'

UNISYS

UNISYS

BTOS I

Language
Development

Programming
Guide

Copyright © 1988 Unisys Corporation
All Rights Reserved.
Unisys is a trademark of Unisys Corporation.

Relative to August 1988
Release Level 2.0 Distribution Code SA

‘ Printed in U S America
Priced Item 5028707

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any
product and related material disclosed herein are only furnished pursuant and
subject to the terms and conditions of a duly executed Program Product License
or Agreement to purchase or lease equipment. The only warranties made by
Unisys, if any, with respect to the products described in this document are set
forth in such License or Agreement. Unisys cannot accept any financial or other
~ responsibility that may be the result of your use of the information in this
document or software material, including direct, indirect, special or consequential
damages.

You should be very careful to ensure that the use of this information and/or
software material complies with the laws, and regulations of the jurisdictions
with respect to which it is used.

The information contained herein is subject to change without notice. Revusnons
may be issued to advise of such changes and/or additions.

Comments or suggestions regarding this document should be submitted on a
User Communication Form (UCF) with the CLASS specified as 2 (System
Software), the Type specified as 3 (DOC), and the product specified as the
seven-digit form number of the manual (for example, 5028707).

About This Guide

The Language Development Software allows you to create
executable run files using one or more languages or
language tools (purchased separately).

This programming guide contains the following
information:

o Language Development software installation information

o LINK, BIND, and LIBRARIAN command procedures

o general and troubleshooting information on linking
programs

o descriptive and operational information for the Unisys

Assembler and Assembly language used in the Unisys
Family of Workstation applications

Who Should Use This Guide

This guide is for programmers. To understand some of the
information in this guide, you must be familiar with the
following:

o the BTOS Executive level operations

o the programming language your modules were written
in (Pascal, FORTRAN, C, compiled BASIC, or Assembly)

o other programming tools (such as Forms, Font, and ISAM)

How To Use This Guide

If you are using Language Development Software for the
first time, you should read section 1 and appendix B. They
contain basic information you will need to understand and
install the software.

In addition, if you scan the contents and review the topics
before you start, you may find this guide easier to use. To

- find definitions of unfamiliar words, use the glossary; to
locate specific information, use the index.

You may also want to review the compiler manuals to
become familiar with the Math Server.

5028707

vi

About This Guide

How This Guide is Arranged

This guide is divided into sections.

Section 1 presents a basic/conceptual overview of the
software. Sections 2 through 5 contain general and
procedural information on the Linker and Librarian;
sections 6 through 11 describe the general operations and
procedures for using the BTOS Assembler.

For software installation information, refer to appendix B.

For general troubleshooting information and suggested
error message responses, refer to appendix A.

Additional technical information is included in appendices
C through 1.

Conventions

The following conventions apply throughout this guide:

o

Where two keys are used together for an operation,
their names are hyphenated. For example, ACTION-GO
means that you press GO while holding down the
ACTION Kkey.

The term BTOS refers to BTOS II.

o The term “character” includes spaces.

Numbers are decimal except when suffixed with h for
hexadecimal.

“Memory address” refers to the logical memory address.

o Variable names are named according to a formal

convention. The name of a variable should represent
some of its characteristics.

A variable name is composed of up to three parts: a
prefix, a root, and a suffix. The following prefixes are
used in this guide:

b byte (8-bit character or unsigned number)

c count (unsigned number)

i index (unsigned number)

n number (unsigned number, same as c)

TN

About This Guide vii

p logical memory address (pointer: 32 bits consisting
of the offset and the segment base address)

q quad (32-bit unsigned integer)

rb relative byte (a 16-bit offset from an arbitrary base
address)

rg array of...
sb array of bytes, where first byte is the size
w word (16-bit)

o A prefix can be a compound. For example, the
compound prefix rbrg indicates the position of an array
relative to the beginning of the run file header.

o The root of a variable name can be unique to that
variable, a commonly used root, or a combination of the
two. Common roots are:

Ifa logical file address
mp map

par paragraph

sa segment address '
ra relative address

o A suffix identifies the use of the variable. The suffix
used in this guide is Max. Max is the maximum length
of an array or buffer (thus one greater than the largest
allowable index). Examples of variable names are:
iProtoDescMax - the maximum SN index

rbrgrle - the offset of the array of relocation pointers
from the beginning of the run file header

5028707

viii About This Guide

Related Product Information

For detailed information on BTOS, refer to your operating
system reference documentation.

For an explanation of the BTOS Executive and its
commands, refer to your Standard Software
documentation.

For a complete description of the BTOS calls, refer to your
system procedural interface documentation.

For a listing of BTOS and related application status codes,
refer your status codes documentation.

For information and procedures on creating and editing
forms, refer to your forms designer programming
documentation.

For information and procedures on customizing an
operating system and creating a debugger, refer to your
system procedural interface documentation, and your
Debugger documentation.’

For more information about writing and compiling your
programs, refer to the documentation of the language or
compiler you are using. For information on the Math

Server, refer to the Pascal or FORTRAN documentation.

ix

Contents

About ThisGuideccvvvvninn..
Who Should Use ThisGuide
How ToUse ThisGuide
How This Guide is Arranged
Conventionsccviiiiiniiiiiiniin
Related Product Information

Section 1: BTOS Il Language Development Overview
Using the Linkerccoiiiiiiiiniiinnnaen
Linker Commandsottt
The Linker's Two Passescovviennnriennnnenn
Using the Librarianccvviiiiiiint,
Library File Namesccoiiiiiiiiiiiiiinnt
Cross-Reference Listscciiiiiiiiniiiinnn
Using the Assemblerot
Features and Characteristicscvvvvvevineennnnns

SBgMeNS ... e e

Adressingvviittit e e

ProCBaUIES ...t e e

T £
Choosing the Right Languageoovveiiiiinnn,

Section 2: Creating BTOS Run Files with the Linker
The BTOSRun FileFormat
RunFile Headerc.covvveviiniiiiiiiiivinnns
Relocation Datac.covvvivinniiiiiiiieeeiennnns
Memory Imageooviiiiiiiiiii e
Virtual Code Segmentsc.c..eiiiiiin e
Library Search Algorithmo ol
Segment Element Names and Classes
Creating Linker Segmentscoo0t.
Combination Rulesccvveiviiiiiiiiiiineeeennns
Summary of Segment Orderingt
Alignment Attributesoiiiii i
Addressing Linker Segmentsol
Limits ... e
‘Structure of Run File Headers

Section 3: Using the LINK or BIND Command
LINK and BIND Command Forms and Parameters
LinkingaRun Filec.ccciiieiiiiiinn,
Program Memory Requirements
Run-Time Library Codecoovviiiiiiiiiiiien,
Resident Programsovvveeeririiennineriiineens

5028707

1-7

1-8
1-8
19

21
21
21
2-2
22
2-2
23
23
21
21
2-10
2-10
21
ral
2-12

31
32
314
315
3-16
3-16

Contents

Swapping Programs

Programs that Allocate Memory
Linker Map and Symbol Files
Reading the Map File (Version 4)

Addresses
Segment Names
Segment Classes

Reading the Map File (Version 6)
Public Symbols and Line Numbers
Allocating Memory Space

DS Allocation ...
The Memory Array

Linking 8 Swapping Program
Computing Stack Size
Reducing the Stack
Correcting Stack Overflow

Section 4: Using

LIBRARIAN Command Form and Parameters
Building a New Library

......................................
..............................
.............................
............................
.......................................
.......................................
......................................
............................
............................
................................
.......................................
.......................................
................................
.....................................
....................................

................................

the LIBRARIAN Command

..................

..................................

Modifyinga Library ccoiiiiiiii i

Extracting Object Modules from a Library

....................

Producing A Cross-Reference List Only

Section 5: Invoking the Assembler from the Executive
Sample Source Files Field Entry

Section 6: Programs and Segments
Segments and Memory References

Referencing Segments

....................................

Segment Naming and Linkage

SEGMENT/ENDS Directives
Alignment

.................................

......................................

Combining Segments i

Classname

Segment Nesting .
Segment Linkage .
ASSUME Directive

Memory Addressing

......................................

.......................................

.......................................

.....................................

....................................

Loading Selector Registerscoo it
Selector Override Prefixc..iiiiiiiiiiinn,
Anonymous Referenceso,
Memory References in String Instructions

GROUP Directive
Procedures

.......................................

.......................................

PROC/ENDP DirCtivesc.vovuvuneennrnnnenennenaonns

Calling a Procedure

......................................

3-16
317
317
317
317
3-18
3-18
3-19
3-20
3-23
3-23
3-25
3-26
3-27
3-28
3-28

4
41
43
44

45
45

5-1
5-3

61
6-1
6-1
6-2
6-2
6-3
6-3
6-4
6-4
6-5
6-6
6-8
6-9
8-10
6-11
6-12
6-14
6-15
6-15
6-16

TN

Contents

Xi

Recursive Procedures and Nesting on the Stack

Returning From a Procedure
Other Directives

..........................

Location Counter ($) and ORG Directive

EVEN Directive

Program Linkage Directives (NAME/END, PUBLIC and EXTRN)

END Directive

Section 7: Data Definitions ...

.......................

Comstants0ttt
Variable and Label Attributes
Attribute Summary i
Variable Definition (DB, DW, DD Directives)
Constant Initialization00 iiiiiiiininnn
Indeterminate Initialization i,
Address Initialization (DW and DD only)
String Initialization iiiiiiiae...
Enumerated Initialization i,

DUP Initialization
Labels and LABEL Directive

..........................

LABEL Directiveooiviiiininiiiiiiiieniinnen.

Label with Variables
Label with Code

..........................

..........................

Label Addressability il
Forward Referencescovinnnenn.

Section 8: Operands and Expressions

immediate Operands

..........................

Register Operandscccoviiiiininnnnnn,
Explicit Register Operandsccoiiiinnn..
Implicit Register Operandscoiiiiinn,

Selector Registers
General Registers
Flags

..........................

MemoryOperandsccoiiiiiiiiinnn,

Memory Operands to JMP and CALL

Variables
Simple Variables
Indexed Variables

..........................

..........................

..........................

Double-Indexed Variablesot
Attribute Operatorscoiiiiiiiiiiaaaan
PTR, The Type Overriding Operator
Selector Override Operator cvviiiiiinnnn,
Short Operatorcvmrmniiniiiiiiiiiiannns
This Operatorcconiniiinnrimnnenennnaennnnns
Value—Returning Operators

Operator Precedence in Expressions

5028707

........................

817
6-17
6-18
6-19
6-19
6-20
6-21

7-1
12
13

15
1-6
1-8
11
17
18
18
19

1-10
7-10
-
112

8-6

8-10
8-10
8-10
8-1n
8-12
8-12
813
8-15

Xii Contents

EQU Directivecciiiiiiiieiiiineeinnnann 8-16
PURGE Directivecoiviinneinnnennnnnnnnn 8-16
Section9: Flags i, 9-1
FlagOperationsccooviiiiiinnnnnnnenen. 9-1
Auxiliary Carry Flag (AF) ... i i e 9-2
Carry Flag (CF) i 9-2
Overflow Flag (OF)ty 9-3
Parity Flag (PF)oit ittt e i 9-3
Sign Flag (SF) e e e 9-3
ZeroFlag (ZF)covvivnninnn. e 94
Section 10: The Macro Assembler 10-1
Local Declarationt 10-2
Conditional Assembly, 10-3
Repetitive Assembly il 10-6
Interactive Assembly il 10-7
ComMmMENtS e 10-8
MATCH Operationcccoviieinnnennnneennns 10-8
Advanced Macro Featuresocovvnn... 109
Macro Identifiers, Delimiters, and Parameters 10-9
Bracket and ESCapeciiiiiiiiiiiiii i 10-11

Bracket e e 10-11

BSCaPE ..ttt e e 10-12
MATCH Calling Patternsccoivineeniiinnennnnn. 10-13
Processing Macro Invocations ... 10-13
Expanded and Unexpanded Modes 10-14
Nested Macro Expansionoovviiiiiiiiiiiiiiianns 10-14

Changing the Metacharacter ccovvun, 10-15
Section 11: Accessing Standard Services from Assembly Code . 141
Calling Conventionsccovvvviiiiiiinnnnnnns 11
POIMEIS & .. it i e e e e 111
Other Conventionseovvvnnnvnrnneeereennannnnnns 114
Register Usage Conventionsccocnnnnn 15
Segment and Group Conventions 11-8
Main Programurtiiii i e 11-6
Use of SS and DS When Calling Object Module Procedures 118
Interrupts and the Stacko, 17
Use of Macrosccvvviinnnnirnnennnnneeennns 18
Virtual Code Segment Management and Assembly Code 11-10
Operational Rules for the Assembly Programmer 11-10
System Programming Notes0outn 1113

Statics Segment and Stubs it 1113

AN

Contents Xiii

Appendix A: Linker and Librarian Messages A1
Levels of Linker Errors, A-1
Linker Compatibility A1
Causes of Linker Errors A-2
Linker/Librarian Error Messages A-3
Appendix B: Software Installation B-1
Optional Library Filescoiiiiienn. B-1
Software Installation Decisions B-1
Appendix C: Assembler Instruction Format Cc-1
The MOD-R/M BYtScoovveunnneninnnnannnn, c1
Analysis of a Sample Instruction c-3
Appendix D: Assembler Instruction Set D-1
Legend i D-1
Alternative Mnemonicst D-4
Appendix E: Assembler Reserved Words for Assembler E-1
Appendix F: Assembly Control Directive F-1
Description of Directivescovvun, F-1
Using a Printer With Assembly Listings F-2
Appendix G: Sample Assembler Modules G-1
Appendix H: BTOS Stack Format H-1
Stack Frame Prologue and Epilogue H-3
Appendix I: Converting Data or Code Files to Ohject Modules -1
The WRAP Commandccoviiiiiiiniinnn, -1
Glossaryci i I

5028707

lllustrations
1-1 BTOS Programming Tools
2-1 How the Linker Builds aRun File
2-2 Combination of Stack and COMMON Segment

Elementsccciiiiiinn.n.
3-1 BIND Command Form
3-2 LINKCommand Form
3-3 Real Mode Normal Memory Configuration
3-4 Real Mode Memory Configuration with Memory

Array Size Specified
3-5 A Real Mode Program with DS Allocation
3-6 A Program with the Memory Array
4-1 LIBRARIAN Command Form
5-1 ASSEMBLE Command Form
6-1 Linker Segment Elements
6-2 Call/RetControl Flow
C-1 Diagram of a Sample Instruction
G-1 Error Message Module Program
G-2 Standalone Main Program
G-3 Unisys-Compatible Main Program]
H-1 BTOS Il Stack Format
-1 WRAP Command Form

5028707

xvii

Tables

2-1
2-2
2-3
3-1
3-2
3-3
3-4
3-5
3-6

3-7

4-1
4-2
5-1
6-1
6-2
1-1
1-2
8-1
8-2
10-1
10-2
A-1
A-2
B-1
B-2

D-1
D-2
D-3
D-4

F-1
I-1

5028707

Version 4 and Version 6 Run File Header Formats
Address Structure
Prototype Descriptor Structure
LINK/BINDOptions
Map File Public Symbol Lists (Sample)
Map File Line Number List (Sample)
Version 4 Map File (Sample)
Version 6 Map File (Sample)

Sample Version 4 Map File with Lists of Public

Symbols and Line Numbers

Sample Version 6 Map File with Lists of Public

Symbols and Line Numbers
Librarian Optionsoovnnn
Cross-Referencs List (Sample)
ASSEMBLE Command Fields
Hardware Defaults
String Instruction Mnemonics
Constantscoiiiiiiinieniiaaaenn
Target Label Addressability
Implicit Register Operands
JMP and CALL Memory References
Conditional Assembly Examples
PASS1 and PASS2 Macro Variable Values
Linker Messagesccconnn.
Linker Status Codes
Language Development Library Files

Language Development Software Installation

Features and Selections
Effective Address Calculation Time
Alternative Mnemonics
Instruction Set in Numeric Order of Instruction Code

Instruction Set in Alphabetic Order of

Instruction Mnemonic
Assembly Control Directives
WRAP Command Options

2-14
215
216

34
312
312
3-18
319

3-21

32
42
44
5-1

6-11

6-13
72

71
85
87

103

108
A3

A-10
B2

B-2

Section 1 1-1

BTOS Il Language Development
Overview

The BTOS II Language Development software adds the
following programming tools to your workstation:

o Linker

You use the Linker to join several object modules
(machine code from a BTOS compiler, or from the
Assembler) into a BTOS run file.

o Librarian

You use the Librarian to create and modify libraries of
object modules produced by the Assembler or BTOS
Compilers, or libraries forms created by the Forms
Designer.

o Assembler

You use the Assembler to convert 8086 Assembly
language programs to object modules.

o Math Server

The Math Server allows more than one Pascal,
FORTRAN or C application that uses floating point math
to use the 80287 math coprocessor simultaneously
without crashing the system.

For information on the Math Server, refer to your
compiler documentation.
o Mouse Server

The Mouse Server contains the request and procedural
interfaces for the 2-button and 3-button mouse and
handles cursor control and tracking. For information on
the Mouse Server, refer to your Standard Software
documentation.

5028707

1-2 BTOS Il Language Development Overview

When you compile or assemble a program, the system
translates the program into machine code. The resulting
compiled or assembled program is called an object module.

You use the Linker to create a BTOS run file from object
modules. When you link the run file, you can include any
object modules, Forms, or ISAM files on your system.

The Librarian helps you to file the object modules. You
can create libraries of related object modules and then link
run files by entering the library name (rather than listing
the object module names).

Figure 1-1 illustrates the relationship between the Linker,
Assembler, and several other BTOS programming tools
(which are available separately).

Figure 1-1 BTOS Programming Tools

Asasggnsbly BASIC FORTRAN Pascal c
program program program program program

BTOS 1l Language Development Overview 1-3

Using the Linker

The Linker allows you to produce your application as a set
of independently-compiled object modules that refer to
each other by cross-module calls. Therefore, you can write
the modules in different languages because the Linker
resolves references to variables and entry points between
different object modules.

In addition to writing modules in different languages, you
can also use modules from any of several extensive
libraries. However, all support libraries must be available
at link time.

The Linker creates an executable run file that contains
information the BTOS Loader uses to relocate the resultant
program and initialize the processor.

The contents of BTOS object modules may contain any or
all of the following: code, constants, or variable data. The
Linker arranges the contents of a set of object modules
into a memory image, typically with all code together, all
constants together, and all variable data together. (This
arrangement makes optimal use of the addressing
structures of the processor.)

The Linker performs the following functions:

o builds a run file the BTOS Loader can load efficiently

o produces a single run file with any of several
configurations (This run file can be one task of a
multi-task application.)

o searches libraries to select the object modules that an
application requires

o optionally constructs a run file containing overlays for
use with the virtual code segment management facility

5028707

14 BTOS Il Language Development Overview

Linker Commands

You can use two different Executive commands to
generate run files: LINK or BIND. LINK produces a
version 4 run file. BIND produces a version 6 run file
(compatible with protected mode BTOS versions), unless
version 4 is specifically requested.

The Linker's Two Passes

The Linker makes two passes through the object modules
being linked. On the first pass, the Linker reads the object
modules, extracts external and public symbol information,
and builds a symbol table. It checks the symbol table for
unresolved external references. If they exist, the Linker
consecutively searches the library list you specified in the
LINK or BIND command form for object modules whose
public symbols resolve the external references.

On the second pass, the Linker assigns relative addresses
(relocating as necessary) to the object module data, and
then it links the object modules, constructing a run file
ready for the BTOS Loader.

Using the Librarian

The Librarian is a program development utility that
creates and maintains libraries of object modules. A
library has three uses:

o It can be a parameter in the Libraries field of the LINK
and BIND command forms, specifying that the Linker
should search the library for object modules that satisfy
unresolved external references.

o It is a convenient unit for collecting several object
modules and distributing them as a single file. The
Librarian extraction facility, also available in the
Linker, can be used to extract specific modules from the
library.

o It is a convenient unit for collecting forms created with
the Forms Designer. (Refer to your Forms Designer
programming documentation.)

You can collect many object modules in a single library file.

BTOS Il Language Development Overview 1-5

You do not need to remember the names of the object
modules in the library; the Linker’s library search
algorithm selects the required object modules from the
library. You can extract individual object modules from
the library by entering the object module name.

The Librarian performs the following functions:

o builds a new library when you specify a new library file
name and the object modules for the file

o modifies an existing library file when you specify object
modules to be added or deleted (This includes the
replacement of an existing object module with a new
object module that has the same name.)

o extracts one or more object modules from a library file
when you specify the object module name in the
extraction field

o produces a sorted cross-reference listing of the object
modules, and of the public symbols in the library when
you specify a cross-reference list file name

Library File Names

Your standard software uses a .lib suffix to assist in file
management (to help identify library files). You can use
this suffix, but the system does not require it.

The Librarian creates the library name for an added object
module from the object module file name; it drops the
volume, directory, and file prefix names and any suffix
beginning with a period.

For example:

If the file name is [Sys]<Jones>Sort.obj, the library object
module name is Sort.

If the file name is [Jones]<Working>Sort, the library
object module name is Sort.

5028707

1-6 BTOS |l Language Development Overview

Object module names within libraries must be different;
the Linker searches the library for the names of object
modules that define public symbols.

Note: You cannot use none for the library name; you can, however, use the
parameter none in the Linker command [Libraries] field to direct the Linker not
to search libraries.

Cross-Reference Lists

If you specify a cross-reference list file name, the
Librarian produces a list of the object modules and public
symbols in the library. The cross-reference list has two
parts: object module names referencing the public
symbol(s) defined, and public symbols referencing the
object module that defines it.

Using the Assembler

The information in this guide describing the Unisys
Assembler and Assembly language is directed toward those
who understand Assembly language reasonably well.

The Unisys Assembler generates object code that can be
run on the 80186, 80286, and 80386 CPUs. The Assembler
can also generate the 80286 extensions to the code that
run on the B28, B38, and B39 workstations. You should
use these extensions carefully; they cause Invalid Opcode
Exceptions (INT 6) on the B24, B26, and B27 workstations.

(For information on determining which workstation your
code is running on, refer to your operating system
reference documentation, and to your system procedural
interface documentation.)

BTOS Il Language Development Overview 1-7

Features and Characteristics

The Unisys Assembly language features a powerful
instruction set, sophisticated code and data structuring
mechanisms, strong typing (the ability to check that data
usage is consistent with its declaration), a conditional
assembly facility, and a macro language with extensive
string manipulation capabilities.

This Assembly language differs from most other Assembly
languages, which usually have one instruction mnemonic
for each operation code (opcode). With Unisys’ Assembly
language, you can assemble a particular instruction
mnemonic into any of several opcodes. The type of opcode
depends on the type of operand.

Unisys’ Assembly language is a “strongly typed” language,
since you cannot have mixed operand types in the same
operation (for example, moving a declared byte to a word
register). You cannot inadvertently move a word to a byte
destination, thereby overwriting an adjacent byte; nor can
you move a byte to a word destination, thereby leaving
meaningless data in an adjacent byte. However, if you
must override the typing mechanism, there is a special
PTR operation that allows you to do this (refer to section 8).

Some of the other features and characteristics of the
Unisys Assembly language are summarized in the
remainder of this section.

Segments
BTOS Assembly language programs are composed of

segments in which each instruction and variable is
created. Afterwards, all segments are then linked together.

5028707

1-8 BTOS i Language Development Overview

At Assembly time, you can define as many segments as
you wish, as long as each assembly module has at least
one segment. Each instruction of the program and each
item of data must lie within a segment. The following
examples are some of the types of segments you can define:

o data segments
o stack segments
o main program segments (code)

Addressing

You can address operands in several ways using various
combinations of base registers (BX and BP), combinations
of index registers (SI and DI), combinations of
displacement (adding 8-bit or 16-bit values to a base,
index register, or both), and combinations of direct offset
(16-bit addresses used without the base or index register).

Procedures

The Unisys Assembly language formalizes the concept of a
callable procedure by providing explicit directives to
identify the beginning and end of a procedure. Where
other Assembly languages start a procedure with a label
and end it with a return instruction, the Unisys Assembly
language differs by defining a procedure as a block of code
and data, starting it with a PROC statement, and ending it
with a ENDP statement.

You can use the macro capability of the Assembler to
define abbreviations for arbitrary text strings including
constants, expressions, operands, directives, sequences of
instructions, and comments. These abbreviations can
accept parameters; they are also string functions that the
system evaluated during assembly.

PN

BTOS Il Language Development Overview 1-9

Consequently, you can collect the macro definitions in a
file, which in turn can be included in other Assembly
language source files using the $Include directive. Building
a library of such macros allows you to invoke frequently
used text strings using a concise, standardized definition
within several different source files.

The macro facility also provides interactive assembly by
means of a macro time console I/0 facility.

Choosing the Right Language

As a programmer working with a Unisys Information
Processing System, you have many different languages to
choose from. The choice involves several considerations:

o Does the program require the unique business features
of COBOL or the scientific features of FORTRAN?

o Is an interpretive language suitable?

o Will the system programming and data structuring
facilities of Unisys Pascal be particularly valuable in
the program to be written?

o Should you you divide the program into different parts,
write the different parts in different languages, and
then combine them with the Linker?

If the program (or program part) requires direct access
to processor registers and flags, then Assembly language
is an appropriate choice. Assembly language is also a
better tool than other languages when memory usage
and object code efficiency are more important than
development speed and programmer productivity.

However, you rarely write an entire application system
in Assembly language. You should determine those parts
in which direct access to machine features, efficiency,
and memory usage are overriding concerns, write and
use those parts in Assembly language, and then write
the remainder of the application in a high-level
language.

5028707

=

Section 2 21

Creating BTOS Run Files with the
Linker

The Linker separates object modules by component,
combines like components for efficiency, and then creates
an executable run file. The run file contains a memory
image and other information that the BTOS Loader uses to
relocate the resultant program, and to initialize the
processor for program execution.

A BTOS run file is a memory image of tasks in the BTOS
Loader format. The BTOS Loader can usually load it with
a single disk access and data transfer.

The BTOS Run File Format

The BTOS run file format consists of the following
components:

o a file header

o relocation data

o a memory image

o optional virtual code segments

The Linker supports task images as large as the
processor’s full address space. You can link up to 256
object modules; each object module can contain a code

segment. You can also use the run file with various
memory configurations, or as one task of a multi-task system.

Run File Header

The run file header performs the following functions:

o describes the run file
o provides initial values

.o provides an array of pointers that allows the BTOS
Loader to relocate the run file in memory

5028707

2-2 Creating BTOS Run Files with the Linker

Relocation Data

You do not have to specify the eventual memory address
of the task. The Linker computes and includes information
in the run file that the BTOS Loader uses to relocate the
task to any desired memory location.

The BTOS Loader uses this information when it brings the
task image into memory. A single run file can then be used
with various size operating systems, or be used with other
diverse tasks of multi-task applications.

Memory Image

‘The run file memory image contains the code that is
resident during program execution. The Linker does not
assign absolute memory addresses (the BTOS Loader
assigns these). The memory image includes a checksum
that the task loader verifies.

Virtual Code Segments

Each unit of code that the BTOS Loader brings into
memory is called a virtual code segment. The BTOS Loader
brings virtual code segments into memory only when
required. The system then overwrites the segments as it
needs their address space for other virtual code segments.

You can write your program with as much code as
required, as if all code were simultaneously resident in
memory. The BTOS Loader initially loads only the resident
code. When the program calls any subroutine in a virtual
code segment, the BTOS Loader brings the segment into
memory.

You can use a maximum of 256 virtual code segments,
each no greater than 64 Kb. This allows up to 16 Mb for code.

A memory pool is used to hold the virtual code segments;
all segments that can fit in the pool can be simultaneously
resident in memory. You specify the pool size during
execution.

Calls to entry points in virtual code segments go through
an indirect table; calls to a code segment that is in memory
take only a single instruction.

Creating BTOS Run Files with the Linker 2-3

Library Search Algorithm

After building a symbol table during its first pass, the
Linker then runs through all the symbols, checking to see
whether any of them occur in the first library listed for
searching. If it finds a symbol declared in a library module
in the library, it extracts that module from the library and
links it into the program. The extracted library module can
also contain yet other undefined symbols.

The Linker cycles over the entire list of symbols, old and
new, comparing them to the first library until it can
extract no further library modules. It then continues to
the second and subsequent libraries and repeats this process.

When the Linker completes the search of the last library,
it goes back to the first library and again searches for
undefined symbols. In this manner, it repeatedly cycles
through all the libraries until it cycles through without
extracting any new modules. At this point, it stops and
reports any symbols that remain undefined.

Note: |f the same public symbol is defined in more than one library, and if
that symbol is declared external in an extracted library module, the definition
used is not necessarily in the first library listed for searching. The Linker starts
from the point at which it extracted the module, continues to the next library,
and then extracts the first definition it encounters.

Segment Element Names and Classes

In the example in figure 2-1, three object modules are to
be linked. They are listed in the Object modules field of
the Linker command form in the following manner, using
single spaces between the names:

Modl.obj Mod2.0bj Mod3.obj

5028707

24 Creating BTOS Run Files with the Linker

Mod1l.obj was written in one language; Mod2.0bj and
Mod3.obj were written in another. Each of these object
modules consists of several segment elements, each of
which the programmer declared public at the source level.
All of these object modules have segment elements that
contain code, data, constants, and stack, although this is
not true of all object modules.

Each module segment element has both a name and a
class. In high level languages, the compiler assigns name
and class. In figure 2-1, a slash separates the name and
class of each segment as follows:

Data/Data
Mod1l code/Code

Many compilers assign names to segment elements that are
identical to the segment element class (for example,
Data/Data). Usually, the code segment element carries the
name of the module: in Mod1l.obj, the Mod1l segment
element is of class Code. Most compilers append the class
name as part of the code segment element name, which in
this case results in Mod1l_code.

The most common classes are Code, Data, Const, and
Stack. A compiler always arranges the segment elements
by class and in a specific order.

With 8086 Assembly, you have more control over what the
Linker does than you do when you use a compiled
language. You can assign any name to any segment
element and to any class. You can define more than one of
a class and place them in any order within the module.

Creating BTOS Run Files with the Linker 2-5
Figure 2-1 How the Linker Builds a Run File
Step 1
Input Object Modules .
Mod1.obj Mod2.o0bj Mod3.obj
Data/Data) CModz_codu/Cod) (Moda.codo/cwy
Segment Const/Const) (Data/Data) Data/Data)
Elements
Stack/Stack » (Const/Const) CConslsIConsl)
Modl_codolCo@ C Stack/Stack) (Stack/Stack)
Linker
Step 2 X
Look at Mod1 for Order Sort fun

Stack2/Stack

Mod1_code/Code
Mod2_code/Code
Mod3_code/Code

-

5028707

Low

High

2-6 Creating BTOS Run Files with the Linker

Figure 2-1 How the Linker Builds a Run File (continued)

Step 3
Establish Linker
Segments
Data/Data
Const/Const
Stack/Stack
Mod1_code/Code
Mod2_code/Code
Mod3_code/Code
Step 4 DS - SS&——»
Establish Segment
Addressing

sP—

Datat
Data2
Data3

Low

Constt
Const2
Const3

Stack1
Stack2
Stack3

Mod1_code

Mod2_code

Mod3_code

High

If DGroup

Datat
Data2
Data3

Consti
Const2
Const3

Stack1
Stack2
Stack3

Dgroup
(64Kb)

Mod1_code

Mod2_code

Mod3_code

Separate Linker Code
Segments

Creating BTOS Run Files with the Linker 2-1

Creating Linker Segments

After the Linker resolves all external references in the
modules, it builds the run file. Starting with the first
module listed (Mod1.obj), it takes the first segment
element in that module, creates a category for its class,
and places the segment element in that category. It then
creates a second category for the second class of segment
element that it encounters, and so on through the first
module.

In the example in figure 2-1, the result is the creation of
four categories arranged in the same order as the segment
element classes in Modl.obj: data, constants, stack, and
code. These categories eventually become Linker segments.

Having pulled apart Modl.obj in this way, the Linker goes
on to Mod2.obj. It takes each segment element in Mod2.0bj,
examines its class, and places it in the Linker segment
already created for that class. If there is no Linker
segment for that class, the Linker creates a new one for it
at the end of the Linker segment list.

When the Linker has sorted the parts of all three modules,
the result is as shown in step 2 of figure 2-1.

Note: Linker segments are ordered by class in the same order that appears in
the first module listed. Thus, you can impose an ordering template on the Linker
by writing an Assembly language module that does nothing except declare
segment elements in the desired class order. You then place this module first in
the list of modules to be linked. This template object module is often called First.obj.

Combination Rules
The model is incomplete without an indication of how the

Linker combines or superimposes segment elements to
form Linker segments.

5028707

2-8 Creating BTOS Run Files with the Linker

In most cases, the Linker appends one segment element to
another as it goes through the modules, and does not
distinguish boundaries between segment elements from one
module to the next. This is true for data and constant
segment elements.

For stack segment elements, the Linker combines them by
overlaying them with their high addresses superimposed,
but adds their lengths together. It then forces the total
length of this aggregate stack segment to a multiple of 16
bytes. You can see this arrangement in figure 2-2. The
fact that high addresses are superimposed is unimportant
unless you have created a label at the high end of one of
the stack segment elements. In this case, the label floats to
the high end of the aggregate stack.

Compilers construct stack segments automatically.
However, if your entire program is written in Assembly
language, you must define an explicit stack segment.
(Refer to section 11 for details.)

Segment elements that have the combination attribute
COMMON in Assembly language are special. When
COMMON segment elements are combined, they are
overlaid with low addresses superimposed. The length is
that of the largest element, as shown in figure 2-2.

The Linker places the code segment elements together, but
it does not combine them unless they have identical names
and are in the same class. (This rule applies to all segment
elements, but it is most obvious with code segment
elements.)

Creating BTOS Run Files with the Linker 2-9

Figure 2-2 shows how the Linker combines the stack and
COMMON segment elements shown in step 3 of figure 2-1.

Figure 2-2 Combination of Stack and COMMON Segment Elements

High Stack1 High
Low |_SKb
High R Stack
stack2 | 9" [Stacka 22Kb
10Kb 7Kb
Low Low
Common2| High Common3
10Kb Low e Common High
High
Common1 10Kb 10Kb
Low SKb Low

5028707

2-10 Creating BTOS Run Files with the Linker

Summary of Segment Ordering

All public segment elements having the same segment
name and class name are combined in the order the Linker
finds them. Similarly, all segment elements having the
same class name are placed together in the order the
Linker finds them.

The Linker places all the first class segment elements in
the run file. Then it places all the second class segment
elements in the run file, and so on.

A group definition does not affect segment ordering. A
group definition asserts that all segments in a group are
contained within a 64 Kb region in the run file. This
grouping is required if the data in the group is addressed
using a single value in a segment register. In version 6 run
files, all segments in a group must be contiguous or the
Linker stops with an error message.

Alignment Attributes

Segment elements have alignment attributes. Most
compiled languages assign these attributes automatically,
but in Assembly language, you assign them explicitly.
(Refer to section 6 for details.)

A segment can have one of the following alignment attributes:

o byte (a segment that can be located at any address)

o word (a segment that can be located only at an address
that is a multiple of two)

o paragraph (a segment that can be located only at an
address that is a multiple of 16)

The Linker packs segments containing data and code
end-to-end. Alignment characteristics can cause a gap
between the segments. The Linker adjusts the relative
addresses in the segments accordingly.

Creating BTOS Run Files with the Linker 2-11

Addressing Linker Segments

The Linker establishes the way in which the hardware
addresses Linker segments when the program runs. In
most cases, a group has been defined in the program.

A group is a named collection of Linker segments
addressed at run time with a common base address: you
can use 16-bit offset addressing throughout the group. All
the locations within the group must be within 64 Kb of
each other.

A program typically contains a group called DGroup,
which consists of data, constants, and stack. (The
medium-model compiled languages use DGroup. In
Assembly language, you can define whichever groups you
want, or none.) For DGroup, the hardware segment
register is DS. Stack segment (SS) has the same value.

In a version 4 run file, other portions of the program can
fall between the beginning and the end of a group, as long
as the distance frcm the beginning to the end of the group
does not exceed 6« Kb.

In a version 6 run file, all the Linker segments must be
contiguous. The Linker combines all the segments of a
group into one segment which is addressed with one
selector. The base address is loaded into a descriptor
whose selector is loaded into a segment register. (For a
version 4 run file, the base address, in 16-byte
paragraphs, is loaded directly into a segment register.)

The example in figure 2-1 contains DGroup, which is
shown in step 4. This type of run file retains information
about where the data, constant, and stac‘c Linker segments
begin and end. The value of the SS register is set equal to
that of DS. SP is set to equal the highest address in the
group, as shown in the figure.

Limits
In general, the maximum size of a linkable program and
the speed at which the link takes place are directly related

to the memory available on the system and inversely
related to the number of public symbols in the program.

5028707

2-12 Creating BTOS Run Files with the Linker

Structure of Run File Headers

The run file header that the Linker produces contains a
variety of information describing the file.

The version 4 and version 6 run file header formats are
shown in table 2-1. Keep in mind that while the current
loader successfully handles all version 4 run formats, only
the latest version 4 run format is being described here.

For offsets O through 36, the headers are similar except
for the field names at offsets 14 and 22 (version 4 uses
the sa prefix; version 6 uses the sn prefix). Offsets 30
through 86 are version 6 only.

The wSignature and ver fields (offsets 0 and 2) identify
the run file and its version. The cpnRes field (offset 4)
gives the run file size, excluding overlays.

The next four fields (offsets 6 through 12) provide
information about relocation data in the file. The
relocation directory is an array of locators the operating
system uses in relocating the file. Table 2-2 shows the
structure of these locators.

At offsets 14 through 22, the Linker assigns the initial
values for the stack and code segments.

At offsets 24 through 28, the Linker locates the relocation
directory and identifies the number of overlays.

The information at offsets 34 through 37 pertains to
correction by the Linker and the operating system code of
a known hardware problem with the IDIV instruction on
early versions of the 80186 processor.

The Linker uses the fields gbMinData and gbMaxData ,
(offsets 38 and 42, version 6 only) to size partitions on the

80186 processors, and to determine a limit on how much
80286,/80386 processor data space a process can control.

Creating BTOS Run Files with the Linker 2-13

The rbRgProtoDesc and iProtoDescMax fields at offsets 46
and 48 (version 6 only) contain the offset and maximum
index of the prototype local descriptor table (LDT). The
80286/80386 loaders refer to this prototype data structure
in building an LDT.

Table 2-3 shows the prototype LDT structure. The first
field, limit, is the segment limit. The second, 1faLow, is the
logical file address (1fa) of the segment. Since the lfa is a
24-bit quantity, the next field, 1faHi, supplies the high 8
bits of this address. The field at offset 5, bAccess,
identifies the segment type.

The fields at offsets 50 through 58 (version 6 only)
resolve issues involved in creating a run file that can run
in both real mode (80186, 80286, and 80386 processors)
and protected mode (80286 and 80386 processors only).
Different types of addressing are used.

A version 6 run file uses call gates and global pointers to
address certain operating system structures in protected
mode on the 80286 and 80386 processors. The two fields
at offsets 50 and 52 allow the version 6 file to be
converted to the flexible additive address mechanism that
must be used for such addressing if the task is to be run in
real mode.

The fields at offsets 54 through 58 describe a table that
maps each of the 80286 and 80386 protected mode .
selectors to a real mode segment address (SA).

The next six fields (offsets 60 through 68) separately
identify and describe the code, data, and stack portions of
a version 6 run file that runs in real mode on a
variable-partition operating system.

At offsets 70 through 86 (version 6 only), several items
are declared that simplify routine operations. The
IfaSbVerRun field allows the operating system to find the
version number in the run file so that a utility can change
the number without relinking.

- The dateTime stamp allows the Debugger to compare a
symbol file to a run file, and to report an error if there is
a difference.

The cModify field allows a count to be kept of the number
of times a run file has been modified. '

5028707

2-14

Creating BTOS Run Files with the Linker

The gbMinCode and gbMaxCode fields pertain to the use
of virtual memory. They indicate to the operating system
the approximate size of the working set in bytes.

Table 2-1 Version 4 and Version 6 Run File Header Formats
Offset Field Size Description
(bytes)
0 wSignature 2 Run file signature
2 ver 2 Run file format version
4 cpnRes 2 Run file size
6 irleMax 2 Maximum relocation entry index
8 cparDirectory 2 Relocation directory size
10 cparMinAlloc 2 Minimum memory array size
12 cparMaxAlloc 2 Maximum memory array size
14 snStack 2 Initial stack segment (version 6)
saStack 2 Initial stack segment (version 4)
16 raStacklnit 2 Initial stack offset
18 wchksum 2 Run file checksum
20 raStart 2 Initial code offset
22 snStart 2 Initial code segment (version 6)
saStart 2 Initial code segment (version 4)
24 tbrgrle 2 Relocation directory offset
26 iovMax 2 Maximum overlay index
28 snMainDs 2 Initial data segment, large model
(version 6)
Fs 2 Constant OFFFFh (Version 4)
Version 6 Only:
30 Fs 2 Constant OFFFFh
32 maskOptions 2 Run File Mode
(veralt)
34 rbidiv 2 Idiv table offset
36 cldiv 2 Size of idiv table

Creating BTOS Run Files with the Linker 2-15

Table 2-1 Version 4 and Version 6 Run File Header Formats (continued)

Offset Field Size Description

{bytes)

38 gbMinData 4 Minimum virtual data partition size

42 gbMaxData 4 Maximum virtual data partition size

46 rbRgProtoDesc 2 Prototype descriptor table offset

48 iProtoDescMax 2 Msximum prototype descriptor
index

50 tbRgRqLabIE 2 Resident request fixup table
offset)

52 iRqLablEMax 2 Maximum resident request fixup
index

54 bMpSnSa 2 SN to SA translation table

56 iSnMax 2 Maximum SN index

58 snFirst 2 First prototype descriptor SN

60 siCode 2 First code segment selector

62 ¢SiCode 2 Count of code segments

64 siData 2 First data segment selector

66 cSiData 2 Count of data segments

68 siStack 2 Stack segment selector

70 cSIStack 2 Constant 1

72 IfaSbVerRun 4 File address of sbVerRun

76 dateTime 4 Time stamp

80 cModify 2 Modify count

82 qbMinCode 4 VM hint information

86 gbMaxCode 4 VM hint information

Table 2-2 Address Structure

Offset Field Size (bytes)

0 1a 2

2 sa 2

5028707

2-16 Creating BTOS Run Files with the Linker

Table 2-3 Prototype Descriptor Structure

Ofiset Field Size (bytes)

limit
IfaLow
IfaHi
bAccessp
reserved
reserved

~SN oo eE N O
-t b - NN

Section 3 31
Using the LINK or BIND Command

The Linker combines object modules (files produced by
high level language Compilers and the Assembler) to build
run files (memory images of tasks linked into the BTOS
Loader format).

When you use the LINK or BIND command to create a run
file, the Linker performs the following operations:

o resolves references from one object module to variables
and entry points of other object modules

o searches CTOS.lib and any additional libraries you
specify to select the object modules necessary to satisfy
unresolved external interfaces

o builds a run file the BTOS Loader can load efficiently

o computes information the BTOS Loader uses to relocate
the loaded task to any memory location, and includes
the relocation information in the run file

o constructs run files containing overlays for use as
virtual code segments

o creates a list file that contains an entry for each
segment and shows the relative address and length of
the segment in the memory image

You can direct the Linker to include public symbols and
line number addresses in the list file.

o creates a symbol file

Note: Run files are limited to 1024 public symbols and 256 segments; object
modules are limited to 256 publics and 256 exterals.

5028707

3-2 ' Using the LINK or BIND Command

\
LINK and BIND Command Forms and
Parameters

When you select the Executive BIND command, the system
displays the BIND command form as shown in figure 3-1.

The BIND command activates the Linker to create version

6 run files, or create version 4 run files if you specifically
request them.

When you use the Executive LINK command, the system
displays the LINK command form as shown in figure 3-2.
The LINK command creates version 4 run files, and is
provided for use with older automated Submit programs
that generate run files requiring the LINK command.

With either command, you must enter parameters in the
Object modules and Run file fields (refer to Linking a
Run File, in this section).

Both commands have default parameters for the fields
that start and end with brackets (for example, [List file]).
You can leave the fields blank to accept the defaults or
enter a parameter to override the default. Refer to table
3-1 for information (including defaults) on each bracketed
field.

Using the LINK or BIND Command

Figure 3-1 BIND Command Form

Bind
LObject Modules

Run file

[Map file}

[Publics?)

[Line numbers?]
[Stack size]

[Max array, data, code]
[Min array, data, code]
[Run File Mode]
[Version]

[Libraries]

[DS allocation]
[Symbol file]

Figure 3-2 LINK Command Form

Link
I Object Modules

Run file

[List file]

[Publics?]

[Line numbers?]

[Stack size]

[Max memory array size]
[Min memory array size]
[System build?)
[Version] '
[Libraries]

[DS allocation?]
[Symbol file]

5028707

34 Using the LINK or BIND Command

Table 3-1 LINK/BIND Options

Field Action/Explanation

[List file] Field appears for LINK command only. The default directs
the Linker to derive the map file name from the run file
name. The Linker drops the .run suffix (if any) and adds a
.map suffix.
For example:

If your run file name is Prog.run, the default map file name
is Prog.map.

If your run file name is [Dev]<Jones>Main, then the
default map file name is [Dev]<Jones>Main.map.

To specify a different map file name, enter the name.

[Map file] Field appears for BIND command only.
The default is the same as for [List file]. To specify a
different map file name, enter the name.

[Publics?] The default (no) directs the Linker not to include public
symbols in the map file.
Enter y to direct the Linker to add a list of public symbol
relative addresses to the map file. The Linker sorts the
publics by name (alphabetically) and address (numerically)
as shown in table 3-2.

[Line numbers?] The default (no) directs the Linker not to include a list of
line numbers and addresses in the map file.

If your object modules contain line numbers, enter y to
direct the Linker to add a line number address list to the
map file as shown in table 3-3.

Using the LINK or BIND Command 3-5

Table 3-1 LINK/BIND Options (continued)

Field

Action/Explanation

[Stack size]

[Max memory
array size]

[Min memory
array size]

5028707

The default directs the Linker to use the Compiler or
Assembler input (in the object modules) to estimate the
stack size.

The Compiler/Assembler input normally results in a stack
size larger than the actual requirement; however, your
program can contain features that cause the Linker to
undercompute the required stack size.

For example, Compiler/Assembler input for a program with
many recursive procedures can cause the Linker to
underestimate the stack size.

To override the Compiler or Assembler input, enter a stack
size (an even decimal number of bytes).

Field appears for LINK command only: the default is one.

To leave data space above the highest memory address,
enter (in decimal) both the maximum memory array size
and the minimum memory array Size.

Figure 3-3 shows the normal memory configuration when
BTOS loads a run file; figure 3-4 shows the memory
configuration when you specify the memory array size.

Note: If the minimum size you specify leaves insufficient
room for the task, an error message appears when BTOS
fails to load the task. To make sure the task loads low
(with a maximum data space above the task), set the
minimum to 0 and the maximum to 1000000.

Field appears for LINK command only: the default is zero.

Refer to [Max memory array size).

3-6

Using the LINK or BIND Command

Table 3-1 LINK/BIND Options (continued)

Field

Action/Explanation

[Max array,
data,code]
[Min array,
data,code]

[System build?]

[Run File Mode]

Fields appear for BIND command only: the default is the
minimum space allocated. To override the default, separate
entries with spaces. For maximum allocations, specify 0 0 0.

For maximum and minimum array, fill in the first parameter
in each field to leave data space (the memory array) above
the highest memory address of a task.

For maximum and minimum data, specify the amount of
short-lived memory the application will use.

Maximum and minimum code are not implemented at this time.
Field appears for the LINK command only. The default
directs the Linker not to make a system build.

Enter y to build 3 custom operating system.

Note: If you enter y and specify overlays in the object
module field, the system creates the overlays but not the
related data structures. For information on entering
overlays, refer to Linking a Run File, in this section.

Refer to the system build information in your operating
system reference documentation.

Field appears for the BIND command only. The default,
real, directs the Linker to make an entry in the run-file
header that specifies that the run file is real mode.

To override the default, you can enter one of the following
single-word options in this field:

Yes
Reserved for use by Unisys.

Using the LINK or BIND Command 3-7

Table 3-1 LINK/BIND Options (continued)

Field Action/Explanation
[Run File Mode] No
(continued)
Reserved for use by Unisys
V4
V4 generates a Version 4 run file.
Protected

5028707

Protected indicates that the run file can run in protected
mode and uses the local descriptor table (LDT).

HighMemProtected

HighMemProtected is meaningful only if your system
contains @ Mode 3 DMA device. Enter this parameter if
you know that your run file is capable of running in the
top 8 Mb of memory, capable of running in protected
mode, and uses the local descriptor table (LDT).

If you do not use this parameter, the system will only ioad
the code portion of the run file in the top 8 Mb of
memory, but only then if it was not loaded remotely over
B-NET.

GDTProtected

GDTProtected indicates that the run file can run in
protected mode and uses the global descriptor table (GDT).

HighMemGDTProtected

HighMemProtected is meaningful only if your system
contains @ Mode 3 DMA device. Enter this parameter if
you know that your run file is capable of running in the
top 8 Mb of memory, capable of running in protected
mode, uses the global descriptor table (GDT).

If you do not use this parameter, the system will only load
the code portion of the run file in the top 8 Mb of
memory, but only then if it was not loaded remotely over
B-NET.

3-8

Using the LINK or BIND Command

Table 3-1 LINK/BIND Options (continued)
Field Action/Explanation
LowDataGDTProtected

LowDataGDTProtected indicates that the run file’s data
should be made accessible to real mode programs. The run
file can run in protected mode and uses the GDT.

This option is generally used only by special operating
systems services that return pointers to their data, such as
the bitmapped video service.

SuppressStubs

If you enter SuppressStubs and you have overlays in your
object module list, the Linker does not generate the data
structures for use by the virtual code segment management
(for example, RgStubs).

if you do not have overlays in your object module list, this
option has no effect.

For more information on LDT, GDT, and protected mode
programs, refer your protected mode programming
documentation.

CodeSharingServer

You use this option if you want one server to perform
multiple tasks while executing the same code.

If you choose this option, you may not then deallocate
initialization code for reuse as part of short-lived memory.

HighMemCodeSharingServer
HighMemCodeSharingServer works only if your system
contains 8 Mode 3 DMA device. Enter this parameter if
you want the server to run in the top 8 Mb of memory,
and to perform multiple tasks while executing the same code.

If you choose this option, you may not then deallocate
initialization code for reuse as part of short-lived memory.

Using the LINK or BIND Command 39

Table 3-1

LINK/BIND Options (continued)

Field

Action/Explanation

[Version]

5028707

If you do not use this parameter, the system will only load
the code portion of the run file in the top 8 Mb of
memory, but only then if it was not loaded remotely over
B-NET.

Conditional Protected

This option makes the decision to run in protected mode
conditional upon the version of the 0S. If the run file’s
version is older than the OS version, it will run in real
mode; otherwise, it will run in protected mode. To use this
option, you enter the parameter along with the version
number of your 0S.

The default directs the Linker not to add a version to the
run file header.

To specify a version, enter an alphanumeric string. If the
version has embedded spaces, surround your entry with
single quotes.

Note: If you are linking an operating system, you should
specify a version to avoid an unresolved external error for
sbVerRun.

The Linker:
- adds the prefix VER to your entry

- places the version in the first run
file sector

- defines sbVerRun as your string
preceded by a single byte containing
the string length

For example: If you enter 1.0, the run file header contains
‘VER 1.0°, and sbVerRun is the number 3 followed by the
ASCH characters 1, ., and 0.

You can use the Executive DUMP or VERSION commands
to display the version number from the run file header.

3-10

Using the LINK or BIND Command

Table 3-1 LINK/BIND Options (continued)

Field

Action/Explanation

[Libraries]

[DS allocation?]

The default directs the Linker to search
[Sys)<sys>CT0S.lib and any extensions such as
CTOSToolkit.lib to satisfy unresolved external interfaces.

By default, the Linker appends the versions of libraries
specified in this parameter to the run file. To override this
default, enter NoReport.

To suppress all library searches, enter None.

To direct the Linker to search library files in addition to
CTO0S.lib, enter the file name(s). Separate the names with
single spaces. The Linker always searches
[Sysl<sys>CT0S.lib last, even if you specify a different
CT0S.lib.

To suppress the use of [Sys]<sys>t1' 0S.lib only, enter
None at the end of the library list.

To link object modules from libraries into overlays, you
must name the object modules in the Object Modules
field (refer to Linking a Run File, in this section). The
Linker links the object modules from the [Libraries] field
in the resident portion of the task.

If duplicate definitions appear, the Linker defauits to the
first definition and creates a multiply-defined public.

The default (yes) directs the Linker to locate DGroup at the
end of 8 64 Kb segment addressed by the DS register.
Therefors, the last byte of DGroup is at DS:OFFFF. This
enables allocation of memory at run time that is
addressable using DS.

This field applies only if your task uses a single value in
DS during execution and includes the group DGroup, with
DS equal to DGroup.

VAN

Using the LINK or BIND Command 3-11

Table 3-1 LINK/BIND Options (continued)

Field

Action/Explanation

[Symbhol file]

Enter n if you want no DS allocation (for modules in most
languages).

Note: If you include a Pascal or FORTRAN module in the
object list or by reference in a library, the default value
should be used.

The default directs the Linker to derive the symbol file
name from the run file name. The Linker drops the .run
suffix (if any) and adds a .sym suffix.

For example:

If your run file name is Prog.run, the default symbol file
name is Prog.sym.

If your run file name is [Dev]<Jones>Main, the default
symbol file name is [Dev] <Jones>Main.sym.

To specify a file name for the run file symbol table, enter
the file name.

To direct the Linker not to create a symbol file, enter [NUL].

5028707

3-12 Using the LINK or BIND Command

Table 3-2 Map File Public Symbol Lists (Sample)

Publics by name Address Overlay
BSRUNFILE 076B:3630h Res
BSVIDCLEARMARK 0593:0682h Res
BSVIDEO 076B:36CCh Res
BSVIDMARK 0593:0604h Res
BSVIDTURNOFFCURSOR 0593:06E5h Res
BSVIDTURNONCURSOR 0593:06A4h Res
CBREC 076B:376Ch Res
Publics by value Address Overlay
BSVIDMARK 0593:0604h Res
BSVIDCLEARMARK 0593:0682h Res
BSVIDTURNONCURSOR 0593:06A4h Res
BSVIDTURNOFFCURSOR 0593:06E5h Res
BSRUNFILE 076B:3630h Res
BSVIDEO 076B:36CCh Res
CBREC 076B:376Ch Res

Note In the public symbal list Address column, the h means hexadecimal; this
is the standard processor segment-plus-offset addressing structure. Addresses
are relative to the beginning of the file and are subject to fix-up at load time.

In the public symbo} list Overlay column:

o Res means the symbol is resident
o an integer (n) means the symbol is in the nth overlay

o Abs (absolute) means the symbol has a specified place
in memory

Table 3-3 Map File Line Number List (Sample)

105 0000:0000h 106 0000:0003h 107 0000:0023h
108 0000:00B2h 109 0000:0092h 10 0000:00AFh
m 0000:00EBh 112 0000:00EDh LAK] 0000:00F2h
14 0000:0114h 115 0000:011Eh 116 0000:0123h

Using the LINK or BIND Command 3-13

Figure 3-3 Real Mode Normal Memory Configuration

Memory Address
High FFFFFh
task
unused
- Low 0 operating system

Figure 3-4 Real Mode Memory Configuration with Memory Array Size

Specified
Memory Address
High FFFFFh
memory array
task
unused
operating system
Low 0

Note: In protected mode, the OS does not occupy the location shown in
figures 3-3, 3-4.

5028707

3-14 Using the LINK or BIND Command

Linking a Run File

To link a run file, use the following procedure:
1 Atthe Executive command prompt, type LINK or BIND.
2 Press RETURN.

The system displays the LINK or BIND command form
as shown in figure 3-1 or 3-2; the highlight is on the
Object modules field.

3 Enter the object module name(s), formatting the entries
as follows:

o For individual object modules, enter the object
module names, separated by single spaces.
For example:
a.obj b.obj 1.form
where a.obj and b.obj are object modules; 1.form is
a form created by the Forms Designer (refer to your
Forms Designer programming documentation).

o To extract object modules from a library file, enter

the library file name followed by the object module
names in parentheses, separated by single spaces.

For example:

Filename.lib (modulel module2)

where Filename.lib is the library file name;
modulel and module2 are the object module names.

Note: Do not use a space between the opening parenthesis and the
first module name.

o To use object modules as overlays for virtual code
segments, append /O (a slash followed by the letter
0) to the first module in each overlay. The /O is
case—insensitive.

Using the LINK or BIND Command 3-15

For example:
A.obj B.obj/0O Z.lib(W X) D.obj/O

A.obj is the resident portion (it can include code and
data); B.obj/0 Z.1lib(W X) D.obj/O is the
nonresident portion consisting of two overlays:

B.obj Z.1ib(W X) and D.obj.
Note: List all other modules before you list the overlays.
For more information on virtual code segments,

refer to your operating system reference
documentation.

4 In the Run file field, enter a name for the run file.

Standard BTOS software uses a .run suffix to assist in
file management (to help identify run files). You can
use this suffix, but the system does not require it.

5 Complete optional fields or accept the default values.
For information on optional fields, refer to table 3-1.
6 Press GO.

For information on error or warning messages, refer to
appendix A.

If the Linker displays the message There were X
errors detected, you should examine the map file.

Program Memory Requirements

Determining the actual amount of memory that a run file
needs is important for many reasons. For example, it '
allows the user to minimize the partition size that the
program requires when executed under the Context
Manager.

The memory requirement depends on these considerations:

o size of the data segment (for example, stack plus
constants plus variables)

o size of the resident code (both the code written by the
programmer and the code extracted from libraries)

5028707

3-16 Using the LINK or BIND Command

o size of the overlay area, if swapping is used

o extra memory allocated at load time (the memory array)
or later (by calls to AllocMemorySL or AllocMemory LL)

Run-Time Library Code

For compiled languages like Pascal, even a very small
program requires the language run-time library, as well as
associated support code from CTOS.lib. Consequently,
almost all programs require 20 Kb to 40 Kb of space for
run-time library code. The largest component usually is
Sequential Access Method (SAM) code. Code from the
run-time library is included in the map file.

Resident Programs

A resident program is one that is fully loaded into memory
prior to execution. It contains no overlays and it stays in
memory throughout execution.

You can read the memory required for resident programs
directly from the map. The size is the stop address of the
last segment (usually MEMORY) listed in the map. This
number is the hexadecimal count in bytes from the first
byte of the first segment.

Swapping Programs

A swapping program contains a resident program and
overlays. BTOS loads the resident part of a swapping
program into memory prior to execution, and loads the
overlays during execution as they are needed.

Swapping programs should usually be sized on the stop
address of the last segment of the resident portion, with
the size of the required swap buffer added in.

Using the LINK or BIND Command 3-17

Programs that Allocate Memory

To size a program that allocates memory, enter the
maximum amount of memory that will be allocated in the
appropriate field of the LINK or BIND command form. For
programs that do DS allocation (for example, Pascal
programs that use the New function), you add the extra
amount of DS required to the allocated amount of memory.
Use of the memory array is subject to the availability of a
minimum amount of memory. (Refer to The Memory
Array, in this section.)

Linker Map and Symbol Files

The Linker generates a map file that contains the
following information for each object module or segment in
the memory image:

name

relative address

length

public symbol values (if you select the Publics option)
line numbers and addresses (if you select the Line
number option)

Note: The starting addresses are offsets, not absolute addresses. The offsets
are relative to the base memory address when BTOS loads the run file.

0O 0 oo o

Reading the Map File (Version 4)

Table 3-4 shows a sample map file for a version 4 run file.

Addresses

The first three columns in the map show the beginning
and ending addresses and the length of each segment. The
starting addresses under Start are offsets, not absolute

" addresses. The offsets are relative to the base memory
address at which the operating system loads the run file.
This base address is determined at run time.

5028707

3-18 Using the LINK or BIND Command

Segment Names

The fourth column of the sample map file in table 3-4
gives the name of each segment. In the case of a code
segment, this name is not the module file name.

In most high-level language programs, you assign this
module name at the beginning of the module. The compiler
creates the code segment name by appending an
underscore and a suffix to this assigned module name, and
the Linker reports the resulting name here.

In Assembly language, you can directly name each
segment. The Linker does not append a suffix to the
segment name.

For easy reference, you can assign the same name for the
module file name and for the program module name. This
convention is particularly helpful when you use the map
to decide what segments to place in overlays, since you
enter file names (not internal module names) in the Object
modules field of the LINK command form. However, you
are not required to use this convention.

Segment Classes

The fifth column in the map gives the class of each
segment. The Linker groups segments by class and uses
class to assign order in the program.

Table 3-4 Version 4 Map File (Sample)

Linker (Version)

Start Stop Length Name Class
0000h 00020h 0021h EXAMPLE_CODE CODE
00022h 00022h 0000h CONST CONST
00022h 00087h 0066h DATA DATA
00090h 0008Bh 000Ch STACK STACK
0009Ch 0009Ch 0000h MEMORY MEMORY

Program entry point at 0000:0000

Using the LINK or BIND Command 3-19

Reading the Map File (Version 6)

Table 3-5 shows a map file for a version 6 run file. It is
similar in format to the version 4 map file, but includes
another column of numbers in parentheses between
Length and Name.

Note: Disregard this column if the map applies to version 6 Real Mode run files.

These numbers are 80286/80386 selectors. For each code
segment, this selector is the value of the CS register while
it is executing, if you are running in 80286/80386
protected mode. For a data segment, this number is the
selector that you use to access data within it.

For all segments within a given group, the selector number
is the same. (Refer to section 6 for a discussion of groups.)

Table 3-5 Version 6 Map File (Sample)

Linker (Version)

Start Stop Length Name Class
00000h 00020h 0021h (0084h) EXAMPLE_CODE CODE
00030h 00030h 000Ch (008Ch) CONST CONST
00030h 00095h 0066h {008Ch) DATA DATA
000ACh 000ABR 000Ch (008Ch) STACK STACK
000BOh 000BOh 000Oh (008Ch) MEMORY MEMORY

Program entry point at 0000:0000 (0084:0000)

5028707

3-20 Using the LINK or BIND Command

Public Symbols and Line Numbers

You can request the Linker to create a map file that lists
public symbols and line numbers.

Table 3-6 shows a version 4 map file that lists the values
of all public symbols and their addresses. The symbols are
sorted first alphabetically and then numerically. A list of

line numbers follows the public symbol lists.

You request a list of public symbols by entering y in the
[Publics?] field of the LINK or BIND command form. You
request a list of line numbers separately by entering y in
the [Line numbers?] field.

The Address column in table 3-6 contains the notation
XXXX:YYYYh; this is the public symbol hexadecimal
address. '

The Overlay column contains Res if the symbol is in the
resident portion of your task, an integer (n) if it is in the
nth overlay, and Abs if it is absolute. An absolute symbol
is one with a specified place in memory (for example, an
address within the operating system).

You use line numbers during debugging, which allow you
to examine a known part of your program at a known
address, even though there is no public symbol at that
address. The addresses, however, are relative to the
beginning of the run file.

Table 3-7 shows a list of public symbols, of line numbers,
and addresses in a version 6 map file. ‘

In the list of public symbols in the version 6 map, the
name of the public symbol is followed by two addresses.
The first is the address in real mode; the second is the
address in protected mode.

In a version 6 run file, operating system absolute
addresses are converted to an 80286/80386-compatible
form (called global descriptor table, or GDT), but they are
still denoted as absolute in this listing.
Application-defined absolute addresses are not permitted
in version 6 run files.

Using the LINK or BIND Command

3-21

Table 3-6 Sample Version 4 Map File with Lists of Public Symbols and

Line Numbers

Linker {Version)

Start Stop Length
00000h 00020h 0021h
00022h 00022h 0000h
00022h 00087h 0066h
00090h 00098h 000Ch
0008Ch 0009Ch 0000h

Publics by name

ANOTHERSAMPLEPROCEDURE
MAIN

SAMPLEDATA
SAMPLETABLE
SAMPLEPROCEDURE

Publics by value

SAMPLEPROCEDURE
ANOTHERSAMPLEPROCEDURE
MAIN

SAMPLEDATA
SAMPLETABLE

Line numbers for EXAMPLE_CODE

4 0000:000H 5 0000:000BH
8 0000:0010H .

9 0000:0012H 10 0000:0012H
13 0000:001FH

14 0000:0000H 15 0000:0008H

EXAMPLE_CODE
CONST

DATA

STACK

MEMORY

Address

0000:000Dh
0000:0012h
0002:0002h
0002:0004H
0000:0008h

Address

0000:0008h
0000:000Dh
0000:0012h
0002:0002h
0002:0004h

6 0000:000DH
11 0000:0015H

Program entry point at 0000:0000

Class

CODE
CONST
DATA
STACK
MEMORY

Overlay

Res
Res
Res
Res
Res

Overlay

Res
Res
Res
Res
Res

7 0000:000DH
12 0000:001AH

5028707

3-22

Using the LINK or BIND Command

Table 3-7 Sample Version 6 Map File with Lists of Public Symbols and
Line Numbers

Linker (Version)

Start

00000h
00030h
00030h
000ACh
000BOh

Stop

00020h
00030h
00085h
000ABh
000BCh

Publics by name ,
ANOTHERSAMPLEPROCEDURE

MAIN

SAMPLEDATA
SAMPLETABLE
SAMPLEPROCEDURE

Publics by value

SAMPLEPROCEDURE
ANOTHERSAMPLEPROCEDURE

MAIN

SAMPLEDATA
SAMPLETABLE

Line numbers for EXAMPLE_CODE

4 0000:0008H
8 0000:0010H
9 0000:0012H
13 0000:001FH
14 0000:0000H

Length

0021h
0000h
0066h
000Ch
0000h

(0084h)
{008Ch)
{008Ch)
(008Ch)
{008Ch)

Address

0000:000Dh
0000:0012h
0003:0000h
0003:0002h
0000:0008h

Address

0000:0008h
0000:000Dh
0000:0012h
0003:0000h
0003:0002h

5 0000:0008H

10 0000:0012H

15 0000:000H

EXAMPLE_CODE
CONST

DATA

STACK

MEMORY

Overlay

{0084:000Dh)
{0084:0012h)
(008C:0000h)
(008C:0002h)
(0084:0008h)

Overlay

{0084:0008h)
{0084:0000h)
(0084:0012h)
(008C:0000h)
(008C:0002h)

6 0000:0000H
11 0000:0015H

Program entry point at 0000:0000 (0084:0000)

Class

CODE
CONS
DATA
STACK
MEMORY

Res
Res
Res
Res
Res

Res
Res
Res
Res
Res

7 0000:0000H
12 0000:001AH

Using the LINK or BIND Command 3-23

Allocating Memory Space

Normally, when a task is loaded in a partition, its high
end is placed at the high-address end of memory. (Refer
to your operating system reference documentation.)

During compilation or assembly, a program can allocate
memory needed during execution. This extra memory takes
up space in the program’s disk file.

Sometimes it is more efficient for a program to allocate a
portion of memory only at load time or during execution.
Usually, if a program must allocate short-lived memory
during execution, it calls AllocMemorySL or
ExpandAreaSL, and the memory is allocated toward lower
addresses. You address this memory with 32-bit
segment-and-offset addresses.

The Linker allows you to choose two unrelated options for
allocation of memory space at load or run time. These
options are DS allocation and the memory array data code
allocation, and you can choose one or both.

DS Allocation

DS allocation allows your program to allocate short-lived
memory toward lower addresses as usual, but also allows
it to address the memory efficiently with only 16-bit
offset addresses. The data segment (addressed by DS) has
a maximum size of 64 Kb, and your program takes up a
certain amount of that.

DS allocation allows you to define a maximum-size data
segment, even though your program’s data segment would
normally be smaller. The excess space in this maximum
data segment extends beyond your program toward lower
memory addresses. You allocate memory in this space with
AllocMemorySL or ExpandAreaSL, and you can address
within this space with 16-bit offset addresses from DS.

5028707

3-24 Using the LINK or BIND Command

To achieve this, you specify yes in the [DS allocation?]
field of the LINK or BIND command form. The Linker
then gives DS the lowest possible value that still allows
the data segment to encompass your program’s data (or
DGroup). (See figure 3-5.)

The program must be arranged with the data segment as
its first or lowest-address segment. If your compiler does
not order the classes in this way, or if you are writing in
Assembly language, you must specify the segment ordering
in the first object module listed for linking.

DS allocation has several advantages. It allows the 16-bit
DS-relative addressing discussed previously. In addition,
memory allocated within this space adjoins the common
pool of available memory below the program, and it can be
flexibly deallocated and reallocated flexibly by the
program. However, the program must make procedure calls
for memory allocation, and the 16-bit addressable space is
less than 64 Kb.

Figure 3-5 A Real Mode Program with DS Allocation

Program High

Data Portion

64Kt
bS

>

Unallocated
Memory

Operating

System Low

Using the LINK or BIND Command 3-25

The Memory Array

The memory array is allocated at the high-address end of
your program at load time, not through procedure calls. To
use the memory array, you specify values in the [Max
memory array] and [Min memory array] fields of the
LINK command form, or in the first parameters of the
[Max array, data, code] and [Min array, data, code] fields
of the BIND command form. Figure 3-6 shows the memory
array.

You do not have to know the size of your program or how
much memory is available in the partition to specify a
memory array. The cParMemArray field of the
Application System Control Block structure contains the
number of paragraphs of memory array actually available.
If the partition cannot accommodate the minimum memory
array you requested, the program is not loaded, and the
operating system returns a status code and error message.

To specify that the task always loads at the lowest
possible address, (i.e., with maximum memory array at the
end of the task), set the minimum to 0 and the maximum
to 1000000.

The memory array has several advantages:
o It is not limited to less than 64 Kb, but can occupy all
available memory in a partition.

o The program does not have to make procedure calls to
allocate memory during execution.

o The task is at a lower address than the memory array.

o The memory array can be referenced from DS if DGroup
is placed at the end of the program.

The memory array is static, however. You cannot reclaim
any of it for other uses, and it remains throughout
execution. Further, in the form described here, it cannot
be referenced from DS. Usually, the ES register is loaded
with the lowest address of the memory array.

5028707

3-26 Using the LINK or BIND Command

Figure 3-6 A Program with the Memory Array

High-
memory array
program
unallocated memory
operating system
Low

Linking a Swapping Program

The Virtual Code Segment Management facility, referred to
as the Swapper, allows an application that is larger than
the memory in its partition to run, but with a performance
trade-off. For this purpose, the program'’s code is divided
into variable-length code segments. One, the resident code
segment, is permanently in memory. The remaining
segments, or overlays, reside on disk until needed. When
you call a procedure in a nonresident overlay, the Overlay
Manager of the Swapper brings it into memory.

The term code segment as used here is not the same as a
Linker segment. A Swapper code segment, whether
resident or in an overlay, can contain several Linker code
segments. For example, an overlay can include differently
named code segments originating from several different
modules.

Using the LINK or BIND Command 3-271

Only code (not data) is placed in overlays. Module code
segments produced by high-level language compilers are
pure, so a particular Swapper code segment in memory
that is no longer needed can be overlaid by another
Swapper code segment. When the first code segment is
needed again, it is re-read from the run file. Under this
system, only code segments and not data segments are
swapped. Nothing is written back to disk, so there is no
need for a disk swap file.

You can use the Swapper with programs written in all
BTOS high-level languages, and with Assembly programs
that follow certain rules. Little or no modification is
needed to make an existing program swap. You must write
a small amount of initialization code, and you must specify
in the command form which modules will contribute code
to which overlays.

In some languages, you cannot place certain modules from
the run-time library in overlays. In Assembly language,
you must follow call/return conventions and certain other
rules for your sw: pping program to work.

Refer to your operating system reference documentation
for more information on the Swapper. In addition, refer to
the language manuals for language-specific information.

Computing Stack Size

All compilers produce information in object modules from
which the Linker can compute the size of the required
stack segment. For safety, this information usually
specifies a stack that is larger than the actual
requirements.

5C28707

3-28 Using the LINK or BIND Command

Reducing the Stack

If your program has a data segment that is close to the 64
Kb size limit, in many cases you can reclaim space by
reducing the stack size. For example, if you link a program
that uses Forms, ISAM, and Graphics, the Linker supplies
extra stack space for each of these products. You can
examine the size of the default stack by looking at the
map file. It is often possible to reduce the amount of stack
space by as much as one third without any problem.

To estimate the needed stack size more closely, run the
program under the Debugger and set a breakpoint at the
end of execution, or at another convenient point just after
the stack reaches its largest requirement. Because the
stack is initialized to zeros, you can now check to see how
much of the low part of the stack is still zeros in order to
find the maximum requirement. Allow another 128 bytes
(64 bytes for interrupt handlers and 64 bytes for making
requests) and reduce the stack size accordingly.

Comcting Stack Overflow

In rare cases, the compiler supplies information that
causes the Linker to undercompute the required stack
size. An example is a task with many recursive
procedures.

The stack grows down from higher to lower addresses. If a
program’s requirements exceed the stack size, the stack
can overwrite whatever precedes it in the link map,
causing abnormal program behavior. In this case, you
should relink the program, specifying a larger stack size in
the command form.

The amount of stack needed is highly program dependent
and cannot be estimated precisely. You should increase the
stack to the maximum size allowed within the limitations
of your data segment. If the program now runs, reduce the
stack size according to the guidelines described.

Section 4 a-1
Using the LIBRARIAN Command

You can perform the following operations when you use
the LIBRARIAN command at the Executive level:

o build a new library by specifying a new library file
name and the object module(s) to compose it

o modify a library by specifying object modules to be
added or deleted

o extract one or more object modules from a library by
entering the object module name(s)

o produce a sorted cross-reference list of the object
modules and public symbols in the library

LIBRARIAN Command Form and Parameters

When you use the Executive LIBRARIAN command, the
system displays the LIBRARIAN command form as shown
in figure 4-1.

The fields that start and end with brackets (for example,
[Files to add]) are optional; you can leave the fields blank
or enter a parameter. Refer to table 4-1 for information on
each bracketed field.

Figure 4-1 LIBRARIAN Command Form

Librarian
| Library file

[Files to add]

[Modules to delete]
[Modules to extract]
[Cross-reference file]
[Suppress confirmation?]

5028707

4-2

Using the LIBRARIAN Command

Table 4-1 Librarian Options

Field

Action/Explanation

[Files to add]

[Modules to delete]

[Modules to extract]

[Cross-reference file]

[Suppress confirmation]

To add object modules to the library, enter the file
names. Separate names with single spaces.

To delete object modules, enter the object module
names (do not include the .obj suffix). Separate the
names with single spaces.

Note: If you are replacing @ module with a revised
version, enter the module in the [Files to add] field
and allow the Librarian to overwrite it. Deleting the
old module and adding a new module takes twice as
long.
To extract modules, enter the names in one of the
following ways:
- to create object module files with the same
names used in the library, enter:
ModuleName
The Librarian appends the .obj suffix to the name.

- to create object module files with a different
name, enter:

FileName (ModuleName)
Separate the names with single spaces.
Extraction does not modify the library.
To produce an alphabetical cross-reference list of
public symbols and modules, enter a file name for

the list. The Librarian enters a cross-reference map
in the file.

If you accept the default (no), the system prompts

you to confirm the following operations:

- creating new library files (when the file name
you enter in the Library file field is unknown te
the system)

- replacing an existing object module (when the
object module name you enter in the Files to
add field already exists)

- proceeding when a multiply-defined public
symbol is encountered

To deactivate the prompts, enter y.

Using the LIBRARIAN Command 4-3

Building a New Library

To build a new library, use the following procedure:

1 In the Executive command line, type LIBRARIAN.
2 Press RETURN.

The system displays the LIBRARIAN command form as
shown in figure 4-1; the highlight is on the Library
file field.

3 Enter the new library file name.

Caution: [f you enter an existing library name, the Librarian acts on the
existing library and can overwrite information. However, the Librarian saves
the previous library contents in a file with the suffix -old.

Note: You cannot use none for the library name; you use the parameter
none in the Linker command [Libraries] field to direct the Linker not to
search libraries.

BTOS standard software uses a .lib suffix to assist in
file management (it helps identify library files). You
can use this suffix, but the system does not require it.

4 In the [Files to add] field, enter the object module
name(s). If you enter multiple names, separate them
with single spaces.

Note: When you add object modules to a library file, the Librarian drops
the object module suffix (.obj), if any.
5 Complete the optional fields or accept the default values.
For information on optional fields, refer to table 4-1.
6 Press GO.

If you did not turn off the system confirmation
prompts, the system prompts you to confirm the
creation of a new library file.

Press GO to confirm or FINISH to exit the Librarian.

5028707

44 Using the LIBRARIAN Command

Modifying a Library

Caution: When you use the Librarian to add or delete a module, the system
deletes the version text string that appears at the end of the library file. (The
version should not remain if the library has been changed.) If this deletion
causes problems for you, rename the library to preserve the original version
number in the name (for example, 8.0CTOS.Lib).

To modify a library, use the following procedure:

1 In the Executive command line, type LIBRARIAN.

2 Press RETURN.

The system displays the LIBRARIAN command form as

shown in figure 4-1; the highlight is on the Library

file field.

Enter the library file name.

4 To add object modules, enter the names in the [Files to
add] field. Separate the names with single spaces.

5 To delete object modules, enter the names in the
[Modules to delete] field. Separate the names with
single spaces and do not enter the .obj suffix.

6 Complete the optional fields or accept the default values.

For information on optional fields, refer to table 4-1.

1 Press GO.

The system preserves the content of the previous
library file in a file with the library file name plus the
suffix -old.

If you did not turn off the system confirmation

prompts, the system prompts you to confirm'the

following operations:

o creation of a new library file if the file you entered
in the Library file field does not exist

o replacement of an object module if an object module
file you enter in the [Files to add] field has the
same name as an object module in the

library

If you press GO, the system replaces the library file
with the added file.

w

Using the LIBRARIAN Command 4-5

o a duplicate entry for a public symbol if the public
symbol declared in an object module you want to
add conflicts with a public symbol in the library
If you press GO, the Librarian adds the object
module, but removes the public symbols (both old
and new) from the symbol index the Linker
searches.

Extracting Object Modules from a Library

To extract object modules from a library, use the
following procedure:
1 In the Executive command line, type LIBRARIAN.
2 Press RETURN.

The system displays the LIBRARIAN command form as
shown in figure 4-1; the highlight is on the Library
file field.

Enter the library file name.

4 In the [Modules to extract] field, enter the object
module names. Separate the names with single spaces
and do not enter the .obj suffix.

To create object module files with names of the forin
ModuleName.obj, enter ModuleName.

To create object module files with the name FileName,
enter FileName (ModuleName).

5 Press GO. The Librarian extracts the object module.

w

Producing A Cross-Reference List Only

If you enter only the library file name and a
cross-reference list file name, the Librarian sorts public
symbols and object module names alphabetically and
enters the list in the file you specify without changing the
library file.

5028707

4-6 Using the LIBRARIAN Command

The same symbol defined within different modules in a
library is called a duplicate symbol name. Such duplicate
symbol names are removed from the index of symbols to
be searched by the Linker, but are listed in the
cross-reference file. The first duplicate symbol name
encountered is followed by an asterisk, the second by two,
and so on. Modules in which they occur are also listed.

Table 4-2 shows a sample cross-reference list.

Table 4-2 Cross-Reference List (Sample)

COMPACTDATETIME CMPDT EXPANDDATETIME............ EXPDT
FILLFRAME VAM POSFRAMECURSOR VAM
PUTFRAMEATTRS VAM PUTFRAMECHARS VAM
QUERYFRAMECHAR VAM RESETFRAM VAM

CMPDT (Length 0177h bytes)
COMPACTDATETIME

EXPDT (Length 014Ch bytes)
EXPANDDATETIME

VAM (Length 09B8h bytes)

FILLFRAME POSFRAMECURSOR PUTFRAMEATTRS
PUTFRAMECHARS QUERYFRAMECHAR RESETFRAM
SCROLLFRAM

Using the LIBRARIAN Command 4-7

To produce only a cross-reference list, use the following
procedure:

1 In the Executive command line, type LIBRARIAN.

2 Press RETURN.

The system displays the LIBRARIAN command form as
shown in figure 4-1; the highlight is on the Library
file field.

3 Enter the library file name.
In the [Cross-reference file] field, enter a file name.

5 Press GO. The Librarian produces the cross-reference
list in the file you specified.

To display or print the cross-reference list, use an
Executive command or the EDITOR.

E -]

5028707

Section 5 51

Invoking the Assembler from the
Executive

When you use the Executive ASSEMBLE command, the
system displays the ASSEMBLE command form as shown
in figure 5-1. Refer to table 5-1 for information on each field.

For information on filling out Executive command forms,
refer to your Standard Software documentation.

Figure 5-1 ASSEMBLE Command Form

Assemble

I Source files

[Errors only?]

[GenOnly, NoGen, or Gen]
[Object file]

[List file]

[Error file]

[List on pass 17]

[:£1:]

[:f0: (default [sys]<edfs)]

Table 5-1 ASSEMBLE Command Fields

Field Description

Source files Enter the list of source files to be assembled. This is
the only required field.

Separate the names with single spaces, not commas.
The result is logically like assembling a single file that
is the set of all the source files. See the example
following this table.

[Errors only?] For a listing only of lines with errors, enter Yes. The
default is No (a full listing).
The listing normally contains source and object code
for all source lines. Assembly produces an object file
and a list file, with names as described below.

5028707

5-2

Invoking the Assembler from the Executive

Table 5-1 ASSEMBLE Command Fields (continued)

Field

Description

[GenOnly, NoGen, or Gen]

[Object file]

[List file]

[Error file]

[List on pass 17]

[:f1:]

This field specifies the mode of listing macro
expansion results. GenOnly (the default) lists the
results. The NoGen mode listing contains the
unexpanded macro invocations.

In Gen mode, the listing contains invocations and full
expansions, as well as intermediate stages of
expansion. This last mode is most useful in debugging
complex macros.

Note that these controls affect only the listing
content. The result of full expansions is always
assembled to produce object code.

You can also specify this setting in the source with
the assembly control directives SGENONLY, SNOGEN,
AND $GEN.

This field specifies the object file to which the object
code (that results from assembly) is written. The
default name is taken from the last source file as
follows: The last source name is treated as a string,
any final suffix is stripped off beginning with the
period, and “.0bj" is added.

This field specifies the list file to which the assembly
listing is written. The default name is taken from the
last source file the same way as for object files,
except “.1st” is added.

This field specifies the file to receive the Errors only
listing if you want both a full listing and a listing of
only the errors. The default is no listing.

You use this field for diagnosing certain errors in
macros. Listings are normally generated only during
the second assembly pass.

However, some programming errors involving macros
prevent the assembly process from ever reaching its
second pass. To diagnose such errors, enter Yes to
get listings for both passes. The default is No.

You use this field to redirect and use ‘Include files’
from local or global directories. The system uses this
entry (for example, $INCLUDE (:f1: filename)) as a
substitution when it assembles the program. The
default is [sys]<edf>.

Invoking the Assembler from the Executive 5-3

Table 5-1 ASSEMBLE Command Fields (continued)

Field Description
[:£0: (default - You use this field to redirect and use ‘Include files’
[sys]<edf>)] from local or global directories. The system uses this

entry (for example, SINCLUDE (f0: filename)) as a
substitution when it assembles the program. The
default is [sys]<edf>.

Sample Source Files Field Entry

To illustrate the use of the Source files field entry, assume
the program is contained in Main.Asm and depends on a
set of assembly time parameters. You maintain two source
fragments to define the parameters, one for debugging and
one for production. Then Source Files would be either:

ParamsDebugging.Asm Main.Asm
or
ParamsProduction. Asm Main.Asm

For default object file examples, assume the last source
file is:

[Dev]<Jones>Main

The default object file is then named:
[Dev]<Jones>Main.Obj

If the last source file is:

Prog.Asm

the default object file is:

Prog.Obj

5028707

Section 6 61

Programs and Segments

Assembler programs are composed of segments, which are
variable-length areas of contiguous memory. Each
instruction of a program and each item of data is created
within a segment, which are then linked together. This
section discusses how you name and combine segments
with other segments to form a program. It also describes
the Assembly language directives used in this process.

Segments and Memory References

At Assembly time, you can define as many segments as
you wish, as long as each assembly module has at least
one segment. Each instruction of the program and each
item of data must lie within a segment. Code and data may
be mixed in the same segment, but this is generally not
done because such a segment cannot be linked with object
segments produced by Pascal or FORTRAN. Programs that
contain segments that mix code and data cannot be run in
a protected mode.

Referencing Segments

Prior to the introduction of the 80286 and 80386, the
registers that contained a segment value from which a
physical address could be calculated were called segment
registers. These 16-bit registers contained paragraph
numbers that were multiplied by 16 and then added to a
16-bit offset to form the 20-bit physical address. This
form of addressing is used by the 80286 and 80386
microprocessors when they operate in real mode.

In protected mode, the segment is indirectly pointed to by
a selector. A selector is a 16-bit value in which the high
13 bits are an index to a descriptor table, the next 2 bits
are the request privilege level, and the low bit indicates
whether to use a local or a global descriptor table.

5028707

6-2 Programs and Segments

The descriptor table contains the actual segment address
(which is no longer necessarily paragraph-aligned) to
which the 16-bit offset is added to find the physical
address. Since the segment register is a subset of the
selector register, both are referred to as the selector
register throughout this manual.

(For information about programming in protected mode,
refer to your protected mode programming
documentation.) ’

Segment Naming and Linkage

This section discusses segment naming and linkage
conventions.

SEGMENT/ENDS Directives

You use the SEGMENT directive to name a segment, and
the ENDS directive to indicate the end of a segment.

You name segments explicitly with the SEGMENT
directive. (If you do not specify a name, the Assembler
assigns the name ??SEG.) The SEGMENT directive also
controls the alignment, combination, and contiguity of
segments. Its format is:

[segname] SEGMENT [align—-type] [combine-type]
['classname’]

[segname]ENDS

You must specify the optional fields (in brackets) in the
order given.

Programs and Segments 6-3

Alignment

A segment is located on a memory boundary specified by
align-type, as follows:

o PARA (the default): The segment begins on a paragraph
boundary, an address whose least significant
hexadecimal digit is 0.

o BYTE: The segment can begin anywhere.

o WORD: The segment begins on a word boundary (an
even address).

o PAGE: The segment begins on an address divisible by 256.

Combining Segments

The Linker combines segments with other segments as
specified by the combine-type field of the SEGMENT
directive. Segment combination permits segment elements
from different assemblies to be overlaid or connected by
the Linker. Such segment elements must have the same
segname and classname and an appropriate combine-type,
as follows:

o Not combinable (the default)

o PUBLIC: When linked, this segment is placed adjacent to
others of the same name. The Linker controls the order
of placement during linkage, according to your
specifications.

o AT expression: The segment is located at the 16-bit
segment base address evaluated from the given
expression. The expression argument is interpreted as a
paragraph number. For example, if you wish the
segment to begin at paragraph 3223h (absolute memory
address 32230h), specify AT 3223h.

You can use any valid expression that evaluates to a
constant and has no forward references. You can have
an absolute segment in order to establish a template for
memory that is accessed at run time. No assembly time
data or code is automatically loaded into an absolute
segment.

5028707

6-4 Programs and Segments

o STACK: The elements are overlaid such that the final
bytes of each element are juxtaposed to yield a
combined segment whose length is the sum of the
lengths of the elements.

Stack segments with the name STACK are a special
case. When stack segments are combined, they are
overlaid but their lengths are added together. After the
Linker combines all stack segments, it forces the total
length of the aggregate stack segment to a multiple of
16 bytes.

Compilers construct stack segments automatically.
However, if your entire program is written in assembly
language, you must define an explicit stack segment.
There are special rules regarding the use of the stack
that you must observe when making calls to standard
object module procedures. (See section 11, Accessing
Standard Services from Assembly Code.)

o COMMON: The elements are overlaid such that the
initial bytes of each element are juxtaposed to yield a
combined segment whose length is the largest of the
lengths of the elements.

Classname

You can use the optional classname field to change the
ordering of segments in the memory image constructed by
the Linker. (See your Standard Software documentation.)

Segment Nesting

You can code a portion of one segment, start and end
another, and then continue coding the first. However, you
can specify lexical nesting only (not physical), since the
combination rules given above are always followed.

Lexically-nested segments must end with an ENDS
directive before the enclosing SEGMENT directive is closed
with its own ENDS directive.

Programs and Segments 6-5

Segment Linkage

The fundamental units of relocation and linkage are
segment elements, linker segments, class names, and
groups.

An object module is a sequence of segment elements, each
of which has a segment name. An object module might
consist of segment elements whose names are B, C, and D.

The Linker combines all segment elements with the same
segment name from all object modules into a single entity
called a linker segment. A linker segment forms a
contiguous block of memory in the run time memory image
of the task. For example, you might use the Linker to link
these two object modules:

o Object Module 1 containing segment elements B, C, D
o Object Module 2 containing segment elements C, D, E

Linkage produces these four linker segments:
o Linker Segment B consisting of element Bl
o Linker Segment C consisting of elements C1, C2
o Linker Segment D consisting of elements D1, D2
o Linker Segment E consisting of element E2

(The element number format xi denotes the segment
element x in module i.)

Class names determine the ordering of the various linker
segments. (A class name is an arbitrary symbol used to
designate a class.) All the linker segments with a common
class name and segment name go together in memory. For
example, if Bl, D1, and E2 have class names Red, while C1
has class name Blue, then the ordering of linker segments
in memory is: B, D, E, C. Inside the linker segments, the
segment elements are arranged as shown in figure 6-1.

5028707

6-6 Programs and Segments

Figure 6-1 Linker Segment Elements

B D E C <«———— Linker segments

Bt D1 D2 E2 Ci C2 <4——— Segment elements

Red Red None Red Blue None <—— Class names

If two segment elements have different class names, they
are considered unrelated for purposes of these algorithms,
even though they have the same segment name. Thus,
segment names and class names together determine the
ordering of segment elements in the final memory image.

The next step for the Linker is to establish how hardware
selector registers address these segment elements at run time.

A group is a named collection of linker segments that is
addressed at run time with a common selector register. To
make the addressing work, all the bytes within a group
must be within 64K of each other.

You can combine several linker segments into a group. For
example, if you combine B and C into a group, then you
can use a single selector register to address segment
elements B1, C1, and C2. You can assign segment, class,
and group names explicitly in assembler modules using
appropriate assembler directives.

ASSUME Directive

The ASSUME directive declares how the instructions and
data specified during assembly are to be addressed from
the selector registers during execution. You must explicitly
control the values in selector registers at run time, since
the ASSUME directive does not cause loading of the
selector registers referenced.

Use of the ASSUME directive permits the Assembler to
verify that data and instructions will be addressable at
run time.

Programs and Segments 6-7

The ASSUME directive can be written either as:
ASSUME sel-reg:seg-name |, ...]
or
ASSUME NOTHING
In this example, sel-reg is one of the selector registers.
Sel-name is one of the following:
o A segment name, as in:
ASSUME CS:codeSeg, DS:dataSeg
o A GROUP name that has been defined earlier, as in:
ASSUME DS:DGroup, CS:CGroup

o The expression SEG variable-name or SEG label-name,
as in:

ASSUME CS:SEG Main, DS:SEG Table
o The keyword NOTHING as in:
ASSUME ES:NOTHING

A particular sel-reg:seg—name pair remains in force until
another ASSUME assigns a different segment (or
NOTHING) to the given sel-reg. To ASSUME NOTHING
means to cancel any ASSUME in effect for the indicated
registers. A reference to a variable whose segment is
assumed automatically generates the proper object
instruction. A reference to a variable whose segment is not
assumed must have an explicit segment specifications.

For example:
Tables SEGMENT
xTab DWW 100 DUP(10) ;100-word array, initially
;10’s.
yTab DW 500 DUP(20) ;500-word array, initially
;20’s.
" Tables ENDS ;
ZSeg SEGMENT ;800-word array, initially
30’s

zTab DW 800 DUP(30)
ZSeg ENDS

5028707

Programs and Segments

Sum SEGMENT
ASSUME CS:sum,DS:Tables

Start: MOV BX, xTab

ADD BX, yTab
MOV AX, SEG zTab

MOV ES, AX
MOV ES:zTab, 35

Sum ENDS

,ES:NOTHING

;Sum addressable through
;CS and Tables through DS.
No

;assumption about ES (ZSeg
;is not assumed).

;xTab addressable by DS:
;defined in Tables.

;yTab addressable by DS:
;defined in Tables.

;Now AX is the proper
;selector value to

;address reference to
;zTab.

;ES now holds the selector
;for ZSeg. :
;2Tab must be addressed
;with explicit selector
;override—the Assembler
;does not know
;automatically what selector
;register to use.

In this example, the ASSUME directive:

o tells the Assembler to use CS to address the instructions
in the segment Sum. This program fragment does not
load CS. CS must have been set previously to point to
the segment Sum. For example, CS is often initialized by

a long jump or long call.

o tells the Assembler to look at DS for the symbolic

reference to xTab and yTab.

Memory Addressing

This section describes the general rules for addressing

code in a segment.

Programs and Segments 6-9

Loading Selector Registers

You load the CS register using a long jump (JMP), a long
call (CALL), an interrupt (INT n, or external interrupt), or
a hardware RESET.

In real mode, the instruction INT n loads the instruction
pointer (IP) with the 16-bit value stored at location 4*n of
physical memory, and loads CS with the 16-bit value
stored at physical memory address (4*n)+2.

In protected mode, the INT n instruction causes the CPU
to use n as an index into the IDT.

The following is an example of defining the stack and
loading the stack selector register, SS:
STACK SEGMENT STACK ;1000-words of stack.

DW 1000 DUP(0) ' :
StackStart LABEL WORD ;Stack expands toward low

;memory.
Stack ENDS
StackSetup SEGMENT CS:StackSetup
ASSUME BX, Stack
MOV SS, BX
MOV SP, OFFSET StackStart
MOV ;start = end initially
StackSetup ENDS

This example illustrates an important point: You must load
each of the two register pairs SS/SP and CS/IP together.
The hardware has a special provision to assist in this.
Loading a selector register by a POP or MOV instruction
causes execution of the very next instruction (only) to be
protected against all interrupts. That is why the next
instruction, after the load of the stack base register, SS,
_must load the stack offset register, SP.

CS and its associated offset IP are loaded only by special
instructions, never by normal data transfers. SS and its
associated offset SP are loaded by normal data transfers
but must be loaded in two successive operations.

5028707

6-10 Programs and Segments

Selector Override Prefix

If there is no ASSUME directive for a reference to a named
variable, you can insert the appropriate selector reference
explicitly as a selector override prefix. The format is:

sel-reg:
where sel-reg is CS, DS, ES, or SS, as in:
DS:xyz

This construct does not require an ASSUME directive for
the variable reference, but its scope is limited to the
instruction in which it occurs.

Thus, the following two program fragments are correct
and equivalent:

Mycode SEGMENT
ASSUME CS:Mycode,DS:Mydata
MOV AX, rgwAnything
ADD AL, rgb
MOV rgwAnythingElse, AX
Mycode ENDS

Mycode SEGMENT
ASSUME CS:Mycode
MOV AX, DS:rgwAnything
ADD AL, DS:rgb
MOV DS:rgwAnythingElse, AX
Mycode ENDS

where Mydata would be defined by:

Mydata SEGMENT
rgwAnything DW 100 DUP (0) ;100 words O's
rgb DB 500 DUP (0) ;600 bytes 0’s

rgwAnythingElse = DW 800 DUP (0) ;800 words 0’s
Mydata ENDS

Programs and Segments 6-11

Anonymous References
Memory references that do not include a variable name are
called anonymous references. For example:

(BX]
[BP]

Hardware defaults determine the selector registers for
anonymous references, unless there is an explicit selector
prefix operator. Table 6-1 shows the hardware defaults.

Table 6-1 Hardware Defaults

Addressing Default
[BX] DS
[BX][DI] DS
[BX][S} DS
[BP) SS
[BPI[DI] SS
[BP[SI] SS
[D1} ES
s DS

5028707

6-12 Programs and Segments

There are a few exceptions to these defaults:

o PUSH, POP, CALL, RET, INT, AND IRET always use SS.
This default cannot be overridden.

o String instructions on operands pointed to by DI always
use ES. This default cannot be overridden.

It is important that you make an anonymous reference to
the correct segment. Unless there is a segment prefix
override, the hardware default is applied. For example:

ADD AX, [BP+5] is the same as ADD AX, SS:[BP+5]
MOV [BX +4], CX is the same as MOV DS:[BX +4], CX
SUB [BX +SI], CX is the same as SUB DS:[BX +8SI], CX
AND [BP+DI]}, DX is the same as AND SS:[BP+DI}, DX
MOV BX, [SI).one is the same as MOV BX, DS:[SI]l.one
AND [DI],CX is the same as AND ES:[DI}],CX

The following examples require explicit overrides because
they differ from the default usage:

ADD AX, DS:[BP+5]

MOV AX, ES:[BX+2]

XOR SS:[BX+8I], CX

AND DS:(BP+DI], CX
MOV BX, ES:[DI].one
AND ES:[SI+4], DX

Memory References in String Instructions

Table 6-2 shows the mnemonics of the string instructions.
These include those that you can code with operands (such
as MOVS), and those that you can code without operands
(like MOVSB, MOVSW).

Each string instruction has type-specific forms (for
example, LODSB, LODSW) and a generic form (like LODS).
The assembled machine instruction is always
type-specific. If you code the generic form, you must
provide arguments that serve only to declare the type and
addressability of the arguments.

Programs and Segments ' 6-13

Table 6-2 String Instruction Mnemonics

Operation Mnemonic Mnemonic Mnemonics
for Byte for Word for Symbolic
Operands Operands Operands®

Move MOVSB MOvsSwW MovS

Compare CMPSB CMPSW MPS

Load AL/AX LODSB LODSW LODS

Store from STOSB STOSW ST0S

AL/AX

Compare to SCASB SCASW SCAS

AL/AX)

* The Assembler checks the addressability of symbolic
operands. The opcode generated is determined by the type
(BYTE or WORD) of the operands.

A string instruction must be preceded by a load of the
offset of the source string into SI, and preceeded by a load
of the offset of the destination string into DI.

The string operation mnemonic may be preceded by a
“repeat prefix” (REP, REPZ, REPE, REPNE, or REPNZ), as
in REPZ SCASB. This specifies that the string operation is
to be repeated the number of times contained in CX
(repeat, decrementing CX each iteration until CX=0).

String operations without operands (such as MOVSB,
MOVSW) use the hardware defaults, which are SI offset
from DS, and DI offset from ES. Thus MOVSB is equivalent to:

MOVS ES:BYTE PTR[DI],[SI]

If ydu do not intend to use the hardware defaults, both
segment and type overriding are required for anonymous
references, as in:

MOVS ES:BYTE PTR[DI], SS:[SI]
Refer to section 8 for a discussion of PTR.
-String instructions cannot use [BX] or [BP] addressing.

Note: You should not use repeat and segment override together if interrupts
are enabled, since the hardware defaults are assumed upon return from the interrupt.

5028707

6-14 Programs and Segments

GROUP Directive

The GROUP directive specifies that certain segments lie
within the same 64 Kb of memory. The format is:

name GROUP segname |, ...]

In this case, name is a unique identifier used in referring
to the group. segname can be the name field of a
SEGMENT directive, an expression of the form SEG
variable-name, or an expression of the form SEG
label-name. (For a definition of the SEG operator, see
Value-Returning Operators in section 8.) The field [, ...] is
an optional list of segnames. Each segname in the list is
preceded by a comma.

This directive defines a group consisting of the specified
segments. You use the group-name much like a segname
(except that a group-name must not appear in another
GROUP statement as a segname.)

The GROUP directive has three important uses:

o as an immediate value, loaded first into a general
register, and then into a selector register, as in:

MOV CX,DGroup
MOV ES,CX

The Linker computes the value of DGroup as the
paragraph address of the lowest (first) segment in DGroup.

o as an ASSUME statement, to indicate that the selector
register addresses all segments of the group, as in:

Assume CS:CGroup

o as an operand prefix, to specify the use of the group
base value or offset (instead of the default segment base
value or offset), as in:

MOV CX,0FFSET DGroup:xTab

(For additional information about OFFSET, refer to
Value-Returning Operators in section 8.)

Programs and Segments 6-15

You do not know during assembly whether all segments
named in a GROUP directive will fit into 64K; the Linker
checks and issues a message if they do not fit. Note that
the GROUP directive is declarative only, not imperative. It
asserts that segments fit in 64K, but does not alter
segment ordering to make this happen. For example:

DGroup GROUP dSeg, sSeg

An associated ASSUME directive that might be used with
this group is:

ASSUME CS:codel, DS:DGroup, SS:DGroup
You cannot use forward references to GROUPs.

Procedures

This section discusses how you use Assembly language
procedures.

PROC/ENDP Directives

The Assembly language defines a procedure as a block of
code and data delimited by PROC and ENDP statements.
Although procedures can be executed by in-line
“fall-through” of control, or jumped to, the standard and
most useful method of invocation is the CALL.

The formats of the PROC and ENDP directives are as follows:
name PROC NEAR or FAR

RET

name ENDP
“name” is specified as NEAR or FAR, and defaults to NEAR.

5028707

6-16 Programs and Segments

If you call the procedure by instructions assembled under
the same ASSUME CS value, you can specify NEAR. A
RET (return) instruction in a NEAR procedure pops a
single word of offset from the stack, returning to a
location in the same segment.

If you call the procedure by instructions assembled under
another ASSUME CS value, then you must specify FAR. A
RET in a FAR procedure pops two words, (a new selector
base as well as offset), and thus can return to a different
segment.

You can nest procedures as shown below, but they must
not overlap: ' .

WriteFile PROC

RET
WriteLine PROC

RET
WriteLine ENDP

WriteFile ENDP

Calling a Procedure

The CALL instruction assembles into one of two forms,
depending on whether the destination procedure is NEAR
or FAR.

When you call a NEAR procedure the instruction pointer
(IP, the address of the next sequential instruction) is
pushed onto the stack. Control then transfers to the first
instruction in the procedure.

When you call a FAR procedure, first the content of the
CS register is pushed onto the stack, followed by the IP.
Control then transfers to the first instruction of the
procedure.

Programs and Segments 6-17

You can have multiple entry points to a procedure. All
entry points to a procedure should be declared as NEAR or
FAR, depending on whether the procedure is NEAR or FAR.

All returns from a procedure are assembled according to
the procedure type (NEAR or FAR).

See figure 6-2 for the procedure CALL/RET control flow.

Recursive Procedures and Nesting on the Stack

When procedures call other procedures, the rules are the
same for declaration, calling, and returning.

A recursive procedure is one which calls itself, or which
calls another procedure which then calls the first. The
following additional rules apply to recursive procedures:

o A recursive procedure must be reentrant. This means
that it must put local variables on the stack and refer to
them with [BP] addressing modes.

o A recursive procedure must remove local variables from
the stack before returning, by appropriate manipulation
of SP.

The number of calls that can be nested (the nesting limit)
depends on the size of the stack segment. Two words on
the stack are taken up by FAR calls, and one word by
NEAR calls. Of course, parameters passed on the stack and
any variables stored on the stack take additional space.

Retuming From a Procedure

The RET instruction returns from a procedure. It reloads
IP from the stack if the procedure is NEAR; it reloads both
IP and CS from the stack if the procedure is FAR. IRET is
used to return from an interrupt handler and it reloads the
flags, as well as CS and IP.

A procedure can contain more than one RET or IRET
instruction, and the instruction does not necessarily have
to come last in the procedure.

5028707

6-18

Programs and Segments

Other Directives

The remainder of this section discusses the use of the
location counter ($), and the ORG, EVEN, and program
linkage directives (NAME/END, PUBLIC and EXTRN).

Figure 6-2 Call/Ret Control Flow
CD SEGA SEGMENT

SEGB SEBMENT
ASSUME CS:SEGA ASSUME CS: SEGB
COMMENCE PROC AGAIN PROC FAR
' I8
CALL BBB o
» ERGO: MOVBX, 5 (XX . 0%,
Q) n: KRR 00X gg_‘ &%
QAAXXX 9008 2 S
Q -~ X
COMMENCE ENDP XXX LABEL FAR
»| BBB PROC NEAR (
g R TRIIIIT, 2)
CALL XXX % 0X2
> TAO: INC AX
ret 8
RET
BBB ENDP
AGAIN ENDP
SEGA ENDS
KEY:
Cemer) | O @ OO

]
o
o
o
o
o

Comes from any of:

Whatever the START,

CS¢—SEGA
|Pq- OFFSET COMMENCE

hardware reset
external interrupt
INT N

CALL BX
NEAR/FAR
JUMP/CALL

SP «€—SP-2
(SP)ye—iP
IP¢. OFFSET BBB

SP 4—SP-2 |IP 4—(SP) |IP 4— (SP)
(SP)€—CS SP @¢—SP+2 | SP €— SP.+2
CS «—SEGB |CS<—(SP)
SP 44— SP-2 | SP4—SP+2
(SP)€—IP AND
IPg- OFFSET XXX| SP €— SP+8

{for RET 8)

Programs and Segments 6-19

Location Counter ($) and ORG Directive

The assembly-time counterpart of the instruction pointer
is the location counter. The value contained in the location
counter is symbolically represented by the dollar sign ($).
The value is the offset from the current segment at which
the next instruction or data item will be assembled. This
value is initialized to O for each segment. If a segment is
ended by an ENDS directive, and then reopened by a
SEGMENT directive, the location counter resumes the
value it had at the ENDS.

You use the ORG directive to set the location counter to a
non-negative number. The format is:

ORG expression

The expression is evaluated modulo 65636 and must not
contain any forward references. The expression can
contain $ (the current value of the location counter), as in:

ORG OFFSET $+1000
which moves the location counter forward 1000 bytes.
An ORG directive cannot have a label.

The use of the location counter and ORG is related to the
use of the THIS directive. Refer to section 8 for
information on the THIS directive.

EVEN Directive

The EVEN directive ensures that an item of code or data is
aligned on a word boundary. For example, a disk sector
buffer for use by the operating system must be word
aligned. For excmple:

BUFFER EVEN 266 DUP(0)
DW

The Assembler implements the EVEN directive in aligning
-code by inserting before the code, where necessary, a
1-byte NOP (no operation) instruction (90h).

You can use the EVEN directive only in a segment whose
alignment type (as specified in the SEGMENT directive) is
WORD, PARA, or PAGE. You cannot use it in a segment
having an alignment type of BYTE.

5028707

6-20 Programs and Segments

Program Linkage Directives (NAME/END, PUBLIC and
EXTRN)

The Linker combines several different assembly modules
into a single load module for execution. The assembly
module can use three program linkage directives to
identify symbolic references between modules. The linkage
directives cannot be labeled. They are:

o

NAME, which assigns a name to the object module
generated by the assembly. For example:

NAME SortRoutines

If there is no explicit NAME directive, the module name
is derived from the source file name. Thus, the source
file [Volnamej<Dirname>Sort.Asm has the default
module name Sort.

PUBLIC, which specifies those syinbb‘ls defined within
the assembly module whose attributes are made
available to other modules at linkage. For example:

PUBLIC SortExtended, Merge

If a symbol is declared PUBLIC in module, the module
must contain a definition of the symbol.

EXTRN, which specifies symbols that are defined as
PUBLIC in other modules and referred to in the current
module. The format of the EXTRN directive is:

EXTRN name:type [, name:type...]

In this format, name is the symbol defined PUBLIC
elsewhere and type must be consistent with the
declaration of name in its defining module. The type is
one of:

BYTE, WORD, DWORD, structure name, or record name
(for vanables)

NEAR or FAR (for labels or procedures)
ABS (for pure numbers; the implicit SIZE is WORD)

Programs and Segments 6-21

If you know the name of the segment in which an external
symbol is declared as PUBLIC, you should place the
corresponding EXTRN directive inside a set of
SEGMENT/ENDS directives that use this segment name.
You may then access the external symbol in the same way
as if the uses were in the same module as the definition.

If you do not know the name of the segment in which an
external symbol is declared as PUBLIC, you should place
the corresponding EXTRN directive at the top of the
module outside all SEGMENT/ENDS pairs. To address an
external symbol declared in this way, you must:

o Use the SEG operator to load the selector register. For
example:

MOV AX, SEG Var ;Load selector value for VAR
MOV ES, AX ;into AX and then to ES.

o Refer to the variable under control of corresponding
ASSUME (such as ASSUME ES:SEG var), or use a
segment override prefix.

END Directive

The end of the source program is identified by the END

directive. This terminates assembly and has the format:
END [expression]

The expression should be included only in your main
program and indicates the starting execution address of
the program. For example:

END Initialize
You must specify the expression as NEAR or FAR.

5028707

Section 7 74

Data Definitions

The names of data items, segments, procedures, etc., are
called identifiers. An identifier is a combination of letters,
digits, and three special characters: question mark (?), the
at sign (@), and underscore (). An identifier cannot begin
with a digit.

The Assembler accepts three basic kinds of data items:
constants, variables, and labels.

u}

Constants are names associated with pure numbers, i.e.,
values with no attributes. For example:

Seven EQU 7 ;Seven represents the constant 7

Although a value is defined for Seven, no location or
intended use is indicated. You can assemble this
constant as a byte (eight bits), a word (two bytes), or a
doubleword (four bytes).

Variables are identifiers for data items, forming the
operands of MOV, ADD, AND, MUL, etc. You define
variables as residing at a certain OFFSET within a
specific SEGMENT. They are declared to reserve a fixed
memory-cell TYPE, which is a byte, a word, a
doubleword, or the number of bytes specified in a
structure definition. For example:

Desk DW 8EH ;Declare Desk a WORD of initial value 008EH

Labels are identifiers for executable code, forming the
operands of CALL, JMP, and the conditional jumps. You
define them as residing at a certain OFFSET within a
specific SEGMENT. The label can be declared to have a
DISTANCE attribute of NEAR if it is referred to only
from within the segment in which it is defined. You
usually introduce a label as follows:

label:instruction

which yields a NEAR label. See PROC (under Procedures
in section 6) and LABEL under Labels and the LABEL
Directive, which can introduce NEAR or FAR labels.

5028707

7-2 Data Definitions

Constants

There are five types of constants: binary, octal, decimal,
hexadecimal, and string. Table 7-1 specifies their syntax.
An instruction can contain 8- or 16-bit immediate values.
For example:

MOV CH, 53H ;Word immediate value
MOV CX, 32567H ;Byte immediate value

Constants can be values assigned to symbols with the EQU
directive, as shown in these examples:

Seven EQU 7 ;7 used wherever Seven
;referenced
MOV AH, Seven ;Same as MOV AH,7.

Refer to section 8 for the complete definition of EQU. The
format is:

symbol EQU expression

In this case, expression can be any Assembly language
item or expression. For example:

xyz EQU [BP+7]

Table 7-1 Constants

Constant Type Rules for Examples
Formation
Binary (Base 2) Sequence of 0's and 108
1's plus letter B B11001011B
Octal (Base 8) Sequence of digits 0 16540
through 7 plus either 77710
letter O or letter Q 77170
Decimal (Base 10) Sequence of digits 0 9903
. through 9, plus 99030

optional letter D

Data Definitions 7-3

Table 7-1 Constants (continued)

Constant Type Rules for Examples
Formation

Hexadecimal Sequence of digits 0 77h

{Base 16) through 9 and/or letters 1Fh
A through F plus letter OCEACh
h. (If the first digit ODFh
is a letter, it must be
preceded by 0.)

STRING Any character string ‘A, B’
within single quotes. ‘ABC’

(Strings having more than ‘Rowrff’
two characters must use ‘DN.TWN'
DB.)

Variable and Label Attributes

Attributes are the distinguishing characteristics of
variables and labels that influence the particular machine
instructions generated by the Assembler.

Attributes tell where the variable or label is defined.
Because of the nature of the processor, it is necessary to
know in which SEGMENT a variable or label is defined,
and it is necessary to know the OFFSET of the variable or
label within that segment.

Attributes also specify how the variable or label is used.
The TYPE attribute declares the size, in bytes, of a
variable. The DISTANCE attribute declares whether a
label can be referred to under a different ASSUMED CS
than that of the definition.

5028707

74 Data Definitions

Attribute Summary

The following list summarizes of the attributes of data items:
o SEGMENT

SEGMENT is the segment base address that defines the
variable or label. To ensure that variable and labels are
addressable at run-time, the Assembler correlates
ASSUME CS, DS, ES, and SS (and selector prefix)
information with variable and label references. You can
apply the SEG operator to a data item to compute the
corresponding segment base address (see
Value-Returning Operators in section 8).

o OFFSET

OFFSET is the 16-bit displacement of a variable or label
from the base of the containing segment. Depending on
the alignment and combine-type of the segment, the
run-time value here can be different from the assembly
time value (see the SEGMENT Directive in section 6).
You can use the OFFSET operator to compute this value.

o TYPE (for Data)

BYTE: 1 byte

WORD: 2 bytes

DWORD: 4 bytes .

RECORD: 1 or 2 bytes (according to record
definition)

STRUC: n bytes (according to structure
definition)

o DISTANCE (for Code)

NEAR: Reference only in same segment as definition;
definition with LABEL, PROC, or id

FAR: Reference in segment rather than definition;
definition with LABEL or PROC

£

Data Definitions 1-5

Variable Definition (DB, DW, DD Directives)

To define variables and initialize memory or both, you use
the DB, DW, and DD directives. These directives allocate
and initialize memory in units of BYTES (8 bits), words (2
bytes), and DWORDS (doublewords, 4 bytes), respectively.
The attributes of the variable defined by DB, DW, or DD
are as follows:

o The SEGMENT attribute is the segment containing the
definition.

o The OFFSET attribute is the current offset within that
segment.

o The TYPE is BYTE (1) for DB, WORD (2) for DW, and
DWORD (4) for DD.

The general form for DB, DW, and DD is either:

[variable-name] (DB | DW | DD) [exp, ...]
[variable-name)] (DB | DW | DD) dup-count DUP (init[, ...])

where variable-name is an identifier and either DB, DW,
or DD must be chosen.

You can define and initialize arrays of bytes, words,
doublewords, structures, and records with, respectively,
the DB, DW, DD, structure-name, and record-name
directives, as shown in these examples:

rgb DB 50 DUP(66) ;Allocate 50 bytes named rgb.
;Initialize each to 66.

rgw DW 100 DUP(0) ;Allocate 100 words named
;rgw. Initialize each to 0.

rgdd DD 20 DUP(?) ;Allocate 20 doublewords named
;rgdd. Do not initialize them.

When you refer to array elements, note that the origin of
an array is 0. This means that the first byte of the array
rgb is rgb(0), not rgb(1). Its nth byte is rgb[n-1].

Also note that indexes are the number of bytes, words, or
doublewords.

5028707

7-6 Data Definitions

You can use the DB, DW, and DD directives in the
following ways:

o constant initialization

o indeterminate initialization (the reserved symbol “?")
address initialization (DW and DD only)

string initialization

o o o

enumerated initialization
o DUP initialization

Constant Initialization

One, two, or four bytes are allocated. The expression is
evaluated to a 17-bit constant using twos complement
arithmetic. For bytes, the least significant byte of the
result is used. For words, the two least significant bytes
are used with the least significant byte the
lower-addressed byte, and the most significant byte the
higher-addressed byte. (As an example, 0AAFFh is stored
with the OFFh byte first and the 0AAh byte second.)

For double words, the same two bytes are used as for
words, followed by an additional two bytes of zeros. For
example:

number DW 1F3Eh ;8Eh at number, 1Fh at
;number + 1
DB 100 ;Unnamed byte
inches_per_yard DW 3*12 ;Assembler performs
;arithmetic

Indeterminate Initialization

To leave initialization of memory unspecified, use the
reserved symbol “?”, as shown in the following examples:

X Dw ? ;:Define and allocate
;a word, contents
;indeterminate
buffer ' DB 1000 ;1000 uninitialized
DUP(?) bytes

(See Dup Initialization in this section for information on
the DUP clause.)

N

Data Definitions 1-7

Address Initialization (DW and DD only)

[variable-name] (DW | DD) init-addr

An address expression is computed with four bytes of
precision: two bytes of selector and two bytes of offset.
All four bytes are used with DD (with the offset at the
lower addresses), but only the offset is used with DW. You
can combine address expressions to form more complex
expressions as follows:

o A relocatable expression plus or minus an absolute
expression is a relocatable expression with the same
segment attribute.

o A relocatable expression minus a relocatable expression
is an absolute expression, but it is permitted only if
both components have the same segment attribute.

o You can combine absolute expressions freely with each
other.

o All other combinations are forbidden.

The following are examples of initializing using address
expressions:

PRequest DD Request ;offset and selector
;of Request (32
;bits).

PErc DD Request+5 ;Offset and selector
;of sixth byte in
;Request.

oRequest DW Request ;offset of Request
;(16 bits).

String Initialization

You can initialize variables with constant strings as well
as with constant numeric expressions. With DD and DW,
strings of one or two characters are permitted. The
arrangement in memory is tailored to the processor
architecture as follows: DW 'XY’ allocates two bytes of
memory containing, in ascending addresses, 'Y’, 'X’. DD
XY’ allocates four bytes of memory containing, in
ascending addresses, 'Y’, 'X’, 0, 0.

5028707

7-8 Data Definitions

With DB, strings of up to 265 characters are permitted.
Characters, from left to right, are stored in ascending
memory locations. For example, "ABC’ is stored as 41h,
42h, 43h CA’, 'B’, 'C).

You must enclose strings in single quotes (*). A single
quote or apostrophe is included in a string as two
consecutive single quotes, as follows:

Date DB '08/08/80’

Apostrophe DB 'I""'m so happy!

Single_Quote DB "' NOW IS THE TIME FOR ALL
GOOD MEN...’

Run Header DW WG’

Enumerated Initialization

[variable-name} (DB | DW | DD) init |, ...]

This directive initializes bytes, words, or doublewords in
consecutive memory. You can specify an unlimited number
of items as shown below:

Squares DW 0,1,4,9,16,25,36

Digit_Codes DB 30h,316,32h,33h,34h,
36h,37h,38h,39h

Message DB 'HELLO, FRIEND.’,0AH

;14-byte text plus new line code

DUP Initialization

To repeat init (or list of init) a specified number of times,
use the DUP operator in this format:

dup-count DUP (init)

The duplication count is expressed by dup—count (which
must be a positive number). “init” can be a numeric
expression, an address (if used with DW, SD, or DD), a
question mark, a list of items, or a nested DUP expression.

In the DB, DW, and DD directives, the name of the
variable being defined is not followed by a colon. (This
differs from many other assembly languages.) For
example:

Name DW 100 ;okay
Name: DW 100 iwrong

Data Definitions 7-9

Labels and LABEL Directive

Labels identify locations within executable code to be used
as operands of jump and call instructions. A NEAR label is
declared by any of the following:

Start LABEL ;NEAR is the default

Start LABEL NEAR ;NEAR can be explicit
;Followed by code

Start:

Start EQU $

Start EQU THIS NEAR

Start PROC ;NEAR is the default

Start PROC NEAR ;NEAR can be explicit

A FAR label is declared by any of the following:

Start2 EQU THIS FAR
Start2 LABEL FAR
Start PROC FAR

LABEL Directive

To create a name for data or instructions, use the LABEL
directive, in the format:

name LABEL type

“name” is given segment, offset, and type attributes. The
label is given a segment attribute specifying the current
segment, an offset attribute specifying the offset within
this segment, and a type as explicitly coded (NEAR, FAR,
BYTE, WORD, DWORD, structure-name, or record-name).

When the LABEL directive is followed by executable code,
type is usually NEAR or FAR. The label is used for jumps
or calls, but not MOVs or other instructions that

manipulate data. You cannot index NEAR and FAR labels.

When the LABEL directive is followed by data, type is one
of the other five classifications. You can index an
identifier declared using the LABEL directive if it is
assigned a data type such as BYTE, WORD, etc. The name
is then valid in MOVs, ADDs, and so on, but not in direct
jumps or calls. (Refer to section 8 for information on
indirect jumps or calls.)

5028707

7-10 Data Definitions

The main uses of the LABEL directive are:
o accessing variables by an “alternate type”
o defining FAR labels

o accessing code by an “alternate distance” (for example,
defining a FAR label with the same segment and offset
values as an existing NEAR label)

Label with Variables

The Assembler uses the type of a variable in determining
the instruction assembled for manipulating it. You can
cause an instruction normally generated for a different
type to be assembled by using LABEL to associate an
alternative name and type with a location. For example,
you can treat the same area of memory sometimes as a
byte array, and sometimes as a word array with the
following definitions:

rgw LABEL WORD
rgb DB 200 DUP(0)

You can refer to the data for this array in two ways:

ADD AL, rgb[50] ;Add fifty—first byte to AL
;(rgb[0] is the first byte)

ADD AX, rgw(20] ;Add tenth word from RGW
to AX

;(2 bytes per word)
Label with Code

You can use a label definition to define a name as type
NEAR or FAR. This is only permitted when a CS
assumption is in effect; the CS assumption (not the
segment being assembled) is used to determine the SEG
and OFFSET for the defined name.

For example:

Place LABEL FAR
SamePlace: © MUL CX,[BP]

introduces Place as a FAR label, which is otherwise
equivalent to the NEAR label SamePlace.

Data Definitions 7-11

Label Addressability

The addressability of a label is determined by:
o its declaration as NEAR or FAR

o its use under the same or different ASSUME:CS
directive as its declaration

Table 7-2 shows the four coding possibilities for each.

A NEAR jump or call is assembled with a 1-WORD
displacement using modulo 64K arithmetic. 64 Kb of the
current segment can be addressed as NEAR.

A FAR jump or call is assembled with a 4-byte address.
The address consists of a 16-bit offset and 16-bit selector.
The entire memory can be addressed as FAR.

Table 7-2 Target Label Addressability

Near Lahel Far Label

Same NEAR Jump/Call NEAR Jump
ASSUME CS: FAR Call
Different Not allowed FAR Jump
ASSUME CS: FAR Call

5028707

7-12 Data Definitions

Forward References

The instruction set of the processor often provides several
ways of achieving the same end. For example, if a jump is
within 128 bytes of its target, the control transfer can be
a SHORT jump (two bytes), a NEAR jump (three bytes), or
a FAR jump (four bytes). If the Assembler “knows” which
case applies, it generates the optimal object code.

However, for the convenience of the programmer, the
Assembly language allows, in many cases, the use of a
variable or label prior to its definition. When the
Assembler encounters such a forward reference, it must
reserve space for the reference, although it does not yet
know whether the label (for example) will turn out to be
SHORT, NEAR, or FAR. If necessary, the Assembler
estimates the memory required, and then proceeds on the
basis of that estimate.

The Assembler makes two successive passes over the
source program, and can always tell during the second
pass whether an estimate made during the first pass was
correct. If the estimate is too generous, the Assembler
corrects the problem during the second pass. For example,
it may insert an extra no-op instruction after an offending
jump, and still produce valid output. If the estimate is too
conservative, however, no such remedy is available. The
Assembler then flags the forward reference as an error
during the second pass.

You can generally repair this kind of error by a small
change to the source text and a reassembly. For example,
the insertion of an attribute coercion such as BYTE PTR or
FAR PTR is often a sufficient correction. However, the
safest course is to follow programming practices that make
it unnecessary for the Assembler to guess. This can be
done as follows:

o Put EQU directives early in programs.
o Put EXTRN directives early in programs.

o Within a multisegment source file, try to position the
data segments (and hence the variable definitions)
before the code segments.

™

Section‘ 8 81

Operands and Expressions

The instruction set of the processor makes it possible to
refer to operands in a variety of ways, using combinations
of base registers, index registers, displacement, and direct
offset.

Either memory or a register can serve as the first operand
(destination) in most two-operand instructions; the second
operand (source) can be memory, a register, or a constant
within the instruction. The format of a two-operand
instruction is:

MOV Destination, Source

The source operand can be an immediate value (a constant
that is part of the instruction itself, such as the “7” in
MOV CX, 7), a register, or a memory reference. If the
source is an immediate value, then the destination operand
can be either a register or a memory reference.

Source and destination operands cannot both be
memory-to-memory operations.

You can use a 16-bit offset address to directly address
operands in memory. To indirectly address operands in
memory, you use base registers (BX or BP) or index
registers (SI or DI) or both, plus an optional 8- or 16-bit
displacement constant.

A memory reference is direct when a data item is
addressed without the use of a register, as in:

MOV prod, DX ;prod is addressed by 16-bit direct
;offset.

MOV CL, jones.bar ;Offset of jones plus bar is 16-bit
;direct offset.

5028707

8-2 Operands and Expressions

A reference is indirect when a register is specified within
brackets, as in:

MOV prod[BX], DX ;Destination address is base
;register plus 16-bit displacement.

MOV CX, [BP][SI] ;Source address is sum of base
;register and index register.

Either memory or a register receives the result of a
two-operand operation. You can use any register or
memory operand (but not a constant operand) in
single-operand operations. You can specify either 8- or
16-bit operands for almost all operations.

Immediate Operands

An immediate value expression can be the source operand
of two-operand instructions, except for multiply, divide,
and the string operations. The formats are:

(label:] mnemonic memory-reference, expression
[label:] mnemonic register, expression

In this case, [label] is an optional identifier and mnemonic
is any two-operand mnemonic (for example, MOV, ADD,
and XOR). (See Memory Operands in this section for the
definition of memory-reference.) In summary, it has a
direct 16-bit offset address, and is indirect through BX or
BP, SI or DI, or through BX or BP plus SI or DI, all with
an optional 8- or 16-bit displacement.

In the second format, register is any general-purpose (not
selector) register. See table 7-1 in section 7 for rules on
formation of constants.

The Assembler uses the following steps to develop an
instruction containing an immediate operand:

1 determines if the destination is of the type BYTE or
WORD

2 evaluates the expression with 17-bit arithmetic

3 If the destination operand can accommodate the result,
it encodes the value of the expression using twos
complement arithmetic, as an 8- or 16-bit field
(depending on the type, BYTE or WORD, of the
destination operand) in the instruction being
assembled.

Operands and Expressions 8-3

In processor instruction formats, as in data words, the
least significant byte of a word is at the lower memory
address, as shown in the following examples:

MOV CH,hslpb ;8-bit immediate value to
;register

ADD DX,3000H ;16-bit immediate value to
;register

AND Table[BX], OFFOOh ;16-bit immediate value
;(where Table is a WORD
;through BX, 16-bit
;displacement)

XOR Table[BX+DI+100],7 ;16-bit immediate value
;through BX + DI(Table+100)

Register Operands

The following types of registers are used by the Unisys
Assembler:

o 16-bit selector (CS, DS, SS, ES)

o 16-bit general (AX, BX, CX, DX, SP, BP, SI, DI)
o 8-bit general (AH, AL, BH, BL, CH, CL, DH, DL)
o 16-bit base and index (BX, BP, SI, DI)

o 1-bit flag (AF, CF, DF, IF, OF, PF, SF, TF, ZF)

Selector registers contain segment base addresses which
must be initialized at run time. (This initialization is
automatic if you use Assembly language only to implement
subroutines for a main program written in a high-level
language.)

You can use each of the 16-bit general, 8-bit general, base
and index registers in arithmetic and logical operations.
Frequently, the AX is called the accumulator, but the
processor actually has eight 16-bit accumulators (AX, BX,
CX, DX, SP, BP, SI, DI), and has eight 8-bit accumulators
(AH, AL, BH, BL, CH, CL, DH, DL). Each of the 8-bit
accumulators is either the high-order (H) or the low-order
(L) byte of AX, BX, CX, or DX.

One-bit flag registers are accessible to the programmer in
the 16-bit FL register. In addition, certain flag registers
are set and tested by specific operators.

5028707

84 Operands and Expressions

After each instruction, the flags are updated to reflect
conditions detected in the processor or any accumulator.
(Refer to appendix D for the flags affected by each
instruction.)

The flag-register mnemonics are:

AF: Auxillary Carry
CF: Carry

DF: Direction

IF: Interrupt-enable
OF: Overflow

PF: Parity

SF: Sign

TF: Trap

ZF: Zero

Explicit Register Operands
Thé two-operand instructions that explicitly specify
registers are:
o register to register

[label:] mnemonic reg, reg

Example:

ADD BX, DI ;BX=BX +DI
o immediate to register

[label:] mnemonic reg, imm

Example:

ADD BX, 30H ;BX=BX+30H
o memory to register

[label:] mnemonic reg, mem

Example:

ADD BX, Table[DI] ;BX=BX +DI'th entry in Table
o register to memory

[label:] mnemonic mem, reg

Example:

ADD Table[DI], BX ;Increment DI'th entry in Table by BX
(The “i’th entry” means “entry at i'th byte.)

Operands and Expressions 8-5

Implicit Register Operands

Table 8-1 shows the instructions that use registers
implicitly.

Table 8-1 Implicit Register Operands

Instruction Implicit Uses
AAA, AAD, AAM, AAS AL, AH

CBW, CWD AL, AX or AX:DX
DAA, DAS AL

MUL, IMUL, DIV, IDIV AL, AX or AX:DX
LAHF, SAHF AH

LES ES

LDS DS

Shifts, Rotates CL

String DS:SI, ES:DI
REP, LOOP CX

XLAT AL, BX

The format of instructions with a single register operand
is as follows:

[1abel:] mnemonic reg
Example:
INC DI ;DI=DI+1

. 5028707

8-6 Operands and Expressions

Selector Registers

See section 6 for information on selector registers.

General Registers

When a 16-bit general register or base register is one of
the operands of a two-operand instruction, the other
operand must be immediate, a WORD reference to memory,
or a WORD register.

When an 8-bit general register (AH, AL, BH, BL, CH, CL,
DH, DL) is one of the operands of a two-operand
instruction, the other operand must be an 8-bit immediate
quantity, a BYTE reference to memory, or a BYTE register.

Flags

Instructions never indirectly specify the 1-bit flags as
operands; flag instructions (such as STC, CLC, CMC)
manipulate a specific flag, and other instructions affect
one or more flags implicitly (such as INC, DEC, ADD, MUL,
and DIV).

Refer to section 9 for flag operations, and appendix D for
information on how each instruction affects the flags.

Memory Operands

Memory can be the first or second destination of an
operand, but not both.

Memory Operands to JMP and CALL

The JMP and CALL instructions take a simple operand.
There are a number of different cases, which are
determined by the operand. The control transfer can be
direct (with the operand specifying the target address), or
indirect (with the operand specifying a word or
doubleword containing the target address). The transfer
can be NEAR (in which case only IP changes), or FAR
(both IP and CS change).

Table 8-2 lists JMP and CALL memory references.

Operands and Expressions 8-7

Table 8-2 JMP and CALL Memory References

Operand to JMP/Call Direct/ Indirect NEAR/FAR Target Address
Nextlteration Direct NEAR! Nextiteration
FitMul Direct FAR? FitMul
DX Indirect NEAR CS:DX
LabelsNear[DI] Indirect NEAR® Contained in
word at
LabelsNear[DI]
LabelsFar[DI] Indirect FAR* Contained in
dword at
LabelsFar[DI}
DWORD PTR [BX] Indirect FAR Contained in
dword at [BX]
WORD PTR [BX] Indirect NEAR Contained in
word at [BX]

! Assuming NextIteration is a NEAR label in the same
segment or group as the next jump or call.

2 Assuming FltMul is a FAR label--a label to which control
can be transferred from outside the segment containing
the label.

3 Assuming LabelsNear is an array of words.
4 Assuming LabelsFar is an array of dwords.

5028707

8-8 Operands and Expressions

CALL differs from JMP only in that a return address is
pushed onto the stack. The return address is a word for a
NEAR call and a dword for a FAR call.

If the Assembler determines that the target of a JMP or
CALL is addressable by a 1-byte displacement from the
instruction, it uses a special short jump or call instruction.
The following examples illustrate the use of JMP and CALL:

Again: SUB BX,1
JNZ Again ;Short jump will be used
JMP Last ;Not short because Last is a
‘ ;forward reference.
Last:
JMP $+17 ;Short jump since
;displacement is in
;the range -128 to 127.
;BEWARE: Variable length
;instructions make it easy to
;get this wrong
;it’s safer to
;use a label.

JMP SHORT ;Forces assembly of a short
Last = ;transfer; it will yield an
serror if the target is not
;addressable with a 1-byte
displacement.

Do not confuse the concepts of PUBLIC and EXTRN with
NEAR and FAR. PUBLICs and EXTRNS are used at
assembly and link time only; they are not run time
concepts. NEAR and FAR, in contrast, control the
instructions to be executed at run-time. It is entirely
possible for an EXTRN to be NEAR.

Variables

This section covers the use of simple, indexed, and
structured variables as operands. If you are unfamiliar
with defining and initializing variables, review section 7.

Operands and Expressions 8-9

Simple Variables

An unmodified identifier used the same way it is declared
is a simple variable, as shown in the following example:

wData DW 'AB’

iVIOV BX, wData

Indexed Variables

A simple variable followed by a square-bracketed
expression is an indexed variable. The expression in
square brackets can be one of the following:

o a constant or constant expression
o a base register (BX or BP)
o an index register (SI or DI)

o a base or index register plus or minus a constant
expression (in any order)

o a base register plus an index register plus or minus a
constant or constant expression (in any order).

When you use indexed variables, note that the indexing is
0-origin (the first byte is numbered 0), the index is
always a number of bytes, and the type is the type of the
simple variable to which the index is applied. For
example, if the table Primes is defined by:

Primes DW 250 DUP (?)
and register BX contains the value 12, then the instruction
NOV Primes[BX], 17

sets the twelfth and thirteenth bytes of Primes (which are
the bytes of the seventh word in Primes) to 17.

5028707

8-10 ‘Operands and Expressions

Double-Indexed Variables

Double-indexed variables use a sum of two displacements
to address memory, as shown in the following example:

Primes[BX][SI+5]

You can write most forms of double indexing with a more
complex single index expression. For example, these two
forms are equivalent:

Var{Disp1][Disp2]
Var{Displ +Disp2]

The displacement can be constants or expressions that
evaluate to constants, base or index registers (BX, BP, SI,
or DI), or base or index registers plus or minus a constant
offset. The only restriction is that BX and BP cannot both
appear, and SI and DI cannot both appear in the same
double indexed variable. ‘ :

These three expressions are invalid:

Primes[BX +BP]
Primes[SI}f2*DI]
Primes[BX][BP]

Attribute Operators

In addition to indexing, arithmetic, and logical operators,
operands can contain a class of operators called attribute
operators. You use attribute operators to override an
operand’s attributes, to compute the values of operand
attributes, and to extract record fields.

PTR, The Type Overriding Operator

PTR is an infix operator. It has two operands and is
written between the operands in the following format:
type PTR addr-expr

where type is BYTE, WORD, DWORD, NEAR, or FAR, and
addr-expr is a variable, label, or number.

Operands and Expressions 8-11

PTR sets or overrides the type of its operand without
affecting the other attributes of the operand, such as
SEGMENT and OFFSET. In the following examples of its
use with data, assume rgb and rgw are declared by:

rgb DB 100 DUP(?)
rgw DW 100 DUP(?)

Then, byte-increment and word-increment instructions
are generated, respectively, by:

INC rgb[S]]
INC rgwiSI]

Types can be overridden with:

INC WORD PTR rgb[SI] ;word increment
INC BYTE PTR rgw[SI] ;byte increment

Sometimes, a variable is not named in an instruction;
instead, the instruction uses an “anonymous” variable. In
such cases, the PTR operator must always be used, as in:

INC WORD PTR [BX] ;word increment

INC BYTE PTR [BX] ;byte increment

INC [BX] ;INVALID because
;the operand [BX]

;is “anonymous.”
Selector Override Operator
The selector override operator is denoted by the colon (:)
and takes three forms:
o sel-reg:addr-expr
o selector-name:addr-expr
o group-name:addr-expr

The SEGMENT attribute of a label, variable, or

address—expression is overridden by the selector override

operator. The other attributes are unaffected. The first

two forms do a direct override; the third recalculates the
- offset from the GROUP base.

See section 6 for more information on the selector override
operator.

5028707

8-12 Operands and Expressions

Short Operator

The single argument of the SHORT operator is an offset
that you can address through the CS selector register.
When the target code is within a 1-byte signed (two
complement) self-relative displacement, you can use
SHORT in conditional jumps, jumps, and calls. This means
that the target must lie within a range no more than 128
bytes behind the beginning of the jump or call instruction,
and no more than 127 bytes in front of it.

This Operator

The single argument of the THIS operator is a type (BYTE,
WORD, DWORD) or distance (NEAR, FAR) attribute. A
data item with the specified type or attribute is defined at
the current assembly location. The formats are:

THIS type
THIS distance

The segment and offset attributes of the defined data item
are, respectively, the current segment and the current
offset. The type or distance attributes are as specified.
Thus, the two statements:

byteA LABEL BYTE
byteA EQU THIS BYTE

have the same effect. Similarly, $ is equivalent to
THIS NEAR.

In the example

El EQU THIS FAR
E2: REPNZ SCASW

the two addresses, E1 and E2, differ in that El is FAR and
E2 is NEAR.

Operands and Expressions 8-13

Value-Returning Operators

The value-returning operators are:

o TYPE accepts one argument, either a variable or a label.
For variables, TYPE returns the following:

1 for type BYTE
2 for type WORD

4 for type DWORD, and the number of bytes for a
variable declared with a structure type.

For labels, TYPE returns either -1 or -2 (representing
NEAR or FAR, respectively).

LENGTH accepts one argument, a variable. It returns
the number of units allocated for that variable. (The
number returned is not necessarily bytes.) For example:

One DB 250(?) ;LENGTH One=250
TWO DW 3560(?) ;LENGTH TWO=350

SIZE returns the total number of bytes allocated for a
variable. SIZE is the product of LENGTH and TYPE.

SEG computes the selector value of a variable or a label.
Use it in ASSUME directives or to initialize selector
registers.

o OFFSET returns the offset of a variable or label. When
the final alignment of the segment is frozen at link time
the value is resolved. If a segment is combined with
pieces of the same segment defined in other assembly
modules, or is not aligned on a paragraph boundary, the
assembly-time offsets shown in the assembly listing
cannot be valid at run-time. The offsets are properly
calculated by the Linker if you use the OFFSET
operator.

o

=]

o

The only attribute of a variable in many assembly
languages is its offset. A reference to the variable name
is a reference also to its offset. Three attributes are
defined by this assembly language for a variable;
therefore, to isolate the offset value, the OFFSET
operator is needed. In a DW directive, however, the
OFFSET operator is implicit. For example:

oVarl DW Varl

5028707

8-14 Operands and Expressions

is the same as
oVarl DB MOV oVarl, OFFSET Varl

The variables in address expressions that appear in
DW and DD directives have an implicit OFFSET.

When used with the GROUP directive, the OFFSET
operator does not yield the offset of a variable within
the group; instead, it returns the offset of the
variable within its segment.

Use the GROUP override operator to get the offset of the
variable within the group. For example:

DGroup GROUP Data,??SEG

data SEGMENT
Xyz ' DB. 0
DW xyz ;Offset within segment
DW DGroup:xyz ;Offset within group
data ENDS
ASSUME CS:??SEG,DS:DGroup
MOV BX,0FFSET:xyz ;Loads seg offset of
Xyz
MOV CX,0OFFSET DGroup:xyz; Loads
group
offset of xyz
LEA CX, xyz ;Also loads group offset
of xyz

You cannot use forward references to group-names.

Operands and Expressions 8-15

Operator Precedence in Expressions

The Assembler evaluates expressions from left to right. It
evaluates operators with higher precedence before other
operators that come directly before or after. To override
the normal order of precedence, use parentheses.

In order of decreasing precedence, the operator classes are:

1

W O N e AW

Expressions within parentheses, expressions within
angle brackets (records), expressions within square
brackets, the structure “dot” operator, “.”, and the
LENGTH, SIZE, WIDTH, and MASK operators

PTR, OFFSET, SEG, TYPE, THIS, and “REGISTER:"”
(selector override)

Multiplication and division: *, /, MOD, SHL, SHR
Addition and subtraction: +, -

Relational operators: EQ, NE, LT, LE, GT, GE
Lcgical NOT

Logical AND -

Logical OR and XOR

SHORT

5028707

8-16 ' Operands and Expressions

EQU Directive

You use EQU to assign an assembly-time value to a
symbol. The format is:

name EQU expression
The following examp_les illustrate the use of EQU:

y EQU 1z ;¥ is made a synonym for z.

xx EQU [BX+DI-3] ;XX is a synonym for an
;indexed reference-—note
that

;the right side is evaluated
;at use, not at definition.
X EQU ES:Bar[BP+2] - ;Selector overrides are also

;allowed.

xy EQU (Type y)*6 ;Random expressions are
;allowed.

RAX EQU ;Synonyms for registers are
;allowed.

PURGE Directive

You use the PURGE directive to delete the definition of a
specified symbol. After a PURGE, the symbol can be
redefined. The symbol’s new definition is used by all
occurrences of the symbol after the redefinition. You
cannot purge register names, reserved words, or a symbol
appearing in a PUBLIC directive.

Section 9 9-1

Flags

Flags denote or distinguish certain results of data
manipulations. In particular, most arithmetic operations
set or clear six flag registers. (“Set” means set to 1, and
“clear” means clear to 0.) The flags that are affected by
data manipulations are AF, CF, OF, PF, SF, and ZF.

Flag Operations

The processor provides the four basic mathematical
operations (addition, subtraction, multiplication and
division). Both 8-bit and 16-bit operations are available,
as are signed and unsigned arithmetic. The addition and
subtraction operations serve as both signed and unsigned
operations. The two possibilities are distinguished by the
flag settings.

You can perform arithmetic directly on unpacked decimal
digits, or on packed decimal representations.

Some operations indicate these results only by setting
flags. For example, the processor implements the compare
instruction as a special subtract which does not change
either operand, but it does set flags to indicate a zero,
positive, or negative result.

By using one of the conditional jump instructions, a
program can test the setting of five of the flags (carry,
sign, zero, overflow, and parity). The flow of program
execution can be altered based on the outcome of a
previous operation.

ASCII and decimal-adjust instructions use one more flag,
the Auxiliary Carry flag.

It is important to understand which instructions set which
flags. Suppose you wish to load a value into AX, and then
test whether the value is 0. The MOV instruction does not
. set ZF; therefore, the following does not work:

MOV AX,
wData
JZ Zero

5028707

9-2 Flags

Since ADD sets ZF, the following does work:

MOV AX, wData
ADD AX,

0
JZ Zero

You can set a flag but not test it over the duration of
several instructions. However, this is generally a
dangerous programming practice. In such cases, the
intervening instructions must be carefully checked to
ascertain that they do not affect the flag in question.
(Refer to appendix D for the flags set by each instruction.)

Auxiliary Carry Flag (AF)

If an operation results in a carry out of, or a borrow into,
the low-order four bits of the result, AF is set; otherwise
it is cleared. A program cannot test this flag directly; it is
used solely by the decimal adjust functions.

Carry Flag (CF)

If an operation results in a carry out of (from addition), or
a borrow into (from subtraction), the high-order bit of the
result, CF is set; otherwise, it is cleared.

This flag usually indicates whether an addition causes a
“carry” into the next higher order digit, or whether a
subtraction causes a “borrow.” CF is not, however,
affected by increment (INC) and decrement (DEC)
instructions. CF is set by an addition that causes a carry
out of the high—order bit of the destination, and it is
cleared by an addition that does not cause a carry. CF is
also affected by the logical AND, OR, and XOR
instructions.

The contents of an operand are moved one or more
positions to the left or right by the rotate and shift
instructions. The Carry Flag is treated as if it were an
extra bit of the operand by RCL and RCR, which preserve
the original value in CF. The value does not, in these
cases, remain in CF. The value is replaced with the next
bit rotated out of the source.

Flags 9-3

If an RCL is used, the value of CF is replaced by the
high-order bit and goes into the low-order bit. If an RCR
is used, the value in CF is replaced by the low-order bit
and goes into the high-order bit. (This is useful in
multiple-word arithmetic operations.) In other rotates and
shifts, the value in CF is lost.

Overflow Flag (OF)

If a signed operation results in an overflow, OF is set;
otherwise it is cleared. (That is, an operation results in a
carry into the high—-order bit of the result, but does not
result in a carry out of the high~order bit).

Parity Flag (PF)

If the modulo 2 sum of the low-order eight bits of an
operation is 0 (even parity), PF is set; otherwise, it is
cleared (odd parity).

Following certain instructions, the number of one bits in
the destination is counted and the Parity Flag set if the
number is even; it is cleared if the number is odd.

Sign Flag (SF)

If the high-order bit of the result is set, SF is set;
otherwise, it is cleared.

Following an operation, the high—order bit of its target can
be interpreted as a sign. The SF flag is set equal to this
high—-order bit by instructions that affect SF. Bit 7 is the
high—order bit of a byte and bit 15 is the high-order bit of
a word. ‘

5028707

94 Flags

Zero Flag (ZF)

If the result of an operation is 0, ZF is set; otherwise, it is
cleared.

Following certain operations, if the destination is zero, the
Zero Flag is set, and if the destination is not zero, the Zero
Flag is cleared. Both ZF and CF are set by a result that
has a carry and a zero. For example:

00110101 Carry Flag = 1
+11001011
Zero Flag = 1

00000000

Section 10 10-1

The Macro Assembler

The Assembler supports the definition and invocation of
macros, which are expressions that are evaluated during
assembly to produce text. The text that results is then
processed by the Assembler as source code, just as if it
had been literally present in the input to the Assembler.
For example, consider the following program fragment:

%*DEFINE (Call2(subr,argl,arg2))(

PUSH %argl
PUSH %arg2
CALL %subr

%CALL2 (Input,pl,p2)

This fragment defines a macro of three arguments (Call2)
and theninvokes it. The invocation is expanded to the form:

PUSH pl
PUSH p2
CALL Input

The character “%” is called the metacharacter, which
activates all macro processing facilities: macro invocations
are preceded by “%”; macro definitions are preceded by
“%*".

The simplest kind of macro definition takes the form:
%*DEFINE (MacroName ParameterList) (Body)

where MacroName is an identifier, ParameterList is a list
of parameter names enclosed in parentheses, and Body is
the text of the macro.

When parameter names appear in the Body, they are
preceded by the “%” character. A simple macro invocation
takes the form:

%MacroName (Arglist)

This expands to the corresponding macro Body, with
parameter names of the macro definition replaced by
arguments from the macro invocation.

5028707

10-2 The Macro Assembler

Local Declaration

Macros permit the definition of a pattern—--the body of the
macro—-that is to be recreated at each invocation of the
macro. Thus, two invocations of a macro normally expand
to source text that differs only as the parameters of
invocation differ.

However, consider the definition:

%°*DEFINE (callNTimes(n,subr))(
MOV AX,%n
INC AX
Again: SUB AX1
Jz Done
PUSH AX
CALL %subr
POP AX
JMP Again)
Done:

An invocation such as %CallNTimes(5,FlashScreen)
expands to:

MOV AX)5
INC AX
Again: SUB AX,1
JZ Done
PUSH AX
CALL Flashscreen
POP AX

JMP Again

The Macro Assembler 10-3

A second invocation of this macro produces an error
because it doubly defines the labels Again and Done. The
problem in this case is that you want a new, unique pair
of labels created for each invocation. You can do this in a
macro definition using the LOCAL declaration, which
declares a variable within a procedure, as follows:

%*DEFINE(CallNTlmes(n subr)) LOCAL Again Done (
ov

AX,%n
INC AX
%Again: SUB AX,1
JZ %Done
PUSH AX
CALL %subr
POP AX

JMP %Again
%Done:)

Conditional Assembly

In a manner carefully integrated with macro processing,
the Assembler also supports assembly time expression
evaluation and supports string manipulation facilities.
These include the EVAL, LEN, EQS, GTS, LTS, NES, GES,
LES, and SUBSTR functions.

The examples in table 10-1 illustrate the possibilities of
conditional assembly.

Table 10-1 Conditional Assembly Examples

Function Example Evaluation of Description
Example

EVAL %EVAL(3*(8/5)) 3h Evaluate expression

LEN %LEN(First) 5h Length of string

EQS %EQS(AAAA) OFFFFh String equality

GTS %GTS(y,x) OFFFFh String greater

LTS %LTS(y.x) Oh String less

NES %NES(AA,AB) OFFFFh String not equal

GES %GES(y.y) OFFFFh String greater or equal

LES %LES(z,y) Oh String less or equal

SUBSTR %SUBSTR bed Substring
(abcde,2,3)

5028707

104 The Macro Assembler

Note: EQ, GT, LT, GE, LE, and NE are the numeric equivalents to the string
compare operations.

These functions evaluate to hexadecimal numbers, and the

relational functions (EQS, etc.) evaluate to OFFFFh if the

relation holds, and to Oh if it does not. The EVAL &
parameter must evaluate to a number. N

You can give the result of a numeric computation
performed during macro processing a symbolic name with
the SET function, which is invoked in the form:

%SET (name, value)
For example:
%SET (xyz, 7+5)

sets the macro variable xyz to value OCh. After the use of
SET, %xyz is equivalent to OCh.

Similarly, the invocation:
%SET (xyz, %xyz-1)
decrements the value of the macro variable xyz.

Note: If you use the %SET macro in conjunction with the location counter ($,
this byte, etc.), the %SET macro should follow a blank fine.

The macro facility also supports conditional and repetitive
assembly with the control functions IF, REPEAT, and
WHILE.

IF has two versions:
%IF (paraml) THEN (param2) ELSE (param3) FI
%IF (paraml) THEN (param2) FI

The first parameter is treated as a truth value: odd
numbers are true and even numbers are false. If the first
parameter is true, the IF expression is equivalent to the
value of its second parameter.

If the first parameter is false, the IF expression is
equivalent to the value of its third parameter (or to the
null string if the third parameter is omitted).

The Macro Assembler 10-5

For example:

%IF (1) THEN (aa) ELSE (bb) FI
is equivalent to aa, and:

%IF (2) THEN (aa) FI

is equivalent to the null string.

You can use the IF function in conjunction with macro
variables to perform a conditional assembly. Suppose a
program contains a table that is to be searched for a value
at run time. If the table is small, a simple linear search is
best. If the table is large, a binary search is preferable, as
shown in the following code:

%IF (%sTable GT 10)
THEN(

;binary search version here

JELSE(

;linear search here

)

You have to define the macro variable %sTable with some
numeric value or the expansion of the IF function yields
an error.

Sometimes it is convenient to control a conditional
assembly based on whether or not a symbol has been
defined. Usually, the symbol is not defined and one
alternative is selected, but if a definition for the symbol is
found, a different alternative is selected.

The macro processor supports this capability with the
ISDEF function. ISDEF has two forms: one tests whether a
run time symbol (for example, a label) has been defined,
and the other tests whether a macro time symbol has been
defined. In both cases, the result is OFFFFH if the symbol
is defined, and 0 if the symbol is not defined. The two
forms are ,%ISDEF (symbol), which checks a run time
symbol, and %*ISDEF (%symbol), which checks a macro
time symbol.

5028707

10-8 The Macro Assembiler

Repetitive Assembly

The REPEAT function is used to assemble one of its
parameters a specified number of times. The form is:

%REPEAT (paraml) (param2)
For example:

%REPEAT (4)
(DW 0
)

is equivalent to:

DW 0
DW 0
DW 0
DW 0

(Note that in this, and in most examples involving the
macro facility, the parentheses are the delimiters of
textual parameters, which makes placement critical.)

You use the WHILE function to assemble one of its
parameters a variable number of times, depending on the
result of an assembly time computation that is performed
before each repetition. The form is:

%WHILE (paraml) (param?2)

For example, suppose %nWords has the value 3h. Then the
result of:

%WHILE (%nWords GT 0) (%REPEAT (%nWords)
(DW %nWords
) %SET (nWords, %nWords-1)

DW 3h
DW 3h
DW 3h
DW 2h
DW 2h
DW 1h

The Macro Assembler 10-7

When you use the control functions REPEAT and WHILE,
you may want to explicitly terminate expansion. This can
be done with the EXIT function. The invocation of EXIT
stops the expansion of the enclosing REPEAT, WHILE, or
macro. For example, if %n is initially 5, then the
expression:

%WHILE(%n GT 0)
(%REPEAT (%n) (%IF (%n) THEN (%EXIT) FI DW %n
)Y%SET (n, %n-1)

expands to:

o)
g
0O 0O S B B B

Interactive Assembly

The macro capability supports interactive assembly, based
on the two functions IN and OUT. You use these functions,
respectively, to read input from the keyboard during
assembly, and to display information on the video display
during assembly. When using IN and OUT, it is important
to understand the two-pass nature of the Assembler.

Since the Assembler makes two passes over the text, it
expands all macros and macro time functions twice. You
must ensure that:

o expressions involving macro-time variables generate the
same code or data in both passes

o IN and OUT are not expanded twice

You can can control these effects using the specially

defined macro variables PASS1 and PASS2, whose values
are shown in table 10-2.

5628707

10-8 The Macro Assembler

Table 10-2 PASS1 and PASS2 Macro Variable Values

During First Pass During Second Pass

PASS1 -1 0
PASS2 0 -1

As an example, suppose you want to prompt the user for a
number at the beginning of an assembly, then use this
(input) string later. You can do this by inserting the
following code near the beginning of the source:

%IF (%PASS1 EQ -1)
THEN (%OUT (Enter table size in bytes)
%SET (sTable, %IN)) FI

OUT and IN execute during the first pass only, and your
input becomes the value of the macro variable sTable;
later, you can refer to this by %sTable.

Comments

You can write macro time comments in either of the
following formats: .

%'text-not-containing—-RETURN-or-apostrophe’
or
% 'text-not—containing RETURN-or-apostrophe-RETURN

(In this case, RETURN designates the character generated
by the RETURN key, code 0Ah.) Since the characters of
the embedded text of a comment are ignored, you can use
comments to insert extra returns for readability in macro
definitions.

MATCH Operation

The special macro function MATCH is particularly useful
for parsing strings during macro processing. MATCH
permits its parameters to be divided into two parts: a head
and a tail. A simple form of this function is:

%MATCH (varl, var2) (text)

The Macro Assembler 10-9

For example, following the expansion of
%MATCH (varl, var2) (a, b, ¢, d)

the macro variable varl has the value “a” and var2 the
value “b, ¢, d”. You can use this facility together with LEN
and WHILE. Consider the expression:

%WHILE (%LEN(arg) GT 0)(%MATCH (head, arg)(%arg)
DW %head
))

If %arg is initially the text 10, 20, 30, 40, then the
expansion is:

DW 10
DW 20
DW 30
DW 40

Advanced Macro Features

The form of MATCH just described, as well as the form of
macro definition and call described earlier, are actually
special cases. In fact, the separator between the
parameters of MATCH or of a macro can be a
(user-specified) separator other than comma.

The remainder of this section explains this and a number
of related advanced features of the macro facility.

Macro ldentifiers, Delimiters, and Parameters
The entities manipulated during macro processing are
macro identifiers, macro delimiters, and macro parameters.

A macro identifier is any string of alphanumeric
characters and underscores that begins with an alphabetic
character.

5028707

10-10 The Macro Assembler

A macro delimiter is a text string used as punctuation
between macro parameters. There are three kinds of macro
delimiters:

o an identifier delimiter is the character “@” followed by
an identifier

o an implicit blank delimiter is any text string made up of
the “white space” characters space, RETURN, or TAB

o a literal delimiter is any other delimiter. Thus, all the
preceding examples have used the comma as a literal
delimiter.

A macro parameter is any text string in which parentheses
are balanced. The following are valid parameters:

Xyz
(xyz)
((xyz)(O0))

whereas the following are not:

(
©
xyX

The parentheses are considered balanced if the number of
left and right parentheses is the same and, in reading from
left to right, there is no intermediate point at which more
right than left parentheses have been encountered.

The most general form of macro definition is:
%*DEFINE (ident pattern) <locals> (body)
where:

o The “*" is optional

o ident is a macro identifier

o pattern and body are any parenthetically-balanced
strings

o <locals> is optional and, if present, consists of the
reserved word LOCAL and a list of macro identifiers
separated by spaces

In all of the macro definitions illustrated above, the
pattern has the form:

(id1, id2, ..., idn)
and all invocations are of the form:
%ident (paraml, param2, ..., paramn)

The Macro Assembler 10-11

The following example illustrates the use of a
user-defined delimiter. The definition:

%*DEFINE (DWDW A @AND B)(DW %A
DW %B)

requires an invocation such as:
%DWDW 1 and 2
which expands to:

DW1
DW 2

In this case, the delimiter preceding the formal parameter
A and following the formal parameter B is an implicit
space. The delimiter between the A and the B is the
identifier delimiter @AND.

Bracket and Escape

The macro processor has two special functions, bracket
and escape, which you can use to define invocation
patterns and parameters.

Bracket

The bracket function prevents further expansion of the
bracketed text (macro invocation), and has the form:
%(text)

where text is parenthetically balanced. The text within
the brackets is treated literally. For example, given the
definition:

%*DEFINE (F(A)) (%(%F(2)))
the invocation:

%F(1)

expands to:

%F(2)

since the %F(2) is embedded within a bracket function and
therefore is not treated as another macro call. If it were
not, when invoked it would invoke itself to the limits of
the Assembler.

5028707

10-12 The Macro Assembler

Similarly, the definition:

%*DEFINE (DWDW A AND B) (DW %A
DW %B)

declares three formal parameters A, AND, and B (with
implicit blank delimiters), whereas the definition:

%*DEFINE (DWDW A %(AND) B)(DW %A
DW %B)

treats the AND as a literal delimiter, so that the
invocation:

%DWDW 1AND2
yields the expanded form:

DW 1
DW 2

Note that the carriage return is required after (DW %A,
since macro input is expanded to strings, and DW’s must
be on separate lines.

Escape

The escape function is useful in bypassing requirements
for balanced text or to use special characters like “%” or
“*» as regular characters.

The form is:
%ntext

where n is a digit, 0 to 9, and text is a string exaétly n
characters long. For example, you might define:

%DEFINE (Concat(A,B))(%A%B)
and invoke this macro by:
%Concat (DW ,%1(3+4%1))
which yields the expansion:

DW (3+4)

The parentheses following the %1 are treated as text by
the Assembler.

The Macro Assembler 10-13

MATCH Calling Patterns

Generalized calling patterns are applicable to MATCH just
as they are to macro definition and invocation. The
general form is:

%MATCH(ident]l macrodelimiter ident2)(balancedtext)

MATCH scans text until macrodelimiter is found, then it
puts the text up to macrodelimiter in identl and the
remaining text (less macrodelimiter) in ident2.

For example, if “arg” is initially:
10 xyz 20 xyz 30
then:

%WHILE (%LEN(%arg) GT 0)(%MATCH(head @xyz arg)(%arg)
DW %head
)

expands to:

DW 10
DW 20
DW 30

Processing Macro Invocations

In processing macro invocations, the Assembler expands
inner invocations as they are encountered. For example, in
the invocation:

%F(%G(1))

the argument to be passed to F is the result of expanding
%G(1). You can suppress the expansion of inner
invocations using the bracket and escape functions. Thus,
in the invocations:

%F(%(%G(1)))
%F(%5%G(1))

it is the literal text %G(1), not the expansion of that text,
that is the actual parameter of F.

5028707

10-14 The Macro Assembler

Expanded and Unexpanded Modes

All macro processor functions can be evaluated in one of
two modes: expanded and unexpanded. When the function,
invocation, or definition is preceded by “%”", the expanded
mode is used. If preceded by “%*", the unexpanded mode is
used. In either case, actual parameters are expanded and
substituted for formal parameters within the body of
invoked macros.

In unexpanded mode, there is no further expansion. In
expanded mode, macro processing specified in the body of
a macro is also performed. For example, if the macros F
and G are defined by:

%*DEFINE(F(X)X(%G(%X))
%*DEFINE(G(Y))(%Y +%Y)

then the invocation:
%*F(1)

expands to:

%G(1)

whereas the invocation:
%F(1)

expands to:

1+1

Nested Macro Expansion

When macro expansion is nested, inner expansions are
performed according to the mode they specify. On
completion of inner expansions, processing continues in
the mode of the outer expansion. Another way of saying
this is that the parameters of user-defined macros are
always processed in expanded mode. The bodies are
processed in expanded mode when a “%"” invocation is
used, and in unexpanded mode when a “%*” invocation is
used.

The Macro Assembler 10-15

The complete list of macro functions is as follows:

DEFINE (p-arg)(b-arg)
EQS (p-arg)

EVAL (p-arg)

GE (p-arg)

GES (p-arg)

GT (p-arg)

GTS (p-arg)

IF (p-arg) THEN (b-arg) ELSE (b-arg)
ISDEF (b-arg)

LEN (b-arg)

LE (p-arg)

LES (p-arg)

LT (p-arg)

LTS (p-arg)

MATCH (p-arg)(b-arg)
METACHAR (p-arg)
NE (p-arg)

NES (p-arg)

OUT (b-arg)

REPEAT (p-arg)(b-arg)
SUBSTR (b-arg)(p-arg, p-arg)
WHILE (p-arg)(b-arg)

where p-arg denotes parameter-like arguments and b-arg
denotes body-like arguments.

Assembly control directives (explained in appendix F),
begin with a “$” after a RETURN. If a control is
encountered in expanded mode, it is obeyed; otherwise, the
control is simply treated as text.

Changing the Metacharacter

You can substitute a different character for the built-in
metacharacter “%"” by calling the function METACHAR, in
the form:

%METACHAR (newmetacharacter)

The metacharacter should not be a left or right
parenthesis, an asterisk, an alphanumeric character, or a
“white space” character.

5028707

Section 11 111

Accessing Standard Services from
Assembly Code

You can access all system services from modules written in
Assembly language. To do so, you must follow certain
standard calling conventions, register conventions, and
segment/group conventions. If you also wish to use the
system’s virtual code management services, you must
follow additional virtual code conventions.

Calling Conventions

This discussion explains how to invoke operating system
services and standard object module procedures from
programs written in Assembly language. The following
example of a call to the standard object module procedure
ReadBsRecord is helpful in understanding this subject.

The calling pattern of this procedure is:

ReadBsRecord (pBSWA, pBufferRet, sBufferMax
psDataRet): ErcType

For a detailed description of this procedure, refer to your
system procedural interface documentation.

The operating system and the standard object modules
deal with quantities of many different sizes, ranging from
single-byte quantities, such as Boolean flags, to multibyte
quantities, such as request block and Byte Stream Work
Areas. Three of these sizes are special: one byte, two
bytes, and four bytes. Only quantities of these sizes are
passed as parameters on the stack or returned as results in
the registers.

Pointers

“When it is necessary to pass a larger quantity as a
parameter or to return a larger quantity as result, a
pointer to the larger quantity is used in place of the
quantity itself. A pointer is always a 4-byte logical
memory address consisting of an offset and selector base
address.

5028707

11-2 Accessing Standard Services from Assembly Code

For example, ReadBsRecord takes as parameters a pointer
to a Byte Stream Work Area (pBSWA), a pointer to a
buffer (pBufferRet), a maximum buffer size (sBufferMax),
and a pointer to a word containing the size of some data
(psDataRet). ReadBsRecord returns an error status of type
ErcType. The pointers are all 4-byte quantities, the size is
a 2-byte quantity, and the error status is a 2-byte quantity.

Suppose that data is allocated by the declarations:

sBSWA EQU 130

sBuffer EQU 80

bswa DB " sBSWA DUP(?)
buffer DB sBuffer DUP(?)
sData Dw ?

To call ReadBsRecord, you must first push the following
onto the stack, in order: a pointer to bswa, a pointer to
buffer, the size of buffer (the constant sBuffer), and a
pointer to sData. If DS contains the selector for the
segment containing bswa, buffer, and sData, you
accomplish this with the following code:

PUSH DS ;Push the selector
Jfor bswa
LEA AX, bswa ;Set Ax to th offset of bswa
PUSH AX ;Push the offset of bswa
PUSH DS :Ditto for the buffer
LEA AX, BUFFER
PUSH AX
PUSH sBuffer :Push sBuffer onto the stack
PUSH DS :Push the selector
LEA AX, sData
PUSH AX ;and then the offset of sData

CALL ReadBsRecord :Do the call

Accessing Standard Services from Assembly Code 11-3

Pointers are arranged in memory with the low-order part
(the offset), at the lower memory address, and the
high-order part (the selector), at the higher memory
address. However, the processor architecture is such that
stacks expand from high memory addresses toward low
memory addresses. Therefore, the high-order part of a
pointer is pushed before the low-order part.

This sample code actually computes the various pointers
at run time. It is also possible to precompute the pointers
by adding the following declaration to the program:

pBSWA DD bswa
pBuffer DD buffer
psData DD sData

If this is done, the appropriate calling sequence is:

LES BX, pBSWA
PUSH ES

PUSH BX

LES BX, pBuffer
PUSH ES

PUSH BX

PUSH sBuffer
LES BX, psData
PUSH ES

PUSH BX

CALL ReadBsRecord

The LES instruction loads the offset part of the pointer
into BX and the selector part into ES in a single
instruction.

Object module and system common procedures as well as
procedural references to system services must be declared
EXTRN and FAR. These declarations may not be embedded
_in a SEGMENT/ENDS declaration. (In appendix G, see line
6 of figure G-3.)

5028707

114 Accessing Standard Services from Assembly Code

The result returned by ReadBsRecord is a 2-byte quantity,
which, according to Unisys calling conventions, is returned
in AX. If the result were a 4-byte pointer, the selector
part would be returned in ES and the offset part in BX. If
the result were a 4-byte datum (not a pointer), the high
word would be in DX and the low word would be in AX.

Other Conventions

All of the 4-byte quantities described in this example are
pointers. There are many cases in which the operating
system and standard object module procedures deal with
4-byte quantities other than pointers, such as logical file
addresses (1fa).

It is important to understand that you should not use
selector registers as data registers. Loading a selector
register with an invalid selector in protected mode causes
a protection fault. For more information about
programming in the protected mode environment, refer to
your protected mode programming documentation.

There is an additional case that is not illustrated by the
example of ReadBsRecord. When a parameter is a single
byte, such as a boolean flag, two bytes are pushed onto
the stack, although the high-order byte of these two bytes
is not used. Therefore, the instruction

PUSH BYTE PTR[BX]

adds two bytes to the stack. One of these bytes is specified
by the operand of the PUSH instruction; the other is not
set and no reference should be made to it. Similarly, when
the result of a function is a single byte, that byte is
returned in AL and no reference should be made to the
contents of AH.

Accessing Standard Services from Assembly Code 11-5

Register Usage Conventions

When writing an Assembly language call to a standard
object module procedure or to the operating system, you
must be aware of the Unisys standard register
conventions. The contents of the CS, DS, SS, SP and BP
registers are preserved across calls; they are the same on
the return as they were just prior to the pushing of the
first argument.

It is assumed that SS and SP point, respectively, to the
base of the stack and to the top of the stack. It is also
assumed that this stack will, in general, be used by the
called service. (You should not put temporary variables in
the stack area below SS:SP. Refer to Interrupts and the
Stack in this section for details.)

These conventions place no particular requirement on the
contents of BP unless you are using virtual code segment

management. (Refer to Virtual Code Segment Management
and Assembly Code in this section for details of BP usage
with virtual code.)

However, the Debugger cannot trace the stack of a
procedure being debugged if BP is not used as shown in
the your system interface reference documentation. The
other registers and the flags are not automatically
preserved across calls to Unisys procedures, so any
registers that the caller needs to preserve must be -
explicitly saved by the caller in a particular application.

Although there is no absolute requirement that these
register usage conventions be followed in parts of an
application that do not call standard Unisys services,
failing to do so is not recommended in the Unisys
programming environment.

5028707

11-6 Accessing Standard Services from Assembly Code

Segment and Group Conventions

This section discusses segment and group conventions.

Main Program

A main program module written in Assembly language
must declare its stack segment and starting address in a
special way. This method is illustrated in the sample
assembler module in figure G-2. In particular:

o The stack segment must have the combine type Stack.
(See line 24.)

o The starting address must be specified in the END
statement. (See line 29.)

When the program is run, the operating system performs
the following steps:

1 It loads the program.

2 It initializes SS to the segment base address of the
program'’s stack.

3 It initializes SP to the top of the stack.

4 It transfers control to the starting address with
interrupts enabled.

Use of SS and DS When Calling Object Module Procedures

If a program calls Unisys object module procedures, there
are additional requirements. Refer to the program in figure
G-3, which illustrates the following points:

o The stack segment must have segment name Stack,
combine type Stack, and classname 'Stack’. (See line 43.)

o Although not required, it is standard practice that user
code be contiguous in memory with Unisys code and
that code be at the front of the memory image. You can
achieve this if all code segments have classname 'Code’
and this class is mentioned before any other in the
module. (See lines 9 through 13).

Accessing Standard Services from Assembly Code 11-7

o You should avoid forward references to constants. It is
also standard, though not required, to make user
constants contiguous with Unisys constants in the
memory image, and to locate constants directly after
code. You can achieve both goals by giving all constant
segments the classname 'Const’ and by mentioning this
classname before any other except 'Code’. (See lines
16-23.)

o You should avoid forward references to data. It is also
standard, though not required, to make user data
contiguous with Unisys data in the memory image, and
to locate data directly after constants. You can achieve
both goals by giving all data segments the classname
'Data’ and by mentioning this classname before any
others except 'Code’ and 'Const’. (See lines 25-36.) The
EXTRN declarations for data declared in object module
procedures must be embedded in the data
SEGMENT/ENDS declarations.

o Any time that a call is made to an object module
procedure, DS and SS must contain the segment base
address of a special group named DGroup. This group
contains the Data, Const, and Stack segments, and is
declared as shown in line 51.

In addition, at the time of a call to an object module
procedure, SP must address the top of a stack area to be
used by the called procedure. A correct initialization of
SS, SP, and DS is illustrated in lines 60-67.

These values need not be maintained constantly, but if
they change, you should restore them (using the
appropriate top of stack value in SP if it has changed)
for any call to an object module procedure. Note that
the operating system’s interrupt handlers save the user
registers by pushing them onto the stack defined by
SS:SP. Therefore, a valid stack must be defined
whenever interrupts are enabled.

4Interrupts and the Stack

If interrupts are enabled, interrupt routines use the stack
as defined by SS and SP. Therefore, you should never,
even temporarily, put data in the stack segment at a
memory address less than SS:SP.

5028707

11-8 Accessing Standard Services from Assembly Code

Use of Macros

As discussed above, the instructions to set up parameters
on the stack before a call and to examine the result on
return are complex. The instructions that must be"
executed differ slightly according to whether a parameter
is in a register, a static variable, an immediate constant, a
word, or a doubleword.

If you are programming a less complex assembly module, it
may be preferable to program the required calling
sequences just once, include them in your program as
macro definitions, and invoke them using the Assembler’s
macro expansion capability.

For example, the procedural interface to the Write
operation is given in your system procedural interface
documentation as:

Write (fh, pBuffer, sBuffer, Ifa, psDataRet): ErcType

where fh and sBuffer are 2-byte quantities and pBuffer,
Ifa, and psDataRet are 4-byte quantities. The
corresponding external declaration and macro definition
would be:

EXTRN Write: FAR

%*DEFINE (Write(fh pBuffer sBuffer Ifa psDataRet))
(PUSH %fh
PUSH WORD PTR %pBuffer{2]
PUSH WORD PTR %pBuffer{0]
PUSH %sBuffer
PUSH WORD PTR %lfaj2]
PUSH WORD PTR %lfa0]
PUSH WORD PTR %psDataRet{2]
PUSH WORD PTR %psDataRet[0]
CALL Write)

Note that the 4-byte quantities are treated slightly
differently from the 2-byte quantities, requiring first a
PUSH of the high—order word, then a PUSH of the
low-order word.

Accessing Standard Services from Assembly Code 11-9

The following example illustrates the use of this macro
with “static” actual parameters:

th ow ?
EVEN
buffer DB 512 DUP(?)
sBuf DW SIZE buffer
pBuf DD buffer
ifa DD ?
sDataRet bw ?
psDataRet DD sDataRet

;code to initialize fh, buffer, and Ifa

%Wiite(fhpBuffer sBuffer Ifa psDataRet)

You might, instead, want to invoke this macro with actual
parameters on the stack. Suppose that the quantities rbfh,
rbsBuf, rbpBuf, rbifa, and rbpsData are on the stack and
that the top of the stack pointer is in register BP. A
sample invocation is as follows:

rbfh EQU -6
thsBuf EQU -8
rbpBuf EQU -10
rbifa EQU -14
tbpsDat EQU -18

%Write([BP +rbfh] [BP+rbpBuf]
[BP +rbsBuf] [BP+ rbifa)
[BP +rbpsData)

5028707

11-10 Accessing Standard Services from Assembly Code

Virtual Code Segment Management and
Assembly Code

The virtual code segment management services of the
Unisys Information Processing System allow you to
configure a program (written in Assembly language, in any
of the Unisys compiled languages, or in a mixture of these)
into overlays. Although data cannot be overlaid with these
services, code can be overlaid.

Moreover, the run time operations whereby code overlays
are read into memory and discarded from memory are
entirely automatic. When linking the program, you only
have to specify which modules are to be overlaid. You do
not have to make any changes to the program other than
inserting a single procedural call at the beginning that
initializes virtual code segment management services.
(Refer to your operating system reference documentatin
for details.)

Operational Rules for tht Assembly Programmer

The correct automatic operation of the virtual code facility
makes certain assumptions about stack formats and
register usage in the run time environment. These
assumptions are automatically satisfied by the compiled
languages of the Unisys System. However, you must follow
some simple rules if you use virtual code segment
management.

If a program contains no calls to overlaid modules from
Assembly language code, then the presence of Assembly
language code in the program has no effect on the
operation of virtual code segment management services. In
this case, there are no additional rules.

An overlay fault is defined as a call to, or return to, an
overlaid module that is not in memory. An overlay fault
automatically invokes virtual code segment management
services to read the required overlay into memory and
possibly to discard one or more other overlays from
memory. The virtual code segment management services do
this, in part, by examining the run time stack.

Accessing Standard Services from Assembly Code 1-11

Therefore, if there are control paths in a program such
that the stack may contain entries created by Assembly
language code when an overlay fault occurs, you must
observe the following additional rules:

o You must follow the register usage conventions
discussed earlier. The intervention of the virtual code
segment management service preserves the registers SS,
SP, DS, and BP, and, if an overlay fault occurs during
the return from a function, it preserves registers AX,
BX, DX, and ES where results may be returned.

Other registers are not, in general, preserved and
therefore cannot be used to contain parameters or
return results. All Assembly language modules which
are linked into a run file that uses overlays must begin
with a PUSH BP and end with a RET.

o The stack segment must be named STACK and must be
part of DGroup. This happens automatically if a
program is a mixture of Assembly language code and
compiled code, and if all code shares the same stack. If
a main progran. is written in Assembly language, it
must be done explicitly.

o You must declare all directives using the PROC and
ENDP directives. Procedure bodies may not be defined
within other procedure bodies. For instance, the
following pattern is not permitted:

Outer PROC FAR ;Code of Outer
Inner PROC FAR ;Code of Inner
Inner ENDP ;More code of Outer
Outer ENDP

The following pattern is correct:

Outer PROC FAR ;Code of Outer, More code of Outer
Outer ENDP

Inner PROC FAR ;Code of Inner

Inner ENDP

This is only a restriction on syntactic nesting. There is
no restriction on nested calls, and Outer can, in any
case, contain calls to Inner.

5028707

11-12 Accessing Standard Services from Assembly Code

o When control enters an Assembly language procedure,
the most recent entry on the stack is the return address,
if all of the conventions above are followed. In addition
to preserving the value of BP, the procedure must push
this value onto the stack before it makes any nested
calls. No values may be pushed onto the stack between
the return address and the pushed BP.

This convention enables the virtual code segment
management services to scan the stack during an
overlay fault. Its violation is not detected as an error,
but causes the overlaid program to fail in unpredictable
ways. Naturally, the pushed BP must be popped during
the procedure’s exit sequence.

o You must place all code in a class named CODE.

o Do not use the SEG operator on an operand in class
CODE, nor in any segment that is part of an overlay. In
particular, the following instruction is not permitted:
MOV AX, SEG Procedure

o If you want to construct a procedural value (a value
that points to a procedure) it must be done in a class
other than CODE by either of these two methods:

pProc DD Procedure
pProc DW Procedure
DW SEG Procedure

Such procedural values do not point directly at the
procedure (since the procedure may be in an overlay),
but at a special resident transfer vector created by the
Linker. Such a procedural value may be invoked by the
code:

CALL DWORD PTR pProc

o If a procedure is resident and you wish to address the
procedure code directly (and not its entry in the
resident transfer vector), use the operators RSEG and
ROFFSET in place of SEG and OFFSET. If you apply
RSEG or ROFFSET to a value in an overlay, an error is
detected during linking.

Accessing Standard Services from Assembly Code 11-13

System Programming Notes

The rest of this section describes some of the algorithms
and data structures that make up the virtual code segment
management facility. An understanding of these details is
not needed by the user of the virtual code segment
management facility. They are included for the system
programmer who is interested in a model of the internal
workings of the virtual code segment management facility.

Statics Segment and Stubs

If you specify the use of overlays when you invoke the
Linker, it creates in the run file a special segment in the
resident part of the program called the statics segment.
This segment contains a transfer vector which is an array
of 5-byte entries called stubs, with one stub for each
public procedure in the program.

A stub consists of one byte containing an operation code,
either JMP or CALL, and four bytes containing a long
address. The Linker notes each call to a public procedure
in an overlaid program and transforms it to an
intersegment indirect call through the address part of the
corresponding stub.

The contents of the address part of a stub for a procedure
which is in memory (either resident or overlaid but
currently swapped in) is the actual starting address of the
procedure. Consequently, the call to such a procedure is
slower than it would be in a non-overlaid program by only
one memory reference.

The contents of the address part of a stub for a procedure
not in memory is the address of a procedure in the virtual
code segment management facility. Thus, a call to such a
procedure actually transfers to the virtual code segment
management facility. This kind of call to the virtual code
segment management facility is a “call fault.” When a call
. fault occurs, the virtual code segment management facility
reads the needed overlay into the swap buffer.

5028707

11-14 Accessing Standard Services from Assembly Code

Before control transfers to the called procedure, two other
steps are taken:

1 The address in all stubs for procedures in the overlay
is changed to the swapped-in address of the
procedure.

2 If some overlays had to be deleted from the swap
buffer to make room for the new overlay, the stubs for
their procedures are reset to the address of the
procedure in the virtual code segment management
facility that deals with call faults.

It is possible for an overlay to be deleted from memory
even though control is nested within it——that is, even
though a return into it is pushed onto the stack. This
situation is handled properly; all such stacked return
addresses are changed to the address of a procedure in
the virtual code segment management facility that
subsequently swaps the overlay back into memory
when a “return fault” occurs.

In the preceding discussion, no reference is made to the
first byte of a stub, the operation code. This byte is used
only for calls of procedural values. For an overlay in
memory, the virtual code segment management facility
arranges that the operation code is a jump instruction.
Thus, an invocation of a procedural argument for such a
procedure results in a call to a jump instruction which
then transfers control to the procedure.

For an overlay not in memory, the virtual code segment
management facility arranges that the operation code is a
call. Since the address part of such a stub is the address of
the virtual code segment management facility, the
invocation of such a procedure activates the virtual code
segment management facility.

Appendix A A-1

Linker and Librarian Messages

Linker and Librarian messages are similar because the
structure and functions of the two programs are related.
Throughout this appendix, references to Linker messages
and solutions are also applicable to the Librarian unless an
exception is noted.

If an error occurs during linking, the following message
appears:

There were x errors detected.
The map file includes descriptions of the errors.

Levels of Linker Errors

The Linker can encounter three levels of problems:

o violation of a Linker convention that still allows the
Linker to produce a valid run file (program results can
be affected)

o violation of a Linker convention that produces a run file
that you cannot run (the system crashes if you try to
run the file) :

o fatal errors that cause the Linker to abort the linkin
process (the Linker does not produce a run file) .

The Linker cannot always provide a complete diagnosis for
each problem because it may not have enough information.
For some of the complex problems, you must examine your
program, using clues from the Linker messages.

Linker Compatibility

The Linker is compatible with only certain versions of
CTOS.lib, Compilers and the Assembler. If you use an
incompatible Compiler, Assembler, or CTOS.lib, errors can
_occur.

5028707

A-2 Linker and Librarian Messages

Causes of Linker Errors

Linker messages result from:

o LINK or BIND command input problems, such as

erroneous file names or a missing entry from a required
field

These problems prevent the Linker from producing a
run file.

o capacity limitations, such as too many public symbols or
not enough memory

These limitations prevent the Linker from producing a
run file.

Note:

If the problem is a lack of memory, try running the
program in a larger partition or on a workstation with
more memory.

o relocation or overlay problems

If you have a relocation error, you should try
rearranging the input modules listed in the LINK or
BIND command form.

If the error persists, you must determine the program’s
segment size requirement and reduce it. You can use the
Linker list file (filename.map) to determine segment
lengths. You can allocate large buffers to decrease the
data segment memory requirements.

o I/0 problems, such as an inability to create, read, write,
or perform other operations on disk files

These problems prevent the Linker from producing a
run file.

A BTOS error code accompanies most I/0 problems;
refer to table A-2, or to your status codes
documentation.

o Compiler/Assembler problems, such as using the latest
version of the Linker on object modules produced by
earlier versions of a Compiler or the Assembler

Linker and Librarian Messages A-3

Linker/Librarian Error Messages

This appendix contains two tables of Linker/Librarian
messages:

o Table A-1 is an alphabetical list of messages that do not
have status code identification. The table provides an
explanation/action for each message.

o Table A-2 is a numerical list of messages that have
status code identification. Some of these messages also
appear in your status codes documentation.

Numeric status codes for the Linker are within the
range 4400 through 4423. The status codes from this
range that do not appear on the list in table A-2 are
part of internal Linker error checking; if you see an
unlisted status code displayed, you should report it to
Unisys because it results from a Linker or compiler error.

Table A-1 Linker Messages

Message Explanation/Action

Bad max parameter You entered a minimum higher than a maximum for the
array size in the LINK or BIND command form fields.

Bad numeric parameter You entered a nondecimal character in a LINK or BIND
command form field that requires a decimal number.

Bad yes/no parameter You entered something other than yes or no in a LINK or
BIND command form field that requires a yes/no response.

IDIV instruction When a Pascal or FORTRAN program contains code that

in overlay results in an IDIV (integer division) instruction within an
overlay, this error results. It indicates a real problem only if
you plan to run the resulting run file on one of the
affected systems (one which uses an early production
80186 processor chip).

Move the code containing IDIV into the resident or ensure
that all integer—division operands are positive.

The alternative is to avoid using the DIV operator in
Pascal, or an 1/J construction in FORTRAN (where | and J
are integers), unless you are sure that all operands are positive.

- 5028707

A4

Linker and Librarian Messages

Table A-1 Linker Messages (continued)

Explanation/Action

lllegal segment address
reference type 1

lilegal segment address
reference type 2

lllegal segment address
reference type 3

lilegal segment address
reference type 4

The Linker has not created a stub in the data structure for
a procedure you called in an overlay (normally this is an
Assembly program problem).

If you are trying to link an Assembly program:

- If the message Warning: proc near xooot in Xxxxx
doesn’t follow CALL/RET conventions appeared during
the link, examine that location in your Assembly program.

- If the message did not appear, examine your entire
Assembly program for call/return violations. The
location cited with the message indicates where the call
occurred. You can use this location to refer to a
compilation listing to see what was called.

Note: Some run time library modules in noncurrent
versions of high level language Compilers generate code
that violates the Linker call/return conventions. Either place
such modules and the calls to them in the resident portion
of your code or upgrade your Compiler to the current level.

Parts of a procedure address have been separated.

In a swapping program, it is illegal to use only one part of
a two-part procedure address.

In PL/M you can generate this error by using the
construction p=@ProcedureName, which generates the
statement MOV AX, SEG ProcedureName. To find the
overlay address of a PL/M procedure name, you must
define the procedure as a static constant in a DECLARE
statement.

Parts of a procedure address have been separated.

This error occurs when you use an earlier version of the
Assembler to produce the object mocule. Use the current
Assembler to produce a new object module.

Parts of a procedure address have been separated.

This error occurs when you use an earlier version of a
Compiler to produce the object module. Use the current
Compiler to produce a new object module.

Linker and Librarian Messages

A-5

Table A-1

Linker Messages (continued)

Explanation/Action

lilegal segment address

reference type 5

Input file read error,
bad object module

Module compiled with
Publics is not resident

Multiply-defined
symbol

Non “CODE" class
loaded into overlay

Non-contiguous
GROUPS not pMode
compatible (Selectors
nnn and mmm)

5028707

Your Assembly program uses segment and offset in other
than the two allowed ways:

- a long CALL instruction
- a DD instruction

Examine your Assembly code. This error usually results
from using a far JMP. This is illegal in an overlay program.

You specified an input file that is either corrupt, not a valid
object module, or not a library file.

Check your file name entry. Make sure your Compiler or
Assembler is current.

This error message is applicable only for programs
generated by the BASIC Compiler.

You cannot locate BASIC modules that contain public
symbols in overlays. Move the module to the resident
segment, or remove the data definitions from the module.

The same public symbol is defined in two or more
modules; the Linker uses the first definition it encounters
and issues this error.

You can determine which symbol the Linker encounters
first; proceed as follows:

1 List the location of each multiply-defined symbol (use
the Librarian).

2 List the object modules in the LINK or BIND command
form such that the Linker encounters the symbol first.

An overlay cannot contain @ segment with a class other
than CODE. Segments in overlays can contain only
executable instructions.

The program may run if the affected overlay is not used as
an overlay.

This error message is printed when the protected mode
requirement that all code segments on all data segments
be contiguous is violated. For example, binding modules in
which the original order of groups has not been preserved.
This message often occurs when binding assembler
modules with various compiler-generated modules.

A-6

Linker and Librarian Messages

Table A-1 Linker Messages (continued)

Message Explanation/Action

No “OverlayFault” In a program with overlays, no call to InitOverlays or

procedure loaded InitLargeOverlays exists, so the Overlay Handler is not loaded.
Add the call to your program.

No run file You must specify a run file name in the LINK or BIND
command form.

No STACK segment You must provide a stack segment for Assembly language

0dd length STACK

0dd size stack
requested; rounded up

Proc near xxxxx in
xoxx doesn’t follow
CALL/RET conventions

Program size exceeds
Linker capacity

programs. The Linker creates a run file, but the system
crashes when you run it.

This is a Compiler error; make sure you have the current
version.

All stack lengths must be an even number of bytes. The
Linker adds one byte to the length of any stack that is
odd. The run file should execute correctly.

You requested an odd-length stack in the stack size
parameter of the Linker or Assembler.

The Linker adds one byte to the length of any stack that is
odd; the run file should execute correctly.

The Linker call/return conventions have been violated. If
the message lllegal segment address reference of type x
appears, a fatal error has occurred.

Refer to the Explanation/Action for the lilegal segment
address reference of type x message.

This violation can result from the use of a noncurrent
Compiler, from placing a noncurrent run time library module
in an overlay, or.from an Assembly program with a call/ret
problem.

Insufficient memory is available to the Linker. There is no
fixed limit on the size of the program to be linked, but
certain tables built by the Linker must be resident in
memory. |f these tables cannot be built, this error results.

Linker and Librarian Messages A-7

Table A-1 Linker Messages (continued)

Message Explanation/Action

Relocation offset from Your program contains too much data, causing the sum of
group is too large the data, constant, and stack segments to exceed 64 Kb.

This problem can occur:

- when you port a large data declaration program from
another system

- because a Compiler inserts another kind of area
between two of these segments

- if the memory segment is at the end of a series of
segments (although the segment is empty at link time,
the Linker checks for this error)

The Linker displays the message Segment size exceeds
65520, status code 4405, if any one segment exceeds 64 Kb.

The Linker produces an invalid run file.

If excessive length causes the problem, dynamically allocate
short-lived memory (use AllocMemorySL or, in FORTRAN,
reduce data segment lengths by moving variables into
common blocks).

If the error is caused by non-contiguous segments, use an
Assembly program to declare the class names of the
segments in a different order and place this module first in
the Linker object modules field. This first module serves as
a template; the Linker orders segments from the following
modules in the same way.

Relocation offset is too Refer to the explanation and action for the message
large Relocation offset from group is too large.

5028707

A-8

Linker and Librarian Messages

Table A-1 Linker Messages (continued)

Explanation/Action

Relocation offset of
near reference is too
large

Requested stack size
exceeds 64 Kb

Segment of absolute or
unknown type

Symbol file hash table
overflow

Symhol table capacity
exceeded

The procedure call or data reference uses a 16-bit
address, but the target object is too far away to be
reached using only 16 bits.

A near call requires that the called address be less than
64 Kb from the caller’s address and that a 16-bit address
be used.

The run file produced is invalid.

You can make your program smaller, or reorder the object
modules to bring references and addresses closer together.

If the message identifies a public symbol, you can use it to
identify the call. If the message identifies a hexadecimal
address, you can examine a compilation list to identify the call.

If the caller and called address are from a high level
language, this error probably results from a data segment
variable reference.

If the caller or the called address are in Assembly, change
the near call to a far call. If you cannot do this, make sure
both addresses are in the same group.

You requested a stack size that exceeds 64 Kb. You must
reduce your stack requirements.

All segments must be relocatable. This message can result
from using a non-supported Compiler. The run file the
Linker produced may be invalid.

The program requires more table space than is currently
available to the Linker. The upper limit on the symbol table
is 512 sectors or 256 Kb. This message can also appear if
you have many long names for public symbols.

You must reduce the number of public symbols, or the
name length, before the Linker can produce a run file.

The number of symbols, symbol string lengths, and use of
overlays determine the symbol table size. Overlays nearly
double the symbol table space required. The symbol table
capacity is 512 Kb.

You must reduce the number of public symbols, or the
name length, before the Linker can produce a run file.

Linker and Librarian Messages A-9

Table A-1 Linker Messages (continued)

Explanation/Action

Too many public
symbols

Unresolved externals

Insufficient memory is available. There is no fixed limit on
the size of the program to be linked, but certain tables
built by the Linker must be resident in memory. If these
tables cannot be built, this error results.

If you are using the Linker, increase the Linker's available
memory or link the files on a workstation with more memory.

If you are using the Librarian, divide your library into two
libraries.

In a library where there are many multiply defined
symbols, the symbol table may be of adequate size if you
choose to add, delete, or extract modules, but it may be
exceeded if you request a listing. To list the symbols, the
Librarian must expand the single statement of a

multiply defined symbol, creating separate symbols with
varying numbers of asterisks. In this process, the symbol
table can be exceeded.

Your program contains references to external names that
do not have public definitions in any other module.

Your program contains more than one public definition for a
reference and the Linker doesn’t know which one to choose.

The map file contains an undefined symbol list.

The Linker produces a run file. For direct calls, the Linker
modifies the call to reference the Debugger. You can run
the program; however, the program response is
questionable. The system may crash.

You should add the definitions to an existing module or
provide a new module containing the definitions.

Note: If you do not specify a version when you are linking
the operating system, or any system that uses a version
number, this error results. The unresolved external’s name
will be SBVERRUN in this case.

5028707

A-10

Linker and Librarian Messages

Table A-2 Linker Status Codes

Code Message Explanation/Action
200- Cannot open A file system error has occurred; the Linker
299 temporary file passes the message from the operating system.
VM read error The Write error on xxxxx file messages usually
Write error in result from a full disk.
temporary file The other messages result from a problem with
Write error on list the temporary file directory ($ directory).
file Either delete files from the disk to create room
Write error on run OF investigate the status of the $ directory to
file resolve the file system problem.
Write error on
symbol file
Error during The Linker could not find or could not read the
legalese legalese file you specified to append to the run file.
The Linker produces a valid run file, missing the
legalese portion.
Note: These error messages, from 200-299,
are only samples; the actions/explainations in
these samples do not correspond exactly with
the messages. For a complete listing, refer to
your status codes documentation.
400 Not enough The Linker does not have enough memory
memory available available to link the file.
To link the file:
- |f you are running the Linker under the
Context Manager, reconfigure the partition size.
- Link the run file on a system with more memory.
1380- Heap errors An internal memory management error has
1390 occurred. Such an error usually causes the

system to stop all activity or to exit to the
Executive.

If you observe such an error, report it to your
Unisys representative.

Linker and Librarian Messages

A-11

Table A-2 Linker Status Codss (continued)

Code

Explanation/Action

4400

4402

4403 and
4404

4405

5028707

Attempt to access
data outside of
segment bounds,
possibly bad object
module

Fatal error
Too many segment

or class names
Too many segments

Segment size
exceeds 65520

Too many groups

If you did not use a segment directive in your
Assembly program, or if you declare code or
data outside any segment, the Assembler
supplies a segment named ?7SEG. The resulting
object module is invalid and the Linker cannot
produce a run file.

In Assembly programs, make sure you include a
segment directive.

This error can also result from a Compiler error.

An internal failure has occurred. Report the
failure to your Unisys representative.

You cannot declare more than 255 segments or
different segment names in one module;
however, the program can contain more than
255 segments.

The Linker does not produce a run file.
If necessary, divide the module.
Each segment cannot be larger than 65,520 bytes.

This error pertains only to a single seﬁment, not
to a group or sum of segments (for example,
DATA, CONST, and STACK).

The link is aborted.
The Linker does not produce a run file.

If you are writing in Assembly language or
Pascal, reduce the size of the segment to less
than 65,520.

Each module can contain a maximum of 10
groups, and the program can contain a
maximum of 256 groups.

A-12

Linker and Librarian Messages

Table A-2 Linker Status Codes (continued)

Code

Explanation/Action

4407 and
4408

4409

4311

4413

4314

4418-
4420

4422-
4423

Too many public
symbols in one
module

Too many external
symhols in one
module

Invalid object
module

Too many common
symbols in one
module

Bad object module,
segment, or group
index out of range
Too many public
procedures in
resident overlay

Too many segments
Too many areas

Bad object module,
external index out
of range

The Linker does not have sufficient memory to
link these modules.

To link the file:

- If you are running the Linker under the
Context Manager, reconfigure the partition size.

- Link the run file on a system with more memory.

A file you specified as an object module is not
in object module format.

This could result from:
- Compiler error
- damage to the file

- specification of a text file (such as the
source file) instead of an object module

The Linker does not have sufficient memory to
link the run file.

To link the file:

- If you are running the Linker under the
Context Manager, reconfigure the partition size.

- Link the run file on a system with more memory.

You included an invalid object module. Usually
this is the result of a Compiler error.

The resident portion and any single overlay can
have a maximum of 4,096 procedures.

Divide the code into more overlays.
The Linker does not have sufficient memory to
link the run file.

To link the file:

- If you are running the Linker under the
Context Manager, reconfigure the partition size.

- Link the run file on a system with more memory.

You included an invalid object module. Usually
this is the result of a Compiler error.

Appendix B B-1

Software Installation

After you install the Language Development software, you
can run the Linker, Librarian, Assembler, Math Server, or
Mouse Server by entering commands at the Executive
level.

You install the Language Development software from the
software diskettes. The diskettes are write-protected; you
should not write-enable them or use them as a working

copy.

You use the Executive SOFTWARE INSTALLATION
command to install the software. You do this by entering
the command name in the Executive command line and
pressing GO. The system then directs the software
installation, prompting you when it requires a decision.
Before you begin this process, you should review the
library file and software installation decision information
in this section.

Optional Library Files

The Language Development software includes several
library files as listed in table B-1. The files contain object
modules necessary for some Linker operations.

You can copy the files to your system as part of the
software installation, but you can also use the Executive
COPY comimand to copy the files from the diskette at any
time.

You should review the library files before you install the
software and decide which ones to copy as part of the
software installation.

Software Installation Decisions

Table B-2 lists the commands and libraries that you must
decide to add or not add to your system during Language
Development software installation.

5028707

B-2 Software Installation

Table B-1 Language Development Library Files

File Name Contains

CT0S.lib operating system run time support

SortMerge.lib object modules containing external-key and key-in-record sort
procedures

Mouse.lib object modules containing request and procedural interfaces for

the 2- and 3-button mouse, cursor control, and tracking

Table B-2 Language Development Software Installation Features and

Selections
Item Executive Command or Library Size
Name
Assembler and ASSEMBLE 255 sectors
SAMGEN
Linker and Librarian BIND 333 sectors
LINK
LIBRARIAN
WRAP 119 sectors
Math Server INSTALL MATH SERVER 66 sectors
Libraries Mouse.lib 17 sectors
CT0S.lib 644 sactors

SortMerge.lib 155 sectors

Appendix C c-1

Assembler Instruction Format

This appendix describes the instruction format of the
processor, and provides a detailed analysis of a sample
Assembly language instruction.

The MOD-R/M Byte

The instruction format of the processor uses up to three
fields to specify the location of an operand in a register or
in memory. The Assembler sets all three fields
automatically when it generates code. When used, these
fields make up the second byte of an instruction, which is
called the MOD-R/M byte.

The two most significant bits of the MOD-R/M byte are
the MOD field, which specifies how to interpret the R/M field.

The next three bits are occupied by the REG field, which
specifies an 8- or 16— bit register as an operand. Instead
of specifying a register, the REG field can, in some
instructions, refine the instruction code given in the first
byte of an instruction.

The next three bits are occupied by the R/M field, which
can specify either a particular register operand, or the
addressing mode, to select a memory operand. This occurs
in combination with the MOD field.

The MOD and R/M fields determine the effective address
(EA) of the memory operand, and the interpretation of
successive bytes of the instruction, as follows:

MOD Interpretation
00 DISP = 0
(disp-low and disp-high are absent)
01 DISP - disp-low sign-extended to 16 bits
(disp-high is absent)
10 DISP = disp-high, disp-low ,
1 There is no DISP (both disp-low and disp-high are absent) and

R/M is interpreted as a register

5028707

C-2 Assembler Instruction Format

If MOD # 11, R/M is interpreted as follows:

R/M Interpretation

000 [BX]-+[S1]+DISP

001 (BX] -+ [DI]+DISP

010 [BP)-+[S1)+DISP

011 [BP]-+ (DI} +DISP

100 [S1]+DISP

101 . [Di}+DIsSP

110 ~ [BP]+DISP if MOD # 0
DISP if MOD = 0

m (BX]+DISP

If MOD = 11, the effective address is a register designed
by R/M. In word instructions, the interpretation is:

R/M Register
000 AX

001 CX

010 DX

on BX

100 sP

101 BpP

110 Sl

m Dl

In byte instructions (W = 0), the interpretation is:

R/M Rogister
000 AL
001 o
010 DL
on BL
100 AH
101 CH
110 DH

m BH

—

Assembler Instruction Format C-3

Analysis of a Sample Instruction

The Unisys Assembly language makes it possible to convey
much information in a single, easy-to-code instruction.
The remainder of this appendix provides a detailed
description of the following sample instruction:

SUB [BP][SI].field4,CH

The contents of the 8-bit register CH are subtracted from
a memory operand; registers BP and SI are used to
calculate the address of the memory operand; the
identifier field4 and the dot operator(.) are used to
designate symbolically an offset within the structure
pointed to by BP and SI.

The register BP points within the offset of the run time
stack and is used, as is the case in this example, when the
operand is on the stack. (The selector register for the
stack segment is SS, so the 16-bit contents of SS are
automatically used together with BP in addressing the
memory operand.)

The 16-bit contents of register SI are the data from the
top of the stack: the contents of BP and SI are added in
the effective address calculation.

In this context, the dot operator (.) refers to a structure.
(Refer to section 6 for a description of structure
definitions.) The identifier that follows, field4, identifies a
structure field. Its value gives the relative distance, in
bytes, from the beginning of the structure to field4.
(Offset values for each field of the structure relative to
the beginning of the structure are generated by the
Assembler. In this way the structure can be used as a
pattern of relative offset values, a “storage template.”)

This instruction combines the contents of the stack
segment register SS, the stack base, the index register SI,
and the offset of field4, to form an absolute machine
address. The contents of the 8-bit register CH are
subtracted from the byte thus addressed. This instruction
includes opcode, base register, index register, structure
displacement and relative offset, type information,
direction (register to memory), and source register. The
instruction assembles into only three bytes.

Figure C-1 shows a diagram of a sample Assembly
language instruction.

5028707

Figure C-1 Diagram of a Sample Instruction

MOD FEG R/N

N

oooooooiot}mqoxo]

y—

NEXT: ADD (SB) (S), Field4,DX |

4— 16-bit segment base value

16-bit effective address
(offset) within segment

}_.8 or 16-bit index or
displacement vaiue com-

prising part of offset

///

28883

STACK MARKER
—=e] &
Legend]—-! STACK POINTER
D2 fow fo tis > s
addition operation -

SAMPLE VALUE
D=0

W=1
MOD=01
REG=010
R/M=010

Memory destination

Word operands
Displacement 1 byte; sign-extend
Use DX register
Effective address= (BP+(Sl)+disp.)

D=1 means register

W=0 means byte operands

Jewso4 uonINAsu| JB|quassy

Appendix D D-1

Assembler Instruction Set

This appendix contains four tables:

o Table D-1 lists effective address calculation times.
o Table D-2 lists alternative mnemonics.

o Table D-3 lists the instruction set in numeric order of
instruction code.

o Table D-4 lists the instruction set in alphabetical order
of instruction mnemonic.

Legend

Tables D-3 and D-4 contain the following seven columns:

o The Op Cd column which is the operand code.

o The Memory Organization column which is explained in
appendix C.

o The Instruction column which is the instruction
mnemonic.

The Operand column which contains the operand, if
there is one, acted upon by the instruction.

o The Summary column which contains a brief summary
of each instruction. Parentheses surrounding an item
mean “the contents of.” For example, “(EA)” means “the
contents of memory location EA,” and “(SS)” means “the
contents of register SS.” The infix operators (+, —, OR,
XOR, etc.) denote the standard arithmetic or logical
operation. CMP denotes a subtraction in which the
result is discarded and only the values of the flags are
changed. “TEST” denotes a logical “AND” in which the
result is discarded and only the values of the flags are
changed.

»]

5028707

D-2 Assembler Instruction Set

o The clocks column which is the clock time for each
instruction (refer to table D-1). Where two clock times
are given in the conditional instructions, the first is the
time if the jump (or loop) is performed, and the second
if it is not. In all instructions with memory (EA) as one
of the operands, a second clock time is given in
parentheses. This is because memory may be replaced
by a register in all these instructions. In such cases, the
faster clock time applies. Where repetitions are possible,
a second clock time is also given in parentheses, in the
form “x+y/rep”, where “x” is the base clock time, “y” is
the clock time to be added for each repetltlon, and “rep”
is the number of repetitions.

o The flags column which enumerates the flag conditions,
according to this code.

- S ==set(tol)
. C = cleared (to 0)

X = altered to reflect operation result
U = undefined (code should not rely on these values)
R = replaced from memory (e.g., POPF)
blank = unaffected
The flags are:
O = Overflow flag
D = Direction flag
I = Interrupt—-enable flag
T = Trap flag
S = Sign flag
Z = Zero flag
A = Auxiliary carry flag
P = Parity flag
C = Carry flag

Assembler Instruction Set D-3

The following symbols are used in the tables:

Symbol
bAddr

bData
bEA
bREG
CF
Ext(b)
FLAGS
off
Sign(w)
sha
SR
wAddr

whata
wEA
WREG

Interpretation

16-bit offset within a segment of a word (addressed without use
of base or indexing)

byte immediate constant

effective address of a byte

8-bit register (AH, AL, BH, CH, CL, DH or DL)

value (0 or 1) of the carry flag

word obtained by sign extending byte b

values of the various flags \

18-bit offset within a selector

word of all 0’s if w is positive, all 1's if w is negative

segment base address

selector-register (CS, DS, ES, or SS)

16-bit offset within a segment of a word (addressed without use
of base or indexing)

effective address of a word

16-bit register (AX, BX, CX, DX, SP, BP, SI, or DI)

Table D-1 Effective Address Calculation Time

EA Components Clocks

Displacement only 6

Base or index only (BX, BP, SI, D) 5

Displacement (BX, BP, Si, DI) 9

.

Base or Index

Base [BP+DI},[BX+SI] 1

+ v

index [BP+S1),[BX+DI] 8

Displacement [BP+DI)+DISP h]
T+ [BX+ Si])+DISP

Base

+ [BP +S1]+DISP

Index [BX+DI]+DISP 12

*Add two clocks fdr selector override. Add four clocks for
each 16-bit word transfer with an odd address.

5028707

D4 Assembler Instruction Set

Alternative Mnemonics

These instructions have synonymous alternative
mnemonics as listed in table D-2.

Table D-2 Alternative Mnemonics

Instruction Synonym Description

JA JNBE Jump if not below or equal

JAE JNB Jump if not below

JAE JNC - Jump if not carry

JB JNAE Jump if not above or equal

JB JC Jump if carry

JBE JNA Jump if not above

JG JNLE Jump if not less or equal

JGE JNL Jump if not less

JL JNGE Jump if not greater or equal

JLE JNG Jump if not greater

JNZ JNE Jump if not equal

JPE JP Jump if parity

JPO - JNP Jump if no parity

Jz JE Jump if equal

LOOPNZ LOOPNE Loop (CX) times while not equal
LOOPZ LOOPE Loop (CX) times while equal

REPZ REP Repeat string operation

REPZ REPE Repeat string operation while equal
REPNZ REPNE Repeat while (CX) # 0 and (ZF) = 1

SHL SAL. Byte shift EA left 1 bit

Assembler Instruction Set D-5
Table D-3 Instruction Set in Numeric Order of Instruction Code

o [—773 Taetsue~| Opecand (Y4 (37517 Flage
2”.-“.;1.- tion 001 TITANC
00 woo REa/N [a0e BEA.AP8 (PEr)=(BEr) +(DR2E) 1eeea ()X XxxXX
01| moo azca/n |AD® weA, a8 wEA)e(wEr)o(vaes) 16eCA(INX xxxXX
03] moo azca/m [ACO REG. DEA (»aza)e(paza)e(vea) seorall) |x xxxXX
03| moo xzca/n |ADO Az, vea wAZS)= (wRRzd)¢ (vEr) Sela(l) {X xxxxx
04 ADO AL.DOata AL)w({AL)ebOnta 4 2 Xxxxx
1} ADO AX,vtata AX}e(AX)ovinis 4 X XXXz
[russ -] Push (23) sate staek 10

[1] roe - Pop steehk to []

o8| moo Rgca/n joa DEA, 228 (bEA)a(BEA) OR (VaEza) 16eta(dlic Inoc
09| moo azca/n joa WA, A0 wEA)e(weA) OR (wvagd) 16ecafd}{C xxuxe
OA| moo meca/n jom RT3 DEA wasg)e(baRd) OR (drA) fetall) |€ xxUXC
08{ n00 3ECA/N jOR RZO,veA wakg)e(wvand) o (veA) 9eer(l) |€ xxuzC
oc os AL.bOnta AL)e(AL) O8 Sata 4 € xxuxc
[o’ AX, wOnes AX)e(AX) OR wOata 4 € xxuxe
ot ruse <3 Pued (C3) ente stack 11

or (net veed)

10{ moo meca/m [anc A, 280 DEAJe(BLA)e(DRRS) CP 16eCAIN) X xoOXX
11| mo0 azEa/n |aoc ZA. 280 (ved)eo(wer)e(vacs) <y 16eCA())X xxxXX
13| woo neca/m jaoc e, A Bazs)e(BA%G) e (DLA) eCP eCA()) X xxxxX
13| w00 azca/m [AoC aeg.2A (wagn)e{wvazo)e(ver) ey SeCA()) |X xxxxx
14 ape AL, >Oats AL)=(AL)$VOn LaeCT . X XXX
13 DS AX,vinta AX) @ (AX) +wOs taeCP 4 X xxxxx
18 pusn a8 Push (33) eate staek 11 PR - - -
1% roe 38 Pop stach to S8 []

18| moo azca/n |sss BEA, 228 (BeA)e(DEA)=(baEC)-CP 16eCA(3}X xxOX
19| mo0 RECR/N [S88 wEA. A8 wEA)o(wEA) - (waEC)-CP 16eCA(3)X xxxXX
1A} moO azca/m |sas REQ.DEA BRLA) = (DREG) = (DEA)=CP ferA(3) |x zxXXX
18| w00 azca/n {388 REB.vEA watd)e(watn)= {wEA) <P PoLA(3) X XRXXX
1c 88 AL.DOata AL)w (AL} -30n ta=Cy 4 X XXXXX
10 388 AL, whaca AX)e{AX)~vOeta~CP L) X XXxxx
it ruse os Pesh (DS) sace etack 10

11 4 ro? o8 Pop stack te 08]

30{ %00 RZCR/N [AND A, 223 DEAJw(BEA) AND (DAEG) 16eta(ld)fC xxUXC
21} moo agca/n |ame weA. a8 weA)e{wer) AND (warc) 16ecA(3)|C | XxUXC
12| mo0 azca/mn |amo [1R 12N (BREG)<(DACG) AND (DEA) 9ega(l) € xxuMc
23| oo secw/m {An0 22a,veA waZG)e(vaZB) ANO (vEr) seca(d) e xxUXC
24 AND AL.DOata AL)=(AL) AND BOsta 4 € xxux
13 AND AX,wOata AXJo(AX) AND wOsta 4 ¢ xxuxc
e (21} T8 sequeat evesrride 3

n DAA Decimal odrlt for ADO 4 X xxaxx
18| moo szoa/n |sus SeA, ses DEA)e(bea)-(warc) 16eCald)X zXAXX
19| woo szca/n |[dus wia, a0 weA)eo{wer)-{vaza) 16eCA(I)|X xxxax
A{ noO RENA/N [SUS 273, 5CA DAL)=(BAKE) ~(bLA) 9eCA()) |2 xRXXX
28| noO RECA/N [3UB REC, veA waEG)= (vass)-(wer) 9eCA()) |X ZRxXX
i s AL DOata AL)e(AL)=bOs ta 4 X IXXXX
10 UB AX,vOnca AX)e{AX) ~vOsta 4 X' XXXXX
28 <+ 1] C3 ‘segment ovecrride 2

i g oAS Decimal adjvet foc awdtract{d VXXX
JO| mo0 acca/N |xoR BEA.SC (DEAI=~(DEA) XOR (dRCS) 16een(3ljc zxUXC
31| moo azca/m [xo& vEA, 288 (wea)=(wea) 208 (wvaes) 16eca(d)f € xxvaC
32| »00 seca/n |x08 (1 B 17Y DREC)e(WREC) 208 (BLA) 9seea(3) |C zxUR
33| mo0 AscR/N [x0R RE.wEA {wvazg)e(vaza) 08 (w&A) TecA(l) € xxUC
36 |xou Al Dnea AL}e(AL) 20 bOals 4 ¢ xuxc
33 X0 AX.vinta (AXJe({AX) 308 wOsta L) [-
36 38 38 segmsat everride 3

n AAA ASCIT adjust for sed 4 v wrux
38{ moo neca/n {Ow BEADEZE | TLACS«(BEA) O (BaEG) [27° % X anox
39| m00 BECA/R [CORP weA,vags | FLACSe(wEA) O (wvato) seca X XXX
a{ woo sec/n |Ow A8, PCA | FIAGEe(baES) O (DEA) (1178 2 ZXEXX

5028707

D-6 Assembler Instruction Set

TableD-3 Instruction Set in Numeric Order of Instruction Code (continued)

[=137 Tastree~] Cparand [™Y77 "clecks Tisge
Laloryantisation !l= OO0 TISIANC
I8} mo0 azow/m [Ow wagd, weA PlAGSe(wvazd) Ow (wea) kA X o
x (o d AL, DOata LAGS=({AL) O (BDets) 4 x XXXXX
3 ow AX,v0eta| FLAGE=(AX) O (wOeta) 4 T o3
13 1) o8 C everride 3

w» ALS ASGC31 adjues for swdtracs | 4 v ounz
40 = A AXje{ax)el 3 P - - - §
o ing (-3 X)=(CxX) ol 3 X o
2 1 o= BXj=(Dx)el 3 X X
4 ine ax Ax)e({gxiod 2 I xxxx
(1} inc » SPje(SPiet 3 x XXXX
L1} imC [4 SPle(nr)el b] X 0
£1) tc st 31)=(82)e} 3 X oo
? g ot BLje(ni)el 3 3 xxxx
a8 oet AR AXje{AX)=l 3 X X0
4 oee = CXje(CX)-1 3 X XXXX
“ oag o Sx)s(Dx) =) 2 LI - - -
a oee [3 X))o (2x) =1 3 T xxxx
« o i 4 sr)e(sp)-1 3 X xxxx
40 oee ” arjea(ar)~i 3 b . - - - 4
o nec 2 (8t)=(s1)-1 3 X X
ar osc 13 DE)=(DL)=1 3 2 XXX
30 russ X Push (AX) ento stack 1n

) rusu -3 Pued {CX) ento swaex 11

3 Pusa = Pueh (DX) ents stack 11

33 ruse X Pesh (BX) oato staen 1n

34 ruse se Meh (37) eacn staekx 11

33 russ s Push (2P) onte stack 1n

36 rusu 11 Push {31) ente stack 13

37 russ ot Pueh (DI) onto etach 1

sa ror ax Pop stack te AX []

39 roe = Pop stack to X [

LY ror o Pop etack Lo OKX]

k1) ror = Pop stack te X []

I3 roe e Pop stack te 3P .

3o (o ld » Pop-stack s WP e

£14 roP st Pop stack ts s]

s o 19 Pop stack te B2 L]

(7] (ror wsed)

(3} (noe veed)

a2 net used)

(%) net uped)

(1) not wsed)

[}) not veed)

t: not “:

. wsed

(1] ..":: used)

(3] not used)

(33 Aot used)

(1) net veed)

« not wsed)

40 "ot ueed)

33 net vsed)

o not weed)

10 JO »0189 Jump L€ ovecflow 16 or 4

n Jwo olsp Jung i we everflew 18 er ¢

2 I8 »oL89 Nenp L Delow 16 ot &

” JAR »oi59 Jusp Lf sdove or equal 16 er 4

74 £33 "ot Jusp 1€ sere 16 ec &

3 s »0ot89 Jump L8 ot seve iser e

——

Assembler Instruction Set D-7

Table D-3 Instruction Set in Numeric Order of Instruction Code (continued)

Operand Saanma 'y . Clecks 7ieqa

0189
0139
0180
»0180
»o139
»01ixP

Lo obbbLbLs

BEAIData | (DEAIe(DEZA) OR Doata
STA.DOata | (DEA)=(DEA) *b0e W2 eCP
BEA.DOnta | (DEAJe(DEA) - ta-C?
BEA.D0nta | (DEA)=(DEA) AXD VOnta
BEABOuta | (BDEAIe(DLA)-DDn

SZA.bData | (DEA)I=(DEA) 208 Vmes
BEA.D0uta | FLACS=(BEZA) CRP bVOata
wEA, w0 ta | (wEA)e(wEr) evon s

weA,wonta | (vEA)u(wCA) 208 wvoats
wEA, wOata | FLAGI=(wEA) XOR vOata
BWEA,DOata | (BEA)u(DZA)ebOnts 17een

BEA,DOata | (BEA)=(DEA) *b DR taec? 17eca
BEZA.30aea | (BEA)=(DEA)-DOR La-CP 17eca

BEA.30ata | (DEA)=(DEA)-DOR L 172

VLA DOata | FLACSS(DEA) O@ SData 10+2a
WEA DO tA | PLACSe(wEA) egat(D0ata) 17egA

wEA p0nta | (vEr)e(wer) skze(dOata)ecy | 1740A
veA 3Deta | (vEA)e(wEA)-Lat(bData)<F | 17eA

wEA 30ats | (wkA)e(vEA)-Cat(dOnta) 1722

VEADOnta | FLACS=(wEA) O Lit(dlata) | 10e2A

BEA bazs | FLACSe(DEA) TZST (BaEd) YeEA(3)
WEA,wAZD | PLAGSe(wEA) TEIT (wagad) SeCA(I)
VA3, DIA | Lachasge BALS, DA 170ea(4]
vazd,.veA | Exchenge witd, wiA 17eea(4
SZA BRI | (bEA)=(vazd) PelAl2)
weA,witd | (veale(waza) Seta(2)
822, 3CA | (vazcie(der) seca(l)
wazd,weA | (wvaec)e(wea) seea(d)
weA, 32 (vea)e(s3) seea()

AAM M MM HH M MK MNANAMNAMNKAROAMKNK NN

agg, TA {aEgi=etfoctive address etA(2)
SR, weA (s2)e(ver) sera(l)

R Y Pop stach 8 EA 17eea

5028707

D-8 Assembler Instruction Set

Table D-3 Instruction Set in Numeric Order of Instruction Code (continued)

O T €Y lnnn-r Gpetand amary (=T 7Y Tiaqe
cdloryanizacion ioa OO TITAPIC
T
87| »00 100 R/n{(net weed)
7] mo0 101 A/N{(nes waed)
7] »00 118 R/n{(net weed)
8P| »oe 111 &/N{(net waed)
0 XCHe AX, AX L ed 3
” 0O aAx, X tachamge (Ax). (CX) 3
” xCN0 AX,DX Exchamge (AX), (DX) 3
” xCH8 AX, 3X achasge (AX), (ax) 3
£ 2] xXCHa AX, 3P xchamge (AX), (3P) 3
” 20O AX, 3P achamge (AX), (a9) 3
% ACNE AX, 83 Lachasge (AX), (81) 3
»” 3000 AX, 82 txedamge (AX), (D2) 3
” Caw (Ax)egxe(ar) 3
” [2ed (Dx)esigalax) 3
%" CALL olfi3be Bleest AR eall 38
” WALITX Wit fer TEST sigasl JeuAlTX
«< rusur Pesh TLAGS eats stachk 10
%0 rory fop stack te FLAGS] ARAZARRER
” ANP nAcsa{Ax)) RRSRRAARR
”w LaAXP AB) et FLAGS. 4
A8 Lot AL DAddy ALje(paddr) 10
A Lo 4 AX, vaddy AR)o{waddr) 10
A2 oV Baddr,. AL (DAddr) @ (AL 10
a oV wAddr AX| (waddr)e(ax 10
As novEs nove byte strisg 18
(90"/:-')
as Load) move word strimg 18
uonlupl
A -l] Congere dyte strisng Itz xoxx
(’-ullr-vi
a (- 12 J Compace werd strimyg 22 11X xxxxx
(9022/cwp)
a8 Re-24 AL,S0eta nACI«(AL) TEST (bOata) L) R 4 xURC
A9 TES? AX.20nta FLAGS=(AX) TEST (vOnta) 4 x XU
M STOS8 Stece dyte otrimg 11 !
(9410/ze9)
A sToN Stace werd string 3
. (vei0/cep)
Y3 10088 1ead Dyte atrimg 12 [}
(9e13/vep)
AD |71 J leed word string 12
('oulr-vl
AR SCASS 3Scas dyte string Ix xXooxX
(svulup)
ar SCAN Scan ward strisy 13 XXX -
uns/c-n
0 NN AL, data | (AL]vdCnca L)
33 nov Clomea| (CLisstnca 4
n L DL.30sta | (DLi=bOata 4
[3] »ov L.btata BL)sbmta 4
M oV AN, 50nta i) =o0nta 4
a3 nov Cu.daca [
[v O, b0n ta o j=oOn ta 4
(1) nov [L YTY m)=alnta [}
» nov AX, wOs ta AX]evOnta 4
" nov X, vOnta CX) »wOn ta 4
M L4 OX, vOnta BX)ewoeta 4
8 nov X, wnta BX}evOnts 4
» v 32, wtnts SP)ewinta L]

Assembler Instruction Set D-9

TableD-3 Instruction Setin Numeric Order of Instruction Code (continued)

Op 17 fue={ Opucand 13 Clesks 7iage
Stlovysatiwmtion tiea OOt TIZANC
30 [mOw W,wata| (30)evinca 4
® o $l.voata| (81)evtata 4
(14 Cad l,wtnca| (Bl)ewonta 4
@ (not weod)
c . (aoe wsed)
(31 (154 wOa ta FTAR return; (3P)e(3P)e

wvinta 12
Q AT EEAR retues . []
c4{ moo asoa/n |Lzs 283, 8A £8088C+(wEA*2) s (vEA) 16eca
C3| w0 acca/m (Los 283, 2A DEsRLCe(wEre2) s (wEh) 16ecn
Ce{ moO 000 A/M|wOv SEAData (DEA)=(bOmta) 10e2A
C6{ mo0 00L /R|(met weed)
Co| mOO 010 WN{(nec wsed)
CS| noD 011 A/N{(eee wsed)
Ce| mO0 100 3/N{(nee weed)
CS{ »0 101 WRi(ase waed)
Cs{ mo0 119 R/n{(aee waed)
Ce{ mo0 113 A/N|{(mee weed)
€| moo 000 &/n{mw | EA.w0aca | (wiaA)owOaca 10eca
€7] moo 001 R/N{(mee weed)
CY| moO 010 &/N{{ase ueed)
€7| M0 611 R/R{(mst wsed)
€7]| moo 100 &/K|{(Aet weed)
€] ma0 108 W/N{(nee weed)
€7| w00 110 8/K|(nec wsed)
C?{ m0O 113 WN|(ast weed)
(-} (nee wsed)
< weeod) .
CAl sy woata FAR retura, ADO

data te REG 3P 17
c 27 FAR vetura is
(-4 ¢ . 4 3 Type) latarrupt 32 [~
(-] T boata Typed latarrupe 35 cc
cx 1wro Intecrupt L8 overflow 33 er ¢ (54
Simple ezecution ol the § ien takes 4 clocks, sad sctual latecrupe, 33.)
cr bi -4 Begura from {atecrrwpt e RRRARAARR
00{ moD 000 B/N {306 BEA. L Botate DEA left 1 Mt 1Seca x x
00f moO 001 a/m|{sce BEA.L Sotate BEA right 1 Bl 13¢0A z z
00| mo0 €10 a/N{acy, dEAL Botats dDEA lefy through -

earzy | bit 15eca x L
00| mo0 611 wW/mixck BEA,L Sotate DEA right through

: carry L Wi 1Se2A X b §

00{ MO0 100 R/k SNt BEA,L Shift BEA le(t § Bit 15eCA X 2
bO{ moO 101 R/NiDa BEALL. MLLL DEA ziqght 1 MR 13e2a z z
00 00 110 A/N{{net weed :
50| ®OO 111 A/M{sAR BEA,L il siqaed BEA

eight | aie FETTIN X xxuxx
o1{ m00 000 &/k{mOt weA.) Mocate wCA left 1 Bt 13¢ea x x
ol| mo0 00% &/m{zoR weA.d Macs wEA right 1 Mt 15eta X x
ot{ mo0 010 a/mi{acr. weA,d Metate wEA left theomgh

esrry | MY 13e2A 4 x
olf mo 01% /m{mca wEA. 2 Mtate vEA right threwgh

eacry | DR 13eCA x x
oi| mo0 100 s/misa wea,l iy wea lefr L ML 13e0n X x
91 moD 10% a/misus weA.L il veA sighe 1 Bt 15e0a x x
O1] mO0 110 &/N{{nes weed)
21| w00 111 WA{saa weA,l LI siqmed wer

sighe 1 Bit 13¢CA X IXUXX

5028707

D-10 Assembler Instruction Set
TableD-3 Instruction Set in Numeric Order of Instruction Code (continued)
) Remery Instrwe~| Opecand (™27 (30N Tege
Lajorqanisation tiea 001 TITAIC
p2] mO0O0 000 A/N{BOL DA, 2 Botate A left
(L) wits “/oin] X X
p2| MO0 001 a/n|moR BEA.CL Retate BEA righdt <A
({cL) wice *4/oiey X b
03] m00 010 R/M{BCT, BEA,CL Mmeats BEA left throwgh 3002A
earry (CL) dits os/oie) X t 3
02| moo 011 A/MimcR AL Betate LA right Lhrowgh 3000A
. earry (CL) Wire ea/oie] X b 3
52| mo0 1080 Wn|e. BEA.C LT DA lelt 2002A
(CL) divs e4/ain| x b §
02| mco 101 W/n|sus wEA,CL ShLLL DEA right 20028
{cL) dies e4/oit) X x
02| m00 110 Wn{(not used)
03] o0 111 a/n|sAR oA, cL Shife siqned BZA 20088
righe (CL) wits safpie| x XrUXx
D3| mCD 000 R/M|{mOL wEA.CL fotate weA left 10eta
. {CL) birs sd4/nlef X b
03] 00 001 A/m|mom weA, CL Rotate wEA right 2000A
{CL) bits ed/oief X z
03{ mo0 010 a/m{act wEA, & Rotate wEA left throuwh 000
casry (CL) Bits */eit) X z
23| mo0 013 a/m{scR weA. Gl Metate vERA right through 00
cacry (CL) dits sa/oinf 2 z
03§ oD 100 R/m|sut. wEA,CL ify weA left 0eea
(CL) dits amin| X z
23] mo0 10} a/misns weA, CL iy veA cight 0eTA
{CL) dits /) x z
03] m00 110 /| (aee weed)
03 woo 111 Ww weA, Shife signed 0022
righs (QL) Nu s/oie] X XxXUIX
oe| 00001010 AR ASCII adjves for sultiply 23 e xuxu
os{ ooootra10 AAD ASCIl sdjust foc divide © v X
06 (net wsed)
o7 XLAY awe Translate vsing (2X)
o8| MO0 -== A/M|{ZSC n Tacape te esternal device
0 Lo0MrS Leop (CX) times while
0189 »ot 2009
3% Loors 20139 Loop (CX) times while sere
[2] woe »OI8P Loop (CX) Limes
[3] JCcx3 wolse Jump 18 (CX)=0
[} i AL dPert | Input [rus dPlect to AL
[3] ¢ AX,wvPert | Input from wPorst to AX
s our BPore AL | Oulput (AL) te droet
(3 our whert. AX | Output (AX) te weert
- CALL, vol159 Direes asar ssll
2] o d -Oi%p Direct neeyr jump
7Y JnP woisPy,
varg Olrest far 3'-.
= L ind »oisP Direct neay jump
= m Al OX me th freon pors
(6x) to 228 AL
(-] 1w AX, X Word fnput (rdm pece
(0X) te 220 AX
= our o, AL Syte eutpue (AL)
poes {DX)
-4 our 0%, AX Word eutput (AX) te
poet (DX)
r LocK Sus lock mln
n (et woed)

Assembler Instruction Set D-11

TableD-3 Instruction Setin Numeric Order of Instruction Code (continued)

=) astirea-| Operend Sty Clesks Tlaye
K1 COITITASC
n Sepest while (CXx)g0

ANp (37)=0 3
n Mepest wrile (CX)FQ

AmD (1r)=) 3
re Salt 3
s Complement carry (lag 2. k3
re{ mo0 a/n SCADRCA| FLACI~(DEA) TZIT DOmta 100CA € xxuxc
re| moo an weed)
76§ ®OO 610 a/n{sOT E Y Pyte lavert dEA 16emA
rel moo el a/mives bEA Syts segate dIA 16e2A z oS
13ecas Oarry Flag is € 1€ deetinatios ls 0.)
r bEA Oneigned suitiply by (BEA)| N1 X wawux
re »eA Signed mitiply by (BEA) 0 X wu
e - Y Onsigned divide by (BEA) 0 © AN
re L 2- Y Sigaed divide by ll 112 9 v
n ,m.mu NAGE=(wvgA) TEST mu 10eca € xxvic
n
” vea Iavert vEA . 16e2A
n veA e weA 16egA x XX
Bece “otlnth-. is O.l
n Oneigned multiply by (vea) | 124 X wwx
44 vn : Stqned multiply by (wEA) 144 z wwuux
[24 vo Onsignad divide by (weA) 138 9 wuww
n wEA Siqued divide by In 177 v W
re Cleas earry 2 <
” Set earry flog 3 8
A Clear Laterrwpe flag 2 [
”» Sat iaterrupt llag 3 3
rc Clear direction flag] <
(] Set direccion flag 2 c
n A (vea)=(dea)ed 15eCA X oo
(4] L= Y (sea)e(dea)-2 13¢8a X XX
te d
s
1 ¢ 3
143
s
re .
ry e (vea)e(vea)ot 13+ea X oox
4 weA (weA)e(wea)-t 13eca X IXX
” 12 Indirect BEAR ¢aid) 13eea
” A Indizeet FAR call 1%egA
re - Y Indirect BTAR jump TJeln
” <A Indizoct PAR jump 16eta
144 (Y fash (ZA) ento stack 16eea
14 (net wasd) .

5028707

D-12 Assembler Instruction Set

Table D-4 Instruction Set in Alphabetic Order of Instruction Mnemonic

Tosiree~] Sperand =Y ~—~—1:7 Yecks | Flage
tion Orgeaisstion oo17s
AMA ASC11 adjves for odd L} ¢ ouxux
AD ASCI: adiwes fae divide 0001010 [¥’ xvxy
A ABC13 adives fav meitiply 0000108 (2] ® xxuxe
gy) ASC1: adjvet far swdtract e ¥ WX
ane AL.Dtata | (AL)e(AL)*bOS taeCy . 2 oxx
ape AX, winta)-(Ax)'-tuoo 4 3z xoxxx
ADC bEABeta{ (DEA nop 010 W/mf 37een | 2 TOOKX
ApC weA, wvonta{ (weA . D 010 R/N LlemA X XXEXXZ
= seAdBstal (BEA nOD 010 A/M| j7e€a | 3 XXXXX
aAse weA . bonte{ (wEA)e(wer)oZar(POntajocy 8 010 R/n{ Viemn 2 ouxx
aoc WA, aC8 BEA) (DA} o (DALS) oY nO® AZGA/N | 18egA(3) X XXX
ADC weA, 2m wEA)e(weA)e (vagh) ecr P AZGR/M | 18eRA()) X XXXXX
Asc 226, 2EA BAEG)e (BATO) ¢ (DEA)oCP mO® BECA/N | Pe€Al))y 3 XIOX
ADC 250, vEA vazs o{wer) oy nOD BZCA/N | PegA(I)f X xIXXX
A00 AL.DOnca AL)=(AL)*bcnta Pt - -
Ao AX,wvtnta AX)=(AX) Swon ta 4 X XXXXX
aoo BEA, 283 (DEA)=(DEA) ¢ (DAET) nad 2paa/n | Jseea(d) 3 XOOX
ap0 wikA, 2c3 wEA)=(weA) e (wvazg) 00 2ECa/W | 1serAld) X XOOX
ApO 220,%2A (sazg)=(dazcie(dea) no0 3zGa/n | veLall); x XOOKX
ADO AK0,.wEA .nw:-(nz)o(vu) 0D 2ECR/R | 9egA(3j| X XXX
ADo SeAdEnts| (BEA)=(DZA)eDRC KOS 000 R/M{ 17e€A | X XXX
ADD vEA, vnta! (wEh)=(wEr)owtass % 000 /M 178N 3 Ixxxx
ADO BEA DGR ta| (NEA)=(DEA)sORta nOB 000 R/M| 17e€A x XoxxX
Avo wEA dOnta| PFLACSs(wEA)ek3t(DOnta) ROD 000 /M| L7egA X oKX
AND ALDOata | (AL)e(AL) AND Blmta ’ [} € Xxuxe
AnD AX,vinta | (AX)=(AX) AND wonea 4 ¢ xxxuxc
are BEA, 220 BEA)=(BEA) AND (daTn) ROD AZSA/N | 16e€A()) € XXUNC
AND wiA, 28 wEAje{wea) ANO (waza) "0 RECR/W | 18e&A()) € XXUXC
22,3 EA (baggje(daza) Amo (BEA) »OO AZCR/N | Pe€A(I)] € XxVAS

anp ‘' | ams.ven {varg)e(wvazs) Jn0 (wea) noo azga/m | 9eca(d)| € xxUZC
AND BEADOutal (DEA)=(DEA) AND BOeta no® 100 R/N| 17e€A € axuxc
An® veA,vonta| (weA)o(wEA) AND wonts M0 100 W/n| 17eeA € xIVxC
CaLL otlisha Direct FAR eall b

CALL w018 Direet NTAR cald 133

ALt [33 indirect BTAR eald noo 010 a/m| 13e8A

caALL -3 Indizect FAR esll LX) n| eta

o (AX)etut(AL) 3

ae Clear carry flag 2 <
[+ CQleer direction flag 2 [

Ll Clear latervups flag 3 <

O Comp lament carcy flag) X
e AL.>Deta | FLaAC3=(aL) Onr (BDaca) e X XX
o AX,v0ata | FLAGS~(AX) OW {wOsta 4 X xxxx
oxe seadam | rLacs-(bea) Ow (vaza) 9 BTRA/M | VoA Pt -11
ow weA,vazd | Fladse(vea) Ow {wass, nOD RECR/W | YexA X oo
o BAZG.DEA | FLAGSe(DAZG) OrP {DRA] ®Q0 AZGA/W | Ye@A X XXX
ow wACd,veA | TLACSe(wits) O@ (weA) n0 axca/n | Yeca X XXX
ow BEA DGR | FLACE(DEA) O SDnta w0 111 A/K | 10eCA T oxxx
ow BEA.DORLa| FLACSS(DEA) O® dOata moo 113 R/nf 10eea | 3 xxXX
o v, viata| FLAGI=(vEA) O® vieta mo0 111 /R | 10ecA X oo
ow weAbData| FLACSe(wA) O® Exe{bOata) no0 111 a/n| 10sen T XXX
onrss Compare dyte otzing a2 3 oo

(9023/vep)
e Congase verd serismg 3 | 3 xxXxxx
(9023/re9)

€ C3 segmamt override b}

o {DX)esign{ax)]

LYY Dreimel adjust for AD®) F I - - -

Assembler Instruction Set D-13

Table D-4 Instruction Set in Alphabetic Order of Instruction Mnemonic

(continued)
Tastsua-] Operaad Samary 3 Remacy Cleeia RO
L{es (-] aatsacfon oolTIIANC
SAS Seeinel sdjues for 2y e ¢ xxxxx
subtraee
o Ax . (Ax)e(Ax) =L . 3 X xxx
dee o d (32)e(30)-} > 3 X oxx
oec a (Ex)e(sx)el 48 2 z
‘ot =3 (CX)=(Cx)=t %Y 2 2 o
osg ot (DL)=(nt)=1 L' 4 3 X xxxx
[o (ox)e(ox)=) @ 3 2 xxxx
oec A (»ea)e(vEr)-1 7T{ »0O 001 A/n| 1Seea X xoxxx
oxe veA {vea)=(wea) -} r7| w00 00 /M| 1Seea - -~ 3
oeC 1 L4 (SP)e(sP)-1 aC 3 X xxx
o 2 (31)eis2)=L 48 3 X o
[134 1 Y Oncleued divide by (DEA) Pé{ 0D 110 &/n{ %0 g vvame
alv w&A Unsiqnad divide dy (ver) r7{ ®ma0 110 a/n{ 138 L} Ve
1] D8 seyment everride b3 3
2 1) LS segmsat evercide 36 32
tse ° N ‘Escape (o esternsl device (08(MOD e 2/n| Sema
ne : Rale re 3
1313 4 »eA Siqned divide by (dea) rPé{ moo 111 =/m{ 113 9 uvum
101y weA Siqned divide dy (ver) 7| %00 11} W/m| 177 v | ead
It BEA Slqaed wuitiply by (d2A) |(re| mo0 101 R/m| %0 T Wz
Nt vea llq-d ssitiply by (wea) 7] moD 101 W/n| 144 X VAR
1. M. DX Syte laput frem port =
(X} e am aL s
1. AL.DPoct nput frem mn AL ze 10
im AR, R Word {apwt (ram poct L]
(BX) ts Azm AX [
in AX, vhort Input from whert o AX 12] 10
1 AX (AxJe(ax)ol 40 3 X XX
1eC 4 (32)=(nr)ot (1} 3 X oxxx
g = (ax)w(nx)el 43 3 LOX
e [~ (Cxje(Cx)oL 42 3 X Xxxx
b{ ot (Dl)=(DL)0d a7 3 X X
1 o (ox)e{mx)el 42 3 b XXX
1w R12Y (dea)e(vea)e} re X X
e weA (vea)e(wEa)en ry X xxxx
twe s» (3p)a(sp)or e X xxxx
1= 81 (ST)=(s1)et 46 X XX
e »outa Typed laterrupe cD (-4
xrr 3 Trpe 3 (sterrupe =3 cc
Iatorrvpe §¢ overflow 13 o3
ll.-l- esecvtion of the iastrustion tekes 4 clochs, 93.)
1asY acven (rom l-unupc s
JA »01l8» Jusp it
JAs volse Jump {¢ 0..-' or equal
Je »0L3P Jusp Lf Selew
Jus 0189 Jump AL delow or equel
x» (Same ae J8, Jmt.)
Jx3 »0139 | Jwmp it ()0
I (Same oo J3.)
J0 0t Junp Lif grester
Jas »ols» Junp {0 qrester or oqual
Jo 20130 Jump Af lese
JuR 20L8P Jusp L€ lese or oqual
e 0L39 Sleest PRAR Jump ?
o ~olsp Picest SRR Jump ?
. 4 -ols?, A
st Oleect FAR jump ?
»p A Indicoct PAR Jump "o 101 R/n| 1seCA
Swe .8 fadivare NPAD ‘emn w108 s/ni Jeua

5028707

D-14

Assembler Instruction Set

Table D-4 Instruction Set in Alphabetic Order of Instruction Mnemonic

(continued)
Asiiue| Cpecand Temarty [Co] Remery clesia R
sien lgl_ anivstion |_001TIIANC

JIma (Same ae 238.)

.) (Same so JAR.)

Jusk (3000 a® JA.)

e (3ame a0 JiX.)

Jucs (Same ae JL.)

L 3 {Same a0 J68.)

Jug {Same as J6.)

J»0 20182 | Jump If ae evecflew n 186 or &

Jup (Saae a0 JFO.)

Jus 0180 Junp 18 no stqn bid 16 or 4

Jus L0139 Jump 1f as sere bi] 16 oc ¢

9 »013P Jump 4L everflew 7 18 or &

Jre »0l39 Junp AL parity evea n 16 or ¢

Jvo »0189 Jump 4L pacity odd » 16 or 4

8 0159 Jump AL & . 6 er ¢

Js »0189P Jump Lf servre 74 16 or &

LANP (2t)=(PLACS) “ ”w

Los R0, 2A 561880 (wehed) s (weA) €3 { moo agoa/n | 16een

LA 388, 2A (2es8)eetloctive addrecs 80 moC BEGA/N | 2eCA(2)

Les ass, ZA EBaLGa{wEaed) s (veEr) Ce| moo agcas/n | 18ega

wom 1eed dyte strimg AC >

H (9e13/rep)
. Loose 1oed ward strimg [AD
- (9e13/cop)

LOCK Ses lach peeflis 0

wor 0189 Lecp (CX) tises = 17 e 3

Loore (Same ow WOOPS.)

Loorwe {3ame as WOPWL.) N

worvs Loep (CX) times while 20

»0189 nog sere 1%2er 8

wors L0189 Loop (CX) tiass while sece{sl 18er ¢

nov Baddr. AL{ (daddr)e(ar) A2 10

nov widd e, AX Yol A3 10

nov AN.DCata AR)=b0n L g .

nov AL, DAdar AL)=(DAder) A0 10

v Al DOnta AL)=b0n =0 4

nov AX,waddr| . (AX)e(vaddz) AL 10

nov AX,woatal (AX)ewOata 8 4

oV N . p0aca) =btata 134 4

nov L.2nta L)=stata 23 4

v P, wints 3P)nwtata 0 4

nov X, w0n 3X)evleta (1] e

nov CH.DOaca Ce) saata (3 e

nov Cl.atnta CL)=btnta 31 4

nov CX. wiata CX)ewOnta 9 4

nov on.20nta Dut)=bOnta 2o .

nov ot,vtmea{ (DI)ewOnta ar 4

nov Dt.bfnctal (DL)=aOata [2] 4

v SX.wvinta| (OX)ewOnta aA 4

novw BEADORCA (DEA)<(DOata) CS | 0D 000 A/N | 10eCA

nov weA,viata {(vEA)e{wvata) 7 | mo0 000 w/m | 10eEA

nov BEADACE] (DEA)e(d® 88 | moo azsa/N | 9eA(3)

oV wEA, vass weh Jo{vasa) 89 { 700 azCa/w | Seeall)

now vor, SR veA)=(88) oC { moo o3 a/n | veea(2)

v BARS,DEA »agn)e(dea) 8a | moe seca/m | 8ecalld)

nov wetd,wtd{ (vams)el{wer) 88 | noo agCA/w | 8egA(3)

v Si,wvonea 51)evonca [e

nov 39,w0ata SR)=winta i

v SR, wveA sa)e(wer) 8g | M0 osa &/n | SetA(l)

Assembler Instruction Set D-15

Table D-4 Instruction Set in Alphabetic Order of Instruction Mnemonic

(continued)
lascsee= ;v.‘]’ Bomacy Avmecy Uecka | Megs
—tios T (-] anisagion 001 TIIANC
novs (Vee moVEs, MOVEVY.)
nOvEs Reve Yyte strinmg 'Yy 18
. 'onqu)
e nove werd otrisg AS 1
’ou/-ni

L3 R -9 Onsaigeed snitiply by (BZa) (re{ m00 100 WN{ N [Pyl g
. weA Onelgned msitiply by (waa)|r7| moo 100 /n| 126 x wax
ned 1 T-3 Syte segacs BEA ref ma® 0l1 /K| leecn X X8
(Petes Carry Mag ia € AL dectination s 8.)
(1] veA] uru wth r7{ m00 013 B/n{ leecn z xxxs
(Bete: Carry Flag is € i€ destinacion Lo 0.)
»o® (Same as 3CH8 o AX)
»o? »EA Pyte iavert BEA 74| mOD 010 W/R|{ 16e€A
»oT w&A levert vEA 77| 00 010 /M| l6emA
ot Al.bOata AL)=(AL) OR dOata oc 4 ¢ xanc
os AX,wtnta| (AX)=(AX) OR wOatia oo 3 € xuxe
oa SEA.DDats (BEA)e(dEA) OR BOmts 30{ W00 001 R/M|{ L7e2A € xxux
o wEA,vata (vEr)e(weA) OB vOnea S1] mOO 001 /M| 17ecA ¢ xxuze
on “EA, 238 (azA)e(dea) On (waEa) 08| noO ARcA/N | 16e0A(3] € XxUXC
oa wEA, 288 wolle(ver) or (waza) 09(w00 sgaa/m | 1éean(d{ € xuxc
oR Rpd.»EA (»azgi=(vazs) 08 (vEA) OA| WOD REZQR/N exa() | ¢ e
[283, vEA (wazg)=(veass) or (wea) 08| no® axca/M | seea(d)| € oo
our 0K, AL Syte output (AL) to =

poet (DX) []
our BX, AX werd my-c. {Ax) = -4

. poce (DX]

ovr BPOrt.AL|{ Outpwt (AL) ws Wport -3 10
ovr wioet . AX | Outpet (AX) te whers z? 10
ror ax Pop staek te AX s []
roe = POPp Naek 9 BX 3]
rop 11 Pop tack to B o []
roe (-3 Pap Raek te CX 39 [}
ror ot Pop stack to Of r]
roe o8 POPp stack to DS 18 4]
0P Bx Pop staek to OX A 1]
ror A Pop ctack te KA 87| mo0 000 a/ni 17¢CA
[.14 1 - J Pop staek t» &8 07)
roe st Pop stack s 3T $13 [
1o ld £ 2 4 Pop Stack to 3P 2 8
ro? 53 Pop stack te 53 1% L)
rore Pop stack e rLASS * [ARERRRASR
Pusa ax Mok (AX) eats stack 0 11
russ 1 14 Pash (37) eate stack 33 11
rusx [ek (3X) ents scack t}] 1
russ cs Mok (C3) eats stack 0% 1
russ = Ped (CX) ents scaex £3% 11
”nEs ot Puesh (D1) eats stack 37 3%
russ o8 Push (DS) ente estach 18 10
rsa oxX Peeh (DX) eats sctaek 33 1
russ -3 Pueh (D) ents stact 77| w0 110 &/R| l6egA
rusa 5 ek (25) ente stack 06 190
nus [2] Pusth (31) ence staek 36 13
rsn 39 Mook (37) onte stask 34 13 X
ruse - 8 Paeh (53) enco staem 36 139 1z xox
sy Pash NUGE ente stach C 10
. DEAL PRtats BEA left Warw 00| moD 010 &/%

eagry | AR 13e0a x z
2, wiA,d Mntacte vl lefd thre ol | e 010 /R

cavee § hio 1800 k L 4

5028707

D-16 Assembler Instruction Set

Table D-4 Instruction Set in Alphabetic Order of Instruction Mnemonic

(continued)
Tascine=] Cpetand Tamaty [; [~ 3 ive
tion =] saisstion OO TIIAIC
xR AL CL Mntats DEA right e B2{ moe 613 A/m
earry (CL) Wits . e4/min] X
aca i, tate WEA right thre D3| »COS 011 R/N{ 26e2A
carsy {(CL) dBite «a/eing X 3
scs BEALI Rotate BEA rigds thre 0| mo® 011 2/:m
esrry | WL 13ma b 3 z
aca vEA.3 Aatate wvEA right e pi| »noo 011 A/N
easry 1 B 15e80 z b 4
(-4 {Same ee 2EPT.)
e (Same ae 2grs.
t AND (3P)el 3
(13,3 {3ame as 22PWS.)
azrws Sepast while (CX)jO r
Ang (27)v0 2
azrs Bepeat waile (CX)g0
as? wentea PAR zeturn, AD®
data %o 238 3P 17
ax? PAR rotwem is
iy NCAR retura]
asy woata NEAR roturnr (3P)=(5P)e
(wvonta) 13
0L BEA.CL Retate BEA left N8 000 R/M{ 20ecA
(cL) wits saroie] x x
E 1% wEA. &L Metate wEA lefe nOD 000 /N | 0eCA
{cL) wits ea/oit| X b 3
0L wea.t Satate BEA left 1 Wit %00 000 A/m | 1SeCA X z
200 wEh.d Retate wCA left 1 Bis nO0 000 A/N| 1SeCA x
- BEA, CL Metato BEA righs . N9 001 &/N | 30eCn
(CL) dits sa/ity X z
o8 vEA.CL .| Metate vEA right noS 001 A/M | 30eEA
(L) wirs . sa/mie] x 2
aoR SEA.L fowate BEA right 1 Wit nO0 001 B/X | 3SegA x x
aos wir,d Motate vEA right 1 Bt nOO 001 A/M | 13egA x z
s (rLacs)e(an) 4 Sa22ARARR
AL (Same as SNL.
san DEA.CL Saife siqned WEA noo 111 2/n | 2002
right (CL) wits safoie] X XUXX
saR wer, €L LLL slqned veA ®o0 1131 a/m | Joeca
cighe (CL) wits sd/oin] X XX
AR BEA,L it signed dTA ®oO 113 a/m
right 1 Bt 1Secr X XXUXX
SAR wiA.l | shifs siqued wea "0 111 MR
right 1 it 13082 X XXUXX
F11] Al.DCata AL)e(AL}~D0n ta-CP 4 X X
88 At,wOata AX) @ (AX) ~wOn ta~CP . X R
388 SEA.BDeta (DEA)o(DEA)~bna-CP N0 011 B/K | 17ega | X IRRX
338 BEADORCA (DEA)=(DEA)-DOn ta~<P a0 011 A/M | 17eCA X XXXXX
s WeA,wOata CA)= {vEL) ~win ta~CP . »00 011 A/N | 17e€A X oo
38 veA.bOnta (vEr)n(wEA)-Rxe(DOsta)-CP "0 013 /M § LT7e0A X XXX
588 BEA, ARD BEA) a(BEA) = (DREC)=CP no0 2sC/N | 16eca(3] X XX
88 weA. A weA)e(wer %) -cr noe szor/m | 16eea(ll 2 xoxm
s88 224,54 »agg)=(® {»EA) =y %00 SECA/R | 9ezall) | 2 TxXx
= L0, weA vagt)o(vard)e{vea})-cP noD ATCR/M | veraAl3) § X XOXX
scaAsS Scam Dyte string 13 R - - -
{9e13/vep!
CASE Ssaa word etrimg [R]
(9013/7epd
oL VA CL MR BEA lofy nOD 100 R/N | 20e8A
- () Bite WMLy X b

Assembler Instruction Set D-17

Table D-4 Instruction Set in Alphabetic Order of Instruction Mnemonic

(continued)
Taesrwe~] Operand 17 Ov Reery Cle<ia T
tiea . Ot jOrqanisation (. 1hek® .4

snt vEA, O ife vEA letls D3| NOD 100 /M| 30eCA

(L) vies /i) x x
sui, Al SaifL dEa ety) Bt 00| o0 100 R/N{ 13exa b 4 X
L. weA.d Salfe vEa left] MM DL{ mo0 100 /Wi 13+n b § X
sne BEA, UL DEA righe 02| m0O 101 /M| 20+CA

CL) wits ~“feic) X b
sua wEA,CL ifL vEA right 03{ moD 181 a/m{ J0eza

(CL) wise “amiel x b 3
sSusm sea.l Shife BCA right 1 it Do| moo 101 R/m{ 13eca X x
sua wEA, L Shift vEA righe 1 Wit 1| mo0 101 Wn| 13emn z x
3. 38 segmeat everride 36 2
3.3 Set earry flag r 2]
sTo Set direction llag rn 3]
sTL Set iaterregs flag rs 2
STOSS Stace byte strimg AL 11

(ye10/709)
sTON Stere werd strinmg AR 1 []
(9010/rep)

sus AL.DOata | (AL)e(AL)-BOata K 4 X XXX
sve AX, wOe t» AX) = ({AX) ~wOn ta 20 4 X xxxxx
sus SEA . DOatal (BEA)e(DEA)-BORta 30{ w00 101 /M| L17ema X | oo
sve BEA.DOatal (DEA)e(DEL)-DORta 83| moo 101 A/M{ 17eca X XooXX
sus weA. voatal (wEA)e(ver)-vints 81| w0 101 Wn| 17eca X XX
sua wEA DRt (VEA)e(wEh)-Ext(dOuta) 83(900 101 /M| 17egA X XXXEX
sus BEA, 283 DEAJ=(DTA)= (DaLa) 28{ 00 RECA/R | 16eRA(3] X xOOXX
sus wEA, 220 wEA)e (wer) - (vazc) 29{ »o00 mRzCa/n | 16eca(d] X xXXXX
us [T BTN (vazdie(daza)-(vea) 2a| oo azo/m | Yeea(d) | 2 xoxx
sus 203, veA (vazg)=(vagsc)-(wea) 28| »00 2axca/N | %egA(l) | X XX
TTs T AL,SOeta | PLAGCE~(AL) TEST (Data) AS . X xxuxc
TRSY? AX,pOnts | FLACSe(AX) TZ3T (vOata) 3] 4 X XU
25?7 BCADOata(FLACSe(DEA) TEET dOata re| w00 000 W/n | l0een € xxuxc
TZ3T wEA, w08 ta| PLACS=(wEA) TEST vOata 77| #00 000 &/n| 10+ea ¢ xxuxc
25T SEA.AZG | FLAGSe(DEZA) TEST (Bara) 84| w0 azca/m | veea(l) | € xXUXC
res? weA,wABS | TLACS=(vEA) TEZST (warg) 83| noO azCR/N | 9eea(l){ ¢ XxURC
WALTX Wit for TZST sigmal " JoualTx .
xCNa AX, A% 4 % 3
b= AX, 39 Zxchange (AX), (B32) 3 3
Ce AX, B¢ Cxchamge (AX), (3X) 3 3
2CNG aX, X tachamge (AXx), (cx) ”n 3
XCna AX, 08 txchamge (AX), (DI) 7 3
xCNa AX, DX xchamge (Ax), (Ox) 92 3
xCNa AX,38 txchamge (AX), (31) 96 3
xCHa . tachamye (AX), (37) t2} 3
ICHa BAZGE.DEA | Ezxchamge BRES., BEA 06| moo zzer/N | 17ecals
N3 wARd,weh 87| %00 2ZGR/N | 17eeA(4
ILAT TASLE o1 11
08 AL.DOata | (AL 34 4 ¢ xxuxc
x08 AX,wonta | {AX)e(AX) 208 vOata 33 4 ¢ xnog
x0R VEA DOatal (DEA)Je(BCA) XOR DOnca 80| %00 110 Wn | 17eca ¢ xuxc
x08 wveA ,voatal (veA)e(wer) XOR wOata B1{ n00 110 R/N| 17egA € e
208 BEA, 280 o(bga) xo8 (varg) 30| w00 azoa/m | 16eca(lf € xxuxC
08 wEA, 220 weA)=(wCA) XOR (wAzs) 31| moo xEca/m | 16eza(l] € XU
x0R R2G.DEA bamd)e(daza) x08 (DEA) 31| mo0 2zoa/m | 9eca(l) | C XURC
208 ARG, WCA (vazg)e(waga) x08 (vea) 33| moo agca/n | Yera(l) | € OO

5028707

N

Appendix E

Assembler Reserved Words for |

Assembler

The words reserved for use by the Assembly language are

listed below.

A

AAA
AAD
AAM
AAS
ABS
ADC
ADD
AH

AL
AND
ARPL
ASSUME
AT

AX

BH

BL
BOUND
BP

BX
BYTE
CALL
cBW
CH

cL

CLe
CLD
cLl
CLTS
cmc
cmp
CMPS
CMPSB
CMPSW
COMMON
CS
CWD
CX
DAA

5028707

DAS
DB

DD
DEC
DH

DI

oIV

oL

DS
DuP
Dw
DWORD
DX
EJECT
END
ENDP
ENDS
ENTER
EQ
EQu
ES
ESC
EVEN
EXTRN
FAC
FALC
FAR
GE
GEN
GENONLY
GROUP
6T
HIGH
HLT
iDIv
IMUL
IN

INC
INCLUDE

INT
INTO
IRET
JA
JAE
JB
JBE
JC
JCXz
JE
JGE
JL
JLE
Jmp
JNA
JNAE
JNB
JNBE
JNC
JNE
JNG
JNGE
JNLE
JNO
JNP
JNS
JNZ
Jo
JP
JPE
JPO
JS
JZ
LABEL
LAHF
LAR
LDS
LE
LEA

LEAVE
LENGTH
LES
LGDT
Lot
LisT
LLDT
LMSW
LOCK
LODS
LODSB
LODSW
Loop
LOOPE
LOOPNE
LOOPNZ
Lo0PZ
Low
LSL

LT
MASK
MEMORY
MOD
MOV
MOVS
MovsB
MOVSW
MUL
NAME
NE
NEAR
NEG

NIL
NOGEN
NOLIST
NOP
NOPAGING
NOT
NOTHING

E-2

Assembler Reserved Words for Assembler

NOXREF
OFFSET
OR

ORG
out
PAGE
PAGELENGTH
PAGEWIDTH
PAGING
PARA
POP
POPA
POPF
PROC
PTR
PUBLIC
PURGE
PUSH
PUSHA
PUSHF
RCL
RCR
RECORD
REP
REPE
REPNE
REPNZ
REPZ
RESTORE
RET
ROL
ROR
SAHF
SAL
SAR
SAVE
SBB .
SCAS
SCASB
SCASW
SEG
SEGMENT
SGDT
SHL
SHOR
SHR

Sl

SIoT
SIZE

SLoT
SMsSwW
sp

SS
STACK
STC
STD
STl
ST0S
ST0SB
STOSW
STR
SuB
TEST
THIS
TITLE
TYPE
VERR
VERW
WAIT
WAITX
WIDTH
WORD
XCHG
XLAT
XLATB
XOR

77SEG

—

Appendix F F-1

Assembly Control Directive

The Unisys Assembly language contains facilities to
control the format of the assembly listing and to sequence
the reading of “included” source files. These facilities are
invoked by assembly control directives. They must occur
on one or more separate lines within the source, and
cannot be intermixed on the same line as other source code.

An assembly control line must begin with the character
“$”. Such a line may contain one or more controls,
separated by spaces. For example:

$TITLE(Parse Table Generator) PAGEWIDTH(132) EJECT

Description of Directives

Table F-1 lists the meanings of individual directives.

Table F-1 Assembly Control Directives

EJECT The control line containing EJECT begins a new page.

GEN All macro calls and macro expansion, including
intermediate levels of expansion, appearin the listing.

NOGEN Only macro calls, not expansions, are listed.
However, if an expansion contains an error, it is
listed.

GENONLY Only the final results of macro expansion, and not

intermediate expansions or calls, are listed. This is
the default mode.

INCLUDE (file) Subsequent source lines are read from the
specified file until the end of the file is reached.
At the end of the included file, source input
resumes in the original file just after the INCLUDE

control line.
LIST Subsequent source lines appear in the listing.
NOLIST Subsequent source lines do not appear in the listing.

5028707

F-2 Assembly Control Directive

Table F-1 Assembly Control Directives (continued)

PAGELENGTH (n) Pages of the listing are formatted n lines long.
PAGEWIDTH (n) Lines of the listing are formatted a maximum of n
characters wide.
PAGING The listing is separated into numbered pages. This
is the default. N
NOPAGING The listing is continuous, with no page breaks
inserted.
SAVE The setting of the LIST/NOLIST flag and the

GEN/NOGEN/GENONLY flag is stacked, up to a
maximum nesting of 8.

RESTORE The last SAVEd flags are restored.
TITLE (text) The text is printed as a heading on subsequent
listing pages. The default title is the null string.

The text must be parenthetically balanced. (See
section 10 for details.)

Using a Printer With Assembly Listings

The listing produced by the Assembler is paginated with
titles and form numbers. Since the entire page image is
formatted in such a listing, you should print it with an
APPEND or COPY to [Lpt] rather than with the
Executive’s PRINT command.

(You can use the PRINT command to print such a listing,
but only by overriding many of its default values. These
were chosen to make the printing of text files created with
the Editor most convenient.)

Appendix G G-1

Sample Assembler Modules

This section contains three complete sample Assembler
modules. The first, shown in figure G-1, is a source
module of the Assembler itself. It is the module that
translates the Assembler’s internal error numbers into
textual error messages.

The second module, shown in figure G-2, is a skeleton of a
standalone Assembler main program and illustrates how
the run time stack is allocated in an Assembler module.
This example follows a bare minimum of the standard
system conventions and does not link properly to standard
object module procedures.

The third module, shown in figure G-3, is an Assembler
main program compatible with Unisys conventions and
linkable with standard object module procedures, as
described in section 11, Accessing Standard Services from
Assembly Code.

5028707

G-2 Sample Assembler Modules

Figure G-1 Error Message Module Program

Error message module for the assembler

i
i
; Suitable for loading into an overlay in order to save
space in the resident

PUBLIC pAscizFromErc
pAsciz = pAscizFromErc(erc, ofUpArrow)

Given an error code in DS:[BP+8] (lst arg.).
Returns ES:BX = pointer to null-terminated ASCII string.
Stores flag indicating whether upArrow is to accompany

rror message
in location pointed to by DS:[BP+6] (2nd arg.).

Se we ms (D Se Se we we e we e

Define the segments we are going to use here. Do this here
in order to

; get them in the desired physical order.

’

; The storage layout consists of the procedure followed by a
packed group

;s of ASCII strings, followed by two parallel arrays.

asmErr SEGMENT WORD PUBLIC 'CODE' ; Segment for code of
pAscizFromErc
asmErr ENDS

asmErl SEGMENT WORD PUBLIC 'ERRORS' ; Segment for ASCII
text of messages
asmErl ENDS

asmEr2 SEGMENT WORD PUBLIC 'ERRORS' ; Offsets of text,
indexed by erc

rgRaRgCh LABEL WORD

asmEr2 ENDS

asmEr3 SEGMENT WORD PUBLIC 'ERRORS' ; Array of upArrow
flags, indexed by erc

rgfUpArrow LABEL BYTE

asmEr3 ENDS

; Address everything in this module thru CS (which points to
base of ErrGroup)
ErrGroup GROUP asmErr, asmErl, asmEr2, asmE '}

asmErr SEGMENT
ASSUME CS:ErxGroup ; Tell assembler wheye
CS will point

Sample Assembler Modules G-3

Figure G-1 Error Message Module Program (continued)

pAscizFromErxc PROC FAR ; Procedure enty point

PUSH BP

MOV BP, SP ; Save caller's BP, set.
up ours

MOV BX, [BP+8] ; BX = erc

CMP BX, ercMax ; Check index

JB indexOk

MOV BX, ercMax - 1 ; index too large, use
internal error msg
indexOk:

MOV AL, rgfUpArrow(BX] ; Fetch upArrow flag
for this erc

MOV DI, [BP+6] ; Fetch caller's
DS-relative pointer

MOV (DI}, AL ; Store it

SHL BX, 1 ; BX = erc*2 to index
word array

MOV BX, rgRaRgch([BX] ; Fetch CS relative
offset to msg text

MOV AX, CS

MOV ES, AX ; Return segment of
text in ES

POP BP

RET 4

pAscizFromErc ENDP
asmErr ENDS

asmErl SEGMENT

; This macro generates the text and the two arrays
$*DEFINE (Err (fUpArrow, erc, rgch))

($IF (%erc GT ercMax) THEN (ercMax EQU %erc) FI

orgch EQU $ % 'Remember where string staris’
DB ‘srgch’',0 %'The null terminated ASCII
string’
asmEr2 SEGMENT
ORG %erc*2

DW ErrGroup:orgch %$'The errGroup(CS) relative
offset of ASCII text'
asmExr2 ENDS
asmEr3 SEGMENT
ORG %erc
DB $ fUpArrow % 'The upArrow fliag*
asmEr3 ENDS

)

5028707

G-4 Sample Assembler Modules

Figure G-1 Error Message Module Program (continued)

; Initialize text and arrays
ercMax EQU 0

%Err(1,00,Invalid numeric constant)

$Err(1,01,Syntax error)

$Err(0,02,Expression too complex)

$Err(0,03,Internal error #1)

$Err(0,04,Invalid arithmetic operation for relocatable or
external expression)

%Err(1,05,Invalid use of register in expression)
$Err(0,06,Invalid use of PTR, must operate upon address
expression)

$Err(1,07,Undefined symbol)

%Err(0,08,Forward reference to EQU''ed register not
permitted)

$Err(0,09,SIZE and LENGTH must operate upon data symbol)
%Err(1,10,Invalid argument to ASSUME, must not be forward
referénce)

$Err(0,11,PROC/ENDP nesting too deep)
$Err(0,12,Mismatched PROC/ENDP)

$Err(0,13,Invalid origin for absolute segment)
$Err(0,14,Invalid redefinition of symbol)
$Err(0,15,Mismatched SEGMENT/ENDS)

$Err(0,16,Expression must be absolute)

$Exrr(0,17,Value too large for field)

RErr(1,18,Strings > 2 characters allowed only in DB)
$Err(0,19,Invalid SEGMENT/GROUP prefix)

$Err(0,20,Label phase error, Pass 2 value differs from Pass
1 value)

$Err(0,21,No ASSUME CS: in effect, NEAR label cannot be
defined)

%Err(0,22,Invalid GROUP member, must be a SEGMENT name)
$Err(0,23,Limit of 255 EXTRN symbols per object module
exceeded)

$Err(0,24,Duplicate declaration for symbol)

$Err(1,25,Not an address expression)

$Err(0,26,Argument to END must be a NEAR/FAR label defined
in this module)

$Err(0,27,Invalid argument to ORG, not absolute or offsct)
$Err(0,28,Too many GROUPs)

$Err(0,29,Too many SEGMENTs)

$Err(0,30,Too many GROUP members)

$Err(0,31,SEGMENT nesting too deep)

$Err(0,32,Invalid destination operand)

$Err(0,34,0perand must be a BYTE, WORD v: DWORD)

$Err(0,35,0perands not reachable thru seymen! registers)
$Err(0,36,Too little space reserved due tu friward
reference)

$Err(0,37,Invalid combination of index and base registers)
$Err(0,38,Invalid types of operands for this instruction)

Sample Assembler Modules G-b

Figure G-1 Error Message Module Program (continued)

$Err(0,39,May not move immediate value to segment register)
$Err(0,40,Invalid shift count)

$Err(0,41,RET outside of PROC/ENDP)

$Err(0,42,0perand must be NEAR or FAR)

$Err(0,43,NEAR jump to different ASSUME CS:)
$Err(0,44,Conditional jump to FAR label)

$Err(0,45,SHORT jump to farther away than 128 bytes)
$Err¢0,46,Segment size exceeds 64K bytes)

$Err(0,47,No END statment or open SEGMENT/ENDS PROC/ENDP)
$Err(1,48,Missing right ''%1)'")

$Err(1,49,Invalid character following the Metacharacter)
$Err(0,50,Invalid control)

$Err(0,51,Undefined macro or control)

$Err(1,52,Invalid call pattern)

- %Err(1,53,Invalid pattern argument to MATCH)
$Err(1,54,Invalid LOCAL symbol definition)
$Err(0,55,Macro or INCLUDE nesting level too deep)
$Err(0,56,Invalid PAGEWIDTH or PAGELENGTH)
$Err(0,57,SAVE/RESTORE nesting level too deep)
$Err(0,58,RESTORE without matching SAVE)
$Err(0,59,Attempt to redefine builtin function)
%Err(0,60,Macro attempts to redefine itself)
$Err(0,61, Instruction always uses ES:, may not be
overridden)
$Err(0,62,May not index NEAR or FAR expression)
$Err(0,63,Attempt to divide or MOD by 0)
$Err(0,64,Two memory operands are illegal)
$Err(1,65,DUP factor must be positive integer and not
forward reference)
$Err(1,66,Symbol may not be both EXTRN and PUBLIC)
$Err(0,67,Internal Error #2)

asmErl ENDS
END

5028707

G-6 Sample Assembler Modules

Figure G-2 Standalone Main Program

Macro Assembler 8.1.1 13:39 12-0Oct-87 Page 1
1 ; Skeleton main program /
2 \
3 Main SEGMENT WORD
4 ASSUME CS: Main
5
6 Begin:
7 ; Put program here, the codc
below is hardware specific. It beeps
8 : then shuts up for
one-second intervals.
. 9
0000 BO40O 10 Loopx: MOV AL, 40h
0002 E644 11 ouT 44h, AL
0004 B9FFFF 12 MOV CX, OFFF¥Fh
; beeper on for about a second
0007 E2FE 13 LOOP $
14
0009 33CO0 15 XOR AX, AX
; faster than MOV AX, 0
000B E644 16 ouT 44h, AL
000D BYFFFF 17 MOV CX, OFFFFh
; beeper off for about a second
0010 E2FE 18 LOOP $
0012 EBEC 19 JMP Loopx
20 ; End of beeper code
21
22 Main ENDS
23

24 Stack SEGMENT STACK
; must have combine type STACK

0000 (96 25 DW 60h
DUP(?) ; BTOS requires about 60h word min. stack
0000)
26

; to run and use debugger.
27 Stack ENDS
28
29 END Begin
tell assembler where to ggart

we

31

There were no errors detected

Sample Assembler Modules G-7

Figure G-3 Unisys-Compatible Main Program
Macro Assembler 8.1.1 15:26 12-Oct-87 Page 1

1 ; Sample main program which
links with object module procedures from CTOS.lib

; This program forever
outputs to video the string "Now is the time ... "
; followed by an iteration

count.

4

5 ; Declare the 0S and object
module procedures as external, accessible by

6 ; FAR CALLs

: 7 EXTRN WriteBsRecord: FAR,

WriteByte: FAR, ErrorExit: FAR

8

9 ; First declare the code
segment so that it is loaded first. Class = Code

10 ; so that it will be
physically near code. Note that it need not be PUBLIC.

11

12 Main SEGMENT WORD
‘Code’

13 Main ENDS

14

15 ; Next declare the segment

which will contain all constant data which will be
; combined with other
segment(s) of same name and class

17 Const SEGMENT WORD
PUBLIC ‘Const’
18
0000 4E6F772069732074 19 rgchMsg DB 'Now is the time
for all good men to come to the aid of their party.'
68652074696D6520
666F7220616C6C20
676F6F64206D656E
20746F20636F6D65
20746F2074686520
616964206F662074
6865697220706172
74792E
20
0043 4300 21 cbMsg DW S1ZE rgchMsg
; count of bytes in message
2
23 Const ENDS
24

5028707

G-8 Sample Assembler Modules

Figure G-3 Unisys-Compatible Main Program (continued)

25 ; Next declare segment
containing all variable data which will be

26 ; combined with other
segment(s) of same name and class

27 Data SEGMENT WORUD

PUBLIC 'Data’
28 EXTRN BsVid: BYTE ; We

write to video using SAM's pre-opened bytestream
29

; which

is located in the data segment. It is important

30 ; to
locate this declaration within the Data SEGMENT/ENDS

31 ;
directives as shown here.

32
0000 0000 33 cloop bW 0
0002 0000 34 cbWrittenRet DW ?

35

36 Data ENDS

37

38 ; Stack segment should have

name and class of Stack to be properly

3 ; combined with other stack
modules (the sizes of which are estimated

40 ; by the compilers). Space
allocated here need only be sufficient for

41 ; procedures in this module
plus fixed overhead of AT LEAST 60h bytes
42 ; for interrupts and 0S

calls.
43 Stack SEGMENT STACK

'‘Stack' ; note especially combine type = STACK
4

0000 (96 4 DW 60h DUP (7?)
0000)
00CO 45 wStackLimit EQU THIS WORD
; Initial top-of-stack label. Because
Macro Assembler 8.1.1 15:26 12-Oct-87 Page 2
46

: of the way the linker combines stack
47

; segments, this will label the end of the
48

; combined segments.

49 Stack ENDS

50

51 Dgroup GROUP Const, Data,
Stack ;

Sample Assembler Modules G-9

Figure G-3 Unisys-Compatible Main Program (continued)

All addressing of variable/constants is
; through a group named Dgroup which is known
53

; to all object modules and must be loaded
54
; into SS and DS.
55
56 ; Begin program code
57 Main SEGMENT
58 ASSUME CS: Main
; All code is relative to start of Main

59 Begin:
0000 B8=~-~ 60 MOV AX, Dgroup
; Load Dgroup into SS and DS
0003 8EDO 61 MOV SS, AX

62 ASSUME SS: Dgroup
; Tell Assembler about new register contents

0005 BCCO00 R 63 MOV SP, OFFSET
Dgroup:wStackLimit ; Initialize stack pointer. MUST
64

;s IMMEDIATELY follow the instruction

; which loads SS
0008 BEDS 66 MOV DS, AX
; Load DS register and ...

67 ASSUME DS: Dgroup
; tell the Assembler about it

68
69 Loopx:
70 ; Call WriteBsRecord(pbsVid,
prgchMsg, cbMsg, pcbWrittenRet)
000A 1E 71 PUSH DS
; lst argument is pbsVid
000B 8D060000 E 72 LEA AX, bsVid
000F 50 73 PUSH AX
74
0010 1E 75 PUSH = DS
; 2nd argument is ptgcthg
0011 8D060000 76 LEA AX, rgchMsg
0015 50 77 PUSH AX
78
0016 FF364300 R 79 PUSH cbMsg
; 3rd argument is cbMsg
80
001A 1E 81 PUSH DS
; 4th argument is pointer to cbWritten Retwin
001B 8D060200 R 82 LEA AX, cbWrittenRet
001F 50 83 PUSH AX
0020 9A0000---- E 84 CALL WriteBsRecord

0025 23C0 85 AND AX, AX

5028707

G-10 Sample Assembler Modules

Figure G-3 Unisys-Compatible Main Program (continued)

0027 754E 86 JNE Error
; Test erc, jump if non-zero
87
0029 A10000 R 88 MOV AX, cloop
002C EB1A00 89 CALL printHex
: print and increment loop count
002F FF060000 R 90 INC cloop
91
92 ; Call WriteByte(pbsvid,
0Ah)
0033 1E 93 PUSH DS
; lst argument is pointer to bsvid
0034 8D060000 E 94 LEA AX, bsvid
0038 50 95 PUSH AX
- 0039 BOOA 96 MOV AL, OAh
; 2nd argument is char to write to vid
003B 32E4 97 XOR AH, AH
; Zero AH
003D 50 98 PUSH AX
003E 9A0000----~ E 99 CALL WriteByte
0043 23CO0 100 AND AX, AX
0045 7530 101 JNE Erxrror
; Test erc, jump if non-zero
102
Macro Assembler 8.1.1 15:26 12-Oct-87 Page 3
0047 EBC1 103 JMP Loopx

; Loop forever (until ACTION-FINISH)
104

105 ; Local procedure to convert
number in AX to hex and output it to video

106 PrintHex PROC NEAR
0049 B90400 107 MOV CX, 4
; Initialize digit count

108 Printl:

004C 51 109 PUSH CX
; Save digit count on stack
004D B104 110 MOV CL, 4
004F D3CO 111 ROL AX, CL
; Position to next digit ’
" 0051 50 112 PUSH AX
. ; Save this value, the procedure we are about
113
. ; to CALL may clobber any register value !
. 0052 8BD8 114 MOV BX., AX
. 0054 BOE30F 115 AND B, OFh
; Mask upper nybble of BL
0057 80C330 116 ADD BL, '0'

; Convert to ASCII

Sample A_ssembler Modules

G-11

Figure G-3 Unisys-Compatible Main Program (continued)

CMP BL, '9’
JBE Print2
ADD BL, 'A'-'0'-10
Print2:
PUSH DS
bsvid
LEA AX, bsVvid
PUSH AX
PUSH BX
te
CALL WriteByte
AND AX, AX
ro
JNE Error
POP AX
ing
POP CX
LOOP Printl
RET
PrintHex ENDP
; On fatal error AX contains
Error:
PUSH AX
is erc
CALL ErrorExit
Main ENDS
END Begin

005A 80FB39 117
; Check for hex A..F
005D 7603 118
; Not above 9
00SF 80C307 119
120
0062 1E 121
; lst argument is pointer to
0063 8D060000 E 122
0067 50 123
124
0068 53 125
; 2nd argument is char to wri
0069 9A0000-~~~ E 126
006E 23CO 127
; Test erc and jump if non-ze
0070 7505 . 128
129
0072 58 130
; Restore word we are outputt
0073 59 131
; Restore loop count
0074 E2D6 132
; Loop until CX becomes zero
0076 C3 133
; Return to main program
134
135
136
137
erc
138
0077 50 139
: Only argument to ErrorExit
0078 9A0000~~-~ E 140
141
142
143
144
; tell assembler where to start execution
’ 145
146

There were no errors detected

- 5028707

Appendix H H-1
BTOS Stack Format

This appendix describes the conventional (medium model)
stack format used by the BTOS Assembly language. This
format (shown in figure H-1) originated with PL/M, and
most of the high-level compilers adhere to it.

The initial value of the SP (stack pointer) register is at the
highest address of the stack. The stack grows down
toward lower addresses as objects are pushed onto it. As
the stack grows, the address of the top of the stack (SP)
becomes smaller. Each location shown on the stack is a word.

Figure H-1 shows two nested procedure calls. Procedure A
calls procedure B, which in turn calls procedure C. As
indicated in the figure, there is a stack frame for each call.
The stack frame consists of procedural parameters, a
return address, a saved—frame pointer, and local variables.

When procedure A calls procedure B, the values of A’s
local variables are on the stack. The passed parameters x,
y, and z are pushed in the same order in which they
appear in the procedure call. Next, the values of the CS
and IP registers are pushed. These represent the point at
which execution in A should continue after the return.

Finally, the value of the BP (base pointer) register is
pushed. Each stack frame has an associated base pointer.
The base pointer is a point of reference from which the
called procedure determines where to find needed values
of passed or local parameters. For example, in figure H-1,
the location of z is BP+6 (using A’s BP as a reference
point). You can find the first of B’s local variables at
BP-2.

5028707

H-2 BTOS Stack Format

Figure H-1 BTOS Il Stack Format

High 4
A's Locals

X

y
z

CSinA
IPin A

(One, Two) - AsBP

A
B (xy 2)
(o}

B's Locals
and Temporaries

One

© Two
CSinB
IPinB
B's BP

B's Frame <«#—

BP >

C's Locals
and Temporaries

Low .

While procedure A was executing, (before it called B), the
BP register pointed to the location immediately above A's
local variables. When A calls B, that value of the

BP register must be saved for the return, and it is the last
item pushed on to the stack (called “A’s BP” in figure
H-1). Then the BP register is updated to contain the value
of SP (the top of the stack), and B’s frame begins.

BTOS Stack Format H-3

After several calls, there is a chain of BP values marking
the various frames. It is possible to trace back through the
stack by following this chain from one BP to the previous
one, and so on. For example, the Swapper does a stack
trace when an overlay is swapped out. It follows the chain
of BP values and, by reference from them, corrects the
return CS:IP values of any swapped-out procedures to
point to the Overlay Manager. The Debugger also does a
stack trace when you give a CODE-T command.

For this and other reasons, the stack format must be
correct, and the assembly language code must conform to
the stack convention.

Stack Frame Prologue and Epilogue

Using the Debugger, you can see the instructions generated
by a compiler that immediately precede and follow a
procedure call. They are as follows:

Prologue PUSH BP
MOV BP,SP
SUB SP,n

Epilogue MOV SP, BP
POP BP
RET mb

In the above prologue, you can see the value of BP
(pointer to the frame of the caller) being pushed onto the
stack, after which BP is set equal to SP (setting up a
pointer to the current frame). In the SUB SP,n instruction,
the number of bytes (n) of stack space for local and
temporary variables is subtracted from the value of SP.
The result is the correct top-of-stack position after the
called procedure’s local and temporary variables have been
placed on the stack.

In the epilogue, the stack pointer is set equal to the base
pointer, and the local variables are eliminated from the
-stack. Then the next location (the value of the previous
BP) is popped, after which BP points to its previous
location in the BP chain. With the RET (return to CS:IP)
instruction, m designates the number of bytes of passed
parameters to be popped, leaving SP at the low end of the
previous procedure’s local variables.

5028707

4
S

Appendix | 1

Converting Data or Code Files to Object
Modules

There are times when you may need to convert a program
or data file into an object module so that you can link it to
other object modules to form a new run file. The WRAP
command provides this capability.

The WRAP Command

You use the WRAP command (shown in figure I-1) to
encapsulate data, code, or other programs in an object
module format, which you can then link into an object
module using the Linker. (You implement this command
using the run file WRAP.run).

For example, if you are writing in assembly language, you
can start your source with the folowing statements:

segmentname SEGMENT [PUBLIC] [classname]
PUBLIC [publicname]
data file

The names given for the Segment name and Classname
parameters correspond to the names on the SEGMENT
state. The name you enter in the Module name field is used
by the Librarian to refer to the module. You can use the
name entered in Public name as the address of the first
byte of the data by specifying this name as External in
other modules.

Table I-1 explains each field of the WRAP command.

5028707

I-2 Converting Data or Code Files to Object Modules

Figure -1 WRAP Command Form

Wrap
|D‘ata (input) filename l
Object (output) filename
[Module name]
[Segment name]
[Public name]
[Class]

Table I-1 WRAP Command Options

Field

Action/Explanation

Mandatory fields:
Data (input) filename

Object (output) filename
Optional fields:

[Module name]
[Segment name]
[Public name]

[Class]

Enter the name of the data fils whoss
contents you want to wrap.

Enter the name of the object file where you
want to place the wrapped data. The
default is DataFileName.obj.

Enter a name to be used as the internal
module name. The default is DataFile Name.

Enter a name to be used as the internal
segment name.

Enter a name to be used as the internal
public name. The default is DataFileName

Enter a name to be used as the internal
class name. The default is DataFileName.

£ &

Glossary-1

Glossary

Absolute symbol. An absolute symbol is a symbol that has a specified place
in memory (as, for example, an address within BTOS).

Address expression. An address expression is a description consisting of
one or more symbols, or an indexed or nonindexed parameter.

Alignment attribute. An alignment attribute specifies whether the segment
can be aligned on a byte, word, or paragraph boundary.

Application. An application is a program solution to a data processing
problem.

Applications. Applications are programs that provide a complete user
interface.

Application partition. An application partition is a section of user memory
reserved for the execution of an application.

ASCIl. ASCII, the American Standard Code for Information Interchange,
defines the character set codes used for information exchange between
equipment.

Assemble. ASSEMBLE is the Executive command you use to display the
Assembler command form.

Assembler. The Assembler translates Assembly 8086 programs into BT0S
object modules (machine code).

Assembly. 8086 Assembly is the low level language you can use to write
BTOS programs. You use the BTOS Assembler to convert the programs into
BTOS object modules.

Asynchronous Terminal Emulator. The Asynchronous Terminal Emulator
(ATE) allows a workstation to emulate an asynchronous character-oriented
ASCHI terminal (glass TTY).

ATE. See Asynchronous Terminal Emulator.

BASIC. BASIC is one of the high level languages you can use to write BTOS
programs. You can use the BASIC Compiler to convert the programs into BTOS
object modules, or you can use the BASIC Interpreter to edit and run BASIC

* programs.

Bind. Bind is a command that activates the Linker to create a version 8 run
file. Version 6 run files are required for protected mode compatibility.

BSWA. See Byte Stream Work Area.

5028707

Glossary-2

Byte stream. A byte stream (part of the Sequential Access Method) is a
readable or writabie sequence of 8-bit bytes.

Byte stream work area. The Byte Stream Work Area (BSWA) is a
130-byte memory work area for the exclusive use of SAM procedures.

Class Name. A class name is a symbol used to designate a class.

Client process. A client process requests system service. Any process can be
a client process, since any process can request system service.

C. Cis one of the high level languages you can use to write BTOS programs.
You can use the C Compiler to convert the programs into BTOS object modules.

COBOL. COBOL is one of .the high level languages you can use to write BTOS
programs. You can use the COBOL Compiler to convert the programs into. BTOS
object modules.

Code listing. A code listing is an English-language display of compiled code.

Code segment. A code segment is a variable-length (up to 64Kb) logical
entity consisting of reentrant code and containing one or more complete
procedures.

Compiler. BTOS Compilers translate high level language programs into BTOS
object modules (machine code).

Configuration file. Configuration files specify the characteristics of the
parallel printer, serial printer, or other devices attached to a communications
channel.

Crash dump. A crash dump is the output (memory dump) resulting from a
system failure.

CTO0S.lib. The CTOS.lib file is part of the Language Development software; it
is a library of object modules that provide operating system run time support.

Cursor RAM. The cursor RAM allows software to specify a 10-bit by
15-bit array as a pattern of pixels in place of the standard cursor.

Customizer. The BTOS Customizer software provides object module files that
allow you to customize the operating system.

DAM. See Direct Access Method.
DAWA. See Direct Access Work Area.
DCB. See Device Control Block.

Glossary-3

Debugger. The Debugger is a BTOS programming tool that is packaged with
the Customizer. It allows you to debug programs written in FORTRAN, Pascal,
and Assembly at the symbolic instruction level.

Descriptor Table. A Descriptor Table (only applicable in protected mods)
contains descriptors that define the segment’s type, length, and protection level.

Device control block. A memory-resident Device Control Block (DCB) exists
for each devica. The DCB contains device information generated at system build.
g:c‘k a disk, the information includes the number of tracks and sectors per

)

DGroup. DGroup usually includes data, constant, and stack Linker segments.

Direct Access Method. The Direct Access Method (DAM) provides random
access to disk file records identified by record number. When you create the
DAM file, you specify the record size. DAM supports COBOL Relative 1/0 and
any BTOS language program can use a direct call for DAM.

Direct access work area. A Direct Access Work Area (DAWA) is a
84-byte memory work area for the exclusive use of the Direct Access Method
(DAM) procedures.

$Directories. When BTOS receives a request with the directory $, the
directory name is expanded to $nnn on B24, B26, and B27 workstations and
<$000>nnnnn> on B28, B38, and B39 workstations. (nnn and nnnn
represent the application user number.)

Double—precision. Double—precision parameters designate two words to store
an item of data to maintain a high level of precision.

DS allocation. An option in the Linker, DS allocation locates DGroup at the
end of a B4Kb segment that the DS register addresses.

8086 Assembly Language. 8086 Assembly language is the low level
language you can use to write BTOS programs. You use the BTOS Assembler
to convert the programs into BTOS object modules.

Environment. An environment is a program that has control of the system at
any given time. Environments include the SignOn form, the Executive, the Mail
Manager, utilities (such as Floppy Copy), applications (such as a word
processor), and Compilers.

Escape sequence. An escape sequence is a sequence of characters that
" activates a function.

Executive. The Executive is the BTOS user interface program; it provides

access to many convenient utilities for file management.

5028707

Glossary-4

External reference. An external reference is a reference from one object
module to variables and entry points of other object modules.

Extraction. Librarian extraction copies an object module from a library into a
separate disk file. Extraction does not delete the extracted module from the
library.

Field. A field is an area in a display form that contains parameters.

File access methods. Several file access methods augment the file
management system capabilities. File access methods are object module
procedures located in the standard BTOS library. They provide buffering and use
the asynchronous input/output capabilities of the file management system to
overlap input/output and computation.

Font. The BTOS Font Designer software allows programmers to desngn or edit
characters by drawing or erasing pixels.

Font Designer. The BTOS Font Designer is a program that allows you to
design character display fonts that display when your program runs.

Forms. The BTOS Forms software allows programmers to design user~entry
forms for applications.

Forms Designer. The BTOS Forms Designer is a program that allows you to
develop display forms for user entry when your program runs.

Forms.lib. The Forms.lib file is part of the Language Development software; it
is an object module library for Forms Run Time support.

FORTRAN. FORTRAN is one of the high level languages you can use to write
BTOS programs. You can use the FORTRAN Compiler to convert the programs
into BTOS object modules.

Global Descriptor Table. A Global Descriptor Table contains code and data
segments used by the operating system and available to the entire application
set.

Group. A group is a named collection of linker segments that the BTOS loader
addresses at run time with a common hardware segment register. To make the
addressing work, all the bytes within a group must be within 64Kb of each
other.

High Performance COBOL. See COBOL.

Indexed address. An indexed address is an address expression that uses
index registers.

Glossary-5

Indexed Sequential Access Method. The BTOS Indexed Sequential Access
Method (ISAM) provides random access to fixed-length records identified by
multiple keys stored in disk files.

ISAM. See Indexed Sequential Access Method.
Kb. The abbreviation for kilobyts, 1 Kb = app. 1 x 10° bytes.

Language Development. The BTOS Language Development software provides
the Linker, Librarian, and Assembler programs (LINK, LIBRARIAN, BIND, and
ASSEMBLE Exscutive commands).

LED. LED stands for light-emitting diode (the red light on a keyboard key).
Jib. lib is the standard file name suffix for library files.

Librarian. The Librarian is a program that creates and maintains object
module libraries. The Linker can search automatically in such libraries to select
only those object modules that a program calls.

Library. A library is a stored collection of object modules (complete routines
or subroutings) that are available for linking into run files.

Library file. A library file contains one or more object modules. The file name
normally includes the suffix .lib.

Link. LINKis the Executive command that displays the Linker command form.

Linked-list data structure. A linked-list data structure contains elements
that link words or link pointers connect.

Linker. The Linker is a program that combines object modules (files that
Compilers and Assemblers produce) into run files.

Linker segment. A Linker segment is a single entity consisting of all segment
elements with the same segment name.

Link pointer. A link pointer is a 32-bit address that points to the next block
of data.

Link word. A link word is a 16-bit address that points to the next block of
data.

List file. The Linker list file (suffix .map) contains an entry for each Linker
segment, identifying the segment relative address and length in the memory
“image. You can direct the Linker to list public symbols and line numbers.

Long-lived memory. Long-lived memory is an area of memory in an
application partition. It is used for parameters or data passed from an
application to a succeeding application in the same partition.

5028707

Glossary-6

Math Server. The Math Server is a BTOS system service that provides
emulation of a numeric coprocessor and the context saving of multiple floating
point applications. The context saving is an extension of the BTOS
multi-tasking, which allows multiple floating point applications to execute
asynchronously.

.map. .map is the standard file name suffix for list files.
Mb. The abbreviation for megabyte, 1 Mb = app. 1 x 10° bytes.

Memory array. A memory array is data space the BTOS Loader allocates
above the highest task address.

.obj. .obj is the standard file name suffix for object module files.

Object module. An object module is the result of a single Compiler or
Assembler function. You can link the object module with other object modules
into BTOS run files. ’

Object Module Procedure. An object module procedure is similar to a
system call because it is available through the same mechanism, but it does not
interface with the operating system. The task is executed solely by the
instructions contained within the object module.

Offset. The offset is the number of bytes between the beginning of a
segment and the memory location.

Overlay. An overlay is a code segment made up of the code from one or
more object modules. An overlay is loaded into memory as a unit and is not
permanently memory-resident. See also Virtual code segment management.

Parameter. A parameter is a variable or constant that is transferred to and
from a subroutine or program.

Pascal. Pascal is one of the high level languages you can use to write BTOS
programs. You can use the Pascal Compiler to convert the programs into BTOS
object modules.

Physical address. A physical address is an address that does not specify a
segment base and is relative to memory location 0.

Pixels. Pixels are square-shaped cells which make up the dot matrix of a
character symbol.

Pointer. A pointer is an address that specifies a storage location for data.
Procass. A process is a program that is running.

Protected Mode. Protected Virtual Address Mode (commonly called protected
mode) is a mode of operation of the Intel 80286 and 80386 microprocessors.

Glossary-7

Public procedure. A public procedure is a procedure that has a public
address; a module other than the defining module can reference the address.

Public symbol. A public symbol is an ASCII character string associated with
a public variable, a public value, or a public procedure.

Public value. A public value is a value that has a public address; a module
other than the defining module can reference the address.

Public variable. A public variable is a variable that has a public address; a
module other than the defining module can reference the address.

Real Mode. Real mode is the only mode of operation for the Intel 8086 and
80186 microprocessors and is the mode of the 80286 and 80386
microprocessors when they are reset. (Refer to Protected Mode.)

Record Sequential Access Method. Record Sequential Access Method
(RSAM) files are sequences of fixed-length or variable-length records. You can
open the files for read, write, or append operations.

Relocation. The BTOS Loader relocates a task image in available memory by
supplying physical addresses for the logical addresses in the run file.

Relocation directory. The relocation directory is an array of locators that the
BTOS Loader uses to relocate the task image.

Resident. The resident portion of a program remains in memory throughout
execution.

Resident program. A resident program is a program that is fully loaded into
memory prior to execution. It contains no overlays and it stays in memory
throughout execution.

Reverse video. Reverss video displays dark characters on a light screen.
RSAM. See Record Sequential Access Method.
.un. - .run is the standard file name suffix for run files.

Run file. A run file is a complete program: a memory image of a task in
relocatable form, linked into the standard format BTOS requires. You use the
Linker to create run files.

Run file checksum. The Run-file checksum is a number the Linker produces
based on the summation of words in the file. The system uses the checksum to
- check the validity of the run file.

Run-Time Library. A Run-Time Library is a library (group of object modules)
that is used by an application when the application is running.

5028707

Glossary-8

SAM. See Sequential Access Method.
SamGen. See SAM Generation.

SAM Generation. SAM generation permits the specification of
device-dependent object modules to be linked to an application.

Segment. A segment is a contiguous area of memory that consists of an
integral number of paragraphs. Segments are usually classified into one of three
types: code, static data, or dynamic data. Each kind can be either shared or
nonshared.

Segment address. The segment address is the segment base address. For an
8086/80186 mlcroptocessor a segment address refers to a paragraph (16
bytes).

Segmented address. A segmented address is an address that specifies both
a segment base and an offset.

Segment element. A segment element is a section of an object module.
Each segment element has a segment name.

Segment override. Segment override is operating code that causes the
8086/801886 to use the segment register specified by the prefix instead of the
segment register that it would normally use when executing an instruction.

Selector. A selector is the index into a Descriptor Table.

Sequential Access Method. Sequential Access Method (SAM) files emulate
a conceptual, sequential character-oriented device known as a byte stream to
provide device-independent access to devices.

Short-lived memory. Short-lived memory is the memory area in an
application partition. When BTOS loads a task, it allocates short-lived memory
to contain the task code and data. A client process can also load short-lived
memory in its own partition.

Sort/Merge. Sort/Merge includes a Sort utility and a Merge utility that
provide sorting and merging of a sequence of data records.

Stack. A stack is a region of memory accessible from one end by means of a
stack pointer.

Stack frame. The stack frame is a region of a stack corresponding to the
dynamic invocation of a procedure. It consists of procedural parameters, a return
address, a saved-frame pointer, and local variables.

Stack pointer. A stack pointer is the indicator to the top of a stack. The
stack pointer is stored in the registers SS:SP.

£

Glossary-9

Submit file escape sequence. A submit file escape sequence consists of
two or three characters that indicate the presence of the escape sequence (% or
>), followed by a code to identify the special function, followed by an argument
to the function.

Swapping program. A swapping program contains a resident program and
overlays. The resident part of a swapping program is loaded into memory prior
to exacution. The overlays are loaded during execution as they are needed.

.sym. .sym is the standard file name suffix for the symbol file.

Symbol. Symbols can be alphanumeric and/or any other characters, such as
underscore, period, dollar sign, pound sign, or exclamation mark.

Symbol file. The Linker symbol file (suffix .sym) contains a list of all public
symbols.

Symbolic instructions. Symbolic instructions are instructions containing
mnenomic characters corresponding to Assembly language instructions. These
instructions cannot contain user—defined public symbols.

Sys.Cmds. The Executive command file ([Sys]<sys>Sys.Cmds) contains
information on each Executive command.

System build. System build is the collective name for the sequence of
actions necessary to construct a customized BTOS image.

System Calls. System calls are subroutines that are provided by BTOS to
interface to the operating system.

System Common Access Table (SCAT). SCAT is a table that contains the
addresses of structures or information commonly used throughout the operating
system and applications.

System image. The system image file ([Sys]<sys>Sysimage.Sys) contains a
run file copy of BTOS.

System partition. The system partition contains BTOS and dynamically
installed system services.

System process. A system process is any process that is not terminated
when the user calls Exit.

System Service. A system service is a program that performs a service for
other programs. An application notifies a system service that it wants its
service performed by issuing a request.

System service process. A system service process is an operating system
process that services and responds to requests from client processes.

5028707

Glossary-10

Task. A task consists of executable code, data, and one or more processes.

Task image. A task image is a program stored in a run file that contains
code segments and/or static data segments.

Text file. A text file contains bytes that represent printable characters or
control characters (such as tab, new line, etc.).

UCB. See User Control Block.

Unresolved external reference. An unresolved external reference is a public
symbol that is not defined, but is used by the modules you are linking.

User control block. The User Control Block (UCB) contains the default
volume, directory, password, and file prefix set by the last Set Path or Set
Prefix operation.

User process. A user process is any process that is terminated when the
user calls Exit.

Utility. A utility is a program provided as part of an operating system; the
utility performs standard data-maintenance functions, such as file save and
restore, disk compression, and file copy. Other programs can call the utility to
perform the task.

Utilities. Utilities are programs that use the Executive user interface (such as
Floppy Copy or Ivolume).

Version 4 Run Files. Version 4 run files are run files that have been linked
with the Linkers Link command. Version 4 run files are not protected mode
compatible.

Version 6 Run Files. Version 6 run files are run files that have been linked
with the Linker’s Bind command.

Video attributes. Video attributes control the presentation of characters on
the display.

Virtual code segment management. Virtual code segment management is
the virtual memory method BTOS supports. The method works as follows: The
Linker divides the code into task segments that reside on disk {in the run file).
As the run file executes, only the task segments that are required at a particular
time reside in the application partition’s main memory; the other task segments
remain on disk until the application requires them. When the application no
longer requires a task segment, another task segment overlays it.

Index-1

Index

A

ABS, 6-20
Absolute expression defined, 7-7
Accessing standard services from Assembly code, 11-1
Accumulator

AX use in registers, 8-3
Address structure, 2-15
Addresses

absolute addresses in version 6 run files, 3-20

beginning of run files, 3-20

expressions computed with precision, selector, and offset bytes, 7-7

initialization, 7-7

map file offsets, 3-17
Addressing Linker segments, 2-11
Addressing operands

overview, 1-8
Addressing

code in a segment, 6-8

operands, 8-1

using and not using registers, 8-1
AF, 9-2
Algorithm

library search, 2-3
Alignment attributes, 2-10
Alternative mnemonics, D-4
Anonymous references, 6-11
Array elements

referring to, 7-5
AsSCHll, 9-1
ASSEMBLE

command form, 5-1

command parameters, 5-1
Assembler

CPUs it works on, 1-6

features, 1-6

how it works, 1-6

instruction format, C-1

instruction set, D-1

macro, 10-1

reserved words, E-1

sample modules, G-1

use of addressing, 1-8

use of macros, 1-8

use of procedures, 1-8

use of segments, 1-7

using, 1-6

using, 5-1

what it does, 1-7

5028707

Index-2

Assembler modules
sample error message module program, G-2
sample stand-alone main program, G-8
sample Unisys-compatible main program, G-7
Assembly language
how it works, 1-7
procedures, 6-15
what it does, 1-7
when to use it, 1-9
why use it, 1-9
Assembly
control directives, F-1
interactive, 10-7
AT segment, 6-3
Attribute operators, 8-10
Attributes
defined, 7-3
DISTANCE, 7-3
DISTANCE data item defined, 7-4
FAR data item defined, 7-4

label, 7-3

NEAR data item defined, 7-4
OFFSET, 7-5

OFFSET data item defined, 7-4
SEGMENT, 7-5

SEGMENT data item defined, 7-4
summary of data item, 7-4
TYPE, 7-3, 7-7
TYPE data item defined, 7-4
variable, 7-3

Auxiliary carry flag, 9-2

B

BIND command

form, 3-3

using, - 3-1, 3-14
what it does, 3-2
Bracket function, 10-12
Building libraries, 4-3
BYTE, 6-20

c

Call fault, 11-13
Call gates
version 6 run files use of, 2-13
Call/Ret Control Flow, 6-18
Calling a procedure, 6-16
Calling conventions, 11-1
Calling object module procedures, 11-6
Calling patterns, 10-13
Calls
to an object module, 11-7

Index-3

Canry flag, 9-2
CF, 9"2
Changing the metacharacter, 10-15
Choosing languages, 1-9
Class names

determining order of Linker segments, 6-5
Classname

optional field to reorder segments, 6-4
Code files

converting them to object modules, I-1
CODE, 11-12
Combining segment elements

to form Linker segments, 2-7
Combining segments, 6-3
Combining Stack and COMMON segment elements, 2-9
Command

ASSEMBLE, 5-1

BIND, 3-1

LIBRARIAN, 4-1

LINK, 3-1

WRAP, [-1
Commands

optional, B-2
Comments

macro time, 10-8
Common segments, 6-4
Conditional assembly, 10-3
Constants

binary, 7-2

decimal, 7-2

defined, 7-1

five types, 7-2

hexadecimal, 7-2

initialization, 7-8

octal, 7-2

rules for formation of five types, 7-2

string, 7-2

syntax, 7-3
Control directives

assembly, G-1

group, 11-8

segment, 11-6

usage, 11-5
Converting data or code files to object modules, 1-1
Creating Linker segments, 2-7
Creating run files with the Linker, 2-1
Cross-reference lists, 1-6

sample of one, 4-6

sorting public symbols and object module names, 4-5
CT0S.lib, B-2

5028707

index-4

Data definitions, 7-1
Data files
converting them to object modules, -1
Data items
assembler accepts three basic kinds, 7-1
constants defined, 7-1
labels defined, 7-1
variables defined, 7-1
Data segments
defining maximum size in DS allocation, 3-23
numbering, 3-19
DB, DW, and DD directives format, 7-5
Debugger
compiler-generated instructions, H-3
Declarations
LOCAL, 10-3
SEGMENT/ENDS, 11-3
Descriptors
prototype structure table, 2-16
Descriptor tables
contain segment address, 6-2
DGroup, 11-7, 11-11
Directives
ASSUME defined, 6-6
ASSUME talking to the Assembler, 6-8
ASSUME written in 2 ways, 6-7
DB, DW, and DD, 7-5
DB, DW, and DD used to initialize memory, 7-5
EJECT, F-1
END, 6-21
ENDP, 8-15, 11-11
ENDS, 6-19
ENDS used with lexical-nested segments, 6-4
EQU, 8-18
EQU placement in programs, 7-12
EVEN defined, 6-19
EXTRN defined, 6-20
EXTRN placement in programs, 7-12
format for PROC and END, 6-15
GEN, F-1
GENONLY, F-1
GROUP defined, 6-14
GROUP used an an immediate value, 6-14
GROUP used as an ASSUME statement, 6-14
GROUP used as an operand prefix, 6-14
GROUP’s three uses, 6-14
INCLUDE, F-1
inserting appropriate selector reference with no ASSUME,
LABEL, 7-9
LABEL addressability, 7-11

6-10

Index-5

LABEL format, 7-9

LABEL uses, 7-10

LABEL with code, 7-10
LABEL with variables, 7-10
LsT, F-1

NAME defined, 6-20

NOGEN, F-1

NOLIST, F-1

NOPAGING, F-2

ORG defined, 6-19

ORG format, 6-19
PAGELENGTH, F-2
PAGEWIDTH, F-2

PAGING, F-2

PROC, 11-11, 6-15

program linkage, 6-20
PUBLIC, 6-20

PURGE, 8-16

RESTORE, F-2

SAVE, F-2

SEGMENT used with lexical-nested segments, 6-4
SEGMENT, 6-3, 6-19
SEGMENT/ENDS, 6-2

TITLE, F-2

Displacements, 8-10
DISTANCE data item attribute defined, 7-4
DS aliocation, 3-23

a real mode program with, 3-24
Ds, 11-7

use of it when calling object module procedures, 11-6
pup, 7-8

Duplicate symbol names

defined, 4-6

removal of, 4-8

DWORD, 6-20

E
EA, C-1
Effective address calculation time, D-3
EJECT, F-1
Elements of a Linker segment, 6-6
END directive, 6-21
ENDP, 11-11
ENDS directive
using, 6-2
Enumerated initialization, 7-8
EQU directive, 8-16
Error messages
linker, A-3
Escape function, 10-12
EVAL, 10-4

5028707

Index-6

Evaluating macro processor functions, 10-14
EVEN directive, 6-19
EXIT, 10-7
Expanded mode, 10-14
Expressions
absolute defined, 7-7
oparator precedence in, 8-15
relocatable defined, 7-7
Externals
limits in run files, 3-1
Extracting object modules from a library, 4-5
EXTRN, 11-3, 6-20, 8-8

F

FAR data item attribute defined, 7-4
FAR, 11-3, 8-8
jump or call, 7-11
Fields
combine-type of SEGMENT directive, 6-3
File names
cross-reference list between object modules and public symbols, 1-6
library, 1-5
File Suffix
dib, 1-5
Flag register, 8-4
Flags
auxiliary carry, 9-2
carry, 9-2
defined, 9-1
instructions, 8-8
list of, D-2
operations, 9-1
overflow, 9-3
parity, 9-3
sign, 9-3
zero, 9-4
Floating point math, 1-1
Form
ASSEMBLE command, 5-1
BIND command, 3-3
LIBRARIAN command, 4-1
LINK command, 3-3
WRAP command, -2
Format
assembler instruction, C-1
BTOS I stack, H-2
DB, DW, and DD directives, 7-5
DUP operator, 7-8
instructions with a single register operand, 8-5
LABEL directive, 7-9
macro time comments, 10-8

Index-7

ORG directive, 6-19

PROC and ENDP directives, 6-15
processor instruction, 8-3

run files, 2-1

stack, H-1

THIS operator, 8-12
two$(Sl)operand instruction, 8-1
two-operand instructions, 8-2
version 4 and 6 run file header, 2-12
Functions

bracket, 10-11

EQS, 10-3,

Escaps, 10-11

EXIT, 10-7

GTS, 10-3

IF, 10-4, 10-5

IN, 10-7

ISDEF, 10-5

LTS, 10-3

METACHAR, 10-15

out, 10-7

NES, 10-3

REPEAT, 10-4, 10-6

SET, 10-4

SUBSTR, 10-3

WHILE, 10-4, 10-6

G

GEN, F-1

General registers, 8-6
GENONLY, F-1

Global pointers

version 6 run files use of, 2-13
GROUP, 8-11

directive, 6-14

override operator, 8-14
Group

combining segments in, 6-8
defined, 6-6

Hardware defaults
for anonymous references, 6-11
requirements for not using them in anonymous references, 6-13
use these on string instructions without operands, 6-13

I
Identifiers
defined, 7-1
IF
using with macro variables to perform a conditional assembly, 10-5
immediate operands, 8-2

5028707

Index-8

Implicit register operands table, 8-5
INCLUDE, F-1
Initialization
address, 7-7
bytes in consecutive memory, 7-8
constants, 7-6
enumerated, 7-8
indeterminate, 7-6
strings, 7-7
with memory unspecified, 7-6
Initializing memory, 7-5
Installing Language Development software, B-1
Installing optional commands and libraries, B-1
Installing the software
optional library files, B-1
Instruction set in alphabetic order of instruction mnemonic,
D-12
Instruction set in numeric order of instruction code, D-5
Instructions
analysis of a sample, C-3
CALL, 6-16, 8-6
developing one containing an immediate operand, 8-2
diagram of a sample, C-4
IRET, 6-17
JVP, 8-8
RET, 6-17
that explicitly specify registers, 8-4
that use registers implicitly, 8-5
two$(Sl)operand, 8-1
two-operand that explicitly specify registers, 8-4
Interactive assembly, 10-7
Interrupts
and the stack, 11-7
related to hardware defaults, 6-13
what not to use when enabled, 6-13
Invoking a macro, 10-2

J

Jump
list of alternative mnemonics, D-4

L

Labels

attributes, 7-3

defined, 7-1, 7-9

FAR declared, 7-8

NEAR declared, 7-9

target addressability, 7-11
Language Development library files, B-2
Languages

assembly procedures, 6-15

Index-9

Languages
why write programs in different languages, 1-9
DT, 2-13
LENGTH
value-returning operator, 8-13
Lexical nesting of segments, 6-4
ifa, 2-13
LIBRARIAN
command, 4-1
parameters, 4-2
using the command to build a new library, 4-3
using the command to extract object modules from a library, 4-5
using the command to modify a library, 4-4
using the command to produce a cross-reference list, 4-7
Librarian
error messages, A-3
how it works, 1-4
messages, A-1
operations you can perform with it, 4-1
using as a programming tool, 1-1
using, 1-4
using the command, 4-1
Library code
run time, 3-16
Library Search Algorithm, 2-3
Library
building a new one, 4-3
extracting object modules from one, 4-5
Language Development files, B-2
modifying one, 4-5
uses, 1-4
Line numbers
creating a map file with Linker that lists, 3-20
used during debugging, 3-20
LINK
using, 3-1, 3-14
what it does, 3-2
command form, 3-3
command optional fields, 3-4
Linker
addressing segments, 2-11
building a run file, 2-5
causes of errors, A-2
combining elements to form segments, 2-7
compatibility, A-1

creating a map file with that lists public symbols and line numbers, 3-20

creating run files, 2-1

creating segments, 2-7

error messages, A-3

generating run files using the LINK and BIND commands, 1-4
how it works, 1-4

5028707

index-10

levels of errors A-1
library search algorithm, 1-5, 2-3
map files, 3-17
messages, A-1
operations performed using LINK and BIND, 3-1
passes, 1-4
sample link, 6-5
searching for public symbols, 2-3
segment elements, 6-6
status codes, A-10
symbol files, 3-17
using, 1-3
using as a programming tool, 1-1
Linking & run file, 3-14
LIST, F-1
Loading selector registers, 6-9
Local declaration, 10-2
Local descriptor table, 2-13
LOCAL, 10-3
Location counter ($), 6-19
Logical file address, 2-13

Macro Assembler, 10-1
Macro parameter, 10-10
Macro time comments, 10-8
Macro variable values

PASS1, 10-8

PASS2, 10-8
Macros

%SET, 10-4

advanced features, 10-9

complete list of functions, 10-15
definitions,. 10-1, 10-10

delimiters, 10-9

evaluating processor functions, 10-14
identifier delimiter, 10-10

identifiers, 10-9

implicit blank delimiter, 10-10
invoking one, 10-2

literal delimiter, 10-10

nested expansion, 10-14

overview, 1-8

parameters, 10-9

processing invocations, 10-13
using, 11-8 '

with “static” actual parameters, 11-9
Map files

differences between version 4 and 6, 3-19
line number sample list, 3-12

linker generated, 3-17

Index-11

offsets, 3-17
public symbol sample lists, 3-12
reading version 4 run files, 3-17
sample version 4 with lists of public symbols and line numbers, 3-21
sample version 6 with lists of public symbols and line numbers, 3-22
version 4 sample, 3-18
version 6 sample, 3-19
MATCH, 10-8
calling patterns, 10-13
Math Server
using as a programming tool, 1-1
Memory addressing :
rules for addressing code in a segment, 6-8
" Memory allocation
DS advantages, 3-24
DS, 3-23
how and why, 3-23
memory array, 3-25
Memory array
a program with, 3-26
advantages, 3-25
using, 3-25
Memory configuration
normal (real mode), 3-13
with memory array size specified, 3-13
Memory image, 2-2
Memory initializing
using DB, DW, and DD directives, 7-5
Memory operands, 8-6
to JMP and CALL, 8-6
Memory pool, 2-2
Memory references
in string instructions, . 6-12
with no variable name, 6-11
for CALL instructions, 8-7
for JMP instructions, 8-7
Memory requirements
program, 3-15
METACHAR, 10-15
Metacharacter
%*, 10-1
changing the, 10-15
MoD, C-1
MOD-R/M byte, C-1
Modifying a library, 4-4
Mouse Server
using as a programming tool, 1-1
Mouse, B-2
Mouse.lib, B-2

5028707

Index-12

NAME, 6-20

NEAR data item attribute defined, 7-4
NEAR, 8-8

jump or call, 7-11

Nested macro expansion, 10-14
Nesting a segment, 6-4

NOGEN, F-1

NOLIST, F-1

NOPAGING, F-2

Object modules
a sequence of segment elements, 6-5
content, 1-3
converting data or code files to, -1
defining public symbols, 1-6
extracting, 1-5
extracting from a library, 4-5
limits of externals, 3-1
limits of publics, 3-1
main program declaring stack segment and starting address, 11-6
names within libraries, 1-6
procedures, 11-3
sorting with LIBRARIAN, 4-8
use of SS and DS when calling, 11-6
using as overlays for virtual code segments, 3-14
writing in different languages, 1-3
OF, 8-3
OFFSET data item attributes defined, 7-4
OFFSET value-returning operator, 8-13
Offsets
map file addresses, 3-17
map file segment classes, 3-18
map file segments names, 3-18
map files, 3-17
Operand code, D-1
Operands
destination, 8-1
diractly and indirectly addressing in memory, 8-1
explicit register, 8-4
immediate, 8-2
immediate development, 8-2
implicit register table, 8-5
memory, 8-8
overriding with PTR, 8-11
referring to, - 8-1
register types used by Assembler, 8-3
source, 8-1
using attribute operators in, 8-10
variables used as, 8-8

Index-13

Operators

attribute, 8-10

classes in decreasing precedence order, 8-15
pup, 7-8

GROUP override, 8-14

infix, 8-10

LENGTH value-returning, 8-13
OFFSET value-returning, 8-13
Precedence in expressions, 8-15
ROFFSET, 11-12

RSEG, 11-12

SEG value-returning, 8-13
selector override forms, 8-11
SHORT, 8-12

SIZE value-returning, 8-13
THIS, 8-12

type overwriting, 8-10

TYPE value-returning, 8-13
value-returning, 8-13
Optional commands

BIND, B-2

INSTALL MATH SERVER, B-2
LIBRARIAN, B-2

LINK, B-2

Optional library files, B-1
Ordering template

imposing one on the Linker, 2-7
ORG directive, 6-19

Overflow flag, 9-3

Overlay fault

and register usage conventions, 11-11
invoking virtual code management, 11-10
Overlays

code placement, 3-27

differently named code segments from different languages, 3-26

in memory, 11-14

in run files, 11-11

in swapping programs, 3-16
problems, A-2

swapper code segments, 3-26
version 4 run files, 3-20

P

PAGELENGTH, F-2

PAGEWIDTH, F-2

PAGING, F-2

Parity flag, 9-3

Parsing strings during macro processing
using MATCH for, 10-8

PASS1, 10-8

PASS2, 10-8

5028707

Index-14

PF, 9-3
Pointers
arranged in memory, 11-3
defined, 11-1
Prefix
operand specifying use of group base value or offset, 6-14
override, 6-10
preceding string operation mnemonic, 6-13
PRINT, F-2
Printer
using it with Assembly listings, F-2
PROC, 11-11
Procedural calls, H-1
Procedures
assembly language, 6-15
calling, 6-16
calling a FAR procedure, 6-16
calling a NEAR procedure, 6-16
calling with instructions using FAR, 6-16
defined by Assembly language, 6-15
nesting sample, 6-16
overview, 1-8
recursive defined, 6-17
recursive rules, 6-17
returning from, 6-17
system common, 11-3
Processing macro invocations, 10-13
Processor instruction format, 8-3
Program writing
choosing languages to write in, 1-9
maximum size and speed parameters, 2-11
Programming tools
Librarian, 1-1
Linker, 1-1
Math Server, 1-1
Mouse Server, 1-1
relationship between, 1-2
Programs
assembler, 6-1
naming and combining segments to form, 6-1
Prototype descriptor structure, 2-16
PTR, 8-10
Public segment, 6-3
Public symbols
creating a map file with the Linker that lists, 3-20
how they affect program limits, 2-11
linker searching, 2-3
listing using BIND or LINK command, 3-20
parts, 3-12
referencing object modules, 1-6
sorting with LIBRARIAN, 4-8

Index-15

PUBLIC, 6-28, 8-8
PURGE directive, 8-16

Recursive procedures, 6-17
References
forward, 7-12
forward to constants, 11-7
forward to data, 11-7
indirect defined, 8-2
memory, 8-1
using forward with group-names, 8-14
Referencing segments, 6-1
REG, C-1
Register operands
implicit, 8-5
table, 8-5
Registers
flag mnemonics, 8-4
flag, 8-4
general, 8-6
hardware selector, 6-8
instructions that explicitly specify, 8-4
instructions that implicitly specify, 8-5
operand instruction format, 8-5
selector, 8-3
types used by Unisys Assembler, 8-3
usage conventions, 11-5
Relocatable expression defined, 7-7
Relocation data, 2-2
Relocation
problems, A-2
REPEAT, 10-6
Repetitive assembly, 10-6
Reserved words for Assembler, E-1
Resident programs
what they are, 3-16
RESTORE, F-2
Returning from a procedure, 6-17
ROFFSET, 11-12
RSEG, 11-12
Run files
components, 2-1
creating them with the Linker, 2-1

described through header information, 2-12

determining memory requirements, 3-15
format, 2-1

header functions, 2-1

how the Linker builds one, 2-5

limits of public symbols, 3-1

limits of segments, 3-1

5028707

Index-16

linking using BIND or LINK command, 3-14
memory image, 2-2

relocation data, 2-2

version 4, 1-4

version 6, 1-4

table of version 4 and 6 formats, 2-14
version 4 and 6 header formats, 2-12
virtual code segments, 2-2

S

SAVE, F-2
SEG, 11-12
SEG

in ASSUME directives, 8-13
initializing selector registers with, 8-13
value-returning operator, 8-13
SEGMENT, 8-11
SEGMENT data item attributes defined, 7-4
SEGMENT directive
using, 6-2
Segment elements, 6-6
Segment registers, 6-1
Segment registers as subsets to selector registers, 6-2
SEGMENT/ENDS, 11-3
Segments
addressing code in, 6-8
addressing Linker, 2-11
alignment, 6-3
alignment attributes, 2-9
assembler, 6-1
AT, 6-3
categories that compose Linker, 2-7
classes, 2-3
classes in map files, 3-18
combining, 6-3
combining Stack and COMMON elements, 2-9
common, 6-4
creating Linker, 2-7
data, 3-19
determining order of segment names and class names, 6-6
slement names, 2-3
ENDS directives, 6-2
how compiler arranges elements, 2-4
lexical nesting, 6-4
limits in run files, 3-1
linkage, 6-5
linker, 6-5
mixing code and data in one, 6-1
names in map files, 3-18
naming and combining to form programs, 6-1
naming and linkage, 6-2

Index-17

naming in map files, 3-18

nesting, 6-4

ordering, 3-24

ordering elements by class, 2-7

ordering summary, 2-10

overview, 1-7

PARA BYTE,WORD,PAGE, 6-3

publics, 6-3

referencing, 6-1

reordering with classname field, 6-4

rules for combining or superimposing elements,

SEGMENT directives, 6-2

segname, classname, combine-type, 6-3

stack, 2-8, 6-4

stack special rules, 6-4

statics, 11-13

swapper code vs. Linker code, 3-26

types, 1-8

what is a DGroup of, 2-11

what is a group of, 2-11
Sel-name

defined, 6-7
Selector override operater, 8-11
Selector override prefix, 6-10
Selector registers, 8-3

do not use as data registers, 11-4

for anonymous references, 6-11

loading, 6-9

related to ASSUME directive, 6-6

sample loading the stack, 6-9
Selector

defined, 6-1

2-1

parts that are an index to a descriptor table, 6-1

SET, 10-4
SF, 8-3
SHORT, 8-12
Sign flag, 9-3
SIZE
valug-returning operator, 8-13
Sizing programs
programs that allocate memory, 3-17
resident programs, 3-16
swapping programs, 3-16
" Software installation
decisions, B-2
language Development selections, B-2
language Development, B-1
optional library files, B-1
SortMerge.lib, B-2
Source files

sample field entry for ASSEMBLE command parameter, 5-3

5028707

Index-18

Special characters
?u@r—: 7"1
§s, 11-7
use of it when calling object module procedures, 11-6
Stack segment, 6-4
STACK, 11-11
Stack
and interrupts, 11-7
BTOS Il format, H-2
computing the size, 3-27
correcting overflow, 3-28
estimating size using Debugger, 3-28
format, H-1
frame prologue and epilogue, H-3
nesting on the, 6-17
reducing the size, 3-28
return address, 11-12
sample defining, 6-9
sample loading the stack selector register, 6-9
segment, 11-11, 11-6
Status codes
linker, A-10
String variables, 7-7
String instructions
memory references in, 6-12
type-specific forms, 6-12
without operands use these hardware defaults, 6-13
Strings instructions
mnemonics table, 6-13
Strings
initializing, - 7-7
Structure of run file Ilmlm, 2-12
Structure
address, 2-15
prototype descriptor, 2-16
Stubs
defined, 11-13
Swapper
overlay Manager, 3-26
swapping code and data segments, 3-27
using with Assembly language programs, 3-27
using with programs in BTOS high-level languages, 3-27
what it is, 3-26
Swapping programs
linking, 3-26
what they are, 3-16
Symbol files
linker generated, 3-17
System programming notes, 11-13

£

Index-19

T
THIS, 8-12
TITLE, F-2

Transfer vector, 11-13
TYPE data item attributes defined, 7-4
TYPE

label argument, 8-13

value-returning operator, 8-13

Unexpanded mode, 10-14
Usage conventions
register, 11-5
Use of macros, 11-8
Using a printer with Assembly listings, F-2
Using assembly language procedures, 6-15
Using object modules as overlays, 3-14
Using the Assembler, 1-6
Using the Librarian command, 4-1
Using the Librarian, 1-4
Using the Linker, 1-3
Using the memory array
advantages, 3-25
Using variables as operands, 8-8

v

Value-returning operators, 8-13
Values
constructing procedural, 11-12
Variables
attributes, 7-3
defined, 7-1
defining, 7-5
double-indexed, 8-10
indexed defined, 8-9
simple defined, 8-9
used as operands, 8-8
using indexed, 8-9
Version 4 run files
header format, 2-12
header formats, 2-14
reading the map file, 3-17
rules for segments, 2-11
" Version 6 run files
absolute addresses in, 3-20
header format, 2-12
header formats, 2-14

list of public symbols, line numbers, and addresses in the map file, 3-20

reading the map file, 3-19
rules for segments, 2-11

5028707

Index-20

Virtual code facility
operational rules, 11-10
Virtual Code Segment Management facility
the Swapper, 3-26
Virtual code segment management
and assembly code, 11-10
model of the internal workings of, 11-13
Virtual Code segments, 2-2

WORD, 6-20
WRAP command, -1
WRAP

command options, 1-2

y

Zero flag, 9-4
ZF, 9-4

PN

A= 4

4

Help Us To Help You

Publication Title

Form Number Date

Unisys Corporation is interested in your comments and suggestions regarding this manual. We will use them to
improve the quality of your Product Information. Please check type of suggestion:
O Addition O Deletion O Revision O Error

Name

Title Company

Address (Street, City, State, Zip)

Telephone Number

Help Us To Help You

Publication Title

Form Number Date

Unisys Corporation is interested in your comments and suggestions regarding this manual. We will use them to
improve the quality of your Product Information. Please check type of suggestion:
O Addition O Deletion O Revision O Error

Name

Title Company

Address (Street, City, State, Zip)

Teleph

Number

BUSINESS REPLY MAIL

First Class

Permit No. 817 -

Detroit, MI 48232

Postage Will Be Paid By Addressee

Unisys Corporation
ATTN: Corporate Product Information

PO. Box 418

Detroit, MI 48232-9975 USA

BUSINESS REPLY MAIL

First Class

Permit No. 817

Detroit, MI 48232

Postage Will Be Paid By Addressee

Unisys Corporation
ATTN: Corporate Product Informatlon

P0. Box 418

Detroit, MI 48232-9975 USA

No Postage
necessary

if mailed in the
United States

No Postage
necessary

if mailed in the
United States

£ T

