
BTOS/CTOS Disk Structures

1

Disk Structures Overview

The base element of the BTOS file system is a 512 byte sector which is defined either by logical file
address (lfa), or by a cylinder, head and sector number. One or more contiguous sectors comprise a disk
extent, which is definable by its starting lfa and its length. Files consist of one or more disk extents.

A lfa is used to locate a particular sector of a file. It specifies the byte position within a file; that is, it is the
number (the offset) that would be assigned to a byte in a file if all the bytes were numbered consecutively
starting with zero. A lfa is 32 bits in length. Bits 0-29 of the lfa define a disk address, bit 30 can be set to
suppress retries, and bit 31 can be set to override normal system checks to access defective disks.

Files are grouped into user-defined sets called directories, such that a file may belong to only one
directory. A disk or volume contains at least one directory (sys), which minimally contains the files, which
describe the disk. The number of directories per volume, and the number of files per directory are finite
numbers set at volume or directory creation time.

Hierarchy

The root structure of the file system is the Volume Home Block (VHB), which contains pointers to the
other structures of the file system. Two VHB's are allocated at initialization time, one at lfa zero and one
at mid-point on the volume. The VHB contains the lfa of the Master File Directory (MFD), which defines
the volume's directories. Each active entry in the MFD contains the lfa of its directory, which is a hashed
table of file names and their pointers into the File Headers.

Each file is allotted at least one entry in the File Headers. This entry defines up to 32 disk extents of
which the file is comprised. In the rare case that a file requires more than 32 extents, file headers are
chained. The base address of the File Headers is also found in the VHB.

There exists the option to write secondary, or backup file headers, to be used in the event that the
primary is unreadable. (Secondary file headers are the default option in the standard volume
initialization). The secondary headers are placed after every N primary headers, where N is defined in
the VHB as AlternateFileHdrPageOffset. The VHB also keeps track of the next free file header, and the
total number of free file headers.

Figure 1

Volume
Home
Block

(VHB)

File Headers
File Headers
File Headers

�
 �
 �
 �

File Headers
File Headers
File Headers

�

 �
 �
 �

MFD
MFD

�
 �
 �
 MFD

�
 �
 DIR

DIR
DIR

BTOS/CTOS Disk Structures

2

Figure 1 illustrates that the Volume Home Block has a pointer to the first sector of the File Headers, as
well as to the first sector of the Master File Directory. Each Directory has entries for all the files in the
directory and a pointer to the File Header, which describes the file. Each File Header has pointers to the
extents of the file.

The other structures that comprise the file system are the Bad Block File (BadBlk.Sys), which keeps a
count of bad spots by cylinder/head/sector address, and the Allocation Bit Map, which contains a bit for
every disk sector. The bit is set if the sector is available.

The Volume Home Block

The VHB contains the locations and sizes of the other structures which comprise the BTOS file system as
well as pointers to other system files such as the operating system (sysImage.sys), crash dump file
(crashDump.sys), log file (log.sys), etc. BTOS initialization writes two Volume Home Blocks per disk, one
at logical file address zero and one at a mid-point on the media.

The VHB is accessible by reading lfa zero, by calling the BTOS function GetVHB, or by accessing the
pointer to the memory resident VHB found in the Device Control Block (DCB). The VHB itself has no
entry in the File Headers.

Offset Size Field
0 2 Checksum

See Appendix.
2 4 LfaSysImagebase

Address of the first sector of the operating system.
6 2 CPagesSysImage

Size in sectors of the operating system.
8 4 LfaBadBlkbase

Address of the first sector of the bad sector file (badBlk.sys).
12 2 CPagesBadBlk

Size in sectors of the bad block file .
14 4 LfaCrashDumpbase

Address of the first sector of the crash dump file (crashDump.sys).
18 2 Size in sectors of the crash dump file.CPagesCrashDump

20 13 VolName

Volume Name; first byte contains the count of bytes in the volume name.
33 13 VolPasssword

Volume Password; first byte contains the count of bytes in the Password
46 4 LfaVHB

Address of the first sector of the second (active) VHB.
50 4 LfaInitialVHB

Address of the first sector of the first (backup) VHB.
54 4 CreationDT

The date of initialization in System Date/Time format.
58 4 ModificationDT

The date of last modification in System Date/Time format.
62 4 LfaMFDbase

Address of the first sector of the Master File Directory.
66 2 CPagedMFD

Size in sectors of the MFD.
68 2 LfaLogbase

BTOS/CTOS Disk Structures

3

Offset Size Field
Address of the first sector of the system log file (log.sys).

72 2 CPagesLog
Size in sectors of the system log file.

74 2 CurrentLogpage
The sector offset from lfaLogbase where the current log entry is to be written.

76 2 CurrentLogbyte
The byte offset within currentLogpage where the current log entry is to be written.

78 4 LfaFileHeadersbase
Address of the first sector of the File Headers

82 2 CPagesFileHeaders
Size in sectors of the File Headers.

84 2 AltFileHeaderPageOffset
The number of file headers that separate a primary file from its secondary file
header.

86 2 IFreeFileHeader
The offset from lfaFileHeadersbase to the next available file header.

88 2 CFreeFileHeaders
The total number of unused file headers.

90 2 ClusterFactor
Not used. Contains a 1.

92 2 DefaultExtend
Not used. Contains a 1.

94 2 AllocSkipCnt
Not used. Contains a 1.

96 4 LfaAllocBitMapbase
Address of the the first sector of the allocation bit map.

100 2 CPagesAllocBitMap
Size in sectors of the allocation bit map.

102 2 LastAllocBitMapPage
When combined with lastAllocWord and lastAllocBit, forms a pointer into the bit
map for the next available sector.

104 2 LastAllocWord
see lastAllocBitMapPage

106 2 LastAllocBit
see lastAllocBitMapPage

108 4 CFreePages
Total number of unallocated sectors.

112 2 IDev
Offset into the array of device control blocks.

114 105 RgLruDirEntries
An array of the three Last Recently Used MFDs (35 bytes each, see MFD
structure).

219 2 MagicWd
Used to calculate the checksums for the Volume Home Block and the File
Headers. Value is 7C39.

221
222
223
225

1
1
2
2

SysImageBaseSector
SysImageBaseHead
SysImageBaseCylinder
SysImageMaxPageCount
The above fields describe for the bootstrap ROM the location and file size of the
program to be bootstrapped.

227
228

1
1

BadBlkBaseSector
BadBlkBaseHead

BTOS/CTOS Disk Structures

4

Offset Size Field
229
231

2
2

BadBlkBaseCylinder
BadBlkBaseMaxPageCount
The above fields describe the location of the Bad Block map used by IVolume
when reinitializing a volume.

233
234
235
237

1
1
2
2

DumpBaseSector
DumpBaseHead
DumpBaseCylinder
DumpBaseMaxPageCount
The above fields describe the location and file size of the crashdump area to be
used by the Bootstrap ROM when a memory dump is performed.

239
241
243
245

2
2
2
2

BytesPerSector
SectorsPerTrack
TracksPerCylinder
CylindersPerDisk
The above fields describe the physical characteristics of the disk drive.

247 1 InterleaveFactor
see Sector interleaving

248 2 SectorSize
250 1 SpiralFactor

see Sector spiraling
251 1 StartingSector

The above four fields describe formatting parameters used by IVolume.
252 4 Reserved for expansion.

The Master File Directory.

The master file directory contains hashed entries for each directory on the volume. An entry for the MFD
exists in the file headers under the file name "<sys>Mfd.Sys".

The sector address of the MFD is found in the Volume Home Block, as is its length in sectors. Up to
fourteen entries can be stored in each sector of the MFD, and each sector has a one byte header before
the MFD entries begin.

MFD entry:

Offset Size Field
0 13 DirectoryName

Name of the directory; first byte contains the count of bytes in the directory name.
13 13 DirPassword

Name of the password; first byte contains the count of bytes in the password name.
26 4 LfaDirbase

Address of the the first sector of the directory.
30 2 Cpages

Size in sectors of the directory.
32 1 DefaultAccessCode

Password protection level of the directory.
33 2 LruCnt

Last recently used count; the last used directory has a zero lruCnt. The other
directories lruCnts are incremented when a file is accessed which does not belong to
the directory.

BTOS/CTOS Disk Structures

5

MFD sector:

Offset Size Field
0 2 Header
2 490 rgMFDentries(14)
 an array of fourteen MFD entries described above.

The Directory

The Master File Directory contains the sector address and the sector size of all the directories on the
volume. The Directory has no entry for itself in the File Headers and so may be accessed only through
the Master File Directory itself.

File names are hashed into the list using the algorithm described in the appendix. All other bytes in the
list are set to zero; a sequential search for files within the directory searches for the first non-zero byte,
signifying start of entry.

Offset Size Field
0 1 CbFileName

The count of bytes in the filename.
1 cbFileName The File name.
1+cbFilename 2 FileHeaderOffset.

The offset from the start of the file headers to the entry for this file.

File Headers

The File Headers contain primary, and optionally, secondary file headers. Secondary file headers reside
N sectors past the primary file header, where N is "AltFileHeaderPageOffset" as described in the VHB.
Non-active file headers contain a zero length in the file name field. Since there is no notion of the "last"
active file header, the file headers are rarely read sequentially - rather the Directory entries are searched
for a pointer to the file headers.

The file headers reside in a file describing itself called "<sys>FileHeaders.Sys".

Offset Size Field
0 2 Checksum

see appendix
2 2 FileHeaderPageNumber.
 The sector offset from the start of the file headers of the primary file header.

4 51 sbFileName.
 File name, the first byte contains the length of the file name. If the first byte is zero

the file header is inactive.
55 13 sbFileNamePassword.

 File password, first byte contains the length.
68 13 sbDirectoryName.

 Directory name the file is located in. The first byte contains the length of the name.
81 2 FileHeaderNumber.

 The sector offset from the start of the file headers of the primary file header.

BTOS/CTOS Disk Structures

6

Offset Size Field
83 2 ExtensionFileHeaderNumber.

 The sector offset from the start of the file headers of the extension file header in the
case of a file with more than 32 extents.

85 1 bHeaderSequenceNumber.
 Sequential number assigned to extension file headers.

86 1 bFileClass.
 Not Implemented.

87 1 bAccessProtection.
 File protection level.

88 4 lfaDirPage.
 Sector address of the master file directory entry for the file's directory.

92 4 CreationDate.
96 4 ModificatioDate.
100 4 AccessDate.
104 4 ExpirationDate.

 Not implemented.
108 1 fNoSave.

 Used by the BackUp Volume utility to determine whether to backup the file. Set to
TRUE for FileHeaders.Sys, Mfd.Sys, etc.

109 1 fNoDirPrint.
 Not Implemented

110 1 fNoDelete
 Set to TRUE for system files which should not be deleted.

111 4 cbFile
 Size of the file in bytes.

115 4 defaultExpansion
 The sector size by which to expand the file if a new extend is to be created.

119 2 iFreeRun
 Index into the rgLfaExtent and rgoExtent tables below of the next available empty

extent.
121 128 rgLfaExtents.

 Array of 32 sector addresses of the file extents.
249 128 rgcbExtents

 Array of 32 byte lengths of extents, where the length is a multiple of the sector size.
377 71 Reserved
448 64 application specific field

Bad Block File

The Bad Block file records up to 128 bad sectors on the volume. Its lfa is contained in the VHB, and its
length is always one sector. For information on converting cylinder, head, and sector addresses into a
lfa, see appendix.

Offset Size Field
0 128 RgbBadSector

Array of 128 bytes defining the sector number of the first 128 bad spots.
128 128 RgbBadHead

Array of 128 bytes defining the head number of the first 128 ad spots.
256 256 RgwBadCylinder

Array of 128 words defining the track number of the first 128 bad spots.

BTOS/CTOS Disk Structures

7

Allocation Bit Map

The lfa and size of the Allocation Bit Map is described in the VHB. Each bit in the map describes the
availability of one sector on the volume; the bit is set to on if the sector is available. Since the bit map has
no entry in the file headers, and hence no end of file description, it can be read successfully by
determining the total number of sectors on the volume (this information can be extrapolated from the
Device Control Block), and reading only the first nSectors/8 bytes of the bit map. (The DCB is described
in the "Memory Structures", below).

Memory Structures Overview

Information about the disk devices available to the system is found in the Device Control Blocks, which
describe the characteristics of the device (eg, tracks, sectors, sector size, number of retries), as well as
the name and password. The DCB also contains an offset to the memory resident VHB for the device,
and offsets to the first and active IO Blocks for it. The pointer to the offset to an array of offsets to the
system DCBs is located at 27Ch (in the System Common Address Table, described in the BTOS
manual). The number of DCBs is a sysgen parameter.

When a request to open a file is issued, the OS allocates a File Control Block, does a search of the file
header block for the filename, and loads the file header number of the file into the FCB (a new file header
number is returned if the file did not previously exist). The lfa's and sizes of the file's disk extents are read
from the file header and loaded into a linked list of File Access Blocks; the FCB remembering the first
FAB. Also a File User Block is allocated which contains a pointer to the FCB and contains the user
number. A file handle is assigned to the file and returned to the caller for subsequent operations as an
offset to the correct FUB. The User Control Block associated with the task contains a pointer to an array
of offsets, which point to the FCB's of the task.

Pointers to the offset of an array of offsets to FCBs and UCBs are stored in the System Common Address
Table (SCAT) at addresses 280h and 284h respectively. (Note: these offsets must be combined with the
segment address of DGroup of the Operating System, which is found at 242h of the SCAT).

The number of FCBs and FABs are sysgen parameters: the number of FCBs should be equal to the
number of files to be open at one time; the number of FABs is a factor of the number of FCBs and how
fragmented the volume becomes (i.e., disk extents per open file).

Device Control Block

The DCB can be accessed via the BTOS call "QueryDCB", or through the pointer in the SCAT described
above.

Offset Size Field
0 1 fMountable
1 1 fNonSharable
2 1 fDoubleDensity
3 1 fNoMultiTrack
4 1 fAttention
5 1 fTimeout
6 13 sbDeviceName

19 13 sbDevicePassword
32 1 controllerNum
33 1 iUnit

BTOS/CTOS Disk Structures

8

Offset Size Field
34 1 state
35 1 unitStatus
36 1 deviceClass
37 1 cUsers
38 2 oVHB
40 2 oIOBfirst
42 2 oIOBactive
44 4 lfaMax
48 4 lfaMask
50 2 verifyKey
52 2 ovlyProcOpen
54 2 ovlyProcClose
56 2 cRetryMax
58 2 cSoftSectors
60 2 cHardErrors
62 2 currentCylinder
64 1 sectorSizeCode
65 2 GapLength
67 1 DataLength
68 2 BytesPerSector
70 2 SectorsPerTrack
72 2 TracksPerCylinder
74 2 CylindersPerDisk

File Access Block

Offset Size Field
0 2 oChainFAB
2 4 lfaDiskExtent
6 4 sizeDiskExtent

File Control Block

Offset Size Field
0 2 oFAB
2 2 devNum
4 2 userCount
6 2 openMode
8 2 FileHeaderNum

File User Block

Offset Size Field
0 2 oFCB
2 2 userNum
4 1 fhStatus

BTOS/CTOS Disk Structures

9

Appendix A

Sector Spiraling

Spiraling is a performance mechanism of the floppy device driver on the B20 Series used to reduce the
wait time for a sector to come under the head when the head must switch tracks or diskette sides. During
the time the head switches or seeks the next track approximately 3 sectors have spun past it; to avoid
waiting for the next cSectorsPerTrack-3 to spin past the head, the first sector of the next track/head is
assigned the sector number of nSectorPrevTrack+3. The first three tracks of a B20 16 sector diskette are
shown below:

 Physical Sector Position

 1 1 1 1 1 1 1
 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

 1 1 1 1 1 1 1
Track 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6

 1 1 1 1 1 1 1 1
Track 2 4 5 6 1 2 3 4 5 6 7 8 9 1 1 2 3

 1 1 1 1 1 1 1
Track 3 1 2 3 4 5 1 1 2 3 4 5 6 7 8 9 0

Sector Interleaving

Interleaving is a sector mapping technique used on B20 hard disks to match the spin speed of the disk to
the disk controller’s ability to read sectors. Since 3 sectors spin by the head in the time it takes the
controller to be ready to read the next sector. Sector numbers are assigned which are three past the last
physical position read.

The sectors of a track of an interleaved disk are shown here:

 Physical Sector Position

 1 1 1 1 1 1 1
 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

 1 1 1 1 1 1 1
Track 1 1 4 7 0 3 6 3 6 9 2 5 2 5 8 1 4

BTOS/CTOS Disk Structures

10

Hashing Algorithm

The following hashing algorithm is used to place and locate entries within the Master File Directory and
the Directories to determine the sector within which the entry resides.

The arguments the hasher takes are name (directory or file) and the size in sectors of the table
(Mfd.cDirectory or Vhb.cMfd).

"Name" is an array[1..n] of bytes;
"Divisor" is the size in sectors of the structure;
"n" is the length of Name;
"b" is a byte;
"x" is a word;

x := 0;
For i := 1 to n do
begin
 b := name[i];
 if b >= 'a' and b <= 'z'
 then b := b-#20;
 {make upper case}
 x := 73*x+b;
end;
hashSectorNumber := x Mod Divisor;

Checksum Algorithm

The Volume Home Block and the File Headers use this checksum, however the VHB checksums the first
128 words only, while the FHB checksums 256 words. The value of magicWord is 7C39h, and can be
found in the VHB.

"w" is a word;
"nLastWdSector" is the number of words to checksum;
"wBuffer" is the sector to be checksummed;

w := magicWord;
for i := 1 to nLastWdSector do
 w := w - wBuffer[i];
if w <> 0 then erc := ercBadCheckSum;

BTOS/CTOS Disk Structures

11

Appendix B

Computing Lfa's from head/cylinder/sector

The algorithm for computing a logical file address (lfa) given the cylinder, head, and sector
number (where sector number is zero based) is :

Lfa = ((cylinder * Dcb.TracksPerCylinder + Head) *

(Dcb.SectorsPerTrack * Dcb.BytesPerSector)) +
((iSector-1) * Dcb.BytesPerSector).

Terminology

Prefix Meaning
lfa logical file address, 4 bytes in length.
sb character string where the first byte is the length of the string.
p memory pointer, 4 bytes; most significant word is segment address, least is offset.
o offset, the register address portion of a pointer
rg array of.
c count of, displaces a word.
b byte.

(note that words are in Intel format, most significant byte last)

