struct mallinfo (max)
int max;

Description

The malloc and free functions provide a simple
general-purpose memory allocation package, which runs
considerably faster than the slower malloc package. It is found
in the library “malloc,” and is loaded if the option -Imalloc is
used with cc or Id (see Section 1).

malloc returns a pointer to a block of at least size bytes
suitably aligned for any use.

The argument to free is a pointer to a block previously
allocated by mallec; after free is performed, this space is made
available for further allocation, and its contents are destroyed
(see mallopt, below, for a way 10 change this behavior).

1192182

3-130

Library Functions

malloc (fast version)

Undefined results will occur if the space assigned by malloc is
overrun, or if some random number is handed to free.

The realloc function changes the size of the block pointed to
by ptr to size bytes and returns a pointer to the (possibly
moved) block. The contents will be unchanged up to the
lesser of the new and old sizes.

calloc allocates space for an array of nelem elements of size
elsize. The space is initialized to zeros.

mallopt provides for control over the allocation algorithm. The
available values for cmd are:

M_MXFAST

M_NLBLKS

M_GRAIN

M_KEEP

Set maxfast to value. The algorithm allocates all blocks
below the size of maxfast in large groups and then doles
them out very quickly. The default value for maxfast is 0.

Set numiblks to value. The above mentioned large groups
each contain numiblks blocks. Numiblks must be greater
than 0. The default value for numlbiks is 100,

Set grain to value. The sizes of all blocks smaller than
maxfast are considered to be rounded to the nearest
multiple of grain. Grain must be greater than 0. The default
value of grain is the smallest number of bytes that will
allow alignment of any data type. Valug will be rounded up
to a multiple of the default when grain is set.

Preserve data in a freed block until the next malloc,
realloc, or calloc. This option is provided only for
compatibility with the old version of malloe and is not
recommended.

These values are defined in the <malloc.h> header file.

mallopt may be called repeatedly, but may not be called after
the first small block is allocated.

Library Functions 3131

malloc (fast version)

mallinfo provides instrumentation describing space usage. It
returns the structure:

struct maliinfo f{
int arena; /*total space in arena’/
int ordblks; /*number of ordinary blocks*/
int smblks; /*number of small blocks*/
int hblikhd; /*space in holding block headers”/
int hblks; /*number of holding blocks*/
int usmbiks; /*space in smail blocks in use*/
int fsmbiks; /*space in free small blocks*/
int vordblks; /°space in ordinary blocks in use*/
int fordblks; /*space in free ordinary blocks*/
int keepcost; /*space in penalty it keep option*/

/*is used*/

}
This structure is defined in the <malloc.h> header file.

Each of the allocation routines returns a pointer to space
suitably aligned (after possible pointer coercion) for storage
of any type of object.

Diagnostics

malloc, realloc, and calloc return a NULL pointer if there is not
enough available memory. When realloc returns NULL, the
block pointed to by ptr is left intact. If mallopt is called after
any allocation or if cmd or value are invalid, non-zero is
returned. Otherwise, it returns zero.

Cautions

This package usually uses more data space than the slower
version of malloc.

The code size is also bigger than the slower malloc.

Note that unlike the slower version of mallec, this package
does not preserve the contents of a block when it is freed,
unless the M_KEEP option of mallopt is used.

Undocumented features of the slower malloc have not been
duplicated.

1192192

3-132 Library Functions

malloc (fast version)
See Also

brk in Section 2; malloe

Library Functions 3-133

malloc

malloc, free, realloc, calloc - main memory allocator

Format

char *malloc (size)
unsigned size;

void free (ptr)
char °ptr;

char *realloc (ptr, size)
char °*ptr; -
unsigned size;

char °calloc (nelem, elsize)
unsigned nelem, elsize;

Description

The malloc and free functions provide a simple
general-purpose memory allocation package. malloc returns a
pointer to a block of at least size bytes suitably aligned for
any use.

The argument to free is a pointer to a block previously
allocated by malloc; after free is performed, this space is made
available for further allocation, but its contents are left
undisturbed.

Undefined results will occur if the space assigned by malloc is
overrun or if some random number is handed to free.

malloc allocates the first big enough contiguous reach of free
space found in a circular search from the last block allocated
or freed, coalescing adjacent free blocks as it searches. |t
calls shrk (see Section 2) to get more memory from the
system when there is no suitable space already free.

1192192

3-134 Library Functions

malloc

realloc changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block.

The contents will be unchanged up to the lesser of the new
and old sizes. If no free block of size bytes is available in the
storage arena, then realloc will ask malloe to enlarge the arena
by size bytes and will then move the data to the new space.

realloc also works if ptr points to a block freed since the last
call of malloc, realloc, or calloc; thus sequences of free, malloc,
and realloc can exploit the search strategy of malloc to do
storage compaction.

calloc allocates space for an array of nefem elements of size
elsize. The space is initialized to zeros.

Each of the allocation routines returns a pointer to space
suitably aligned (after possible pointer coercion) for storage
of any type of object.

Note that search time increases when many objects have
been allocated; that is, if a program allocates but never frees,
then each successive allocation takes longer. For an
alternate, more flexible implementation, see the description
for the fast version of malloc. '

Diagnostics

malloc, realloc, and calloc return a NULL pointer if there is no
available memory or if the arena has been detectably
corrupted by storing outside the bounds of a block. When
this happens, the block pointed to by ptr may be destroyed.

See Also

brk in Section 2; malloc (fast version).

Library Functions 3-135

matherr

Name

matherr - error-handling function

Format

#include <math.h>

int matherr (x)
struct exception “x;

Description

The matherr function is invoked by functions in the Math
Library when errors are detected. Users may define their own
procedures for handling errors, by including a function named
matherr in their programs. matherr must be of the form
described above. When an error occurs, a pointer to the
exception structure x will be passed to the user-supplied
matherr function. This structure, which is defined in the
<math.h> header file, is as follows:

struct exception f{
int type;
char *name;
double argtl, arg2, retval;

}:
The element type is an integer describing the type of error

that has occurred, from the following list of constants
(defined in the header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of
the function that incurred the error. The variables arg7 and
arg2 are the arguments with which the function was invoked.
Retval is set to the default value that will be returned by the
function unless the user’s matherr sets it to a different value.

1192192

3-136 Library Functions

matherr

If the user’s matherr function returns non-zero, no error
message will be printed, and errno will not be set.

If matherr is not supplied by the user, the default
error-handling procedures, described with the math functions
involved, will be invoked upon error. These procedures are
also summarized in Table 3-7, below. In every case, errno is
set to EDOM or ERANGE and the program continues.

Table 3-7 Default Error Handling Procedures
Types of Errors

type DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS
ermo EDOM EDOM ERANGE ERANGE ERANGE ERANGE

BESSEL: - - . . MO .
y0, y1, yn

{arg =< 0) M,-H - - - .

EXP: - - H 0 .
LOG,LOG10:

{arg < 0) M,-H -M-H - - . .
(arg = 0) - - - . .
POW:

neg**non-int - - +/-H 0 - .
0"*non-pos M,0 - - - - .
SORT: M,0 - - - . .
GAMMA: . MH H - - .
HYPOT: - - H - . .
SINH: - - +/-H - . .
COSH: - - H . - .
SIN, COS, - - . . M0 .
TAN:

ASIN, M0 - - - . .
ACOS,

ATAN2:

Library Functions 3-137

matherr

Abbreviations

M
H
-H

As much as possible of the value is returned.
Message is printed (EDOM error).

HUGE is returned.

-HUGE is returned.

+/-H HUGE or -HUGE is returned.

0

0 is returned.

Example

#include <math.h>

int
matherr(x)

register struct exception °x;

{

switch (x->type) {
case DOMAIN:
/*change sqrt to return sqrt(-argt). not 0°/
it (Istrcmp(x->name, °“sqrt”)) {
x->retval = sqrt(x->argl);
return (0): /°*print message and set errno*/
}
case SING:
/*all other domain or sing errors,*/
/*print message and abort*/
fprintf(stderr, “domain error in %s\n”, x->name) .
abort();
case PLOSS:
/°print detailed error message "’/
tprintf(stderr, °loss of signitficance in %S (%g) =
%g\n", x->name, x->argl, x->retval);
return (1): /*take no other action*/
}
return (0); /*all other errors, "/
/*execute default procedure”/

1192192

3-138 Library Functions

memory

memccpy, memchr, mememp, memepy, memset - memory
operations

Format

#include <memory.h>

char ‘memccpy (s71, s2, ¢, n)
char *s1. *s2;
Int ¢, n;

char *memchr (s, ¢, n)
char *s;
fnt ¢, n;

int memecmp (s71, s2, n)
char *s1, *s2;
int n;

char *memcpy (s1, s2, n)
char *si1, °s2;
int n;

char *memset (s, ¢, n)
char *s;
int ¢, n;

Description

These functions operate efficiently on memory areas (arrays
of characters bounded by a count, not terminated by a null
character). They do not check for the overflow of any
receiving memory area.

memccpy copies characters from memory area s7 into s2,
stopping after the first occurrence of character ¢ has been
copied, or after n characters have been copied, whichever
comes first. It returns a pointer to the character after the
copy of cin s7, or a NULL pointer if ¢ was not found in the
first n characters of s2.

Library Functions 3-138

memory

memchr returns a pointer to the first occurrence of character ¢
in the first n characters of memory area s, or a NULL pointer
if ¢ does not occur.

memcmp compares its arguments, looking at the first n
characters only, and returns an integer less than, equal to, or
greater than O, according as s is lexicographically less than,
equal to, or greater than s2.

memcpy copies n characters from memory area s2 to s7. It
returns s7.

memset sets the first n characters in memory area s to the
value of character c. It returns s.

For user convenience, all of these functions are declared in
the optional <memory.h> header file.

Known Problems

memcmp uses native character comparison, which is signed on
some machines, but not on others. ASCIl values are always
positive, so programs that compare only ASCIl values are
portable.

Overlapping moves may yield surprises.

1192192

3-140 Library Functions

mktemp

Name
mktemp - make a unique file name

Format

char *‘mktemp (template)
char ‘*template;

Description

The mktemp function replaces the contents of the string
pointed to by template by a unique file name, and returns the
address of the template. The string in template should look
like a file name with six trailing Xs; mktemp will replace the Xs
with a letter and the current process ID. The letter will be
chosen so that the resulting name does not duplicate an
existing file.

Known Problems

It is possible to run out of letters.

See Also

getpid in Section 2; tmpfile, tmpnam.

Library Functions 3-141

monitor

Name

monitor - prepare execution profile

Format

#include <mon.h>

void monitor (lowpc, highpc, buffer, buftsize, nfunc)
int (*lowpc)(). (*highpc)():

WORD ‘*buffer:

int bufsize, nfunc;

Description

An executable program created by cc -p (see Section 1)
automatically includes calls for monitor with default
parameters; monitor need not be called explicitly except to
gain fine control over profiling.

menitor is an interface to the profil system call (see Section 2).
Lowpc and highpc are the addresses of the two functions,
buffer is an address of a (user supplied) array of bufsize
WORDs (defined in the <mon.h> header file). monitor arranges
to record a histogram of periodically sampled values of the
program counter, and of counts of calls of certain functions,
in the buffer. The lowest address sampled is that of Jowpc,
and the highest is just below highpc. Lowpc may not equal O
for this use of monitor. At most nfunc call counts can be kept;
only calls of functions profiled with the profiling option -p of
cc are recorded. (The C Library and Math Library supplied
when c¢ -p is used also have call counts recorded.)

For the results to be significant, especially where there are
small, heavily used routines, it is suggested that the buffer be
no more than a few times smaller than the range of locations
sampled.

To profile the entire program, it is sufficient to use

extern etext();:

monitor(main, etext, buffer, bufsize, nfunc});

1192192

3-142 Library Functions

monitor

Etext lies just above all the program text; see end, earlier in
this section. '

To stop execution monitoring and write the results on the file
mon.out, use

monitor(0);

The prof command (see Section 1) can be used to examine
the results.

Files

mon.out
/lib/libp/libc.a
lib/libp/libm.a

See Also

cc, prof in Section 1; profil in Section 2; end.

Library Functions 3-143

nlist

nlist - get entries from the name list

Format

#include <nlist.h>

int ntist (file-name, nl)
char °*file-name;
struct nltist *n/;

Description

The nlist function examines the name list in the executable
file whose name is pointed to by file-name, and selectively
extracts a list of values and puts them in the array of nlist
structures pointed to by n/. The name list n/ consists of an
array of structures containing names of variables, types and
values. The list is terminated with a null name; that is, a null
string is in the name position of the structure. Each variable
name is looked up in the name list of the file. If the name is
found, the type and value of the name are inserted in the
next two fields. The type field will be set to O unless the file
was compiled with the -g option. If the name is not found,
both entries are set to 0. See a.out in Section 4 for a
discussion of the symbol table structure.

This function is useful for examining the system name list
kept in the file /unix. In this way, programs can obtain
system addresses that are up to date.

The <nlist.h> header file is automatically included by
<a.out.h> for compatibility. However, if the only information
needed from <a.out.h> is for use of nlist, then including
<a.out.h> is discouraged. If <a.out.h> is included, the line
“#undef n_name” may need to follow it.

1182192

3-144 Library Functions

nlist

Diagnostics

All value entries are set to O if the file cannot be read or if it
does not contain a valid name list.

nlist returns -1 upon error; otherwise, it returns 0.

See Also

a.out in Section 4.

Library Functions 3-145

ocurse

Name

ocurse - optimized screen functions

Format

#include <ocurse.h>

Description

ocurse is the old Berkeley curses library that uses termcap (see
Section 4).

These functions optimally update the screen.

Each curses program begins by calling initscr and ends by
calling endwin.

Before a program can change a screen, it must specify the
changes. It stores changes in a variable of type WINDOW by
calling curses functions with the variable as argument. Once
the variable contains all the changes desired, the program
calls wrefresh to write the changes to the screen.

Most programs need only a single WINDOW variable. ocurse
provides a standard WINDOW variable for this case and a
group of functions that operate on it. The variable is called
stdscr; its special functions have the same name as the
general functions minus the initial w.

Functions

addch(ch) Add a character to stdscr.
addstr(str) Add a string to stdscr.
box(win, vert, hor) Draw a box around a window.
crmode() Set cbreak mode.

clear() Clear stdscr.
clearok(scr,boolf) Set clear flag for scr.
cirtobot{) Clear to bottom on stdscr.
clrtoeol() Clear to end of line on stdscr.
delch() Delete a character.

deleteln() Delete a line.

1192192

3-146

Library Functions

ocurse

delwin(win)

echo()

endwin()

erase()

getch()

getcap(name)

getstr{stn)

gettmode()
getyx(win,y,x)

inch()

initscr()

insch{c)

insertin()

leaveok(win, boolf)
longname(termbuf, name)
move(y,x}

mveur(/asty, lastx,newy,newx)

Delete win.

Set echo mode.

End window modes.

Erase stdscr.

Get a char through stdscr.
Get terminal capability name.
Get a string through stdscr.
Get tty modes.

Get (y,x) coordinates.

Get char at current (x,)) coordinates.

Initialize screens.

Insert a character.

Insert a line.

Set leave flag for win.

Get long name from termbuf,
Move to (y,x) on stdscr.
Actually move cursor.

newwin(/ins, cols, begin__y, begin_x)

ni()

nocrmode()

noecho(}

nonl()

noraw()
overlay(win1,win2)
overwrite(win1,win2)
printw(fmt,arg1,arg2....)

raw()
refresh()
resetty()

savetty()
scanw({fmt,arg1,arg2....)

scroll{ win)
scrollok{win, boolf)
setterm{name)
standend()
standout()

Create a new window.

Set newline mapping.

Unset cbreak mode.

Unset echo mode.

Unset newline mapping.

Unset raw mode.

Overlay winl on win2.
Overwrite win! on top of win2,

Printf on stdscr.

Set raw mode.

Make current screen look like stdscr.
Reset tty flags to stored value.
Stored current tty flags.

Scanf through stdscr.

Scrol! win one line.

Set scroll flag.

Set term variables for name.
End standout mode.

Start standout mode.

subwin(win, lines, cols, begin_y, begin_x)

touchwin({win)
unctrl(ch)

Create a subwindow.
Change all of win.
Printable version of ch.

Library Functions

3-147

ocurse

waddch{win,ch)

waddstr(win, st

wclear(win)

weclrtebot(win)

welrtoeol{ win)

wdelch({win,c)

wideleteln(win)

werase(win)

wayetch(win)

wagetstr{win,str)

winch{win)

winsch({win,c)

winsertin{win)
wmove(win,y,x)
wprintw(win,fmt,arg1,arg2,...)
wrefresh({win)
wscanw(win,fmt,arg1,arg2,...)
wstandend({win)
wstandout(win)

Files

Add character to win.

Add string to win.

Clear win.

Clear to bottom of win.
Clear to end of fine on win.
Delete char from win.
Delete line from win.

Erase win.

Get a char through win.
Get a string through win.
Get char at current (y,x) in win.
Insert char into win.

Insert line into win.

Set current (y,x) coordinates on win.

Printf on win.

Make screen look like win.
Scanf through win.

End standout mode on win.
Start standout mode on win.

/usr/include/ocurse.h - header file
Jusr/lib/libocurse.a - curses library
Jusr/lib/libtermcap.a - termcap library, used by curses

See Also

stty in Section 2; setenv; termcap in Section 4.

1192192

3-148 Library Functions

ofCreate

Name
ofCreate, ofChangeFileLength, ofDelete - allocate BTOS files

Format

ofCreate (pbFileSpec, cbFileSpec, pbPassword, cbPassword,
ItaFileSize)

char *pbFileSpec;

short cbFileSpec;

char *pbPassword;

short cbPassword;

long IfaFileSize;

ofChangeFileLength(fh, IfaNewFileSize)
short fh;
long /faNewFileSize;

ofDelete(fh)
shortfh;

Description

The ofCreate function calls the BTOS CreateFile service, which
creates a BTOS file. Arguments are:

o PbFileSpec and cbFileSpec specify the location and size of
the new file's name. CENTIX processes lack a BTOS
default path, so the name must begin with a volume name
in square brackets [...], and a directory name in angle
brackets <...>. The specified volume and directory must
already exist. The file name that follows the volume and
directory specifications can be up to 50 characters: upper
case and lower case letters, digits, periods (.), hyphens (-),
and right angle brackets (>). Here is an example with
everything:

[sys]<sys>Big1.subd>doc-Old

ofCreate fails if the specified directory already has a file with
the specified name. BTOS does not consider two file
names distinct if they differ only in the case of their letters.
However, a BTOS directory preserves the case of letters
as specified by ofCreate.

Library Functions 3-149

ofCreate

o PbPassword and cbPassword specify the location and size
of the password that authorizes creation of the file. This
password must match the volume or directory password. If
the volume or directory lacks a password, no password is
needed: set cbPassword to O and pbPassword to anything.
(To give the file itself a password, see ofstatus.)

o LfaFileSize is the initial size of the file. The size must be a
multiple of 512.

See ofOpenFile to provide a path handle for a newly created file.

The ofChangeFileLength function calls the BTOS ChangeFileLength
service, which resets the length of a file. Arguments are:

o Fh is a file handle returned by ofOpen.

o LfaNewfFileSize is the new size of the file. The size must be
a multiple of 512.

The ofDelete function calls the BTOS DeleteFile service, which
deletes a file. Fh is a file handle returned by an ofOpen in
modify mode.

The program must be loaded with the library flag -lctos.

Diagnostics

O indicates success. ofCreate returns 224 if the file already exists.

Caution

Frequent cails to of0pen and CloseFile on a nearly full volume
result in files whose contents are scattered about the disk.
BTOS must add additional header blocks to the disk to keep
track of the fragments. Frequent calls to ofChangeFileLength can
have the same effect.

See Also

ofOpenFile, ofRead, ofDir, ofStatus, ofRename.

1192192

3-150 Library Functions
ofDir

Name
ofCrDir, ofDIDir, ofReadDirSector - BTOS directory functions

Format

ofCrDir (pbDirSpec, cbDirSpec, pbVolPassword, cbVolPassword,
pbDirPassword, cbDirPassword, cSectors,
defauItFIIeProtocrionLavel)

char *pbDirSpec:

short cbDIrSpec;

char *pbVolPassword;

short cbVolPassword;

char *pbDirPassword;

short cbDirPassword;

short cSectors;

short defaultFileProtectionlLevel:

ofDIDIr (pbDirSpec, cbDirSpec, pbPassword, cbPassword)
char *pbDirSpec;

short cbDIrSpec;

char *pbPassword;

short cbPassword;

ofReadDirSector (pbDirSpec, cbDirSpec, pbPassword,
cbPassword, iISector, pBufferRet)

char °*pbDirSpec;

short cbDirSpec;

char ‘*pbPassword;

short cbPassword;

short /Sector;

char "pBufferRet;

Library Functions 3-151

of Dir

Description

The ofDir function calls the BTOS CreateDir service, which
creates a BTOS directory. It takes the following arguments:

o PbDirSpec and cbDirSpec specify the location and size of
the directory name. CENTIX processes lack a BTOS file
path, sp the name must begin with a volume name in
square brackets [...]. Angle brackets around the directory
name (<...>) are optional. The specified volume must
already exist. The directory name that follows the volume
specification can be up to 12 characters: upper case and
lower case letters, digits, periods (.), and hyphens (-). Here
is an example with everything:

[sys]<DH.1-Changes>

ofCrDir fails if the specified volume already has a directory
with the specified name. BTOS does not consider two
directory names as distinct if they differ only in the case of
their letters. However, the BTOS volume control structures
preserve the case of letters as specified by ofCrDir.

o PbVolPassword and cbVolPassword specify the location and
size of a password to be compared with the volume
password. If the volume lacks a password, set
cbVolPassword to 0 and pbVolPassword to anything.

o PbDirPassword and cbDirPassword specify the location and
size of the password to be assigned to the directory. If the
directory is to have no password, set cbDirPassword to O
and pbDirPassword to anything.

a Csectors is the size of the directory in sectors. In general,
one sector can store information on 15 files, but this
depends on the length of the file names.

o DefaultFileProtectionLevel indicates the initial protection of
files in the directory

1192192

3-152 Library Functions

of Dir

The ofDIDir function calls the BTOS DeleteDir service, which
deletes an empty directory. Delete or move all files from a
directory before deleting the directory. ofDIDir takes the
following arguments:

o PbDirSpec and cbDirSpec épecify the location and size of
the directory name. This name follows the same ‘
conventions used by ofCrDir.

o PbPassword and cbPassword specify the location and size
of the password that authorizes the deletion of the
directory. This password must match the volume
password or the directory password. if volume or directory
lack a password, no password is required to delete the
directory.: set cbPassword to O and pbPassword to
anything.

The ofReadDirSector function calls the BTOS ReadDirSector
service, which reads a single 512-byte directory sector. It
takes the following arguments: »

o PbDirSpec and cbDirSpec specify the location and size of
the directory name. This name follows the same
conventions used by ofCrDir.

o PbPassword and cbPassword specify the location and size
of the password that authorizes access of the directory.
This password must match the volume password or the
directory password. If the volume or directory lack a
password, no password is required to delete the directory:
set cbPassword to 0 and pbPassword to anything.

o /Sector specifies which sector to read. Sectors are
numbered from 0.

o PBufferRet points to a 512-byte area that will receive the
sector.

The program must be loaded with the library flag -lctos.

Library Functions 3-153

of Dir

Diagnostics

0 indicates success. ofCrDir returns 240 (“Directory already
exists”) if the specified volume already has a directory with
the specified name. ofDIDir returns 241 ("Directory not
empty”) if the directory still has files in it.

See Also

ofCreate, ofOpenFile, ofRead, ofStatus, ofRename.

1192192

3-154 Library Functions

ofOpenfFile

Name
ofOpenfFile, ofCloseFile, ofCloseAllFiles - access BTOS files

Format

ofOpenFile (pFhRet, pbFileSpec, cbFileSpec,
pbPassword, cbPassword, mode)

short °*pFhRet;

char °*pbFileSpec:

short cbFileSpec;

char ‘*pbPassword;

short cbPassword;

short mode;

ofCloseFile (fh)
short fh;

ofCloseAlIFiles ()

Description

The ofOpenFile function calls the BTOS OpenFile service, which
opens an existing BTOS file. ofOpenFile takes the following
arguments:

o PFhRet specifies where ofOpenFile is to return the file handle.
This value is similar in use to a CENTIX file descriptor.
Functions that do 1/O, reallocate, and delete files require a
valid file handle.

o PbFileSpec and cbFileSpec specify the location and length
of the file name. CENTIX processes lack a BTOS default
path, so the name must begin with a volume name in
square brackets [...], and a directory name in angle
brackets <...>. The remainder of the name must match a
name in the specified directory, except that letters in the
two names can differ in case. See ofCreate.

o PbPassword and cbPassword specify the location and size
of a password that authorizes access to the file. The
password required depends on the protection level of the file.

Library Functions 3-155

ofOpenFile

o Mode specifies the access mode: 'm’*256 + ‘r" for reading,
‘m’*256 + ‘'m’ for modifying.

A process that has file open in modify mode is the only
process that can have the file open at all. An attempt to
open a file in modify mode will fail if any other process
already has that file open. An attempt to open a file in any
mode will fail if another process already has that file open in
modify mode.

Suppose you want to open for reading a file on volume sys
and directory sys called danno.user. The following example
works if no password is required:

fnmp-'(sys]<sys>danno.user':

ll((orc-olOponFiIe(&]handle. fnmp, strien(fnmp), 0, O,
'm'*256+'r')) 1= 0))

printt("BTOS open error %d\n", erc).

The ofCloseFile function calls the BTOS CloseFile service, which
closes afile. Fhis a file handle previously provided by ofOpenFile.

ofCloseAllFiles closes all the process’s BTOS files.

Diagnostics

0 indicates success. If a modify mode ofOpenfFile returns 220
(“File in use”), some other process has the file open for
reading or modifying. If a read mode ofOpenFile returns 220,
some other process has the file open for modifying.

See Also

ofCreate, ofRead, ofDir, ofStatus, ofRename, ofDir.

1192192

3-156 Library Functions
ofRead

Name
ofRead, ofWrite - input/output on a BTOS file

Format
ofRead (fh, pBufferRet, sBufterMax, Ifa, psDataRet)
short fh;

char ‘*pBufferRet;
short sBufferMax;
long Ifa;
union {
char *psDataRet
short *DataRet
}i

ofWrite (fh, pBuffer, sBuffer, Ifa, psDataRet)
short fh;

char °*pBuffer;

short sBuffer;

long I/fa;

union {
char *psDataRet
short *DataRet
}:

Description

The ofRead function calls the BTOS Read service, which inputs

one or more sectors from a BTOS file. It takes the following
arguments:

o Fh is a file handle previously returned by ofOpen.

o pBufferRet points to a region large enough to hold the
sector(s) read. The region must be on an even address; a
union with a “short int” will force this.

o sBufferMax is the number of bytes desired. This must be a
muitiple of 512.

o Lfais the offset, from the beginning of the file, of the first
byte to be read. This must be a multiple of 512.

Library Functions 3-157

ofRead

o psDataRet indicates where ofRead is to return the number of
bytes actually read. This should pointto a short word to work.

Note that you must read or write in multiples of 512 bytes.

The ofWrite function calls the BTOS Write service, which
outputs one or more sectors. It takes the following
arguments:

a Fhis a file handle previously returned by openFile.

o PBuffer points to the data to be output. The data must
begin at an even address.

o SBuffer indicates the number of bytes to be output. This
must be a multiple of 512.

Lfa indicates the offset, from the beginning of the file, to
which the data is to be written. This must be a multiple of512.

o PsDataRet indicates where ofWirite is to return the number
of bytes actually written.

The program must be loaded with the library flag -letos.

Diagnostics

0 indicates success. ofWrite returns 2 ("End of medium”) if
you attempt to write past the end of the file.

Caution

If a BTOS process has written (or will read) binary integers to
{from) the file, it stored (expects) them with Intel-byte
ordering. See swapshort.

See Also

ofCreate, ofOpen, ofDir, ofStatus, ofRename, swapshort.

1192182

3-158 Library Functions

ofRename

Name
ofRename - rename a BTOS file

Format

ofRename (fh, PbNewFileSpec, cbNewFileSpec, pbPassword,
cbPassword) .

short fh;

char *pbNewFileSpec;

short cbNewFileSpec:;

char *pbPassword;

short cbPassword;

Description

The ofRename function calls the BTOS RenameFile service,
which renames a BTOS file. It takes the following arguments:

o Fh is a file handle returned by an openFile in modify mode.
This indicates the file to be renamed.

o PbNewfFileSpec and cbNewFileSpec specify the location and
size of the file’s new name. The file name must include the
volume and directory names. The file name conventions
are the same as those for ofCreate.

o PbPassword and cbPassword specify the location and size
of a password that authorizes the insertion of a file in the
specified directory. This password must match the volume
or directory password. If volume or directory lacks a
password, no password is needed; set cbPassword to O
and pbPassword to anything.

The program must be loaded with the library flag -lctos.

Diagnostics
0 indicates success.

Library Functions 3-159

ofRename

Caution

A rename to a new directory is meaningful; a rename to a
new volume is not.

See Also

ofCreate, ofOpenFile, ofRead, ofDir, ofStatus.

1192192

3-160 Library Functions

ofStatus

Name
ofGetFileStatus, ofSetFileStatus - BTOS file status

Format

ofGetFileStatus (rh, statusCode, pStatus, sStatus)
short fh;

short statusCode;

char *pStatus;

short sStatus;

ofSetFileStatus (frh, statusCode, pStatus, sStatus)
short fh;

short statusCode;

char °*pStatus;

short sStatus;

Description

The ofGetFileStatus and ofSetFileStatus functions call the BTOS
GetFileStatus and SetFileStatus services, which get and set file
information. They take the following arguments:

o Fh is a handle returned by a BTOS OpenFile in modify mode.
StatusCode specifies the information to be obtained or
changed. StatusCode must be one of the codes shown in
Table 3-8. ofSetFileStatus only sets the items marked as
settable.

Table 3-8 BTOS File Status Codes

Code Item Size Settable?
] File Length 4 No
1 File Type 1 Yes
2 File protection leve! f1 Yes
3 Password 13 Yes
4 Date/time of creation 4 Yes
5 Date/time last modified 4 Yes
6 End-of-file pointer 4 Yes
7 File Header Block 512 No
8 Volume Home Block 256 No
9 Device Control Block 100 No

10 FHB Application Field 64 Yes

Library Functions 3-161

ofStatus

o Pstatus and sStatus specify the location and size of the
area that holds, or is to receive, the data. If the area is not
big enough, ofGetFileStatus right truncates the data to fit.
When setting the password, use sStatus to indicate the
password length. When getting the password, get the
password length from the first byte in the data area.

A BTOS time is represented by the following formula:
(d * 0x20000) + (m * 0x10000) + s

where d is the number of days since the beginning of March,
1952 (in the local time zone); m is O for midnight/AM, 1 for
noon/PM; s is the number of secondes since the last
midnight or noon.

The program must be loaded with the library flag -lctos.

Diagnostics
0 indicates success.

See Also

ofCreate, ofOpenFile, ofRead, ofDir, ofRename.

1192192

3-162 ' ' Library Functions

perror

Name

perror, ermo, sys_errlist, sys_nerr - system error messages

Format
void perror (s)
char *s;

extern int errno;
extern char ‘sys_erriist[]);

extern int sys_nerr;

Description

The perror function produces a message to the standard error
output, describing the last error encountered during a call to
a system or library function. The argument string s is printed
first, then a colon and a blank, then the message and a
new-line. To be of most use, the argument string should
include the name of the program that incurred the error. The
error number is taken from the external variable ermo, which
is set when errors occur but not cleared when non-erroneous
calls are made.

To simplify variant formatting of messages, the array of
message strings sys_errlist is provided; errno can be used as
an index in this table to get the message string without the
new-line. sys_nerr is the largest number provided for in the
table; it should be checked because new error codes may be
added to the system before they are added to the table.

See Also

intro.

Library Functions 3-163

popen

popen, pclose - initiate pipe to/from a process

Format

#include <stdio.h>

FILE °*popen (command, type)
char °*command, °‘type;

int pclose (stream)
FILE *stream;

Description

The arguments to popen are pointers to null-terminated strings
containing, respectively, a shell command line and an 1/O
mode, either r for reading or w for writing. popen creates a
pipe between the calling program and the command to be
executed. The value returned is a stream pointer such that
you can write to the standard input of the command, if the
I/0 mode is w, by writing to the file stream; and you can read
from the standard output of the command, if the 1/0 mode is
r, by reading from the file stream.

A stream opened by popen should be closed by pclese, which
waits for the associated process to terminate and returns the
exit status of the command.

Because open files are shared, a type r command may be
used as an input filterand atypew command as an output filter.

Diagnostics

popen returns a NULL pointer if files or processes cannot be
created, or if the shell cannot be accessed.

pelose returns -1 if stream is not associated with a popened
command.

asannsnn

3-164 Library Functions

popen

Khown Problems

If the original and popened processes concurrently read or
write a common file, neither should use buffered I/0,
because the buffering gets all mixed up. Problems with an
output filter may be forestalled by careful buffer flushing,
such as with fflush (see fclose).

See Also

pipe, wait in Section 2; fclose, fopen, system.

Library Functions 3-165

printf

printf, fprintf, sprintf - print formatted output

Format

#include <stdio.h>

int printf (format{, arg}...)
char *format;

int fprintf (stream, format|, arg)...)
FILE “stream,;
char *format;

int sprintf (s, format[. arg)l...)
char °*s, format;

Description

The printf function places output on the standard output
stream stdout. fprintf places output on the named output
stream. sprintf places “output,” followed by the null character
(\O), in consecutive bytes starting at *s; it is the user's
responsibility to ensure that enough storage is available. Each
function returns the number of characters transmitted (not
including the \0 in the case of sprintf), or a negative value if
an output error was encountered.

Each of these functions converts, formats, and prints its args
under control of the format. The format is a character string
that contains two types of objects: plain characters, which
are simply copied to the output stream, and conversion
specifications, each of which resuitsin fetching of zero ormore

args. The results are undefined if there are insufficient args for
the format. If the format is exhausted while args remain, the
excess args are simply ignored.

Each conversion specification is introduced by the character
%. After the %, the following appear in sequence:

o Zero or more flags, which modify the meaning of the
conversion specification.

1192192

3-166 Library Functions

printf

o An optional decimal digit string specifying a minimum fie/d
width. If the converted value has fewer characters than the
field width, it will be padded on the left (or right, if the
left-adjustment flag '-,” described below, has been given)
to the field width. If the field width for an s conversion is
preceded by a O, the string is right-adjusted with
zero-padding on the left.

o A precision that gives the minimum number of digits to
appear for the d, o, u, x, or X conversions, the number of
digits to appear after the decimal point for the e and f
conversions, the maximum number of significant digits for
the g conversion, or the maximum number of characters to
be printed from a string in an s conversion. The precision
takes the form of a period (.), followed by a decimal digit
string; a null digit string is treated as zero.

o An optional | specifying that a following d, o, u, x, or X
conversion character applies to a long integer arg. An |
before any other conversion character is ignored.

o A character that indicates the type of conversion to be
applied.

A field width or precision may be indicated by an asterisk *)
instead of a digit string. In this case, an integer arg supplies
the field width or precision. The arg that is actually converted
is not fetched until the conversion letter is seen, so the args
specifying field width or precision must appear before the arg
(if any) to be converted.

The flag characters and their meanings are:

- The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a
sign {(+ or -).
blank If the first character of a signed conversion is not a sign, a

blank will be prefixed to the result. This implies that if the
blank and + flags both appear, the blank flag will be ignored.

Library Functions

3-167

printf

#

This flag specifies that the value is to be converted to an
“alternate form.” For ¢, d, s, and u conversions, the flag
has no effect. For an o conversion, it increases the
precision to force the first digit of the result to be a zero.
For x and X conversions, a non-zero result will have Ox or
0X prefixed to it. For e, E, f, g, and G conversions, the
result will always contain a decimal point, even if no digits
follow the point (normally, a decimal point appears in the
result of these conversions only if a digit follows it). For g
and G conversions, trailing zeros will not be removed from
the result {they normally are removed).

The conversion characters and their meanings are:

do uxX

eE

1192192

The integer arg is converted to signed decimal, unsigned
octal, decimal, or hexadecimal notation (x and X),
respectively; the letters abedef are used for x conversion
and the letters ABCDEF for X conversion. The precision
specifies the minimum number of digits to appear; if the
value being converted can be represented in fewer digits, it
will be expanded with leading zeros. (For compatibility with
older versions, padding with leading zeros may alternatively
be specified by prepending a zero to the field width. This
does not imply an octal value for the field width.) The
default precision is 1. The result of converting a zero value
with a precision of zero is a null string.

The float or double arg is converted to decimal notation in
the style “[-]ddd.ddd,” where the number of digits after the
decimal point is equal to the precision specification. If the
precision is missing, six digits are output; if the precision is
explicitly zero, no decimal point appears.

The float or double arg is converted in the style
“[-]d.ddd + /-dd"" where there is one digit before the
decimal point and the number of digits after it is equal to
the precision; when the precision is missing, six digits are
produced; if the precision is zero, no decimal point appears.
The E format code will produce a number with E instead of
@ introducing the exponent. The exponent always contains
at least two digits.

3-168 Library Functions

printf

4.6 The float or double arg is printed in style f or e (or in style
E in the case of a G format code), with the precision
specifying the number of significant digits. The style used
depends on the value converted: style e will be used only if
the exponent resulting from the conversion is less than -4
or greater than the precision. Trailing zeros are removed
from the result; a decimal point appears only if it is
followed by a digit.

c The character arg is printed.

s The arg is taken to be a string (character pointer) and
characters from the string are printed until a null character
(\0) is encountered or the number of characters indicated
by the precision specification is reached. If the precision is
missing, it is taken to be infinite, so all characters up to
the first null character are printed. A NULL value for arg
will yield undefined results.

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause
truncation of a field; if the result of a conversion is wider
than the field width, the field is simply expanded to contain
the conversion result. Characters generated by printf and
fprintf are printed as if pute had been called.

Examples

To print the date and time in the form “Sunday, July 3,
10:02,” where weekday and month are pointers to
null-terminated strings:

printf(°%s, %s %d, %d:%.2d", weekday,month,day,hour ,min);
To print pi to 5 decimal places:

Printf("pi = %.5t", 4 * atan(1.0)):

See Also

ecvt, putc, scanf, stdio.

Library Functions 3-169

putc

putc, putchar, fputc, putw - put character or word on a stream

Format

#include <stdio.h>

int putc (c, stream)
int ¢
FILE *stream;

int putchar (c)
int ¢,

int fputc (c. stream)
int c;
FILE *stream;

int putw (w, stream)
int w;
FILE stream;

Description

putc writes the character ¢ onto the output stream (at the
position where the file pointer, if defined, is pointing).
putchar(c) is defined as putc(c, stdout). putc and putchar are macros.

The fpute function behaves like putc, but is a function rather
than a macro. fputc runs more slowly than pute, but it takes
less space per invocation and its name can be passed as an
argument to a function.

putw writes the word (or integer) w to the output stream (at
the position at which the file pointer, if defined, is pointing).
The size of a word is the size of the integer and varies from
machine to machine. putw neither assumes nor causes special
alignment in the file.

1192192

3-170 Library Functions

putc

Output streams, with the exception of the standard error
stream stderr, are by default buffered if the output refers to a
file and line-buffered if the output refers to a terminal. The
standard error output stream stderr is by default unbuffered,
‘but use of freeopen (see fopen) will cause it to become buffered
or line-buffered. When the output stream is unbuffered,
information is queued for writing on the destination file or
terminal as soon as written; when it is buffered, many
characters are saved up and written as a block. When it is
line-buffered, each line of output is queued for writing on the
destination terminal as soon as the line is completed (that is,
as soon as a new-line character is written or terminal input is
requested). setbuf may be used to change the stream'’s
buffering strategy.

Diagnostics

On success, these functions each return the value they have
written. On failure, they return the constant EOF. This will
occur if the file stream is not open for writing or if the output
file cannot be grown. Because EOF is a valid integer, ferror
should be used to detect putw errors.

Known Problems

Because it is implemented as a macro, putc treats incorrectly
a stream argument with side effects. In particular, putc

le, *f++); doesn’t work sensibly. fputc should be used
instead. Because of possible differences in word length and
byte ordering, files written using putw are
machine-dependent, and may not be read using getw on a
diffrent processor.

See Also

fclose, ferror, fopen, fread, printf, puts, sethuf.

Library Functions 317

putenv

putenv - change or add value to environment

Format

int putenv (string)
char °*string;

Description

String points to a string of the form *name=value.” The putenv
function makes the value of the environment variable name
equal to value by altering an existing variable or creating a
new one. In either case, the string pointed to by string
becomes part of the environment, so altering the string will
change the environment. The space used by string is no
longer used once a new string-defining name is passed to putenv.

Diagnostics

putenv returns non-zero if it is unable to obtain enough space
via malloc for an expanded environment; otherwise, the
function returns zero.

Cautions

putenv manipulates the environment pointed to by environ, and
can be used in conjunction with getenv. However, envp (the
third argument to main) is not changed.

This routine uses the malloc function to enlarge the
environment.

After putenv is called, environmental variables are not in
alphabetical order.

1192192

3-172 Library Functions

putenv

A potential error is to call putenv with an automatic variable
as the argument, then exit the calling function while string is
still part of the environment.

See Also

exec in Section 2; getenv, malloc; environ in Section 5.

Library Functions 3-1713

putpwent

Name

putpwent - write password file entry

Format

#include <pwd.h>

int putpwent (p, f)
struct passwd °p;
FILE *f;

Description

The putpwent function is the inverse of getpwent. Given a
pointer to a passwd structure created by getpwent (or getpwuid
or getpwnam), putpwent writes a line on the stream f, which
matches the format of /etc/passwd.

Diagnostics

putpwent returns non-zero if an error is detected during its
operation; otherwise, it returns zero.

Caution

The above routine uses <stdio.h>, which causes it to
increase the size of programs, not otherwise using standard
I/0, more than might be expected. :

See Also

getpwent.

1192192

3-174 Library Functions

puts

puts, fputs - put a string on a stream

Format

#include <stdio.h>

int puts (s)
char *s;

int fputs (s, stream)

char °*s;
FILE *stream;

Description

The puts function writes the null-terminated string pointed to
by s, followed by a new-line character, to the standard
output stream stdout.

fputs writes the null-terminated string pointed to by s to the
named output stream.

Neither function writes the terminating null character.
puts appends a new-line character while fputs does not.

Diagnostics

Both routines return EOF on error. This will happen if the
routines try to write on a file that has not been opened for
writing. :

See Also

ferror, fopen, fread, printf, putc.

Library Functions 3-175

gsort

Name

gsort - quicker sort

Format

void gsort ((char °)base, nel, sizeof(*base), compar)

unsigned int nel;
int (*compar)();

Description

The gsort function is an implementation of the quicker-sort
algorithm. It sorts a table of data in place.

Base points to the element at the base of the table. Nel is the
number of elements in the table. Compar is the name of the
comparison function, which is called with two arguments that
point to the elements being compared. The function must
return an integer less than, equal to, or greater than zero,
depending on whether the first argument is to be considered
less than, equal to, or greater than the second.

The pointer to the base of the table should be of type
pointer—to—element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so
arbitrary data may be contained in the elements in addition to
the values being compared.

Although declared as type pointer-to-character, the value
returned should be cast into type pointer-to-element.

See Also

sort in Section 1; bsearch, Isearch, string.

1192192

3-176 Library Functions

quAdd

Name
quAdd - add a new entry to a BTOS queue

Format

quAdd (pbQueueName, cbQueueName, fQueue ! tNoServer,
priority, queueType, pEntry, sEntry, pDateTime,
repeatTime)

char °*pbQueuveName:

short cbQueueName:

char fQueuel!fNoServer:;

char priority;

short queueType;

char *pEntry;

short sEntry;

unsigned long *pDateTime:

short repeatTime:

Description

The quAdd function calls the BTOS AddQueueEntry service. A

CENTIX process that wants to submit a request to a BTOS
queue server creates a queue entry with quAdd. quAdd takes
the following arguments:

o PbQueueName and cbQueueName describe the location and
length of a queue name. This must be one of the queues
mentioned in the BTOS file [sys]<sys>queue.index.

o FQueuelfNoServer determines the action if the queue
manager finds that no servers are active for the specified

queue. OxFF means to queue the entry anyway. 0 means
abort the queue entry.

o Priority sets the queue entry’s priority. 0 is the highest
priority, 9 is the lowest.

o QueueType is the type of queue. This must match the
number given in the fourth field of the queue’s entry in the
queue index file.

Library Functions 3-171

quAdd

PEntry and sEntry describe the size and location of entry
data. The size and layout of this data area is conventional
for each queue.

o PDateTime points to the service time. A server will serve
the request no sooner than the service time.

The service time must be in BTOS format:
(d * 0x20000) + (m * Ox10000) + s

where d is the number of days since the beginning of
March, 1952 (in the local time zone); m is O for
midnight/AM, 1 for noon/PM; s is the number of seconds
since the last midnight or noon.

A service time of O means “undated;” the queue manager
provides servers for all undated requests before it provides
servers for any dated requests.

o RepeatTime specifies a repeat interval. Unless this value is
0, the queue manager resubmits the request repeatTime
minutes after a queue server deletes it. Thus the request
repeats forever, with at least repeat7ime minutes between
repetitions. A CENTIX process can terminate this loop with
the quRemove function.

Queue servers run under BTOS and thus expect integers to
have Intel-byte ordering. quAdd translates queueType, the
date, and repeatTime, but does nothing about entry data. To
translate entry data, see swapshort.

The program must be loaded with the library flag -lctos.

Files

[sys]<sys>queue.index - master queue index

1192192

3-178 Library Functions

quAdd

Diagnostics

O indicates success. 254 (“Queue not served”) if
fQueuelfNoServer is O and no servers are active on the
specified queue.

See Also

quRemove, quRead.

Library Functions 3-179

quRead

Name
quReadNext, quReadKeyed - examine BTOS queue

Format

structQueueStatusBlock {
long qehRet;
char priority:
char padding;
short ServerUserNumber;
tong gqehNextRet:
¥

quReadNext (pbQueueName, cbQueueName., qeh, pEntryRet,
sEntryRet, pStatusBlock, sStatusBlock)

char °*pbQueueName;

short cbQueueName;

long qeh;

char °*pEntryRet;

short sEntryRet;

struct QueueStatusBlock *pStatusBlock;

short sStatusBlock:

quReadKeyed (pbQueueName, cbQueueName, pbKeyl, cbKeyl,
oKeyl, pbKey2, cbKey2, oKey2, pEntryRet, sEntryRet,
pStatusBlock, sStatusBlock)

char *pbQueueName;

short cbQueueName;

char “pbKeyl,

short cbKeyt;

short oKeyt;

char ‘pbKey2;

short cbKey2;

short okey2;

char °*pEntryRet;

short sEntryRet;

struct QueueStatusBlock *pStatusBlock;

short sStatusBlock;

1192192

3-180 Library Functions

quRead

Description

The quReadNext and quReadKeyed functions call the BTOS
ReadNextQueueEntry and ReadKeyedQueueEntry services. A queue
client uses quReadNext or quReadKeyed to examine a BTOS
queue. Each call returns information on a single queue entry.
quReadNext and quReadKeyed have the following arguments in
common:

o PbQueueName and cbQueueName describe the location and
size of a queue name.

o PEntryRet and sEntryRet describe the location and size of
an area that is to receive entry data. Size and layout of
entry data is specific to each queue. If the area is smaller
than an area’s data, the data is right-truncated to fit.

o PStatusBlock and sStatusBlock describe the location and
size of an area that is to receive the entry’s status block. If
the area is smaller than sizeof(QueueStatusBlock), the block
is right-truncated to fit.

quReadNext and quReadKeyed return the following values in the
status block:

o QehRet is the queue entry handle. This integer value is
unique for each entry in the queue.

a Priority is the priority of the entry.

o ServerUserNum is the BTOS user number of the queue
server that has appropriated (marked) the request and
plans to service it. If no server has appropriated the
request, serverUserNum is -1.

o QehNextRet is the queue entry handle for the next entry in
the queue. If the current entry is the last entry in the
queue, QehNextRet is -1.

The following argument is specific to quReadNext:

o Qeh specifies the queue entry to be read. O indicates the

first queue entry; any other value must be a queue entry
handle.

Library Functions 3-181

quRead

This example passes the data for each entry in SPL to prentry().

qni = strien{(gns = “SPL")
tor (handle = 0: handle != -1; handle = status.QehNextRet) {
quReadNext(gnl. qns, handle, &data,
sizeof(data), &status, sizeof(status)):
prentry(&sta(us):

}
The following arguments are specific to quReadKeyed.

a PbKey! and cbKey1 describe the location and size of the
first search key. f there is no search key, set cbKey! to O.

o Okey1 is the offset of the first search string. This is the
offset, from the beginning of the entry data, of a string
that is to be compared with the first search key.
quReadKeyed assumes that the first byte of this string gives
the size of the remainder of the string. If there is no first

search key, the function ignores oKey1.

a PbKey2 and cbKey2 describe the location and size of the
second search key. If there is no second search key, set
cbKey2 to O.

o OKey2 is the offset of the second search string. This is the
offset, from the beginning of the entry data, of a string
that is to be compared with the second search key.
quReadKeyed assumes that the first byte of this string gives
the size of the remainder of the string. If there is no
second search key, the function ignores oKey2.

The client that calls quReadKeyed must supply 1 or 2 search
keys. quReadKeyed returns the first entry that matches both
search keys. If only one key is given, quReadKeyed returns the
first entry that matches that single key.

The program must be loaded with the library flag -lctos.

Files

[sys]<sys:>queue.index - master queue index

1192182

3-182 Library Functions

quRead

Diagnostics

0O indicates success. quReadNext returns 904 (“Entry deleted”)
if another client deletes a queue entry between the time you
get the entry’s handle and the time you try to read it.

See Also
quRemove, quAdd.

Library Functions 3-183

quRemove

Name

quRemove - take back a BTOS queue request

Format

quRemove (pbQueueName, cbQueueName, pbKeyl, cbKeyl,
oKeyl, pbKey2, cbKey2, oKey?2)

char *pbQueueName;

short cbQueueName;

char °*pbKeyl:

short cbKeyl!:

short oKeyl.

char °*pbKey2;

short cbKey2;

short oKey2:

Description

The quRemove function calls the BTOS RemoveKeyedQueueEntry
service. A queue client uses quRemove tc delete entries from a
BTOS queue. quRemove uses search keys to identify the
request. It takes the following arguments:

o PbQueueName and cbQueueName describe the location and
size of a queue name.

o PbKey1 and cbKey1 describe the location and size of the
first search key. if there is no first search key, set cbKeyl?
to O.

o OKey1 is the offset of the first search string. This is the
offset, from the beginning of the entry data, of a string
that is to be compared with the first search key. quRemove
assumes that the first byte of this string gives the size of
the remainder of the string. If there is no first search key,
the function ignores oKey1.

o PbKey2 and cbKey2 describe the location and size of the
second search key. If there is no second search key, set
cbKey2 to O.

1192192

3-184 Library Functions

quRemove

o OKey2 is the offset of the second search string. This is the
offset, from the beginning of the entry data, of a string
that is to be compared with the second search key.
quRemove assumes that the first byte of this string gives the
size of the remainder of the string. If there is no second
search key, the function ignores oKey2.

The client that calls quRemove must supply 1 or 2 search
keys. quRemove deletes the first entry that matches both
search keys. If only one key is given, quRemove deletes the
first entry that matches the single key, oKey2.

The program must be loaded with the library flag -lctos.

Files

[sys]<sys>queue.index - master queue index

See Also
quAdd, quRead.

Library Functions 3-185

rand

Name

rand, srand - simple random number generator

Format

int rand ()

void srand (seed)
unsigned seed;

Description

The rand function uses a multiplicative congruential random
number generator with period 232 that returns successive
pseudo-random numbers in the range from O to 2'%-1.

srand can be called at any time to reset the random number
generator to a random starting point. The generator is initially
seeded with a value of 1.

Note that the spectral properties of rand leave much to be
desired. The drand48 function provides a much better, though
more elaborate, random number generator.

See Also
drand48.

1192192

3-186 Library Functions

regcmp

Name

regemp, regex - compile and execute regular expression

Format

char “regcmp (stringl{, string2, ...). (char *)0)
char *stringt, *string2,

char ‘regex (re, subject[, ret0, ...})
char *re, “"subject, *reto0,

extern char *__ _loct;

Description

The regemp function compiles a regular expression and returns
a pointer to the compiled form. The malloc function is used to
create space for the vector. It is the user’s responsibility to
free unneeded space so allocated. A NULL return from regemp
indicates an incorrect argument. regemp has been written to
generally preclude the need for this routine at execution time.

The regex function executes a compiled pattern against the
subject string. Additional arguments are passed to receive
values back. regex returns NULL on failure or a pointer to the
next unmatched character on success. A global character
pointer __Joc7 points to where the match began. regemp and
regex were mostly borrowed from the editor, ed (see Section
1); however, the syntax and semantics have been changed
slightly. The following are the valid symbols and their
associated meanings:

[1*.~ These symbols retain their current meaning.
$ atches end of a string; \n matches a new-line.

- Within brackets, the minus means “through.” For example,
[a-2] is equivalent to [abcd...xyz], which means [a through
z). The - can appear as itself only if used as the first or
last character. For example, the character class expression
{ }-] matches the characters] and -.

Library Functions 3-187

regcmp

A regular expression followed by + means one or more
times. For example, [0-8]+ is equivalent to [0-8]{0-9]".

{m} {m,} {mu} Integer values enclosed in { } indicate the number of times
the preceding regular expression is to be applied. The value
m is the minimum number a u is a number, less than 256,
which is the maximum. If only m is present (that is, {m}},
it indicates the exact number of times the regular expression
is to be applied. The value {m,} is analogous to
{m.infinity}. The plus (+) and asterisk (*} operations are
equivalent to {1,} and {0,}, respectively.

(..)8n The value of the enclosed regular expression is to be
returned. The value will be stored in the {n+ 1)th argument
following the subject argument. At most ten enclosed
regular expressions are allowed. regex makes its
assignments unconditionally.

(..} Parentheses are used for grouping. An operator (such as *,
+, { }) can work on a single character or a regular
expression enclosed in parentheses. For example,
{a®{ch+)*)$0.

By necessity, all the above defined symbols are special. They
must, therefore, be escaped to be used as themselves.

Examples

The following example will match a leading new-line in the
subject string pointed at by cursor:

char *cursor, °newcursor, °‘ptr;

newcursor = regex((ptr = regcmp("~A\n", 0)), cursor);
tfree(ptr);

The next example will match through the string “Testing3”
and will return the address of the character after the last
matched character (cursor+ 11). The string “Testing3” will be
copied to the character array retO:

char ret0[9]);
char *newcursor, ‘name;

name = regcmp('((A-Za-z][A-za-zo-9_1{0.7])$0'. 0);
newcursor = regex(name, "123Testing321", ret0);

1192192

3-188 Library Functions

regcmp
The third example applies a precompiled regular expression
in file.i (see regemp in Section 1) against string:

#include "file.i"

char *string, °*newcursor;

newcursor = regex(name, string):

This routine is kept in /lib/libPW .a.

Known Problems

The user program may run out of memory if regemp is called
iteratively without freeing the vectors no longer required. The
following user supplied replacement for malloc reuses the
same vector, saving time and space.

["user's program®/

char *
malloc(n)
unsigned n;
{
static char rebut[512]:
return (n <= sizeof rebuf) ? rebuf : NULL:

See Also

ed, regemp in Section 1; malloc.

Library Functions 3-189

scanf

Name

scanf, fscanf, sscanf - convert formatted input

Format

#inciude <stdio.h>

int scant (format[, pointer] ...)
char “format;

.int tscanf (stream, format|[, pointer} ...)
FILE *stroam;
char *format;

int sscant (s, format[, pointer}] ...)
char s, *format;

Description

The scanf function reads from the standard input stream stdin.
fscanf reads from the named input stream. sscanf reads from
the character string s. Each function reads characters,
interprets them according to a format, and stores the results
in its arguments. Each expects, as arguments, a control
string format, described below, and a set of pointer
arguments indicating where the converted input should be
stored.

The control string usually contains conversion specifications,
* which are used to direct interpretation of input sequences.
The control string may contain:

1 White-space characters (blanks, tabs, new-lines or
form—feeds) that, except in two cases described below,
cause input to be read up to the next non-white-space
character.

2 An ordinary character (not %), which must match the next
character of the input stream.

1152182

3-190 Library Functions

scanf

3 Conversion specifications, consisting of the character %,
an optional assignment suppressing character *, an
optional numerical maximum field width, an optional | or h
indicating the size of the receiving variable, and a
conversion code.

A conversion specification directs the conversion of the next
input field; the result is placed in the variable pointed to by
the corresponding argument, unless assignment suppression
was indicated by *. The suppression of assignment provides
a way of describing an input field that is to be skipped. An
input field is described as a string of non-space characters; it
extends to the next inappropriate character or until the field
width, if specified, is exhausted. For all descriptors except ‘I
and “c,” white space leading an input field is ignored.

The conversion code indicates the interpretation of the input
field; the corresponding pointer argument must usually be of
a restricted type. For a suppressed field, no pointer argument
is given. The following conversion codes are legal:

% A single % is expected in the input at this point; no assignment is done.

d A decimal integer is expected; the corresponding argument should be an
integer pointer.

u An unsigned decimal integer is expected; the corresponding argument
should be an integer pointer.

0 An octal integer is expected; the corresponding argument should be an
integer pointer.

X A hexadecimal integer is expected; the corresponding argument should be
an integer pointer.

efg A floating point number is expected; the next field is converted
accordingly and stored through the corresponding argument, which should
be a pointer to a float. The input format for floating point numbers is an
optionally signed string of digits, possibly containing a decimal point,
followed by an optional exponent field consisting of an E or an e,
followed by an optional +, -, or space, followed by an integer.

s A character string is expected; the corresponding argument should be a
character pointer pointing to an array of characters large enough to
accept the string and a terminating \0, which will be added
automatically. The input field is terminated by a white-space character.

Library Functions 3-191

scanf

c A character is expected; the corresponding argument should be a
character pointer. The normal skip over white space is suppressed in this
case; to read the next non-space character, use %1s. If a field width is
given, the corresponding argument should refer to a character array; the
indicated number of characters is read.

[Indicates string data and the normal skip over leading white space is
suppressed. The left bracket is followed by a set of characters, which
we will call the canset, and a right bracket; the input field is the
maximal sequence of input characters consisting entirely of characters in
the scanset. The ~, when it appears as the first character in the
scanset, serves as a complement operator and redefines the
scanset as the set of all characters not contained in the remainder
of the scanset string. There are some conventions used in the
construction of the scanset. A range of characters may be
represented by the construct first-last, thus {0123456789) may be
expressed as [0-8). Using this convention, first must be lexically
less than or equal to fast, or else the dash will stand for itself.
The dash will also stand for itself whenever it is the first or the
last character in the scanset. To include the right square bracket as
an element of the scanset, it must appear as the first character
(possible preceded by a *) of the scanset, and in this case it will
not be syntactically interpreted as the closing bracket.. The
corresponding argument must point to a character array large
enough to hold the data field and the terminating \0, which will be
added automatically. At least one character must match for this
conversion to be considered successful.

The conversion characters d, u, o, and x may be preceded
by | or h to indicate that a pointer to long or to short, rather
than to int, is in the argument list. Similarly, the conversion
characters e, f, and g may be preceded by | to indicate that a
pointer to double, rather than to float, is in the argument list.
The | or h modifier is ignored for other conversion characters.

scanf conversion terminates at EOF, at the end of the control
string, or when an input character conflicts with the control
string. In the latter case, the offending character is left
unread in the input stream.

scanf returns the number of successfully matched and
assigned input items; this number can be zero in the event of
an early conflict between an input character and the control
string. If the input ends before the first conflict or conversion,
EOF is returned.

Note that trailing white space (including a new-line) is left
_ unread unless matched in the control string.

11021402

3-192 Library Functions

scanf

Examples
The call

int i, n; float x: char name[50] ;
n = scanf('%d%l%s'. &i, &x, name):

with the input line
25 54.32E-1 henry

will assign to n the value 3, to / the value 25, to x the value
5.432, and name will contain henry\O. Or

int i; tloat x, char name {507
(void)scanf('%20%!%'d%[0-9]‘. &i, &x, name);

with input
56789 0123 56a72

will assign 56 to 7, 789.0 to x, skip 0123, and place the
string 56\0 in name. The next call to getchar (see getc) will
return a.

Diagnostics
These functions return EOF on end of input and a short count
for missing or illegal data items.

Known Problems

The success of literal matches and suppressed assignments
is not directly determinable.

See Also

getc, printf, strtod, strtol.

Library Functions 3-193

sethuf

Name

setbuf, setvbuf - assign buffering to a stream

Format

#include <stdio.h>

void setbuf (stream, buf)
FILE *stream;
char °buf;

int setvbut (stream, buf, type, size)
FILE *stream;

char *buf;

int type, size;

Description

The sethuf function may be used after a stream has been
opened but before it is read or written. It causes the array
pointed to by buf to be used instead of an automatically
allocated buffer. If buf is the NULL pointer, input/output will
be completely unbuffered.

A constant, BUFSIZ, defined in the <stdio.h> header file,
tells how big an array is needed:
char but[BUFSIZ]

setvbuf may be used after a stream has been opened but
before it is read or written. Type determines how stream will
be buffered. Legal values for type, defined in stdio.h, are:

_IOFBF Causes input/output to be fully buffered.

_IOLBF Causes output to be line buffered; the buffer will be flushed when
a new-line is written, the buffer is full, or input it requested.

_IONBF Causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be
used for buffering, instead of an automatically allocated
buffer. Size specifies the size of the buffer to be used. The
constant BUFSIZ in <stdio.h> is suggested as a good buffer
size. If input/output is unbuffered, buf and size are ignored.

1107109

3-194 Library Functions

sethuf

By default, output to a terminal is line buffered, and all other
input/output is fully buffered.

Note that a common source of error is allocating buffer
space as an “automatic” variable in a code block, and then
failing to close the stream in the same block.

Diagnostics

If an illegal value for type or size is provided, setvbuf returns a
non-zero value. Otherwise, the value returned will be zero.

See Also

fopen, getc, malloc, putc, stdio.

Library Functions 3-195

setjmp

Name

setjmp, longjmp - non-local goto

Format

#include <setjmp.h>

int setjmp (env)
jmp_but env;

void ltongjmp (env, val)
jmp_but env;
int val;

Description

These functions are useful for dealing with errors and
interrupts encountered in a low-level subroutine of a
program.

The setjmp function saves its stack environment in env
{(whose type, jmp__buf, is defined in the <setjmp.h> header
file), for later use by longjmp. It returns the value O.

The longjmp function restores the environment saved by the
last call of setimp with the corresponding env argument. After
longjmp is completed, program execution continues as if the
corresponding call of setjmp {(which must not itself have
returned in the interim) had just returned the value val. longjmp
cannot cause setimp to return the value O. If longjmp is invoked
with a second argument of O, setjmp will return 1. All
accessible data have values as of the time longjmp was called.

Caution

If longjmp is called when env was never primed by a call to
setjmp, or when the last such call is in a function that has
since returned, absolute chaos is guaranteed.

See Also

signal in Section 2.

ssnnInn

3-196 Library Functions

sinh

sinh, cosh, tanh - hyperbolic functions

Format

#include <math.h>

double sinh (x)
double x;

double cosh (x)
double «x;

double tanh (x)
double x;

Description

The sinh, cosh, and tanh functions return, respectively, the
hyperbolic sine, cosine, and tangent of their arguments.

Diagnostics

sinh and cosh return HUGE (and sinh may return -HUGE for
negative x) and set errno to ERANGE when the correct value
would overflow.

These error-handling procedures may be changed with the
matherr function.

See Also

matherr.

Library Functions . 3-197

sleep

sleep - suspend execution for interval

Format

unsigned sleep (seconds)
unsigned seconds;

Description

The current process is suspended from execution for the
number of seconds specified by the argument. The actual
suspension time may be less than that requested for two
reasons: (1) because scheduled wakeups occur at fixed
1-second intervals (on the second, according to an internal
clock), and (2) because any caught signal will terminate the
sleep following execution of that signal’s catching routine.
Also, the suspension time may be longer than requested by
an arbitrary amount due to the scheduling of other activity in
the system. The value returned by sleep will be the “unslept”
amount (the requested time minus the time actually slept) in
case the caller had an alarm set to go off earlier than the end
of the requested sleep time, or premature arousal due to
another caught signal.

The routine is implemented by setting an alarm signal and
pausing until it (or some other signal) occurs. The previous
state of the alarm signal is saved and restored. The calling
program may have set up an alarm signal before calling sleep;
if the sleep time exceeds the time until such an alarm signal,
the process sleeps only until the alarm signal would have
occurred. The caller's alarm catch routine is then executed
just before the sleep routine returns, unless the sleep time is
less than the time until the alarm, in which case the prior
alarm time is reset to go off at the same time it would have
without the intervening sleep.

See Also

alarm, pause, signal in Section 2.

1192192

3-198 Library Functions

spawn

spawnlp, spawnvp - execute a process on a specific
Application Processor

Format

int

spawnlp (apnum, directory, name, arg0, argt, ..., argn,
int apnum;

char ‘directory;

char *name, ‘argo, ‘argr1, ..., ‘argn;

int

spawnvp (apnum, directory, name, argv)
int apnum;

char “directory;

char *name, ‘argvl]

extern char “*environ;

Description

The spawn functions, spawnlp and spawnvp, execute a file on
the specified AP, creating a new process on that processor.
The practical effect is that of a fork/exec sequence with the
following differences:

o spawn will create the new process on any AP. fork/exec
always creates the new process on the parent process’s
application processor. '

a A spawn process is not a child of the process that called
spawn; it is a child of the Spawn server on the designated
AP (see spawnsrv in Section 1). Thus the process that called
Spawn cannot wait (see Section 2) for the new process’s
death; use spwait instead. Also, not all the attributes that
are inherited across a fork are inherited across a spawn.

o A fork/exec is less expensive than a spawn.

Library Functions 3-199

spawn

The spawn server passes the following attributes to the new
process, based partially on the attributes of the calling process:

o

File descriptors O, 1, and 2 (standard input, output, and

error) of the new process are open to /dev/null. None of
the calling process'’s file descriptors are available to the

new process.

Signals caught by the calling process terminate the new
process. Other signals (ignored by or causing termination
of the calling process) have the same effect on the new
process they had on the calling process.

The new process inherits the following, unchanged, from
the calling process: environment parameters (variables); file
creation mask (umask, Section 2); effective user ID and
group ID.

If the calling process’s effective user ID is 0, the new
process inherits the calling process’s real user ID and
group ID. Otherwise, the new process’s real IDs are the
same as its effective IDs.

The calling conventions for spawnip and spawnvp are the same
as for execlp and execvp (see Section 2), but with two
additional parameters at the beginning:

apnum The number of the AP that is to run the new process. Application

processors are numbered from 0. Viewed from behind, APs in the
rightmost enclosure are counted first, working left; within an
enclosure, count left to right. See the XE 500 CENTIX
Administration Guide.

directory A pointer to a null-terminated string identifying the new process’s

working directory. If directory is {char *)0 (NULL in <stdio.h>),
the new process's working directory is the same as the calling
process's. (Use of NULL is expensive: it causes a call to pwd; see
Section 1.)

1192182

3-200 Library Functions

spawn

Examples

The following runs myprog in the same directory as the
current process, but it runs on APO1:

#detine NULL ((char °)o0)
spawnip(01, NULL, "myprog-, ‘myprog", Targi-, NULL) ;

The following runs a shell on the other AP:

spawnip(01, =/, "/binfsh®, ".sh", ".c¢",
"cd $HOME; exec myprog™, NULL);
Diagnostics

Both functions return -1 on error: otherwise, they return the
process number of the new process.

See Also

apnum, pwd, spawn in Section 1; apnum, fork, signal in
Section 2; getcwd, spwait; environ in Section 5.

Library Functions 3-201

sputl

Name

sputl, sgetl - access long integer data in a
machine—dependent fashion

Format

void sputl (value, buffer)
long value;
char ‘*buffer;

long sget! (buffer)
char *buffer:

Description

The sputl function takes the four bytes of the long integer
value and places them in memory starting at the address
pointed to by buffer. The ordering of the bytes is the same
across all machines.

The sgetl function retrieves the four bytes in memory starting
at the address pointed to by buffer and returns the long
integer value in the byte ordering of the host machine.

The combination of sputl and sgetl provides a
machine-independent way of storing long numeric data in a
file in binary form without conversion to characters.

A program that uses these functions must be loaded with
the object-file access routine library libld.a.

1192192

3-202 Library Functions

spwait

Name

spwait - wait for a spawned process to terminate

Format

spwait (pid, status)
int pid, *status:

Description

The spwait function suspends the calling process until a signal
is received or the process specified by process ID pid
terminates. The specified process must have been previously
spawned (see spawn) by the calling process.

If status is not equal to (int *)0, the word it points to receives
two data:

o The high byte gets the low byte of the specified process’s
exit (see Section 2) parameter. .

o The low byte gets the specified process’s termination
status. If the termination status’s 0200 bit is set, the
process produced a core image when it terminated.

Diagnostics

If spwait returns due to the receipt of a signal, a value of -1 is
returned to the calling process and ermo is set to EINTR. If
wait returns due to a terminated spawn process, the process
ID of the child is returned to the calling process. Otherwise, a
value of -1 is returned and ermo is set to indicate the error.

See Also

spawn in Section 1; exit, fork, signal in Section 2; spawn.

Library Functions 3-203

ssignal

Name

ssignal, gsignal - software signals

Format

#include <signal.h>

int (*ssignatl (sig. action)) ()
int sig. (*action)():

int gsignal (sig)
int sig;

Description

The ssignal and gsignal functions implement a software facility
similar to signal in Section 2. This facility is used by the
Standard C Library to enable users to indicate the disposition
of error conditions, and is also made available to users for
their own purposes.

Software signals made available to users are associated with
integers in the inclusive range 1 through 15. A call to ssignal
associates a procedure, action, with the software signal sig;
the software signal, sig, is raised by a call to gsignal. Raising a
software signal causes the action established for that signal
to be taken.

The first argument to ssignal is a number identifying the type
of signal for which an action is to be established. The second
argument defines the action; it is either the name of the
(user-defined) action function or one of the manifest
constants SIG_DFL (default) or SIG_IGN (ignore). ssignal
returns the action previously established for that signal type;
if no action has been established or the signal number is
ilegal, ssignal returns SIG_DFL.

1192192

3-204 Library Functions

ssignal

The gsignal function raises the signal identified by its
argument, sig:

If an action function has been established for sig, then
that action is reset to SIG_DFL and the action function is
entered with the argument sig. gsignal returns the value
returned to it by the action function.

If the action for sig is SIG_IGN, gsignal returns the value 1
and takes no other action.

If the action for sig is SIG_DFL, gsignal returns the value O
and takes no other action.

If sig has an illegal value or no action was ever specified
for sig, gsignal returns the value O and takes no other action.

Note that there are some additional signals with numbers
outside the range 1 through 15 that are used by the
Standard C Library to indicate error conditions. Thus, some
signal numbers outside the range 1 through 15 are legal,
although their use may interfere with the operation of the
Standard C Library.

See Also

signal in Section 2.

Library Functions 3-205

stdio

Name
stdio - standard buffered input/output package

Format

#include <stdio.h>

FILE *stdin, *stdout, ‘*stderr;

Description

These functions, as well as the other functions whose
declarations are obtained from the #include file <stdio.h>,
constitute an efficient, user-level /O buffering scheme. The
in-line macros getc and putec handle characters quickly. The
macros getchar and putchar, and the higher-level routines fgetc ,
fgets, fprintf, fputc, fputs, fread, fscanf, fwrite, gets, getw, printf,
puts, putw, and scanf all use or act as if they use getc and putc;
they can be freely intermixed.

A file with associated buffering is called a stream and is
declared to be a pointer to a defined type FILE. The fopen
function creates certain descriptive data for a stream and
returns a pointer to designate the stream in all further
transactions. Normally, there are three open streams with
constant pointers declared in the <stdio.h> header file and
associated with the standard open files:

stdin Standard input file.
stdout Standard output file.
stderr Standard error file.

A constant NULL (0) designates a non-existent pointer.

An integer-constant EOF (-1) is returned upon end-of-file or
error by most integer functions that deal with streams (see
the individual descriptions for details).

An integer constant BUFSIZ specifies the size of the buffers
used by the particular implementation.

1192192

3-206 Library Functions

stdio

Any program that uses this package must include the header
file of pertinent macro definitions, as follows:

#include <stdio.h>

These functions and constants are declared in that header file
and need no further declaration. The constants and the
following functions are implemented as macros (redeclaration
of these names is perilous): getc, getchar, putc, putchar, ferror,
feof, clearerr, and fileno.

Diagnostics

Invalid strearmn pointers will usually cause grave disorder,
possibly including program termination. Individual function
descriptions describe the possible error conditions.

See Also

open, close, Iseek, pipe, read, write in Section 2; intro, ctermid,
cuserid, fclose, ferror, fopen, fread, fseek, getc, gets, popen,
printf, putc, puts, scanf, sethuf, system, tmpfile, tmpnam, ungetc.

Library Functions 3-207

stdipc

Name

stdipc - standard interprocess communication package {(ftok)

Format

#include <sys/types.h>
#include <sys/ipc.h>

key_t ftok (path, id)
char ‘path;
char id:

Description

All interprocess communication facilities require the user to
supply a key to be used by the msgget, semget, and shmget
system calls (see Section 2) to obtain interprocess
communication identifiers. One suggested method for
forming a key is to use the ftok subroutine described below.
Another way to compose keys is to include the project ID in
the most significant byte and to use the remaining portion as
a sequence number. Their are many other ways to form
keys, but it is necessary for each system to define standards
for forming them. If some standard is not adhered to, it will
be possible for unrelated processes to unintentionally
interfere with each other’s operation. Therefore, it is strongly
suggested that the most significant byte of a key in some
sense refer to a project so that keys do not conflict across a
given system.

ftok returns a key based on path and /d that is usable in
subsequent msgget, semget, and shmget system calls. Path
must be the path name of an existing file that is accessible
to the process. /d is a character that uniquely identifies a
project. Note that ftok will return the same key for linked files
when called with the same /d and that it will return different
keys when called with the same file but different /ds.

1192192

3-208 Library Functions

stdipc

Diagnostics

ftok returns (key_t)-1 if path does not exist or if it is not
accessible to the process.

Caution

If the file whose path is passed to ftok is removed when keys
still refer to the file, future calls to ftok with the same path
and /id will returned an error. If the same file is recreated,
then ftok is likely to return a different key than it did the
original time it was called.

See Also

intro, msgget, semget, shmget in Section 2.

Library Functions 3-209

string

Name

strcat, strncat, strcmp, strncmp, strepy, strncpy, strlen, strchr,
strrchr, strpbrk, strspn, strcspn, strtok - string operations

Format

#include <string.h>

char °*strcat (s, s2)
char °*st1, °s2;

char *strncat (sf, s2, n)
char *si1, °s2;
int n;

int stremp (st?, s2)
char *st1, °s2;

int strncmp (s!1., s2, n)
char °st?1, °s2;
int n;

char *strcpy (s?. s2)
char °sf, *s2;

char °strncpy (s?, s2, n)
char *st?, °*°s2;
int n;

int strlen (s)
char °s;

char *strchr (s, ¢)
char °s, c;

char *strrchr (s, ¢)
char *s, c¢;

char strpbrk (s?, s2)
char °s1, °s2;

int strspn (s?1, s2)
char *s2, °s2;

int strcspn (s1, s2)
char °s1, °s2;

char °*strtok (s?, s2)
char °*st, °s2;

1192192

3-210 Library Functions

string

Description

The arguments s7, s2, and s point to strings (arrays of
characters pointed to by a null character). The functions
strcat, strncat, strcpy, and strnepy all alter s7. These functions
do not check for overflow of the array pointed to by s7.

streat appends a copy of string s2 to the end of string s7.
strncat appends at most n characters. Each returns a pointer
to the null-terminated result.

The stremp function compares its arguments and returns an
integer less than, equal to, or greater than O, depending on
whether s7 is lexicographically less than, equal to, or greater
than s2. strnemp makes the same comparison but looks at at
most n characters.

strepy copies strings s2 to s7, stopping after the null
character has been copied. strncpy copies exactly n
characters, truncating s2 or adding null characters to s7 if
necessary. The result will not be null-terminated if the length
of s2 is n or more. Each function returns s7.

strlen returns the number of characters in s, not including the
terminating null character.

strchr (strrchr) returns a pointer to the first (last) occurrence of
character ¢ in string s, or a NULL pointer if ¢ does not occur
in the string. The null character terminating a string is
considered to be part of the string.

strpbrk returns a pointer to the first occurrence in string s7 of
any character from string s2, or a NULL pointer if no
character from s2 exists in s7.

strspn (strespn) returns the length of the initial segment of
string s7, which consists entirely of characters from (not
from) string s2.

Library Functions 3-21

string

strtok considers the string s7 to consist of a sequence of zero
or more text tokens separated by spans of one or more
characters from the separator string s2. The first call (with
pointer s specified) returns a pointer to the first character of
the first token, and will have written a null character into s7
immediately following the returned token. The function keeps
track of its position in the string between separate calls, so
that on subsequent calls (which must be made with the first
argument a NULL pointer) will work through the string s7
immediately following that token. In this way, subsequent
calls will work through the string s7 until no tokens remain.
The separator string s2 may be different from call to call.
When no token remains in s7, a NULL pointer is returned.

Note that for user convenience, all of the above functions are
declared in the optional <string.h> header file.

Known Problems

stremp and strncmp use native character comparison, which is
signed on Burroughs 68000-family processors. This means
that characters are 8-bit signed values; all ASCIl characters
have values of at least O; non-ASCIl are negative. On some
machines, all characters are positive. Thus programs that
only compare ASCIl values are portable; programs that
compare ASCII with non—ASCIl values are not.

Overlapping moves may yield surprises.

1192192

3-212 Library Functions

strtod

Name

strtod, atof - convert string to double-precision number

Format
double strtod (str, ptr)
char *str, "*ptr;
double atoft (str)

char °*str;

Description

The strted function returns, as a double-precision
floating-point number, the value represented by the character
string pointed to by str. The string is scanned up to the first
unrecognized character.

strtod recognizes an optional string of “white space”
characters (as defined by /sspace in ctype), then an optional
sign, then a string of digits optionally containing a decimal
point, then an optional e or E, followed by an optional sign or
space, followed by an integer. '

If the value of ptr is not (char **)NULL, a pointer to the
character terminating the scan is returned in the location
pointed to by ptr. If no number can be formed, *ptris set to
str, and zero is returned.

atof(str) is equivalent to strtod(str, (char "WULL).

Diagnostics

If the correct value would cause overflow, plus or minus
HUGE is returned (according to the sign of the value), and
errno is set to ERANGE.

If the correct value would cause underflow, zero is returned
and errno is set to ERANGE.

See Also

ctype, scanf, strtol.

Library Functions 3-213

strtol

Name

strtol, atol, atei - convert string to integer

Format
long strtol (str. ptr, base)
char °*str, ""ptr;
int base;

long atol (str)
char str.

int atoi (str)
char °*str;

Description

The strtol function returns, as a long integer, the value
represented by the character string pointed to by str. The
string is scanned up to the first character inconsistent with
the base. Leading “white space” characters (as defined by
isspace in ctype) are ignored.

If the value of ptr is not (char **)NULL, a pointer to the
character terminating the scan is returned in the location
pointed to by ptr. If no integer can be formed, that location is
set to str, and zero is returned.

If base is positive (and not greater than 36), it is used as the
base for conversion. After an optional leading sign, leading
zeros are ignored, and “Ox” or "OX" is ignored if base is 16.

If base is zero, the string itself determines the base as
follows: after an optional leading sign, a leading zero
indicates octal conversion, and a leading “Ox” or "0X"
hexadecimal conversion. Otherwise, decimal conversion is
used.

Truncation from long to int can, of course, take place upon
assignment or by an explicit cast.

atol(str) is equivalent to strtol(str, (char *WULL, 10).
atoi(szr) is equivalent to (int) strtel(str, {char **\WULL, 10).

1182192

3-214

Library Functions

strtol

Known Problems

Overflow conditions are ignored.

See Also

ctype, scanf, strtod.

Library Functions 3-215

swabh

Name

swab - swap bytes

Format

void swab (from, to, nbytes)
char *from, °“to;
int nbytes;

Description

The swab function copies nbytes pointed to by from to the
array pointed to by to, exchanging adjacent even and odd
bytes. It is useful for carrying binary data between machines.
Nbytes should be even and non-negative. If nbytes is odd and
positive, swab uses nbytes-1 instead. If nbytes is negative,
swab does nothing.

1192192

3-216 Library Functions

swapshort

Name

swapshort, swaplong - translate byte orders to
Motorola/Intel

Format

swapshort (s)
short s;

swapliong (/)
long 1/;

Description

Processes that run on an XE 500 CENTIX Application
Processor do not store integers the same way as do
processes that run on other (BTOS) processors. CENTIX
processes use Motorola ordering; BTOS processes use Intel
ordering. CENTIX processes must translate integers sent to
or received from BTOS processes.

Library functions do this translation whenever they know an
integer value is involved. For example, AddQueueEntry
translates integers that are supplied for all queue entries: the
priority, the queue type, and the data. But AddQueueEntry does
not translate any integers in the entry data.

swaplong translates to or from Intel four-byte integers.
swaplong returns / with its bytes in reverse order. For
example, if / is 4885001 (0x004A8A09), swaplong returns
160057856 (0x098A4A00).

swapshort translates to or from Intel two-byte integers.
swapshort returns s with its bytes in reverse order.

The program must be loaded with the -lctos library flag.

Library Functions 3-2117

system

Name

system - issue a shell command

Format

#include <stdio.h>

int system (string)
char *string,

Description

The system function causes the string to be given to sh (see
Section 1) as input, as if the string had been typed as a
command at a terminal. The current process waits until the
shell has completed, then returns the exit status of the shell.

Files
/bin/sh

Diagnostics

system forks to create a child process that in turn exec’s
/bin/sh in order to execute string. If the fork or exec fails,
system returns -1 and sets errno 10 indicate the error.

See Also

sh in Section 1; exec in Section 2.

1192182

3-218 Library Functions

termcap

Name

tgetent, tgetnum, tgetfiag, tgetstr, tgoto, tputs - terminal
independent operations

Format

char PC;
char °BC;
char *UP;
short ospeed;

tgetent (bp, name)
char *bp, *name;

tgetnum (id)
char *id;

tgetflag (id)
char *id;

char *
tgetstr (id, area)
char *id, **area;

char *

tgoto (cmstr, destcol, destline)
char *cmstr;
int destcol, destline;

tputs (cp, affcnt, outc)
register char ‘*¢p;

int affcnt;

int (*outc)();

Description

These functions extract and use information from terminal
descriptions that follow the conventions in termcap (see
Section 4). The functions do only basic screen manipulation:
they find and output specified terminal function strings and
interpret the cm string. curses describes a screen updating
package built on termcap.

Library Functions 3-219

termcap

tgetent finds and copies a terminal description. Name is the
name of the description; bp points to a buffer to hold the
description. tgetent passes bp to the other termcap functions;
the buffer must remain allocated until the program is done
with the termcap functions.

tgetent uses the TERM and TERMCAP environment variables
to locate the terminal description.

o If TERMCAP is not set, or if it is empty, tgetent searches for
name in /etc/termcap.

o If TERMCAP contains the full pathname of a file (any string
that begins with /), tgetent searches for name in that file.

o If TERMCAP contains any string that does not begin with /
and TERM is not set or matches name, tgetent copies the
TERMCAP string.

o If TERMCAP contains any string that does not begin with /
and TERM does not match name, tgetent searches for name
in /etc/termcap.

tgetent returns -1 if it could not open the terminal capability
file, 0 if it could not find an entry for name, and 1 upon success.

tgetnum returns the value of the numeric capability whose
name is id. It returns -1 if the terminal lacks the specified
capability or it is not a numeric capability.

tgetflag returns 1 if the terminal has boolean capability whose
name is id, O if it does not or it is not a boolean capability.

tgetstr copies and interprets the value of the string capability
named by id. tgetstr expands instances in the string of \ and
A 1t leaves the expanded string in the buffer indirectly pointed to by area and
leaves the buffer's direct pointer pointing to the end of the
expanded string; for example:

tgetstr(-ci”, &ptr):

where ptr is a character pointer - not an array name. tgetstr
returns a (direct) pointer to the beginning of the string.

1182192

3-220 Library Functions

termcap

tgoto interprets the % in a cm string. It returns cmstr with the
% sequences changed to the position indicated by destco/
and destline. This function must have the external variables
BC and UP set to the values of the bc and up capabilities; if
the terminal lacks the capability, set the external variable to
null. If tgoto cannot interpret all the % sequences in cm, it,
returns “O0PS.”

tgoto avoids producing characters that might be
misinterpreted by the terminal interface. If expanding a %
sequence would produce null or control-d, the function will, if
possible, send the cursor to the next line or column and use
BC or UP to move to the correct location. Note that tgoto
does not avoid producing tabs; a program must turn off the
TAB3 feature of the terminal interface (see termio, Section 6).
This is a good idea anyway: some terminals use the tab
character as a nondestructive space.

tputs directs the output of a string returned by tgetstr or tgoto.
This function must have the external variable PC set to the
value of the pc capability; if the terminal lacks the capability,
set the external variable to null. tputs interprets any delay at
the beginning of the string. Cp is the string output; affent is
the number of lines affected by the action (1 if “number of
lines affected” doesn’t mean anything); and outc points to a
function that takes a single char argument, such as putchar,
and outputs it.

Files
/usr/lib/libtermcap.a - library
/etc/termcap - data base

See Also

ex in Section 1; curses; term in Section 5.

Library Functions 3-221

tmpfile

Name

tmpfile - create a temporary file

Format

#include <stdio.h>
FILE *tmpfile ()

Description

The tmpfile function creates a temporary file using a name
generated by tmpnam, and returns a corresponding FILE
pointer. If the file cannot be opened, an error message is
printed using perror, and a NULL pointer is returned. The file
will automatically be deleted when the process using it
terminates. The file is opened for update (“w+").

See Also

creat, unlink in Section 2; fopen, mktemp, perror, tmpnam.

1182192

3-222 Library Functions

tmpnam

Name

tmpnam, tempnam - create a name for a temporary file

Format

#include <stdio.h>

char ‘“tmpnam (s)
char *s;

char ‘tempnam (dir, pfx)
char *dir, *pfx;

Description

These functions generate file names that can safely be used
for a temporary file.

tmpnam always generates a file name using the path prefix
defined as P_tmpdir in the <stdio.h> header file. if s is NULL,
tmpnam leaves its result in an internal static area and returns a
pointer to that area. The next call to tmpnam will destroy the
contents of the area. If s is not NULL, it is assumed to be the
address of an array of at least L _tmpnam bytes, where

L _tmpnam is a constant defined in <stdio.h>; tmpnam places
its result in the array and returns s.

tempnam allows the user to control the choice of a directory.
The argument dir points to the name of the directory in
which the file is to be created. If dir is NULL or points to a
string that is not a name for an appropriate directory, the
path prefix defined as P_tmpdir in the <stdio.h> header file is
used. If that directory is not accessible, /tmp will be used as
a last resort. This entire sequence can be upstaged by
providing an environment variable TMPDIR in the user's
environment, whose value is the name of the desired
temporary-file directory.

Library Functions . 3-223

tmpnam

Many applications prefer their temporary files to have certain
favorite initial letter sequences in their names. Use the pfx
argument for this. This argument may be NULL or point to a
string of up to five characters to be used as the first few
characters of the temporary-file name.

tempnam uses malloc to get space for the constructed file
name, and returns a pointer to this area. Thus, any pointer
value returned from tempnam may serve as an argument to
free (see malloc). If tempnam cannot return the expected result
for any reason (such as if malloc failed), or none of the above
mentioned attempts to find an appropriate directory was

successful, a NULL pointer will be returned.

Note that these functions generate a different file name each
time they are called.

Note also that files created using these functions and either
an fopen function or a creat system call are temporary only in
the sense that they reside in a directory intended for
temporary use, and their names are unique. It is the user’s
responsibility to use the unlink system call to remove the file

when its use is ended.

Known Problems

If called more than 17,576 times in a single process, these
functions will start recycling previously used names.

Between the time a file name is created and the file is
opened, it is possible for some other process to create a file
with the same name. This can never happen if that other
process is using these functions or mktemp, and the file
names are chosen so as to render duplication by other
means unlikely.

See Also

creat, unlink in Section 2; fopen, malloc, mktemp, tmpfile.

1192192

3-224 Library Functions

trig

Name

sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

Format

#inciude <math.h>

double sin (x)
double x;

double cos (x)
double «x;

double tan (x)
double x;

double asin (x)
double x;

doublie acos (x)
double x;

double atan (x)
double x;

double atan2 (y, x)
doublie y, x:

Description

sin, cos, and tan respectively return the sine, cosine, and
tangent of their arguments, x, measured in radians.

asin returns the arcsine of x, in the range -pi/2 to pi/2.
acos returns the arccosine of x, in the range O to pi.
atan returns the arctangent of x, in the range -pi/2 to pi/2.

atan2 returns the arctangent of t/x, in the range -pi to pi,
using the signs of both arguments to determine the quadrant
of the return value.

Library Functions 3-225

trig

Diagnostics

sin, cos, and tan lose accuracy when their arguments are far
from zero. For arguments sufficiently large, these functions
return zero when there would otherwise be a complete loss
of significance. In this case a message indicating TLOSS
error is printed on the standard error output. For less
extreme arguments causing partial loss of significance, a
PLOSS error is generated but no message is printed. In both
cases, ermo is set to ERANGE.

if the magnitude of the argument of asin or acos is greater
than one, or if both arguments of atan2 are zero, zero is
returned and ermo is set to EDOM. in addition, a message
indicating DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the
matherr function.

See Also

matherr.

1192192

3-226 Library Functions

tsearch

tsearch, tfind, tdelete, twalk - manage binary search trees

Format

#include <search.h>

char ‘tsearch ((char *) key, (char **) rootp, compar)
int (*compar)():

char *tfind ((char ‘) key., (char **) rootp, compar)
int (“compar)();

char *tdelete ((char *) key., (char **) rootp, compar)
int (*compar)():

void twalk ((char ‘) root, action)
void (*action)();

Description

tsearch, tfind, tdelete, and twalk are routines for manipulating
binary search trees. They are generalized from Knuth (6.2.2)
Algorithms T and D. All comparisons are done with a
user—supplied routine. This routine is called with two
arguments, the pointer to the elements being compared. It
returns an integer less than, equal to, or greater than O,
according to whether the first argument is to be considered
less than, equal to, or greater than the second argument.

. The comparison function need not compare every byte,so
arbitrary data may be contained in the elements in addition to
the values being compared.

tsearch is used to build and access the tree. Key is a pointer
to a datum to be accessed or stored. If there is a datum in
the tree equal to *key (the value pointed to by key), a pointer
to this found datum is returned. Otherwise, *key is inserted,
and a pointer to it is returned. Only pointers are copied, so
the calling routine must store the data. Rootp points to a
variable that points to the root of the tree. A NULL value for
the variable pointed to by rootp denotes an empty tree; in
this case, the variable will be set to point to the datum that
will be at the route of the new tree.

Library Functions 3-227

tsearch

Like tsearch, tfind will search for a datum in the tree, returning
a pointer to it if found. However, if it is not found, tfind will
return a NULL pointer. The arguments for tfind are the same
as for tsearch.

tdelete deletes a node from a binary search tree. The _
arguments are the same as for tsearch. The variable pointed
to by rootp will be changed if the deleted node was the root
of the tree. tdelete returns a pointer to the parent of the
deleted node, or a NULL pointer if the node is not found.

twalk traverses a binary search tree. Root is the root of the
tree to be traversed. (Any node in a tree may be used as the
root for a walk below that node.) Action is the name of a
routine to be invoked at each node. This routine is, in turn,
called with three arguments. The first argument is the
address of the node being visited. The second argument is a
value from an enumeration data type typedef enum {preorder,
postorder, endorder, leaf} VISIT; (defined in the <search.h>
header file), depending on whether this is the first, second or
third time that the node has been visited (during a depth-first,
left-to-right traversal of the tree), or whether the node is a
leaf. The third argument is the level of the node in the tree,
with the route being level zero.

The pointers to the key and the route of the tree should be
of type pointer-to-element, and cast to type
pointer-to-character. Similarly, although declared as type
pointer-to-character, the value returned should be cast into
type pointer-to-element.

Example

The following code reads in strings and stores structures
contining a pointer to each string and a count of its length. It
then walks the tree, printing out the stored strings and their
lengths in alphabetical order.

11nn10Nn

3-228 Library Functions

tsearch

#include <search.h>
#inciude <stdio.h>

struct node { /°pointers to these are stored in tree*/
char *string;
int length;
)i
char string_space[10000]; /| “space to store strings*/
struct node nodes[500); /*nodes to store*/
struct node ‘root = NULL ; /°this points to the root*/
main()

{
char 'strptr = string_space;
struct node °nodeptr = nodes;
void print_node(). twalk();
int i = 0, node_compare();

while (gets(strptr) le NULL && i++ < 500) f{
/*set node*/
nodeptr->string = strptr;
nodeptr->length = strien(strptr);
/*put node into the tree*/
(void) tsearch((char ‘)nodeptr, &root,
node_compare) ;
[*adjust pointers, so we don’'t overwrite tree*/
Strptr +e= nodeptr->length + 1;
nodeptr++;

}
twalk(root, print_node) ;
}
IE
This routine compares two nodes, based on an
alphabetical ordering of the string field.
i
int

node_compare(nodet, node2)
struct node *nodel, node2:

return s(rcmp(node1->strlng. node2->string);

}

/®
This routine prints out a node, the tirst time
twalk encounters ijt.

°!

void

print_node(node, order, level)
struct node *‘node:
VISIT order;
int level;
{
it (order == preorder order =« leaf) {
(vold)print'('string = %20s, tength = %d\n-",
('node)->string, ('node)~>length);

Library Functions 3-229

tsearch

Diagnostics

A NULL pointer is returned by tsearch if there is not enough
space available to create a new node.

A NULL pointer is returned by tsearch, tfind, and tdelete if rootp
is NULL on entry.

If the datum is found, both tsearch and tfind return a pointer to
it If not, tfind returns NULL, and tsearch returns a pointer to
the inserted item.

Cautions

The root argument to twalk is one level of indirection less
than the rootp arguments to tsearch and tdelete.

There are two nomenclatures used to refer to the order in
which tree nodes are visited. tsearch uses preorder,
postorder, and endorder to respectively refer to visiting a
node before any of its children, after its left child and before
its right, and after both its children. The alternate
nomenclature uses preorder, inorder, and postorder to refer
to the same visits, which could result in some confusion over
the meaning of postorder.

Known Problems

If the calling function alters the pointer to the root, results are
unpredictable.

See Also

bsearch, hsearch, Isearch.

1192192

3-230 Library Functions

ttyname

Name

ttyname, isatty - find name of a terminal

Format
char °“ttyname (fildes)
int fildes;

int isatty (fildes)
int fildes;

Description

The ttyname function returns a pointer to a string containing
the null-terminated path name of the terminal device
associated with file descriptor fildes.

isatty returns 1 if fildes is associated with a terminal device, O
otherwise.

Files
/dev?*

Diagnostics

ttyname returns a NULL pointer if fildes does not describe a
terminal device in directory /dev.

Known Problems

The return value points to static data whose content is
overwritten by each call.

Library Functions 3-231

ttyslot

Name

ttyslot - find the slot in the utmp file of the current user

Format

int ttysiot ()

Description

The ttyslot function returns the index of the current user’s
entry in the /etc/utmp file. This is accomplished by actually
scanning the file /etc/utmp for the name of the terminal
associated with the standard input, the standard output, or
the error output (0, 1, or 2).

Files
Jetc/utmp

Diagnostics

A value of O is returned if an error was encountered while
searching for the terminal name or if none of the above file
descriptors is associated with a terminal device.

See Also

getut, ttyname.

1192192

3-232 Library Functions

ungetc

Name

ungetc - push character back into input stream

Format

#include <stdio.h>

int ungetc (c, stream)
int c;
FILE *stream;

Description

The ungetc function inserts the character ¢ into the buffer
associated with an input stream. The character ¢ will be
returned by the next gete call on that stream. ungetc returns c,
and leaves the file stream unchanged.

One character of pushback is guaranteed, provided
something has already been read from the stream and the
stream is actually buffered. In the case that stream is stdin,
one character may be pushed back onto the buffer without a
previous read statement.

If c equals EOF, ungete does nothing to the buffer and returns EOF.
The fseek function erases all memory of inserted characters.

Diagnostics

ungete returns EOF if it cannot insert the character.

See Also

fseek, getc, setbuf.

Library Functions 3-233

vprintf

Name

vprintf, viprintf, vsprintf - print formatted output of a varargs
argument list

Format

#include <stdio.h>
#include <varargs.h>

int vprintt (format, ap)
char *format;
va_\Llist ap;

int viprintt (stream, format, ap)
FILE *“stream;

char *format;

va_list ap;

int vsprintt (s, format, ap)
char *s, *format;
va_Jlist ap;

Description

vprintf, viprintf, and vsprintf are the same as printf, fprintf, and
sprintf, except that instead of being called with a variable
number of arguments, they are called with an argument list
defined by varargs (see Section 5).

1192192

3-234 Library Functions

vprintf

Example

The following demonstrates how vprintf could be used to
write an error routine.

#inciude <stdio.h>
#incltude <varargs.h>

error should be called Ilike

M error(function_name, format, argtl, arg2...);
)

/ *VARARGSO0*/

void

error(va_aflist)
/*Note that the function_name and format arguments cannot be
* separately declared because of the definition ot

°

varargs.
“
va_dc¢!
{
va_list args;

char *fmt;

va_start(args);

/*print out name of function causing error*/

(void)ftprintf(stderr, "ERROR in %s: ",
va_args(args, char *));

fmt = va_arg(args, char)

/*print out remainder of message*/

(void)viprintf(tmt, args);

va_end(args);

(void)abort();

See Also

printf; varargs in Section 5.

Library Functions 3-235

wmgetid

wmgetid - get window D

Format

#include <oa/wm. h>

int wnmgetid (fildes):.
int fildes:

Description

The wmgetid function returns the window ID associated with
the file descriptor fildes. A window ID is a positive integer
that identifies the window associated with the file descriptor.
The ID is passed to other window management library
functions to identify the particular window being acted upon.
The only way to get a valid window ID is from a window
management library call; do not use a value obtained in any
other way.

To get all the window IDs for a terminal, use the layout
structure written by wmlayout or wmop. To associate a file
descriptor with a different window, use wmsetid.

wmgetid fails if one or more of the following are true:
Fildes is not an open file descriptor. [EBADF]

The indicated file does not represent a terminal, or the
terminal cannot support window
management. [ENOTTY]

The window manager is not running on the
terminal. [ENOENT]

1192192

3-236 Library Functions

wmgetid

Files

/dev/tty
/usr/lib/libwm.a - window management library

Diagnostics

If successful, wmgetid returns the window ID associated with
fildes. Otherwise, -1 is returned and ermo is set to indicate
the error.

See Also

wm in Section 1; wmop, wmlayout, wmsetid.

Library Functions 3-237

wmlayout

Name

wmlayout - get terminal’s window layout

Format
#include <oa/wm.h>
int wniayout (fildes, layout)
int fildes;
struct wm_layout ‘layout;

Description

The wmlayout function fetches a description of the screen
layout of a terminal under window management. Fildes is a
file descriptor associated with the terminal’s special file by a
creat, dup, fentl, or open system call; the association of fildes
with a particular window is not used. Layout points to an
area that is to receive the description. Before calling wmlayout,
a program must set /ayout->maxwcount to indicate the
number of window descriptions the area can accommodate;
the constant WM_MAX gives the number of windows
currently permitted. The description consists of the following
data structures:

struct wm_layout {

int cwindowid;
short maxwcount;
short wcount:

struct wm_layoutw{WM_MAX]

}:

struct wm_wlayout

int windowid;
short pwindowid.
short startrow;
short startcolumn;
short drows;

short dcoiumns;
short syncrow;
short synccolumn;
short VIows;

short vcolumns
short crow;

short ccolumn;
char reserved[6]: /*must be 0°/

}

1192192

3-238 Library Functions

wmlayout

Here are the meanings of the fields in a wm_/ayout structure:

cwindowid The window ID of the active window.

maxwcount Number of window descriptions this structure has room for.
Normally set to WM_MAX so as to get all of them.

weount Number of windows currently on terminal.

w Array of individual window descriptions.

Here are the meanings of the fields in a wm_wi/ayout structure:

windowid The window ID.

pwindowid The physical window ID. Meant only for window management
internal use.

startrow Starting physical row of the window {the tag line is on the row before).

startcolumn Starting physical column of the window. Currently this value is
always 1.

drows The number of displayed rows in the window. Note that the tag
line is not counted in this value.

deolumns The number of displayed columns in the window. Currently this
value is always 80.

syncrow ~ Virtual display row that corresponds to the first row of the window.

synccolumn Virtual display column that corresponds to the first column of the
window. Currently this value is always 1.

vrows Number of rows in virtual display.

veolumns Number of columns in virtual display. Currently this value is
always 80.

crow The current cursor row number.

ccolumn The current cursor column number.

reserved . Always zeros.

Rows and columns are numbered from 1.

Library Functions 3-239

wmlayout

A window ID is a positive integer that identifies the window
associated with the file descriptor. The ID is passed to other
window management library functions to identify the
particular window being acted upon. The only way to get a
valid window ID is from a window management library call;
do not use a value obtained any other way.

Currently, physical windows always start in column zero and
physical windows and virtual displays are always 80 columns
wide.

wmlayout will fail if one or more of the following are true:
Fildes is not an open file descriptor. [EBADF]

The indicated file does not represent a terminal, or the
terminal cannot support window
management. [ENOTTY]

The structure pointed to by windowreq is
invalid. [EINVAL]

The window manager is not running on the
terminal. [ENOENT]

Files

Jusr/lib/libwm.a - window management library
/dev/tty*

Diagnostics

wmlayout returns O if successful; otherwise, the function
returns -1 and sets errno to indicate the error.

See Also

wm in Section 1; wmgetid, wmsetid, wmop.

1192192

3-240

Library Functions

wmop

Name

wmop - window management operations

Format

#include <oa/wm.h>

int wmop
int fildes;
struct wm_request
struct wm_layout

Description

(fildes,

windowreq,

‘windowreq;
‘layout;

wmop manipulates windows on a terminal under window
management. It is normally used by application programs.
Fildes is a file descriptor associated with the terminal’s
special file by a creat, dup, fctntl, or open system call.; the
association of fildes with a particular window is not used.
Windowreg is a pointer to a structure that describes the
operation. Layout is an optional pointer to a layout structure
of the type used by wmlayout; if present, the structure is filled

with the new description of the window.
The request structure is defined as follows:

struct wm_request {

int request;
int windowid;
int (*notify)()

short startrow;
short startcolumn;
short drows;

short dcolumns;
short syncrow;
short synccolumn;
short vrows;

short vcolumns;
short crow;

short ccolumn;

Library Functions 3-241

wmop

Only two fields in the request structure are used by all
operations:

o Request specifies the operations desired. See the operation
constants, described below.

o Windowid specifies a window, usually with a window 1D
returned by a previous wmop, wmlayout, or wmgetid. The only
way to get a valid window ID is from a window
management library call; do not use a value obtained any
other way. If the operations do not include WM_CREATE
(create a new window), windowid is a window ID that
specifies the single window to which the operations apply.
If the operations do include WM_CREATE, windowid must
be either a window ID, indicating the window that yields
space for the new window, or O, a value with special
meanings described under WM_CREATE and WM_START;
the other operations apply to the new window.

WM_CREATE Create a new window. Other operations describe the new
window's characteristics; if no other operations are specified
with WM_CREATE, the new window has the following
characteristics:

The new window occupies the bottom half of the
window specified by windowid. If windowid is O, the
new window occupies the bottom half of the active
window.

The new window's virtual display is 29 lines long.

The cursor is on the first line of the new window’s
virtual display, which is also the first line of the new
window.

The user is permitted to split the new window only if
the old window permitted user splits. See WM_SPLIT.

WM_DESTROY Destroy the window. If the window is the top window, the
destroyed window's rows go to the window below;
otherwise the destroyed window's rows go to the window
above. If the destroyed window was the active window, the
window that gets the destroyed window's rows is activated.

1192192

3-242

Library Functions

wmpo
WM_DSIZE

WM_DRSIZE

WM_DSTART

WM_DRSTART

WM_VSIZE

Change the window size. The operation can be modified by
WM_DRSIZE; this description assumes it is not. The
window size, which does not include the window's tag line,
can vary from 0 to 26. Drows specifies the new window size.

If WM_DSIZE is specified with WM_CREATE, drows
specifies the new window's size.

Modifies WM_DSIZE so the drows specifies an offset
relative to the current value, rather than an absolute size.
Drows can be negative.

If WM_DSIZE and WM_DRSIZE are specified with
WM_CREATE, drows specifies the new window's size
relative to the size of the old window. Thus, in this case,
drows must be negative.

Set the starting row of the window {not the tag line, which
is automatically on the row before). This operation may be
modified by WM_DRSTART; this description assumes it is
not. Rows are numbered from 1, and a window can start
on any row from 2 to 28. Startrow specifies the new
starting row.

If WM_DSTART is specified with WM_CREATE and
windowid is 0, startrow specifies the new window's
starting position on the screen, without reference to an
existing window.

Modifies WM_DSTART so the startrow specifies an offset
relative to the current value, rather than an absolute
starting row. Startrow can be negative.

It WM_DSTART and WM_DRSTART are specified with
WM_CREATE, startrow must be non-negative; the new
window starts startrow rows after the start of the old
window. If startrow is 0, the new window takes the top
portion of the old window's rows instead of the bottom. If
startrow is positive, WM_DSIZE is ineffective: the size of
the new window is dictated by the size of the old.

Set the virtual window size to vrows long. The operations
can be modified by WM_VRSIZE. In any case, the virtual
display must be 1 to 28 rows long.

It the virtual display is shortened past the cursor, the cursor
must be moved to within the new virtual display end. If the
WM_CURSOR operation is not specified at the same time,
the terminal moves the cursor to the new last line of the
virtual display.

Library Functions

3-243

wmop
WM_VRSIZE

WM_VSTART

WM_VRSTART
WM_SELECT

WM_DESELECT

WM_CURSOR
WM_SPLIT

WM_NSPLIT

WM_NOTIFY

Modifies WM_VSIZE so that vrows is an offset to the
present value. Vrows can be negative.

Synchronize the window and its virtual display by making
virtual display row syncrow (numbered from 1) the first row
on the window. This operation can be modified by
WM_VRSTART. The window manager will modify a
WM_VSTART operation as necessary to keep the window
from extending past the bottom of the virtual display. If the
cursor is visible, the terminal software will modify a
WM_VSTART operation as necessary to keep the cursor in
the window.

Modify WM_VSTART so that syncrow is an offset to the
present value. Syncrow can be negative.

Make the window the active window.

If the window is the active window, make another window
the active window: if the designated window is the top
window, the window below; otherwise, the window above.

Position the cursor on row crow.

Enable change of splitting permission. Used in conjunction
with WM_NSPLIT. if WM_SPLIT is specified alone, the
user can split the window as long as the terminal can
handle another window. If WM_SPLIT and WM_NSPLIT are
specified together, the SPLIT key is ineffective when the
window is active.

Disable window split. Always used in conjunction with
WM_SPLIT.

Notify is a notify procedure. Set notify to (int(*)())0 to
disable an existing notify procedure. The calling process will
be interrupted and notify will be called if any other process
or the user changes the status of the window. Window
status includes window size, location, and whether it is
active; it does not include cursor location.

Currently, all windows and displays must begin in column O
and be 80 columns wide.

1192192

3-244 Library Functions

wmop

wmop fails if one or more of the following are true:
Fildes is not an open file descriptor. [EBADF]

The indicated file does not represent a terminal, or the
terminal cannot support window
management. [ENOTTY]

The structure pointed to by windowregq is
invalid. [EINVAL]

The window manager is not running on the
terminal. [ENOENT)]

Files

/dev/tty*
/usr/lib/libwm.a - window management library

Diagnostics

If the operations were successful, the window ID of the
affected window (the new window if one was created) is

returned. Otherwise, -1 is returned and errno is set to indicate
the error.

Cautions

Use wmop conservatively and with extreme care.
Indescriminate use by programs competing for window
space can result in race conditions and screen image
instability.

The window manager and terminal software silently enforce
basic consistency. A program must not make assumptions
about what the window looks like after a successful wmop;
instead, it must examine the new wmlayout structure to find
out what actually happened.

See Also

wmgetid, wmlayout, wmsetid, ferror to get file descriptor for
terminal accessed with standard 1/0 package.

Library Functions 3-245

wmsetid

wmsetid, wmsetids - associate a file descriptor with a window

Format

#include <oa/wm.h>

int wnsetid (fildes, windowid)
int windowid:
int fildes,;

int wnsetids (fildes, windowid)
int windowid;
int fildes,;

Description

The wmsetid and wmsetids functions change the window with
which a file descriptor is associated. Fildes must be a file
descriptor open to a terminal on which the window manager
is running. Fildes becomes associated with the window (on
the same terminal) indicated by windowid, which must be a
window ID obtained from a previous wmgetid, wmlayout, or
wmop call.

If a program performs a wmsetid on an inherited file
descriptor, all processes that have inherited and use the
same file descriptor and the process they inherited it from
are affected. By convention, O {equivalent to fileno(stdin)), 1
(equivalent to (fileno(stdout)), and 2 {equivalent to
fileno(stderr)) are inherited file descriptors. The following
code closes and reopens them so that a wmsetid on them
doesn't affect other processes. It should be executed before
terminal input/output begins:

tty=ttyname (0).
close(0):
close(1);
open(tty, O_RDWR);
close(2).

dup(0):

dup(0);

1192192

3-246 Library Functions

wmsetid

Be sure to complete buffered terminal output before
switching windows. See felose if you use the standard
input/output package.

wmsetid and wmsetids are different only when executed by a
process group leader. If the process group leader calls
wmsetids and the specified window is not already a controlling
window for another process group, the specified window
becomes the process group’s controlling window. (For more
details on control windows, see termio and window, both in
Section 6). wmsetid never changes the controlling window
under any circumstances.

wmsetid and wmsetids fail if one or more of the following are true:
Fildes is not an open file descriptor. [EBADF]

The indicated file does not represent a terminal, or the
terminal cannot support window
management. [ENOTTY]

The structure pointed to by windowreq is
invalid. [EINVAL]

The window manager is not running on the
terminal. [ENOENT)]

Files
Jdev/tty*®

/usr/lib/libwm.a - window management library

Diagnostics

A non-negative value indicates success: O if the file
descriptor wasn't associated with a window before the call,
the old window otherwise. On error, -1 is returned and erro
is set.

See Also

wm in Section 1; wmop, wmlayout, wmgetid, ferror.

Index-1

Permuted Index

This index includes entries for all pages of all four volumes of
this guide. The entries themselves are based on the one-line
descriptions or titles found in the Name portion of each
manual entry; the significant words (keywords) of these
descriptions are listed alphabetically down the center of the
index.

The permuted index is a keyword-in-context index that has
three columns. To use the index, read the center column to
look up specific commands by name or by subject topics.
Note that the entry may begin in the left column or wrap
around and continue into the left column. A period (.) marks
the end of the entry, and a slash (/) indicates where the entry
is continued or truncated. The right column gives the manual
entry under which the command or subject is described;
following each manual entry name is the section number, in

parentheses, in which that entry can be found.

/ltol3: convert between 3-byte integers and 13tol(3)
long/

comparison. diff3: 3-way differential file diff3(1)

between long integer/ ab4l, 164a: convert a641(3)

/abtain and A abandon exchanges. exchanges(2)

fault, abort: generate an 10T abort(3)

absolute value. abs: return integer abs(3)

adh: absolute debugger adh(1)

abs: return integer absolute value. abs(3)

ceiling, remainder, absolute value/ /floor, floor(3)

allow/prevent LP/ accept, reject: accept(1)

times of/ touch: update access and modification touch(1)

times. utime: set file access and modification utime(2)

/ofCloseAllFiles: Access BTOS files ofopenfile(3)

accessibility of a/ access: determine access(2)

in a/ sputl, sgetl: access long integer data sputi(3)

1182182

Index-2

sadp: disk

common object file

file systems for optimal
locking: exclusive
/endutent, utmpname:
access: determine

or disable process
/manipulate connect
process accounting.
sin, cos, tan, asin,
killall: kiil all

sag: system

sal, sa2, sadc: system
File Processor system
sar: system

SCCS file editing

process data and system

BTOS queue. quAdd:
putenv: change or
administer SCCS fifes.
admin: create and
alarm: set a process

alarm clock.

access profiler.

access routines. Idfcn:
access time. /copy
access to regions of a/
access utmp file entry.
accessibility of a file.
accounting. /enable
accounting records.
acct: enable or disable
acos, atan, atan2:/
active processes.
activity graph.

activity report package.
activity reporter.
activity reporter.
activity. /print current
activity. /report

adb: absolute debugger
add a new entry to a
add value to/

admin: create and
administer SCCS files.
alarm clock.

alarm: set a process

sadp(1)
Idfcn(4)
deopy(1)
locking(2)
getut(3)
access(2)
acet(2)
fwtmp(1)
acct(2)
trig(3)
killall(1)
sag(1)
sar{1)
fpsar(1)
sar(1) -
sact(1)
timex(1)
adb(1)
quadd(3)
putenv(3)
admin(1)
admin(1)
alarm(2)

alarm(2)

Index-3

for sendmail.
sendmail. aliases:
/ofDelete:

data segment space
calloc: main memory

fast main memory

accept, reject:

bre, bcheckre, rc,
ruaning process,/ renice:
sort: sort

and link editor output.
Processor number.
number. apnum; print
console: control

/a process on a specific
/a process on a specific
/to commands and
code. exServeRq;
maintainer for portable/
format.

arithmetic/ bc:
maintainer for/ ar:

cpio: format of cpio

ar; common

1192192

aliases: atiases file
aliases file for
allocate BTOS files.
allocation. /change
allocator. /realloc,

allocator. /mallinfo:

allow/prevent LP/

allrc, conrc: system/
alter priority of

and/or merge files.
a.out: common assembler
apnum: print Application
Application Processor
Application Processor/
Application Pracessor.
Application Processor.
application programs.
appropriate a request
ar; archive and library
ar: common archive file
arbitrary-precision
archive and library
archive

archive file format.

aliases(5)
aliases(5)
ofcreate(3)
brk(2)
malloc(3)

malloc(3) (fast
version)

accept(1)
bre(1)
renice(1)
sort(1)
a.out(4)
apnum(1)
apnum(1)
console(1)
spawn(1)
spawn(3)
intro(1)
exserverq(2)
ar(1)

ar(4)

be(1)

ar(1)
cpio(4)
ar(4)

Index-4

header of a member of an
/convert object and
Idahread: read the

tar: tape file
maintainer for portable
cpio: copy file

varargs: handle variable
/output of a varargs
xargs: construct

/get option letter from
expr: evaluate

echo: echo

bc: arbitrary-precision

expr: evaluate arguments

ascii: map of

hd: hexadecimal and
character set.

long integer and base-64
atof: convert

date/ /localtime,
gmtime,

sin, cos, tan,

help:

archive file. /archive
archive files to.common/
archive header of a/
archiver.

archives. /and library
archives in and out.
argument list.
argument list.
argument list(s) and/
argument vector.
arguments as an/
arguments.

arithmetic language.

as an expression.

as: assembler.

ASCII character set.
ascii file dump.

ascii: map of ASCII
ASCIl string. /between
ASCHl string to/

asctime, tzset: convert

asin, acos, atan, atan2:/

ask for help.

Idahread(3)
convert(1)
Idahread(3)
tar(1)
ar(1)
cpio(1)
varargs(5)
vprintf(3)
xargs(1)
getopt(3)
expr(1)
echo(1)
be(1)
expr(1)
as(1)
ascii(5)
hd(1)
ascii(5)
ab41(3)
atof(3)
ctime(3)

trig(3)
help(1)

Index-5

editor/ a.out: common
as:

assertion.

assert: verify program
setbuf, setvbuf:
wmsetid, wmsetids:
commands at a later/
cos, tan, asin, acos,
tan, asin, acos, atan,
string to/

strtod,

integer. strtol, atol,
string to/ strtol,
process. wait:

and processing/
request. quRemove: take
ungetc: push character
finc: fast incremental

recover files from a
modem capability data

terminal capability data

terminal capability data

1192192

assembler and link
assembler.

assert: verify program
assertion.

assign buffering to a/
associate a file/

at, batch: execute
atan, atan2: sin,
atan2: trigonometric/
atof: convert ASCHI
atof: convert string to/
atoi: convert string to
atol, atoi: convert
await completion of
awk: pattern scanning
back a BTOS queue
back into input stream.
backup.

backup tape. frec:
banner: make posters.
base. modemcap: smart
base. termcap:

base. terminfo:

a.out(4)
as(1)
assert(3)
assert(3)
setbuf(3)
wmsetid(3)
at(1)
trig(3)
trig(3)
atof(3)
strtod(3)
strtol(3)
strtol(3)
wait(1)
awk(1)
quremove(3)
ungetc(3)
finc(1)
frec(1)
banner(1)
modemcap(5)
termcap(d)

terminfo(4)

Index-6

between long integer and
(visual) display editor
portions of path names.

at a later time. at,
arithmetic language.
system intialization/ brc,

copy.

cb: C program

i0. i1, in, ¥, y1, yn:

/install object files in
fread, fwrite:

bsearch:

tfind, tdelete, twalk:
manage

bcopy: interactive
sum: print checksum and
sync: update the super

df: report number of free
disk

conrc: system
initialization/

spare allocation.

base-64 ASCIl string.
/convert

based on ex.
/screen-oriented

basename, dirname:
deliver

batch: execute commands
be: arbitrary-precision
beheckre, rc, allre, conrc:

beopy: interactive block
copy.

bdiff: big diff.
beautifier.

Bessel functions.
bfs: big file scanner.
binary directories.
binary input/output.

binary search a sorted
table.

binary search trees,
tsearch,

block copy.

block count of a file
block.

blocks.

bre, beheckre, rc, allrc,

brk, sbrk: change data
segment

a641(3)
vi(1)
basename(1)

at(1)
be(1)
bre(1)
beopy(1)

bdiff(1)
cb(1)
bessel(3)
bis(1)
cpset(1)
fread(3)
bsearch(3)

tsearch(3)

beopy(1)
sum(1)
sync(1)
df(1)

bre(1)

brk(2)

Index-7

compiler/interp
reter/

sorted table

/ofDIDir,
ofReadDirSector:

ofWrite: Input/output on a
ofRename: rename a
ofSetFileStatus:

ofcopy: copy to or from the
directories. ofls: list
/ofDelete: Allocate

ofed, ofvi: edit
ofCloseAllFiles: Access

interpreter for interactive

CENTIX kerne! and copy
it to

quAdd: add a new entry
toa

quReadKeyed: examine

quRemove: take back a

stdio; standard

setbuf, setvbuf: assign
mknod:

swapshort, swaplong:
translate

swab: swap

1192192

bs: a

bsearch: binary search a

BTOS directory functions.

BTOS file. ofRead,
BTOS file.

BTOS File Status.

BTOS file system.
BTOS files and

BTOS files.

BTOS files.

BTOS files. /ofCloseFile.

BTOS JCL. ofcli:
command line

BTOS. mkboot: reformat
BTOS queue.

BTOS queue.
quReadNext.

BTOS queue request.

buffered input/output
package.

buffering to a stream
build special file.

byte orders to
Motorola/Intel.

bytes.

bs{1)

hsearch(3)
ofdir(3)

ofread(3)
ofrename(3)
of status(3)
ofcopy(1)
ofis(1)
ofcreate(3)
ofeditors{1)
ofopenfile(3)
ofcli(1)

mkboot{1)
quadd(3)
quread(3)

quremove(3)
stdio(3)

setbuf(3)
mknod(1)
swapshort(3)

swah(3)

Index-8

cc:
cflow: generate
cpp: the

cb:

lint: 3

cxref: generate

ctrace:

dc: desk
cal:print
service.

cu:

data returned by stat
system

malloc, free, realloc,

fast/ malloc, free,
realloc,

intro; introduction to
system

link and unlink system
to an LP line printer. Ip,.

modemcap: smart modem
termcap: terminal

terinfo: terminal

disks. dsk: winchester,

{variant of ex for

C compiler,

C flowgraph.

C language preprocessor.
C program beautiﬁer.‘

C program checker.

C program cross
reference.

C program debugger.
cal: print calendar.
calculator.

calendar. ‘
calendar: reminder

call another computer
system.

call. stat:

calloc: main memory
allocator.

calloc, mallopt, mallinfo:
calls and error number.

calls. link, unlink:
exercise

cancel: send/cancel
requests

capabililty data base.
capability data base.
capability data base.
cartridge, and floppy

casual users). /editor

cc(1)
cflow(1)
cpp(1)
ch(1)
lint(1)

cxref(1)

ctrace(1)
cal(1)
de(1)
cal(1)
calendar(1)
cu(1)

stat(5)
malloc(3)
malloc(3) (fast
version}
intro(2)

link(1)

Ip(1)

modemcap(5)
termcap(4)
terminfo(4)
dsk(6)

edit(1)

Index-9

files.

beautifier.

directory.

commentary of an SCCS
delta.

ceiling, remainder,/ floor,

/ceil, fmod, fabs: floor,
BTOS. mkboot: reformat
uuname: CENTIX system
to

uucp, uulog, uuname:

print name of current

get name of current

command execution. uux:

uuto, uupick: public

flowgraph.

delta; make 2 deita

of running process by

pipe: create an
interprocess

terminal’s local RS-232

stream. ungetc: push

1192192

cat: concatenate and
print

cb: C program
cc: C compiler.
cd: change working

cdc: change the delta

ceil, fmod, fabs: floor,

ceiling, remainder,
absolute/

CENTIX kernel and copy
it to

CENTIX system copy.

CENTIX system to
CENTIX/

CENTIX system. uname:
CENTIX system. uname:

CENTIX-to-CENTIX
system

CENTIX-to-CENTIX
system file/

cflow: generate C

{change) to an SCCS
file.

changing nice. /priority

channel.

channels. tp: controlling

character back inte input

cat(1)

ch(1)
cc(1)
cd(1)
cde(1)

floor(3)
floor(3)

mkboot(1)
uucp(t)
uucp(1)

uname(1)
uname(2)

uux(1)
uuto{1)

cflow(1)
delta(1)

renice(1)

pipe(2)

tp(6)
ungetc(3)

Index-10

user. cuserid: get

getchar, fgetc, getw: get

/putchar, fputc, putw:
put

ascii: map of ASCH

—tolower, toascii:
translate

isentrl, isascii: classify

tr: translate
directory.

/dfsck: file system
consistency

lint: a C program

grpek: password,/group
file

copy file systems with
label

systems processed by
fsck.
file. sum: print

chown,

times: ‘get process and

terminate. wait: wait for

file.

character login name of
the

character or word from a/

character or word on a
stream.

character set.

characters. /._toupper,

characters. /isprint,
isgraph,

characters.
chdir: change working

check and interactive
repair.

checker.

checkers. pwck,

checking. volcopy, labelit:

checklist: list of file

checksum and black
count of a

chgrp: change owner or
group

child process times.
child process to stop or
chmod: change mode.

chmod: change mode of
file.

cuserid(3)

getc(3)
putc(3)

ascii(5)

conv(3)
ctype(3)

tr{1)
chdir(2)
fsck(1)

iintﬂ)
pwek(1)

volcopy(1)
checklist(4)
sum(1)
chown(1)

times(2)
wait(2)
chmod(1)
chmod(2)

Index-11

of a file.

group.

directory.

for a command.
isgraph, isentrl, isascii:

uuclean: uucp spool
directory

screen.
clri:

clear:

status./ ferror, feof,

exRespond: send a
message to a

set a process alarm
cron:

used.

Idclose, ldaclose:

close:
descriptor.

fclose, fflush:

appropriate a request
line-feeds.
deltas.

comb:

1192192

chown: change owner
and group

chown, chgrp: change
owner or

chroot: change root

chroot: change root
directory

classify characters.
/isprint,

clean-up.

clear: clear terminal
clear i-node.

clear terminal screen.
clearerr, fileno: stream

client.

clock. alarm:
clock daemon.

clock: report CPU time
used.

close a common object
file.

close a file descriptor.

close: close a file

close or flush a stream.

clri: clear i-node.

cmp: compare two files.

code. exServeRq:
col: filter reverse
comb:. combine SCCS
tombine SCCS deltas.

chown(2)
chown(1)

chroot(2)
chroot(1)

ctype(3)
uuclean(1)

clear(1)
clri(1)
clear(1)
ferror(3)

exrespond(2)

alarm(2)
cron(1)
clock(3)

Idclose(3)

close(2)
close(2)
fclose(3)
chri{1)
emp(1)
exserverq(2)
col(1)
comb(1)
comb(1)

Index-12

common to two sorted
files.

nice: run a

change root directory for a
env: set environment for
uux: remote system

quits. nohup: run a

interactive BTOS JCL.
ofcli:

getyopt: parse
locate executable file for

shell, the standard/
restricted

data and/ timex: time a
system: issue a shell
test: condition evaluation
time: time a

argument list{s) and
execute

intro: introduction to

at, batch: execute
install: install

cde: change the delta

ar.

comm: select or reject
lines

command at low priority.
command. chroot;
command execution.
command execution.

command immune to
hangups and

command line interpreter
for

command options.
command. path:

command programming
language.

command; report process
command.
command.
command.

command. xargs:
construct

commands and
applicaton/

commands at a later/
commands.

commentary of an SCCS
delta.

common archive file
format.

comm(1)

nice(1)
chroot(1}
env(1)
uux{1)

nohup(1)
ofcli(1)

getopt{1)
path(1)
sh(1)

timex(1)
system(3)
test{1)
time(1)
xargs{1)

intro{1)

at(1)
install(1)
cde(1)

ar(4)

Index-13

editor output. a.out:

and archive files to

routines. ldfcn:

\dopen, Idaopen: open a

/line number entries of a

/\daclose: close a

read the file header of a
entries of a section of a
file header of a

/entries of a section of a
/section header of a

an indexed/name section
of a

of a symbol table entry
of a

symboi table entry of a

seek to the symbol table
of a

line number entries in a

nm; print name list of

relocation information for
a

scnhdr: section header
for a

asannann

common assembler and
link

common formats. /object

common object file
access

common object file for/

common object file
function.

common object file.

common object file.
Idfhread:

common object file.
/number

common object fite.
/seek to

common object file.
common object file.

common object file.
/seek to

common object file. /the
index

common object file.
/Jindexed

common object file.
Idtbseek:

common object file.
linenum:

common object file.

common object file.
reloc:

common object file.

a.out(d)

convert(1)
\dfen(4)

ldopen(3)
Idiread(3)

Idclose(3)
Idfhread(3)

Idiseek(3)
Idohseek(3)}

Idrseek(3)
Idshread(3)
{dsseek(3)

idthindex(3)
Idtbread(3)
Idthseek(3)
linenum(4)

am(1)
reloc(d)

scnhdr(4)

Index-14

line number information
from a

retrieve symbol name for
table format. syms:

filehdr: file header for
Id: link editor for
size: print section sizes of

comm: select or reject
lines

ipes: report inter-process

stdipc: standard
interprocess

diff: differential file
cmp:
SCCS file. sccsdiff:

diff3: 3-way differential
file

dircmp: directory

expression. regcmp,
regex:

regexp: regular
expression

regemp: regular
expression

term; format of
cc. C
tic: terminfo

yacc: yet another

common object file. /and

common object file
symbol/

common object file
symbol

common object files.
common object files.
common object files.

common te two sorted
files.

communication facilities/

communication package
(ftok).

comparator.
compare two files.

compare two versions of
an

comparison.

comparison.

compile and execute
regular

compile and match
routines.

compile.

compiled term file.
compiler.
compiler.

compiler-compiler.

strip(1)
Idgetname(3)
syms(4)

filehdr(4)
1d(1)
size(1)

comm(1)

ipes(1)
stdipc(3)

diff(1)
cmp(1)
scesdiff(1)

diff3(1)

dircmp(1)
regemp(3)

regexp(5)
regemp(1)

term{4)
ce(1)
tic(1)
yace(1)

Index-15

modest-sized/
bs: a

erf, erfc: error function and

wait: await

pack, pcat, unpack:

table entry of a/
|dthindex:

cu: call another

cat:
test:

system. Ipadmin:

fwtmp, wtmpfix:
manipulate

an out-going terminal
line

bre, beheckre, re, allre,

fsck, dfsck: file system
terminal.
Application Processor/
console:

math: math functions
and

mkfs:

execute command. xargs:

Is: list
csplit:

Processor/ console:

1192192

compiler/interpreter for

complementary error
function.

completion of process.

compress and expand
files.

compute the index of a
symbol

computer system.

concatenate and print
files.

condition evaluation
command.

configure the LP spooling

connect accounting
records.

connection. dial:
establish

conrc: system
initialization/

consistency check and/
console: console
console: control
console terminal.

constants.

construct a file system.

construct argument
list(s} and

contents of directory.
context split.

control Application

bs(1)
erf(3)

wait(1)
pack(1)

idthindex(3)

cu(1)
cat(1)

test(1)

Ipadmin(1)
fwtmp(1)

dial(3)
bre(1)

fsck(1)
console(6)
console(1)
console(6)
math(5)

mkis(1)
xargs(1)

1s(1)
esplit(1)

console(1)

Index-16

ioctl:
fentl: file

init, icode, telinit;
process

msgetl: message

semctl: semaphore
shmetl: shared memory
fentl: file

uucp status inquiry and job
ve: version

interface. tty:

RS-232 channels. tp:

terminals. term:
units:
dd:

floating-point number.
atof:

integers and/ 13tol, Itol3:

and base-64 ASCIl/
ab4l, 164a:

and archive files to/
/gmtime, asctime, tzset:

to string. ecvt, fovt, gevt

scanf, fscanf, sscanf:
archive files/ convert:

strtod, atof:

control device.
control.

control initialization.

control operations.
control operations
control operations.
control options.
control. uustat:
control.

controlling terminal

controlling terminal’s
local

conventional names for
conversion program.
convert and copy a file.

convert ASCII string to

convert between 3-byte

convert between fong
integer

convert: convert object
convert date and time to/

convert floating-point
nubmner

convert formatted input.
convert object and

convert string to/

ioctl(2)
fentl(2)
init(1)

msgeth(2)
semctl(2)
shmctl(2)
fentl(5)
uustat(1)
ve(1)
tty(6)
tp(6)

term(5)
units(1)
dd(1)
atof(3)

13tol(3)
ab4i(3)

convert(1)
ctime(3)

ecvt{3)

scanf(3)
convert(1)
strtod(3)

Index-17

strtol, atol, atoi:
dd: convert and
beopy: interactive block

cpio:
access time. dcopy:

checking,. volcopy,
labelit:

reformat CENTIX kernel
and

cp, In, mv:

system, ofcopy:

system to CENTIX
system

system-to-
computer system file

file.

core: format of
mem, kmem:

atan2: trigonometric/
sin,

functions. sinh,

sum: print checksum and
block

wc: word

files.

cpio: format of
and out.

archive.

1192192

convert string to integer.
copy a file

copy

copy file archives in and
out.

copy file systems for
optimal

copy file systems with
label

copy it to BTOS.
mkboot:

copy, link or move files.

copy to or from the
BTOS file

copy. /uuname: CENTIX

copy. /uupick: public
computer

core: format of core
image

core image file.
core memory.

¢cos, tan, asin, aces,
atan,

cosh, tanh: hyperbolic

count of a file.

count.

cp, In, mv: copy, link or
move

cpio archive.
cpio: copy file archives in

cpio: format of cpio

strtol(3)
dd(1)
beopy(1)
cpio(1)

deopy(1)
volcopy(1)
mkboot(1)

cp(1)
ofcopy(1)

uucp(1)
uuto(1)
core(4)

core(d)
mem(6)
trig(3)

sinh(3)

sum(1)

we(1)
cplt)

cpio(d)
cpio(1)
cpiold)

Index-18

preprocessor.
binary directories.
clock: report

rewrite an existing one.

file. tmpnam, tempnam:
an existing one. creat:

fork:
tmpfile:
channel. pipe:

files. admin:
(slice). crup:

umask: set and get file

file.
crontab___user

cxref: generate C
program

optimization package.
curses:

partition (slice).

generate DES encryption.

terminal.

for terminal.

asctime, tzset: convert
date/

cpp: the C language
cpset: install object files in
CPU time used.

creat: create a new file or

create a name for a
temporary

create a new file or
rewrite

create a new process.
create a temporary file.
create an interprocess

create and administer
SCCS

create file system
partition

creation mask.

cron: clock daemon.
crontab__user crontab
crontab file.

cross reference.
CRT screen handling and

crup: create file system
crypt, setkey, encrypt:
csplit: context split.

ct: spawn getty to a
remote

ctermid: generate file
name

ctime, localtime, gmtime,

cpp(1)
cpset(1)
clock(3)
creat(2)
tmpnam(3)

creat(2)

fork(2)
tmpfile(3)
pipe(2)
admin(1)

crup(1)

umask(2)
cron(1)
crontab(1)
crontab(1)
cxref(1)

curses(3)

crup(1)
crypt(3)
csplit(1)
ct(1)

ctermid(3)

ctime(3)

Index-19

debugger.

system.

uname: get name of
uname: get name of
activity. sact: print

slot in the utmp file of the

getcwd: get path-name of

and optimization package.

name of the user.
of each line of a file.

each line of a file. cut:

cross reference.

command; report process
smart modem capabililty

termcap: terminal
capability

terminfo: terminal
capability

/sgetl: access long
integer

lock process, text, or
prof: display profile

call, stat:

1192192

ctrace: C program

cu: call another computer
current CENTIX system
current CENTIX system
current SCCS file editing
current user. /find the

current working
directory.

curses: CRT screen
handling

cuserid: get character
login

cut: cut out selected
fields

cut out selected fields of

cxref: generate C
program

data and system/ /time a
data base. modemcap:

data base.
data base.

data in a
machine-independent

data in memory. plock:
data.

data are turned by stat
system

ctrace(1)
cu(1)
uname(2)
uname(2)
sact{1)
ttyslot(3)
getewd(3)

curses(3)
cuserid(3)
cut{1)

cut(1)
cxref(1)

timex({1)
modemcap(5)

termcap(4)
terminfo(4)
sputl(3)

plock(2)
prof(1)
stat(5)

Index-20

brk, sbrk: change

types: primitive system
join: relational

tput: query terminfo
/asctime, tzset: convert
date: print and set the
date.

optimal access time.

file.

adb: absolute
ctrace: C program
fsdh: file system
sdb: symbolic

names. basename,
dirname:

file. tail:

delta commentary of an
SCCS

file. deita: make a

delta. cdc: change the

rmdel: remove a
to an SCCS file.

comb; combine SCCS

cron: clock

data segment space
allocation.

data types.

database operator.
database.

date and time to string.
date.

date: print and set the
dc: desk calculator.

dcopy: copy file systems
for

dd: convert and copy a
debugger.
debugger.
debugger.
debugger.

deliver portions of path

deliver the last part of a

delta. cdc: change the

delta (change) to an
SCCS

delta commentary of an
ScCs

delta from an SCCS file.

delta: make a delta
(change)

deltas.

demon.

brk(2)

types(5)

" join(1)

tput(1)
ctime(3)
date(1)
date(1)
de(1)
deopy(1)

dd(1)
adh(1)
ctrace(1)
fsdb(1)
sdb(1)

basename(1)

tail(1)
cde(1)

delta(1)
cde(1)

rmdel{1)
delta(1)

comb(1)

cron(1)

Index-21

mesg: permit or
close: close a file
dup: duplicate an open file

/wmsetids: associate a
file

dc:

file. access:

file:

for finite width output
master: master

ioctl: control

devnm:

blocks.
check and interactive/
fsck,

terminal line connection.

bdiff: big
comparator.

comparison.

sdiff: side-by-side
diff:

diff3: 3-way
in large files and/ pilf,

directories.

1192192,

“deny. messages.

descriptor.
descriptor.

descriptor with a
window.

desk calculator.

determine accessibility of
a

determine file type.
device. /fold long lines
device information table.
device.

device name.

dvnm: device name.

df: report number of free
disk

dfsck: file system
consistency

dial: establish an
out-going

diff.
diff: differential file

diff3: 3-way differential
file

difference program.

differential file
comparator.

differential file
comparison.

dio: performance
improvement

dir: format of

mesg(1)
close(2)
dup(2)

wmsetid(3)

de(1)

access(2)

file(1)
fold(1)
master(4)
ioctl(2)
devnm(1)
devam(1)
df(1)

fsck(1)
dial(3)

bdiff(1)
diff(1)
diff3(1)

sdiff(1)
diff(1)

diff3(1)
pilf(5)

dir(4)

Index-22

comparison,

improvement in large
files and

instail object files in
binary

dir: format of

ofls: list BTOS files and
tm, rmdir: remove files or
cd: change working
chdir: change working
chroot: change root
uuclean: uucp spool
dircmp:

unlink: remove

chroot: change root

/make a lost + found

ofDIDir, ofReadDirSector:

8T0S

path-name of current
working

Is: list conients of
mkdir: make a
mvdir: move a
pwd: working

ordinary file. mknod:
make a

dircmp: directory

direct 1/0. /dio:
performance

directories. cpset:

directories.
directories.
directories.

directory.

directory.

directory.

directory clean-up.
directory comparison.

directory entry.

directory for a command.

directory for fsck.

directory functions.
of CrDir,

directory. getcwd: get

directory.
directory.
directory.
directory name.

directory, or a special or

dircmp(1)
pilf(5)

cpset(1)

dir(4)
ofis(1)
rm(1)
cd(1)
chdir(2)
chroot(2)
uuclean(1)
dircmp(1)
unlink(2)
chroot(1)
mklost + found(1)
ofdir(3)

getcwd(3)

Is(1)
mkdir(1)
mvdir(1)
pwd(1)
mknod(2)

Index-23

path names. basename,
printers. enable,
acct: enable or

type, modes, speed, and
line

sadp:

df: report number of free
update: provide

du: summarize

cartridge, and floppy

mount, umount: mount
and

vi: screen-oriented
(visual)

prof:
hypot: Euclidean

/lcong48: generate
uniformly

whodo: whe is
/atof: convert string to
tdl: RS-232 terminal

nrand48, mrand48,
jrand48,/

cartridge, and floppy/
usage.

an object file.

192192

dirname: deliver portions
of

disable: enable/disable
LP

disable process
accounting.

discipline. /set terminal

disk access profiler.
disk blocks.

disk synchronization.
disk usage.

disks. dsk: winchester,

dismount file system.

display editor based on ex.

display profile data.
distance function.

distributed
pseudo-random/

doing what.
double-precision number.
download.

drand48, erand48,
Irand48.

dsk: winchester,
du: summarize disk

dump: dump selected
parts of

basename(1)
enable(1)
acet(2)
getty(1)

sadp(1)
df(1)
update(1)
du(1)
dsk(6)

mount(1)
vi(1)

prof{1)
hypot(3)
drand48(3)

whodo(1)
strtod(3)
(1)
drand48(3)

dsk(6)
du{1)
dump(1)

Index-24

hd: hexadecimal and ascii
file

od: octal

object file. dump:
descriptor.
descriptor. dup:
echo:

floating-point number to/

program. end, etext,
ofed, ofvi:

ofed, ofvi:

{variant of ex for/

sact: print current SCCS
file

/lvisual) display
ed, red: text

ex: text

files. Id: link

common assembler and
link

sed: stream
for casual/ edit: text
/user, real group, and

and/ /getegid: get read
user,

split FORTRAN, ratfor, or

dump.

dump.

dump selected parts of an
dup: duplicate an open file
duplicate an open file
echo arguments.

echo: echo arguments.
ecvt, fovt, gevt: convert
ed, red: text editor.
edata: last locations in
edit BTOS files.

edit BTOS files.

edit: text editor

editing activity.

editor based on ex.
editor.

editor.

editor for common object

editor output. a.out:

editor.
editor (variant of ex
effective group IDs.

effective user, real
group,

efl files, fsplit:

hd(1)

od(1)
dump(1)
dup(2)
dup(2)
echo(1)
echo(1)
ecvt(3)
ed(1)
end(3)
ofed(1)
ofvi(1)
edit(1)
sact(1)

vi{1)
ed{1)
ex(1)
1d{1)
a.out(d)

sed{1)
edit(1)
getuid(2)
getuid(2)

fsplit(1)

Index-25

for a pattern. grep,

enable/disable LP
printers.

accounting. acct:

enable, disable:

encryption, crypt, setkey,

setkey, encrypt: generate
DES

locations in program.

getgrgid, getgrnam,
setgrent,

getpwuid, getpwnam,
setpwent,

utmp/ /pututline,
setutent,

nlist: get

file. linenum: line number

file/ /manipulate line
number

common,/ /seek to line
number

/ldnrseek: seek to
relocation

utmp,wtmp: utmp and
wtmp

fgetgrent: get group file

fgetwent: get password
file

1192192

egrep, fgrep: searchafile

enable, disable:

enable or disable process

enable/disable LP
printers

encrypt: generate DES
encryption. crypt,

end, etext, edata: last

endgrent, fgetgrent: get
group/

endpwent, fgetpwent:
get/

endutent, utmpname:
access

entries from name list.

entries in a common

object

entries of a common
object

entries of a section of a
entries of a section of a/-
entry formats.

entry. /setgrent,

endgrent,

entry. /setpwent,
endpwent,

grep(1)
enable(1)

acct(2)
enable(1)

crypt(3)
crypt(3)

end(3)
getgrent(3)

getpwent(3)
getut(3)

nlist(3)

linenum(4)
Idiread(3)
idiseek(3)
Idrseek(3)
utmp(4)
getgrent(3)

getpwent(3)

Index-26

utmpname: access utmp
file

object file symbol table

/the index of a symbol
table

/read an indexed symbol
table

putpwent: write
password file

quAdd: add a new
unlink: remove directory

command execution.

profile: setting up an

environ: user

execution. env: set

getenv: return value for

putenv: change or add
value to

.inteface, and terminal

mrand48, jrand48,/
drand48,

complementary error
function.

complementary error/
erf,

system error/ perror,

entry. /setutent,
endutent,

entry. /symbol name for
common

entry of a common
object file.

entry of a common
cbject file.

entry.

entry to a BTOS queue.
entry.
env: set environment for

environ: user
environment.

environment at login
time.

environment.

environment for
command

environment name.

environment.

environment. /terminal

erand48, Irand48,
nrand48,

erf, erfc: error function and

erfc: error function and

errno, sys—errlist,
Sys__nerr:

getut(3)
idgetname(3)
Idthindex(3)
Idtbread(3)
putpwent(3)

quadd(3)
unlink(2)
env(1)

environ(5)
profile(4)

environ(5)

env(1)

getenv(3)
putenv(3)

tset(1)
drand48(3)

erf(3)
erf(3)

perror(3)

Index-27

complementary/ erf, erfc:

function and
complementary

sys_errlist, sys__nerr:
system

to system calls and

matherr:

hashcheck: find spelling
terminal line/ dial:
setmnt:

in program. end:

hypot:

expression. expr:
test: condition

/text editor (variant of

display editor based on
obtain/ exQueryDfitResp
Exch,

exWait, exCheck:
quReadNext,
quReadKeyed:

wait for the response.

obtain and abandon

message queue. exWait,

1192192

error function and

error function. /erfc: error
error messages. /errno,

error numbers.
/introduction

error-handling function.
errors. /hashmake, spellin,
establish an out-going
establish mount table.
etext, edata: last locations

Euclidean distance
function.

evaluate arguments as an
evaluation command.

ex for casual users).

ex: text editor.

ex. /screen-oriented
(visual)

exAllocExch,
exDeallocExch:

examine an ICC message
queue.

examine BTOS queue.

exCall: Send a reguest
and

exchanges.
/exDeallocExch:

exCheck: examine an ICC

erf(3)
erf(3)

perror(3)
intro(2)

matherr(3)
speli(1)
dial(3)
setmnt(1)
end(3)
hypot(3)

expr(1)
test(1)
edit(1)
ex(1)
vi(1)

exchanges(2)
exwait(2)
quread(3)
excall(2)
exchanges(2)

exwait(2)

Index-28

a file. locking:

abandon/ /exAllocExch,

execlp, execvp: execute a/

execvp: execute/ execl,
execy,

execl, execv, execle,
execve,

path: locate

execve, execlp, execvp:

specific Application/
spawn:

specific/ spawnlp,
spawnvp:

construct argument
list{s) and

regex: compile and

set environment for
command

sleep: suspend

sleep: suspend

monitor: prepare
Spawnsrv: service spawn
profil:

uux: remote system
command

execvp: execute a/ execl,

execute/ execl, execy,
execle,

/execv, execle, execve,
execlp,

exclusive access to
regions of

exDeallocExch: obtain and

execl, execv, execle,
execve,

execle, execve, execlp,
execlp, execvp: execute a/

executable file for
command.

execute a file. /execle,

execute a process on a
execute a process on a
execute command. xargs:

execute regular/ regcmp,

execution. env:

execution for an interval.
execution for interval.
execution profile.
execution requests.
execution time profile.

execution.
execv, execle, execve,
execlp,

execve, execlp, execvp:

execvp: execute a file.

locking(2)

exchanges(2)

exec(2)
exec(2)
exec(2)
path(1)

exec(2)

spawn(1)
spawn(3)
xargs(1)

regemp(3)

env(1)

sleep(1)
sleep(3)
monitor(3)
spawnsrv(1)
profil(2)

uux(1)
exec(2)
exec(2)

exec(2)

Index-29

system calls. link, unlink:

a new file or rewrite an
process.
exit,

exponential, logarithm,/

pcat, unpack: compress
and

exp, log, log10, pow, sqrt:
expression.
routines. regexp: regular

regemp: regular

expr: evaluate arguments
as an

compile and execute
reqular

exAllocExch,
exDeallocExch:/

server.
client.
exCnxSendOnDealloc:
make/

request code.

ICC message queue.

remainder,/ floor, ceil,
fmod,

factor:

true,

1192192

exercise link and unlink
existing one. creat: create
exit, __exit: terminate
__exit: terminate process.

exp, log, log10, pow,
sqrt:

expand files. pack,

exponential, Iogariihm,
power,/

expr: evaluate arguments
as an

expression compile and
match

expression compile.

expression.

expression. regcmp, regex:

exQueryDfitRespExch,

exRequest: Send a
message to a

exRespond: send a
message to a

exSendOnDealloc,

exServeRq: appropriate a

exWait, exCheck: examine
an

fabs: floor, ceiling,

factor a number
factor: factor a number.

false: provide truth values.

link(1)
creat(2)
exit(2)
exit(2)
exp(3)

pack(1)
exp(3)
expr(1)
regexp(5)

regemp(1)
expr(1)

regemp(3)
exchanges(2)
exrequest(2)
exrespond(2)
exfinal(2)

exserverg(2)

exwait(2)
floor(3)

tactor(1)
factor(1)
true(1)

index-30

data in a
machine-independent

finc:

/calloc, mallopt, mallinfo:

abort: generate an 10T

a stream.

floating-point number/
ecvt,

fopen, freopen,

status inquiries. ferror,

fileno: stream status/

statistics for a file
system.

stream. fclose,

word from a/ getc,
getchar,

getgrnam, setgrent,
endgrent,

/getpwnam, setpwent,
endpwent,

stream. gets,
pattern. grep, egrep,

times. utime: set

Idfcn: common object

determine accessibility of
3

fashion.. /access long
integer

fast incremental backup.

fast main memory
allocator.

fault.

fclose, fflush: close or
flush

fentl: file control.
fentl: file control options.
fevt, gevt: convert

fdopen: open a stream.

feof, clearerr, fileno:
stream

ferror, feof, clearerr,

ff: list file names and

fflush: close or flush a

fgetc, getw: get character
or

fgetgrent: get group file/

fgetpwent: get password
file/

fgets: get a string from a
fgrep: search a file for a

file access and
modification

file access routines.

file. access:

sputl(3)

finc(1)

malloc(3) (fast
version)

abort(3)
fclose(3)

fentl(2)
fentl{5)
ecvt(3)

fopen(3)
ferror(3)

ferror(3)
(1)

fclose(3)
gete(3)

getgrent(3)
getpwent(3)

gets(3)
grep(1)
utime(2)

Idfen(4)

access(2)

Index-31

tar: tape
cpio: copy

pwck, grpck:
passwaord/group

chmod: change mode of

change owner and group
of a

diff. differential

diff3: 3-way differential
fentl:

fentl:

system-to-computer
system

core: format of core
image

umask: set and get
crontab--user crontab
fields of each line of a
dd: convert and copy a

a delta (change) to an
SCCS

close: close a
dup: duplicate an open

wmsetid, wmsetids:
associate a

hd: hexadecimal and ascii

selected parts of an
object

1192192

file archiver.
file archives in and out.

file checkers.

file.

file. chown:

file comparator.
file comparison.
file control.

file control options.

file copy. /public
computer

file.

file creation mask.

file.

file. cut: cut out selected
file.

file. delta: make

file descriptor.
file descriptor.

file descriptor with &
window.

file: determine file type.
file- dump.
file. dump: dump

tar(1)
cpio(1)
pwek(1)

chmod(2)
chown(2)

diff(1)

diff3(1)
fentl(2)
fentl(5)
uuto(1)

core(4)

umask(2)
crontab(1)
cut(1)
dd{1)
deita(1)

close(2)
dup(2)
wmsetid(3)

file(1)
hd(1)
dump(1)

Index-32

sact: print current SCCS

endgrent, fgetgrent: get
group

fgetpwent: get password
utmpname: access utmp

putpwent; write
password

execlp, execvp: execute a

grep, egrep, fgrep:
search a

path: locate executable

Idaopen: open a common
object

aliases: aliases
ar: common archive
intro: introduction to

entries of a common
object

get: get a version of an
Sccs

group: group
files. filehdr:

file. Idfhread: read the

ldohseek: seek to the
optional

split: split a

issue: issue identification

file editing activity.

file entry. /setgrent,

file entry. /endpwent,
file entry. /endutent,
file entry.

file. /execv, execle,
execve,

file for a pattern.

file for command.

file for reading. Idopen,

file for sendmail.
file format.
file formats.

file function. /line number
file.

file.

file header for common
object

file header of a common
object

file header of a common
object/

file into pieces.

file.

sact(1)

getgrent(3)

getpwent(3)
getut(3)
putpwent(3)

exec(2)
grep(1)

path(1)
Idopen(3)

aliases(5)
ar(4)
intro(4)
Idiread(3)

get(1)

group(4)
filehdr(4)

idfhread(3)
Idohseek(3)

split(1)

issue(d)

Index-33

of a member of an
archive

close a common object

file header of a common
object

a section of a common
object

file header of a common
object

a section of a common
object

header of a common
abject

section of a common
object

table entry of a common
object

table entry of a common
object

table of a common object

entries in a common
object

link: link to a

access to regions of a
mknod: build special

or a special or ordinary
ctermid: generate
mktemp: make a unique
a file system. ff: list

change the format of a text

1192192

file. /read the archive
header

file. Idclose, Idaclose:
file. ldfhread: read the

file. /line number entries of
file. /seek to the optional
file. /relocation entries of

file. /indexed/named
section

file. /to an
indexed/named

file. /the index of a
symbol

file. /read an indexed
symbol

file. /seek to the symbol

file. linenum: line number

file.

file. locking: exclusive
file.

file. /make a directory,
file name for terminal.
file name.

file names and statistics for

file. newform:

Idahread(3)

Idclose(3)
Idfhread(3)

- ldiseek(3)

Idohseek(3)
Idrseek(3)
Idshread(3)
Idsseek(3)
Idtbindex(3)
1dtbread(3)

Idthseek(3)

linenum(4)

{ink(2)
locking(2)
mknod(1)
mknod(2)
ctermid(3)
mktemp(3)
ff(1)
newform(1)

Index-34

name list of common
object

nuil: the null
/find the slot in the utmp
Input/output on a BTOS

ofRename: rename a
BTOS

one. creat: create a new
passwd: password

or subsequent lines of one
soft-copy terminals. pg:
/rewind, ftell: reposition a
Iseek: move réad/write
activity/ fpsar:

prs: print an SCCS

read: read from

for a common object

remove a delta from an
SCCS

bfs: big
two versions of an SCCS
scesfile: format of SCCS

header for a common
object

ofSetFileStatus: BT0S

file. nm: print

file.

file of the current user.
file. ofRead, ofWrite:
file.

file or rewrite an existing
file.

file. /lines of several files
file perusal filter for

file pointer in a stream.
file pointer.

File Processor system
file.

file.

file. /relocation
information

file. rmdel:

file scanner.
file. sccsdiff: compare
file.

file. scnhdr: section

File Status.
ofGetFileStatus,

nm(1)

null(6)
ttyslot(3)
ofread(3)

ofrename(3)

creat(2)
passwd(4)
paste(1)
pg(1)
fseek(3)
Iseek(2)
fpsar(1)
prs{1)
read(2)
reloc(4)

rmdel(1)

bfs(1)
scesdiff(1)
scesfile(4)
scnhdr(4)

ofstatus(3)

Index-35

stat, fstat: get

from a common object

checksum and block
count of a

swrite: synchronous
write on a

/symbol name for
common object

syms: common object

and interactive/ fsck,
dfsck:

fsdb:

names and statistics for a
fs: format of

mkfs: construct a

umount: mount and
dismount

mount: mount a

copy to or from the
BTOS

crup: create

ustat: get

mnttab: mounted
umount: unmount a
access time. dcopy: copy
fsck. checklist: list of
volcopy, labelit: copy

deliver the last part of a

1192192

file status.

file. /line number
information

file. sum: print

file.

file symhol table entry.

file symbol table format.

file system consistency
check

file system debugger.
file system. ff: list file
file system.

file system.

file system. mount,

file system.

file system. ofcopy:

file system partition
(slice).

file system statistics.
file system table.
file system.

file systems for optimal

file systems processed by

file syéiems with fabel/

file. tail:

stat(2)
strip(1)

sum(1)
swrite(2)
Idgetname(3)

syms({4)
fsck(1)

fsdb(1)
(1)
fs(4)
mkfs(1)

mount(1)

mount(2)

ofcopy(1)
crup(1)

ustat(2)
mnttah{4)
umount{2)
deopy(1)
checklist{4)
volcopy(1)
tail(1)

Index-36

term: format of compiled
term

tmpfile: create a
temporary

create a name for a
temporary

and modification times of a
ftw: walk a
file: determine

undo a previous get of
an SCCS

report repeated lines in a
val: validate SCCS

write: write on a

umask: set

common object files.
ferror, feof, clearerr,

create and administer
SCCS

/improvement in large ‘
ofts: list BTOS

cat: concatenate and
print

cmp: compare two

lines common to two
sorted

¢p, In, mv: copy, link or

move

file header for common
~ object

file.
file.
file. tmpnam, tempnam:

file. touch: update access
file tree.
file type.

file. unget:

file. unig:

file.

file.

file-creation mode mask.
filehdr: file header for
fileno: stream status/

files. admin:

files and direct 1/0.
files and directories.

files.

files.

files. comm: select or
reject

files.

files. filehdr:

term(4)
tmpfile(3)
tmpnam(3)

touch(1)
ftw(3)
file(1)
unget(1)

unig(1)
val(1)
write(2)
umask(1)
filehdr(4)
ferror(3)
admin(1)

pilf(5)
ofls{1)
cat(1)

cmp(1)

comm(1)
cpi1)

filehdr(4)

Index-37

find: find
frec: recover

format specification in
text

cpset: install object

intro: introduction to
special

link editor for common
object

lockf: record lecking on
ofDelete: Allocate BTOS
ofed, ofvi: edit BTOS

ofCloseAllFiles: Access
BTOS

rm, rmdir; remove

/merge same lines of
several

unpack: compress and
expand

pr: print

section sizes of common
object

sort: sort and/or merge
/object and archive
what: identify SCCS
terminals. pg: file perusal
nl: line numbering

col:

/exCnxSendOnDealloc:
make

1192192

files
files from a backup tape.

files. fspec:

files in binary directories.

files.
files. Id:

files.

files. /ofChangeFileLength.
files.

files. /ofCloseFile,

files or directories.

files or subsequent lines of/
files. pack, pcat,

files.

files. size: print

files.

files to common formats.
files.

filter for soft-copy

filter.

filter reverse line-feeds.

final requests.

find(1)
frec(1)
fspec(d)

cpset(1)
intro(6)

1d(1)

lockf(3)
ofcreate(3)
ofeditors(1)
ofopentfile(3)

“rm{1)

paste(1)
pack(1)

prit)

size(1)

sort(1)
convert(1)
what(1)

- pgl1)

ni(1)
col(1)
exfinal(2)

Index-38

find:

hyphen:
ttyname, isatty:
object library. lorder:

hashmake, spellin,
hashcheck:

of the current user.
ttyslot:

fold: fold long lines for
tee: pipe-

atof: convert ASCII
string to

ecvt, fovt, gevt: convert

/modf: manipulate parts
of

floor, ceiling, remainder,/
floor, ceil, fmod, fabs:
/cartridge, and

cflow: generate C

fclose, fflush: close or
remainder,/ floor, ceil,

finite width output
device.

width output device.
fold:

finc: fast incremental
backup.

find files.

find: find files. -

find hyphenated words.
find name of a terminal.
find ordering relation of an

find spelling errors. spell,

find the slot in the utmp file

finite width output device.

fitting.

floating-point number.

floating-point number to/

floating-point numbers.

floor, ceil, fmod, fabs:
floor, ceiling, remainder,/
floppy disks.

flow graph.

flush a stream.

fmod, fabs: floor, ceiling,

fold: fold long lines for

fold long lines for finite

finc(1)

find(1)
find(1)
hyphen(1)
ttyname(3)
lorder(1)
spell(1)

ttyslot(3)

fold(1)
tes(1)
atof(3)

ecvt(3)
frexp(3)

floor(3)
floor(3)
dsk(6)
cflow(1)
fclose(3)
floor(3)
fold(1)

fold(1)

Index-39

stream.

ar; common archive file
newform: change the
i-node:

term:

core:
cpio:
dir:

fs:
scesfile:

files. fspec:

object file symbol table
archive files to common
intro: introduction to file

wtmp: utmp and wtmp
entry

scanf, fscanf, sscant:
convert

/vfprintf, vsprintf: print

reporter. fpsar:
fprintf, sprintf: print
system activity/

word on a/ putc,
putchar,

1192192

fopen, freopen, fdopen:
open a

fork: create a new
process.

format.
format of a text file.
format of an i-node.

format of compiled term
file.

format of core image file.
format of cpio archive.
format of directories.
format of file system.
format of SCCS file.

format specification in
text

format. syms: common
formats. /object and
formats.

formats. utmp,
formatted input.

formatted output of a
varargs/

fp system activity
formatted output. printf,
fpsar: File Processor

fputc, putw: put character
or

fopen(3)
fork(2)

ar(8)
newform(1)
inode(4)
term(4)

core(4)
cpio(d)
dir(4)
fs(4)
scesfile(d)
fspec(d)

syms(4)
convert(1)
intro{4)
utmp(4d)

scanf(3)
vprintf(3)

tpsar(1)
printf(3)
fpsar(1)
putc(3)

Index-40

stream. puts,
input/output.

backup tape.

df: report number of
memory allocator. malloc,

mallopt, mallinfo:/
malloc,

stream. fopen,

parts of floating-point/

frec: recover files

/and line number
information

getw: get character or
word

gets, fgets: get a string
rmdel: remove a delta
getopt: get option letter
read: read

ncheck: generate names
nlist: get entries

ofcopy: copy to or

getpw: get name

formatted input. scanf,

alost + found directory for

of file systems processed
by

fputs: put a string on a
fread, fwrite: binary
frec: recover files from a
free disk blocks.

free, realloc, calloc: main

free, realloc, calloc,

freopen, fdopen: open a

frexp, Idexp, modf:
manipulate

from a backup tape.

from a common object
file.

from a stream. /fgetc,

from a stream.

from an SCCS file.
from argument vector.
from file.

from i-numbers.

from name list.

from the BTOS file
system.

from UID.
fs: format of file system.
fscanf, sscanf: convert

fsck. mkiost + found:
make

fsck. checklist: list

puts(3)
fread(3)
frec(1)
df(1)
malloc(3)

malloc(3)

fopen(3)
frexp(3)

frec(1)
strip(1)

getc(3)

gets(3)
rmdel(1)
getopt(3)
read(2)
ncheck(1)
nlist(3)
ofcopy(1)

getpw(3)

fs(4)

scanf(3)
mklost+found(1)

checklist(4)

Index-41

consistency check and/

reposition a file pointer in/
size.

text files.

or efl files.
stat,

pointer in a/ fseek,
rewind,

communication package

error/ erf, erfc: error

and complementary error
gamma: log gamma
hypot: Euclidean distance

of a common object file

matherr: error-handling
prof: profile within a
math: math

i0, i1, jn, YO, y1, yn:
Bessel

logarithm, power, square
root

remainder, absolute value

ocurse: optimized screen

1182192

fsck, dfsck: file system

fsdb: file system
debugger.

fseek, rewind, ftell:

fsize: calculate file

fspec: format specification
in

fsplit: split fortran, ratfor,
fstat: get file status.

ftell: reposition a file

(ftok). /standard
interprocess

ftw: walk a file tree.

function and
complementary

function. /error function
function. .
function.

function. /line number
entries

function.
function.
functions and constants.

functions.

functions. /sqrt:
exponential,

functions. /floor, ceiling,

functions.

fsck(1)
tsdb(1)

fseek(3)
fsize(1)
fspec(d)

tsplit(1)
stat(2)
fseek(3)

stdipc(3)

ftw(3)
erf(3)

erf(3)
gamma(3)
hypot(3)
Idiread(3)

matherr(3)
prof(5)
math(5)
bessel(3)

exp(3)

floor(3)

ocurses(3)

Index-42

BTOS directory

sinh, cosh, tanh:
hyperbolic

atan, atan2:
trigonometric

fread,

connect accounting
records.

gamma: log

number to string. ecvt,
fevt,

abort:

cflow:

reference. cxref:
terminal. ctermid:
crypt, setkey, encrypt:

ncheck:
lexical tasks. lex:

/srand48, seed48,
Icong48:

~ srand: simple
random-number

gets, fgets:

get:

ulimit:

the user. cuserid:

functions.
/ofReadDirSector:

functions.

functions. /tan, asin,
acos,

fwrite: binary
input/output,

fwtmp, wtmpfix:
manipulate

gamma function.

gamma: log gamma
functien.

gevt: convert floating-point

generate an 0T fault
generate C flow graph.
generate C program cross
generate file name for
generate DES encryption.

generate names from
i-numbers.

generate programs for
simple

generate uniformly
distributed/

generator. rand,

get a string from a
stream.

get a version of an SCCS
file.

get and set user limits.

get character login name of

ofdir(3)
sinh(3)
trig(3)
fread(3)
fwtmp(1)

gamma(3)

gamma(3)
ecvt(3)

abort(3)
cflow(1)
cxref(1)
ctermid(3)
crypt(3)
ncheck(1)

lex(1)
drand48(3)
rand(3)
gets(3)
get(1)

ulimit(2)

cuserid(3)

Index-43

getc, getchar, fgetc,
getw:

nlist:

umask: set and
stat, fstat:
ustat:

file.

setgrent, endgrent,
fgetgrent:

getlogin:
logname:
msgget:

getpw:

system. uname:

unget: undo a previous
argument vector. getopt:

setpwent, endpwent,
fgetpwent:

working directory.
getewd:

times. times:

and/ getpid, getpgrp,
getppid:

/geteuid, getgid, getegid:

semget:

shmget:

wmlayout:

1182192

get character or word
from a/

get entries from name list.
get file creation mask.

get file status.

get file system statistics.

get: get a version of an
SCCS

get group file entry.

get login name.
get login name.
get message queue.
get name from UID.

get name of current
CENTIX

get of an SCCS file.
get option letter from

get password file entry.
get path-name of current

get process and child
process

get process, process
group,

get real user, effective
user,/

get set of semaphores.

get shared memory
segment.

get terminal’s window
layout.

getc(3)

nlist(3)
umask(2)
stat(2)
ustat(2)
get(1)

getgrent(3)

getlogin(3)
logname(1)
msgget(2)
getpw(3)

uname(2)

unget(1)
getopt(3)
getpwent(3)

getewd(3)
times(2)
getpid(2)
getuid(2)

semget(2)
shmget(2)

wmlayout(3}

index-44

tty:
time:
wmgetid;

get character or word
from a/

character or work from/
getc,

current working
directory.

getuid, geteuid, getgid,
environment name.

real user, effective/
getuid,

user,/ getuid, geteuid,

setgrent, endgrent,/
endgrent,/ getgrent,

getgrent, getgrgid,

argument vector,

process group, and/
getpid,

process, process group,
and/

group, and/ getpid,
getpgrp,

get the terminal's name.
get time.

get window ID.

getc, getchar, fgetc, getw:

getchar, fgetc, getw: get
getcwd: get path-name of

getegid: get real user,/
getenv: return value for

geteuid, getgid, getegid:
get

getgid, getegid: get real

getgrent, getgrgid,
getgrnam,

getgrgid, getgrnam,
setgrent,

getgrnam, setgrent,
endgrent,/

getlogin: get login name.

getopt: get option letter
from

getopt: parse command
options.

getpass: read a password.

getpgrp, getppid: get
process,

getpid, getpgrp, getppid:
get

getppid: get process,
process

getpw: get name from ‘
uip.

tty(1)
time(2)
wmgetid(3)
getc(3)

getc(3)
getcwd(3)

getuid(2)
getenv(3)
getuid(2)

getuid(2)
getgrent(3)

getgrent(3)
getgrent(3)

getlogin(3)
getopt(3)

getopt(1)

getpass{3)
getpid(2)

getpid(2)
getpid(2)

getpw(3)

Index-45

setpwent, endpwent,/
getpwent, getpwuid,
endpwent,/ getpwent,
a stream.

and terminal settings
used by

modes, speed, and line/

ct: spawn
settings used by getty.

getegid: get real user,/
pututline, setutent,/

setutent, endutent,/
getutent,

setutent,/ getutent,
getutid,

from a/ getc, getchar,
fgetc,

convert/ ctime, locaitime,

setjmp, longjmp:
non-local

sag: system activity
plot:

subroutines. plot:
/for typesetting view

file for a pattern.

1107107

getpwent, getpwuid,
getpwnam,

getpwnam, setpwent,
endpwent,/

getpwuid, getpwnam,
setpwent,

gets, fgets: get a string
from

getty. gettydefs: speed

getty: set terminal type,

getty to a remote
terminal.

gettydefs: speed and
terminal

getuid, geteuid, getgid,

getutent, getutid,
getutline,

getutid, getutline,
pututline,

getutline, pututline,

getw: get character or
word

gmtime, asctime, tzset:

goto.

graph.

graphics interface.
graphics interface
graphs and slides.

grep, egrep, fgrep: search a

getpwent(3)
getpwent(3)
getpwent(3)
gets(3)

gettydefs(4)

getty(1)
ct(1)

gettydefs(4)

getuid(2)
getut(3)

getut(3)
getut(3)
getc(3)

ctime(3)
setjmp(3)

sag(1)
plot(4)
plot(3)
mv(5)
grep(1)

Index-46

/user, effective user, real

/getppid: get process,
process

chown, chgrp: change
owner of

endgrent, fgetgrent: get
group:

setpgrp: set process

id: print user and

real group, and effective
setuid, setgid: set user and
newgrp: log in to a new

chown: change owner
and

asignal to a process or a

update, and regenerate
checkers. pwck,

ssignal,
terminal download. tdi,
processing. shutdown,

varargs:

package. curses: CRT
screen

group, and effective
group/ '

group, and parent process
IDs.

group.

group file entry. /setgrent,
group file.

group:. group file.

group 1D.

group IDs and names.
group IDs. /effective user,
group IDs.

group.

group of a file.

group of processes. /send

groups of programs.
/maintain,

grpck: password/group
file

gsignal: software signals.
gtdl, ptdl: RS-232
halt: terminate all

handle variable argument
list.

handling and optimization

getuid(2)
getpid(2)
chown(1)

getgrent(3)
group(4)
group(4)
setpgrp(2)
id(1)
getuid(2)
setuid{2)
newgrp(1)

chown(2)

kill(2)
make(1)

pwek(1)

ssignal(3)
tdi(1)
shutdown(1)
varargs(5)

curses(3)

Index-47

nohup: run a command
immune to

hcreate, hdestroy:
manage

spell, hashmake, spellin,
/encrypt: generate
hashcheck: find/ spell,

search tables. hsearch,
dump.

tables, hsearch, hcreate,
file. scnhdr: section

files. filehdr: file
file. dfhread: read the file

/seek to the optional file

/read an indexed/named
section

Idahread: read the
archive

help: ask for
dump. hd:

manage hash search
tables.

sinh, cosh, tanh:

hyphen: find

1192192

hangups and guits.

hash search tables
hsearch,

hashcheck: find spelling/
hashing encryption.
hashmake, spellin,

hereate, hdestroy: manage
hash

hd: hexadecimal and ascii -
file

hdestroy: manage hash
search

header for a commen
object

header for common object

header of a common
object

header of a common
object/

header of a common
object/

header of a member of an/

help: ask for help.
help.
hexadecimal and ascii file

hsearch, hcreate, hdestroy:

hyperbolic functions.

hyphen: find hyphenated
worgs.

hyphenated words.

nohup(1)
hsearch(3)

speli{1) -
crypt(3)
speli(1)
hsearch(3)

hd(1)
hsearch(3C)
scnhdr(4)

filehdr(d)
idfhread(3)

Idohseek(3)

“Jdshread(3)

Idahread(3)

help(1)
help(1)
hd(1)
hsearch(3)

sinh(3)
hyphen(1)

vhyphen(1)

Ihdex-48

function.

exWait, exCheck:
examine an

processor. pstat;
control initialization. init,

semaphore set or shared
memory

and names.

setpgrp: set process
group

wmgetid: get window
_issue: issue

what:

id: print user and group

group, and parent
process

group, and effective
group

setgid: set user and
group

core: format of core
crash: examine system

nohup: run a command

direct/ pilf, dio:
performance

finc: fast
tgoto, tputs: terminal

for formatting a
permuted

hypot: Euclidean distance

ICC message queue.

ICC statistics for
icode, telinit: process

id. /remove a message
queue,

id: print user and group IDs
D.

ID.

identification file.
identify SCCS files.
IDs and names.

IDs. /get process, process
IDs. /effective user, real

IDs. setuid,

image file.

images.

immune to hangups and
quits.

improvement in large files
and

incremental backup.
independent operations.

index. /the macro package

hypot(3)

exwait(2)

pstat(1)
init{1)
iperm(1)

id(1)
setpgrp(2)

wmgetid(3)
issue(4)
what(1)
id(1)
getpid(2)

getuid(2)
setuid(2)

core(4)
crash(1)
nohup(1)

pilf(5)

finc(1)
termcap(3)
mptx(5)

Index-49

of a/ Idtbindex: compute
the

a common/ ldtbread:
read an

Idshread, ldnshread: read
an

Idsseek, !dnsseek: seek
to an

control initialization.
inittab: script for the
tellinit: process control
rc, allrc, conre: system
process. popen, pclose:
process.

clri: clear

inode: format of an
convert formatted

push character back into
fread, fwrite: binary
ofRead, ofWrite:

stdio: standard buffered
fileno: stream status
uustat: uucp status
install:

directories. cpset:

1182192

index of a symbol table
entry

indexed symbol table entry
of

indexed/named section
header/

indexed/named section of

a/

init, icode, telinit: process
init process.

initialization. init, icode,
initialization shell scripts.
initiate pipe to/from a
inittab: script for the init
i-node.

inode: format of an i-node
i-node.

input. /fscanf, sscanf:
input stream. ungetc:
input/output.

Input/output on a BT0S
file.

input/output package.
inquiries. /feof, clearerr,
inquiry and job control.
install commands.
install: install commands.

install object files in
binary

Idtbindex{3)
Idtbread(3)
ldshread(3)
Idsseek(3)

init(1)
inittab(4)
init{1)
bre(1)
popen(3)
inittab(4)
chi(1)
inode(4)
inode(d)
scanf(3)
ungetc(3)
fread(3)
ofread(3)

stdio(3)
ferror(3)
uustat(1)
install{1)
install(1)
cpset(1)

Index-50

tset: set terminal,
terminal

abs: return

/164a: convert between
long

sputl, sgetl: access long
atol, atoi: convert string to

/t0l3: convert between
3-byte

3-byte integers and long

beopy:

command line interpreter
for

system consistency check
and

mt:

Ip: parallel printer

plot: graphics

plot: graphics

termio: general terminal
tty: controlling»terminal

BTOS JCL. ofcli:
command line

pipe: create an

facilities/ ipcs: report

package/ stdipc:
standard

suspend execution for an

interface, and terminal/

integer absolute value.

integer and base-64
ASCll/

integer data in a/

integer, strtol,

integers and long integers.

integers. /convert
between

interactive block copy.

interactive BTOS JCL.
ofcli:

interactive repair. /file

interface for magnetic
tape.

interface.
interface.
interface subroutines.
interface.
interface.

interpreter for interactive

interprocess channel.

inter-process
communication

interprocess
communication

interval., sleep:

tset(1)

abs(3)
a64K(3)

sputl(3)
strtol(3)
13tol(3)

13tol(3)

bcopy(1)
ofcli(1)

fsck(1)
mt(6)

Ip(6)
plot(4)
plot(3)
termio(6)
tty(6)
ofcli{1)

pipe(2)
ipes(1)

stdipe(3)

sleep(1)

Index-51

sleep: suspend executin
for

commands and
application/

formats.
miscellany.

files.

subroutines and libraries.

calls and error numbers.

applicaton programs.
intro:

intro:

intro:

intro:

and libraries. intro:

and error numbers. intro:

ncheck: generate names
from

in large files and direct

abort: generate an

semaphore set or
shared/

communication facilities/
[islower, isdigit, isxdigit,

isdigit, isxdigit, isalnum,/

1192192

interval.
intro: introduction to

intro: introduction to file
intro: introduction to

intro: introduction to
special

intro: introduction to

intro: introduction to
system

introduction to commands
and

introduction to file
formats.

introduction to miscellany.

introduction to special
files.

introduction to subroutines

introduction to system
calls

i-numbers.

1/0. /performance
improvement

ioctl: control device.
10T fault.

ipcrm: remove a message
queue,

ipcs: report inter-process
isalnum, isspace, ispunct,/

isalpha, isupper, islower,

sleep(3)
intro(1)

intro(4)
intro(5)
intro(6)

intro(3)
intro(2)

intro(1)
intro(4)

intro(5)
intro(6)

intro(3)
intro(2)

ncheck(1)
pilf(5)

ioctl(2)
abort(3)
iperm(1)

ipes(1)
ctype(3)
ctype(3)

Index-52

/isprint, isgraph, iscntrl,
terminal. ttyname,

/ispunct, isprint, isgraph,
isalpha, isupper, islower,
isspace, ispunct, isprint,

isalnum,/ isalpha,
isupper,

/isalnum, isspace,
ispunct,

isxdigit, isalnum, isspace,
/isdigit, isxdigit, isalnum,
system:

issue:

file.

isxdigit, isalnum,/
isalpha,

/isupper, islower, isdigit,
news: print news
functions.

functions. j0

for interactive BTOS

functions. j0, j1,
operator.

Irand48, nrand48,
mrand48,

mkboot: reformat CENTIX

isascii: classify characters.
isatty: find name of a
isentrl, isascii: classify/
isdigit, isxdigit, isalnum,/
isgraph, iscntrl, isascii:/

islower, isdigit, isxdigit,
isprint, isgraph, iscntrl,/

ispunct, isprint, isgraph,/
isspace, ispunct, isprint,/
issue a shell command.
issue identification file.
issue: issue identification

isupper, islower, isdigit,

isxdigit, isalnum, isspace,/
items.

j0,i1,in,¥0, y1, yn: Bessel
i1, in, YO, y1, yn: Bessel

JCL. /command line
interpreter

in, y0, y1, yn: Bessel
join: relational database

jrand48, srand48,
seed48,/

kernel and copy it to
BTOS.

ctype(3)
ttyname(3)
ctype(3)
ctype(3)
ctype(3)
ctype(3)

ctype(3)

ctype(3)
ctype(3)
system(3)
issue(4)
issue(d)
ctype(3)

ctype(3)
news({1)
hessel(3)
bessel(3)
ofcli(1)

bessel(3)
join{1}
drand48(3)

mkboot(1)

Index-53

killall:

process or a group of/

processes.
mem,

3-byte integers and
long/

integer and base-64/
ab4l,

copy file systems with

with label checking.
volcopy,

scanning and processing

arbitrary-precision
arithmetic

cpp: the C

command programming

get terminal’s window

/irand48, srand48,
seed48,

object files.
object file. Idclose,
header of a member of an/

file for reading. !dopen,

common object file.

of floating-point/frexp,

access routines.

1192192

kill all active processes.
kill: send a signal to a
kill: terminate a process.
killall: kill all active
kmem: core memory.

13tol, Itol3: convert
between

164a: convert between
long

label checking. /labelit:

labelit: copy file systems

language. awk: pattern

language. be:

language preprocessor.

language.
/standard/restricted

layout. wmlayout:

lcong48: generate
uniformly/

Id: link editor for common
Idaclose: close a common
Idahread: read the archive

Idaopen: open a common
object

Idclose, Idaclose: close a

Idexp, modf: manipulate
parts

Idfen: common object file

killali(1)
kill(2)
kill{1)
killali{1)
mem({6)
13tol(3)

a641(3)

volcopy(1)
volcopy(1)

awk(1)
be(1)

cppl1)
sh(1)

wmlayout(3)
drand48(3)

1d(1)
ldclose(3)
1dahread(3)
Idopen(3)

ldclose(3)
frexp(3)

Idfen(d)

Index-54

of a common object file.

name for common object
file/

line number entries/
ldiread,

number/ Idlread, Idlinit,
manipulate line number/
to line number entries/

number entries of a
section/

entries of a section/
Idrseek,

indexed/named/
idshread,

indexed/named, ldsseek,

file header of a common/
object file for reading.

relocation entries of a/

indexed/named section
of a/

indexed/named section
of a/

of a symbol table entry
of a/

symbol table entry of a/

table of 3 common
object/

getopt: get option

Idfhread: read the file
header

Idgetname: retrieve symbol
Idlinit, Idlitem: manipulate

Idlitem: manipulate line
Idiread, Idlinit, Idlitem:
Idiseek, Idniseek: seek

Idiseek, ldniseek: seek to
line

Idnrseek: seek to
relocation

ldnshread: read an

Idnsseek: seek to an

Idohseek: seek to the
optional

Idopen, Idaopen: open a
common

Idrseek, ldnrseek: seek to

Idshread, Idnshread: read an

Idsseek, ldnsseek: seek to
an

Idtbindex: compute the
index

Idtbread: read an indexed

Idtbseek: seek to the
symbol

letter from argument
vector.

Idfhread(3)
Idgetname(3)
Idiread(3)

Idiread(3)
Idiread(3)
Idiseek(3)
Idiseak(3)

ldrseek(3)
ldshread(3)

Idsseek(3)
Idohseek(3)

Idopen(3)

ldrseek(3)
ldshread(3)

Idsseek(3)
Idtbindex(3)

Idtbread(3)
Idtbseek(3)

getopt(3)

Index-55

simple lexical tasks.

generate programs for
simple

update. Isearch,

to subroutines and
relation for an object
portable/ ar: archive and
ulimit: get and set user
an out-going terminal

type, modes, speed, and

interactive/ ofcli:
command

line: read one

common object file.
linenum:

/Idlinit, Idlitem:
manipulate

Idiseek, Idniseek: seek to
strip: strip symbol and

n:

out selected fields of
each

send/cancel requests to
an LP

Ipset: set parallel

Ipr:

Isearch, Ifind:

1192192

lex: generate programs for

lexical tasks. lex:

Ifind: linear search and
libraries. /introduction
library. /find ordering
library maintainer for
limits.

line connection. /establish

line discipline. /set
terminal

line interpreter for

line.

line number entries in a
line number entries of a/

line number entries of a/

line number information
from a/

line numbering filter.

line of a file. cut: cut

line printer, Ip, cancel:

line printer options.
line printer spooler.
line: read one line.

linear search and update.

lex(1)
lex(1)

Isearch(3)
intro(3)
lorder(1)
ar(t)
ulimit(2)
dial(3)
getty(1)

ofcli{1)

line(1)

linenum(4)
Idiread(3}

Idiseek(3)
strip(1)

nl(1)
cut(1)

ip(1)

Ipset(1)
Ipr(1)
line(1)
Isearch(3)

index-56

col: filter reverse

in a common object file

files. comm: select or
reject

device. fold: fold long

head: give first few
uniq: report repeated

of several files or
subsequent

subsequent/ paste:
merge same

link, unlink: exercise
files. 1d:

a.out: common assembler
and

cp, In, mv: copy,
link:

and unlink system calls.

ls:
directories. ofls;

for a file system. ff:

nlist: get entries from
name

nm: print name
by fsck. checklist:

line-feeds.

linenum: line number
entries

lines common to two
sorted

lines for finite width
output

lines.
lines in a file.

lines of one file. /same lines
lines of several files or

link and unlink system
calls.

link editor for common
object

link editor output.

link: link to a file.

link or move files.

link to a file.

link, unlink: exercise link

lint: a C program checker.
list contents of directory.
list BTOS files and

list file names and
statistics

list.

list of common object file. .

list of file systems
processed

col(1)

linenum(4)
comm(1)
fold(1)

head(1)
uniq(1)
paste(1)

paste{1)
fink(1)
1d(1)
a.out(d)

link(2)
cp(1)
link(2)
link(1)
lint(1)
Is(1)
ofis(1)
f#(1)

nlist(3)

nm(1)
checklist{4)

Index-57

handle variable argument

output of a varargs
argument

xargs: construct
argument

files. cp,

tzset: convert data/
ctime,

command. path:

end, etext, edata: last
data in memory. plock:
files.

regions of a file.
lockf: record

gamma:

newgrp:

exponential, logarithm,/
exp,

logarithm, power,/ exp,
log,

/log10, pow, sqrt:
exponential,

getlogin: get
logname: get

cuserid: get character
logname: return

passwd: change

setting up an
environment at

1192192

list. varargs:

list. /print formatted

list(s) and execute
command.

In, mv: copy, link or move

localtime, gmtime,
asctime,

locate executable file for
locations in program.

lock process, text, or
lockf: record locking on
locking: exclusive access to
locking on files.

log gamma function.

log in to a new group.

log, log10, pow, sqrt:

log10, pow, sqrt:
exponential,

logarithm, power, square
root/

login name.

login name.

login name of the user.
login name of user.
login password.

login: sign on.

fogin time. profile:

logname: get login name.

varargs(5)
vprintf(3}

xargs(1)

cpll)
ctime(3)

path(1)
end(3)
plock(2)
locki(3)
locking(2)
lockf(3)
gamma(3)
newgrp(1)
exp(3)

exp(3)
exp(3)

getlogin(3)
logname(1)
cuserid(3)
logname(3)
passwd(1)
login(1)
profile(4)

logname(1)

Index-58

user.

ab4l, 164a: convert
between

sputl, sgetl: access

between 3-byte integers
and

output device. fold: fold
setjmp,

for an object library.
mklost + found: make a

nice: run a command at
requests to an LP line/

send/cancel requests to
an

interface.
disable: enable/disable

Ipshut, Ipmove:
start/stop the

accept, reject:
allow/prevent

Ipadmin: configure the
Ipstat: print

spooling system.
request/ Ipsched, Ipshut,

start/stop the LP
request/

logname: return login
name of

long integer and base-64
ASCH/

long integer data in a/

long integers. /ltol3:
convert

long lines for finite width
longjmp: non-local goto.

lorder: find ordering
relation

lost+found directory for
fsck. '

low priority.
Ip, cancel: send/cancel

LP line printer. Ip, cancel:

Ip: parallel printer
LP printers. enable,

LP request scheduler and
move/

LP requests.

LP spooling system.

LP status information.
Ipadmin: configure the LP
Ipmove: start/stop the LP
Ipr: line printer spooler.

Ipsched, Ipshut, ipmove:

logname(3)
a64i(3)

sputl(3)
13t0l(3)

fold(1)
setjmp(3)
lorder(1)

mklost+ found(1)

nice(1)
Ip(1)
(1)

Ip(6)
enable(1)
Ipsched(1)

accept{1)

Ipadmin(1)
Ipstat(1)
Ipadmin(1)
Ipsched(1)
Ipr(1)
Ipsched(1)

Index-59

printer options.

LP request scheduler/
Ipsched,

information.

jrand48,/ drand48,
erand48,

directory.

and update.
pointer,

integers and long/ 13tol,

values:

/access long integer data
ina

permuted index. mptx:
the

documents. mm: the MM

typesetting/ mv: a troff
mé4:

in this manual. man:

send mail to users or read
users or read mail.
mail, rmail: send

malloc, free, realloc,
calloc:

/mallopt, mallinfo: fast

regenerate groups of/
make:

1192192

Ipset: set parallel line

Ipshut, Ipmove: start/stop
the

Ipstat: print LP status

Irand48, nrand48,
mrand48,

Is: list contents of

Isearch, Ifind: linear
search

Iseek: move read/write
file

Itol3: convert between
3-byte

m4: macro processor.

machine-dependent values.

machine-independent
fashion.

macro package for
formatting

macro package for
formatting

macro package for
macro processor.

macros for formatting
entries

mail. mail, rmail:

mail, rmail: send mail to

mail to users or read mail.

main memory allocator.
main memory allocator.

maintain, update, and

Ipset(1)
Ipsched(1)

Ipstat(1)
drand48(3)

Is(1)
Isearch(3)

Iseek{2)
13tol(3)

ma(1)
values(5)
sputl(3)

mptx({5)
mm(5)

mv(5)
ma(1)

man(5)

mail(1)
mail(1)
mail(1)
malloc(3)

malloc(3) (fast
version)

make(1)

Index-60

ar: archive and library
SCCS file. delta:
mkdir:

or ordinary file. mknod:

mktemp:

exCnxSendOnDeal
loc:

regenerate groups of/

banner:

session. script:
realloc, calloc, mallopt,
main memory allocator.

mallopt, mallinfo: fast
main/

malloc, free, realloc,
calloc,

/tlind, tdelete, twalk:

hsearch, hcreate,
hdestroy:

wmop: window
window: window
wm: window

records. fwtmp, wtmpfix:

of/ Idlread, Idlinit,
Idlitem:

frexp, Idexp, modf:
ascii:

umask: set file-creation
mode

maintainer for portable/
make a delta (change) to an
make a directory.

make a directory, or a
special

make a unique file name.

make final requests.

make: maintain, update,
and

make posters.

make typescript of
terminal

mallinfo: fast main
memory/

malloc, free, realloc,
calloc:

malloc, free, realloc,
calloc,

mallopt, mallinfo: fast
main/

manage binary search
trees.

manage hash search
tables.

management operations.
management primitives.
management. .

manipulate connect
accounting

manipulate line number
entries

manipulate parts of/
map of ASCII character set.

mask.

ar(1)
delta(1)
mkdir(1)
mknod(2)

mktemp(3)
exfinal(2)

make(1)

banner(1)

script(1)
malloc(3) (fast

version)

malloc(3)
malloc(3)

malloc(3) (fast
version)

tsearch(3)
hsearch(3)

wmop(3)
window(6)
wm(1)
fwtmp(1)

Idiread(3)

frexp(3)
ascii(5)

umask(1)

Index-61

set and get file creation
table. master:
information table.

regular expression
commpile and

math:

constants.
function.

processor type.

memcpy, memset:
memory/

memset: memory/
memccpy,

operations. memccpy,
memchr,

memccpy, memchr,
memcmp,

free, realloc, calloc: main

mallopt, mallinfo: fast
main

shmctl: shared

queue, semaphere set or
shared

mem, kmem: core

memcmp, memcpy,
memset:

shmop: shared
text, or data in

shmget: get shared .

1192192

mask. umask:
master device information
master: master device

match routines. regexp:

math functions and
constants.

math: math functions and
matherr: error-handling
mc68k, pdp11, u3b, vax:

mem, kmem: core
memory.

memccpy, memchr,
memcmp,

memchr, memcmp,
memcpy,

mememp, memcpy,
memset: memory

memcpy, memset:
memory/

memory allocator. malloc,

memory allocator. /calloc,

memory control
operations.

memory id. /remove a
message

memory.

memory operations.
/memchr,

memory operations.
memory. /lock process,

memory segment.

umask(2)
master(4)
master(4)

regexp(5)
math(5)

math(5)
matherr{3)
machid(1)

mem(6)
memory(3)
memory(3)
memory(3)
memory(3)
malloc(3)
malloc(3) (fast
version)
shmetl(2)

ipcrm(1)

mem(6)

memory(3)

shmop(2)
plock(2)
shmget(2)

Index-62

/memchr, memcmp,
memcpy,

sort: sort and/or

files or subsequent/
paste:

msgetl:

msgop:
exCheck: examine an IcC
msgget: get

or shared/ ipcrm: remove a

exRespond: send a
exRequest: Send a
mesg: permit or deny

sys__nerr: system error

and copy it to BTOS.

lost +found directory
for/

special or ordinary file.

name:

table.

chmod: change

memset: memory
operations.

merge files.

merge same lines of
several

mesg: permit or deny
messages.

message control
operations.

message operations.
message queue. exWait,
message queue.

message queue,
semaphore set

message to a client.
message to a server.
messages.

messages. /errno,
sys_errlist,

mkboot: reformat CENTIX
kernel

mkdir: make a directory.

mkfs: construct a file
system.

mklost +found: make a

mknod: build special file.

mknod: make a directory,
ora

mktemp: make a unique file

mnttab: mounted file
system

mode.

memory(3)

sort(1)
paste(1)

mesg(1)
msgetl(2)

msgop(2)
exwait(2)
msgget(2)
ipcrm(1)

exrespond(2)
exrequest(2)
mesg(1)
perror(3)

mkboot(1)

mkdir(1)
mkfs(1)

mklost + found{1)

mknod(1)
mknod(2)

mktemp(3)
mnttab(4)

chmod(1)

index-63

umask: set file-creation
chmod: change

modemcap: smart

capability data base.
getty: set terminal type,
/compiler/interpreter for

floating-point/ frexp,
Idexp,

touch: update access and

utime: set file access
and

profile.

uusub:

translate byte orders to

mount:

system. mount, umount:

setmnt: establish

dismount file system.

mnttab:
mvdir:
cp, In, mv: copy, link or

Iseek:

1192192

mode mask.
mode of file.

modem capability data
base.

modemcap: smart modem
modes, speed, and line/
modest-sized programs.

modf: manipulate parts of

modification times of a file.

modification times.

monitor: prepare execution
monitor uucp network.
more, page: text perusal.

Motorola/Intel.
/swaplong:

mount a file system.
mount and dismount file

mount: mount a file
system.

mount table.

mount, umount: mount
and ’

mounted file system table. .
move a directory.
move files.

move read/write file
pointer.

umask(1)
chmod(2)

modemcap(5)

modemcap(5)
getty(1)

bs(1)
frexp(3)

touch(1)

utime(2)

monitor(3)
uusub(1)
more(1)

swapshort(3)

mount(2)
mount(1)

mount(2)

setmnt(1)

mount(1)

mnttah(4)
mvdir(1)
eplt)
Iseek(2)

Index-64

the LP request scheduler
and

formatting a permuted
index.

/erand48, Irand48,
nrand48,

operations.

tape.
package for typesetting/
cp, In,

i-numbers.

uusub: menitor uucp

a text file.

news: print

process.
process by changing

priority.

list.
object file.

hangups and quits.

move request. /start/stop

mptx: the macro package
for

mrand48, jrand48,
srand48,/

msgctl: message control

msgget: get message
queue.

msgop: message
operations.

mt: interface for magnetic
mv: a troff macro

mv: copy, link or move files.
mvdir: move a directory.

ncheck: generate names
from

network.

newform: change the
format of

newgrp: log in to a new
group.

news items.

news: print news items.
nice; change priority of a
nice. /of running

nice: run a command at low
nl: line numbering filter.

nlist: get entries from
name

nm: print name list of
common

nohup: run a command
immune to

Ipsched(1)
mptx(5)
drand48(3)

msgctd(2)
msgget(2)

msgop(2)

mt(6)
mv(5)
cpl1)
mvdir(1)
ncheck(1)

uusub(1)
newform(1)

newgrp(1)

news(1)
news(1)
nice(2)
renice(1)
nice(1)
nl{1)
nlist(3)

nm(1)

nohup(1)

Index-65

setjmp, longjmp:

drand48, erand48,
frand48,

null: the

nl: line

to/ convert: convert
Idfcn: common

dump selected parts of an

Idopen, |daopen: open a
common

number entries of a
common

Idaclose: close a common

the file header of a
common

of a section of a
common

file header of a common

of a section of a
common

header of a common

section header of a
common

symbol table entry of a
common

symbol table entry of a
common

the symbol table of a
common

number entries in a
common

1192192

non-local goto.

nrand48, mrand48,
jrand48,/

null file.

null: the null file.
numbering filter.

object and archive files
object file access routines.
object file. dump:

object file for reading.
object file function. /line

object file. Idclose,
object file. Idfhread: read

object file. /number
entries

object file. /to the
optional

object file. /entries

object file. /section

object file.
/indexed/named

object file. /the index of a
object file. /read an
indexed

object file. /seek to

object file. linenum: line

setjmp(3)
drand48(3)

null(6}
null{6)
ni(1)
convert(1)
1dfen(d)
dump(1)
Idopen(3)

Idiread(3)

ldclose(3)
Idfhread(3)

Idiseek(3)
Idohseek(3)
Idrseek(3)

Idshread(3)
ldsseek(3)

Idtbindex(3)
Idtbread(3)
|dtbseek(3)

linenum(4)

Index-66

nm: print name list of
common

information for a
common

section header for a
common

information from a
common

entry. /symbol name for
common

format. syms: common
file header for common
directories. cpset: install

Id: link editor for
common

print section sizes of
common

find ordering relation for
an

/exAllocExch,
exDeallocExch:

od:

functions.

Allocate BTOS/ ofCreate,

interpreter for
interactive/

ofOpenFile, ofCloseFile,

Access BT0S/
ofOpenfFile,

BTOS file system.

object file.
object file. /relocation
object file. scnhdr:

abject file. /and line
number

abject file symbol table

object file symbol table
object files. filehdr:
object files in binary

object files.
object files. size:
object library. lorder:

obtain and abandon
exchanges.

octal dump.
ocurse: optimized screen
od: octal dump.

ofChangeFileLength,
ofDelete:

ofcli: command line

ofCloseAllFiles: Access
BTOS/

ofCloseFile,
ofCloseAllFiles:

ofcopy: copy to or from the

nm(1)
reloc(4)
scnhdr{4)
strip(1)
Idgetname(3)

syms(4)
filehdr(4)
cpset(1)
1d(1)

size(1)
lorder(1)
exchanges(2)

od(1)
ocurses(3)
od{1)

ofcreate(3)
ofcli(1)
ofopenfile(3)
ofopenfile(3)

ofcopy(1)

Index-67

ofReadDirSector: BTQS/
ofDelete: Allocate BT0S/

ofCreate,
ofChangefFileLength,

directory functions.
ofCrDir,

ofSetFileStatus: BT0S
File/

directories.

ofCloseAllFiles: Access
BTO0S/

on a BTQS file.

directory/ ofCrDir,
of DIDir,

Status. ofGetFileStatus,
ofed,
BTOS file. ofRead,

reading. Idopen, idaopen:

fopen, freopen, fdopen:
dup: duplicate an

open:

writing.
profiler. prt:
pridc, prfsnap, prfpr:

memcmp, memcpy,
memset: memory

1192192

ofCrDir, ofDIDir,

ofCreate,
ofChangeFileLength,

ofDelete: Allccate BTOS
files.

ofDIDir, ofReadDirSector:
BTOS

ofed, ofvi: edit BTOS files.
ofGetFileStatus,

ofls: list BTOS files and
ofOpenfFile, ofCloseFile,

ofRead, ofWrite:
Input/output

ofReadDirSector: BTOS

ofRename: rename a BTOS
file.

ofSetFileStatus: BTOS File
ofvi: edit BTOS files.
ofWrite: Input/output on a

open a common object file
for

open a stream.
open file descriptor.

open for reading or
writing.

open: open for reading or
operating system
operating system/

operations. memccpy,
memchr,

ofdir(3)

ofcreate(3)
ofcreate(3)
ofdir(3)

ofeditors(1)
ofstatus(3)

ofis(1)
ofopenfile(3)

ofread(3)
ofdir(3)
ofrename(3)

ofstatus(3)
ofeditors(1)
ofread(3)
Idopen(3)

fopen(3)
dup(2)
open(2)

open(2)
pri(6)
profiler(1)
memory(3)

Index-68

msgctl: message control
msgop: message

semctl: semaphore
control

semop: semaphore

shmctl: shared memory
control

shmop: shared memory

strcspn, strtok: string

tputs: terminal
independent

wmop: window
management

join: relational database

dcopy: copy file systems
for

CRT screen handling and
ocurse:
vector,. getopt: get

common/ ldohseek: seek
to the

fentl: file control

stty: set the

getopt: parse command
set parallel line printer

object library. lorder: find

operations.
operations.

operations.

operations.

operations.

operations.

operations. /strpbrk,
strspn,

operations. /tgetstr, tgoto,
operations.

operator.

optimal access time.

optimization package.
curses:

optimized screen
functions.

option letter from
argument

optional file header of a

options.

options for a terminal.
aptions.

options. Ipset:

ordering relation for an

msgetl(2)
msgop(2)

semcti(2)

semop(2)
shmeti(2)

shmop(2)
string(3)

termcap(3)
wmop(3)

join{1)
deopy(1)

curses(3)
ocurses(3)
getopt(3)
Idohseek(3)

fenti(5)
stty(1)
getopt(1)
Ipset(1)
lorder(1)

Index-69

a directory, or a special or
dial: establish an

assembler and link editor
long lines for finite width

/vsprintf: print formatted

sprintf: print formatted
chown: change
chown, chgrp: change

and expand files.
handling and optimization

view/ mv: a troff macro

sadc: system activity
report

standard buffered
input/output

interprocess
communcation

more,

Ipset: set

Ip:

process, process group,
and

getopt:

crup: create file system

1192192

ordinary file. mknod: make
out-going terminal line/
output. a.out: common
output device. fold: fold

output of a varargs
argument/

output. printf, fprintf,
owner and group of a file
owner or group.

pack, pcat, unpack:
compress

package. curses: CRT
screen

package for typesetting

package. sal, sa2,

package. stdio:

package {ftok). /standard

page: text perusal.

parallel line printer
options.

parallel printer interface.

parent process IDs. /get

parse command options.

partition {slice).

mknod(2)
dial{3)
a.out(4)
fold(1)
vprintf(3)

printf(3)
chown(2)
chown(1)
pack(1)

curses(3)

mv(5)
sar(1)

stdio(3)
stdipc(3)

more(1)

Ipset(1)

1p(6)
getpid(2)

getopt(1)
crup(1)

Index-70

/endpwent, fgetpwent:
get

putpwent: write
passwd:

getpass: read a
passwd: change login

pwek, grpek:

several files or
subsequent/

for command.

dirname: deliver portions
of

directory. getcwd: get
fgrep: serach a file for a
processing language.
awk:

signal.

expand files. pack,

a process. popen,

type. mc68k,

farge files and/ pilf, dio:

mesg:
format. acct:

sys__nerr: system error/

passwd: change login
password.

passwd: password file.

password file entry.

password file entry,.
password file.
password.
password.

password/group file
checkers.

paste: merge same lines of

path: locate executable file

path names. basename,

path-name of current
waorking

pattern. grep, egrep,

pattern scanning and

pause: suspend process
until

pcat, unpack: compress
and

pclose: initiate pipe
to/from

pdp11, u3b, vax:
processor

performance improvement
in

permit or deny messages.
per-process accounting file

perror, errno, sys__errlist,

passwd(1)

passwd(4)
getpwent(3)

putpwent(3)
passwd(4)
getpass(3)
passwd(1)
pwek(1)

paste(1)

path(1)

hasename(1)
getcwd(3)

grep(1)
awk(1)

pause(2)
pack(1)
popen(3)
machid(1)
pilf(5)

mesg(1)
acct{4)

perror(3)

Index-71

terminals. pg: file
more, page: text
soft-copy terminals.
split: split a file into

improvement in farge
files/

channel.

tee:

popen, pclose: initiate
text, or data in/
interface.
subroutines.

ftell: repaosition 3 file

Iseek: move read/write
file

to/from a process.
and library maintainer for

basename, dirname:
deliver

banner: make

logarithm, exp, log,
log10,

exp, log, log10,

/exponential, logarithm,
monitor:

cpp: the C language

unget: undo a

1182192

perusal filter for soft-copy
perusal.

pg: file perusal filter for
pieces.

pilf, dio: performance

pipe: create an
interprocess

pipe fitting.

pipe to/from a process.
plock: fock process:
kplot: graphics

plot: graphics interface

pointer in a stream.
/rewind,

pointer.

popen, pclose: initiate pipe
portable archives. /archive

portions of path names.

posters.

pow, sqrt: exponential,

pow, sqrt: exponential,/
power, square root/

pr: print files.

prepare execution profile.
preprocessor.

previous get of an SCCS
file.

pg(1)
more(1)
pol1)
split(1)
pilf(5)

pipe(2)

tee(1)
popen(3)
plock(2)
plot(4)
plot(3)
fseek(3)

Iseek(2)

popen(3)
ar{1)

hasename(1)

hanner(1)
exp(3)

exp(3)
exp(3)
pr{1)
monitor(3)
cppll)
unget(1).

Index-72

profiler.

prfld, prfstat,

prfsnap, pripr:/
/pristat, pride, prisnap,
prfld, pristat, prfdc,
pripr: operating/ prfid,
types:

window: window
managment

prs:
date:

number. apnum:
cal:

of a file. sum:

editing activity. sact:
cat: concatenate and

pr:

vprintf, vfprintf, vsprintf:
printf, fprintf, sprintf:
Ipstat:

object file. nm:
uname:
news:

object files. size:

prf: operating system
pridc, prfsnap, pripr:/
prild, pristat, pridc,
prpr: operating system/
prisnap, pripr:/

pristat, pridc, prfsnap,

primitive system data
types.

primitives.

print an SCCS file.

print and set the date.
print Application Processor
print calendar.

print checksum and block
count

print current SCCS file
print files.

print files.

print formatted output of a/
print formatted output.

print LP status
information.

print name list of common
print name of system.
print news items.

print section sizes of
common

prf(6)
profiler(1)
profiler(1)
profiler(1)
profiler(1)}
profiler(1)
types(5)

window(6)

prs(1)
date(1)
apnum(1)
cal(1)
sum(1)

sact(1)
cat(1)
pr(1)
vprintf(3)
printf(3)
Ipstat(1)

nm(1)
uname(1)
news(1)

size(1)

Index-73

names. id:
Ip: parallel

requests to an LP line

Ipset: set parallel fine
lpr: line

disable: enable/disable
LP

print formatted output.

nice; run a command at
low

nice: change

process/ renice: alter
acct: enable or disable
alarm: set a

times. times: get
/priority of running
init, icode, telinit:

timex: time a command;
report

exit, _exit: terminate

fork: create a new

/getpgrp, getppid: get
process,

setpgrp: set

process group, and
parent

inittab: script for the init-

kill: terminate a

1192192

print user and group IDs and
printer interface.

printer. /cancel:
send/cancel

printer options.
printer spooler.

printers. enable,

printf, fprintf, sprintf:
priority.

priority of a process.
priority of running
process accounting.
process alarm clock.
process and child process
process by chanaging/
process control/

process data and system/

process.
process.

process group, and
parent/

process group ID.

process IDs. /get process,

process.

process.

id(1)
Ip(6)
Ip(1)

tpset(1)
Ipr(1)
enable(1)

printf(3)

nice(1)

nice(2)
renice(1)
acct(2)
alarm(2)
times(2)
renice(1)
init(1)

timex(1)

exit(2)
fork(2)
getpid(2)

setpgrp(2)
getpid(2)

inittab(4)
kili(1)

Index-74

nice: change priority of a

Application/ spawn:
execute a

spawnlp, spawnvp:
execute a

kill: send a signal to a
initiate pipe to/from a

getpid, getpgrp, getppid:
get

ps: report
in memory. plock: lock

times: get process and
child

wait: wait for child

pause: suspend

wait: await completion
of

list of file systems

to a process or a group of
killali: kill all active

awk: pattern scanning
and

shutdown, halt:
terminate all

m4: macro
apnum: print Application

console: control
Application

process.

process on a specific
process on a specific/

process or a group of/
process. popen, pclose;

process, process group,
and/

process status.
process, text, or data

process times.

process to stop or
terminate.

process until signal.

process.

processed by fsck.
checklist:

processes. /send a signal

‘processes.

processing language.
processing.

processor.

Processor number.

Processor pseudoconsole. .

nice(2)

spawn(1)
spawn(3)

kill(2)
popen(3)
getpid(2)

ps(1)
plock(2)

times(2)
wait(2)

pause(2)

wait(1)
checklist(4)

kill(2)
killail(1)
awk(1)

shutdown(1)

md(1)
apnum(1)

console(1)

Index-75

ICC statistics for

on a specific Applicaton
on a specific Application

activity/ fpsar: File

mc68k, pdp11, u3b, vax:

function.
profile.
prof: display

monitor: prepare
execution

profil: execution time

environment at login
time.

prof:

prf: operating system
prfpr: operating system
sadp: disk access

standard/restricted
command

update:

/pdp11, u3b, u3bb, vax

true, false:

control Application
Processor

1192192

processor. pstat:

Processor. /execute a
process

Processor. /execute a
process

Processor system
processor type.

prof: display profile data.
prof: profile within a
profil: execution time
profile data.

profil .

profile.

profile: setting up an

profile within a function.
profiler.

profiler. /prfsnap,
profiler.

programming language.
/the

provide disk
synchronization.

provide truth value/
provide truth values.
prs: print an SCCS file.
ps: report process staus.

pseudoconsole. console:

pstat(1)

spawn{1)
spawn(3)

fpsar(1)
machid(1)
prof(1)
prof(5)
profil{2)
prof{1)

monitor(3)

profil(2)
profile(d)

prof(5)
prf(6)
profiler(1)
sadp(1)
sh(1)

update(1)

machid(1)
true(1)
prs(1)
ps(t)
console(1)

Index-76

/generate uniformly
distributed

for processor.

download. tdl, gtdl,

stream. ungetc:

put character or word on
a/

character or word on a/
putc,

environment.
entry.

stream.

getutent, getutid,
getutline,

a/ putc, putchar, fputc,

file checkers.

BTOS queue.

tput:

examine an ICC message
msgget: get message

add a new entry to a BTOS

pseudo-random numbers.

pstat: ICC statistics
ptd: RS-232 terminal
ptrace; process trace,
ptx: permuted index.

push character back into
input

putc, putchar, fputc,
putw:

putchar, fputc, putw: put

putenv: change or add
value to

putpwent: write password
file

puts, fputs: put a string
on a

pututline, setutent,
endutent,/

putw: put character or
word on

pwek, grpck:
password/group

pwd: working directory
name,

qsort: quicker sort.

quAdd: add a new entry
toa

query temrinfo database.
queue. exWait, exCheck:
queue.

queue. quAdd:

drand48(3)

pstat{1)
tdi(1)
ptrace(2)
ptx(1)
ungetc(3)

putc(3)
putc(3)
putenv(3)
putpwent(3)
puts(3)
getut(3)
pute(3)
pwek(1)
pwd(1)

qsort(3)
quadd(3)

tput(1)
exwait(2)
msgget(2)
quadd(3)

Index-77

quReadKeyed: examine
BT0S

quRemove: take back a
BTOS

ipcrm: remove a message

gsort:

command immune to
hangups and

queue. quReadNext,

examine BTOS queue.

queue request.

random-number
generator.

rand, srand: simple
fsplit: split funran,v

initialization/brc,
hcheckre,

getpass:

entry of a common/
Idtbread:

header/ |dshread,
Idnshread:

read:
rmail: send mail to users or

line:

member of an/ Idahread:

common object file.
Idfhread:

1192192

queue. quReadNext,

queue request.

queue, semaphore set or
shared/

quicker sort.

quits. nohup: run a

quReadKeyed: examine
BTOS

quReadNext, quReadKeyed:

quRemove: take back a
BTOS

rand, srand: simple

random-number generator.
ratfor, or efl files.

rc, allrc, conrc: system

read a password.

read an indexed symbol
table

read an indexed/named
section

read from file.

read mail. mail,

read one line.

read: read from file.

read the archive header of a

read the file header of a

quread(3)
quremove(3)
iperm(1)

qsort(3)
nohup(1)

quread(3)

quread(3)

quremove(3)
rand(3)

rand(3)
fsplit(1)
bre(1)

getpass(3)
|dtbread(3)

Idshread(3)

read(2)
mail(1)
line(1)
read(2)
Idahread(3)
Idfhread(3)

Index-78

open a common object
file for

open: open for
Iseek: move

allocator. malloc, free,

mallinfo: fast/ malloc,
free,

specify what to do upon
lockf:

manipulate connect
accounting

tape. frec:

ed,
it to BTOS. mkboot:

execute regular
expression.

expression compile.

make: maintain, update,
and

regular expression.
regcmp,

compile and match
routines.

locking: exclusive access
to

match routines. regexp:
regcmp:
regex: compile and

execute

requests. accept,

reading. Idopen, Idaopen:

reading or writing.
read/write file pointer.

realloc, calloc: main
memory

realloc, calloc, mallopt,

receipt of a signal. signal:
record locking on files.

records. fwtmp, wtmpfix:

recover files from a
backup

red: text editor.

reformat CENTIX kernel
and copy

regemp, regex: compile
and

regemp: regular

regenerate groups of
programs.

regex: compile and
execute

regexp: regular expression
regions of a file.

regular expression compile
and

regular expression
compile.

regular expression.
regcmp,

reject: allow/prevent LP

Idopen(3)

open(2)
Iseek(2)
malloc(3)
malloc(3) (fast
version)
signal(2)
lockf(3)
fwtmp(1)

frec(1)

ed(1)
mkboot(1)

regemp(3)

regcmp(1)
make(1)

regcmp(3)
regexp(5)
locking(2)
regexp(5)
regcmp(1)
regemp(3)

accept(1)

Index-79

sorted files. comm:
select or

lorder: find ordering

join:
for a common object file.

Idrseek, ldnrseek: seek to

common object file.
reloc:

/fmod, fabs: floor,
ceiling,

calendar.
ct: spawn getty to a

file. rmdel:

semaphore set or/ ipcrm:
unfink:

rm, rmdir:

ofRename:

of running process by/

check and interactive

uniq: report

clock:
communication/ ipcs:
blocks. df:

sa2, sadc: system
activity

timex: time a command;

1182192

reject lines common two

relation for an object/

relational database
operator.

reloc: relocation
information

relocation entries of a/

relocation information for a
remainder, absolute value/

reminder service.
remote terminal.

remove a delta from an
SCCS

Temove a message queue,
remove directory entry.
remove files or directories.
rename a BTOS file.
renice: alter priority

repair. /system
consistency

repeated lines in a file.
report CPU time used.
report inter-process

report number of free disk

report package. sal,

report process data and
system/

comm(1)

lorder(1)
join(1)

reloc(d)

Idrseek(3)
reloc(4)

floor(3)

calendar(1)
ct{1)
rmdel(1)

iperm(1)
unlink(2)
(1)
ofrename(3)
renice(1)
fsck(1)

unig(1)
clock(3)
ipes(1)
di(1)
sar(1)

timex{1)

Index-80

ps:
file. unig:

system activity
sar: system activity

stream, fseek, rewind,
ftell: :

reponse. exCall: Send a
exServeRg: appropriate a
take back a BTOS queue

/ipmove: start/stop the
LP

reject: allow/prevent LP

exCnxSendOnDeal
loc: make final

LP request scheduler and
move

service spawn execution
syslocal: special system
Ip, cancel: send/cancel

arequest and wait for the

common object file/
Idgetname:

abs:

logname:

name. getenv:

report process status.
report repeated lines in a
reporter. /Processor
reporter.

reposition a file pointerina

request and wait for the
request code.
request. quRemove:

request scheduler and
move/

requests. accept,

request. exSendOnDealloc,
requests. /start/stop the

requests. spawnsrv:
requests.

requests to an LP line/.
response. exCall: Send

retrieve symbol name for

return integer absolute
value.

return login name of user.

return value for
environment

ps(1)
unig(1)
fpsar(1)
sar(1)
fseek(3)

excall(2)
exserverq(2)
quremove(3)
ipsched(1)

accept(1)
exfinal(2)

Ipsched(1)

spawnsrv(1)
syslocal(2)
Ip(1)
excall(2)
Idgetname(3)

abs(3)

logname(3)

getenv(3)

Index-81

stat: data

col: filter

file pointer in a/ fseek,
creat: create a new file or
directories.

read mail. mail,

SCCS file.

directories. rm,
chroot: change

chroot: change
logarithm, power; square

common object file
access

expression compile and
match

controlling terminal’s
local

tdl:
standard/restricted/ sh,
nice:

hangups and quits.
nohup:

/alter priority of
activity report package.
report package. sal,
editing activity.
package. sal, sa2,

1192192

returned by stat system
call.

reverse line-feeds.
rewind, ftell: reposition a
rewrite an existing one.
rm, rmdir: remove files or
rmail: send mail to users or

rmdel: remove a delta
from an

rmdir: remove files or
root directory.

root directory for a
command.

root functions.
/exponential,

routines. Idfen:
routines. regexp: regular
RS-232 channels. tp:

1s232 terminal download.
rsh: shell, the

run a command at low
priority.

run a command immune to

running process by/

sal, sa2, sadc: system
sa2, sadc: system activity
sact: print current SCCS file

sadc: system activity
report

stat(5)

col(1)
fseek(3)
creat(2)
m(1)
mail(1)
rmdel(1)

(1)
chroot(2)
chroot(1)

exp(3)
idfen(4)
regexp(5)
tp(6)

tdi(1)
sh(1)

nice(1)
nohup{1)

renice(1)
sar(1)
sar(1)
sact(1)
sar(1)

Index-82

profiler.
graph.
reporter.

space allocation. brk,
formatted input.

bfs: big file
language. awk: pattern

the delta commentary of
an

comb: combine

make a delta (change) to
an

sact: print current
get: get a version of an
prs: print an

rmdel: remove a deita
from an

compare twe versions of
an

scesfile: format of
undo a previous get of an
val: validate

admin; create and
administer

what: identify
of an SCCS file.

sar. system activity
reporter.

sadp; disk access
sag: system activity
sar: system activity

sbrk: change data
segment

scanf, fscanf, sscanf:
convert

scanner.
scanning and processing
SCCS delta. cdc: change

SCCS deltas.
SCCS file. delta:

SCCS file editing activity.
SCCS file.
SCCS file.
SCCS file.

SCCS file. scesdiff:

SCCS file.

SCCS file. unget:
SCCS file.

SCCS files.

SCCS files.

scesdiff: compare two
versions

sar(1)

sadp(1)
sag(t)
sar(1)
brk(2)

scanf(3)

bis(1)
awk(1)
cde(1)

comb(1)
delta(1)

sact(1)
get(1)
prs(1)
rmdel(1)

scesdiff(1)

scesfile(d)
unget(1)
val(1)

admin(1)

what(1)
scesdiff{1)

Index-83

/start/stop the LP
request

common cbject file.
clear: clear terminal
ocurse: optimized

optimization/ curses:
CRT

display editor based on/
vi:

inittab:
terminal session.

system initialization shell

program.

grep, egrep, fgrep:
bsearch: binary
Isearch, Hfind: linear

hcreate, hdestroy:
manage hash

tdelete, twalk: manage
binary

object file. scnhdr:

object/ /read an
indexed/named

/to line number entries
of a

/to relocation entries of a

/seek to an
indexed/named

1192192

sccsfile: format of SCCS
file.

scheduler and move
requests.

scnhdr: section header for a
screen.
screen functions.

screen handling and
screen-oriented (visual)

script for the init process.
script: make typescript of
scripts. /rc, allrc, conre:
sdb: symbolic debugger.

sdiff: side-by-side
difference

search a file for a pattern
search a sorted table.
search and update.

search tables. hsearch,

search trees. tsearch,
tfind,

section header for a
common

section header of a
common

section of a common
object/

section of a common
object/

section of a common
object/

scesfile(4)
Ipsched(1)

scnhdr(4)
clear(1)
ocurse(3)

curses(3)
vi(1)

inittab(4)
script(1)
bre(1)
sdb(1)
sdiff(1)

grep(1)

bsearch(3)
Isearch(3)
hsearch{3)

tsearch(3)
scnhdr(4)
Idshread(3)
Idiseek(3)
Idrseek(3)

Idsseek(3)

Index-84

files. size: print

/mrand48, jrand48,
srand48,

section of/ ldsseek,
Idnsseek:

a section/ Idiseek,
ldniseek:

a section/ ldrseek,
ldnrseek:

header of a common/
Idohseek:

common object file.
Idtbseek:

shmget: get shared
memory

brk, sbrk: change data

to two sorted files.
comm:

of a file. cut: cut out
file. dump: dump

semctl:

semop:

ipcrm: remove a message
queue,

semget: get set of

operations.

exRespond:

section sizes of common
object

sed: stream editor.

seed48, lcong48:
generate/

seek to an indexed/named

seek to line number
entries of

seek to relocation entries of
seek to the optional file

seek to the symbol table
of a

segment.

segment space allocation.

select or reject lines
common

selected fields of each line
selected parts of an object

semaphore control
operations.

semaphore operations.

semaphore set or shared
memory/

semaphores.
semctl: semaphore control

semget: get set of
semaphores.

semop: semaphore
operations.

send a message to a
client. .

size(1)

sed(1)
drand48(3)

Idsseek(3)
Idiseek(3)
Idrseek(3)
Idohseek(3)
Idtbseek(3)
shmget(2)

brk(2)

comm(1)

cut(1)
dump(1)
semctl(2)

semop(2)
iperm(1)

semget(2)
semcti(2)
semget(2)

semop{2)

exrespond(2)

Index-85

exRequest:

the response. exCall:
agroup of processes. kill:
mail. mail, rmail:

line printer. Ip, cancel:

aliases file for

exRequest: Send a
message to a

make typescript of
terminal

buffering to a stream
IDs. setuid,

getgrent, getgrgid,
getgrnam,

goto.

encryption. crypt,

getpwent, getpwuid,
getpwnam,

environment,/ cprofile:
login time. profile:
gettydefs: speed and
terminal

group IDs.

1192192

Send a message to a
server.

Send a request and wait for
send a signal to a process or
send mail to users or read

send/cancel requests to
an LP

sendmail. aliases:

server.
session. script:

setbuf, setvbuf: assign
setgid: set user and group

setgrent, endgrent,
fgetgrent:/

setjmp, longjmp: non-local

setkey, encrypt: generate
DES

setmnt: establish mount
table.

setpgrp: set process group
ID.

getpwent, endpwent,
fgetpwent:/

setting up a C shell

setting up an environment
at

setting used by getty.

setuid, setgid: set user and

exrequest(2)

excall(2)
kifl(2)
mail(1)
Ip(1)

aliases(5)

exrequest(2)
script(1)

sethuf(3)
setuid(2)
getgrent(3)

setjmp(3)
crypt{3)

setmnt(1)
setpgrp(2)
getpwent(3)

cprofile(4)
profile(d)

gettydefs(4)

setuid(2)

Index-86

/getutid, getutline,
pututline,

stream. setbuf,
data in a/ sputl,

standard/restricted
command,/

operations. shmctk:

queue, semaphore set or

shmop:

shmget: get

system: issue a
cprofile: setting up a C

conrc: system
initialization

command programming/
sh, rsh:

operations.
segment.

operations.

processing.

program. sdiff:
login:

pause: suspend process
until

whagqt to do upon receipt
of a

upon receipt of a signal.

setuname: set name of
system.

setutent, endutent,
utmpname:/

setvbuf: asign buffering to a
sgetl: access long integer
sh, rsh: shell, the

shared memory control

shared memory id. /a
message

shared memory operations.
shared memory segment.
shell command.

shell environment at/

shell scripts. /rc, allrc,

shell, the
standard/restricted

shmeti: shared memory
control

shmget: get shared
memory

shmop: shared memory

shutdown, halt: terminate
all

side-by-side difference
sign on.

signal.
signal. signal: specify

signal: specify what to do

setuname(1)
getut(3)

setbuf(3)
sputl(3)
sh(1)

shmetl(2)
ipcrm(1)

shmop({2)
shmget(2)
system(3)
cprofile(d)
bre(1)

sh(1)
shmctl(2)
shmget(2)

shmop(2)
shutdown(1)

sdiff(1)
login(1)
pause(2)

signal(2)

signal(2)

Index-87

of processes. kili: send a

ssignal, gsignal: software

lex: generate programs
for

generator. rand, srand:

atan, atan2:
trigonometric/

functions.

fsize: calculate file
common object files

size: print section
an interval.
interval.

create file system
partition

the/ ttyslot: find the
current/ ttyslot: find the

base. modemcap:

pg: file perusal filter for
ssignal, gsignal:
sort:

gsort: quicker

tsort: topological

1192182

signal to a process or 2
group

signals.

sigmple lexicol tasks.

simple random-number

sin, cos, tan, asin, acos,

sinh, cosh, tanh:
hyperbolic

size.
size: print section sizes of

sizes of common object
files.

sleep: suspend execution
for

sleep: suspend execution
for

{slice). crup:

slot in the utmp file of
slot in the utmp file of the

smart modem capability
data

soft-copy terminals.
software signals.

sort and/or merge files.
sort.

sort: sort and/or merge
files.

sort.

kill{2)

ssignal(3)
lex(1)

rand(3)
trig(3)

sinh(3)

fsize(1)
size(1)

size(1)
sleep(1)
sleep(3)
crup(t)

mv(5)
ttyslot(3)

modemcap(5)

py(1)
ssignal(3)

. sort(1)

qsort(3)
sort(1)

tsort(1)

Index-88

or reject lines common
to two

bsearch: hinary search a

brk, sbrk: change data
segment

specific Application/

spawnsrv: service
terminal. ct:

process on a specific/

execution requests.

a specific/ spawnlp,

spawn. execute a
process on a

execute a process on a

fspec: format

receipt of a signal.
signal:

/set terminal type,
modes,

used by getty. gettydefs:

hashcheck: find spelfing/

spelling/ spell,
hashmake,

spellin, hashcheck: find

split:
csplit: context

efl files. fsplit:

sorted files. comm: select

sorted table.

space allocation.

spawn: execute a process
on a

spawn execution requests.

spawn getty to a remote

spawnlp, spawnvp:
execute a

spawnsrv; service spawn

spawnvp: execute a
process on

specific Application/

specific Application/
/spawnvp:

specification in text files.

specify what to do upon
speed, and line discipline.

speed and terminal
settings

spell, hashmake, spellin,

spellin, hashcheck: find

spelling errors.
/hashmake,

split a file into pieces.
split.

split fortran, ratfor, or

comm(1)

bsearch(3)
brk(2)

spawn(1)

spawnsrv(1)
ct(1)

spawn(3)

spawnsrv{1)

spawn(3)
spawn(1)
spawn(3)

fspec(4)
signal(2)

getty(1)
gettydefs{4)

spell(1)
spell(1)

spell(1)

split(1)
csplit(1)
fsplit(1)

Index-89

pieces.

uuclean: uucp

Ipr: line printer

Ipadmin: configure the LP
output, printf, fprintf,
integer data in a/

power,/ exp, log, log10,
pow,

exponential, logarithm,
power

generator, rand,

nrand48, mrand48,
jrand48,

input. scanf, fscanf,
signals.

package. stdio:
communication package/
stdipc:

sh, rsh: shell, the

Ipsched, Ipshut, Ipmove:

system call.

stat: data returned by

ff: list file names and

processor. pstat: ICC

ustat: get file system

1192192

- split: split a file into

spool directory clean-up.
spooler.

spooling system.
sprintf: print formatted
sputl, sgetl: access long

sqrt: exponential,
logarithm,

square root functions.
/sqit:

srand: simple
random-number

srand48, seed48,
Icong48:/

sscanf: convert formatted
ssignal, gsignal: software

standard buffered
input/output

standard interprocess

standard /restricted
command/

start/stop the LP request/
stat: data returned by stat
stat, fstat: get file status.
stat system call.

statistics for a file
system.

statistics for

statistics.

split(1)
uclean(1)
1pr(1)
Ipadmin{1)
printf(3)
sputl(3)
exp(3)

exp(3)
rand{3)
drand48(3)

scanf(3)
ssignal(3)
stdio(3)

stdipc(3)
sh(1)

Ipsched(1)
stat(5)
stat(2)
stat(5)
#(1)

pstat(1)
ustat(2)

Index-90

Ipstat: print LP

feof, clearerr, fileno:
stream

control. uustat: uucp

communication facilities

ofSetFileStatus: BT0S
File

ps: report process
stat, fstat: get file
input/output package.

wait for child process to

strncmp, strepy,
strnepy,/

/strepy, stncpy, strlen,
strnepy,/ streat, strncat,

/strncat, stremp,
stracmp,

/strrchr, strpbrk, strspn,
sed:
fflush: close or flush a

fopen, freopen, fdopen:
open a

repesition a file pointer
ina

get character or word
from a

fgets: get a string from a

status information.

status inquiries. ferror,

status inquiry and job

status. /report
inter-process

Status. ofGetFileStatus.

status.

status.

stdio: standard buffered
stime: set time.

stop or terminate. wait:

strcat, strncat, strcmp,

strchr, strrchr, strpbrk,/
stremp, strncmp, strcpy,

strepy, strncpy, strlen,/

strepn, strtok: string/
stream editor.

stream. fclose,

- stream.

stream. fseek, rewind,
ftell:

stream. /getchar, fgetc,
getw:

stream. gets,

Ipstat(1)
ferror(3)

uustat(1)

ipes(1)
ofstatus(3)

psi1)
stat(2)
stdio(3}
stime(2)
wait(2)
string(3)

string(3)
string(3)
string(3)

string(3)
sed(1)

felose(3)
fopen(3)

fseek(3)
getc(3)

gets(3)

Index-91

put character or word on a

puts, fputs: put a string
on a

setvbuf: assign buffering
toa

/teof, clearerr, fileno:

push character back into
input

long integer and base-64
ASCII

convert date and time to
floating-point number to
gets, fgets: get a
puts, fputs: put a

strspn, strcspn, strtok:

number. strtod, atof:
convert

number. atof: convert
ASCHI

strtal, atol, atoi: convert
line number information/
number/ strip:

strncmp, strepy, strncpy,
strepy, strncpy,/ streat,
strcat, strncat, stremp,

strcmp, stracmp, strepy,

1192192

stream. /putchar, fputc,
putw:

stream.
stream. sethuf,

stream status inquiries.

stream. ungetc:

string. /164a: convert
between

string. /asctime, tzset:
string. /fevt, gevt: convert
string from a stream.
string on a stream.

string operations.
/strpbrk,

string to double-precision
string to floating-point

string to integer.

strip: strip symbol and
strip symbol and line
strlen, strchr, strrchr,/
strncat, stremp, strnemp,
strncmp, strepy, strncpy./

strncpy, strlen, strchr,/

putc(3)
puts(3)
setbuf(3)

ferror(3)
ungetc(3)

a641(3)

ctime(3}
ecvt(3)
gets(3)
puts(3)
string(3)

strtod(3)
atof(3)

strtol(3)
strip(1)

strip(1)

string(3)
string(3)
string(3)
string(3)

Index-92

/strlen, strchr, strrchr,
strncpy, strlen, strchr,
strchr, strrchr, strpbrk,

to double-precision
number.

/strpbrk,strspn, strespn,
string to integer.
terminal.

another user.

intro: introduction to
plot: graphics interface

/same lines of several
files or

count of a file.

du:
sync: update the
sync: update

su: become

interval. sleep:
interval. sleep:

pause:

swab:
orders to/ swapshort,
byte orders to/

strpbrk, strspn, strcspn,/
strrchr, strpbrk, strspn,/
strspn, strcspn, strtok:/

strtod, atof: convert string

strtok: string operations.
strtol, atol, atoi: convert
stty: set the options for a
su: become super-user or
subroutines and libraries.
subroutines.

subsequent lines of one file.

sum: print checksum and
block

A
summarize disk usage.
super block.
super-block.

super-user or another
user.

" suspend execution of an

suspend execution for

suspend process until
signal.

swab: swap bytes.
swap bytes.
swaplong: transiate byte

swapshort, swaplong:
translate

string(3)
string(3)
string(3)
strtod(3)

string(3)
strtol(3)
stty(1)
su(1)
intro(3)
plot(3)
paste(1)

sum(1)

du(1)
sync(1)
sync(2)
su(1)

sleep(1)
sleep(3)
pause(2)

swab(3)
swah(3)
swapshort(3)
swapshort(3)

Index-93

file.

information from/ strip:
strip

file/ ldgetname: retrieve

name for common object
file

object/ /compute the
index of a

|dtbread: read an indexed

syms: common object file

object/ Idtbseek: seek to
the

sdh:

symbol table format.

update: provide disk

swrite:
error/ perror, errno,

requests.

perror, errno,
sys__errlist,

binary search a sorted

for common obiject file
symbol

/compute the index of a
symbol

1192182

swrite: synchronous write
on a

symbol and line number

symbol name for common
object

symbol table entry.
/symbol

symbol table entry of a
common

symbol table entry of a
common/

symbol table format.

symbol table of a common

symbolic debugger.
syms: common object file
sync: update super-block

sync: update the super
block. .

synchronization.

synchronous write on a
file. .

sys_errlist, sys__nerr:
system

syslocal: special system

sys__nerr: system error/

table. bsearch:

table entry. /symbol name

table entry of a common
object/

swrite(2)
strip(1)
ldgetname(3)
Idgetname(3)
Idthindex(3)
Idthread(3)

syms(4)
Idthseek(3)

sdh(1)

syms(4)
sync(2)
sync(1)

update(1)

swrite(2)
perror(3)

syslocal(2)
perror(3)

bsearch(3)
Idgetname(3)

Idtbindex(3)

Index-94

file. /read an indexed
symbol

common object file
symbol

master device information

mnttab: mounted file
system

ldtbseek: seek to the
symbol

setmnt: establish mount

hdestroy: manage hash
search

tabs: set

expand, unexpand:
expand

a file.
request. quRemove:

trigonometric/ sin, cos,

sinh, cosh,
tar:

recover files from a
backup

mt: interface for
magnetic

programs for simple
lexical

search trees, tsearch,
tfind

table entry of a common
object

table format. syms:

table. master:

table.

table of a common object
file.

table.

tables. hsearch, hcreate,

tabs on a terminal. .

tabs: set tabs on a
terminal.

tabs to spaces, and vice/

tail: deliver the last part of
take back a BTOS queue

tan, asin, acos, atan,
atan2:

tanh: hyperbolic functions.

tape file archiver.

tape. frec:
tape.

tar: tape file archiver.

tasks. lex: generate

tdelete, twalk: manage
binary

tdl: rs232 terminal
download.

Idtbread(3)
syms(4)

master(4)

mnttah(4)
Idthseek(3)

setmnt(1)
hsearch(3)

tabs(1) .
tabs(1)

expand(1)

tail(1)
quremove(3)
trig(3)

sinh(3)
tar(1)
free(1)

mt(6)

tar(1)
lex{1)

tsearch(3)

tdi(1)

index-95

initialization. init, icode,

temporary file. tmpnam,

tmpfile; create a

tempnam: create a name
for a

terminals.

term: format of compiled
file.

data base.
termcap:
terminfo:

console: console

ct: spawn getty to a
remote

generate file name for
tdl: rs232

/terminal interface, and
/tgetstr, tgoto, tputs:

terminal/ tset: set
terminal,

termio: general
tty: controlling

dial: establish an
out-going

1192192

tee: pipe fitting.
telinit: process control

tempnam: create a name
for a

temporary file.

temporary file. tmpnam,

term: conventional names

for
term file. .

term: format of compiled
term

termcap: terminal
capability

terminal capability data
base. .

terminal capability data
base.

terminal.

terminal.

terminal. ctermid:
terminal download.
terminal environment.
terminal independent/

terminal interface, and

terminal interface.
terminal interface.

terminal line connection.

tee(1)
init(1)
tmpnam(3)

tmpfile(3)
tmpnam(3)

term(5)

term(4)
term(4)

termcap(4)
termcap(4)
terminfo(4)

console(6}
ct({1) ’

ctermid(3)
tdi(1)
tset(1)
termcap(3)
tset(1)

termio(6)

tty(6)
dial(3)

index-96

clear: clear
script: make typescript of

getty. gettydefs: speed
and

stty: set the options for a
tabs: set tabs on a

and terminal/ tset: set

tty: get the name of the
isatty: find name of a

and line/ getty: set

vt: virtual
channels. tp: controlling

perusal filter for
soft-copy

term: conventional names
for

wmlayout: get
kill:

shutdown, halt:
exit, —_exit:
for child process to stop or
tic:

tput: query

tic;

interface:
command.

ed, red:

terminal screen.
terminal session.

terminal settings used by

terminal.
terminal.

terminal, terminal
interface,

terminal.
terminal. ttyname,

terminal type, modes,
speed,

terminal.
terminal’s local RS-232

terminals. pg: file

terminals.

terminal’s window layout.

terminate a process.
terminate all processing.
terminate process.
terminate. wait: wait
terminfo compiler.
terminfo database.
terminfo compiler.
termio: general terminal
test: condition evaluation

text editor.

clear(1)
script(1)
gettydefs(4)

stty(1)
tabs(1)
tset(1)

tty(1)
ttyname(3)

getty(1)

vt(6)
tp(6)
pg(1)

term(5)

wmlayout(3)
kill{1)
shutdown(1)
exit(2)
wait(2)
tic(1)
tput(1)
terminfo(4)
termio(6)
test(1)
ed{1)

Index-97

ex:
ex for casual/ edit:
change the format of a

fspec: format
specification in

plock: lock process
more, page:

strings: extract the
ASClI

binary search types.
tsearch,

tgetstr, tgoto, tputs:/
tputs:/ tgetent, tgetnum,
tgoto, tputs:/ tgetent,

tgetent, tgetnum,
tgetflag,

/tgetnum, tgetflag,
tgetstr,

data and system/ timex:

time:
commands at a later
environment at login

systems for optimal
access

profil: execution

up ar environment at
login

1192192

text editor.
text editor (variant of
text file. newform:

text files.

text, or data in memory.
text persual.

text strings in a file.

tfind, tdelete, twalk:
manage

tgetent, tgetnum, tgetflag,
tgetflag, tgetstr, tgoto,
tgetnum, tgetflag, tgetstr,
tgetstr, tgoto, tputs:/

tgoto, tputs: terminal/

tic: terminfo compiler.

time a command; report
process

time a command.
time. /batch: execute
time. /up a C shell
time. dcopy: copy file

time: get time.
time profile..

time. profile: setting

ex{1)
edit(1)
newform(1)
fspec(4)

plock(2)
more(1)

strings(1)
tsearch(3)

termcap(3)
termcap(3)
termcap(3)
termcap(3)

termcap(3)

tic(1)

timex(1)

time(1)
at{1)
cprofile(d)
dcopy(1)

time(2)
profil(2)
profile(4)

index-98

stime: set

time: get

tzset: convert date and
clock: report CPU
process times.

update access and
modification

get process and child
process

file access and
modification

process data and
system/

file.
for a temporary file.

/tolower, __toupper,
__tolower,

popen, pclose: initiate
pipe

toupper, tolower,
—toupper,

toascii: translate/
toupper,

tsort:

modification times of a
file.

translate/ toupper,
tolower,

__tolower, toascii:
translate/

local RS-232 channels.

time.

time: time a command.

time.

time to string. /asctime,
time used.
times: get process and child

times of a file. touch:
times. times:
times. utime: set

timex: time a command;
report

tmpfile: create a
temporary

tmpnam, tempnam: create
a name

toascii: translate
characters.

to/from a process.

—tolower, toascii:
translate/

tolower, __toupper,
—tolower,

topological sort.

touch: update access and

—toupper, __tolower,
toasci:

toupper, tolower,
—toupper,

tp: controlling terminal’s

stime(2)
time(1)

time(2)

ctime(3)
clock(3)
times(2)
touch(1)

times(2)
utime(2)
timex(1)
tmpfile(3)
tmpnam(3)
conv(3)
popen(3)
conv(3)
conv(3)

tsort(1)
touch(1)

conv(3)
conv(3)

tp(6)

Index-99

database.

/tgetflag, tgetstr, tgoto,

ptrace: process
swapshort, swaplong:

/—toupper, __tolower,
toascii:

tr:
ftw: walk a file

twalk: manage binary
search

tan, asin, acos, atan,
atan2:

typesetting view/ mv: a
values.

Ju3b, u3bb, vax: provide
true, false: provide

twalk: manage binary
search/

interface, and terminal/

interface.

a terminal.

utmp file of the current/

tsearch, tfind, tdelete,

1192192

tput: query terminfo

tputs: terminal
independent/

tr: translate characters.
trace. ;
translate byte orders to/

translate characters.

translate characters.
tree.
trees: /tfind, tdelete,

trigonometric functions.
/cos,

troff macro package for
true, false: provide truth
truth value about your/
truth values.

tsearch, tfind, tdelete,

tset; set terminal, terminal
tsort: topological sort.
tty: controlling terminal

tty: get the terminal’s
name.

ttyname, isatty: find name
of

ttyslot: find the slot in the

twalk: manage binary
search/

tput(1)
termcap(3)

tr(1)
ptrace(2)
swapshort(3)

conv(3)

tr(1)
ftw(3)
tsearch(3)

trig(3)

mv(5)
true(1)
machid(1)
true(1)
tsearch(3)

tset{1)
tsort(1)
tty(6)
tty(1)

ttyname(3)

ttysiot(3)
tsearch(3)

Index-100

file: determine file

pdp11, u3b, vax:
processor

getty: set terminal

ttytype: list of terminat
types.

types: primitive system
data

session. script: make
/troff macro package for

/localtime, gmtime,
asctime,

truth/ mc68k, pdp11,
mc68k, pdp11, ulb,
getpw: get name from
limits.

creation mask.

mask.

file system. mount,

CTIX system.

an SCCS file.

type.
type. mc68k,

type, modes, speed, and
line/

types by terminal number.

types: primitive system
data

types.

typescript of terminal
typesetting view graphs/

tzset: convert date and
time/

u3b, u3b5, vax: provide
u3bb, vax: provide truth/
uiD.

ulimit: get and set user
umask: set and get file

umask: set file-creation
mode

umount: mount and
dismount

umount: unmount a file
system.

uname: get name of
current

uname: print name of
system.

unget: undo a previous
get of

file(1)
machid(1)

getty(1)

ttytype(4)
types(5)

types(5)

script(1)
mv(5)
ctimé(3)

machid(1)
machid(1)
getpw(3)
ulimit(2)
umask(2)

umask(1)
mount(1)
umount(2)
uname(2)
uname(1)

unget(1)

Index-101

spaces, and/ expand,
get of an SCCS file

into input stream.

/seed48, lcongd8:
generate

a file.

mktemp: make a

unlink system calls. link,
entry.

unlink: exercise link and
umount:

files. pack, pcat,
times of a file. touch:

of programs. make:
maintain,

ifind: linear search and
synchronization

sync:

sync:

du: summarize disk

id: print

setuid, setgid: set
crontab--

character login name of
the

1182192

unexpand: expand tabs to
unget: undo a previous

ungetc: push character
back

uniformly distributed/

unig: report repeated lines
in

unique file name.

units: conversion program.
unlink: exercise link and
unlink: remove directory
unfink system calls. link,
unmount a file system.

unpack: compress and
expand

update access and
modification

update, and regenerate
groups :

update. Isearch,
update: provide disk
update super-block.
update the super block.
usage.

user and group IDs and
names.

user and group 10s.
user crontab file.

user. cuserid: get

expand(1)
unget(1)
ungetc(3)

drand48(3)
unig(1)

mktemp(3)
units(1)
link(1)
unlink(2)
link(1)
umount(2)
pack(1)

touch(1)
make(1)

Isearch(3)
update(1)
sync(2)
sync(1)
du(1)
id(1)

setuid(2)
crontab(1)
cuserid(3)

Index-102

/qetgid, getegid: get real
environ:
ulimit: get and set

logname: return login
name of

/get real user, effective

become super-user or
another

the utmp file of the
current

write: write to another
of ex for casual

mail, rmail: send mail to
wall: write to all
statistics.

modification times.

utmp, wtmp:

endutent, utmpname:
access

ttyslot: find the slot in the
entry formats.

/putuline, setutent,
endutent,

clean-up.

uusub: monitor

uuclean:

user, effective user, read/
user environment,
user limits.

user.

user, real group, and/

user. su:
user. /find the slot in

user.
users). /editor (variant
users or read mail.

users.

ustat: get file system
utime: set file access and

utmp and wtmp entry
formats.

utmp file entry. /setutent,

utmp file of the current
user.

utmp, wtmp: utmp and
wtmp

utmpname: access utmp
file/

uuclean: uucp spool
directory

uucp network.

uucp spool directory
clean-up.

getuid(2)
environ(5)
ulimit(2)

logname(3)

getuid(2)
su(1)

ttysiot(3)

write(1)
edit(1)
mail(1)
wall(1)
ustat(2)
utime(2)
utmp(4)

getut(3)
ttyslot(3)
utmp(4)
getut(3)
uuclean(1)

uusub(1)

uuclean(1)

Index-103

control. uustat:

bedtween computer
systems.

between computer/
uucp,

computer/ uucp, uulog,

system-to-
computer/ uuto,

and job control.

system-to-computer
system/

execution.

val:
u3b5, vax: provide truth

abs: return integer
absolute

- getenv: return

ceiling, remainder,
absolute

putenv: change or add
values.
true, false: provide truth

values:
machine-dependent

/print formatted output
of a

argument list.

1192192

uucp status inquiry and job

uucp, uulog, uuname: copy
data

uulog, uuname: copy data

uuname: copy data
between

uupick: public computer

uustat: uucp status inquiry

uusub: monitor uucp
network.

uuto, uupick: public
computer

uux: remote system
command

val: validate SCCS file.
validate SCCS file.
value about your/ /u3b,

value.

value for environment
name.

value functions. /fabs:
floor,

value to environment.
values: machine-dependent
values.

values.
varargs argument list.

varargs: handle variable

uustat(1)
uucp(1)

uucp(1)

. uucp(t)

uuto(t)

uustat(1)
uusub(1)

uuto(1)
uux(1)

val(1)
val(1)
machid(1)
abs(3)

getenv(3)
floor(3)

putenv(3)
values(5)
true(1)

values(5)
vprintf(3)

varargs(5)

A

index-104

varargs: handle
edit: text editor
mcB8k, pdp11, u3b,

option letter from
argument

assert:

ve:

get: get a

scesdiff: compare two

formatted output
of /vprintf,

display editor based on ex.
/package for typesetting

on ex. vi: screen-oriented

systems with label
checking.

print formatted output of
a/

output of/ vprintf,
viprintf,

process.

or terminate. wait:

exCalt: Send arequest and

to stop or terminate.

ftw:

variable argument list.
(variant of ex for/
vax: processor type.
ve: version control.

vector. getopt: get

verify program assertion.
version control.

version of an SCCS file.
versions of an SCCS file.

vprintf, vsprintf: print

vi: screen-oriented (visual)
view graphs and slides.

(visual) display editor
based

volcopy, labelit: copy file
vprintf, viprintf, vsprintf:
vsprintf: print formatted

wait: await completion of

wait for child process to
stop

wait for the response.

wait: wait for child
process

walk a file tree.

wall: write to all users.

varargs(5)
edit(1)
machid(1)
ve{1)
getopt(3)

assert(3)
ve(1)
get(1)
scesdiff(1)
vprintf(3)

vi(1)
mv(5)
vi(1)
volcopy(1)
Qprintf(i!)

vprintf(3)

wait(1)
wait(2)

excall(2)
wait(2)

ftw(3)
wall(1)

Index-105

signal. signal: specify

whodo:

who:

fold long lines for finite
and floppy disks. dsk:
wmgetid: get

wmlayout: get terminal’s

wmop:
window:

wm:

primitives:

a file descriptor with a

window layout.

operations.
file descriptor with a/

descriptor with a/
wmsetid,

1192192

wc: word count.
what: identify SCCS files.

waht to do upon receipt
of a

who is doing what.
who is on the system.

who: who is on the
system.

whodo: who is doing
what.

width output device. fold:
winchester, cartridge,
window ID.

window layout.

window management
operations.

window management
primitives.

window management.

window: window
management

window. /wmsetids:
associate

wm: window
management.

wmgetid: get window ID.
wmiayout: get terminal’s

wmop: window
management

wmsetid, wmsetids:
associate a

wmsetids: associate a file

we(l)
what(1)
signal(2)

whodo(1)
who(1)
who(1)

whodo(1)

fold(1)
dsk(6)
wmgetid(3)
wmlayout(3)

wmop(3)
window(6)

wm(1)

window(6)
wmsetid(3)
wm(1)

wmgetid(3)
wmlayout(3)

wmop(3)
wmsetid(3)

wmsetid(3)

Index-106

cd: change

chdir: change

get path-name of current
pwd:

swrite: synchronous
write:

putpwent:

wall:

write:

open: open for reading or
utmp, wtmp: utmp and

formats. utmp,

accounting records.
fwtmp,

list(s) and execute
command.

0. 1. in,

i0. i1, in, ¥0,
compiler-compiler.
i0. i1, in, ¥0, 1,

working directory.

working directory.

working directory. getcwd:

working directory name.
write on a file.

write on a file.

write password file entry.
write to all users.

write to another user.

write: write on a file.

write: write to another user.

writing.
wtmp entry formats.

wtmp: utmp and wtmp
entry

wtmpfix: manipulate
connect

xargs: construct argument

y0, y1, yn: Bessel
functions.

y1, yn: Bessel functions.
yacc: yet another

yn: Bessel functions.

cd(1)
chdir(2)
getcwd(3)
pwd(1)
swrite(2)
write(2)
putpwent(3)
wall(1)
write(1)
write(2)
write(1)
open(2)
utmp(4)
utmp(4)

fwtmp(1)
xargs(1)
bessel(3)

bessel(3)
yacc{1)
bessel(3)

Title:
Form Number: Date:

Burroughs Corporation is interested in your comments and suggestions regarding
this manual. We will use them to improve the quality of your Product Information.

l%ease check type of suggestion: [Addition (] Deletion [J Revision
Error

Comments:

Name
Title
Company

Address
Street City State Zip

Telephone Number (
Area Code

Title:
Form Number: Date:

Burroughs Corporation is interested in your comments and suggestions regarding
this manual. We will use them to improve the quality of your Product Information.

Eease check type of suggestion: [] Addition [Deletion [J Revision
Error

Comments:

Name
Title
Company

Address ;
Street City State Zip

Telephone Number ()
Area Code

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO.817 DETROIT, MI 48232

POSTAGE WILL BE PAID BY ADDRESSEE

Burroughs Corporation
Production Services — East
209 W. Lancaster Avenue
Paoli, Pa 19301 USA

ATTN: Corporate Product information

BUSINESS REPLY CARD

FIRST CLASS PERMITNO.817 DETROIT, MI 48232

POSTAGE WILL BE PAID BY ADDRESSEE

Burroughs Corporation
Production Services — East
209 W. Lancaster Avenue
Paoli, Pa 19301 USA

ATTN: Corporate Product Information

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

