

Distribution C ode SA

__ B_ur~roughs

Reference -
Manual

Priced Item
Printed in U.S
April 1985 .A.

1182284

Burroughs cannot accept any financial or other re­
sponsibilities that may be the result of your use of
this information or software material, including di­
rect, indirect, special or consequential damages.
There are no warranties extended or granted by this
document or software material.

You should be very careful to ensure that the use of
this software material and/ or information complies
with the laws, rules, and regulations of the jurisdic­
tions with respect to which it is used.

The information contained herein is subject to
change without notice. Revisions may be issued
from time to time to advise of such changes and/ or
additions.

Correspondence regarding this public~tion should be forwarded, using the
Documentation Evaluation Form at the back of the manual, or remarks may
be addressed directly to Burroughs Corporation, Corporate Product Informa­
tion East, 209 W.Lancaster AVe.,Paoli,PA 19301~ U.S.A.

LIST OF EFFECTIVE PAGES

Page

iii
iv
v thru V111
1-1 and 1-2
2-1 thru 2-11
2-12
3-1 thru 3-47
3-48
4-1 thru 4-14
A-I thru A-28
B-1 and B-2
C-l thru C-3
C-4
D-l
D-2
E-l
E-2
F-l
F-i
1 thru 3
4

Issue

Original
Blank
Original
Original
Original
Blank
Original
Blank
Original
Original
Original
Original
Blank
Original
Blank
Original
Blank
Original
Blank
Original
Blank

iii

2

3

TABLE OF CONTENTS

INTRODUCTION ••••••••••••
OVERVIEW •••..••••..••
Introduction •••••••••
Features
System Requirements ••••.••••
Mainframe NDL Impact •.•.•••.

INSTALLATION AND OPERATION.
Gener al
Installation on Hard Disk Systems ••••••.••••••••
Installation on Dual Floppy Standalone Systems •.
New Bmul tiC ommands. • • • • • • • • ••••.
Files on the Diskettes •..••••••••
Configuring the Bmulti Service •••••••••.
Installing the Bmulti Service.
Purging a Bmulti Station •••••••••.••.••.

PROGRAMMING INTERFACE .••
General .•...•••••••••.
Coordination................ • ••.••.
Commands and Reports........ • •••••.
Overview of Procedural Interface •.•••••.

Installing BMULTI ••••••••••••••••••••.
Reserving a Station Address •••••.•.••.
Online, Offline and Idle •••••••••••••.••••••••
Transmitting. . . • • • • • ••••••••.••.••.•••••
Receiving
I d 1 e an dAb 0 r t
Receiving Fast, Group and Broadcast Selects •••
Terminating
Command Error Return Codes ••••••••••••••••••••
Report Queue ••••••••••••••••••••••••••

Procedures for Single-Task Interface ••••
DcConfig
DcCommand •••••••••••••
DcReport •.•.......•..••..•••••.••••••.
DcReportWai t ••••••••••••••••••••••••••

Procedures for Multi-Task Interface •••••
MpC ommand •••••••••••••••••••••••••••••••••••••
MpReport •...••••••••••••••••••••••••••
MpReportWait ••••••••••••••••••••••••••••••••••

BMULTI State Machine ••••••.•••••••••••••.•••••••
Command Accepted and Command Denied •••••••••••
Fast Ready Flag .•••.••••••••••••••••••••••••••
End Session Command •••••••••••••••••••••••••••
Offline State......... . ••.•.••.•••.•.••••.
Idle State............
Transmit Ready State.~ ••.•••••••••.•••••••
Transmitting State......... • •••••••••••••

viii
1-1
1-1
1-1
1-2
1-2

2-1
2-1
2-1
2-3
2-4
2-5
2-6
2-10
2-11

3-1
3-1
3-1
3-2
3-3
3-3
3-3
3-3
3-3
3-4
3-4
3-4
3-5
3-5
3-5
3-6
3-6
3-7
3-9

3-11
3-12
3-12
3-15
3-16
3-17
3-17
3-17
3-17
3-17
3-18
3-21
3-23

v

TABLE OF CONTENTS CONT.

Section Title

3 (Cont.) Transmitting and Receive Ready State •.•..••..•
Transmit and Receive Ready State••..•••••
Receiving State •..•.•......•..•..........•••••
Receive Ready State ...•...............••..••.•
Receiving and Transmit Ready State ..•••...•..•

Low Level Interface Procedures •....... ~ .•..••.••
BmOpen ••••••••••••••••.••••.•.•••.••••••••••••
BmC ommand •••••..•......•.....••.........•.••••
BmReport•....•.........••.•..•••.••••.•
BmReportWai t ••••...••.......••.••.....•.•..•••
BmReportTimeout •••...•..........•.........•...
Bmldentify
BmQuery •••••••••••.•••.•••.••••••••••.•.••••••

High Level Interface Procedures .•..•.•....•.•.••
OpenBmul t i •...••.•.•.•...•.....•••..••.••.•.••
ReadBmul ti
Wri teBmul ti••...........•..•.•..•.••.••
SetOptionBmul ti •.•.••...••...•••.••.••.•.•.•••
Res etBmul t i
CloseBmul ti

4 PROTOCOL DESCRIPTION ..•..•.•.•..•••••..•••.••..•
Ge ne r al ..•
Station Types

Control Characters .•••..••••.••••.••.•••••••••
Additional Procedural Characters ••...•••••••.•

A SAMPLE PROGRAMS •••.•.•.••..•••..••••••••••••••••
General .. .
Pascal Echo Program ••••..•••.•••••••..•.••.•••••
COBOL Echo Program •.•••••.••..•.••••.••..•••.•.•
FORTRAN Echo Program •••••••••••••••••..••••.••••
BASI C Echo Program ..•••..••.••••.•••••••.•••.•••
Pascal Echo Program Using Multiple-Task
Int erface
Pascal Terminal Program Using Enhanced Low-level

Page

3-25
3-27
3-29
3-30
3--32
3-33
3-33
3-34
3-35-
3-36
3-37
3-38
3-39
3-41
3-41
3-43
3-44
3-45
3-46
3-46

4-1
4-1
4-1
4-2
4-3

A-1
A-1
A-1
A-4
A-7

A-10

A-13

Interface A-18

vi

B

C

D

E

F

COBOL Echo Program Using High-Level Interface •.• A-26

USASCII CODE CHARTS •.•.•.••••.••.•••••••••••••••

HARDWARE CONSIDERATIONS •••••••••••••....•••.••••

LANGUAGE CONFIGURATION ••••••••••••••••••••.•••..

BTOS REQUEST CODES FOR BMUL~ •••••••••••••••••••

STATUS CODES FOR ENHANCED LOW-LEVEL INTERFACE •.•

INDEX •••.•.•••..••.•••••••••••••••.•••••••••••••

B-1

C-1

D-1

E-1

F-1

Figure

3-1
4-1
4-2
4-3
4-4
4-5
4-6
4-7
B-1
B-2

Table

3-1
3-2
3-3
3-4
3-5

C-1

C-2

LIST OF ILLUSTRATIONS

Title

BMULTI States•........•....••.•.•.••••.••
Specific Polling•.....•.•.•...•••..•••••••••
Group Polling (Note 1) ••.•••••.••••••..•.•••••••
Select i on
Fast Select (Note 1) ••••••••••••••••••••••••••••
Broadcast Select (Note 1) •••••••••••••••••••••••
Group Select (Note 1) •••••••••••••••••••••••••••
Multipoint Contention Mode (Note 1)•.••
Code Chart
USA Standard Code for Information Interchange •••

LIST OF TABLES

Title

Error Return Codes: Single-Task Interface ••••••
Command Codes ..•••..••...•....•.....••.•.••••.••
Report Return Codes ••.•.•.•.•••••••••..•••••••••
Error Return Codes: Multiple-Task Interface ••••
Bmulti.lib Module Requirements and Procedure
Call s .. .
Switch Settings for Channel B on I/O-Memory
Board (Switch Box 1) ••••••••••••••••••••••••••••
RS-232C Signals in Operation •.•...••••.•••••••••

Page

3-2
4-7
4-8

4-10
4-11
4-12
4-13
4-14

B-1
B-2

Page

3-8
3-8

3-10
3-14

3-47

C-2
C-3

vii

viii

INTRODUCTION

This manual provides descriptive and operational
information for the Burroughs Multipoint
Communications Service (BMULTI), which enables
B 20 and XE 520 systems to communicate with other
Burroughs systems using the Burroughs multipoint
protocol. The information is presented as
follows:

Section 1,
Section 2,
Section 3,
Section 4,

Overview
Operation
Programming Interface
Protocol Description

Only the first two sections need to be read by the
B 20 or XE 520 operator. Section 3 is required
for the programmer implementing a Bt-1ULTI
application. Section 4 is provided for the
convenience of the user.

The appendices provide sample programs and ASCI I
codes and discuss required hardware. The
following technical manuals provide further
information:

B 20 Operating Systems Reference Manual
XE 520 System Programmer's Guide

SECTION 1

OVERVIEW

INTRODUCTION

FEATURES

The Burroughs Multipoint Communications Service
(BMULTI) allows a B 20 or XE 520 system to
communicate with larger Burroughs systems using the
Burroughs multipoint protocol. Via BMULTI, a B 20
can be treated, for most purposes, like a standard
Burroughs terminal.

In order to use BMULTI, the user must provide an
application (such as the B 20 MT983 Emulator) with
an interface to BMULTI. A programming interface is
available to allow users to develop their own
appl icat ions, by means of any of the B 20
languages.

The Burroughs Multipoint Communications Service
(BMULTI) includes the following features:

o It supports up to 32 applications, each capable
of handl ing messages of up to 4096 bytes
(including protocol control characters).

o It supports synchronous and asynchronous
transmission at 110 to 9600 bits per second.

o It supports normal poll, normal select, group
poll, fast select, group select, broadcast select,
and multipoint contention.

o It includes several options for transmission
numbering.

o It allows user configuration of Clear-to-Send,
Transmit-to-Receive, and Request-to-Send-Hold
delays.

o It can be configured to answer (send EDT) polls
to addresses which do not have an application
attached.

1-1

SYSTEM REQUIREMENTS

The BMULTI system service requires at least 36 k­
bytes of user memory. In addition, the object
modules that must be linked with an application
require additional memory, which varies with the
programmatic interface used. Table 3-5 lists the
memory requirements of the different object
modules available and the procedures each module
serves.

BMULTI will run on an XE 520 cluster processor
only if equipped with a memory expansion board.

BMULTI can run on any B 21, B 22, or B 26
workstation (except a B 21-1), and on either the
cluster processor or the terminal processor of an
XE 520. Hardware requirements are explained in
appendix C.

MAINFRAME NDL IMPACT

1-2

BMULTI is inherently slower than a Burroughs
terminal, where the processor is completely
dedicated to data comm processing. Mainframe NDL
timeout values should not be set for a value of
less than one second.

The configurable delays offered by BMULTI are
upwardly variable because certain processes in the
operating system have a higher priority than
BMULTI. The actual delay is never less than that
with which BMULTI is configured, but it may. be
more.

GENERAL

SECTION 2

INSTALLATION AND OPERATION

The BMULTI software is available on both 8-inch and
5-1/4 inch diskettes. The 8-inch package is for
hard disk installation only on B 22 systems. The
5-1/4 inch package allows both hard disk
installation on B 21 and B 25 systems, and supports
dual floppy standalone operation. Either package
may be used for XE 520 installation. The same
procedure is used for installing the package from
both sets of diskettes.

INSTALLATION ON HARD DISK SYSTEMS
Perform the following steps for a successful
installation.

1. Login as follows.

Command Path
Path

[Volume]
[Directory]
[Default file prefix]
[Password]

press RETURN

sys press RETURN
sys press RETURN

If your hard disk has a volume password on
[dO], type this password into the [Password]
field. Press GO.

2. Turn off any cluster workstations.

3. Insert the product distribution diskette,
labeled B 20 Poll Select, disk 1, in drive
[fO]. (Do NOT press the RESET button.)

4. Install the product as follows:

Command Software Installation press RETURN
Software Installation

[Cmd File]
[Files to]
[Confirm?]
[Install file]

Refer to the B 20 System Software Operation
Guide to determine whether you should enter any
parameters in this form. Press GO.

It is not recommended that any parameter be
entered in the ' [Fi les to]' I ine of the
Software Installation command form.

2-1

2-2

5. You will be prompted to power down your cluster
stations if you have not already done so.
Press GO.

6. The message "INSTALLATION OF BMULTI COMPLETE"
is displayed when installation is complete.
Remove the product distribution diskette and
save it as an archive.

7. Turn on your cluster workstations.

INSTALLATION ON DUAL FLOPPY STANDALONE SYSTEMS

Before the BMULTI release diskette can be used to
install the BMULTI service, the following steps
must be performed.

1. Boot the system with the system disk in drive
[fO]. Replace the system disk with Disk 2 of
the Dual Floppy Standalone System Software.

2. Place the BMULTI release diskette in drive
[f 1] .

3. Type the following:

Copy
[fO]<Sys>Exec.run
[fl]<Sys>Exec.run Press GO.

4. Remove the system disk from drive [fO]. Put
the BMULTI release disk in drive [fO] before
any BMULTI commands are executed.

2-3,

NEW BMUL TI COMMANDS

2-4

CONFIGURE BMULTI: This command has one parameter,
[Configuration file], and is used to create and
edit BMULTI configuration files. The run file used
by this command is "BmFileEdit.run".

INSTALL BMULTI: This command has one parameter,
[Configuration file], and is used to execute the
"BmZip.run" program. This program reads the
configuration file (the default is
[Sys]<Sys>BmultiConfig.sys), builds a parameter
block in long-lived memory, and chains to
[Sys]<Sys>Bmulti.run.

PURGE BMULTI STATION: Th i s command is used to
unlock a locked BMULTI station. No parameters are
required to invoke this command. The run file used
by this command is "BmPurge.run".

FILES ON THE DISKETTES
The following files are present on the release
diskettes. Both 8-inch and 5-1/4 inch diskettes
contain the same files (with two exceptions).

POS5.0-1
POS5.0-1
POS5.0-1
POS5.0-1
POS5.0-1
POS5.0-1
POS5.0-1
POS5.0-1
POS5.0-1
POS5.0-1
POS5.0-1
POS5.0-1
POS5.0-1
POS5.0-1
POS5.0-1
POS5.0-1
POS5.0-1

<SYS>CrashDump.sys
<SYS>fileHeaders.sys
<SYS>mfd.sys
<SYS>sysImage.sys
<SYS>diagtest.sys
<SYS>bootext.sys
<SYS>Install.sub
<SYS>log.sys
<SYS>sys.cmds
<SYS>badBlk.sys
<SYS>FdSys.Version
<SYS>Bmulti.run
<SYS>BmultiConfig.sys
<SYS>BmZip.run
<B20PS5>Bmulti.lib
<B20PS5>BmPurge.run
<B20PS5>BmFileEdit.run

**

**Present only on 5 1/4 inch diskettes.
***Present only on 8 inch diskettes.

BMULTI requires approximately 36 k-bytes
of memory.

2-5

CONFIGURING THE BMULTI SERVICE
To configure the communications service, type
"Configure Bmulti" in the command field of the
command form (refer to the B 20 Systems Executive
Reference Manual). The form illustrated below then
appears.

Configure Bmulti
[Configuration file]

The default is [Sys]<Sys>BmultiConfig.sys.

When executed, the screen is cleared and the
following form is displayed (assuming that the
program was executed with the default parameter):

BMULTI CONFIGURATION FILE EDITOR 5.0

Currently Open File: [Sys]<Sys>BmultiConfig.sys

Open I Save IDiscard
ConfiglConfiglConfig
File I File I File

IModify IModify
IVirtuallBmulti
I Addrs IParams

2-6

This is the basic entry state. To modify the
BMULTI parameters which affect every station, press
flO. To examine or modify the list of virtual
addresses, press f9. Press f2 in order to close
and save the currently open configuration file.
Press f1 to open a new one. Press f3 in order to
close and not save the currently open configuration
file.

If f1 is' pressed, the following is displayed:

Config File name

Enter the name of the configuration file you wish
to edit, such as [sys]<sys>BmultiConfig.sys, and
press GO. If the file is already present, the
utili ty will display "Opening •• ". If it is not
already present, the utility will display "Opening
•. a NEW file •.. " and do so. In either case, the
utility will display "Done" when it is finished and
has returned to the basic entry state.

If f2 is pressed, the utility will display "Saving
" When the utility has closed the file, it will

display "Done" and return to the basic entry state.

If f3 is pressed, the utility will. display
"Discarding •. ". When the utility has closed the
file , it will display "Done" and return to the
basic entry state.

If f9 is pressed, the prompts on the line of
softkeys changes to the following:

Add IDeletel List Exit

Pressing f10 returns the utility to the basic entry
state. Pressing f3 causes the utility to list all
currently configured virtual addresses. Press ing
f1 causes the utility to prompt for a virtual
address to be added to the list; pressing f2 causes
the utility to prompt for an address to be deleted
from the list.

If f10 is pressed, the utility displays "Modify
Bmulti Options" in reverse video and then prompts,
in order, for the ten BMULTI parameters as follows:

Group Poll Address
Group Select Character
Sync or Async?
Channel [A/D]
Baud Rate [max 9600]
Xmno option 10 .. 5]
CTS delay 0 •• 255]
Xmt-Rcv delay 0 •. 255]
RTS Hold 0 •• 255]
Downstream Station?

After each parameter is entered, press RETURN to go
on to the next. The utility displays "OK" if each
value is acceptable. When all ten are entered, the
program returns to the basic entry state.

2-7

2-8

The BMULTI parameters are discussed in more detail
below:

Group Poll Address
is the group poll address to be used
by BMULTI for all of its stations. A
cluster system may have only one group
poll address. This must be any two
ASCII characters between 020h and
07Fh. If group poll is not used, any
address not polled may be used.

Group Select Character

Sync or

is the character which is recognized
as the group select character to be
used by BMULTI for all of its
stations. A cluster system may have
only one group select character. This
must be any ASCII character between
020h and 07Fh. If group select is not
used, any character not already in use
as a poll or select character may be
used.

Async?
If this is answered
to be provided by
answered async, the
own clocking.

sync, clocking is
the modem. If

B 20 supplies its

Channel [A .. D]
On a B 20 workstation, this is either
A or B. On an· XE 520 Cluster
Processor, this is either A or B. On
an XE 520 Terminal Processor, this is
A, B, C, or D.

Baud Rate [max 9600]
must be one of the following: 110,
150, 300, 600, 1000, 1200, 1800, 2000,
2400, 4800, or 9600, except on an
XE 520, where 110 and 150 are not
permissab1e entries. These are the
permissable transmission speeds in
bits per second.

Xmno option [0 .. 5]
is 0, 1, 2, 3, 4, or 5. Each of these
numbers stands for a particular
transmission numbering scheme. ° is
for no transmission numbers. 1
indicates an alternating zero and one
scheme while 2 means an alternating @
and A (TD830 compatibility). Scheme 3

CTS delay

is a modulus 10 (0 through 9, wrapping
around), 4 is modulus 100, and 5 is
modulus 1000. (Refer to section 4 of
the BMULTI Reference Manual for more
information.)

[0 .. 255]
is the Clear-to-send delay in
milliseconds. BMULTI waits this
period of time after turning on
Request-to-send before looking for
Clear-to-send from the modem. If
Clear-to-send is not on when the timer
expires, BMULTI waits until it does go
on before transmission.

Xmt-Rcv delay [0 .. 255]
is the Receive delay in milliseconds.
When BMULTI turns off Request-to-send
after a transmission, it waits this
period of time before examInIng
incoming data. This delay is normally
non-zero when using Burroughs Two-wire
Direct Interface (TDI).

RTS Hold [0 .. 255]
is the period of time, in
milliseconds, which BMULTI keeps
Request-to-send on after the end of a
transmission. This delay is used with
some older modems or to cause the host
system modem to keep Data Carrier
Detect on long enough to ensure that
the host receives the transmission.

Downstream Station?
is either "y" or "n". If "y" (yes),
BMULTI does not reply to a group poll
when Secondary Receive Data is on. If
"n" (no) , B~1ULTI ignores Secondary
Receive Data when determining its
response to a group poll. The
response should be YES only when the
B 20 running BMULTI is in the midst of
a concatenated string of terminals
communicating through a single modem.
If the B 20 is either the only
terminal connected to its modem, or if
it is the last terminal on a
concatenation string, the response
should be NO. It should also be NO
when using TDI. This parameter is not
used by the XE 520.

2-9

INSTALLING THE BMULTI SYSTEM SERVICE

2-10

BMULTI is a system service which may be installed
on B 20 standalone systems, the master workstation
of B 20 cluster systems, or a cluster processor or
terminal processor of an XE 520 system.

To invoke the communications service from the
Executi ve, type "Install Bmul ti" in the command
field of the command form. The form illustrated
below then appears.

Install Bmulti
[Configuration file]

To invoke the communications service during system
initialization, the system administrator should add
the following command line to the appropriate
workstation's SysInit.JCL file, cluster processor's
InitCpnn.JCL file, or terminal processor's
InitTpnn.JCL file:

$RUN [Sys]<Sys>BmZip.run(, <configuration file»

where the parentheses enclose optional text.

NOTE

In order for BMULTI to take control of a specified
channel, that channel must not be already under the
control of another program. On an XE 520, no
"ASYNC <channel number>" statement may reference
that channel in the appropriate configuration file
(Cpnn. cnf for the cluster processor and Tpnn. cnf
for the terminal processor). On any system, the
spooler may not be configured to use the same
channel simultaneously.

PURGING A BMULTI STATION

NOTE

Disable the ACTION-FINISH command if you are
running on a master or standalone system.
Using ACTION-FINISH to terminate your
application may cause a system crash.

Occasionally it happens that a BMULTI application
is terminated with ACTION-FINISH, or a cluster
station running a BMULTI application is powered off
accidentally. When this happens, most of the time
BMULTI automatically realizes that one of its
stations is no longer active, and make that station
address available for other application (or for the
same one if re-executed).

Under some circumstances, however ,BMULTI fails to
make such an address available again. If this
happens, use the "Purge Bmulti Station" command to
force a BMULTI station address to be available. To
execute this utility, type "Purge BMULTI Station"
in the command field of the command field form.
There are no parameters to this command; just press
GO.

When executed, the screen is cleared and the
following is displayed:

BMULTI STATION PURGER 5.0

Enter Station Address

Enter a two-character station address. If the
station is successfully purged, the utility
displays "*** Station successfully cleared". If
unsuccessful, the station displays "*** Clear
unsuccessful".

The utility then displays:

"Hit <FINISH> to exit or any key to continue"

Pressing FINISH causes the program to exi t to the
Executive. Pressing any other key returns the
program to the initial prompt above.

2-11

GENERAL

SECTION 3

PROGRAMMING INTERFACE

The user requires appl ication software in order
to make use of BMULTI. This program must be
written using one of the procedural interfaces
detailed below. There are four procedural
interfaces available to the BMULTI user: a
single-task interface, a multiple-task interface,
an enhanced low-level interface and a high-level
interface suitable for use by application
programmers.

NOTE

It is highly recommended that any
software development in either COBOL or
interpreted BASIC make use of the high­
level interface. Details of this
interface can be found starting on page
3-41.

The user program, after being written and
compiled, must be linked with Bmulti.lib. (Basic
Interpreter or Cobol appl ications requi re that
the interpreter have been 1 inked wi th
Bmulti.lib.)

COORDINATION
Because the operation of an application system
using these facilities is under control of the
host computer, there must always be a high degree
of coordination between the B 20 application
system and the appl ication system on the host
computer. There must be agreement on order of
procedures, such as which system sends first, and
so on. This involves coordination between the
application programmers of each system.

3-1

COMMANDS AND REPORTS

3-2

A BMULTI application informs BMULTI what it
desires to do by means of Commands. BMULTI
informs the application of events on the line by
means of Reports. Commands from an appl ication
may be accepted or denied by BMULTI, depending on
the state in which the application's address is.
An address may move from one state to another in
response to a command or an event on the 1 ine.
Figure 3-1 is a diagram of Bl,tULTI states.

The application issues commands and obtains
reports by issuing an OS primitive called a
Request (refer to the BTOS Reference Manual).
The application may either suspends itself until
a reply is available (Wait) or continues to
process, checking periodically to see whether a
reply is available (Check).

TRANSMITTING

r--- TRANSMITTING AND I--
RECEIVE READY

TRANSMIT
READY -

OFFLINE

il I - ~ TRAN§MIT
IDLE AND

RECEIVE READY -
RECEIVE
READY

I+- RECEIVING

I.....- RECEIVING
AND

TRANSMIT
READY

E4343

Figure 3-1. BMUL~I States

OVERVIEW OF PROCEDURAL INTERFACE

Installing BMULTI

The communications service must first be
installed, as described in section 2.

Reserving a Station Address

The DcConfig call (or a Configure command) must
be made first to reserve a station address.
Until the application system issues a DcConfig
call, any attempts by the host computer to select
or poll the station are ignored by BMULTI.
BMULTI continues to ignore any such attempts
until an Online command is issued. When a
DcConfig call is accepted by BMULTI, the
application system is in the OFFLINE state.

Online, Offline and Idle

Transmitting

An Online command, when accepted, moves the
appl ica t ion from the OFFLINE state to the IDLE
state. In this state BMULTI replies to selects
and polls addressed to the application station.
BMULTI -NAKs selects and sends EOT in reply to
polls. An Offline command may be used to cause
BMULTI to return to the OFFLINE state.

The command Transmit Ready, when accepted, moves
the application to the TRANSMIT READY state. In
this state BMULTI looks for the next poll to the
applications address. Upon seeing such a poll
BMULTI issues a Ready for Transmit Buffer report
(4). When returned, the application immediately
issues a Transfer Transmit Buffer command to
instruct BMULTI to obtain and transmit the
buffer. When BMULTI sees an ACK from the host,
it returns a Transmi t Done report (5). I f the
application sees a Transmit Error report, it
looks for another Ready for Transmit Buffer
report and is prepared to issue another Transfer
Transmit Buffer command.

3-3

Receiving

Idle and Abort

The command Receive, when accepted, moves the
application to the RECEIVE READY state. In this
state BMULTI ACKs any subsequent selects and
receives the transmitted message. If BMULTI does
not detect an error in the message, it will issue
a Receive Done report (3). The reports Receive
Error, Dupl icate Sequence Number, and Sequence
Number Error are issued by BMULTI, instead of
Receive Done, when it has received a message in
which it has detected an error. The application
program is then allowed a re.asonable amount of
time to issue a Transfer Receive Buffer command
to retrieve the buffer. If a time-out occurs
before the command is issued, the command is
denied. If the command is accepted, an ETX
occurs after the last text character in the
buffer.

After a Receive or Transmit command has been
issued, the Idle command can be used to return
the application to the Idle state. However, if a
select has already been ACKed or a transmission
in response to a poll begun, the Abort command
must be used to cause BMULTI to abandon an
attempt to receive a message or to transmi t a
message. (For instance, if a message sent to the
B 20 contains imbedded ETXs, BMULTI does not ACK
it. DcReport returns a value of 7 several
times, indicating a Receive Error. After a
number of these in succession, the application
issues an Abort command and ei ther warns the
operator or ends the session.)

Receiving Fast, Group and Broadcast Selects

3-4

If the Set Fast Ready command is not issued,
BMULTI NAKs any fast, group, or broadcast
selects addressed to the appl ication' s station
except when Receive Ready. If the Set Fast Ready
command is issued, BMULTI ACKs and receives any
such selects, even if not Receive Ready. (During
the reception of a group or broadcast select,
DcReport returns a value of 2 in order to
distinguish between messages designated for that
station in particular and messages designated for
many stations.) After a Set Fast Select command
has been issued, a Reset Fast Select command may
be issued to prevent reception of fast, group, or
broadcast selects.

Terminating

NOTE

Disable the ACTION-FINISH command if you are
running on a master or standalone system.
Using ACTION-FINISH to terminate your
application may cause a system crash.

The application terminates a communication
session by issuing an End Session command. This
command is accepted only from the IDLE and
OFFLINE states.

Command Error Return Codes

Report Queue

The Error Return Code should be checked following
each DcConfig and DcCommand call. Unpredictable
results may occur if the program assumes that a
command was accepted when it was in fact
rejected.

BMULTI maintains a lO-deep queue of reports for
each active address. The report codes Receiving,
Receiving Group or Broadcast Select, Select
Denied, and Receive Error are added to the Report
queue only if each is not already present in the
queue. It is good programming practice to keep
the Report Queue as shallow as possible by
reading it frequently; if the Report Queue is too
deep, reports returned by BMULTI may be obsolete.

Sample programs using the BMULTI system service
procedures are listed in Appendix A. The
programs presented are in FORTRAN, COBOL, Pascal,
and BASIC.

PROCEDURES FOR SINGLE-TASK INTERFACE

DcConfig

Description

The DcConfig procedure passes a station address
from the application to BMULTI. If the address
has not been assigned by another appl ication on
the system, and the maximum number of
applications will not be exceeded, BMULTI
acknowledges the assignment; otherwise, it
indicates an error. Table 3-1 contains the
values which the error return code can take.

Procedural Interface

Request Block

3-6

DcConfig (devAddr): ErcType

where

devAddr is a word containing two ASCII
characters. This address must not
duplicate that of any other stations on
the same line.

Size
Offset Field (bytes) Contents

0 sCntInfo 2 3
2 nReqPbCb 1 1
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2

10 rqCode 2 FFFF
12 subrqcode 1 0
13 devadr 2
15 pCpBuffx 4
19 sCpBuffx 2
21 pCpBuffr 4

... 25 sCpBuffr 2
I

DcCommand

Description

The DcCommand procedure is used to pass commands
from the application to BMULTI. Table 3-1
contains the values which the returned integer
can take.

Procedural Interface

Request Block

DcCommand (command, pBuffer, sBuffer): ErcType

where

command

pBuffer
sBuffer

is a word containing a value from table
3-2.

describe the application's message
buffer. While transferring a receive
buffer, sBuffer must be at least one
byte larger than the largest message to
be received from the host system (the
extra byte is used to store ETX). When
transferring a transmit buffer, sBuffer
must be the exact size of the message
to be transmitted. These two
parameters must be specified for every
command even though only two of the
commands use them.

DcCommand uses the same request block
as DcConfig. In both cases the Request
call is used to pass the Request block
and the Wait call is used to receive
the reply. The distinction between the
calls lies in the subrequest code. The
DcConfig call uses the subrequest code
of zero. The DcCommand call uses the
command code (see table 3-2) as the
subrequest code.

3-7

3-8

Table 3-1: Error Return Codes Single-Task Interface

System error = 0

Returned by the Transfer Receive Buffer
command when the buffer is larger than
the size passed by the application.
Also returned by all commands when an
unforeseen BTOS error has occurred.

Command accepted 1

Command denied 2

Returned when an invalid state
transition is requested. Also returned
by Transfer Receive Buffer when a time­
out has occurred and the buffer is no
longer available.

Table 3-2: CODDlland Codes

Transfer Receive Buffer 1

Transfer Transmit Buffer 2

Offline 3

Online 4

Idle 5

Set Fast Ready 6

Receive 7

Transmit Ready 8

End Session 9

Abort 10 (or OAh)

Reset Fast Ready 11 (or OBh)

DcReport

Description

The DcReport procedure returns the status of the
datacomm subsystem to the application. This
procedure is the means by which BMULTI informs
the application of events on the line.

Procedural Interface

Request Block

DcReport: Integer

Offset Field

o sCntInfo
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet

10 rqCode
12 devadr
14 pReport
18 sReport

Size
(bytes)

2
1
1
2
2
2
2
2
4
2

Contents

2
o
1

FFFE

1

The DcReport call performs a Request priinitive,
passing this request block, then performs a Check
primitive to receive the reply. If no report is
forthcoming, DcReport returns a zero. Care must
be taken when programming at the Request/Check
level; reports may be queued, and the first
Report available at anyone time may not reflect
the true state of the line.

The reports returned are as follows:

3-9

3-10

Table 3-3. Report Return Codes

No Report = 0

Returned by DcReport if no report is available.

Receiving = 1

Returned if SOH detected for Receive-Ready
address.

Receiving Group or Broadcast select = 2

Returned if a group or broadcast select has been
addressed to a fast-select-ready application.

Receive Done = 3

Returned if an error-free message has been
received.

Ready for Transmit Buffer = 4

Returned when a poll has been received and the
application was transmit-ready.

Transmit Done = 5

Returned when an ACK has been received after a
transmission to the host.

Select Denied = 6

Returned if a Fast, Group, Broadcast, or regular
select has been NAKed.

Receive Error = 7

Returned if a block check or parity error occurs
in a message addressed to the application.

Duplicate Sequence Number = 8

Returned if a dupl icate transmission number is
detected (if transmission numbers are enabled),
in place of Receive Done.

Sequence Number Error 9

Returned if a transmission number out of sequence
is detected (if non-alternating transmission
numeers are enabled), in place of Receive Done.

Transmit Error = 10 (OAh)

Returned if an EOT is received in response to a
transmission or if an Abort command is issued.

DcReportWait

Description

The DcReportWai t procedure is identical to the
DcReport procedure except that a report of zero
is never returned. The procedure wai ts unti 1 a
non-zero report is avai lable before returning.
The reports are the same as for DcReport.

Procedural Interface

Request Block

DcReportWait: Integer

DcReportWait uses the same request block that
DcReport does, but it uses a Wait call to receive
the reply instead of a Check. Care must be taken
when programming at the Request/Wait level;
reports may be queued, and the first report
available at anyone time may not reflect the
true state of the line.

3-11

PROCEDURES FOR MULTI-TASK INTERFACE

MpCommand

Description

The Multiple-Task Interface is similar to the
programming interface presented above. However,
it allows up to three different addresses to be
used per application. In addition, DcConfig has
been replaced by the MpCommand Configure, and the
error codes returned by MpCommand, MpReport, and
MpReportWait are different. The report codes and
command codes are the same.

NOTE

The two procedural interfaces may not be
mixed; for ~xample, an application using
DcCommand must use DcConfig and DcReport
(or DcReportWait): it may not use any of
the multiple-task procedures.

The MpCommand procedure is used to pass commands
from the application to BMULTI. Table 3-3
contains the val ues which the returned integer
can take.

Procedural Interface

3-12

MpCommand (command, devAdr, pBuffer,
sBuffer): Erctype

where

command

devAdr

pBuffer
sBuffer

is a word containing a value from table
3-2, or zero for the Configure command.

is a word containing the BMULTI
address.

describe the application's message
buffer. While transferring a receive
buffer, sBuffer must be at least one
byte larger than the largest message to
be received from the host system (the
extra byte is used to store ETX). When
transferring a transmit buffer, sBuffer
must be the exact size of the message
to be transmitted. These two
parameters must be specified for every
command even though on 1 y the two
transfer commands use them.

Request Block
MpCommand uses the same request block that
DcConfig and DcCommand do.

3-13

Table 3-4: Error Return Codes for Multiple-Task Interface

ERROR
CODE
(HEX)

0000

8000

8001

8002

8003

8004

8005

8006

8007

3-14

ERROR
CODE
(DECIMAL) EXPLANATION

a
32768

32769

32770

32771

32772

32773

32774

32775

Command or Report accepted.

Inval id Command. Returned by MpCommand when a
command code is greater than OBh.

Task Overflow. The maximum number of addresses
has been reached. Returned by the Configure
command.

Command Pending. There is already a command
Returned by MpCommand. pending for this address.

Report Pending.
report request
address.

Returned by MpReportWai t when a
is already pending for this

Invalid Address. Returned by MpCommand and
MpReport when the device address has not already
been configured.

Command Denied. Returned by MpCommand when an
invalid state transition is requested.

Buffer Overflow. Returned by MpCommand when a
Transfer Receive Buffer command passes an
sBufferMax value smaller than the length of the
data received from the host.

Report Error. Returned by MpReport and
MpReportWait when BMULTI returns a non-zero value
in the ercRet field of the Report request block.

MpReport

Description

The MpReport procedure returns the status of the
datacomm subsystem to the application. This
procedure is the means by which Br-fULTI informs
the application of events on the line.

Procedural Interface

Request Block

MpReport (devAdr, pReportRet): ErcType

where

devAdr

pReportRet

is a word containing the BMULTI
address.

is a pointer to a word to which the
Report is to be returned by BMULTI.

MpReport uses the same request block that
DcReport and DcReportWait do. After issuing the
request, MpReport performs a Check primi tive to
receive the reply. If nO report is forthcoming,
MpReport returns a zero.

3-15

MpReportWait

Description

The MpReportWai t procedure is identical to the
MpReport procedure except that a report of zero
is never returned. The procedure wai ts unti 1 a
non-zero report is available before returning.
The reports are the same as for DcReport,
DcReportWait, and MpReport.

Procedural Interface

Request Block

3-16

MpReportWait (devAdr, pReportRet) ErcType

where

devAdr

pReportRet

is a word containing the BNULTI
address.

is a pointer to a word into which
the Report is to be returned by
Bl·-1ULTI.

MpReportWait uses the same request block that
DcReport, DcReportWait, and MpReport do, but it
waits to receive the reply instead of timeing out
if a report is not available. Care must be taken
when programming at the Request/Wait level;
reports may be queued, and the first report
available at anyone time may not reflect the
true state of the line.

BMULTI STATE MACHINE

BMULTI can be thought of as a state machine:
that is, the action that BMULTI takes in response
to a command from an application varies depending
upon the current state of BMULTI, which depends
in turn upon previous commands and events on the
data communications line (which are passed to the
application as reports). BMULTI may be in any
one of nine states (see figure 3-1 for details).
BMULTI runs a parallel state machine for each
address. The section below describes each of the
nine states in detail.

Command Accepted and Command Denied

Fast Ready Flag

In the following discussion, the term "accepted"
is used to indicate that BMULTI returns a Command
Accepted code and performs the requested action.
Otherwise, BMULTI "denies"; which means that it
returns a Command Denied code and does not
perform the requested action.

The Set Fast Ready and Reset Fast Ready commands
are accepted in all states except the Offl ine
state. These two commands al ter the setting of
internal flag which BMULTI uses to determine the
appropriate response to Fast, Group, and
Broadcast selects.

End Session Command

Offline State

The End Session command is accepted from the
Offline state and the Idle state. It is denied
from all other states. The End Session command
causes BMULTI to remove the associated address
from the table of currently active addresses.

This is the initial state of any address when
BMULTI accepts a Configure command. In this
state, BMULTI ignores all control sequences for
the assigned address.

The following command is accepted. All other
commands, except End Session, are denied.

Online:
State change: Idle

3-17

Idle State

3-18

In this state BMULTI is not ready to receive any
data, but is responsible for responding for the
address. However, Fast, Group, and Broadcast
selects are accepted if the Fast Ready flag is
on.

In this
accepted.

Offline:

State

Idle:

State

Receive:

State

Transmit:

State

Abort:

State

state, the following
The others are denied.

change: Offline

change: none

change: Receive Ready

change: Transmit Ready

change: none

commands are

Inputs from the communications channel:

Poll of configured address:

State change: none

Report: none

Action: Transmit an EOT

Group Poll of installed group poll address:

State change: none

Report: none

Action: If downstream RTS is false
and none of the other
addresses assigned to this
cluster are in transmit
ready, then transmit an EDT;
otherwise no response.

Select of configured address:

State change: none

Report: Select Denied

Action: Transmit a NAK

Fast Select of configured address
with Fast Ready flag set:

State change: Receiving

Report: Receiving

Action: Wait for SOH

Fast Select of configured address
with Fast Ready flag reset:

State change: None

Report: Select Denied

Action: Wait for the ETX and
transmit a NAK.

3-19

3-20

Broadcast Select of configured address or
Group Select of configured address with installed
group select character, with Fast Ready flag set:

State change: Receiving

Report: Receiving Group or Broadcast
Select

Action: Wait for SOH

Broadcast Select of configured address or
Group Select of configured address with installed
group select character, Fast Ready flag reset:

State change: None

Report: Select Denied

Action: Wait for the ETX and
transmit a NAK.

Broadcast Select of non-configured address or
Group Select of non-configured address (any group
select character), with Fast Ready flag reset:

State change: None

Report: None

Broadcast Select of non-configured address or
Group Select of non-configured address (any group
select character), with Fast Ready flag set:

State change: Receiving

Report: Receiving Group or Broadcast
Select

Transmit Ready State

In this state BMULTI is ready to transmit and is
not ready to receive any data. The following
commands are accepted. The others are denied.

Idle:

State change: Idle

Receive:

State change: Transmit and Receive Ready

Transmit:

State change: none

Abort:

State change: Idle

Inputs from the Communications channel:

Poll of configured address:

State change: Transmitting

Report: Ready for Transmit Buffer

Action: Transmit message

Group Poll of installed group poll address:

State change: Transmitting

Report: Ready for Transmit Buffer

Action: Block downstream RTS and CTS;
transmit message for each
online application which is
transmit ready, one by on~.

Select of configured address:

State change: None

Report: Select Denied

Action: Transmit a NAK

3-21

3-22

Fast Select of configured address
with Fast Ready flag set:

State change: Receiving and Transmit Ready

Report: Receiving

Action: Wait for SOH

Fast Select of configured address
with Fast Ready flag reset:

State change: None

Report: Select Denied

Action: Wait for ETX and
Transmit a NAK.

Broadcast Select of configured address or
Group Select of configured address with installed
group select character, with Fast Ready set:

State change: Receiving and Transmit Ready

Report: Receiving Group or Broadcast
Select

Action: Wait for SOH

Broadcast Select of configured address or
Group Select of configured address with installed
group select character, with Fast Ready reset:

State change: None

Report: None

Action: Wait for ETX and
transmit a NAK

Broadcast Select of unconfigured address or
Group Select of unconfigured address with
installed group select character, with Fast Ready
set:

State change: Receiving

Report: Receiving Group or Broadcast
Select

Transmitting State

In this state BMULTI has recognized a poll or
group poll and is ready to transmit data on the
communications channel.

The following commands are accepted; the others
are denied.

Idle (if CTS is not ON):

State change: Idle

Action: Turn off RTS

Receive:

State change: Transmitting and Receive
Ready

Abort:

State change: None

Action: Set Fast Ready to False
Turn off RTS

Inputs from the Communications channel:

EOT:

ACK:

State change: Transmit Ready

Report: None

Action: Unblock downstream RTS and
CTS

State change: Idle

Report: Transmit Done

Action: If no more applications are
Transmit Ready (for a group
poll) then unblock downstream
RTS and CTS. If downstream
RTS is false then transmit
EOT. For specific poll,
transmit EOT.

3-23

NAK:

RVI:

3-24

State change: None

Report: None

Action: Retransmit the data according
to the protocol.

If specific poll:

State change: Idle

Action: Transmit an EDT.

If station transmitted last in reply to a
group poll:

State change: Idle

Action: Unblock downstream RTS
and CTS. If downstream RTS
is false transmit an EDT,
otherwise no response.

If station is waiting to be
unblocked and has not had an opportunity to
reply to the group poll:

State change: Transmit Ready

Report: Transmit Error

Action: Unblock downstream RTS and
CTS. If downstream RTS is
false transmit EDT otherwise
no response.

Transmitting and Receive Ready State

In this state BMULTI has recognized a poll or
group poll and is ready to transmit data on the
communication channel. The addressed workstation
is also ready to accept data and when the
transmission is complete, the workstation will be
in the Receive Ready state.

The following commands are accepted. The others
are denied.

Idle (if CTS is not ON):

State change: Idle

Action: Turn off RTS

Receive:

State change: None

Abort:

State change: Idle

Action: Set Fast Ready to False
Turn off RTS

Inputs from the communications channel:

EaT:

State change: Transmit and Receive Ready

Report: None

Action: Unblock downstream RTS and
CTS.

ACK: (for cluster stations' individually in case
of group poll)

State change: Receive Ready

Report: Transmit Done

3-25

NAK:

RVI:

3-26

State change: None

Report: None

Action: Retransmit the data.

If specific poll:

State change: Idle

Action: Transmit an EDT.

If station transmitted last in reply to a
group poll:

State change: Receive Ready

Report: Transmit Done

Action: Unblock downstream RTS and
CTS. If downstream RTS is
false transmit an EDT,
otherwise no response.

If station is waiting to be
unblocked and has not had an opportunity to
reply to the group poll:

State change: Transmit Ready and Receive
Ready

Report: Transmit Error

Action: Unblock downstream RTS and
CTS. If downstream RTS is
false transmit an EDT
otherwise no response.

Transmit and Receive Ready State

In this state the protocol handler is ready to
transmit and to receive data. The following
commands are accepted.

Idle:

State change: Idle

Receive:

State change: None

Transmit:

State change: None

Abort:

State change: Idle

Inputs from the communications channel:

Poll of configured address:

State change: Transmitting and Receive
Ready

Report: Ready for Transmit Buffer

Action: Block downstream RTS and
transmit data

Group Poll of installed group poll address:

State change: Transmitting and Receive
Ready

Report: Ready for Transmit Buffer

Action: Block downstream RTS and CTS

Select of configured address:

State change: Receiving and Transmit Ready

Report: Receiving

3-27

3-28

Fast Select of configured addr~ss:

State change: Receiving and Transmit Ready

Report: Receiving

Action: Wait for SOH

Broadcast Select:

State change:

Report:

Action:

Receiving and Transmit Ready

Receiving

Wait for SOH

Receiving State

In this state the protocol handler is recelvlng a
block of data. The command which is accepted is:

Abort:

State change: Idle

Action: Set Fast Ready to False
Turn off RTS

Inputs from the communications channel:

EOT:

State change: Receive Ready

Rpport: None

E~X (and Block Check Character)
(no Parity or BCC error):

State change: Idle

Report: Receive Done

Action: Transmit and ACK if select
was on my address

ETX (and Block Check Character)
(Parity or BCt error):

State change: None

Report: None

Action: Send NAK if select was on my
address and wait for SOH or
EOT.

3-29

Receive Ready State

3-30

In this state BMULTI is ready to receive data.
Commands accepted are:

Idle:

State change: Idle

Receive:

State change: None

Abort:

State change: Idle

Inputs from the communications channel:

Poll of configured address:

State change: None

Report: None

Action: If downstream RTS is False
then transmit an EaT

Group Poll of configured group poll address:

State change: None

Report: None

Action: If downstream RTS is False
then transmit an EaT.

Select of configured address:

State Change: Receiving

Report: Receiving

Fast Select of configured address:

State change: Receiving

Report: Receiving

Action: Wait for SOH

Broadcast Select:

State change: Receiving

Report: Receiving

Action: Wait for SOH

Group Select of installed group select character:

State change: Receiving

Report:

Action:

Receiving

Wait for SOH

3-31

Receiving and Transmit Ready State

3-32

In this state BMULTI is receiving a block of data
and is also ready to transmit on the next poll
wi th this workstation's address. Commands
accepted are:

Idle:

State change: Idle

Abort:

State change: Idle

Action: Set Fast Ready to False

Inputs from the communications channel:

EaT:

State change: Transmit and Receive Ready

Report: None

ETX (and Block Check Character)
(No parity or BCC errors):

State change: Transmit Ready

Report: Receive Done

Action: Transmit an ACK if select was
on my address

ETX (and Block Check Character)
(Parity or BCC errors):

State change: None

Report: None

Action: Send NAK if select was on my
address and wait for SOH or
EaT.

LOW-LEVEL INTERFACE PROCEDURES

BmOpsn

Description

The BmOpen procedure is the first called by the
application. It passes a station address to Bmulti and
returns a Task Handle to be used by the appl ication
when calling other procedures.

Procedural Interface

BmOpen (devadr, pTskH, fSys) Erctype

where

devad

pTskH

fSys

Request Block

Offset

0
2
3
4
6
8

10
12
13
14
16
20
22
26

is a word containing two ASCII characters. This
address must not dupl icate that of any other
station on the same line.

is a pointer to a byte.

is a byte or Boolean. It should be set to TRUE
if the application making the call is to be a
system service.

Size
Field (bytes) Contents

sCntlnfo 2 4
nReqPbCb 1 1
nRespPbCb 1 1
userNum 2
exchRet 2
ercRet 2
rqCode 2 FFFD
subrqCode 1 0
auxlnfo 1
DevHandle 2
pCpBuffx 4
sCpBuffx 2
pCpBuffr 4
sCpBuffr 2

3-33

BmCommand

Description
The BmCommand procedure is used to pass commands from
the application to Bmulti.

Procedural Interface

BmCommand (TskH, Command, pBuff, sBuff) Erctype

where

TskH

Command

pBuff
sBuff

is a byte (this value is returned by BmOpen).

is a word containing a value from the table
below.

describe the application's message buffer.
These are normally dummy values except for the
two buffer transfer commands (1 and 2). For
Get Received Buffer, sBuff is set to the
maximum number of bytes which the application
can accept. After BmCommand returns, the"
first two bytes starting at pBuff will contain
the number of bytes received. For Send
Transmi t Buffer, sBuff is set to the actual
number of bytes the application wishes to
transmit.

Possible values of Command are

1 Get Received Buffer*
2 Send Tranmsmit Buffer*
3 Offline
4 Online
5 Idle
6 Set Fast Ready
7 Set Receive Ready
8 Set Transmit Ready
9 End session

10 Abort
11 Reset Fast Ready
12 Transmit Extended Message* (Messages> 2048)

* These commands require valid pBuff and sBuff.

Request Block
BmCommand uses the same request block as BmOpen.

3-34

BmReport

Description
The BmReport procedure returns the status of the
datacomm subsystem to the application. This procedure
is the means by which BMULTI informs the application of
events on the line. This procedure returns a report of
zero if no report is avai lable. The report is val id
only if the procedure returns zero.

Procedural Interface

BmReport (TskH, pReport): Erctype

where

TskH is a byte (this value is returned by BmOpen).

pReport is a pOinter to a word where the procedure is
to return the report.

Request Block

Offset Field

0 sCntlnfo
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchRet
8 ercRet

10 rqCode
12 DevHandle
14 pReportNo
18 sReportNo

Size
(bytes)

2
1
1
2
2
2
2
2
4
2

Contents

2
o
1

FFFC

1

3-35

BmReportWait

Description
This procedure waits for a report. The report is valid
only if the procedure returns zero.

Procedural Interface

BmReportWait (TskH, pReport) Erctype

where

TskH is a byte (this value is returnd by BmOpen).

pReport is a pointer to a word where the procedure is
to return the report.

The reports that can be returned by BmReport and
BmReportWait are:

o No report
1 Receiving
2 Receiving Group Or Broadcast Select
3 Receive Done
4 Ready for Transmit buffer
5 Transmit Done
6 Select Denied
7 Receive Error
8 Duplicate Transmission Number
9 Transmission Number Error
10 Transmit Error

Request Block
BmReportWait uses the same request block as BmReport.

3-36

BmReportTimeout

Description
This procedure waits for a report for
period of time. The report is valid
procedure returns zero.

Procedural Interface

a specified
only if the

BmReportTimeout (TskH, pReport, timeout): Erctype

where

TskH is a byte (this value is returnd by BmOpen).

pReport is a pointer to a word where the procedure is
to return the report.

timeout is a word, giving an interval (in tenths of a
second during which the procedure will wait
for a report.

The reports that can be returned by BmReportTimeout are
the same as those that can be returned by BmReport and
BmReportWait.

Request Block
BmReportTimeout uses the same request block as BmReport
and BmReportWait.

3-37

Bmldentify

Description
This procedure provides some information about the
version of Bmulti currently running. The information
is returned into a user-provided buffer which should be
14 bytes long. The first two bytes (a word) will
contain the workstation number. The third byte will
contain the channel in ASCII ('A' or 'B'). The last 11
bytes will contain the version number of Bmulti in the
form of a Pascal Istring (out of these 11 bytes, the
first byte will contain the actual number of characters
in the version number).

Procedural Interface

Bmldentify (pldBlk, sIdBlk): ErcType

where

pldBlk
sIdBlk describe the Status Block

Request Block

Size
Offset Field (bytes)

0 sCntlnfo 2
2 nReqPbCb 1
3 nRespPbCb 1
4 userNum 2
6 exchRet 2
8 ercRet 2

10 rqCode 2
12 pCpBuffr 4
16 sCpBuffr 2

3-38

Contents

o
o
1

FFFB

14

BmQuery

Description
This procedure can be used by an application to obtain
information about BNULTI I S internal variable status.
The application supplies a buffer into which BMULTI
returns the status. This buffer size should be at
least 81 bytes. The maximum size of the status buffer
should be passed in a variable whose address is
suppl ied as a parameter to this procedure. After the
procedure returns, this variable contains the actual
number of bytes returned.

Procedural Interface

BmQuery (pStat, psStat): Erctype

where

pStat

psSta

Request Block

is a pointer to the buffer where status
information is to be returned.

is a pointer to the word where the number of
bytes of status information available is to be
returned.

BmQuery uses the same request block as Bmldentify.

The format of the status block returned is:

Off Field Size
set (bytes)

o Line Activity 48

48 Station Block 1

Comments

consists of four buffers of 12
bytes which contain control
strings seen by BMULTI. This
contains typically a Poll string
or Select string and could be
used by the application to
determine which addresses are
actually polled by the host. The
format of each buffer is shown
below.

For each active address BMULTI
maintains a Station record whose
size in bytes is indicated in
this byte.

3-39

49 Active Stations 32

81 Station Information Var

3-40

This is a boolean array where
each byte indicates which Station
Record is actually active and in
use. This should be used along
wi th the station block size to
compute the offset of the station
record.

Each station record contains
several pieces of information,
such as the device address which
is currently using this record.
Depending on the status buffer
size provided by the application,
integral number of station
records are returned in this
area.

HIGH-LEVEL INTERFACE PROCEDURES
OpenBmulti

Description
This procedure opens a Bmulti station with the supplied
device address and returns a task handle which should
be used for all successive Bmulti calls. This
procedure al so creates the HLI process. The
application must provide an Application Status Block
(ASB) which is used by the HLI process to communicate
to the application the status of the 'reads' and
'writes' it issues.

Procedural Interface

OpenBMULTI (devAdr, fSys, Priority, pTskH, pASBlk):
Erctype

where

devAddr is a word containing two ASCI I characters.
This address must not duplicate that of any
other stations on the same line.

fSys· is a byte or Boolean. It should be set to
TRUE if the application making the call is to
be a system service.

Priority is a word, containing the priority with which
the HLI process is to be created. (This is
normally 128).

pTskH is a pointer to a byte

pASBlk is a pointer to the application-supplied
Appl ication Status Block (ASB). The format
of the ASB is given below.

3-41

Format of the Application Status Block:

Field Size Appln Comment
bytes Usage

RcvStatus 1 R Used by HLI process to
indicate 'Read' status.

RevEre 2 R Internal error seen by the
HLI process for Receive.

fSelDen 1 R/W 0 Set. by HLI process to
True
if Line is selecting this
address.

Xmtstatus 1 R Used by HLI process to
indicate 'Write' status.

Xmterc 2 R Internal error seen by the
HLI process for Xmt.

Option 1 R station option byte (used
by SetOptionBmulti).

fFMess 1 R/W 0 Set to True if a Fast
Select Message has been
received by the HLI process
for this address.

pFMess 4 R Address of Fast Message
Buffer (which is not in the
application area). This
pointer is returned by the
HLI process after an
'OpenBmulti'.

3-42

ReadBmulti

Description
This procedure initiates a receive operation: It does
not wait for the message actually to arrIve. The
application should sample the Rcvstatus of the ASB to
determine when the receive is complete. When complete,
the HLI process returns the received message in the
receive buffer with the first two bytes containing the
length of the message received.

Procedural Interface

ReadBMULTI (TskH, pBuf, sBuf) Erctype

where

TskH is a byte (returned by OpenBmulti).

pBuf is a pointer to an appl ication-suppl ied buffer
where the received data is to be placed.

sBuf is a word containing the maximum number of bytes
which the application can receive.

Possible values of RcvStatus (Hex):

00 Initial state or after a 'reset'
01 Busy (Read initiated)
02 Read failure.
10 Read complete (no errors)
11 Read complete (Transmission number error)
12 Read complete (Duplicate transmission number)
14 Read complete (Truncated message)

3-43

WriteBmulti

Description
This procedure initiates a transmit operation. It does
not wait for the message to be ,successfully
transmi tted. The appl ication should sample the
Xmtstatus of ASB to determine when the tranmission is
complete.

Procedural Interface

3-44

WriteBMULTI (TskH, pBuf, sBuf) Erctype

where

TskH is a byte (returned by OpenBmulti).

pBuf is a pOinter to an appl ication-suppl ied buffer
which contains the data Bmulti is to transmit.

sBuf is a word containing the number of bytes Bmulti
is to transmit.

Possible values of XmtStatus (Hex):

00 Initial state or after a 'reset'
01 Busy (Write initiated)
02 Write failure.
10 Write Complete

SetOptionBmulti

Description
This procedure enables the application to select
certain Bmulti options.

Procedural Interface

SetOptionBMULTI (TskH, Option) Erctype

where

TskH is a byte (returned by OpenBmulti).

Option is a byte with values as follows:

Bit 0

Bit 1

1
o

1
o

Offline
Online

Fast Rdy
Not Fast Rdy

The ASB option field is updated to reflect
the option selected.

3-45

ResetBmulti

Description
This procedure can be used to restore the application
status to 'idle'. It can also be used to abort an
ongoing read or write. After a Reset the option byte
is set to O.

Procedural Interface

ResetBMULTI (TskH) Erctype

where

TskH is a byte (returned by OpenBmu1ti).

Close Bmulti

Description
This procedure frees the device address by issuing an
end session command. This is normally the last step in
a datacomm session.

Procedural Interface

C10seBMULTI (TskH) Erctype

where

TskH is a byte (returned by OpenBmu1ti).

3-46

Table 3-5. Bmulti.lib Module Requirements and Procedure Calls

Interface Used

Single-Task Interface

Multiple-Task Interface

Multitasking
Low-Level Interface

Multitasking
High-Level Interface

Bmulti.lib
Module

BMCmdRpt

BMCmdRptMP

Bmx1

BMX2

Hli5

Memory Procedures
Required Served

(bytes)

1700 DCCOMMAND
DCCONFIG
DCREPORT
DCREPORTWAIT

2000 MPCOMMAND
MPREPORT
MPREPORTWAIT

2900 BMCOMMAND

700

7000*

BMOPEN
BMREPORT
BMREPORTWAIT

BMIDENTIFY
BMQUERY

CLOSEBMULTI
OPENBMULTI
READBMULTI
RESETBMULTI
SETOPTIONBMULTI

* The obj ect module Hli5 uses the module Bmx1; therefore the
memory required when using the Multi tasking High-Level
Interface is actually the combination of the memory required
for each object module, or 9900 bytes.

3-47

GENERAL

SECTION" 4
PROTOCOL DESCRIPTION

This section provides a description of the
Burroughs multipoint protocol. As implemented in
the B20, this includes only the terminal side of
the protocol (that is, the B20 acts like a
Burroughs terminal).

The diagrams include all of the protocol options
implemented .in BMULTI. Most users will use only
a few of these.

For asynchronous data communication, each
transmitted character utilizes ten nominally
equal time intervals. The time intervals
represent a start bit, 8 bits of information, and
a stop bit. Of the 8 information bits, 7
represent an ASCII character and the eighth is a
parity bit selected to make the number of 1, or
marking bits of the 8 bit group even.

For synchronous data communications, each
transmitted character utilizes eight nominally
equal time intervals, representing 8 bits of
information. The first 7 bits represent the 7
bit character code, transmitted with the least
significant bit first. The eighth bit is to be a
parity bit selected to make the number of 1, or
marking bits of the 8 bit group odd. The
following transmission character follows
immediately, with no inter-character interval.

STATION TYPES
Contained within this section are references to
control and terminal stations. The following
definitions are to be used in understanding these
references. A control station is that station on
a data link with the overall responsibility for
polling, selecting, and otherwise ensuring the
orderly operation of that link. (Usually a
control station is a large Burroughs computer.)
Responsibility to initiate recovery procedures in
the event of abnormal conditions on the link
rests with the control station. All stations on
a multipoint network, other than the control
station, are called terminal stations. These are
usually terminals, but may be microcomputers (as
in the case of the B20) or even minicomputers.

4-1

Control Characters

The following is a list of control charactersand
an explanation of each.

ACK (ACKNOWLEDGEMENT, 06h)
This is an affirmative response to a normal
selection (indicating Ready to Receive) or a
transmission (indicating Message Accepted).

BCC (BLOCK CHECK CHARACTER)
This is a redundant character added to the end of
a message for the purpose of error detection and
control. BCC is formed by taking a binary sum
without carryon each of the 7 bits of the
transmitted characters following SOH, including
ETX, but excluding any SYN characters. The
correct value of the character parity bit of the
BCC is that which makes the sense of character
parity the same as for text characters. BCC
immediately follows ETX.

ENQ (INQUIRY, 05h)
This is a reply request control character. The
ENQ is used as the final character of a poll or
of a select, when a response is required from the
other station.

EOT (END OF TRANSMISSION, 04h)
EOT is transmitted by a terminal as a No Traffic
response to a poll. Receipt of EOT places the
terminal in a control state listening for a
polling or selection sequence. EOT may be
transmitted instead of ETX to abort a
transmission.

ETX (END OF TEXT, 03h)
This is used to indicate the end of a stream of
characters identified as a text.

NAK (NEGATIVE ACKNOWLEDGEMENT, 15h)

4-2

This is a negative response to a selection
(indicating Not Ready to Receive) or a
transmission (indicating character parity failure
for any character in a message or a failure of
the BCC).

RVI (REVERSE INTERRUPT (DLE <, 1 03Ch)
Reverse Interrupt is sent by the control station
in lieu of a positive acknowledgement (ACK) when
the control station has priority messages to
deliver. RVI is normally used in a group poll
environment to request premature termination of a
series of message transmissions, in order to
allow the control station to either transmit
return messages or to poll other terminals. Upon
receipt of an RVI, the terminal should send EOT
as soon as possible.

SOH (START OF HEADING, 01h)
SOH is the first of a sequence of characters
which form the heading. The heading also
contains a terminal identification (AD1, AD2) and
may contain transmission numbers (XMU). A
heading is ended by STX.

STX (START OF TEXT, 02h)
This precedes a sequence of characters which form
the text of the transmission. STX terminates a
heading.

SYN (SYNCHRONOUS IDLE, 16h)
This is used only with synchronous transmission
in the absence of any other character to provide
a signal for establishing and retaining
synchronism. On initiating a synchronous
transmission, a number of SYN characters are
transmitted prior to the transmission of any
character. This permits the receiving station to
acquire character synchronization. SYN is also
used as a time fill when no other characters are
available for transmission at any point in a
character sequence, except between ETX and the
next following BCC. SYN is purged at the
receiving station and is not included in the
summation for BCC.

Additional Procedural Characters.
The following characters are additional
procedural characters which may have significance
outside of the multipoint protocol.

4-3

I AD1, AD2 (ADDRESS 1, ADDRESS 2)
This is a two character address established as
the address of a terminal. These characters are
used to address a terminal in polling or
selection or in the message heading. These
characters identify the terminal from which a
message is transmitted. On receipt of a message,
the receiving station may use AD1 - AD2 to verify
that the message originated at the polled
terminal. AD1 and AD2 are represented by any
characters from columns 2,3,4,5,6,7 of the ASCII
code chart on page B-2, except the character DEL,
column 7, row 15, shown as 7/15.

BSL (BROADCAST SELECT, 74h)
This is a character used to indicate a bro~dcast
message to all stations. In the broadcast
sequence, AD1 - AD2 identifies the station which
acknowledges receipt of the message. Broadcast
select is followed immediately by a message
without requiring acknowledgement of the
selection.

CON (CONTENTION, 07h)
This is a character used to instruct all
terminals which receive the instruction to go to
the contention mode. NUL characters replace
AD1 - AD2 in the contention sequence. There is
no acknowledgement of the contention instruction.

FSL (FAST SELECT, 73h)
This is a character used to indicate a
Fast Select, in a selection sequence transmitted
by the central computer. Fast Select is followed
immediately by a message without requiring
acknowledgement of the selection.

GSL (GROUP SELECT)

POL (POLL, 70h)

4-4

This is a character used to indicate a
Message for a Group of Stations. In the group
select sequence, AD1 - AD2 identifies the station
which is to acknowledge receipt of the message.
Group select is followed immediately by a message
without requiring acknowledgement of the
selection. Group select may be represented by
any agreed on character selected from column 2
through 6.

This is a character used to indicate a
Poll, preceding ENQ in a polling sequence.

SEL (SELECT, 71h)
This is a character used to indicate a
Normal Select, preceding ENQ in a selection
sequence.

XMno (TRANSMISSION NUMBER)
This is a number identifying, in sequence,
transmissions from or a transmission to a
terminal. It is optionally used as part of a
message header to assist in message recovery.
Separate sets of transmission numbers are to be
used for broadcast and group addressed messages.

In transferring data from one point to another,
proper accountability for each message is
required under certain conditions. For example,
in the handling of financial transactions, such
as electronic transfer of funds where large
amounts of money are transferred between banks
via telecommunications, it is imperative that
messages are not lost, and that they are not
duplicated. Where loss of a message or
duplication is not important,transmission
numbering may not be considered necessary. If
each message sent has a transmission number
serially assigned to it, the receiver can check
for the following.

a. Each message sent is received.

b. Messages are received in the order sent.

c. A message is not a retransmission of a
previously transmitted message; therefore,
it is not handled twice.

It should be noted that the message numbers sent
from one end need have no relationship to those
sent from the other end. Data transmission is
not a balanced function; that is, one message
sent does not always result in one reply.

ALTERNATING TRANSMISSION NUMBERING
The minimum level of message numbering is a
single character that alternates between an even
and odd state. This system cannot distinguish
between an error caused by loss of a message and
one caused by duplication of a message, though
normal protocol procedures should prevent loss of
a message. The B20 allows for alternating a 0
and 1, or for alternating an @ and A.

4-5

Time-outs

4-6

SEQUENTIAL TRANSMISSION NUMBERING
This provides more positive indication of the
loss or duplication of messages than the odd/even
method. The B20 allows one, two, or three digit
transmission numbers starting at a (or 00 or 000)
and cycling through, respectively, 9, 99, and
999.

NO RESPONSE TIMEOUT.
The timing starts after transmission of a
character signifying reversal of transmission
direction. The time is to range from 1 to 3
seconds. If the first character of a terminal
transmission is not received, or if the character
received is not valid in its time, the controller
or terminal repeats its transmission 'n' times
('n' < zero), and then, if the same condition
exists, it interrupts and enters the necessary
error recovery procedures. If the reversal is a
result of .an ACK or NAK, no repeat of the ACK or
NAK is sent, but EOT is sent to return to the
control state.

IDLE LINE.
The timing starts on receipt of each character
other than a character signifying reversal of
direction of transmission. Time is to range from
1 to 3 seconds. If the next character is not
received in this time, the central processor
interrupts and enters the necessary error
recovery procedures.

CONTROL STATION

r--------
I
I

TIMEOUT
(NOTE 3)

EOT (NOTE 1)

I
AD1
AD2 (YOU ARE)
POL (POLL)
ENQ

+ EiT
(USUALLY
CONTINUE
POLLING)

TERMINAL STATION

EOT
(NO TRAFFIC)

Y
SOH
AD1
AD2

[XM#l

S1X

ETX
BCC

r - - - -- - - - - -.--------""T"""--4------------..J

NOTES:

NAK

(NOTE 2)

L- __________ , ,

EOT

(CONTROL RETURNS TO
POLLING, SELECTION
OR CONTENTION)

ACK

EOT

Y

[1 INDICATES OPTION WHICH MAY BE EXERCISED
FOR SPECIFIC TERMINALS ANDIO R SYSTEMS.

1. This EOT must come from the control station and may have been the termination of a previous transmission sequence. To minimize
the effect of noise, the polling sequence may follow immediately.

2. If the control station receives a message for which character parity or block check test failS, NAK is transmitted, calling for a repeat
of the transmission. This can be repeated 'n' times (to be defined by the control station programmers), at which time, if the test
fails, an error is recorded at the control station and EOT is transmitted, terminating the sequence. The terminal transmits the same
message when next polled.

3. If the terminal does not receive ACK, NAK, or EOT, it may retain its message and remain quiet. The control station time outs and
transmits EOT, terminating the sequence. In this case the message is retransmitted when next polled.

E4336

Figure 4-1 . Specific Polling

4-7

4-8

EOT

CONTROL STATION

(NOTE 2)
GROUP ADDRESS

USUALLY
CONTINUE POLLING

EOT

NAK (NOTE 5) [RVI] ACK (NOTE 6)

NAK (NOTE 6) [RVIl ACK (NOTE 6)

I I

ACK

CONTROL CONTINUES
GROUP POLLING, POLLING,

,SELECT, OR GOES TO
CONTENTION

(NOTE 9)

NOTE: SEE SHEET 2 FOR NOTES.

E4337A

TERMINAL STATION

(NOTE 3)
NO STATION IN
GROUP OUTPUT READY

EOT

NO OTHER
TERMINALS

OUTPUT READY

SOH (NOTE4)
AD1} TERMINAL
AD2

[XM#] ADDRESS

STX

ETX
BCC

(NOTE 7)

EOT n

NO OTHER
TERMINALS

OUTPUT READY

+ EOT

SOH (NOTE 4)
AD1} TERMINAL
AD2 ADDRESS

lXM#]
STX

ETX
BCC

+ SOH

CONTINUES UNTIL LAST
OUTPUT READY TERMINAL
HAS TRANSMITTED

EOT (NOTE 8)

[1 INDICATES OPTION WHICH MAY BE
EXERCISED FOR SPECI FIC TERMINALS
AND/OR SYSTEMS.

Figure 4-2. Group Polling (Note 1), Sheet 1

NOTES:

1. This procedure is used to reduce the overhead in a network of terminals where several are located at one location on a common
communication line. The receipt of one group poll results in one response for the group if no terminals are output ready. Thus
the control station can pass to the next group. In periods of low activity, the control station has the ability to go through the
polling list determining the output status of all terminals with but one poll to each location, not each terminal. Also, if multiple
terminals are output ready at a location, they are allowed to transmit, in sequence, in response to one poll. Selecting,
broadcast select, fast select, etc., are not affected by this group polling procedure. This procedure may also be used with
B20s when several applications running on one B20 cluster system are using BMUL TI.

2. I n this procedure the polling sequence follows the same format as a normal poll and u~\;)s the normal poll character. Group
polling is controlled by address only. Terminals at a common location that are to be a part of a group are so identified by
making their group poll addresses all the same. All application programs using BMUL TI in a B20 system have the same group
poll address.

3. When the poll is received by the group addressed, the output ready terminals respond in the normal manner.

4. Each message sent in response to a group poll contains the address of the individual ter"';inal which is responding.

5. If the control station detects an error in the message received in response to a group poll, normal polling error recovery is used.

6. The control station must, under this procedure, be sure when it replies ACK to a message that buffer space exists or is to be
available for the next message that could result from another output ready terminal.

7. As soon as ACK is received from the control station, the next output ready terminal transmits.

8. When an ACK is received from the control station and no terminals remain output ready, the last terminal on the line must
transmit the final EaT.

9. The same error recovery procedure as is outlined for figure 4-1 is used with this procedure.

10. Reverse interrupt (RVI) may be used by the control station only after reception of a valid message which would result in a
positive acknowledgement. In place of sending ACK the control station sends RVI (OLE <). When RVI is received from the
control station, the last terminal to transmit sends the final EOT even if other terminals are still output ready. In this case
the other output ready terminals retain their messages until the next group poll (or normal poll to their address).

E4337B

Figure 4·2. Group Polling (Note 1), Sheet 2

4-9

CONTROL STATION

EOT (NOTE1)

+
A01} (YOU ARE)
AD2 .

SEL (SELECT)
ENQ

SOH

AD1}
AD2

[XM#]
STX

ETX
BCC

(NOTE3)

TERMINAL STATION

ACK

TIME OUT Y
(NOJ':':) __ _ : ~--------------+-------~.--------~~

NOTES:

I ACK NAK

I
I
I 1-_--1

I ,
EOT

(CONTROL RETURNS TO POLLING,
SELECTION, OR CONTENTION)

[1 INDICATES OPTION WHICH MAY BE
EXERCISED FOR SPECIFIC TERMINALS
ANDIOR SYSTEMS.

1. This EOT must come from the control station and may have been the termination of a previous transmission sequence. To minimize
the effect of noise, the selection sequence may follow immediately.

2. If the terminal is not ready to receive, as indicated by transmission of NAK, the control station normally retries the selection at the
proper sequence of that terminal.

3. The identification characters in a transmission represent the terminal address for selection verification purposes. If the term inal fails
to verify the address, it ignores the message.

4. If character parity or block check are not validated by the terminal, it sends NA K. I n this case the control station retransm its the
message 'n' times ('n' may be equal to zero). If the terminal still does not acknowledge the message, the control station term inates
the sequence with EOT, after recording the error. The control station retains the message for transmission on the next selection
sequence to this terminal.

5. If the control station does not receive a response (ACK or NAK) to its message, it may time out and retransmit the message 'n' times
('n' may equal zero). If still no response is received, the control station terminates the sequence with EOT, after recording the error.
The control station retains the message for transmission on the next selection sequence to this terminal.

E4338

Figure 4-3. Selection

4-10

CONTROL STATION TERMINAL STATION

EOT (NOTE2)~------------------~~------------------------------------~

TIME
OUT

I
AD1} (YOU ARE)
AD2
FSL (FAST SELECT)

SOH

AD1} (YOU ARE)
AD2

[XM#1
STX

ETX
BCC

(NOTE 3)

(NOTE 5)r - - "--___________ --1

NOTES:

I '---,
EOT

(CONTROL RETURNS TO POLLING,
SELECTION, OR CONTENTION)

ACK NAK

'(

[I INDICATES OPTION WHICH MAY BE
EXERCISED FOR SPECIFIC TERMINALS
AND/OR SYSTEMS.

1. Fast selection is used when the control station wishes to send a message to a terminal without first testing to make sure that the term ina I
is ready to receive. In this case, the selection and the message are transmitted together. The ACK response from the terminal applies
to both the select and to a successful message transfer. A NA K response may indicate either that the terminal is not ready to receive
or that the parity or block check in the message is invalid.

2. This EOT must come from the control station and may have been the termination of a previous transmission sequence. To minimize
the effect of nOise, the fast selection sequence may follow immediately.

3. The identification characters in a transmission from the control station also represent the terminal address YOU ARE for selection
verification purposes. If either pair of addresses fail to verify, the terminal ignores the message.

4. If character parity or block check are not validated by the terminal selected, or if the terminal selected is not ready to receive the message,
it responds NAK. In this case, the control station resends the fast :;elect transmission 'n' times ('n' may equal zero). If the terminal
still does not accept the message, the control staion terminates the sequence and retains the message for transmission on the next selection
sequence to this terminal.

5. If the control station does not receive a response (ACK or NA K) to its transmission, it time outs and terminates the sequence. The
·control station retains the message for transmission on the next normal selection for this terminal.

E4339

Figur,e 4-4. Fast Select (Note 1)

4-11

EOT

I
A01
AD2
BSL

SOH
AD1
AD2

I--
I L
I

TIME
OUT

XM#=

STX

ETX
BCC

(NOTE 5)

: 1-, r
I II eOT
I • __ J

NOTES:

CONTROL STATION

(NOTE 2)

(TERM N)

(NOTE 3)

CONTROL RETURNS TO
POLLING, SELECTION, OR
CONTENTION

TERMINAL STATION

(NOTE 4)

ACK NAK

[1 INDICATeS OPTION WHICH MAY BE
EXERCISED FOR SPECI FIC TERMINALS
ANDIOR SYSTEMS.

1. Broadcast select is a fast selection of all terminals. AD1-AD2 is selected to represent the terminal which acl<nowledges receipt of the
message.

2. This EOT must come from the control station and may have been the termination of a previous transmission sequence. To minimize
the effect of noise, the broadcast sequence may follow immediately.

3. Special sequences of numbers must be maintained if transmissions are numbered in a system where broadcast is employed.

4. If the acknowledging terminal does not receive a valid message (e.g., there is a character parity or block check error) or is not receive
ready, it transmits NAK. The control station has the option of repeating the total broadcast.

5. If the control station does not receive a response (ACK or NAK) to its broadcast, it may time out and rebroadcast the message 'n'
times ('n' may equal zero). If no response is received, the control station terminates the broadcast mode with EOT after recording
the error.

E4340

Figure 4-5. Broadcast Select (Note 1)

4-12

CONTROL STATION TERMINAL STATION

EOT (NOTE2) .. --------------------+---,
I

AD1
AD2

GSL

SOH
AD1
AD2

[XM#l (NOTE 3)

TIME
OUT

(NOTE 5)

STX

ETX

BCC

I r-,
I I +
I I EOT L __ J

NOTES:

(CONTROL RETURNS TO
POLLING, SELECTION,
OR CONTENTION)

n (NOTE 4)

ACK NAK

1_------'
[1 INDICATES OPTION WHICH MA Y BE

EXERCISED FOR SPECI FI C TERMINALS
AND/Of{ SYSTEMS.

1. G-oup selection is a fast selection of a group of terminals. Each terminal may have a group select character for which it accepts [l message.
AD1-AD2 is selected to represent the address of the terminal wh ich acknowledges receipt of the message.

2. This EOT must come from the control station and may have been the termination of a previous transmission sequence. To minimize
the effect of noise, the group selection may follow immediately.

3. Special sequences of numbers must be maintained if transmissions are numbered in a system where group selection is employed.

4. If the acknowledging terminal does not receive a valid message (e.g., there is character parity or block check error) or it is not receive
ready, it transmits NA K. The control station has the option of repeating the total group selection.

5. If the control station does not receive a response (ACK or NA K) to the group selection, it may time out and reselect the group 'n'
times ('n: may equal zero). If no response is received, the control station terminates the group select mode with EOT after recording
the error.

E4341

Figure 4-6. Group Select (Note 1)

4-13

NOTES:

CONTROL STATION

(NOTE 2)

CON (GO TO CONTENTION)

L ____________ _

EOT
AD").
AD2J
POL
ENQ

POLL TO
REQUESTING
TERMINAL

EOT (NOTE 5)

TERMINAL STATION

ALL TERMINALS GO TO CONTENTION MODE ----------1

(NOTE 4)

AD1!. (I AM)
AD2J
POL (NOTE 3)
ENQ

1. In times of low activity, it may be desirable to terminate polling and to place all or part of the system in the contention mode. This
is accomplished by transmission of EOT NU L NUL CON which causes the terminals to remain qUiei: until they have someth ing to
transmit.

2. This EOT must come from the control station and may have been the termination of a previous transmission sequence. To minimize
the effect of noise, the Go to Contention sequence may follow immediately.

3. A terminal may Wake Up the polling activity by transmitting AD1 AD2 POL ENQ. This causes the control station to 0011 that
terminal. If two terminals attempt to transmit at the same time, the garbled message initiates general polling by the control
station.

4. The terminal proceeds with normal message transfer as in response to a poll (see figure 4-1).

5. Following normal message receipt verification procedures, as in figure 4·1, the control station may continue polling or instruct all
terminals to Go to Contention.

E4342

Figure 4-7. Multipoint Contention Mode (Note 1)

4-14

APPENDIX A

SAMPLE PROGRAMS
GENERAL

In order to illustrate the programming technique used in
writing an application to interface with SMULTI, sample
programs are reproduced b~low in FORTRAN, COBOL, BASIC and
Pascal.

NOTE: FORTRAN, BASIC, and COBOL languages require
reconfigurationbefore such applications can be
run. See Appendix D for details of language
configuration. All languages require that
Bmulti.lib be linked into the executable code
file.

The sample programs echo any text received back to the host
system, at any buffer length up to the maximum allowed.

PASCAL ECHO PROGRAM
{$DEBUG-}
{$ENTRY-}

PROGRAM echo(INPUT,OUTPUT);

TYPE
String2
pointr

CONST

(* Command
Txrebuf
Txtxbuf
Offlinec
Onlinec
Idlec
Fastsetc
Receivec
Transmitc
Endsessionc
Abortc
Fastresetc

STRING(2);
ADS OF BYTE;

codes for BMULTI
16#0001;
16#0002;
16#0003;
.L6#0004;
16#0005;
16#0006;
16#0007;
16#0008;
16#0009;
16#000A;
16#0008;

*)

(* Error return codes for BMULTI *)
System error 16#0000;
Command Accepted = 16#0001;
Command-Denied = 16#0002;

(* Report codes for BMULTI *)

A-I

A-2

No report
Receiving
Rec Fast Sel
Receive Done
Rdy Xmt-Xfer
Transmit Done
Select Denied
Receive err
Dup seq num
Seq=num=err
Transmit err
Internal-err

VAR
Erc
report
etx
done
cntrl
cntr2
devadr
Buff
sBuf
sBufMax

VALUE
etx
sBuflVlax

16#0000;
16#0001;
16#0002;
16#0003;
16#0004;
16#0005;
16#0006;
16#0007;
16#0008;
16#0009;
16#000A;
16#00FF;

INTEGER;
IN'l'EGEH;
CHAR;
BOOLEAN;
INTEGER;
INTEGER;
STRING(2);
ARRAY[0 •• 2047] of CHAR;
INTEGER;
INTEGER;,

: = CHR (03) ;
:= 2048;

FUNCTION DcConfig (addr : String2) : INTEGER; EXTERN;
FUNCTION DcReport: INTEGER; EXTERN;
FUNCTION DcCommand (comm WORD;

pbuffer pointr;
sbuffer INTEGER) INTEGER; EXTERN;

PROCEDURE Exit; EXTERN;

PROCEDURE Error;
BEGIN

WRITELN('Command Denied', Erc);
Exit;

END;

BEGIN
WRITELN('BMULTI echo program I);

REPEA'r

WRITELN('Enter Station Address: I);
READLN(devadr);
Erc := DCConfig (devadr);
IF (Erc = System error) THEN Error;

UNTIL (Erc <> Command_Denied);

WRITELN('Begin BMULTI');

Ere := DcCommand (Onlinec, ADS buff [0], 0);
IF. (Erc <> Command_Accepted) THEN Error;

FOR cntrl := 1 TO 50 DO
BEGIN

FOR cntr2 := 1 TO sBufMax DO
BEGIN

buff [cntr2] := I I;

END;

Erc := DcCommand (Receivec, ADS buff [0], 0);
IF (Erc <> Command_Accepted) THEN Error;

REPEAT report := DcReport;
UNTIL (report = Receive Done)

OR (report = Seq_Num=Err);

Erc := DcCommand (Txrebuf, ADS buff [0], sBufMax);
IF (Erc <> Command_Accepted) THEN Error;

sBuf : = 0;
WHILE (buff [sBuf] <> etx) AND (sBuf < sBufMax) DO

sBuf := sBuf + 1;

Erc := DcCommand (Transmitc, ADS buff [0], 0);
IF (Erc <> Command_Accepted) THEN Error;

REPEAT report := DcReport;
UN'I'IL (report = Rdy_Xmt_Xfer);

Erc := DcCommand (Txtxbuf, ADS buff [0], sBuf);
IF (Erc <> Command_Accepted) THEN Error;

REPEAT report := DcReport;
UNTIL (report = Transmit_Done);

END;

WRITELN('End BMULTI Echo Program');
REPEAT Ere := DcCommand (Endsessionc, ADS buff [0], 0);
UNTIL (Erc = Command_Accepted);

Exit;
END.

A-3

COBOL ECHO PROGRAM

*

*

*

*

A-4

NOTE: In this COBOL program, the station address must
be entered backwards, e.g. if the address is to
be "AI", then "lA" must be entered.

IDENTIFICATION DIVISION.
PROGRAM-ID. Echo.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. 820.
OBJECT-COMPUTER. B20.
DAr£A DIVISION.
FILE SEC'£ION.
WORKING-STORAGE SECTION.
77 counter PIC 9(4) CaMP.
01 miscellaneous.

03 device-address
03 ercdisplay
03 buffer-size

PIC
PIC
PIC

XX.
9 (4) •
9(4) COMPo

03 max-buffer-size
03 nil

PIC 9(4) COlVlP VALUE 2048.
PIC 9(4) COMP VALUE 0.

03 etx PIC X VALUE XI03".

01 buffer-whole.
03 buffer PIC X(2048).

01 buffer-array REDEFINES buffer-whole.
03 byte PIC X(l) OCCURS 2048.

01 Command-codes.
03 Transfer-Recv-buf PIC 9 (4) COMP VALUE 1.
03 Transfer-xmit-buf PIC 9 (4) COMP VALUE 2.
03 offline PIC 9(4) COMP VALUE 3.
03 online PIC 9(4) COMP VALUE 4.
03 idle PIC 9(4) COMP VALUE 5.
03 set-fast-ready PIC 9(4) COMP VALUE 6.
03 receive-ready PIC 9(4) COMP VALUE 7.
03 transmit-ready PIC 9 (4) COlviP VALUE 8.
03 end-session PIC 9 (4) COMP VALUE 9.
03 Abort PIC 9 (4) COMP VALUE 10.
03 reset-fast-ready PIC 9(4) COMP VALUE 11.

01 Error-code PIC 9(4) COMPo
88 System-error VALUE 0.
88 No-Error VALUE 1.
88 Address-Is-Good VALUE 1.
88 Command-denied VALUE 2.

*

*

*

01 Report PIC 9(4) COMP.
88 No-Report
88 Heceiving
88 Receiving-Fast-Select
88 Receive-Done
88 Ready-for-Xmit-Buf
88 Transmit-Done
88 Select-Denied
88 Receive-Error
88 Dup-Seq-Num
88 Seq-Num-Err
88 Transmit-Error
88 Internal-Error

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

0.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
255.

PROCEDURE DIVISION.
MAIN-LINE.

PERFORM start-up.
PERFORM driver THRU driver-x

VARYING counter FROM 1 BY 1
UNTIL counter IS EQUAL TO 50.

PERFORM finish-up.

START-UP.
DISPLAY "BMULTI echo program" UPON CONSOLE.
PERFORM Get-Address THRU Get-Address-X

UNTIL Address-Is-Good.
DISPLAY "Begin BMULTI" UPON CONSOLE.
CALL "&DCCOMMAND" USING error-code, online,

buffer, nil.
PERFOHM error-check.

DRIVER.
MOVE SPACES TO buffer.
CALL "&DCCOMMAND" USING error-code, receive-ready,

buffer, nil.
PERFORM error-check.
PERFORM reporting UNTIL Receive-Done OR Seq-Num-Err.
CALL "&DCCOMMAND" USING error-code,

PERFORM error-check.

Transfer-Recv-buf, buffer,
max-buffer-size.

MOVE 1 TO buffer-size.
PERFORM add-l-to-buffer-size

UNTIL byte(buffer-size) IS EQUAL TO etx
OR buffer-size IS EQUAL TO max-buffer-size.

SUBTRACT 1 FROM buffer-size.
CALL "&DCCOMMAND" USING error-code, transmit-ready,

buffer, nil.
PERFORM error-check.
PERFORM reporting UNTIL Ready-for-Xmit-Buf.
CALL "&DCCOMMAND" USING error-code,

PERFORM error-check.

Transfer-Xmit-buf, buffer,
buffer-size.

PERFORM reporting UNTIL Transmit-Done.

A-5

*

*

*

*

*

*

*

*

A-6

DRIVER-X.
EXIT.

FINISH-UP.
CALL "&DCCOMMAND" USING error-code, end-session,

buffer, nil.
IF Command-Denied THEN

GO TO finish-up.
STOP RUN.

GET-ADDRESS.
DISPLAY "Enter Station Address: Ii UPON CONSOLE.
ACCEPT device-address.
CALL "&DCCONFIG" USING error-code, device-address.
IF System-Error THEN

PERFORM print-error.
GET-ADDRESS-X.

EXIT.

REPORTING.
CALL "&DCREPORT" USING Report.

ADD-l-TO-BUFFER-SIZE.
ADD 1 TO buffer-size.

ERROR-CHECK.
IF System-Error OR Command-Denied THEN

PERFORM print-error.

PRINT-ERROR.
MOVE error-code TO ercdisplay.
DISPLAY "Command Denied ", ercdisplay UPON CONSOLE.
STOP RUN.

END-OF-JOB.

FORTRAN ECHO PROGRAM
$STORAGE: 2

c

SUBROUTINE Error(int)
CHARACTER*20 msg
DATA msg/' Command Denied'/
WRITE (*, '(A,14)') msg, int
CALL Tmexit

END

SUBROUTINE ChkErc(int)
INTEGER*2 ercOk
DATA ercOk/1/
IF (int.EQ.ercOk) RETURN
CALL Error(int)

END

PROGRAM echo
IMPLICIT INTEGER*2 (d)
EXTERNAL DcCmnd, DcRept, DcCnfg
INTEGER*2 erc, report, sBuf, sBufMx, xfrrcv,

+ xfrxmt, of line , online, idle, fstrdy,
+ rcvrdy, xmtrdy, endit, abortc, fstrst,
+ sysErr, ercOk, comNak,noRept, rcving,
+ rcvGrp, rcvFin, rdyXfr, xmtFin, selNak,
+ rcvErr, dupSeq, seqErr, xmtErr, i

CHARACTER*1 key, etx, Buf
CHARACTER*2 devadr
CHARACTER*24 msg
DIMENSION msg(5), Buf(1024)

DATA sBufMx/2048/

c command codes for Bmulti
c

DATA xfrrcv/1/,
+ xfrxmt/2/,
+ ofline/3/,
+ online/4/,
+ idle/5/,
+ fstrdy/6/

DATA rcvrdy/7/,
+ xmtrdy/8/,
+ endit/9/,
+ abortc/10/,
+ fstrst/11/

A-7

1\-8

c
c
c

c
c
c

c
c

Error return codes for Bmulti

DATA sysErr/O/,
+ ercOk/1/,
+ comNak/2/

Report codes for Bmulti

+
+
+
+
+

+
+
+
+

+
+
+

DATA noRept/O/,
rcving/1/,
rcvGrp/2/,
rcvFin/3/,
rdyXfr/4/,
xmtFin/5/

DATA selNak/6/,
rcvErr/7/,
dupSeq/S/,
seqErr/9/,
xmtErr/10/

DATA msg(1)/' BMULTI echo program'/,
msg(2)/' Enter Station Address: 'I,
msg(3)/' Begin BMULTI'/,
msg(4)/' End BMULTI echo program'/

c Beginning of procedural code
c
c

etx = CHAR(3)
WRITE (*,'(A)') msg(1)

WRITE (*,'(A)') msg(2)
READ (*,'(A2)') devadr
erc = DcCnfg (devadr)
IF (erc.EQ.sysErr) CALL Error (erc)
IF (erc.EQ.comNak) GOTO 1

WRITE (*,'(A)') msg(3)

CALL ChkErc(DcCmnd(Online, Buf(1), 0))

DO 10 i = 1, 50

CALL ChkErc(DcCmnd(Rcvrdy, Buf(1), 0))

2 report = DeRept()
IF (report.NE.revFin) THEN

IF (report.NE.seqErr) THEN
GOTO 2

ENDIF
ENDIF
CALL ChkEre(DeCmnd(Xfrrev, Buf(1), sBufMx))

3

4

5

sBuf = 1
IF (Buf(sBuf).NE.etx) THEN

IF (sBuf.LT.sBufMx) THEN
sBuf sBuf + 1
GOTO 3

ENDIF
ENDIF

CALL ChkEre(DeCmnd(xmtrdy,

report = DeRept()
IF (report.NE.rdyXfr) GOTO

CALL ChkEre(DeCmnd(xfrxmt,

report = DeRept()
IF (report.NE.xmtFin) GOTO

10 CONTINUE

WRITE (*, '(A)') msg(4)
9999 ere = DeCmnd(Endit, Buf(1), 0)

IF (ere.NE.ereOk) GOTO 9999

CALL Tmexit
END

Buf (1) , 0))

4

Buf(1) , sBuf-1))

5

A-9

BASIC ECHO PROGRAM

A-IO

5 '******************************
7 '** **
10 '** BASIC echo program **
15 '** **
20 '******************************
112 DIM Msg$ [4]
114 DIM Buf% [1024]
118 i% = 0
120 Erc% = 0
122 Report% = 0
124 Daddr% = 0
130 DevAdr$ = "aa"
132 sBuf% = 0
134 sBufMax% = 2048
136 zero% = 0
140 etx% = 3
142 ibufsa% 0
144 ibufra% 0
145 incrra% 0
146 1

147 1********************************
148 1** Command codes for BMULTI **
149 1********************************
150 xfrrcv% 1
160 xf rxmt% 2
170 ofline% 3
180 online% 4
190 idle% 5
200 fstrdy% 6
210 rcvrdy% 7
220 xmtrdy% 8
230 endit% 9
240 abortc% 10
242 fstrst% 11
243 1

244 1*************************************
245 1** Error return codes for BMULTI **
246 1*************************************
250 System.Error% = 0
252 ErcOk% = 1
254 Command.Denied% 2
255 1

259 '*******************************
260 '** Report codes for BMULTI **
261 '*******************************
262 No.Report% 0
264 Receiving% 1
266 RecvGrpSel% 2
268 Receive.Done% 3
270 Ready.Xmit.Buf% 4
272 Transmit.Done% 5
274 Select.Denied% 6
276 Receive.Error% 7
278 Dup.Seq.Err% 8
280 Seq.Num.Err% 9
282 Transmit.Error% 10
340 '
342 Msg$ [1,]
350 Msg$ [2]
360 Msg$ [3]
370 Msg$ [4]
380 messag$
390 '

" BMULTI echo program"
" Enter Address: "
" Begin BMULTI"
" End BMULTI Echo Program"
" Command Denied"

392 '**
394 '** Beginning of procedural code **
396 '**
398 '
400 PRINT Msg$ [1]
402 '
405 PRINT Msg$ [2]
410 INPUT DevAdr$
415 Daddr% = CVI (DevAdr$)
420 Erc% = DcConfig (Daddr%)
422 IF Erc% = System.Error% THEN GOTO 1500
424 IF Erc% = Command.Denied% THEN GOTO 405
426 '
430 PRINT Msg$ [3]
435 '
440 Erc% = DcCommand(online%, PTR (Buf% [1]), zero%)
442 IF Erc% <> ErcOk% THEN GOTO 1500
444 '
510 ibufsa% = GETSA (PTR (Buf% [1]»
520 ibufra% = GETRA (PTR (Buf% [1]»
530 '*****************
540 '** main loop **
550 '*****************
560 FOR i% = 1 TO 50
570 '
600 Erc% = DcCommand (rcvrdy%, PTR (Buf% [1]), zero%)
602 IF Erc% <> ErcOk% THEN GOTO 1500
604 '
610 Report% = DcReportWait()
620 IF Report% Receive.Done% THEN GOTO 660
630 IF Report% = Seq.Num.Err% THEN GOTO 660
650 GOTO 610
660 '

A-II

A-12

700 Erc% = DcCommand (xfrrcv%, PTR (Buf% [1]), sBufMax%)
702 IF Erc% <> ErcOk% THEN GOTO 1500
704 '
780 sBuf% = 0
790 incrra% ibufra%
800 IF PEEK{"B", MAKEPOINTER{incrra%, ibufsa%)) etx% THEN

GOTO 910
840 IF sBuf% >= sBufMax% THEN GOTO 910
850 sBuf% = sBuf% + 1
860 incrra% = incrra% + 1
870 GOTO 800
910 '
920 Erc% = DcCommand (xmtrdy%, PTR (Buf% [1]), zero%)
922 IF Erc% <> ErcOk% THEN GOTO 1500
924 '
930 Report% = DcReportWait{)
970 IF Report% <> Ready.Xmit.Buf% THEN GOTO 930
990 '
1020 Erc% = DcCommand (xfrxmt%, PTR (Buf% [1]), sBuf%)
1022 IF Erc% <> ErcOk% THEN GOTO 1500
1024 '
1030 Report% = DcReportWait()
1070 IF Report% <> Transmit.Done% THEN GOTO 1030
1111 '
1120 NEXT i%
1122 '************************
1124 '** end of main loop **
1126 '************************
1130 PRINT Msg$[4]
1140 Erc% = DcCommand(endit%, PTR (Buf%[l]), zero%)
1150 IF Erc% <> ErcOk% GOTO 1140
1155 '
1160 END
1170 '
1499 '***************************************
1500 '** subroutine for Checking the Erc **
1501 '***************************************
1550 PRINT messag$, " H, Erc%
1600 END

PASCAL ECHO PROGRAM
USING MULTIPLE TASK INTERFACE

NOTE: The Multiple-Task Interface is highly sensitive
to timing when more than one address is used.
This program mayor may not work, when 2 or 3
addresses are used, depending upon the exact
sequence of polls and selects issued by the
host.

{$DEBUG-}
{$ENTRY-}

PROGRAM MpEcho (INPUT, OUTPUT);

TYPE
String2
pointr

CONST

srrRING (2) ;
ADS OF BYTE;

(* Command codes for multiple task interface *)
Configc = 16#0000;
Xfer Rec Bufc = 16#0001;
Xfer-Xmt-Bufc = 16#0002;
OfflTnec- = 16#0003;
Onlinec = 16#0004;
Idlec = 16#0005;
Fastsetc = 16#0006;
Receivec = 16#0007;
Transmitc = 16#0008;
Endsessionc = 16#0009;
Abortc = 16#000A;
Fastresetc = 16#0008;

(* Erc return codes for multiple task interface *)
Cmd Accepted = 16#0000;
Tas~ of low = 16#8001;
Cmd Pending = 16#8002;
Rpt-pending = 16#8003;
Invalid Addr = 16#8004;
Cmd DenTed 16#8005;
Buffer of low 16#8006;
Report=error = 16#8007;

A-13

A-14

(* Report codes
No report
Receiving
Rec Grp Se1
Receive-Done
Rdy Xmt-Xfer
Transmit Done
Select Denied
Receive err
Dup seq num
Seq-num-err
Transmit err
Internal-err

VAR [PUBLIC]
Erc
numAdrs
etx
counter1
counter2
i

*)
16#0000;
16#0001;

16#0002;
16#0003;
16#0004;
16#0005;
16#0006;

16#0007;
= 16#0008;
= 16#0009;

16#000A;
16#00FF';

WORD;
INTEGER;
CHAR;
INTEGER;
IN'l'EGER;
IN'I'EGER;

Report
DevAdr
Buff
sBuf
sBufMax
LogMsg
sLogMsg

ARRAY [0 •. 2] OF WORD;
ARRAY [0 •• 2] OF String2;
ARRAY [0 •• 6143] OF CHAR;
ARRAY [0 •• 2] OF INTEGER;
INTEGER;

VALUE
etx
sBufMax
LoglV1sg
sLogMsg

STRING(20);
IN'l'EGER;

. - CHR (03);

.- 2048;

.- '?ASSIGN ECHOPROG
:= 16;

String2;

, . ,

FUNCTION MpReport (Addr
pReportRet pointr) : WORD; EXTERN;

FUNCTION MpReportWait (Addr
pReportRet

String2;
pointr) WORD; EXTERN;

FUNCTION MpCommand (comm
Addr
pbuffer
sbuffer

PROCEDURE Exit; EXTERN;

PROCEDURE Error;
BEGIN

~IJORD;

String2;
pointr;
INTEGER)

WRITELN ('Command Denied', Erc);
Exit;

END;

WORD; EXTERN;

FUNCTION Get Buffer (int : INTEGER) : BOOLEAN;
BEGIN -

Get Buffer := FALSE;
Erc-:= MpCommand (Xfer Rec Bufc, DevAdr [int],

ADS buff-[int * 2048], sBufMax);
IF (Erc < > Cmd _ Accepted) 'l'HEN RETURN;

Get Buffer := TRUE;
sBuf [int] := 0;
WHILE (buff [sBuf [int] + int * 2048] <> etx)

AND (sBuf [int] < sBufMax)
DO

sBuf [int] := sBuf [int] + 1;

END; (* PROCEDURE Get_Buffer *)

PROCEDURE Go_Transmit_Ready (int : INTEGER);
BEGIN

Erc := MpCommand (Transmitc, DevAdr [int],
ADS buff [0],0);

IF (Erc <> Cmd_Accepted) THEN Error;

END; (* PROCEDURE Go_Transmit_Ready *)

PROCEDURE Put Buffer (int : INTEGER);
BEGIN

Erc := MpCommand (Xfer Xmt Bufc, DevAdr [int],
AD S b u f f- [in t * 2048], s B u f [i n t]) ;

IF (Erc <> Cmd_Accepted) THEN Error;

END; (* PROCEDURE Put_Buffer *)

PROCEDURE Go Receive Ready (int : INTEGER);
BEGIN - -

Erc := MpCommand (Receivec, DevAdr [int],
AD S b u f f [0], 0);

IF (Er:c <> Cmd_Accepted) THEN Error;

END; (* PROCEDURE Go_Receive_Ready *)

A-IS

A-16

PROCEDURE Transmit Signon (int : INTEGER);
BEGIN -

FOR eounter2 := 0 TO sLogMsg DO
Buff [int * 2048 + eounter2] .- LogMsg [eounter2];

Go Transmit Ready (int);
REPEA'l' -

ere := MpReport (DevAdr [int], ADS Report [int]);
UNTIL (Report [int] Rdy_Xmt_Xfer);

Put Buffer (int);
REPEA'l'

ere := MpReport (DevAdr [int], ADS Report [int]);
UNTIL (Report [int] = Transmit_Done);

Go_Receive_Ready (int);

END; (* PROCEDURE Transmit_Signon *)

PROCEDURE Configure (int : INTEGER);
BEGIN

REPEAT

WRITE ('Enter Station Address: I);
READLN (DevAdr [int]);
Erc := MpCommand (Confige, DevAdr [int],

ADS buff [0], 0);

UNTIL (Erc = Cmd_Accepted);

Ere := MpCommand (Onlinec, DevAdr [int],
ADS buff [0], 0);

IF (Ere <> Cmd_Accepted) THEN Error;

END; (* PROCEDURE Configure *)

BEGIN
WRITE ('BMULTI echo program I);
WRITELN ('using multiple address interface I);
WRITELN (' ');
WRITELN ('How many addresses do you desire? I);
READLN (numAdrs)i
IF (numAdrs > 3) THEN numAdrs .- 3;
IF (numAdrs < 1) THEN numAdrs := 1;
numAdrs := numAdrs - 1;

FOR i := 0 TO numAdrs DO Configure (i);

~'OR i := 0 TO numAdrs DO Transmit_Signon (i);

counterl := 1;
WHILE counterl < 50 DO

BEGIN

FOR i .- 0 TO numAdrs DO
BEGIN

REPEAT
Erc := MpReport (DevAdr [i], ADS Report [i]);

UNTIL (Erc = Cmd_Accepted);

CASE Report [i] OF

IF (Get Buffer (i) = TRUE)
THEN -

BEGIN
counter1 := counter1 + 1;
Go Transmit Ready (i);

END;- -

Rdy_Xmt Xfer: Put Buffer (i);

Transmit Done: Go_Receive_Ready (i);

No report: (* Do nothing *)
Receiving:
Rec Grp Sel:
Select Denied:
Receive err:
Transmit err:

END; (* CASE Report OF *)

END; (* FOR i := 0 TO numAdrs DO *)

END; (* WHILE counterl < 50 *)

WRITELN ('End BMULTI Echo Program I);

FOR i := 0 TO numAdrs DO
BEGIN

REPEAT
Erc := MpCommand (Idlec, DevAdr [i],

ADS buf f [0], 0);
Erc := MpCommand (Endsessionc, DevAdr [i],

ADS buf f [0], 0);
UNTIL (Erc = Cmd_Accepted);

END;

Exit;
END.

A-I7

PASCAL TERMINAL PROGRAM

USING ENHANCED LOW-LEVEL INTERFACE

{$DEBUG-}
{$ENTRY-}

PROGRAM MiniTerm;

TYPE
String2
pbType
pwType
ppType
psType

CONST

STRING(2);
ADS OF BYTE;
ADS OF WORD;
ADS OF pbType;
ADS OF String2;

(* Command codes
Xfer Rec Bufc
Xfer-Xmt-Bufc
OfflTnec­
Onlinec

for new low-level
16/fo0001;
16110002;
16110003;
16110004 ;
16/fo0005;
16110006;
16110007 ;
16110008 ;
16/fo0009;
1611000A;
1611000B;
16/foOOOC;

interface *)

Idlec
Fastsetc
Receivec
Transmitc
Endsessionc
Abortc
Fastresetc
Xmt_Big_Bufc

(* Report codes *)
No_report
Receiving
Rec Grp Sel
Receive-Done
Rdy Xmt-Xfer
Transmit Done
Select Denied
Receive err
Dup seq-num
Seq-num-err
Transmit err
Internal-err

16110000;
16/fo0001;
16110002;
16110003 ;
16110004 ;
16110005;
16110006;
16110007;
16110008 ;
16110009 ;
1611000A;
161100FF;

(* Erc return codes
ErcOk
ErcInvalidCmd
ErcTaskOverflow
ErcCmdPending
ErcReportPending
ErcInvalidAddress
ErcCmdDenied
ErcBufferOverflow

for new'low~level
161/0000 ;
16/fo8000;
16/18001;
16/18002;
16/18003;
161/8004 ;
16/18005;
161/8006 ;

A-18

interface *)

ErcInvalidReportRq
ErcReadInProgress
ErcWriteInProgress
ErcBufferInUse
ErcInvalidBufLength
ErcOfflineDenied
ErcOnlineDenied
ErcIdleDenied
ErcFastRdyDenied
ErcXmtRdyDenied
ErcRcvRdyDenied
ErcXfrXmtDenied
ErcXfrRcvDenied
ErcEndSessDenied
ErcNotOnline
ErcStationOverflow
ErcAddrIsGrpAddr
ErcIncompleteMsg
ErcInternalError
ErcDupVirtualAdr
ErcReconfiguration
ErcEntryError
ErcStationActive

161/8007 ;
161/8008 ;
16118009;
1611800A;
1611800B;
1611800C;
1611800D;
1611800E;
1611800F;
16118010;
16118011;
161/8012 ;
161/8013 ;
161/8014 ;
161/8015 ;
16118016;
16118017;
16118018;
161/8019 ;
161/80 lA;
1611801B;
1611801C;
1611801D;

(* Miscellaneous*)
banner
sBanner

'B20 Mini -Term' ;
19;

VAR [PUBLIC]
Erc
Report
th
DevAdr
cMsg
Msg
sBufMax
sBuf
Buff
dummyPtr
pVidSeg
sMap
nLines
Key
current col
vid col
SdRet

pSubParam
sSubParam

WORD;
WORD;
WORD;
String2;
INTEGER;
ARRAY[O .. 791 OF BYTE;
INTEGER;
INTEGER;
ARRAY[0 .. 20471 OF CHAR;
pbType;
pbType;
WORD;
INTEGER;
BYTE;
INTEGER;
INTEGER;
RECORD
psType;
WORD;
END;

A-19

vHdw
level
nLinesMax
nColsNar
nColsWide

VALUE
sBufMax
sMap

RECORD
BYTE;
SINT;
BYTE;
BYTE;
END;

:= 4096;
: = 164foOB6C;

1##
1# System Common Procedures
1##
PROCEDURE Exit; EXTERN;

PROCEDURE ErrorExit (ercTerm : WORD); EXTERN;

FUNCTION PosFrameCursor (iFrame
iCol
iLine

INTEGER;
: INTEGER;
: INTEGER)

INTEGER;
INTEGER;
INTEGER;

WORD; EXTERN;

FUNCTION PutFrameChars (iFrame
iCol
iLine
pbText
cbText

pbType;
INTEGER) : WORD; EXTERN;

FUNCTION ResetFrame (iFrame : INTEGER) : WORD; EXTERN;

FUNCTION ScrollFrame (iFrame
iLineStart
iLineMax
cLines
fUp

INTEGER;
INTEGER;
INTEGER;
INTEGER;
BOOLEAN) : WORD; EXTERN;

1##
1# Object Module Procedures
1##
FUNCTION BmOpen (Addr : String2;

pTaskH : pwType;
fSys : BOOLEAN) : WORD; EXTERN;

FUNCTION BmReportWait (TaskH : WORD;
pReportRe' : pwType) : WORD; EXTERN;

FUNCTION BmReport (TaskH : WORD;
pReportRet : pwType) : WORD; EXTERN;

FUNCTION BmCommand (TaskH
Comm
pbuffer
sbuffer

A-20

. WORD;
WORD;
pbType;
INTEGER) WORD; EXTERN;

WORD;
WORD;

FUNCTION RgParam (iParam
iSubParam
pSdRet pbType) : WORD; EXTERN;

1##
1# Procedural requests
1##
FUNCTION InitCharMap (pMap : pbType;

sMap : WORD) WORD; EXTERN;

FUNCTION InitVidFrame (iFrame
iColStart
iLineStart
nCols
nLines
borderDesc
bBorderChar
bBorderAttr
fDblHigh
fDblWide

FUNCTION QueryVidHdw (pBuf : pbType;

INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
BYTE;
CHAR;
BYTE;
BOOLEAN;
BOOLEAN) : WORD; EXTERN;

sBuf : WORD) WORD; EXTERN;

FUNCTION ReadKbdDireet (mode : WORD;
pCharRet : pbType) : WORD; EXTERN;

FUNCTION ResetVideo (nCols
nLines
fAttr
bSpace
psMapRet

INTEGER;
INTEGER;
BOOLEAN;
CHAR;
pbType) : WORD; EXTERN;

FUNCTION SetSereenVidAttr (iAttr : WORD;
fOn : BOOLEAN) : WORD; EXTERN;

1##
PROCEDURE Check Ere (Irk: WORD) [PUBLIC];

!################1#####################################
BEGIN

IF (Irk <> 0) THEN ErrorExit (Irk);
END;

A-21

1##
PROCEDURE Screen setup [PUBLIC];

1#################1####################################
1# Initialized the video.
1##
VAR

BannerStart : INTEGER;
BEGIN

(QueryVidHdw (ADS vHdw, 4));
vHdw.nLinesMax;

Check Ere
nLines :=
Check Ere (ResetVideo (80, nLines, FALSE,

, " ADS sMap));
Check Ere (InitVidFrame (0, 0, 0, 80, 1,

4, ' " 0, FALSE, FALSE));
Check Ere (InitVidFrame (1, o~ 2, 80, nLines - 3,

0, ' " 0, FALSE, FALSE));
Check Ere (InitVidFrame (2, 0, 2, 80, nLines - 2,

0, ' " 0, FALSE, FALSE));
pVidSeg.s := 0;
pVidSeg.r .= 0·
Check Ere (InitCharMap (pVidSeg, sMap));
Check-Ere (SetSereenVidAttr (1, TRUE));
Check-Ere (PosFrameCursor (2, 0, nLines - 3));
current col := 0;
BannerStart := (80 - sBanner) DIV 2;
Check Ere (PutFrameChars (0, BannerStart, 0,

- ADS banner, sBanner));
END; (* PROCEDURE Screen_setup *)

1##
PROCEDURE Process Deom input [PUBLIC];

1##################1####1##############################
VAR

i : INTEGER;
BEGIN

Check Ere (SerollFrame (1, 0, 255, 1, TRUE));
Check-Ere (PosFrameCursor (1, 255, 255));
vid col := 0;
FOR-i := 0 TO sBuf DO

BEGIN
Check Ere (PutFrameChars (1, vid col, nLines - 4,

ADS buff [i], 1));
vid col := vid col + 1;
IF 1vid col > 79)

END;

THEN -
BEGIN

Check Ere (SerollFrame (1, 0, 255, 1, TRUE));
Check-Ere (PosFrameCursor (1, 255, 255));
vid col := 0;

END; -

END; (* PROCEDURE Proeess_Deom_input *)

A-22

1##
PROCEDURE Process Kbd input [PUBLIC];

!##################1###1###############################
BEGIN

IF (Key = 8) 18=BACKSPACE
THEN

BEGIN
IF (current col = 79)

THEN Check Erc (PutFrameChars (2, 79,
- nLines - 3, ADS I I, 1));

IF (current col > 0)
THEN current col := current col - 1;

Check Erc (PutFrameChars (2, current col, nLines - 3,
- ADS I I, IT);

Check Erc (PosFrameCursor (2, current_col, nLines - 3»);
END -

ELSE
BEGIN

Msg [current col] := Key;
Check_Erc (PutFrameChars (2, current col, nLines - 3,

ADS Key, 1);
IF (current col < 79)

THEN current col := current col + 1;
Check Erc (PosFrameCursor (2,-current col, nLines - 3»);

END· - -
END; (* PROCEDURE Process Kbd input *)

!##
PROCEDURE Active state [PUBLIC];

!#################1####################################
1# This is the main loop of the program. It
!# alternately checks the Bmulti report queue
1# and the keyboard queue for activity.
1##
VAR

loopl BOOLEAN;
loop2 : BOOLEAN;

BEGIN
WHILE TRUE DO
BEGIN

loopl := TRUE;
WHILE loopl DO
BEGIN

Erc := BmReport (th, ADS Report);
IF (Erc = ErcOk)

THEN
CASE Report OF

No_report: loopl:= FALSE;

Transmit Done:
Erc 7= BmCommand (th, Receivec, dummyPtr, 0);

A-23

Rdy Xmt Xfer:
Erc :~ BmCommand (th, Xfer Xmt Bufc,

ADS Msg,-cMsg);

Receive_Done, Dup_se~num, Se~num_err:
BEGIN

Erc := BmCommand (th, Xfer Rec Bufc,
ADS sBuf~ sBufMax);

IF (Erc = ErcOk)
THEN

Process Dcom input;
Erc := BmCommand-(th, Receivec, dummyPtr, 0);

END;
END; (* CASE Report OF *)

END; (* WHILE loop1 DO *)

loop2 := TRUE;
WHILE loop2 DO
BEGIN

Ere := ReadKbdDirect (1, ADS Key);
IF (Erc = 602)

THEN loop2 := FALSE
ELSE

BEGIN
Erc := BmCommand (th, Idlec, dummyPtr, 0);
CASE Key OF

4: RETURN; !FINISH key

10, 27: 1 RETURN , NEXT, and GO keys
BEGIN

cMsg. current col;
Erc := BmCommana (th, Idlec, dummyPtr, 0);
Erc := BmCommand (th, Transmitc, dummyPtr, 0);
IF (Erc = ErcOk)

END

THEN
BEGIN

Check Erc (ScrollFrame (2, 0, 255, 1, TRUE»;
Check-Erc (PosFrameCursor (2, 0, nLines - 3»;
current col .= 0;

END -

OTHERWISE Process_Kbd_input;
END;

END;
END;

END; (* CASE Key OF *)
(* loop2 *)

(* WHILE TRUE DO *)

END; (* PROCEDURE Active state *)
I#########################i############################
1# MAIN PROGRAM
1##

A-24

BEGIN

1##
1# Retrieve Device Address as either parameter 1 or 2,
1# depending on whether Run File command is used, or
!# the program's own command.
1##

Check Erc (RgParam (1, 0, ADS SdRet));
IF (SdRet.sSubParam <> 2)

THEN Check Erc (RgParam (2, 0, ADS SdRet));
DevAdr := SdRet.pSubParam?;

1##
1# Initialize the video.
1##

Screen_setup;

1##
!# Log onto Bmulti with the Device Address.
!##

Erc := BmOpen (DevAdr, ADS th, FALSE);
IF (Erc <> ErcOk)

THEN ErrorExit (Erc);
Erc := BmCommand (th, Onlinec, dummyPtr, 0);

!##
!# Enter an infinite loop.
1##

Active_state; IDoes not return until FINISH is hit.

1##
1# At termination, deallocate resources.
1##

REPEAT
Erc := BmCommand (th, Idlec, dummyPtr, 0);

UNTIL (Erc = ErcOk);
Erc := BmCommand (th, Endsessionc, dummyPtr, 0);
Exit;

END. (* PROGRAM MiniTermBm *)

A-25

*

*

*

COBOL ECHO PROGRAM
USING HIGH-LEVEL INTERFACE

IDENTIFICATION DIVISION.
PROGRAM-ID. Jim.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. B20.
OBJECT-COMPUTER. B20.
DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.
77 counter
01 miscellaneous.

01

01

01

88
88

03 device-address
03 ercdisplay
03 max-buffer-size
03 online
03 fss
03 pri
03 TskH
03 buffer-size
03 buffer-size-a2

buffer-whole.
03 buffer-size-a
03 buffer
03 buffer-array

05 byte

Error-code
88 Address-Is-Good
88 No-Error

asBlk.
03 RcvStatus

88 Idle
88 ReadBusy
88 ReadErr
88 ReadDone

SeqErr VALUE
DupSeq VALUE

88 TruncMsg
03 RcvErc
03 fSelDen
03 XmtStatus

88 Local
88 WriteBusy
88 WriteErr
88 WriteDone

03 XmtErc
03 Opt
03 fMess
03 pfMess

PIC 9(04) COMPo

PIC XX.
PIC 9(04).
PIC 9(04) COMP VALUE 4096.
PIC X VALUE X"OO".
PIC X.
PIC 9(04) COMPo
PIC X.
PIC 9(04) COMPo
REDEFINES buffer-size PIC X OCCURS 2.

PIC X OCCURS 2.
PIC X(4096).
REDEFINES buffer.
PIC X OCCURS 4096.

PIC 9(04) COMPo
VALUE O.
VALUE O.

PIC X.
VALUE X"OO".
VALUE x"Ol".
VALUE X"02".
VALUE X"10".
X"ll".
X"12".
VALUE X"14".
PIC 9(04) COMPo
PIC X.
PIC X.
VALUE X"OO".
VALUE X"Ol".
VALUE X"02".
VALUE X"10".
PIC 9(04) COMPo
PIC X.
PIC X.
PIC X(04).

A-26

* PROCEDURE DIVISION.
MAIN-LINE.

PERFORM start-up.
PERFORM driver THRU driver-x

VARYING counter FROM 1 BY 1
UNTIL counter IS EQUAL TO 50.

PERFORM finish-up.
* START-UP.

DISPLAY "BMULTI echo program" UPON CONSOLE.
PERFORM Get-Address THRU Get-Address-X

UNTIL Address-Is-Good.
DISPLAY "Begin BMULTI" UPON CONSOLE.
CALL "&SETOPTIONBMULTI" USING error-code, TskH, online.
PERFORM error-check.

* DRIVER.
MOVE SPACES TO buffer.
CALL "&READBMULTI" USING error-code, TskH, buffer-whole,

max-buffer-size.
PERFORM Error-Check.
PERFORM Check-Read-Complete.
MOVE buffer-size-a (1) TO buffer-size-a2 (2).
MOVE buffer-size-a (2) TO buffer-size-a2 (1).
MOVE buffer-size TO ercdisplay.
DISPLAY "Message size is: ",ercdisplay UPON CONSOLE.
DISPLAY "Counter is ",counter UPON CONSOLE.
CALL "&WRITEBMULTI" USING error-code, TskH, buffer,

buffer-size.
PERFORM Error-Check.
PERFORM Check-Write-Complete.

* DRIVER-X.
EXIT.

* FINISH-UP.

*

*

CALL "&CLOSEBMULTI" USING error-code, TskH.
IF NOT No-Error

GO TO finish-up.
STOP RUN.

GET-ADDRESS.
DISPLAY "Enter Station Address: " UPON CONSOLE.
ACCEPT device-address.
CALL "&OPENBMULTI" USING error-code, device-address,

fss, pri, TskH, asBlk.
IF NOT No-Error

PERFORM print-error.

GET-ADDRESS-X.
EXIT.

A-27

CHECK-READ-COMPLETE.
IF NOT ReadDone

GO TO CHECK-READ-COMPLETE.
* CHECK-WRITE-COMPLETE.

*

*

IF NOT WriteDone
GO TO CHECK-WRITE-COMPLETE.

ERROR-CHECK.
IF NOT No-Error

PERFORM print-error.

PRINT-ERROR.
MOVE error-code TO ercdisplay.
DISPLAY "BMULTI error ", ercdisplay UPON CONSOLE.
STOP RUN.

* END-OF-JOB.

A-28

~ b6
bS

B1 b4 b3 b2 bl
TS ~ ~ ~ ~

0 o 0 0

0 o 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 o 0

1 0 o 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 o 1

1 1 1 0

1 1 1 1

APPENDIX B
USASCII CODE CHARTS

~ 0 0 0 0 1
~ 0 0 1 1 0
~ 0 1 0 1 0

~ ROW'
0 1 2 3 4

0 NUL DLE 0

1 SOH DCl 1

2 STX DC2

3 ETX DC3

4 EOT DC4

S ENQ NAK

6 ACK SYN

7 BEL* ETB

8 BS CAN

9 HT EM
\

10 LF SUB

11 VT ESC

FF FS
I

12 <

13 CR GS

14 SO RS

15 S1 US

* CON (ALTERNATE CODE FOR CONTENTION)

Figure B-1. Code Chart

Showing Universal Control Codes Plus
Special Allocation of Codes

To Implement the Burroughs
Multipoint Protocol

1 1 1
0 1 1

1 0 1

S 6 7

POL

SEL

FSL

BSL

[

]

DEL

B-1

R .. 0 0 0 0 1 1 1 1
b6 ... 0' 0 1 1 0 0 1 1

b5 • 0 1 0 1 0 1 0 1

B1 b4 b 3b 2 b 1 ~ 0 I 1 2 3 4 5 6 7 TS , + , ~ ROW

f

,
0 0 0 0 0 NUL DLE SP 0 @ p p

0 0 0 1 1 SOH DCl ! 1 A Q a q

0 0 1 0 2 STX DC2 " 2 B R b r

i 0 0 1 1 3 ETX DC3 4~ 3 C S c s

0 1 0 0 4 EOT DC4 $ 4 D T d t

I 0 1 0 1 5 ENQ NAK '70 5 E U e u

0 1 1 0 6 ACK SYN & 6 F V f v

0 1 1 1 7 BEl ETB
, 7 G W g w

1 0 0 0 8 BS CAN (8 H X h x

1 0 0 1 9 H'l EM) 9 I Y i Y

1 0 1 0 10 LF SUB * : J Z j z

1 0 1 1 11 VT ESC + ; K [k {

1 1 0 0 12 FF FS < L '. 1
, , I

1 1 0 1 13 CR GS - = M 1 m }
"...

1 1 1 0 14 SO RS > N n ..-..J

1 1 1 1 15 S1 US / ? 0 0 DEL -

Figure B-2. USA Standard Code for Information Interchange

B-2

APPENDIX C

HARDWARE CONSIDERATIONS

In order to use BMULTI, the B 20 or XE 520 must be connected
to a Burroughs mainframe. Typically, the connection is
through a direct line, a leased line, or the switched
telephone network. Additional hardware is necessary to
connect a B 20 or XE 520 to any of these lines.

The B 20 and XE 520 communication hardware uses the RS-232
interface. This means that the B 20 or XE 520 must be
cabled to a modem or a Burroughs TDI/Concatenation Adaptor
(B 20 DCA).

A Burroughs TDI/Concatenation Adaptor is required in order
to connect a B 20 or an XE 520 to a Burroughs Two-wire
Direct Interface (TDI) network. The DCA provides TDI
according to the setting of the TDI/concatenation switch on
the front panel.

I f a B 20 is to be connected to a modem 1 ine wi th other
Burroughs terminals, a DCA is required in order to place the
B 20 anywhere other than last in the concatenation string.
(This type of connection is not supported on the XE 520.)
While set for concatenation, the adaptor turns ON (applies a
positive voltage to) pin 16 if downstream Request-to-Send in
ON. If the B 20 turns OFF (applies a negative voltage to)
pin 14, the adaptor blocks Request-to-Send from downstream
terminals and Clear-to-Send from the modem. A second switch
on the front of the adaptor sets the Rate Select and Select
Standby signals to specified levels.

Modems for use wi th BMULTI may
asynchronous, 2-wi re or 4-wi re.
from Burroughs or another vendor.

NOTE

be ei ther synchronous or
Modems may be purchased

If you are installing a B 20 or XE 520 which
will be connected to an existing line, you
must select the B 20 or XE 520 modem to match
the host modem characteristics.

C-1

In many systems, modem options are dictated by the
conditions of the line to which the B 20 or XE 520 is
connected. Where other cons iderat ions permi t, Burroughs
recommends the following modem option settings:

* transmitter internally timed

* 4-wire operation

* switched carrier

* without new synchronization

For synchronous operation with an internally timed modem,
the B 22 system swi tches must be set for external clock,
meaning clocking that is external to the workstation but
internal to the modem. (There are no internal switches on
the B 21, B 25, or XE 520.)

Assuming the modem is connected to communications channel B,
the required switch settings on the I/O-memory board are
shown in table C-1.

Table C-l. Switch Settings for Channel B
on I/O-lolemory Board (Switch Box 1)

Sync Async/TDI
Switch Setting Setting

5 ON OFF
6 ON OFF
7 OFF ON
8 OFF ON

A double-male RS-232 extension cable must be used to connect
the B 20 or XE 520 to the modem. It should be a straight­
through terminal-to-modem cable rather than the crossover
(null modem) type.

C-2

RS-232C signals used in operation are shown in table C-2
below. Those used only in synchronous operation are so
marked.

Table C-2. RS-232C Signals in Operation

Pin number Signal Name

1 Protective Ground
7 Signal Ground
2 Transmit Data
3 Receive Data
4 Request to Send (RTS)
5 Clear to Send (CTS)
6 Data Set Ready
8 Data Carrier Detect

(Not used on B 20)
14 Block Downstream CTS

(Not used on XE 520)
15 Transmit Clock (Sync only)
16 Sense Downstream RTS

(Not used on XE 520)
17 Receive Clock (Sync only)
20 Data Terminal Ready

When using B 20s in a concatenation environment (which
requires the B 20 DCA), upstream B 20s must be turned on in
order for downstream terminals or B 20sto communicate with
the host.

The RS-232 cable shipped with the B 20 DCA box should not be
used for any connections other than from the DCA to the B 20
or XE 520. Certain pins exist in the cable that are used
for other purposes by other Burroughs terminals, and any use
of this cable with other terminals might result in
unpredictable results.

About 15 seconds elapse between powering on a B 22 and the
beginning of Operating System execution. During this
period, the B 22 has RTS (RS-232 pin 4) turned ON. This may
termporarily inhibit communication in switched-line
environments.

C-3

APPENDIX D
LANGUAGE CONFIGURATION

FORTRAN, COBOL, AND BASIC cannot be used with BMULTI without
regenerating the language interpreters and/or libraries. This is
done by using the Editor to add certain lines to the ".asm" file
associated with the language desired (either 'CobolGen.asm',
'BasGen. asm', or 'ForGen. asm'), Assembling it, and either re­
linking the interpreter or, in the case of FORTRAN and compiled
BASIC, linking the resultant object module with the object module
which resulted from the compile.

The following lines must be added to the appropriate ".asm" file
at the locations indicated by comments in each file, below the
comment ADD NEW ENTRIES HERE:

BASIC

COBOL

(BasGen.asm)

%TableEntry(1,14,OPENBMULTI)
%TableEntry(1,8,READBMULTI)
%TableEntry(1,8,WRITEBMULTI)
%TableEntry(1,4,SETOPTIONBMULTI)
%TableEntry(1,2,RESETBMULTI)
%TableEntry(1,2,CLOSEBMULTI)

(CobolGen.asm)

%TableEntry(O,w,OPENBMULTI,5,w,b,w 1 r,r)
%TableEntry(0,w,READBMULTI,3,b,r,w)
%TableEntry(0,w,WRITEBMULTI,3,b,r,w)
%TableEntry(0,w,SETOPTIONBMULTI,2,b,b)
%TableEntry(0,w,RESETBMULTI,1,b)
%TableEntry(0,w,CLOSEBMULTI,1,b)

FORTRAN (ForGen.asm)

%TableEntry(OPENBMULTI,BMULTO,5,w,b,w,r,r)
%TableEntry(READBMULTI,BMULTR,3,b,r,w)
%TableEntry(WRITEBMULTI,BMULTW,3,b,r,w)
%TableEntry(SETOPTIONBMULTI,BMULTS,2,b,b)
%TableEntry(RESETBMULTI,BMULTT,1,b)
%TableEntry(CLOSEBMULTI,BMULTC,1,b)

For directions on assembling and linking these files, see the
B 20 Systems Reference Manual for the appropriate language.

D-1

APPENDIX E

BTOS REQUEST CODES FOR BMUL TI

BMulti uses request codes -1 through -7. All system software
releases numbered 4.0 and higher support these requests. System
releases numbered 2.3 through 4.0 support only request codes -1
and -2. System software releases 1.3 and lower do not support
BMulti.

Near the end of the file, in the user request code table:

%UsrRequest(-1,DCCommand,exchNotlnstalled,0000h,3,1,1,
%(%illegal))

%UsrRequest(-2,DCReport,exchNotlnstalled,0000h,2,0,1,
% (%illegal))

%UsrRequest(-3,BMCommand,exchNotlnstalled,000h4,1,1,
% (%illegal))

%UsrRequest(-4,BMReport,exchNotlnstalled,000h,2,0,1,
%(%illegal))

%UsrRequest(-5,BMQuery,exchNotlnstalled,000h,0,0,1,
%(%illegal))

%UsrRequest(-6,BMClear,exchNotlnstalled,000h,2,0,0,
%(%none)
%(%norouting))

%UsrRequest(-7,BMPurge,exchNotlnstalled,000h,2,0,0,
%(%none)
%(%norouting))

Note: Burroughs reserves user request codes -8 through -10 for
future development.

The file Request.asm must then be assembled in the manner
described in the System Programmer's Guide, Volume 1, or the
customizer technical notes for creating a new operating system.

E-l

ERROR
CODE
(HEX)

8000
8001

8002

8003

8004
8005
8006
8007
8008
8009
800A

800B
800C
800D
800E
800F
8010
8011
8012
8013
8014
8015
8016
8017
8018

8019

801A
801B
801C
801D

APPENDIX F

STATUS CODES GENERATED BY ENHANCED

LOW-LEVEL INTERFACE
ERROR
CODE
(DECIMAL) EXPLANATION

Invalid command was issued to Bmulti. 32768
32769 Task Overflow. The multi tasking interface cannot

handle more than three device addresses.
32770

32771

32772
32773
32774
32775
32776
32777
32778

32779
32780
32781
32782
32783
32784
32785
32786
32787
32788
32789
32790
32791
32792

32793

32794
32795
32796
32797

Command Pending. Only one Bmulti command can be
outstanding at any time per address.
Report Pending. Orily one Bmulti report request
can be outstanding at any time for an address.
Invalid Bmulti address.
Command Denied (Mp Interface).
Buffer Overflow.
Invalid Report Request.
Read in Progress.
Write in Progress.
A request for a large buffer transfer cannot be
honored at this time for want of buffer space.
Try again later.
Invalid buffer length for this command.
Offline Command Denied.
Online Command Denied.
Idle Command Denied.
Fast Rdy Command Denied.
Transmit Rdy Command Denied.
Receive Rdy Command Denied.
Transfer Xmt Buffer Command Denied.
Transfer Rcv Buffer Command Denied.
End Session Command Denied.
Station Not Online.
Station Overflow.
Device Address Clashes with Group Address.
The buffer received by the application is only
part of the full message.
Internal error (Please report to the system
administrator).
Duplicate Virtual Address.
Bmulti locked for reconfiguration.
Entry error.
Station Active.

F-l

INDEX

Abort command, 3-4, 3-10, 3-18,
3-21, 3-23, 3-25, 3-27, 3-29,
3-30, 3-32

ACK (ACKNOWLEDGEMENT), 3-3, 3-4
3-10, 3-25, 3-29, 4-2, 4-6
definition, 4-2

Address
configured, 3-19, 3-20, 3-22,
3-27, 3-28, 3-31
group, 2-8
Receive-Ready, 3-10
state, 3-2, 3-3
station, 3-3, 3-6

ADl, AD2 (ADDRESS 1, ADDRESS 2)
definition, 4-4
Request-to-Send-hold delays, 1-1

Application, 1-1
interface with BNULTI, A-I
linking with Bmulti.lib., 3-1
definition, 4-3
Program, 3-1
status block, 3-41, 3-42

system, 3-1
user, 3-1

ASCII characters, 2-8, 3-6, 4-4
Codes, B-1

BASIC program, A-10
customizing, D-l

Baud rate, 1-1, 2-8

BCC (BLOCK CHECK CHARACTER)
definition, 4-2
reception, 3-29, 3-30, 3-32, 4-3

BmCommand, 3-34

Bmldentify Procedure, 3-38

BmQuery Procedure, 3-39

BmReport Procedure, 3-35

BmReportWait Procedure, 3-36

BmReportTimeout Procedure, 3-37

BNULTI
definition of, 1-1
configuring, 2-4, 2-6
installing, 2-1, 2-4, 3-3
interface, A-I
protocol options, 4-1
request codes, E-l

Broadcast select, 3-4, 3-20, 3-22,
3-31

BSLcharacter
definition, 4-4

Buffer, 1-1
transfer, 3-3, 3-7
transmit, 3-8

Check, 3-2, 3-9
primitive, 3-9, 3-15

COBOL program, A-4, A-26
customizing, D-l

Commands, 2-1, 2-2, 3-2, 3-12
to 3-32

Common channel, 2-8

Communications channel input,
3-19, 3-21, 3-23, 3-25, 3-27,
3-29, 3-30, 3-32, 4-1 to 4-6

Configuration
Clear-to-Send, 1-1
file, 2-4
Request-to-Send-hold delays, 1-1
Transmit-to-Receive, 1-1

Configure command, 2-4, 2-6, 3-12

CON (CONTENTION)
definition, 4-4

DcConfig Procedure, 3-6
call, 3-3, 3-6

DcCommand Procedure, 3-5, 3-7

DcReport Procedure, 3-2, 3-4, 3-9
values, 3-10

DcReportWait Procedure, 3-11

1

INDEX (Cant.)

End Session Command, 3-5

ENQ (INQUIRY), 4~4, 4-5
definition,4-2

EOT (END OF TRANSMISSION), 3-2,
3-3, 3-23, 3-24, 3-25, 3-26,
3-29, 3-30

Error Return Codes, 3-5, 3-6, 3-8
3-14

ETX (END OF TEXT), 3-4, 3-7, 3-12,
3-19, 3-20, 3-29, 3-30
definition, 4-2

Fast, G~oup, or Broadcast, 3-4,

3-10, 3-17, 3-18

Modulus 10, 2-9

Modem, C-1, C-2

tlpReport, 3-15

MpReportWait, 3-16
definition, 4-2

Multipoint contention, 1-1

Multi-task interface, 3-1, 3-12,
A-13

NAK (NEGATIVE ACKNOWLEDGEMENT),
3-3, 3-4, 3-10, 3-19 to 3-21,
3-22, 3-24, 3-26, 3-27, 3-29, 3-32,
4-6

definition, 4-2

Offline command, 3-3, 3-17, 3-18
Fast Select, 3-4, 3-18, 3-19, 3-22,
3-28, 3-30 Online command, 3-3, 3-17

Files, 2-5

FSL character
definition, 4-4

Form parameters, 2-1

FORTRAN programs, A-7
customizing, D-1

Group address, 2-8

Group Select, 3-4, 3-22, 3-31

GSL character, 2-1
definition, 4-4

Hardware considerations, C-1

Idle command, 3-3, 3-4, 3-17,
3-18, 3-23, 3-25, 3-26, 3-27,
3-30
Installation,' 2-1, 2-10

Interface, 1-2, 3-1
definition, 1-2
high level, 1-2, 3-41
low level, 1-2, 3-33

Pascal program, A-I, A-13, A-18

POL (POLL)
definition, 4-4

Poll
by the host computer, 3-3
group, 1-1, 3-19, 3-21, 3-27,
3-30, 4-3
other terminals, 4-3
responsibility for, 4-1

Protocol handler
to invoke, 3-27

Purge locked station, 2-4, 2-11

ReadBmulti, 3-43

Receive
3-29, command, 3-4, 3-18, 3-21, 3-22,

3-25, 3-27, 3-28
done, 3-3, 3-10, 3-29, 3-32
error, 3-4, 3-10
ready, 3-17, 3-24, 3-25, 3-29,
3-30, 3-32

Report Queue, 3-5, 3-16

Language configuration, Appendix D Reports, 3-1, '3-12

2

INDEX (Cont.)

ready for transmit buffer, 3-3 STX (START OF TEXT)
definition, 4-3

Request, 3-1
block, 3-6, 3-7, 3-9, 3-11, 3-13, SYN (SYNCHRONOUS IDLE), 4-2
3-15, 3-16,3-33, 3-35 definition, 4-3
call, 3-7
codes, E-1
primitive, 3-1, 3-9

ResetBmulti, 3-46

RTS hold delay, 2-9

RTS-CTS delay, 2-9, 3-22 to 3-28

RVI (REVERSE INTERRUPT)
definition, 4-3
reception, 3-24, 3-25

SEL (SELECT)
definition, 4-5

Select
broadcast, 1-1, 3-8
by host computer, 3-3
denied, 3-10, 3-19, 3-21
fast, 1-1, 3-8
group, 1-1, 3-10

Sequence 1F

error, 3-4, 3-10
duplicate, 3-4, 3-10

Set Fast Ready command, 3-5,
3-10, 3-17, 3-18, 3-25

Time-outs, 3-4, 3-8, 3-37
idle line, 4-6
ready command, 3-4
no response, 4-6

Transfer Receive Buffer command,
3-3, 3-4, 3-8

Transfer Transmit Buffer command,
3-3, 3-4, 3-8

Transmission
alternating numbering, 4-5
asynchronous, 1-1, 2-8, 4-1, 4-3
numbering, 1-1, 2-8, 4-5
sequential numbering, 4-6
synchronous, 1-1, 2-8, 4-1, 4-3

Transmit Buffer, 3-3, 3-7, 3-12

Transmit command, 3-18, 3-21, 3-27
done, 3-3, 3-10, 3-23, 3-24,

3-25
ready command, 3-3, 3-17, 3-21,
3-23, 3-32
error, 3-3, 3-10, 3-26

Transmit finished, 3-3

Virtual address, 2-6, 2-7

Wait, 3-2
SOH (START OF HEADING), 3-10, 3-22,
3-28, 3-29, 3-30, 3-31, 4-2 WriteBmulti, 3-44
definition, 4-3

State change, 3-17 to 3-20

Stations
address, 3-3, 3-6, 3-33
control, 4-1, 4-3
terminal, 4-1

XMno (TRANSl-USSION NUl-1BER), 2-8
definition, 4-5

3

Title:

Documentation Evaluation Form

B 20 Systems BMULTI Reference Manual 5.0 Form No:_~1_1~82_2_8_4 __________ __

Date: ___ A--'-p_ri-'-I,_1_9_8_S _____ __

Burroughs Corporation is interested in receiving your comments
and suggestions regarding this manual. Comments will be utilized
in ensuing revisions to improve this manual.

Please check type of Comment! Suggestion:

o Addition o Deletion o Revision o Error o Other

Comments:

From:

Name __ ___

Title
Company ___ _

Address

Phone N urn ber ________________________________ Date ________________ _

Remove form and mail to:

Burroughs Corporation
Corporate Product
Information East

209 W. Lancaster Ave.
Paoli, PA 19301 U.S.A.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	B-01
	B-02
	C-01
	C-02
	C-03
	D-01
	E-01
	F-01
	I-01
	I-02
	I-03
	replyA

