

)jstrlbutlon Code SA

Burroughs

Reference
Manual

Priced Item
Printed in U.S.A.
April 1985

1180148

Burroughs cannot accept any financial or other re
sponsibilities that may be the result of your use of
this information or software material, including di
rect, indirect, special or consequential damages.
There are no warranties extended or granted by this
document or software material.

You should be very careful to ensure that the use of
this software material and/ or information complies
with the laws, rules, and regulations of the jurisdic
tions with respect to which it is used.

The information contained herein is subject to
change without notice. Revisions may be issued
from time to time to advise of such changes and/ or
additions.

Correspondence regarding this public~tion should be forwarded, using the
Documentation Evaluation Form at the back of the manual, or remarks may
be addressed directly to Burroughs Corporation, Corporate Product Informa
tion East, 209 W. Lancaster Ave., Paoli,PA 19301, U.S.A.

LIST OF EFFECTIVE PAGES

Page Issue

iii Original
iv Blank
v thru xi Original
xii Blank
1-1 thru 1-3 Original
1-4 Blank
2-1 thru 2-18 Original
3-1 thru 3-112 Original
4-1 thru 4-20 Original
5-1 thru 5-41 Original
5-42 Blank
A-1 thru A-9 Original
A-10 Blank
B-1 thru B-10 Original
C-1 Original
C-2 Blank
D-1 Original
D-2 Blank
E-1 thru E-10 Original
F-1 Original
F-2 Blank
G-1 thru G-12 Original
H-1 thru H-5 Original
H-6 Blank
1-1 , 1-2 Original
J-1 thru J-6 Original
K-1 , K-2 Original
1 thru 10 Original

iii

Section

1

2

3

TABLE OF CONTENTS

Title

HOW TO USE THIS MANUAL ••••••••••••••••••
Organization of the Manual ••••••••••••••••••••••••

INTRODUCTION ••••••••••••••••••••••••••••

THE BASIC LANGUAGE SyNTAX ••••.••••••••••
Introduction •••••••••.••••••••••••••••••
Line Format
Character Set •••••••••••••••••••••••••••••••••••••
Constants •••••••••••.•••••••••••••••••••••••••••••

String Constants ••••••••••••••••••••••••••••••••
Numeric Constants •..••••••••••••••••••••••••••••
Single- and Double-Precision Constants ••••••••••

Variables
Names and Declaration Characters ••••••••••••••••
Array Variables •••••••••••••••••••••••••••••••••
Brackets and Parentheses ••••••••••••••••••••••••
Pointer Variables •.•••••••••••••••••••••••••••••

Nonexecutable Statements ••••••••••••••••••••••••••
External User-Defined Functions •••••••••••••••••••
Type Conversion
Expressions and Operands ••••••••••••••••••••••••••

Arithmetic Operators ••••••••••••••••••••••••••••
Integer Division and Modulus Arithmetic •••••••••
Overflow and Division by Zero •••••••••••••••••••
Relational Operators ••••••••••••••••••••••••••••
Logical Operators •••••••••••••••••••••••••••••••
Functional Operators ••••••••••••••••••••••••••••
String Operations •••••••••••••••••••••••••••••••

Structure of a BASIC Program
The Main Module••....•••....•..•••••••.•
Data Statements •••••••••••••••••••••••••••••••••
The Public Code·Option ••••••••••••••••••••••••••
The Common Data Option ••••••••••••••••••••••••••

BASIC COMPILER COMMANDS AND FUNCTIONS •••••••••••••
ABS ••••••••••••••••
Ase•.•.........•.•.....•......••.••••..••
ATN •••
CALL •••••••••••••••
CDBL ••
CHR$ •• ~ •
CHAIN •••
CINT ••••••••••••••••
CLOSE •••••••••••••••
cos
CSNG ••••••••••••••••
CVI, CVS, CVD •••••••••••••••••••••••••••••••••••
DATA ••

Page

x
x

1-1

2-1
2-1
2-1
2-1
2-2
2-3
2-3
2-4
2-5
2-5
2-6
2-6
2-6
2-6
2-7
2-8
2-9

2-10
2-10
2-11
2-12
2-13
2-15
2-15
2-16
2-16
2-16
2-16
2-17

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9

3-10
3-11
3-12
3-13
3-14

v

TABLE OF CONTENTS (CONT.)

Section Title

3 DATETIME$ •••••••••••••••••••••••••••••••••••••••
(cont.) DEF •••

vi

DEF FN •••••••••••••••••••••••••••••••••••• • •••• •
DEFLPRINT •••••••••••••••••••••••••••••••••••••••
DIM •••
END •••
EOF •••
ERR/ERL •••
ERROR •••
EXP •••
FI ELD •••
FI X •••
FOR ••• NEXT •••••••••••••••••••••••••••••• ••••••
FRE •••
GET •••
GETRA •••
GETSA •••
GOSUB ••• RETURN ••••••••••••••••••••••••••••••••
GOTe> ••••••••••••••.•••••••••••••••••••••••••••••
HEX~ ••••••••••••••••••••••••••••••••• ~ ••••••••••
IF ••• THEN •••••••••••••••••••••••••••••••••••••••
INP •••
INPUT •••
INPUT/f ••
INPUT$ ••
INSTR •••
INT •••
KILL ••
LEFT$ •••
LEN •••
rET •••

INE INPUT ••••••••••••••••••••••••••••••••••••••

rINE INPUT/f •••••••••• ••••••••••••••••••••••••••• oc•....•.•.•........•......•...•.........
LOF •••
LOG •••
LPOS ••
LPRINT ••
LPRINT USING ••••••••••••••••••••••••••••••••••• •
LSET and RSET •••••••••••••••••••••••••••••••••••
MAKEPOINTER •••••••••••••••••••••••••••••••••••••
l-II D $•. ;; ...•...•....•......•.........•...
MKI~, MKS$, MKD$ ••••••••••••••••••••••••••••••••
NAM ••
OCT~ ••
ON RROR GOTO ~ ••••••••••••••••••••••••••••••••••
ON ••• GOSUB ••••••••••••••••••••••••••••••• •••••
ON ••• GOTO •••••••••••••••••••••••••••••••••••••
OPEN ••

Page

3-15
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-38
3-39
3-40
3-41
3-42
3-43·
3-44
3-45
3-46
3-47
3-48
3-49
3-50
3-51
3-52
3-53
3-54
3-55
3-56
3-57
3-58
3-60
3-61
3-62
3-63
3-64
3-65
3-66

Section

3
(cont.)

4

TABLE OF CONTENTS (CONT.)

Title

OPTION BASE ••• · ••••••••••••••••••••••••••••••••••
OPTION COl1}1A ••••••••••••••••••••• •••••••••••••••
OUT •••••••••••••••••••••• ~ ••••••••••••••••••••••
pEEK • •••

OKE •••••••••••.•••••••••• ~ •••••••••••••••••••••
POS •••
PRINT ••••••••••••••••••••••••.••••••••••••••••••
PRINT USING •••••••••••.•••••••••••••.•••••••••••
PRINT/I ••
PRINT/I USING ••••••••••••••••••••••••••••••••• •••
PTR •••
PUT •••••••••••••••••••••••••••••••••.•••••••••••
PWA •••
RANDOMIZE ••••••••••••.••••••••••••••••••••••••••
READ ••••••••••••••••••••••••••••••••••.•••••••••
REM •••••••••••••••••••.•••••••••••••.•••••••••••
RESTORE •••••••••••••••••••••••••••••.•••••••••••
RESUME ••
RGPARAM$ ••
RIGHT$ ••
RND •••
~GN •••••••••••••••••••••••••••••••••.•.•••••••••

IN •••••••••••••••••••••••••••••••••.•••••••••••
~PACE$ ••••••••••••••••••••••••••••••.•••••••••••

PC •••••••••••••••••••••••••••••••••.•.•••••••••
~OR •••••••••••••••••••••••••••••••••.•••••••••••

TOP ••••••••••••••••••••••••••••••••.•••••••••••
STRS ••
STR1NG$ •••••••••••••••••••••••••••••.•••••••••••
SWAP ••••••••••••••••••••••••••••••••.•••••••••••
SYSERC ••
SYSTEM ••••••••••.•••••••••••••••••••.•••••••••••
TAB ••••••••••••••••••••••• ~ •••••••••••••••••••••
TAN ••• • •
US ING$ ••
VAL •••
VERS ION$ ••••••••••.••••••••••••••••••••••••••••••
WA IT ••
WHILE ••• WEND ••••••••••••••••••••••••••••••••••
WI DTH •••
WR I TE •••
WRITE/I ••

INSTALLING, COMPILING, AND DEBUGGING BASIC
PROGRAM •••
Introduction ••••••••••••••••••••••••••.•••••••••••
Installing the BASIC Compiler •••••••••••••••••••••

Disk Contents •••••••••••••••••••••••••••••••••••
Loading Instructions ••••••••••••••••••••••••••••

Page

3-67
3-68
3-70
3-71
3-72
3-73
3-74
3-75
3-78
3-80
3-81
3-82
3-83
3-84
3-85
3-86
3-87
3-88
3-89
3-90
3-91
3-92
3-93
3-94
3-95
3-96
3-97
3-98
3-99

3-100
3-101
3-102
3-103
3-104
3-105
3-106
3-107
3-108
3-109
3-110
3-111
3-112

4-1
4-1
4-1
4-1
4-2

vii

TABLE OF CONTENTS (CONT.)

Section Title

4 Memory Requirements
(cont.) Invoking the BASIC Compiler

Compilation
Fatal Error Conditions
Listing Format
Invoking the Linker•...........
8verlays
verlaying the Run-Time System

~inker Errors
atal Run-Time Errors

X~blic Symbols
ditional Public Symbols

Names of BASIC Run-Time Procedures
Data Types and Register Usage Conventions

5 BASIC ERROR MESSAGES
Introduction

Run-Time Errors
Cross Reference to Run-Time Errors

Comp i I e Time Errors
Fatal Compiler Errors

A CONTROL OF THE VIDEO DISPLAY ~
Control of the Video Display
Controlling Character Attributes
Controlling Character Attributes on a B 26
Controlling Screen Attributes
Controlling Cursor Position and Visibility
Controlling Line Scrolling '.
Controlling Pauses Between Frames
CQntrolling the Keyboard LED Indicators
FIlling a Rectangle
~faSt·ng to the End of the Line or Frame

ISP aying Special Characters Literally
Directing Video Display Output: The "X" Command ..

B CALLING NON-BASIC PROCEDURES
Overvi ew
Invoking Value-Returning Procedures
Parameter Passing

Modifying BASIC Variables from Non-BASIC
Sroced ures
tring Parameters

Array Parameters
Word-aligned Data

Programming Recommendations
Error Detection
Configuring BASIC for Non-BASIC Procedures

Assembling BasGen.Asm

viii

Page

4-2
4-3
4-5
4-6
4-6
4-8
4-8
4-9

4-10
4-12
4-12
4-13
4-14
4-20

5-1
5-1
5-2

5-29
5-31
5-40

A-I
A-I
A-I
A-3
A-4
A-5
A-5
A-6
A-7
A-8
A-8
A-9
A-9

B-1
B-1
B-2
B-3

B-4
B-4
B-5
B-5
B-6
B-7
B-7
B-7

Section

B
(cont.)

C

D

E

F

G

TABLE OF CONTENTS (CONT.)

Title

Compiling the Source File and BasGen.Obj ••••• ~ ••
Using the Linker to Create the Run File •••••••••

CONVERTING PROGRAMS TO B 20 BASIC •••••.•••••••••••
String Dimensions •••••.•••••••••••••••.•••••••••••

DERIVED MATHEMATICAL FUNCTIONS ••••••••.•.•.•••••••

DISK INPUT/OUTPUT •••••••••••••••••••••.•••••••••.•
Program File Commands •.•••••••••••••••.•••••••••••

Sequential Files ••••.•••••••••••••••.•••••••••••
Adding Data to a Sequential File ••••••••••••••••
Random Files ••••••••••.••••••.••••••.•••••••••••
Creating a Random File ••••••••••••••.•••••••••••
Accessing a Random File •••••••••••••.•••••••••••

CONFIGURING MEMORY USAGE AND RUN-TIME PARAMETERS ••

PROGRAMMING HINTS •••••••.•.•••••••••••.•••••••••••
Hint 1: Differences between the BASIC Interpreter
and the BASIC Compiler ••.•••••••••••••.•••••••••••

Changes to Be Made to Existing Programs •••••••••
Language Features Not Supported By the Compiler.
Language Features With Syntactic and Semantic
Differences •••••••••••••••••••••••••••••••••••••

CHAIN •••••••••••••••.•••••••••••••.•••••••.••••
Continuation Character ••••••••••••.•••••••••••
Line Numbers ••••••••••••••••••••••.•••••••••••
Logical Line Length •••••••••••••••.•••••••••••
String Constants ••••••••••••••••••.•••••••••••
String Length •••••••••••••••••••••••••••••••••
Common Da ta. • . • • • • • • • • • • •
Public Code •••••••••.•••••••••••••••••••••••••
Main Modules .•••••.•.•••.••••.•.••.•••..••••.•
Non-BASIC Procedures ••••••••••••••.•.•••••••••
Data Statements •••••••••••••••••••••••••••••••
Using Virtual Code Management {Overlays) ••••••
Using Compiled BASIC ••••••••••••••.•••••••••••

Hint 2: Single- and Double-Precision Numbers in
BASIC Compiler ••••••••••••••••••••••••.•••••••••••
Hint 3: String Space Use in the BASIC Compiler •••

Page

B-8
B-9

C-l
C-l

D-l

E-l
E-l
E-l
E-4
E-4
E-5
E-6

F-l

G-l

G-l
G-l
G-2

G-3
G-3
G-3
G-3
G-3
G-4
G-4
G-4
(;-4
G-5
G-5
G-5
G-5
G-6

G-7
G-IO

ix

Section

H

I

TABLE OF CONTENTS (CONT.)

Title

FUNCTIONAL INDEX ••••••••••••••••••••••••

INSTALLATION PROCEDURES •••••••••••••••••••••••••••
Hard Disk Installation ••••••••••••••••••••••••••••
XES20 Installation ••••••••••••••••••••••••••••••••

J PRODUCT USAGE ON B 26 DUAL FLOPPY STANDALONE

K

Figure

1-1
4-1
4-2
B-1

E-l
E-2
E-3
E-4
E-S

Table

2-1
2-2
2-3
4-1
4-2
A-I
A-2

x

SYSTEMS •••
Introduction ••••••••••••••••••••••••••••••••••••••
Cre~ting a Program ••••••••••••••••••••••••••••••••
Compiling a Program •••••••••••••••••••••••••••••••
Linking a Program •••••••••••••••••••••••••••••••••
Running a Program •••••••••••••••••••••••••••••••••

GLOSSARY •••••••••••••••••••••••••••••••

Index .. .

LIST OF ILLUSTRATIONS

Title

A Typical Compiled BASIC Program ••••••••••••••••••
Example of the Beginning of a List File •••••••••••
Example of the End of a List File •••••••••••••••••
Compiling and Linking a Program That calls Non-
BASIC Procedures ••••••••••••••••••••••••••••••••••
Creating a Sequential Data File •••••••••••••••••••
Accessing a Sequential File •••••••••••••••••••••••
Creating a Random File ••••••••••••••••••••••••••••
Accessing a Random File •••••••••••••••••••••••••••
Inventory .. .

LIST OF TABLES

Title

Arithmetic Operators ••••••••••••••••••••••••••••••
Allowable Operators •••••••••••••••••••••••••••••••
Logical Operators •••••••••••••••••••••••••••••••••
Additional Public Symbols •••••••••••••••••••••••••
Names of BASIC Run~Time Procedures ••••••••••••••••
Character Attribute Control on the B 20 •••••••••••
Control Codes for LED Indicators ••••••••••••••••••

Page

H-l

I-I
I-I
I-I

J~l
J-l
J-4
J-4
J-S
J-6

K-l

1

Page

1-2
4-6
4-7

B-IO
E-2
E-3
E-6
E-7
E-8

Page

2-10
2-12
2-13
4-13
4-14

A-2
A-7

HOW TO USE THIS MANUAL

The BASIC Compiler Reference Manual is designed for users who
have a working knowledge of the BASIC language, and is not
intended to teach a user how to write a program in BASIC. This
manual contains all the syntax of the BASIC language with respect
to the compiler, so that a user can easily create a BASIC
Compiler source program. It also provides all the instructions
necessary to install and link these source programs into an
executable run file.

ORGANIZATION OF THE MANUAL

This manual contains five sections, several appendixes, a
glossary, and an index.

Section I provides an overview of the compiler, as well as a
discussion of memory organization.

Section 2 contains an explanation of the BASIC language syntax
and the structure of a program.

Section 3 lists the BASIC commands and functions in
alphabetical order for quick reference. An example and an
explanation are given for each command.

Section 4 discusses installing, compiling, and debugging a
BASIC program. It also describes how to invoke the Compiler,
Linker, Run File, and New Command commands from the Executive.

Section 5 contains a complete listing of BASIC. run-time,
compile-time, and fatal compiler errors.

The appendixes contain additional information, such as control
of the video display, disk input and output, and printing with
the printer spooler. Also included are brief discussions on
configuring memory usage, non-BASIC procedures, and how to
convert programs to B 20 BASIC.

xi

SECTION 1

INTRODUCTION

The BASIC compiler translates BASIC programs into B 20 object
module format. The BASIC compiler:

• accepts the most extensive implementation of BASIC
available for the 8086 microprocessor.

• separately compiles modules that comprise a BASIC
program.

• supports the Public Code options, which allow transfers
between separately compiled modules using GOTO, GOSUB,
CHAIN, and user-defined functions.

• supports the use of the virtual code segment manage
ment facility for overlaying modules of a BASIC program.

• supports the Common DATA option, which permits references
to a variable in two or more modules to address the same
storage.

• extends the logical maximum string length to 32K bytes.

A typical BASIC program can consist of a main module that
displays a menu, accepts input, and then enters one or more
subsystems (using CHAIN) based on the menu input. The subsystems
(in other modules) execute specific tasks and then return to the
main program. The main module also contains common user-defined
functions, subroutines, and shared variables.

During execution, calls are made from the subsystems to
common routines in the main module and references are made to
shared variables. After exiting the subsystems, control is
transferred back to the main module (using GOTO).

A program is broken into subsystems when the number and size
of the subsystems are such that the entire application cannot be
accommodated in available memory.

When a program consists of two or more modules, each module
is compiled separately. The main module is compiled with the
Common DATA option, and the Public Code option. The subsystems
are compiled with the Common DATA option, Public Code option, and
Suppress main option.

1-1

Introduction

The BASIC compiler creates a list file displaying informat
ion such as the version number of the compiler, source file name,
date and time of compilation, and the list file and object file
names. It also returns information about memory allocation,
symbol table usage, and the number of statements compiled.

When the Linker is invoked, the main module is made
resident and the subsystems are placed in overlays, producing
an executable run file.

Once linked, the application is invoked with the Run File
ccmmand, or with a custom command form created with the New
Command command.

Figure 1-1 illustrates an example of a typical compiled
BASIC program.

1-2

1 Run File

GOTO

GOSUB-

(
Payroll

(Common Data)

'-
,'-

\..

Main.Bas

Display Form

Accept Input

CHAIN to
subsystem
based on
input.

Common Routines

I I r
User-defined

RETURN Function
Call/Return

'--
I--'

\..

(Public Code,
Common Data)

"\

CHAIN

~

Invoices
(Common Data)

J

Figure 1-1. A Typical Compiled BASIC Program

Introduction

A BASIC program consists of several segments. (A se8ment
is a contiguous area of memory not larger than 64K bytes.) These
segments are:

• the code in each BASIC module

• the code in each run-time environment module

• BASIC program variables and constants (except string
constants), run-time environment variables and
constants, and the stack

• the data portion of string constants

• the data contained in DATA statements

• the information used to support the ERL variable,
RESUME, and CHAIN

When a BASIC program starts executing, additional memory
is required for string variables, file buffers, an overlay zone,
and user memory. This memory is dynamically allocated based on
configuration parameters.

1-3

SECTION 2
THE BASIC LANGUAGE SYNTAX

INTRODUCTION

B 20 BASIC is the most extensive implementation of BASIC
available for the 8086 microprocessor. The language includes an
extensive formatted printing capability (with the PRINT USING
command), full control of the video display, and access to other
Burroughs software products, such as Forms, Sort/Merge and ISAM
utilities.

LINE FORMAT

Program lines in a BASIC program have the following format
(square brackets indicate optional items):

(nnnnn] BASIC statement (:BASIC statement •••]

The line number indicates the order of execution and is also used
for reference when branching. In the BASIC compiler, line
numbers are optional. If line numbers are used, the maximum line
number supported by the compiler is 65535.

At the programmer's option, more than one BASIC statement can be
placed on a line, but each statement of a file must be separated
from the last by a colon.

The number of characters in a BASIC program line is unrestricted
by the BASIC compiler.

It is possible to extend a logical line over more than one
physical line, by adding a continuation character to the end of a
line. The BASIC compiler accepts either the MARK or the
ampersand (&) as continuation characters. By adding an ampersand
or a MARK character to the end of a line, before pressing RETURN,
the next physical line will be read as a continuation of the same
line. MARK is 02h and can be inserted into the source file by
the Editor or Word Processor.

CHARACTER SET

The BASIC character set is comprised of alphabetic, numeric, and
special characters.

The alphabetic characters are the uppercase and lowercase letters
of the alphabet.

The numeric characters are the digits 0 through 9.

2-1

The BASIC Language Syntax

The following special characters and keys are recognized by the
BASIC compiler:

CHARACTER OF KEY

+

*
/
"
(
)
%

$

[
]

II

&
?
<
>
\
@

BACKSPACE

CONSTANTS

NAME

Space
Semicolon
Equal sign or assignment symbol
Plus sign or string concatenation
Minus sign or hyphen
Asterisk or multiplication symbol
Slash or division symbol
Up arrow or exponentiation symbol
Left parenthesis
Right parenthesis
Percent sign or integer type declaration

character
Number (or pound) sign or double

preclslon declaration character
Dollar sign or string type declaration

character
Exclamation point or single-precision

type declaration character
Left bracket
Right bracket
Comma
Period or decimal point
Single quotation mark (apostrophe) or

remark delimiter symbol
Double quotation mark or string

delimiter symbol
Colon or multiple statement separator
Ampersand or continuation symbol
Question mark
Less than
Greater than
Backslash or integer division symbol
At-sign
Underscore
Deletes last character typed

Constants are the actual values BASIC uses during execution.
There are two types of constants: string and numeric.

2-2

The BASIC Language Syntax

String Constants

A string constant is a sequence of up to 32,767 alphanumeric
characters enclosed in double quotation marks. The BASIC
compiler interprets two consecutive double-quote characters as a
single double-quote character that is contained within a string.
For example, the following statement will print the constant
enclosed in quotation marks.

10 PRINT IIIIFILENAMEIlIl

The line feed character can also be contained in a string
constant.

Numeric Constants

Numeric constants are positive or negative numbers. Numeric
constants in BASIC cannot contain commas. There are five types
of numeric constants: integer, fixed-point, floating-point,
hexadecimal, and octal.

Integer constants are whole numbers between -32768 and +32767.
Integer constants do not have decimal points.

Fixed-point constants are positive or negative real numbers
(i.e., numbers which contain decimal points).

Floating-point constants (similar to scientific notation) consist
of an optionally signed integer or fixed-point number (the
mantissa) followed by the letter E and an optionally signed
integer (the exponent). The allowable range for floating-point
constants is 10-38 to 10+38. Examples of floating-point
constants are:

235.988E-7 = .0000235988
2359E6 = 2359000000

Hexadecimal constants are hexadecimal numbers with the prefix &H.
Examples of hexadecimal constants are:

&H76
&H32F

Octal constants are octal numbers with the prefix of &0 or &.
Examples of octal constants are:

&0347
&1234

2-3

The BASIC Language Syntax

Single- and Double-Precision Constants

Numeric constants can be either single- or double-precision
numbers. Single-precision numbers are stored with seven digits
of precision, and printed with up to six digits. Double
precision numbers are stored with 16 digits of precision, and
print with up to 16 digits_

A single-precision constant is a numeric constant that has one of
the following:

• seven or fewer digits
• exponential form using E
• a trailing exclamation point (1)

Listed below are a few examples of single-precision constants:

46.8
-1.09E06
3489.0
22.51

A double-precision constant is a numeric constant that has one of
the following:

• eight or more digits
• exponential form using D
• a trailing number sign (#)

Examples of double-precision constants are:

2-4

345692811
-1.09432D-06
3489.0#
.8571428571428571 returned in D# as a double-precision

value.

The BASIC Language Syntax

VARIABLES

Variables are names used to represent values that are used in a
BASIC program. The value of a variable can be assigned
explicitly by the programmer, or it can be assigned a value, its
value is assumed to be o. Before a string variable is assigned a
value, its value is assumed to be null.

Names and Declaration Characters

BASIC variable names can be any length; however, only the first
40 characters are significant. The characters allowed in a
variable name are letters, numbers, and the decimal point. The
first character must be a letter. Special type declaration
characters are also allowed.

A variable name cannot be a reserved word. If a variable begins
with FN, then it is assumed to be a call to a user-defined
function. Reserved words include all BASIC commands, statements,
function names, and operator names.

Variables can represent either a numeric value or a string.
String variable names are written with a dollar sign ($) as the
last character. For example, A$ = "SALESREPORT". The dollar
sign is a variable type declaration character, that is, it
declares that the variable represents a string.

Numeric variable names can declare integer, single-, or double
precision values. Variables without a declaration character are
assumed to be single-precision. The type declaration characters
for numeric variable names are as follows:

% Integer variable
I Single-precision variable

IF Double-p.rec is ion variable

Example of variable naoes:

PIIF
MINIMUM I
LIMIT%
N$
ABC

declares a double-precision value
declares a single-precision value
declares an integer value
declares a string value
represents a single-precision value

In addition, the BASIC commands DEFINT, DEFSNG, DEFSTR, and
DEFDBL can be used to declare the types of variable names. The
DEF command and variable types are described in detail in
Section 3.

2-5

The BASIC Language Syntax

Array Variables

An array is a group or table of values referenced by the same
variable name. Each element in an array is referenced by an
array variable that is subscripted with integers or integer
expressions. An array name has as many subscripts as there are
dimensions in the array. For example, V[lO] references a value
in a one-dimensional array, T[1,4] references a value in a two
dimensional array, and so on. The maximum number of dimensions
for an array is 255. The maximum number of elements per
dimension is 32767.

Brackets and Parentheses

Although you can use parentheses to delimit array subscripts, you
should use brackets. This permits BASIC to easily distinguish
between arrays and value-returning non-BASIC procedures. Using
brackets improves the readability and performance of BASIC
programs.

Pointer Variables

BASIC stores pointers as single-precision numbers, since both
pointers and single-precision numbers require four bytes of
memory. Pointer values are created by the BASIC PTR function
(and by non-BASIC procedures). The only meaningful operations
for pointer variables are assignment and equality.

Pointer variables can be used as parameters to non-BASIC
procedures, the POKE command, and the PEEK function.

NONEXECUTABLE STATEMENTS

The BASIC statements DIM, DEF FN, DEFINT/SNG/DBL/STR, OPTION
BASE, and OPTION COMMA instruct the compiler on how to compile
other statements. This type of statement is called
nonexecutable.

A nonexecutable statement takes effect when it is compiled and
affects all statements that are compiled after it. Therefore,
nonexecutable statements should be located at the beginning of a
BASIC program.

The following gives an example of how nonexecutable statements
are treated by the BASIC compiler.

2-6

10 GOTO 30
20 DEFINT I
30 I = 100000

The BASIC Language Syntax

When line 20 is compiled, the DEFINT statement declares that I is
of type integer. Line 30 is compiled as assigning the value
100,000 to integer I. When this program is run, an overflow
occurs at line 30 because 100,000 is too large to be an integer.

A BASIC module entered by CHAIN cannot depend on the
nonexecutable statements in any other modules since each BASIC
module is compiled separately. If nonexecutable statements are
required in a module, they must be included in that module.
(There is one exception. DEF FN statements do not need to be
repeated.) In the following example, note that the DIM statement
is repeated in both modules.

A.Bas
10 DIM X[S,S]
20 CHAIN MERGE "B.Bas",lOO,ALL

B.Bas
100 DIM X[S,S]
110 X[l,l] = 0

The BASIC compiler does not allow an array variable and a scalar
(nonarray) variable to have the same name. If a program contains
an array and nonarray variable, the compiler detects the error
"Array referenced as scalar".

EXTERNAL USER-DEFINED FUNCTIONS

External user-defined functions are functions that are defined in
one BASIC module and referenced in another.

The BASIC compiler does not automatically convert numeric actual
parameters to external functions. Therefore, actual parameters
must be of the expected type. Also, the compiler does not check
that the number of parameters is correct.

When the BASIC program is linked, an error is detected if the
number and/or type of actual parameters is different from the
number and/or type of parameters required by the function. Error
uetection is based on the following scheme. When a public user
defined function is declared, an extra public symbol is created
that is the function, followed by a string of characters,
representing the number and type of formal parameters.
Similarly, when a reference is made to an external function, an
extra external reference is created that is the name of the
function, followed by a string of characters representing the
number and type of actual parameters.

In both cases, each character represents a parameter. The
character value represents the type, where s is the string, i is
integer, r is real (single-precision), and d is double-precision.

2-7

The BASIC Language Syntax

For example, the symbol created for the definition:

DEF FNADD2%(L%,M%) = L%+M%

would be FNADD2%ii.

If actual parameters are corre~tly passed to an external user
defined function, no Linker errors are detected. However, if
actual parameters are incorrectly passed, the Linker will detect
an "Unresolved external" error.

TYPE CONVERSION
When necessary, the BASIC compiler converts a numeric constant
from one type to another. The following rules and examples
should be kept in mind.

If a numeric constant of one type is set equal to a numeric
variable of a different type, then the number is stored as the
type declared in the variable name. (If a string variable is set
equal to a numeric value or vice versa, then a "Type mismatch"
error message occurs.) As shown in the following statements, the
integer "23" would be printed as a value of A.

10 A% = 23.42
20 PRINT A%

During expression evaluation, all of the operands in an
arithmetic or relational operation are converted to the same
degree of precision, as that of the most precise operand. Also,
the result of an arithmetic operation is returned to this degree
of precision.

EXAMPLES

10 D# = 6#/7
20 PRINT D#

.8571428571428571
10 D = 6#/7
20 PRINT D

.857143

The arithmetic was performed in
double-precision and the result was
returned in D# as a double-precision
value. The arithmetic was performed
in double-precision and the result
was returned to D (single-precision
variable), rounded and printed as a
single-precision value.

Logical operators convert their operands to integers and return
an integer result. Operands must be in the range -32768 to 32767
or an "Overflow" error message occurs.

2-8

The BASIC Language Syntax

When a floating-point value is converted to an integer, the
fractional portion is rounded. For example, as shown in the
following statements, the integer "56" would be printed as the
value of C.

10 C% = 55.88
20 PRINT C%

If a double-precision variable is assigned a single-precision
value, then only the first seven digits, rounded, of the
converted number are valid. This is because only seven digits of
accuracy were supplied with the single-precision value. The
absolute value of the difference between the printed double
precision number and the original single-precision value is less
than 6.3E-8 times the original single-precision value. As shown
in the following example, statement 30 would print "2.04" as the
value of A and "2.039999961853027" for B.

10 A = 2.04
20 B# = A
30 PRINT AiB#

EXPRESSIONS AND OPERANDS

An expression can be simply a string or numeric constant, a
variable, or a value-returning non-BASIC procedure. It can
combine constants, variables, and procedure calls with operators
to produce a single value.

Operators perform mathematical or logical operations on values.
The operators provided by BASIC can be divided into four
categories:

arithmetic
relational
logical
functional

2-9

The BASIC Language Syntax

Arith mefic Operators

The arithmetic operators, in order of precedence, are shown in
Table 2-1.

OPERATOR

*
/
\

MOD
+

Table 2-1: Arithmetic Operators

OPERATION SAMPLE EXPRESSION

Exponentiation
Negation
Multiplication
Floating-point division
Integer division
Modulus arithmetic
Addition
Subtraction

X·"y
-X
X*Y
x/Y
X\Y
X MOD Y
X+Y

, X-Y

To change the order in which the operations are performed, use
parentheses. Operations within parentheses are performed first.
Inside parentheses, the usual order of operations is maintained.

The following lists a few sample algebraic expressions and their
corresponding BASIC expressions.

EXPRESSION

X+2Y
X-y/z
Xy/z
(X2yt /z
(X)
(X(-Y)

EXPRESSION

X+Y*2
X-y/z
x*y/z
(x+Y) /z
(X"2) "y
(x*(-Y)

(Note that two consecutive operators must be separated by
parentheses.)

Integer Division and Modulus Arithmetic

Integer division is denoted by the backs lash (\). The operands
are rounded to integers (in the range of -32768 to 32767) before
the division is performed, and the quotient is truncated to an
integer, as shown in the following examples.

2-10

10\4 = 2
25.68\6.99 = 3

The BASIC Language Syntax

The precedence of integer division is just after~multiplication
and floating-point division.

Modulus arithmetic is denoted by the operator MOD. It gives the
integer value that is the remainder of an integer division. For
example:

10.4 MOD 4 = 2 (10/4 =2 with a remainder of 2)
25.68 MOD 6.99 = 5 (26/7 = 3 with a remainder of 5)

The precedence of modulus arithmetic is just after integer
division.

Overflow and Division by Zero

If, during the evaluation of an expression, a division by 0 is
encountered, then the "Division by zero" error message is
detected. Machine infinity with the sign of the numerator is
supplied as the result of the division, and execution continues.
If the evaluation of an exponentiation results in 0 being raised
to a negative power, then the "Division by zero" error message
occurs. Positive machine infinity is supplied as the result of
the exponentiation, and execution continues.

If overflow occurs, the "Overflow" error message is detected.
Machine infinity with the correct algebraic sign is supplied as
the result, and execution continues.

2-11

The BASIC Language Syntax

Relational Operators

Relational operators are used to compare two values. The result
of the comparison is either "true" (-1) or "false" (0). This
result can then be used to make a decision regarding program
flow. Table 2-2 lists the allowable operators and a sample
expression.

OPERATOR

<>
<
>

<=
>=

Table 2-2: Allowable Operators

RELATION TESTED

Equality
Inequality
Less than
Greater than
Less than or equal to
Greater than or equal to

EXPRESSION

X=Y
X<>Y
X<Y
X>Y
X<=y
X>=y

(Note that the equal sign is also used to assign a value to
a variable with the LET command.)

When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. For
example, the expression:

X+Y«T-1)/Z

is true if the value of X plus Y is less than the value of T-1
divided by z.

2-12

The BASIC Language Syntax

Logical Operators

Logical operators perform tasks on mUltiple relations, bit
manipulation, or Boolean operations. The logical operator
returns a bitwise result that is either "true" (not zero) or
"false" (0). In an expression, logical operations are performed
after arithmetic and relational operations. The outcome of a
logical operation is determined as shown in Table 2-3 below. The
operators are listed in order of precedence.

Table 2-3: Logical Operatores

Logical Result of Operation
Operator X Value Y Value between X and Y

NOT 1 0
0 1

AND 1 1 1
1 0 0
0 1 0
0 0 0

OR 1 1 1
1 0 1
0 1 1
0 0 0

XOR 1 1 0
1 0 1
0 1 1
0 0 0

IMP 1 1 1
1 0 0
0 1 1
0 0 1

EQV 1 1 1
1 0 0
0 1 0
0 0 1

2-13

The BASIC Language Syntax

Just as the relational operators can be used to make decisions
regarding program flow, logical operators can connect two or more
relations and return a true or false value to be used in a
decision. For example:

IF D<200 AND F<4 THEN 80
IF 1)10 OR K<O THEN 50
IF NOT PTHEN 100

Logical operators work by converting their operands to 16-bit,
signed, twos complement integers in the range of -32768 to
+32767. (If the operands are not in this range, then an error
results.) If both operands are supplied as 0 or- -1, then logical
operators return 0 or -1. The given operation is performed on
these integers in bitwise fashion, that is, each bit of the
result is determined by the corresponding bits in the two
operands.

Thus, it is possible to use logical operators to test bytes for a
particular bit pattern. For instance, the AND operator can be
used to "mask" all but one of the bits of a status byte at a
machine input/output port. The OR operator can be used to
"merge" two bytes to create a particular binary value. The
following examples help demonstrate how the logical operators
work.

63 binary 111111
16 = binary 010000
63 AND 16 = binary 010000 16

15 binary 1111
14 binary 1110
15 AND 14 binary 1110 = 14

-1 binary 1111111111111111
8 = binary 1000
-1 AND 8 binary 1000 = 8

4 = binary 100
2 binary 010
4 OR 2 binary 110 6

10 binary 1010
10 OR 10 binary 1010 = 10

-1 binary 111111111111111
-2 binary 111111111111110
-1 OR -2 = binary 111111111111111 = -1.

(The bit complement of sixteen O's is sixteen l's which is the
twos complement representation of -1.)

NOT X=-(X+l) The twos complement of any integer is the bit
complement plus one.

2-14

The BASIC Language Syntax

Functional Operators

A function is used in an expression to call a predetermined
operation that is to be performed on an operand. BASIC has
"intrinsic" functions that reside in the system, such as SQR
(square root) or SIN (sine). All of BASIC's intrinsic functions
are described in Section 4.

String Operations

Strings can be concatenated with the plus (+) character. For
example, as shown in the following statements, line 20 prints
"FILENAME" and line 30 prints "NEWFILENAME".

10 A$="FILE":B$="NAME"
20 PRINT A$+B$
30 PRINT "NEW"+A$+B$

Strings can be compared using the same relational operators as
listed in Table 2-2 above.

String comparisons are made by taking one character at a time
from each string and comparing the ASCII code. If all the ASCII
codes are the same, then the strings are equal. If the ASCII
codes differ, then the lower code number precedes the higher.
If, during string comparison, the end of one string is reached,
then the shorter string is said to be smaller. Leading and
trailing blanks are significant.

String comparisons are used to test string values or to
alphabetize strings. All string constants used in comparison
expressions must be enclosed in quotation marks.

2-15

The BASIC Language Syntax

STRUCTURE OF A BASIC PROGRAM

The Main Module

All compiled BASIC programs must contain one and only module that
is designated as the main module. The main module is the first
module executed when the program is run.

The compiler designates (by default) a module as main at compile
time. The Suppress Main compiler option prevents a BASIC module
from being designated as main.

The Suppress Main option must be used whenever a program contains
two or more modules. Since only one module can be main, all
modules except the main one must be compiled with the Suppress
Main option.

Data Statements

If a BASIC program consists of more than one module, the data
statements of each module are logically concatenated. The order
of concatenation is the same as the order of the object modules
as seen by the Linker when the BASIC program is linked.

The RESTORE statement restarts 'the data statement pointer to the
beginning of the concatenated data statements. The RESTORE
command is described in more detail in Section 3.

The Public Code Option

The Public Code option allows a BASIC module to transfer control
to another BASIC module by using GOSUB, GOTO, or by calling a
user-defined function.

The Public Code option is selected when a module is compiled.

Public Code means that all line numbers and user-defined
functions in a module are accessible to all modules. Program
control can be transferred to any line number of a user-defined
function in the module.

In the example shown below, modules Main.Bas and Work.Bas
comprise a BASIC program. Work. Bas is compiled with the Public
Code option. Program control is transferred from Main.Bas to
Work.Bas by using a user-defined function (line 10), GOSUB (line
20), and GOTO (line 30).

2-16

Main.Bas
10 PRINT FNADD2(1,1)
20 GOSUB 200
30 GOTO 300

The BASIC Language Syntax

Work.Bas
100 DEF FNADD2(X,Y)=X+Y
200 PRINT "HELLO"
210 RETURN
300 PRINT "GOODBYE"
310 END

Note that if two modules in a BASIC program are compiled with the
Public Code option, they cannot contain the same line numbers.

The Common Data Option

BASIC modules that comprise a BASIC program can share variables
using the Common Data option. This option is selected when a
module is compiled.

Common Data means that reference to a variable from two or more
modules refer to the same area in memory.

In the example shown below, modules A.Bas and B.Bas comprise a
BASIC program and are compiled with the Common Data option.
(B.Bas is also compiled with the Public Code option). The
variable X is assigned the value 10 in A.Bas. This value is
printed in B.Bas, since the reference to X in both modules refer
to the same area of memory.

A.Bas
10 X = 10
20 GOSUB 100
30 END

B.Bas
100 PRINT X
110 RETURN

Note that when two or more modules share an array, the array must
be the same size in each of the modules.

2-17

The BASIC Language Syntax

Arguments to functions are always enclosed in parentheses. In
the formats given for the functions in this Section, the
arguments are abbreviated as follows:

X and Y

p

I and J

X$ and Y$

represent any numeric expressions,

represents a pointer (single-precision
number),

represent integer expressions, and

represent string expressions.

If a floating point value is supplied where an integer is
required, BASIC rounds the fractional portion and uses the
resulting integer.

2-18

SECTION 3

BASIC COMPILER COMMANDS AND FUNCTIONS

This section defines all the BASIC Compiler commands and
functions alphabetically for easy reference. Each command or
function is presented with the following information:

• an indication of command or function

• a statement which shows the general form of the
command/function

• a description of the command/function that explains how the
command/function works

• an example of the command/function used ~n a Basic
Compiler program

• an explanation of the example describing the action caused
by the command/function

Underlined words represent the information that you supply when
using the command/function. For example, the manual treats the
PRINT command with the form:

PRINT variablel, variable2

This tells you that the PRINT command may be used with any number
of variables, and that you fill in the variable name when you
write a PRINT statement.

3-1

ABS

ABS Form of Function

ABS (numepic expression)

DESCRIPTION

The ABS function returns the absolute value of the numeric
expression.

, EXAMPLE: ABS

LPRINT "Absolute value of 7 and -7 is";ABS(-7)

3-2

ASC

ASC Form of Function

ASC (string expression)

DESCRIPTION

The ASC function returns the decimal representation of the
ASCII code which is equivalent to the first character of the
string expression. If the string expression is null an error
message results.

, EXAMPLE: ASC

LPRINT liThe numeric difference between upper and lower case
ASCII is"jASC("a")-ASC("A")

3-3

ATN

ATN

DESCRIPTION

Form of Function

ATN (numeric expression in
radians)

The ATN function returns the arctangent of the numeric
. expression. The numeric expression is assumed to be in radians
and the function returns values in the range of -pi/2 to pi/2.

The evaluation of the ATN function is always performed in
single precision.

, EXAMPLE: ATN

LPRINT "ArcTangent of 12 "ATN(12)

3-4

CALL

DESCRIPTION

Form of Statement

CALL procedure name

or

CALL procedure name (first
parameter, second
parameter, •••)

CALL

The CALL command allows the user to call a nonvalue returning,
non-BASIC procedure. The command may call a procedure using only
the procedure name as in the first format, or it may call a
procedure and pass information to that procedure as is done in
the second format.

The parameters must be integers or single precision numbers. You
can not pass strings, arrays or double precision numbers
directly.

Example: CALL

CALL Procl
CALL Proc2(Varl,Var2)

3-5

COSl

CDBL Form of Function

CDBL (numeric expression)

DESCRIPTION

The CDBL function converts a numeric expression to a double
precision value.

, EXAMPLE: CDBL

PI# = CDBL(3.14)

3-6

CHR$

CHR$ Form of Function

CHR$ (ASCII code number)

DESCRIPTION

The CHR$ function returns the string equivalent of the
specified ASCII number. The CHR$ function is often used to
display special characters on the video.

I EXAMPLE: CHR$

LPRINT "66 is the ASCII value of ";CHR$(66)

3-7

CHAIN

CHAIN Form of Statement

CHAIN "modulename"

CHAIN "modulename", line number

DESCRIPTION

The CHAIN command transfers control from one BASIC module to
another. The modulename in the statement format above is the
name of the called program.

When the line number option is used, the execution of the called
module begins at that line. If the line number option is not
used, execution begins at the first line of the called module.

If the Common Data option is selected from the BASIC Compile
menu, variables in the current program are shared with other
modules. If this option is not selected, the data is not common.

If a module is compiled with the [No CHAIN/ERL info?] option" it
cannot be entered using the line number option of the CHAIN
command.

EXAMPLE

120 CHAIN "MYPROG"

150 CHAIN "MYPROG", 200

3-8

EXPLANATION

Statement number 120 calls the
program MYPROG and begins
execution at the first line of
MYPROG.

Statement number 150 calls the
program MYPROG. Execution of
MYPROG now begins at line number
200 of MYPROG.

CINT

CINT Form of Function

CINT (numeric expression)

DESCRIPTION

The CINT function converts a decimal numeric expression to an
integer. The conversion is done by rounding the fraction portion
of the number. The numeric expression must be in the range
-32768 to 32767. If it is not, then an error message results.

I EXAMPLE: CINT

LPRINT "CINT truncates -6.34 to ";CINT(-6.34)

3-9

CLOSE

CLOSE

DESCRIPTION

Form of Statement

CLOSE

CLOSE #first filenumber,
#2nd filenumber, .••

The CLOSE command is used to end either input to or output from a
disk.

The CLOSE command without a file number closes all open files.

The CLOSE command with a file number closes the indicated file.
CLOSE file numbers must agree with the file numbers used in the
OPEN command to begin output or input.

The END command also closes all open files automatically.

Stop does not close disk files.

EXAMPLE: CLOSE

CLOSE
CLOSE#l

3-10

cos

cos Form of Function

COS (numeric expression in radians)

DESCRIPTION

The COS function returns the cosine of the numeric expression.
Notice that the input to the function is in radians. The
evaluation of the COS function is always performed in si~gle
precision.

, EXAMPLE: COS

LPRINT "The cosine of 2 is ";COS(2)

3-11

CSNG

CSNG

DESCRIPTION

Form of Function

CSNG (numeric expression either
double precision or integer)

The CSNG function converts a numeric expression to a single
p~ecision value.

, EXAMPLE: CSNG

LPRINT "Large numbers may be converted to single precision with
CSNG"

LPRINT " 1234567890 is ";CSNG(1234567890)

3-12

eVI, evs, eve

CVI, CVS, CVD Form of Function

CVI (2 byte string)

CVS (4 b;yte string)

CVD (8 b;yte string)

DESCRIPTION

These functions convert string values to numeric expressions.
When numeric values are read from a random disk file, they must
first be reconverted to numeric values using these functions.

CVI converts a two byte string to an integer value.

CVS converts a four byte string to a single precision value.

CVD converts an eight byte string to a double precision value.

The functions MKI$, MKS$, and MKD$ are opposite in function.

, EXAMPLE: CVI/CVS/CVD

G$=CHRS(10)
, LPRINT CVI(G$)

3-13

DATA

DATA Form of statement

DATA constant, constant, ..•

DESCRIPTION

The DATA statement is a non-executable statement that stores
ei ther numeric or string constants. The constants in a DATA
statement are accessed by means of READ statements in a program.

DATA statements are used in the order of their occurrence in the
source file.

String constants in DATA statements must be surrounded by double
quotation marks only if they contain commas, colons, or
significant leading or trailing spaces. Otherwise quotation
marks are not needed.

I EXAMPLE: DATA

I see the example for the READ command

3-14

DATETIME$

DATETIME$ Form of Function

DATETIME$ (~)

or

DATETIME$ (string parameter)

DESCRIPTION

The DATETIME$ function returns a string containing the date
and/or time. If the statement is written with a null string, a
default template is used that produces a date time of the format.

10/15/82 23:10:14

The date and time can be formatted by using any of the
following parameters.

KEY EXPANSION

h hour in 12-hour notation (1-12)

t hour in 24-hour notation (0-23)

m minute (0-59)

s second (0-59)

a AM/PM

y year (1952-2042)

o month number (1-12)

n month name

d day of month (1-31)

w weekday name

modifier meaning

o zero-fill

* variable width

3-15

DATETIME$ (Cont.)

DATETIME$ (Continued)

Fields are defined by enclosing the parameters in exclamation
points. By default, fields are a fixed-width. Values are
truncated to fit into the specified width, on the left for
numeric values and on the right for name values. To fill leading
digit positions with zeros, use zero (0) as the first character
in the field.

Vari'able width fields can be obtained by entering an asterisk
(*) as the first character in the field. The resulting field
will be exactly as wide as needed to hold the replacement value.

Capitalization of name values corresponds to the capitalization
of the key character. Thus" ! AA!" results in "AM" and "! aa!"
results in "am". Similarly, "!N!" results in "MAY" and "!n!"
resul ts in "May." (Weekday and month names always begin with a
capital letter.) Capitalization of key characters for numeric
values is not significant.

Text that is not enclosed in exclamation marks is copied
directly to the output str ing. For example, "Today is ! *w! . "
expands to "Today is Wednesday."

, EXAMPLE: DATETIME$

LPRINT "Default Date/Time format"DATETIME$("")
T$ = "tt!:! mm ! ! dd ! - ! 00 ! - ! yy ! "
LPRINT "Special Date/Time format"DATETIME$(T$)

3-16

DEF

DEF Form of Statement

DEF variable ~, initial letter(s)
of variables included in the
declaration or range(S) of
letters

DESCRIPTION

The DEF statement declares variable types.

Type must be:

INT for integer variables
SNG for single precision variables
DBL for double precision variables
STR for string variables

DEF statements may declare a
particular type by including
variables in the DEF statement.

range of variables
the initial letters

to
of

be a
these

If no type declaration statements are encountered, all variables
without declaration characters are assumed as single-precision
variables.

EXAMPLE: DEF

DEFDBL A-G
DEFSTR X
DEFINT A-C,W-Z

3-17

DEFFN

DEF FN

DESCRIPTION

Form of Statement

DEF FN function name=
function definition

or
DEF FN function name

(parameter list)=
function definition

The DEF FN statement defines and names a user-created function.

The function name must follow the rules for variable naming. If
the function defined is numeric, the function name must be a
valid numeric variable name. If a string function is defined,
the function name must be a valid string variable.

The function name is always directly preceded by FN.

The variables that appear in the function definition are only
used to define the function. They do not affect program
variables which may have the same name. When the function is
called, the arguments in the calling statement are exchanged on a
one for one basis with the parameters in the function defining
statement.

A DEF FN statement must be executed before the function it
defines can be called. If a function is called before it is
defined, the compiler assumes that it will be found in another
module. This other module must be linked or an error occurs.

I EXAMPLE: DEF FN

DEF FNAT$(X,Y)=CHR$(255)+"C"+CHR$(X)+CHR$(Y)
PRINT fnAT$(35,5)~"M A I N MEN U"

3-18

DEFLPRINT

DEFLPRINT Form of Function

erc% = DEFLPRINT (string expression)

DESCRIPTION

The DEFLPRINT function redirects the output of the LPRINT
commands to valid devices other than [LPT]. The string
expression must be a valid device specification as defined by the
operating systems in SamGen.Asm.

DEFLPRINT will close a previously open DEFLPRINT device and open
the new one specified. In the case of a spooler device, such as
[SPL] or [SPLB], the file will be enqueued immediately.

DEFLPRINT returns a system error code.

EXAMPLE:

erc%=DEFLPRINT(" [SPL]")
LPRINT("Printing to Spooler")
erc%=DEFLPRINT("[NUL]")

3-19

DIM

DIM

DESCRIPTION

Form of Statement

DIM array ~[array size],
array ~[array size].

The DIM statement specifies the maximum number of elements for an
array.

The DIM statement sets all elements of the specified numeric
arrays to a value of 0, and all elements of string arrays as
having no value.

, EXAMPLE: DIM

DIM Array![20,12]
DIM A[5]

3-20

END

END Form of Statement

END

DESCRIPTION

The END statement terminates program execution, closes all files
and returns to the Executive.

, EXAMPLE: END

IF K > 1000 &
THEN END &
ELSE K = K + I

Note for System Analysts

End finishes the application and returns to
the current exit run file. The exit run
file is normally the Executive. It may be
reset by any application.

3-21

EOF

EOF Form of Function

EOF (file number)

DESCRIPTION

The EOF function returns an evaluation of true when the end of
a sequential file is encountered. This allows the user to read a
sequential file of unknown length and branch when the end of the
file is encountered.

EXAMPLE: EOF

OPEN II",il,IDATAl"
FOR I = 1 to 1000
IF EOF(l) THEN END
INPUT il,VAR(I)
NEXT I

3-22

ERR/ERL

ERR/ERL Form of Statement

ERR error code

ERL linenumber

DESCRIPTION

The ERR and ERL system variables are used during an error
trapping routine. The variable ERR contains the error code for
the error, and the variable ERL contains the line number of the
line in which the error was detected. The ERR and ERL variables
are usually used in IF. THEN statements to direct program
flow in the error trap routine. These variables may not be
assigned values.

If they are assigned values, the compiler generates a fatal error
and prints the following message:

FATAL ERROR ENCOUNTERED

Contact technical support and report this number: 18

The compiler stops compiling and truncates the .Lst file at the
line where the error was encountered.

EXAMPLE: ERR/ERL

120 INPUT "CURRENT COST";C
130 IF C > BUDGET THEN ERROR 215
IF ERR=215 THEN PRINT &

"COST IS OVER BUDGET"
IF ERL=130 THEN RESUME 120

3-23

ERROR

ERROR Form of Statement

ERROR integer expression

DESCRIPTION

The ERROR command allows the user to simulate the occurrence of a
BASIC error or create a new error message.

The integer expression of the ERROR command must be in the range
of 0 - 255.

To define a new error message, use a value that is greater than
any used by BASIC's error messages. This user defined error can
then be handled in an error trap routine. See example below.

• EXAMPLE ERROR

ON ERROR GOTO 255

ERC=BEEP{)
IF ERC <> 0 THEN ERROR 39

255 IF ERR = 39 &
THEN LPRINT "SYSTEM ERROR #"SYSERC{)" AT'LINE"ERL &
ELSE LPRINT "BASIC ERROR #"ERR" AT LINE"ERL

EXP

EXP Form of Function

EXP (numeric expression)

DESCRIPTION

The EXP function returns the value of e (e=2.71828 18284 59045)
to the power of the numeric expression. The numeric expression
can be a single or double precision value.

, EXAMPLE: EXP

R = 5.5
ANS!=EXP(2*R)

3-25

FIELD

FIELD

DESCRIPTION

Form of Statement

FIELD #file number, field width AS
string variable, field width
AS string variable, ••••

FIELD statements allocate space for variables in a random file
buffer.

FIELD statements must precede GET commands or PUT commands when
using random access files.

The file number is the number under which the file was OPENed.
Field width is the number of characters to be allocated to string
variable.

The total number of bytes allocated in a FIELD statement must
not exceed the record length that was specified when the file was
OPENed. Otherwise an error message occurs.

Any number of FIELD statements can be executed for the same
file, and all FIELD statements that were executed are in effect
at the same time.

NOTE: Do not use a FIELDed variable name in an INPUT or LET
statement. Once a variable name is FIELDed, it points to the
correct place in the random file buffer. If a subsequent INPUT
or LET statement with that variable name is executed, then the
variable's pointer is moved to string space.

If a dummy file was opened to allow the use of FIELD to define
records, do not close the file. When the file is closed, the
buffer space defined by FIELD is reclaimed, and its contents ar~
unpredictable.

, EXAMPLE: FIELD

, SEE APPENDIX F

3-26

FIX

FIX Form of Function

FIX (numeric expression)

DESCRIPTION

The FIX function returns the integer part of the numeric
expression. The fractional portion of the number is ignored. No
rounding of values occurs. See SINT and INT; they also return
integer values.

, EXAMPLE: FIX

LPRINT "RESULTS OF FIX(57.34)"FIX(57.34)

3-27

FOR ... NEXT

FOR ••• NEXT

DESCRIPTION

Form of Statement

FOR variable=initial value TO
final value

FOR variable=initial value TO
final value, STEP
increment

FOR NEXT statements allow a series of instructions to be
performed a given number of times.

The initial values and final values may be numbers, expressions
or variables.

The variable is used as a counter, and is incremented by the
amount specified by STEP. A check is performed to see if the
value of the counter is greater than the final value. If it is
not greater, then BASIC Branches back to the statement after the
FOR statement and the process is repeated. If it is greater,
then execution continues with the statement following the NEXT
statement.

If step is not specified, then the increment is assumed to be
one. If step is negative then the final value of the counter is
set to be less than the initial value. The counter is
decremented each time through the loop and the loop is executed
until this counter is less than the final value.

For ••• Next loops can be nested but each loop must have a unique
variable name as its counter. Also the NEXT statement for the
inside loop must appear before the NEXT statement for this
outside loop.

The variables in the NEXT statement can be omitted, in which case
the NEXT statement matches the most recent FOR statement. If a
NEXT is encountered before its corresponding FOR statement, then
an error message results.

I EXAMPLE: FOR ••• NEXT

FOR J = 10 TO 1 STEP -1

NEXT J

3-28

FRE

FRE Form of Function

FRE (0)

DESCRIPTION

The FRE function returns the number of bytes in memory that are
not being used by BASIC.

EXAMPLE: FRE

PRINT FRE(O)

3-29

GET

GET Form of Statement

GET #file number

GET #file number, record number

DESCRIPTION

A GET statement reads a record from a random disk file into the
random buffer. The file number is the number under which the
file was opened.

The record number specifies the record to be read. If it is an
invalid record number an error message results.

If the record number is not specified, the next record after the
last GET is read into the random buffer.

The largest possible record number is 32767.

I EXAMPLE: GET

I SEE APPENDIX F

3-30

GETRA

GETRA Form of Function

GETRA (pointer)

DESCRIPTION

The GETRA function returns the relative address of a pointer.
A pointer can be found with the PTR function, or with certain
external library functions.

, EXAMPLE: GETRA

G$ = "GETRA EXAMPLE"
RA! = GETRA(PTR(G$))

3-31

GETSA

GETSA Form of Function

GETSA (pointer)

DESCRIPTION

The GETSA function returns the segment address of the pointer.
The pointer of the variable is returned by the PTR function.

, EXAMPLE: GETSA

G$ = "GETSA EXAMPLE"
SA! = GETSA(PTR(G$))

3-32

GOSUB ... RETURN

GOSUB ••• RETURN Form of Statement

GOSUB line number

Linenumber Statement

Statement
SUBROUTINE

Statement

Statement

RETURN

DESCRIPTION

The GOSUB command causes program execution to branch to the
subroutine which starts at the line number indicated in the
statement. When the statements in the subroutine are completed
and the RETURN instruction is met, then execution of the program
continues at the line number which follows the nearest GOSUB
statement.

A subroutine can be called any number of times in a program and a
subroutine can be called from wi thin another subroutine. Such
nesting of subroutines is limited only by available memory.

I EXAMPLE: GOSUB ••• RETURN

GOSUB 335
IF A=l &
GOTO 340

335 A! = 1
B! = 2

RETURN

3-33

GOTO

GOTO Form of Statement

GOTO line number

DESCRIPTION

The GOTO command branches to the indicated line number. The
program execution then proceeds from that point in the program
sequence.

, EXAMPLE: GOTO

GOTO 350

3-34·

HEX$

HEX$ Form of Function

HEX$ (numeric expression)

DESCRIPTION

The HEX$ function returns the string which is the hexadecimal
equivalent of the numeric expression. The numeric expression is
rounded to an integer before the hexadecimal string is obtained.

See OCT$ for octal conversion.

, EXAMPLE: HEX$

J = 10
LPRINT J "DECIMAL IS " HEX$(J) "HEXADECIMAL"

3-35

IF ... THEN

IF ••• THEN / IF ••• THEN ••• ELSE / IF ••• GOTO / IF ••• GOTO ••• ELSE

Form of Statement

IF ••• THEN IF expression THEN statement

IF expression THEN line number

IF ••• THEN ••• ELSE IF expression THEN statement ELSE
statement

IF expression THEN line number ELSE
line number

IF ••• GOTO line number IF expression GOTO line number

IF ••• GO TO ••• ELSE IF expression GOTO line number ELSE
statement

IF expression GOTO line number ELSE
line number

DESCRIPTION

IF statements conditionally direct the f low of a program.
When the expression evaluated in the statement is true, the
statement or line number following the THEN or GO TO portion of
the statement is executed. If the expression evaluated is not
true, control passes to either the next executable statement, or
to the ELSE portion of the statement, if it exists. THEN and
ELSE statements may use a combination of statements and line
numbers.

3-36

IF ... THEN (CONT.)

IF ••• THEN / IF ••• THEN ••• ELSE / IF ••• GOTO / IF ••• GOTO ••• ELSE

Nesting of IF Statements:

IF ••• THEN ••• ELSE statements can be nested. Nesting is limited
only by the length of the line. For example

IF
THEN
ELSE

x > y &
PRINT "GREATER" &
IF Y > X &
THEN PRINT "LESS" &
ELSE PRINT "EQUAL"

is a legal statement. If the statement does not contain the same
number of ELSE and THEN clauses, then each ELSE is matched with
the closest unmatched THEN. For example

IF
THEN

A = B
IF
THEN
ELSE

&
B= C &
PRINT "A = C" &
PRINT "A<>C"

does not print "A<>C" when A<>B. Prints "A<>C" when A=B and B<>C.

NOTE

When using IF to test equality for a value that is
the result of a floating point computation,
remember that the internal representation of the
value cannot be exact. Therefore, the test should
be against the range over which the accuracy of
the value can vary. For example, to test a
computed variable A against the value 1.0, use:

IF ABS (A-l.0)<1.OE-6 THEN •••

This test returns true if the value of A is 1.0 with a relative
error of less than 1.DE-6.

I EXAMPLE: IF ••• THEN [••• ELSE]/IF ••• GOTO

IF (1=1) &
THEN J=14

IF (1=2) &
THEN J=4DD &
ELSE G$="TEST IF ••• THEN"

3-37

INP

INP

DESCRIPTION

Form of Function

INP ("B" ,port number)

INP ("W", port number)

The INP function returns either the byte read from the specified
port (form 1) or the word read from the specified port (form 2).

The port number must be an integer in the range of 0 to 65535 for
form 1.

The port number must be an even integer in the range of 0 to
65534 for form 2. An Illegal function call error results if an
odd number port is used in form 2. See OUT.

3-38

INPUT

INPUT

DESCRIPTION

Form of Statement

INPUT variablel, variable2,

INPUT "Prompt message" ;
variablel, variable2,.

INPUT; "Prompt message"

INPUT "Prompt message",

The INPUT statement causes the program to pause while the user
enters the variables requested in the statement. The INPUT
statement causes a question mark to appear on the video display.

When the form of the INPUT includes a prompt message, such as
format 2 above, the message is displayed before the question
mark. If a comma follows the prompt, the question mark is
omitted.

If INPUT is immediately followed by a semi-colon, the carriage
return typed by the user is not echoed to the screen.

The variables in the list can be numeric or string variable names
including subscripted variables. The type of each data that is
input must correspond with the type specified by the variable
name.

Responding to INPUT with too many or too few items, or with the
wrong type of value (for example, numeric instead of string)
causes the message "?Redo from start" to be printed. No
assignment of input value is made until an acceptable response is
given.

Note:

INPUT does not accept octal or hex constants.

I EXAMPLE: INPUT

INPUT "Press a key to indicate your choice:",IN$

3-39

INPUT#

INPUT #

DESCRIPTION

Form of Statement

INPUT# file number, variablel,
variable2, •

The INPUT # statement reads data from a sequential disk file.
The values read from the indicated file number are assigned to
the variables which are listed as part of the statement. The
file number must agree with the file number of the OPEN
statement.

The data items in the file should appear just as they would if
data were being typed in response to an INPUT statement. Leading
spaces, RETURN's, and BOUND's are ignored when using numeric
values. The first character encountered that is not a space,
RETURN, or BOUND is assumed to be the start of a number. The
number terminates on a space, RETURN, BOUND, or comma.

If BASIC is scanning the sequential data file for a string item,
then leading spaces, RETURN's, and BOUND's are also ignored. The
first character encountered that is not a space, RETURN, or BOUND
is assumed to be the start of a string item. If this first
character is a quotation mark (H), then the string item consists
of all characters read between the first quotation mark and the
second. Thus, a quoted string cannot contain a quotation mark as
a character. If the first character of the string is not a
quotation mark, then the string is an unquoted string, and
terminates on a comma, RETURN, or after 255 characters are read.
If end of file is reached when a numeric or string item is being
INPUT, then the item is terminated.

, EXAMPLE: INPUT#

, SEE APPENDIX F

3-40

INPUT$

DESCRIPTION

INPUT$

Form of Function

INPUT$ (number of string characters)

INPUT$ (number of string characters),
file number)

The INPUT$ function returns a string of characters of the
specified number. When the function is inputting from the
keyboard (format 1), the characters entered are not displayed on
the video and all control characters except CANCEL may be used.
CANCEL interrupts the execution of the function.

The INPUT$ function may also return strings of characters from
sequential files by specifying the file number.

I EXAMPLE: INPUT$

PRINT fnAT$(27,20)"Press any key to continue"
IN$ = INPUT$(l)

3-41

INSTR

INSTR

DESCRIPTION

Form of Function

INSTR (string1, string2)

INSTR (position for starting search,
string1, string2)

The INSTR function searches for the first occurrence of string
2 in string 1. The value it returns is the position at which the
match occurs.

The second form of the function allows the user to specify the
posi tion at which the search begins. The position for starting
search must be in the range 0 to 255. If the position is greater
than the length of string1 or if string1 is null or if string2
cannot be found, then INSTR returns O. String1 and string2 can
be string variables, string expressions or string literals.

, EXAMPLE: INSTR

USER$ = ":SignOnVolume:Sys"
FirstColon% =INSTR(User$,":")
NextColon% = INSTR(FirstColon%+1,User$,":")
Length% = LEN(USER$)-NextColon%
LPRINT "SignOn volume is"; MID$(USER$,FirstColon%+1)

3-42

INT

INT Form of Function

INT (numeric expression)

DESCRIPTION

The INT function returns the largest integer less than or equal
to the numeric expression. See CINT and FIX; they also return
integer values.

, EXAMPLE: INT

LPRINT "INT EXAMPLE #1"INT(99.89)
LPRINT "INT EXAMPLE #2"INT(-12.11)

3-43

KILL

KILL Form of Statement

KILL "filename"

DESCRIPTION

The KILL statement deletes a file from the disk. The "filename"
can be a program file or a sequential or random access data file.
The KILL statement may only be used to delete a disk file that is
not currently open.

If a KILL statement is given for a file that is currently open or
for a file that does not exist, then an error message results.

, EXAMPLE: KILL

, SEE APPENDIX F

3-44

LEFT$

DESCRIPTION

LEFT$

Form of Function

LEFT$ (string expression, number of
characters of the string)

The LEFT$ function returns the specified number of characters
beginning at the left.

If the number of characters specified in the LEFT$ function is
greater than the length of the string expression, the entire
expression is returned. If it is zero then the null string is
returned.

, EXAMPLE: LEFT$

LPRINT "Three left characters"LEFT$("SysImage.Sys",3)

3-45

LEN

LEN Form of Function

LEN (string expression)

DESCRIPTION

The LEN function returns the number of characters in a string.
All characters including blanks are counted.

t EXAMPLE: LEN

J% = LEN(G$)

3-46

LET

LET Form of Statement

LET variable expression

or

variable expression

DESCRIPTION

The LET statement assigns the value of an expression to a
variable. The LET portion of the statement is optional. The
variable, equal sign, and the expression are sufficient for
assignment statements.

I EXAMPLE: LET

LET X = 40
LET Y = 60
LET AREA = X * Y
X = 40
Y = 60
AREA = X * Y

3-47

LINE INPUT

LINE INPUT Form of Statement

LINE INPUT string variable

or

LINE INPUT "prompt string":
string variable

DESCRIPTION

The LINE INPUT statement allows users to input an entire line and
assign it to a string variable. The second form of the LINE
INPUT statement provides a message on the video display prior to
the line to be entered.

The prompt string is a string literal
video display before input is accepted.
printed unless it is part of the prompt
the end of the prompt to the RETURN
variable>.

that is printed at the
A question mark is not

string. All input from
is assigned to <string

If LINE INPUT is immediately followed by a semicolon, then the
RETURN typed by the user to end the input line does not go to the
next line on the display.

A LINE INPUT can be escaped by typing CANCEL. BASIC returns to
command level and types "OK". Typing CO NT resumes execution at
the LINE INPUT.

I EXAMPLE: LINE INPUT

LINE INPUT "File name: ",In$

3-48

LINE INPUT #

DESCRIPTION

LINE INPUT #

Form of Statement

LINE INPUT # file number, string
variable

The LINE INPUT # statement reads an entire line from a sequential
disk file and assigns it to a string variable.

The file number must agree with the file number of the OPEN
statement.

File number is the number under which the file was OPENed.

String variable is the variable name to which the line is
assigned.

LINE INPUT# reads all characters in the sequential file up to the
end-of-line. Then it skips over the end-of-line sequence, and
the next LINE INPUT# reads all characters up to the next end-of
line. (if an end-of-line sequence is encountered, then it is
preserved.)

LINE INPUT# is especially useful if each line of a data file was
broken into fields, or if a BASIC program saved in ASCII mode is
being read as data by another program.

, EXAMPLE: LINE INPUT#

OPEN "1",1 ,"[SYS]<SYS>.USER"
LINE INPUT #1,In$
CLOSE #1

3-49

LOC

LOC Form of Function

LOC (file number)

DESCRIPTION

The LaC function returns the record number of the next record
in a random access file. The next record number is the record
number of the last record used with a GET or PUT statement plus
1 •

, EXAMPLE: LOC

, SEE APPENDIX F

3-50

LOF

LOF Form of Function

LOF (file number)

DESCRIPTION

The LOF function returns the record number of the last record
of a random access file. This allows the user to determine the
end of a random disk file.

I EXAMPLE: LOF

I SEE APPENDIX F

3-51

LOG

LOG Form of Function

LOG (numeric expression)

DESCRIPTION

The LOG function returns the natural logarithm of the numeric
expression as a single precision value.

I EXAMPLE: LOG

IF LOG(X) > 1 .860 &
GOTO 9000

3-52

LPOS

LPOS Form of Function

LPOS (any numeric expression)

DESCRIPTION

The LPOS function returns the current position of the print
head in the line printer buffer. This is not necessarily the
actual physical position of the print head.

The numeric expression is a dummy argument and may be any value
since it does not affect the function.

, EXAMPLE: LPOS

IF LPOS(X) > 60 &
THEN LPRINT CHR$(13) , CARRIAGE RETURN

3-53

LPRINT

LPRINT Form of Statement

LPRINT

LPRINT list of expressions

DESCRIPTION

The LPRINT statement prints data on the line printer: The values
may be numeric or string. String expressions must be enclosed in
quotation marks.

LPRINT assumes that the printer width is 132 characters by
default but can be modified by the use of the WIDTH command. A
carriage return is inserted at the end of every line. To
suppress carriage returns set the printer width to 255.

LPRINT with no variables or expressions listed prints a blank
line.

I EXAMPLE: LPRINT/LPRINT USING

LPRINT USING "UNIT PRICE ••••• $$##.##";UP!

LPRINT "Market is Down"

3-54

LPRINT USING

DESCRIPTION

LPRINT USING

Form of Statement

LPRINT USING "formatting expression";
list of expressions

The LPRINT USING statement prints data on the line printer using
a format supplied by the user.

The formatting options are the same as those for the PRINT USING
command. See the PRINT USING Section for a listing of formatting
expressions and instructions for their use.

, EXAMPLE: LPRINT/LPRINT USING

LPRINT USING "UNIT PRICE •.•.• $$##.##";UP!

3-55

LSET and RSET

LSET and RSET Form of Statement

LSET string variable = string.
... eXEression

RSET string variable = string
eXEression

DESCRIPTION

Both the LSET and the RSET commands are used to move data into a
random file buffer before being stored in a random access file.

LSET left justifies the string variable in the field allocated in
the buffer.

RSET right justifies the string variable in the field allocated
in the buffer.

If the string is too long for the field, then characters are
dropped from the right. Numeric values must be converted to
strings before they are LSET and RSET by using the MKI$, MKS$ an·d
MKD$ functions. LSET and RSET can also be used with a nonfielded
string variable to left or right justify a string in a given
field.

, EXAMPLE: LSET

FIELD 1, 4 AS A$, 20 AS N$
LSET N$ = CHARNAME$

, SEE APPENDIX F FOR FURTHER EXAMPLES

3-56

MAKEPOINTER

DESCRIPTION

MAKEPOINTER

Form of Function

MAKEPOINTER (relative address integer,
segment address integer)

The MAKEPOINTER function returns the pointer which represents
the location of the relative address and segment address
specified.

, EXAMPLE: MAKEPOINTER

'PRINT THE FIRST BYTE OF MEMORY
PRIN~ PEEK("B",MAKEPOINTER(O,O))

3-57

MID$

MID$

DESCRIPTION

Form of Function

MID$ (string expression,
beginning position)

or

MID$ (string expression,
beginning position, length
of character string)

The MID$ function returns a character string which is a portion
of the string expression specified in the function.

If the beginning position specified is greater than the length
of the furnished string expression, the function returns a null
string.

See LEFT$, RIGHT$, and the MID$ command.

, EXAMPLE: MID$ Function

W$ = "SunMonTueWedThuFriSat"
D$ = MID$(W$,D,3)

3-58

MID$

DESCRIPTION

M I 0$ (Cont.)

Form of Statement

MID$ (string variable1, beginning
position in string of replacement)
= string var1able2

MID$ (string variable1, beginning
position in string of replacement,
number of characters from string
variable2 to be used) -
string variable2

The MID$ command replaces a portion of one string expression with
another string expression. When the number of characters from
the second string value is not entered the entire second string
is used up to the length of the original string expression.

See LEFT$, RIGHT$, and the MID$ function.

, EXAMPLE: MID$ Command

DATE$ = "Today is xxx." 'xxx will be replaced by the
MID$(DATE$,10,3) = D$ 'three character abbreviation

3-59

MKI$ MKS$ MKD$

MKI$ MKS$ MKD$

DESCRIPTION

Form of Function

MKI$ (integer expression)

MKS$ (single precision expression)

MKD$ (double precision expression)

These functions convert numeric values to string values. When
numeric values are to be placed in a random buffer with an LSET
or an RSET statement, they must first be converted to string
values using these functions.

MKI$ converts an integer to a two-byte string.

MKS$ converts a single precision number to a four-byte string.

MKD$ converts a double precision number to an eight-byte string.

See CVI, CVS, and CVD.

I EXAMPLE: MKI$, MKS$, MKD$

I SEE APPENDIX F

3-60

NAME

DESCRIPTION

Form of Statement

NAME "old file name"
AS "new file name"

NAME

The NAME command renames a file which has been saved on disk.
The old file name must exist and the new file name must not exist
to change file names.

, EXAMPLE: NAME

NAME "MasterFile" AS "OldMaster"

3-61

OCTS

OCT$ Form of Function

OCT$ (numeric expression)

DESCRIPTION

The OCT$ function returns the string which is the octal
equivalent of the numeric expression. The numeric expression is
rounded to an integer before the octal string is' obtained.

See HEX$ for hexadecimal conversion.

, EXAMPLE: OCT$

PRINT OCT$(NUM!)

3-62

ON ERROR GOTO

ON ERROR GOTO Form of statement

ON ERROR GOTO line number

DESCRIPTION

The ON ERROR GOTO statement directs program flow to the first
line of an error handling routine. All subsequent errors cause
program action to be shifted to the error handling routine.

To disable error
Subsequent errors
execution.

trapping,
print an

, EXAMPLE: ON ERROR GOTO

ON ERROR GOTO 610

execute an ON ERROR GOTO o.
error message and halt program

3-63

ON ... GOSUB

ON .•• GOSUB

DESCRIPTION

Form of Statement

ON expression GOSUB line
number list

The ON ••• GOSUB command causes a program to branch to one of the
specified subroutines. Each line number in the statement must
refer to the first line of a subroutine.

The expression controls which line number from the list of line
numbers will be the object of the branch. If the expression is
the integer 3, control passes to the third line number in the
list. When the expression is a fraction, it is rounded to the
nearest integer.

If the value of the expression is negative, zero, greater than
the number of entries, or greater than 255 an error message
results.

EXAMPLE: ON ••• GOSUB

ON A GOSUB 100,200,300,400

3-64

ON ... GOTO

ON ••. GO TO Form of Statement

ON expression GOTO line number list

DESCRIPTION

The ON •.• GO TO command causes the program to branch to one of
the specified line numbers. Each line number in a statement must
refer to the first line in a subroutine.

The expression controls to which of the line numbers the program
will branch. If the expression is the integer 2, control passes
to the second line number in the list of line numbers.

When the expression is a fraction, it is rounded to the nearest
integer. If the expression is 0 or greater than the number of
entries in the number list, control passes to the next
executable statement.

If the value of the expression is negative, zero, greater than
the number of entries, or greater than 255 an error message
results.

EXAMPLE: ON ••• GOTO

ON A GO TO 100,200,300,400

3-65

OPEN

OPEN Form of Statement

OPEN "mode", #file number,
"file name"

OPEN "mode", #file number,
"file name",
record length

DESCRIPTION

The OPEN statement must precede any input or output using disk
files.

The mode must be one of the following:

"A" Output is to be appended to a sequential file

"0" Output is to a sequential file

"I" Input is from a sequential file
"R" Output to or input from a random access file

When using "R" mode, each record is written to the disk
before the next program statement is executed

"B" Output to or input from a random access file

When using "B" mode, each record is written to the disk
file some time before the file is closed, but not nec
essarily before the next program statement is executed.

liS II Input is from a random access file.

When using liS" mode, more than one program may use the
disk file at the same time.

The file number is an integer expression whose value is between
one and 255. The number is then associated with the file for as
long as it is open. The BASIC runtime allows six files open at
one time. This can be changed by reconfiguring the runtime.

The "filename II is a string expression having a maximum of 50
characters.

An optional record length may be speciofied for random access
files. The default record length is 128 characters.

EXAMPLE: OPEN
OPEN I I I ,#5,IDATAIN"

3-66

OPTION BASE

OPTION BASE Form of Statement

OPTION BASE 1

or

OPTION BASE 0

DESCRIPTION

The OPTION BASE command sets the minimum value for array
subscripts. The default value is option base O.

Given the following dimension statement:

DIM A[5]

OPTION BASE I would reserve space for the locations

A[l] A[2] A[3] A[4] A[5]

OPTION BASE 0 would reserve space for the locations

A[0 J A[l]

EXAMPLE: OPTION BASE

DIM A[5]
OPTION BASE I

A[2] A[3] A[4] A[5]

3-67

OPTION COMMA

OPTION COMMA

DESCRIPTION

Form of Statement

OPTION COMMA
or

OPTION COMMA string exp

The OPTION COMMA statement changes the physical
representation of the following for the input and output of
numeric data lists during program execution.

1. Logical input delimiter, which separates data items in
the INPUT and WRITE statements;

2. Logical comma, which is used by the PRINT USING
statement when formatting numbers;

3. Logical currency symbol, which is used by the PRINT
USING statement when formatting numbers;

4. Logical decimal point, which separates the integer and
fractional parts of floating point numbers.

If the optional string expression is omitted or is the null
string, OPTION COMMA resets the above items to the following new
default values.

Old Value New Value

logical input delimiter comma (,) slash (/)
logical comma comma (,) period (.)
logical currency symbol dollar ($) dollar ($)
logical decimal point period (.) comma (,)

If the optional string parameter is included and is non
null, OPTION COMMA resets the above items based on the first four
characters in the string expression.

New Value

logical input delimiter first character in string exp
logical comma second character in string exp
logical currency symbol third ,character in string exp
logical decimal point fourth character in string exp

3-68

OPTION COMMA (Cont.)

If the string expression contains less than four characters,
then the new default values are used for the unspecified items.
OPTION COMMA is an executable statement unlike OPTION BASE.

NOTE

OPTION COMMA only affects the
BASIC program with respect to
output of numeric data lists.
change the syntax of any part
source program.

execution of a
the input and
It does not

of a BASIC

In particular, OPTION COMMA does not change
the syntax of data statements or PRINT USING
format strings.

, EXAMPLE: OPTION COMMA

OPTION COMMA nn

3-69

OUT

OUT

DESCRIPTION

Form of Statement

OUT"B", port number, integer
expression

or

OUT"~/", port number, integer
expression

The OUT command has two forms. The OUT"B" form sends a byte to a
byte port. In this form the port number must be an integer in
the range of 0 to 65535 and the integer expression must be in the
range of 0 to 255.

The second form of this command, OUT "\I" , sends a word to a word
port. In this form both the port number and the integer
expression must be in the range of 0 to 65535 and the port number
must be even.

See INP.

3-70

PEEK

PEEK Form of Function

PEEK ("B", single precision pointer)

or

PEEK ("\f", single precision pointer)

DESCRIPTION

The PEEK "B" form returns the
location specified by the pointer.
in the range of 0 to 255.

The PEEK "W" form returns the
location specified by the pointer.
in the range of 0 to 65535.

byte read from the memory
The byte value is a decimal

word read from the memory
The word value is a decimal

PEEK is the complementary function of POKE.

t EXAMPLE: PEEK

A% :: PEEK("B", PTR(A!))

3-71

POKE

POKE

DESCRIPTION

Form of Statement

POKE"B", single precision
pointer, integer
expression

POKE"\I" , single precision
pointer, integer
expression

The two forms of POKE statements differ in the value range of the
integer expression.

The first form which writes a byte into the memory location
specified by the pointer has an integer expression in the range
of a to 255.

The second form which writes a word into the memory location
specified by the pointer has an integer expression in the range
of 0 to 65535.

Both integer expressions are the data that are to be poked into
the specified memory location.

, EXAMPLE: POKE

POKE "B",A!,O

3-72

POS

POS Form of Function

POS(IIXII)

POS (llyll)

DESCRIPTION

The POS function returns the position of the cursor in term~ of
line and column location.

The POS(IIXII) returns the cursor column position. The leftmost
position is O.

The POS(lIyll) returns the cursor line position.
positio~ is O.

, EXAMPLE: POS

IF POS(IIXII) > 60 &
THEN PRINT CHR$(lO)
IF POS(lIyll) > 29 &
THEN PRINT CHR$(l2)

The top

3-73

PRINT

PRINT Form of Statement

PRINT list of expressions

DESCRIPTION

The PRINT statement causes values to be output to the video
display. The values may be numeric or string. String expressions
must be enclosed in quotation marks.

The list of variables or expressions may be separated with commas
or semicolons.

Separating by semicolons causes each value to be displayed
immediately after the last value. Separating by commas causes
each value to be displayed in a pre-set column.

, EXAMPLE: PRINT

PRINT "PRINT EXAMPLES"
?
? "? IS THE SYNONYM FOR 'PRINT'"
?
? "TEXT CAN

QUOTES";CHR$(34)
? "TITLES"iA!

3-74

BE INTERSPERSED WITH NUMBERS";34;" AND

PRINT USING

DESCRIPTION

PRINT USING

Form of Statement

PRINT USING "formatting expression";
list of expressions

The PRINT USING statement displays data
by the user. The formatting options
numeric or string variables.

using a format supplied
are applied to either

String fields may be formatted using one of the following
characters:

"! " Specifies that only the first character in the
given string is to be printed.

"\n spaces \" Specifies that 2+n characters from the string
are to be printed. If the backslashes are
typed with no spaces, then two characters are
printed; with one space, three characters are
printed, and so on. If the string is longer
than the field, then the extra characters are
ignored. If the field is longer than the
string, then the string is left-justified in the
field and padded with spaces on the right.

"&" Specifies a variable length string field. When
the field is specified with "&", the string is
output exactly as input.

Numeric fields may be formatted using the following special
characters:

"#"

" . "

A number sign is used to represent each digit
position. Digit positions are always filled. If
the number to be printed has fewer digits than
posi tions specified, then the number is right
justified (preceded by spaces) in the field.

A decimal point can be inserted at any position
in the field. If the format string specifies
that a digit is to precede the decimal point,
then the digit always is printed (as 0 if
necessary). Numbers are rounded as necessary.

3-75

PRI NT USI NG (Cont.)

PRINT USING (Cont'd)

"+"

"_"

"**"

"$$"

"**$"

" " ,

"AAAA"

3-76

A plus sign at the beginning or end of the
format string causes the sign of the number
(plus or minus) to be printed before or after
the number.

A minus sign at the end
causes negative numbers
trailing minus sign.

of the format field
to be printed with a

A double asterisk at the beginning of the format
string causes leading spaces in the numeric
field to be filled with asterisks. The ** also
specifies pOSitions for two more digits.

A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted
number. The $$ specifies two more digit
positions, one of which is the dollar sign. The
exponential format cannot be used with $$.
Negative numbers cannot be used unless the minus
sign trails to the right.

The **$ at the beginning of a format string
combines the effects of the above two symbols.
Leading spaces are filled with asterisks and a
dollar sign is printed before the number. **$
specifies three more digit positions, one of
which is the dollar sign.

A comma that is to the left of the decimal point
in a formatting string causes a comma to be
printed to the left of every third digit to the
left of the decimal point. A comma that is at
the end of the format string is printed as part
of the string. A comma specifies another digit
position. The comma has no effect if used with
the exponential (AAAA) format.

Four carats (or up-arrows) can be placed after
the digit position characters to specify
exponential format. The four carats allow space
for E+xx to be printed. Any decimal point
position can be specified. The significant
digi ts are left-justified and the exponent is
adjusted. Unless a leading + or trailing + or -
is specified, one digit position is used to the
left of the decimal point to print a space or a
minus sign.

PRI NT USI NG (Cent.)

PRINT USING (Cont'd)

,

" "

"%"

An underscore in the format string causes the
next character to be output as ,a literal
character. The literal character itself can be
an underscore by placing "" in the format
string.

If the number to be printed is larger than the
specified numeric field, then a percent sign is
printed in front of the number. If rounding
causes the number to exceed the field, then a
percent sign is printed in front of the rounded
number.

EXAMPLE: PRINT USING

PRINT USING "##.##";.78

PRINT USING "###.##";987.657

PRINT USING "##.## ";10.2,5.3,66.789,.238

PRINT USING "+##.## ";-68.95,2.4,55.6,-.9

PRINT USING "##.##-";-68.95,22.449,-7.01

PRINT USING "**#.#";12.39,-0.9,765.1

PRINT USING "SS###.##";456.78

PRINT USING "**$##.##";456.78,2.34

PRINT USING "#### , . ##" ; 5430.436

PRINT USING "####.##,";5430.436

PRINT USING "##.####""""";234.56,987.123

PRINT USING ".####"""" ";88888,-99999

PRINT USING "+#.###"""" ";123,-456

PRINT USING "TOTAL S = $$####.##";5545.89 -
PRINT USING "##.##";876523.67

3-77

PRINT#

PRINT #

DESCRIPTION

Form of Statement

PRINT # file number,list of
expressions

The PRINT # statement writes data to a sequential disk file.

The file number must agree with the file number used in the OPEN
statement for the specified file.

The PRINT # writes data to a disk file just as it would appear
on the video display when a PRINT statement is used.

An image of the data
be displayed on the

For this reason, care
the disk, so that it is

PRINT# does not compress data on the disk.
is written to the disk, just as it would
video display with a PRINT statement.
should be taken to delimit the data on
input correctly from the disk.

In the list of expressions, numeric expressions should be
delimited by semicolons. For example,

PRINT#1,A;B;C;X;Y;Z

(If commas are used as delimiters, then the extra blanks that
are inserted between print fields are also written to disk.)

String expressions must be separated by semicolons in the list.
To format the string expressions correctly on the disk, use
explicit delimiters in the list of expressions.

For example, let A$="CAMERA" and B$="93604-1". The statement

PRINT#1,A$;B$

would write CAMERA93604-1 to the disk. Because there are no
delimi ters, this could not be input as two separate strings.
To correct the problem, insert explicit delimiters into the
PRINT# statement as follows:

PRINT#1,A$;",";B$

3-78

PRI NT # (Cont.)

PRINT # (Cont'd)

The image written to disk is

CAMERA, 93604-1

which can be read back into two string variables. If the
strings themselves contain commas, semicolons, significant
leading blanks, RETURN's, or BOUND's, then write them to disk
surrounded by explicit quotation marks, CHR$(34).

For example, let A$="CAMERA, AUTOMATIC" and B$="
statement

93604-1". The

PRINT#1,A$;B$

would write the following image to disk

CAMERA, AUTOMATIC 93604-1

and the statement

INPUT#1,A$,B$

would input "CAMERA" to A$ and "AUTOMATIC 93604-1" to B$. To
separate these strings properly on the disk, write double
quotes to the disk image using CHR$(34). The statement

PRINT#1,CHR$(34);A$;CHR$(34);CHR$(34);B$;CHR$(34)

writes the following image to disk

"CAMERA, AUTOMATIC"" 93604-1"

and the statement

INPUT#1,A$,B$

would input "CAMERA, AUTOMATIC" to A$ and " 93604-1" to B$.

The PRINT# statement can also be used with the USING option to
control the format of the disk file. For example:

PRINT#1,USING"$$###.##,";J;K;L

3-79

PRINT # USING

PRINT # USING

DESCRIPTION

Form of Statement

PRINT# file number USING
"formatting expression";
list of expressions

The PRINT # USING statement writes data to a sequential disk
file using a specified format.

All of the formatting expressions used in the PRINT USING
statement may be used with the PRINT # USING command.

See the PRINT USING section of this manual for a listing of
formatting expressions.

EXAMPLE: PRINT # USING

PRINT #2 USING"$$###.##";A;B;C

3-80

PTR

PTR Form of Function

PTR (variable name or array name)

DESCRIPTION

The PTR function returns the address of the first byte of data
assigned to the variable specified. The variable specified in
the PTR statement must have been assigned a value prior to the
execution of the PTR function.

PTR is often used to obtain the address of a variable or array
when a non BASIC procedure is called.

All variables should be assigned values before a PTR function
is used to obtain the address of an array. This is because array
addresses change when variables are assigned values.

, EXAMPLE: PTR

G$ = "PTR TEST"
PRINT CHR$(PEEK("B",PTR(G$»)

3-81

PUT

PUT Form of Statement

PUT #file number

PUT #file number, record number

DESCRIPTION

The PUT statement takes a record from the random buffer and
writes it to a random disk file.

The file number of the PUT statement must agree with the file
number used in the OPEN statement for the specified file.

When the first form of the PUT statement is used, the record is
assigned the next available record number.

When the second form of the PUT statement is used, the record is
assigned the record number specified in the statement. The
maximum possible record number is 32767.

, EXAMPLE: PUT

, SEE APPENDIX F

3-82

PWA

PWA Form of Function

PWA (P)

DESCRIPTION

The PWA function returns a pointer to word-aligned data given
P, where P is a pointer (single-precision number). If the
relative address (ra) portion of the parameter is even (that is,
it points to a word boundary), the parameter is simply returned.
Otherwise, a pointer to the next word boundary is returned.

Whenever a pointer to word-aligned data is used, a data area
that is at least one byte longer than normal is required. This
ensures that the data area is large enough in the case where it
is addressed by a word-aligned pointer.

I EXAMPLE: PWA

DIM BUFFER%[5l2]

ERC% = OPENDAFILE ••• ,
PWA(PTR(BUFFER%[O])) ••••)

3-83

RANDOMIZE

RANDOMIZE Form of Statement

RANDOMIZE

DESCRIPTION

RANDOMIZE is used with the RND function to establish a beginning
point (seed) for the random number generator. The RANDOMIZE
command takes a random number seed from the run-time system
clock.

If RANDOMIZE is not used with RND, then RND will return the same
sequence of numbers each time a program is executed. RANDOMIZE
changes the seed to produce a different sequence each time the
program is executed.

See also RND.

I EXAMPLE: RANDOMIZE

RANDOMIZE

3-84

READ

DESCRIPTION

READ

Form of Statement

READ variable1, variable2,
variable3,

The READ statement must be used along with DATA statements.

READ statements assign values to variables from DATA statements
in the order in which they occur in the DATA statement. If a
program has more than one DATA statement, the statements are read
in order of their statement numbers.

READ statements assign numeric or string values to program
variables. Variables named in the READ statement must be the same
type as the value in the DATA statement or an error message
results.

If the number of variables exceeds the number of elements in the
DATA statements, then an error message results.

t EXAMPLE: READ

READ IN$

3-85

REM

REM Form of Statement

REM programmer-supplied remarks

or

programmer-supplied remarks

DESCRIPTION

The REM statement allows the programmer to enter explanatory
remarks in a program. REM statements have no effect on program
execution. When a program containing REM statements is run, the
remarks are not displayed. REM statements appear only in the
listing of the program.

REM statements may be used anywhere in a BASIC PROGRAM. They can
aid programmers by labeling programs and program sections for
easy identification. They can also be used to comment on
particular statements within a program, by using a single
quotation mark instead of :REM at the end of a line.

I EXAMPLE: REM or I

REM IS USED TO SPECIFY A REMARK THAT THE COMPILER
SHOULD IGNORE. THE SINGLE QUOTE OR TICK MARK
CAN ALSO BE USED AS A REM STATEMENT.

3-86

RESTORE

RESTORE Form of Statement

RESTORE

DESCRIPTION

The RESTORE command moves the data stack pointer to the first
value in the first DATA statement. Program READ statements begin
reading at this point and continue to read values in the usual
order. When a line number is specified in the RESTORE statement,
the compiler issues a warning "RESTORE<line number> not
supported" and resets the data stack pointer to the first value
in the first DATA statement.

I EXAMPLE: RESTORE

RESTORE

3-87

RESUME

RESUME Form of Statement

RESUME

RESUME 0

RESUME NEXT

RESUME line number

DESCRIPTION

The RESUME command is used in error handling routines. It
continues program execution after an error recovery procedure.

A RESUME statement that is not in an error handling routine
causes the error message RESUME without error to be displayed.

The RESUME command may direct program flow in three ways.

1. When the form is RESUME or RESUME 0, program execution
resumes at the statement which caused the error.

2. When the form is RESUME NEXT, program execution resumes at
the statement which immediately follows the one which
caused the error.

3. When the form is RESUME line number, program execution
resumes at the specified line number~

EXAMPLE: RESUME

PRINT ERRj"at line"jERL
IF ERR=39&
THEN PRINT "System error ="jSysErc()
STOP
RESUME NEXT

3-88

RGPARAM$

RGPARAM$ Form of Function

RGPARAM$(ld)

DESCRIPTION

The RGPARAM$ function returns a string that is the Jth
parameter in the Ith file from the form used to invoke the BASIC
program. If no parameter exists, the null string is returned.

The first parameter is number O. The first field is the form
name and is number O. The first field containing data is number
1 •

For further information refer to the section on Parameter
Management in the B 20 Operating System manual (form 1171675).

, EXAMPLE: RG P ARAr~$

COMMAND$ = RGPARAM$(O,O)
CASE$ = RGPARAM$(0,1)
FILENAME$ = RGPARAM$(1,0)
IF FILENAME$ = "" &
THEN INPUT "FILENAME";FILENAME$

3-89

RIGHTS

RIGHT$

DESCRIPTION

Form of Function

RIGHT$ (string expression, number of
characters of the string)

The RIGHT$ function returns a string consisting of the number
of characters specified beginning at the right of the string.
The number of characters must be in the range of 0 to 255.

If the number of characters specified is greater than or equal
to the length of the string expression, the entire expression is
returned. If it is zero then the null string is returned.

See LEFT$ and MID$.

, EXAMPLE: RIGHT$

G$ = RIGHT$(FILENAME$,2)

3-90

RND

RND Form of Function

RND

DESCRIPTION

The RND function returns a random value between 0 and 1.

The sequence of random numbers generated is the same each time
the program is run if the random number generator is not reseeded
using the RANDOMIZE command.

, EXAMPLE: RND

PRINT INT(RND*6+1)

3-91

SGN

SGN Form of Function

SGN (numeric expression)

DESCRIPTION

The SGN function returns the sign of the numeric expression.
When the expression is greater than 0, the function returns a
value of 1.

When the expression is equal to 0, the function returns o.
When the expression is less than 0, the function returns a value
of -1.

I EXAMPLE: SGN

IF SGN(X) = -1 &
THEN X = X * -1

3-92

SIN

SIN Form of Function

SIN (numeric expression in radians)

DESCRIPTION

The SIN function returns the sine of the numeric expression. The
numeric expression must be in radians.

The evaluation of the SIN function is always performed in single
precision.

I EXAMPLE: SIN

PRINT SIN(xRads!)

3-93

SPACES

SPACE$ Form of Function

SPACE$ (numeric expression)

DESCRIPTION

The SPACE$ function returns a string of spaces of the length
specified by the numeric expression. The numeric expression must
be in the range of 0 to 255. Any fractional values are rounded
before the function returns the string of spaces.

, EXAMPLE: SPACE$

BUFFER$ = SPACE$(80)

3-94

SPC

SPC Form of Function

SPC(numeric expression)

DESCRIPTION

The SPC function returns a string of blanks. The SPC function
differs from the SPACE$ function in that it may only be used
along with PRINT and LPRINT commands.

The numeric expression must be in the range of 0 to 255.
Fractional values are rounded.

I EXAMPLE: SPC

PRINT SPC(Margin!);TITLE$

3-95

SQR

SQR Form of Function

SQR (numeric expression)

DESCRIPTION

The SQR function returns the square root of the numeric
expression. The numeric expression must be greater than or equal
to O.

, EXAMPLE: SQR

PRINT SQR(2)

3-96

STOP

STOP Form of Statement

STOP

DESCRIPTION

The STOP command is used to halt program execution. STOP may be
used anywhere in a program. When STOP is encountered, the
message "Stopped at line linenumber (Press GO to continue; press
Cancel or Finish to exit program) is displayed. At this point,
if GO is pressed any statements after the STOP statement will be
executed.

The STOP command does not close data files as the END statement
does.

I EXAMPLE: STOP

I SEE THE EXAMPLE FOR RESUME

3-97

STR$

STR$ Form of Function

STR$(numeric expression)

DESCRIPTION

The STR$ function returns the string representation of the
numeric expression.

, EXAMPLE: STR$

MID$(BUFFER$,5,1) = STR$(X)

3-98

STRING$

DESCRIPTION

STRING$

Form of Function

STRING$ (character string length,
ASCII code)

or

STRING$ (character string length,
string expression)

The STRING$ function returns a string of the length specified.
The elements of the string are the equivalent of the ASCII code
specified (form 1) or the first character of the string
expression given. (form 2)

, EXAMPLE: STRING$

G$ = STRING$(10,"-")
PRINT G$;TITLE$;G$

3-99

SWAP

SWAP Form of Statement

SWAP variable, variable

DESCRIPTION

The SWAP statement exchanges the values of any two variables.
The variables may be any type, (INTEGER, STRING, or SINGLE
PRECISION) but both variables must be the same type or an error
message results.

, EXAMPLE:

SWAP CURRENT$,PREVIOUS$

3-100

SYSERC

SYSERC Form of Function

SYSERC()

DESCRIPTION

The SYSERC function returns the system status code associated
with the last BASIC disk access procedure. This allows the user
to get more information about BASIC errors. The status codes
returned by the SYSERC function are described in the B 20
Standard Software Operations Guide.

The following example illustrates the use of SYSERC () in an
error trapping routine. The program deletes an old (possibly
nonexistant) file and opens a new file of the same name. If the
old file does not exist, a system error results. Since the
program does not care if the old file exists or not, the error is
trapped, the message printed out and execution continued in the
normal manner. (Remember that the BASIC error number is not the
same as the system error number.)

• EXAMPLE: SYSERC

• SEE THE EXAMPLE FOR RESUME

3-101

SYSTEM

SYSTEM Form of Statement

SYSTEM

DESCRIPTION

The SYSTEM command causes an exit from the program. The same
action may be accomplished by pressing the FINISH key two times.

, EXAMPLE: SYSTEM

SYSTEM

3-102

TAB

TAB Form of Function

TAB (print position)

DESCRIPTION

The TAB function moves to the display or print position specified
by the numeric expression. If the position specified in the TAB·
function is prior to the current posi tion, the TAB moves to .the
next line.

The range of values for the numeric expression is
Fractions are rounded.

TAB may be used only with PRINT and LPRINT commands.

to 255.

The TAB function is useful in formatting tables and reports.

, EXAMPLE: TAB

PRINT TAB(10);TEXT$

3-103

TAN

TAN Form of Function

TAN (numeric expression in radians)

DESCRIPTION

The TAN function returns the tangent of the specified numeric
expression.

Th.e numeric expression must be in radians.

The evaluation of the TAN function is always performed in single
precision.

, EXAMPLE: TAN

Y = TAN (X) * PI

3-104

USING$

DESCRIPTION

Form of Function

USING$ (string expression,
list of expressions)

USING$

The function USING$ returns the formatted output of the PRINT
USING statement. The value of the returned string is the sam~ as
the output that would be generated if the PRINT USING were
invoked with identical numeric parameters.

USING$ does not format text.

, EXAMPLE: USING$

, SEE THE EXAMPLES FOR LPRINT USING

3-105

VAL

VAL Form of Function

VAL (string expression)

DESCRIPTION

The VAL function returns the numerical value of a string
representation of a number. If the first character of the string
expression is not a +, -, or a digit, the function returns the
value O.

NOTE

VAL does not accept octal and hex constants.

I EXAMPLE: VAL

INPUT "ENTER NUMBER"~IN$
IN = VAL(IN$)
IF IN = 0 &
THEN PRINT. "ENTRY NOT A NUMBER. TRY AGAIN."

3-106

VERSION$

VERSION$ Form of Function

VERSION$

DESCRIPTION

The VERSION$ function returns a string that is the contents of
the [Version] field of the Linker command form.

CAUTION

If VERSION$ is used and the pro~ram is linked
without filling in the [VersionJ field, a
linker error will occur.

, EXAMPLE: VERSION$

PRINT "WONDERFUL TEST PROGRAM. version";VERSION$

3-107

WAIT

WAIT

DESCRIPTION

Form of Statement

WAIT"B", port number, I[,J]

WAIT"W", port number, I[,J]

Tpe port number is the address of the port, specified by an
integer expression in the range 0 to 65535. The port may be
either a word port (16 bits) or a byte port (8 bits) as indicated
by the letter "W" or "B" in the statement. When monitoring a
word port, the port number must be even. If port number is odd,
the error message "illegal function call" will occur.

I and J are integer expressions which define the input pattern
the program is waiting for. The data read at the port is
exclusive ORed with the integer expression J, and then ANDed with
I. If the result is 0, then BASIC loops back and reads the data
at the port again. If the result is nonzero, then execution
continues with the next statement. If J is omitted, then it is
assumed to be O.

When monitoring a byte port (WAIT"B"), I and J are integer
expressions in the range of 0-255.

When monitoring a word port (WAIT"W) , I and J are integer
expressions in the range of 0-65535.

CAUTION

It is possible to enter an infinite loop with
the WAIT statement.

EXAMPLE: WAIT

WAIT "B",32,2
WAIT "W",3030,F008

3-108

WHILE ... WEND

WHILE ... WEND Form of Statement

WHILE expression

STATEMENTS

WEND

DESCRIPTION

The WHILE ..• WEND statement allows the conditional repetition of
statements while the expression is true. When the evaluated
expression is not true, program execution transfers to the
statement following the WEND statement.

The vlHILE statement must precede the matching WEND statement. If
WHILE statements are nested, the inner vvEND statement must appear
before the outer WEND statement.

, EXAMPLE: WHILE .•. 'lEND

MAX! = 10
DIM BSORT$(10)
BSORT$(1) = DATETIME$("")
BSORT$(2) = RGPARAM$(2,0)
BSORT$(3) = "CONSTANT"
BSORT$(4) = G$

BUBBLE SORT
FLIPS = 1
WHILE (FLIPS = 1)

FLIPS = 0
FOR J = 1 TO MAX!

IF BSORT$(J) > BSORT$(J+1) &
THEN SWAP BSORT$(J),BSORT$(J+1): &

FLIPS = 1
NEXT J

WEND ' END BUBBLE SORT

3-109

WIDTH

WIDTH

DESCRIPTION

Form of Statement

WIDTH number of characters per line

WIDTH LPRINT number of characters per
line

The WIDTH command sets the width of the printed line at the video
display. The WIDTH LPRINT command sets the width of the printed
line at the line printer.

The number of characters per line must be in the range of 15 to
132 for the video display. For WIDTH LPRINT, the number of
characters per line is dependent on the characteristics of the
printer. If a compiled BASIC program has a WIDTH statement
containing a value greater than 80, the video display width
expands to 132 columns on a B22. On a B21 a WIDTH statement
containing a value greater than 80 will be ignored. If the WIDTH
is less than 15, the video display is set at 80 columns. Any
number greater than 132, except 255, is treated as 132. The
number 255 suppresses carriage returns.

When you print a string which is longer than the width you have
declared, the extra characters are continued on the next line.

EXAMPLE: WIDTH

WIDTH 15

3-110

WRITE

DESCRIPTION

Form of Statement

WRITE list of expressions
separated by commas

WRITE

The WRITE statement outputs data on the video display. When the
WRITE statement is not followed by a list of expressions, a blank
line is displayed. WRITE statements may be used with either
numeric or string variables.

The WRITE statement differs from the PRINT statement in that it
prints numeric values followed by a comma and prints string
variables enclosed in quotation marks.

EXAMPLE: WRITE

WRITE A,B,C$

3-111

WRITE#

WRITE#

DESCRIPTION

Form of Statement

WRITE# filenumber, list of
expressions separated by
commas

The WRITE# command writes data to the sequential file specified
by the filenumber. The file number must agree with the
filenumber of the OPEN statement for the specified file.

The expressions and variables in the list may be either numeric
or string.

The WRITE# statement differs from the PRINT# in two ways. First
it uses a comma to separate the values that are output. Second,
it writes string variables enclosed in quotation marks. The
WRITE# offers the advantage of not requiring the user to insert
specific delimiters when writing to sequential files.

EXAMPLE: WRITE#

OPEN, IIQII,#l, II DATA II
WRITE#l,AiB

3-112

SECTION 4

INSTALLING, COMPILING, AND DEBUGGING A

BASIC PROGRAM

INTRODUCTION
This section discusses installing and using the BASIC compiler to
create an object module, and using the Linker to create the run file.
Also described is how to install a run file with the "New Command"
command, and how to invoke the system debugger.

INSTALLING THE BASIC COMPILER

The following are specific instructions for installing Basic Compiler.

Disk Contents

Basic Compiler (style ID B20BC4-1) contains the following files
on a single disk:

VOLUME: [B20BC4-1]

DIR: <Sys>
fileHeaders.sys
mfd.sys
log.sys
sysImage.sys
badBlk.sys
crashDump.sys
bootExt.Sys
DiagTest.sys
XEInstall.Sub

Install.Sub
FdSys.Version
Sys.Cmds
BrSwp.obj
BasGen.obj
BrCnfg.obj

DIR: <Burro.ughs>
BasicCompile.Run
BasCornpiler.lib

DIR: <BCCnfg>
BrCnfg.Asm
BasGen.Asm
BasicComp.fls
ObjBasRes.fls
ObjFormsSwp.fls

(8" only)
(8" only)

4-1

Installing, Compiling, and Debugging a BASIC Program

Loading Instructions

1. If the system is a cluster system, turn off the cluster
workstations.

2. Insert the product distribution disk in drive [fO] of the
master.

(Do NOT press the RESET button.)

3. Install the product as follows:

Command Software Installation <RETURN>
[Cmd File]
[Files to]
[Confirm'?]
[Install file]

Name the [Cmd file] where 'Basic Compiler' will be created.
The default is [Sys]<Sys>Sys.Cmds.

Type the destination [vol]<dir> of the files in the field
[Files to]. The BasCompiler.lib will always be placed in
[Sys]<Sys>.

Answer 'y' to [Confirm'?] to check each file as it is
installed.

The only valid install file on the disk is
[fO]<sys>Install.Sub. Since this file is the default, there
is no need to type it.

4. The installation procedure:

Creates a command in the command file specified called 'Basic
Compiler'

Copies the necessary files to run and customize the compiler
to the directory specified in [Files to].

5. After the installation is complete, save the disk as a
master.

Memory Requirements

The compiler requires l70K bytes of user memory to compile any
program. A program created with the Basic Compiler requires at
least 37K bytes, but may require more depending upon the size of
the program and the options used. For further information refer
to Appendix G, Programming Hints.

4-2

Installing, Compiling, and Debugging a BASIC Program

INVOKING THE BASIC COMPILER

To invoke the BASIC compiler from the B20 Executive,type "B CIt
(or as many letters as are required to make the command unique.

The following form is displayed:

Basic Compile
Source files
[Object files]
[List files]
[BasGen file]
[Suppress main?]
[Public code?]
[Common data?]
[Errors only?]
[No bounds checking?]
[No RESUME info?]
[No CHAIN/ERL info?]
[No code generation?]

A description of the source fields is listed below:

Source files

Fill in the "Source files" field with the names of one or more
files containing BASIC source programs. Each BASIC source file
is compiled separately.

[Object files]

Fill in the "[Object files]" field with the names of one or more
object files to be created by the compiler. If no object file
name is specified, the ~efault name will be the source file name
suffixed by ".Obj.1I Any existing suffixes will be replaced by
.OBJ. If two or more entries are specified in both the IISource
files ll and II[Object files]1I fields, then the source and object
file names match according to position. That is, the first
source file name corresponds to the first object file name, and
so on.

4-3

Installing, Compiling, and Debugging a BASIC Program

[List files]

Fill in the "[List files]" field with the names of one or more
list files to be created by the compiler. If no list file name
is specified, the default name is the source file name suffixed
by ".Lst." If two or more entries are specified in both the
"Source files" and "[List files]" fields, the source and list
file names match according to position. That is, the first
source file name corresponds to the first list file name, and so
on.

[BasGen file]

If the BASIC module being compiled calls non-BASIC procedures,
fill in the "[BasGen file]" field with the name of the object
module produced by assembling BasGen.Asm (see Appendix B for
further details).

[Suppress main?]

If the BASIC module being compiled is not main, fill in the
"[Suppress main?]" field with y or yes. The default is no; the
module is compiled as a main module. One module in a program
must be the main module.

[Public code?]

If the BASIC module being compiled contains line numbers or user
defined functions that are entered from other modules (via GOTO,
GOSUB, or function invocation), fill in the "[Public code?]"
field with y or yes. When this option is selected, all line
numbers and user-defined functions are made public. The default
is no; the code is not public.

[Common data?]

If the BASIC module being compiled contains variables that are
shared with other modules, fill in the "[Common data?]" field
with y or yes. The default is no; the data is not common.

[Errors only?]

If you fill in the "[Errors only?]" field with y or yes, only
error messages are sent as output to the list file. The default
is no; a full listing of the entire module is sent as output.

4-4

Installing, Compiling, and Debugging a BASIC Program

[No bounds checking?]

Fill in the "[No bounds checking?]" field with y or yes if you do
not want the compiler to generate code that checks the value of
array subscripts to ensure that they are in bounds. The default
is no; code for bounds checking is generated.

[No RESUME info?]

Fill in the "[No RESUME info?]" field with y or yes if the
program does not use RESUME, RESUME 0, or RESUME NEXT. This
option suppresses the generation of information needed to support
these statements and reduces the program's memory requirements.
The default is no; the RESUME information is generated.

[No CHAIN/ERL info?]

Fill in the "[No CHAIN/ERL info?]" field with y or yes if the
program does not use ERL, RESUME, RESUME 0, RESUME NEXT, or CHAIN
<line number>. This option suppresses the generation of
information needed to support these statements and reduces the
program's memory requirements. The default is no; the CHAIN/ERL
information is generated.

(Note that RESUME <line number> can be used even when this option
is selected.)

[No code generation?]

Fill in the "[No code generation?]" field with y or yes if you do
not want the compiler to produce an object module. The default
is no; the object module is produced. Use this option when you
are using the compiler only as a syntax checker.

COMPILATION

The compiler generates an object file (or module) and a list file
for each BASIC module. Object and list file name specifications
are optional.

Each module that comprises the BASIC program is compiled
separately. A set of modules that uses identical compiler
options can be compiled in a single invocation of the compiler by
entering each source file name in the "Source files" field,
separated by spaces.

4-5

Installing, Compiling, and Debugging a BASIC Program

One module must be compiled as the main module (see the "Main
Module" sUbsection in the "General Information" section above).
All other modules must be compiled with the Suppress Main option.

Any module can be compiled with the Common Data option.

Any module that is not going to be placed in an overlay can be
compiled with the Public Code option.

FATAL ERROR CONDITIONS

There are certain conditions that can arise while the program is
compiling that force compilation to be terminated. These fatal
errors are described in Section 6.

LISTING FORMAT

All list files created by the BASIC compiler are formatted as
shown in the examples in Figures 4-1 and 4-2.

4-6

Basic Compiler 4.0x

Source file [sys]<sys>tutorial.bas compiled on Oct 19, 1982 at
11:19 AM

List file is [sys]<sys>tutorial.lst
Object file is [sys]<sys>tutorial.obj
Options: public code, common data

10 'Basic program using Tutorial.form
11 'Illustrating fixed and repeating fields, user input and
program output
20 option base 1

Figure 4-1. Example of the Beginning of a List File.

Installing, Compiling, and Debugging a BASIC Program

As shown in Figure 4-1, the first line in a BASIC list file
always shows the version number of the compiler. This is
followed by the source file name and the date and time of
compilation, and the list file and object file names. In the
above example, the source~ list, and object file names are
preceded by their [volumeJ and <directory>.

The names of the options that were specified are shown (in this
case, Public Code and Common Data), followed by the first lines
of code.

As shown in Figure 4-2 below, the memory allocation (in bytes)
for the program appears after the last line of code. This is
broken down by the amount of memory allocated to code, data,
constants, and stack.

Next, symbol table usage (in bytes) is shown by total bytes,
number of bytes used, and number of bytes remaining.

The number of errors and warnings that occurred are shown next.
In this example, no errors or warnings occurred.

The last line in the listing shows the number of statements
compiled. In this example, 117 statements were compiled.

9010 print-"error ", erc%:stop
9020goto 1500

Memory allocation in bytes
code: 2455 data: 146 constants: 1162 stack: 500

Symbol table usage in bytes
total: 65520 used: 2990 remaining: 62530

No errors, 117 statements compiled

Figure 4-2. Example of the End of a List File.

4-7

Installing, Compiling, and Debugging a BASIC Program

INVOKING THE LINKER

After the BASIC modules are compiled, the resulting object
modules are linked with the Linker to produce an executable run
file.

To invoke the Linker,' type "Link" in the Executive command form.
Then press RETURN. The following form is displayed:

Link

Object modules
Run file
List file]
Publics?]
Line numbers?]
Stack size]
Max memory array s~ze]
Min memory array s1ze]
System build?]
Version]
Libraries]
DS allocation]
Symbol file]

Fill in the fields as required. Normally, you will be concerned
with two fields: The "Object modules" and "Run file" fields.
All fields after the "Run file" field are optional. You can
default optional fields by leaving them blank. (Press RETURN to
skip a field.) For definitions of all the fields in the Link
form, see the "Invoking the Linker" section of the B20
Linker/Librarian Reference Manual •

OVERLAYS

When you invoke the Linker, you can optionally specify that one
or more modules (object files) be placed in one or more overlays.
If a module is in an overlay, the code portion of the module
resides on disk until it is actually needed by the executing
program. At that time, the code portion is automatically read
from the disk into memory and executed (see the.BTOS Operating
System Manual.) . .

Overlays reduce the physical memory requirements of a program. A
program typically p·erforms a sequence of independent steps or
contains a number of distinct SUbsystems. If each step or
subsystem is contained in a separate module, then each module can
be placed in an overlay. In this way, a program can be run that
is much larger than the amount of available physical memory.

4-8

Installing, Compiling, and Debugging a BASIC Program

To use overlays, a BASIC program need not contain any special
commands or statements. The compiled BASIC run-time system
automatically allocates memory to contain the overlays loaded
from disk.

To use the overlays, the following restrictions apply:

• A module compiled with the public code option cannot be
in an overlay.

• The main program cannot be in an overlay.

• The object module, BrSwp.Obj, must be included in the
"Object module" field of the Linker command form.

• The following run-time modules in BasCompiler.Lib cannot
be placed in an overlay:

BrInit
BrErc
BrFlow
BrH

BrMem
BrErcA
BrChn
BrSwp

A module is placed in an overlay by inserting /0 (which
represents the overlay switch) at the end of the object module
name in the "Object modules" field of the Linker command form.

The example below shows the "Object modules" field of the Linker
command form with an object module name containing the /0 switch.

Object modules BrSwp.Obj X.Obj Y.Obj/O

The CHAIN statement (see the "CHAIN" subsection in the "Commands
and Statements" section below) transfers control to a BASIC
module in an overlay.

Note that GOTO, GOSUB, or a user-defined function call cannot be
used to transfer control to an overlay because line numbers and
user-defined function names cannot be made public.

OVERLAYING THE RUN-TIME SYSTEM

The memory requirements of a BASIC program can be substantially
reduced if parts of the BASIC run-time system are placed in
overlays. In fact, it may be necessary to overlay the run-time
system because once overlays are used, the size of the resident
is restricted ,to 64k bytes.

4-9

Installing, Compiling, and Debugging a BASIC Program

The files ObjBasRes.Fls, BasicComp.Fls, and ObjFormsSwp.Fls are
partial object module lists that indicate which run-time modules
must be resident and which can be in overlays. Use the Editor or
Word Processor to construct an object module list based on these
files and your own list of BASIC modules.

BASICRES.fls contains a list of object modules that must be
resident. The modules in this list cannot be placed in overlays.

BASIC.fls contains a list of object modules that can be placed in
overlays. These modules can also be resident.

ObjFormsSwp .Fls contains a list of object module-s in the Forms
library that can be placed in overlays. These modules can also
be resident.

LINKER ERRORS

Incorrect BASIC programs can cause a number of Linker errors.
Some sample Linker errors and their causes are given below.

Multiply defined symbol Begin in file A.Obj

Two or more main modules are linked together.
main module can be in a BASIC program.

Only one

Multiply defined symbol @100 in file A.Obj

Two or more public modules with overlapping line numbers
are linked together. Public modules in a BASIC program must
have line numbers that do not overlap.

Multiply defined symbol fnadd2% in file A.Obj
Multiply defined symbol fnadd2%ii in file A.Obj

Two or more public modules define user-defined functions
that have the same name. Public modules in a BASIC program
must have user-defined names that are unique.

Unresolved Externals:
@1000 in file(s): B.Obj

4-10

A BASIC module referenced a line number that is not
defined by any other module. A line number that is
referenced in a GOTOjGOSUB statement must be declared in
the module containing the GOTOjGOSUB, or in another
public module in the same BASIC program.

Installing, Compiling, and Debugging a BASIC Program

Unresolved Externals:
fnadd2% in file(s): B.Obj
fnadd2%ii in file(s): B.Obj

In this example, both the user-defined function name and
the function name followed by a parameter string are
unresolved externals. A BASIC module referenced a user
defined function that is not defined by any other module.
A user-defined function that is referenced must be declared
in the module containing the reference, or in another
public module in the same BASIC program.

Unresolved Externals:
fnadd2%ir in file(s): B.Obj

In this example, only the function name followed by the
parameter string is an unresolved external. A BASIC module
referenced an external user-defined function incorrectly.
The number and/or type of actual parameters passed to the
function are different from the number and/or type of
parameters required by the function.

The string of characters following the type character ($, %,
!, or #) in the function name identifies the number and
type of actual parameters. Each character represents a
parameter. The character value represents the type, where s
is string, i is integer, r is real (single-precision), and d
is double-precision.

Check the definition of the user-defined function to
determine the number and type of actual parameters to be
passed.

Error: Resident code exceeds 64k

The size of the resident code exceeds 64k bytes. More
modules must be placed in overlays. If no more BASIC
modules can be placed in overlays, place portions of the
BASIC run-time system in overlays. Use the files
ObjBasRes.Swp, BASIC.fls, and ObjFormsSwp.Fls to
construct an object module list that places parts of the
run-time system in overlays.

Warning: Non "CODE" class loaded into overlay

This warning can occur if "BrSwp.Obj" is placed in an
overlay. Review the object module list and make sure that
"BrSwp.Obj" appears before any module that uses the /0
switch.

This warning can also occur when an assembly language
module is placed in an overlay. The Linker expects all
code segments to have the class-name "CODE".

4-11

Installing, Compiling, and Debugging a BASIC Program

Warning: Module B.Obj compiled with Publics is not resident

This warning occurs if a module compiled with the Public
code option is placed in an overlay. Public Code modules
cannot be placed in overlays.

Warning: No "OverlayFault" procedure loaded

BrSwp.Obj has been left out of the object modules list.
When a module is placed in an overlay, BrSwp.Obj must be
included in the object module list before any of the
modules that use the /0 switch.

FATAL RUN-TIME ERRORS

Conditions may arise while executing a BASIC program that make it
impossible for the program to continue running. These conditions
are due to fatal run-time errors.

When a fatal run-time error occurs, the BASIC program may either:
1. return to the Executive, where a status code is display

ed, indicating what error condition occurred.
or

2. stop program execution with a fatal error message and the
prompt:

(Press FINISH or CANCEL to return to the Executive).

If a status code in the range 1380 through 1390 is displayed, a
BASIC run-time internal error has occurred. In this case, report
the error to your system administrator or technical support.

PUBLIC SYMBOLS

BASIC programs that are to be debugged should be compiled with the
Public Code and Common Data options. If this is done, the symbol
file created by the Linker, when the program is linked, will
contain public symbols for all line numbers, user-defined
functions, and program variables.

The public symbol for a line number consists of the @ ("at" sign)
followed by the line number. For example, "@10" is the public
symbol for line number 10.

4-12

Installing, Compiling, and Debugging a BASIC Program

The public symbol for a user-defined function consists of the
user-defined function name followed by a type character. The type
character corresponds to the type of value that the function
returns. These characters are "$" for strings, "%" for integers,
"1" for single precision, and "i" for double precision. For
example, fnadd2% is the public symbol for a user-defined function
named fnadd2%. To examine or modify the code that performs this
function, type fnadd2% followed by MARK.

To set a breakpoint, enter the debugger, type the appropriate
public symbol, and then type CODE-B.

To display memory, use one of the debugger's memory display
commands (CODE-D, MARK, right arrow, and left arrow). Use the
appropriate public symbol as an operand.

ADDITIONAL PUBLIC SYMBOLS

The compiler generates additional public symbols that are
described below in Table 4-1.

Table 4-1. Additional Public Symbols

Public Symbol

Begin

ChainTable

<module name>

<module name>Entry

Description

Located at the beginning of the main
program.

Located at the beginning of the chain
table data structure. This structure
is used at run time by the CHAIN
command.

This symbol is the filename of the
BASIC module without any file
extension. It is located at the
beginning of the code portion of non
main BASIC modules.

Located at the first instruction that
is executed in a module when it· is
entered using the CHAIN command.

4-13

Installing, Compiling, and Debugging a BASIC Program

NAMES OF BASIC RUN-TIME PROCEDURES
The compiler makes many calls to procedures in the compiled BASIC
run-time environment. Each procedure has a corresponding public
symbol that is the same as its name. These procedures are
described below in Table 4-2.

4-14

Table 4-2. Names of BASIC Run-Time Procedures

Procedure

BrAsc

BrChain

BrChr

BrCleanup

BrClose

BrCloseAllFiles

BrCvi

BrCvs

BrCvd

BrDateTime

BrDefLP

BrEof

BrError

BrException

BrField

BrGet

BrHexOctI

Description

Convert first character of string to
integer.

CHAIN.

Convert integer to string of length 1
(CHR$) •

Exit program (END).

Close file (CLOSE).

Close files (CLOSE).

Convert 2-byte string to integer (CVI).

Convert 4-byte string to single
precision (CVS).

Convert 8-byte string to double
precision (CVD).

Get formatted date and/or time.

Define line printer filename
(DEFLPrint) .

Query end of file (EOF).

Simulate error (ERROR).

Handle error exception.

Associate" string with file buffer
(FIELD) •

Read random record (GET).

Convert integer to hexadecimal/octal
ASCII string (HEX$, OCT$).

Installing, Compiling, and Debugging a BASIC Program

Table 4-2. BASIC Run-Time Procedures (Contd.).

Procedure Description

BrHexOctR Convert single-precision to hexadecimal/
octal ASCII string (HEX$, OCT$).

BrHexOctD Convert double-precision to hexadecimal/
octal ASCII string (HEX$, OCT$).

Brlnit Initialize run-time system.

BrLPos Query line printer position (LPOS).

BrMki Convert integer to 2-byte string (MKI$).

BrMks Convert single-precision to 4-byte
string (MKS$).

BrMkd Convert double-precision to 8-byte
string (MKD$).

Brlnch Input characters (INPUT$).

BrlnLine Input line (LINE INPUT, LINE INPUT i).

Brlnpt Input data (INPUT, INPUT i).

BrKill Delete file (KILL).

BrLoc Query current record (LOC).

BrLof Query last record (LOF).

BrOnError Set up error handler (On Error GOTO).

BrOpen Open file (OPEN).

BrPos Query cursor position (POS).

BrPrnt Print data (PRINT, PRINT #, LPRINT).

BrPU Print data using format information
(PRINT USING, PRINT USING #, LPRINT
USING).

BrPut Write random record (PUT).

BrRand Send random number generator
(RANDOMIZE).

4-15

Installing, Compiling, and Debugging a BASIC Program

4-16

Table 4-2. BASIC Run-Time Procedures (Contd.)

Procedure

BrRandom

BrRgParam

BrRename

BrResume

BrStop

BrVException

BrWidth

BrWrite

DAbs

DAdd

DCeilD

DDiv

DecodI

DecodR

DecodD

DFLtI

DFLtR

DivI

DMul

DNeg

DSign

Description

Generate a random number (RND).

Read command form.

Rename file (NAME).

Resume program (RESUME).

Suspend program (STOP).

Handle error exception.

Set video width (WIDTH).

Write data (WRITE, WRITE#).

Compute double-precision absolute value
(ABS) •

Add double-precision values.

Computer largest integer from double
precision value.

Divide double-precision values.

Convert string to signed integer.

Convert string to single-precision.

Convert string to double-precision.

Convert signed integer to double
precision.

Convert single-precision to double
precision.

Divide integer values.

Multiply doubte-precision values.

Negate double-pr~cision value.

Compute sign of double-precision value
(SGN) •

Installing, Compiling, and Debugging a BASIC Program

Table 4-2. BASIC Run-Time Procedures (Contd.)

Procedure

DSub

EncodI

EncodR

EncodD

FEqD

FLeD

FLtD

FEqR

FLeR

FLtR

FStrEq

FStrLe

FStrLt

lAbs

IAdd

IMod

IRounD

ISign

ISub

ITrunR

Description

Subtract double-precision values.

Convert signed integer to string (STR$).

Convert single-precision to string
(STR$) •

Convert double-precision to string
(STR$) •

Compare double-precision for equality.

Compare double-precision for less than
or equal to.

Compare double-precision for less than.

Compare single-precision for equality.

Compare single-precision for less than
or equal to.

Compare single-precision for less than.

Compare string for equality.

Compare string for less than or equal
to.

Compare string for less than.

Compute absolute value of integer (ABS).

Add integer values.

Mod integer values.

Convert double-precision to integer
(rounded) •

Compute algebraic sign of an integer
(SGN) •

Subtract integer values.

Truncate single-precision to integer
(FIX) •

4-17

Installing, Compiling, and Debugging a BASIC Program

4-18

Table 4-2. BASIC Run-Time Procedures (Contd.)

Procedure

ITrunD

Mull

RAbs

RAdd

RAtan

RCeilR

RCos

RDiv

ReadDA

RestDA

RExp

RExpI

RExpR

RFLtI

RLn

RMul

RNeg

RRounD

RSign

RSin

Description

Truncate double-precision to integer
(FIX) •

Multiply integer values.

Compute single-precision absolute value
(ABS) •

Add single-precision values.

Compute single-precision arctangent
(ATAN) •

Compute largest integer from single
precision value (INT).

Compute single-precision cosine (COS).

Divide single-precision values.

Read DATA (READ).

Initialize or restore DATA (RESTORE).

Compute exponential function (EXP).

Raise single-precision values to a
power.

Raise single-precision values to a
power.

Convert signed integer to single
precision.

Compute log arithmetic function (LOG).

Multiply single-precision values.

Negate single-precision values.

Convert double~ to single-precision
(rounded) •

Compute algebraic sign of a single
precision value (SGN).

Compute sine function (SIN).

Installing, Compiling, and Debugging a BASIC Program

Table 4-2. BASIC Run-Time Procedures (Contd.)

Procedure

RSqrt

RSub

RTan

StrAss

StrAssl

StrFind

StrFe

StrGet

StrLOp

StrLSet

StrMake

StrPut

StrROp

StrRSet

StrVal

Description

Compute square root function (SQR).

Subtra-ct s ingle-precis ion values.

Compute tangent function{TAN).

Concatenate strings.

Assign string.

Search string (INSTR).

Query free memory (FRE).

Compute substring (MID$).

Compute left substring (LEFT$).

Copy string (LSET).

Construct string (STRING$, SPACE#).

Assign string to substring (MID$).

Compute right substring (RIGHT$).

Copy right string (RSET).

Convert string to double-precision value
(VAL) •

4-19

Installing, Compiling, and Debugging a BASIC Program

DATA TYPES AND REGISTER USAGE CONVENTIONS

The register usage conventions in compiled BASIC generated code
follow many of the conventions for other languages. These
conventions are summarized below.

4-20

• Integers require one word. Integer values are
returned by functions in the AX register. Integer
parameters are passed by value.

• Single-precision floating point numbers (normal
variables in compiled BASIC) require two words.
Single-precision values are returned by functions in
the ES and BX registers. ES contains the high
order word and BX contains the low order word.
Single- precision parameters are passed by value.

• Double-precision floating point numbers require
four words. Double-precision values are not returned
by functions in registers. Rather, the address of
the value is returned in the AX register.
Double-precision parameters are passed by reference.
That is, the address (16-bit) of the variable is
passed.

• String descriptors require three words. The first
two words comprise a pointer that addresses the
data portion of the string. The third word contains
the length of the string. String descriptors are not
returned by functions in registers. Rather, the
address of the string descriptor is returned in the
AX register. String parameters are passed by
reference. That is, the address (l6-bit) of the
string descriptor is passed.

SECTION 5

BASIC ERROR MESSAGES

INTRODUCTION

This section lists the error messages which you may encounter
when using the BASIC compiler. It describes each error and
suggests some possible actions that you may take to solve the
problem. When an error is detected, a message is output to the
list file and displayed on the video screen. The message is
displayed in the following format:

*** Error after label nnnn:

where nnnn is the name of the label at which the error occurred.

Similarly, when the compiler issues a warning, a message is
output to the list file and displayed on the screen.

There are three types of error messages: run-time errors,
compile-time errors, and fatal compiler errors.

The first section lists the run-time errors, which include an
error number as part of the message.

The messages are listed in order of their error number. A cross
reference is also provided which lists the error messages
alphabetically so that you will be able to locate the message
quickly.

The compile-time errors and the fatal compiler errors are listed
alphabetically in separate sections.

5-1

Run Time Errors

Run-Time Errors

Number
1

Number
2

5-2

Message

NEXT without FOR

A variable in a NEXT statement does not
correspond to any variable in a FOR
statement.

Check to make sure that each NEXT
statement references a FOR statement.

Check that the index variable of the FOR
statement matches the variable in the
NEXT statement.

Check that the loop was not entered
after the FOR statement.

Message

Syntax Error

The indicated program line contains an
error. This error does not allow this
line to be executed.

Check the spelling of the BASIC command
used in the line.

Make sure the punctuation used with the
BASIC statement is correct.

Check the use of spaces in the BASIC
statement.

Make sure that tne number of open
parentheses "(,, is equal to the number
of closed parentheses ")".

Check that reserved words have not been
used as variable names.

Number
3

Number
4

Run Time Errors

Message

RETURN without GOSUB

The program has encountered a RETURN
statement for which there was no
previous GOSUB statement.

Check that the RETURN is used to end a
valid subroutine.

Check that the line number specified in
the GOSUB statement is correct.

Trace the program to ensure that the
subroutine has not been entered
accidently.

Message

Out of data

A READ statement in the program has
been executed but there are no
remaining DATA statements.

Trace the program to check the sequence
of READ statements.

If the READ statements occur in program
loops, check that the loop executes the
desired number of times.

If a trailing data value is used to end
the reading of values, test that the
exit condition is met.

5-3

Run Time Errors

Number
5

Number
6

5-4

Message

Illegal function call

The value passed to a function is not
in an acceptable range.

Check that the values used within the
parenthesis portion of the function are
acceptable entries.

If the program calls a user defined
function, make sure the function has
been properly defined before it is
called.

Mes~age

Overflow

The result of a calculation is too
large to be represented in BASIC number
format.

Check the order of the arithmetic
operators used in the calculations.

Make sure that any variable used in the
calculation has the proper intermediate
value. Print these variables before
the calculation.

Number
7

Number
8

Run Time·Errors

Mess"age

Out of memory

A program is too large, has too many
FOR ..• NEXT loops or GOSUB's, too
many variables, or expressions that are
too complicated.

Check to see that FOR. . . NEXT loops
are not nested unnecessarily. Check the
entry to subroutines to ensure that
subroutines are not nested
unnecessarily.

If the program is too large, consider
using subprograms with the CHAIN
command.

Message

Undefined line

A line has been referenced in a BASIC
statement, but the line number does not
exist.

Check the line number specified in
GOTO, GOSUB, or IF ... THEN. . .ELSE
statements.

5-5

Run Time Errors

Number
9

Number
10

5-6

Message

Subscript out of Range

An array element is referenced with a
subscript that does not agree with the
dimensions of the array.

Check that the dimensions of the array
are correct.

If the array element is a program
calculated variable, check the
intermediate value of the subscript
before referencing the array.

Message

Duplicate Definition

Two DIM statements are given for the
same array, or a DIM statement is given
for an array that has already been used
with the default dimension.

Check the names of arrays used in
different program segments.

If a CHAIN command has been used, check
the DIM statements in each subprogram.

Number
11

Number
12

Run Time Errors

Message

Division by zero

A division by zero has been encountered
in an expression.

Check intermediate values in
calculations.

Check the order of the arithmetic
operators used.

Message

Illegal direct

A statement that is illegal in direct
mode has been entered as a direct mode
command.

Check that INPUT, DEF FN, GET, or DATA
statements have not been used in a
direct mode statement.

5-7

Run Time Errors

Number
13

Number
14

5-8

Message

Type mismatch

A string variable name is assigned a
numeric value or a numeric variable is
assigned a string value.

A function that expects a numeric value
is given a string value or vice versa.

If a form of the DEF command has been
used, check variable names.

Message

Out of string space

String variables caused BASIC to exceed
the amount of free memory remaining.

Check to see if some of the string
variables created could be formed using
BASIC string functions.

Number
15

Number
16

Run Time Errors

Message

String too long

An attempt is made to create a string
more than 32K characters long.

Check any string manipulations per
formed, especially any concatenations.

Message

String formula too complex

A string expression is too long or too
complex.

Break the string expression into
smaller expressions.

5-9

Run Time Errors

Number
17

Number
19

5-10

Message

Can't continue

An attempt is made to continue (CONT) a
program that halted due to an error,
was modified during a break in
execution, or does not exist.

If the program was edited during the
break in execution, rerun the entire
program.

Make sure the program is still in
memory.

Message

NO RESUME

An error trapping routine has been
entered but it contains no RESUME
statement.

Check that the flow in the error
trapping routine does not branch
illegally.

Number
20

Number
21

Run Time Errors

Message

RESUME without error

A RESUME statement has been encountered
before an error trapping routine was
entered.

Trace program to ensure that the error
handling routine has not been entered
accidently.

Message

Unprintable error

An error message is not available for
the error condition that exists.

Check that any ERROR has a properly
defined error code.

5-11

Run Time Errors

Number
22

Number
23

5-12

Message

fiJissing operand

An expression contains an operator with
no operand following it.

Check the placement of parentheses in
statements using arithmetic and/or
relational operators.

Make sure that no operators have been
used as variable names.

Message

Line buffer overflow

An attempt has been made to input a
line that has too many characters.

If the INPUT function has been used,
check the number of characters in the
entered line.

Number
26

Number
29

Run Time Errors

Message

FOR without NEXT

A FOR statement has been encountered
without a matching NEXT statement.

Check to make sure that each FOR
statement is paired with a NEXT
statement.

Check that the index of the FOR
statement matches the variable in the
NEXT statement.

Message

WHILE without WEND

A WHILE statement is encountered
without a matching WEND.

Check that each WHILE statement is
paired with a WEND statment.

5-13

Run Time Errors

Number
30

Number
31

5-14

\/END without WHILE

A WEND statement is encountered without
a matching WHILE.

Check that each WEND statement is
paired with a WHILE statement.

Check to see that the WHILE statement
was not accidently bypassed in the
program.

Trace the execution of the program.

Message

Invalid parameter

The value (parameter) does not evaluate
to an integer or single precision
number.

Check to make sure that the numbers you
are using were input as numerics.

Make sure numeric values have not been
converted to their string equivalents.

Number
32

Number
33

Run Time Errors

Message

Unknown procedure

The procedure name following a CALL
command is unknown to BASIC.

Check the spelling of the called
procedure.

Check punctuation of CALL statement.

Message

Too much parameter data

BASIC passed more parameter data than
the called procedure requires.

Check the elements of the CALL
statement.

Check the punctuation in the CALL
statement.

5-15

Run Time Errors

Number
34

Number
35

5-16

Too little parameter data

BASIC passed less parameter data than
the called procedure requires.

Check the elements of the CALL
statement.

Check the punctuation in the CALL
statement.

Message

Procedure called as function

A non-value returning procedure was
invoked in an expression.

Use the CALL command to invoke the
procedure.

Number
36

Number
37

Run Time Errors

Message

Function called as procedure

A value returning procedure was invoked
with a CALL statement.

Invoke the procedure in an expression.

Message

Nesting limit exceeded

In using procedures as parameters of
other procedures, you nested too deeply.

Assign the results of one of the
procedures to a variable and use the
variable as a parameter in the other
procedure.

5-17

Run Time Errors

Number
38

Number
39

5-18

Message

Pointer required

The BASIC command or function requires
a pointer variable as a parameter.

Check that a pointer has been created
with a BASIC statement.

Trace program to be sure that you did
not branch around the pointer creation.

Message

System error

Check SysErc() for system error number.
System errors can be found in the BTOS
manual.

Number
50

Number
51

Run Time Errors

Message

Field overflow

When using a random access file, the
FIELD statement is trying to allocate
more space (bytes) than is allowed.

Check that the FIELD statement
allocates the proper space for each
variable.

In the OPEN statement, change the
record length option.

Message

Internal error

An internal malfunction has occurred on
the specified disk.

If this error occurs frequently, change
the disk.

5-19

Run Time Errors

Number
52

Number
53

5-20

Message

Bad file number

A statement references a file with a
file number that is not open.

Check that an OPEN stat'ement has been
executed.

Message

File not found

A KILL or OPEN statement references a
file that does not exist on the current
disk.

Check the disk file contents.

Check to ensure that the file in
question is not a restricted access
file.

Number
54

Number
55

Run Time Errors

Message

Bad file mode

An attempt has been made to use PUT,
GET or LOC with a sequential ·file.
These statements are restricted to
random files.

A file was OPENed with a file mode
other than I, 0, A, R, S, or B.

Check the OPEN statement in question
for file mode specification.

Message

File already open

A sequential output mode OPEN was used
for a file that is already open.

Make sure that sequential files in I or
A Mode have been closed prior to being
reopened in 0 mode.

Check that a KILL command was not used
with an open file.

5-21

Run Time Errors

Number
57

Number
58

5-22

Message

Disk r/o error

An input/output error occurred on a
disk.

Check to see if the floppy disk you are
using is damaged.

Make sure that the disk is write
enabled if you are writing to a floppy
disk.

Message

File already exists

The file name specified in a NAME
statement is identical to a file name
already in use on the disk.

Choose a new file name.

Number
61

Number
62

Run Time Errors

Message

Disk full

All disk storage space is in use.

If using a floppy disk, change to a new
disk.

If using the Winchester disk, output to
a floppy or delete files no longer
desired from the Winchester.

Message

Input past end

An INPUT statement has been executed
after all the data in a sequential file
was input.

Check to make sure that the file from
which data are input is not an empty
(null) file.

Use the EOF function when you are not
sure of the size of a sequential file.

5-23

Run Time Errors

Number
63

Number
64

5-24

Message

Bad record number

In a PUT or a GET statement, the record
number is greater than the maximum
allowed (32767) or equal to O.

If the record number is a variable
assigned a value during program
execution, check the values of this
variable prior to the PUT or GET
statement.

Message

Bad file name

An illegal form has been used for the
file name.

Check that the file name is not a BASIC
reserved word.

Number
66

Number
67

Run Time Errors

Message

Direct statement in file

A statement without a line number has
been encountered while loading an ASCII
format file. The LOAD operation has
been terminated.

Check that each BASIC statement is
preceded by a line number.

Check to see that the file being loaded
is not a data file.

Message

Too many files

An attempt is made to create a new file
when all 255 directory entries are full.

He-execute program with a new disk
mounted.

5-25

Run Time Errors

Number
68

Number
69

5-26

Message

Not readable as a random file

An attempt to open a random file has
failed because the file contains
variable length records.

Check to make sure that the disk file
is a random access file.

Message

Record size mismatch

An attempt to open a random file has
failed because the record size
specified in the OPEN statement is
different from the record size
specified when the file was created.

Check the record size specified for the
original random file and correct the
record length specification in the OPEN
statement.

Number
70

Number
71

Run Time Errors

Message

Record does not exist

An attempt to read a record from a
random file has failed because the
record does not exist.

Check the GET statement to make sure
that the record specified is a record
number that exists in the random file.

Check the number of records in the
random file using the LOF function.

Message

Not a random file

An attempt to open a random file has
failed because the file is not in the
proper format.

Check to make sure that the disk file
is a random access file.

5-27

Run Time Errors

Number
72

Number
73

5-28

Message

Malformed record

An attempt to read or write a record in
a random file has failed because the
file structure cannot be verified.

Use the MAINTAIN FILE utility to check
the data file.

Message

Read/write beyond EOF

An attempt to open a random file has
failed. This is either because the file
is not in Standard Access Method format
or because an internal error has
occurred.

Check to make sure that the file being
opened was created as a random access
file.

Cross Reference to Run Time Errors

Cross Reference to Run-Time Errors

Message

Bad file mode

Bad file name

Bad file number

Bad record number

Can't continue

Direct statement in file

Disk full

Disk I/O error

Division by zero

Duplicate Definition

Field overflow

File already exists

File already open

File not found

FOR without NEXT

Function called as procedure

Illegal direct

Illegal function call

Input past end

Internal error

Invalid parameter

Line buffer overflow

Malformed Record

Missing Operand

Pointer required

Number

54

64

52

63

17

66

61

57

11

10

50

58

55

53

26

36

12

5

62

51

31

23

72

22

38

5-29

Cross Reference to Run Time Errors

Message

Nesting limit exceeded

NEXT without FOR

NO RESUME

Not a random "file

Not readable as a random file

Out of data

Out of memory

Out of string space

Overflow

Procedure called as function

Read/write beyond EOF

Record does not exist

Record size mismatch

RESUME without error

RETURN without GOSUB

String formula too complex

String too long

Subscript out of Range

Syntax Error

Too little parameter data

Too many files

Type mismatch

Unknown procedure

WEND without WHILE

WHILE without WEND

Undefined line

Unprintable Error

5-30

Number

37

19

71

68

4

7

14

6

35

73

70

69

20

3

16

15

9

2

34

67

13

32

30

29

8

21

Compile Time Errors

COMPILE TIME ERRORS

Actual parameter list inconsistent
The number of type of actual parameters in an
external user-defined function invocation differs
from that of a previous invocation.

Array referenced as scalar
A variable that was previously referenced or
dimensioned as an array has been referenced without
subscripts. (Scalar means "nonarray".)

Array too big
The size of an array exceeds 64k bytes. Arrays can
contain 32,767 integer elements, 16,383 single
precision elements, or 8,191 double-precision
elements. This error can occur when a non-BASIC
procedure invocation is compiled as an array
reference because a BasGen file was not used or did
not contain the procedure in question~

Compiled CHAIN MERGE differs from interpreter
The compiler does not support the MERGE option of the
CHAIN statement (see the "CHAIN" subsection in the
"Command and Statements" section above).

COMMON not supported
The compiler does not support the COMMON statement.
However, the effect of COMMON can be achieved by
using the [Common data?] compiler option (see the
"Common Data" subsection in the "General Information"
section above).

Data segment overflow
The cumulative sizes of all program variables exceeds
64k bytes.

Double precision parameter required
This function call requires
parameters.

Duplicate array definition

double-precision

You have entered two DIM statements for the same
array, or a DIM statement for an array that has
already been used with the default dimension.

5-31

Compile Time Errors

5-32

Duplicate fn name
A user-defined function cannot be redefined. It can
appear in only one DEF statement.

Duplicate formal parameter name
Each formal parameter in a single user-defined
function definition must have a unique name.

Duplicate non-BASIC procedure
The BasGen file contains two or more non-BASIC
procedure interfaces that have the same name.

Duplicate OPTION BASE
Only one OPTION BASE statement can occur in a BASIC
program.

ERASE not supported
The compiler does not support erasing of arrays.

ERASE parameter not an array
The parameters of an ERASE statement must be array
variables.

Expected ; not found
A semicolon (;) must follow the prompt string in an
INPUT or LINE INPUT statement, or the string
expression in a PRINT USING statement.

Expected = not found
This is a syntax error in an assignment statement or
a user-defined function defini tion. The equal sign
(=) must appear in this statement.

Expected AS not found
The keyword AS was not found in the FIELD or NAME
statement.

Expected B or W not found
PEEK, POKE, INP, and OUT require· a "B" for byte
operations or a "w" for word operations.

Expected BASE not found
This is a syntax error in an OPTION BASE statement.

Compile Time Errors

Expected close parenthesis not found
This is a syntax error in an expression.
parenthesis is missing.

Expected comma not found

A close

This is a syntax error in an expression. A comma is
missing.

Expected fn name not found
This is a syntax error in a user-defined function
definition. An identifier beginning with "fn" must
follow DEF.

Expected formal parameter not found
This is a syntax error in a user-defined function
definition. If a user-defined function requires no
parameters, do not use parentheses.

Expected GOTO not found
This is a syntax error in an IF, ON •.. GOTO, or ON
ERROR GOTO statement. The keyword GOTO is missing.

Expected INPUT not found
This is a syntax error in a LINE INPUT statement.
The keyword INPUT is missing.

Expected open parenthesis not found
This is a syntax error in an expression.
parenthesis is missing.

Expected print item not found

An open

This is a syntax error in a PRINT USING or LPRINT
USING statement. An expression to print is missing.

Expected scalar variable not found
The loo!, variable of the FOR statement must be a
scalar (nonarray). It cannot be a constant or an
array variable.

5-33

Compile Time Errors

5-34

Expected target label not found
This is a syntax error after GOSUB, GOTO, or THEN. A
statement label must appear to indicate to which
statement control must be transferred.

Expected THEN not found
This is a syntax error in an IF statement. The
keyword THEN must follow the logical expression.

Expected TO not found
This is a syntax error in a FOR statement. The
keyword "TO" must appear.

Expected variable not found
This is a semantic error in a DIM or FOR statement.
A variable is required.

Expected variable reference not found
The statement requires an address
is, an expression that can evaluate
variable. A scalar or an array

expression. That
the address of a
variable is an

address expression; a constant or an arithmetic
expression is not.

Expression is missing an operand
This is a syntax error in an expression. An operand
is missing.

Expression too big
An expression is too long or complex to be compiled.
Rewrite the expression as several simpler
expressions.

Fn defined recursively
A user-defined function cannot reference itself
within its own definition.

Function called as procedure
A non-BASIC procedure that returns a value cannot be
invoked with the CALL statement. The procedure must
be invoked in an expression.

Integer parameter required
This function call requires an integer parameter.

Compile Time Errors

Invalid BasGen file
The file specified in the "[BasGen file]" field
during compilation is not of the expected format.
The BasGen file is the object module produced by
assembling BasGen.Asm.

Invalid CALL target
The procedure name that follows the CALL statement
here is not a non-BASIC procedure. Non-BASIC
procedures must be declared in the BasGen file.

Invalid character
A character appears in an identifier or numeric
constant that is not allowed.

Invalid data item
Data items in the DATA statement must be either a
quoted string, an unquoted string, or a numeric
constant.

Invalid data type for non-BASIC procedure
A non-BASIC procedure cannot return a string or
double-precision value.

Invalid dimension
Upper bounds in DIM statements must be integer
constants. Variables or noninteger values cannot be
used as array bounds.

Invalid fn name
This is a syntax error in a user-defined function
defini tion. User-defined function names must begin
with "fn".

Invalid label'
This is a syntax error in a statement or target
label. A label must be in the range 0 to 65535.

Invalid numeric constant
This is a syntax error in a numer ic constant. An
invalid character appears in the middle of a number.

5-35

Compile Time Errors

5-36

Invalid parameter to non-BASIC procedure
A non-BASIC procedure invocation cannot contain a
double-precision value as an actual parameter.

Invalid use of file number character
The character number sign (#) is valid only when it
appears before a file number in a statement or
immediately after a double-precision constant,
variable, or user-defined function.

Invalid range of letters
The range of letters in a DEFINT/SNG/DBL/STR
statement must be within the range A through Z. The
second letter must also be greater than or equal to
the first.

Label out of order
Statement labels must appear in ascending order.

Matching NEXT not found
A FOR statement exists that does not have a matching
NEXT statement to mark the end of the FOR block.

Matching WEND not found
A WHILE statement exists that does not have a
matching WEND statement to mark the end of the WHILE
block.

Misplaced assignment operator
The assignment operator is out of place.

Misplaced close parenthesis
A close parenthesis is out of place.

Misplaced comma
A comma is out of place.

Misplaced open parenthesis
An open parenthesis is out of place.

NEXT/FOR mismatch
The identifier following the
match the loop variable
corresponding FOR statement.

NEXT without FOR

Compile Time Errors

NEXT statement
identifier in

must
the

A NEXT statement must be preceded by a corresponding
FOR statement.

Not enough parameters
An intrinsic or user-defined function has been called
with fewer actual parameters than required.

Not enough subscripts
An array has been referenced using fewer subscripts
than required.

Numeric overflow
A constant in this statement is outside the range
limits for numbers. The integer range is -32768 to
32767. The single-precision and double-precision
range is approximately -1.7E+38 to 1.7E+38.

OPTION BASE after array reference
The OPTION BASE statement cannot appear after an
array is referenced or dimensioned.

OPTION BASE not 0 or 1
This is a syntax error in an OPTION BASE statement.
The number following the words OPTION BASE can only
be 0 or 1.

Out of memory
The compiler has run out of memory for the symbol
table. The program cannot be compiled unless its
size is reduced or more memory is made available to
the compiler. The compiler can use up to 64k bytes
for its symbol table.

Procedure called as function
A non-BASIC procedure that does not return a value
has been invoked in an expression. The procedure can
only be invoked with the CALL statement.

5-37

Compile Time Errors

5-38

RESTORE <line number> not supported
The compiler does not support
option of the RESTORE command.
occurs.

RESUME not allowed with current options

the
A

<line number>
simple RESTORE

RESUME, RESUME 0, or RESUME NEXT statements are not
allowed if the [No RESUME info?] or [No CHAIN/ERL
info?] compiler options are used.

Scalar referenced as array
An identifier that was previously referenced as a
scalar (or nonarray) has been referenced as an array.
Scalars and arrays cannot share the same identifier.

Single-precision parameter required
This function call requires
parameter.

Statement not recognized

a single-precision

The compiler does not recognize this statement as a
valid BASIC statement.

String constant
The end
string
constants
character.

not terminated
of file has been reached within a

constant. Check tha t all string
are termina ted with the double-quote

String parameter required
This function call requires a string parameter.

String type mismatch
A string has been used when a numeric is required, or
a numeric has been used when a string is required.

Subscript above upper bound
An array subscript is greater than the upper bound.

Subscript below lower bound
An array subscript is less than the lower bound.

Compile Time Errors

Syntax error after DELETE
This is a syntax error in the CHAIN statement. The
line number range after the DELETE option is invalid.

Too little parameter data
A non-BASIC procedure invocation is invalid. The
actual parameter list contains less data than is
required.

Too many parameters
An intrinsic or user-defined function has been called
with more actual parameters than required.

Too many subscripts
An array has been referenced using more subscripts
than needed.

Too much parameter data
A non-BASIC procedure
actual parameter list
required.

Type mismatch

invocation is invalid. The
contains more data than is

The types of operands in this statement are not the
same. In the SWAP statement, the two operands must
be of the same type.

WEND without WHILE
This WEND statement has no matching \lHILE statement
preceding it.

5-39

Fatal Compiler Errors

FATAL COMPILER ERRORS

The following errors that occur while compiling will force
compilation to be terminated.

5-40

Cannot access temporary file
A file error occurred while reading or writing the
temporary file, Proto.Tmp, created by the compiler.

Cannot read BasGen file
A file error occurred while reading the BasGen file.

Cannot read source file
A file error occurred while reading the BASIC source
file.

Cannot read file <filename>
A file error occurred while attempting to open an
input file.

Cannot write file <filename>
A file error occurred while attempting to open an
output file.

Cannot write list file
A file error occurred while writing the list file.

Cannot write object file
A file error occurred while writing the object file.

Invalid Yes/No parameter
Your input to a field in the BASIC Compile form was
invalid. Enter 'y', 'yes', In', or 'no'.

No source files specified
You did not enter a source file name in the "Source
files" field of the BASIC Compile command form.
Enter a valid BASIC source file name.

Fatal Compiler Errors

Out of label table
Your BASIC source program requires more compiler
generated labels than can be accommodated. The
compiler generates labels while compiling FOR, WHILE,
IF and ON GOTO statements. To compile the program,
reduce its size.

Symbol table full
Your BASIC source programs contain more variables and
constants than can be accommodated. Check the symbol
table usage statistic in the list file of a previous
successful compilation. If 64k bytes of memory is
available for the symbol table, you must reduce ~he
size of your program. Otherwise, increase the amount
of memory available to the BASIC compiler.

Unable to allocate memory
BTOS error while allocating short-lived memory.

Unable to deallocate memory
BTOS error while deal locating short-lived memory.

5-41

APPENDIXA

CONTROL OF THE VIDEO DISPLAY

CONTROL OF THE VIDEO DISPLAY

This appendix describes how to control the video display by
using a series of special commands. B 20 BASIC can control the
following video display features:

• character attributes (reverse video, underlining, half
brightness, and blinking)

• screen attributes (half brightness and reverse video)

• cursor positioning and visibility

• line scrolling

• pausing between frames of information

• the keyboard LED indicators.

In addition, B 20 BASIC allows you to:

• fill-in various size rectangles with a specified character

• erase information in lines or frames.

Each of these features is described in this section. First
the statement and an explanation of the statement are presented,
then an example of the statement is provided.

CONTROLLING CHARACTER ATTRIBUTES

B 20 BASIC allows you to display characters on the screen
using:

• reverse video
• underlining
• half-brightness
• blinking

Each of these features may be used alone or in combination
with one or more other features. For example, B 20 BASIC allows
you to display characters that are in half-brightness and
underlined.

A-1

Control of the Video Display

To control the display of characters, a special form of the
CHR$ function is used. All character attributes are controlled
by entering CHR$(255) plus specified letters to control the video
display. Table A-1 gives a summary of the character attribute
controls. An X in a column of the table indicates the character
attribute that is activated by each entry.

TABLE A-1. CHARACTER ATTRIBUTE CONTROL ON THE B 20

CHR$ (255) . + "AA "

CHR$(255) + "AB"

CHR$(255) + "AC"

CHR$(255) + "AD"

CHR$(255) + "AE"

CHR$(255) + "AF"

CHR$(255) + "AG"

CHR$(255) + "AH"

CHR$(255) + "AI"

CHR$(255) + "AJ"

CHR$(255) + "AK"

CHR$(255) + "AL"

CHR$(255) + "AM"

CHR$(255) + "AN"

CHR$(255) + "AO"

CHR$(255) + "AP"

A-2

BLINKING

x
X

x
x
x

x

X

X

REVERSE HALF-
VIDEO UNDERLINING BRIGHTNESS

X

X

X

x

x

X

X

x

x

X

X X

x

X

X X

X

x
.-----.-------.-

X x

X

X

X X

Control of the Video Display

For example, the following statement is used to activate the
underlining of a character or characters:

120 PRINT CHR$(255)+"AC"

All PRINT statements after this statement underline the
information displayed. To turn off the underlining option,
enter:

PRINT CHR$(255)+"AZ"

or

PRINT CHR$(255)+"AA"

Notice that each time a character attribute is activated,
the previous character attribute control is ignored. To use the
character attributes in combination, refer to Table A-1 for the
proper control characters.

CONTROLLING CHARACTER ATTRIBUTES ON A B 26

B 26 machines support two additional character attributes,
bold and struckthrough, in addition to the four supported by the
B 22 andB 21 • .

In video byte streams, all six character attributes may be
set in any combination for subsequent characters by use of the
following multi-byte escape sequence:

OFFh, ' B', mask

where "mask" is an 8-bit binary value designating some
combination of the six attributes, as follows:

Bit Hex Value Attribute

0 01h Half Bright
1 02h Underline
2 04h Reverse Video
3 08h Blinking
4 10h Bold
5 20h Struck-through

Note that this mask byte has the same format used by
PutFrameAttrs and also corresponds to the actual attribute byte
stored in the video map itself, and interpreted by the video
controller hardware.

A-3

Control of the Video Display

The former style of escape sequence for controlling
character attributes was:

OOFh, 'A', char

where "char is and ASCII character 'A' through 'P'. This scheme
has been retained for B26 compatibility, but has not been
extended to include bold and struck-through.

CONTROLLING SCREEN ATTRIBUTES

B 20 BASIC allows you to control the entire screen of your
computer. Using a special form of the CHR$ function, you can
reverse the entire screen or control the brightness of the
information displayed. Unlike the character control features,
the screen control attributes may be used together. You may use
the appropriate command to reverse the video of the entire
screen and then change the reversed display to half-brightness
using a second command. The screen attribute controls also
allow you to turn off the reverse video and half-brightness
features.

To reverse the video on the screen, the statement used is:

CHR$(255)+"RN"

When this statement is executed, the entire screen is
reversed. To return the screen to its original format, use the
statement:

CHR$(255)+"RF"

Both of these screen attribute control statements must be
executed in a PRINT statement before they are activated.

To set the screen at half-brightness, the statement used is:

CHR$(255)+"HN"

When this statement is executed, the entire screen displays
information at half its original brightness. To return the
screen to its original brightness, use the statement:

CHR$(255)+"HF"

Again, both of these statements must be executed in a PRINT
statement before they are activated.

A-4

Control of the Video Display

CONTROLLING CURSOR POSITION AND VISIBILITY

B 20 BASIC allows for the control of both cursor position
and its visibility. A special form of the CHR$ function is used
for this purpose.

To control the cursor position the following statement is
used:

CHRS(255)+"C" + CHR$(£'~~1!r.nn position of cursor)+

CHR$ (row position of cursor)

Both the column and the row positions are integers and must
be within the range of your B 20 system screen size. If the row
column number you enter is greater than the screen size of your
system, the control of the cursor is ignored.

To deactivate the display of the cursor, the following
statement is used:

CHRS(255)+"VF"

To make the cursor visible, use the statement:

CHR$(255)+"VN"

CONTROLLING LINE SCROLLING

B 20 BASIC allows you to scroll down a portion of a screen
and fill the upper portion of the screen with blanks. It also
allows for scrolling up a portion of the screen and filling the
lower portion with blar.ks.

To scroll down the screen, the following command is used:

CHR$(255)+"S"+CHR$(first line)+CHR$(last line)+CHR$(count)+"D"

When this command is executed, the screen scrolls down
beginning at the line number entered as the first line and
continues up to the line number entered as the last number. The
number of lines scrolled is the number entered for the variable
count in this command. The top "count" lines of the screen are
left blank.

A-5

Control of the Video Display

To scroll up the screen the following command is used:

CHRS(255)+"S"+CHR$(first line)+CHR$(last line)+CHR$C~ount) +"U"

When this command is executed the screen scrolls up
beginning at the last line and continuing up to the first line.

EXAMPLE

PRIN~ CHR$(255)+"S"+CHRS(1)+CHR$(10)+CHR$(9)+"D"

This statement scrolls down the screen and leaves the top 9
lines of the screen blank.

CONTROLLING PAUSES BETWEEN FRAMES

With B 20 BASIC you can control the pausing between full
screens of information. When the pausing feature is activated,
the computer pauses and displays the following message when
information is about to be scrolled off the screen:

Press NEXT PAGE to continue

The display of information is continued by pressing the NEXT
PAGE key.-

To activate pausing between frames, use the following
statement:

CHR$(255)+"PN"

Once this statement has been executed the pause message is
displayed as each screen fills with information. The NEXT PAGE
key must be pressed to continue the display of information.

To discontinue the display of the pause message, the
following statement is used:

CHR$(255)+"PF"

A-6

Control of the Video Display

CONTROLLING THE KEYBOARD LED INDICATORS

B 20 BASIC allows you to light the LED indicators on the
keyboard. To light one or more of the LED indicators, a special
form· of the CHR$ function is used. The form of the statement to
turn-on an LED indicator is:

CHR$(255)+"I number or letter N"

The number or letter controls which of the LED indicators is
lighted. Table A-2 shows the code for controlling each of the
LED indicators.

TABLE A-2. Control Codes for LED Indicators

CODE KEY

1 F1
2 F2
3 F3
8 F8
9 F9
0 F10
T OVER TYPE

To turn off an LED indicator the following statement is
used:

CHR$ (255)+ .11 I number or letter F"

The number or letter is th~ code for the LED indicator as
listed in Table A-2.

EXAMPLE

PRINT CHR$(255)+"I1N"

This statement turns on the LED on the F1 key.

A-7

Control of the Video Display

FILLING A RECTANGLE

To fill-in a rectangle using B 20 BASIC, a special form of
the CHR$ function is used. The following statement is used to
fill in a rectangle of a specified size:

CHR$(255)+"F"+"any character"+ CHR$(column number)+

CHRS(row number)+CHR$(width)+ CHR$(height)

Any standard character may be used and the rectangle of the
specified width and height may be placed in any column and row
position on the screen.

EXAMPLE

PRINT CHRS(255)+"F"+"*"+ CHR$(10)+ CHR$(10)+CHRS(40)+ CHR$(5)

This statement displays a rectangle, the top left edge of
which begins in row 10, column 10. The rectangle displayed is
40 characters wide and 5 characters high. In this example, a
rectangle of asterisks (*) is displayed.

ERASING TO THE END OF THE LINE OR FRAME

B 20 BASIC allows you to erase to the end of the line or to
the end of a frame. To erase to the end of a line, use the
following statement:

CHR$(255)+"EL"

To erase to the end of a frame, the following statement is
used:

CHR$(255)+"EF"

Erasing turns off all previously specified character
attributes.

A-8

Control of the Video Display

DISPLAYING SPECIAL CHARACTERS LITERALLY

B 20 BASIC enables you to display literal characters, and to
also disable the literal display of characters. To enable the
literal display of characters use the following statement:

CHR$(255) + "LN"

To disable the literal display of special characters, the
following statement is used:

CHR$ + "LF"

DIRECTING VIDEO DISPLAY OUTPUT: THE "X" COMMAND

Format:

Purpose:

Remarks:

CHR$(255) + "X" + CHR$«frame»

where <frame> is 0 to 7.

To direct video output to frame <frame> of the
video display.

When BASIC is invoked, frame 0 is defined as the
entire video display and no other frame exists.
This command is meaningful only after you call
the Video Display Manager's InitVidFrame
operation to define new frames.

A-9

APPENDIX B

CALLING NON-BASIC PROCEDURES

OVERVIEW
BASIC can directly call procedures that are compiled or

assembled into standard object module format. Hence, you can
access procedures written in Pascal, FORTRAN, or assembly
language. Using this facility, you can directly call the BTOS
Operating System, Burroughs software products such as Forms,
ISAM, and Sort/Merge, and your own non-BASIC procedures.

You invoke a non-BASIC procedure by its name. If the
procedure does not return a value, use the CALL statement. If
the procedure returns a value, the procedure name can appear in
any numeric expression. Non-BASIC procedures can return byte,
integer, or single-precision values. In addition, calls on
value-returning procedures can be nested as parameters to other
non-BASIC procedures.

Parameters are passed by value and must evaluate to integers
or single-precision numbers. To pass a string or array, pass a
pointer to the first byte or element of the structure. Pointers
are stored as single-precision numbers; hence, they are valid
parameters. You construct a pointer to a BASIC variable using
the PTR function (see Section 3).

To call non-BASIC procedures, create a run file (Basic.Run)
which contains the BASIC interpreter, a lookup table
(rgProcedures), and the non-BASIC procedures. The process of
creating a new Basic.run is described in detail in "Configuring
BASIC" below.

BASIC provides several checks to detect incorrect procedural
calls. For example, the number of bytes of parameter data passed
by BASIC must match the number required by the procedure. See
the "Error Detection" section later in this appendix for more
details.

The following BASIC statements demonstrate calls to non-BASIC
procedures. In the first example, the program calls Initialize,
passing the contents of integer i%, and NoOp, passing no
arguments.

100 CALL Initialize(i%)
110 CALL NoOp

B-1

Calling Non-BASIC Procedures

In the second example, a call is made to the BTOS CloseFile
operation, passing the integer constant 7. The returned status
code is stored in the integer variable erc%.

100 erc% = CloseFile(7)

In the third example, a call is made to the BTOS OpenFile
operation, and the returned status code is stored in erc%. The
first parameter is a pointer to the BASIC variable fh%. OpenFile
uses this pointer to store back the file handle of the opened
file. The second parameter is the filename. The next parameter
is the password. The final parameter is an integer whose two
bytes represent the ASCII characters "mm", for mode modify.

100 fh% = a
110 Filespec$="TestFile"
120 Password$-""
130 mode%=&h6d6d
140 erc% = OpenFile(PTR(fh%), PTR(Filespec$),

LEN(Filespec$),
PTR(Password$),
LEN(Password),mode%)

In the fourth example, PrimeNumber returns 255 if the integer
parameter is prime, and a otherwise. The expression j%+12 is
evaluated before it is passed. If the parameter is prime, the
THEN clause executes.

100 IF PrimeNumber(j%+12) THEN •••

The final example constructs a pointer to the beginning of
the BASIC data segment. GETSA returns an integer representing
the sa (segment address) portion of a pointer: MAKEPOINTER
returns the pointer whose ra (relative address) and sa are given
as parameters. This algorithm works because the BASIC variable
i% is in the BASIC data segment.

100 i% = a
110 pBasicDS l=MakePointer (0, GetSa(PTR(i%))

INVOKING VALUE-RETURNING PROCEDURES

Format: <procedure name>([parameter list])

NOTE

Parentheses are always required.

B-2

Calling Non-Basic Procedures

Purpose: To call a value-returning non-BASIC procedure.

Remarks: Procedure invocation transfers program control
to a value-returning procedure. The name of the
procedure must be in rgProcedures, a lookup table
defined in BasGen.Obj.

The procedure can return either a byte, an integer, or a
single-precision number. A byte is stored as an integer and
ranges in value from a to 255. The type of value that the
procedure returns is specified by rgProcedures.

Procedure invocations can appear in any numeric expressions
including parameter list of other non-BASIC procedures. In this
case BASIC restricts the level of nesting to three. For example,
flip(flip(flip(l») is permitted, but flip(flip(flip(flip(l»»
is not.

If the procedure requires no parameters, the parameter must
be null.

CAUTION

If you omit the parentheses, BASIC allocates
a new variable and returns a value of a rather
than invoking the non-BASIC procequre.

The "Parameter Passing" section below describes the
parameter list in detail.

Example: 100 erc% = CloseFile(fh%)

PARAMETER PASSING
Parameter List - A parameter list is a sequence of parameters
separated by commas. Valid parameters are numeric expressions
that evaluate integers or single-precision numbers. You cannot
pass strings, arrays, and double-precision numbers directly;
however, you can pass pointers to these variables.

BASIC passes parameters by value. If the parameter
evaluates an integer, a word is pushed onto the stack. If the
parameter evaluates a single-precision number, two words are
pushed. The first word pushed represents the most significant
bits of the value. If the parameter is a pointer, this
corresponds to a segment address.

B-3

Calling Non-BASIC Procedures

Modifying BASIC Variables from Non-BASIC Procedures

Because BASIC passes parameters by value, non-BASIC
procedures must take pointers as parameters to all data to be
modified by the procedure. The example below shows how a BASIC
variable to be modified is passed to the OpenFile operation.

100 fh% = 0
110 erc% = OpenFile (PTR(fh%), •••)

String Parameters

You pass a string by passing a pointer to its first byte. In
addition, you normally pass an integer describing the length of
the string. The LEN function returns the current length of the
string. The example below shows how a string representing a file
specification is passed to the OpenFile operation.

100 Filespec$ = "(sys)<MyDir>MyFile"
110 erc% = OpenFile(••• ,PTR(Filespec$),LEN(Filespec$), •••)

BASIC data segment. GETSA returns an integer representing

You can also pass strings that are to be modified by the
non-BASIC procedure. Normally, this requires three parameters:
a pointer to the first byte of the string, an integer describing
the length of the string, and a pointer to a BASIC variable
describing the number of bytes written. Consider the example
below.

100
110
120
130
140
150
160

s$ = STRING$(32,"") 'Allocates a string
'of 32 blanks

cbRet% = 0 'Integer to contain
'the number of bytes
'written

CALL AssignString(PTR(s$),LEN(s$),PTR(cbRet%)
s$ = LEFT$(s$, cbRet%)

s$ is initially a string of 32 blanks. AssignString writes
bytes into s$, using the length parameter to prevent writing
beyond the string. s$ is then adjusted to its new length, as
defined by cbRet%, using the LEFT$ function.

You must execute the final length-adjustment step when using
strings in this way to notify BASIC that the length of the string
was changed.

B-4

Calling Non-Basic Procedures

Basic stores a string as a four byte pointer and a two byte
length, The actual string is located in sData. A reference to
the string name is the same as a reference to the pointer and
length. This can be used to advantage when calling non-Basic
procedures. In the preceding example, line 150 could be written
as:

150 CALL AssignString(s$,PTR(cbRet%»

The reference to s$ is the same as PTR(s$),LEN(s$), but clearer
and easier to write.

Array Parameters

You pass an array by passing a pointer to its first element.
Arrays typically serve as working areas or buffers. The example
below shows how you pass an array as a working area to a Direct
Access Method operation.

100 DIM Dawa%(31) 'allocates 64bytes
110 'actually, 32 words
120 erc% = OpenDaFile(PTR(Dawa%[O]), •.•)

Word-Aligned Data

Some non-BASIC procedures, such as OpenDaFile, require word
alignment for buffers. Since BASIC does not guarantee word
alignment of data, pointers mayor may not point to word
boundaries. However, you can always create a pointer to word
align data using the BASIC PWA function.

The PWA function returns a pointer to word-aligned data,
given a pointer parameter. If the parameter is even (that is,
points to a word boundary), the parameter is simply returned;
otherwise, a pointer to the next word boundary is returned.

Whenever word alignment is needed, the data area should be
at least one byte longer than normally required. This ensures
that the data area is large enou9h in the case where it is
addressed by a word-aligned pointer. The example below shows how
a word-aligned buffer is passed.

100 DIM Buffer%(256)
110

'allocates 514 bytes
, (only need 512
'bytes) 120

130 erc% OpenDaFile(••• ,Pwa(PTR(Buffer[O]», 512, •••)

CAUTION

Pointers generated by PWA do not always point
to the beginning of a BASIC variable, since
BASIC variables are not always word-aligned.
If a non-BASIC procedure modifies a BASIC
variable using such a pointer, BASIC may not
be able to reference the modified data correctly.

B-5

Calling Non-BASIC Procedures

PROGRAMMING RECOMMENDATIONS

Follow these recommendations when calling non-BASIC
procedures.

Recommendation 1

Allocate all variables before using pointers. When new
variables are allocated, BASIC can reorganIze memory,
invalidating any pointers that were saved.

Allocate variables by assigning initial val~es. You can
also allocate an array with the DIM statement.

Recommendation 2

Do not use the INPUT statement to store a value directly
into an array. If you do this, BASIC reorganizes memory,
invalidating any pointers that were saved.

INPUT the value into a simple variable, then assign the
variable to the array. For example, use:

100 INPUT X
110 A[lJ = X

rather than:

100 INPUT A[11

Recommendation 3

Use brackets rather than parentheses to subscript arrays. By
using brackets, you improve BASIC performance. You also improve
program readability by distinquishing between arrays and value
returning procedures.

B-6

Calling Non-Basic Procedures

ERROR DETECTION

BASIC detects several errors while invoking non-BASIC
procedures. These include:

• invalid parameters,

• unknown nonvalue-returning procedures,

• too much or too little parameter data,

• invoking a value-returning procedure with a CALL
statement or a nonvalue-returning procedure in
an expression, and

• exceeding the nesting limit when using procedures
as parameters to other procedures.

Section 5 fully describes these errors.

CONFIGURING BASIC FOR NON-BASIC PROCEDURES

To configure a BASIC program in which non-BASIC procedures
are called, you must create a special object file called
BasGen.Obj before compiling the BASIC source file. BasGen.Obj is
created by assembling BasGen.Asm, a file that contains interface
definitions of the non-BASIC procedures. Your BASIC source file
is then compiled together with BasGen.Obj to create the program's
object file. This object file is linked with any required
library files to create the final compiled BASIC run file.

Assembling BasGen.Asm

To create BasGen.Obj, invoke the Assembler by typing
"Assemble (or as many letters as are required to make the command
unique) in the Executive command form and then press RETURN.
(For instructions on using the Assembler, see the B20 System
Programmer's Guide/Assembler.)

Fill in the form as follows and then press GO.

Assemble
File
[Errors only?]
[GenOnly, NoGen, or Gen?]
[Object File]
[Error File]
[List on pas~ l?]

BasGen.Asm

B-7

Calling Non-BASIC P"rocedures

You must specify a file name in the "File" field. All
other fields are optional.

During assembly, the Assembler asks questions of this type:

Are you calling Forms (y or n)?

Are you calling Sort/Merge (y or n)?

Are you calling I SAM (y or n)?

Are you calling CTOS OpenFile and CloseFile (y or n)?

In this example, you are creating a BASIC file in which
Forms procedures are included, so you answer yes to the
corresponding question by typing y and then pressing RETURN. You
must also answer yes to the question "Are you calling CTOS
OpenFile and CloseFile (y or n)?" by typing y, then pressing
RETURN. Answering yes to these questions causes the interface
definitions for the Forms procedures to be included in
BasGen.Obj. '

To answer no to the other questions, type n and press
RETURN, or just press RETURN.

The file that is created by assembling BasGen.Asm is called
BasGen.Obj, which will be compiled together with your source
file.

NOTE

To access non-BASIC procedures other than those
defined by BasGen.Asm, you can add entries to
BasGen.Asm with the Editor or the Executive
WRITEone Word Processor. Comments within
BasGen.Asm explain how to add an entry. After
you have edited BasGen.Asm, assemble it as
described above.

The BasGen.Obj file is now created and is ready
to be compiled with the source file.

Compiling the Source File and BasGen.Obj

To invoke the BASIC compiler, type "B C" (or as many letters
as are required to make the command unique) in the Executive
command form (see the "Invoking the Compiler" subsection in
Section 5 for instructions on filling in the Basic Compile form).

B-8

Calling Non-Basic Procedures

In the example below, you are compiling a BASIC file that
calls the Forms program. Fill in the form as follows and then
press GO.

Basic Compile
Source file
[Object file]
[List file]
[BasGen file]
[Suppress main]
[Public code?]
[Common data?]
[Errors only?]
[No bounds checking?]
[No RESUME info?]
[No CHAIN/ERL info?]
[No code generation?]

your program name

BasGen.Obj

The object file is created and ready to be linked with the
necessary library file to create the executable run file.

Using the Linker to Create the Run File

To invoke the Linker, type "Link" in the Executive command
form. (For instructions on using the Linker, see the B20
Linker/Librarian Reference Manual.) In the following example,
the object module Tutorial.Obj is linked with the necessary
library file. Fill in the form as follows and then press GO.

LINK
Object modules
Run file
[List file]
[Publics?]
[Line Numbers?]
[Stack Size]
[Max memory array size]
[Min memory array size]
[System build?]
[Version]
[Libraries]
[DS allocation?]
[Symbol file]

NOTE

Tutorial.Obj
Tutorial.Run

Forms.Lib

The Linker automatically searches CTOS.Lib and
BasCompiler.Lib, so you do not have to include
these files in the "[Libraries]" field during
linking.

Figure B-1 illustrates the compiling and linking of a
program that calls non-BASIC procedures.

B-9

Calling Non-BASIC Procedures

TUTORIAL.BAS

BASIC
COMPILER

ASSEMBLER

TUTORIAL.OBJ

CTOS.LIB BASCOMPILER.LlB

LINKER FORMS.LlB

TU.TORIAL.RUN

Figure B-1. Compiling and Linking a Program That calls Non
BASIC ProceCJures

B-IO

APPENDIX C

CONVERTING PROGRAMS TO B 20 BASIC

If you have programs written in a BASIC other than Burroughs
B 20 BASIC, some minor adjustments may be necessary before
running them. Here are some specific things to look for when
converting BASIC programs.

STRING DIMENSIONS

Delete all statements that are used to declare the length of
strings. A statement such as DIM A$(I,J), which dimensions a
string array for J elements of length I, should be converted to
the BASIC statement DIM A$(J).

Some forms of BASIC use a comma or ampersand for string
concatenation. Each of these must be changed to a plus sign,
which is the operator for string concatenation.

In B 20 BASIC, the MID$, RIGHT$, and LEFT$ functions are
used to take substrings of strings. Forms such as A$(I) to
access the Ith character in A$, or A$(I,J) to take a substring of
A$ from position I to position J, must be changed as follows:

Other BASIC

X$=A$(I)
X$=A$(I,J)

B 20 BASIC

X$=MID$(A$,I,l)
X$=MID$(A$,I,J-I+l)

If the substring reference is on the left side of an assignment
and X$ is used to replace characters in A$, then convert as
follows:

Other BASIC

A$ (I)=X$
A$(I,J)

B 20 BASIC

UID$(A$,l,l)=X$
MID$(A$,I,J-I+l)=X$

C-l

APPENDIX D

DERIVED MATHEMATICAL FUNCTIONS

Mathematical functions that are not intrinsic to BASIC can be
calculated as follows.

Function

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE

INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT

HYPERBOLIC SECAN'l'
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE
INVERSE HYPERBOLIC COSINE
INVERSE HYPERBOLIC TANGENT
INVERSE HYPERBOLIC SECANT

INVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOLIC COTANGENT

BASIC Equivalent

SEC(X)=l/COS(X)
CSC(X)=l/SIN(X)
COT(X)=l/TAN(X)
ARCSIN(X)=ATN(X/SQR(-X*X+l»
ARCCOS(X)=-ATN(X/SQR

(-X*X+l»+1.5708
ARCSEC(X)=ATN(X/SQR(X*X-

1»+SGN(SGN(X)-1)*1.5708
ARCCSC(X)=ATN(X/SQR(X*X-

1»+(SGN(X)-1)*1.5708
ARCCOT(X)=ATN(X)+1.5708
SINH(X)=(EXP(X)-EXP(-X»/2
COSH(X)=(EXP(X)+EXP(-X»/2
TANH(X)=EXP(-X)/EXP(X)+EXP

(-X))*2+1
SECH(X)=2/(EXP(X)+EXP(-X»
CSCH(X)=2/(EXP(X)-EXP(-X»
COTH(X)=EXP(-X)/(EXP(X)-EXP

(-X)) *2+1
ARCSINH(X)=LOG(X+SQR(X*X+l»
ARCCOSH(X)=LOG(X+SQR(X*X-l»
ARCTANH(X)=LOG«1+X)/(1-X»/2
ARCSECH(X)=LOG«SQR

(-X*X+1»+1/X)
ARCCSCH(X)=LOG«SGN(X)*SQR(X*X

+1)+1)/X
ARCCOTH(X)=LOG«X+l)/(X-l»/2

D-l

APPENDIX E

DISK INPUT/OUTPUT

Disk input/output procedures for the beginning BASIC user
are examined in this Appendix. If you are new to BASIC or if you
are getting disk-related errors, then read through these
procedures and program examples to make sure you are using all
the disk statements correctly.

Wherever a file name is required in a disk command or
statement, use a name that conforms to the BTOS requirements for
file names (see the subsection on OPEN in Section" 3).

PROGRAM FILE COMMANDS

The following commands and statements are used in program
file manipulation.

KILL "filename" deletes the file from the disk. "filename"
can be a program file, or a sequential or random access data
file.

NAt-m "oldfile" AS "newfile" to change the name of a disk
file, execute the NAME statement, NAME "oldfile" AS "newfile".
NAME can be used with program files, random files, or sequential
files.

Sequential Files

Sequential files are easier to create than random files but
are limited in flexibility and speed when it comes to accessing
the data. The data that is written to a sequential file is
stored, one item after another (sequentially), in the order it is
sent and is read back in the same way.

The statements and functions that are used with sequential
files are:

OPEN
CLOSE
PRINT#
PRINT# USING
INPUT{fo
LINE INPUT#
WRITEtfo
EOF

E-l

Disk Input/Output

The following program steps are required to create a
sequential file and access the data in the file:

1. OPEN the file in "0" mode.

OPEN "0" ,In, "DATA"

2. Write data to the file using the PRINT# statement.
(WRITE# can be used instead.)

PRINT#I,A$;B$;C$

3. To access the data in the file, you must CLOSE the file
and reOPEN it in "I" mode.

CLOSE #1
OPEN "I",#I,"DATA"

4. Use the INPUT# statement to read data from the sequential
file into the program.

INPUT111 , X$, Y$, Z$

Figure E-l below is a short program that creates a
sequential file, "DATA", from information you input at the video
display.

E-2

10 OPEN "O",#I,"DATA"
20 INPUT "NAME";N$
25 IF N$="DONE" & THEN END
30 INPUT "DEPARTMENT ";D$
40 INPUT "DATE HIRED ";H$
50 PRINT #1,N$;",";D$;",";H$
60 PRINT: GOTO 20

Figure E-l. Creating a Sequential Data File.

Disk Input/Output

Run the program and enter the data as shown:

NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE H1RED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? etc.

Now look at Figure E-2 below. It access the file "DATA" that
was created in the program of Figure E-l and displays the name of
everyone hired in 1978.

10 OPEN IIIII,#l,"DATA"
20 INPUT #l,N$,D$,H$
30 IF RIGHT$(H$,2)=1I78" THEN PRINT N$
40 GOTO 20
EBENEZER SCROOGE
SUPER MANN
Fatal Error: Input past end in line 20

Figure E-2. Accessing a Sequential File

The program in Figure E-2 reads, sequentially, every item in
the file. When all the data is read, line 20 causes an "Input
past end" error message. To avoid getting this error message,
insert line 15 which uses the EOF function to test for end-of
file:

15 IF EOF(l) THEN END

and change line 40 to GOTO 15.

A program that creates a sequential file can also write
formatted data to the disk with the PRINT# USING statement. For
example, the statement

PRINT#l,USING"####.##,";A,B,C,D

E-3

Disk Input/Output

could be used to write numeric data to disk without explicit
delimiters. The comma at the end of the format string serves to
separate the items in the disk file.

The LOC function, when used with a sequential file, returns
the number of sectors that were written to or read from the file
since it was OPENed. A sector is a 128-byte block of data.

Adding Data to a Sequential File

If you have a sequential file residing on disk and later
want to add more data to the end of it, you simply open the file
in "A" mode and start writing data.

Random Files

Creating and accessing random files requires more program
steps than sequential files, but there are advantages to using
random files. One advantage is that random files require less
room on the disk, because BASIC stores them in a packed binary
format. (A sequential file is stored as a series of ASCII
characters.)

The biggest advantage to random files is that data can be
accessed randomly, that is, anywhere on the disk; it is not
necessary to read through all the information, as with sequential
files. This is possible because the information is stored and
accessed in distinct units called records and each record is
numbered.

are:

E-4

The statements and functions that are used with random files

OPEN
FIELD
LSET/RSET
GET
PUT
CLOSE
LOC
MKI$
MKS$
MKD$
CVI
CVS
CVD

Disk Input/output

Creating a Random File

The following program steps are required to create a random
file.

1. OPEN the file for random access ("R" mode). This
example specifies a record length of 32 bytes. If the
record length is omitted, then the default is 128

OPEN "R",#1,"FILE",32

2. Use the FIELD statement to allocate space in the random
buffer for the variables that are to be written to the
random file.

FIELD #1 20 AS N$, 4 AS A$, 8 AS P$

3. Use LSET to move the data into the random buffer.
Numeric values must be made into strings when placed in
the buffer. To do this, use the "make" functions: MKI$
to make an integer value into a string, MKS$ for a
single-precision value, and MKD$ for a double-precision
value.

LSET N$=X$
LSET A$=MKS$ (AMT)
LSET P$=TEL$

4. Write the data from the buffer to the disk using the PUT
statement.

PUT #l,CODE%

Look at the program in Figure E-3. It takes information
that is input at the video display and writes it to a random
file. Each time the PUT statement is executed, a record is
written to the file. The 2-digit code that is input in line 30
becomes the record number.

E-5

Disk Input/Output

Note: Do not use a FILEDed string variable in an INPUT or
LET statement. This causes the pointer for that variable to
point into string space instead of the random file buffer.

10
20
30
35
40
50
60
70
80
90
100
110

OPEN "R",#I,"FILE"
FIELD #1,20 AS N$, 4 AS A$,
INPUT "2-Digit code";CODE%
IF CODE%=99 & THEN END
INPUT "NAME";X$
INPUT "AMOUNT";AMT
INPUT "PHONE";TEL$:PRINT
LSET N$=X$
LSET A$=MKS$(AMT)
LSET P$=TEL$
PUT #l,CODE%
GO TO 30

8 AS P$

Figure E-3. Creating a Random File.

Accessing a Random File

The following program steps are required to access a random
file.

E-6

1. OPEN the file in "R" mode.

OPEN "R",#1,"FILE",32

2. Use the FIELD statement to allocate space in the random
buffer for the variables that are to be read from the
file.

FIELD #1, 20 AS N$, 4 AS A$, 8 AS P~

NOTE

In a program that performs both input and output on
the same random file, you can often use just one
OPEN statement and one FIELD statement.

3. Use the GET statement to move the desired record into
the random buffer.

GET #l,CODE%

Disk Input/Output

4. The data in the buffer can now be accessed by the
program. Numeric values must be converted back to
numbers using the "convert" functions: CVI for
integers, CVS for single-precision values, and CVD for
double-precision values.

PRINT N$
PRINT CVS(A$)

The program shown in Figure E-4 below accesses the random
file "FILE" that was created in Figure E-3. By entering the 3-
digit code at the video display, the information associated with
that code is read from the file and displayed.

10 OPEN "R",1F1,"FILE"
20 FIELD #1, 20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-Digit code"jCODE%
40 GET 1F1, CODE%
50 PRINT N$
6 0 PRINT US ING "$ $4NIIF .INI" j CVS (A$)
70 PRINT P$: PRINT
80 GOTO 30

Figure E-4. Accessing a Random File.

The LOC function, with random files, returns the "current
record number." The current record number is one plus the last
record number that was used in a GET or PUT statement. For
example, the statement

IF LOC(1»50 THEN END

ends program execution if the current record number in
file#l is higher than 50.

The program shown in Figure E-5 is an inventory program that
illustrates random file access. In this program, the record
number is used as the part number, and it is assumed the
inventory contains no more than 100 different part numbers.
Lines 900 to 960 initialize the data file by writing CHR$(255) as
the first character of each record. This is used later (lines
270 and 500) to determine whether an entry already exists for
that part number.

Lines 130 to 220 display the different inventory functions
that the program performs. When you type in the desired function
number, line 230 branches to the appropriate subroutine.

E-7

Disk Input/Output

100 'INVENTORY PROGRAM EXAMPLE
ON ERROR GOTO 9000
DEF FNAT$(X,Y)=CHR$(255)+"C"+CHR$(X)+CHR$(Y):
EL$=CHR$(255}+"EL"
PRINT FNAT$(5,5)," INVENTORY FUNCTIONS"
PRINT fnAT$(5,8)+EL$+"Which file to use";

115 INPUT FN$:IF FN$="" GOTO 115
GOSUB 1000
OPEN "R",#1,FN$+".RANDOM",39
FIELD #1, 1 AS F$, 30 AS D$, 2 AS Q$, 2 AS R$, 4 AS P$

130 PRINT FNAT$(1,5)," INVENTORY FUNCTIONS":PRINT
fnAT$(1,8);
PRINT ,1,"Initialize '"FN$"'."
PRINT ,2,"Create new inventory."
PRINT ,3,"Display part inventory."
PRINT ,4,"Add to stock."
PRINT ,5,"Subtract from stock."
PRINT ,6, "Display all items needing reorder."
PRINT ,7,"Change output device from '";OPD$;"'."
PRINT ,8,"Return to" Executive."

220 PRINT fnAT$(10,20);EL$: INPUT "Function (1-8) ";Function%
IF (Function% < 1) OR (Function% > 8) &
THEN PRINT Function%" IS A BAD FUNCTION NUMBER.": GO TO 220
PRINT CHR$(255)+"F "+CHR$(0)+CHR$(21)+CHR$(255)+CHR$(255)

230 ON Function% GOSUB 900,250,400,500,600,700,1000,800
GOTO 130

REM BUILD NEW ENTRY
250 GOSUB 840

E-8

IF ASC(F$)<>255 &
THEN PRINT "Overwrite?";:In$=INPUT$(l): &

IF In$<>"Y" OR In$<>"y" &
THEN RETURN

LSET F$=CHR$(O)
INPUT "Description :";Desc$
LSET D$=Desc$
INPUT "Quantity in stock:";Q%
LSET Q$=MKI$(Q%)
INPUT "Reorder level :";R%
LSET R$=MKI$(R%)
INPUT "Unit price :";P
LSET P$=MKS${P)
PUT #l,Part%
RETURN

Figure E-5. Inventory. (Page 1 of 3)

Disk Input/Output

REM DISPLAY ENTRY
400 GOSUB 840

IF ASC(F$)=255 &
THEN PRINT "NULL ENTRY.":RETURN
LPRINT USING "Part Number •••••••• ###";Part%
LPRINT "Description ••••••• ";D$
LPRINT USING "Quantity on hand •• #####";CVI(Q$)
LPRINT USING "Reorder level .•••• #####"iCVI(R$)
LPRINT USING "Unit Price •••••• $$##.##";CVS(P$)
LPRINT USING "Total value ••• $$$$##.##"iCVS{P$)*CVI(Q$)
RETURN

REM ADD TO STOCK
500 GOSUB 840

IF ASC(F$)=255 &
THEN PRINT "NULL ENTRY. ": RETURN
PRINT D$,: INPUT "Quantity to add";In%
Q%=CVI{Q$)+In%
LSET Q$=MKI$(Q%)
PUT #l,Part%
RETURN

REM REMOVE FROM STOCK
600 GOSUB 840

IF ASC(F$)=255 &
THEN PRINT "NULL ENTRY. ": RETURN

620 PRINT D$: INPUT "Quantity to subtract";In%
IF In%=O &
THEN PRINT "NOTHING SUBTRACTED.": RETURN
Q%=CVI(Q$)
IF (Q%-In%)<O &
THEN PRINT IOnlY";Q%;" in stock.":GOTO 620
Q% = Q% - In%: LSET Q$ = MKI$(Q%)
IF Q%<CVI(R$) &
THEN PRINT "Quantity is now below reorder level of";CVI(R$):&

LPRINT "Quantity is now below reorder level of"iCVI(R$)
PUT #l,Part%
RETURN

REM DISPLAY ITEMS BELOW REORDER LEVEL
700 FOR J = 1 TO 100

GET #l,J
IFCVI(Q$)<CVI(R$) &
'l~HEN LPRINT D$i ll Quantityl;CVI(Q$);TAB(50)i"ReOrder
level"iCVI(R$)

NEXT J
RETURN

REM END PROGRAM
800 END

Figure.E-5. Inventory. (Page 2 of 3)

E-9

Disk Input/Output

REM GET PART NUMBER
840 INPUT "Part number or 999"iPart%

IF Part%=999 &
GOT0850
IF (Part%<l) OR (Part%>lOO) &
THENPRINT "BAD PART NUMBER.": GOTO 840 &
ELSEGET #1, Part%

850 RETURN

REM INITIALIZE FILE
900 PRINT "Are you sure?":In$=INPUT$(l)

IF In$=IN" OR In$="n" &
THENRETURN
IF In$<>"Y" AND In$<>"y" &
GOT0900
LSET F$=CHR$(2S5)
PRINT "Please wait a moment "i
FOR J=l TO 100

PUT#l,J
PRINT "."i

NEXT J
960 RETURN

REM SET OUTPUT DEVICE
1000 PRINT fnAT$(5,8)+EL$i: INPUT "Output Device Name: "iIn$

IF In$<>"" &
THENOPD$=IN$
erc = DEFLPRINT(OPD$)
IF erc<>O &
THENERROR 39
RETURN

9000 IF ERR 39 &
THENPRINT "System error #"iERCi" at line"iERL: &

PRINT "SysErc() = "iSysErc() &
ELSEPRINT "Basic error #"iERRi" at line"iERL
RESUME NEXT

Figure E-S. Inventory. (Page 3 of 3)

E-10

APPENDIX F
CONFIGURING MEMORY USAGE AND RUN-TIME

PARAMETERS

The file BrCnfg.Asm configures the following parameters used by
the BASIC comipler run-time system:

1. The number of files that can be opened. The default is
6 files.

2. The size of the buffers used in opening sequential
files. The default is 1024 bytes.

3. The size of the memory area used to contain overlays
that are read from disk. The default is 16k bytes.

4. The size of the memory area that contains all the file
buffers. The default is 12.Bk bytes.

5. The size of the memory area that contains string data.
The default is Bk bytes.

6. The amount of short-lived memory that is available to
the BASIC program. The default is 4Bk bytes.

7. The flag that instructs the run-time system to clear the
video display before the BASIC program is run. The
default is to clear the video display.

To change any of the above parameters, edit the BrCnfg.Asm
file. Comments within the file explain how to change a
parameter.

Use the Assembler to assemble the modified version of
BrCnfg.Asm and create the object module BrCnfg.Obj (see the B 20
System Programmer's Guide/Assembler).

Use the Librarian to enter BrCnfg.Obj in the BasCompiler.Lib
library and replace the previous version. (For more information,
see the B 20 Linker/Librarian Reference Manual.)

BASIC programs that are linked with the updated
BasCompiler.Lib use memory as configured by the new version of
BrCnfg.Asm.

F-l

APPENDIX G
PROGRAMMING HINTS

HINT 1: DIFFERENCES BETWEEN THE BASIC
INTERPRETER AND THE BASIC COMPILER

This hint explains the changes required to compile source
programs written for the BASIC Interpreter. It also explains
the differences between the BASIC Interpreter and the BASIC
Compiler. These changes allow the source code to be run with
either the interpreter or the compiler.

CHANGES TO BE MADE TO EXISTING PROGRAMS

1. Nove DEFINT/SNG/DBL/STR, DEF FN,
to the beginning of the program.

and DIM statements

2. I f two or more modules make reference to a DIM statement,
that DIM statement must be included in every source module.
This code was conditional for the interpreter.

3. ERASE and CLEAR commands are treated as comments by the
compiler.

4 Backward quotes or in-line comment delimiters are illegal
in the compiler.

5. Quoted strings cannot be open-ended (i.e., ending quote
omitted).

6. LPRINT and PRINT commands cannot be coded as follows:

LPRINT "hello"; using "###"; value%; "bye"

The interpreter allows this syntax but the compiler does not.

7. You cannot have more than one module that has shared code and
the same line numbers.

8. The maximum total line count of all BASIC programs that are
linked together should not exceed 16-20K.

G-l

Programming Hints

LANGUAGE FEATURES NOT SUPPORTED BY THE COMPILER

Key Directed Features

GO

ACTION-CANCEL

ACTION-O

ACTION-S

ACTION-Q

CANCEL

CODE-A

CODE-R

DELETE

FINISH

Statements

G-2

AUTO

CLEAR

COm-ION

CONT

DELETE

EDIT

ERASE

LIST

LLIST

LOAD

11ERGE

NEW

RENUM

exit insert mode in BASIC editor

stop execution and return to command mode

suspend video display output

suspend execution

resume execution

abort input and return to command mode

enter the BASIC editor

retype the current line

delete the current line

exit BASIC

enter a program

zero all variables

preserve variables across a CHAIN

continue execution of the current program

remove part of the current program

modify the current program

remove an array

display program on the video

print program

load a program from disk

merge a program on disk with the current
program

remove current program/delete all variables

renumber current program

Programming Hints

RESTORE <line number>

RUN

SAVE

TRON

TROFF

restore the data stream at the specified
<line number> - NOTE: RESTORE is supported
by the compiler.

execute the current program

store the current program

turn statement tracing on

turn statement tracing off

LANGUAGE FEATURES WITH SYNTACTIC AND SEMANTIC DIFFERENCES

The language features described below are implemented in both the
interpreter and the compiler. However, there are differences.

CHAIN

In compiled BASIC, the CHAIN statement transfers control
from one BASIC module to another. The argument to the
CHAIN statement is a string expression specifying a module
name. The name of a BASIC module is the same as its
filename, without the volume and directory name parts.

For example, suppose a BASIC program consists of the two
source files Main.bas and Work. bas. The following
statement transfers control from }1ain.bas to Work. bas.

CHAIN "Work. bas"

The MERGE, DELETE, and ALL o~tions present in the
interpreter are not meaningful In compiled BASIC. The
effect of the ALL option can be achieved with the "common
data" feature described in a later section.

Continuation Character

The compiler accepts either the MARK or ampersand
character as a continuation character; the interpreter
accepts only the MARK.

Line Numbers

Line numbers are optional in the compiler; they are
required in the interpreter.

Logical Line Length

The length of a logical line is unbounded in the compiler;
the interpreter restricts logical line length to 255.

G-3

Programming Hints

G-4

String Constants

The compiler interprets two consecutive double-quote
characters within a string constant as a single douhle
character contained wi thin the string. The interpreter
does not.

String Length

The compiler supports a maximum logical string length of
32K; the interpreter logical maximum is 255.

Common Data

BASIC modules that comprise a BASIC program can share
variables using the "common data" feature. Common data
means that references to a variable from two or more
modules refers to the same storage. This option is
selected when a module is compiled.

For example, suppose modules A.bas and B.bas are compiled
with the "common data" option and both contain the
statement "X = 0". The variable X is shared; that is,
references to X inA. bas and B. bas refer to the same
storage.

Public Code

Selecting the "public code" option when compiling modules
allows a BASIC module to transfer control to another BASIC
module using GOSUB or GOTO, or by calling a user-defined
function. "Public code" means that all line numbers and
user-defined functions in a module are publ ic. Program
control can be trans ferred to any 1 ine number or user
defined function in the module.

For example, suppose modules Main. bas and Work. bas
comprise a BASIC program. Work. bas contains 1 ine number
100 and user-defined function FNA. Work.bas is compiled
with the "public code" option.

The following statements in ~lain.bas transfer control from
Main.bas to Work. bas.

GOSUB 100

GOTO 100

Line 100 in Work. bas is as follows:

100 X = FNA(1,2)

Two modules in a BASIC program compiled with the "public
code" option cannot contain the same line number.

Programming Hints

Main }fodules

A BASIC program must contain exactly one main module. The
main module is the first executed when the program is run.

By default, the compiler designates a module as main at
compile time. The "suppress main" compiler option
prevents a BASIC module from being designated as main.

Non-BASIC Procedures

As in the interpreter, compiler BASIC can call non-BASIC
procedures. The "basgen fi Ie" compi ler option supports
the compilation of a module that references non-BASIC
procedures. When the "basgen f i I e" opt ion is used, the
compiler reads the "basgen file" (an object module) and
records the names and interfaces of the non-BASIC
procedures. Hence, the compiler can distinguish between
non-BASIC procedures and arrays.

Data Statements

If a BASIC program consists of more than one module, the
data statements of each module are concatenated. The
order of concatentation is the same as the order of ob;ect
modules as seen by the I inker when the BASIC program is
linked.

The RESTORE
pointer" to
statements.

statement restarts the "data statement
the beginning of the concatenation data

Using Virtual Code Management (Overlays)

When linking a BASIC program consisting of more than one
BASIC module, some of the modules can be overlayed. This
means that the code portion of the module resides on disk
until the module is entered.

A module is placed in an overlay by placing the /0 switch
at the end of its object module name in the object files
list of the linker command form.

There are two restrictions in using overlays.

1. The main module cannot be in an overlay.

2. Modules compiled with the "public code" option cannot
be in overlays.

G-S

Programming Hints

G-6

The CHAIN state~ent transfers control to a BASIC module in
an overlay. Note that GOTO, GOSUB, or a user-defined
function call cannot be used to transfer control to an
overlay because line numbers and user-defined function
names cannot be made public.

The BASIC program is not required to perform any
initialization to support the use of overlays. Overlay
ini tial ization occurs automat ically when the main module
is entered.

When linking a BASIC program that uses overlays, a special
object file must be included in the object file list of
the linker command form. This object file is provided as
part of the compiled BASIC runtime system.

Using Compiled BASIC

A BASIC program is compiled, linked, and executed in the
following mann~r:

1. Each module that comprises the BASIC program is
compiled using the BASIC COMPILE command form.
Exactly one module must be compiled as main, and all
other modules must be compi led wi th the "suppress
main" option.

Any module may be compiled with the "common data"·
compiler option.

Any module that
overlay may be
compiler option.

is not going to. be
compiled with the

placed
"public

in an
code"

Any module that references non-BASIC procedures must
be compiled in a single invocation of the compiler.

Any set of modules that uses identical compiler
options may be compiled in a single invocation of the
compiler.

The compiler generates an object and list file for
each BASIC module. Object and list filename
specifications are optional.

2. Once the BASIC modules are compiled, the resulting
files are linked together using the Linker to produce
an executable run file.

The Linker searches
automatically to resolve
system for compiled BASIC.

[sys]<sys>BasCompiler.lib
references to the runtime

Programming Hints

If overlays are used, a special object file must also
be included in the object modules list.

3. The BASIC program is executed by using the Executive
Run command form or by using a custom command created
with the New command.

HINT 2: SINGLE- AND DOUBLE-PRECISION

NUMBERS IN BASIC COMPILER

Some real numbers in BASIC cannot be represented as floating
point numbers; when they are converted to decimal the "wrong"
answer is returned. This problem is caused by rounding errors in
the conversion between a numeric constant and its floating-point
representation and the subsequent conversion from floating-point
back to a numeric constant. To prevent the incorrect printout of
these values, use the PRINT USING or LPRINT USING commands.
These commands round the real numbers to the desired number of
decimal places, thus giving a correct printout of the values.

EXAMPLE 1: 10 A# = .0865
20 B# = .0962
30 PRINT TAB(10); A#; TAB(40);
40 PRINT USING "#.####"; A#
50 PRINT
60 PRINT TAB(10); B#;TAB(40);
70 PRINT USING "#.####"; B#
80 END

When the above program is run with the BASIC Interpreter, the
values below are printed. Note that similar results occur with
the BASIC Compiler. The first column printed uses the PRINT
command, and the second column uses the PRINT USING command:

8.649998903274536D-02

9.619998931884766D-02

0.0865

0.0962

Note that the "wrong" value is also displayed when a LIST of the
program is done with the BASIC editor as shown below.

10 A#=8.649999E-02
20 B#=9.619999E-02
30 PRINT TAB(10); A#; TAB(40);
40 PRINT USING "#.####"; A#
50 PRINT
60 PRINT TAB(10); B#; TAB(40);
70 PRINT USING "#.####"; B#
80 END

G-7

Programming Hints

EXAMPLE 2: 10 ERC% = DEFLPRINT("[SPLB]")
20 FOR I = 1 TO 5 STEP .1
30 LPRINT TAB(lO); I; TAB(25)
40 LPRINT USING "#.#";' I
50 NEXT I
60 ERC% = DEFLPRINT("[NUL]")
70 END

The following page is the printout of the above program using the
BASIC Interpreter. Again, similar results occur with the BASIC
Compiler. The values printed range from 1 to 5 and are
incremented by a value of one-tenth (0.1). Note, also, that not
all the values are printed incorrectly. The first column uses
the LPRINT command, and the second column uses the LPRINT USING
command.

G-8

LPRINT
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.999999
3.099999
3.199999
3.299999
3.399999
3.499999
3.599999
3.699999
3.799999
3.899999
3.999998
4.099999
4.199999
4.299998
4.399998
4.499998
4.599998
4.699998
4.799998
4.899998
4.999998

LPRINT USING
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0

Programming Hints

G-9

Programming Hints

HINT 3: STRING SPACE USE IN THE BASIC COMPILER
This hint explains how the BASIC Compiler allocates and
deal locates string space. This information is provided as a
guideline to optimize a program that uses strings.

1. Literal strings included in a BASIC source do not use any
string space. These strings are stored in the "string
constant" section of the code file. In all of the following
examples, the REMarks indicate the amount of string space
available after the execution of each statement.

10 PRINT FRE(O)
20 PRINT "STRING VARIABLE"
30 PRINT FRE(O)

:REM 65510
:REM 65510
:REM 65510

2. Variable strings are allocated space in chunks of 8 bytes.

G-I0

Two bytes in the first string area are reserved for system
use. Therefore, a string of 1 to 6 characters requires 8
bytes; 7 to 14 characters, 16 bytes; 15 to 22 characters, 24
bytes; etc. If an assigned string is reassigned with
sufficiently smaller length to free one or more 8-byte
chunks, the freed chunks are returned to ava i lable user
memory.

10 PRINT FRE(O) : REM 65510
20 A$ "A" : REM 65502
30 B$ "B" :REM 65494
40 A$ "1234" :REM 65494
50 A$ "1234567" :REM 65486
60 A$ "12345678901234" : REM 65486
70 B$ "" :REM 65494
80 A$ "" : REM 65510

In both statements 20 and 30, 8 bytes of string space are
used. Statement 40 does not use any more string space
because A$ is still less than 6 characters. In statement
50, an additional 8 bytes of string space are used because
A$ is now 7 characters long, which requires 16 bytes of
string space. (Note that 8 bytes were already allocated in
statement 20.) Again, statement 60 does not use any more
string space because A$ did not exceed 14 characters.
Statement 70 recovers 8 bytes of string space, and statement
80 recovers 16 more bytes of string space because both A$
and B$ were reassigned to null strings. No difference
occurs in the use of string space if the variables are
subscripted.

Programming Hints

3. String functions such as STRING$, CHR$, SPACES$, etc.,
generate temporary variables. If a string function occurs
in an assignment alone (no concatenation), no temporary
variable is created. The amount of string space is
calculated as any other string variable.

10 PRINT FRE(O)
20 A$ = STRING$(15,"A")

:REH 65510
:REM 65486

In this example, a IS-character string is created and
requires 24 bytes of string space.

4. If string functions are used in concatenated expressions,
temporary variables are created and retained. Temporary
variables are assigned space like any other string variable.
In the following example, three temporary string variables
are allocated, one for each HEX$ function and one for the
resultant concatenated string. After the statement is
executed, the three temporary string variables remain.
However, if this statement had been assigned to a variable,
then only two of the temporary strings would remain because
the resultant concatenated string is assigned to the
variable. Note that arithmetic variables do not require any
string space.

10 PRINT FRE (0)
20 A = 123
30 B = 456
40 PRINT HEX$(A) + HEX$(B)

:REM 65510
:REl1 65510
:REM 65510
:REM 65486

In this example, 24 bytes of string space are required.
Eight bytes are required for HEX$(A) , 8 bytes for HEX$(B) ,
and 8 bytes for the temporary string variable created by
concatenating HEX$(A) and HEX(B).

5. The number of temporary string variables assigned can be
determined by the following formula:

1 + the maximum number of string functions in a
concatenated expression

Once allocated, subsequent concatenation expressions reuse
the same temporary string variables. The temporary space
can be recovered if necessary with a concatenation of zero
length strings, as shown in the following example.

10 PRINT FRE(O)
20 A$ STRING$(200,"A") +

STRING$(200,"B")
30 A$ = STRING$ (O,A$) +

STRING$ (O,A$)

:REM 65510

:REM 64686

:REM 65510

G-ll

Programming Hints

G-12

In statement 20, three temporary strings are created. One
temporary string is created for each STRING$ function and
one for the resultant string, A$. Therefore, only two
temporary strings remain because the third is assigned to
A$. The storage requirement would be the same if the
concatenated string was printed instead of assigned, as
shown in the example below. In this case, however, all
three temporary strings remain.

10 PRINT FRE(O)
20 PRINT STRING$(200,"A") +

STRING$(200,"B")
30 PRINT STRING$(O,"A") +

STRING$(O,"A")

:REl-t 65510

:REM 64686

:REM 65510

A 200-byte string requires (200 + 2)/8 eight-byte chunks,
which equals 26 (25.25) chunks or 208 bytes. A 400 byte
string requires (400 + 2)/8 chunks, which equals 51 (50.25)
chunks or 408 bytes. Total string space allocation for
statement 20 is 208 + 208 + 408 =824 bytes.

Statement 30 works the same way except it reuses the
temporary variables from statement 20. In this case, the
three temporary strings are assigned to length O. After
execution of this statement, all temporary and user string
variables have been set to length 0, so all string storage
space is again available.

APPENDIX H

FUNCTIONAL INDEX

VARIABLE/FUNCTION DEFINITION

DEF
DEF FN
DEFINT
DEFDBL
DEFSNG
DIM
LET ..

OPTION BASE

CONSTANT DEFINITION

%, I, #, $, %0, %H, E, D

TERMINAL I/O

INPUT
INPUT$
LINE INPUT
OPTION COMMA
PRINT
PRINT USING
POS()

*SPC()
*TAB()
*USING()
*WIDTH

WRITE

PROGRAM BRANCHING

CHAIN
*IF .. GOTO

GOTO
GOSUB .. RETURN

*ON ERROR GOTO RESUME
ON .. GOTO
ON .. GOSUB

INTERNAL DATA MANAGEMENT

DATA
READ
RESTORE

* This command is listed in more than one category.

H-l

Functional Index

DIRECT MEMORY ACCESS

FRE()
PEEK()
POKE

POINTER MANIPULATION

GETRA()
GETSA()
MAKEPOINTER()
PTR()
PWA()

SEQUENTIAL FILE HANDLING

EOF()
*CLOSE

INPUT/F
*INPUT$

LINE INPUTII
*OPEN

PRINTiF
PRINTiF USING

*USING$()
WRITEI!

RANDOM ACCESS FILE HANDLING

*CLOSE
*CVDO
*CVIO
*CVS 0

FIELD
GET

*KILL
LOC()
LSET

*MKI$()
*MKD$ ()
*MKS$()
*NAME
*OPEN

RSET

* This command is listed in more than one category.

H-2

ERROR HANDLING

ERL
ERR
ERROR

*ON ERROR GO TO .. RESUME
SYSERC()

DATE/TIME FORMATTING

DATETIME$

PRINTER OUTPUT

DEFLPRINT()
LPOS()
LPRINT
LPRINT USING

*SPC()
"kTAB()
*USING$()
*WIDTH

PARAMETER ACCESS

RGPARAM$()
VERSION$

ARITHMETIC OPERATORS

+ ADDITION
- SUBTRACTION
- NEGATION
* MULTIPLICATION
/ FLOATING POINT DIVISION
\ INTEGER DIVISION
,.. EXPONENTIATION
= ASSIGNMENT
MOD MODULUS

RELATIONAL OPERATORS

EQUALITY
<> INEQUALITY

Functional Index

* This command is listed in more than one category.

H-3

Functional Index

< LESS THAN
<= LESS THAN OR EQUAL TO
>= GREATER THAN OR EQUAL TO

LOGICAL OR BOOLEAN OPERATORS

NOT
AND
OR
XOR
IMP
EQV

MATHEMATICAL FUNCTIONS

ABS()
ATN()
COS()
EXP()
FIX()
INT()
LOG()
RND()
SGN()
SIN()
SQR()
TAN()
RANDOMIZE
Derived Functions See Appendix D

TYPE CONVERSION (Types converted)

ASC()

CINT()
CSNG()
CDBL()
CHR$()

*CVI ()
*CVD()
*CVS()

HEX$ ()
INSTR()
LEFT$ ()
LEN()
MID$ ()
OCT$()
RIGHT$ ()

String to ASCII
Similar Types
Numeric to Numeric
Numeric to Numeric
Numeric to Numeric
ASCII to String
Numeric to Numeric
Numeric to Numeric
Numeric to Numeric
Numeric to String
String to Index
String to String
String to current Length
String to String
Numeric to String
String to String

* This command is listed in more than one category.

H-4

SPACE$ ()
STRING$ ()
STR$ ()
SWAP
VAL ()

PROGRAM CONTROL

CALL
CHAIN
END

String to string
String to String
Numeric to String
Similar types
Numeric to String

FOR •• NEXT
*IF •• GOTO

IF •• THEN
STOP
SYSTEM
WHILE WEND

COMMENTS

REM

{ ELSE}

DEFAULT PROCEDURES IN BASGEN

GETSTAMFILEHEADER
GETMODULEID
GETPASCB
GETUCB
GETPARTITIONSTATUS
GETPSTRUCTURE
GETUSERNUMBER
QUERYREQUESTINFO
QUERYVIDHDW
STRINGSEQUAL
UPDATEVAM

PORT I/O

INP ()
OUT
WAIT

Functional Index

* This command is listed in more than one category.

H-S

APPENDIX I

INSTALLATION PROCEDURES

The following are installation procedures for invoking the
Install.sub and XEInstall.sub for the BASIC Compiler.

HARD DISK INSTALLATION

Boot the system from the master or cluster where the installation
of BASIC Compiler is desired. The software is installed in the
system files of the system directory.

• Insert the BASIC Compiler diskette in floppy drive
[fO].

Do not press the RESET button.

• Enter the SOFTWARE INSTALLATION command on the command
line and press GO.

• Follow the instructions displayed on the screen.

• When installation is complete, remove the distribution
diskette and store it in a safe place.

XE 520 INSTALLATION

Boot the cluster workstation being used for the installation from
the XE520.

• Power off all other cluster workstations.

• Log onto user ADMIN.

• Insert the BASIC Compiler diskette in floppy drive
[fO] •

Do not press the RESET button.

I-I

Installation Procedures

I-2

• Enter the SUBMIT command on the command line and press
RETURN. The following parameter appears on the
screen:

SUBMIT
File List [fO]<sys>XEInstall.sub

Press GO to invoke the SUBMIT command.

• Follow the instructions displayed on the screen.

• When installation is complete, remove the distribution
diskette and store it in a safe place.

APPENDIX J

PRODUCT USAGE ON B 26 DUAL FLOPPY
STANDALONE SYSTEMS

INTRODUCTION

BASIC 4.0 can be used on B 26 Dual Floppy Standalone systems.
Before creating,. compiling, linking, and running BASIC programs
on the B 26 Dual Floppy, duplicate the BASIC disk, and the
Language Development disks by using the following procedures:

1. Place the system disk of the 4.0 B 26 Dual Floppy into
disk drive [fO].

2. Execute the FLOPPY COpy command as follows:

FLOPPY COpy
[Number of copies]
[Overwrite OK?]
[Dual floppy?] _Y_e_s ________________ _
[Suppress verify?]
[Device names(s)]
[Device password(s)]

A 4.0 Linker disk for BASIC should also be set up to save time
transferring disks in and out of the floppy drives, and to
prevent stating CTOS.Lib and BasCompiler.Lib in the LINK command.
To set up a 4.0 Linker, use the following procedure:

1. Place the system disk of the 4.0 B 26 Dual Floppy in
disk drive [fO].

2. Place a blank disk in disk drive [fl].

J-l

Product Usage on B 26 Dual Floppy Standalone Systems

J-2

3. Execute the IVOLUME command as follows:

IVOLUME
Device name =f~l~ ____________ __
[Device password]
Volume name BasLinker
[Volume password]
[System Image (default = 384)] ~O ______________ __
[Log file (default = 2)] ~O ______________ __
[Crash file (default = 0)]
[Max. directories] ~2~ ______________ _
[Max. files on volume] ~1~5 ______________ __
[Primary file headers only?] ~Y~e~s~ ____________ _
[Max. files in Sys Directory] =1~2~ ____________ __
[Sys Directory password]
[Write protect Sys Directory?]
[Suppress format of medium?]
[Surface tests] ~O ________________ _
[Debug?]
[Log file]
[Extend floppy tracks?]
[Single-sided mini-floppy]
[Bad spots (See Documentation)]

4. Execute the COpy command as follows:

COpy
File from
File to
[Overwrite ok?]
[Confirm each?]

[fO]<sys>Exec.Run
[fl]<sys>Exec.Run

5. Execute the CREATE DIRECTORY command as follows. Use
the directory name of the directory that contains
Linker.run on the Language Development disk (e.g.,
<Burroughs».

CREATE DIRECTORY
New directory name
[Default protection level

(e.g., 15)]
[Maximum number of files

(default 45)]
[Password for new directory]
[Volume password]

[fl]<Burroughs>

3

6. To execute the COpy command, type Copy and press
RETURN. Place the Language Development 4.0 (B20 LD4-1)
disk which contains Linker.run into disk drive [fO].

Product Usage on B 26 Dual Floppy Standalone Systems

7. Execute the COPY command as follows:

COpy
File from
File to
[Overwrite ok?]
[Confirm each?]

[fO] <Burroughs>Linker.Run
[fl] <Burroughs>Linker.Run

8. To execute the COpy command, place the system disk of
the 4.0 B 26 Dual Floppy disks in disk drive [fO].
Type Copy and press RETURN. Place the Language
Development 4.0 (B20 LB4-l) disk which contains
Linker.Run into disk drive [fO].

9. Execute the COpy command as follows:

COpy
File from
File to
[Overwrite ok?]
[Confirm each?]

[fO]<sys>Sys.Cmds
[fl]<sys>Sys.Crnds

10. BasCompiler.Lib must be transferred to the 4.0 Linker
disk for BASIC. The name of the directory where
BasCompiler.Lib resides should be used (e.g., <sys».

To execute the COpy command, place the system disk of
the 4.0 B 26 Dual Floppy disks in disk drive [fO].
Type Copy and press RETURN. Place the BASIC 4.0 (B20
BC4) disk into disk drive [fO].

11. Execute the COpy command as follows:

COpy
File from
File to
[Overwrite ok?]
[Confirm each?]

[fO]<Burrou hS>BasCom iler.Lib
fl <sys>BasCompiler.Lib

12. CTOS.Lib must be transferred to the 4.0 Linker for
BASIC. The name of the directory where CTOS.Lib
resides should be used (e.g. <Burroughs».

To execute the COpy command, place the system disk of
the 4.0 B 26 Dual Floppy disks in disk drive [fO].
Type Copy and press RETURN. Place the Language
Development 4.0 (B20 LD4-2) disk into disk drive [fO].

J-3

Product Usage on B 26 Dual Floppy Standalone Systems

13. Execute the COpy command as follows:

COpy
File from
File to
[Overwrite ok?]
[Confirm each?]

[fO]<Burroughs>CTOS.Lib
(fl]<sys>CTOS.Lib

CREATING A PROGRAM

Use the following procedure to create a program:

1. Place the Editor disk of the 4.0 B 26 Dual Floppy in
disk drive [fO].

2. Place a relatively empty source disk in disk drive
[fl].

3. Execute the EDIT command as follows:

where

EDIT
File
[Your name]

(fl] <YourDir>YourFile.Bas

YourDir
is the name of the directory on the source disk
where the BASIC source program, YourFile.Bas, is
to reside. The Editor is used and exited in a
normal manner.

COMPILING A PROGRAM

Use the following procedure to compile the program:

J-4

1. Place the 4.0 BASIC disk in disk drive [fO].

2. Place the source disk with YourFile.Bas in disk drive
[fI].

Product Usage on B 26 Dual Floppy Standalone Systems

3. Execute the BASIC command as follows:

BASIC COMPILER
Source file
[Object file]
[List file]

[fl]<YourDir>YourFile.Bas

.
[No code generation?]

This compilation creates a list file called YourFile.Lst and an
object file called YourFile.Obj on the source disk. To change
the destination or name of these files, explicitly state the path
and name of them. When the compilation is complete, the message

Please mount a system volume in [sys] and press GO to continue

is displayed. Put the system disk of the 4.0 B 26 Dual Floppy
disks into drive [fO] and press GO.

LINKING A PROGRAM

Use the following procedure to link the program:

1. Place the 4.0 Linker disk for BASIC in disk drive [fO].

2. Place the source disk with YourFile.Obj in disk drive
[f 1] •

3. Execute the LINK command as follows:

LINK
Object modules
Run file
[List file]

[Debug?]

[fl]<YourDir>YourFile.Obj
[fl] <YourDir>YourFile.Run

This link creates a run file called YourFile.Run, a map file
called YourFile.Map and a symbol file called YourFile.Sym. To
change the destination or name of these files, explicitly state
the path and name of them.

J-S

Product Usage on B 26 Dual Floppy Standalone Systems

RUNNING A PROGRAM

Use the following procedure to run a program:

J-6

1. Place the system disk of the 4.0 B 26 Dual Floppy disks
in disk drive [fa].

2. Place the source disk with YourFile.Run in disk drive
[f1] •

3. Execute the RUN command as follows:

RUN FILE
Run file
[Parameters]

[f1]<YourDir>YourFile.Run

APPENDIX K

GLOSSARY

Common Data. Common data means that references to a variable
from two or more modules point to the same area in memory.

Escape Sequence. An escape sequence is a sequence of characters
that invokes special functions.

Library. A library is a collection of related object module
files.

Main Module. The main module is the first module executed when
the program is run. All compiled BASIC programs must contain
exactly one main module.

Module. A module is a BASIC source file.

Nonexecutable Statement. In compiled BASIC, a nonexecutable
statement (for example, DIM, DEF, FN and DEFINT/SNG/DBL/STR)
takes effect when it is compiled. It affects all statements that
are compiled after it.

Object Module. An object module is the result of a single
compilation or assembly. A single object module is contained in
an object module file (.Obj), while many object modules can be
contained in a library file (.Lib).

Overlay. An overlay is a code segment, made up of the code from
one or more object modules. An overlay is loaded into memory
from disk only when it is needed and is not permanently memory
resident.

Printer Spooler. The printer spooler is a dynamically installed
system service that transfers text from disk files to the printer
interfaces of the workstation in which it is installed.

Program. A program consists of one or more modules that are
linked together to form an executable run file.

Public Code. Public code means that all line numbers and user
defined functions in a module are accessible to all other modules
in the program.

Public Symbol. A public symbol appears in the symbol file
(created by the Linker) for all line numbers, user-defined
functions, and program variables when the program is compiled
with the common data and public code options.

K-I

Glossary

Run File. A run file is a memory image of a task (in ready-to
run form) linked into the standard format required by the
Operating System loader.

Run Time. The time during which a program is executing.

Run-Time System. The BASIC run-time system is the software that
supports the features of the BASIC language. For example, the
BASIC file system, the mathematical routines, and the string
management routines are part of the run-time system. Physically,
the run-time system is linked with a BASIC program and is part of
the run file. The object modules that comprise the run-time
system are contained in BasCompiler.Lib and CTOS.Lib.

Source File. The source code that constitutes the input to an
assembler, interpreter, or a compiler for translation.

K-2

ABS function, 3-2
Accessing

a random file, E-6
a sequential file, E-3

INDEX

Adding data to a sequential file, E-4
Additional public symbols, 4-13
Allowable operators, 2-12
Array parameters, B-5
Arithmetic operators, 2-10
Array, 2-6
Array variables, 2-6
ASC function, 3-3
Assembling BasGen.Asm, B-7
ATN function, 3-4
BasGen.Asm

assembling, B-7
BASIC (B 20)

converting programs to, C-l
BASIC command, J-5
BASIC Compiler

installing the, 4-1, I-I, J-l
invoking the, 4-3
single- and double-precision numbers in, G-7
string space use in the, G-IO

BASIC program
structure of a, 2-16

BASIC run-time procedures
names of, 4-14

Brackets, 2-6
CALL command, 3-5
Calling non-BASIC procedures, B-1
CDBL function, 3-6
Character attributes

controlling, A-I
controlling on the B 20, A-2
controlling on the B 25, A-3

Character set, 2-1
CHAIN command, 3-8
CHAIN statement, G-3
CHR$ function, 3-7
CINT function, 3-9
CLOSE command, 3-10
Commands, 3-1

BASIC, J-5
CALL, 3-5
CHAIN, 3-8
CLOSE, 3-10
COPY, J-2 to J-4
CREATE DIRECTORY, J-2
EDIT, J-4

1

Commands, 3-1 (continued)
ERROR, 3-24
FLOPPY COPY, J-l
GOSUB ••• RETURN, 3-33
GOTO, 3-34
IVOLUME, J-2
LINK, J-5
LSET, 3-56
NAME, 3-61
ON ••• GOSUB, 3-64
ON ••• GOTO, 3-65
OPTION BASE, 3-67
OUT, 3-70
RESTORE, 3-87
RSET, 3-56
RESUME, 3-88
RUN, J-6
STOP, 3-97
SYSTEM, 3-102
WIDTH, 3-110
WRITE#, 3-112

Common data, K-l
Common data option, 2-17, G-4
Compilation, 4-5
Compiled BASIC

using, G-6
Compiler

languag~ features not supported by the, G-2
Compiler errors

fatal, 5-40
Compile time errors, 5-31
Compiling the source file and BasGen.Obj, B-8
Configuring

BASIC for non-BASIC procedures, B-7
memory usage and run-time parameters, F-l

Constants, 2-2
double-precision, 2-4
numeric, 2-3
single-precision, 2-4
string, 2-3

Continuation character, G-3
Control codes for LED indicators, A-7
Controlling character attributes, A-I

on the B 20, A-2
on the B 25, A-3

Controlling
cursor position, A-5
keyboard LED indicators, A-7
line scrolling, A-5
pauses between frames, A-6
screen attributes, A-4
visibility, A-5

Control of the video display, A-I
Compiling a program, J-4

2

Converting programs to B 20 BASIC, C-l
COpy command, J-2 to J-4
COS function, 3-11
CREATE DIRECTORY command, J-2
Creating

a program, J-4
a random file, E-5
a sequential data file, E-2

Cross reference to run-time errors, 5-29
CSNG function, 3-12
Cursor position

controlling, A-5
CVD function, 3-13
CVI function, 3-13
CVS function, 3-13
DATA statement, 3-14
Data statements, 2-16, G-5
Data types, 4-20
DATETIME$ function, 3-15
Declaration characters, 2-5
DEF FN statement, 3-18
DEFLPRINT function, 3-19
DEF statement, 3-17
Derived mathematical functions, D-l
Detection of errors, B-7
Differences

between BASIC Interpreter and BASIC Compiler, G-l
DIM statement, 3-20
Dimensions of strings, C-l
Directing video display output (X command), A-9
Disk

contents, 4-1
input/output, E-l

Displaying special characters literally, A-9
Division by zero, 2-11
Double- and single-precision numbers in BASIC compiler, G-7
Double-precision constants, 2-4
EDIT command, J-4
END statement, 3-21
EOF function, 3-22
Erasing to the end of the line or frame, A-8
ERL system variable, 3-23
ERROR command, 3-24
Error conditions (fatal), 4-6
Error detection, B-7
Errors

compile time, 5-31
fatal compiler, 5-40
fatal run-time, 4-12
Linker, 4-10
run-time, 5-2
cross reference to, 5-29

3

ERR system variable, 3-23
Escape sequence, K-l
EXP function, 3-25
Expressions, 2-9
External user-defined functions, 2-7
Fatal

error conditions, 4-6
run-time errors, 4-12

FIELD statement, 3-26
Files

random, E-4
sequential, E-l

Filling a rectangle, A-8
FIX function, 3-27
FLOPPY COpy command, J-l
FOR ••• NEXT statement, 3-28
FRE function, 3-29
Functional

index, H-l
operators, 2-15

Functions, 3-1

4

ABS, 3-2
ASC, 3-3
ATN, 3-4
CDBL, 3-6
CHR$, 3-7
CINT, 3-9
COS, 3-11
CSNG, 3-12
CVD, 3-13
CVI, 3-13
CVS, 3-13
DATETIME$, 3-15
DEFLPRINT, 3-19
EOF, 3-22
EXP, 3-25
FIX, 3-27
FRE, 3-29
GETRA, 3-31
GETSA, 3-32
HEX$, 3-35
INP, 3-38
INPUT$, 3-41
INSTR, 3-42
INT, 3-43
LEFT$, 3-45
LEN, 3-46
LOC, 3-50
LOF, 3-51
LOG, 3-52
LPOS, 3-53
MAKEPOINTER, 3-57
MID$, 3-58
MKD$, 3-60

Functions, 3-1 (continued)
MKI$, 3-60
MKS$, 3-60
OCT$, 3-62
PEEK, 3-71
POS, 3-73
PTR, 3-81
PWA, 3-83
RGPARAM$, 3-89
RIGHT$, 3-90
RND, 3-91
SGN, 3-92
SIN, 3-93
SPACE$, 3-94
SPC, 3-95
SQR, 3-96
STRING$, 3-99
STR$, 3-98
SYSERC, 3-101
TAB, 3-103
TAN, 3-104
USING$, 3-105
VAL, 3-106
VERSION$, 3-107

GETRA function, 3-31
GETSA function, 3-32
GET statement, 3-30
GOSUB ••• RETURN command, 3-33
GOTO command, 3-34
HEX$ function, 3-35
INP function, 3-38
INPUT$ function
INPUT statement, 3-39
INPUT # statement, 3-40
Installing the BASIC compiler, 4-1, I-I, J-l
INSTR function, 3-42
Integer division, 2-10
INT function, 3-43
Invoking

the BASIC compiler, 4-3
the Linker, 4-8
value-returning procedures, B-2

IVOLUME command, J-2
Keyboard LED indicators

controlling, A-7
KILL statement, 3-44
Language features

not supported by the Compiler, G-2
with syntactic and semantic differences, G-3

LED indicators
control codes for, A-7

LEFT$ function, 3-45
LEN function, 3-46
LET statement, 3-47

5

Library, K-l
Line format, 2-1
LINE INPUT statement, 3-48
LINE INPUT # statement, 3-49
Line numbers, G-3
Line scrolling

controlling, A-5
LINK command, J-5
Linker

errors, 4-10
invoking the, 4-8

Linking a program, J-5
Listing format, 4-6
Loading instructions, 4-2
LOC function, 3-50
LOF function, 3-51
LOG function, 3-52
Logical

line length, G-3
operators, 2-13

LPOS function, 3-53
LPRINT statement, 3-54
LPRINT USING statement, 3-55
LSET command, 3-56
Main module, 2-16, G-5, K-l
MAKEPOINTER function, 3-57
Mathematical functions

derived
Memory requirements, 4-2
Memory usage and run-time parameters

configuring, F-l
MID$ function, 3-58
MKD$ function, 3-60
MKI$ function, 3-60
MKS$ function, 3-60
Modifying BASIC variables from non-BASIC procedures, B-4
Module, K-l
Modulus arithmetic, 2-10
NAME command, 3-61
Names, 2-5
Non-BASIC procedures, G-5

calling, B-1
configuring BASIC for, B-7
modifying BASIC variables from, B-4

Nonexecutable statements, 2-6, K-l
Numeric constants, 2-3
Object module, K-l
OCT$ function, 3-62
ON ERROR GO TO statement, 3-63
ON ••• GOSUB command, 3-64
ON ••• GOTO command, 3-65
OPEN statement, 3-66
Operands, 2-9

6

Operations
string, 2-15

Operators
allowable, 2-12
arithmetic, 2-10
functional, 2-15
logical, 2-13
relational, 2-12

OPTION BASE command, 3-67
OPTION COMMA statement, 3-68
OUT command, 3-70
Overflow, 2-11
Overlaying the run-time system, 4-9
Overlays, 4-8, K-l
Parameters

array, B-5
passing, B-3
string, B-4

Parentheses, 2-6
Passing parameters, B-3
Pauses between frames

controlling, A-6
PEEK function, 3-71
Pointer variables, 2-6
POKE statement, 3-72
POS function, 3-73
Printer spooler, K-l
PRINT statement, 3-74
PRINT USING statement, 3-75
PRINT # statement, 3-78
PRINT.# USING statement, 3-80
Product Usage

On B 26 Standalone Systems, J-l
Program, K-l

compiling a, J-4
creating a, J-4
linking a , J-5
running a, J-6

Program file commands, E-l
Programming hints, G-l
Programming recommendations, B-6
PTR function, 3-81
Public code, G-4, K-l
Public code option, 2-16
Public symbols, 4-12, K-l
PUT statement, 3-82
PWA function, 3-83
Random files, E-4

accessing, E-6
creating, E-5

RANDOMIZE statement, 3-84
READ statement, 3-85
Rectangle

filling a, A-8

7

Register usage conventions, 4-20
Relational operators, 2-12
REM statement, 3-86
RESTORE command, 3-87
RESUME command, 3-88
RGPARAM$ function, 3-89
RIGHT$ function, 3-90
RND function, 3-91
RSET command, 3-56
RUN command, J-6
Run file, K-2

using Linker to create the, B-9
Running a program, J-6
Run time, K-2
Run-time errors, 5-2
Run-time parameters and memory usage

configuring, F-l
Run-time procedures

names of, 4-14
Run-time system, K-2

overlaying. the, 4-9
Screen attributes

controlling, A-4
Sequential data file

creating a, E-2
Sequential files, E-l

accessing, E-3
adding data to, E-4

SGN function, 3-92
SIN function, 3-93
Single- and double-precision numbers in BASIC compiler, G-7
Single-precision constants, 2-4
Source file, K-2
SPACE$ function, 3-94
SPC function, 3-95
Special characters

literally displaying, A-9
SQR function, 3-96
Statements

8

DATA, 3-14
DEF, 3-17
DEF FN, 3-18
DIM, 3-20
END, 3-21
FIELD, 3-26
FOR ••• NEXT, 3-28
GET, 3-30
INPUT, 3-39
INPUT #, 3-40
KILL, 3-44
LET, 3-47
LINE INPUT, 3-48
LINE INPUT #, 3-49
LPRINT, 3-54

Statements (continued)
LPRINT USING, 3-55
nonexecutable, 2-6
ON ERROR GOTO, 3-63
OPEN, 3-66
OPTION COMMA, 3-68
POKE, 3-72
PRINT, 3-74
PRINT USING, 3-75
PRINT #, 3-78
PRINT # USING, 3-80
PUT, 3-82
RANDOMIZE, 3-84
READ, 3-85
RElVl, 3-86
SWAP, 3-100
WAIT, 3-108
WHILE ••• WEND, 3-109
WRITE, 3-111

STOP command, 3-97
String

dimensions, C-l
constants, 2-3, G-4
length, G-4
operations, 2-15

String space use in the BASIC compiler, G-IO
STRING$ function, 3-99
STR$ function, 3-98
String parameters, B-4
Structure of a BASIC program, 2-16
SWAP statement, 3-100
Syntax, 2-1
SYSERC function, 3-101
Symbols

additional public, 4-13
public, 4-12

SYSTEM command, 3-102
System variables

ERL, 3-23
ERR, 3-23

TAB function, 3-103
TAN function, 3-104
Type conversion, 2-8
USING$ function, 3-105
Using

compiled BASIC, 'G-6
the Linker to create the run file, B-9
virtual code management (overlays), G-5

VAL function, 3-106
Value-returning procedures

invoking,· B-2
Variables·, 2-5
VERSION$ function, 3-107

9

Video display
control of the, A-I

Video display output
directing (the X command), A-9

Virtual code management (overlays)
using, G-5

Visibility
controlling, A-5

WAIT statement, 3-108
WHILE ••• WEND statement, 3-109
WIDTH command, 3-110
Word-aligned data, B-5
WRITE statement, 3-111
WRITE# command, 3-112

10

Title:

Documentation Evaluation Form

B 20 Systems BASIC Compiler Reference Form No: ______ l_18_0_1_4_8 ________ _

Manual (4.0) Date: _______ A..,!p'--n--'·I,:..-1_9_8_5 ________ _

Burroughs Corporation is interested in receiving your comments
and suggestions regarding this manual. Comments will be utilized
in ensuing revisions to improve this manual.

Please check type of Comment/ Suggestion:

o Addition o Deletion o Revision o Error o Other

Comments:

From:

Name __ __

Title
Company __ _

Address

Phone Number _____________________________ Date ----------------

Remove form and mail to:

Burroughs Corporation
Corporate Product
Information East

209 W. Lancaster Ave.
Paoli" PA 19301 U.S.A.

