

o e SA Distribution C d

_B_uI"I"OughS

Reference
Manual

Pr~ced Item
Pnnted in U
J I

.S.A
u y 1985

5022247

Burroughs cannot accept any financial or other
responsibilities that may be the result of your use
of this information or software material,
including direct, indirect, special or consequential
damages. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this
software material and/or information complies with the
laws, rules, and regulations of the jurisdictions with
respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Comments or suggestions regarding this document should be submitted on a Field
Communication Form (FCF) with the CLASS specified as 2 (S.SW:System
Software), the Type specified as 1 (F.T.R.), and the product specified as the 7-digit
form number of the manual (for example, 5022247).

LIST OF EFFECTIVE PAGES

Page Issue

Title Original
ii Original
iii Original
iv Blank
v thru ix Original
x Blank
xi thru xii Original
1-1 thru 1-5 Original
1-6 Blank
2-1 thru 2-13 Original
2-14 Blank
3-1 thru 3-6 Original
4-1 thru 4-14 Original
5-1 thru 5-13 Original
5-14 Blank
6-1 thru 6-11 Original
6-12 Blank
7-1 thru 7-48 Orignal
A-I thru A-13 Original
A-14 Blank
B-1 thru B-3 Original
B-4 Blank
C-l thru C-3 Original
C-4 Blank
D-l thru D-4 Original
1 thru 9 Original
10 Blank

5022247 iii

Section

1

2

3

4

5022247

TABLE OF CONTENTS

Title Page

INTRODUCTION. • xi
Examples in This Manual .••••.••••••••• xii
Reference Material.................... xii

OVERVIEW ••••••••••••••••••••••••••••••
Features
Memory and Disk Requirements ..••••••••
Related Software •..•.•••••••.•••••••••
Installation Instructions •••••••••••••

Hard Disk Systems ...•.•.•.•....•••••
Dual Floppy Standalone Systems ••••••
XE520 Systems ..•••••••••••••••••••••

CONCEPTS ••••••••••.•.••••••.•••••.••••
File Types .•.•••.•••.••••••••.••••••••
Key Types••••••••••••••.•.•.••••••
Unique Record Identifier •••.••••••••••
ISAM Operations .•••.•••.••.•••••••••••

Storing Records ••••••••••.••••••••••
Reading Records .••.•••••••••••••••••
Modifying Records .••.•••••••••••••••
Delet1ng Records ••.••••••.••••••••••

Distributed ISAM •.•.•.•.•••.••••••••••
Data Set Access Modes ..••••.••••••••••
Transactions ••..•...•..••••••••••••.••

Locking a Record or Data Set ••••••••
Deadlocks •..••...•.•..•••••••.•.••••

ISAM Installation •.••••••••.•••.••••••
ISAM Conf1guration File •••••••••••••

ISAM Commands .••••.•••••.••••••••.••••
Data Security ••.•..••••••••.•.••••••••
Data Integrity •.••••••••••••••••••••••

ISAM DATA SETS •.•••••••••••...••••••••
Indexes and Keys ••••••••••••..••••••••

Key Types .•.•..••.•••.•••.••••••••••

ISAM UTILITIES ..•.•••.••••••••••••••••
Default Index File Name .••.•••.••.••••
I SAM COpy •..••••..•••••.•••..•.••..•••
ISAM CREATE •••.•.••.•••..••.••••••••••
I SAM DELETE •......•••••.•••..•••••••••
I SAM RENAME ••••••.•••••.••.••••••••.••
ISAM SET PROTECTION ••.•.•••••.••••••••
ISAM STATUS ••••••.••••••••••.•••••••••
I SAM TERMINATE •••.•••••••••••.••••••••

1-1
1-1
1-2
1-3
1-3
1-3
1-3
1-4

2-1'
2-1
2-2
2-3
2-3
2-3
2-4
2-4
2-4
2-4
2-5
2-6
2-7

2-10
2-10
2-12
2-12
2-12
2-13

3-1
3-1
3-3

4-1
4-2
4-2
4-4
4-8
4-8

4-10
4-12
4-14

v

Section

5

6

7

vi

TABLE OF CONTENTS (Cont)

Title

ISAM REORGANIZATION •••••••••••••••••••
Loading a Data Set ••••••••••••••••••••
Changing Indexes and Other
ISAM CREATE Parameters ••••••••••••••••
Recovering Records, Reclaiming

Page

5-1
5-7

5-8

Space, and Merging Data ••••••••••••••• 5-10
Sorting Data Set Records •••••••••••••• 5-11

ISAM SERVER INSTALLATION ••••••••••••••
Multiuser Installation ..••••••••••••••

Single-Partition BTOS •••••••••••••••
Mul tiparti tion BTOS •••••••••••••••••

ISAM INSTALL ••••••••••••••••••••••••••
Memory Allocation •••••••••••••••••••

Resident Code and Data ••••••••••••
Swap Zone •••••••••••••••••••••••••
Heap ••••••••••••••••••••••••••••••
Data Buffers ••••••••••••••••••••••
Index Buffers •••••••••••••••••••••

ISAM CONFIGURE ••••••••••••••••••••••••
ISAM Configure Display ••••••••••••••

Cursor Movement •••••••••••••••••••
Display •••••••••••••••••••••••••••

Memory Allocat1on Calculation •••••••••
Buffer Size Guidelines ••••••••••••••••

ISAM OPERATIONS •••••••••••••••••••••• '.
Status Block •••••••••••••••••.••••••••
Data Set Management •••••••••••••••••••
ISAM Description Block ••••••••••••••••
Data Set Access •••••••••••••••••••••••
Record Management and Access ••••••••••
Locking ..••••••••••••••.••••••••••••••
Transactions ••••••••••••••••••••••••••

Transaction-Related Constraints •••••
Transaction Parameters Block ••••••••

ISAM Service Access •••••••••••••••••••
Memory Usage ••••••••••••••••••••••••••
Using Either Multiuser

or Single-User ISAM •••••••••••••••••
Asynchronous Requests •••••••••••••••••
Procedure Definitions •••••••••••••••••

BeginTransaction Procedure ••••••••••
CloseISAM Procedure •••••••••••••••••
CommitTransaction Procedure •••••••••

6-1
6-2
6-2
6-3
6-3
6-3
6-4
6-5
6-5
6-5
6-6
6-6
6-7
6-7
6-8

6-10
6-11

7-1
7-1
7-3
7-3
7-8
7-8

7-10
7-10
7-11
7-11
7-12
7-13

7-13
7-14
7-14
7-14
7-15
7-15

Section

A

B

C

D

TABLE OF CONTENTS (Cont)

Title Page

CreateISAM Procedure ••••.••••••••• ~. 7-16
DeleteISAM Procedure •..•.••.••.••.•• 7-18
DeleteISAMRecord Procedure ••••••.••• 7-18
De1eteISAMRecordByKey Procedure ••••• 7-19
GetISAMRecords and

GetISAMRecordsHold Procedures.~ ••• 7-20
HoidISAMDataSet Procedure .•••••••••• 7-24
HoldISAMRecord Procedure .•.••••••••• 7-26
ISAMRequest Procedure •••.••••••••••• 7-27
LoadSlngleUserISAM Procedure ••.•.... 7-27
ModifyISAMRecord Procedure •••••••••• 7-28
ModifyISAMRecordByKey Procedure ••••• 7-29
Norma1izeISAMStatus Procedure ••••••• 7-31
OpenISAM Procedure ..•••••••••••••••• 7-32
QueryTrunsuctionParams Procedure .••• 7-33
ReadISAMRecordByUri and ReadIsam-

RecordByUriHold Procedures •••••.•• 7-33
ReadNextISAMRecord and ReadNext

ISAMRecordHold Procedures ••••••.•• 7-35
ReadUnlqucISAMRecord and Read-

UniqueISAMRecordHold Procedures ••• 7-35
ReleaseISAMDataSet Procedure •••••••. 7-37
Re1easeISAMRecord Procedure •••••..•• 7-38
RenameISAM Procedure•.••••••••.. 7-39
RoI1BackTransaction Procedure •••.••. 7-41
SetISAMProtection Procedure •.••••••• 7-42
SetTransactionParuIns Procedure •••••• 7-42
SetUpISAMIterationLimits Procedure .• 7-43
SetUpISAMIterationPrefix Procedure •• 7-45
StoreISAMRecord Procedure ••••••••••• 7-47
VerifyMultiUserISAM Procedure ••••••• 7-48

STATUS CODES.......................... A-I

UPWARD COMPATIBILITY SUPPORT •••••••••• B-1

ESTIMATING. INDEX FILE SIZES ••••••.•••• C-1

GLOSSARY. • . . . • . • • • . • . • . • • • • • . • • • • • • • • • D-l

INDEX. . • • • . . . • . . . • • • . . • . • • • • • • • • • • • . • • 1

5022247 Vil

Figure

2-1
2-2
3-1
4-1
4-2
4-3
4-4
4-5
4-6
5-1
6-1
6-2
6-3

Table

viii

2-1
2-2

2-3
3-1
3-2

4-1
4-2
4-3
4-4
4-5
4-6
5-1
6-1

6-2
7-1
7-2

7-3
7-4
7-5
7-6

LIST OF ILLUSTRATIONS

Title

Series of Transactions •••••••••••.•••
Deadlock (Samples) •••••••••••••••••••
Data Set Index (Sample) .•••••.•••.•••
I SAM COpy Form ••••••••••.••••••••••.•
ISAM CREATE Form .•••••••.•.••••••.•••
ISAM RENAME Form .•••.•.••••••••••••••
ISAM SET PROTECTION Form •••••••••.•.•
ISAM STATUS Form .•••.•••..•••••••••••
ISAM STATUS Reports (Samples) .•.•.•••
ISAM REORGANIZE Form •••••••••••••••••
I SAM INSTALL Form •.•.•.•..•••••••.•••
ISAM CONFIGURE Form •••••••••••..•••.•
ISAM CONFIGURE Display (Sample) .•••••

LIST OF TABLES

Title

Description of Data Set Access Modes.
Multiuser Access to Data Set

Access Modes •••••••••••••••••••••••
Operations and Transactions ..•.••••••
Description of Key Types •.••.••••••••
ISAM Key Types and Programming

Language Representations •••••••••••
ISAM Commands ••.•••••.••••••••••••••.
ISAM COpy Form Parameters ••••••••••••
ISAM CREATE Form Parameters ••••••••••
ISAM RENAME Form Parameters ••••••••••
ISAM SET PROTECTION Form Parameters ••
ISAM STATUS Form Parameters ••••••••••
ISAM REORGANIZE Form Parameters •••.•.
Differences Between Multiuser and

S1ngle-User Access •..•••••••.•••.•.
ISAM INSTALL Form Parameters •••••••••
ISAM Operations by Function ..••••..••
Status Block Format (pStatusB1ockRet

Parameter) •••••••••••••••••.•••••••
Data Set Management Operations ••••.••
ISAM Description Block •.••••••.•••.•.
ISAM Index Specification Block •••••••
Type of Key Component ••••.••.••••.•••

Page

2-8
2-11

3-2
4-2
4-4
4-9

4-11
4-13
4-14

5-2
6-3
6-7
6-9

Page

2-5

2-7
2-9
3-3

3-5
4-1
4-3
4-5

4-10
4-11
4-13

5-3

6-2
6-4
7-2

7-2
7-3
7-4
7-5
7-7

Tab1e

7-7
7-8
7-9

7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20

7-21

7-22
7-23
7-24
7-25
7-26
7-27

7-28

7-29

7-30
7-31
7-32
7-33
7-34

7-35

7-36

5022247

LIST OF TABLES (Cont)

Tit1e

Record Management Operations •••••••••
Single Record Access Operations ••••••
Multiple Record Access (Iteration)

Operations •••••••••••••••••••••••••
LocKing Operations •••••••••••••••••••
Transaction Operations •••••••••••••••
Transaction-Related Constraints ••••••
Transaction Parameters Block Format ••
ISAM Service Access •••••••.••••••••••
Asynchronous Requests •.••••••••••••••
CreateISAM Request Block •••••••••••••
DeleteISAM Request Block •••••••••••••
DeleteISAMRecord Request Block •••••••
DeleteISAMRecordByKey Reques~ BloCK ••
GetISAMRecords and GetISAMRecords-

Hold Request Block •••••••••••••••••
Buffer Structure for GetISAMRecords

and GetISAMRecordsHold when Records
are Read (46-Byte Records} •••••••••

HoldISAMDataSet Request Block ••••••••
HoldISAMRecord Request Bloc"k •••••••••
ModifyISAMRecord Request Block •••••••
ModifyISAMRecordByKey Request Block ••
Data Set Modes •••••••••••••••••••••••
ReadISAMRecordByUri and ReadISAM

RecordByUriHold Request BloCK ••.•••
ReadNextISAMRecord and ReadNextISAM

RecordHold Request Block •••••••••••
ReadUniqueISAMRecord and ReadUnique-

ISAMRecordHold Request Block •••••••
ReleaseISAMDataSet Request BloCK •••••
ReleaseISAMRecord Request Block ••••••
RenameISAM Request Block •••••••••••••
SetISAMProtection Request Block ••••••
SetUpISAMIterationLimits Request

Page

7-8
7-9

7-9
7-10
7-10
7-11
7-12
7-13
7-14
7-17
7-18
7-19
7-21

7-23

7-24
7-25
7-26
7-29
7-31
7-33

7-34

7-36

7-37
7-38
7-39
7-41
7-43

Block.............................. 7-45
SetUpISAMIterationPrefix Request

Block. 7-46
StoreISAMRecord Request Block •••••••• 7-48

ix

INTRODUCTION

This manual provides descriptive and operational information
for the B 20 Indexed Sequential Access Method (ISAM) data
management facility used by the B 20 family of workstations.
ISAM provides efficient and flexible random access to data
identified by multiple keys. System designers and applica
tions programm'ers should use this manual to write ISAM
applications used under BTOS.

This manual consists of seven sections, four appendixes and
an index:

Sectl0n I

Section 2

Section 3

Section 4

Section 5

Section 6

Section 7

Appendix A

Appendix B

Appendix C

Appendix D

5022247

Provides you with an overview of ISAM,
including its features and installation
instructions.

Introduces basic ISAM concepts which are
explained in more detail in later
sections.

Descrlbes ISAM data sets and key types.

Describes the ISAM commands: ISAM COPY,
ISAM CREATE, ISAM DELETE, ISAM RENAME,
ISAM SET PROTECTION, ISAM STATUS, and
ISM TERMINATE.

Documents the ISAM REORGANIZE command.

Explains how to install and configure
the ISAM server.

Describes ISAM operations by functional
categories and presents all the
operations in detail.

Contains the status codes and messages
you could receive while using ISAM.

Describes the compatibility of earlier
applications with this version of ISAM.

Explains how to estimate index file
sizes.

Contains the glossary.

Xl

/

EXAMPLES IN THIS MANUAL

This manual uses personnel data sets for examples and
illustrations because they are familiar and provide
continuity as the manual presents the various ISAM
functional levels.

Three data sets contain personnel information: an employee
data set, a department data set, and a dependent data set.
The parameters included in each data set are:

Employee data set, with one record per employee

• department number

• employee number

• employee name

• salary

Department data set, wlth one record per department

• department number

• department name

• employee number of department manager

Dependent data set, with one record per dependent

• employee number

• number of dependents

• dependent name

• dependent date of birth

REFERENCE MATERIAL

The followlng manuals are referenced for additl0nal
information:

B 20 Systems Operating System (BTOS) Reference Manual
B 20 Systems Programmer's Guide, Part 1
B 20 Systems Linker/Librarian Reference Manual
B 20 Systems Sort/Merge Reference Manual

xii

SECTION 1

OVERVIEW

The B 20 Indexed Sequential Access Method (ISAM) is a
software product that provides efficient, flexible random
access to fixed-length records. These fixed-length records
are identified by keys contained in the records.

You can use 8086 Assembly, BASIC, COBOL, FORTRAN, and Pascal
to write applications accessing ISAM. You can use ISAM on
standalone, cluster, and master workstations.

This section contains:

• an overview of ISAM features

• software installation procedures

• memory and disk requ1rements

• files necessary to run ISAM.

FEATURES

New ISAM features include:

• the ability of applications running on a cluster
workstation to simultaneously access data sets
located on the local and master workstations

• application or Executive access to remote ISAM
data sets across a network (using B-NET)

• the ability to run one or more ISAM applications
on each workstation (using the B 20 Context
Manager)

• resident or swapping ISAM reorganization

• a utility to remove the ISAM server from a
secondary partition of a multipartition system

Standard ISAM features include:

• random access to data identified by mult1ple keys

5022247 1-1

• up to 100 keys in each ISAM data set

• key types to support numerous character and
numeric data representations

• shared or exclusive access to ISAM data sets,
with transactions and record-level or data set
level locking

• resident or swapping ISAM server

• ISAM data sets created from any fixed-length
record Sequential Access Method file using
ISAMReorganize

• commands to perform maintenance and modifications
to data sets and to provide status reports for
data sets

MEMORY AND DISK REQUIREMENTS

ISAM requlres 57KB of memory for the swapping version of the
server and 90KB for the resident version. The minimum
installation of ISAM software on hard disk requires 776 dlSk
sectors. The full installation, including optional
utilities, requires 1561 disk sectors.

The following files constitute the minimum configuration of
ISAM:

ISAM.Config
ISAMConfigure.Run
ISAMCreate.Run
ISAMDelete.Run
ISAMRename.Run
ISAMSetPro.Run
ISAMServer.Run

The following files comprise the optional ISAM utilities:

1-2

ISAMCopy.Run
ISAMReorganize.Run
ISAMStatus.Run
ISAMTerminate.Run

RELATED SOFTWARE

ISAM requires Release 5.0 of BTOS. For networking applica
tions, ISAM requires B-NET,. Release 1.0. Section 6
discusses configuration requirements.

INSTALLATION INSTRUCTIONS

You install the ISAM software from the distribution
diskettes.

Hard Disk Systems

To install ISAM on a hard disk system, use the following
procedure:

1. Sign on to a B 20 workstation and set your pqth to
the system directory.

2. Insert the first ISAM distribution diskette in
floppy drive [fO].

3. Type SOFTWARE INSTALLATION at the Execut1ve
prompt; then press GO.

4. Follow all instruct10ns shown on the dlsplay, and
insert each of the other ISAM distribution
diskettes when prompted.

5. When installation is complete, remove the last
dlskette and store all of them in a safe place.

Dual Floppy Standalone Systems

To use ISAM on a dual floppy standalone system, prepare
working copies (write-enabled) of the BTOS and ISAM
diskettes. (For further information on making working
copies, refer to the B 20 Systems Standard Software
Operations Guide.) Then proceed as follows:

1. Boot your system using a working copy of the BTOS
boot diskette.

2. Set your path to the system directory.

5022247 1-3

3. Insert a working copy of the second BTOS diskette
in floppy drive [fOJ.

4. Insert the first ISAM diskette in floppy drive
[flJ.

5. Type SUBMIT at the Executive prompt, and press
RETURN.

6. Specify [fl]<Create>ISAMFloppy.Sub in the SUBMIT
form File list parameter.

7. Press GO.

8. Follow the instructions shown on the display.

9. When installation is complete, remove the
distribution diskette and write-protect the ISAM
diskettes.

XE520· Systems

To install ISAM on an XE520 system, use the following
procedure:

1-4

1. S1gn on to a B 20 workstation clustered to an
XE520 master, using the Administrator user name.

2. Insert the first ISAM distribution diskette in
floppy drive [fOJ.

3. Type SUBMIT at the Executive prompt and press
RETURN.

4. Specify [fO]<Sys>XEInstall.Sub in the SUBMIT form
File list parameter.

5. Press GO.

6. Follow the instructions shown on the display.

7. When the installation is complete, remove the last
diskette and store all of them in a safe place.

The following information applies to the installation of
ISAM on an XE520 system.

• You should add the following statement to the
INITFPOO.JCL file:

•

•

•

5022247

$Run [Sys]<Sys>ISAMServer.Run,<number of users>,
<configuration file>

This statement must follow any entry for the queue
manager and precede any entry for MfAdminAgent.

Only one copy of the ISAM server can run on an
XE520 system. You can install it on a board other
than the master FP by lnserting the statement
$Run[Sys] <Sys>ISAMServer.Run, <number of users>,
<configuration file> into the appropriate JCL
file. It must precede any entry for a spooler.

You should make the statement NoWatchDog the first
line in the Master.Cnf file.

The memory required (In kilobytes) is 64 + 4
(number of users-4).

1-5

SECTION 2

CONCEPTS

ISAM allows you to access fixed-length data records
contained in ISAM data sets. Each ISAM data set holds one
type of data record. When you create an ISAM data set, you
specify the record length and key fields, then access the
records of a data set through fixed-length keys. You can
define multiple key fields to support different access
patterns.

FILES TYPES

ISAM stores each ISAM data set as two physical files: a data
store file and an index file. You can place these two files
on different physical volumes, provided they are on the same
workstation.

The data store file holds dutu records. Disk space
management is efficient because all the records in a data
set have the same length. Whenever you delete a record, the
system marks it deleted, and adds it to a list of free
records. The s~stem can reuse these deleted records later
to create a new record. The data store file is a Direct
Access Method (DAM) file.

The name of a data set is the same as the name of its data
store file. You must supply a file specification for the
data store file to access or create a data set.

The index file holds indexes for all the keys of a data set.
ISAM implements indexes by using a B-tree structure. The
B-tree structure has several advantages:

• support of both direct (by key) and sequential
access

• efficiency:

5022247

always takes the same number of I/O
operations to reach a record

never has to follow long overflow chains

2-1

uses two or three reads to locate a record
and one to actually read the record

• fast sequential access: maximum of three reads to
locate and read the first record--usually a single
read for each subsequent· record

• self-reorganization: automatic expansion to
accommodate new keys

• automatic compression: removal of keys to improve
disk utilization and access efficiency

ISAM separates data and indexes to allow the use of Record
Sequential Access Method (RSAM) and DAM for read-only access
to ISAM data set files. (For more information on RSAM,
refer to the B 20 Systems Operating System (BTOS) Reference
Manual.)

\
ISAM maintains logical dependencies between the data store
file and index file of a data set; no access method other
than ISAM can open or modify either file and a consistency
check detects any invalid access.

The separate data store and index files enable you to use
the MAINTAIN FILE command to recover data from the data
store file after hardware or software' failure.

Key Types

A record can have up to 100 keys. The key position in the
record describes the key. For example, the key position can
show:

• offset from the first byte of the record

• key length

• key type

The ISAM key types support character and numeric represen
tations used by the B 20 programming languages and
processors. Byte string and character string key types
support character data. Numeric key types support integer,
binary, packed decimal, display, and several forms of real
numbers.

2-2

To increase flexibility, you can specify the following
parameters for each key when you create an ISAM data set:

• duplicate keys

• index order (ascending or descending)

• index size reduction (suppress null value key
indexing)

Each key uses one index for retrieving a record. You can
retrieve records in key-order sequence by any key field and
starting with any key value. The system automatically
updates the index when you store or modify records.

UNIQUE RECORD IDENTIFIER

A 4-byte unsigned integer uniquely identifies each record in
a data set and is called the unique record identifier (URI).
Store and Read operations return the record URI. Modify
and Delete operations use URIs to identify the target
records processed.

URIs are valid only while the data set is open. You cannot
save them to identify records once you close and reopen the
data set.

ISAM OPERATIONS

ISAM supports four main operations on records:

• storing

• reading

• modifying

• deleting

Storing Records

When an application stores a new record, ISAM places the
record in the data set. It then automatically indexes the
record according to the values in all the key fields.

5022247 2-3

Reading Records

When an application reads a record, ISAM retrieves any of
the following:

• a single record with a given unique key or unique
record identifier

• records with keys of a specific value (an exact
match)

• records with key values residing in a specified
range (a range match)

• records in which the beginning of a byte or
character string key matches a particular value (a
prefix match)

The retrieval result can be either the specified records or
a sequence of 4-byte unique record identifiers. If ISAM
retrieves unique record identifiers, the application can
obtain the corresponding records later by using a special
form of the Read operation that does not reaccess the index.

Modifying Records

When an application modifies an existing record, ISAM
automatically removes the record from each index for a
changed key f~eld. ISAM then indexes it under the new key.

Deleting Records

When an application deletes an existing record, ISAM removes
the record from the data set.and from each individual index.

DISTRIBUTED ISAM

You can share ISAM files with users working at other
workstations.

For example, within a cluster system all cluster work
stations can access ISAM files located at the master. In
addition, they can maintain local files at the cluster
workstations if they have local file storage. You can

2-4

access ISAM files at the master and cluster workstations
simultaneously. In this case, an application system could
read a record from a data store file at the master and write
a record to a data store file at the cluster. You must
install the ISAM server at both workstations.

In addition, you can use B-NET to access ISAM files located
on other network workstations. You must specify the node
name as part of the complete file specification.

ISAM does not provide transactional monitoring.

DATA SET ACCESS MODES

You can use one of three modes to open a data set in ISAM:

• administrator

• batch

• transaction

Table 2-1 describes data set access modes.

The use of read or modify affects the extent to which
applications share a data set.

You can share a data set opened in batch read mode if other
users open it for read-only purposes. If you open a data
set in batch read mode, the system denies any subsequent
request to open the data set in administrator, batch modify,
or transaction modify mode.

Table 2-1. Description of Data Set Access Modes

Mode Activity

Administrator data set-level activities (deleting ISAM
files, renaming ISAM files, and setting
protection on the file)

Batch open a data set in applications requiring
exclusive use of the data set (use with
read or modify)

Transaction allows other applications to concur
rently access and modify the data set

5022247 2-5

You open a data set in batch modify mode exclusively: no
other user has access to it. A request to open the data set
in batch modify mode cannot execute if another user opened
it in any mode.

Using batch read, transaction read, or transaction modify
modes, other users can open a data set you opened in
transaction read mode. A request to open the data set in
transaction read mode cannot execute if another user has the
data set open in administrator or batch modify mode.

Other users in either transaction read or transaction modify
modes can open a data set you opened in transaction modify
mode. You cannot execute a request to open the data set in
transaction modify mode if another user has the data set
open in administrator, batch read, or batch modify mode.

A data set you open in administrator mode is open
exclusively. A request to open the data set in
administrator mode cannot be executed if another user has
already opened it in any mode.

Table 2-2 summarizes these rules.

TRANSACTIONS

An application can open a data set in batch mode to read or
modify records. In batch mode, an application has exclusive
access to the data set. Since other applications do not
have access to the data set at the same time, you cannot
make simultaneous updates. Modification of records and
data sets does not affect any other application.

If you open a data set in transaction mode for shared
access, many applications can access the same records and
data sets. Any modification of a record or data set by one
application affects the other applications. Errors can
occur if you do not coordinate simultaneous access. In
ISAM, transactions are the coordination mechanism.

2-6

Table 2-2. Multiuser Access to Data Set Access Modes

Initial Mode Valid Modes for New Open

Administrator

Batch read

Batch modify

Transaction read

Transaction modify

None

Batch read
Transaction read

None

Batch read
Transaction read
Transaction modify

Transaction read
Transaction modify

In transaction mode, applications designed to allow
multiuser access to a data set divide their processing into
a series of transactions. Each transaction is a unit of
work, as shown in figure 2-1 •. You must make changes to a
data set within a transaction. Only after a completed
transaction can other applications access the changed data.

The beginning of a transaction is the BeginTransaction
operation; the end of a transactlon is either a
CommltTransaction or a RollBackTransaction operation.

You can perform some operations whether or not the applica
tion is in a transaction, but you must perform any operation
that locks or modifies a record (or locks a data set) while
the application system is in a transaction. Table 2-3
illustrates this relationship.

Locking a Record or Data Set

During a transaction, an application can make certain
changes to a data set. When an application system is in the
midst of modifying data, the data set is not in a consistent
state; ISAM prevents other applications from accessing the
changed data. .

5022247 2-7

2-8

Open Data Set

~>
Enter New Employee Data

~
Read User Input

t
I Store New Records I

t
Report New Employee Number

~~
Give a Raise

t
Read User Input

+
Read Record

Modify Record

{~
Determine Department Employees

t
Read Department Number

t
Read Records as Necessary

t
Print Names

(No Modifications, No Transactions)

U
~ Activities

~ Transaction

Figure 2-1. Series of Transactions

Table 2-3. Operations and Transactions

Operations Allowed
Only During a Transaction

CommitTransaction
DeleteISAMRecord
DeleteISAMRecordByKey
GetISAMRecordsHold
HoldISAMDataSet
HoldISAMRecord
ModifyISAMRecord
ModifyISAMRecordByKey
ReadISAMRecordByUriHold
ReadNextISAMRecordHold
ReadUniqueISAMRecordHold
ReleaseISAMDataSet
ReleaseISAMRecord
StoreISAMRecord

Operations Allowed At
Any Time

Close ISAM
GetISAMRecords
ISAMRequest
NormalizeISAMStatus
OpenISAM
QueryTransactionParams
ReadISAMRecordByUri
ReadNextISAMRecord
ReadUniqueISAMRecord
RollBackTransaction
SetTransactionParams
SetUpISAMIterationLimits
SetUpISAMIterationPrefix

To prevent concurrent modification by multiple applications,
ISAM allows an application to lock a record or data set.
This ability gives the application exclusive access to the
record or data set.

Table 2-3 illustrates ISAM operations allowed during
transactions. There are no transaction-related constraints
for the following operations: CreateISAM, DeleteISAM,
LoadSingleUserISAM, RenameISAM, SetISAMProtection, and
VerifyMultiuserISAM. ISAM does not allow BeginTransaction
during a transaction.

If an application locks a record, only that application has
access to the record until ISAM releases or unlocks it. If
an application locks a data set, only that application has
access to the data set and all of its records until it is
unlocked.

Locking a record allows other application systems to access
the remaining records of the data set. You should lock a
data set only when necessary; locking prevents other
applications from accessing any of the data set's records.

5022247 2-9

Deadlocks

When more than one application attempts to lock the same
record or data set, the first application to request the
record or data set obtains it; other application requests
queue up until the record or data set unlocks.

A deadlock can occur when an application that locked a
record or data set attempts to lock another record or data
set that is locked by a different application. If the
second application awaits the record or data set locked by
the first application, both appllcations wait for the locked
record or data set and can remain this way indefinitely.
This deadlock becomes complicated when a number of applica
tions and requests are involved, as shown in figure 2-2.

To avoid a deadlock, ISAM uses tlmeouts when an application
requests a locked record or data set. You speclfy the
maximum time a request can queue in the timeout value of the
Transaction Parameters Block (refer to section 7). The'
timeout value, WTlcksWait, specifies the maximum time a
request waits to lock a record or data set. If the time
specified in wTicksWait runs out, ISAM reports that the
record or data set is not available.

ISAM INSTALLATION

You can use ISAM on a standalone workstation or in cluster
configurations; it supports both single and multiuser
access. An application loads single-user ISAM as a task,
and you install multiuser ISAM as a system service. You can
install multiuser ISAM in either a single-partition or
multipartition operating system.

In a single-partition operating system, you install ISAM
permanently in memory. Once you install ISAM, you cannot
remove the ISAM server, nor can you reallocate its memory
without bootstraping BTOS.

In a multipartition BTOS, you install ISAM in a secondary
application partition.' (For further information about
secondary application partitions, refer to the B 20 Systems
Operating System (BTOS) Reference Manual.)

2-10

5022247

Lock

Request to Lock

Record 1
Data Set 1

Figure 2-2.

Simple Deadlock

Complex Deadlock

Record 2
Data Set 2

Deadlock (Samples)

2-11

ISAM Configuration File

An ISAM configuration file specifies the sizes of the ISAM
server's memory areas, based on the number of users. ISAM
provides default values for this file. Additionally, there
is a utility that modifies the file to improve ISAM's
performance or reduce memory requirements.

ISAM COMMANDS

ISAM provides commands that you can use from the Executive
to maintain and modify ISAM data sets:

• I SAM COpy

• I SAM CREATE

• I SAM DELETE

• I SAM RENAME

• I SAM REORGANIZE

• I SAM SET PROTECTION

• I SAM STATUS

• I SAM TERMINATE

Table 4-1 describes these commands.

DATA SECURITY

Two associated passwords provide data security at each ISAM
data set level: read and mOdify. In addition, BTOS protects
the files of an ISAM data set from unauthorized access.

2-12

.. ~

DATA INTEGRITY

ISAM includes features for maintaining and monitoring the
integrity of data on disk files through:

• Error logging

The system logs errors discovered in the ISAM file
structures in the file [Sys]<Sys>Log.Sys. You can
use the PLOG command to display the log contents.

• Internal consistency checking

Hardware or software errors can introduce
anomalies into a data set. ISAM algorithms
minimize these anomalies by detecting them where
possible and preventing them from becoming worse.

Write-through cache

ISAM maintains and uses a set of I/O buffers that
bring segments of disk records into memory as
needed. Whenever ISAM stores or modifies a
record, ISAM writes the changed data in the
buffers back to disk. ISAM always updates the
disk before completing an operation that changes a
data set.

This policy makes the data less susceptible to
damage from hardware or software failures, unless
the failure occurs in the middle of a Modify,
Store, or Delete operation. ISAM updates all
files; no partial modifications remain in memory
without updating the disk.

If hardware or software _failures damage an ISAM data set,
you can recover undamaged records by using the MAINTAIN FILE
command, then you can use the ISAM REORGANIZE command to
reconstruct the data set.

5022247 2-13

SECTION 3

ISAM DATA SETS

This section discusses the concept and specifics of ISAM
data sets. An ISAM data set consists of two physical files:

• a data store file that contains fixed-length
records

• an index file containing keys and addresses of the
records in the data store file

There is a logical dependency between the data store file
and the index file of a data set.

INDEXES AND KEYS

An index is a structure designed to help you locate a
particular record of a data set. ISAM bases index keys on
the key field values for records contained in a data set.
Index keys can be in ascending or descending order.
F1gure 3-1 illustrates an index for a data set.

An application uses an index to:

• read records in key order

• read a single record using a unique key

An example of sequential access using personnel data sets is
reading the employee records in order by· employee number,
from 100 to 999. An example of direct access is reading the
employee record for employee number 15.

Both of these examples read the records using an employee
number index. To access records directly, the index must
contain unique keys. Unique keys indicate that only one
record exists for each key value. In this case, you cannot
use duplicate keys.

Index keys can be simple or composite. A single field
comprises a simple key. ISAM sorts an index composed of
simple keys in the natural order for the key type. This
allows applications to sequentially access records in order
by key value. Multiple fields make up a composite key.

5022247 3-1

empNo Index Employee Data Set

Emp. No. Emp. No. Dept. No. Emp. Name Salary

1242 _
t--- -------==

1561 1000 Smyth $40,000
1413_

~ . 1785 5000 Smith $30,000
1561-~~ - 1242 5000 Jones $40,000
1785- -- 1794 5000 Kelly $29,000
1794

~
1413 1000 Adams $30,000

·

Figure 3-1. Data Set Index (Sample)

ISAM uses the first field to sort an index composed of
composite keys. The second field in a series sorts groups
of records with duplicate values for the first field, and so
forth. If the entire key contains duplicates, ISAM accesses
records with duplicate values in random order. If a
composite key is unique, no duplication is possible.

In composite keys:

3-2

• total key length cannot exceed 64 bytes

• all fields must be character or byte strings

• sort order must be ascending or descending for all
fields

• fields must be adjacent in the records and appear
in order of significance

For example, for a data set with the following structure:

Byte

o
4

Length

4
5

Type

Byte string
Byte string

Name

deptNo
empNo

You can define a composite key (deptNo,empNo), but not
(empNo,deptNo). The order of the fields does not permit
(empNo,deptNo) keys.

A single key field can also define a composite key. Using
the example above, you define the composite key
(deptNo,empNo) as a 9-byte byte string key located at
offset o.

Key Types

ISAM supports different types of keys by which you can use
most data representations specified in each of the B 20
programming languages. You can use 12 different key types
to specify an index. Each of the 12 types has a notation
for non-COBOL applications (types 0 to 11) and a corres
ponding notation for COBOL applications (types 20 to 31).

Table 3-1 describes each key type. For more information on
the relationships between key types and programming language
representations, refer to table 3-2.

Tab1e 3-1. Description of Key Types

Key Description

Binary

5022247

an unsigned l-byte to 8-byte integer

The high-address byte of a binary key is
significant for determining sort order
on the workstation processor. For
COBOL CaMP fields, the low-address byte
is most significant.

3-3

Table 3-1. Description of Key Types (Cont)

Key Description

Byte String an uninterpreted f1xed-length string of
1 to 64 binary bytes

Character String

Decimal (Odd)/
Decimal (Even)

Display

3-4

The low-address byte is most significant
for determining sort order: ISAM distin
guishes between uppercase and lowercase
ASCII characters. Byte strings have the
same representation in all programming
languages, including COBOL.

a fixed-length string of 1 to 64 binary
bytes

ISAM sorts a character string with the
low-address byte as most significant for
determining sort order. ISAM sorts
character string keys with no distinc
tion between uppercase and lowercase
ASCII characters: character strings have
the same representation in all program
ming languages, including COBOL.

contains two decimal digits in each
byte, except for the last (high-address)
byte where the rightmost four bits are
sign-reserved

This format is the same as COBOL COMP-3.
You use decimal (odd) for values that
have odd numbers of digits and decimal
(even) for values with even numbers of
digits. The number of digits before
packing determines if the system uses
the odd or even decimal type. A decimal
key can contain 1 to 18 decimal digits.

for USAGE is DISPLAY numer1C f1elds

It supports all of the COBOL s1gn
options. Display keys can be 1 to 19
bytes long, containing 1 to 18 decimal
digits.

Tab1e 3-1. Description of Key Types (Cont)

Key Description

Integer a signed I-byte to a-byte integer

Long/Short/Extended
IEEE

Long/Short Real

The high-address byte of an integer key
is the most significant for determining
sort order in a workstation applica
tion. For COBOL CaMP fields, however,
the low-address byte is the most
significant.

for real numbers 1n Pascal or FORTRAN
applications

A long IEEE key is a bytes long; a short
IEEE is 4 bytes; an extended IEEE is 10
bytes.

for BASIC applications

A long roal key is an 8-byte real
number; a short real key is a 4-byte
real number.

Tab1e 3-2. ISAM Key Types and Programming Language
Representations

Language and Key Type

BASIC Interpreter

Integer (%)

ShortReal (1)

LongReal (#)

BASIC Compi1er

Integer (%)

ShortReal (!)

LongReal (#)

5022247

cblndexFie1d wType

2 7

4 5

a 4

2 7

4 5

a 4

3-5

Table 3-2. ISAM Key Types and Programming Language
Representations (Cont)

Language and Key Type

COBOL

USAGE is DISPLAY (n-byte)
(numeric types)

USAGE is COMP (n-byte)
(signed)

USAGE is COMP (n-byte)
(unsigned)

USAGE is COMP-3 (n-digit)
(n even)

USAGE is COMP-3 (n-digit)

FORTRAN (Microsoft)

INTEGER*2

INTEGER*4

REAL*4

REAL*8

DOUBLE PRECISION

FORTRAN-86

(same as FORTRAN above)

TEMP REAL

Pascal (Microsoft)

Byte

Integer

Real

SInt

Word

3-6

cblndexField wType

n 31

n 27

n 20

(n+2)/2 26

(n+2)/2 23

2 7

4 7

4 9

8 8

8 8

10 10

1 o

2 7

4 9

1 7

2 o

SECTION 4

ISAM UTILITIES

This section describes the Executive ISAM commands you can
use for data set maintenance. Each command requires
exclusive control of the data set. Table 4-1 describes each
command.

Section 5 describes ISAM REORGANIZE; you use ISAM REORGANIZE
to recover lost data and to build a data set from any
standard access method file with fixed-length records.

Section 6 describes ISAM INSTALL; you use ISAM INSTALL to
install the multiuser ISAM server.

Table 4-1. ISAM Commands

Co~nand Description

ISAM COPY

ISM CREATE

ISM DELETE

ISAM RENAME

ISAM SET PROTECTION

ISAM STATUS

5022247

copies data set files to produce a
new data set (The passwords for the
new data set remain the same.)

creates an empty data set with the
specified record size and index
fields

deletes both the dat'a store and index
files of the data set and destroys
all the data

renames the data store and index
files to rename the data set (The
passwords are unchanged.)

changes the passwords used to gain
access to an existing data set

displays information about a data set
(ISAM can also print information or
write it to a disk file.)

4-1

Table 4-1. ISAM Commands (Cant)

Command Description

ISAM TERMINATE removes the ISAM server from a
secondary partition in a
multipartition system

DEFAULT INDEX FILE NAME

Several ISAM commands include an optional field for an index
file specification. If you do not enter a file specifica
tion, the data store file specificat10n issues one by
default. ISAM copies the file specification for the data
store and replaces the suffix with .Ind.

For example, if the file specification for the data store is
[vol]<dir>DataSet.lsam, the file specification for the index
file is [vol]<dir>DataSet.Ind. If the data store file is
DataSet, the index file is DataSet.Ind.

ISAM COpy

The ISAM COpy command creates a new data set by copying an
existing one. The command copies both the data store file
and the index f1le of the existing data set. Figure 4-1
illustrates the ISAM COpy form. Table 4-2 describes the
ISAM COpy form parameters.

ISFt! copy
ISFt! data set froM I:::1
ISAM data set to
[Index file to]
[OVerwrite ok?]

Figure 4-1. ISAM COPY Form

4-2

Table 4-2. ISAM COPY Form Parameters

Parameter Description

ISAM data set from fl.le specification for the data
store file ISAM copies (If you
supply a password, it must be the
volume, directory, or file password
for both data set files.)

ISAM data set to file specification for the new data
set's data store file (The pass
word must be the volume or direc
tory password for the new data
store file.)

[Index file to] fl.le specification for the index
file of the new data set

[Overwrite ok?]

5022247

ISAM derives the default file
specification from the data store
fl.le specification, described in
this section. The password must be
the volume or directory password
for the new index file.

If you specify Yes, ISAM performs
the copy. If existing files have
the same names, ISAM overwrites
them without issuing a confirmation
message.

The default (No) directs ISAM to
display a prompt to confirm over
writing the file (if it exists).
Overwriting a file destroys the
data. You press GO to confirm the
overwrite, or press CANCEL or
FINISH to deny it.

4-3

The following example copies a new data set from an existing
one.

ISM C(J>Y
ISM data set fron
ISAM d~ta set to
[Index file to]
[OVerwrite ok?]

EfiPloyee. Ism
EnployeeNeu. Ism

Since you did not enter the index file specification, ISAM
creates the default index specification, EmployeeNew.Ind.
If a file called EmployeeNew.ISAM or EmployeeNew.Ind already
exists, ISAM prompts for an overwrite confirmation by
default.

ISAM CREATE

The ISAM CREATE command creates an empty data set with the
record size and index fields that you enter on the ISAM
CREATE form. ~igure 4-2 illustrates the ISAM CREATE form.

Table 4-3 describes the fields of the ISAM CREATE form.

4-4

ISM Create
ISM data set
[Index file]
Record size (e.g .• 20 bytes)
Index keys (e.g •• Byte:l0.8.ANU.U)
[B-tree node size (default 2 sectors)]
[Growth incre"ent for data store file (default 30 sectors)]
[Growth increnent for index file (default 30 ~ectors)]
[Initial size of data store file (default 30 sectors)]
[Initial size of index file (default 30 sectors)]
[OVerwrite OK?]

1::1

Figure 4-2. ISAM CREATE Form

Tab1e 4-3. ISAM CREATE Form Parameters

Parameter Description

ISAM data set file specification ISAM creates for
the data set's data store file (The
password must be the volume or
directory password for the new data
store file.)

[Index file]

Record size
(e.g., 20 bytes)

Index keys (e.g.,
Byte:10.8.ANU.W)]

5022247

file specification for the new data
set's index file

The default is described in this
section. The password you supply
must be the volume or directory
password for the new Index file.

byte size of the records in the new
data set.

Records must be at least 4 bytes
long. Maximum record size is
65,528 bytes.

. parameter list specifying the index
fields of the data set

You specify each parameter in the
list using the following format; do
not embed spaces.

t:l.o.anu.w or t.o.anu.w

t is the field type and can be any
of the following:

Binary
Byte
Character
Decimal
Display
Integer
LongIEEE
ShortIEEE
ExtendedIEEE
LongReal
ShortReal

4-5

Table 4-3. ISAM CREATE Form Parameters (Cont)

Parameter Description

[B-Tree node size
(default 2 sectors)]

[Growth increment for
data store file
(default 30 sectors)]

[Growth increment for
index file (default
30 sectors)]

[Initial size of data
store file (default
30 sectors)]

4-6

1 is the field length in bytes
for byte or character strings,
number of d1gits for decimal,
or number of bytes for binary,
d1splay, and integer numbers

Binary fields default to two
bytes if you omit this entry.
Long, short, and extended IEEE
index fields and long and
short real index fields do not
use this entry.

o is the byte offset in the
record for the index field
(You specify it as a decimal
number.)

a represents ascending key
order; D represents descending
Key order

n indexes null values (binary
D's); S suppresses null values

u represents a unique key; D
permits duplicate keys

w is for non-COBOL applications;
M is for COBOL applicutions
(This field is optional;
default is W.)

number of sectors in the B-tree
nodes for new data set (maximum
value is 12 sectors)

Table 4-3. ISAM CREATE Form Parameters (Cont)

Parameter Description

[Initial size of index
file (default 30
sectors)]

[Overwrite ok'?]

values used to avoid wasting disk
space and disk fragmentation
caused by excessive numbers of disk
extents

If you specify Yes, the system
creates the data set.

The default (No) directs the system
to display a prompt to confirm
overwriting the existing file when
either of the files for the new
data set exists. Overwriting an
existing file destroys the data in
it. You can press GO to confirm
the overwrite, or press CANCEL or
FINISH to deny the overwrite.

The following example creates the Employee data set from the
Personnel example.

IS~ Create
ISM data set Enployee.ISIrI
[Index file]
Record size (e.g., 20 bytes) 43
Index keys (e.g., Byte:10.8.ANU.U)
[B-tree node size (default 2 sectors)] aEnployee.Keys
[Growth increnent for data store file (default 30 sectors)]
[Crowth increnent for index file (default 30 sectors)]
[Initial size of data store file (default 30 sectors)]
[Initial size of index file (default 30 sectors)]
[OVerwrite ok?]

5022247 4-7

The data set name is Employee. ISAM, and the index file is
Employee.Ind, by default. The record size is 43 bytes.
Employee.Keys is a text file containing the following index
definitions:

BYTE:S.4.ANU.W
CHARACTER:30.9.AND.W
BYTE:9.0.ANU.W

The data store, index file sizes, and growth increments use
default values. You create both files with an initial size
of 30 sectors. Each time either of the files is full, the
length extends by 30 sectors.

By default, you receive a prompt to confirm overwriting if
either Employee.ISAM or Employee.Ind exists.

ISAM DELETE

The ISAM DELETE command deletes both the data store file and
the index file of the data set. It destroys all the data in
the data set.

There is only one parameter in the ISAM DELETE form: ISAM
data set. This is the file specification for the data store
file. The password you supply must be the volume,
directory, or file password for both files of the data set.

The following example deletes the Employee data set of the
Personnel example. The system deletes all records in
Employee.ISAM and all indexes in Employee.Ind.

ISM Delete
ISM data set Enployee.ISM

ISAM RENAME

The ISAM RENAME command changes the name of an existing data
set by renaming both the data store file and the index file.
You must rename both files.

4-8

The system implements ISAM RENAME by using two invocations
of the BTOS RenameFile operation: one changes the data store
file name; the other changes the data set index file name.

There are certain RenameFile operations that are invalid
(renaming a file from one volume to another, or renaming a
file using an incorrect password). If one of the two
required BTOS RenameFile operations is invalid, ISAM RENAME
detects the error. It then renames the data set using a
valid name for both the data store and index files. In this
case, one or both of the files can retain the original name.

Figure 4-3 illustrates the ISAM RENAME form.

Table 4-4 describes the parameters of the ISAM RENAME form.

ISM RenaMe
ISAM data set fro"
ISAM data set to
[Index file to]
[OVerwrite Ok?]

t::::::::::::::::::::::::::::::::::::::·:::::;:::1

Figure 4-3. ISM RENAME Form

The following example renames the Employee data set of the
Personnel example

ISft! RenaMe
ISft! data set fron Enployee.ISM
ISM data set to (NewDir>Enployee . Ism
[Index file to)
Overwrite ok?]

The renamed data store file is the same, but it now res1des
o~a different directory on the logged-in volume. The data
set file specification constructs the index file specifica
tion by default. The new index file name is
<NewDir>Employee.Ind.

5022247 4-9

Table 4-4. ISAM RENAME Form Parameters

Parameter Description

ISAM data set from file specification of the renamed
data set's data store file (The
password must be the volume,
directory, or file password for
both files of the data set.)

ISAM data set to file specification for the renamed
set's data store file (The volume
must be the same volume specified
in ISAM data set from. The
password must be the volume or
directory password for the renamed
data store file.)

[Index file to] file specification for the renamed
data set's index file (If you do
not make an entry, ISAM derives the
default index file specification as
described in this section.)

[Overwrite ok?]

The volume must be the same volume
on which the exi~ting index file
resides. The password must be the
volume or directory password for
the new index file.

Specify Yes to rename a data set

The default (NO) directs the system
to display a prompt to confirm
overwriting the existing file (if
either of the files for the new
data set already exists). Over
writing an existing file destroys
the data in it. You can press GO
to confirm the overwrite, or press
CANCEL or FINISH to deny it.

ISAM SET PROTECTION

The ISAM SET PROTECTION command enters or modifies passwords
that permit access to a data set. ISAM SET PROTECTION does
not change file system passwords for the files of the data
set. You can change file system passwords using the

4-10

Executive SET PROTECTION command. Passwords also open data
sets in administrator mode (refer to section 2 for more
information on the use of admlnistrator mode).

Figure 4-4 illustrates the ISAM SET PROTECTION form.

Table 4-5 explains the parameters on the ISAM SET PROTECTION
form.

ISAM Set Protection
ISAM data set (::1
[Password for nodification]
[Password for reading]

Figure 4-4. ISAM SET PROTECTION Form

Table 4-5.

Parameter

ISAM data set

[Password for
modiflcation]

ISAM SET PROTECTION Form Parameters

Description

file specification for the data
store file of the data set (This is
the data set whose passwords you
are modifying. The password must
be the volume, directory, or file
password for both files of the data
set.)

new password for modify access to
the data set (Without this
password, any password permits
modify access; passwords have a
maximum length of 12 characters.)

[Password for reading] new password for read access to the
data set (Without this password, any
password permits read access; pass
words have a maximum length of 12
characters.)

5022247 4-11

The following example protects the Employee.ISAM data set
for read and modify access.

ISAM Set Protection
IS~ data set Enployee.Ism
[Password for Modification] xxy
[Password for reading] xxz

Command password requirements are as follows:

• batch and transaction read modes require either
xxy or xxz

• batch and transaction modify modes require xxy

• administrator mode requires the file system
password

ISAM STATUS

The ISAM STATUS command produces a status report for a data
set on the display; you can also print or write it to a disk
file. The information displayed includes:

• file names

• sizes

• growth increments

• record and B-tree node sizes

• description of each index, including the depth of
each B-tree

If you enter Yes in response to [Details?], the command
includes the following additional information:

4-12

• number of records (and deleted records) in the
data set

• number of B-tree nodes for each index (and the
number of deleted nodes)

• number of records indexed under· each key

• average percentage of node space currently used
for each index's node

Retrieving this additional information involves scanning the
files of the data set; ISAM STATUS takes significantly
longer to execute if you request these details.

Figure 4-5 illustrates the ISAM Status form.

Table 4-6 explains the parameters of· the ISAM STATUS form.

IStt1 Status
Ism data set 1<::<:::)
[log file]
[Details?]

Fi9ure 4-5. ISAM STATUS Form

Table 4-6. ISAM STATUS Form Parameters

Parameters Description

ISAM data set file specification for the data
store file for which you want the
status report (The password you
use must be the volume, directory,
or file password for both files of
the data set.)

[Log file] file specification for the file the
system writes the status report to
(If you do not specify a log file,
the report appears only on the
display.)

[Details?] Specify Yes to display additional
details.

The default (No) directs the system
to display the standard informa
tion. (Refer to ISAM STATUS
information, in this section.)

The following example produces a status report with details
shown in the second part of figure 4-6. Figure 4-6 shows
both forms of the ISAM STATUS report.

5022247 4-13

ISIl1 Status
ISm data set Enployee • ISM
[Log file]
[Details?] Yes

ISAM TERMINATE

The ISAM TERMI~ATE command removes the ISAM system service
from memory. You can use this command only on a multi
partition operating system and only at the workstation at
which you installed ISAM. ISAM TERMINATE has no parameters.

Data store file
Index file
Last accessed
Last modi fied
Record si ze (bytes)
Node size (sectors)
Size of Data store file (flf'ctorn)
Size of Index file (sectors)
Growth increment for Data store file (flf'ctorn)
Growth increment for Index file (sectorr.)
Number of records (valid and deleted)
Number of noder. (valid and df'leted)

Index
Number

o
1

Index
Specification
Byte:5.4.ANU.W
Character:30.9.AND.W
Byte:9.0.ANU.W

Data store file
Index file
Last accessed
Last mod if ied
Record si ze (bytes)
Node size (sectors)
Size of Data store file (sectors)
Size of Index file (sectors)

OTree
Depth

1
1
I

Growth increment for Data store file (sectors)
Growth increment for Index f i 1 e (sector s)
Number of records
Number of df'leted records
Number of nodes
Number of deleted nodes

Index Index
Number Speci f ication

0 syte:5.4.ANU.W
1 Char acter: 30.9. AND.W
2 Byte:9.0.lINU.W

BTree Number
Depth of nodes

1 1
1 1
1

(Wi n] <Per sonne 1 > Employee. ISAM
(Win] <personnel>Employee. Ind
Thu Jul 11, 1985 1(1: "9 AM
Thu Jul 11, 1985 111:"9 AM
43
2
5
10
5
5
7
3

[Win] <Personnel>Employcf' .1f.lIM
[win] <pcrsonnel>EmploYf'e.lnd
Thu Jul 11, 1985 1": (19 liM
Thu Jul 11, 1985 1":"9 liM
43
2
5
10
5
5
7
o
3
o

Number of Average
record!) indexed Fullness (%)

7 7
7 24
7 9

Figure 4-6. ISAM STATUS Reports (Samples)

4-14

SECTION 5

ISAM REORGANIZATION

The ISAM REORGANIZE command builds a data set from any
Standard Access Method file of fixed-length records,
including the data store file of a data set.

You can use this command independently to:

• initially load a data set from a Direct Access
Method (DAM) file

• change the definition of the indexes of an
existing data set or add new indexes

• change CreateISAM parameters, such as B-tree node
sizes

You can use this command with the MAINTAIN FILE command to:

• recover records from a data set damaged by a
software or hardware failure

• reclaim space in a data set from which you deleted
records

• merge several data sets or DAM files into a new
data set

You can use this command with the SORT command (described in
the B 20 Systems Sort/Merge Reference Manual) to:

• sort the physical records to organize the data set
in order by key values

• recover records, reclaim space, and merge data
sets (as with the MAINTAIN FILE command)

• modify records by changing, adding, deleting, or
rearranging parameters

Sorting the records of a data set improves the performance
of applications that access the records of the data set in
the sort order. No other difference is visible at the
application level.

5022247 5-1

The ISAM distribution diskette contains two forms of the
ISAM REORGANIZE run file: resident and swapping. Hard disk
systems automatically install the swapping version on the
disk, but dual floppy systems systems use only the resident
version. The resident version uses more memory than the
swapping form, but performance is better.

ISAM REORGANIZE performs an in-place reorganization. The
DAM file or the data store file of the data set becomes the
data store file of the reorganized data set. ISAM deletes
the index file of the data set and then rebuilds it.

At the end of this section, there are examples of how to use
ISAM REORGANIZE alone or with MAINTAIN FILE or SORT to
perform the tasks described previously. F1gure 5-1
illustrates the ISAM REORGANIZE form.

Table 5-1 explains the parameters on the ISAM REORGANIZE
form.

5-2

ISM Reorganize
ISM data set or OM file /::1
[Index file]
[York file 1]
[Uork file 2]
[Use paraneters fro" ISAM data set?]
[Index keys (e.g., Byte:10.8.ANU.U)]
[B-tree node size (2 sectors)]
[Data store file growth incre"ent (30 sectors)]
[Index file growth increMent (30 sectors)]
[Initial index file size (30 sectors)]
[MaxiMuM initial B-tree node fullness (80%)]
[OVerwrite ok?]

Figure 5-1. ISAM REORGANIZE Form

Table 5-1. ISAM REORGANIZE Form Parameters

Parameter Description

ISAM data set file specification for a data set
or DAM file

[Index fileJ

[Work file lJ
[Work file 2J

If you specify a DAM file, the DAM
file becomes the data store file of
the new data set. ISAM REORGANIZE
can determine whether the file is a
DAM file or an ISAM data set by the
content of the data file or ISAM
data set.

file specification for the index
file of the reorganized data set

If the file specified in the ISAM
duta set or DAM file is an existing
data set, the index file name
defaults to the name of the exist
ing index file for the data set.
If Index file changes an existing
data set index file name, ISAM
deletes the old index file.

If the ISAM data set or DAM file
above specifies the name of a DAM
file, the index file name defaults
to the name of the DAM file with
the suffix .Ind.

two work files, each approximately
cRecords*(sKeyMax + 8) + 512 bytes
long

(The number of records in the data
set is cRecords, and sKeyMax is the
length of the longest key parameter
in bytes.)

The work files default to
[SysJ<$nnn>ISAMWorkltmp and
[SysJ<$nnn>ISAMWork2tmp (nnn is the
workstation number).

5022247 5-3

Table 5-1. ISAM REORGANIZE Form Parameters (Cont)

Parameter Description

[Use parameters from
ISAM data set?]

5-4

If the directory [Sys]<$nnn> does
not exist, the work files default
to ISAMWorKltmp and ISAMWork2tmp in
the logged-in directory (using the
logged-in default file prefix).

You can optimize ISAM REORGANIZE
performance by putting the work
files on different Winchester disk
drives.

If you spec1fy Yes, ISAM reorgan
izes an existing data set. If you
leave any of the parameters in the
form blank from [Index keys (e.g.,
Byte:lO.8.ANU.W)] through [Index
file growth increment (30
sectors)], ISAM uses the values you
specified when you created or last
reorganized the data set, instead
of the listed defaults.

If you specify Yes for this
parameter and the index file of the
data set was deleted or unusable, a
status message appears on the
display and ISAM REORGANIZE
terminates.

If you accept the default (No), for
this parameter, you must fill in
[Index keys (e.g.,
Byte:10.8.ANU.W)]. If you do not
fill in any of the parameters
[B-tree node size (2 sectors)],
[Data store file growth increment
(30 sectors)], or [Index file
growth increment (30 sectors)],
ISAM uses the listed default.

Table 5-1. ISAM REORGANIZE Form Parameters (Cont)

Parameter Description

Index keys (e.g.,
Byte:lO.8.ANU.W)]

5022247

parameter list that specifies the
index parameters of the data set

You specify each parameter in the
list using the following format,
with no embedded spaces.

t:l.o.anu.w or t.o.anu.w

t is the field type and can be
any of the following:

Binary
Byte
Character
Decimal
Display
Integer
LongIEEE
ShortIEEE
ExtendedIEEE
LongReal
ShortReal

1 is the length of the field in
bytes for byte or character
strings, the number of digits
for decimal, or the number of
bytes for binary, display, and
integer numbers

o

If you omit this entry, binary
parameters default to two
bytes. Long, short, and
extended IEEE index parameters
and long and short real index
parameters do not use this
entry.

is the byte offset in the
record for the index
parameter. You specify it as
a decimal.

5-5

Table 5-1. ISAM REORGANIZE Form Parameters (Cont)

Parameter Description

[B-tree node size
(2 sectors)]

[Data store file
growth increment
(30 sectors)]

[Index file growth
increment (30
sectors)]

[Minimum index file
size (30 sectors)]

[Maximum initial
B-tree node full
ness (80%)]

5-6

a represents ascending key
order; D represents descending
key order

n indexes null values (binary
O's); S suppresses null values

u represents a unique key; D
permits duplicate keys

w is for non-COBOL applications;
M is for COBOL applications
(This parameter is optional;
default is W.)

number of sectors in B-tree nodes
for new data set (Maximum value is
12 sectors.)

values you use to avoid wasting
disk space and disk fragmentation
(caused by excessive numbers of
disk extents)

percentage of allocated space for
maximum capacity of each B-tree
node; minimum capacity 50%

(If you specify a percentage less
than 50%, ISAM REORGANIZE ignores
it and uses 50%.)

Table 5-1. ISAM REORGANIZE Form Parameters (Cont)

Parameter Description

[Overwrite ok?] If you specify yes, the system
performs the reorganization without
confirmation prompts.

Under any of the following con
ditions, ISAM REORGANIZE issues a
prompt to confirm before
overwriting the file contents:

• you accept the default (No)

• the ISAM data set or DAM file
entry specifies a DAM file

• the index file exists

LOADING A DATA SET

By using the Executive COpy command, you can load a
from a DAM file. You copy the DAM file to the data
file of the data set. Then you Use ISAM REORGANIZE
the indexes for the new data set and to initialize
structures necessary for ISAM's access to the data

data set
store
to build
all file

set.

If the DAM file, Employee.DAM, contains records to load into
the Employee data set, Employee. ISAM, you copy Employee.DAM
to Employee.ISAM. The following example illustrates this
operation.

Copy
File fro" Enployee.DAn
File to Enployee.I~

[OVerwrite ok?]
[ConfirM el!ch?]

5022247 5-7

After invoking ISAM REORGANIZE, you fill in the form as
follows:

ISM Reorganize
ISM data set or OM file Enployee.ISIII
[Index file]
[Uork file 1]
[Uork file 2]
[Use par8l'leters: fro" ISM data set?]
[Index keys (e.g., 8yte:10.8.ANU.U)] aEnployee.Keys
[B-tree node size (2 sectors)]
[Data store file growth incre"ent (30 sectors)]
[Index file growth increnent (30 sectors)]
[Initial index file size (30 sectors)]
[Maxinun initial 8-tree node fullness (80\)]
[OVerwrite ok?]

Employee.Keys is a text file contain1ng the following key
specifications:

BYTE:5.4.ANU.W
CHARACTER:30.9.AND.W
BYTE:9.0.ANU.W

CHANGING INDEXES AND OTHER ISAM CREATE PARAMETERS

You can use ISAM REORGANIZE to:

5-8

• change the index definitions of an existing data
set

• add new indexes

• change other ISAM CREATE parameters such as B-tree
node sizes

In the Personnel data sets example, the records contained in
Employee.ISAM have the following structure:

Offset

o
4
9

39

Length

4
5

30
4

Parameter

deptNo
empNo'
empName
salary

Type

byte
byte
character
decimal

EmpNo and empName are defined as keys; there is also a
composite key (deptNo,empNo).

In this example, you added an index on the salary parameter.
All four indexes now list records in ascending order by key
parameter(s), and all four now support indexing of null
values. The empNarne and salary indexes allow duplicates;
and the empNo and (deptNo,empNo) keys uniquely identify
records.

When the ISAM REORGANIZE form appears, you enter the name of
the data set in the ISAM data set or DAM file parameter.
Then you specify Yes for [Usc parameters from ISAM data
sct?], and fill in the parameters you want changed.

5022247

ISM Reorganize
ISM data set or OM file
[Index file]
[York file 1]
[lJork file 2]
[Use paraMeters froM ISM data set?]
[Index keys (e.~;. Byte:10.8.ANU.U)]
[B-tree node size (2 sectors)]
[Data store file growth increMent (30 sectors)]
[Index file growth increMent (30 sectors)]
[Initial index file size (30 sectors)]
[MaxiMUM initial B-tree node fullness (80l)]
[Overwrite ok?]

Enployee . Ism

Yes
3Enployee • Keys

5-9

Employee.Keys is a text file containing the following key
specifications:

BYTE:5.4.ANU.W
CHARACTER:30.9.AND.W
BYTE:9.0.ANU.W
DEClMAL:6.AND.W

ISAM REORGANIZE then:

• extracts the old parameters from the data set

• replaces any that have new values with specified
values (in this case, only the index keys)

• rebuilds the indexes of the data set

RECOVERING RECORDS, RECLAIMING SPACE,
AND MERGING DATA

You use the Executive MAINTAIN FILE command and ISAM
REORGANIZE to:

• recover records from a data set damaged by a
software or hardware failure

• reclaim space in a data set from which you deleted
records

• merge several data sets or DAM files into a new
data set

MAINTAIN FILE performs each of these tasks and produces a
single file. This file, along with ISAM REORGANIZE, builds
the indexes.

The following example shows you how to recover data from
Employee.ISAM. You first invoke MAINTAIN FILE and fill in
the form as follows:

5-10

Maintain File
Input files
[Output file]
[Log file]
[ReMove deleted reCOrdS?]
[Suppress confirMation?

Enployee.ISR1
Tettp.Dm

MAINTAIN FILE scans the data store file of the Employee data
set, verifying the file structures, recovering data, and
reclaiming the space the deleted records occupied. Then
ISAM copies the records copied into Temp.DAM.

Next, you use the Executive COPY'or RENAME command to
replace the data store file of Employee.ISAM with the file
that MAINTAIN FILE produces, as follows:

Ren8l'le
Old file nafte Tenp.~

New file naMe Enployee.ISAn
[Overwrite ok?] Ves
[ConfirM each?]

Finally, you use ISAM REORGANIZE to build the indexes of the
merged data set. ~he eX1sting index file can supply the
index keys, node sizes, etc. (If the index file of the old
Employee.ISAM data set does not have the default name,
Employee. Ind, you must specify its name in the Index file
parameter.)

ISM Reorganize
ISM data set or Oft! file Enployee.ISM
[Index file]
[Uork file I]
[York file 2]
[Use paraMeters froM ISAM data set?]
[Index keys (e.g., Byte:l0.8ANU.Y)] Ves
[B-tree node size (2 sectors)]
[Data store file growth increftent (30 sectors)]
[Index file growth increnent (JO sectors)]
[Initial index file size (30 sectors)]
[MaxiMUM initial B-tree node fullness (80\)]
[OVerwrite ok?]

SORTING DATA SET RECORDS

You use the SORT command and ISAM REORGANIZE to:

•

5022247

sort the phys1cal records to organize the data set
in order by key values

5-11

• recover records, reclaim space, and merge data
sets

• modify records by changing, adding, deleting~ or
rearranging parameters

You modify records by using the Own Code feature in the SORT
utility. After ISAM sorts the data store file ISAM
REORGANIZE builds the indexes for the data set. (For more
information on Sort, refer to the B 20 Systems Sort/Merge
Reference Manual.)

In the Personnel data sets example, the Employee data set,
Employee. ISAM, has the following parameters.

Offset Length

0 4
4 5
9 30

39 4

Parameter

deptNo
empNo
empName
salary

Type

byte
byte
character
decimal

EmpNo and empName are key parameters and (deptNo,empNo) is a
composite key.

In this example, a major applicat10n system processes
records in order by employee number, so it is advantageous
to sort the data set by the empNo parameter. You should
invoke SORT and fill in the form as follows:

Sort
Input files
OUtput files
Keys
[Stable sort?]
["ork file 1
[Uork file 2]
[Log file]
[Suppress confirMation]

Enployee. Ism
Tenp.M1
BVTE:5 A.U.

Next, you use the Executive COPY or RENAME command to
replace the data store file of Employee.ISAM with the file
SORT produces, as follows:

5-12

Ren8l'le
Old file ns"e Tenp.DAn
New file nane Enployee.ISm
[Overwrite ok?] Ves
[ConfirM eaCh?]

Finally, you use ISAM REORGANIZE to build the sorted data
set's indexes. The existing index file can supply the index
keys, node sizes, etc. (If the index file of the old
Employee.ISAM data set does not have the default name,
Employee. Ind, you must specify its name in the Index file
parameter.)

ISAM Reoroonize
ISAM data set or DAM file Enployee.lSAn
[Index file]
[York file 1]
[Uork file 2]
[Use para"eters fro" ISAM data set?]
[Index keys (e.g •• Byte:IO.8ANU.Y)] Yes
[B-tree node size (2 sectors)]
[Ooto store file growth increnent (30 sectors)]
[Index file growth incrc"cnt (30 sectors)]
[Initial index file size <'0 sectors)]
[Moxinun initiol B-troo node fullness (80\)]
[Overwrite ok?]

5022247 5-13

SECTION 6

ISAM SERVER INSTALLATION

ISAM supports both multiuser and single-user access to the
ISAM server. The system installs multiuser ISAM in memory
as a system service, while an application loads single-user
ISAM as a task. If the system installs multiuser ISAM,
applications can share access to data sets. An application
that opens a data set with single-user ISAM, however, has
exclusive use of the data set; no other application can
access that data set.

ISAM handles the differences between multiuser and single
user access internally. Once ISAM establishes access,
applications are independent of any differences and can run
in either environment. (Refer to table 6-1 for more infor
mation on the differences between multiuser and single-user
access.)

For example, ISAM treats transaction-related constraints
associated with multiuser access the same way that it does
single-user access. Using the same requirements regardless
of access method enables you to write and test an applica
tion in a single-user environment before using it in a
multiuser environment.

Similarly, asynchronous requests from applications to ISAM
use the same procedure, ISAMRequest, in both multiuser and
single-user environments.

To support multiuser (shared) access to data sets, you must
install the ISAM server in memory as a system service at a
standalone, master, or cluster workstation. You use the
ISAM INSTALL command to install multiuser ISAM. The ISAM
distribution diskettes contain a default configuration file
that you can modify to support the requirements of your
installation. .

You can also load ISAM as a task of an application by
invoking the LoadSingleUserISAM operation. Loading the ISAH
server from an application allows single-user exclusive
access to data sets located at the workstation where the
application is running, without instal11ng ISAM as a system
service.

5022247 6-1

You can install two different forms of the ISAM server:
resident and swapping. The resident server uses more memory
than the swapping form, but performance is better.

The distribution diskettes include both forms; the type of
system environment in which you are using ISAM determines
which form you use. Hard disk systems automatically install
the swapping server on the disk. Systems equipped with
floppy disk drives use only the resident server.

MULTIUSER INSTALLATION

The following information pertains to multiuser installation
in a single-partition BTOS and in a multipartition BTOS.

Single Partition Operating System

In a single-partition operating system, the system
permanently installs ISAM in memory. Once you install it,
you cannot remove it or reallocate its memory, unless you
reset the system.

Table 6-1. Differences Between Multiuser and
Single-User Access

Multiuser Access

ISAM installs
as a system service at
the master, cluster, or
stand-alone work
station.

ISAM services requests
from all applications.

Both shared and
exclusive access to
a data set are available.

ISAM uses Request and
Respond operations and
asynchronous processing.

6-2

Single-User Access

ISAM loads as a
task of the application.

ISAM services requests only
from the applicat10n
that called it.

Only exclusive access
to a data set available;
no other application can
access a data set that an
application opened.

ISAM uses the Send
operation for asynchronous
processing.

Multipartition Operating System

In a multipartition operating system, the system installs
ISAM in a secondary application partition. You can use the
ISAM TERMINATE command to remove the server from a secondary
partition.

ISAM INSTALL

The ISAM INSTALL command installs the ISAM server in memory
at a standalone, cluster, or master workstation. It uses
the values contalned in a configuration file to determine
how to allocate memory. Figure 6-1 illustrates _the ISAM
INSTALL form.

Memory Allocation

ISAM server installation requires memory for:

e resident code and data

e- a virtual code segment management buffer (swap
zone) when it uses the swapping server

e a heap

e data and index buffers

ISttl Install
[Hunber of ISA'1 users (default fron OS confilluration)] k:::>1
[Confi~ur~tion file (default SysISAM.ConfiQ)]

Figure 6-1. ISAM INSTALL Form

5022247 6-3

Table 6-2.

Parameter

[Number of ISAM users
(default from as
configuration)]

[Configuration file
(default [Sys]<Sys>
ISAM.Config)]

Resident Code and Data

ISAM INSTALL Form Parameters

Description

specifies the average number of
users who use ISAM

(The default is the total number of
users specified in the BTOS system
build configuration file. ISAM
determines memory requirements for
the specified number of users
according to the values specified
in the configuration file for the
data set.)

For example, if a cluster has five
users, three of whom use ISAM
extensively and two of whom use
ISAM occasionally, you should
specify four. ISAM allows simul
taneous use by all five with some
performance degradation.

specifies the configuration file
ISAM uses to determine memory
requirements

(The default value is
[Sys]<Sys>ISAM.Config, which is the
configuration file you receive with
the distribution diskettes. To
modify the default configuration,
'refer to ISAM CONFIGURE, in this
section.)

The following are the code and data requirements for the
swapping and resident servers. You can specify other memory
areas, 'although the distribution configuration file contains
default values.

6-4

~wap Zone

Resident code and data
(swapping system service): 39K

Resident code and data
(resident system service): 80K

For the resident ISAM server, the swap zone size is
always O. The size of the swap zone can vary for the
swapping server. In general, the more memory allocated for
the virtual code segment, the better ISAM performs. For the
swapping form of the ISAM server, the size of the swap zone
(virtual code segment management buffer) must be at least 8K
of memory; the maximum amount is 48K of memory.

Heap

The heap is an area of memory containing internal ISAM data
structures that allocates control blocks for open data sets,
indexes, and record locks. If you need a large number of
control blocks, you should increase the heap size; however,
the size of the heap cannot exceed 40K of memory. This
section provides further information on determining heap
size.

Data Buffers

Data buffers are fixed-length I/O buffers into which ISAM
reads portions of data files. ISAM allocates data buffers
as 512-byte sectors. A data buffer must be at least two
sectors (lK) and not more than 127 sectors (63.5K). The
buffer size should be kept small unless the records in the
data set are large.

You determine the total memory area allocated for the data
buffers by multiplying the number of sectors needed for"a
buffer by the total number of buffers required. The number
of users determines the number of buffers needed.

This section provides information on how to determine the
number of buffers needed; it also gives a more detailed
explanation of how to determine the data buffer size.

5022247 6-5

Index Buffers

Index buffers are fixed-length I/O buffers into which ISAM
reads portions of index files. The system allocates Index
buffers as 5l2-byte sectors. An index buffer must be at
least one sector (512 bytes) and no more than 12 sectors
(6K). You cannot access a data set if the largest B-tree
node in the index file does not fit in the index buffer.
The system allocates nodes, like index buffers, in full
sectors. The index buffer must be no smaller than the
largest B-tree node. You determine total memory area
allocated for the index buffers by multiplying the number of
sectors needed for a buffer by the number of buffers needed.

The number of buffers required depends on the number of
users. This section provides further information on
determining the number of index buffers you may need.

ISAM CONFIGURE

An ISAM configuration file specifies the sizes of the ISAM
server's memory areas; you determine size according to the
number of users you specify. The configuration file
provided on the distribution diskette has default values for
these memory areas. However, changing the values with the
ISAM CONFIGURE command can improve performance, depending on
the typical patterns of access in a particular installation.

The ISAM CONFIGURE command creates or changes the
configuration file that the ISAM INSTALL command uses to
determine memory allocation (refer to ISAH INSTALL,
described in this section). ISAH CONFIGURE displays the
values contained in the specified configuration file and
allows you to change the values.

If the specified configuration file does not exist, ISAM
CONFIGURE creates a new configuration. file with the
specified name, and inserts default values. The following
message appears before ISAM CONFIGURE creates the
configuration file. (In this case, the term file refers to
the specified configuration file.)

File file does not exist. Create?
(Press GO to confirm, CANCEL to stop command)

6-6

If the specified configuration file exists but _is not an
ISAM configuration file, ISAM CONFIGURE overwrites the
contents of the configuration file with default
configuration values. The following message appears before
ISAM CONFIGURE overwrites the contents of the specified
configuration file:

File is not an ISAM configuration file.
Overwrite?
(Press GO to confirm, CANCEL to stop command)

By changing the values in the form, you can modify tne
configuration file values. This section also provides
detailed information on calculating the size of the memory
areas. Figure 6-2 illustrates the ISAM CONFIGURE form.

ISM Configure
[Configuration file (default [Sys]<Sys>ISM .Config)] I:::>1

Figure 6-2. ISAM CONFIGURE Form

The default configuration file is [Sys]<Sys>ISAM.Config,
which is the configuration file provided with the
distribution diskettes.

ISAM Configure Display

The ISAM CONFIGURE display appears when you invoke the'
command. The values from the configuration file specified
in ISAM CONFIGURE appear. (Refer to figure 6-3.)

By changing the entries in the form, you can change the
configurat10n file.

Cursor Movement

When the ISAM CONFIGURE display appears, the cursor is in
the first field. If you press the NEXT, RETURN, or TAB key,
the cursor moves from field to field. When the cursor
reaches the last field, pressing the NEXT or RETURN key
brings the cursor to the first field.

5022247 6-7

The cursor-control keys move the cursor vertically or
horizontally as follows:

• The Left Arrow and Right Arrow keys move the
cursor within a field.

• SHIFT-Left Arrow moves the cursor to the previous
field.

• SHIFT-Right Arrow moves the cursor to the next
field (the same as the NEXT and RETURN keys).

• The Up Arrow, SHIFT-Up Arrow, and SHIFT-Down Arrow
keys move the cursor vertically.

• CODE-Up Arrow moves the cursor to the first field.

• CODE-Down Arrow moves it to the last field.

To delete one or more characters, you use the following key
or set of keys:

• Press DELETE to delete one character at a time in
a field.

• Press CODE-DELETE to delete all field characters.

Display

The following items describe the ISAM CONFIGURE display.
They correspond to the circled numbers in figure 6-3.

6-8

ISAM Configuration Utility X.XX is the display
title. X.XX is the version.

Buffer Sizes {number of 512-byte sectors}
specifies the number of 512-byte sectors to be
allocated for each data and index buffer. The
maximum number of sectors for data buffers is 127;
the index buffer maximum is 12. The default value
for both data and index buffers is 2.

Number of ISAM Users specifies the range of
numbers ISAM uses as column headings for the
tabular portion of the form. Each entry is the
number of users for which that column provides
configuration information. You can specify up to
10 numbers. You can change the range of numbers
as long as the numbers ascend from left to right.

Executive X.XX (OS XXX-X.XX)
Path: [Sys]<Sys>

User NMe: Allen
Fri July 26. 1985 1:47 P.M.

~ ISAM Configuration Utility X.XX

CD Buffer Sizes (nunber of 512-byte sectors)
Data Buffers 2

Q
G)

CD
G)

0

5022247

Index Buffers 2

G) Nunber of ISAM Users

2 3 4 5 6 16 32 48 64

Heap Size 4 13 16 28 36 50 63

(K bytes)
Data Buffers 3 8 10 20 36 52 66

(nunber)

Index Buffers 3 16 20 40 72 104 132
(nuMber)

Swap Zone Size (K bytes) 10

Press GO to confirn changes. or CANCEL to stop conn and

Figure 6-3. ISAM CONFIGURE Display (Sample)

Heap Size (K bytes) specifies the number of bytes
allocated for the heap, based on the number of
users. The minimum size is 1.

There must be at least one entry in this row.

Data Buffers (number) specifies the number of data
buffers allocated, based on the number of users.
The minimum number is 2.

There must be at least one entry in this row.

Index Buffers (number) specifies the number of
index buffers allocated, based on the number of
users. The minimum number is 3.

There must be at least one entry in this row.

6-9

Swap Zone Size (K bytes) specifies the number of
bytes allocated for virtual code segment
management. The minimum number is 8. The
resident server ignores this entry.

Message line. Error messages replace this line if
any errors occur.

MEMORY ALLOCATION CALCULATION

Before installing the server, ISAM INSTALL allocates memory
by calculating the memory requirements for resident code and
data, a swap zone (if you use the swapping server), a heap,
and data and index buffers.

You predetermine memory allocation for resident code and
data: the configuration file specifies memory allocation for
the swap zone.

ISAM INSTALL uses the configuration file values listed in
the ISAM CONFIGURE display (see figure 6-3) to calculate
memory allocation for the heap and the data and index
buffers, based on the number of users accessing ISAM.

ISAM INSTALL calculates the heap size by selecting the Heap
Size entry for the appropriate number of users. If the
specified number of users is a column entry, ISAM INSTALL
then reads the specified heap size from that column in the
Heap Size row. If ISAM INSTALL does not find that number of
users, or if the corresponding column in the Heap Size row
is blank, it calculates heap size by either interpolating
between or extrapolating from the existing entries.

ISAM INSTALL calculates the memory area needed for the data
buffers from two entries in the configuration file. Then it
determines the actual number of data buffers to use in the
same way it determines heap size, using the Data Buffers
(number) entries in the tabular section of the form. ISAM
INSTALL then multiplies this number by the Buffer Sizes
entry for data buffers. The product is the size of the
memory area allocated for all the data buffers. This
section provides further information on calculating the size
of the data buffers.

ISAM INSTALL calculates the memory area the index buffers
need in the same way it calculates the area the data buffers
need: it uses the Index Buffers entries.

6-10

For example, the default configuration file contains the
heap size and the number of data and index buffers for 1, 4,
6, 16, 32, 48, and 64 users. If you specify four users
during installation, then ISAM INSTALL allocates 13K-bytes
of memory for the heap, eight 1024-byte data buffers, and 16
1024-byte index buffers.

If you specify three users in the previous example, ISAM
INSTALL interpolates values for the heap size and the number
of data and index buffers, then calculates their memory
allocation. If you specify more than 64, ISAM INSTALL
extrapolates the values for the heap size and the number of
data and index buffers. ISAM INSTALL then calculates their
memory allocation.

BUFFER SIZE GUIDELINES

Whenever ISAM reads a record or B-tree node into memory, it
reads in the entire record or node. Therefore, buffers must
be large enough to accommodate the largest record or B-tree
node. Data buffers must be lurge enough to hold the largest
record in the data set. This requirement becomes complex
because records can overlup ucctor boundaries, but I/O
operations always access whole sectors. If a record
overlaps two sectors, ISAM must read both sectors into the
data buffer.

The rule for allocating datu buffers is:

buffer size (bytes) record size (bytes) + overhead
(8 bytes) + overlap sector (511 bytes), rounded up to
full sectors

If the record size + 8-byte overhead is a power of 2, the
records align on sector boundaries, and the calculation does
not need the extra 511 bytes for sector overlap.

The number of buffers allocated depends on the number of
users. The minimum is two data buffers. Random-access
performance improves with more buffers because this
increases the probability that a record still exists in
memory if you need it a second time. Sequential-access
performance improves with larger buffers.

5022247 6-11

SECTION 7

ISAM OPERATIONS

You use the ISAM procedures and services in applications to
operate on data in ISAM data sets. You can write ISAM
applications in any of the B 20 programming languages.

Table 7-1 categorizes prQcedures and services by function.
The first part of this section contains brief descriptions
and general information on each functional category. The
operations are then presented in alphabetical order with a
brief description of the operation, the procedural inter
face, and the request block parameters where applicable.

You access most ISAM services by a procedural interface or
by the ISAMRequest and W~it operations. You use the
ISAMRequest operation to send requests to ISAMi multiuser
ISAM uses the Request operation while single-user ISAM uses
the Send operation.

Using the procedural interf~ce is easier because the system
performs most of the work automatically. Using the
ISAMRequest and Wait operations allow for a greater degree
of overlap between computation and I/O operations.

Previous applications can use operations that are no longer
standard in Release 5.0. Programs that call these
operations still run with ISAM 5.0. Appendix B lists
services that are no longer part of standard ISAM
operations.

STATUS BLOCK

All ISAM operations include the pStatusBlockRet parameter,
which points to the address of a status block used to report
errors to the application. The 4-byte status block contains
two status codes, erc and ercDetail, as shown in table 7-2.

Erc is either 0 (OK) or one of the ISAM status codes listed
in appendix A. If erc is nonzero, ercDetail gives addi
tional information about the error, for example, when a sec
tor of the index file becomes unreadable because of a device
error. Erc contains 3119 (Index file error) and ercDetai1
contains 301 (I/O error).

5022247 7-1

Table 7-1. ISAM Operations by Function

Data Set Management

CreateISAM
DeleteISAM
RenameISAM
SetISAMProtection

Data Set Access

CloseISAM
OpenISAM

Record Management

DeleteISAMRecord
DeleteISAMRecordByKey
ModifyISAMRecord
ModifyISAMRecordByKey
StoreISAMRecord

Single Record Access

ReadISAMRecordByUri
ReadISAMRecordByUriHold
ReadUniqueISAMRecord
ReadUniqueISAMRecordHold

Multiple Record
Access (Iteration)
GetISAMRecords
GetISAMRecordsHold
ReadNextISAMRecord
ReadNextISAMRecordHold
SetUpISAMlterationLimits
SetUpISAMlterationPrefix

Record Locking

HoldISAMDataSet
HoldISAMRecord
ReleaseISAMDataSet
ReleaseISAMRecord

Transactions

BeginTransaction
CommitTransaction
QueryTransactionParams'
RollBackTransaction
SetTransactionParams

ISAM Service Access

LoadSingleUserISAM
VerifyMultiuserISAM

Asynchronous Requests

ISAMRequest
NormalizeISAMStatus

Table 7-2. Status Block Format (pStatusBlockRet Parameter)

Offset

o

2

7-2

Size
(bytes)

2

2

Parameter

ere

ercDetail

Contents

Status code
(see appendix A)

Detail status code

If you use ISAM operations within a COBOL application, the
two bytes of each status code appear in reverse order. You
can display the status codes correctly by first calling
ConvertWord for each status code.

DATA SET MANAGEMENT

Table 7-3 describes data set management operations.
Section 3 describes ISAM data sets.

ISAM DESCRIPTION BLOCK

When you create a data set with the CreateISAM operation, an
ISAM Description Block supplies a data set description that
includes the record size, key description, and sector allo
cation policies. Table 7-4 illustrates the block structure.

Table 7-3. Data Set Management Operations

Operation Description

CreateISAM data set index structure; creates a
new, empty data set with the
specified structure

DeleteISAM deletes the open data set files,
and destroys the data set

RenameISAM changes the name of an existing
data set (the data store and index
file name)

SetISAMProtection changes the data set passwords

5022247 7-3

Offset

o

4

8

10

7-4

Table 7-4. ISAM Description Block

Size
Parameter (bytes)

IfaInitSize-
IndexFile 4

qbGrowIndex-
File 4

cSectorsNode 2

IfaInitSize
DataStoreFile 4

Description

initial index file size
of the data set (It must
be a mult1ple of 512.
The size defaults to
15360, 30 sectors, if
IfaInitSizeIndexFile
is 0.)

number of bytes by which
the index file grows
when memory is exhausted
(The value must be a
multiple of 512. The
index file grows by a
default of 15360, 30
sectors, if
gbGrowIndexFile is 0.)

B-tree nodes size in
sectors (cSectorsNode
must not exceed the
index buffer size speci
fied in the configura
tion file you use to
install ISAM. It
defaults to that buffer
size.)

initial data store file
size of the data set
(It must be a multiple
of 512. The size
defaults to 15360, 30
sectors, if
IfaInitSizeDataStoreFile
is 0.)

Offset

14

18

20

22

Offset

o

2

5022247

Table 7-4. ISAM Description Block (Cont)

Parameter

gbGrowData
File

sRecord

clndexes

rgIndexSpec

Size
(bytes)

4

2

2

Indexes
*20

Description

number of bytes by which
the data store file
grows when file space is
gone (The value must be
a multiple of 512. The
data store file grows by
a default of 15360, 30
sectors if
gbGrowDataStoreFile
is 0.)

size in bytes of data
set records (Records
must be at least four
bytes.)

number of data set
index'es

data set Index Specifi
cation Blocks (There is
one ISAM Index Specifi
cation Block per index.
The ISAM Index Specifi
cat10n Block structure
is shown in table 7-5.)

Table 7-5. ISAM Index Specification Block

Size
Parameter (bytes) Description

rbIndexField 2 key component offset in
each data set record

cbIndexField 2 key component size in
bytes (The fields wType
and cbIndexField together
specify the type and size
of the key component in
each ISAM Index specifi
cation Block. Refer to
table 7-6.)

7-5

Table 7-5. ISAM Index Specification Block (Cont)

Offset

4

6

8

10

12

7-6

Parameter

wType

fAscending

Size
(bytes) Description

2 one of the values 0 to 11
(20 to 31 for COBOL) used
to represent a key type
as in table 7-6 (The
fields wType and
cbIndexField together
specify the type and size
of the key component in
each ISAM Index Specifi
cation Block. Refer to
table 7-6.)

2 TRUE (OFFh) if keys for
this index are in ascend
ing order: FALSE (Oh) if
the keys are in descend
ing order

fNullIsIndexed 2 TRUE (OFFh) if null
values (binary O's) are
indexed: FALSE (Oh) if
null values are not
indexed

fDuplicates
Allowed

pad

2

8

TRUE (OFFh) if duplicate
values are valid for this
index: FALSE (Oh) if ISAM
prevents a record from
being stored or modified
when a key value dupli
cates the key of a data
set record

When fDuplica tesA-llowed
is FALSE, you use index
to directly access the
data set records; each
key is unique

Reserved

Table 7-6. Type of Key Component

Type Name of Type

o Binary

1 Byte

2 Character

3 Decimal (Odd)

4 LongReal

5 ShortReal

6 Decimal (Even)

7 Integer

8 LongIEEE

9 ShortIEEE

10 ExtendedIEEE

11 Display

Description

cbIndexField contains the key
length in bytes (1 to 8 are
valid values)

cbIndexField contains the key
length in bytes (1 to 64 are
valid values)

cbIndexField contains the key
length in bytes (1 to 64 are
valid values)

cbIndexField contains (d +
2)/2; d is the number of
decimal digits in the key
(d ~ 18)

cbIndexField must contain 8

cbIndexField must contaln 4

See Decimal (Odd) above for
the villue of cbIndexField

(You use this type for keys
with an even number of decimal
digits.)

cbIndexField contains the key
length in bytes (1 to 8 are
valid values)

cbIndexField must contain 8

cbIndexField must contain 4

cbIndexField must contain 10

cbIndexField contains the key
length in bytes (1 to 19 are
valid values.)

COBOL applications use the values 20 to 31 for the key types
listed in this table.

5022247 7-7

DATA SET ACCESS

There are two Data Set Access and ISAM handle operations:

CloseISAM (closes an open data set)

OpenISAM (opens an existing data set)

An ISAM handle is a word value which identifies an open data
set. The OpenISAM operation returns the ISAM handle; in
subsequent ISAM operations you use it as the parameter
ISAMhandle. An ISAM handle is valid until you close or
delete the data set.

RECORD MANAGEMENT AND ACCESS

Table 7-7 describes Record Management Operations, table 7-8
describes Single Record Access Operations, and table 7-9
describes Multiple Record Access (Iteration) Operations.

Table 7-7. Record Management Operations

Operation Description

DeleteISAMRecord removes a data set record
(identified by its unique record
identifier)

DeleteISAMRecordByKey removes a data set record
(identified by a unique key)

ModifyISAMRecord modifies an existing record
(identified by its unique record
identifier) in the data set and
updates all indexes accordingly

ModifyISAMRecordByKey modifies a data set record (identi
fied by a unique key) and updates
all indexes accordingly

StoreISAMRecord creates a new data set record with
specified data

7-8

Table 7-8. Single Record Access Operations

Operation

ReadISAMRecordByUri

ReadISAMRecordByUri
Hold

ReadUniqueISAMRecord

ReadUniqueISAMRecord
Hold

Description

reads a record identified by its
unique record identifier

reads and locks a record identlfied
by its unique record identifier

reads a record identified by a
unique key

reads and locks a record identified
by a unique key

Table 7-9. Multiple Record Access (Iteration) Operations

Operation

GetISAMRecords

GetISAMRecordsHold

ReadNextISAMRecord

ReadNextISAMRecord
Hold

SetUpISAMlteration
Limits

SetUpISAMlteration
Prefix

5022247

Description

reads several records or unique
record identifiers in key order

reuuu and locks several records or
unique record identifiers in key
order

reads the next record in key order

reads and locks the next record in
key order

initializes a sequence of Read
operations for records with a
specifiG key within a given range

initializes a sequence of Read
operations for records with a
specific byte or character strlng
key having a given prefix

7-9

LOCKING

Table 7-10 describes Locking operations.

TRANSACTIONS

Table 7-11 describes Transaction operations.

Table 7-10. Locking Operations

Operation Description

HoldISAMDataSet

HoldISAMRecord

ReleaseISAMDataSet

ReleaseISAMRecord

locks an ISAM data set

locks a record identified by its
unique record identifier

unlocks a locked data set without
ending the current transaction

unlocks a locked record without
ending the current transaction

Table 7-11. Transaction Operations

Operation Description

BeginTransaction marks the start of a transaction

CommitTransaction signifies a successful transaction
completion; unlocks all records and
data sets lOCked by the application

QueryTransactionParams accesses parameters associated with
transactions for the application

RollBackTransaction signifies the unsuccessful com
pletion of a transaction; unlocks
all records locked by the applica
tion (This operation does not undo
any changes made to ISAM data
sets.)

SetTransactionParams sets parameters associated with
transactions for the application

7-10

Transaction-Related Constraints

The constraints associated with each ISAM operation used
during transaction processing are shown in table 7-12.
These constraints do not apply to operations on data sets
open for batch access (in administrator, batch modify, or
batch read mode).

Transaction Parameters Block

The Transaction Parameters Block (refer to table 7-13)
contains values that control transaction operations. The
wTicksWait parameter specifies the maximum time an applica
tion can wait to lock a record or data set. The other
parameters do not affect ISAM data set access. (For further
information about the use of wTicksWait, refer to
-section 2.)

You can exam1ne these parameters with the
QueryTransactionParams operation and change them with the
SetTransactionParams operation.

Table 7~l2. Transaction-Related Constraints

Must Be in Must Not Be
Transaction in Transaction

CommitTransaction BeginTransaction
De1eteISAMRecord
DeleteISAMRecordBy-

Key
GetISAMRecordsHo1d
Ho1dISAMDataSet
HoldISAMRecord
ModifyISAMRecord
ModifyISAMRecordByKey
Norma1izeISAMStatus
ReadISAMRecordByUri-

Hold
ReadNextISAMRecord

Hold

No Transaction
Constraints

CloseISAM
CreateISAM*
DeleteISAM**
GetISAMRecords
ISAMRequest
OpenISAM
QueryTransaction-

Params
ReadISAMRecordByUri
ReadNextISAMRecord
ReadUniqueISAMRecord
RenameISAM**
RollBackTransact10n
SetISAMProtection**

* Not applicable. A data set is not open when you create it.

**Not applicable. A data set must be open in administrator
mode to use this operation.

5022247 7-11

Table 7-12. Transaction-Related Constraints (Cont)

Must Not Be Must Be in
Transaction in Transaction

No Transaction
Constraints

ReadUniqueISAMRecord-
Hold

ReleaseISAMDataSet
ReleaseISAMRecord
StoreISAMRecord

Table 7-13.

Offset Length

0 2

5 1

6 *

Transaction

Parameter

wTJ.cksWait

Reserved

Reserved

ISAM SERVICE ACCESS

SetTransactionParams
SetUpISAMIteration
Limits

SetUpISAMIteration
Prefix

Parameters Block Format

Description

A word specifying the
maximum number of 0.1-
second ticks that a request
waits when it tries to lock
a record or data set (The
default value is 100.)

Padding returned as 0
(nUll)

The asterisk indicates that
it is for expansion and not
required at present.

Table 7-14 describes ISAM service access operations and how
to use single-user ISAM.

An application J.nitializes single-user ISAM by calling the
LoadSingleUserISAM operation. The single-user ISAM server
does not inform BTOS that ISAM is serving requests.
Instead, the application builds request blocks and sends the
request directly to ISAM using the BTOS Send operation
rather than the BTOS Request operation.

7-12

ISAM sends the requests back using the BTOS Send operation
instead of the BTOS Respond operation.

MEMORY USAGE

Single-user ISAM requires the same amount of memory as
multiuser ISAM installed for a single user. (Refer to
section 1 for memory requirements information.) When you
invoke the LoadSingleUserISAM operation, ISAM allocates this
memory as short-lived memory from the unallocated memory
pool available to the application.

USING EITHER MULTIUSER OR SINGLE-USER ISAM

You can write an application to use either multiuser ISAM or
single-user ISAM. By incorporating calls to both multiuser
and single-user ISAM, an application is not dependent on
multiuser ISAM server installation.

The application calls the VerifyMultiUserISAM operation to
check if multiuser ISAM is available. If it is, a status
code of 0 (OK) returns, and the application uses multiuser
ISAM. If any other status code returns, the app11cation
calls the LoadSingleUserISAM operation to load single-user
ISAM •.

ASYNCHRONOUS REQUESTS

Table 7-15 describes operations and asynchronous requests
versus procedural requests.

Table 7-14. ISAM Service Access

Operations Description

LoadSingleUserISAM

VerifyMultiUserISAM

loads ISAM as a task and initializes
communications with ISAM

establishes whether or not multi
user access to ISAM is available on
the standalone, cluster, or master
workstation

5022247 7-13

Table 7-15. Asynchronous Requests

Operations Description

ISAMRequest

NormalizeISAMStatus

issues an ISAM request and returns
without waiting for request
completion

ensures the validity of a status
block returned by an asynchronous
ISAM operation

You can indirectly access ISAM system services by a
procedural interface, or directly access them by the
ISAMRequest, Wait, and NormalizeISAMStatus operations.

Using the procedural interface is easier because it auto
matically performs most necessary housekeeping and issues
the ISAMRequest and Wait operations.

Using the ISAMRequest, Wait, and NormalizeISAMStatus
operations enables applications to run more quickly and
efficiently because there is a greater degree of overlap
between processing by ISAM and computation by the
'application.

Only one ISAM operation should be outstanding at a time
because the order in which ISAM performs the operations is
undefined. Overlapping certain operations can cause
problems (for example, doing a CommitTransaction operation
while a ModifyISAMRecord operation is pending).

When using asynchr~nous requests, the NormalizeISAMStatus
operation must follow the Wait operation. Otherwise, the
values in the status block can be invalid.

PROCEDURE DEFINITIONS

The following information presents all ISAM procedures in
alphabetical order.

BeginTransaction Procedure

The BeginTransaction procedure marks the start of a trans
action for the application. The transaction ends when the

7-14

application uses either a CornrnitTransaction or a
RollBackTransaction operation.

You cannot call BeginTransaction from within a transaction.
BeginTransaction is an object module procedure.

The procedural interface is:

Begintransaction (pStatusBlockRet): ErcType

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

CloselSAM Procedure

The CloseISAM procedure cloucs and releases all resources
associated with an open data oet. An ISAM handle for the
closed data set is not valid after an application calls this
procedure. If an application opens the same data set more
than once, CloseISAM releases all records which were held
for the data set, regardlesu of the handle used. CloseISAM
is an object module procedure.

The procedural interface is:

CloseISAM (ISAMHandle, pStatusBlockRet): ErcType

ISAMHandle is the ISAM handle that identifies the open data
set.

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

CommitTransaction Procedure

The CornrnitTransaction procedure signifies the successful
completion of a transaction and unlocks all records and data
sets locked by the application.

You can use CommitTransaction only in a transaction.
CornrnitTransaction is an object module procedure.

The procedural interface is:

CommitTransaction (pStatusBlockRet): ErcType

5022247 7-15

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

CreatelSAM Procedure

The CreateISAM service defines the index structure of a data
set and creates a new empty data set with the specified
structure. The parameters supplied enable the application
program to locate the data store and index files on
different volumes and to control the allocation of disk
sectors for the two files independently.

The procedural interface is:

CreateISAM (pbFileSpecDataStoreFile,
cbFileSpecDataStoreFile,
pbPasswordDataStoreFileCreate,
cbPasswordDataStoreFileCreate,
pbFileSpecIndexFile, cbFileSpeclndexFile,
pbPasswordIndexFileCreate,
cbPasswordIndexFileCreate, pISAMDesc,
sISAMDesc, pStatusBlockRet): ErcType

pbFileSpecDataStoreFile and cbFileSpecDataStoreFile describe
a file specification for the data store file of the new data
set.

pbPasswordDataStoreFileCreate and
cbPasswordDataStoreFileCreate describe a password used to
create the data store file of the new data set.

pbFileSpecIndexFile and cbFileSpecIndexFile describe a file
specification for the index file of the new data set. If
cbFileSpecIndexFile is 0, the file specification for the
index is derived from the file specification for the data
store file.

ISAM copies the file specification defined by
pbPasswordDataStoreFileCreate and
cbPasswordDataStoreFileCreate, then replaces the suffix
beginning with the period character with the
characters .Ind.

For example, if the file specification for the data store
file is [vol]<dir>DataSet.Isam, the file specification for
the index file is [vol]<dir>DataSet.Ind.

pbPasswordIndexFileCreate and cbPasswordIndexFileCreate
describe a password used to create the index file of the new

7-16

data set. If the name of the index file is null, these two
parameters are ignored. The system uses the password
specified for the data store file to create the index file
as well.

pISAMDesc and sISAMDesc describe a memory area containing an
ISAM Description Block which has the structure shown in
table 7-4.

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

Table 7-16 details the CreateISAM request block.

Offset

0
2
3
4
6
8

10
12
16
18

22

24
28
30

34

36
40
42
46

5022247

Table 7-16. CrcateISAM Request Block

Parameter

sCntInfo
nReqPbCb
nRespPbCb
userNurn
exchResp
ercRet
rqCode
pbFileSpecDataStorcFile
cbFileSpecDataStoreFile
pbPasswordDataStorc-

FileCreate
cbPasswordDataStore-

FileCreate
pbFileSpecIndexFile
cbFi1eSpecIndexFile
pbPasswordIndexFile-

Create
cbPasswordIndexFile-

Create
pISAMDesc
sISAMDesc
pStatusBlockRet
sStatusBlock

Size
(bytes)

2
1
1
2
2
2
2
4
2

4

2
4
2

4

2
4
2
4
2

Contents

o
5
1

79

4

7-17

DeletelSAM Procedure

The DeleteISAM service deletes the files of a data set,
thereby destroying all information in the data set. The
data set must be opened ~n administrator mode.

The procedural interface is:

DeleteISAM (ISAMHandle, pStatusBlockRet): ErcType

ISAMHandle is the ISAM handle that identifies the open data
set.

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

Table 7-17 describes the DeleteISAM request block.

DeletelSAMRecord Procedure

The DeleteISAMRecord service removes a record from a data
set. You must open the data set in modify mode to change
it. The disk space occupied by the record ~s available for
a subsequent StoreISAMRecord operation. ISAM automatically
removes all keys for the record from the indexes of the data
set and destroys data in the record.

Tab1e 7-17. De1eteISAM Request B10ck

Size
Offset Parameter (bytes) Contents

0 sCntlnfo 2 2
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 80
12 ISAMHandle 2
14 pStatusBlockRet 4
18 sStatusBlock 2 4

7-18

If the data set is in transaction mode, you can call
DeleteISAMRecord only from within a transaction and when the
record to be deleted is locked.

The procedural interface is:

DeleteISAMRecord (ISAMHandle, uriRecord,
pStatusBlockRet): ErcType

ISAMHandle the ISAM handle that identifies the open data
set.

uriRecord is the unique record identifier of the deleted
record. UriRecord is the value returned by a previous Read
operation.

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

Table 7-18 describes the DelcteISAMRecord request block.

Table 7-18. DelctcISAMRecord Request Block

Size
Offset Parameter (bytes) Contents

0 sCntInfo 2 6
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 81
12 ISAMHandle 2
14 uriRecord 4
18 pStatusBlockRet 4
22 sStatusBlock, 2 4

5022247 7-19

DeletelSAMRecordByKey Procedure

The DeleteISAMRecordByKey service removes a record from a
data set. The data set must be open in modify mode to
change it. DeleteISAMRecordByKey, however, uses a unique
key to identify the record instead of a unique record
identifier.

The disk space occupied by the record is available for a
subsequent StoreISAMRecord operation. ISAM automatically
removes all Keys for the record from the indexes of the data
set and destroys all data in the record.

If the data set is open in a transaction mode, you can call
DeleteISAMRecordByKey only from within a transaction. The
record to be deleted does not have to be locked.
DeleteISAMRecordByKey locks the record before deleting it.

The procedural interface is:

DeleteISAMRecordByKey (ISAMHandle, iIndex, pKey, sKey,
pUriRecordRet, pStatusBlockRet):
ErcType

ISAMHandle is the ISAM handle that identifies the open data
set.

iIndex identifies the index used. (The indexes are numbered
from 0 in the order specified in CreateISAM.)

pKey and sKey describe the memory area containing the key
that identifies the record to be deleted. sKey must be the
correct length, in bytes, of the key for index iIndex.

pUriRecordRet is the memory address of the 4-byte structure
where the unique record identifier for the record to be
deleted is returned.

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

Table 7-19 details the DeleteISAMRecordByKey request block.

GetlSAMRecords and GetlSAMRecordsHold Procedures

With a single call to ISAM, the GetISAMRecords service reads
several records or unique record identifiers in key order
from a data set. Records are returned in key order for the
current iteration. If there are no more records for the

7-20

Table 7-19. DeleteISAMRecordByKey Request Block

Size
Offset Parameter (bytes) Contents

0 sCntInfo 2 4
2 nReqPbCb 1 1
3 nRespPbCb 1 2
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 199
12 ISAMHandle 2
14 iIndex 2
16 pKey 4
20 sKey 2
22 pUriRecordRet 4
26 sUriRecord 2 4
28 pStatusBlockRet 4
32 sStatusBlock 2 4

iteration, the status code 3127 (No more records) is
returned.

The GetISAMRecordsHold service is identical to
GetISAMRecords, except GetISAMRecordsHold also locks the
records read (or those that have unique record identifiers
returned). When records are read, each one is locked. If
unique record identifiers are returned, the record
1dentified by each unique record identifier is locked.

If you use GetISAMRecordsHold, none of the accessed records
can be accessed by other applications until you release
them, usually by a subsequent CommitTransaction operation.

The GetISAMRecords and GetISAMRecordsHold operations return
as many records (or unique record identifiers) in sequence
as possible, subject to the following constraints:

• The buffer capacity is not exceeded.

• The range specified for the current iteration is
not exceeded.

• Records locked by other applications are not read.

For example, a particular GetISAMRecords operation reads
4-byte unique record identifiers and 40-byte records into a

5022247 7-21

SOO-byte buffer. The buffer can contain up to 11 records
and unique record identifiers (440 + 44). If the seventh
record in the sequence is locked by another application, the
GetISAMRecords operation returns only the first six records
and unique record identifiers.

If an application uses this service to get records from a
remote workstation, it can encounter the status code 4S
(Request block too large). This occurs when you specify a
buffer size too large for the operating system to accom
modate. You can either decrease the buffer size or increase
line and transmission buffers at a system build.

If GetISAMRecords is called to read only unique record
identifiers, it returns unique record identifiers for locked
records. Applications can "skip over" records locked by
other applications.

If the data set is open in a transaction mode, the
application does not have to be in a transaction before
calling GetISAMRecords, but 1t must be in a transaction
before calling GetISAMRecordsHold.

The procedural interface is:

GetISAMRecords and
GetISAMRecordsHold (ISAMHandle, fReadRecords, pBuffer,

sBuffer, pCRecordsReadRet,
pStatusBlockRet): ErcType

ISAMHandle is the ISAM handle that identifies the open data
set.

fReadRecords specifies whether records and unique record
identifiers are returned. fReadRecords is FALSE if only
unique record identifiers are returned, and TRUE if records
are returned also.

pBuffer and sBuffer describe the memory area into which the
unique record identifiers and records are to be read.

If only unique record identifiers are returned (fReadRecords
is FALSE), the record identifiers are packed into the buffer
without padding. If both unique record 1dentifiers and
records are returned (fReadRecords is TRUE), the unique
record identifiers and records are packed together into the
buffer without padding. Each record and its record iden
tifier are packed as a pair with the record identifier
preceding the record.

7-22

For example, table 7-21 shows the buffer structure after
three 46-byte records are read.

pCRecordsReadRet is the memory address of the word where the
number of unique record identifiers and/or records read is
returned.

pStatusBlockRet is the memory address of the status block
into which the itatus codes from the operation are returned.

Table 7-20 describes the GetISAMRecords and
GetISAMRecordsHold request block.

Table 7-20. GetISAHRecords and GetISAMRecordsHold
Request Block

Size
Offset Parameter (bytes) Contents

0 sCntlnfo 2 4
2 nReqPbCb 1 0
3 nRespPbCb 1 3
4 userNurn 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 *
12 ISAMHandle 2
14 fReadRecords 1
15 reserved 1 0
16 pBuffer 4
20 sBuffer 2
22 pCRecordsReadRet 4
26 sCRecordsRead 2 2
28 pStatusBlockRet 4
32 sStatusBlock 2 4

*GetISAMRecords = 82; GetISAMRecordsHold O.

5022247 7-23

Table 7-21. Buffer Structure for GetISAMRecords and
GetISAMRecordsBold when Records are Read
(46-Byte Records)

Size
Offset Description (bytes)

a Record identifier of record 1 4
4 Record 1 46

50 Record 1dentifier of record 2 4
54 Record 2 46

100 Record identifier of record 3 4
104 Record 3 46

HoldlSAMDataSet Procedure

The HoldISAMDataSet service locks an open data set. If the
data set is opened in a transaction mode, HoldISAMDataSet
can be called only from within a transaction.

The procedural interface is:

HoldISAMDataSet (ISAMHandle, fLockRecords, pStatusBlockRet):
ErcType

ISAMHandle is the ISAM handle that identifies the open data
set.

fLockRecords specifies whether a subsequent
ReleaseISAMDataSet operation unlocks the data set's locked
records as well as the data set itself. fLockRecords is
either TRUE or FALSE.

If fLockRecords 1S TRUE and if the data set is unlocked by a
subsequent ReleaseISAMDataSet operation, locked records in
the data set continue to be locked.

If fLock Records is FALSE and if the data set is unlocked by
the ReleaseISAMDataSet operation, all records in the data
set are unlocked.

7-24

For example, data set X has five records and the following
events occur:

1. Record 1 is locked (for example, with the
HoldISAMRecord operation).

2.· Data set X is locked with the HoldISAMDataSet
operation.

3. Record 2 is locked (for example, with the
ReadNextISAMRecordHold operation).

4. Data set X is unlocked with the ReleaseISAMDataSet
operation.

If fLockRecords is TRUE in step 2, Record 1 and Record 2
remain lOcked after step 4. If fLockRecords is FALSE in
step 2, Record 1 and Record 2 are unlocked after step 4.

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

Table 7-22 describes the lIo1dISAMDataSet request block.

Table 7-22. HoldISAMDataSet Request Block

Size
Offset Parameter (bytes) Contents

0 sCntInfo 2 4
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 205
12 ISAMHandle 2
14 fLockRecords 1
15 reserved 1 0
16 pStatusBlockRet 4
20 sStatusBlock 2 4

5022247 7-25

HoldlSAMRecord Procedure

The HoldISAMRecord service locks a record identified by its
unique record identifier. The record identifier is not
checked for validity by HoldISAMRecord.

If the data set is opened in a transaction mode,
HoldISAMRecord can be called only from within a transaction.

The procedural interface is

HoldISAMRecord (ISAMHandle, uriRecord,
pStatusBlockRet): ErcType

ISAMHandle is the ISAM handle that ident1fies the open data
set.

uriRecord is the unique record identif1er of the record to
be locked. uriRecord is usually the value returned by a
previous Read operation.

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

Table 7-23 details the HoldISAMRecord request block.

Table 7-23. HoldISAHRecord Request Block

Size
Offset Parameter (bytes) Contents

0 sCntInfo 2 6
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 130
12 ISAMHandle 2
14 uriRecord 4
18 pStatusBlockRet 4
22 sStatusBlock 2 4

7-26

ISAMRequest Procedure

The ISAMRequest procedure issues an ISAM request and returns
without waiting for the request to be completed.

This operation is used to issue asynchronous ISAM requests
in both multiuser and single-user ISAM. For multiuser ISAM,
ISAMRequest uses the Request operation, but for single-user
ISAM, ISAMRequest uses the Send operation. ISAMRequest
allows applications to issue asynchronous requests without
regard to whether multiuser or single-user ISAM is being (
used. (For more information on the Request and Send
operations, refer to the B 20 Systems Operating System
(BTOS) Reference Manual.)

ISAMRequest is an object module procedure.

The procedural interface is:

ISAMRequest (pRq): ErcType

pRq is the memory address of the request block specifying
the ISAM.

LoadSingleUserlSAM Procedure

The LoadSingleUserISAM procedure loads ISAM as a task and
initializes communication with ISAM. The ISAM task is
loaded into short-lived memory allocated from the pool of
unallocated memory pool available. to the application.

LoadSingleUserISAM is an object module procedure.

The procedural interface is:

LoadSingleUserISAM (pbFileSpecRunFile,
cbFileSpecRunFile, pbPwRunFile,
cbPwRunFile, pbConfigFile,
cbConfigFile, pbPwConfigFile,
cbPwConfigFile, pStatusBlockRet):
ercType

pbFileSpecRunFile and cbFileSpecRunFile describe the memory
area containing the ISAM run file name. If
cbFileSpecRunFile is 0, the run file name defaults to
[Sys]<Sys>ISAMServer.Run.

5022247 7-27

pbPwRunFile and cbPwRunFile describe the memory area
containing the password used to open the ISAM run file.

pbConfigFile and cbConfigF11e describe the memory area
containing the ISAM configuration file name. If
cbConfigFile is 0, the configuration file name defaults to
[Sys]<Sys>ISAM.Config.

pbPwConfigFile and cbPwConfigFile describe the memory area
containing the password used to open the ISAM configuration
file.

pStatusBlockRet is the memory address of the status block
into which the status from the operation are returned.

ModifylSAMRecord Procedure

The ModifyISAMRecord service modifies an existing record in
a data set and updates all indexes. The record is identi
fied by its unique record identifier.

If any key is changed, the record entry for the old value is
removed from the index and the record is reindexed under the
new value. If the new value of the key duplicates an
existing key for the same index in another record and
duplicates are not allowed for that index, the record is not
modified, the index is not changed, and status code 3118
(Dup1icate key) is returned.

The data set must be open for modification. The record
remains locked after modification.

If the data set is open in a transaction mode,
ModifyISAMRecord can be called only from within a
transaction.

The procedural interface is:

ModifyISAMRecord (ISAMHandle, uriRecord, pRecord,
sRecord, pStatusBlockRet): ErcType

ISAMHandle is the ISAM handle that ident1fies the open data
set.

uriRecord is the unique record 1dentifier of the record to
be modified. uriRecord is usually the value returned by a
previous Read operation.

7-28

pRecord and sRecord describe the memory area containing the
record to be written. sRecord must be equal to the record
size for the data set.

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

Table 7-24 details the ModifyISAMRecord Request Block.

ModifylSAMRecordByKey Procedure

The ModifyISAMRecordByKey service modifies a data set record
and updates all indexes. It uses a unique key to identify
the record instead of a record identifier.

If any key is changed, the record is removed from the index
under the old value of the Key and reindexed under the new
value. If the new value of the key duplicates an existing
key for the same index in another record, but duplicates are
not al'lowed for that index, the record is not modified, the
index is not changed, and status code 3118 (Duplicate key)
is returned.

Table 7-24. ModifyISAHRecord Request Block

Size
Offset Parameter (bytes) Contents

0 sCntInfo 2 6
2 nReqPbCb 1 1
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 84
12 ISAMHandle 2
14 uriRecord 4
18 pRe cord 4
22 sRecord 2
24 pStatusBlockRet 4
28 sStatusBlock 2 4

5022247 7-29

The parameters for this operation include the index and the
new record contents, but not a separate key for the record.
The key used to identify the record is taken from the record
itself.

For example, to change the salary of employee 150 in the
Employee data set from $34,000 to $37,500, iIndex is
specified as O. (empNo is index 0, a unique key index.)
ISAM extracts the empNo f1eld, uses the empNo index to
determine which record is to be modified and modifies the
record.

This service cannot be used to change the key being used to
identify the record.

The data set must be open for modification.

If the data set is open in a transaction mode,
ModifyISAMRecordByKey can be called only from within a
transaction. The record to be modified need not be locked;
ModifyISAMRecordByKey locks the record before modifying it.

The procedural interface is:

ModifyISAMRecordByKey (ISAMHandle, iIndex, pRecord,
sRecord, pUriRecordRet,
pStatusBlockRet): ErcType

ISAMHandle is the ISAM handle that identifies the open data
set.

iIndex identifies the index used. (The indexes are numbered
from 0 in the order specified in CreateISAM.)

pRecord and sRecord describe the memory area containing the
record to be modified. sRecord must be equal to the record
size for the data set.

pUriRecordRet is the memory address of the 4-byte structure
where the unique record identifier of the modified record is
returned.

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

Table 7-25 describes the ModifyISAMRecordByKey request
block.

7-30

Table 7-25. ModifyISAMRecordByKey Request Block

Size
Offset Parameter (bytes) Contents

0 sCntInfo 2 4
2 nReqPbCb 1 1
3 nRespPbCb 1 2
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 198
12 ISAMHandle 2
14 ilndex 2
16 pRe cord 4
20 sRecord 2
22 pUriRecordRet 4
26 sUriRecord 2 2
28 pStatusBlockRct 4
32 sStatusBlock 2 4

NormalizeiSAMStatu5 Procedure

The NormalizeISAMStatus proceuurc ensures that both the
ercRet field of the request equals the erc field of the
status block and the ercDetilil field of the status block is
valid.

An application must call NorlllalizeISAMStatus after
asynchronous ISAM requests (issued by ISAMRequest) are
completed. If not, the status block that the ISAM operation
returns has undefined contents.

The status code that NormalizeISAMStatus returns diagnoses
problems encountered while normalizing the status block. In
general, the status code returned differs from the ercRet
field in the request block.

For example, if an asynchronous Read operation returns
status code 3127 (no more records) and a detail status of 0
(OK), NormalizeISAMStatus ensures that the ereRet field in
the request block matches the status block ere field and
returns 0 (OK).

NormalizeISAMStatus is an object module procedure.

5022247 7-31

The procedural interface is:

NormalizeISAMStatus (pRq): ErcType

pRq is the memory address of the request block.

OpenlSAM Procedure

The OpenISAM procedure opens an existing data set and
returns an ISAM handle for it. The ISAM handle is used to
refer to the data set in subsequent operations. OpenISAM is
an object module procedure.

The procedural interface is:

OpenISAM (pISAMHandleRet, pbDataSetName, cbDataSetName,
pbPassword, cbPassword, mode, sRecord,
pStatusBlockRet): ErcType

pISAMHandleRet is the memory address of the word into which
the ISAM handle of the opened data set is returned.

pbDataSetName and cbDataSetName describe the memory area
containing the character string representing the name of the
data set.

pbPassword and cbPassword describe either the modify or read
password for the opened data set, or a file system password
that gives modify access to the data set files. If the mode
is batch modify or transaction modify, you must supply the
modify password. If the mode is batch read or transaction
read, you can supply either password. If the mode is admin
istrator, you must supply a file system password.

Mode specifies the mode in which the data set is opened as
detailed in table 7-26.

In these ASCII constants, the first character is the high
order byte, and the second character is the low-order byte.
This is the reverse of the byte order of strings in the B 20
programming languages.

For further information regarding modes, refer to section 2.

sRecord is the fixed-length record size for the data set.

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

7-32

Table 7-26. Data Set Modes

Value (ASCII) Mode

ad administrator
bm batch modify
br batch read
tm transaction modify
tr transaction read

QueryTransactionParams Procedure

The QueryTransactionParams procedure retrieves the applica
tion's current transaction parameters. (For more informa
tion, refer to Transaction Parameters Block, in this
section.)

QueryTransactionParams is an object module procedure.

The procedural interface ~s:

QueryTransactionParamti (pParamsRet, sParamsMax,
pSParamsRet, pStatusBlockRet):
ErcType

pParamsRet and sParamsMax deucribe the memory area into
which the transaction parameters are stored. The
Transaction Parameters BlOCk has the format shown in
table 7-13.

pSParamsRet is the memory address of a word into which the
number of bytes retrieved are stored. The value stored in
this word cannot exceed sParamsMax.

pStatusBlockRet is the status block memory address ~nto
which the status codes from the operation are returned.

ReadlSAMRecordByUri and ReadlSAMRecordByUriHold Procedures

The ReadISAMRecordByUri service reads a record identified by
its unique record identifier. The ReadISAMRecordByUriHold
service is identical to ReadISAMRecordByUri, except
ReadISAMRecordByUriHold also locks the record when it is
read.

5022247 7-33

If the data set is open in a transaction mode, then
ReadISAMRecordByUriHold can be called only from within a
transaction.

The procedural interface is:

ReadISAMRecordByUri and
ReadISAMRecordByUriHold (ISAMHandle, uriRecord,

pRecordRet, sRecord,
pStatusBlockRet): ErcType

ISAMHandle is the ISAM handle that identifies the open data
set.

uriRecord is the unique record identifier of the record to
be read. uriRecord is usually the value that a previous
Read operation returns.

pRecordRet and sRecord describe the memory area into which
the record is read. sRecord must be equal to the record
size for the data set.

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

Table 7-27 describes the ReadISAMRecordByUri and
ReadISAMRecordByUriHold request block.

Table 7-27. ReadISAMRecordByUri and. ReadISAMRecordByUrillold
Request Block

Size
Offset Parameter (bytes) Contents

0 sCntInfo 2 6
2 nReqPbCb 1 0
3 nRespPbCb 1 2
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 *
12 ISAMHandle 2
14 uri Record 4
18 pRecordRet 4
22 sRecord 2
24 pStatusBlockRet 4
28 sStatusBlock 2 4

*ReadISAMRecordByUri = 86: ReadISAMRecordByUr1Hold 131.

7-34

ReadNextiSAMRecord and ReadNextlSAMRecordHold Procedures

The ReadNextISAMRecord service reads the next record in key
order from a data set. The unique record identifier of the
record is returned. The ReadNextISAMRecordHold service is
identical to ReadNextISAMRecord, except it also locks the
record when it is read.

If the data set is open in a transaction mode,
ReadNextISAMRecordHold can be called only from within a
transaction.

The procedural interface is:

ReadNextISAMRecord and
ReadNextISAMRecordBold (ISAMHandle, pRecordRet,

sRecord, pUriRecordRet,
pStatusBlockRet): ErcType

ISAMHandle is the ISAM handle that identifies the open data
set.

pRecordRet and sRecord describe the memory area into which
the record is read. sRecord must be equal to the record
size for the data set.

pUriRecordRet is the memory address of the 4-byte structure
into which the unique record ~dentifier of the record is
returned.

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

Table 7-28 describes the ReadNextISAMRecord and
ReadNextISAMRecordHold request block.

ReadUniquelSAMRecord and ReadUniquelSAMRecordHold Procedures

The ReadUniqueISAMRecord service reads a record uniquely
identified by a given key from a data set. Duplicates are
not allowed for the index used, so that the key appears at
most in one record of the data set.

The ReadUniqueISAMRecordHold service is identical to
ReadUniqueISAMRecord, except ReadUniqueISAMRecordHold also
locks the record. If the data set is open in a transaction
mode, ReadUniqueISAMRecordHold can be called only from
within a transaction.

5022247 7-35

Table 7-28. ReadNextISAMRecord and ReadNextISAMRecordHold
Request Block

Size
Offset Parameter (bytes) Contents

0 sCntlnfo 2 2
2 nReqPbCb 1 0
3 nRespPbCb 1 3
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 *
12 ISAMHandle 2
14 pRecordRet 4
18 sRecord 2
20 pUriRecordRet 4
24 sUriRecord 2 4
26 pStatusBlockRet 4
30 sStatusBlock 2 4

*ReadNextISAMRecord = 87; ReadNextISAMRecordHold 132.

The procedural interface is:

ReadUniqueISAMRecord and
ReadUniqueISAMRecordHold (rSAMHandle, ilndex, pKey,

sKey, pRecordRet, sRecord,
pUriRecordRet,
pStatusBlockRet): ErcType

ISAMHandle is the ISAM handle that identifies the open data
set.

ilndex identifies the index used. (The indexes are numbered
from 0 in the order specified in CreateISAM.)

pKey and sKey describe the memory area containing the unique
key that identifies the record to be read. sKey must be the
correct length, in bytes, of keys for the index, ilndex.

pRecordRet and sRecord describe the memory area into which
the record is read. sRecord must be equal to the record
size for the data set.

pUriRecordRet is the memory address of the 4-byte structure
into which the unique record. identifier of the record is
returned.

7-36

pStatusBlockRet is the memory address of the status bloCK
into which the status codes from the operation are returned.

Table 7-29 details the ReadUniqueISAMRecord and
ReadUniqueISAMRecordHold request block.

ReleaselSAMDataSet Procedure

The ReleaseISAMDataSet service releases a locked data set
without ending the current transaction.

Offset

0
2
3
4
6
8

10
12
14
16
20
22
26
28
32
34
38

NOTE

Use this operation with care, since
other applications can hold and even
modify the released data set before the
transaction is ended.

Table 7-29. RcadUniqueISAMRecord and
RcadUniqueISAMRecordHold
Block

Size

Request

Parameter (bytes) Contents

sCntlnfo 2 4
nReqPbCb 1 1
nRespPbCb 1 3
userNum 2
exchResp 2
ercRet 2
rqCode 2 *
ISAMHandle 2
ilndex 2
pKey 4
sKey 2
pRecordRet 4
sRecord 2
pUriRecordRet 4
sUriRecord 2 4
pStatusBlockRet 4
sStatusBlOCk 2 4

*ReadUniqueISAMRecord 88; ReadUniqueISAMRecordHold 133.

5022247 7-37

If the data set is open in a transaction mode,
ReleaseISAMDataSet can be called only from within a
transaction.

The procedural interface is:

ReleaseISAMDataSet (ISAMHandle, pStatusBlockRet):
ErcType

ISAMHandle is the ISAM handle that identifies the open data
set.

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

Table 7-30 describes the ReleaseISAMDataSet request block.

ReleaselSAMRecord Procedure

The ReleaseISAMRecord service releases a locked record
without ending the current transaction.

Offset

0
2
3
4
6
8

10
12
14
18

7-38

NOTE

Other applications can hold and even
modify the released record before the
transaction ends.

Table 7-30. ReleaseISAMDataSet Request

Size

BloCK

Parameter (bytes) Contents

sCntInfo 2 2
nReqPbCb 1 0
nRespPbCb 1 1
userNum 2
exchResp 2
ercRet 2
rqCode 2 206
ISAMHandle 2
pStatusBlockRet 4
sStatusBlock 2 4

If the data set is open in a transaction mode,
ReleaseISAMRecord can be called only from within a
transaction.

The procedural interface is:

ReleaseISAMRecord (ISAMHandle, uriRecord,
pStatusBlockRet): ErcType

ISAMHandle is the ISAM handle that identifies the open data
set.

uriRecord is the unique record identifier for the record to
be released. uriRecord is usually the value returned by a
previous Read operation.

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

Table 7-31 describes the RcleaseISAMRecord request block.

RenamelSAM Procedure

The RenameISAM service changeu the name of a data set by
changing the name of both the data store and index files.
It is invalid to rename only one of the two files.

RenameISAM uses two invocations of the BTOS RenameFile
operation; one to change the data store file name and one to
change the index file name.

Offset

o
2
3
4
6
8

10
12
14
18
22

5022247

Table 7-31. ReleaseISAMRecord Request Block

Parameter

sCntInfo
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode
ISAMHandle
uriRecord
pStatusBlockRet
sStatusBlock

Size
(bytes)

2
1
1
2
2
2
2
2
4
4
2

Contents

6
o
1

134

4

7-39

There are certain RenameFile operations that are invalid,
such as renaming a file from one volume to another, or
renaming a file using an incorrect password. If a
RenameISAM operation is attempted where one of the two
required BTOS RenameFile operations is invalid, ISAM detects
the error and renames the data set by using a valid name for
both the data store and index file. One or both of the
files, in this case, can retain the original name.

You must open the data set in administrator mode.

The procedural interface is:

RenameISAM (ISAMHandle, pbFileSpecDataStoreFile,
cbFileSpecDataStoreFile,
pbPasswordDataStoreFileRename,
cbPasswordDataStoreFileRename,
pbFileSpecIndexFile, cbFileSpecIndexFile,
pbPasswordIndexFileRename,
cbPasswordIndexF1leRename, pStatusBlockRet):
ErcType

ISAMHandle is the ISAM handle that identifies the open data
set.

pbFileSpecDataStoreFile and cbFileSpecDataStoreFile describe
the file specification for the new name of the data store
f1le for the data set.

pbPasswordDataStoreFileRename and
cbPasswordDataStoreFileRename describe the password used
when renaming the data store file for the data set.

pbFileSpecIndexFile and cbFileSpecIndexFile describe a file
specification for the new index file name for the data set.
If cbFileSpecIndexFile is 0, the file specification for the
index is derived from the file specification for the data
store file. ISAM copies the file specification defined by
pbPasswordDataStoreFile and cbPasswordDataStoreFile. Then
ISAM replaces the suffix (beginning with the period
character) with the characters .Ind.

For example, if the file specification for the data store
file is [vol]<dir>DataSet.Isam, the file specification for
the index file is [vol]<dir>DataSet.Ind.

pbPasswordIndexFileRename and cbPasswordIndexFileRename
describe the password used when renaming the data set index
file. If the index file name is null, these two parameters
are ignored and the password specified for the data store
file is also used to create the index file.

7-40

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

Table 7-32 details the RenameISAM request block.

RoliBackTransaction Procedure

The RollBackTransaction procedure signifies the unsuccessful
end of a transaction and unlocks all records and data sets
locked by the application.

Although you can call RollBackTransaction, it is effective
only when the calling application is in a transaction.

RollBackTransaction is an object module procedure.

The procedural interface is:

RollBackTransaction (pStatusBlockRet): ErcType

Table 7-32. RcnameISAM Request Block

Size
Offset Parameter (bytes) Contents

0 sCntlnfo 2 2
2 nReqPbCb 1 4
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 89
12 ISAMHandle 2
14 pbFileSpecDataStoreFile 4
18 cbFileSpecDataStoreFile 2
20 pbPasswordDataStore-

FileRename 4
24 cbPasswordDataStore-

FileRename 2
26 pbFileSpeclndexFile 4
30 cbFileSpeclndexFile 2
32 pbPasswordlndexFile-

Rename 4
36 cbPasswordlndexFile-

Rename 2
38 pStatusBlockRet 4
42 sStatusBlock 2 4

5022247 7-41

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

SetiSAMProtection Procedure

The SetISAMProtection service changes the passwords that
allow an application to gain access to an open data set.

SetISAMProtection does not change the file system passwords
for the data set files. You use the Executive SET
PROTECTION command to change these passwords. You must open
the data set in administrator mode.

The procedural interface is:

SetISAMProtection (ISAMHandle, pbPasswordOpenRead,
cbPasswordOpenRead,
pbPasswordOpenModify,
cbPasswordOpcnModify,
pStatusBlockRet): ErcType

ISAMHandle is the ISAM handle that identifies the open data
set.

pbPasswordOpenRead and cbPasswordOpenRead describe the
password that opens the data set for reading in either batch
read or transactlon read modes. The password cannot be
longer than 12 bytes.

pbPasswordOpenModify and cbPasswordOpenModlfy describe the
password that opens the data set for modiflcation in either
batch modify or transaction modify modes. This password can
also be used to open the data set for reading in batch read
or transaction read modes. The password cannot be longer
than 12 bytes.

pStatusBlockRet is the memory address of ' the status block
into which the status codes from the operation are returned.

Table 7-33 describes the SetISAMProtection request block.

SetTransactionParams Procedure

The SetTransactionParams procedure sets the application's
current transaction parameters. (For more information,
refer to Transaction Parameters Block, in this section.)
SetTransactionParams is an object module procedure.

7-42

Table 7-33. SetISAMProtection Request Block

Size
Offset Parameter (bytes) Contents

0 sCntInfo 2 2
2 nReqPbCb 1 2
3 nRespPbCb 1 1

,4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 90
12 ISAMHandle 2
14 pbPasswordOpenRead 4
18 cbPasswordOpenRead 2
20 pbPasswordOpenModify 4
24 cbPasswordOpenModify 2
26 pStatusBlockRet 4
30 sStatusBlock 2 4

The procedural interface is:

SetTransactionParams (pParams, sParams,
pStatusBlockRet): ErcType

pParams and sParams describe the memory area containing the
transaction parameters to be set. The Transaction
Parameters Block has the format shown in table 7-13. If
sParams is less than the length of the Transaction
Parameters Block:

1. The supplied block must not include a partial
field at the end.

2. Only parameters included in the block are changed.

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

SetUplSAMlterationLimits Procedure

The SetUpISAMIterationLimits service init1alizes a sequence
of Read operations for records that have keys for a
specified index within a given range. Subsequent calls to
GetISAMRecords(Hold) and ReadNextISAMRecord(Hold) operations
read each record that has a key value within the range.
Records are read in key value order.

5022247 7-43

If the index is not defined to include null values
(binary O's), records with null keys are not read.

The procedural interface is:

SetUpISAMIterationLimits (ISAMHandle, iIndex,·
matchKind, pKeyl, sKeyl,
pKey2, sKey2,
pStatusBlockRet): ErcType

ISAMHandle is the ISAM handle that identifies the open data
set.

iIndex identifies the index used. (The indexes are numbered
from 0 in the order specified in CreateISAM.)

matchKind specifies which records are retrieved according to
the following:

7-44

o all records, regardless of their key values (keyl
and key2 are both ignored; sKeyl and sKey2 should
be 0.)

I all records containing a key less than keyl (key2
is ignored, and sKey2 should be 0.)

2 all records containing a key less than or equal to
keyl (key2 is ignored, and sKey2 should b~ 0.)

3 all records containing a key equal to keyl. (key2
is ignored, and sKey2 should be 0.)

4 all records containing a key greater than or equal
to keyl. (key2 is ignored, and sKey2 should be 0.)

5 all records containing a key greater than keyl
(key2 is ignored, and sKey2 should be 0.)

6 all records containing a key greater than keyl,
but less than key2

7 all records containing a key greater than or equal
to keyl, but less than key2

8 all records containing a key greater than or equal
to keyl, but less than or equal to key2

9 all records containing a key greater than keyl,
but less than or equal to key2

pKeyl and sKeyl describe the memory area containing a key
record. The key affects the set of records that subsequent
read operations return (see matchKind for further
information).

pKey2 and sKey2 describe the memory area containing a key
record. The key affects the set of records that subsequent
read operations return (see matchKind for further
information).

pStatusBlockRet is the status block memory address into
which the status codes from the operation are returned.

Table 7-34 describes the SetUpISAMlterationLimits request
block.

SetUplSAMlterationPrefix Procedure

The SetUpISAMlterationPrefix service initializes a sequence
of Read operations for records with keys for a specified
index having a given prefix. Subsequent calls to
GetISAMRecords(Hold) and ReadNextISAMRecord(Hold) operations

Table 7-34. SetUpISAMlterationLimits Request Block

Size
Offset Parameter (bytes) Contents

0 sCntlnfo 2 6
2 nReqPbCb 1 2
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 210
12 ISAMHandle 2
14 ilndex 2
16 matchKind 1
17 reserved 1 0
18 pKeyl 4
22 sKeyl 2
24 pKey2 4
28 sKey2 2
30 pStatusBlockRet 4
34 sStatusBlock 2 4

5022247 7-45

read each record for which the given key is a prefix of the
key stored in the record.

The index must contain either byte string or character
string keys.

If the index is not defined to include null values (binary
0'5), records with null keys are not read.

The procedural interface is:

SetUpISAMIterationPrefix (ISAMHandle, iIndex, pKey,
sKey, pStatusBlockRet):
ErcType

ISAMHandle is the ISAM handle that identifies the open data
set.

iIndex identifies the index used. (The indexes are numbered
from 0 in the order specified in CreateISAM.)

pKey and sKey describe the memory area containing the key.
sKey must be no larger than the length of the keys for
index, iIndex.

pStatusBlockRet is the status block memory address into
which the status codes from the operation are returned.

Table 7-35 details the SetUpISAMIterationPrefix request
block.

Table 7-35. SetUpISAMI~erationPrefix Request Block

Offset

o
2
3
4
6
8

10
12
14
16
20
22
26

7-46

Parameter

sCntInfo
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode
ISAMHandle
iIndex
pKey
sKey
pStatusBlockRet
sStatusBlock

Size
{bytes}

2
1
1
2
2
2
2
2
2
4
2
4
2

Contents

4
1
1

92

4

StorelSAMRecord Procedure

The StoreISAMRecord service creates a new record in a data
set. If necessary, the length of the data store file for
the data set is increased to accommodate the new record.

The indexes are updated as required to reflect the presence
of the new record. If the value of the new key duplicates
an existing key in the same index, and duplicates are not
allowed for that index, the record is not stored and the
status code 3118 (duplicate key) is returned.

The data set must be open for modification.

If the data set is open in transaction mode, StoreISAMRecord
can be called only from within a transaction. The created
record is locked after StoreISAMRecord is called.

The procedural interface is:

StoreISAMRecord (ISAMlIilndle, pRecord, sRecord,
pUriRccordRet, pStatusBlockRet):
ErcTypc

ISAMHandle is the ISAM handle that identifies the open data
set.

pRecord and sRecord describe the memory area containing the
record to be written. sRecord must be equal to the record
size for the data set.

pUriRecordRet is the memory address of the 4-byte structure
where the unique record identifier of the record to be
stored is returned.

pStatusBlockRet is the memory address of the ISAM status
block in which the status codes from the operation are
returned.

Table .7-36 describes the StoreISAMRecord request block.

5022247 7-47

Table 7-36. StoreISAMRecord Request Block

Size
Offset Parameter (bytes) Contents

0 sCntInfo 2 6
2 nReqPbCb 1 2
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 94
12 ISAMHandle 2
14 pRe cord 4
18 sRecord 2
20 pUriRecordRet 4
24 sUriRecord 2 4
26 pStatusBlockRet 4
30 sStatusBlock 2 4

VerifyMultiUserlSAM Procedure

The VerifyMultiUserISAM procedure sends a request to ISAM at
either the B-NET node where the application is running or at
another B-NET node. If ISAM is installed, a status code of
o (OK) is returned. Any other status code indicates that
multiuser ISAM is not available.

You can use the reserved symbols {Local} and {Master}
whether or not B-Net is installed.

VerifyMultiUserISAM is an object module procedure.

The procedural interface is:

VerifyMultiUserISAM (pbNode, cbNode, pStatusBlockRet):
ercType

pbNode and cbNode describe the memory area containing the
name of the B-NET node. The default node is the master
workstation for the cluster or the standalone workstation,
where the application is running.

pStatusBlockRet is the memory address of the status block
into which the status codes from the operation are returned.

7-48

Decimal
Value

3100

3101

3102

3103

3104

3105

3106

5022247

Hexa
decimal
Value

OCIC

OCID

OCIE

OCIF

OC20

OC21

OC22

APPENDIX A

STATUS CODES

Meaning

No such index exists.

An operation that includes a key
was invoked, but the specified
index does not exist.

Prefix is not valid.

SetUpISAMlterationPrefix was
invoked for an index that is
neither a byte nor character
string.

Dad key length.

The key length is inconsistent with
the index type.

Bad ISAM or data base handle.

The ISAM handle does not identify
an open ISAM data set.

Bad ISAM header size.

The ISAM data set cannot be opened
by the OpenISAM operation due to an
inconsistency in the header of one
of the files of the data set.

Bad ISAM header. See 3104

Internal error.

A-I

ISAM STATUS CODES (Cont)

Decimal
Value

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

A-2

Hexa
decimal
Value

OC23

OC24

OC25

OC26

OC27

OC28

OC29

OC2A

OC2B

OC2C

OC2D

Meaning

ISAM is already installed.

This code is generated by the
InstallISAM operation or the ISAM
INSTALL command if ISAM is already
installed.

Internal error.

Internal error.

Internal error.

No free ISAM handles.

The ISAM data set cannot be opened
because the maximum ISAM data sets
that can be simultaneously opened
by all users combined (256) has
been reached.

Internal error.

Buffers are too large

The amount of RAM required by
either the data store or index
cache buffers exceeds a megabyte.

Internal error.

ISAM terminated abnormally.

Following detection of an internal
error, all subsequent ISAM
operations and services generate
this status code.

Internal error.

Bad unique record identifier.

An incorrect unique record identi
fier parameter was passed to ISAM.

ISAM STATUS CODES (Cont)

Decimal
Value

3118

3119

3120

3121

3122

3123

5022247

Hexa
decimal
Value

OC2E

OC2F

OC30

OC31

OC32

OC33

Meaning

Duplicate key.

An attempt to store or modlfy a
record would duplicate the key
stored in another record for the
same index, but the index does not
allow duplicates.

Index file error.

This status code is returned as the
status code of an ISAM operation.
The detail status code refers to a
problem with the index file of the
ISAM data set.

Attempted privacy breach.

An attempt was made to modify a
datu set that is open in batch read
or transaction read mode.

Bad request.

Either the request block is
invalid, or the parameters of an
operation are inconsistent or have
invalid values.

Data store file error.

This is returned as the status code
of an ISAM operation. The detail
status code refers to a problem
with the data store file of the
ISAM data set.

Index to data error.

An inconsistency has arisen between
the index and data store files of
the ISAM data set.

A-3

ISAM STATUS CODES (Cont)

Decimal
Value

3124

3125

3126

3127

3128

3129

A-4

Hexa
decimal
Value

OC34

OC35

OC36

OC37

OC38

OC39

Meaning

Record size incorrect.

The specified record size is
incorrect for the ISAM data set.

Duplicates allowed.

An operation specified a unique key
parameter (that is, duplicates are
not allowed), but the index allows
duplicates.

No such record exists.

A unique key was used to identify a
record, but no record is stored in
the ISAM data set with that key.

No more records.

A ReadNextISAMRecord(Hold) or
GetISAMRecords(Hold) operation has
read all the records within the
range specified for the current
iteration. No record is read when
this status code is generated.

Bad key.

Either (1) a key field is longer
than 64 bytes or is defined to
occupy bytes past the end of the
record, or (2) n supplied key is
invalid. For example, a DECIMAL
key with a digit that is not
between 0 and 9 is invalid.

Bad index.

The specified key field does not
exist, that is, the Index parameter
of an ISAM operation is greater
than or equal to the number of
indexes in the ISAM data set.

ISAM STATUS CODES (Cont)

Decima1
Va1ue

3130

3131

3132

3133

3134

3135

3136

5022247

Hexa
decima1
Va1ue

OC3A

OC3B

OC3C

OC3D

OC3E

OC3F

OC40

Meaning

Bad ISAM mode.

The mode parameter of the OpenISAM
operation is invalid.

Cannot open ISAM.

This is returned as the status code
of an OpenISAM operation. The
detail status code gives the reason
for this failure.

Dad ISAM password.

Either the password does not give
the access desired by the OpenISAM
operation, or the password is
larger than the 12 bytes accepted
by the SetISAMProtection operation.

Wrong record size.

The OpenISAM operation detects the
wrong size record.

Incompatible ISAM mode.

An attempt was made to open a data
set when the data set is already
open in an incompatible mode.

Internal error.

Not administrator.

An operation for which the data set
must be open in administrator mode
is attempted with the data set open
in some other mode.

A-5

ISAM STATUS CODES (Cont)

Decimal
Value

3137

3138

3139

3140

3141

3142

3143

A-6

Hexa
decimal
Value

OC4l

OC42

OC43

OC44

OC45

OC46

OC47

Meaning

Cannot create ISAM.

This is returned as the status code
of the CreateISAM operation. The
detail status code gives the reason
for the failure.

ISAM buffer is too small.

The data set being opened or
created requires buffers larger.
than those installed.

Internal error.

Small ISAM record.

An attempt was made to create an
ISAM data set with records shorter
than four bytes.

Not in transaction.

An operation that can be invoked
only when the application is in a
transaction was invoked while the
application was not in a
transaction.

Data set or relation is not
available.

An attempt to read or hold a record
or to hold a data set failed
because the data set was held by
another user.

Record is not available.

An attempt to read or hold a record
failed because the record was held
by another user.

ISAM STATUS CODES (Cont)

Decimal
Value

3144

3145

3146

3147

3148

3149

3150

3151

5022247

Hexa
decimal
Value

OC48

OC49

OC4A

OC4B

OC4C

OC4D

OC4E

OC4F

Meaning

Record is not locked.

An operation for which the record
(or its data set) must be held was
invoked when neither the record nor
its data set was held.

Too many records are locked.

An attempt was made to hold a
record when the maximum allowable
number of records was already held.

In transaction.

BeginTransaction was invoked during
a transaction.

Internal error.

Transaction purged.

The application finished a
transaction while the request was
queued. (This status code is
generated only if the application
has a request pending when invoking
RollBackTransaction or
CommitTransaction.)

Internal error.

Internal error.

Data set is not locked.

An operation for which the data set
must be held was called when the
data set was not held.

A-7

ISAM STATUS CODES (Cont)

Decimal
Value

3152

3153

3154

3155

3156

3157

A-a

Hexa
decimal
Value

OC50

OC51

OC52

OC53

OC54

OC55

Meaning

ISAM heap is full.

The operation failed because there
is not enough room in the ISAM
server's heap to store data
structures required by the
operation.

Internal error.

Files are not on same workstation.

An attempt was made to either
create or rename a data set so that
the data store and index files
would be on different workstations
or to open a data set (in other
than administrator mode) that is
on a different workstation from the
one where the ISAM server is
running.

Bad match kind.

A SetUpISAMIterationLimits
operation contained an invalid
matchKind argument.

Internal error.

Transaction barrier after
modification.

An ISAM transaction barrier
operation was called after a
modification to the data set or
data base in the current
transaction, but the
SetTransactionParams operation was
previously invoked with
fBarrierAfterModify set to FALSE
(0) •

ISAM STATUS CODES (Cant)

Decimal
Value

3158

3159

3160

3161

3162

5022247

Hexa
decimal
Value

OC56

OC57

OC58

OC59

OC5A

Meaning

Key is locked.

This code is returned as the detail
status code when the primary status
code is 3143 (Record not avail
able). It indicates that the
record was not available because of
key locking constraints.

Record is held.

This code is returned as the detail
status code when the primary status
code is 3143 (Record not avail
able). It indicates that the
record was not available because
another user had locked it.

Transaction has been rolled back.

The applications current trans
action has been rolled back. This
status code is returned for every
operation by an application after
a lock has been broken, until the
application invokes the
RollbackTransaction operation.

Journal file error.

An error has occurred during access
to a journal file. See the detail
error for more information.

Journal open error.

An error has occurred while opening
the journal file. See the detail
error for more information.

A-9

ISAM STATUS CODES (Cont)

Decimal
Value

3163

3164

3165

3166-
3199

3200

3201

A-IO

Hexa
decimal
Value

OC5B

OC5C

OC5D

OC5E
OC7F

OC80

OC81

Meaning

Journal close error.

An error has occurred while closing
the journal file. See the detail
error for more information.

Journal write error.

An error has occurred while writing
to the journal file. See the
detail error for more information.

Internal error.

Journal record illegal. An error
has occurred .while reading the
journal file during an attempt to
roll back a transaction. A record
in the journal file has an
incorrect format.

Internal errors.

Bad ,key type.

The type field of a key
specification for Sort/Merge or
ISAM is invalid.

Incorrect key length.

The cbKey field of a key
specification for a Sort/Merge or
ISAM operation does not correspond
to the type field of the key
specification. (For example, for
binary keys, cbKey must be 2.)

ISAM STATUS CODES (Cant)

Decimal
Value

3202

3203-
3299

3300

3301

3302

3303

5022247

Hexa
decimal
Value

OC82

OC83-
OCE3

OCE4

OCE5

OCE6

OCE7

Meaning

Bad key.

A key contained in a record for
Sort/Merge or ISAM, or a key
described by a parameter of an
ISAM operation is not of the
correct type. (For example, each
digit of a BCD key must be between
o and 9.)

Internal errors.

Not a STAM file.

The operation failed because the
file did not contain the proper
signature.

STAM header bad checksum.

The operation failed because the
checksum computed on the file
header did not match the checksum
computed when the file was
created.

Record does not exist.

The operation failed because the
specified record does not exist.

Malformed record.

The operation failed because data
read from the disk contained an
inconsistency in the record header
and trailer.

A-II

ISAM STATUS CODES (Cont)

Decimal
Value

3304

3305

3306

3307

3308-
3399

3900

3901

A-12

Hexa
Decimal
Value

OCE8

OCE9

OCEA

OCEB

OCEC
OD47

OF3C

OF3D

Meaning

Not fixed-length record.

The operation failed because the
access method cannot reference
variable-length records.

Bad file type.

The operation failed because the
file cannot be accessed with the
specified access method.

Bad buffer size.

The operation failed because the
buffer size was too small or not a
multiple of 512.

Buffer is not word-aligned.

The operation failed because the
buffer was not word-aligned.

Internal errors.

Cannot auto-restart.

Because of a problem with the
journal file, auto-restart recovery
cannot be used to recover a data
base (or one or more ISAM data
sets). Use DB Recover to recover
the data base. Recover ISAM data
sets by another mechanism such as
restoring archived copies.

Bad ISAM configuration file

An attempt was made to use a file
as an ISAM configuration file, but
the file has been damaged or it was
not generated by ISAM Configure.

ISAM STATUS CODES (Cant)

Decimal
Value

3902

3903-
3999

5022247

Hexa
decimal
Value

OF3E

OF3F
OF9F

Meaning

Bad ISAM configuration version

An attempt was made to use an ISAM
configuration file that was
generated by an incompatible
version of ISAM Configure.
Regenerate the file by using a
compatible version.

Internal errors.

A-13

APPENDIX B

UPWARD COMPATIBIL TV SUPPORT

ISAM 5.0 supports the use of applications written for
prev10us releases of ISAM, even though ISAM's set of
operations do not include these procedures.

SUPERSEDED PROCEDURES

The following eight operations are no longer part of the
standard set of ISAM operations:

• EndISAMTransaction

• LockISAM

• PurgeISAMTransaction

• SetupISAMlteration

• SetupISAMlterationKey

• SetupISAMlterationRange

• StartISAMTransaction

• UnlockISAM

ISAM supports all eight operations only as object modules
(no longer request blocks). ISAM 5.0 handles each of these
operat10ns as described in this appendix. Refer to
section 7, for descriptions of the current ISAM operations
that are mentioned here.

EndISAMTransaction

EndISAMTransaction is equivalent to CommitTransaction.

LocklSAM

You implement LockISAM by BeginTransaction followed by a
series of HoldISAMDataSet operations.

5022247 B-1

PurgeISAMTransaction

PurgeISAMTransaction is equivalent to RollBackTransaction.

SetupISAMlteration
SetupISAMlteratiOnKey
SetupISAMlterationRange

You implement these operations by equivalent calls to
SetupISAMIterationLimits.

StartISAMTransaction

You implement StartISAMTransaction by BeginTransaction
followed by a series of HoidISAMDataSet operations.

UnlockISAM

If the application uses UniockISAM in a transaction, this
operation is equivalent to CommitTransaction; otherwise,
UnlockISAM has no effect.

InstallISAM SUPPORT

Previous releases of ISAM used two libraries: ISAMSingle.Lib
for single-user applications, and ISAMMulti.Lib for
multiuser application. ISAMSingle.Lib included the ISAM
procedural interfaces and all the implementing modules. The
linked run file included all of ISAM. ISAMMulti.Lib
included the ISAM procedural interfaces as request
interfaces. The system sent requests to the multiuser ISAM
service installed at the master workstation or a standalone
workstation.

The system provided InstailISAM in previous ISAM releases to
initialize single-user ISAM. The ISAMMulti.Lib version
enabled compatibility; if allowed, you link an application
as either a multiuser or single-user. The multiuser version
determined whether or not the multiuser server was installed
and returned an error status if it was not installed.

In ISAM 5.0, there is only one library: ISAM.Lib. Single
user applications now call LoadSingleUserISAM to load the
ISAM service as a task. Multiuser applications can call
VerifyMultiuserISAM to determine whether or not the system
installed the multiuser ISAM service.

B-2

To provide compatibility for applications that use
InstaIIISAM, there are two versions of InstailISAM in
ISAM.Lib. The module named IsaMin is the multiuser version;
it calls VerifyMultiuserISAM. The single-user version, the
module IsaSin, calls LoadSingleUserISAM. When you link an
application that uses InstallISAM, you must specify the
appropriate version of InstallISAM in the object modules
line of the Link command form. For single-user
applications, specify ISAM.Lib(IsaSin) when you link the run
file.

For multiuser applications, specify ISAM.Lib(IsaMin) when
you link the run file.

8-TREE NODE SIZES

In ISAM 5.0, the memory requirements for the ISAM server are
significantly reduced without degrading performance. In
releases prior to ISAM 4.0, the default B-tree node size
was six sectors in ISAM CREATE, ISAM REORGANIZE, and the
index buffers in ISAM INSTALL. The default B-tree node size
in ISAM 5.0 is two sectors.

For existing data sets where you did not set the B-tree node
sizes to one or two sectors, you must do one of the
following:

•

•

5022247

use ISAM REORGANIZE to rebuild the index file with
2-sector B-tree nodes or

reconfigure ISAM with the ISAM CONFIGURE command
to use larger index buffers (six sectors).

B-3

APPENDIX C

ESTIMATED INDEX ,FILE SIZES

B-tree nodes can fluctuate between 50 percent and 100
percent full. Adding a key to a full node causes the node
to split into two 50 percent full nodes. A key is also
added to the B-tree node above the full node that split.
When the full node is the root node, the current root node
splits into two 50 percent full nodes, and ISAM creates a
new root node with two nodes below it. This introduces a
new level in the B-tree.

Removing a key from a 50 percent full node causes absorption
of the node by its neighbors. ISAM uses either one or two
nodes to eliminate the node that is now less than 50 percent
full. The current size of the neighbor nodes determines the
distribution of the keys. The result is that one or two
nodes become at least two-thirds full.

When ISAM eliminates a node, it deletes a key from the node
one level up in the B-tree. If eliminating a node causes
the root node to have only one node below it at the next
level, ISAM deletes the root node. The next lowest level
becomes the root node, and the B-tree has one less level.

INDEX FILE SIZES

You can only compute the exact size of an index file
immediately after ISAM rebuilds the indexes. After a series
of updates (additions, modifications, deletions), you can
only estimate the size.

You base the estimate on:

• the number of records in the data set, n

• the definition of the indexes

• the average load factor, !, which is the fraction
of each B-tree node that is in use

Whenever ISAM rebuilds the indexes for a relation, the
loading factor for the B-tree nodes is 80 percent full.

5022247 C-l

As ISAM stores, modifies, or deletes records, the portion of
the node that fills varies between 50 percent and 100
percent. The node never falls below 50 percent full, and it
is likely to remain near 80 percent full most of the time.

Example and Calculations

This example uses a relation with:

• 50,000 records

• a 10-byte key

• a 4-byte key

• 6-sector nodes

If the load factor, f, is 80 percent, then you calculate the
index file size as follows:

C-2

1. the average number of keys per node:

10-byte key: b = 0.8 * 6*512 - 16
10 + 4

4-byte key: b

2. the index sizes:

0.8 * 6*512 - 16
4 + 4

174.6

305.6

10-byte key: 6*50000*(1/174.6 + 2/174.6 2)
= 1738 sectors

4-byte key: 6*50000*(1/305.6 + 2/305.62)
989 sectors

total size 2727 sectors

Similar computations for f
yield the following:

50 percent and f 100 percent

1. for 50 percent:

10-byte key: b = 109
index size

4-byte key:

total size

b = 191
index size

2. for 100 percent:

5022247

10-byte key: b = 218
index size

4-byte key:

total size

b = 382
index size

2803 sectors

1587 sectors

4390 sectors

1389 sectors

789 sectors

2178 se~tors

C-3

APPENDIX D

GLOSSARY

Access Mode

An access mode is the method of opening a data set to read
or modify records. The access mode affects the extent to
which other application systems can share the data set.

Administrator Mode

Administrator mode is an access mode you use to perform data
set-level activities such as deleting, renaming, and·setting
protection.

Application

An application is a task you invoke to access a data set for
a particular program.

Asynchronous Request

An asynchronous request is a method of accessing ISAM system
services directly so that data set access and internal
computations overlap. Asynchronous requests allow
applications to execute more efficiently and rapidly than a
procedural interface method.

B-Tree

A B-tree is the type of structure used to contain ISAM
indexes. A B-tree is usually pictured as an upside down
tree, much like a family tree, with a "root" node at the top
and "leaf" nodes below the root.

Configuration File

A configuration file specifies the sizes of the ISAM
server1s memory areas according to the number of users
utilizing the server.

DAM

See Direct Access Method.

5022247 D-l

Data Buffer

A data buffer is an I/O buffer into which ISAM reads
portions of data files.

Data Set

A data set contains one type of fixed-length records.
accesses them through fixed-length keys.

Data Store File

A data store file is the physical file that holds the
records of a data set.

Deadlock

Deadlock occurs when two or more transactions request
records or data sets already locked by the other
transaction.

Direct Access Method

ISAM

The Direct Access Method (DAM) provides random access to
disk file records identified by record number.

Exclusive Access

Exclusive access limits the accessibility of a data set or
record to a single user. Compare with Shared Access.

File

A file is a set of related records (on a disk) treated as a
unit.

Heap

A heap is an area of memory containing internal ISAM data
structures.

Index

ISAM uses an index (structure) to locate particular records
within a data set. Each key field of a data set defines one
index. Also see Key and Record.

Index Buffer

An index buffer is an I/O buffer into which ISAM reads
B-tree nodes. Also see B-Tree and Node.

D-2

Indexed Sequential Access Method (ISAM)

The Indexed Sequential Access Method provides random access
to fixed-length records identified by multiple keys stored
in disk files. Compare with Direct Access Method and Record
Sequential Access Method.

Index File

An index file holds the indexes for all of the data set's
keys.

ISAM Handle

An ISAM handle is a word value used in ISAM operations to
identify an open data set.

Key

ISAM uses keys to access data set records. ISAM defines a
key by its position in the record, its length, and type.

Key Type

Key types support the various character and numeric
representations used by the B 20 programming languages and
processors.

Locking

Locking is the process of obtaining Exclusive Access to a
record or data set in multiuser ISAM.

Node

A node 1S a portion of a B-tree that stores index keys.

Password

A password is a text string used to validate an application
or user's access to the data set.

Record

A record is a group of related data fields treated as a
unit.

Record Sequential Access Method

The Record Sequential Access Method (RSAM) prov1des
sequential read-only access to the records of a data set.

5022247 D-3

Reorganization

Reorganization is the process of freeing up space in a data
set by removing deleted records and rebuilding the indexes
for the data set.

RSAM

See Record Sequential Access Method.

Shared Access

Shared access enables mUltiple users to simultaneously
access the same data set. Compare with Exclusive Access.

Status Block

A status block is a 4-byte memory area that ISAM uses to
report status codes to an application.

Swap Zone

A swap zone is a virtual code segment management buffer.

Timeout

ISAM uses timeouts to prevent a deadlock. A timeout value
specifies the maximum time a request to lock a data set or
record can queue. Also see Deadlock.

Transaction

A transaction is a unit of work. Transactions permit shared
access to a data set.

Unique Record Identifier (URI)

A Unique Record Identifier is a 4-byte unsigned integer used
to identify a record in a data set.

Write-Through Cache

The write-through cache is a set of I/O buffers that ISAM
uses to bring segments of disk records into memory as
needed.

D-4

INDEX

Access mode, D-l
Administrator mode, 2-5, D-l
Advantages of B-tree structure, 2-1
Appl1cation, D-l
Asynchronous requests, 7-13, 7-14, D-l
Avoiding a deadlock, 2-10
Batch mode, 2-5
BeginTransaction

operation, 7-10
procedure, 7-14

Binary key, 3-3
BTOS

multipartition, 6-3
Buffers

data, 6-5
index, 6-6

Buffer size guidelines, 6-11
Byte string key, 3-4
B-tree node sizes, B-3
B-tree structure, D-l

advantages of, 2-1
Changing indexes and other ISAM CREATE parameters, 5-8
Character string key, 3-4
CloseISAM procedure, 7-15
Commands (ISAM), 2-12

ISAM CONFIGURE, 6-6
ISAM COPY, 4-1, 4-2
ISAM CREATE, 4-1
ISAM DELETE, 4-1
ISAM INSTALL, 6-1, 6-3
ISAM RENAME, 4-1
ISAM SET PROTECTION, 4-1
ISAM STATUS, 4-1
ISAM TERMINATE, 4-2

CommitTransaction
operation, 7-10
procedure, 7-15

Composite keys, 3-2
Concepts, 2-1
Configuration file, D-l
CreateISAM

procedure, 7-16
request block, 7-17

Cursor movement in the ISAM CONFIGURE form, 6-7
Data

buffers, 6-5, D-2

1

Data (continued)
integrity, 2-13
security, 2-12

Data set, D-2
access 7-8
index (sample), 3-2
loading a, 5-7
locking a, 2-7
management operations, 7-3
modes, 7-33

Data set access modes, 2-5
description of, 2-5
mult1user access to, 2-7

Data set records
sorting, 5-11

Data store file, 2-1, D-2
Deadlock, 2-10, D-2

avoiding a, 2-10
samples of, 2-11

Decimal (odd)/decimal (even) key, 3-4
Default index file name, 4-2
Definitions of procedures, 7-14
DeleteISAM

procedure, 7-18
request block, 7-18

DeleteISAMRecord
procedure, 7-18
request block, 7-19

DeleteISAMRecordByKey
operation, 7-8
procedure, 7-20
request block, 7-21

DeleteISAMRecord operation, 7-8
Deleting records, 2-4
Description of data set access modes, 2-5
Differences between multiuser and single-user access, 6-2
Direct Access Method (DAM), D-2
Disk requirements, 1-2
Display key, 3-4
Distributed ISAM, 2-4
Dual floppy standalone systems

installing ISAM on, 1-3
Error logging, 2-13
Est1mating 1ndex file sizes, C-l
Exclusive access, D-2
Features overview, 1-1
File, D-2
File types, 2-1

2

Function
ISAM operations by, 7-2

GetISAMRecords
operation, 7-9
procedure, 7-20
request block, 7-23

GetISAMRecordsHold
operation, 7-9
procedure, 7-21
request block, 7-23

Hard disk systems
installing "ISAM on, 1-3

Heap, 6-5, 0-2
HoldISAMOataSet

operation, 7-10
procedure, 7-24
request block, 7-25

HoldISAMRecord
operation, 7-10
procedure, 7-26
request block, 7-26

Index, 3-1 , 0-2
buffers, 6-6, 0-2
f~le, 2-1, 0-2
keys, 3-1

Indexed Sequential Access Method (ISAM), 0-2
Index file sizes

estimating, C-l
examples and calculations, C-2

Installation
instructions, 1-3
multiuser, 6-2

Installing ISAM, 2-10
on dual floppy standalone systems, 1-3
on hard disk systems, 1-3
on XE520 systems, 1-4

InstallISAM support, B-2
Integer key, 3-5
Integrity of data, 2-13
Internal consistency checking, 2-13
ISAM

commands, 2-12, 4-1
configuration file, 2-12, 6-6
dat.a sets, 3-1
handle, 0-3
installation, 2-10
new features, 1-1
operations, 2-3

3

ISAM (continued)
standard features, 1-1

ISAM CONFIGURE command, 6-6
ISAM CONFIGURE display, 6-7, 6-8, 6-9
ISAM CONFIGURE form, 6-7

cursor movement in the, 6-7
ISAM COPY command, 4-1, 4-2
ISAM COPY form, 4-2

parameters, 4-3
ISAM CREATE command, 4-1, 4-4
ISAM CREATE form, 4-4

parameters, 4-5
ISAM DELETE command, 4-1, 4-8
ISAM DELETE form, 4-8

parameters, 4-8
ISAM description block, 7-3, 7-4
ISAM index specification block, 7-5
ISAM INSTALL command, 6-1, 6-3
ISAM INSTALL form, 6-3

parameters, 6-4
ISAM key types and programming language representations, 3-5
ISAM operations, 7-1

by function, 7-2
ISAM RENAME command, 4-1, 4-8
ISAM RENAME form, 4-9

parameters, 4-9
ISAM REORGANIZE command, 2-13, 5-1
ISAM REORGANIZE form, 5-2

parameters, 5-3
ISAMRequest procedure, 7-27
ISAM server installation, 6-1

memory allocation for, 6-3
ISAM service access, 7-12, 7-13
ISAM SET PROTECTION command, 4-1, 4-10
ISAM SET PROTECTION form, 4-11

parameters, 4-11
ISAM STATUS command, 4-1, 4-12
ISAM STATUS form, 4-13

parameters, 4-13
ISAM STATUS reports (samples), 4-14
ISAM TERMINATE command, 4-2, 4-14
ISAM utilities, 4-1
Key component

type of, 7-7
Key position, 2-2
Keys, D-3

and indexes, 3-1
composite, 3-3

4

Key types, 2-2, 3-3, 0-3
description of, 3-3

Loading a data set, 5-7
LoadSingleUserISAM procedure, 7-27
Locking, 0-3
Locking a record or data set, 2-7
Locking operations, 7-10

HoldISAMOataSet, 7-10
HoldISAMRecord, 7-10
ReleaseISAMOataSet, 7-10
ReleaseISAMRecord, 7-10

Long/short/extended/IEEE key, 3-5
Long/short/real key, 3-5
MAINTAIN FILE command, 2-2, 2-13
Memory allocation calculation, 6-10
Memory requir~ments, 1-2

for ISAM server installation, 6-3
Memory usage, 7-13
Modes

administrator, 2-5
batch, 2-5
transaction, 2-5

Modifying records, 2-4
ModifyISAMRecord

procedure, 7-28
request block, 7-29

ModifyISAMRecordByKey
operation, 7-8
procedure, 7-29
request block, 7-31

ModifyISAMRecord operation, 7-8
Multipartition BTOS, 6-3
Multiple record access (iteration) operations, 7-9

GetISAMRecords, 7-9
GetISAMRecordsHold, 7-9
ReadNextISAMRecord, 7-9
ReadNextISAMRecordHold, 7-9
SetUpISAMIterationLimits, 7-9
SetUpISAMIterationPrefix, 7-9

Multiuser access to data set access modes, 2-7
Multiuser installation, 6-2
Multiuser ISAM

using eith~L single-user or, 7-13
New ISAM features, 1-1
Node, 0-3
NormalizeISAMStatus procedure, 7-31
OpenISAM procedure, 7-32
Operations and transactions, 2-9

5

Operat1ons (ISAM), 2-3, 7-1
Overview, 1-1

of features, 1-1
Parameters

on ISAM COPY form, 4-3
on ISAM CREATE form, 4-5
on ISAM DELETE form, 4-8
on ISAM INSTALL form, 6-4
on ISAM RENAME form, 4-10
on ISAM REORGANIZE form, 5-3
on ISAM SET PROTECTION form, 4-11
on ISAM STATUS form, 4-13

Password, D-3
Procedures; 7-14

BeginTransaction, 7-14
CloseISAM, 7-15
CommitTransaction, 7-15
CreateISAM, 7-16
DeleteISAM, 7-18
DeleteISAMRecord, 7-18
DeleteISAMRecordByKey, 7-20
GetISAMRecords, 7-20
GetISAMRecordsHold, 7-21
HoldISAMDataSet, 7-24
HoldISAMRecord, 7-26
ISAMRequest, 7-27
LoadSingleUserISAM, 7-27
ModifyISAMRecord, 7-28
ModifyISAMRecordByKey, 7-29
NormalizeISAMStatus, 7-31
OpenISAM, 7-32
QueryTransactionParams, 7-33
ReadISAMRecordByUri, 7-33
ReadISAMRecordByUriHold, 7-33
ReadNextISAMRecord, 7-35
ReadNextISAMRecordHold, 7-35
ReadUniqueISAMRecord, 7-35
ReadUniqueISAMRecordHold, 7-35
ReleaseISAMDataSet, 7-37
ReleaseISAMRecord, 7-38
RenameISAM, 7-39
RollBackTransaction, 7-41
SetISAMProtection, 7-42
SetTransactionParams, 7-42
SetUpISAMlterationLimits, 7-43
SetUpISAMlterationPrefix, 7-45
StoreISAMRecord, 7-47
VerifyMultiUserISAM, 7-48

6

QueryTransactionParams
operation, 7-10
procedure, 7-33

Reading records, 2-4
ReadISAMRecordByUrl

operation, 7-9
procedure, 7-33
request block, 7-34

ReadISAMRecordByUrlHold
operation, 7-9
procedure, 7-33
request block, 7-34

ReadNextISAMRecord
operation, 7-9
procedure, 7-35
request bloCK, 7-36

ReadNextISAMRecordHold
procedure, 6-35
request block, 7-36

ReadUniqueISAMRecord
procedure, 7-35
request block, 7-37

ReadUniqueISAMRecordHold
operation, 7-9
procedure, 7-35
request block, 7-37

Record, D-3
Record management and access, 7-8
Record management operations, 7-8

DeleteISAMRecord, 7-8
DeleteISAMRecordByKey, 7-8
ModifyISAMRecord, 7-8
ModifyISAMRecordByKey, 7-8
StoreISAMRecord, 7-8

Records
deleting, 2-4
locking, 2-7
modlfying, 2-4
reading, 2-4
storing, 2-3

Record Sequential Access Method (RSAM), D-3
Related software, 1-3
ReleaseISAMDataSet

operation, 7-10
procedure, 7-37
request block, 7-38

ReleaseISAMRecord
operation, 7-10

7

ReleaseISAMRecord
procedure, 7-38
request block, 7-39

RenameISAM
procedure, 7-39
request block, 7-41

Reorganization, D-4
Requests

asynchronous, 7-13, 7-14
Requirements

disk, 1-2
memory, 1-2

Resident code and data requirements, 6-4
RollBackTransaction

operation, 7-10
procedure, 7-41

Security of 0ata, 2-12
SetISAMProtection

procedure, 7-42
request block, 7-43

SetTransactionParams
operation, 7-10
procedure, 7-42

SetUpISAMlterationLimits
operation, 7-9
procedure, 7-43
request block, 7-45

SetUpISAMlterationPrefix
operation, 7-9
procedure, 7-45
request block, 7-45

Shared access, D-4
Single record access operations, 7-9

ReadISAMRecordByUri, 7-9
ReadISAMRecordByUriHold, 7-9
ReadUniqueISAMRecord, 7-9
ReadUniqueISAMRecordHold, 7-9

Single-user ISAM
using either multiuser or, 7-13

Software
related, 1-3

Sorting data set records, 5-11
Standard ISAM features, 1-1
Status block, 7-1, D-4

format, 7-2
Status codes, A-I
StoreISAMRecord

operation, 7-8

8

StoreISAMRecord (continued)
procedure, 7-47
request block, 7-48

Storing records, 2-3
Superseded procedures, B-1

EndISAMTransaction, B-1
LockISAM, B-1
PurgeISAMTransaction, B-2
SetupISAMIteration, B-2
SetupISAMIterationKey, B-2
SetupISAMIterationRange, B-2
StartISAMTransaction, B-2
UnlockISAM, B-2

Swap zone, 6-5, D-4
T1meout, D-4
Transaction, D-4
Transaction mode, 2-5
Transaction operations, 7-10

BeginTransaction, 7-10
CommitTransaction, 7-10
QueryTransactionParams, 7-10
RollBackTransaction, 7-10
SetTransact10nParams, 7-10

Transaction parameters block, 7-11
format, 7-12

Transaction related constraints, 7-11
Transactions, 2-6

and operations, 2-9
Type of key component, 7-7
Types

of files, 2-1
of keys, 2-2, 3-3

Unique record identifier (URI), 2-3, D-4
Upward compatibility support, B-1
Using either multiuser or single-user ISAM, 7-13
Utilities (ISAM), 4-1
VerifyMultiUserISAM procedure, 7-48
Wr1te-through cache, 2-13, D-4
XE520 systems

installing ISAM on, 1-4

9

Documentation Evaluation Form

Title: B 20 Systems Indexed Sequential Access Method (lSAM)

Reference M'anual

Form No: -",5~0~2J:.o22!:<..4..L.l7:-____ _

Date: July 1985

Burroughs Corporation is interested in receiving your comments
and suggestions, regarding this manual. Comments will be util
ized in ensuing revisions to improve this manual.

Please check type of Suggestion:

o Addition o Deletion o Revision o Error

Comments:

From:
Name __ _

Title
Company __ __

Address

Phone Number ______________ _

Remove form and mail to:

Burroughs Corporation
Corporate Documentation - West

1300 John Reed Court
City of Industry. CA 91745

U.S.A.

Date __________________ _

