

••
UNISYS BTOS

Sort/Merge
Operations
Reference Manual

Copyright<rJ 1987, Unisys Corporation,
Detroit, Michigan 48232

Previous Title: 820 Systems Sort/Merge Reference Manual

Relative to Release
Level 8.0

Priced Item

February 1987

5022148

Unisys believes that the software described in this manual is
accurate. and much care has been taken in its preparation. '

The customer's attention is drawn to the provisions of the Trade
Practices Act 1974 (as amended) ('the Act') which imply conditions
and warranties into certain contracts for the supply of goods and
services. Where such conditions and warranties ~re implieq
Unisys liability shall be limited (subject to the provisilm, pf
Section 68A of the Act) to the replacement or repair of the goods
or the supply of equivalent goods.

The customer should exercise care to assure that use of this manual
and the software will be in full compliance with the laws. rules and
regulations of the jurisdiction in which it is used.

The information contained herein is subject to change. Revisions
may be issued from time to time to advise of changes and/or
additions.

Co~nts or suggestions regarding this document should be submitted on
a Field Communication Form (FCF) with the CLASS specified as 2 (S.SW:
System Software). the type specified a~ 1 (F.T.R.). and the product
specified as the 7-digi t form number of the malliJal (for example. 5023906).

iii

Affected Pages

Page Issue

Title PCN-OOl
ii Original
iii PCN-OOl
iv Blank
v thru viii Original
ix PCN-OOl
x Original
1-1 PCN-OOl
1-2 Original
2-1 thru 2-5 Original
2-6 Blank
3-1 thru 3-11 Original
3-12 Blank
4-1 thru 4-8 Original
5-1 thru 5-8 Original
6-1 thru 6-8 Original
A-1 thru A-4 Original
B-1 thru B-5 Original
8-6 Blank
C-1 thru C-8 Original
1 thru 3 Original
4 Blank

5022148-001

Contents

Title

Introduction
Related Materials'....................
Conventions Used in this Manual

Section 1: Overview
Sort/Merge Features
Sort and Merge Utilities
Object Module Procedures

Section 2: Concepts
Key Types
Binary
Byte String
Character String,
Decimal (Odd)/Decimal (Even)
Display .. .
Integer
Long/Short/Extended IEEE
Long/Short Real
Multilevel Sort Capabilities
Merging

Section J: Sort Utility
Activating Sort
Field Descriptions
Customizing Sort
Processing Input Records
SortlnStart
Sortln :................
SortlnDone
Processing Output Records
SortOutStart .. .
&~~
SortOutDone
Input Error Handling
Building a Customized Sort Utility

Section 4: Merge Utility
Activating Merge
Field Descriptions
Customizing Merge
Processing Output Records
MergeOutStart
MergeOut

5022148

v

Page

ix
ix
ix

1-1
1-1
1-2
1-2

2-1
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-4
2-4
2-5

3-1
3-1
3-2
3-6
3-7
3-7
3-8
3-8
3-9
3-9
3-9

3-10
3-10
3-11

4-1
4-2
4-2
4-4
4-4
4-4
4-5

vi Contents (Continued)

Title Page

MergeOutDone 4-6
Error Handling 4-6
Sequence Break Handling 4-7
Building a Customized Merge Utility 4-8

Section 5: Object Module Procedures. 5-1
Key-In-Record Sort Procedures 5-1
Data Types 5-2
Key Types '. 5-5
Binary 5-5
Byte '.' . 5-5
Character ... 5-5
Decimal .. 5-5
Long/Short Real 5-6
Integer . 5-6
IEEE Real 5-6
Short IEEE Real . 5-6
Long IEEE Real 5-6
Display 5-7
External-Key Sort Procedures 5-7
Status Block 5-8

Section 6: Operations 6-1
ConcludeSort 6-3
DoSort ... 6-3
PrepareKeySort 6-3
Prepare Sort 6-4
ReleaseRecord 6-5
ReleaseRecordAndKey 6-6
Return Record 6-6
ReturnRecordandKey 6-7
T erminateSort 6-8

Appendix A: Status Codes A-1
General .. A-1
External-Key Sort A-1
Key-In-Record Sort A-2
Sort Utility A-3
Merge Utility A-4

Appendix B: Calling Sort Object Modules From Programming
Languages B-1
BasicPrepareKeySort B-1

Procedural Interface B-2

Contents (Continued) vii

Title Page

8asicPrepareSort 8-3
Procedural Interface 8-4

Appendix C: Glossary C-l

Index

viii Tables

Table Title Page

5-1 Format of a Key Component Descriptor 5-2
5-2 Types of Key Components 5-3
5-3 Key Types and Programming language Representations ... 5-4
5-4 Status Block Format 5-8
6-1 Contents of PrepareSortBlock 6-1
6-2 Contents of ~ey Descriptor 6-2

ix

Introduction
This manual provides descriptive and operational information
for the Unisys Sort/Merge utility used in Unisys applications. I

Related Materials
For detailed information on BTOS, the Unisys workstation
operating system, refer to your BrOS Reference Manual.

For detailed information on Executive level commands, refer
to your BrOS Standard Software Operations Guide.

For information on the Editor, refer to your BrOS Editor
Operations Guide.

In addition, the following technical manuals are referenced in
this manual:

o BrOS Customizer Programming Reference Manual

o BrOS BASIC Compiler Programming Reference Manual

o BrOS FORrRAN Compiler Programming Reference Manual

o BrOS Indexed Sequential Access Method (ISAM) Operations
Reference Manual

o BrOS Linker/Librarian Programming Reference Manual

o BrOS Pascal Complier Programming Reference Manual I

Conventions Used in this Manual
You must type items in uppercase letters in the order shown.
You can enter them in either uppercase or lowercase. For
example: . .

$END

Items in lowercase letters are variable information that you
supply. For example:

$LOG'message'

5022148-001

x

Items in square brackets are usually optional information. You
do not type the brackets. For example:

$JOB jobname,username[, password)[,SysOutfile]

Note, however, that you must type square brackets in full file
specifications (refer to the last example) and in device
names. For example:

[Kbd]

You type all punctuation (except square brackets around
optional items) as shown. For example:

$JOB jobname,username,password

Where indicated, the full file specification for an abbreviated
file specification, such as FileO.Run, is:

{node } [vol] <dir> FileO.Run

Section 1 1-1

Overview
The Unisys Sort/Merge facility is a system software product •
that sorts and merges data. Sort/Merge arranges a sequence
of data records into a sorted sequence, or merges several
sequences of sorted records into a single sorted sequence.

Sort/Merge consists of:

c an interactive Sort utility

c .an interactive Merge utility

c key-in-record sort procedures

c external-key sort procedures

Sort/Merge' Features
All the components of Sort/Merge support variable-length
records and fixed-length keys. Sort/Merge supports sorts
with a composite sort key put together either by the
application program or by Sort/Merge, using key-in-record
sort procedures.

Sort/Merge allows flexible specification of the sort key; it can
be composed of multiple fields of a record with each field
designated ascending or descending.

In addition, the interactive Sort/Merge utilities are distributed
in both Run file and object module format. The latter format
allows you to tailor the utilities through the addition of
special user-written procedures (see sections 3 and 4).

Sort/Merge makes efficient use of BTOS capabilities by I
employing all available workstation memory as well as
auxiliary disk files in its procedures.

5022148-001

1-2 Overview

Sort and Merge Utilities
The interactive Sort and Merge utilities sort or m~rge records
contained in Standard Access Method (ST AM) files. Direct
Access Method (DAM) and Indexed Sequential Access
Method (lSAM) use ST AM files for fixed length records, and
Record Sequential Access Method (RSAM) for variable length
records.

The BTOS Reference Manual describes these file access
methods. Also see the BTOS Standard Software Operations
Guide.

The Sort utility accepts several files of unsorted records and
sorts and merges the records to create a single output file.

The Merge utility accepts several files of sorted data records
and merges them into a single sorted output file.

You activate the Sort and Merge utilities from the Executive
as described in sections 3 and 4.

Object Module Procedures
The Sort/Merge object module procedures consist of
key-in-record sort procedures and external-key sort
procedures. You can link them into an application system
and call them from many programming languages, such as
BASIC, COBOL (which uses the COBOL Sort verb),
FORTRAN, and Pascal.

When you use key-in-record sort procedures, the application
program presents a single formula for extracting the sort key
from each data record. The application program releases only
data records, since the associated keys are extracted from
the records automatically.

When you use external-key sort procedures, the application
program must specify the sort key for each record as it is
released to the sort.

Section 2 2-1

Concepts
You decide the order in which you want records to be sorted
and enter this parameter into the Sort/Merge facility.

Consider the records:

City

Brigham
Logan
Murray
Ogden
Price
Provo
Salt Lake City
South Salt Lake
Tooele

Population

5,641
11,868
5,740

43,688
5,214

18,071
149,934

5,701
5,001

As shown, the records are properly sorted in ascending
alphabetical order by city. They could also be sorted in
descending alphabetical order, and in ascending or
descending numerical order by population.

All records have values that the system compares to
determine their proper order. These values are called sort
keys.

In the preceding example, the sort keys are Brigham, Logan,
Murray, etc. If the same records were sorted in descending
numerical order by population, the sort keys would be
149,934, 43,688, 18,071, etc., and the sorted records
would be:

City

Salt Lake City
Ogden
Provo
Logan
Murray
South Salt Lake
Brigham
Price
Tooele

5022148

Population

149,934
43,688
18,071
11,868

5,740
5,701
5,641
5,214
5,001

2-2 Concepts

Key Types
To allow most data representations specified in each
programming language to be used as keys, Sort/Merge
supports 12 types of keys.

A brief description of each key type follows. For more
information on the relationships between key types and
programming language representations, see table 5-3.

Binary

A binary key is an unsigned 1- to 8-byte integer. The
high-address byte of a binary key is the most significant for
determining sort order. For COBOL CaMP fields, the
low-address byte is the most significant.

Byte String

A byte string key is an uninterpreted fixed-length string of 1
to 64 binary bytes. The low-address bytes of the string are
the most significant for determining sorting order. A
distinction is made between uppercase and lowercase ASCII
characters. Byte strings have the same representation in all
programming languages.

Character String

A character string key is "a fixed-length string of 1 to 64
binary bytes. Like a byte string, a character string is sorted
with the low-address byte as the most significant. However,
unlike a byte string, character string keys are sorted with no
distinction between uppercase and lowercase ASCII
characters. Character strings have the same representation in
all programming languages.

Concepts 2-3

Decimal (Odd)/Decimal (Even)
A decimal key contains two decimal digits in each byte,
except for the last (high-address) byte, where the rightmost
four bits are reserved for a sign. This format is the same as
COBOL COMP-3.

Decimal (even) is used for values that have an even number
of digits; decimal (odd) is used for v~lues that have an odd
number of digits. The number of digits before the number is
packed determines whether the (even) or (odd) decimal type
is used.

A decimal key can contain 1 to 18 decimal digits. Decimal
fields have the same representation in all programming
languages. For more information about this type of field, see
your COBOL documentation.

Display
A display key is used in COBOL applications for USAGE IS
DISPLA Y numeric fields. All COBOL sign options are
supported. Display keys can be 1 to 19 bytes long and
contain 1 to 18 decimal digits. For more information about
the range of values and representations for display keys, see
your COBOL documentation.

Integer
An integer key is a signed 1- to 8-byte integer. The
high-address byte of an integer key is the most significant for
determining sort order. However, for COBOL CaMP fields,
the low-address byte is the most significant.

Long/Short/Extended IEEE
Long IEEE, short IEEE, and extended IEEE keys are used for
real numbers in Pascal or FORTRAN applications. The
high-address byte is the most significant byte for determining
sort order.

A long IEEE key is 8 bytes long, a short IEEE key is 4 bytes
long, and an extended IEEE key is 10 bytes long.

5022148

2-4 Concepts

Long/Short Real
Long real and short real keys are used in BASIC applications.
A long real key is an 8-byte real number; a short real key is a
4-byte real number.

For information regarding the number of bits of precision and
range of values for these keys, see your COBOL
documentation.

Multilevel Sort Capabilities
You can form a sort key by combining several parts of the
record. Sort/Merge does multilevel sorts and keeps track of
which components of the composite key are sorted in
ascending order and which are sorted in descending order.
For example, consider the records:

Part Number Backlog

98-374 100
97-392 200
93-495 200
94-592 100

Suppose you want to sort these in descending order by
backlog and, for records with the same backlog, in ascending
order by part number. The results of this sort example are:

Part Number Backlog

93-495 200
97-392 200
94-592 100
98-374 100

The external-key object module procedures do not support
composite keys. The application system provides a single
key with each record.

Concepts 2-5

Merging
The Merge utility merges copies of several existing files and
writes the merged records into a new Standard Access
Method (ST AM) file. The original files are untouched. For
example, if one file contains the records:

City Population

Salt Lake City
Provo
Logan
South Salt Lake
Brigham

149,934
18,071
11,868

5,701
5,641

and another file contains the records:

City Population

Ogden 43,688
Murray 5,740
Price 5,214
Tooele 5,001

the results of merging these files in descending order by
population are:

City

Salt Lake City
Ogden
Provo
Logan
Murray
South Salt Lake
Brigham
Price
Tooele

5022148

Population

149,934
43,688
18,071
11,868
5,740
5,701
5,641
5,214
5,001

Section 3 3-1

Sort Utility
The interactive Sort utility is a part of the Sort/Merge facility
that you activate directly from the Executive. It sorts
preexisting files of data records according to sort keys
embedded within those records.

The files can be any STAM files. You can create files with
RSAM or DAM, or they can be the data store file of an ISAM
data set. In ISAM, the result of the sort is a file that is
accessible with RSAM or DAM, but is not a new ISAM data
set. If you wish to create a new ISAM data set, consult the
BTOS Indexed Sequential Access Method (ISAM) Operations
Reference Manual.

Sort has special features to deal with input files that might
contain malformed records. These features are described
later in this section.

Activating Sort
To activate SORT from the Executive, you type Sort in the
command field of the Executive command form and then
press RETURN. The following form is displayed:

Sort
Input files
Output file
Keys
[Stable sort?]
[Work file 1]
[Work file 2]
[Log file]
[Suppress confirmation?]

5022148

3-2 Sort Utility

You must fill in the first three fields. The remaining five fields
are optional. You specify the default in an optional field by
leaving it blank. After you have filled in the appropriate fields,
you press GO.

Field Descriptions
Following are descriptions of each field that appears when you
activate Sort:

o Input files specifies a list of the names of one or more files
to be sorted. Separate the names with spaces, not
commas. Each file must be a ST AM file. All valid records
in these files are sorted; deleted records are skipped.
When Sort detects a malformed record, it activates the
error handling facilities described later in this section.

o Output file specifies the name of the file to which Sort
writes the sorted output. The output file is written with
RSAM. However, if all of the input records have the same
size, the output file is accessible with either DAM or
RSAM.

o Keys specifies how sort keys are embedded within each
data record. Although the input records can be of varying
lengths, all must have a prefix of common fixed length
containing the sort keys.

If you want a multilevel sort, you must enter several
specifications in the Keys field. Each specificaticm
represents one component of the sort key. Separate the
specifications with spaces, not commas. If there is more
than one specification, the ones that appear first are more
significant in determining sort order than the ones that
appear later.

Each key component specification has the form:

TypeName:Length.Offset.AorD. WorM

TypeName specifies the internal representation of the key
component. It is one of the following strings: Binary, Byte,
Character, Decimal, Integer, LongReal, ShortReal, LongIEEE,
ShortlEEE, ExtendedlEEE real, and Display. Capitalization is
not significant (for example, shortreal and SHORTreal are
equivalent).

Sort Utility

Also, you can use any unique abbreviation instead of a
fully spelled TypeName (for example, C or Char for
Character). The meanings of these key types are:

3-3

o Binary: the key component is a 1- to 8-byte unsigned
number. The colon and length following the TypeName
are optional. The default is 2.

o Byte: the key component is a sequence of binary bytes
of length specified by Length. The first byte is the most
significant.

o Character: the key component is a sequence of text
characters of length specified by Length. For purposes of
sorting, lowercase alphabetic characters (61 h through
7 Ah) are mapped to the corresponding uppercase
alphabetic characters (41 h through 5Ah). Thus, a is
equivalent to the letter A. The first byte is the most
significant.

o Decimal: the key component is a packed decimal number
in the format used by COBOL COMP-3 numeric data
items. The number of digits in the packed decimal
number is specified by length and must be in the range 1
through 18.

o LongReal: the key component is an 8-byte real number
used by BASIC. You must omit the colon and Length
following this TypeName.

o ShortReal: the key component is a 4-byte real number
used by BASIC. You must omit the colon and Length
following this TypeName.

o Integer: the key component is a 1- to 8-byte signed
number. The colon and length following the TypeName
are optional. The default is 2.

o Display: the key component can be 1 to 19 bytes long
and is used in COBOL applications for USAGE IS
DISPLA Y numeric fields. For the range of values and
representations for display keys, see your COBOL
documentation.

o Long IEEE: the key component is an 8-byte real number
used by all programming languages except BASIC.
(However, Long, Short, and Extended IEEE numbers do
not work with COBOL, which has no real numbers.)

5022148

3-4 Sort Utility

o ShortIEEE: the key component is a 4-byte real number
used by all programming languages except BASIC.

o ExtendedlEEE: the key component is a 10-byte real
number used by all programming languages except
BASIC.

Length specifies the length of the key component as a
positive decimal number. This number is interpreted
according to the TypeName it modifies, as described
earlier.

Offset specifies a decimal number representing the relative
byte position of the key component within a data record.
For example, an offset of 0 means that the key component
starts at the beginning of the record.

AorD specifies the order in which you want merged
records arranged. A specifies that the records be arranged
so that this key component is in ascending order. 0
specifies that the records be arranged so that this key
component is in descending order.

Sort order is determined according to the type of key
component. Thus, negative real numbers are understood to
be smaller than positive real numbers; negative packed
decimal numbers are understood to be smaller than
positive packed decimal numbers.

As an example, suppose the records to be sorted have the
form:

Offset Field Length Type

0 Name 18 bytes Character
18 Address 80 bytes Character
98 Category 2 bytes Binary

100 Identification 8 digits Decimal
Number

To sort these records in ascending order by Name, and
descending order by Identification Number, enter the
following in the Keys field:

Character: 18. O. A
Decimal: 8. 100. 0

Sort Utility 3-5

To sort these records in descending order by Identification
Number, ascending order by Category, and ascending
order by Name, enter the following in the Keys field:

Decimal: 8. 100. D
Binary: 2. 98. A
Character: 18. O. A

WorM specifies computer language application programs.
Enter W for programs written to run in BASIC, FORTRAN,

. and Pascal. Ente'r M for programs written in COBOL. The
default is W.

D [Stable sort?] specifies whether you want a stable sort.
The default is No.

Enter Yes for stable sort. A sort is said to be stable if input
records whose sort keys are equal always appear in the
output in the same order as they appear in the input.

You should specify a stable sort only if one is necessary,
since a stable sort takes longer to complete.

D [Work file 1] and [Work file 2] specify the names of two
files Sort will use as work files. Sort requires a pair of work
files, each approximately the same size as the input data. If
you specify files that already exist, Sort uses these files
and returns them at the end of the sort. If you specify files
that do not exist, Sort creates them and deletes them at
the end of the sort.

If you do not specify work file names (the default), the
work files are placed on the logged-in volume and directory
and named SortWorkfile1.Dat and SortWorkfile2.Dat.

For an efficient sort, you should make these work files
physically contiguous and place them on different physical
volumes. To make a file physically contiguous, you either
create it when the disk is not very full or, after the file
exists and has its maximum length, you use the BACKUP
VOLUME, IVOLUME, and RESTORE commands to make all files
physically contiguous. For a description of these
commands, see the BrOS Standard Software Operations
Guide.

D [Log file] specifies the name you choose for the file to
which the status report and sort statistics are to be
written.

5022148

3-6 Sort Utility

Sort computes the following statistics and writes them to
the log file: number of records, number of bytes of data,
number of merge passes, and elapsed time.

If you do not specify a log file (the default), Sort will not
produce one. However, all sort statistics and status codes
display when the sort is complete.

D [Suppress confirmation?] specifies your desire to monitor
the handling of malformed records by Sort. When Sort
encounters malformed records in the input file, it displays a
descriptive status code and writes it to the log file (if you
have specified one).

If you enter Yes, Sort automatically skips the malformed
input and searches forward in the input data for the next
well-formed record.

If you enter No, Sort automatically skips the malformed
input and displays a message that asks you whether you
want the sort to continue or to terminate.

However, you have an alternative to this method of error
handling. Sort is supplied not only as a Run file but also as
a library of object modules. You can tailor error handling to
the requirements of your application by entering
user-written procedures in place of the error handling
module, as described later in this section.

Customizing Sort
The Sort utility is designed to call certain procedures in such
a way that the application programmer can customize Sort
by replacing these procedures with user-written code.

User-written code is code that you activate to preprocess all
input records, postprocess all output records, and provide
special error handling.

Sort Utility 3-7

The library of Sort object modules, SortMerge.Lib, includes
standard definitions for the following replaceable procedures:

o SortlnStart
o Sortln
o SortlnDone
o SortOutStart
o SortOut
o SortOutDone
o SortError

Sort controls the flow of the Sort operation by calling:

1 SortlnStart once at the beginning of the sort

2 Sortln for each input record in the order read. (If malformed
records are found, SortError is called instead of Sortln.)

3 SortlnDone once after Sortln has been called for all the
input records

4 SortOutStart once after the actual sort is complete

5 SortOut for each output record in sorted order

6 SortOutDone once after SortOut has been called for all the
output records

Processing Input Records

SortlnStart

The SortlnStart procedure is called once at the beginning of
the sort. It has the interface:

SortlnStart: ErcType

This procedure has no parameters. The standard SortlnStart
is null; it does no work and returns immediately. However,
you can substitute a custom version for the standard version
to add initialization logic.

5022148

3-8 Sort Utility

Sortln
The Sortln procedure is called for each input record in the
order read.

The standard Sortln procedure included in SortMerge.Lib calls
ReleaseRecord (described in section 6) on its input record,
thus passing the input record into the standard Sort utility.
To include user-written code for preprocessing input records,
you build Sort with your own Sortln procedure that has the
interface:

Sortln (pRecord, sRecord, iFile): ErcType

where

pRecord and sRecord describe the input record to be sorted.

iFile specifies the index of the input file within the specified
list of input files (counted from zero for the first file).

The Sortln procedure can modify, delete, or insert input
records. You modify input records by passing to
ReleaseRecord a record different from the one with which it
was called (see section 6 for a description of
ReleaseRecord). Delete input records by returning to the
calling procedure without calling ReleaseRecord for selected
records. Insert input records by calling ReleaseRecord more
than once on the basis of some computation.

SortlnDone
The SortlnDone procedure is called once after Sortln has
been called for all the input records. It has the interface:

SortlnDone: ErcType

This procedure has no parameters. The standard Sartin Done
is null. You can substitute a custom version of the standard
version to add termination logic.

Sort Utility

Processing Output Records

SortOutStart

When the sort is complete and records are ready to be
written to the output file, the SortOutStart procedure is
called once to initialize the processing of output records. It
has the interface:

SortOutStart: ErcType

3-9

This procedure has no parameters. The standard
SortOutStart is null. You can substitute a custom version for
the standard version by adding initialization logic.

SortOut

The SortOut procedure is called for each output record in
turn. The standard SortOut (which is included in
SortMerge.Lib) calls OutputRecord (described in section 6) on
each record.

To include user-written code for postprocessing output
records, you build Sort with your own SortOut procedure
that has the interface:

SortOut (pRecord, sRecord, iFile): ErcType

where

pRecord and sRecord describe the output record to be
released.

iFile designates the index of the output file within the
specified list of output files (counted from zero for the first
file).

The SortOut procedure can modify, delete, or insert output
records. You modify output records by passing to
OutputRecord a record that is different from the one with
which it was called (perhaps reversing a transformation done
by a custom Sortln procedure). Delete output records by
returning to the calling procedure without calling
OutputRecord for selected records. Insert output records by
calling OutputRecord more than once on the basis of some
computation.

5022148

3-10 Sort Utility

SortOutDone

The SortOutDone procedure is called once after SortOut has
been called for all the output records. It has the interface:

SortOutDone: ErcType

This procedure has no parameters. The standard
SortOutDone is null. You can substitute a custom version for
the standard version to add termination logic.

Input Error Handling
Whenever Sort detects a malformed input record during the
input phase of the sort, it scans forward in the input file for a
well-formed record and calls the SortError procedure. (You
can replace the standard SortError with a customized
version.) The interface is:

SortError (iFile,1faRecord, cbBadData, fConfirm): ErcType

where

iFile specifies the number of the input file containing the
malformed record (counted from 0).

1 faRecord specifies the 32-bit logical file address of the
record within the input file.

cbBadData specifies the number of bytes of data before a
well-formed record. A value of 0 means that there are no
more records in this input file; a value of -1 means that there
are more than 50 sectors of bad data preceding the next
well-formed input record.

fConfirm specifies whether you want the opportunity to
confirm or deny continuation of the sort operation after Sort
detects a malformed input record. Enter FALSE (0) if you
specified Yes in the [Suppress Confirmation?] field.
Otherwise, fConfirm is TRUE (OFFH).

Prior to calling SortError, Sort displays a status code and
writes it to the log file if you specified one.

If SortError returns the status code 0 (Ok), Sort skips the
unreadable input records and continues. If SortError returns a
status code other than 0, the sort terminates.

Sort Utility 3-11

If fConfirm is FALSE (0), the standard version of SortError
returns a status code of O. If fConfirm is TRUE (OFFH), the
standard version of SortError asks you whether to continue
the sort and returns a status code or 0 or nonzero
accordingly.

To customize the treatment of errors, you must build the
Sort utility with an alternative version of SortError.

Building a Custo~ized Sort Utility
You use the Linker to build a customized Sort utility from the
library of Sort object modules, SortMerge.Lib. To activate
the Linker, type Link in the command field of the Executive
command form and press RETURN. The following form is
d:splayed:

Link
Object modules
Run file
[List file?]
[Publics?]
[Line Numbers?]
[Stack size]
[Max memory array size]
[Min memory array size]
[System build?]
[Version]
[Libraries]
[DS allocation]
[Symbol, file]

Enter [Sys]<Sys>SortMerge.Lib(SortUtility) in the object
modules field and Sort.Run in the Run file field. Include in the
object modules field any modules containing replacements
for the replaceable procedures. Fill in the [Libraries] field with
[Sys]<Sys>SortMerge.Lib. Finally, press GO to execute the
link.

See the BTOS Linker/Librarian Programming Reference Manual
for more information about the Linker.

5022148

Section 4 4-1

Merge Utility
The interactive Merge utility is part of the Sort/Merge
package which you activate from the Executive. It merges
several preexisting files of sorted data records according to
sort keys embedded within those data records.

The files can be any sorted ST AM files that you have created
with RSAM, DAM, or ISAM. Since the input files must be
sorted before they are merged, they usually are the output of
either the Sort utility or a prior execution of the Merge utility.

Merge has special features that deal with input files
containing malformed records. These are discussed later in
this section.

Merge may encounter a record that is out of order in the
input. Such a record is called a sequence break. When Merge
encounters a sequence break record, Merge writes it to the
output file, producing a sequence break in the output. It
displays a descriptive status message and writes it to a log
file if you have specified one. As with malformed input
records, you can customize treatment of sequence breaks
during input. Customizing instructions are given later in this
section.

In contrast to the other Sort/Merge components (the Sort
utility and the Sort object module procedures), Merge does
not require temporary disk storage. Because its input is
sorted, Merge simply merges all its input files into a merged
output file. However, you may need to use temporary files or
intermediate Merge operations to merge input files which
exceed memory capacity.

While stability is an option in Sort, Merge is always stable; in
Merge, two records with equal keys appear in the output in
the same order as they appear in the input.

5022148

4-2 Merge Utility

Activating Merge
To activate the Merge utility from the Executive, type Merge
in the command field of the Executive command form and
press RETURN. (For further information, see the BTOS
Standard Software Operations Guide.) The following form
displays:

Merge
Input files
Output file
Keys
[Log file]
[Suppress confirmation?]

You must fill in the first three fields. The remaining two fields
are optional. You can specify the default in an optional field
by leaving it blank. After you have filled in the appropriate
fields, you press GO.

If you wish to check whether or not a single file is sorted,
you activate Merge, specify the file as input, and enter [Nul]
as output.

Field Descriptions
o Input files specifies a list of the names of one or more

sorted files you want to merge. Separate the names with
spaces, not commas. Each file must be a STAM file. All
valid records in these files are merged; deleted records are
skipped. If Merge detect$ a malformed input record, it
activates the error handling facilities described later in this
section.

o Output file specifies the name of the file to which you want
the output written. The output file is written with RSAM.
However, if all of the input records have the same size, the
output file is accessible with either DAM or RSAM.

o Keys specifies how sort keys are embedded within each
data record. Although the input records can have varying
lengths, the records must all have a prefix of common
fixed length containing the sort keys.

Merge Utility 4-3

If you want a multilevel merge, you must enter several
specifications in the Keys field. Each specification
represents one component of the sort key. Separate the
~pecifications with spaces, not commas. If there i~ more
than one specification, Merge reads the ones that appear
first as more significant than the ones that appear later
when it determines merge order.

Each key component specification has the form:

TypeName:Length.Offset.AorD.WorM

See the description of these fields in section 3.

D [Log file] specifies the name for the file to which the status
report and merge statistics are to be written.

Merge computes and writes the following statistics to the
log file: number of records, number of bytes of data,
number of sequence breaks, and elapsed time of merge.

If you do not specify a log file (the default), no log file is
produced. However, all merge statistics and status codes
display when the merge is complete.

D [Suppress confirmation?] specifies your desire to monitor
error handling.

If Merge encounters malformed records or sequence
breaks in the input file, it displays a descriptive status
message and writes it to the log file if you have specified one.

For malformed records, if you enter Yes, Merge
automatically skips any malformed input it finds and
searches forward in the input data for the next well-formed
record.

If you enter No, Merge automatically skips the malformed
input and displays a message that asks you whether you
want to continue the merge or to terminate.

For sequence breaks, if you enter Yes, Merge displays a
message that tells you of the sequence break, and the
merge automatically continues. (The message does not
require any input from you.)

If you enter No, Merge stops when it encounters a
sequence break. Merge displays a message that asks you
whether or not you want the merge to proceed.

5022148

4-4 Merge Utility

However, you have an alternative to this method of error
handling. Because Merge is supplied not only as a Run file
but also as a library of object modules, you can tailor error
handling to your requirements by replacing the error
handling module. More information on error handling is
provided later in this section.

Customizing Merge
The Merge utility is designed to call certain procedures in
such a way that the application programmer can customize
Merge by replacing these procedures with user-written code.

User-written code is special code that you activate to
process all records and provide special sequence break and
error handling.

The library of Merge object modules, SortMerge.Lib, includes
standard definitions for the following replaceable procedures:

o MergeOutStart
o MergeOut
o MergeOutDone
o MergeSequenceBreak
o MergeError

Merge controls the flow of the merge operation by calling:

1 MergeOutStart once at the beginning of the merge

2 MergeOut for each record in merged order. (For sequence
break records, MergeSequenceBreak is called in place of
MergeOut. For malformed records, MergeError is called.)

3 MergeOutDone once when Merge is complete

Processing Output Records

MergeOutStart
MergeOutStart is called once at the beginning of the merge.
It has the interface:

MergeOutStart: ErcType

Merge Utility 4-5

This procedure has no parameters. The standard
MergeOutStart is null; it does no work and returns
immediately. However, you can substitute a custom version
for the standard version to perform initializing or concluding
computation.

MergeOut

MergeOut is called for each record in merged order. The
standard MergeOut procedure included in SortMerge.Lib calls
OutputRecord (whose interface is the same as MergeOut) on
its parameter, thus placing the record into the merge output
buffer.

To include user-written code for processing output records,
you build Merge with your own MergeOut procedure that has
the interface:

MergeOut (pRecord, sRecord, iFile): ErcType

where

pRecord and sRecord describe the input record to be output.

iFile specifies the index of the input file within the designated
list of input files (counted from 0).

The MergeOut procedure can modify, delete, or insert output
records. You modify output records by passing to
OutputRecord a record that is different from the one with
which it was called. You can delete output records by
returning to the calling procedure without calling
OutputRecord for selected records. You can insert output
records by calling OutputRecord more than once on the basis
of some computation.

Here is an example of a typical custom MergeOut procedure.
Suppose the records have fields named Part Number and
Quantity Ordered and are merging according to Part Number
A MergeOut Procedure can group sequences of records with
the same Part Number and write only a single record for each
such group to the output file. The single output record would
have the common Part Number and the sum of Quantity
Ordered values from the input.

5022148

4-6 Merge Utility

MergeOutDone

MergeOutDone is called once when Merge is complete. It has
the interface:

MergeOutDone: ErcType

This procedure has no parameters. The standard
MergeOutDone is null. You can substitute a custom version
for the standard version to add termination logic.

Error Handling
Whenever Merge detects a malformed input record during
the input phase of the merge, it scans forward in the input
file for a well-formed record and calls the MergeError
procedure. The interface is:

MergeError (iFile, 1 faRecord, cbBadData, fConfirm):
ErcType

where

iFile specifies the number of the input file containing the
malformed record (counting from 0).

1 faRecord specifies the 32-bit logical file address of that
record within the input file.

cbBadData specifies the number of bytes of data before a
well-formed record. A value of 0 means that there are no
more records in this input file; a value of -1 means that there
may be up to 50 sectors of bad data preceding the next
well-formed input record.

fConfirm specifies whether you want the opportunity to
confirm or deny continuation of the merge operation after
Merge detects a malformed input record. Enter FALSE (0) if
you entered Yes in the [Suppress confirmation?] field.
Otherwise, fConfirm is TRUE (OFFH).

Prior to calling MergeError, Merge displays a status message
and writes it to the log file if you specified one.

Merge Utility 4-7

If MergeError returns the status code 0 (Ok), Merge skips the
unreadable input records and continues. If MergeError returns
a status code other than 0, the merge terminates.

If fConfirm is FALSE (0), the standard version of MergeError
returns a status code of O. If fConfirm is TRUE (OFFH), the
standard version of MergeError asks you whether or not you
want to continue the merge and returns 0 or nonzero
accordingly.

TO customize the treatment of errors, you must build the
Merge utility with an alternative version of MergeError.

Sequence Break Handling
Whenever Merge detects a sequence-break record, it calls
the MergeSequenceBreak procedure in place of MergeOut.
The interface is:

MergeSequenceBreak (pRecord, sRecord, iFile, fConfirm):
ErcType

where

pRecord and sRecord describe the sequence-break record.

iFile specifies the index, within the specified list of input files,
of the input file containing the sequence-break record
(counting from 0).

fConfirm specifies whether you want the opportunity to
confirm or deny continuation of the merge operation after
Merge detects a sequence-break record. If you entered Yes in
the [Suppress confirmation?] field, specify FALSE (0).
Otherwise, fConfirm is TRUE (OFFH).

Prior to calling MergeSequenceBreak, Merge displays a
status code and writes it to the log file if you specified one.

If MergeSequenceBreak returns the status code 0 (Ok), the
out-of-sequence record is placed in the output and the merge
continues. If MergeSequenceBreak returns a status code
other than 0, the merge terminates.

5022148

4-8 Merge Utility

The standard version of MergeSequenceBreak returns a
status code of 0, if fConfirm is FALSE (0). If fConfirm is
TRUE (OFFH), the standard version of MergeSequenceBreak
asks you whether or not to continue the merge and returns 0
or nonzero accordingly.

To customize the treatment of sequence breaks, you must
build the Merge utility with an alternative version of
MergeSequenceBreak.

Building a Customized Merge Utility
You use the Linker to build a customized Merge utility from
the library of Merge object modules, SortMerge.Lib. To
activate the Linker, you type Link in the command field of the
Executive command form and press RETURN. The following
form is displayed:

Link
Object modules
Run file
[List file?]
[Publics?]
[Line numbers?]
[Stack size]
[Max memory array size]
[Min memory array size]
[System build?]
[Version]
[Libraries]
[DS allocation?]
[Symbol file]

You enter [Sys]<Sys>SortMerge.Lib(MergeUtility) in the
object modules field, and Merge.Run in the run file field.
Include in the object modules field any modules containing
replacements for the replaceable procedures. You fill in the
[Libraries] field with [Sys]<Sys>SortMerge.Lib . You finally,
press GO to execute the link.

See the BTOS Linker/Librarian Programming Reference Manual
for more information about the Linker.

Section 5

Object Module Procedures
Sort/Merge has two types of object module procedures:
key-in-record sort procedures and external-key sort
procedures. You can link these procedures with an
application program and call them from programming
languages such as BASIC, FORTRAN, and Pascal. COBOL
calls Sort/Merge with the COBOL Sort verb.

Key-In-Record Sort Procedures

5-1

In the key-in-record sort object module procedure, records
and their associated keys are released to the Sort utility one
at a time. When all records are released, the Sort utility does
a sort using specified auxiliary disk storage. It then returns
the sorted records and associated keys to the application
one at a time.

The procedures comprising the key-in-record sort facility are:

o PrepareKeySort
o ReleaseRecord
o DoSort
o ReturnRecord
o ConciudeSort
o T erminateSort

In an application program, you must not mix calls to the
key-in-record sort procedures and the external-key sort
procedures during the same sort.

Sort controls the flow of the key-in-record sort facility by
calling:

1 PrepareKeySort to initialize the Sort/Merge facility. (This
specification includes the names of work files and the
memory to be used as a sort work area.)

2 ReleaseRecord once for each record to be sorted

3 DoSort to do the actual sort when all records are released

4 ReturnRecord once for each record to retrieve the record
and its associated keys in sorted order

5 Conclude Sort to close files and release resources

5022148

5-2 Object Module Procedures

In the event of an error during the sort, the sort may be
prematurely ended and resources released by a call to
TerminateSort.

Data Types
The system organizes byte and character data with the most
significant byte at the lowest memory address, and binary
data with the most significant byte at the highest memory
address. Real and packed decimal data are different from
each other and from the preceding data, since the sign of the
data is stored differently in each case. Therefore, when you
use the key-in-record sort, you must properly specify the
data types of the sort fields. Once you do this, the extraction
of a key and correct comparison of keys is automatic.

PrepareKeySort includes the formula for extracting a sort key
from a record. This formula makes possible multilevel sorting
by allowing you to specify that a sort key be built by
combining several fields of a record.

Each field of a record that comprises its sort key is defined
by a key component descriptor whose format is shown in
table 5-1.

Table 5-1 Format of a Key Component Descriptor

Size
Offset Field (bytes) Description

0 rbKey 2 the offset of the key component
within the record

2 cbKey 2 the size of the key component in
bytes

4 type 2 one of the values 0 to 11 (20 to
31 COBOL~, used to represent a
key type as described in table 5-2

6 fAscending 2 TRUE (OFFH) if the s(Jrted records
are to have ascending values in
this field, or FALSE (OH) if they
are to have descending values

The fields type and cbKey together specify the type and size
of the key component, as shown in table 5-2.

Object Module Procedures 5-3

Table 5-2 Types of Key Components

Type Name of Type Note

0 Binary cbKey contains the length of the key in bytes.
1 to 8 are valid values.

Byte cbKey contains the length of the key in bytes.
1 to 64 are valid values.

2 Character cbKey contains the length of the key in bytes.
1 to 64 are valid values.

3 Decimal cbKey contains (d + 2)/2, where d is (odd)
the number of decimal digits in the key. d
must not exceed 18.

4 Long Real cbKey must contain 8.

5 Short Real cbKey must contain 4.

6 Decimal See Decimal (odd) for the value of (even)
cbKey. This type is used for keys that have
an even number of decimal keys.

7 Integer cbKey contains the length of the key in bytes.
1 to 8 are valid values.

8 Long IEEE cbKey must contain 8.

9 Short IEEE cbKey must contain 4.

10 Extended IEEE cbKey must contain 10.

11 Display cbKey contains the length of the key in bytes.
1 to 19 are valid values.

Note: COBOL applications use the values 20 to 31 for the
corresponding key types listed in this table.

Key types and programming language representations are
shown in table 5-3.

5022148

5-4 Object Module Procedures

Table 5-3 Key Types and Programming Language Representations

language and Key Type

BASIC Interpreter

Integer (%)
ShortReal (!)
Long Real (#)

BASIC Compiler

Integer (%)
Short Real (I)
Long Real (#)

COBOL

USAGE is DISPLAY (n-byte)
(numeric types)
USAGE is COMP (n-byte)
(signed)
USAGE is COMP (n-byte)
(unsigned)
USAGE is COMP-3 (n-digit)
(n even)
USAGE is COMP-3 (n-digit)
(n odd)

Note: COBOL uses the types 20 to 31.

FORTRAN (Microsoft)

INTEGER*2
INTEGER*4
REAL*4
REAL*8
DOUBLE PRECISION

Pascal (Microsoft)

Byte
Integer
Real
Sint
Word

Index Spec.
cblndexField

2
4
8

2
4
8

(n+2)/2

(n+ 1)/2

2
4
4
8
8

1
2
4
1
2

wType

7
5
4

7
5
4

31

27

20

26

23

7
7
9
8
8

a
7
9
7
a

Object Module Procedures 5-5

Key Types
Components of sort keys can have any of these types:
binary, byte, character, decimal, long real, short real, integer,
IEEE real (short, long, and extended), and display.

Binary

A binary key is a 1- to a-byte unsigned integer. The
high-address byte of a binary key is the most significant for
determining sort order. For COBOL CaMP fields, the
low-address byte is the most significant.

Byte

A byte key is a string of a-bit bytes. The low-address bytes
of the string are the most significant for determining sorting
order.

Character

A character key is a string of a-bit bytes. Character keys are
identical to byte keys, except that alphabetic ASCII
characters are sorted without regard to their case.

Decimal

A decimal key is a packed decimal number in COBOL
COMP-3 format. Each byte contains two decimal digits (four
bits per digit) with the digits (0-9) encoded as BCD numbers
(0000-1001). The last byte of the key contains the sign and
the units digit with the sign in the least significant four bits.
The preceding byte contains the tens digit in the least
significant four bits, etc.

5022148

5-6 Object Module Procedures

Decimal fields have the same representation in all
programming languages. For more information about this
type of field, see your COBOL documentation.

Long/Short Real
Long real and short real keys are used in BASIC applications.
A long real key is an 8-byte real number and a short real key
is a 4-byte real number.

For information regarding the number of bits of precision and
range of values for these keys, see the BTOS BASIC Compiler
Programming Reference Manual.

Integer
The integer key is a signed 1- to 8-byte integer. The
high-address byte of an integer key is the most significant for
determining sort order. For COBOL COMP fields, the
low-address byte is the most significant.

IEEE Real

Long, short, and extended IEEE keys are used for real
numbers in Pascal or FORTRAN applications. The
high-address byte is the most significant byte for determining
sort order.

Short IEEE Real
The 4-byte IEEE format short real number is used for REAL *4
in FORTRAN, and for REAL in Pascal.

Long IEEE Real
The 8-byte IEEE format long real number is used for REAL *8
and DOUBLE PRECISION in FORTRAN.

Object Module Procedures 5-7

Display

A display key is used in COBOL applications for the USAGE
IS DISPLAY field. All COBOL sign options are supported.
Display keys can be 1 to 19 bytes long. For more
informatio'n about the range of values and representations f,or
display keys, see your COBOL documentation.

External-Key Sort Procedures
The external-key-sort facility is a component of the
Sort/Merge facility that consists of object module
procedures. Records and their associated keys are released
to the sort package one at a time. When all records are
released, the sort package does a sort u'sing specified
auxiliary disk storage. It then returns the sorted records and
associated keys to the application one at a time. The
procedures comprising the external-key sort facility are:

o PrepareSort
o ReleaseRecordAndKey
o DoSort
o ReturnRecordAndKey
o ConciudeSort
o T erminateSort

In an application program, you must not mix calls to the
external-key sort procedures and the key-in-record sort
procedures during the same sort.

Sort controls the flow of the external-key sort facility by
calling:

1 PrepareSort to initialize the Sort/Merge facility. (This
specification includes the name of work files and the
memory to be used as a sort work area.)

2 ReleaseRecordAndKey once for each record to be sorted

3 DoSort to do the actual sort when all records are released

4 ReturnRecordAndKey once for each record to retrieve the
record and its associated keys in sorted order

5 ConciudeSort to close files and release resources

5022148

5-8 Object Module Procedures

In the event of an error during the sort, the sort may be
prematurely ended and resources released by a call to
T erminateSort.

Note that the external-key sort procedures interpret the
bytes of a key at higher memory addresses as more
significant than the bytes at lower memory addresses. In
other words, in comparing two keys, the bytes at lower
memory addresses are considered only when the bytes at
higher memory addresses are equal.

Status Block
Many of the sort procedures take' a parameter, which is the
memory address of the status block. The sort procedures
set this block to report errors to the application program.
The format of the 4-byte status block is shown in table 5-4.

Table 5-4 Status Block Format

ere
ercDetail

2 bytes
2 bytes

Sort/Merge status code
Detail status code

The status block contains two status codes, erc and
ercDetail. The first status code is either 0 (Ok) or one of the
Sort/Merge status codes listed in appendix A.

The second status code is nonzero only if erc is nonzero.
This status code gives additional information about the error.
For example, if a device error occurs while you are trying to
open a work file, erc returns the message Can't open work file
and ercDetail returns the message I/O error.

Section 6

Operations
Sort/Merge has the following nine operations:

o ConciudeSort releases resources after a successful sort.

o DoSort performs the actual sort of released records.

o PrepareKeySort initializes a key-in-record sort.

o PrepareSort initializes an external-key sort.

o· ReleaseRecord releases a record for a key-in-record sort.

o ReleaseRecordAndKey releases a record for an
external-key sort.

o ReturnRecord returns a sorted record following a
key-in-retord sort.

6-1

o ReturnRecordAndKey returns a sorted record following an
external-key sort.

o TerminateSort releases resources following an
unsuccessful sort.

Tables 6-1 and 6-2 show the contents of the procedures
PrepareSortBlock and KeyDescriptor. Both procedural
interfaces are discussed later in this section.

Table 6-1 Contents of PrepareSortBlock

Offset

o

92

5022148

Field

filespecWorkfile 1

passwordWorkfile 1

Size
(Bytes)

92

13

Description

the file specification of the first
work file. Starting at the second
byte of the field. it is a character
string of the form
[volname] dirname> filename. The
fir$t byte is the length of that string.

the file password for the first work
file. Starting at the second byte of
the array. its length is in the first
byte of the array.

6-2 Operations

Table 6-1 Contents of PrepareSortBlock (Cont)

Size
Offset Field (Bytes) Description

105 filespecWorkfile2 92 similar to filespecWorkfile 1, except
that it describes the second work file

197 passwordWorkfile2 13 similar to passwordWorkfile1,
except that it describes the second
work file

210 qsSortWorkfileCreate 4 the size at which to create the
work files

214 sWorkfilelncrement 2 the increment to extend the work
files when necessary

216 qsSortWorkArea 4 the size of an already existing work
area; or, if 0, it requests that the
system allocate all available
memory for the work area

220 sRecordMax 2 the maximum size of a record in bytes

222 fStableSort 2 TRUE if a stable sort is desired,
and FALSE otherwise. A sort is
stable if input records whose sort
keys are equal always appear in
the output in the same order as
they appear in the input.

Table 6-2 Contents of Key Descriptor

Size
Offset Field (Bytes) Description

0 cKeyComponents 2 the number of key components in
each record

2 rgKeyComponent 8 the array of
KeyComponent-Descriptor, one entry
for each key component (see
table 5-1)

Operations 6-3

ConcludeSort
The ConcludeSort procedure deletes temporary files and
closes the work file (deleting them if you created them during
PrepareSort) if all the sorted records were retrieved (by
ReturnRecord or ReturnRecordAndKey). Otherwise, the
status code More records available is returned.

The procedural interface is:

Conclude Sort (pStatusBlockRet): Erc Type

where

pStatusBlockRet is the memory address of a Status Block
(see section 5).

DoSort
The DoSort procedure does the actual sort of all records that
were released by ReleaseRecord or ReleaseRecordAndKey.

The procedural interface is:

DoSort (pStatusBlockRet): ErcType

where

pStatusBlockRet is the memory address of a Status Block
(see section 5).

PrepareKeySort
The PrepareKeySort procedure initializes the Sort/Merge
facility for a key-in-record sort. If more than one key is
specified, the earlier keys are more significant than the later
ones in determining sort order.

If the two work files specified in the PrepareSortBlock
(shown in table 6-1) do not already exist, they are created.
Their size is set initially to the value of the field
qsSortWorkfileCreate in the PrepareSortBlock. If these work
files are created, they are deleted at the end of the sort
when ConciudeSort is called (or if TerminateSort is called at
any time). If their size is insufficient for the amount of data
actually sorted, they are extended as required in specified
increments.

5022148

6-4 Operations

A sort work area, which includes the space for file buffers
and internal sorting, must be created or specified. If an
existing sort work area is used, its address and size have
been specified; if the size is specified as 0, PrepareKeySort
allocates all unallocated workstation memory for the sort
work area.

The procedural interface is:

PrepareKeySort (pPrepareSortBlock, pKeyDescriptor,
pSortWorkArea, pStatusBlockRet): ErcType

where

pPrepareSortBlock is the memory address of a
PrepareSortBlock (see table 6-1).

pKeyDescriptor is the memory address of a key descriptor
(see table 6-2).

pSortWorkArea is the memory address of a work area that
may already exist.

pStatusBlockRet is the memory address of a Status Block
(see section 5).

This procedure is used by application programs written in
BASIC, and FORTRAN. For more information, see
appendix B.

PrepareSort
The PrepareSort procedure initializes the Sort-Merge facility
for an external-key sort. If the two work files in the
PrepareSortBlock (shown in table 6-1) do not already exist,
they are created. Their size is set initially to the value of the
field qsSortWorkfileCreate in the PrepareSortBlock.

If these work files are created, they are deleted at the end of
the sort when ConcludeSort is called (or if TerminateSort is
called at any time). If their size is insufficient for the amount
of data actually sorted, they are extended as required in
specified increments.

Operations 6-5

A sort work area, which includes the space for file buffers
and internal sorting, must be created or specified. If an
existing work area is used, its address and size have been
specified; if the size is specified as 0, PrepareSort allocates
all unallocated workstation memory for the sort work area.

The procedural interface is:

PrepareSort (pPrepareSortBlock, psKey, pSortWorkArea,
pStatusBlockRet): Erc Type

where

pPrepareSortBlock is the memory address of a
PrepareSortBlock (see table 6-1).

psKey is the memory address of a word containing the size
of the key in bytes.

pSortWorkArea is the memory address of a work area that
may already exist.

pStatusBlockRet is the memory address of a Status Block
(see section 5).

This procedure is used by application programs written in
BASIC, and FORTRAN. For more information, see
appendix B.

ReleaseRecord
The ReleaseRecord procedure releases a record to the Sort
facility for a key-in-record sort.

The procedural interface is:

ReleaseRecord (psRecord, pRecord, pStatusBlockRet):
ErcType .

where

psRecord is the memory address of a word containing the
size of the record in bytes. This size must not be greater
than the size specified in the call to PrepareKeySort.

pRecord is the memory address of the beginning of the
record.

pStatusBlockRet is the memory address of a Status Block
(see section 5).

5022148

6-6 Operations

ReleaseRecordAndKey
The ReleaseRecordAndKey procedure releases a record to
the Sort facility for an external-key sort.

The procedural interface is:

ReleaseRecordAndKey (psRecord, pRecord, psKey, pKey,
PStatusBlockRet): Erc Type

where

psRecord is the memory address of a word containing the
size of the record in bytes. This size must not be greater
than the size specified in the call to PrepareSort.

pRecord is the memory address of the beginning of the
record.

psKey is the memory address of a word containing the size
of the key in bytes. This size must be the same as the size
specified in the call to PrepareSort.

pKey is the memory address of the key.

pStatusBlockRet is the memory address of a Status Block
(see section 5).

ReturnRecord
The ReturnRecord procedure returns a sorted record in a
key-in-record sort. ReturnRecord should be called repeatedly
until it returns the status code No ·more records. The actual
freeing of resources and closing of files does not occur until
the call to ConcludeSort or TerminateSort.

The procedural interface is:

ReturnRecord (psRecordRet, pRecordRet, pStatusBlockRet):
ErcType

where

psRecordRet is the memory address of a word set to the
size of the returned record.

pRecordRet is the memory address to which the record is
copied. The maximum possible record size is specified at the
time of PrepareSortKey.

Operations

pStatusBlockRet is the memory address of a Status Block
(see section 5).

ReturnRecordandKey

6-7

The ReturnRecordAndKey procedure returns a sorted record
in an external-key sort. ReturnRecordAndKey should be
called repeatedly until it returns the status code No more
records. The actual freeing of resources and closing of files
does not occur until the call to ConcludeSort o'r
TerminateSort.

The procedural interface is:

ReturnRecordAndKey (psRecordRet, pRecordRet, psKeyRet,
pKeyRet, pStatusBlockRet): ErcType

where

psRecordRet is the memory address of a word set to the
size of the returned record.

pRecordRet is the memory address to which the record is
copied. The maximum possible record size is specified at the
time of PrepareKeySort.

psKeyRet is the memory address of a word set to the size of
the returned key.

pKeyRet is the memory address to which the key is copied.
The maximum possible key size is specified at the time of
PrepareSort.

pStatusBlockRet is the memory address of a Status Block
(see section 5). .

5022148

6-8 Operations

TerminateSort
The TerminateSort procedure deletes temporary files and
closes (or deletes) the work files. It should be called if the
sort is to be terminated (for example, if an error is detected)
prior to the time when all records are retrieved.

The procedural interface is:

T erminateSort (pStatusBlockRet): Erc Type

where

pStatusBlockRet is the memory address of a Status Block
(see section 5).

Appendix A

Status Codes

General

Decimal
Value

3200

Meaning

Invalid key type.

The type field of a key specification for Sort/Merge is invalid.

3201 Incorrect key length.

The cbKey field of a key specification for a Sort/Merge
operation does not correspond to the type field of the key
specification. (For example, for binary keys, cbKey must be 2.)

3202 Invalid key.

A key contained in a record for Sort/Merge is not of the correct
type. (For example, each digit of a BCD key must be between 0
and 9.)

External-Key Sort

Decimal
Value

3400

Meaning

Cannot open work file.

Unable to open one of the work files during PrepareSort.

3401 Work area invalid.

Unable to allocate work area during Prepare Sort.

3402 Invalid key size.

A key passed to ReleaseRecordAndKey is a different length from
the length specified in PrepareSort.

3403 File error during sort.

A file error occurred during the sort phase of the program.

3404 No more records.

ReturnRecordAndKey was called after all records were retrieved.

3405 Error returning record.

An error occurred in ReturnRecordAndKey.

5022148

A-1

A-2 Status Codes

External-Key Sort (Cont)

Decimal
Value

3406

3407

3408

3409

3410

3411

Meaning

Error during conclude.

An error occurred in ConciudeSort or T erminateSort.

More records available.

ConciudeSort was called before all records were retrieved. To
end a sort prematurely, call T erminateSort.

Record too large.

The size of a record is larger than the maximum key size
specified in PrepareSort, or the sort area is not large enough.

Error during sort.

An error occurred during DoSort.

Insufficient memory.

Not enough memory was allocated for the sort work area.

No records to sort.

DoSort was called before any records were released.

3412- Reserved.
3499

Key-In-Record Sort

Decimal
Value

3500

3501

3502

Meaning

Sort pending.

PrepareKeySort was called while a sort was already active.

No sort pending.

A sort procedure other than PrepareKeySort was called before
PrepareKeySort.

Invalid sort key.

The key provided is inconsistent with its specifications.

Status Codes

Key-In-Record Sort (Cont)

Decimal
Value

3503

Meaning

Sort key not in record.

A key could not be synthesized from this record, given the initial
specifications of keys within records.

3504 Invalid key specification.

The key specification in PrepareKeySort is incorrect. It conflicts
with the maximum record size provided.

3505- Reserved.
3529

Sort Utility

Decimal
Value

3530

Meaning

Invalid key specification.

The key specification passed to Sort is invalid.

3531 Non-numeric key length.

The length field of the key specification is non-numeric.

3532 Record too large.

A record found in the file to be sorted is too large.

3533 Malformed record.

A record found in the file to be sorted is malformed.

3534- Reserved.
3559

5022148

A-3

A-4 Status Codes

Merge Utility
Decimal
Value

3560

3561

3562

3563

3564

3565

Meaning

Invalid key specification.

The key specification passed to Merge is invalid.

Non-numeric key length.

The length field of the key specification is non-numeric.

Record too large.

A record found in a file to be merged is too large.

Insufficient memory.

There is not enough memory available to perform this merge.

Sequence break.

A sequence break has occurred in one or more of the files being
merged. A sort of that file must be performed first.

Malformed record.

A record found in a file to be merged is malformed.

3566- Reserved.
3599

Appendix B

Calling Sort Object Modules From
Programming Languages

8-1

Use the procedures BasicPrepareKeySort and
BasicPrepareSort (described in this appendix) in place of
PrepareKeySort and PrepareSort to call Sort object modules
from BASIC and FORTRAN. The former procedural interfaces
give easier access to Sort object modules.

COBOL calls Sort by using the COBOL SORT verb. (For more
information, see your COBOL documentation.)

BasicPrepareKeySort

The BasicPrepareKeySort procedure has the same effect as
PrepareKeySort, but provides a more useful interface to
BASIC and other languages.

The BasicPrepareKeySort procedure initializes the Sort/Merge
facility for a key-in-record sort.

If the two work files specified in the PrepareSortBlock
(shown in table 6-1) do not already exist, they are created.
Their size is set initially to the value of the field
qsSortWorkfileCreate in thePrepareSortBlock. If these files
are created, they are deleted at the end of the sort when
ConcludeSort is called (if TerminateSort is called at any time).

If the size of the work files is insufficient for the amount of
data actually sorted, it is extended as required in specified
increments. A sort work area, which includes the space for
file buffers and internal sorting, must be created or specified.
If an existing sort work area is used, its address and size
have already been specified; if the size is specified as 0,
BasicPrepareKeySort allocates all unallocated workstation
memory for the sort work area.

5022148

8-2 Calling Sort Object Modules From Programming Languages

Procedural Interface

BasicPrepareKeySort (pPrepareSortBlock,
pbFileSpecWorkfile 1, bFileSpecWorkfile 1,
pbPasswordWorkfile 1, cbPasswordWorkfile 1,
pbFileSpecWorkfile2, cbFileSpec Workfile2,
pbPasswordWorkfile2, cbPasswordWorkfile2,
qsWorkfileCreate, sWorkfilelncrement, qsSortWorkArea,
sRecordMax, fStableSort, pKeyDescriptor, pSortWorkArea,
pStatusBlockRet): Erc Typ~

where

pPrepareSortBlock is the memory address of a space
allocated for the PrepareSortBlock shown in table 6-1 .
PrepareSortBlock is filled in by the BasicPrepareKeySort
procedure from the other parameters. The allocated space
must be at least 224 bytes.

pbFileSpecWorkfile1 andcbFileSpecWorkfile1 describe the
file specification of the first work file.

pbPasswordWorkflle 1 and cbPasswordWorkfile 1 describe
the file password for the first work file.

pbFileSpecWorkfile2 and cbFileSpecWorkfile2 describe the
file specification of the second work file.

pbPasswordWorkfile2 and cbPasswordWorkfile2 describe
the file password for the second work file.

qsWorkfileCreate is the size at which to create the work
files.

sWorkfilelncrement is the increment to extend the work files
when they need to be extended.

qsSortWorkArea is the size of an already existing work area
or, if 0, it requests that the system allocate all free memory
for the work area.

sRecordMax is the maximum size of a record in bytes.

fStableSort is TRUE (OFFH) if a stable sort is desired, and
FALSE (OH) otherwise. A sort is stable if input records
whose sort keys are equal always appear in the output in the
same order as they appear in the input.

Calling Sort Object Modules From Programming languages

pKeyDescriptor is the memory address of a key descriptor
(see table 6-2).

8-3

pSortWorkArea is the memory address of a work area that
may already exist (ignored 'if qsSortWorkArea equals zero). ~

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned
(see section 5).

BasicPrepareSort
The BasicPrepareSort procedure initializes the Sort/Merge
facility for an external-key sort.

The procedure has the same effect as PrepareSort, but
provides a more useful interface to BASIC and other
languages.

If the two work files specified in the PrepareSortBlock
(shown in table 6-1) do not already exist, they are created.
Their size is set initially to the value of the field
qsSortWorkfileCreate in the PrepareSortBlock. If these work
files are created, they are deleted at the end of the sort
when ConcludeSort is called (or if TerminateSort is called at
any time).

If the work area size is insufficient for the amount of data
actually worked, it is extended as required in specified
increments. A sort work area, which includes the space for
file buffers and internal sorting, must be created or specified.
If an existing sort work area is used, its address and size
have already been specified; if the size is specified as 0,
BasicPrepareSort allocates all unallocated workstation
memory for the sort work area.

5022148

8-4 Calling Sort Object Modules From Programming Languages

Procedural Interface

BasicPrepareKeySort (pPrepareSortBlock,
pbFileSpecWorkfile1, cbFileSpecWorkfile1,
pbPasswordWorkfile 1, cbPasswordWorkfile 1,
pbFileSpecWorkfile2, cbFileSpecWorkfile2,
pbPasswordWorkfile2, cbPasswordWorkfile2,
qsWorkfileCreate, sWorkfilelncrement, qsSortWorkArea,
sRecordMax, psKey, pSc;:>rtWorkArea, pStatusBlockRet):
ErcType

where

pPrepareSortBlock is the memory address of a space
allocated for the PrepareSortBlock shown in table 6-1 .
PrepareSortBlock is filled in by the BasicPrepareKeySort
procedure from the other parameters. The allocated space
must be at least 224 bytes.

pbFileSpecWorkfile1 and cbFileSpecWorkfile1 describe the
file specification of the first work file.

pbPasswordWorkfile 1 andcbPasswordWorkfile 1 describe the
file password for the first work file.

pbFileSpecWorkfile2 and cbFileSpecWorkfile2 describe the
file specification of the second work file.

pbPasswordWorkfile2 and cbPasswordWorkfile2 describe
the file password for the second work file.

qsWorkfileCreate is the size at which to create the work
files.

sWorkfilelncrement is the increment to extend the work files
when they need to be extended.

qsSortWorkArea is the size of an already existing work area
or, if 0, it requests that the system allocate all free memory
for the work area.

Calling Sort Object Modules From Programming Languages 8-5

sRecordMax is the maximum size of a record in bytes.

psKey is the memory address of a word containing the size
of the key in bytes .

. pSortWorkArea is the memory address of a work area that
may already exist (ignored if qsSortWorkArea equals zero).

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned
(see section 5).

5022148

Appendix C

Glossary
Absolute symbol An absolute symbol is a symbol that has a specified place in
memory (as, for example, an address within BTOS).

Address expression An address expression is a description consisting of one or
more symbols, or an indexed or nonindexed parameter.

C-1

Alignment attribute An alignment attribute specifies whether the segment can be
aligned on a byte, word, or paragraph boundary. •

Application partition An application partition is a section of user memory reserved
for the execution of an application.

Applications Applications are programs that provide a complete user interface.

ASCII ASCII, the American Standard Code for Information Interchange, defines the
character set codes used for information exchange between equipment.

Assemble ASSEMBLE is the Executive command you use to display the Assembler
command form.

Assembler The Assembler translates Assembly 8086 programs into BTOS object
modules (machine code).

Asynchronous Terminal Emulator The Asynchronous Terminal Emulator (ATE)
allows a workstation to emulate an asynchronous character-oriented ASCII terminal
(glass TTY).

ATE See Asynchronous Terminal Emulator.

BASIC BASIC is one of the high level languages you can use to write BTOS
programs. You can use the BASIC COI:npiler to convert the programs into BTOS object
modules, or you can use the BASIC Interpreter to edit and run BASIC programs.

BSWA See Byte Stream Work Area.

Byte stream A byte stream (part of the Sequential Access Method) is a readable or
writable sequence of 8-bit bytes.

Byte stream work area The Byte Stream Work Area (BSWA) is a 130-byte memory
work area for the exclusive use of SAM procedures.

Class name A class name is a symbol used to designate a class.

Client process A client process requests system service. Any process can be a
client process, since any process can request system service.

COBOL COBOL is one of the high level languages you can use to write BTOS
programs. You can use the COBOL Compiler to convert the programs into BTOS object
modules.

5022148

C-2 Glossary

Code listing A code listing is an English-language display of compiled code.

Code segment A code segment is a variable-length (up to 64KB) logical entity
consisting of reentrant code and containing one or more complete procedures.

Compiler BTOS Compilers translate high level language programs into BTOS object
modules (machine code).

Configuration file Configuration files specify the characteristics of the parallel
printer, serial printer, or other devices attached to a communications channel.

Crash dump A crash dump is the output (memory dump) resulting from a system
failure.

CTOS.lib The CTOS.lib file is part of the Language Development software; it is a
library of object modules that provide operating system run time support.

Cursor RAM The cursor RAM allows software to specify a 10-bit by 15-bit array as
a pattern of pixels in place of the standard cursor.

Customizer The BTOS Customizer software provides object module files that allow
you to customize the operating system.

DAM See Direct Access Method.

DAWA See Direct Access Work Area.

DCB See Device Control Block.

Device control block A memory-resident Device Control Block (DCB) exists for each
device. The DCB contains device information generated at system build. (For a disk, the
information includes the number of tracks and sectors per track.)

DGroup DGroup usually includes data, constant, and stack Linker segments.

Direct ,tcess method The Direct Access Method (DAM) provides random access to
disk file~i.ecords identified by record number. When you create the DAM file, you
specify the record size.

DAM supports COBOL Relative I/O and any BTOS language program can use a direct
call for DAM.

Direct access work area A Direct Access Work Area (DAWA) is a 64-byte memory
work area for the exclusive use of the Direct Access Method (DAM) procedures.

$ Directories When BTOS receives a request with the directory $, the directory
name is expanded to $nnn. (nnn represents the application user number.)

Double-precision Double-precision parameters designate two words to store an item
of data to maintain a high level of precision.

Glossary C-3

OS allocation An option in the Linker, OS allocation locates DGroup at the end of a
64KB segment that the OS register addresses.

8086 Assembly Language 8086 Assembly language is the low level language you
can use to write BTOS programs. You use the BTOS Assembler to convert the
programs into BIOS object modules.

Environment An environment is a program that has control of the system at any
given time. Environments include the SignOn form, the Executive, the Mail Manager,
utilities (such as Floppy Copy), applications (such as a word processor), and Compilers.

E~cape sequence An escape sequence is a sequence of characters that activates a
function.

Executive. The Executive is the BTOS user interface program; it provides access to
many convenient utilities for file management.

External reference An external reference is a reference from one object module to
variables and entry points of other object modules.

Extraction librarian extraction copies an object module from a library into a separate
disk file. Extraction does not delete the extracted module from the library.

Field A field is an area in a display form that contains parameters.

File access methods Several file access methods augment the file management
system capabilities. File access methods are object module procedures located in the
standard BTOS library. They provide buffering and use the asynchronous input/output
capabilities of the file management system to overlap input/output and computation.

Font The BTOS Font Designer software allows programmers to design or edit
characters by drawing or erasing pixels.

Forms The BIOS Forms software allows programmers to design user-entry forms for
applications.

Forms.lib The Forms.lib file is part of the Language Development software; it is an
object module library for Forms Run Time support.

FORTRAN FORTRAN is one of the high level languages you can use to write BTOS
programs. You can use the FORIRAN Compiler to convert the programs into BIOS
object modules.

Group A group is a named collection of linker segments that the BIOS loader
addresses at run time with a common hardware segment register. 10 make the
addressing work, all the bytes within a group must be within 64K of each other.

Indexed address An indexed address is an address expression that uses index
registers.

5022148

C-4 Glossary

Indexed Sequential Access Method The BTOS Indexed Sequential Access Method
(ISAM) provides random access to fixed-length records identified by mUltiple keys
stored in disk files.

ISAM See Indexed Sequential Access Method.

Language Development The BTOS Language Development software provides the
Linker, Librarian, and Assembler programs (LINK, LIBRARIAN, and ASSEMBLE
Executive commands).

LED LED stands for light-emitting diode (the red light on a keyboard key) .

.lib .lib is the standard file name suffix for library files.

Librarian The Librarian is a program that creates and maintains object module
libraries. The Linker can search automatically in such libraries to select only those
object modules that a program calls.

Library A library is a stored collection of object modules (complete routines or
subroutines) that are available for linking into run files.

Library file A library file can contain one or more object modules. The file name
normally includes the suffix .lib.

Link LINK is the Executive command that displays the Linker command form.

Linked-list data structure A linked-list data structure contains elements that link
words or link pointers connect.

Linker The Linker is a program that combines object modules (files that Compilers
and Assemblers produce) into run files.

Linker segment A Linker segment is a single entity consisting of all segment
elements with the same segment name.

Link pointer A link pointer is a 32 bit address that points to the next block of data.

Link word A link word is a 16 bit address that points to the next block of data.

List file The Linker list file (suffix .map) contains an entry for each Linker segment,
identifying the segment relative address and length in the memory image. You can
direct the Linker to list public symbols and line numbers.

Long-lived memory Long-lived memory is an area of memory in an application
partition. It is used for parameters or data passed from an application to a succeeding
application in the same partition .

. map .map is the standard file name suffix for list files.

Glossary C-5

Memory array A memory array is data space the BTOS loader allocates above the
highest task address .

. obi .obj is the standard file name suffix for object module files.

Obiect module An object module is the result of a single Compiler or Assembler
function. You can link the object module with other object modules into BTOS run files.

Offset The offset is the number of bytes between the beginning of a segment and
the memory location.

Overlay An overlay is a code segment made up of the code from one or more object
modules. An overlay is loaded into memory as a unit and is not permanently
memory-resident. See also virtual code segment management.

Parameter A parameter is a variable or constant that is transferred to and from a
subroutine or program.

Pascal Pascal is one of the high level languages you can use to write BTOS
programs. You can use the Pascal Compiler to convert the programs into BTOS object
modules.

Physical address A physical address is an address that does not specify a segment
base and is relative to memory location O.

Pixels Pixels are square-shaped cells which make up the dot matrix of a character
symbol.

Pointer A pointer is an address that specifies a storage location for data.

Process A process is a program that is running.

Public procedure A public procedure is a procedure that has a public address; a
module other than the defining module can reference the address.

Public symbol A public symbol is an ASCII character string associated with a public
variable, a public value, or a public procedure.

Public value A public value is a value that has a public address; a module other
than the defining module can reference the address.

Public variable A public variable is a variable that has a public address; a module
other than the defining module can reference the address.

Record sequential access method Record Sequential Access Method (RSAM) files
are sequences of fixed-length or variable-length records. You can open the files for
read, write, or append operations.

Relocation The BTOS loader relocates a task image in available memory by
supplying physical addresses for the logical addresses in the run file.

5022148

C-6 Glossary

Relocation directory The relocation directory is an array of locators that the BTOS
Loader uses to relocate the task image.

Resident The resident portion of a program remains in memory throughout execution.

Reverse video· Reverse video displays dark characters on a light screen.

RSAM See Record Sequential Access Method .

. run .run is the standard file name suffix for run files.

Run file A run file is a complete program: a memory image of a task in relocatable
form, linked into the standard format BTOS requires. You use the Linker to create run
files.

Run file checksum The Run-file checksum is a number the Linker produces based on
the summation of words in the file. The system uses the checksum to check the
validity of the run file.

SAM See Sequential Access Method.

SamGen See SAM Generation.

SAM Generation SAM generation permits the specification of device-dependent
object modules to be linked to an applica?tion.

Segment A segment is a contiguous area of memory that consists of an integral
number of paragraphs. Segments are usually classified into one of three types: code,
static data, or dynamic data. Each kind can be either shared or nonshared.

Segment address The segment address is the segment base address. For an
8086/80186 microprocessor, a segment address refers to a paragraph (16 bytes).

Segmented address A segmented address is an address that specifies both a
segment base and an offset.

Segment element A segment element is a section of an object module. Each
segment element has a segment name.

Segment override Segment override is operating code that causes the 8086/80186
to use the segment register specified by the prefix instead of the segment register that
it would normally use when executing an instruction.

Sequential access method Sequential Access Method (SAM) files emulate a
conceptual, sequential character-oriented device known as a byte stream to provide
device-independent access to devices.

Short-lived memory Short-lived memory is the memory area in an application
partition. When BTOS loads a task, it allocates short-lived memory to contain the task
code and data. A client process can also load short-lived memory in its own partition.

Stack A stack is a region of memory accessible from one end by means of a stack
pointer.

Glossary C-7

Stack frame The stack frame is a region of a stack corresponding to the dynamic
invocation of a procedure. It consists of procedural parameters, a return address, a
saved-frame pointer, and local variables.

Stack pointer A stack pointer is the indicator to the top of a stack. The stack
pointer is stored in the registers SS:SP.

Submit file escape sequence A submit file escape sequence consists of two or
three characters that indicate the presence of the escape sequence (% or », followed
by a code to identify the special function, followed by an argument to the function .

. sym .sym is the standard file name suffix for the symbol file.

Symbol Symbols can be alphanumeric and/or any other characters, such as
underscore, period, dollar sign, pound sign, or exclamation mark.

Symbol file The Linker symbol file (suffix .sym) contains a list of all public symbols.

Symbolic instructions Symbolic instructions are instructions containing mnenomic
characters corresponding to Assembly language instructions. These instructions cannot
contain user-defined public symbols.

Sys.Cmds The Executive command file ([Sys]<sys>Sys.Cmds) contains information
on each Executive command.

System build System build is the collective name for the sequence of actions
necessary to construct a customized BTOS image.

System image The system image file ([Sys]<sys>Syslmage.Sys) contains a run file
copy of BTOS.

System partition The system partition contains BTOS and dynamically installed
system services.

System process A system process is any process that is not terminated when the
user calls Exit.

System service process A system service process is an operating system process
that services and responds to requests from client processes.

Task A task consists of executable code, data, and one or more processes.

Task image A task image isa program stored in a run file that contains code
segments and/or static data segments.

Textfile A text file contains bytes that represent printable characters or control
characters (such as tab, new line, etc.).

UCB See User Control Block.

5022148

C-8 Glossary

Unresolved external reference An unresolved external reference is a public symbol
that is not defined, but is used by the modules you are linking.

User control block The User Control Block (UCB) contains the default volume,
directory, password, and file prefix set by the last Set Path or Set Prefix operation.

User process A user process is any process that is terminated when the user calls
Exit.

Utilities Utilities are programs that use the Executive user interface (such as Floppy
Copy or Ivolume).

Video attributes Video attributes control the presentation of characters on the
display.

Virtual code segment management Virtual code segment management is the virtual
memory method BTOS supports. The method works as follows: The linker divides the
code into task segments that reside on disk (in the run file). As the run file executes,
only the task segments that are required at a particular time reside in the application
partition's main memory; the other task segments remain on disk until the application
requires them. When the application no longer requires a task segment, another task
segment overlays it.

Index
Activating
the Merge utility from the Executive, 4-2
the Sort utility from the Executive, 3-1

Binary key, 2-2
Building
a customized Merge utility, 4-8
a customized Sort utility, 3-11
Byte string key, 2-2

Calling sort object modules from programming languages, B-1
Character string key, 2-2.
ConcludeSort procedure, 6-4
Customized Merge utility
building a, 4-8
Customized Sort utility
building a, 3-11
Customizing
the Merge utility, 4-4
the Sort utility, 3-6

Data types, 5-2
Decimal key, 2-3
Display key, 2-3
DoSort procedure, 6-3

Extended IEEE key, 2-3
External-key sort, 1-1, 5-7

Features of Sort/Merge, 1-1
Field descriptions
of the Merge utility, 4-2
of the Sort utility, 3-2

Handling sequence breaks, 4-7

Input error handling, 3-10
Input records
processing, 3-7
Integer key, 2-3

Key components
types of, 5-3
KeyDescriptor, 6-2
Key-in-record sort procedures, 1-1, 5-1
Key types, 2-2
and programming language representations, 5-4
binary, 2-2, 5-5
byte string, 2-2, 5-5
character string, 2-2, 5-5
decimal, 2-3, 5-5
display, 2-3, 5-7
extended IEEE, 2-3, 5-6
integer, 2-3, 5-6

5022148

2

long IEEE, 2-3, 5-6
long real, 2-4, 5-6
short IEEE, 2-3, 5-6
short real, 2-4, 5-6

Long IEEE key, 2-3
Long real key, 2-4

Merge utility, 2-5, 4-1
activating the, 4-2
building a customized, 4-8
customizing the, 4-4
field descriptions of the, 4-2
Multilevel sort capabilities, 2-4

Object modules procedures, 1-2, 5-1
Operations, 6-1
Order of sorted records, 2-1
Overview, 1-1

PrepareKeySort procedure, 6-3
PrepareSortBlock, 6-1
PrepareSort procedure, 6-4
Procedures
external-key sort, 1-1, 5-7
key-in-records sort, 1-1, 5-1
object module, 1-2, 5-1
Processing
input records (Sort), 3-7
output records (Merge), 4-4
output records (Sort), 3-9
Programming languages
calling sort object modules from, 8-1

ReleaseRecordAndKey procedure, 6-6
ReleaseRecord procedure, 6-5
ReturnRecordAndKey procedure, 6-7
ReturnRecord procedure, 6-6

Sequence break handling, 4-7
Short IEEE key, 2-3
Short real key, 2-4
Sort capabilities
multilevel, 2-4
Sorted records
order of, 2-1
Sort/Merge
features, 1-1
utilities, 1-2
Sort utility, 3-1
activating it from the Executive, 3-1
building a customized, 3-11
customizing the, 3-6
field descriptions, 3-2

Index

Index

Status block, 5-8
format of the, 5-8
Status codes, A-1

TerminateSort procedure, 6-8
Types of key components, 5-3

Utilities of Sort/Merge, 1-2

5022148

J

Title: BTOS Sort/Merge Operations Reference Manual

Form Number: 5022148 Date: January 1986

Burroughs Corporation is interested in your comments and suggestions regarding
this manual. We will use them to improve the quality of your Product Information.

Please check type of suggestion: D Addition D Deletion D Revision
D Error
Comments: __ __

Name
Title ___ _

Company ___ _

Address ______ =-~-----------~------~~------~~-----
Street City State Zip

Telephone Number () _____________________________ _
Area Code

Title: BTOS Sort/Merge Operations Ref~rence ~anual

Form Number: 5022148 Date: January 1986

Burroughs Corporation is i-nterestedin your comments and suggestions regarding
this manual. We will use them to improve the quality of your Product Information.

Please check type of suggestion: 0 Addition D Deletion D Revision
D Error
Comments: __ _

Name
Title __ _

Company ___ _

Address ______ =-~------------~------~~------~~------
Street City State Zip

Tel~phone Number () _________________ _
Area Code

I
BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 817 DETROIT, MI48232

POSTAGE Will BE PAID BY ADDRESSEE

Burroughs Corporation
1300 John Reed Court
City of Industry, CA 91745 USA

ATTN: Corporate Product Information

1.1 •• II'II"II.IIIII ••• I.II.I •• l.I •• I ••• I.I.I •••• 11I

NO POSTAGE
NECESSARY

IF MAilED
IN THE

UNITED STATES

1

I
I
I
I
I
I ,
r

I
I
t
I
I
I
i

~
I
I
I
I __________________________ -1

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 817 DETROIT, MI48232

POSTAGE Will BE PAID BY ADDRESSEE

Burroughs Corporation
1300 John Reed Court
City of Industry, CA 91745 USA

ATTN: Corporate Product Information

1.1 •• 11 •• 1,"1.1"11 ••• 1.11.1 •• 1.1 •• 1 ••• 1.1.1,".111

NO POSTAGE
NECESSARY

IF MAilED
INTHE

UNITED STATES

I
I
I
!
I
I
J
I
I
~
I
I
I
I
I
I
I
I
r

, ___________________________ b

Burroughs

9-85

Publication Change Notice (PCN)
• UNISYS

Dale Form - peN Number

February 1987 5022148-001
Tille

BTOS Sort/Merge Operations Reference Manual (January 1986)
Descriplion

This peN updates the manual tlJ reflect the 8.0 release.

Replace these pages

Title
ix

1-1

Add this page

iii

Copyright © 1987 Uoisys Corporation

	000
	001
	002
	003
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	I-01
	I-02
	I-03
	replyA
	replyB
	upd-1

