
.. ~. . ~

Burroughs

Distribution C ode SA

Burroughs

Reference
Manual

Priced Item
Printed In U.S.A
May 1985 .

1180122

Burroughs cannot accept any financial or other re­
sponsibilities that may be the result of your use of
this information or software material, including di­
rect, indirect, special or consequential damages.
There are no warranties extended or granted by this
document or software material.

You should be very careful to ensure that the use of
this software material and/ or information complies
with the laws, rules, and regulations of the jurisdic­
tions with respect to which it is used.

The information contained herein is subject to
change without notice. Revisions may be issued
from time to time to advise of such changes and/ or
additions.

Correspondence regarding this public~tion should be forwarded, using the
Documentation Evaluation Form at the back of the manual, or re~.~rks may
be addressed directly to Burroughs Corporation, Corporate Product Informa­
tion East. 209 W. Lancaster Ave., Paoli, PA 19301, U.S.A.

LIST OF EFFECTIVE PAGES

Page Issue

iii Original
iv Blank
v Origianl
vi Blank
vii thru xvii Original
xviii Blank
1-1 thru 1-4 Original
2-1 thru 2-33 Original
2-34 Blank
3-1 thru 3-103 Original
3-104 Blank
4-1 thru 4-12 Original
5-1 thru 5- 27 Original
5-28 Blank
6-1 thru 6-28 Original
7-1 thru 7-31 Original
7-32 Blank
8-1 thru 8-16 Original
9-1 thru 9-5 Original
9-6 Blank
10-1, 10-2 Original
11-1 thru 11-7 Original
11-8 Blank
12-1 thru 12-7 Original
12-8 Blank
13-1 thru 13-3 Original
13-4 Blank
A-I thru A-3 Origianl
A-4 Blank
B-1 Original
B-2 Blank
C-1 thru C-26 Original
0-1 thru 0-3 Original
0-4 Blank
E-l thru E-5 Original
E-6 Blank
F-1 thru F-18 Original
G-1 thru G-3 Original
G-4 Blank
H-1, H-2 Original
1-1 thru 1-5 Original
1-6 Blank
J-1 thru J-53 Original
J-54 Blank
K-1 thru K-12 Original
1 thru 18 Original

iii

PREFACE

NOTATION TO THIS MANUAL

Throughout this manual, the following notation is used to describe the format of
COBOL statements:

1. All words printed in capital letters which are underlined must always be
present when the functions of which they are a part are used. An error
printout will occur during compilation if the underlined words are absent or
incorrectly spelled. The underlining is not necessary when writing a COBOL
source program.

2. All words printed in capital letters which are not underlined are used for
readability only. They may be written, or not, as the programmer wishes.

3. All words printed in small letters are generic terms representing names
which will be devised by the programmer.

4. When material is enclosed in square brackets [], it is an indication that the
material is an option which may be included or omitted as required.

5. Language features that are noted in the text are language extensions which
exceed the A NSI standard.

6. In text, the ellipsis (••• > shows the omission of a portion of a source program
or a sequence. This meaning becomes apparent in context.

7.

In the general formats, the ellipsis represents the position at which
repetition may occur at the user's option. The portion of the format that
may be repeated is determined as follows:

Given .•• in a clause or statement format, scanning right to left, determine
the or [immediately to the left of the ••• ; continue scanning right to left and
determine the logically l1)atching or]; the ••• applies to the words between
the determined pair of delimiters.

The term identifier means either a data-name or a subscripted data-name.
An identifier takes the following form:

[(data-name-l
{

data-name-2} >]
literal-l

data-name-2 or literal-I must be a positive integer in the range I to the
number of elements in the table.

v

TABLE OF CONTENTS

Section Title Page

1 INTRODUCTION ••• 1-1
What is Lin COBOL? •• 1-1

Program Structure ••• 1-2
Formats and Rules ••• 1-2
Source Form at•.. 1-3

Sequence Number •• 1-3
Indicator Area ••• 1-4

2 COBOL CONCEprrS •• 1-1
Language Concepts •• 2-1

Character Set ••• 2-1
Language Structure •• 2-1

Separators .. 2-1
Character-strings ••• 2-3

COBOL Words ••• 2-3
U ser-D ef ined W ortis •• 2-3
C ondi tion-N am e ••• 2-4
~lne m onie-N am e ••• 2-4
Paragraph-Narne ••• 2-5
Section-Name ••• 2-5
Other User-Defined Names ••••••••••••••••••••••••••••••••••• 2-5
System-Names ••• 2-5
Reserved ~v ords •••••.•• 2- 5
Key Words.. 2- I)

Optional Words •• 2-6
C onnectiv es ••• 2-6
Figurative Constants ••• 2-6
Literal ..••.......................•........•.....••...•...... 2-6,
Nonnumeric Literals ••• 2-6
Num eric Literals •• 2-7
Figurative Constant Values ••••••••••••••••••••••••••••••••••• 2-7
PICTURE Character-Strings ••••••••••••••••••••••••••••••••••• 2-9
COlnment-Entries •• 2-9

Concept of Computer Independent Data Description •••••••••••••••••••• 2-9
Concept of Levels •• 2-10

Level-NUln bers •...•.. ~•................•...............•. 2-10
Concept of Classes of Data •••••••••••••••••••••••••••••••••••• 2-11
Selection of Character Representation and Radix ••••••••••••••••• 2-12
Algebraic Signs •• 2-14
Standard Alignment Rules ••••••••••••••••••••••••••••••••••••••• 2-1

vii

Section

2
(Cont.)

TABLE OF CONTENTS (CONT.)

Title Page

Uniqueness of Reference ••••••••••••••••••••••••••••••••••••••• 2-15
Qualific atioIl ••• 2-15
Subscriptirlg •• 2-10
Indexi.rlg ••• 2-17
Identifier •• 2-1H
Condition-NaIll e •• 2-18

Explicit and Implicit Specifications ••••••••••••••••••••••••••••••••• 2-19
Explicit and Implicit Procedure Division References ••••••••••••••• 2-19
Explicit and Implicit Transfers of Control ••••••••••••••••••••••• 2-19
Explici t and 1m plici t Attributes ••••••••••••••••••••••••••••••••• 2-21

Program Structure •• 2-21
Identification Division ••• 2-21

General· Description ••• 2-21
Orgarlization ••• 2-22
Structure •• 2-2 2

General Format ••• 2-22
Environment Division •• 2-23

General Description ••• 2-23
OrgaIlization ••• 2-23
Struct-ur8 •• 2-2 3

General Format ••• 2-23
Data Division •• 2-24

Overall Approach ••• 2-24
Physical and Logical Aspects of Data Description ••••••••••••••••••• 2-24

Data Division OrgaIlization ••••••••••••••••••••••••••••••••••••• 2-24
General Format ••• 2-25

Procedure Division •• 2-2 6
General Description ••• 2-26

D eclarativ es ••• 2-2 6
Procedures •• 2-2 6
Execution ••• 2-2 7
General Format ••• 2-27

Header ••• • 2-27
Booy ••• ~ 2-27

Statements and Sentences ••• 2-27
Conditional Statement ••••••••••••••••••••••••••••••••••••••• 2-28
Conditional Sentence •• 2-28
Compiler Directing Statement ••••••••••••••••••••••••••••••• 2-28
Compiler Directing Sentence 2-28
Imperative Statement ••••••••••••••••••••••••••••••••••••••• 2-29
Imperative Sentence ••••••••••••••••••••.•••••••••••••••••••• 2-29

Reference Form at •• 2-30
General Description ••• 2-30
Reference Format Representation •••••••••••••••••••••••••••••••••• 2-30

Sequence Numbers ••• 2-31
Continuation of Lines •• 2-31
Blank Lines ••••••••••••.••••••••••••••••••••••••••••••••••••••• 2-31

viii

TABLE OF CONTENTS (CONT.)

Section Title Page

2
(Cant.)

Division, Section, Paragraph Formats ••••••••••••••••••••••••••••••• 2-32
Division Header ••• 2-32
Section Header •• 2-32
Paragraph header, Paragraph-Name and Paragraph •••••••••••••••• 2-32

Data Division Entries ••• 2-32
D eclaratives •• .2-3 3
Com m ent Lirles ••• ~- 3 3

Reserved Words ••• •••• 2-33

3 rrHE NUCLEUS •• 3~1
Function of The Nucleus •• '. 3-1
Overall LaIlguage •• 3-1

N arn e Characteristics •• 3-1
Figurative C onst8I1ts ••• 3-1
Hef erence Format ••• 3-1

Identification Division in The Nucleus ••••••••••••••••••••••••••••••••• 3-2
General Description •• 3-2
Org arllz ation •• 3-2
The PROGRA1\1-ID Paragraph ••••••••••••••••••••••••••••••••••••••• 3-3
The DATE-COMPILED Paragraph •••••••••••••••••••••••••••••••••••• 3-3

Environment Division in The Nucleus •••••••••••••••••••••••••••••••••• 3-5
Config-uration Section •• 3-5

The SQLJRCE-C01'vlPUTER Paragraph •••••••••••••••••••••••••••••• 3-5
The OBJECT-COMPUTER Paragraph •••••••••••••••••••••••••••••• 3-5
The SPECIAL-NAMES Paragraph ••••••••••••••••••••••••••••••••• 3-6

Data Division in The Nucleus •• 3-10
\'J orking-Storage Section ••• 3-10

Noncontiguous Working-Storage •••••••••••••••••••••••••••••••••• 3-1U
Vlorking-Storage Records ••••••••••••••••••••••••••••••••••••••• 3-10
IIli tial Values •• 3-10

The Data Description - COMPLETE ENTRY SKELETON •••••••••••••• 3-1U
The BLANK WHEN ZERO Clause •••••••••••••••••••••••••••••••••• 3-13
The DATA-NAivlE OR FILLER Clause ••••••••••••••••••••••••••••••• 3-14
The JusrrIFIED Clause •• 3-15
Level-Number ••• / ••• 3-16
The PICTURE Clause •...•......•....•.••...•..•......•.•••....... 3-17

General Rules ••• 3-17
Alphabetic Data Rules •••••••••••••••••••••••••••••••••••••• 3-17
Numeric Data Rules •• 3-18
AlphanuIn eric Data Rules •••••••••••••••••••••••••••••••••••• 3-18
Alphanumeric Edited Data Rules ••••••••••••••••••••••••••••• 3-18
Numeric Edited Data Rules •••••••••••••••• ~ ••••••••••••••••• 3-18
Elementary Item Size ••••••••••••••••••••••••••••••••••••••• 3-19
Symbols Used •• 3-19

Eili tin.g Rules ••• 3-21
Simple Insertion Editing ••••••••••••••••••••••••••••••••••••• 3-22
Special Insertion Editing ••••••••••••••••••••••••••••••••••••• 3-22

ix

TABLE OF CONTENTS (CONT.)

Section Title Page

3
(Cont.)

Fixed Insertion Editing •••••••••••••••••••••••••••••••••••••• 3-2 2
Floating Insertion Editing •••••••••••••••••••••••••••••••••••• 3- 2 3
Zero Suppression Editing •••••••••••••••••••••••••••••••••••• 3-2 4

Precedence Rules ••• 3-24
The REDEFII'JES Clause ••• 3-27
The SIGN Clause ••• 3-31
The SYNCHRONIZED Clause ••• 3-33
The USAGE Clause .•....•.........•....................•••..•.•.•.. 3-35
The VALUE Clause ••• 3-36

General Rules •••••••• < ••• 3-36
Condition-l'James Rules •• 3-37
Data Description Entries other than Condition-Names •••••••••••••••• 3-37

Procedure Division in The Nucleus ••••••••••••••••••••••••••••••••••• 3-39
Arithmetic Expressions •• 3-39

Definition of an Arithm etic Expression •••••••••••••••••••••••••• 3-39
Arithmetic Operators •• 3-39
Formation and Evaluation Rules ••••••••••••••••••••••••••••••••• 3-39

C ondi tional Expressions •• 3-41
Simple Conditions •• 3-41

Relatiion Conditions ••• 3-41
Class Condition ••• 3-43
Conditiorr-Name ..•.••..••••.•.••.•••••••.•....••••.•.••.••. 3-44
Switch-Status Condition ••••••••••••••••••••••••••••••••••••• 3-44
Sign Condition •..............•.......•...........•......... 3-45

Complex Conditions •••••••••••••••••••••••••••••• " ••••••••••••••••• 3-45
Abbreviated Combined Relatiion Conditions ••••••••••••••••••••••••• 3-47

Condition Evaluation Rules ••••••••••••••••••••••••••••••••••••• 3-48
Common Phrases and General Rules for Statement Formats •••••••••••• 3-50

The ROO NDED Phrase •• 3-50
The SIZE EIlliOR Phrase •• 3-50

SIZE ERROR Phrase Not Specified •••••••••••••••••••••••••••••• 3-50
SIZE ERROR Phrase Specified ••••••••••••••••••••••••••••••••••• 3-50

The CORRESPONDIN G Phrase ••••••••••••••••••••••••••••••••••••• 3-51
Arithmetic Statements •• 3-51
Overlapping OperaI1ds ••• 3-52
~lultiple Results in Arithmetic Statements •••••••••••••••••••••••••• 3-52
Incompatible data ••• 3-52
The ACCEPT Statement ••• 3-53
1'he ADD Statement •• 3-58
The ALTER Statement •• 3-60
The COrvIPUTE Statement ••• 3-61
The DISPLAY Statem ent •• 3-62
The DIVIDE Statement •• 3-65
The El'JTER Statement •• 3-6tl
The EXIT Statement •• 3-69
The GO TO Statement •• 3-70
The IF Statement•...........••....•.......•......•...•.... 3-71
The INSPECT Statement •• 3-73

x

TABLE OF CONTENTS (CONT.)

Section Title Page

3
(Cont.)

The rviOVE Statement ••• 3-80
The r .. 1ULTIPLY Statement ••• 3-84
The PERFORM Statement ••• 3-85
'fhe ST.RING Statement •• 3-93
The STOP Statement ••••••••••••.••••••••••••••••••••••••••••••••• 3-96
The SUBTRACT Statement •• 3-97
The UNSTRING Statement ••• 3-99

4 TABLE HANDUNG •• 4-1
Introduction to The Table Handling Module •••••••••••••••••••••••••••• 4~1
Data Division in The Table Handling Module ••••••••••••••••••••••••••• 4-1

The 0 CC URS Clause ••••.•.....••.•..••.••.••..•.••••.•.••••••.•.•• 4-1
rrhe USAGE Clause •••••....•.••..••••••••••.•••••••...••••••••..•• 4-4

Procedure Division in The Table Handling Module •••••••••••••••••••••• 4-5
Relation C ondi tion ••.••••...•••.••..•.••.•••••••.•••.•.•••••••.•••• 4-5

Comparisons Involving Index-names and/or Index Data Items •••••••• 4-5
Overlapping OperaIlds•.•..•...•.•••.••.....•...... 4-5
The SEARCH Statement •• 4-5
The SET Statement .•.•......••.•..•••••••••••••••••...•••.•••••••• 4-7

5 SEQUENTIAL INPUT AND OUTPUT ••••••••••••••••••••••••••••••••••• 5-1
Introduction to The SEQUENTIAL 1-0 MODULE •••••••••••••••••••••••• 5-1

LANGUAGE CONCEPTS •• 5-1
Orgarlization •••••.•••....••.••••.•••••••••••.•••••••..•.••••••• 5-1
Access M cxie •• • 5-1
Current Record Pointer ••• 5-1
1-0 StattlS •.....••............•..••.•.•.•.•..•••..••....•.•...• 5-1

Status Key 1•.•.......•.••.....•.......•.•.......•• 5-1
StattlS "Key ,2 •• 5-2
Valid Com binations of Status 1 and 2 ••••••••••••••••••••••••• 5-3

The AT END Condition .•.•••.••••••••.••••••••••.•••••••••••••• 5-3
LINAGE - COUNTER •• 5-3

Environment Division in The SEQUENTIAL 1-0 MODULE •••••••••••••••• 5-3
INPUT-OUTPU'f Section •• 5-3

The FILE-CONTROL Paragraph •••••••••••••••••••••••••••••••••• 5-3
The FILE-CONTROL Entry •••••••••••••••••••••••••••••••••••••• 5-4
The 1-0 CONTROL Paragraph •••••••••••••••••••••••••••••••••••• 5-5

Data Division in The SEQUENTIAL 1-0 MODULE ••••••••••••••••••••••• 5-7
File Section ••.......•.••.•.•.•...•..••....•.•...•••.•....•........ 5-7
Record Description Structure ••••••••••••••••••••••••••••••••••••••• 5-7
The FILE DESCRIPTION-COMPLETE ENTRY SKILETON ••••••••••••••• 5-8
The BLOCK CONTAINS Clause ••••••••••••••••••••••••••••••••••••• 5-9
The CODE-SET ClallSB .••.•..••.••••••••••••••••.•••••••••••••••.•• 5-9
The DATA RECORDS Clause ••••••••••••••••••••••••••••••••••••••• 5-9
The LABEL RECORDS Clause •••••••••••••••••••••••••••••••••••••• 5-10
Tile LINAGE Clause •••......•••••••••••.•••.•••.•.•.••.••..•.•.•• 5-10
The RECORD CONTAINS Clause ••••••••••••••••••••••••••••••••••• 5-14
The VAL·UE OF Clause •• 5-14

xi

TABLE OF CONTENTS (CONT.)

Sectim Title Page

5 Procedure Division in The SEQUENTIAL 1-0 MODULE ••••••••••••••••• 5-15
(Cant.) The CLOSE Statement •• 5-15

The OPEN Statement ••••••••••••••••••••••••••••••• II ••••••••••••• 5-16
The READ State m ent ••• 5-19
The REWRITE Statement •• 5-21
The USE Statement .•••.•••...•.......................•......... .. 5-22
The WRITE Statement ••• 5-23

6 RELATNE INPUT AND OUTPUT •••••••••••••••••••••••••••••••••••••• 6-1
Introduction to The RELATIVE 1-0 MODULE ••••••••••••••••••••••••••• 6-1

Language Concepts, •• 6-1
Org8I1i.z ation ••• 6-1
Access r~ mes •• 6-1
Current Record Pointer ••• 6-1
1-0 Status ••• 6-1

StattlS Key 1 •• 6-2
Status Key 2 •• 6-2
Valid Combination of Status Keys 1 and 2 ••••••••••••••••••••• 6-3
The INVALID KEY Condition ••••••••••••••••••••••••••••••••• 6-4
The AT END Condition •••••••••••••••••••••••••••••••••••••• 6-4

Environment Division in The RELATNE 1-0 MODULE ••••••••••••••••••• 6-5
Input-Output Section ••• 6-5

The File-Control Paragraph •••••••••••••••••••••••••••••••••••••• 6-5
rrhe File-Control Entry ••••••••••••••••••••••• ' ••••••••••••••••••• 6-5
The 1-0 CONTROL Paragraph •••••••••••••••••••••••••••••••••••• 6-7

Data Division in The RELATNE 1-0 MODULE ••••••••••••••••••••••••• 6-9
File Section ••• 6-9
Record Description Structure •••••••••••••••••• , ••••••••••••••••••••• 6-9
The FILE DESCRIPTION-C OMP LETE ENTRY SKELETON •••••••••••••• 6-9
The BLOCK CONTAINS Clause •••••••••••••••••••••••••••••••••••• 6-10
The DATA RECORDS Clause •••••••••••••••••••••••••••••••••••••• 6-11
The LABEL RECORDS Clause •••••••••••••••••••••••••••••••••••••• 6-11
The RECORD CONTAINS Clause ••••••••••••••••••••••••••••••••••• 6-12
The VALUE OF Clause •• 6-13

Procedure Division in The RELATIVE 1-0 MODULE •••••••••••••••••••• 6-14
The CLOSE Statement ••••••••••••••••• ~ •••••••• ~ ••••••••••••••••• 6-14
The DELETE Statement ••• 6-15
The OPEN Statement ••• 6-16
The READ Statement ••• 6-19
The REWRITE Statement •• 6-22
The START Statement •• 6-23
The USE Statement ••• 6-24
The W.RITE Statement ••• 6-26

7 INDEXED INPUT AND OUTPUT •••••••••••••••••••••••••••••••••••••• 7-1
Introduction to The INDEXED 1-0 MODULE ••••••••••••••••••••••••••• 7-1

Language Concepts •• 7-1
Org8I1i.zation ••• 7-1
Access ~.1ooes •• 7-1
Current Record Pointer ••• 7-2

xii

Section

7
(Cont.)

TABLE OF CONTENTS (CONT.)

Title Page

1-0 StatllS ••• 7-2
Status Key 1 ••..•••••...••••••..•••••.•••.•.•••..•••.••••..• 7-2
Stattis Key 2 •••••••••••••••••• •.•••••••••••••••••••••••••••• • 7-2
Valid Combination of Status Keys 1 and 2 ••••••••••••••••••••• 7-4
The INVALID KE Y C ondi tion .••••••••••••••••••••••••••••••••• 7-5
The A'f END Condition •••••••••••••••••••••••••••••••••••••• 7-5

Environment Division in The INDEXED 1-0 MODULE ••••••••••••••••••• 7-6
Input-Output Section ••• 7-6

The FILE-CONTROL Paragraph ••••••••••••••••••••••••••••••• · ••• 7-6
rl"he File-Control Entry •••••••••••••••••••.•••.•.•••••••••••••••• 7~6
The 1-0 CONTROL Paragraph •••••••••••••••••••••••••••••••••••• 7-8

Data Division in The INDEXED 1-0 MODULE ••••••••••••••••••••••••• 7-10
File Section•....••.••••...••...•...•.•.••..•.••••..•.••••..• 7-10
Record Description Structure •••••••••••••••••••••••••••••••••••••• 7-10
The FILE DESCRIPTION-COMPLETE ENTRY SKELETON ••••••••••••• 7-10
The BLOCK CONTAINS Clause •••••••••••••••••••••••••••••••••••• 7-11
The DATA RECORDS Clause •••••••••••••••••••••••••••••••••••••• 7-12
The LABEL RECORDS Clause •••••••••••••••••••••••••••••••••••••• 7-12
The RECORD CONTAINS Clause ••••••••••••••••••••••••••••••••••• 7-13
The VALUE OF ClallSe •...•.••••.•..•••.•.••••....•••••.••••••.••• 7-14

Procedure Division in The INDEXED 1-0 MODULE •••••••••••••••••••• 7-15
The CLOSE Statement •• 7-15
The DELETE Statement ••• 7-16
The OPEN Statement .••••••••..•••.••.••••••....••.•••.••.•.•••.. 7-17
The READ Statememt •••••••••••••.•••.••••.•••..••••••••••••••.•• 7-20
The REWRITE Statement •• 7-24
The START Statement •• 7-26
The USE Statement .••.•••••.••• , ••...••..••.•.•..••••••••••.••.••• 7-28
The WRITE Statement ••• 7-29

8 SOR1"-r.1ERGE ••• 8-1
Introduction to The SORT-MERGE MODULE •••••••••••••••••••••••••••• 8-1

Relationship with SEQUENTIAL 1-0 MODULE •••••••••••••••••••••••• 8-1
Environment Division in The SORT-MERGE MODULE ••••••••••••••••••• 8-1

IN PUT-O-UTPUT Section •• 8-1
The FILE-C ONTROL Paragraph •••••••••••••••••••••••••••••••••• 8-1
The FILE-CONTROL Entry •••••••••••••••••••••••••••••••••••••• 8-1
The 1-0 CONTROL Paragraph •••••••••••••••••••••••••••••••••••• 8-2

Data Division in The SORT-MERGE MODULE •••••••••••••••••••••••••• 8-4
File Section •••••••.•••••••••••.••••••••••••••••.•••••••••••••••••• 8-4
The SORT-MERGE File Description - COMPLETE ENTRy ••••••••••••• 8-4
SKELETON ••••••••••••••••••••••••••••.••••••••.•••••••••••••••••• 8-4
The DATA RECORDS Cause •• 8-4
The RECORD CONTAINS Clause •••••••••••••••••••••••••••••••••••• 8-5

Procedure Division in The SORT-MERGE MODULE •••••••••••••••••••••• 8-6
The MERGE Statement ••• 8-6
The RELEASE Statement ••• 8-9
The RETURN State m ent ••• 8-10
The SORT Statement •.••••••.•••.•••••••.••••.••.••••••••••••••••. 8-11

xiii

TABLE OF CONTENTS (CONT.)

Sectim Title Page

9 SEGMENTATION ••• 9-1
(Cont.)Introduction to The Segmentation Module •••••••••••••••••••••••••••••• 9-1

General Description of Segmentation •••••••••••••••••••••••••••••••••• 9-1
Organiz atiOIl •• 9-1

Prograln Segments •• 9-1
Fixed P artian •• 9-1
Independent Seg m ents ••• 9-2

Segm entation Classification ••• 9-2
Segmentation Control •• 9-2

Structure of Program Segm ents ••••••••••••••••••••••••••••••••••••••• 9-3
Segment Numbers •• 9-3

Restrictions on Program Flow ••• 9-4
The ALTER Statelnent •••••••••••••••••••• ',' ••••••••••••••••••••••• 9-4
The PERFORM Statement •• 9-4

Extra Intermediate Code Files •• 9-4

10 LIBRARY •• 10-1
Introduction to The Library Module •••••••••••••••••••••••••••••••••• 10-1
'fhe COpy Statement ••• 10-2

11 DEBUG AND INTERACTNE DEBUGGING ••••••••••••••••••••••••••••• 11-1
Introduction •• 11-1
L/II COBOL Run-Time Debug Extension ••••••••••••••••••••••••••••••• 11-1
Standard ANSI COBOL DEBUG •••••••••••••••••••••••••••••••••••••• 11-1

Compile Time Switcll ••• 11-2
COBOL Debug Object Tim e Switch ••••••••••••••••••••••••••••••••• 11-2
Environment Division in COBOL Debug ••••••••••••••••••••••••••••• 11-2

The WITH DEBUGGING MODE Clause ••••••••••••••••••••••••••• 11-2
Procedure Division in COBOL Debug ••••••••••••••••••••••••••••••• 11-4

The USE FOR DEBUGGING Statement ••••••••••••••••••••••••••• 11-4
Debugging Lin.es •• 11-7

12 INTERPROGRAM COMMUNICATION •••••••••••••••••••••••••••••••••• 12-1
Introduction to The Inter-Program Com munication Module •••••••••••••• 12-1
Data Division in The Inter-Program Communication Module •••••••••••• 12-1

Lin.kage Section •• 12-1
Noncontiguous LllU{age Storage •••••••••••••••••••••••••••••••••• 12-2

Procedure Division in The Inter-Program Communication M.odule •••••••• 12-3
The Procedure Division Header •••••••••••••••••••••••••••••••••••• 12-3
The CALL Statement ••• 12-4
The CANCEL Statement •• 12-6
The EXIT PROGRAM Statement •••••••••••••••••••••••••••••••••••• 12-7

13 PROGRAMhHNG TECHNIQUES, USEFUL HINTS AND PROGRAM SIZING. 13-1
Program mirlg Techr1iques •• 13-1
Useful Hirlts ••• 13-:-1
Sizirlg ••• 13-2

General Description ••• 13-2
Data Dictionary •••••••••••••••••••.••••••••••••••••••••••••••••••• 13-2

xiv

TABLE OF CONTENTS (CaNT.)

Sectim Title Page

A RESERVED WORD LIST ••••••• · •••••••••••••••••••••••••••••••••••••• A-I

B CHARACTER SETS AND COLLATING SEqUENCE •••••••••••••••••••••• B-l

C GLOSSAR"Y ••• C-l

D COMPILE-TIME ERRORS •• D-l

E RUN-r!"'IME ERRORS •• E-1

F SYNTAX SUMMARy ••• F-l

G SUMMARY OF EXTENSIONS TO ANSI COBOL •••••••••••••••••••••••• G-l
Screen Formatting and Data Entry ••••••••••••••••••••••••••••••••••• G-l

The ACCEPT Statement ••• G-l
The DISPLAY Statement •• G-l

Disk Files •• G-2
Line Sequential Files •• G-2
Run-Time Input of File Names ••••••••••••••••••••••••••••••••••••• G-3

Lowercase Characters ••• G-3
Hexadecimal Values ••• G-3
Interactive Debugging... G-3

H SYSTEM DEPENDENT LANGUAGE FEATURES •••••••••••••••••••••••• H-l
rvlandatory ChaIlges ••• H-l

Envrronment Div~ion •• H-l
Configuration Section •• H-l
Input-Output Section... H-l

Statements Compiled as Documentation Only •••••••••••••••••••••••••• H-l
Envrronment Div~ion •• H-2
Data Division •• H-2
Procedure Div~ion.. H-2

I LANGUAGE SPECIFICATION ••• 1-1

J USING COBOL •• J-l
IIlStallirlg COBOL •• J-l
Contents of the B 20 COBOL Diskettes ••••••••••••••••••••••••••••••• J-l
COBOL Memory Requrrements •• J-2
COBOL Implementation Specification •••••••••••••••••••••••••••••••••• J-2
Hard D~k Installation Instructions •••••••••••••••••••••••••••••••••••• J-3
XE520 lrlstallation ••• J-3
Dual Floppy Standalone Installation Instructions •••••••••••••••••••••••• J-4
R'UIlni.ng a Program •• J-5

Helpful Hints For Dual Floppy Standalone Systems ••••••••••••••••••• J-5
COBOL Configuration •• J-6
Using a B9251 Parallel or AP1300 Series Serial Printer with COBOL ••••• J-7
Customizing COBOL on Hard Disk Systems •••••••••••••••••••••••••••• J-7

xv

TABLE OF CONTENTS (CaNT.)

Sectim Title Page

J
(Cont.)

USING SamGenAll WITH COBOL ••••••••••••••••••••••••••••••••••••• J-IO
Invoking The COBOL COMPILER ••••••••••••••••••••••••••••••••••••• J-12

Field Descriptions•.........•.•..............•........•••••... J-12
Com piler Error r.l essages •• J-14
Compilation Statistics ••• J-15

Running a COBOL Program •••.•••.••.••••.•••••••.•••..•••••••••••.• J-17
rrhe CRUll Command •• J-17
Field D escriptioIlS ..••••.•••...•.••••••••••••.••.•••••••••••••••.• J-17
Using a Custom Com mand to Run a COBOL Program •••••••••••••••• J-19
Reading the Fields of a Custom Com mand Form •••••••••••••••••••• J-19
Advanced Invocation Techniques for Debugging •••••••••••••••••••••• J-20

Files Required for Compiling and Running a COBOL Program ••••••••••• J-22
Loc1tin.g M OOes ••• J-22
Specifying the Locking MOOe •••••••••••••••••••••••••••••••••••••• J-23
Using the READ Statement with MANUAL Locking •••••••••••••••••• J-24
Acquiring Reco~-Level Locks •••••••••••••••••••••••••••••••••••••• J-25
Error Conditions While Using Locks •••••••••••••••••••••••••••••••• J-25

Using Call in a COBOL Program ••••••••••••••••••••••••••••••••••••• J-26
Using CALL for Inter-Program Com munication •••••••••••••••••••••• J-26
Using CALL for Invoking Special Built-In Procedures •••••••••••••••• J-26
Using CALL For Invoking Non-COBOL Procedures •••••••••••••••••• J-31
Built-in non-COBOL Procedures •••••••••••••••••••••••••••••••••••• J-37

Configuring COBOL •••••••• ~ •••••••••.••••••••••••••••••••.•••••••• • J-39
Linking with Nonstand~ Segments •••••••••••••••••••••••••••••••• J-41

The COBOL Debugger ••••••••...•.••.•••••••••.•••••..••...••••••••• J-42
Comman.d Summa.ry- ••• J-42
General Irlformation ..•••.••.•.•..•...••••••••••.•.•..••••••••.•..• J-43
COBOL Debugger Commands •••••••••••••••••••••••••••••••••••••• J-45

K PRO GRAM Mll'll G HINTS.. K-1
Hint 1: Calling Memory Management and RSAM from COBOL ••••••••• K-1
Hint 2: Alternatives to the COBOL Display Statement •••••••••••••••• K-4
Hint 3: Accessing the System Date and Time Using COBOL ••••••••••• K-6
Hint 4: Limitations an.d Restrictions •••••••••••••••••••••••••••••••• K-I0

INDEX .••••••••••..•.••..•••••.••••••••.•••••••••••••••••••.••••.. •• 1

xvi

LIST OF ILLUSTRATIONS

Figure Title Page

1-1 Sample Program Listing Showing Source Format •••••••••••••••••••••••• 1-3
2-1 Reference Format for a COBOL Source Line •••••••••••••••••••••••••• 2-30
3-1 Flowchart for VARYING Phrase of a PERFORM Statement

havirlg One CoIldition ••...•..•••..••.••.••••••••...•.. " • •••••.••••• •. 3-89
3-2 Flowchart for VARYING Phrase of PERFORM. Statement

o having Two C oIlditions •• 3-90
3-3 Flowchart for VARYING Phrase of PERFORM Statement

havin.g Three Conditions •.••...•••..•••••.••..•....••..•••••••.•.•••• 3-91
3-4 PERFORM Statements in Sequence ••••••••••••••••••••••••••••••••••• 3-92

LIST OF TABLES

Table Title Page

2-1 Figurative Constants and their Reserved Wortis ••••••••••••••••••••••••• 2-8
2-2 Data Levels Classes and Categories ••••••••••••••••

o
•••••••••••••••••• 2-11

2-3 Numeric Data Storage for the COMP(LJTATIONAL) PICTURE Clause •••• 2-12
2-4 Numeric Data Storage for the COMP(-3) PICTURE Clause ••••••••••••• 2-13
3-1 Editing Types for Data Categories ••••••••••••••••••••••••••••••••••• 3-21
3-2 Editing Symbols in PICTLJRE Character Strings •••••••••••••••••••••••• 3-23
3-3 PICTURE Character Precedence Chart •••••••••••••••••••••••••••••••• 3-25
3-4 Combination of Symbols in Arithmetic Expressions ••••••••••••••••••••• 3-40
3-5 Relational Operators•...•................•........... 3-42
3-6 Com binations of Conditions, Logical Operators and Parenthesis ••••••••• 3-57
3-7 Cursor Repositioning Keys ••• 3-57
3-8 MOVE Statement Data Categories •••••••••••••••••••••••••••••••••••• 3-85
4-1 SET Statement Valid Operand Combinations ••••••••••••••••••••••••••• 4-12
5-1 Permissible Combinations of Statements and OPEN Modes for

Sequential 1-0•...•....•......••.....................•......... 5-17
6-1 Permissible Combination of Statements and OPEN I.1odes for

Relative I-D ...•...........••....•.........•........................ 6-17
7-1 Permissible Combinations of Statements and OPEN Modes for

Imexed 1-0 •..........•...••....••.......................•...•...•. 7-18
13-1 Data Dictionary Entry Sizing •• 13-3

xvii

SECTION I

INTRODUCTIO N

WHAT IS L/II COBOL?

COBOL (COmmon Business Oriented Language) is the most widely and extensively
used language for the programming of commercial and administrative data processing.

L/II COBOL is based on the ANSI COBOL as specified in "American National
Standard Programming Language COBOL" (A NSI X3.23 1974). The Lin COBOL
implementation has been selected from both levels of ANSI COBOL. The following
modules are fully implemented at Levell:

Nucleus
Table Handling
Sequential Input and Output
Relative Input and Output
Indexed Input and Output
Segm enta tion
Library
Inter-Program Communication
Debug

In addition the following modules are fully implemented at Level 2:

Nucleus
Table Handling
Sequential Input and Output
Relative Input and Output
Indexed Input and Output
Inter-Program Com m unica tion
Sort Merge

The Communications module is accepted by the compiler for syntax checking only.
The Run-Time System will not execute this module if included in a program.

This manual is intended as a reference work for L/II COBOL programmers and
material from the A NSI COBOL language standard document is included.

Along with the ANSI implementation Lin COBOL also contains several language
extensions specifically oriented to the small computer environment and for
compatibility with some larger mainframe applications. These enable a L/II COBOL
program to format CRT screens for data input and output (DISPLAY and ACCEPT),
READ and WRITE text files efficiently and define external file names at run time.

The programmer wishing to transport an existing COBOL program to run under L/II
COBOL must check that the individual language features he has used are supported by
L/II COBOL. The COBOL SECTION statements in the Segmentation feature can be
performed using the PERFORM statement.

1-1

Burroughs COBOL programs are created using a conventional text editor. The
Compiler compiles the programs and produces intermediate code, which is executed by
the Run-Time System. A listing of the Burroughs COBOL program is provided by the
Compiler during compilation. Error messages are inserted in the listing. Interactive
Debugging facilities are provided for run-time use, and these are described in Appendix
J.

PROGRAM STRUCTURE

A COBOL program consists of four divisions:

1. IDENTIFICATION DIVISION - An identification of the program

2. ENVIRONMENT DIVISION - A description of the equipment to be used to
compile and run the program

3. DATA DIVISION - A description of the data to be processed

4. PROCEDURE DIVISION - A set of procedures to specify the operations to be
performed on the data

Each division is divided into sections which are further divided into paragraphs
which in turn are made up of sentences.

Within these subdivisions of a COBOL program, further subdivisions exists as
clauses and statements. A clause is an ordered set of COBOL elements that specify an
attribute of an entry, and a statement is a combination of elements in the Procedure
Division that include a COBOL verb and constitute a program instruction.

FORMATS AND RULES

GENERAL FORMAT

A general format is the specific arrangement of the elements of a clause or a
statement. Throughout this document a format is shown adjacent to information
defining the clause or statement. When more than one specific arrangement is
permitted, the general format is separated into numbered formats. Clauses must be
written in the sequence given in the general formats. (Clauses that are optional must
appear in the sequence shown if they are used). In certain cases, stated explicitly in the
rules associated with a given format, the clauses may appear in sequences other than
that shown. Applications, requirements or restrictions are shown as rules.

1-2

SYNTAX RULES

Syntax rules are those rules that define or clarify the order in which words or
elements are arranged to form larger elements such as phrases, clauses, or statements.
Syntax rules also impose restrictions on individual words or elements.

These rules are used to define or clarify h.ow the statement must be written, i.e.,
the order of the elements of the statement and restrictions on what each element may
represent.

GENERAL RULES

A general rule is a rule that defines or clarifies the meaning or relationship of
meanings of an element or set of elements. It is used to define or clarify the semantics
of the statement and the effect that it has on either execution or compilation.

ELEMENTS

Elements which make up a clause or a statement consist of uppercase words,
lowercase words, level-numbers, brackets, braces, connectives and special characters
(See Section 2).

SOURCE FORMAT

The COBOL source format divides each COBOL source record into 72 columns.
These columns are used in the following way:

Columns I - 6
Column 7
Column 8 - II
Columns 12 - 72

SEQUENCE NUMBER

Sequence number
Indicator area
Area A
Area B

A sequence number of six digits may be used to identify each source program line.

1-3

IN DICATOR AREA

An asterisk * in this area marks the line as documentary comment only. Such a
comment line can appear anywhere in the program after the Identification Division
header. Anv characters from the ASCII character set can be included in Area A and
Area B of the line.

A stroke /, in the indicator area acts as a comment line above but causes the page
to eject before printing the comment.

A "D" in the indicator area represents a debugging line. Areas A and B may
contain any valid COBOL sentence.

A "_" in the indicator area represents the continuation of a nonnumeric literal. The
first non-blank character in Area B of the continuation line must be a quotation mark.
The literal continues with the first character after the quotation mark. All spaces at
the end of the continued line are significant.

Section names and paragraph names begin in Area A and are followed by a period
and a space. Level indications F D, 0 I and 66, 77 and 88 begin in Area A and are
followed in Area B by the appropriate file and record description.

Program sentences may commence anywhere in Area A and Area B. More than one
sentence is permitted in each source record.

1-4

SECTION 2

COBOL CONCEPTS

LANGUAGE CONCEPTS

CHARACTER SET

The most basic and indivisible unit of the language is the character. The set of
characters used to form L/n COBOL character-strings and separators includes the
letters of the alphabet, digits and special characters. The character set consists of the
characters defined below:

o to 9
A to Z
a to z (Reserved and User Word Characters

read as: A to Z)
Space
+ Plus sign

*
/
=
$

;
"

Minus sign or hyphen
Asterisk
Oblique Stroke/Slash
Equal sign
Dollar sign
Full stop or decimal point
Comma or decimal point
Semicolon
Quotation mark
Left Parenthesis
Right Parenthesis
Greater than symbol
Less than symbol

The L/II COBOL language is restricted to the above character set, but the content
of non-numeric literals, comment lines and data may include any of the characters from
the ASCII character set. (See Appendix B).

LANGUAGE STRUCTURE

The individual characters of the language are concatenated to form
character-strings and separators. A separator may be concatenated with another
separator or with a character-string. A character-string may only be concatenated
with a separator. The concatenation of character-strings and separators forms the text
of a source program.

Separators

A separator is a string of one or more punctuation characters. The rules for
formation of separators are:

1. The punctuation character space is a separator. Anywhere a space is used as a
separator, more than one space may be used.

2-1

2. The punctuation characters comma, semicolon and period, when immediately
followed by a space, are separators. These separators may appear in a COBOL
source program only where explicitly permitted by the general formats, by
format punctuation rules (see FORMATS and RULES in Section 1), by
statement and sentence structure definitions (see STATEMENTS and
SENTENCES in this Section), or reference format rules (See REFERENCE
FORMAT in this Section).

3. The punctuation characters right and left parenthesis are separators.
Parenthesis may appear only in balanced pairs of left and right parentheses
delimiting subscripts, indices, arithmetic expressions, or conditions.

4. The punctuation character quotation mark is a separator. An opening
quota tion mark must be im mediately preceded by a space or left parenthesis; a
closing quotation mark must be immediately followed by one of the separators
space, comma, semicolon, period, or right parenthesis.

Quotation marks may appear only in balanced pairs delimiting nonnumeric
literals except when the literal is continued. (See CONTINUATION OF LINES
in this Section).

5. The separator space may optionally immediately precede all separators except
the following:

a. As specified by reference format rules see REFERENCE FORMAT in this
Section.

b. The separator closing quotation mark. In this case, a preceding space is
considered as part of the nonnumeric literal and not as a separator.

6. The separator space is optional and can immediately follow any separator
except the opening quotation mark. In this case, a following space is
considered as part of the nonnumeric literal and not as a separator.

l

Any punctuation character which appears as part of the specification of a
PICTURE character-string (See Section 3) or numeric literal is not considered as a
punctuation character, but rather as a symbol used in the specification of that
PICTURE character-string or numeric literal. PICTURE character-strings are
delimited only by the separators space, comma, semicolon, or period.

2-2

The rules established for the formation of separators do not apply to the characters
which comprise the contents of nonnumeric literals, comment-entries, or comment lines.

Character-Strings

A character-string is a character or a sequence of contiguous characters which
forms a L/II COBOL word, a literal, a PICTURE character-string, or a comment-entry.
A character-string is delim ited by separators.

COBOL Words

A COBOL word is a character-string of not more than 30 characters which forms a
user defined word, a system-name, or a reserved word. Within a given source program
these classes form disjoint sets; a COBOL word may belong to one and only one of these
classes.

User-Defined Words

A user-defined word is a COBOL word that must be supplied by the user to satisfy
the format of a clause or statement. Each character of a user-defined word is selected
from the set of characters 'A', 'B', ICY, ••• 'Z', 'a', 'bY, ICY, ••• 'z', '0', ••• '9', and '_I, except
that the 1_' may not appear as the first or last character. The exception to this rule is a
text-name which must be a normal alphanumeric literal.

User-defined word types which are implemented are as follows:

alphabet-name
cd-name
condition-name
data-name
file-name
index-name
level-number
mnemonic-name
paragraph-name
program-name
record-name
routine-name
section-nam e
segment-number
text-name

2-3

Within a given source program, II of these 15 types of user-defined words are
grouped into nine disjoint sets. The disjoint sets are:

alphabet-names
cd-names
condition-names, data-names, and record-names
file-names
index-names
mnemonic-names
paragra ph-na m e s
program-names
routine-names
section-na m es
text-names

All user-defined words, except segment-numbers and level-numbers, can belong to
one and only one of these disjoint sets. Further, all user-defined words within a given
disjoint set must be unique, because no other user-defined word in the same source
program has identical spelling or punctuation. (See UNIQUENESS OF REFERENCE in
this Section).

With the exception of paragraph-name, section-name, level-number and
segment-number, all user-defined words must contain at least one alphabetic
character. Segment-numbers an:i level-numbers need not be unique; a given
specification of a segment-number or level-number may even be identical to a
paragraph-name or section-name.

Condi tion- N am e

A condition-name is a name which is assigned to a specific value, set of values, or
range of values, within a complete set of values that a data item may assume. The data
item itself is called a conditional variable.

Condition-names may be defined in the Data Division or in the SPECIAL-N AMES
paragraph with the Environment Division where a condition-name must be assigned to
the 0 N STATUS or OFF STATUS, or both, of the run time switches.

A condition-name is used only in the RERUN clause or in conditions as an
abbreviation for the relation condition; this relation condition posits that the associated
conditional variable is equal to one of the set of values to which that condition-name is
assigned.

Mnemonic-Name

A mnemonic-name assigns a user-defined word to an implementor-name. These
associations are established in the SPECIAL-NAMES paragraph of the Environment
Division. (See SPECIAL-N AMES in Section 3).

2-4

Paragraph-Name

A paragraph-name is a word which names a paragraph in the Procedure Division.
Paragraph-names are equivalent if, and only if, they are composed of the same
sequence of the same number of digits and/or characters.

Section-Name

A section-name is a word which names a section In the Procedure Division. Section
names are equivalent if, and only if, they are composed of the same sequence of the
same number of digits and/or characters.

Other User-Defined Names

See the glossary in Appendix C for definitions of all other types of user-defined
words.

System-Names

A system-name is a COBOL word which is used to communicate with the operating
environment. Each character used in the formation of a system-name must be selected
from the set of characters 'A', 'B', 'C', ••• 'Z', 'a', 'b', ••• 'z', 'a', ... '9' and '-', except that
the '-' may not appear as the first or last character.

There are three types of system-names:

I. computer-name
2. implementor-name
3. language-name

Within a given implementation these three types of system-names form disjoint
sets; a given system-name may belong to one and only one of them.

The system-names listed above, are individually defined in the glossary in Appendix
C.

Reserved Words

A reserved word is a COBOL word that is one of a specified list of words which
may be used in COBOL source programs, but which must not appear in the programs as
user-defined words or system-names. Reserved words can only be used as specified in
the general forma ts. (See Appendix A).

There are six types of reserved words:

I. Key words
2. Optional words
3. Connectives
4. Special registers
5. Figurative constants
6. Special-character words

2-5

Key Words

A key word is a word whose presence is required when the format in which the
word appears is used in a source program. Within each format, such words are
uppercase and underlined.

Key words are of three types:

1. Verbs such as ADD, READ, and ENTER.
2. Required words, which appear in statement and entry formats.
3. Words which have a specific functional meaning such as NEGATIVE,

SECTION, etc.

Optional Words

Within each format, uppercase words' that are not underlined are called optional
words and may appear at the user's option. The presence or absence of an optional word
does not alter the semantics of the COBOL program in which it appears.

Connectives

Series connectives link two or more consecutive operands: , (separator comma) or
(separator semicolon).

Figura tive Constants

Certain reserved words are used to name and reference specific constant values.
These reserved words are specified under Figurative Constant Values in this chapter.

Literals

A literal is a character-string whose value is implied by an ordered set of characters of
which the literal is composed or by specification of a reserved word which references a
figurative constant. Every literal belongs to one of two types, nonnumeric or numeric.

N onnumericLiterals

A nonnumeric literal is a character-string delimited on both ends of quotation
marks and consisting of any allowable character in the computer's character set.
Allowed are nonnumeric literals of I through 128 characters in length. To represent a
single quotation mark character within a nonnumeric literal, two contiguous quotation
marks must be used. The value of a nonnumeric literal in the object program is the
string of characters itself, except:

1. The delimiting quotation marks are excluded, and

2. Each embedded pair of contiguous quotation marks represents a single
quotation mark character.

2-6

All other punctuation characters are part of the value of the nonnumeric literal
rather than separators; all nonnumeric literals are category alphanumeric. (See The
PICTURE Clause in Section 3). In addition, hexadecimal binary values can be attributed
to nonnumeric literals by expressing literals as: X"nn", where n is a hexadecimal
character in the set 0-9 A-F; nn may be repeated up to 128 times, but the number of
hex digits must be even.

Numeric Literals

A numeric literal is a character-string whose characters are selected from the
digits '0' through '9', the plus sign, the minus sign, and/or the decimal point. The
implementation allows for numeric literals of 1 through 18 digits in length. The rules
for the formation of numeric literals are as follows:

1. A literal must contain at least one digit.

2. A literal must not contain more than one sign character. If a sign is used, it
must appear as the leftmost character of the literal. If the literal is unsigned,
the literal is positive.

3. A literal must not contain more than one decimal point. The decimal point is
treated as an assumed decimal point, and may appear anywhere within the
literal except as the rightmost character. If the literal contains no decimal
point, the literal is an integer.

If a literal conforms to the rules for the formation of numeric literals, but is
enclosed in quotation marks, it is a nonnumeric literal and it is treated as such
by the compiler.

4. The value of a numeric literal is the algebraic quality represented by the
characters in the numeric literal. Every numeric literal is category numeric.
(See The PICTURE Clause in Section 3). Tlie size of a numeric literal in
standard data format characters is equal to the number of digits specified by
the user.

Figurative Constant Values

Figurative Constant Values are generated by the compiler and referenced through
the use of the reserved words given below. These words must not be bounded by
quotation marks when used as figurative constants. The singqlar and plural forms of
figurative constants are equivalent and may be used interchangeably.

2-7

The figurative constant values and the reserved words used to reference them are
shown in Table 2-1.

Table 2-1. Figurative Constants and their Reserved Words

CONSTANT

ZERO

ZEROS
ZEROES

SPACE
SPACES ----
HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

ALL literal

REPRESENTATION

Represents the value '0', or one or more of the character '0'
depending on context.

Represents one or more of the character
space from the computer's character set.

Represents one or more of the character
that has the highest ordinal position in the program collating
sequence.

Represents one or more of the character that
has the lowest ordinal position in the program collating
sequence.

Represents one or more of the character "".
The word QUOTE or QUOTES cannot be used in place of a
quotation mark in a source program to bound a nonnumeric
literal. Thus, QUOTE ABD QUOTE is incorrect as a way of
stating the nonnumeric literal "ABD".

Represents one or more characters of the string of
characters comprising the literal. The literal must be either
a nonnumeric literal or a figurative constant other than ALL
literal. When a figurative constant is used, the word ALL is
redundant and is used for readability only.

When a figurative constant represents a string of one or more characters, the length of
the string is determined by the compiler from context according to the following rules:

1. When a figurative constant is associated with another data item, as when the
figurative constant is moved to or compared with another data item, the string
of characters specified by the figurative constant is repeated character by
character on the right until the size of the resultant string is equal to the size
in characters of the associated data item. This is done prior to and
independent of the application of any JUSTIFIED clause that may be
associated with the data item.

2-8

2. When a figurative constant is not associated with another data item, as when
the figurative constant appears in a DISPLAY or STOP statement, the length
of the string is one character.

DISPLA Y SPACE is, of course, an exception.

A figurative constant may be used wherever a literal appears in a format, except
that whenever the literal is restricted to having only numeric characters in it, the only
figurative constant permitted is ZERO (ZEROS, ZEROES).

When the figurative constants HIGH-VALUE(S) or LOW-VALUE(S) are used in the
source program, the actual character associated with each figurative constant depends
upon the program collating sequence specified. (See The OBJECT-COMPUTER
Paragraph, and The SPECIAL-N AMES Paragraph in Section 3).

Each reserved word which is used to. reference a figurative constant value is a
distinct character-string with the exception of the construction 'ALL literal' which is
composed of two distinct character-strings.

PICTURE Character-Strings

A PICTURE character-string consists of certain combinations of characters in the
COBOL character set used as symbols. See The PICTURE Clause in Section 3 for the
PICTURE character-string and for the rules that govern their use.

Any punctuation character which appears as part of the specification of a
PICTURE character-string is not considered as a punctuation character, but rather as a
symbol used in the specification of that PICTURE character-string.

Comment-Entries

A comment-entry is an entry in the Identification Division that may be any
combination of characters from the computer's character set.

CONCEPT OF COMPUTER INDEPENDENT DATA DESCRIPTION

To make data as computer independent as possible, the characteristics or
properties of the data are described in relation to a standard data format rather than an
equipment-oriented format. This standard data format is oriented to general data
processing applications and uses the decimal system to represent numbers (regardless of
the radix used by the computer) and the remaining characters in the L/II COBOL
character set to describe nonnumeric data items.

2-9

Concept of Levels

A level concept is inherent in the structure of a logical record. This concept arises
from the need to specify subdivisions of a record for the purpose of data reference.
Once a subdivision has been specified, it may be further subdivided to permit more
detailed data referral.

The most basic subdivisions of a record, that is, those not further subdivided, are
called elementary items; consequently, a record is said to consist of a sequence of
elementary items, or the record itself may be an elementary item.

In order to refer to a set of elementary items, the elementary items are combined
into groups. Each group consists of a named sequence of one or more elementary
items. Groups, in turn, may be combined into groups of two or more groups, etc. Thus,
an elementary item may belong to more than one group.

Level-Numbers

A system of level-numbers shows the organization of elementary items and group
items. Since records are the most inclusive data items, level-numbers for records start
at 01. Less inclusive data items are assigned higher (not necessarily successive)
level-numbers not greater in value than 49. A maximum of 49 levels in a record is
allowed. There are special level-numbers, 66, 77 and 88 which are exceptions to this
rule (see below). Separate entries are written in the source program for each
level-number used.

A group includes all group and elementary items following it until a level-number
less than or equal to the level-number for that group is encountered. All items which
are immediately subordinate to a given group item must be described using identical
level-numbers greater than the level-number used to describe that group item.

Three types of entries exist for which there is no true concept of level. These are:

1. Entries that specify elementary items or groups introduced by a RE NAMES
clause

2. Entries that specify noncontiguous working storage and linkage data items

3. Entries that specify condition-names.

Entries describing items by means of RENAMES clauses for the purpose of
regrouping data items have been assigned the special level-number 66.

2-10

Entries that specify noncontiguous data items, which are not subdivsions of other
items, and are not themselves subdivided, have been assigned the special level-number
77.

Entries that specify condition-names, to be associated with particular values of a
conditional variable, have been assigned the special level-number .88.

Concept of Classes of Da ta

The five categories of data items (See The PICTURE Clause in Chapter 3) are
grouped into three classes: alphabetic, numeric, and alphanumeric. For alphabetic and
numeric, the classes and categories are synonymous. The alphanumeric class includes
the categories of alphanumeric edited, numeric edited and alphanumeric (without
editing). Every elementary item except for an index data item belongs to one of the
classes and further to one of the categories. The class of a group item is treated at
object time as alphanumeric regardless of the class of elementary items subordinate to
that group item. Table 2-2 depicts the relationship of the class and categories of data
items.

Table 2-2 Data Levels, classes and categories

LEVEL OF ITEM CLASS CATEGORY

Alphabetic Alphabetic

NumerIC Numeric

Elementary Numeric Edited
Alphanumeric Alphanumeric Edited

Alphanumeric

Alphabetic
Numeric

Non-Elementary Elementary Numeric Edited
Group Alphanumeric Edited

Alphanumeric

2-11

Selection of Character Representation and Radix

The value of a numeric item may be represented in either binary or decimal form,
depending on the equipment. In addition, there are several ways of expressing decimal.
Since these representations are actually combinations of bits, they are com monly called
binary-coded decimal forms. The four standard formats used for storing numeric data
in CIS COBOL are as follows:

1. As alphanumeric stored one per byte in ASCII representation.

2. As numeric characters defined by USAGE IS DISPLAY (See The USAGE Clause
in Section 3) one per byte in ASCII representation. If they are signed and the
sign is specified as INCLUDED, bit 6 of the leading or trailing byte of the
field is set for negative, depending on the field definition. If a SEPARATE
sign is specified as a one byte ASCII + or -, a sign is added as the leading or
trailing byte. If no SIG N clause is specified, bit 6 of the trailing digit is set to
indicate negative by default.

3. As numeric characters defined by USAGE IS COMP or COMPUTATIONAL
in pure binary form. If the field is signed, the number is held in its
twos-complement form. Storage is then dependent on the number of 9's
in the· PICTURE clause (See The PICTURE Clause in Section 3) and on
whether the field is SIGNed or not (See The SIGN Clause in Section 3).

Table 2-3 shows the storage requirements for each COMP(UTATIONAL) PICTURE
Clause.

Table 2-3. Numeric Data Storage for the COMP(UTATIONAL) PICTURE Clause.

Bytes Required

I
2
3
4
5
6
7
8

Number of Characters
Signed Unsigned

1-2
3-4
5-6
7-9

10-11
12-14
15-16
17-18

1-2
3-4
5-7
8-9

10-12
13-14
15-16
17-18

4. As numeric characters defined by USAGE IS COMPUTATIONAL-3 or USAGE
IS COMP-3 in packed internal decimal form. Storage is dependent on the
number of 9's in the PICTURE clause. The decimal numbers are stored as
signed strings of variable length of 1 through 18 digits. The sign of the packed
decimal number is always stored in place of the least significant quartet of the
low order byte. Each byte contains two decimal positions (four bits per digit)
and the digits (0 - 9) are encoded as BCD numbers (0000 - 1001). Numbers are
represented in the field as right-justified values with a + or - sign as shown in
the example below. The maximum number of digits permitted in arithmetic
operands is 18.

2-12

EXAMPLE:

a. For COMPUTATIONAL-3 and PICTURE 9999, the number +1234 would be
stored as follows:

o 1 2 3 4 F
0000 0001 0010 0011 0100 1111

1 byte

where F represents the non-printing plus sign.

b. For COMPUTATIONAL-3 and PICTURE S9999, the number +1234 would be
stored as follows:

Storage would be as in a above except that the least significant digit would
be replaced by C (1100) representing the plus sign.

c. For COMPUTATIONAL-3 and PICTURE S9999, the number -1234 would be
stored as follows:

Storage would be as in a above except that the least significant byte would be
replaced by D (1 10 1) representing the minus sign.

Table 2-4 shows the storage requirements for each COMP-3 clause.

Table 2-4. Numeric Data Storage for the COMPUTATION-3 PICTURE clause.

Number of Characters
Bytes Required (Signed or Unsigned)

1 1
2 2-3
3 4-5
4 6-7
5 8-9
6 10-11
7 12-13
8 14-15
9 16-17

10 18

2-13

Algebraic Signs

Algebraic signs fall into two categories: operational signs, which are associated
with signed numeric data items and signed numeric literals to indicate their algebraic
properties; and editing signs, which appear on edited reports to identify the sign of the
item.

The SIGN Clause permits the programmer to state explicitly, the location of the
operational sign. The Clause is optional; if it is not used, operational signs will be
represented as defined by setting bit 6 of the trailing digit for ASCII numbers. (See
above).

Editing signs are inserted into a data item through the use of the sign control
symbols of The PICTURE Clause.

Standard Alignment Rules

The standard rules for positioning data within an elementary item depend on the
category of the receiving item. These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving
character positions with zero fill or truncation on either end as required.

b. When an assumed decimal point is not explicitly specified, the data item
is treated as if it had an assumed decimal point immediately following its
rightmost character and is aligned as in paragraph a. above.

2. If the receving data item is a numeric edited data item, the data moved to the
edited item is aligned by decimal point with zero fill or truncation at either
end as required within the receiving character positions of the data item,
except where editing requirements cause replacement of the leading zeros.

3. If the receiving data item is alphanumeric (other than a numeric edited data
item), alphanumeric edited or alphabetic, the sending data is moved to the
receiving character positions and aligned at the leftmost character position in
the data item with space fill or truncation to the right, as required.

If the JUSTIFIED Clause is specified for the receiving item, these standard rules
are modified as described in The JUSTIFIED Clause in Section 3.

2-14

Uniqueness of Reference

Qualifica tion

Every user-specified name that defines an element in a COBOL source program
must be unique, either because no other name has the identical spelling and
hyphenation, or because the name exists within a hierarchy of names such that
references to the name can be made unique by mentioning one or more of the higher
levels of the hierarchy. The higher levels are called qualifiers and this process that
specifies uniqueness is called qualification. Enough qualification must be mentioned to
make the name unique; however, it may not be necessary to mention all levels of the
hierarchy. Within the Data Division, all data-names used for qualification must be
associated with a level indicator or a level-number. Therefore, two identical
data-names must not appear as entries subordinate to a group item unless they are
capable of being made unique through qualification. In the Procedure Division, two
identical paragraph-names must not appear in the same section.

In the hierarchy of qualification, names associated with a level indicator are the
most significant, then those names associated with level-number 01, then names
associated with level-number 02, ••• ,49. A section-name is the highest (and the only)
qualifier available for a paragraph-name. Thus, the most significant name in the
hierarchy must be unique and cannot be qualified. Subscripted or indexed data-names
and conditional variables, as well as procedure-names and data-names, may be made
unique by qualification. The name of a conditional variable can be used as a qualifier
for any of its condition-names. Regardless of the available qualification, no name can
be both a data-name and procedure-name.

Qualification is performed by following a data-name, a condition-name, a
paragraph-name, or a text-name by one or more phrases composed of a qualifier
preceded by IN or OF. IN and OF are logically equivalent.

The general formats for qualification are:

Format 1

{
data-name-l } [{IONF} data-name-21 •••
condition-name J

Format 2

paragraph-name [{ lit} section-name]

Format 3

text-name [{M} library-name]

2-15

The rules for qualification are as follows:

1. Each qualifier must be of a successively higher level and within the same
hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. If a data-name or a condition-name is assigned to more than one data item in a
source program, the data-name or condition-name must be qualified each time
it is referred to in the Procedure, Environment, and Data Divisions (except in
the REDEFINES clause where qualification is unnecessary and must not be
used.)

4. A paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION must not
appear. A paragraph-name need not be qualified when referred to from within
the same section.

5. A data-name cannot be subscripted when it is being used as a qualifier.

6. A name can be qualified even though it does not need qualifications;' if there is
more than one combination of qualifiers that ensures uniqueness, then any such
set can be used. The complete set of qualifiers for a data-name must not be
the same as any partial set of qualifiers for another data-name.

Qualified data-names may have any number of qualifiers up to an
implementor-defined limit. This limit must be at least five.

7. If more than one COBOL library is available to the compiler during
compilation, text-name must be qualified each time it is referenced.

Subscripting

Subscripts can be used only when reference is made to an individual element within
a list or table of like elements that have not been assigned individual data-names (See
The OCCURS Clause in Section 4).

The subscript can be represented either by a numeric literal that is an integer or by
a data-name. The data-name must be a numeric elementary item that represents an
integer.

The subscript may be signed and, if signed, it must be positive. The lowest possible
subscript value is I. This value points to the first element of the table. The next
sequential elements of the table are pointed to by subscripts whose values are 2, 3, ••••
The highest permissible subscript value, in any particular case, is the maximum number
of occurrences of the item as specified in The OCCURS clause.

2-16

The subscript, or set of subscripts, that identifies the table element is delimited by
the balanced pair of separators left parenthesis and right parenthesis following the
table element data-name. The table element data-name appended with a subscript is
called a subscripted data-name or an identifier. When more than one subscript is
required, they are written in the order of successively less inclusive dimensions of the
data organization.

The format is:

data-name (subscript-l [, subscript-2 [, subscript-3]])

Indexing

References can be made to individual elements with a table of like elements by
specifying indexing for that reference. An index is assigned to that level of the table
by using the INDEXED BY phrase in the definition of a table. A name given in the
INDEXED BY phrase is known as an index-name and is used to refer to the assigned
index. The value of an index corresponds to the occurrence number of an element in
the associated table. An index-name must be initialized before it is used as a table
reference. An index-name can be given an initial value by a SET statement.

Direct indexing is specified by using an index-name in the form of a subscript.
Relative indexing is specified when the index-name is followed by the operator + or -,
followed by an unsigned integer numeric literal all delimited by the balanced pair of
separators left parenthesis and right parenthesis following the table element
data-name. The occurrence number resulting from relative indexing is determined by
incrementing (where the operator + is used) or decrementing (when the operator - is
used), by the value of the literal, the occurrence number represented by the value of
the index. When more than one index-name is required, they are written in the order of
successively less inclusive dimensions of the data organization.

At the time of execution of a statement which refers to an indexed table element,
the value contained in the index referenced by the index-name associated with the table
element must neither correspond to a value less than one nor to a value greater than
the highest permissible occurrence number of an element of the associated table. This
restriction also applies to the value resultant from relative indexing.

The general format for indexing is:

f data-name} { i~dex-name-l [l::lliteral-2]
[oni~:~~;;~~:e-2 } [i:l::~:ral-~ [{:~t~~~~~:me-3} Cl::llite:al-~ J]

2-17

Identifier

An identifier is a term used to reflect that a data-name, if not unique in a
program, must be followed by a syntactically correct combination of subscripts or
indices necessary to ensure uniqueness.

The general formats for identifiers are:

Format 1:

data-name-l Usubscript-l ~ sUbscript-~[, subscript-3 II]
Format 2:

data-name-l I" . {index-name-l} L< literal-l

[{:r!~~~:me-2}Q~}literal-~ C
Restrictions on subscripting and indexing are:

1. A data-name must not itself be subscripted nor indexed when that data-name
is being used as an index, or subscript.

2. Indexing is not permitted where subscripting is not permitted.

3. An index may be modified only by the SET, SEARCH, and PERFORM
statements. Data items described by the USAGE IS INDEX clause permit
storage of the values associated with index-names as data in a form specified
by the implementor. Such data items are called index data items.

4. Literal-I, literal-3, literal-5, in the above format must be positive numeric
integers. Li teral-2, llteral-4, literal-6 must be unsigned numeric integers.

Condition-Name

Each condition-name must be unique, or be made unique through qualification
and/or indexing, or subscripting. If qualification is used to make a condition-name
unique, the associated conditional variable may be used as the first qualifier. If
qualification is used, the hierarchy of names associated with the conditional variable or
the conditional variable itself must be used to make the condition-name unique.

If references to a conditional variable require indexing or subscripting, then
references to any of its condition-names also require the same combination of indexing
or subscripting.

2-18

The format and restrictions on the combined use of qualification, subscripting, and
indexing of condition-names is exactly that of 'identifier' except that data-name-l is
replaced by condition-name-l.

In the general formats, 'condition-name' refers to a condition-name qualified,
indexed or subscripted, as necessary.

EXPLICIT AND IMPLICIT SPECIFICATIONS

There are three types of explicit and implicit specifications that occur in COBOL
source programs:

1. Explicit and implicit Procedure Division references

2. Explicit and implicit transfers of control

3. Explicit and implicit attributes.

Explicit and Implicit Procedure Division References

A COBOL source program can reference data items either explicitly or implicitly
in Procedure Division statements. An explicit reference occurs when the name of the
referenced item is written in a Procedure Division statement or when the name of the
referenced item is copied into the Procedure Division by the processing of a COPY
statement. An implicit reference occurs when the item is referenced by a Procedure
Division statement without the name of the referenced item being written in the source
statement. An implicit reference also occurs, during the execution of a PERFORM
statement, when the index or data item referenced by the index-name or identifier
specified in the VARYING, AFTER or UNTIL phrase is initialized, modified, or
evaluated by the control mechanism associated with that PERFORM statement. Such
an implicit reference occurs if and only if the data item contributes to the execution of
the statement.

Explicit and Implicit Transfers of Control

The mechanism that controls program flow transfers control from statement to
statement in the sequence in which they were written in the source program unless an
explicit transfer of control overrides this sequence or there is no next executable
statement to which control can be passed. The transfer of control from statement to
statement occurs without the writing of an explicit Procedure Division statement, and
therefore, is an implicit transfer of control.

COBOL provides both explicit and implicit means of altering the implicit control
transfer mechanism.

In addition to the implicit transfer of control between consecutive statements,
implicit transfer of control also occurs when the normal flow is altered without the
execution of a procedure branching statement. COBOL provides the following types of
implicit control flow alterations which override the statement-to-statement transfers
of control:

2-19

1. If a paragraph is being executed under control of 'another COBOL statement
(for example, PERFORM, USE, SORT and MERGE) and the paragraph is the
last paragraph in the range of the controlling statement, then an implied
transfer of control occurs from the last statement in the paragraph to the
control mechanism of the last executed controlling statement. Further, if a
paragraph is being executed under the control of a PERFORM statement which
causes iterative execution and that paragraph is the first paragraph in the
range of that PERFORM statement, an implicit transfer of control occurs
between the control mechanism associated with that PERFORM statement and
the first statement in that paragraph for each iterative execution of the
paragraph.

2. When a SORT or MERGE statement is executed, an implicit transfer of control
occurs to any associated input or output procedures.

3. When any COBOL statement is executed which results in the execution of a
declarative section, an implicit transfer of control to the declarative section
occurs. Note that another implicit transfer of control occurs after execution
of the declarative section, as described in 0) above.

An explicit transfer of control consists of an alteration of the implicit control
transfer mechanism by the execution of a procedure branching or conditional
statement. (See STATEMENTS AND SENTENCES later in this Section.) An explicit
transfer of control can be caused only by the execution of a procedure branching or
conditional statement. The execution of the procedure branching statement ALTER
does not in itself constitute an explicit transfer of control, but affects the explicit
transfer of control that occurs when the associated GO TO statement is executed. The
procedure branching statement EXIT PROGRAM causes an explicit transfer of control
when the statement is executed in a called program.

In this document, the term 'next executable statement' is used to refer to the next
COBOL statement to which control is transferred according to the rules above and the
rules associated with each language element in the Procedure Division.

There is no next executable statement following:

1. The last statement in a declarative section when the paragraph in which it
appears is not being executed under the control of some other COBOL
statement.

2. The last statement in a program when the paragraph in which it appears is not
being executed under the control of some other COBOL statement.

2-20

Explicit and Implicit Attributes

A ttributes may be implicitly or explicitly specified. Any attribute which has been
explicitly specified is called an explicit attribute. If an attribute has not been specified
explicitly, then the attribute takes on the default specification. Such an attribute is
known as an implicit attribute.

For example, the usage of a data item need not be specified, in which case a data
item's usage is DISPLA Y.

PROGRAM STRUCTURE

A Lin COBOL program consists of four divisions:

1. IDENTIFICATION DIVISION - An identification of the program.

2. ENVIRONMENT DIVISION - A description of the equipment to be used to
compile and run the program.

3. DATA DIVISION - A description of the data to be processed.

4. PROCEDURE DIVISION - A set of procedures to specify the operations to be
performed on the data.

Each division, is divided into sections which are further divided into paragraphs,
which in turn are made up of sentences.

IDENTIFICATION DIVISION

GENERAL DESCRIPTION

The Identification Division is included in a COBOL source program at the user's
discretion. This division identifies both the source program and the resultant output
listing. In addition, the user may include the date the program is written, the date the
compilation of the source program is accomp.ished and such other information as
desired under the paragraphs in the general format shown below.

2-21

ORGANIZATION

Paragraph headers identify the type of information contained in the paragraph. All
paragraphs are optional and may be included in this division at the user's choice, in
order of presentation shown by the format below.

STRUCTURE

The following is the general format of the paragraphs in the Identification Division
and it defines the order of presentation in the source program.

General Format

[IDENTIFICATION DIVISION.]

. [PROGRAM-ID. program-name.]

[AUTHOR. [comment-entry] •••]

[INSTALLATION.

[DATE-WRITTEN.

[DATE-COMPILED.

[comment-entry] •••]

[comment-entry] •••]

[comment-entry] ...]

[SECURITY. [comment-entry] •••]

2-22

ENVIRONMENT DIVISION

GENERAL DESCRIPTION

The Environment Division specifies a standard method of expressing those
aspects of a data processing problem that are dependent upon the physical
characteristics of a specific computer. This division allows specification of the
configuration of the compiling computer and the object computer. In addition,
information relating to input-out control, special hardware characteristics and
control techniques can be given.

The Environment Division is included in a COBOL source program at the user's.
discretion.

ORGANIZATION

Two sections make up the Environment Division: the Configuration Section and the
Input-Output Section.

The Configuration Section deals with the characteristics of the source computer
and the object computer. This section is divided into three paragraphs: the
SOURCE-COMPUTER paragraph, which describes the computer configuration on which
the source program is compiled; the OBJECT-COMPUTER paragraph, which describes
the computer configuration on which the object program produced by the compiler is to
be run; and the SPECIAL-NAMES paragraph, which relates the implementation-names
used by the compiler to the mnemonic-names used in the source program.

The Input-Output Section deals with the information needed to control transmission
and handling of data between external media and the object program. This section is
divided into two paragraphs: the FILE-CONTROL paragraph which names and
associates the files with external media; and the I-O-CONTROL paragraph which
defines special control techniques to be used in the object program.

STRUCTURE

The following· is the general format of the sections and paragraphs in the
Environment Division, and defines the order of presentation in the source program.

General Format

[ENVIRONMENT DIVISION.]
[CONFIGURATION SECTION.]
[SOURCE-COMPUTER. source-computer-entry]
[OBJECT-COMPUTER. object-computer-entry]
[SPECIAL-N AMES. special-names-entry]
[IN PUT-OUTPUT SECTION.]
FILE-CON TROL. file-control-entry ...
[I-O-CONTROL. input-output-control-entry

2-23

DATA DIVISION

OVERALL APPROACH

The Data Division describes the data that the object program is to accept as input,
to manipulate, to create, or to produce as output. Data to be processed falls into three
categories:

1. That which is contained files and enters or leaves the internal memory of the
computer from a specified area or areas.

2. That which is developed internally and placed into intermediate or working
storage, or places into specific format for output reporting purposes.

3. Constants which are defined by the user.

PHYSICAL AND LOGICAL ASPECTS OF DATA DESCRIPTION

Data Division Organization

The DATA DIVISION is subdivided into sections.

The FILE SECTIO N defines the structure of data files. Each file is defined by a
file description entry and one or more record descriptions, or by a file description entry
and one or more report description entries. Record descriptions are written
immediately following the file description entry. The WORKING-STORAGE SECTION
describes records and noncontiguous data items which are not part of external data files
but are developed and processed internally. It also describes data items whose values
are assigned in the source program and do not change during the execution of the object
program. The LIN KAGE SECTION appears in the called program and describes data
items that are to be referred to by the calling program and the called program. Its
structure is the same as the WORKING-STORAGE SECTION.

2-24

General Format

The following gives the general format of the sections in the Data Division, and
defines the order of their presentation in the source program.

[DATA DIVISION.]

[FILE SECTION .J-
file-description-entry [record-description-entry] •••]

[WORKING-STORAGE SECTION.

[77-level-description-entryl]
record-description-entry J ...

[LINKAGE SECTION.

[
77-level-descriPtion-entrYl]
record-description-entry J ...

[COMMUNICATION SECTION.

[communication-description-entry [record-description-entry] •• ~ •••]

2-25

PROCEDURE DIVISIO N

GENERAL DESCRIPTION

The Procedure Division must be included in every COBOL source program. This
division may contain declarative procedures.

Declaratives

Declarative sections must be grouped at the beginning of the Procedure Division
preceded by the key word DECLARATIVES and followed by the key words END
DECLARA TIVES. (See Descriptions of the USE Statement in Sections 5, 6 and 7 and
the DEBUG Section 11).

Procedures

A procedure is composed of a paragraph, or group of successive paragraphs, or a
section, or a group of successive sections within the Procedure Division. If one
paragraph is in a section, then all paragraphs must be in sections. A procedure-name is
a word used to refer to a paragraph or section in the source program in which it occurs.
It consists of a paragraph-name (which may be qualified), or a section-name.

The end of the Procedure Division and the physical end of the program is that
physical position in a COBOL source program after which no further procedures appear.

A section consists of a section header followed by zero, one, or more successive
paragraphs. A section ends immediately before the next section or at the end of the
Procedure division or, in the declaratives portion of the Procedure Division, at the key
words END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a period and a space and by
zero, one, or more successive sentences. A paragraph ends immediately before the next
paragraph-name or section-name or at the end of the Procedure Division or, in the
declaratives portion of the Procedure Division, at the key words END DECLARATIVES.

A sentence consists of one or more statements and is terminated by a period
followed by a space.

A statement is a syntactically valid combination of words and symbols beginning
with a COBOL verb.

The term 'identifier' is defined as the word or words necessary to make unique
reference'to a data item.

2-26

Execution

Execution begins with the first statement of the Procedure Division, excluding
declaratives. Statements are then executed in the order in which they are presented
for compilation, except where the rules indicate some other order.

General Format

Procedure Division Header

The Procedure Division is identified by and must begin with the following header:

PROCEDURE DIVISION [USING data-name-l [, data-name-2] •••].

Procedure Division Body

The body of the Procedure Division must conform to one of the following formats:

DECLARA TIVES.

~ section-name SECTION [segment-number]. declarative-sentence

[paragraph-name. [sentence] •••] ••• t ...
END DECLARATIVES.

section-name SECTION [segment-number].

[paragraph-name. [sentence] •••] ••• t ...

Format 2:

~ paragraph-name. [sentence] ••• ~ •••

STATEMENTS AND SENTENCES

There are three types of statements:

1. Conditional statements,
2. Compiler directing statements,
3. Imperative statements.

2-27

There are three types of sentences:

1. Conditional sentences,
2. Compiler directing sentences,
3. Imperative sentences.

Conditional Statement

A conditional statement specifies that the truth value of a condition is to be
determined and that the subsequent action of the object program is dependent' on this
truth value.

A conditional statement is one of the following:

*
*

*

*

*

*

An IF statement.

A READ statement that specifies the AT END or INVALID KEY phrase.

A WRITE statement that specifies the INVALID KEY phrase.

A START, REWRITE or DELETE statement that specifies the INVALID KEY
phrase.

An arithmetic statement (ADD, DIVIDE, MULTIPLY, SUBTRACT) that
specifies the SIZE ERROR phrase.

A CALL statement that specifies the ON OVERFLOW phrase.

Conditional Sentence

A conditional sentence is a conditional statement, optionally preceded by an
imperative statement, terminated by a period followed by a space.

Compiler Directing Statement

A compiler directing statement consists of a compiler directing verb and its
operands. The compiler directing verbs are COPY, ENTER and USE (See The COpy
STATEMENT in Section 9, The ENTER STATEMENT in Section 3, and The USE
STATEMENT in Sections 5, 6 and 7). A compiler directing statement causes the'
compiler to take on specified action during compilation.

Compiler Directing Sentence

A compiler directing sentence is a single compiler directing statement terminated
by a period followed by a space.

2-28

Imperative Statement

An imperative statement indicates a specific unconditional action to be taken by
the object program. An imperative statement is any statement that is neither a
conditional statement, nor a compiler directing statement. An imperative statement
may consist of a sequence of imperative statements, each possibly separated from the
next by a separator.

The imperative verbs are:

ACCEPT GO SET

ADDI INSPECT START2

ALTER MOVE STOP

CALL3 MULTIPLyl SUBTRACTI

CANCEL OPEN WRITE6

COMPUTE PERFORM

CLOSE READ5

DELETE2 REWRITE2

DISPLAY

DIVIDEI

EXIT

I - Without the optional SIZE ERROR phrase.
2 - Without the optional INVALID KEY phrase.
3 - Without the optional ON OVERFLOW phrase.
5 - Without the optional AT END phrase or INVALID KEY phrase.
6 - Without the optional INVALID KEY phrase or END-OF-PAGE phrase.

When 'imperative-statement' appears in the general format of statements,
'imperative-statement' refers to that sequence of consecutive imperative statements
that must be ended by a period or an ELSE phrase associated with a previous IF
statement.

1m pera tive Sentence

An imperative sentence is an imperative statement terminated by a period
followed by a space.

2-29

REFERENCE FORMAT

GENERAL DESCRIPTION

The reference format, which provides a standard method for describing COBOL
source programs, is described in terms of character positions in a line on an
input-output medium. The Lin COBOL compiler accepts source programs written in
reference format and produces an output listing of the source program input in
reference format.

The rules for spacing given in the discussion of the reference format take
precedence over all other rules for spacing.

The divisions of a source program must be in order as follows: the Identification
Division, then the Environment Division, then the Data Division, then the Procedure
Division. Each division must be written according to the rules for the reference format.

REFERENCE FORMAT REPRESENTATION

The reference format for a line is represented as in Figure 2-1.

I I I I I
Margin Margin Margin Margin Margin
L CAB

1
3

r
1 2 3 4 5 6 7 8 ~ ~ : 1_ ~

- Sequence ;;:::r Ar:: Area A 1 -----~-r e;;_

Indicator Area

Margin L is immediately to the left of the leftmost character position of a line.

Margin C is between the 6th and 7th character positions of a line.

Margin A is between the 7th and 8th character positions of a line.

Margin B is between the lIth and 12th character positions of a line.

Margin R is immediately to the right of the rightmost character position of a line.

Figure 2 - 1. Reference format for a COBOL Source Line.

2-30

R

The sequence number area occupies six character positions (I-6), and is between
Margin L and Margin C.

The indicator area is the 7th character position of a line.

Area A occupies character positions 8, 9, 10 and 11, and is between margin A and
margin B.

Area B occupies character positions 12 through 72 inclusive; it begins immediately
to the right of Margin B and terminates immediately to the left of Margin R.

Sequence Numbers

A sequence number, consisting of six digits in the sequence area, may be used to
label a source program line.

Continuation of Lines

Whenever a sentence, entry, phrase, or clause requires more than one line, it may
be continued by starting subsequent line(s) in area B. These subsequent lines are called
the continuation line(s). The line being continued is called the continued line. Any
word or literal may be broken in such a way that part of it appears on a continuation
line.

A hyphen in the indicator area of a line indicates that the first nonblank character
in area B of the current line is the successor of the last nonblank character of the
preceding line without any intervening space. However, if the continued line contains a
nonnumeric literal without closing quotation mark, the first nonblank character in area
B on the continuation line must be a quotation mark, and the continuation starts with
the character immediately after that quotation mark. All spaces at the end of the
continued line are considered part of the literal. Area A of a continuation line must be
blank.

If there is no hyphen in the indicator area of a line, it is assumed that the last
character in the preceding line is followed by a space.

Blank Lines

A blank line is one that is blank from margin C to margin R, inclusive. A blank line
can appear anywhere in the source program, except immediately preceding a
continuation line. (See Figure 2-1).

2-31

DIVISION, SECTION, PARAGRAPH FORMATS

Division Header

The division header must start in area A. (See Figure 2-1).

Section Header

The section header must start in area A. (See Figure 2-1).

A section consists of paragraphs in the Environment and Procedure Divisions and
Data Division entries in the Data Division.

Paragraph Header, Paragraph-Name and Paragraph

A paragraph consists of a paragraph-name followed by a period and a space and by
zero, one or more sentences, or a paragraph header followed by one or more entries.
Comment entries may be included within a paragraph. The paragraph header or
paragraph-name starts in area A of any line following the first line of a division or a
section.

The first sentence or entry in a paragraph begins either on the same line as the
paragraph header or paragraph-name or in area B of the next nonblank line that is not a
comment line. Successive sentences or entries either begin in area B of the same line
as the preceding sentence or entry or in area B of the next nonblank line that is not a
comment line.

When the sentences or entries of a paragraph require more than one line they may
be continued as described in CONTINUATION OF LINES in this Section.

DATA DIVISION ENTRIES

Each Data Division entry begins with a level indicator or a level-number, followed
by a space, followed by its associated name (except in the Report Section), followed by
a sequence of independent descriptive clauses. Each clause, except the last clause of
an entry, may be terminated by either the separator semicolon or the separator
comma. The last clause is always terminated by a period followed by a space.

There are two types of Data Division entries: those which begin with a level
indicator and those which begin with a level-number.

A level indicator is any 'of the following: FD (See The FILE DESCRIPTION -
COMPLETE ENTRY SKELETON in Sections 5, 6, and 7), SD (See The SORT MERGE
FILE DESCRIPTION - COMPLETE ENTRY SKELETON in Section 8).

In those Data Division entries that begin with a level indicator, the level indicator
begins in area A followed by a space and followed in area B with its associated name
and appropriate descriptive information.

2-32

Those Data Division entries that begin with level-numbers are called data
description entries.

A level-number has a value taken from the set of values 1 through 49, 66, 77 and
88. Level-numbers in the range 1 through 9 may be written either as a single digit or as
a zero followed by a significant digit. At least one space must separate a level-number
from the word following the level-number.

In those data description entries that begin with level-number 01 or 66, 77 and 88,
the level-number begins in area A followed by a space and followed in area B by its
associated record-name or item-name and appropriate descriptive information.

Successive data description entries may have the same format as the first or may
be indented according to level-number. The entries in the output listing need be
indented only if the input is indented. Indentation does not affect the magnitude of a
level-number.

When level-numbers are to be indented, each new level-number may begin any
number of spaces to the right of margin A. The extent of indentation to the right is
determined only by the width of the physical medium.

DECLARATIVES

The key word DECLARATIVES and the key words END DECLARATIVES that
precede and follow, respectively, the declaratives portion of the Procedure Division
must appear on a line by itself. Each must begin in area A and be followed by a period
and a space (See Figure 2-1).

COMMENT LINES

A comment line is any line with an asterisk in the continuation indicator area of
the line. A comment line can appear as any line in a source program after the
Identification Division header. Any combination of characters from the computer's
character set may be included in area A and area B of that line (See Figure 2-1). The
asterisk and the characters in area A and area B will be produced on the listing but
serve as documentation only. A special form of comment line represented by a stroke
in the indicator area of the line causes page ejection prior to printing the comment.

Successive comment lines are allowed. Continuation of comment lines is
permitted, except that each continuation line must contain im '*' in the indicator area.

RESERVED WORDS

A full list of reserved words is given in Appendix A.

2-33

SECTION 3

THE NUCLEUS

FUNCTION OF THE NUCLEUS

The Nucleus provides a basic language capability for the internal processing of
data within the basic structure of the four divisions of a program.

OVERALL LANGUAGE

NAME CHARACTERISTICS

Lin COBOL data-names need not begin with an alphabetic character; the
alphabetic characters may be positioned anywhere within the data-name. Qualification
is permitted and all data-names, condition-names, paragraph-names, and text-names
need not be unique.

FIGURATIVE CONSTANTS

All the following figurative constants may be used: ZERO, ZEROS, ZEROES,
SPACE, SPACES HIGH-VALUE, HIGH-VALUES, LOW-VALUE, LOW-VALUES, QUOTE,
QUOTES, and ALL literal.

REFERENCE FORMAT

A word or numeric literal can be broken in such a way that part of it appears on a
continuation line.

3-1

IDENTIFICATION DIVISION IN THE NUCLEUS

GENERAL DESCRIPTION

The Identification Division is included in a COBOL source program at the user's
discretion. This division identifies the source program and the resultant output listing.
In addition, the user may include the date the program is written and such other
information as desired under the paragraphs in the general format shown below.

ORGANIZATION

Paragraph headers identify the type of information contained in the paragraph. All
paragraphs are optional and may be included in this division at the user's choice, in the
order of presentation shown by the general format below.

Structure

The general format of the paragraphs in the Identification Division is given below.
Paragraphs can be in any order.

General Format

IDENTIFICATION DIVISION.

PROGRAM-ID.

AUTHOR.

program-nam e.

[comment-entry]

INSTALLATION. [comment-entry]

DATE-WRITTEN. [comment-entry]

DATE-COMPILED. [comment-entry]

SECURITY. [comment-entry] •••

Syntax Rules

1. The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and a space.

2. The comment-entry may be any combination of the characters from the
computer's character set and may be written in Area B on one or more lines.
The continuation of the comment-entry by the use of the hyphen in the
indicator area is not permitted.

3-2

THEPROGRAM~DPARAGRAPH

Function

The PROGRAM-ID paragraph gives the name by which a program is identified.

General Format

PROGRAM-ID. program-name.

Syntax Rules

1. The program-name must conform to the rules for formation of a user-defined
word.

General Rules

1. The PROGRAM-ID paragraph contains the name of the program.

2. The program-name identifies the source program and all listings pertaining to
a particular program.

THE DATE-COMPILED PARAGRAPH

Function

The DATE-COMPILED paragraph provides the compilation date in the
Identification Division source program listing.

General Format

DATE-COMPILED. comment-entry ...

Syntax Rule

The comment-entry may be any combination of the characters from the computer's
character set. The continuation of the comment entry by use of the hyphen is not
permitted; however, the comm ent entry may be contained on one or more lines.

3-3

General Rule

The paragraph-name DATE-COMPILED causes a date entry string to be inserted
during program compilation. If a DATE-COMPILED paragraph is present, the
comment-entry is replaced in its entirety by the date string.

3-4

ENVIRONMENT DIVISION IN THE NUCLEUS

CONFIGURATION SECTION

The SOURCE-COMPUTER Paragraph

Function

The SOURCE-COMPUTER paragraph identifies the computer upon which the
program is to be compiled.

General Format

SOURCE COMPUTER. computer-name.

Syntax Rule

Computer-name must be one COBOL word defined by the user.

General Rule

The computer-name provides a means for identifying equipment configuration, in
which use the computer-name and its implied configuration are specified by the user.

The OBJECT-COMPUTER Paragraph

Function

The OBJECT-COMPUTER Paragraph identifies the computer on which the program
is to be executed.

OBJECT-COMPUTER. computer-name, MEMOR Y SIZE integer ~~:~~CTERS
MODULES

General Format I I
[,PROGRAM COLLATING SEQUENCE IS alphabet-name]

Syntax Rule

Computer-name must be one COBOL word defined by the user.

3-5

General Rules

I. The computer-name provides a means for identifying equipment configuration,
in which case the computer-name and its implied configurations are specified
by the user. The configuration definition contains specific information
concerning the memory size.

2. If the PROGRAM COLLATING SEQUENCE Clause is specified, the collating
sequence associated with alphabet-name is used to determine the truth value
of any nonnumeric comparisons:

a. Explicitly specified in relation conditions (see Relation Condition later in
this Section).

b. Explicitly specified in condition-name conditions; see Condition Name
Condition (Conditional Variable).

3. If the PROGRAM COLLATING SEQUENCE Clause is not specified, the native
collating sequence is used. Appendix B lists the full ASCII collating sequence
(native) and those characters used in COBOL.

4. If the PROGRAM COLLATING SEQUENCE Clause is specified, the program
collating sequence is the collating sequence associated with the alphabet-name
specified in that Clause.

5. The PROGRAM COLLATING SEQUENCE Clause is also applied to any
nonnumeric merge or sort keys.

The SPECIAL-N AMES Paragraph

Function

The SPECIAL-NAMES paragraph provides a means of relating implementor-names
to user-specified mnemonic-names and of relating alphabet-names to character sets
and/or collating sequences.

3-6

General Format

SPECIAL-NAMES.

[function-name-l IS mnemonic-name-l1
[function-name-2 IS mnemonic-name-2]

I 0

SWITCH

7

IS mnemonic-name [,ON STATUS IS condition-name-l

[,OFF STATUS IS condition-name-2]]

, alphabet-name IS
STANDARD-l
NATIVE

literal-l

[, CURRENCY SIG N IS literal-9]
[, DECIMAL-POINT iSCOMMA]
[, CONSOLE IS CRT] ---
[, CURSOR is data-name-l1 •

Syntax Rules

S THROUGH ~ literal-2
lTHRU ~

ALSO literal-3 , ALSO literal-4

~
S THROUGH ~ literal-6]
lTHRU ~

ALSO literal-7[ALSO literal-a] •••

1. Mnemonic-names can be any COBOL user-defined word and at least one
constituen.t character must be alphabetic.

2. The literals specified in the literal phrase of the alphabet-name clause:

a. If numeric, must be unsigned integers and must have a value within the
range of one (1) through the maximum number of characters in the native
character set.

b. If nonnumeric and associated with a THROUGH or ALSO phrase, must
each be one character in length.

3. If the literal phrase of the alphabet-name clause is specified, a given
character must not be specified more than once in an alphabet-name clause.

4. The words THRU and THROUGH are equivalent.

3-7

General Rules

1. Function-name-l specifies system devices or functions used by the compiler.

The programmer can associate any user-defined COBOL word with a
function-name.

Mnemonic-name-l, -2, etc. can be used in the ACCEPT, DISPLAY or WRITE
statements.

Function-name-l, -2, etc. can be one of the following:

SYSIN
SYSOUT
TAB

System logical input unit: the CRT keyboard
System logical output unit: the CRT screen
Skip to head of form (WRITE, ADVANCING)

2. The SWITCH clause enables a mnemonic name to be set to one of two
condition-names depending on the setting of a switch at run time by the
operator.

3. The alphabet-name clause provides a means for relating a name to a specified
character code set and/or collating sequence. When alphabet-name is
referenced in the PROGRAM COLLATING SEQUENCE clause (see the
OBJECT-COMPUTER Paragraph in this Section). The alphabet-name clause
specifies a collating sequence. When alphabet-name is referenced in a
CODE-SET clause in a file description entry (see The File Description -
Complete Entry Skeleton in Section 5), the alphabet-name clause specifies a
character code set.

a. If the STANDARD-l phrase is specified, the character code set or
collating sequence identified is that defined in American National
Standard Code for Information Interchange, X3.4-1968. Appendix
B defines the correspondence between the characters of the
standard character set and the characters of the native character
set.

b. If the NATIVE phrase is specified, the native character code set or
native collating sequence is used. The native collating sequence is
an in ANSI publication X3.4-1968 (see Appendix B).

4. The character that has the highest ordinal position in the program collating
sequence specified is associated with the figurative constant HIGH-VALUE. If
more than one character has the highest position in the program collating
sequence, the last character specified is associated with the figurative
constant HIGH-VALUE.

5. The character that has the lowest ordinal position in the program
collating sequence specified is associated with the figurative constant
LOW-VALUE. If more than one character has the lowest position in the
program collating sequence, the first character specified is associated
with the figurative constant LOW-VALUE.

3-8

6. The literal which appears in the CURRENCY SIGN IS literal clause is used in
the PICTURE clause to represent the currency symbol. The literal is limited
to a single character and must not be one of the following characters.

* digits 0 thru 9;

* alphabetic characters A, B, C, D, L, P, R, S, V, X, Z, or the space;

* special characters '*', '+', 'oJ, ',I, '.', I;', '(I, I)', "", 'I'or '='.

If this clause is not present, only the currency sign is used in the PICTURE
clause.

7. The clause DECIMAL-POINT IS COMMA means that the function of comma
and period are exchanged in the character-string of the PICTURE clause and
in numeric literals.

8. The clause CONSOLE IS changes the defaults in the ACCEPT and DISPLAY
statements to the B 20 COBOL interactive extension that enables data to be
accepted or displayed at any specified point on the screen. See the ACCEPT
Statement and the DISPLA Y Statement in this Section.

9. The clause CURSOR IS specifies the data-name to contain the CRT cursor
address as used by the ACCEPT statement. If CURSOR IS is not specified the
default cursor position on executing an ACCEPT statement is the 'Home'
position at top left of the CRT screen. The CURSOR IS clause enables a
program to retain the position at the end of execution of the last ACCEPT
statement or to specify the initial position at the start of any ACCEPT
statement. This is a useful facility when programming menu-type operator
prompts. The operator need then only move the cursor to the selected option
prompt and press GO or just press GO for the default option.

Data-name contains the name of a PIC 9999 field in which the most significant
99 represents a line count in the range one to the maximum number of lines on
the user screen, and the least significant 99 represents a character position in
the range one to the maximum positions allowed by the width of the user
screen. If data-name is zero, the effect is as if the CURSOR IS clause was not
used, i.e., initial cursor position is top left of screen. (See also the ACCEPT
Statement later in this Section).

3-9

DATA DIVISION IN THE NUCLEUS

WORKING STORAGE SECTION

The Working-Storage Section is composed of the section header, followed by data
description entries for noncontiguous data items and/or record description entries.
Each Working-Storage Section record name and noncontiguous item name must be
unique since it cannot be qualified. Subordinate data-names need not be unique if they
can be made unique by qualification.

Noncontiguous Working-Storage

Items and constants in Working--Storage which bear no hierarchical relationship to
one another need not be grouped into records, provided they do not need to be further
subdivided. Instead, they are classified and defined in a separate data description entry
which begins with the special level-number, 77.

The following data clauses are required in each data description entry:

* Level-number 77
* Data-name
* The PICTURE clause or the USAGE IS INDEX clause

Other data description clauses are optional and can be used to complete the
description of the item if necessary.

Working-Storage Records

Data elements and constants in Working-Storage which bear a definite hierarchic
relationship to one another must be grouped into records according to the rules for
formation of record descriptions. All clauses which are used in record descriptions in
the File Section can be used in record descriptions in the Working-Storage Section.

Initial Values

The initial value of any item in the Working-Storage Section except an index data
item is specified by using the VALUE clause with the data item. The initial value of
any index data item is unpredictable.

THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON

Function

A data description entry specifies the characteristics of a particular item of data.

3-10

General Format

Format 1:

data-name-l j
level-numher FILLER

[; REDEFINES data-name-2]

PICTURE
PIC

[USAGE IS]

IS Character-string]

COMPUTATIONAL 1
COMP
CO'MPUT ATIO N AL-3
COMp-3
i5'iSPLA-Y

[SIG N IS]
LEADING j
TRAILING [SEPARATE CHARACTER]

~ SYNCHRONIZED [LEFT]
SYNC RIGHT

~ JUSTIFIED RIGHT] JUST

[; BLANK WHEN ZERO]

[; VAL UE IS literal]

Format 2: ~ j THROUGH
66 data-name-l; REN AMES data-name- THR U

Format 3:

88 condition-name;

[,literai-3

Syntax Rules

VALUE IS
VALUES ARE

[I THROUGHI
THRU

literal-l

Ii terai-4]

data-name-3]

THROUGH
THRU literal-2

1. The level-number in Format 1 may be any number from 01-49 or 77.

2. The clauses may be written in any order with two exceptions: the
data-name-l or FILLER clause must immediately follow the level-number;
the REDEFINES clause, when used, must immediately follow the
data-name-l clause.

3. The PICTURE clause must be specified for every elementary item except
an index data item, in which case use of this clause is prohibited.

3-11

4. The words THRU and THROUGH are equivalent.

General Rules

1. The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN
ZERO, must not be specified except for an elementary data item.

2. Format 3 is used for each condition-name. Each condition-name requires a
separate entry with level-number 88. Format 3 contains the name of the
condition and the value, values, or range of values asosciated with the
condition-name. The condition-name entries for a particular conditional
variable must follow the entry describing the item with which the
condition-name is associated. A condition-name can be associated with any
data description entry which contains a level-number except the following:

a. Another condition-name.

b. A level 66 item.

c. A group containing items with descriptions including JUSTIFIED,
SYNCHRONIZED or USAGE (other than USAGE IS DISPLA y).

d. An index data item (See the USAGE IS INDEX Clause in Section 4).

3-12

THE BLANK WHEN ZERO CLAUSE

Function

The BLANK WHEN ZERO clause permits the blanking of an item when its value is
zero.

General Format

BLANK WHEN ZERO

Syntax Rule

The BLANK WHEN ZERO clause can be used only for an elementary item whose
PICTURE is specified as numeric or numeric edited. (See the PICTURE Clause later in
this Section).

General Rules

1. When the BLANK WHEN ZERO clause is used, the item will contain nothing
but spaces if the value of the item is zero.

2. When the BLANK WHEN ZERO clause is used for an item whose PICTURE is
numeric, the category of the item is considered to be numeric edited.

3-13

THE DATA-NAME OR FILLER CLAUSE

Function

A data-name specifies the name of the data being described. The word FILLER
specifies an elementary item of the logical record that cannot be referred to explicitly.

General Format

~ data-name~
~ FILLER ~

Syntax Rule

In the File, Working-Storage, Communication and Linkage Sections, a data-name or
the key word FILLER must be the first word following the level-number in each data
description entry.

General Rule

The key word FILLER may be used to name an elementary item or group in a
record. Under no circumstances can a FILLER item be referred to explicitly.
However, the key word FILLER may be used as a conditional variable because such use
does not require explicit reference to the FILLER Item but to its value.

3-14

THE JUSTIFIED CLA USE

Function

The JUSTIFIED clause specifies non-standard positioning of data within a receiving
data item.

General Format

~ JUSTIFIED ~
~ JUST ~

Syntax Rules

RIGHT

1. The JUSTIFIED clause can be specified only at the elementary item level.

2. JUST is an abbreviation for JUSTIFIED.

3. The JUSTIFIED clause cannot be specified for any data item described as
numeric or for which editing is specified.

General Rules

I. When a receiving data item is described with the JUSTIFIED clause and the
sending data item is larger than the receiving data item, the leftmost
characters are truncated. When the receiving data item is described with the
JUSTIFIED clause and it is larger than the sending data item, the data is
aligned at the rightmost character position in the data item with space fill for
the leftmost character positions.

2. When the JUSTIFIED clause is omitted, the standard rules for aligning data
within an elementary item apply. (See STANDARD ALIGNMENT RULES.)

3-15

LEVEL NUMBER

Function

The level-number shows the hierarchy of data within a logical record. In addition,
it is used to identify entries for working storage items, linkage items, condition-names,
and the REN AMES clause.

General Format

level-number

Syntax Rules

1. A level-number is required as the first element in each data description entry.

2. Data description entries subordinate to an FD, CD, or SD entry must have
level-numbers with the values 01-49, 66 or 88. (See the FILE DESCRIPTION
in Section 5).

3. Data description entries in the Working-Storage Section and Linkage Section
must have level-numbers with the values 01-49.

General Rules

1. The level-number 01 identifies the first entry in each record description or a
report group.

2. Specia,l level numbers have been assigned to certain entries where there is no
real concept of level:

a. The level-number 77 is assigned to identify noncontiguous working storage
data items, noncontiguous linkage data items, and can be used only as
described by Format 1 of the data description skeleton. (See the DATA
DESCRIPTION - COMPLETE ENTRY SKELETON in this Section).

b. Level number 66 is assigned to identify REN AMES entries and can be used
only as described in Format 2 of the data description skeleton earlier in
this Section.

c. Level number 88 is assigned to entries which define condition-names
associated with a conditional variable and can be used only as
described in Format 3 of the data description skeleton earlier in this
Section. A maximum number of 23 literals is allowed for level number
88 entries. If more are needed the THRU clause must be used.

3. Multiple level 01 entries subordinate to any given level indicator, represent
implicit redefinitions of the same area.

3-16

THE PICTURE CLA USE

Function

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

General Format

~ PICTURE ~
? PIC ~

Syntax Rules

IS character-string

1. A PICTURE clause can be specified only at the elementary item level.

2. A character-string consists of certain allowable combinations of characters in
the COBOL character set used as symbols. The allowable combinations
determine the category of the elementary item.

3. The maximum number of characters allowed in the character-string is 30.

4. The PICTURE clause must be specified for every elementary item except an
index data item, in which case use of this clause is prohibited.

5. PIC is an abbreviation for PICTURE.

6. The asterisk when used as the zero suppression symbol and the clause BLA NK
WHEN ZERO may not appear in the same entry.

General Rules

There Rre five categories of data that can be described with a PICTURE clause:
alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric edited. General
Rules within these categories are given below:

Alphabetic nata Rules

l. Its PICTURE character-string can only contain the symbols 'A', 'B'; and

2. Its contents when represented in standard data format must be any
combination of the twenty-six (26) letters of the Roman alphabet and the
space from the COBOL character set.

3-17

Numeric Data Rules

1. The PICTURE character-string can only contain the symbols '9', 'P', 'S', and
'V'. The number of digit positions that can be described by the PICTURE
character-string must range from 1 to 18 inclusive.

2. If unsigned, the data in standard data format must be a combination of the
Arabic numerials '0', '1', '2', '3', '4', '5', '6', '7', '8', and '9'; if signed, the item
may also contain a '+', '_I, or other representation of an operational sign. (see
the SIG N Clause later in this Section).

Alphanumeric Data Rules

1. The PICTURE character-string is restricted to certain combinations of the
symbols 'A', 'X', '9', and the item is treated as if the character-string
contained all X's. A .l?ICTURE character-string which contains all A's or
all 9's does not define an alphanumeric item; and

2. The contents when represented in standard data format can consist of any
characters in the computer's character set.

3. The maximum size for any alphanumeric field is:

PIC X(8191)

Alphanumeric Edited Data Rules

1. Its PICTURE character-string is restricted to certain combinations of the
following symbols: 'A', 'X', '9', 'B', '0 " and 'I' as follows:

a. The character-string must contain at least one 'B' and at least one 'X' or
at least one '0' (zero) and at least one 'X' or at least one 'I' (stroke) and at
least one 'X'; or

b. The character-string must contain at least one '0' (zero) and at least one
'A' or at least one 'I' (stroke) and at least one 'A'; and

2. The contents when represented in standard data format are allowable
characters in the computer's set.

Numeric Edited Data Rules

1. Its PICTURE character-string is restricted to certain combinations of the
symbols 'B', 'I', 'PI, 'V', 'Z', '0', '9', ',I, '.', '*', '+', '_I, 'CRT, 'DB', and the currency
symbol. The allowable combinations are determined from the order of
procedence of symbols and the editing rules as follows:

a. The number of digit positions that can be represented in the PICTURE
character-string must range from 1 to 18 inclusive.

b. The character-string must contain at least one '0', 'B', 'I', 'Z', '*', '+', ',I, '.',
'_I, 'CRT, 'DB', or currency symbol.

3-18

2. The contents of the character positions of these symbols that are allowed to
represent a digit in standard data format must be one of the numerals.

Elementary Item Size

The size of an elementary item, where size means the number of character
positions occupied by the elementary item in standard data format, is determined by
the number of allowable symbols that represent character positions. An integer which
is enclosed in parentheses following the symbols 'A', ',I, 'X', '9', 'pI, 'Z', '*', 'B', 'I', '0', I+',
'_I, or the currency symbol indicates the number of consecutive occurrences of the
symbol. Note that the following symbols may appear only once in a given PICTURE:
IS', 'V', '.', 'CRt, and 'DB'.

Symbols Used

The functions of the symbols used to describe an elementary item are explained as
follows:

A - Each 'A' in the character-string represents a character position which can
contain only a letter of the alphabet or a space.

B - Each 'B' in the character-string represents a character position into which the
space character will be inserted.

P - Each 'PI indicates an assumed decimal scaling position and is used to specify
the location of an assumed decimal point when the point is not within the
number that appears in the data item. The scaling position character 'PI is
not counted in the size of the data item. Scaling position characters are
counted in determining the maximum number of digit positions (18) in
numeric edited items or numeric items. The scaling position character 'PI
can appear only to the left or right as a continuous string of 'PIS within a
PICTURE description; since the scaling position character 'PI implies an
assumed decimal point (to the left of 'PIS if 'PIS are leftmost PICTURE
characters and to the right if 'PIS are right most PICTURE characters), the
assumed decimal point symbol 'V' is redundant as either the leftmost or
rightmost character within such a PICTURE description. The character 'PI
and the insertion character '.' (period) cannot both occur in the same
PICTURE character-string. If, in any operation involving conversion of data
from one form of internal representation to another, the data item being
converted is described with the PICTURE character 'PI, each digit position
described by a 'PI is considered to contain the value zero, and the size of the
data item is considered to include the digit positions so described.

S - The letter'S' is used in a character-string to indicate the presence, but
neither the representation nor, necessarily, the position of an operational
sign; it must be written as the leftmost character in the PICTURE. The'S' is
not counted in determining the size (in terms of standard data format
characters) of the elementary item unless the entry is subject to a SIG N
clause which specifies the optional SEPARATE CHARACTER phrase. (See
the SIG N Clause in this Section.)

3-19

v - The 'V' is used in a character-string to indicate the location of the assumed
decimal point and may only appear once in a character-string. The 'V' does
not represent a character position and therefore is not counted in the size of
the elementary item. When the assumed decimal point is to the right of the
rightmost symbol in the string, the 'V' is redundant.

x - Each 'X' in the character-string is used to represent a character position
which contains any allowable character from the computer's character set.

Z - Each 'Z' in a character-string may only be used to represent the leftmost
numeric character positions which will be replaced by a space character when
the contents of that character position is zero. Each 'Z' is counted in the size
of the item.

9 - Each '9' in the character-string represents a character position which
contains a numeral and is counted in the size of the item.

o - Each '0' (zero) in the character-string represents a character position into
which the numeral zero will be inserted. The '0' is counted in the size of the
item.

I - Each 'I' (stroke) in the character-string represents a character position into
which the stroke character will be inserted. The 'I' is counted in the size of
the item.

- Each ',I (comma) in the character-string represents a character position into
which the character ',I will be inserted. This character position is counted in
the size of the item. The insertion character ',I must not be the last
character in the PICTURE character-string.

When the character '.' (period) appears in the character-string it is an editing
symbol which represents the decimal point for alignment purposes and in
addition, represents a character position into which the character '.' will be
inserted. The character '.' is counted in the size of the item. For a given
program, the functions of the period and comma are exchanged if the clause
DECIMAL-POINT IS COMMA is stated in the SPECIAL-N AMES paragraph.
In this exchange, the rules for the period apply to the comma and the rules
for the comma apply to the period wherever they appear in a PICTURE
clause. The insertion character '.' must not be the last character in the
PICTURE character-string.

+, -, GR, DB-
These symbols are used as editing sign control symbols. When used, they
represent the character position into which the editing sign control symbol
will be placed. The symbols are mutually exclusive in anyone
character-string and each character used in the symbol is counted in
determining the size of the data item.

3-20

*-

cs-

'*' (asterisk) in the character-string represents a leading numeric character
position into which an asterisk will be placed when the contents of that
position is zero. Each '*' is counted in the size of the item.

The currency symbol in the character-string represents a character position
into which a currency symbol is to be, placed. The currency symbol in a
character-string is represented by either the currency sign or by the single
character specified in the CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph. The currency symbol is counted in the size of the item.

Editing Rules

There are two general methods of performing editing in the PICTURE clause,
either by insertion or by suppression and replacement. There are four types of inse'rtion
editing available. They are:

* Simple insertion
* Special insertion
* Fixed insertion
* Floating insertion

There are two types of suppression and replacement editing:

*
*

Zero suppression and replacement with spaces
Zero suppression and replacement with asterisks

The type of editing which may be performed upon an item is dependent upon the
category to which the item belongs. Table 3-1 specifies which type of editing may be
performed upon a given category.

Table 3-1. Editing Types for Data Categories.

!
I CATEGORY TYPE OF EDITING

Alphabetic Simple insertion 'B' only

Nymeric None

Alphanu m eric None

Alphanumeric Edited Simp~e insertion '0', 'B' and 'I'

I Numeric Edited All, but see NOTE below

3-21

NOTE

Floating insertion editing and editing by zero
suppression and replacement are mutually exclusive in
a PICTURE clause. Only one type of replacement may
be used with zero suppression in a PICTURE clause.

Simple Insertion Editing

Simple Insertion Editing. The ',I (comma), 'B' (space), '0' (zero), and 'I' (stroke) are
used as the insertion characters. The insertion characters are counted in the size of the
item "and represent the position in the item into which the character will be inserted.

Special Insertion Editing

Special Insertion Editing. The'.' (period) is used as the insertion character. In
addition" to being an insertion character it also represents the decimal point for
alignment purposes. The insertion character used for the actual decimal point is
counted in the size of the item. The use of the assumed decimal point, represented by
the symbol 'V' and the actual decimal point, represented by the insertion character, in
the same PICTURE character-string is disallowed. The result of special insertion
editing is the appearance of the insertion character in the item in the same position as
shown in the character-string.

Fixed Insertion Editing

Fixed Insertion Editing. The currency symbol and the editing sign control symbols,
'+', '_I, 'CRt, 'DB', are the insertion characters. Only one currency symbol and only one
of the editing sign control symbols can be used in a given PICTURE character-string.
When the symbols 'CR' or 'DB' are used, they represent two character positions in
determining the size of the item and they must represent the right most character
positions that are counted in the size of the item. The symbol '+' or '_I, when used, must
be either the leftmost or rightmost character position to be counted in the size of the
item. The currency symbol must be the leftmost character.

3-22

Table 3-2. Editing Symbols in PICTURE Character-Strings.

RESULT
EDITING SYMBOL IN

PICTURE CHARACTER-STRING DATA ITEM DATA ITEM
POSITIVE OR ZERO NEGATIVE

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

Floating Insertion Editing

The currency symbol and editing sign control symbols 1+1, or I_I are the floating
insertion characters and as such are mutually exclusive in a given PICTURE
character-string.

Floating insertion editing is indicated in a PICTURE character-string by using a
string of at least two of the floating insertion characters. This string of floating
insertion characters may contain any of the fixed insertion symbols or have fixed
insertion characters immediately to the right of this string. These simple insertion
characters are part of the floating string.

The leftmost character of the floating insertion string represents the leftmost
limit of the floating symbol in the data item. The rightmost character of the floating
string represents the rightmost limit of the floating symbols in the data item.

The second floating character from the left represents the leftmost limit of the
numeric data that can be stored in the data item. Non-zero numeric data may replace
all the characters at or to the right of this limit.

In a PICTURE character-string, there are only two ways of representing floating
insertion editing. One way is to represent any or all of the leading numeric character
positions on the left of the decimal point by the insertion character. The other way is
to represent all of the numeric character positions in the PICTURE character-string by
the insertion character.

If the insertion characters are only to the left of the decimal point in the PICTURE
character-string, the result is that a single floating insertion character will be placed
into the character position immediately preceding either the decimal point or the first
non-zero digit in the data represented by the insertion symbol string, whichever is
farther to the left in the PICTURE character-string. The character positions preceding
the insertion character are replaced with spaces.

3-23

If all numeric character positions in the PICTURE character-string are represented
by the insertion character, the result depends upon the value of the data. If the value is
zero the entire data item will contain spaces. If the value is not zero, the result is the
same as when the insertion character is only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string for the
receiving data item must be the number of characters in the sending data item, plus the
number of non-floating insertion characters being edited into the receiving data item,
plus one for the floating insertion character.

Zero Suppression Editing

The suppression of leading zeros in numeric character positions is indicated by the
use of the alphabetic character 'Z' or the character '*' (asterisk) as suppression symbols
in a' PICTURE character-string. These symbols are mutually exclusive in a given
PICTURE character-string. Each suppression symbol is counted in determining the size
of the item. If 'Z' is used, the replacement character will be the space and if the
asterisk is used, the replacement character will be ,lit.

Zero suppression and replacement is indicated in a PICTURE character-string by
using a string of one or more of the allowable symbols to represent leading numeric
character positions which are to be replaced when the associated character position in
the data contains a zero. Any of the simple insertion characters embedded in the string
of symbols or to the immediate right of this string are part of the string.

In a PICTURE character-string, there are only two ways of representing zero
suppression. One way is to represent any or all of the leading num eric character
positions to the left of the decimal point by suppression symbols. The other way
is to represent all of the numeric character positions in the PICTURE
character-string by suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any leading
zero in the data which corresponds to a symbol in the string is replaced by the
replacement character. Suppression terminates at the first non-zero digit in the data
represented by the suppression symbol string or at the decimal point, whichever is
encountered first.

If all numeric character positions in the PICTURE character-string are represented
by suppression symbols and the value of the data is not zero, the result is the same as if
the suppression characters were only to the left of the decimal point. If the value is
zero and the suppression symbol is 'Z', the entire data item will be spaces. If the value
is zero and the suppression symbol is '*', the data item will be all '*' except for the
actual decimal point.

The symbols '+', '-', '*', 'Z', and the currency symbol, when used as floating
replacement characters, are mutually exclusive within a given character-string.

Precedence Rules

Table 3-3 shows the order of precedence when using characters as symbols in a
character-string. An 'X' at an intersection indicates that the symboI(s) at the top of the
column may precede, in a given character-string, the symboI(s) at the left of the row.
Arguments appearing in braces indicate that the symbols are mutually exclusive. The
currency symbol is indicated by the symbol 'cs'.

3-24

At least one of the symbols 'A', 'X', 'Z', '9' or '*', or at least two of the symbols '+',
'_I or 'cst must be present in a PICTURE string.

Table 3-3. PICTURE Character Precedence Chart.

~
Hoa-Flo.tiD& Flo.tiDI Other Symbola

SJ"IIIbo1 lEWerUou Symola lEWUtiOD Sr-bola

Secoad .. 0 I {:} r:} {~ {!1 {!1 {:} \:1 9 It.
S V P P . c:.I c:.a c:.I X S,.,ol

i • II: II: X Z Z X Z X Z X II: X Z Z X X X

0 X X X X X X X X X X X X X X X X x

I x x x x x x x x x x z x x x x x x

.
x ! x I '0 . x x x x x x x x x x z x x x

~i -..
x I I z I

.. en
.x I xl • x x x x Z :II: o a

... 0
~ .. ,w

{:11 i c ..
o •
:& • I ~

{:1 z I x I I
I

I z X X X X X X X X Z X X

{~ Z Z Z X z I I z X Z Z X Z :II: X :II:

ca z I I I
{:l x x x z X I x x

{!} x x x x z: x z: x z: x x
!
0

i t} z X X X X X .~

~III
.. a
• 0 {:l 0'- x x x x x x x x z: x
~ ..

•
~ ca x x x x x x

CI x X :& X X X z: x z: z:

, X :& X X X II: II: X X X X X X • x

A

.: 1
x x x x x

0

i ... S WI .. • .t:
0 , II: X X X X II: X X Z X X X

P X z X II: X Z II: Z X X X X

P X z X :& I x

3-25

In Table 3-3, non-floating insertion symbols ,+, and '-', floating insertion symbols
. 'Z', '*', '+', '_I, and 'cst, and other symbol 'PI appear twice in the PICTURE character

precedence chart. The leftmost column and uppermost row for each symbol represents
its use to the left of the decimal point position. The second appearance of symbol in
the row and column represents its use to the right of the decimal point position.

3-26

THE REDEFINES CLAUSE

Function

The R EDEFIN ES clause allows the same computer storage area to be described by
different data description entries.

General Format

level-number data-name-l; REDEFINES data-name-2

Syntax Rules

NOTE

Level-number, data-name-l and the semi-colon are
shown in the above format to improve clarity.
Level-number and data-name-l are not part of the
REDEFINES clause.

1. The REDEFINES clause, when specified, must immediately follow
data-name-1.

2. The level-numbers of data-name-l and data-name-2 must be identical but
must not be 66 or 88.

3. This clause must not be used in level 01 entries in the File Section. (See
General Rule 2 of the DATA RECORDS Clause in Section 5.)

4. This clause must not be used in level 01 entries in the Communication Section.

5. Data-name-2 may be subordinate to an entry which contains a DEDEFINES
clause. However data-name-2 may be subordinate to an item whose data
description entry contains an OCCURS clause. In this case, the reference
to data-nam e-2 in the REDEFINES clause may not be subscripted. or
indexed. Neither the original definition nor the redefinition can include
an item whose size is variable as defined in the ace URS clause. (See
the a C CURS Clause in Section 4.)

6. No entry having a level-num ber numerically lower than the level-num ber of
data-name-2 and data-name-l may occur between the data description entries
of data-name-2 and data-name-l.

3-27

General Rules

1. Redefinition starts at data-name-2 and ends when a level-number less than or
equal to that of data-name-2 is encountered.

2. When the level-number of data-name-l is other than 01, it must specify the
same number of character positions that the data item referenced by
data-name-2 contains. It is important to observe that the REDEFINES clause
specifies the redefinition of a storage area, not of the data items occupying
the area.

3. Multiple redefinitions of the same character positions are permitted. The
entries giving the new descriptions of the character positions must follow the
entries defining the area being redefined, without intervening entries that
define new character positions. Multiple redefinitions of the same character
positions must all use the data-name of the entry that originally defined the
area.

4. The entries gIVIng the new description of the character positions must not
contain any VALUE clauses except in condition-name entries.

5. Multiple level 01 entries subordinate to any given level indicator represent
implicit redefinitions of the same area.

3-28

THE RENAMES CLAUSE

Function

The RENAMES clause permits alternative, possibly overlapping, groupings of
elementary items.

General Format

66 data-name-l; RENAMES data-name-J1THROUGH ~ data-name-3J~'
lfrHRU ~

Syntax Rules

NOTE

Level-number 66, data-name-l and the semicolon are
shown in the above format to improve clarity.
Level-number and data-name-l are not part of the
REN AMES clause.

1. All RENAMES entries referring to data items within a given logical record
must immediately follow the last data description entry of the associated
record description entry.

2. Data-name-2 and data-name-3 must be names of elementary items or groups
of elementary items in the same logical record, and cannot be the same
data-name. A 66 level entry cannot rename another 66 level entry nor can it
rename a 77, 88, or 01 entry.

3. Data-name-l cannot be used as a qualifier, and Cf).n only be qualified by the
names of the associated level 01, FD, CD or SD entries. Neither data-name-2
nor data-name-3 may have an OCCURS clause in its data description entry nor
be subordinate to an item that has an OCCURS clause in its data description
entry. (See the OCCURS Clause in Section 4.)

4. The beginning of the area described by data-name-3 must not be to the left of
the beginning of the area described by data-name-2. The end of the area
described by data-name-3 must be the right of the end of the area described
by data-name-2. Data-name-3, therefore, cannot be subordinate to
data-name-2.

5. Data-name-2 and data-name-3 may be qualified.

6. The words THR U and THROUGH are equivalent.

7. None of the items within the range, including data-name-2 and data-name-3,
if specified, can be an item whose size is variable as defined in the OCCURS
Clause in Section 4.

3-29

General Rules

1. One or more REN AMES entries can be written for a logical record.

2. When data-name-3 is specified, data-name-l is a group item which includes all
elementary items starting with data-name-2 (if data-name-2 is an elementary
item) or the first elementary item in data-name-2 (if data-name-2 is a group
item), and concluding with data-name-3 if an elementary item or the last
elementary item in data-name-3 (if data-nam e-3 is a group item).

3. When data-name-3 is not specified, data-name-2 can be either a group or an
elementary item; when data-name-2 is a group item; data-name-l is treated as
a group item, and when data-name-2 is an elementary item, data-name-l is
treated as an elementary item.

3-30

THE SIGN CLAUSE

Function

The SIGN clause specifies the position and the mode of representation of the
operational sign when it is necessary to describe these properties explicitly.

General Format

[SIG N IS]

Syntax Rules

lLEADING l
TRAILING~

[SEPARATE CHARACTER]

1. The SIGN clause may be specified only for a numeric data description entry
whose PICTURE contains the character'S', or a group item containing at least
one such numeric data description entry.

2. The numeric data description entries to which the SIG N clause applies must be
described as usage is DISPLA Y.

3. At most, one SIGN clause may apply to any given numeric data description
entry.

4. If the CODE-SET clause is specified, any signed numeric data description
entries associated with that file description entry must be described with the
SIGN IS SEPARATE clause.

General Rules

1. The optional SIGN clause, if present, specifies the position and the mode
of representation of the operational sign for the numeric data description
entry to which it applies, or for each numeric data description entry
subordinate to the group to which it applies. The SIGN clause applies
only to nurn eric data description entries whose PICTUH.E contains the
character'S'; the'S' indicates the presence of, but neither the
representation nor, necessarily, the position of the operational sign.

2. A numeric data description entry whose picture contains the character'S', but
to which no optional SIG N clause applies, has an operational sign, but neither
the representation nor, necessarily, the position of the operational sign is
specified by the character'S'. In this (default) case, General Rules 3 through
5 do not apply to such signed numeric data items.

3-31

3. If the optional SEPARATE CHARACTER phrase is not present, then:

a. The operational sign will be presumed to be associated with the leading
(or, respectively, trailing) digit position of the elementary numeric data
item.

b. The letter'S' in a PICTURE character-string is not counted in determining
the size of the item (in terms of standard data format characters).

4. If the optional SEPARATE CHARACTER phrase is present, then:

a. The operational sign will be presumed to be the leading (or, respectively,
trailing) character position of the elementary numeric data item; this
character position is not a digit position.

b. The letter'S' in a PICTURE character-string is counted in determining the
size of the item (in terms of standard data format characters).

c. The operational signs for positive and negative are the standard data
format characters '+' and '_I, respectively.

5. Every numeric data description entry whose PICTURE contains the character
IS' is a signed numeric data description entry. If a SIG N clause applies to such
an entry and conversion is necessary for purposes of computation or
comparisons, conversion takes place automatically.

3-32

THE SYNCHRONIZED CLAUSE

Function

The SYNCHRONIZED clause specifies the alignment of an elementary item on the
natural boundaries of the computer memory.

General Format

. ~ SYNCHRONIZED l 1 LEFT l
~ SYNC ~ RIGHT ~

Syntax Rules

1. This clause may only appear with an elementary item.

2. SYNC is an abbreviation for SYNCHRONIZED.

General Rules

1. The SYNCHRONIZED clause is accepted for documentation purposes only.

2. This clause specifies that the subject data item is to be aligned in the
computer such that no other data item occupies any of the character positions
between the leftmost and rightmost natural boundaries delimiting this data
item. If the number of character positions required to store this data item is
less than the number of character positions between those natural boundaries,
the unused character positions (or portions thereof) must not be used for any
other data item. Such unused character positions, however, are included in:

a. The size of any group item(s) to which the elementary item belongs; and

b. The character positions redefined when this data item is the object of a
REDEFINES clause.

3. SYNCHRONIZED not followed by either RIGHT or .LEFT specifies that the
elementary item is to be positioned between natural boundaries in such a way
as to effect efficient utilization of the elementary data item.

4. SYNCHRONIZED LEFT specifies that the elementary item is to be positioned
such that it will begin at the left character position of the natural boundary in
which the elementary item is placed.

5. SYNCHRONIZED RIGHT specifies that the elementary .item is to be
positioned such that it will terminate on the right character position of the
natural boundary in which the elementary item is placed.

3-33

6. Whenever a SYNCHRONIZED item is referenced in the source program, the
original size of the item, as shown in the PICTURE clause, is used in
determining any action that depends on size, such as justification, truncation
or overflow.

7. If the data description of an item contains the SYNCHRONIZED clause and an
operational sign, the sign of the item appears in the normal operational sign
position, regardless of whether the item is SYNCHRONIZED LEFT or
SYNCHRONIZED RIGHT.

8. When the SYNCHRONIZED clause is specified in a data description entry of a
data item that also contains an OCCURS clause, or in a data description entry
of a data item subordinate to a data description entry that contains an
OCCURS clause, then:

a. Each occurrence of the data item is SYNCHRONIZED.

b. Any implicit FILLER generated for other data items within that same
table are generated for each occurence of those data items.

9. This clause is hardware dependent.

3-34

THE USAGE CLA USE

Function

The USAGE clause specifies the format of a data item in the computer storage.

General Format

[USAGE IS]

Syntax Rules

COMPUTATIONAL
COMP
i5ISPLAY
COMPUTATIONAL-3
COMP-3

1. The PICTURE character-string of a COMPUTATION AL or
COMPUTATIONAL-3
item can contain only '9's, the· operational sign character'S', the implied
decimal point character 'V', one or more 'PIS. (See the PICTURE Clause
earlier in this Section).

2. COMP is an abbreviation for COMPUTATIONAL.

General Rules

1. The USAGE clause can be written at any level. If the USAGE clause is written
at group level, it applies to each elementary item in the group. The USAGE
clause of an elementary item cannot contradict the USAGE clause of a group
to which the item belongs.

2. This clause specifies the manner in which a data item is represented in the
storage of a computer. It does not affect the use of the data item, although
the specifications for some statements in the Procedure Division may restrict
the USAGE clause of the operands referred to. The USAGE clause may affect
the radix or type of character representation of the item.

3. A COMPUTATIONAL or COMPUTATIONAL-3 item IS capable of representing
a value to be used in computations and must be numeric. If a group item is
described as COMPUTATION AL(-3), the elementary items in the group are
COMPUTATIONAL(-3). The group item itself is not COMPUTATIONAL(-3)
and cannot be used in computations.

4. The USAGE IS DISPLAY clause indicates that the format of the data is a
standard data format.

5. If the USAGE clause is not specified for an elementary item, or for any group
to which the item belongs, the usage is implicitly DISPLA Y.

6. Space requirements for the various USAGE storage options are given under
SELECTION OF CHARACTER REPRESENTATION AND RADIX in Section 2.

3-35

THE VALUE CLA USE

Function

The VALUE clause defines the value of constants, the initial value of working
storage items, and the values associated with a conditional name.

General Format

Format 1:

VAL UE is literal

Format 2:

VALUE IS .
VALUES ARE hteral-l

C literal-3

Syntax Rules

[

~THROUGH
~THRU
~THROUGH
~THRU

literal-2

literal-4] •••

1. The VALUE clause cannot be stated for any items whose size is variable. (See
the OCCURS Clause in Section 4.)

2. A sig-ned numeric literal must have associated with it a signed numeric
PICTURE character-string.

3. All numeric literals in a VALUE clause of an item must have values which are
within the range of values indicated by the PICTURE clause, and must not
have a value which would require truncation of nonzero digits. Nonnumeric
literals in a VALUE clause of an item must not exceed the size indicated by
the PICTURE clause.

4. The words THRU and THROUGH are equivalent.

General Rules

1. The VALUE clause must not conflict with other clauses in the data description
of the item or in the data description within the hierarchy of the item. The
following rules apply:

a. If the category of the item is numeric, all literals in the VALUE clause
must be numeric. If the literal defines the value of a working storage
i tern, the literal is aligned in the data item according to the standard
alignment rules. (See STANDARD ALIGNMENT RULES in Section 2.)

3-36

b. If the category of the item is alphabetic, alphanumeric, alphanumeric
edited or numeric edited, all literals in the VALUE clause must be
nonnumeric literals. The literal is aligned in the data item as if the data
item had been described as alphanumeric. (See STANDARD ALIGNMENT
RULES in Section 2.) Editing characters in the PICTURE clauses are
included in determining the size of the data item (see the PICTURE
Clause earlier in this Section) but have no effect on initialization of the
data item. Therefore, the VALUE for an edited item is presented in an
edited form.

c. Initialization takes place independent of any BLANK WHEN ZERO or
JUSTIFIED clause that may be specified.

Condition-Name Rules

1. In a condition-name entry, the VALUE clause is required. The VALUE clause
and the condition-name itself are the only two clauses permitted in the entry.
the characteristics of a condition-name are implicitly those of its conditional
variable.

2. Format 2 can be used only in connection with condition-names. Wherever the
THR U phrase is used, literal-l must be less than literal-2, literal-3 less than
literal-4, etc.

Data Description Entries Other Than Condition-Names

Rules governing the use of the VALUE clause differ with the respective sections of
the Data Division:

1. In the File Section, the VALUE clause may be used only in condition-name
entries.

2. In the Working-Storage Section, the value clause must be used in
condition-name entries. The VALUE clause may also be used to specify the
initial value of a data item; in which case the clause causes the item to assume
the specified value at the start of the object program. If the VALUE clause is
not used in an item's description, the initial value is undefined.

3. In the Linkage Section, the VALUE clause may be used only in condition-nam e
entries. .

4. The VALUE clause must not be stated in a data description entry that contains
an OCCURS clause, but notJn an entry that is subordinate to an entry
containing an OCCURS clause. (See the OCCURS Clause in Section 4.)

5. The VALUE clause may be stated in a data description entry that contains a
REDEFINES clause, or in an entry that is subordinate to an entry containing a
REDEFINES clause.

3-37

6. If the VALUE clause is used in an entry at the group level, the literal must be
a figurative constant or a nonnumeric literal, and the group area is initialized
without consideration for the individual elementary or group items contained
within this group. The VALUE clause cannot be stated at the ,subordinate
levels within this group.

7. The VALUE clause must not be written for a group containing items with
descriptions, including JUSTIFIED, SYNCHRONIZED, or USAGE (other than
USAGE IS DISPLAY).

3-38

PROCEDURE DIVISION IN THE NUCLEUS

ARITHMETIC EXPRESSIONS

, Definition of an Arithmetic Expression

An arithmetic expression can be an identifier of a numeric elementary item, a
numeric literal, such identifiers and literals separated by arithmetic operators, two
arithmetic expressions separated by an arithmetic operator, or an arithmetic
expression enclosed in parentheses. Any arithmetic expression may be preceded by
a unary operator. The permissible combinations of variables, numeric literals,
arithmetic operator and parentheses are given in Table 3-4, Combination of
Symbols in Arithmetic Expressions.

Those identifiers and literals appearing in an arithmetic expression must represent
either numeric elementary items or numeric literals on which arithmetic may be
performed.

Arithmetic Operators

There are five binary arithmetic operators and two unary arithmetic operators that
may be used in arithmetic expressions. They are represented by specific characters
that may be preceded by a space and followed by a space.

Binary Arithmetic
Operators

+

*
/
**

Unary Arithmetic
Operators

+

Formation and Evaluation Rules

Meaning

Addition
Subtraction
Multiplication
Division
Exponentia tion

Meaning

The effect of multiplication by numeric literal +1

The effect of multiplication by numeric literal -1.

1. Parentheses may be used in arithmetic expressions to specify the order in
which elements are to be evaluated. Expressions within parentheses are
evaluated first, and within nested parentheses, evaluation proceeds from the
least inclusive set to the most inclusive set. When parentheses are not used,
or parenthesized expressions are at the same level of inclusiveness, the
following hierarchical order of execution is implied:

3-39

1st - Unary plus and minus
2nd - Exponentiation
3rd - Multiplication and division
4th - Addition and subtraction

2. Parentheses are used either to eliminate ambiguities in logic where
consecutive operations of the same hierarchical level appear or to modify the
normal hierarchical sequence of execution in expressions where it is necessary
to have some deviation from the normal precedence. When the sequence of
execution is not specified by parentheses, the order of execution of
consecutive operations of the same hierarchical level is from left to right.

3. The ways in which operators, variables, and parentheses may be combined in
an arithmetic expression are summarized in Table 3-4, where:

a. The letter 'PI indicates a permissible pair of symbols.

b. The character '_I indicates an invalid pair.

c. 'Variable' indicates an identifier or literal.

FIRST SECOND SYMBOL
SYMBOL

Variable * / ** - + Unary + or- ()

Variable - P - - P
* / ** + - P - P P -
Unary + or- P - - P -
(P - P P -
) - P - - P

Table 3-4. Combination of Symbols in Arithmetic Expressions.

4. An arithmetic expression may only begin with the symbol '(I, '+', '_I, or a
variable and may only end with a f)' or a variable. There must be a one-to-one
correspondence between left and right parenthesis of an arithmetic expression
such that each left parenthesis is to the left of its corresponding right
parenthesis.

5. Arithmetic expressions allow the user to combine arithmetic operations
without the restrictions on composite of operands and/or receiving data
items. See, for example, Syntax Rule 3 of the ADD Statement in this Section.

3-40

CONDITION AL EXPRESSIONS

Conditional expressions identify conditions that are tested to enable the object
program to select between alternate paths of control depending upon the truth value of
the condition. Conditional expressions are specified in the IF, PERFORM and SEARCH
statements. There are two categories of conditions associated with conditional
expressions: simple conditions and complex conditions. Each may be enclosed with any
number of paired parentheses, in which case its category is not changed.

Simple Conditions

The simple conditions are the relation, class, condition-name, switch-status, and
sign conditions. A simple condition has a truth value of 'true' or 'false'. The inclusion in
parentheses of simple conditions does not change the simple truth value.

Relation Condition

A relation condition causes a comparison of two operands, each of which may be
the data item referenced by an identifier, a literal or the value resulting from an
arithmetic expression. A relation condition has a truth value of 'true' if the relation
exists between the operands. Comparison of two numeric operands is permitted
regardless of the formats specified in their respective USAGE clauses. However, for all
other comparisons the operands must have the same usage. If either of the operands is
a group item, the nonnumeric comparison rules apply.

The general format of a relation condition is as follows:

1
identifier-l l
literal-l
arithmetic-expression-l

IS [NOT]
IS [NOT]
IS [NOT]
IS [NOT]
IS [NOT]
IS [NOT]

NOTE

GREATER THAN
LESS THAN
EQUAL TO
> < =

identifier-2
literal-2
arithmetic­
expression-2

The required relational characters ,< " ' >', and '=' are
not underlined to avoid confusion with other symbols
such as ~ (Greater than or equal to.)

The first operand (identifier-I, literal-lor arithmetic-expression-1) is called the
subject of the condition; the second operand (identifier-2 or literal-2 or
arithmetic-expression-2) is called the object of the condition. The relation condition
must contain at least one reference to a variable.

3-41

The relational operator specifies the type of comparison to be made in a relation
condition. A space must precede and follow each reserved word. comprising the
relational operator. When used, 'NOT' and the next key word or relation character are
one relational operator that defines the comparison to be executed for truth value; e.g.,
'NOT EQUAL' is a truth test for an 'unequal'. Comparison; 'NOT GREATER' is a truth
test for an 'equal' or 'less' comparison. The meaning of the relational operators is as
shown in Tabl~_~-5.

Table 3-5. Relational Operators.

Meaning RelationalOEerator

Greater than or not greater than IS NOT GREATER THAN
IS NOT >

Less than or not less than IS NOT LESS THAN
IS NOT (" --

Equal to or not equal to IS NOT EQUAL TO
IS NOT = --

The required relational characters ')', '<', and '=' are not underlined to a void
confusion with other symbols such as ~ (Greater than or equal to).

Comparison of Numeric Operands: For operands whose class is numeric a
comparison is made with respect to the algebraic value of the operands. The length of
the literal or arithmetic expression operands in terms of number of digits represented,
is not significant. Zero is considered a unique value regardless of the sign.

Comparison of these operands is permitted regardless of the manner in which their
usage is described. Unsigned numeric operands are considered positive for purposes of
comparison.

Comparison of Nonnumeric Operands: For nonnumeric operands, or one numeric
and one nonnumeric operand, a comparison is made with respect to a specified collating
sequence of characters (see the OBJECT-COMPUTER Paragraph in this Section). If one
of the operands is specified as numeric, it must be an integer data item or an integer
literal and:

I. If the nonnumeric operand is an elementary data item or a nonnumeric literal,
the numeric operand is treated as though it were moved to an elementary
alphanumeric data item of the same size as the numeric data item (in terms of
standard data format characters), and the contents of this alphanumeric data
item were then compared to the nonnumeric operand. (See the MOVE
Statement in this Section, and the PICTURE Character 'PI under the heading
Symbols Used earlier in this Section.)

3-42

2. If the non-numeric operand is a group item, the numeric operand is treated as
though it were moved to a group item of the same size as the numeric data
item (in terms of standard data format characters), and the contents of this
group item were then compared to the nonnumeric operand. (See the MOVE
Statement in this Section, and the PICTURE character 'PI under the Heading
Symbols Used earlier in this Section.)

3. A non-integer numeric operand cannot be compared to a nonnumeric operand.

The size of an operand is the total number of standard data format characters in
the operand. Numeric and nonnumeric operands may be compared only when their
usage is the same.

There are two cases to consider:

1. Operands of equal size - If the operands are of equal size, comparison
effectively proceeds by comparing characters in corresponding character
positions starting from the high order end and continuing until either a pair of
unequal characters is encountered or the low order end of the operand is
reached, whichever comes first. The operands are determined to be equal if
all pairs of characters compare equally through the last pair, when the low
order end is reached.

The first encountered pair of unequal characters· is compared to determine
their relative position in the collating sequence. The operand that contains
the character that is positioned higher in the collating sequence is considered
to be the greater operand.

2. Operands of unequal size - If the operands are of unequal size, comparison
proceeds as though the shorter operand were extended on the right by
sufficient spaces to make the operands of equal size.

Class Condition

The class condition determines whether the operand is numeric, that is, consists
entirely of the characters 'u, '1', '2', '3', ••• , '9', with or without the operational sign, or
alphabetic, that is, consists entirely of the characters 'A', 'B', 'C', ••• , 'Z', space. The
general format for the class condition is as follows:

identifier IS [N OT]
1

NUMERIC ~
ALPHABETIC ~

3-43

The usage of the operand being tested must be described as display. When used,
'NOT' and the next key word specify one class condition that defines the class test to be
executed for truth value; e.g. 'NOT NUMERIC' is a truth test for determining that an
operand is nonnumeric.

The NUMERIC test cannot be used with an item whose data description describes
the item as alphabetic or as a group item composed of elementary items whose data
description indicates the presence of operational sign(s). If the data description of the
item being tested does not indicate the presence of an operational sign, the item being
tested is determined to be numeric only if the contents are numeric and an operational
sign is not present. If the data description of the item does indicate the presence of an
operational sign, the items described with the SIGN IS SEPARATE clause are the
standard data format characters, '+' and 'J.

The ALPHABETIC test cannot be used with an item whose data description
describes the item as numeric. The item being tested is determined to be alphabetic
only if the contents consist of any combination of the alphabetic .characters 'A' through
'Z' and the space.

Condition-Name Condition (Conditional Variable)

In a condition-name condition, a conditional variable is tested to determine
whether or not its value is equal to one of the values associated with a condition-name.
The general format for the condition-name condition is as follows:

condition-name

If the condition-name is associated with a range or ranges of values, then the
conditional variable is tested to determine whether or not its value falls in this range,
including the end values.

The rules .for comparing a conditional variable with a condition-name value are the
same as those specified for relation conditions.

The result of the test is true if one of the values corresponding to the
condition-name equals the value of its associated conditional variable.

Switch-Status Condition

A switch-status condition determines the 'on' or 'off' status of an
implementor-defined switch. The implementor-name and the 'on' or 'off' value
associated with the condition must be named in the SPECIAL-NAMES paragraph of the
Environment Division. The genaral format for the switch-status condition is as follows:

condition-name

3-44

The result of the test is true if the switch is set to the specified position
corresponding to the condition-name.

Sign Condition

The sign condition determines whether or not the algebraic value of an arithmetic
expression is less than, greater than or equal to zero. The general format for a sign
condition is as follows:

arithmetic-expression IS [N OT] l POSITIVE ~
NEGATIVE
ZERO

When used, 'NOT' and the next key word specify one sign condition that defines that
algebraic test to be executed for truth value; e.g., 'NOT ZERO' is a truth test for a
nonzero (positive or negative) value. An operand is positive if its value is greater than
zero, negative if its value is less than zero, and zero if its value is equal to zero. The
arithmetic expression must contain at least one reference to a variable.

Complex Conditions

A complex condition is formed by combining simple conditions, combined conditions
and/or complex conditions with logical connectors (logical operators 'AND' and 'OR') or
negating these conditions with logical negation (the logical operator 'NOT). The truth
value of a complex condition, whether parenthesized or not, is that truth value which
results from the interaction of all the stated logical operators on the individual truth
values of simple conditions, or the intermediate truth values of conditions logically
connected or logically negated.

The logical operators and their meanings are:

Logical Operator

AND

OR

NOT

Meaning

Logical conjunction; the truth value is 'true' if
both of the conjoined conditions are true; 'false'
if one or both of the conjoined conditions is false.

Logical inclusive OR; the truth value if 'true' if
one or both of the included conditions is true;
'false' if both included conditions are false.

Logical negation or reversal of truth value; the
truth value is 'true' if the condition is false;
'false' if the condition is true.

The logical operators must be preceded by a space and followed by a space.

3-45

Negated Simple Conditions: A simple condition is negated through the use of the
logical operator 'NOT. The negated simple condition effects the opposite truth value
for a simple condition. Thus the truth value of a negated simple condition is 'true' if
and only if the truth value of the simple condition is 'false', the truth value of a negated
simple condition is 'false' if and only if the truth value of the simple condition is 'true'.
The inclusion in parentheses of a negated simple condition does not change the truth
value.

The general format for a negated simple condition is:

NOT simple-condition

Combined and Negated Combined Conditions: A combined condition results from
connecting conditions with one of the logical operators 'AND'or 'OR'. The general
format of a combined condition is:

condition condition ~ ...

where 'condition' may be:

a. A simple condition, or

b. A negated simple condition, or

c. A combined condition,

d. A negated combined condition; i.e, the 'NOT' logical operator
followed by a combined condition enclosed within parentheses, or

e. Combinations of the above, specified according to the rules summarized in
Table 2 on page 3-6, Combinations of Conditions, Logical Operators, and
Parentheses, located on the next page.

Although parentheses need never be used when either 'AND' or 'OR' (but not both)
is used exclusively in a combined condition, parentheses may be used to effect a final
truth value when a mixture of 'AND', 'OR' and 'NOT' is used. (See Table 3-6,
Combinations of Conditions, Logical Operators, and Parentheses below, and Condition
Evaluation Rules earlier in this Section.)

Table 3-6 on the next page indicates the ways in which conditions and logical
operators may be combined and parenthesized. There must be a one-to-one
correspondence between left and right parentheses such that each left parentheses is
matched by a corresponding right parentheses. The table assumes a left to right
sequence of elements.

3-46

Table 3-6. Combinations of Conditions, Logical Operators, and Parentheses

Element Permitted Element can be Element can be
Location in preceded by only: followed by only:
conditional
expression

simple-condition Any OR, NOT, AND, (OR, AND,)

OR, or AND Not first simple-condition,) simple-condition
or last NOT, (

NOT Not last OR, AND, (simple-condition, (

(Not last OR, NOT, AND, (simple-condition,
NOT, (

) Not first simple-condition,) OR, AND,)

Thus, the element pair 'OR NOT' is permissible while the pair 'NOT OR' is not
permissible; 'NOT (' is permissible while 'NOT NOT' is not permissible).

Abbreviated Combined Relation Conditions

When a simple or negated simple relation conditions are combined with logical
connectives in a consecutive sequence such that a succeeding relation condition
contains a subject or subject and relational operator that is common with the preceding
relation condition, and no parentheses are used within such a consecutive sequence, any
relation condition except the first may be abbreviated by:

1. The omission of the subject of the relation condition, or

2. The omission of the subject and relational operator of the relation condition.

The format for an abbreviated combined relation condition is:

r e iati on-c ondi ti on \1 ~ ~ D! [N 0 TJ [reia tionai-opera tor J Object! •••

Within a sequence of relation conditions both of the above forms of abbreviation
may be used. The effect of using such abbreviations is as if the last preceding stated
subject were inserted in place of the omitted subject, and the last stated relational
operator were inserted in place of the omitted relational operator. The result of such
implied insertion must comply with the rules of Table 3-6, Combinations of Conditions,
Logical Operators, and Parentheses. This insertion of an omitted subject and/or
relational operator terminates once a complete simple condition is encountered within a
complex condition.

3-47

--

The interpretation applied to the use of the word 'NOT' in an abbreviated combined
relation condition is as follows:

1. If the word immediately following 'NOT' is 'GREATER', ' >', 'LESS', '< "
'EQUAL', '=', then the 'NOT' participates as part of the relational operator;
otherwise,

2. The 'NOT' is interpreted as a logical operator and, therefore, the implied
insertion of subject or relational operator results in a negated relation
condition.

Some examples of abbreviated combined and negated combined relation conditions
and expanded equivalents follow.

Abbreviated Combined
Relation Condition

a) b AND NOT < c OR d

a NOT EQUAL b OR c

NOT a = b OR c

NOT (a GREATER b OR c)

NOT (a GREATER b OR< c)

NOT (a NOT)b AND c AND NOT d)

Condition Evaluation Rules

Expanded Eguivalent

«a)b) AND (a NOT(c» OR (a NOT(d)

(a NOT EQUAL b) OR (a NO EQUAL c)

(NOT (a = b» OR (a = c)

NOT «a GREATER b) OR (a<c»

NOT «a GREATER b) OR (a)c»

NOT ««a NOT b) AND (a NOT c» AND
(NOT (a NOT)d))))

Parentheses may be used to specify the order in which individual conditions of
complex conditions are to be evaluated when it is necessary to depart from the implied
evaluation precedence. Conditions within parentheses are evaluated first, and within
nested parentheses, evaluation proceeds from the least inclusive condition to the most
inclusive condition. When parentheses are not used, or parenthesized conditions are at
the same level of inclusiveness, the following hierarchical order of logical evaluation is
implied until the final truth value is determined:

1. Values are established for arithmetic expressions. (See FORMATION AND
EVALUATION RULES under ARITHMETIC EXPRESSIONS in this Section.)

3-48

2. Truth values for simple conditions are established in the following order:

relation (following the expansion of any abbreviated relation condition)

class
condition-name
switch-status
sign

3. Truth values for negated simple conditions are established.

4. Truth values for combined conditions are established:

'AND' logical operators, followed by
'OR' logical operators.

5. Truth values for negated combined conditions are established.

6. When the sequence of evaluation is not completely specified by parenthese
the order of evaluation of consecutive operations of the same hierarchic
level is from left to right.

3-49

COMMON PHRASES AND GENERAL RULES FOR STATEMENT FORMATS

In the statement descriptions that follow, several phrases appear frequently: the
ROUNDED phrase, the SIZE ERROR phrase and the CORRESPONDING phrase.

These are described below; a resultant-identifier is that identifier associated with a
result of an arithmetic operation.

The ROUNDED Phrase

If, after decimal point alignment, the number of places in the fraction of the result
of an arithmetic operation is greater than the number of places provided for the
fraction of the resultant-identifier, truncation is relative to the size provided for the
resultant-identifier. When rounding is requested, the absolute value of the
resultant-identifier is increased by one whenever the most significant digit of the
excess is greater than or equal to five.

When the low-order integer positions in a resultant-identifier are represented by
the character 'PI in the PICTURE for the resultant-identifier, rounding or truncation
occurs relative to the rightmost integer position for which storage is allocated.

The SIZE ERROR Phrase

If, after decimal point alignment, the absolute value of a result exceeds the largest
value that can be contained in the associated resultant-identifier, a size error condition
exists. Division by zero always causes a size error condition. The size error condition
applies only to the final results, except in MULTIPLY and DIVIDE statements, in which
case the size error condition applies to the intermediate results as well. If the
ROU NDED phrase is specified, rounding takes place before checking for size error.
When such a size error condition occurs, the subsequent action depends on whether or
not the SIZE ERROR phrase is specified as follows:

SIZE ERROR Phrase Not Specified

When a size error condition occurs, .the value of those resultant-identifier(s)
affected is undefined. Values of resultant-identifier(s) for which no size error condition
occurs are unaffected by size errors that occur for other resultant-identifier(s) during
execution of this operation.

SIZE ERROR Phrase Specified

When a size error condition occurs, then the values of resultant-identifier(s)
affected by the size errors are not altered. Values of resultant-identifier(s) for which
no size error condition occurs are unaffected by size errors that occur for other
resultant-identifier(s) during execution, of this operation. After completion of the
execution of this operation, the imperative statement in the SIZE ERROR phrase is
executed.

3-50

For the ADD statement with the CORRESPONDING phrase and the SUBTRACT
statement with the CORRESPO NDING phrase, if any of the individual operations
produces a size error condition, the imperative statement in the SIZE ERROR phrase is
not executed until all of the individual additions or subtractions are completed.

The CORRESPONDING Phrase

10. the text that follows d 1 and d2 must each be identifiers that refer to group
items. A pair of data items, one from dl and one from d2 correspond if the
following conditions exist:

1. A data item in d 1 and a data item in d2 are not designated by the key
word FILLER and have the same data-name and the same qualifiers up to, but
not including, d 1 and d2.

2. At least one of the data items is an elementary data item in the case of a
MOVE statement with the CORRESPONDING phrase; and both of the data
items are elementary numeric data items in the case of the ADD statement
with the CORRESPONDING phrase or the SUBTRACT statement with the
CORRESPQNDING phrase.

3. The description of d I and d2 must not contain level-number 66, 77, or 88
or the USAGE IS INDEX clause.

4. A data item that is subordinate to dl or d2 and contains a REDEFINES,
REN AMES, OCCURS or USAGE IS INDEX clause is ignored, as well as those
data items subordinate to the data item that contains the REDEFINES,
OCCURS, or USAGE IS INDEX clause. However, dl and d2 may have
REDEFINES or OCCURS clauses or be subordinate to data items with
REDEFINES or OCCURS clauses.

Arithmetic Statements

The arithmetic statements are the ADD, DIVIDE, MULTIPLY, and SUBTRACT
statements. Common features are as follows:

1. The data descriptions of the operands need not be the same; any necessary
conversion and decimal point alignment are supplied throughout the
calculation.

3-51

2. The maximum size of each operand is 18 decimal digits. The composite of
operands, which is a hypothetical data item resulting from the superimposition
of specified operands in a statement aligned on their decimal points (See the
ADD Statement, the DIVIDE Statement, the MULTIPLY Statement and the
SUBTRACT Statement later in this Section) must not contain more than 18
decimal digits.

Overlapping Operands

When a sending and a receiving item in an arithmetic statement or an INSPECT,
MOVE, SET statement share a part of their storage areas, the result of the execution of
such a statement is undefined.

Multiple Results in Arithmetic Statements

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have
multiple results. Such statements behave as though they had been written in the
following way:

1. A statement which performs all arithmetic necessary to arrive at the result to
be stored in the receiving items, and stores that result in a temporary storage
location.

2. A sequence of statements transferring or combining the value of this
temporary location with a single result. These statements are considered to
be written in the same left-to-right sequence that the multiple results are
listed.

The result of the statement

ADDa, b, c, TO c, d (c), e

is equivalent to

ADD a, b, c GIVIN G temp
ADD temp TO c
ADD temp TO d (c)
ADD temp TO e

where 'temp' is an intermediate result item provided by the compiler.

Incompatible Data

Except for the class condition (See Class Condition in this Section), when the
contents of a data item are referenced in the Procedure Division and the contents of
that data item are not compatible with the class specified for that data item by its
PICTURE clause, then the result of such a reference is undefined.

3-52

THE ACCEPT STATEMENT

Function

The ACCEPT statement causes data keyed at the keyboard to be made available to
the program in a specified data item.

General Formats

Format I

ACCEPT identifier

Format 2

[
FROM ~mnemonic-namen
-- ~CONSOLE lJ

ACCEPT data-name-l [AT S data-name-2 ~]
? literaI-I

Format 3

ACCEPT identifier FROM l DATE! DAY
TIME

General Rules

I. Format I is the standard ANSI ACCEPT statement.

Format 2 is the extended ACCEPT format.

FROM CRT ----

The two formats are distinguished by their FROM phrases and the default assumes
FROM CONSOLE. A user-defined mnemonic-name can be used if this is associated to a
system device in the SPECIAL-N AMES paragraph (see the SPECIAL-N AMES Paragraph
earlier in this Section). The default can, however, be changed by specifying CO NSOLE
IS CRT in the SPECIAL-NAMES clause so that FROM CRT becomes the default. This
changed default is not shown in the syntax above.

Format 1

2. The ACCE PT statement reads one line of input data from the keyboard. This
input data replaces the contents of the data item named by the identifier.

3. The line of input is echoed as it is typed. The line is terminated by pressing
RETURN or by exceeding 80 or 132 characters in length, depending upon the
video display width.

3-53

4. If the input line is of the same size as the receiving data item, the transferred
data is stored in the receiving data item.

5. If the input line is not of the same size as the receiving data item, then:

Format 2

a. If the size of the receiving data item exceeds the size of the input line,
the transferred data is stored aligned to the left in the receiving data
item and the data item is filled with trailing spaces.

b. If the size of the transferred data exceeds 120 bytes, only the first 120
characters of the input line are stored in the receiving data item. The
remaining characters of the input line which do not fit into the receiving
data item are ignored.

6. The ACCEPT statement causes the transfer of data from the CRT to
data-name-l. The contents of data-name-l are replaced by this data.

7. Data-name-l is taken as a definition of the screen area in which elementary
data items correspond to areas on the screen into which the operator can key.
FILLER fields correspond to areas on the screen which are inaccessible to the
operator.

8. Elementary data items within data-name-l may be alphanumeric, integer
numeric, numeric or edited. Numeric items are treated as two separate
integer numeric fields, and edited fields are treated as alphanumeric fields
except as described in Rule 16.

9. AT data-name-2 or literal-l defines the position on the screen of the leftmost
character of the data. Either form must refer to a PIC 9999 field. The most
significant 99 is taken as a line count in the range one to the maximum lines
on the user screen. The least significant 99 is taken as a character position in
the range one to the maximum positions allowed by the screen width of the
user CRT.

10. Data-name-l may refer to a record, group or elementary item, but it may not
be subscripted. REDEFINES may be used within data-name-l, in which case
the first description of the data is used and subsequent descriptions are
ignored. OCCURS and nested OCCURS may also be used with the effect that
the repeated data-item is expanded into the full number of times it occurs and
one definition is thus automatically repeated for many fields.

11. Immediately upon execution of the ACCEPT statement a cursor is displayed in
the CRT location corresponding to the leftmost non-FILLER character
position in data-name-1. Alternatively, when CURSOR is specified in the
SPECIAL-N AMES paragraph, the cursor displays at the position held in the
CURSOR data-name. The CURSOR position is stored in CURSOR data-name in

3-54

the same format as the screen position is held in data-name-2. If the
data-name-2 has the value SPACE or ZERO, the effect is as if CURSOR was
not specified; if a valid screen position is specified that is not within a
non-FILLER item, the cursor is positioned to the next non-FILLER character
position. The CURSOR data-name holds the last cursor position at the end of
execution of an ACCEPT statement.

12. If FROM CRT is not specified, the default is FROM CONSOLE (see Rule I
above).

13. As the operator keys characters, the cursor moves to the right one character
position at a time in locations corresponding to data fields. The operator
always keys into the current cursor position. At the end of a line the cursor
moves down one line and to the leftmost non-FILLER character position.

14. 'If the data item is integer numeric, only numeric character (0-9) will be
accepted into that item. Keying the decimal point character (. or , as
specified in the DECIMAL POINT phrase) when accepting a numeric item
causes the item to be right justified and zero-filled from the left.

15. When the cursor location reaches a position corresponding to a FILLER item in
a data-name, it immediately skips to the next non-FILLER character position,
or if there is no such position r'emaining in the portion of the CRT specified by
the data-name, it remains in its current position.

16. The operator can terminate input by pressing the GO key at which time
control is passed to the next statement after ACCEPT. Before control is
passed to the next statement the following takes place:

a. The numeric value of each numeric-edited data-field is formed internally
from only the keyed' characters 0 to 9, +, -, • or , and then moved back to
the numeric-edited field with the ANSI PICTURE editing applied. The
field may thus be different to that shown on the CRT just before the
Carriage Return key was pressed.

b. When CURSOR IS is specified in the SPECIAL-NAMES paragraph, the
cursor position when the Carriage Return key is pressed is returned in the
data-name specified by the CURSOR IS clause, except when its value at
the start of the ACCEPT function caused it to be treated as unspecified.

17. Before keying GO, the operator can reposition the cursor to overwrite data
already keyed or to skip character positions by use of the cursor positioning
keys as shown in Table 3-7.

3-55

NOTE

The actual key identification and functions shown in
this table varies according to the CRT used and the
way it is configured (see Appendix J).

Table 3-7. Cursor Repositioning Keys.

KEY: FUNCTION:

+- Backs up the cursor one position.

t Backs up the cursor to the start of the non-FILLER field
prior to the current cursor position.

l Moves the cursor on to the start of the next non-FILLER
field in advance of the current cursor position.

-+ Moves· the cursor on one position without overwriting
existing contents.

PREY Moves the cursor back to the start of the first non-FILLER
PAGE field in the CRT area corresponding to data-name-l.

Format 3

18. The ACCEPT statement causes the information requested to be transferred to
the data .item specified by identifier according to the rules of the MOVE
statement. DATE, DA Y, and TIME are conceptual data items and, therefore,
are not described in the COBOL program.

19. DATE is composed of the data elements year of century, month of year, and
'day of month. The sequence of the data element codes shall be from high to
low order (left to right), year of century, month of year, and day of month
accessed by a COBOL program, behaves as if it had been described in the
COBOL program as an unsigned elementary numeric integer data item six
digits in length.

20. DAY is composed of the data elements year of century and day of year. The
sequence of the data element codes shall be from high order to low order (left
to right) year of century, day of year. Therefore, July 1, 1968 would be
expressed as 68183. DAY, when accessed by a COBOL program, behaves as if
it had been described in a COBOL program as an unsigned elementary numeric
integer data item five digits in length.

3-56

21. TIME is composed of the data elements hours, minutes, seconds, and
hundredths of a second. TIME is based on elapsed time after midnight on a
24-hour clock basis--thus, 2:41 p.m. would be expressed as 14410000. TIME,
when accessed by a COBOL program, behaves as if it had been described in a
COBOL program as an unsigned elementary numeric integer data item eight
digits in length. The minimum value of TIME is 00000000; the maximum value
of TIME is 23595900. Hundredths of seconds always have the value zero.

3-57

THE ADD STATEMENT

Function

The ADD statement causes two or more numeric operands to be summed and the
result to be stored.

General Format

Format I

ADD S identifier-I
~ literal-l [

, identifier-2]
, literal-2

••• TO identifier-m [ROUNDED]

, identifier-n [ROUNDED] ••• [; ON SIZE ERROR imperative-statement]

Format 2

ADD Sidentifier-I~ [S, identifier-2~J [, identifier-3]
~ literal-l ~ ~ literal-2 ~ , literal-3 •••

GIVING identifier-m [ROUNDED] [';dentifier-n [ROUNDE~ •••
[; ON SIZE ERROR imperative-statemek

Format 3

ADD ~ CORRESPONDING ~
lCORR ~

identifier-I TO identifier-2 [ROUNDED]

[; 0 N SIZE ERROR imperative-statement]

Syntax Rules

I. In Formats I and 2, each identifier must refer to an elementary numeric item,
except that in Format 2 each identifier following the word GIVING must refer
to either an elementary numeric item or an elementary numeric edited item.
In Format 3, each identifier must refer to a group item.

2. Each literal must be a numeric literal.

3. The composite of operands must not contain more than 18 digits (see The
Arithmetic Statements in this Section).

a. In Format I the composite of operands is determined by using all of the
operands in a given statement.

3-58

b. In Format 2 the composite of operands is determined by using all of the
operands in a given statement excluding the data items that follow the
word GIVING.

c. In format 3 the composite of operands is determined separately for each
corresponding pair of data items.

General Rules

1. See the ROUNDED PHRASE, the SIZE ERROR PHRASE, the
CORRESPONDING PHRASE, ARITHMETIC Statements, OVERLAPPING
OPERANDS and MULTIPLE RESULTS IN ARITHMETIC Statements in this
Section.

2. If Format 1 is used, the values of the operands preceding the word TO
are added together, then the sum is added to the current value of
identifier-m storing the result immediately into identifier-rn, and repeating
this process respectively for each operand following the word TO. Each
of the operands· following the word TO must be initialized.

3. If Format 2 is used, the value of the operands preceding the word GIVIN G are
added together, then the sum· is stored as the new value of each identifier-m,
identifier-n, ••• , the resultant identifiers.

4. If Format 3 is used, data items in identifier-l are added to and stored in
corresponding data items in identifier-2. These data items in identifier-2
must be initialized.

5. The compiler ensures that enough places are carried so as not to lose any
significant digits during execution.

3-59

THE ALTER STATEMENT

Function

The ALTER statement modifies a predetermined sequence of operations.

General Format

ALTER procedure-name-l[O PROCEED T~procedure-name-2

[, procedure-name-3 TO [PROCEED TO] procedure-name-J •••

Syntax Rules

1. Each procedure-name-l, procedure-name-3, ••• , is the name of a paragraph
that contains a single sentence consisting of a GO TO statement without the

.DEPENDING phrase.

2. Each procedure-name-2, procedure-name-4, ••• , is the name of a paragraph or
section in the Procedure Division.

General Rules

1. Execution of the ALTER statement modifies the GO TO statement in the
paragraph named procedure-name-l, procedure-name-3, ••• , so that subsequent
executions of the modified GO TO statements cause transfer of control to
procedure-name-2, .. procedure-name-4, ••• , respectively. Modified GO TO
statements in independent segments may, under some circumstances, be
returned to their initial states (see INDEPENDENT SEGMENTS in Section 8).

2. A GO TO statement in a section whose segment-number is greater than or
equal to 50 must not be referred to by an ALTER statement in a section with a
different segment-number.

All other uses of the ALTER statement are valid and are performed even if
procedure-name-l, procedure-name-3 is in an overlayable fixed segment.

3-60

THE COMPUTE STATEMENT

Function

The COMPUTE statement assigns to one or more data items the value of an
arithmetic expression.

General Format

COMPUTE identifier-l [ROUNDED] [, identifier-2 [ROUNDED]]

= arithmetic-expression [; ON SIZE ERROR imperative-statement]

Syntax Rules

Identifiers that appear only to the left of = must refer to either an elementary
numeric item or an elementary numeric edited item.

General Rules

1. See the ROUNDED PHRASE, the SIZE ERROR PHRASE, the ARITHMETIC
Statements, OVERLAPPING OPERANDS and MULTIPLE RESULTS IN
ARITHMETIC Statements. .

2. An arithmetic expression consisting of a single identifier. or literal provides a
method of setting the values of identifier-I, identifier-2, etc., equal to the
value of the single identifier or literal.

3. If more than one identifier is specified for the result of the operation, that is
preceding = , the value of the arithmetic expression is computed, and then
this value is stored as the new value of each of identifier-I, identifier-2, etc.,
in turn.

4. The COMPUTE statement allows the user to combine arithmetic operations
without the restrictions on composite of operands and/or receiving data items
imposed by the aritr.metic statements ADD, SUBTRACT, MULTIPLY, and
DIVIDE.

3-61

THE DISPLAY STATEMENT

Function

The DISPLAY statement causes data to be transferred from specified data items to
the CRT screen.

General Formats

Format 1

DISPLAY

Format 2

\ identifier-l

!literai-i

DISPLAY . AT j
data-name-l \ ~
literal-3

Syntax Rules

I. identifier-2 1 J
L literai-2 \

data-name-2l, I
literai-4 L

[UPON

I. Each literal may be any figurative constant, except ALL.

2. If the literal is numeric, it must be an unsigned integer.

~ mnemonic-name l
? CONSOLE ~

\

CRT l

CRT-UNDER ~

3. literal-3 must be alphanumeric. Literal-4 must be numeric.

4. Data-name-I may refer to a record, group or elementary item, but it must not
be subscripted.

General Rules

I. Format I is the standard ANSI DISPLAY statement.

Format 2 is the extended DISPLAY format.

The two formats are distinguished by their UPON phrases and the default
assumes UPON CONSOLE. A user-defined mnemonic-name can be used if this
is associated with a system device in the SPECIAL-NAMES paragraph. (See
the SPECIAL-N AMES paragraph in this Section.) The default can, however, be
changed by specifying CONSOLE IS CRT in the SPECIAL-NAMES clause so
that UPON CRT becomes the default. This changed default is not shown in
the syntax above.

3-62

Format 1

2. The DISPLAY statement causes the contents of each operand to be transferred
to the CRT in the order listed as one line of output data.

3. The size of the data transfer can be up to 132 bytes.

4. If a figurative constant is specified as one of the operands, only a single
occurrence of the figurative constant is displayed.

5. If the CRT is capable of displaying data of the same size as the data item
being output, the data item is transferred.

6. If the CRT is not capable of displaying data of the same size as the data item
being transferred, one of the following applies.

a. If the size of the data item being displayed exceeds the size of the data
that the CRT is capable of receiving in a single transfer, the data
beginning with the leftmost character is stored aligned to the left in the
receiving CRT.

b. If the size of the data item that the CRT is capable of receiving exceeds
the size of the data being transferred, the transferred data is stored
aligned to the left in the receiving CRT.

7. When a DISPLAY statement contains more than one operand, the size of the
sending item is the sum of the sizes associated with the operands, and the
values of the operands are transferred in the sequence in which the operands
are encountered.

Format 2

8. The DISPLAY statement is used to ouput data to the CRT in the screen
positions specified.

9. Da ta-name-l is taken as a definition of the screen area into which data items
that correspond to areas on the screen are moved. FILLER fields correspond
to areas on the screen into which data is not moved.

10. Elementary data items within data-name-l may be alphanumeric, integer
numeric, numeric or edited.

11. AT data-name-2 or literal-4 defines the position on the screen of the leftmost
character of the data. Either form must refer to a PIC 9999 field. The most
significant 99 is taken as a line count in the range one to the maximum number
of lines on the user screen. The least significant 99 is taken as a character
position in the range one to the maximum of characters per line on the user
screen.

3-63

12. Data-name-l may refer to a record, group or elementary item, but it may not
be subscripted. REDEFINES may be used, in which case the first description
of the data is used and subsequent descriptions are ignored. OCCURS and
nested OCCURS may also be used with the effect that the repeated data-item
is expanded into the full number of times it occurs and one definition is thus
automatically repeated for many fields.

13. DISPLAY SPACE has the effect of clearing the screen at run time (i.e. filling
the whole screen with spaces). DISPLAY" " (one space character), however,
displays only one space character.

14. The CRT-UNDER phrase causes the elementary item~ moved to the CRT to be
displayed with the underline feature present.

3-64

THE DIVIDE STATEMENT

Function

The DIVIDE statement divides one numeric data item into others and sets the
values of data items equal to the quotient.

General Format

Format I

DIVIDE S identifier-l~
~ literal-l 5

INTO identifier-2 [ROUNDED]

[, identifier-3 [ROUNDED]] ••• [; ON SIZE ERROR imperative-statement]

Format 2

DIVIDE sidentifier-l ~ INTO sidentifier-2~
~ literal-l 5 ~ literal-2 5

GIVING identifier-3 [ROUNDED] [, identifier-4 [ROUNDED!] •••
[; ON SIZE ERROR imperative-statement]

Format 3

DIVIDE S identifier-l ~
hi teral-l 5

GIVING identifier-3

BY S identifier-2 ~
Hiteral-2 5

[ROUNDED] [identifier-4

[; ON SIZE ERROR imperative-statement]

Format 4

DIVIDE

GIVING

S identifier-l~
~literal-l 5

identifier-3

INTO

[ROUNDED]

S identifier-2 ~
~literal-2 5

[ROUNDED]] •••

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement]

3-65

Format 5

DIVIDE

GIVING

S identifier-l~
? literal-l 5

identifier-3

BY

[ROUNDED]

REMAINDER identifier-4
[; ON SIZE ERROR imperative-statement]

Syntax Rules

~ identifier-2 ~
literal-2

1. Each identifier must refer to an elementary numeric item, except that any
identifier associated with the GIVING or REMAINDER phrase must refer
to either an elementary numeric item or-elementary numeric edited item.

2. Each literal must be a numeric literal.

3. The composite of operands, which is the hypothetical data item resulting from
the superimposition of all receiving data items (except the REMAINDER data
item) of a given statement aligned on their decimal points, must not contain
more than eighteen digits.

General Rules

1. See the ROUNDED PHRASE, the SIZE ERROR PHRASE, the ARITHMETIC
Statements, OVERLAPPING OPERANDS and MULTIPLE RESULTS IN
ARITHMETIC Statements in this Section for a description of these functions.

2. When Format 1 is used, the value of identifier-lor literal-l is divided
into the value of identifier-2. The value of the dividend (identifier-2) is
replaced by this quotient; similarly for identifier-3, etc.

3. When Format 2 is used, the value of identifier-lor literal-l is divided into
identifier-2 or literal-2 and the result is stored in identifier-3, identifier-4, etc.

-4. When Format 3 is used, the value of identifier-lor literal-l is divided by the
value of identifier-2 or literal-2 and the result is stored in identifier-3,
identifier-4, etc.

5. Formats 4 and 5 are used when a remainder from the division operation is
desired, namely identifier-4. The remainder in COBOL is defined as the result
of subtracting the product of the quotient (identifier-3) and the divisor from
the dividend. If identifier-3 is defined as a numeric edited item, the quotient
used to calculate the remainder is an intermediate field which contains the
unedited quotient. If ROUNDED is used, the quotient used to calculate the
remainder is an intermediate field which contains the quotient of the DIVIDE
statement, truncated rather than rounded.

3-66

6. In Formats 4 and 5, the accuracy of the REMAINDER data item (identifier-4)
is defined by the calculation described above. Appropriate decimal alignment
truncation (not rounding) will be performed for the content of the data item
referenced by identifier-4, as needed.

7. When the ON SIZE ERROR phrase is used in Formats 4 and 5, the following
rules pertain:

a. If the size error occurs on the quotient, no remainder, calculation is
meaningful. Thus, the contents of the data items referenced by both
identifier-3 and identifier-4 will remain unchanged.

b. If the size error occurs on the remainder, the contents of the data item
referenced by identifier-4 remains unchanged. However, as with other
instances of multiple results of arithmetic statements, the user will have
to do his own analysis to recognize which situation has actually occurred.

3-67

THE ENTER STATEMENT

Function

The ENTER statement provides a means of allowing the use of more than one
language in the same program.

General Format

ENTER language-name [routine-name]

Syntax Rule

This statement is treated as if for documentation purposes only.

General Rule

Access to other languages can be achieved by means of' CALL.

3-68

THE EXIT STATEMENT

Function

The EXIT statement provides a common end point for a series of procedures.

General Format

EXIT

Syntax Rules

1. The EXIT statement must appear in a sentence by itself.

2. The EXIT sentence must be the only sentence in the paragraph.

General Rule

An EXIT statement serves only to enable the user to assign a procedure-name to a
given point in a program. Such an EXIT statement has no other effect on the
compilation or execution of the program.

3-69

THE GO TO STATEMENT

Function

The GO TO statement causes control to be transferred from one part of the
Procedure Division to another.

General Format

Format 1

GO TO [procedure-name-I]

Format 2

GO TO procedure-name-l [, procedure-name-2] ••• [, procedure-name-n]

DEPENDING ON identifier

Syntax Rules

1. Identifier is the name of a numeric elementary item described without any
positions to the right of the assumed decimal point.

2. When a paragraph is referenced by an ALTER statement, that paragraph can
consist only of a paragraph header followed by a Format 1 GO TO statement.

3. A Format 1 GO TO statement, without procedure-name-l, can only appear in a
single statement paragraph.

4. If a GO TO statement represented by Format 1 appears in a consecutive
sequence of imperative statements within a sentence, it appears as the last
statement in that sequence.

General Rules

1. When a GO TO statement, represented by Format 1 is executed, control is
transferred to procedure-name-l or to another procedure-name if the GO TO
statement has been modified by an ALTER statement.

2. If procedure-name-l is not specified in Format 1, an ALTER statement,
referring to this GO TO statement, must be executed prior to the execution of
this GO TO statement.

3. When a GO TO statement represented by Format 2 is executed,·· control is
transferred to procedure-name-l, procedure-name-2, etc. , depending on
the value of the identifier being 1, 2, ••• , 99. If the value of the
identifier is anything other than the positive or unsigned integers 1, 2,
••• , 99, then no transfer occurs and control passes to the next statement
in the normal sequence for execution.

3-70

THE IF STATEMENT

Function

The IF statement causes a condition to be evaluated (see CO NDITIO N AL
EXPRESSIO NS in this Section). The subsequent action of the object program depends
on whether the value of the condition is true or false.

General Format

IF condition;

Syntax Rules

~ statement-l ~
~ NEXT SENTENCE~

~; ELSE statement-2 ~
~; ELSE NEXT SENTENCE ~

I. Statement-l and statement-2 represent either an imperative statement or a
conditional statement, and either may be followed by a conditional statement.

2. The ELSE NEXT SENTENCE phrase may be omitted if it immediately
precedes th~ terminal period of the sentence.

General Rules

I. When an IF statement is executed, the following transfers of control occur:

a. If the condition is true, statement-l is executed if specified. If
statement-l contains a procedure branching or conditional statement,
control is explicitly transferred in accordance with the rules of that
statement. If statement-l does not contain a procedure branching or
conditional statement, the ELSE phrase,- if specified, is ignored and
control passes to the next executable sentence.

b. If the condition is true and the NEXT SENTENCE phrase is specified
instead of statement-I, the ELSE phrase, if specified, is ignored and
control passes to the next executable sentence.

c. If the condition is false, statement-lor its surr:ogate NEXT SENTENCE
is ignored, and statement-2, if specified, is executed. If statement-2
contains a procedure branching or conditional statement, control is
explicitly transferred in accordance with the rules of that statement. If
statement-2 does not contain a procedure branching or conditional
statement, control passes to the next executable sentence. If the ELSE
statement-2 phrase is not specified, statement-l is ignored and control
passes to the next executable sentence.

3-71

d. If the condition is false, and the ELSE NEXT SENTENCE phrase is
specified, statement-l is ignored, if specified, and control passes to the
next executable sentence.

2. Statement-l and/or staternent-2 may contain an IF statement. In this case the
IF statement is said to be nested.

IF statements within IF statements may be considered as paired IF and ELSE
combinations, proceeding from left to right. Thus, any ELSE encountered is
considered to apply to the immediately preceding IF that has not been already
paired with an ELSE.

3-72

THE INSPECT STATEMENT

Function

The INSPECT statement provides the ability to tally (Format 1), replace (Format
2), or tally and replace (Format 3) occurrences of single characters in a data item.

General Format

Format I

TALLYING \ INSPECT, identifier-l

{ identifier-2 FOR !,
\

BEFORE~ INITIAL

liALL
lLEADING ~

CHARACTERS

AFTER ~

Format 2

~ identifier-4 ~
? literal-2

INSPECT identifier-l REPLACING

CHARACTERS BY ~ identifier-6 ~
literal-4 [I BEFORE!

AFTER

~ identifier-3 l
? literal-l 5

\ I ... \

INITIAL

~ , ! ALL ~ \ I identifier-5! LEADING ,literal-3 BY
~ identifier-6 ~
literal-4

FIRST

0. BEFORE~ INITIAL ~ identifier-7]

I
...

AFTER literal-5 ---

3-73

~ identifier-7 ~
literal-5

Format 3

INSPECT identifier-l TALLYING

identifier-2 FOR ~~DINd
~ CHARAcTERS

S identifier-3 ~
~literal-l

[
~BEFORE I
~AFTER

INITIAL Hdentifier-4~
~literal-2] ~ ... \

[

Syntax Rules

All Formats

REPLACING

CHARACTERS BY sidentifier-6 [~BEFORE I
Hiteral-4 ~ AFTER

lALL ~ j S identifier-5~ -- S identifier-6 ~
INITIAL

, LEADING ,~literal-3 5 BY lliteral-4
FIRST

!BEFOREI
AFTER ---

INITIAL l :~:~i:!;r-7!] ~ ...

S identifier-7 ~]
~ literal-5 5

1. Identifier-l must reference either a group item or any category of elementary
item,·described (either implicitly or explicitly) as usage is DISPLA Y.

2. Identifier-3 ••• identifier-n must reference either an elementary alphabetic,
alphanumeric or numeric item described (either implicitly or explicitly) as
usage is DISPLA Y.

3. Each literal must be nonnumeric and may be any figurative constant, except
ALL.

4. Literal-I, literal-2, literal-3, literal-4, and literal-5, and the data items
referenced by identifier-3, identifier-4, identifier-5, identifier-6, an
identifier-7 can be any number of characters in length.

Formats I and 3 Only

5. Identifier-2 must reference an elementary numeric data item.
~

6. If either literal-lor literal-2 is a figurative constant, the figurative constant
refers to an implicit one character data item.

3-74

Formats 2 and 3 Only

7. The size of the data referenced by literal-4 or iden~tifier-6 must be equal to
the size of the data referenced by literal-3 or identifier-5. When a figurative
constant is used as literal-4, the size of the figurative constant is equal to the
size of literal-3 or the size of the data item referenced by identifier-5.

8. When the CHARACTERS phrase is used, literal-4, literal-5, or the size of the
data item referenced by identifier-6, identifier-7 must be one character in
length.

9. When a figurative constant is used as literal-3, the data referenced by literal-4
or identifier-6 must be one character in length.

General Rules

All Formats

1. Inspection (which includes the comparison cycle, the establishment of
boundaries for the BEFORE or AFTER phrase, and the mechanism for tallying
and/or replacing) begins at the leftmost character position of the data item
referenced by identifier-I, regardless of its class, and proceeds from left to
right to the rightmost character position as described in General Rules 4
through 6.

2. For use in the INSPECT statement, the contents of the data item referenced
by identifier-I, identifier-3, identifier-4, identifier-5, identifier-6 or
identifier-7 will be treated as follows:

a. If any of identifier-I, identifier-3, identifier-4, identifier-5, identifier-6
or identifier-7 are described as alphanumeric, the INSPECT statement
treats the contents of each such identifier as a character-string.

b. If any of identifier-I, identifier-3, identifier-4, identifier-5, identifier-6
or identifier-7 are described as alphanumeric edited, numeric edited or
unsigned numeric, the data item is inspected as though it had been
redefined as alphanumeric (see General Rule 2a) and the INSPECT
statement had been written to reference the redefined data item.

c. If any of the identifier-I, identifier-3, identifier-4, identifier-5,
identifier-6 or identifier-7 are described as signed numeric, the data item
is inspected as though it had been moved to an unsigned numeric data
item of the same length and then the rules in General Rule 2b had been
applied. (See the MOVE Statement later in this Section.)

3. In General Rules 4 through 11 all reference to literal-I, literal-2, literal-3,
literal-4 and literal-5 apply equally to the contents of the data item
referenced by identifier-3, identifier-4, identifier-5, identifier-6, and
identifier-7, respect ively.

3-75

4. During inspection of the contents of the data item referenced by identifier-I,
each properly matched occurrence of literal-l is tallied (Formats 1 and 3)
and/or each properly matched occurrence of literal-3 is replaced by literal-4
(Formats 2 and 3). Data items to be referenced by the INSPECT verb should
be placed such that they lie within the first 10,000 bytes of intermediate code.

5. The comparison operation to determine the occurrences of literal-l to be
tallied and/or occurrences of literal-3 to be replaced, occurs as follows:

a. The operands of the TALLYING and REPLACING phrases are considered
in the order they are specified in the INSPECT statement from left to
right. The first literal-I, literal-3 is compared to an equal number of
contiguous characters, starting with the leftmost character position in the
data item referenced by identifier-I. Literal-I, literal-3 and that portion
of the contents of the data item referenced by identifier-l match if, and
only if, they are equal, character for character. .

b. If no match occurs in the comparison of the first literal-I, literal-3, the
comparison is repeated with each successive literal-I, literal-3, if any,
until either a match is found or there is no next successive literal-I,
literal-3. When there is no next successive literal-I, literal-3, the
character position in the data item referenced by identifier-l
immediately to the right of the leftmost character position considered in
the last comparison cycle is considered as the leftmost character position,
and the compar~son cycle begins again with the first literal-I, literal-3.

c. Whenever a match occurs, tallying and/or replacing takes place as
described in General Rules 8 through 10. The character position in the
data item referenced by identifier-l immediately to the right of the
rightmost character position that participated in the match is now
conidered to be the leftmost character position of the data item
referenced by identifier-I, and the comparison cycle starts again with the
first literal-I, literal-3.

d. The comparison operation continues until the rightmost character position
of the data item referenced by identifier-l has participated in a match or
has been considered as the leftmost character position. When this occurs,
inspection is terminated.

e. If the CHARACTERS phrase is specified, an implied one character
operand participates in the cycle described in paragraphs 5a through 5d
above, except that no comparison to the contents of the data item
referenced by identifier-l takes place. This implied character is
considered always to match the leftmost character of the contents of the
data item referenced by identifier-l participating in the current
comparison cycle.

3-76

6. The comparison operation defined in General Rule 5 is affected by the
BEFORE and AFTER phrases as follows:

Format I

a. If the BEFORE or AFTER phrase is not specified, literal-I, literal-3 or
the implied operand of the CHARACTERS phrase participates in the
comparison operation as described in General Rule 5.

b. If the BEFORE phrase is specified, the associated, literal-I, literal-3 or
the implied operand of the CHARACTERS phrase participates only in
those comparison cycles which involve that portion of the contents of the
data item referenced by identifier-l from its leftmost character position
up to, but not including, the first occurrence of literal-2, literal-5 within
the contents of the data item referenced by identifier-I. The position of
this first occurrence is determined before the first cycle of the
comparison operation described in General Rule 5 is begun. If, on any
comparison cycle, literal-I, literal-3 or the implied operand of the
CHARACTERS phrase is not eligible to participate, it is considered not to
match the contents of the data item referenced by identifier-I. If there
is no occurrence of literal-2, literal-5 within the contents of the data
item referenced by identifier-I, its associated literal-I, literal-3, or the
implied operand of the CHARACTERS phrase participates in the
comparison operation as though the BEFORE phrase had not been
specified.

c. If the AFTER phrase is specified, the associated literal-I, literal-3 or the
implied operand of the CHARACTERS phrase may participate only in
those comparison cycles which involve that portion of the contents of the
data item referenced by identifier-l from the character position
immediately to the right of the rightmost character position of the first
occurrence of literal-2, literal-5 within the contents of the data item
referenced by identifier-l and the rightmost character position of the
data item referenced by identifier-I. The position of this first occurrence
is determined before the first cycle of the comparison operation described
in General Rule 5 is begun. If, on any comparison cycle, literal-I,
literal-3 or the implied operand of the CHARACTERS phrase is not
eligible to participate, it is considered not to match the contents of the
data item referenced by identifier-I. If there is no occurrence of
literal-2, literal-5 within the contents of the data item referenced by
identifier-I, its associated literal-I, literal-3, or the implied operand of
the CHARACTERS phrase is never eligible to participate in the
comparison operation.

7. The contents of the data item referenced by identifier-2 is not initialized by
the execution of the INSPECT statement.

3-77

8. The rules for tallying are as follows:

Format 2

a. If the ALL phrase is specified, the contents of the data item referenced
by identifier-2 is incremented by one for each occurrence of literal-l
matched within the contents of the data item referenced by identifier-I.

b. If the LEADING phrase is specified, the contents of the data item
referenced by identifier-2 is incremented by one for each contiguous
occurrence of literal-l matched within the contents of the data item
referenced by identifier-I, provided that the leftmost such occurrence is
at the point where comparison began in the first comparison cycle in
which literal-l was eligible to participate.

c. If the CHARACTERS phrase is specified, the contents of the data item
referenced by identifier-2 is incremented by one for each character
matched, in the sense of General Rule 5e, within the contents of the data
item referenced by identifier-I.

9. The required words ALL, LEADING, and FIRST are adjectives that apply to
each succeeding BY phrase until the next adjective appears.

10. The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character matched in
the sense of General Rule 5e, in the contents of the data item referenced
by identifier-l is replaced by literal-4.

b. When the adjective ALL is specified, each occurrence of literal-3
matched in the contents of the data item referenced by identifier-l is
replaced by literal-4.

c. When the adjective LEADING is specified, each contiguous occurrence of
literal-3 matched in the contents of the data item referenced by
identifier-l is replaced by literal-4, provided that the leftmost occurrence
is at the point where comparison began in the first comparison cycle in
which literal-3 was eligible to participate.

d. When the adjective FIRST is specified, the leftmost occurrence of
literal-3 matched within the contents of the data item referenced by
identifier-l is replaced by literal-4.

3-78

Format 3

11. A Format 3 INSPECT statement is interpreted and executed as though two
successive INSPECT statements specifying the same identifier-l had been
written with one statement being a Format 1 statement with TALLYING
phrases identical to those specified in the Format 3 statement, and the other
statement being a Format 2 statement with REPLACING phrases identical to
those specified in the Format 3 statement. The general rules given for
matching and counting apply to the Format I statement and the general rules
given for matching and replacing apply to the Format 2 statement.

EXAMPLES

Six examples of the use of the INSPECT statement follow:

INSPECT word TALLYING count FOR LEADING "L" BEFORE INITIAL "A", count-l
FOR LEADING "A" BEFORE INITIAL "L".

Where word = LARGE, count = 1, count-I = O.
Where word = AN AL YST, count = 0, count-I = 1.

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING "A" BY "E"
AFTER INITIAL "L".

Where word = CALLAR, count = 2, word = CALLAR.
Where word = SALAMI, count = 1, word = SALEMI.
Where word = LATTER, count = 1, word = LETTER.

INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X".

Where word = ARXAX, word = GRXAX.
Where word = HANDAX, word = HGNDGX.

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J"
REPLACING ALL "A" BY "B".

Where word = ADJECTIVE, count = 6, word = BDJECTIVE.
Where word = JACK, count = 3, word = JBCK.
Where word = JUJMAB, count = 5, word = JUJMBB.

3-79

INSPECT word REPLACING ALL "X" BY "Y", "B" BY "Z", "w" BY "Q" AFTER INITIAL
"R".

Where word = RXXBQWY, word = RYYZQQY.
Where word = YZACDWBR, word = YZACDWBR.
Where word = RA WRXEB, word = RAQR YEZ.

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A".

word before:
word after:

12XZABCD
BBBBBABCD

THE MOVE STATEMENT

Function

The MOVE statement transfers data, in accordance with the rules of editing, to one
or more data areas.

General Format

Format 1

MOVE

Format 2

MOVE

Syntax Rules

S identifier-ll
~ literal 5

TO identifier-2

~ CORRESPO NDIN G ~ identifier-l
~CORR ~

[, identifier-3] •••

TO identifier-2

1. Identifier-l and literal represent the sending area; identifier-2, identifier-3,
••• , represent the receiving area.

2. CORR is an abbreviation for CORRESPONDING.

3. When the CORRESPONDING phrase is used, both identifiers must be group
items.

4. An index data item cannot appear as an operand' of a lVIOVE statement. (See
the USAGE Clause in this Section).

General Rules

1. If the CORREPONDING phrase is used, selected items within identifier-l are
moved to selected items within identifier-2, according to the rules given in the
CORRESPONDING PHRASE in this Section. The results are the same as if
the user had referred to each pair of corresponding identifiers in separate
MOVE statements.

3-80

2. The data designated by the literal or identifier-l is moved first to identifier-2,
then to identifier-3, ..• • The rules referring to identifier-2 also apply to the
other receIvmg areas. Any subscripting or indexing associated with
identifier-2, ••• , is evaluated immediately before the data is moved to the
respective data item.

Any subscripting or indexing associated with identifier-l is evaluated only
once, immediately before data is moved to the first of the receiving operands.
The result of the statement:

MOVE a (b) TO b, c (b)

is equivalent to:

MOVE a (b) TO temp
MOVE temp TO b
MOVE temp TO c (b)

where 'temp' is an intermediate result item provided by the implementor.

3. Any MOVE in which the sending and receiving items are both elementary items
is an elementary move. Every elementary item belongs to one of the
following categories: numeric, alphabetic, alphanumeric, numeric edited,
alphanumeric edited. These categories are described in the PICTURE clause.
Numeric literals belong to the category numeric, and nonnumeric literals
belongs to the category alphanumeric. The figurative constant ZERO belongs
to the category numeric. The figurative constant SPACE belongs to the
category alphabetic. All other figurative constants belong to the category
alphanumeric.

The following rules apply to an elementary move between these categories.

a. The figurative constant SPACE, nWleric edited, alphanumeric edited,
or alphabetic data item must not be moved to a numeric or numeric
edited data item.

b. A numeric literal, the figurative constant ZERO, a numeric data item or a
numeric edited data item must not be moved to an alphabetic data item.

c. A non-integer numeric literal or a non-integer numeric data item must
not be moved to an alphanumeric or alphanWleric edited data item.

d. The result of moving a blank numeric-edited field to a numeric field is
unpredictable and therefore not permitted.

e. All other elementary moves are legal and are performed according to the
rules given in General Rule 4.

3-81

4. Any necessary conversion of data from one form of internal representation to
another takes place during legal elementary moves, along with any editing
specified for the receiving data item:

a. When an alphanumeric edited or alphanumeric item is a receiving item,
alignment and any necessary space filling takes place as defined under
STANDARD ALIGNMENT RULES in Section 2. If the size of the
sending item is greater than the size of the receiving item, the excess
characters are truncated on the right after the receiving item is filled. If
the sending item is described as being signed numeric, the operational sign
will not be moved; if the operational sign occupies a separate character
position (see the SIGN Clause in this Section), that character will not be
moved and the size of the sending item will be considered to be one less
than its actual size (in terms of standard data format characters).

b. When a numeric or numeric edited item is the receiving item, alignment
by decimal point and any necessary zero-filling takes place as defined
under the STANDARD ALIGNMENT RULES in Section 2, except where
zeroes are replaced because of editing requirements.

When a signed numeric item is the receiving item, the sign of the sending
item is placed in the receiving item. (See the SIG N Clause in this
Section). Conversion of the repre~ntation of the sign takes place as
necessary. If the sending item is unsigned, a positive sign is generated for
the receiving item.

When an unsigned numeric item is the receiving item, the absolute value
of the sending item is moved and no operational sign is generated for the
receiving item.

When a data item described as alphanumeric is the sending item, data is
moved as if the sending item were described as an unsigned numeric
integer.

c. When a reCeIVIng field is described as alphabetic, justification and any
necessary space-filling takes place as defined under the STA NDARD
ALIGNMENT RULES in Section 2. If the size of the sending item is
greater than the size of the receiving item, the excess characters are
truncated on the right after the receiving item is filled.

5. Any move that is not an elementary move is treated exactly as if it were an
alphanumeric to alphanumeric elementary move, except that there is no
conversion of data from one form of internal representation to another. In
such a move, the receiving area will be filled without consideration for the
individual elementary or group items contained within either the sending or
receiving area, except as noted in General Rule 4 of the OCCURS clause.

6. Data in Table 3-8 summarizes the legality of the various types of MOVE
statements. The general rule reference indicates the rule that prohibits the
move or the behavior of a legal move.

3-82

Table 3-8. MOVE Statement Data Categories.

Ca tegory of Sending Category of Receiving Data Item 1
Data Item

Alphabetic Alphanumeric Numeric Integer
Edited Numeric Non-Integer
Alphanumeric Numeric Edited

ALPHABETIC Yes/3c Yes/3a No/2a

ALPHANUMERIC Yes/3c Yes/3a Yes/3b

ALPHANUMERIC EDITED Yes/3c Yes/3a No/2a

- .. ---~ ... -.- ~,.--"-' .---._--._--- - - .. -.-" - - --... " ~.-.---. ~ ... -~~------- -,-

INTEGER No/2b Yes/3a Yes/3b
NUMERIC NON-INTEGER No/2b No/2c Yes/3b

NUMERIC EDITED No/2b Yes/3a Yes/2a

1 - The relevant rules number is quoted in these columns

3-83

THE MULTIPLY STATEMENT

Function

The MULTIPLY statement causes numeric data items to be multiplied and sets the
values of data items equal to the results.

General Format

Format 1

MULTIPLY

[, identifier-3

Format 2

MULTIPLY

[, identifier-4

Syntax Rules

~ identifier- H
~ literal-l ~

BY identifier-2 [ROUNDED]

[ROUNDED]] ••• [; ON SIZE ERROR imperative-statement]

~ identifier-H
~ literal-l ~

BY ~ identifier-2~
~ literal-2 ~

GIVING identifier-3 [ROUNDED]

[ROUNDED]], ... [; ON SIZE ERROR imperative-statement]

1. Each identifier must refer to a numeric elementary item, except that in
Format 2 each identifier following the word GIVING must refer to either an
elementary numeric item or an elementary numeric edited item.

2. Each literal must be numeric literal.

3. The composite of operands, which is that hypothetical data item resulting
from the superimposition of all receiving data items aligned on their decimal
points must not contain more than 18 digits.

General Rules

1. See the ROUNDED PHRASE, the SIZE ERROR PHRASE, the ARITHMETIC
Statements, OVERLAPPING OPERANDS and MULTIPLE RESULTS IN
ARITHMETIC Statements in this Section.

2. When Format 1 is used, the value of identifier-lor literal-l is multiplied by
the value of identifier-2. The value of the multiplier (identifier-2) is replaced
by this product; similarly for identifier-lor literal-l and identifier-3, etc.

3. When Format 2 is used, the value of identifier-lor literal-l is multiplied by
identifier-2 or literal-2 and the result is stored in identifier-3, identifier-4, etc.

3-84

THE PERFORM STATEMENT

Function

The PERFORM statement is used to transfer control explicitly to one or more
procedures and to return control implicitly whenever execution of the specified
procedure is complete.

General Format

Format I

PERFORM procedure-name-I[1 THROUGH I
THRU

Format 2

PERFORM procedure-name-l OTHROUGHI
THRU

Format 3

procedure-name-2 J
procedure-name~ {~dentifier-ll J mteger-l }

TIMES

PERFORM procedure-name--i [:::~~gUGH I procedure-name-2] UNTIL condition-i

Format 4

PERFORM procedure-name-l [THROUGH I
THRU

VARYING I identifie,r-2 I FROM
index-name-l

BY I identifier-4!
literal-2

I AFTER I identifier-5 I FROM
i ndex-nam e-3

BY I identifier-7!
literal-4

[AFTER --- I !dentifier-8 ! FROM
mdex-name-5

BY I identifier-IO !
literal-6

3-85

procedure-name-2]

{

identifier-3 }
index-name-2
literal-l

UNTIL condition-l

{
identifier-s }
index-name-4
literal-3

UNTIL condition-2

{

identifier-9 }
index-name-6
literal-5 11

UNTIL condition-3 JJ

Syntax Rules

1. Each identifier represents a numeric elementary item described in the Data
Division. In Format 2, identifier-l must be described as a numeric integer.

2. Each literal represents a numeric literal.

3. The words THR U and THROUGH are equivalent.

4. If an index-name is specified in the VAR YIN G or AFTER phrase, then:

a. The identifier in the associated FROM and BY phrases must be an integer
data item.

b. The literal in the associated FROM phrase must be a positive integer.

c. The literal in the associated BY phrase must be a non-zero integer.

5. If an index-name is specified in the FROM phrase, then:

a. The identifier in the associated VARYING or AFTER phrase must be an
integer data item.

b. The identifier in the associated BY phrase must be an integer data item.

c. The literal in the associated BY phrase must be an integer.

6. Literal in the BY phrase must not be zero.

7. Condition-I, condition-2, condition-3 may be any conditional expression as
described under CO NDITIO N AL EXPRESSIO NS in this Section.

8. Where procedure-name-l and procedure-name-2 are both specified and either
is the name of a procedure in the declarative section of the program then both
must be procedure-names in the same declarative section.

General Rules

1. The data items referenced by identifier-4, identifier-7, and identifier-IO must
not have a zero value.

2. If an index-name is specified in the VARYING or AFTER phrase, and an
identifier is specified in the associated FROM phrase, then the data item
referenced by the identifier must have a positive value.

3-86

3. W hen the PERFORM statement is executed, control is transferred to the
first statement of the procedure named procedure-name-l (except as
indicated in General Rule 6). This transfer of control occurs only once for
each execution of a PERFORM statement. For those cases where a
transfer of control to the named procedure does take place, an implicit
transfer of control to the next executable statement following the
PERFORM statement is established as follows:

a. If procedure-name-l is a paragraph-name and procedure-name-2 is not
specified, then the return is after the last statement of procedure-name-l.

b. If procedure-name-l is a section-name and procedure-name-2 is not
specified, then the return is after the last statement of the last paragraph
in procedure-name-l.

c. If procedure-name-2 is specified and it is a paragraph-name, then the
return is after the last statement of the paragraph.

d. If procedure-name-2 is specified and it is a section-name, then the return
is after the last statement of the last paragraph in the section.

4. There is no necessary relationship between procedure-name-l and
procedure-name-2 except that a consecutive sequence of operations is to be
executed beginning at the procedure named procedure-name-l and ending with
the execution of the procedure named procedure-name-2. In particular, GO
TO and PERFORM statements may occur between procedure-name-l and the
end of procedure-name-2. If there are two or more logical paths to the return
point, then procedure-name-2 may be the name of a paragraph consisting of
the EXIT statement, to which all of these paths must lead.

5. If control passes to these procedures other than via a PERFORM statement
the procedures are executed right through to the next executable statement in
the main program as if they were just part of the main program.

6. The PERFORM statements operate as follows with Rule 5 above applying to
all formats:

a. Format 1 is the basic PERFORM statement. A procedure referenced by
this type of PERFORM statement is executed once and then control
passes to the next executable statement following the PERFORM
statement.

b. Format 2 is the PERFORM ••• TIMES. The procedures are performed the
number of times specified by integer-lor by the initial value of the data
item referenced by identifier-l for that execution. If, at the time of
execution of a PERFORM statement, the value of the data item
referenced by identifier-l is equal to zero or is negative, control passes to
the next executable statement following the PERFORM statement.
Following the execution of the procedures the specified number of times,
control is transferred to the next executable statement following the
PERFORM statement.

3-87

During execution of the PERFORM statement, references to identifier-l
cannot alter the number of times the procedures are to be executed from
that which was indicated by the initial value of identifier-I.

c. Format 3 is the PERFORM ••• UNTIL. The specified procedures are
performed until the condition specified by the UNTIL phrase is true.
When the condition is true, control is transferred to the next executable
statement after the PERFORM statement. If the condition is true when
the PERFORM statement is entered, no transfer to procedure-name-l
takes place, and control is passed to the next executable statement
following the PERFORM statement.

d. Format 4 is the PERFORM ••• VARYIN G. This variation of the
PERFORM statement is used to augment the values referenced by one or
more identifiers or index-names in an orderly fashion during the execution
of a PERFORM statement. In the following discussion, every reference to
identifier is the object of the VARYING, AFTER and FROM (current

, value) phrases also refers to index-names. When index-name appears in a
VARYING and/or AFTER phrase, it is initialized and subsequently
augmented (as described below) according to the rules of the SET
statement. When index-name appears in the FROM phrase and identifier
appears in an associated V AR YIN G or AFTER phrase, identifier is
initialized according to the rules of the SET statement; subsequent
augmentation is as described below.

In Format 4, when one identifier is varied, identifier-2 is set to the value
of literal-lor the current value of identifier-3 at the point of initial
execution of the PERFORM statement; then, if the condition of the
UNTIL phrase is false, the sequence of procedures, procedure-name-l
through procedure-name-2, is executed once. The value of identifier-2 is
augmented by the specified increment or decrement value (the value of
identifier-4 or literal-2) and condition-l is evaluated again. The cycle
continues until this condition is true; at which point, control is transferred
to the next executable statement following the PERFORM statement. If
condition-l is true at the beginning of execution of the PERFORM
statement, control is transferred to the next executable statement
following the PERFORM statement.

3-88

ENTRANCE

!
set identifier-2 equal to

current FROM value

!
Conditon -11 I-____ T.=..,;r:...::u:...::e~ ___ _,~r xit

! False

Execute procedure-name-l
THR U procedure-name-2

Augment identifier-2 with
current BY value

Figure 3-1. Flowchart for VARYING Phrase of a PERFORM Statement Having One
Condition.

In Format 4, when two identifiers are varied, identifier-2 and identifier-5
are set to the current value of identifier-3 and identifier-6, respectively.
After the identifiers have been set, condition-l is evaluated; if true,
control is transferred to the next executable statement; if false,
condition-2 is evaluated. If condition-2 is false, procedure-name-l
through procedure-name-2 is executed once, then identifier-5 is
augmented by identifier-7 or literal-4 and condition-2 is evaluated again.
This cycle of evaluation and augmentation continues until this condition is
true. When condition-2 is true, identifier-5 is set to the value of literal-3
or the current value of identifier-6, identifier-2 is augmented by
identifier-4 and condition-l is re-evaluated. The PERFORM statement is
completed if condition-l is true; if not, the cycles continue until
condition-l is true.

During the execution of the procedures associated with the PERFORM
statement, any change to the VARYING variable (identifier-2 and
index-name-l), the BY variable (identifier-4), the AFTER variable·
(identifier-5 and index-name-3), or the FROM variable (identifier-3 and
index-name-2) will be taken into consideration and will affect the
operation of the PERFORM statement.

3-89

ENTRANCE

t
Set identifier-2 and identifier-5

to current FROM values

r-------------------------__ --4':-C~~0~n~d~i~ti~0~n~·~~i-JI.--------~T~r!~le~ ______ ~~.Exit

false

~------------~~_1~C~~0~n~d~i~ti~0~n~-~2~-~-----T~ru~e~--~

~alse J,
I
set identifier-5 to its '

I current FROM value
Execute procedure-name-l

THR U procedure-name-2
I

Augment identifier-5 with I Augment identifier-2 with
current BY value I current BY value

I
Figure 3-2. Flowchart for VARYING Phrase of PERFORM Statement with Two
Conditions.

At the termination of the PERFOR M statement, identifier-5 contains the
current value of identifier-6. Identifier-2 has a value that exceeds the
last used setting by an increment or decrement value, unless condition-l
was true when the PERFORM statement was entered, in which case
identifier-2 contains the current value of identifier-3.

When two identifiers are varied, identifier':'5 goes through a complete
cycle (FROM, BY, UNTIL) each time identifier-2 is varied.

For three identifiers the mechanism is the same as for two identifiers
except that identifier-8 goes through a complete cycle each time that
identifier-5 is augmented by identifier-7 or literal-4, which in turn goes
through a complete cycle each time identifier-2 is varied.

3-90

r-- ..

AAA

ENTRANCE

i
Set

identifier-2, identifier-5,
identifier-8

to current FROM values

~l,_c_o_n_d-:-it_i_o_n-_l __ ~ ____ __ ... __ T~u~_. __ ~Ex it

~False
----'~~I Condition-2 True

¥alse

Condition-3 i--·-rY~-~

~False y
!

Execute Set
procedure-nam e-l identifier-8

.,

J

THR U procedure- to its current
name-2 FROM value

Augment I Augment
identifier-8 I identifier-5
with current

I
with current

BY value BY value

j

i

¥
Set

identifier-5
to its current

FROM value

Augment
identifier-2
with current

BY value

1_-- .-.---. - .. -------- - ... -.----.---=:t
Figure 3-3. Flowchart for V AR YING Phrase of PERFORM Statement with Three
Conditions.

After the completion of a Format 4 PER FORM statement, identifier-5
and identifier-8 contain the current value of identifier-6 and identifier-9
respectively. Identifier-2 has a value that exceeds its last used setting by
one increment or decrement value, unless condition-l is true when the
PERFORM statement is entered, in which case identifier-2 contains the
current value of identifier-3.

7. If a sequence of statements referred to by a PERFORM statement includes
another PERFORM statement, the sequence of procedures associated with the
included PERFORM must itself either be totally included in, or totally
excluded from, the logical sequence referred to by the first PERFORM. Thus,
an active PERFORM statement, whose execution point begins within the range
of another active PERFORM statement, must not allow control to pass to the
exit of the other active PERFORM statement; furthermore, two or more such
active PERFORM statements may not have a common exit. See Figure 3-4.

3-91

d . PERFORM f THR U j

Fig. 3-4. PERFORM Statement in Sequence.

8. A PERFORM statement that appears in a section that .is not an independent
segment can have within its range, in addition to any declarative sections
whose execution is cause within that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more
non-independent segments.

b. Sections and/or paragraphs wholly contained in a single independent
segment.

9. A PERFORM statement that appears in an independent segment can have
within its range, in addition to any declarative sections whose execution is
caused within that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more
non-independent segments.

b. Sections and/or paragraphs wholly contained in the same independent
segment as that PERFORM statement.

3-92

THE STRING STATEMENT

Function

The STRING statement provides juxtaposition of the partial or complete contents
of two or more data items into a single data item.

General Format

STRING

Syntax Rules

lidentifier-l!
literal-l [

, identifier-2]
, literal-2

••• DELIMITED BY

[
1"identifier-4l
L!iteral-4 J [

, identifier-51 •••
,literal-5 J

DELIMITED BY literal-6
{

identifier-6 }

SIZE]
INTO identifier-7 [WITH POINTER identifier-8]

[; 0 N OVERFLOW imperative-statement]

{

identifier-3\
literal-3
SIZE

I. Each literal may be any figurative constant without the optional word ALL.

2. All literals must be described as nonnumeric literals, and all identifiers,
except identifier-8, must be described implicitly or explicitly as usage is
DISPLA Y.

3. Identifier-8 must represent an elementary numeric integer data item of
sufficient size to contain a value equal to the size plus I of the area
referenced by identifier-7. The symbol 'P' may not be used in the PICTURE
character-string of identifier-8.

4. Where identifier-I, identifier-2, ••• , or identifier-3 is an elementary numeric
data item, it must be described as an integer without the symbol 'P' in its
PICTURE character-string.

General Rules

I. All references to identifier-I, identifier-2, identifier-3, literal-I, literal-2,
literal-3 apply equally to identifier-4, identifier-5, identifier-6, literal-4,
literal-5 and literal-6, respectively, and all recursions thereof.

3-93

2. Identifier-I, literal-I, identifier-2, literal-2, represent the sending items.
Identifier-7 represents the receiving item.

3. Literal-3, identifier-3, indicate the character(s) delimiting the move. If the
SIZE phrase is used, the complete data item defined by identifier-I, literal-I,
identifier-2, literal-2, is moved. When a figurative constant is used as the
delimiter, it stands for a single character nonnumeric literal.

4. When a figurative constant is specified as literal-I, literal-2, literal-3, it
refers to an implicit one-character data item where usage is DISPLA Y.

5. When the STRING statement is executed, the transfer of data is governed by
the' following rules:

a. Those characters from literal-I, literal-2, or from the contents of the
data item referenced by identifier-I, identifier-2, are transferred to the
contents of identifier-7 in accordance with the rules for alphanumeric to
alphanumeric moves, except that no space-filling will be 'provided. (See
the MOVE Statement.)

b. If the DELIMITED phrase is specified without the SIZE phrase, the
contents of the data item referenced by identifier-I, identifier-2, or the
value of literal-I, literal-2, are transferred to the receiving data item in
the sequence specified in the STRING statement beginning with the
leftmost character and continuing from left to right until the end of the
data item is reached, or until the character(s) specified by literal-3, or by
the contents of identifier-3 are encountered. The character(s) specified
by literal-3, or by the data item referenced by identifier-3 are not
transferred.

c. If the DELIMITED phrase is specified with the SIZE phrase, the entire
contents of literal-I, literal-2, or the contents of the data item
referenced by identifier-I, identifier-2, are transferred, in the sequence
specified in the STRING statement, to the data item referenced by
identifier-7 until all data has been transferred or the end of the data item
referenced by identifier-7 has been reached.

6. If the POINTER phrase is specified, identifier-S is explicitly available to the
programmer, who is then responsible for setting its initial value. The initial
value must not be less than one.

7. If the POINTER phrase is not specified, the following general rules apply as if
the user had specified identifier-S with an initial value of 1.

3-94

8. When characters are transferred to the data item referenced by identifier-7,
the moves behave as though the characters were moved one at a time from the
source into the character position of the data item referenced by identifier-7
designated by the value associated with identifier-8, and then identifier-8 was
increased by one prior to the move of the next character. The value
associated with identifier-8 is changed during execution of the STRING
statement only by the behavior specified above.

9. At the end of execution of the STRING statement, only the portion of the data
item referenced by identifier-7 that was referenced during the execution of
the STRING statement is changed. All other portions of the data item
referenced by identifier-7 will contain data that was present before this
execution of the STRING statement.

10. If at any point at or after initialization of the STRING statement, but before
execution of the STRING statement is completed, the value associated with
identifier-8 is either less than one or exceeds the number of character
positions in the data item referenced by identifier-7, no (further) data is
transferred to the data item referenced by identifier-7, and the imperative
statement in the ON OVERFLOW phrase is executed, if specified.

11. If the ON OVERFLOW phrase is not specified when the conditions described in
General Rule 10 above are encountered, control is transferred to the next
executable statement.

3-95

THE STOP STATEMENT

Function

The STOP statement causes a permanent or temporary suspension of the execution
of the object program.

General Format

STOP
{ RUN}

literal

Syntax Rules

1. The literal may be numeric or nonnumeric or may be any figurative constant,
except ALL.

2. If the literal is numeric, then it must be an unsigned integer.

3. If a STOP RUN statement appears in a consecutive sequence of imperative
statements within a sentence, it must appear as the last statement in that
sequence.

General Rules

1. If the RUN phrase is used, then the operating system ending procedure is
instituted.

2. If STOP literal is specified, the literal is communicated to the operator.
Continuation of the object program begins with the execution of the next
executable statement, in sequence, after the operator presses RETURN.

3-96

THE SUBTRACT STATEMENT

Function

The SUBTRACT statement is used to subtract one, or the sum of two or more,
numeric data items from one or more items, and set the values of one or more items
equal to the results.

General Format

Format 1

SUBTRACT 1 identifier-l t [,lidentifier-2 t] ...
literal-l ~ literal-2 ~

identifier-m [ROUNDEDl [, identifier-n

FROM

[; ON SIZE ERROR imperative-statement]

Format 2
SUBTRACT lidentifier-l t

literal-l ~ [l:~t:~~1~~r-2 !] ... FROM

GIVING identifier-n [RO U N D ED] [: identifier-n

[; ON SIZE ERROR imperative-statement]

Format 3

[ROUNDEDl]

1
identifier-m t
literal-m ~

[ROUNDEDD···

SUBTRACT 1 CORRESPONDING t identifier-l FROM identifier-2 [ROUNDED]
CORR ~

[; ON SIZE ERROR imperative-statement]

Syntax Rules

1. Each identifier must refer to a numeric elementary item except- that in
Format 2, each identifier following the word GIVING must refer to either an
elementary numeric item or an elementary nume"ric edited item, and in
Format 3, each identifier must refer to a group item. .

2. Each literal must be a numeric literal.

3-97

3. The composite of operands must not contain more than 18 digits. (See the
ARITHMETIC Statements in this Section.)

a. In Format 1 the composite of operands is determined by using all of the
operands in a given statement.

b. In Format 2 the composite of operands is determined by using all of the
operands in a given statement excluding the data items that follow the
word GIVING.

c. In Format 3 the composite operands is determined separately for each
pair of corresponding data items.

4. CORR is an abbreviation for CORRESPONDING.

General Rules

1. See the ROUNDED PHRASE, the SIZE ERROR PHRASE, the ARITHMETIC
Statement, OVERLAPPING OPERANDS and MULTIPLE RESULTS IN
ARITHMETIC Statements in this Section.

2. In Format 1, all literals or identifiers preceding the word FROM are added
together and this total is subtracted from the current value of identifier-m
storing the result immediately into identifier-m, and repeating this process
respectively for each operand following the word FROM.

3. In Format 2, all literals or identifiers preceding the word FROM are added
together, the sum is subtracted from literal-m or identifier-m and the result
of the subtraction is stored as the new value of identifier-n, identifier-o, etc.

4. If Format 3 is used, data items in identifier-l are subtracted from and stored
into corresponding data items in identifier-2.

5. The compiler ensures enough places are carried" so as not to lose significant
digits during execution.

3-98

THE UNSTRING STATEMENT

Function

The UNSTRING statement causes contiguous data in a sending field to be
separated and placed into multiple receiving fields.

General Format

UN STRI N G identifier-l

[DELIMITED BY [ALL) 1:~t:~~[!r-2! [. OR [ALL)

INTO identifier-4 [, DELIMITER IN identifier-5]

[, COUNT IN identifier-6]

[,identifier-7 [, DELIMITER IN identifier-8]

[, COUNT IN identifier-9~ •••
[WITH POINTER identifier-IO] [TALLYING IN identifier-ll]

[; ON OVERFLOW imperative-statement]

Syntax Rules

~~?entifier-3~ ••• J
flteral-2 U

1. Each literal must be nonnumeric literal. In addition, each literal may be any
figurative constant without the optional word ALL.

2. Identifier-I, identifier-2, identifier-3, identifier-5, and identifier-8 must be
described, implicitly or explicitly, as an alphanumeric data item.

3. Identifier-4 and identifier-7 may be described as either alphabetic (except that
the symbol 'B' may not be used in the PICTURE character-string),
alphanumeric, or numeric (except that the symbol 'PI may not be used in the
PICTURE character-string), and must be described as usage is DISPLAY.

4. Identifier-6, identifier-9, identifier-10, and identifier-II must be described as
elementary numeric integer data items (except the symbol 'PI may not be used
in the PICTURE character-string).

5. No identifier may name a level 88 entry.

6. The DELIMITER IN phrase and the COUNT IN phrase may be specified only if
the DELIMITED BY phrase is specified.

3-99

General Rules

1. All references to identifier-2, literal-I, identifier-4, identifier-5 and
identifier-6, apply equally to identifier-3, literal-2, identifier-7, identifier-8
and identifier-9, respectively, and all recursions thereof.

2. Identifier-l represents the sending area.

3. Identifier-4 represents the data receiving area. Identifier-5 represents the
receiving area for delimiters.

4. Literal-lor the data item referenced by identifier-2 specifies a delimiter.

5. Identifier-6 represents the count of the number of characters wi thin the data
item referenced by identifier-l isolated by the delimiters for the move to
identifier-4. This value does not include a count of the delimiter character(s).

6. The data item referenced by identifier-IO contains a value that indicates a
relative character position wi thin the area defined by identifier-I.

7. The data item referenced by identifier-II is a counter that records the number
of data items acted upon during the execution of an UNSTRING statement.

8. When a figurative constant is used < as the delimiter, it stands for single
character nonnumeric literal.

When the ALL phrase is specified, one occurrence or two or more contiguous
occurrences of literal-l (figurative constant or not) or the contents of the data
item referenced by identifier-2 are treated as if it were only one occurrence,
and this occurrence is moved to the receiving data item according to the rules
in General Rule 13d.

9. When any examination encounters two contiguous delimiters, the current
receiving area is either space or zero filled according to the description of the
receiving area.

10. Literal-lor the contents of the data item referenced by identifier-2 can
contain any character in the computer's character set.

II. Each literal-lor the data item referenced by identifier-2 represents one
delimiter. When a delimiter contains two or more characters, all of the
characters must be present in contiguous positions of the sending item, and in
the order given to be recognized as a delimiter.

3-100

12. When two or more delimiters are specified in the DELIMITED BY phrase, an
'OR' condition exists between them. Each delimiter is compared to the
sending field. If a match occurs, the character(s) in the sending field is
considered to be a single delimiter. No character(s) in the sending field is
considered to be a single delimiter. No character(s) in the sending field can be
considered a part of more than one delimiter.

Each delimiter is applied to the sending field in the sequence specified in the
UNSTRING statement.

13. When the UNSTRING statement is initiated, the current receiving area is the
data item referenced by identifier-4. Data is transferred from the data item
referenced by identifier-l to the data item referenced by identifier-4
according to the following rules:

a. If the POINTER phrase is specified, the string of characters referenced
by identifier-l is examined beginning with the relative character position
indicated by the contents of the data item referenced by identifier-IO. If
the POINTER phrase is not specified, the string of characters is examined
beginning with the leftmost character position.

b. If the DELIMITED BY phrase is specified, the examination proceeds left
to right until either a delimiter specified by the value of literal-lor the
data item referenced by identifier-2 is encountered. (See General Rule
11.) If the DELIMITED BY phrase is not specified, the number of
characters examined is equal to the size of the current receiving area.
However, if the sign of the receiving item is defined as occupying a
separate character position, the number of characters examined is one
less than the size of the current receiving area.

If the end ot the data item referenced by identifier-l is encountered
before the delimiting condition is met, the examination terminates with
the last character examined.

c. The characters thus examined (excluding the delimiting character(s), if
any) are treated as an elementary alphanumeric data item, and are moved
into the current receiving area according to the rules for the MOVE
statement. (See the MOVE Statement.)

d. If the DELIMITER IN Phrase is specified, the delimiting character(s) are
treated as an elementary alphanumeric data iteIlJ and are moved into the
data item referenced by identifier-5 according to the rules for the MOVE
statement. (See the MOVE Statement.) If the delimiting condition is the
end of the data item referenced by identifier-I, then the data item
referenced by identifier-5 is space-filled.

e. If the COUNT IN phrase is specified, a· value equal to the number of
characters thus examined (excluding the delimiter character(s) if any) is
moved into the area referenced by identifier-l according to the rules for
an elementary move.

3-101

f. If the DELIMITED BY phrase is specified, the string of characters is
further examined beginning with the first character to the right of the
delimiter. If the DELIMITED BY phrase is not specified, the string of
characters is further examined beginning with the character to the right
of the last character transferred.

g. After data is transferred to the data item referenced by identifier-4, the
. current receiving area is the data item referenced by identifier-7. The

behavior described in paragraph l3b through l3f is repeated until either
all the characters are exhausted in the data item referenced by
identifier-I, or until there are no more receiving areas.

14. The initialization of the contents of the data items associated .with the
POINTER phrase or the TALLYING phrase is the responsibility of the user.

15. The contents of the data item referenced by identifier':"lQ will be incremented
by one for each character examined in the data item referenced by
identifier-I. When the execution of an UNSTRING statement with a
POINTER phrase is complete, the contents of the data item referenced by
identifier-IO will contain a value equal to the initial value plus the number of
characters examined in the data item referenced by identifier-I.

16. When the execution of an UNSTRING statement with a TALLYING phrase is
completed, the contents of the data item referenced by identifier-ll contains
a value equal to its initial value plus the number of data receiving items acted
upon.

17. Ei ther of the following situations causes an overflow condition:

a. An UNSTRING is initiated, and the value in the data item referenced by
identifier-lOis less than 1 or greater than the size of the data item
referenced by identifier-I.

b. If, during execution of an UNSTRING statement, all data receiving areas
have been acted upon, and the data item referenced by identifier-l
contains characters that have not been examined.

18. When an overflow condition exists, the U NSTRIN G operation is terminated. If
an ON OVERFLOW phrase has been specified, the imperative statement
included in the ON OVERFLOW phrase is executed. If the ON OVERFLOW
phrase is not specified, control is transferred to the next executable statement.

3-102

19. The evaluation of subscripting and indexing for the identifiers is as follows:

a. Any subscripting or indexing associated with identifier-I, identifier-l 0,
identifier-II is evaluated only once, immediately before any data is
transferred as the result of the execution of the UNSTRING statement.

b. Any subscripting or indexing associated with identifier-2, identifier-3,
identifier-4, identifier-5, identifier-6 is evaluated immediately before the
transfer of data into the respective data item.

3-103

SECTION 4

TABLE HANDLING

INTRODUCTION TO THE TABLE HANDLING MODULE

The Table Handling module provides a capability for defining tables of contiguous
data items and accessing an item relative to its position in the table. Language
facilities are provided for specifying how many times an item is to be repeated. Each
item may be identified through use of a subscript or an index (see Section 2).

Table Handling provides a capability for accessing items in fixed length tables of
multiple dimensions.

DATA DIVISION IN THE TABLE HANDLING MODULE

THE OCCURS CLA USE

Function

The OCCURS clause eliminates the need- for separate entries for repeated data
items and supplies information required for the application of subscripts or indices.

General Format

Format 1

OCCURS integer-2 TIMES

[1~~~g~~~GI KEY IS data-name-2 [, data-name~3 •• J ...
[[INDEXED BY index-name-l [, index-name-2] •••] •••

Format 2

OCCURS integer-l TO integer-2 TIMES DEPENDING ON data-name-l

[
~ASCENDING ~ [KEY IS data-name-2 [, data-name-3] •• J
~DESCENDING~

[[INDEXED BY index-name-I [, index-name-2] ••• J
4-1

Syntax Rules '

I. Where both integer-l and integer-2 are used, the value of integer-l must be
less than the value of integer-2.

2. The data description of data-name-l must describe a positive integer.

3. Data-name-l, data-name-2, data-name-3, ••• may be qualified.

4. Da ta-name-2 must either be the name of the entry containing the OCCURS
clause or the name of an entry subordinate to the entry containing the
OCCURS clause.

5. Da ta-name-3, etc., must be the name of an entry subordinate to the group
item which is the subject of this entry.

6. An INDEXED BY phrase is required if the subject of this entry, or an entry
subordinate to this entry, is to be referred to by indexing. The index-name
identified by this clause is not defined elsewhere since its allocation and
format are dependent on the hardware, and not being data, cannot be
associated with any data hierarchy.

7. A data description entry that contains Format 2 of the DC CURS clause
may only be followed, within that record description, by data description
entries which are subordinate to it.

8. The OCCURS clause cannot be specified in a data description entry that:

Describes an item whose size is variable. The size of an item is variable
if the data description of any subordinate item contains Format 2 of the
OCCURS clause.

9. In Format 2, the data item defined by data-name-l must not occupy a
character position within the range of the first character position defined by
the data description entry containing the OCCURS clause and the last
character position defined by the record description entry containing that
OCCURS clause.

10. If data-name-2 is not the subject of this entry, then:

a. All of the items identified by the data-names in the KEY IS phrase must
be within the group item which is the subject of this entry.

b. Items identified by the data-name in the KEY IS phrase must not contain
an OCCURS clause.

c. There must not be any entry that contains an OCCURS clause between
the items identified by the data-names in the KEY IS phrase and the
subject of this entry.

II. Index-name-I, index-name-2, ••• must be unique words within the program.

4-2

General Rules

1. The OCCURS clause is used in defining tables and other homogenous sets of
repeated data items. Whenever the OCCURS clause is used, the data-name
which is the subject of this entry must be either subscripted or indexed
whenever it is referred to in a statement other than SEARCH or USE FOR
DEBUGGING. Further, if the subject of this entry is the name of a group
item, then all data-names belong-ing to the group must be subscripted or
indexed whenever they are used as operands, except as the object of a
REDEFINES clause. (See under headings Subscripting, Indexing and Identifier
in Section 2.)

2. Except for the OCCURS clause itself, all data description clauses
associated with an item whose description includes an OCCURS clause
apply to each occurrence of the item described. (See restriction in
General Rule 2 under The Data Description-Complete Entry Skeleton in
Section 3.)

3. The number of occurrences of the subject entry is defined as follows:

a. In Format 1, the value of integer-2 representing the exact number of
occurrences.

b. In Format 2, the current value of the data item referenced by
data-name-l represents the number of occurrences.

This format specifies that the subject of this entry has a variable number
of occurrences. The value of integer-2 represents the maximum number
of occurrences and the value of integer-l represents the minimum number
of occurrences. This does not imply that the length of the subject of the
entry is variable, but that the number of occurrences is variable.

The value of the data item referenced by data-name-l must fall within
the range of integer-l through integer-2. Reducing the value of the data
item referenced by data-name-l makes the contents of data items, whose
occurrence numbers now exceed the value of the data item referenced by
data-name-l, unpredictable.

4. When a group item, having subordinate to it an entry that specifies Format 2
of the OCCURS clause, is referenced, only that part of the table area that is
specified by the value of data-name-l will be used in the operation.

5. The KEY IS phrase is used to indicate that the repeated data is arranged in
ascending or descending order according to the values contained in
data-name-2, data-name-3, etc. The ascending or descending order is
determined according to the rules for comparison of operands (see Comparison
of Numeric Operands, Comparison of Nonnumeric Operands in Section 3.) The
data-names are listed in their descending order of significance.

4-3

THE USAGE CLAUSE

Function

The USAGE clause specifies the format of a data item in the computer storage.

General Format

[USAGE IS] INDEX

Syntax Rules

1. An index data item can be referenced explicitly only in a SEARCH or SET
statement, a relation condition, the USIN G phrase of a Procedure Division
header, or the USING phrase of a CALL statement.

2. The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE, and BLANK WHEN
ZERO clauses cannot be used to describe group or elementary items
described with the USAGE IS INDEX clause.

General Rules

1. The USAGE clause can be written at any level. If the USAGE clause is written
at a group level, it applies to each elementary item in the group. The USAGE
clause of an elementary item cannot contradict the USAGE clause of a group
to which the item belongs.

2. An elementary item described with the USAGE IS INDEX clause is called an
index\data item and contains a value which must correspond to an occurrence
number of a table element. The elementary item cannot be a conditional
variable. The compiler will allocate a 2 byte binary field. If a ,group item is
described with the USAGE IS INDEX clause, the elementary items in the group
are all index data items. The group itself is not an index data item and cannot
be used in the SEARCH or SET statement or in a relation condition.

3. An index data item can be part of a group which is referred to in a MOVE or
input-output statement, in which case no conversion will take place.

4-4

PROCEDURE DIVISION IN THE TABLE HANDLING MODULE

RELATION CONDITION

Comparisons Involving Index-Names And/Or Index Data Items

Relation tests may be made between the following data items:

*

*

*

*

Two index-names. The result is the same as if the corresponding
occurrence numbers were compared.

An index-name and a data item (other than an index data item) or literal.
The occurrence number that corresponds to the value of the index-name
compared to the data item or literal.

An index data item and an index-name or another index data item. The
actual values are compared without conversion.

The result of the comparison of an index data item with any data item or
literal not specified above is undefined.

OVERLAPPING OPERANDS

When a sending and a reCeIVIng item in a SET statement share a part of their
storage areas, the result of the execution of such a statement is undefined.

THE SEARCH STATEMENT

Function

The SEARCH statement is used to search a table for a table element that satisfies
the specified condition and to adjust the associated index name to indicate that table
element.

General Format

Format 1

SEARCH identifier-l [VARYING ~ identifier-2 ~ J
~ identifier-l ~

[; AT END imperative-statement-Il

WHEN condition-l ~ imperative-statement-2 ~
~ NEXT SENTENCE ~

[; WHEN condition-2 ~ imperative-statement-3 ~]
~ NEXT SENTENCE ~

4-5

Format 2

SEARCH ALL identifier-l [; AT END imperative-statement':'l] .

lidentifier-3 l
WHE N data-name-l ~IS - S arithmetic-expression-l ~

SIS EQUAL Tal literal-l

, condition-name-l

l SIS EQUAL Tal l:?t~~~[!;!'-4 I I
AND data-name-2 ~IS = 5 arithmetic-expression-2 ~ ~

condition-name-2

I impera tive-statem ent-2 ~
NEXT SENTENCE ~

NOTE:

Syntax Rules

The required relational character '=' is not underlined to avoid confusion
with other symbols.

1. In both Formats 1 and 2, identifier-l must not be subscripted or indexed, but
its description must contain an OCCURS clause and an INDEXED BY clause.
The description of identifier-l in Format 2 must also contain the KEY IS
phrase in its OCCURS clause.

2. Identifier-2, when specified, must be described as USAGE IS INDEX or as a
numeric elementary item without any positions to the right of the assumed
decimal point.

3. In Format I, condition-I, condition-2, etc., may be any condition as described
in CONDITION EXPRESSIONS in Section 3.

4. In Format 2, all referenced condition-names must be defined as having only a
single value. The data-name associated with a condition-name must appear in
the KEY clause of identifier-I. Each data-name-l, data-name-2 may be
qualified. Each data-name-l, data-name-2 must be indexed by the first
index-name associated with identifier-l along with other indices or literals as
required, and must be referenced in the KEY clause of identifier-I.
Identifier-3, identifier-4, or identifiers specified in arithmetic-expression-l,
arithmetic-expression-2 must not be referenced in the KEY clause of
identifier-lor be indexed by the first index-name associated with identifier-I.

In Format 2, when a data-name in the KEY clause of identifier-l is
referenced, or when a condition-name associated with a data-name in the
KEY clause of identifier-l is referenced then their associated index must
also be referenced.

4-6

General Rules

1. If Format 1 of the SEARCH is used, a serial type of search operation takes
place, starting with the current index setting.

a. If, at the start of execution of the SEARCH statement, the index-name
associated with identifier-l contains a value that corresponds to an
occurrence number that is greater than the highest permissible
occurrence number for identifier-I, the SEARCH is terminated
immediately. The number of occurrences of identifier-I, the last of
which is the highest permissible, is discussed in the OCCURS clause. (See
The OCCURS Clause in Section 4.) Then, if the AT END phrase is
specified, imperative-statement-l is executed; if the AT END phrase is
. not specified, control passes to the next executable sentence.

b. If, at the start of execution of the SEARCH statement, the index-name
associated with identifier-l contains a value that corresponds to an
occurrence number that is not greater than the highest permissible
occurrence number for identifier-l (the number of occurrences of
identifier-I, the last of which is the highest permissible is discussed in the
OCCURS clause) the SEARCH statement operates by evaluating the
conditions in the order that they are written, making use of the index
settings, wherever specified, to determine the occurrence of those items
to be tested. If none of the conditions are satisfied, the index-name for
identifier-l is incremented to obtain reference to the next occurrence.
The process is then repeated using the new index-name settings unless the
new value of the index-name settings for identifier-l corresponds to a
table element outside the permissible range of occurrence values, in
which case the search terminates as indicated in I a above. If one of the
conditions is satisfied upon its evaluation, the search terminates
immediately and the imperative statement associated with that condition
is executed; the index-name remains set at the occurrence which caused
the condition to be satisfied.

2. In a Format 2 SEARCH, the results of the SEARCH ALL operation are
predictable only when:

a. The data in the table is ordered in the same manner as described in the
ASCENDING/DESCENDING KEY clause associated with the description
of identifier-I, and

b. The contents of the key(s) referenced in the WHEN clause are sufficient
to identify a unique table element.

3. If Format 2 of the SEARCH is used, a nonserial type of search operation may
take place; the initial setting of the index-name for identifier-l is ignored and
its setting is varied during the search operation with the restriction that at no
time is it set to a value that exceeds the value which corresponds to the last
element of the table, or that is less than the value that corresponds to the
first element of the table. The length of the table is discussed in the OCCURS
clause.

4-7

If any of the conditions specified in the WHEN clause cannot be satisfied for
any setting of the index within the permitted range, control is passed to
imperative-statement-l of the AT END phrase, when specified, or to the next
executable sentence when this phrase is not specified; in either case, the final
setting of the index is not predictable. If all conditions can be satisfied, the
index indicates an occurrence that allows the conditions to be satisfied, and
control passes to imperative-statement-2.

4. After execution of imperative-statement-l, imperative-statement-2, or
imperative-statement-3, that does not terminate with a GO TO statement,
control passes to the next executable sentence.

5. In Format 2, the index-name that is used for the search operation is the first
(or only) index-name that appears in the IN DEXED BY phrase of identifier-I.
Any other index-names for identifier-l remain unchanged.

6. In Format 1, if the VARYIN G phrase is not used, the index-name that is used
for the search operation is the first (or only) index-name that appears in the
IN DEXED BY phrase of identifier-I. Any other index-names for identifier-l
remain unchanged.

7. In Format 1, if the V AR YIN G index-name-l phrase is specified, and if
index-name-l appears in the INDEXED BY phrase of identifier-I, that
index-name is used for this search. If this is not the case, or if the VAR YIN G
identifier-2 phrase is specified, the first (or only) index-name given in the
INDEXED BY phrase of identifier-l is used for the search. In addition, the
following operations will occur:

a. If the V AR YIN G index-name-l phrase is used, and if index-name-l
appears in the INDEXED BY phrase of another table entry, the
occurrence number represented by the index-name associated with
identifier-l is incremented.

b. If the V AR YIN G identifier-2 phrase is specified, and identifier-2 is an
index data item, then the data item referenced by identifier-2 is
incremented by the same amount as, and at the same time as, the index
associated with identifier-l is incremented. If identifier-2 is not an index
data item, the data item referenced by identifier-2 is incremented by the
value (1) at the same time as the index referenced by the index-name
associated with identifier-l is incremented.

8. If identifier-l is a data item subordinate to a data item that contains an
OCCURS clause (providing for a two or three dimensional table), an
index-name must be associated with each dimension of the table through the
INDEXED BY phrase of the OCCURS clause. Only the setting of the
index-name associated wih identifier-l (and the data item identifier-2 or
index-name-l, if present) is modified by the execution of the SEARCH
statement. To search an entire two or three dimensional table is not
necessary to execute a SEARCH statement several times. Prior to each
execution of a SEARCH statement, SET statements must be executed
whenever index-names must be adjusted to appropriate settings.

4-8

Figure 4-1 shows a flowchart of the Format 1 SEARCH operation containing two
WHE N phrases.

START

Index setting:
r- highest permissible~ ________ A_T_E_N_D_l ____ ~1

occurrence number

t

imperative­
statement-l

(condition-l ,>-------- True _____ ~I imperative-
-----..,----/ statement-2

False

c condition-2

False

Increment
index-name for
identifier-l
(index-name-l,
if applicable)

t

)-------- True -----...04~

Increment
index-name-l (for 1

'- a different table)
or identifier-2

imperative­
statement-2

2

These operations are options included only when specified in the SEARCH
statement.

2 Each of these control transfers is to the next executable sentence unless the
imperative-statement ends with a GO TO statement.

Figure 4-1. Flowchart of SEARCH Operation with TWO WHEN Phrases.

4-9

THE SET STATEMENT

Function

The SET statement establishes reference points for table handling operations by
setting index-names associated with table elements.

General Format

Format 1

SET

Format 2

SET

Syntax Rules

l identifier-l
index-name-l

index-name-4

[, identifier-2]
[, index-name-2]

[, index-name-5]

... 1 TO ... ~ identifier-3 l
index-name-3
integer-l

···1 UP BY I ~ identifier-41
DOWN BY Unteger-2

1. All reference to index-name-l, identifier-I, and index-name-4 apply equally to
index-name-2, identifier-2, and index-name-5, respectively.

2. Identifier-l and identifier-3 must name either index data items, or elementary
items described as an integer.

3. Identifier-4 must be described as an elementary numeric integer.

4. Integer-l and integer-2 may be signed. Integer-l must be positive.

General Rules

1. Index-names are considered related to a given table and are defined by being
specified in the INDEXED BY clause.

2. If index-name-3 is specified, the value of the index before the execution of the
SET statement must correspond to an occurrence number of an element in the
associated table.

If index-name-4, index-name-5 is specified, the value of the index both before and
after the execution of the SET statement must correspond to an occurrence number of
an element in the associated table. If index-name-l, index-name-2 is specified, the
value of the index after the execution of the SET statement must correspond to an
occurrence number of an element in the associated table. The value of the index
associated with an index-name after· the execution of a SEARCH or PERFORM
statement may be undefined. (See THE SEARCH STATEMENT and THE PERFORM
STATEMENT in Section 3.)

4-10

3. In Format 1, the following action occurs:

a. Index-name-l is set to a value causing it to refer to the table element
that corresponds in occurrence number to the table element referenced by
index-name-3, identifie~3, or intege~ 1. If identifie~3 is an index data
item, or if index-name-3 is related to the same table as index-name-l, no
conversion takes place.

b. If identifie~ 1 is an index data item, it may be set equal to either the
contents of index-name-3 or identifie~3 where identifie~3 is also an
index item; no conversion takes place in either case.

c. If identifie~ 1 is not an index data item, it may be set only to an
occurrence number that corresponds to the value of index-name-3.
Neither identifie~3 or intege~l can be used in this case.

d. The process is repeated for index-name-2, identifie~2, etc., if specified.
Each time the value of index-name-3 or identifie~3 is used as it was at
the beginning of the execution of the statement. Any subscripting or
indexing associated with identifier-I, etc., is evaluated immediately
before the value of the respective data item is changed.

4. In Format 2, the contents of index-name-4 are incremented (Up BY) or
decremented (DOW N BY) by a value that corresponds to the number of
occurrences represented by the value of intege~2 or identifie~4; thereafter,
the process is repeated for index-name-5, etc. Each time the value of
identifie~4 is used· as it was at the beginning of the execution of the
statement.

5. Data in Table 4-1 represents the validity of various operand combinations in
the SET statement. The general rule reference indicates the applicable
general rule.

4-11

Table 4-1. SET Statement Valid Operand Combinations.

Sending Item Receiving Item 1
Integer Data Item Index-Name Index Data Item

Integer Li teral No/3c Valid/3a No/3b

Integer Data Item No/3c Valid/3a No/3b

Index-Name Valid/3c Valid/3a Valid/3b2

Index Data Item No/3c Valid/3a2 Valid/3b2

1 = Rule numbers under General Rules above are referred to.

2 = No conversion takes place.

4-12

SECTION 5

SEQUENTIAL INPUT AND OUTPUT

INTRODUCTION TO THE SEQUENTIAL 1-0 MODULE

The Sequential 1-0 module provides a capability to access records of a file in
established sequence. The sequence is established as a result of writing the records to
the file. It also provides for the specification of re-run points and the sharing of
memory areas among files.

LANGUAGE CONCEPTS

Organization

Sequential files are organized such that each record in the file except the first has
a unique predecessor record, and each record except the last has a unique successor
record. These predecessor-successor relationships are established by the order of
WRITE statements when the file is created. Once established, the

. predecessor-successor relationships do not change except in the case where records are
added to the end of the file.

Access Mode

In the sequential access mode, the sequence in which records are accessed is the
order in which the records were originally written.

Current Record Pointer

The current record pointer is a conceptual entity used in this document to
facilitate specification of the next record to be accessed within a given file. The
concept of the current record point has no meaning for a file opened in the output
mode. The setting of the current record pointer is affected only by the OPEN and
READ statements.

1-0 Status

If the FILE STATUS clause is specified in a file control entry, a value is placed into
the specified two-character data item during the execution of an OPE N, CLOSE,
READ, WRITE, or REWRITE statement and before any applicable USE procedure is
executed, to indicate to the COBOL program the status of that input-output operation.

Status Key 1

The leftmost character position of the FILE STATUS data item is known as Status
Key 1 and is set to indicate one of the following conditions upon completion of the
input-output operation.

'0' - indicates Successful Completion
'1' - indicates at End
'2' - indicates an Invalid Key
'3' - indicates Permanent Error
'9' - indicates a Run-Time Error Message

5-1

The meaning of the above indications are as follows:

o - Successful Completion. The input-output statement was successfully
executed.

1 - At End. The sequential READ statement was unsuccessfully
executed either as a result of an attempt to read a record when no
next logical record exists in the file or as a result of the first
READ statement being executed for a file described with the
OPTIONAL clause, and that file was not aVailable to the program at
the time its associated OPEN statement was executed.

2 - Invalid Key. The input-output statement was unsuccessfully executed
as a result of one of the following:

Duplicate Key
No Record Found
Boundary Violation

3 - Permanent Error. The input-output statement was unsuccessfully
executed as the result of a boundary violation for a sequential file
or is the result of an input-output error, such as data check parity
error, or transmission error.

9 - Run-Time Error Message. The input-output statement was
unsuccessfully executed as a result of a condition that is specified
by the Run-Time System. Error Message. This value is used only to
indicate a condition not indicated by other defined values of status
key I, or by specified combinations of the values of status key 1
and status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is known as
Status Key 2 and is used to further describe the results of the input-output
operation. This character will contain a value as follows:

*

*

*

If no further information is available concerning the input-output operation,
then status key 2 contains a value of '0'.

When status key 1 contains a value of '3' an irrecoverable error has
occurred. This is treated as a fatal error by the Operating System.

When status key 1 contains a value of '9', the value of status key 2 is the
Run-Time Error Message number. Appendix J contains some details of the
status-key-2 representation. Note that it is not possible to extract this
number directly.

Status key 2 is a hexadecimal number which is displayed in ASCII. This
returned ASCII character must be converted back to its hexadecimal equivalent by
the user.

This ASCII character and its hexadecimal equivalent are located in Table B-2
in Appendix B of the BTOS Reference Manual. Find this character in the table
and then convert its corresponding character code (in hex) to decimal. The
decimal number will be the COBOL Run-Time error.

5-2

Valid Combinations of Status Keys I and 2

The valid permissible combinations of the values of status key I and status key 2
are shown in the following table. An 'X' at an intersection indicates a valid permissible
combination.

Status Key I

Successful Completion (0)
At End (1)
Permanent Error (3)

Implementor Defined (9)

The At END Condition

Status Key 2
No Further
Information

(0)

x
X
X

RT Error Number

The AT END condition can occur as a result of the execution of a READ
statement. For details of the causes of the condition, see The READ STATEMENT
later in this Section.

LINAGE - COUNTER

The reserved word LIN AGE-COUNTER is a name for a special register generated
by the presence of a LIN AGE clause in a file description entry. The implicit
description is that of an unsigned integer whose size is equal to integer-lor the data
item referenced by data-name-l in the LIN AGE clause. See The LIN AGE Clause later
in this Section.

ENVIRONMENTAL DIVISION IN THE SEQUENTIAL 1-0 MODULE

INPUT-OUTPUT SECTION

The FILE-CONTROL Paragraph

Function

The FILE-CONTROL paragraph names each file and allows specification of other
file-related information. (See also Appendix I in this manual).

5-3

General Format

FILE-CO NTROL [!ile-control-entry]

The FILE-CO NTROL Entry

Function

The file control entry names a file and may specify other file-related information.

General Format

SELECT [OPTIONAL] file-name

ASSIG N TO ~ external-file-name-literal!

~ file-identifier

[
f.'REA oJ]
AREAS

[
~ external-file-name-literal!]

' ~ file-identifier

[; RESERVE integer-I

[; ORGANIZATION IS

1
SEQUENTIAL ~]
LINE SEQUENTIAL ~

[; ACCESS MODE IS SEQUENTIAL]

[; FILE STATUS IS data-name-1]

Syntax Rules

1. The SELECT clause must be specified first in the file control entry. The
clauses which follow the SELECT clause may appear in any order.

2. Each file described in the Data Di vision must be named once and only once as
file";name in the FILE-CO NTROL paragraph. Each file specified in the file
control entry must have a file description entry in the Data Division.

3. If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied.

4. Data-name-l must be defined in the Data Division as a two-character data
item of the category alphanumeric and must not be defined in the File Section.

5. Da ta-name-l may be qualified.

6. When the ORGANIZATION IS SEQUENTIAL clause is not specified, the
ORGANIZATION IS SEQUENTIAL clause is implied.

7. The OPTIO N AL phrase may only be specified for input files. Its specification
is required for input files that are not necessarily present each time the object
program is executed.

5-4

General Rules

1.

2.

3.

4.

5.

6.

7.

The ASSIGN clause specifies the association of the file referenced by the
SELECT clause to a real file on the system. If the file-name is not
enclosed in double quotes. then it must be fully qualified as a file-name
(that is real) in the Working-Storage Section.

The RESER VE clause allows the user to specify the number of input-output
areas allocated. If the RESERVE clause is specified, the number of
input-output areas allocated is equal to the value of integer-I.

The OR GA N IZATIO N clause specifies the logical structure of a file. The file
organization is established at the time a file is created and cannot
subsequently be changed.

When LINE SEQUENTIAL ORGANIZATION is specified, the file is treated as
consisting of variable length records, each record containing one line of data.
A line of data is terminated with the new line character. Trailing spaces in
a record are truncated.

Records in the file are accessed in the sequence dictated by the file
organization. This sequence is specified by predecessor-successor reco.rd
relationships established by the execution of WRITE statements when the fIle
is created or extended.

When the FILE STATUS is specified, a value will be moved by the operating
system into the data item specified by data-name-l after the execution of
every statement that references that file either explicitly or implicitly. Th!s
value indicates the status of execution of the statement. (See 1-0 STATUS In

this Section.)

When the file-name is ASSIGNed to a file-identifier, and that file~
identifier is then declared in WORKING-STORAGE, B 20 COBOL expects
the file-identifier to be followed by (to terminate with) a space.

Example:
01 your-file PIC X(9) VALUE "INn.FILE ".

The I-O-CONTROL Paragraph

Function

The I-O-CONTRUL paragraph specifies the points at which re-run is to be
established. the memory area which is to be shared by different files. and the
location of files on a multiple file reel.

5-5

General Format

I-O-CONTROL { 1
[[,] f~:t:g::: [!tJRDS OF file-name-2]n

; RERUN ON f~ile-name-l 1 EVERY integer-2 CLOCK-UNITS
Qmplementor-nameJ condition-name

[; SAME [~RD] AREA FOR file-name-3 ,file-name-4 •••] •••

SORT-MERGE

[; MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-3]

[file-name-6 [POSITIO N integer-4]] •••] •••

Syntax Rules

1. The I-a-CONTROL paragraph is optional.

2. File-name-l must be a sequentially organized file.

3. The END OF REEL/UNIT clause may only be used if file-name-2 is a
sequentially organized file.

4. When either the integer-l RECORDS clause of the integer-2 CLOCK-UNITS
clause is specified, implementor-name must be given in the RERUN clause.

5. More than one RERUN clause may be specified for a given file-name-2 subject
to the following restrictions:

a. When multiple integer-l RECORD clauses are specified, no two of them
can specify the same file-name-2.

b. When multiple END OF REEL or END OF UNIT clauses are specified, no
two of them may specify the same file-name-2.

6. The two forms of the SAME clause (SAME AREA, SAME RECORD AREA) are
considered separately in the following:

More than one SAME clause may be included in a program, however:

a. A file-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD AREA
clause.

c. If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all of the file-names in that SAME AREA clause
must appear in the SAME RECORD AREA clause. However, additional
file-names not appearing in that SAME AREA clause may also appear in
that SAME RECORD AREA clause. The rule that only one of the files
mentioned in a SAME AREA clause can be open at any given time takes
precedence over the rule that all files mentioned in a SAME RECORD
AREA clause can be open at any given time.

5-6

7. The files referenced in the SAME AREA clause need not all have the same
organization or access.

General Rules

1. The RERUN clause is treated as for documentation. purposes only.

2. The SAME AREA clause specifies that two or more files are to use the same
memory area during processing. The area being stored includes all storage
area assigned to the files specified; therefore, it is not valid to have more than
one of the files open at the same time. (See Syntax Rule 6c.)

3. The SAME RECORD AREA clause specifies that two or more files are to use
the same memory area for processing of the current logical record. All of the
files may be open at the same time. A logical record in the SAME RECORD
AREA is considered as a logical record of each opened output file whose
file-name appears in this SAME RECORD AREA clause and of the most
recently read input file whose file-name appears in this SAME RECORD AREA
clause. This is equivalent to an implicit redefinition of the area, i.e., records
are aligned on the leftmost character position.

4. The MULTIPLE FILE clause is treated as for documentation purposes only.

DATA DIVISION IN THE SEQUENTIAL I-a MODULE

FILE SECTIO N

In a L/II COBOL program the file description entry (FD) represents the highest
level of organization in the File Section. The File Section header is followed by a file
description entry consisting of a level indicator (FD), a file-name and a series of
independent clauses. The FD clauses specify the size of the logical and physical
records, the presence or absence of label records, the value of implementor-defined
label items, the names of the data records which comprise the file. The entry itself is
terminated by a period.

RECORD DESCRIPTIO N STRUCTURE

A record description consists of a set of data description entries which describe the
characteristics of a particular record. Each data description entry consists of a
level-number followed by a data-name if required, followed by a series of independent
clauses as required. A record description has a hierarchical structure and therefore the
clauses used with an entry may vary considerably, depending upon whether or not it is
followed by subordinate entries. The structure of a record description is defined in
CONCEPT OF LEVELS in Section 2, while the elements allows in a record description
are shown in the Data Description - Complete Entry Skeleton in Section 3.

5-7

THE FILE DESCRIPTION - COMPLETE ENTR Y SKELETON

Function

The file description furnishes information concerning the physical structure,
identification, and record names pertaining to a given file.

General Format

FD file-name

BLOCK CONTAINS integer-2 ~RECORDS ~J
~ CHARACTERS~

[; RECORD CONTAINS integer-3 TO integer-4 CHARACTERS]

[; LABEL ~ RECORD IS ~ ~STANDARD ~]
~ RECORDS ARE ~ ~ OMITTED ~

[; VALUE OF data-name-l IS literal-l

[, data-name-2 IS literal-2] •••]

[
; DATA ~ RECORD IS ~]

~ RECORDS ARE~ data-name-3 [, data-name-4] •••

[
; LINAGE IS ~?ata-name-5~ LINES [, WITH FOOTING AT l ?ata-name-s!]

~ mteger-5 ~ ~ mteger-6 ~

[
, LINES AT TOP !?ata-name-711 r, LINES AT BOTTOM ~?ata-name-8l]]

Integer-7 ~ ~ ~lnteger-8

[; CODE-SET IS alPhabet-name]

Syntax Rules

1. The level indicator FD identifies the beginning of a file description and must
precede the file-name.

2. The clauses which follow the name of the file are optional, and their order of
appearance is immaterial.'

3. One or more record description entries must follow the file description entry.

5-8

THE BLOCK CONTAINS CLAUSE

Function

The BLOCK CONTAINS clause specifies the size of a physical record.

General Format

BLOCK CONTAINS [integer-l TO] integer-2 ~ RECORDS \
~ CHARACTERS

General Rule

This clause is required for documentation purposes only.

THE CODE-8ET CLA USE

Function

The CODE-SET clause specifies the character code set used to represent data on
the external media.

General Format

CODE-SET IS alphabet-name

Syntax Rules

1. When the CODE-SET clause is specified for a file, all data in that file must be
described as usage is DISPLA Y and any signed numeric data must be described
with the SIGN IS SEPARATE clause.

2. The alphabet-name clause referenced by the CODE-8ET clause must not
specify the literal phrase.

3. The CODE-SET clause may only be specified for non-disk files.

General Rule

The CODE-SET clause is specified for documentation purposes only.

THE DATA RECORDS CLA USE

Function

The DATA RECORDS clause serves only as documentation for the names of data
records with their associated file.

General Format

DATA jRECORD IS l data-name-l
RECORDS ARE

[, data-name-2]

Syntax Rule

Data-name-l and data-name-2 are the names of data records and must have 01
level-number record descriptions, with the same names, associated with them.

General Rule

The DATA RECORDS clause is specified for documentation purposes only.

THE LABEL RECORDS CLA USE

Function

The LABEL RECORDS clause specifies whether labels are present.

General Format

LABEL

Syntax Rule

j

RECORD IS ~j STANDARD~
RECORDS ARE~ OMITIED ~

This clause is optional in every file description entry.

General Rule

This clause is used for documentation purposes only.

THE LINAGE CLAUSE

Function

The LINAGE CLAUSE provides a means for specifying the depth of a logical page
in terms of number of lines. It also provides for specifying the size of the top and
bottom margins on the logical page, and the line number, within the page body, at which
the footing area begins.

5-10

General Format

LINAGE IS ~9ata-name-l~ LINES ,[WITH FOOTING AT
~ mteger-l 1

[, LINES AT TOP 19ata-name-3~Jr'LINES AT BOTTOM
mteger-3 ~ l

~ 9ata-name-2 ~]
~mteger-2 ~

~ 9ata-name-4 ~]
~ mteger-4 ~

Syntax Rules

1. Data-name-l, data-name-2, data-name-3, data-name-4 must reference
elementary unsigned numeric integer data items.

2. The value of integer-l must be greater than zero.

3. The value of integer-2 must not be greater than integer-I.

4. The value of integer-3, integer-4 may be zero.

General Rules

1. The LIN AGE clause provides a means for specifying the size of a logical page
in terms of number of lines. The logical page size is the sum of the values
referenced by each phrase except the FOOTING phrase. If the LINES AT TOP
or LINES AT BOTTOM phrases are not specified, the values for these
functions are zero. If the FOOTING phrase is not specified, the assumed value
is equal to integer-I, or the contents of the data item referenced by
data-name-l, whichever is specified.

There is not necessarily any relationship between the size of the logical page
an the size of a physical page.

2. The value of integer-Ion the data item referenced by data-name-l specifies
the number of lines that can be written and/or spaced on the logical page. The
value must be greater than zero. That part of the logical page in which these
lines can be written and/or spaced is called the page body.

3. The value of integer-3 or the data item referenced by data-name-3 specifies
the number of lines that comprise the top margin on the logical page. The
value may be zero.

4. The value of integer-4 or the data item referenced by data-name-4 specifies
the number of lines that comprise the bottom margin on the logical page. The
value may be zero.

5. The value of integer-2 or the data item referenced by data-name-2 specifies
the line number within the page body at which the footing area begins. The.
value must be greater than zero and not greater than the value of integer-lor
the data item referenced by data-name-l.

5-11

The footing area comprises the area of the logical page between the line
represented by the value of integer-2 or the data item referenced by
data-name-2 and the line represented by the value of integer-lor the data
item referenced by data-name-l, inclusive.

6. The value of integer-I, integer-3, and integer-4, if specified, will be used at
the time the file is opened by the execution of an OPEN statement with the
OUTPUT phrase, to specify the number of lines that comprise each of the
indicated sections of a logical page. The value of integer-2, if specified, will
be used at that time to define the footing area. These values are used for all
logical pages written for the file during a given execution of the program.

7. The values of the data items referenced by data-name-l, data-name-3, and
data-name-4, if specified, will be used as follows:

a. The values of the data items, at the time an OPEN, statement with the
OUTPUT phrase is executed for the file, will be used to specify the
number of lines that are to comprise each of the indicated sections for
the first logical page.

b. . The values of the data items, at the time a WRITE statement with the
ADVANCING PAGE phrase is executed or page overflow condition occurs
(See The WRITE STATEMENT), will be used to specify the number of lines
that are to comprise each of the indicated sections for the next logical
page.

8. The value of the data item referenced by data-name-2, if specified, at the
time an OPEN statement with the OUTPUT phrase is executed for the file,
will be used to define the footing area for the first logical page. At the time a
WRITE statement with the ADVANCING PAGE phrase is executed or a page
overflow condition occurs, it will be used to define the footing area for the
next logical page.

9. A LIN AGE-COUNTER is generated by the presence of a LIN AGE clause. The
value in the LIN AGE-COUNTER at any given time represents the line number
at which the device is positioned within the current page body. The rules
governing the LIN AGE-COU NTER are as follows:

a. A separate LIN AGE-COUNTER is supplied for each file described in the
File Section whose file description entry contains a LIN AGE clause.

b. LIN AGE-COUNTER may be referenced, but may not be modified, by
Procedure Division statements. Since more than one LIN AGE-COU NTER
may exist in a program, the user must qualify LIN AGE-COUNTER by
file-name when necessary.

c. LIN AGE-COUNTER is automatically modified, according to the following
rules, during the execution of a WRITE statement to an associated file:

* When the ADVANCING PAGE phrase of the WRITE statement is
specified, the LIN AGE-COUNTER is automatically reset to one.

5-12

*

*

*

When the ADVANCIN G identifier-2 or integer phrase of the WRITE
statement is specified, the LIN AGE-COU NTER is incremented by
integer or the value of the data item referenced by identifier-2.

When the ADVANCING phrase of the WRITE statement is not
specified, the LIN AGE-COUNTER is incremented by the value one.
(See The WRITE STATEMENT.)

The value of LIN AGE-COU NTER is automatically reset to one when
the device is repositioned to the first line that can be written on for
each of the succeeding logical pages. (See The WRITE STATEMENT.)

d. The value of LINAGE-COUNTER is automatically set to one at the time
an OPEN statement is executed for the associated file.

10. Each logical page is contiguous to the next with no additional spacing provided.

5-13

THE RECORD CONTAINS CLAUSE

Function

The RECORD CONTAINS clause specifies the size of data records.

General Format

RECORD CONTAINS integer-l TO integer-2 CHARACTERS

General Rule

The size of each data record is completely defined within the record description
entry, therefore this clause is never required. The RECORD CONTAINS clause is
specified for documentation purposes only.

THE VALUE OF CLAUSE

Function

The VALUE OF clause specializes the description of an item in the label records
associated with a file.

General Format

VAL UE OF data-name-l IS ~ d.ata-name-2 ~
--- - ~ hteral-l ~

[,data-name-3 IS ~ d.ata-name-4 ~]
~ hteral-2 ~

Syntax Rules

I. Data-name-2, data-name-3, etc. should be qualified when necessary but cannot
be subscripted or indexed, nor can they be items described with the USAGE IS
INDEX clause.

2. Data-name-2, data-name-3, etc. must be in the Working-Storage Section.

5-14

General Rules

1. This clause is used for documentation purposes only.

2. On input data-name-l is checked against data-name-2 or literal-l as specified
and data-name-3 against data-name-4 or literal-2 as specified, etc.

On output data-name-2 or literal-l are substituted for data-name-l as
specified and data-name-4 or literal-2 from data-name-3, etc.

3. A figurative constant may be substituted in the format above wherever a
literal is specified.

PROCEDURE DIVISIO N IN THE SEQUENTIAL 1-0 MODULE

THE CLOSE STATEMENT

Function

The CLOSE statement terminates the processing of files.

General Format

~
REEL~
~UNIT ~

WITH

CLOSE file-name-l

[' file-name-2

[

~ REEL~
~ UNIT ~

WITH

Syntax Rule

[WITH NO REWINDlJ
FOR REMOVAL J

.~ NO REWIND ~
~ LOCK ~

[
WITH NO REWINDl~­
FOR REMOVAL J

~ NO REWIND~
~ LOCK ~

The magnetic tape phrases REEL, UNIT, WITH NO REWIND, FOR REMOVAL, etc.
must only be used for sequential files. All magnetic tape phrases are for documentation
purposes only.

5-15

General Rules

1. A CLOSE statement may only be executed for a file in an open mode.

2. The action taken if the file is in the open mode when a STOP RUN statement
is executed is to close the file. The action taken for a file that has been
opened in a called program and not closed in that program prior to the
execution of a CANCEL statement for that program is to close the file.

3. If a CLOSE statement has been executed for a file, no other statement can be
executed that references that file, either explicitly or implicitly, unless an
intervening OPEN statement for that file is executed.

4. Following the successful execution of a CLOSE statement the record area
associated with file-name is no longer available. The unsuccessful execution
of such a CLOSE statement leaves the availability of the record area
undefined.

THE OPEN STATEMENT

Function

The OPEN statement "initiates the processing of files. It also performs checking
and/or writing of labels and other input-output operations.

General Format

OPEN

INPUT file-name-l

[, file-name-2

OUTPUT file-name-3

[' file-name-4

1-0 file-name-5

EXTEND file-name-7

Syntax Rules

[
REVERSED l
WITH NO REWINDJ

[
REVERSED In ...
WITH NO REWIND U

[WITH NO REWIND]

[WITH NO REWIND]] •••

[, file-name-6]

[, file-name-8]

1. The REVERSED and NO REWIND phrases can only be used with sequential
files and are for documentation purposes only.

2. The 1-0 phrase can be used only for disk files, except for files in Line
Sequential organization.

5-16

3. The EXTEND phrase can be used only for seqeuntial files, and Line Sequential
files.

4. The EXTEND phrase must not be specified with multiple file reels.

5. The files referenced in the OPEN statement need not all have the same
organiza tion or access.

General Rules

1. The successful execution of an OPEN statement determines the availability of
the file and results in the file being in an open mode.

2. The successful execution of an OPEN statement makes the associated record
area available to the program.

3. Prior to the successful execution of an OPEN statement for a given file, no
statement can be executed that references that file, either explicitly or
implicitly.

4. An OPE N statement must be successfully executed prior to the execution of any of
the permissible input-output statement. In Table 5-1, 'X' at an intersection
indicates that the specified statement, used in the sequential access mode, may be
used with the sequential file organization and open mode given at the top of the
column.

Table 5-1.

Statement

READ

WRITE

REWRITE

1 -

Permissible Combinations of Statements and OPEN Modes for
Sequential I/O.

Open Mode

Input Output Input-Output 1 Extend

X X

X X

X

This OPEN mode is not supported for ORGANIZATION line sequential
files.

5. A file may be opened with the INPUT, OUTPUT, EXTEND and 1-0 phrases in
the same program. Following the initial execution of an OPEN statement for
a file, each subsequent OPEN statement execution for that same file must be
preceded by the execution of a CLOSE statement for that file.

6. Execution of the OPEN statement does not obtain or release the first data
record.

5-17

7. The ASSIGNed name in the SELECT statement for a file is processed as
follows:

a. When the INPUT phrase is specified, the execution of the OPEN
statement causes the ASSIG Ned name to be checked in accordance with
the operating system conventions for opening files for input.

b. When the OUTPUT phrase is specified, the execution of the OPE N
statement causes the ASSIGNed name to be written in accordance with
the operating system conventions for opening files for output.

8. The file description entry for file-name-I, file-name-2, file-name-5,
file-name 6, file-name-7, and file-name-8 must be equivalent to that used
when this file was created.

9. If an input file is designated with the OPTIO N AL phrase -in its SELECT clause,
the object program causes an interrogation for the presence or absence of this
file. If the file is not present, the first READ statement for this file causes
the AT END condition to occur.

10. If the storage medium for the file permits rewinding, execution of the OPEN
statement causes the file to be positioned at its beginning.

11. For files being opened with the IN PUT or 1-0 phrase, the OPEN statement
set~ the current record pointer to the first record currently existing within the
file. If no records exist in the file, the current record pointer is set such that
the next executed READ statement for the file will result in an AT END
condition. If the file does not exist, OPEN INPUT will cause an error status.

12. When the EXTEND phrase is specified, the OPEN statement positions the file
immediately following the last logical record of that file. Subsequent WRITE
statement referencing the file will add records to the file as though the file
had been opened with the OUTPUT phrase.

13. The 1-0 phrase permits the opening of a disk file for both input and output
operations except for files in ORGANIZATION LINE SEQUENTIAL. If the
file does not exist it will be created.

14. Upon successful execution of an OPEN statement with the OUTPUT phrase
specified, a file is created. At that time the associated file contains no data
records. If a file of the same name exists, it will be deleted. If
write-protected, an error will occur.

5-18

THE READ STATEMENT

Function

The READ statement makes available the next logical record from a file.

General Format

READ file-name RECORD [INTO identifier] [; AT END imperative-statement]

Syntax Rules

1. The INTO phrase must not be used when the input file contains logical records
of various sizes as indicated by their record descriptions. The storage area
associated with identifier and the record area associated with file-name must
not be the same storage area.

2. The AT END phrase must be specified if no applicable USE procedure is
specified for file-name.

General Rules

1. The associated file must be open in the INPUT or 1-0 mode at the time this
statement is executed. (See The OPEN STATEMENT in this Section.)

2. The record to be made available by the READ statement is determined as
follows:

a. If the current record pointer was positioned by the execution of the OPEN
statement, the record pointed to by the current record pointer is made
available.

b. If the current record pointer was positioned by the execution of a previous
READ statement, the current record pointer is updated to point to the
next existing record in the file and then that record is made available.

3. The execution of the READ statement causes the va.lue of the FILE STATUS
data item, if any, associated with file-name to be updated. (See 1-0 STATUS
in this Section.)

4. Regardless of the method used to overlap access time with processing time,
the concept of the READ statement is unchanged in that a record is available
to the object program prior to the execution of any statement following the
READ statement.

5. When the logical records of a file are described with more than one record
description, these records automatically share the same storage area; this is
equivalent to an implicit redefinition of the area. The contents of any data
items which lie beyond the range of the current data record are undefined at
the completion of the execution of the READ statement.

5-19

6. If the INTO phrase is specified, the record being read is moved from the
record area to the area specified by identifier according to the rules specified
for the MOVE statement. The implied MOVE does not occur if the execution
of the READ statement was unsuccessful. Any subscripting or indexing
associated with identifier is evaluated after the record has been read and
im mediately before it is moved to the data item.

7. When the INTO phrase is used, the record being read is available in both the
input record area and the data area associated with identifier.

8. If, at the time of execution of a READ statement, the position of current
record pointer for that file is undefined, the execution of that READ
statement is unsuccessful.

9. If the end of a reel or unit is recognized during the execution of a READ
statement, an end-of-file status condition exists.

a. The standard ending reel/unit label procedure.

b. A reel/unit swap.

c. The standard beginning reel/unit label procedure.

d. The first data record of the new reel/unit is made available.

10. If a file described with the OPTIO N AL clause is not present at the time the
file is opened, then at the time of the execution of the first READ statement
for the file, the AT END condition occurs and the execution of the READ
statement is unsuccessful. The standard end of file procedures are not
performed. (See The FILE-CONTROL paragraph and the OPEN and the USE
statement descriptions in this Section.) Execution of the program then
proceeds as in General Rule 12.

II. If, at the time of the execution of a READ statement, no next logical record
exists in the file, the ATE N D condition occurs, and the execution of the
READ statement is considered unsuccessful. (See 1-0 STATUS.)

12. When the AT END condition is recognized the following actions are taken in
the specified order:

a. A value is placed into the FILE STATUS data item, if specified for this
file, to indicate an AT END condition. (See 1-0 STATUS.)

b. If the AT END phrase is specified in the statement causing the condition,
control is transferred to the AT END imperative-statement. Any USE
procedure specified for this file is not executed.

c. If the AT END phrase is not specified, then a USE procedure must be
specified, either explicitly or implicitly, for this file and that procedure is
executed.

When the AT END condition occurs, execution of the input-output
statement which caused the condition is unsuccessful.

5-20

13. Following the unsuccessful execution of any READ statement, the contents of
the associated record area and the position of the current record pointer are
undefined.

14. When the AT END condition has been recognized, a READ statement for that
file must not be executed without first executing a successful CLOSE
statement followed by the execution of a successful OPE N statement for that
file.

THE REWRITE STATEMENT

Function

The REWRITE statement logically replaces a record existing in a disk file.

General Format

REWRITE record-name [F RO M identifier]

Syntax Rules

1. Record-name and identifier must not refer to the same storage area.

2. Record-name is the name of a logical record in the File Section of the Data
Division and may be qualified.

General Rules

1. The file associated with record-name must be a disk file and must be open in
the 1-0 mode at the time of execution of this statement. (See The OPEN
STATEMENT in this Section.)

2. The last input-output statement executed for the associated file prior to the
execution of the REWRITE statement must have been a successfully executed
READ statement. The operating system logically replaces the record that was
accessed by the READ statement.

3. The number of character positions in the record referenced by record-name
must be equal to the number of character positions in the record being
replaced.

4. The logical record' released by a successful execution of the REWRITE
statement is no longer available in the record area unless the associated file is
saved in a SAME RECORD AREA clause. In this case, not only is the record
still available to the program in the record area as a record of this file, but as
a record of other files named in the SAME RECORD AREA clause.

5-21

5. The execution of a REWRITE statement with the FROM phrase is equivalent
to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the FROM
phrase. The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of the REWRITE statement.

6. The current record pointer is not affected by the execution of a REWRITE
statement.

7. The execution of the REWRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See 1-0
ST A TUS in this Section.)

8. The REWRITE statement cannot be used with line sequential files.

THE USE STATEMENT

Function

The USE statement specifies procedures for input-output error handling that are in
addition to the standard procedures provided by the input-output control system.

General Format

USE AFTER STANDARDlEXCEPTIONl PROCEDURE ON
ERROR ~

Syntax Rules

file-name-l [, file-name-2] •••
INPUT
OUTPUT
1-0
ExTEND

I. A USE statement, when present, must immediately follow a section header in
the declarative section and must be followed by a period followed by a space.
The remainder of the section must consist of zero, one or more procedural
paragraphs that define the procedure to be used.

2. The USE statement itself is never executed; it merely defines the conditions
calling for the execution of the USE procedures.

General Rules

1. If the AT END phrase has not been specified in the input-output statement,
the designated procedures are executed by the input-output system after
completing the standard input-output error routine upon recognition of the AT
END condition.

5-22

2. After execution of a USE procedure, control is returned to the invoking
routine.

3. Within a USE procedure, there must not be any reference to any
nondeclarative procedures. Conversely, in the nondeclarative portion there
must be no reference to procedure-names that appear in the declarative
portion, except that PERFORM statements may refer to a USE statement or
to the procedures associated with such a USE statement.

4. Within a USE procedure, there must not be the execution of any statement
that would cause the execution of a USE procedure that had previously been
invoked and had not yet returned control to the invoking routine.

THE WRITE STATEMENT

Function

The WRITE statement releases a logical record for an output file. It can also be used
for vertical positioning of lines within a logical page.

General Format

WRITE record-name [FROM identifier-I]

!BEFORE!
AFTER

(!:~:~~~;ier-2 \ [~:~~J
TAB
~monic-name
PAGE

ADVANCING I
[; AT ~ ~--oF-PAGE ~ imperative-statement]

Syntax Rules

1. Record-name and identifier-l must not reference the same storage area.

2. When TAB is specified the result is to cause the paper to throw to the standard
vertical tabulation position. A user-defined mnemonic-name .can be used
instead of TAB if they are associated in the SPECIAL-N AMES paragraph.

3. The record-name is the name of a logical record in the File Section of the
Data Division.

5-23

4. When identifier-2 is used in the ADVANCING phrase, it must be the name of
an elementary integer data item.

5. Integer on the value of the data item referenced by identifier-2 may be zero.

6. If the END-oF-PAGE phrase is specified, the LIN AGE clause must be
specified in the file description entry for the associated file.

7. The word END-OF-PAGE and EOP are equivalent.

8. The ADV AN CIN G TAB phrase cannot be specified when writing a record to a
file whose file description entry contains the LIN AGE clause.

General Rules

1. The associated file must be open in the OUTPUT OR EXTEND mode at the
time of the execution of this statement. (See The OPEN STATEMENT in this
Section.)

2. The logical record released by the execution of the WRITE statement is no
longer available in the record area unless the associated file is named in a
SAME RECORD AREA clause or the execution of the WRITE statement was
unsuccessful due to a boundary violation.

The logical record is also aVailable to the program as a record of other
files referenced in the same SAME RECORD AREA clause as the
associated output file, as well as to the file associated with record-name.

3. The results of the execution of the WRITE statement with the FROM phrase is
equivalent to the execution of:

a. T.he statement:

MOVE identifier-l TO record-name

according to the rules specified for the MOVE statement, followed by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of this WRITE
statement.

After execution of the WRITE statement is complete, the information in
the area referenced by identifier-l is available, even though the
information in the area referenced by record-name may not be. (See
General Rule 2.)

4. The current ·record pointer is unaffected by the execution of a WRITE
statement.

5-24

5. The execution of the WRITE statement causes the value of the FILE STATUS
data item, if any, associated with the file to be updated. (See 1-0 STATUS in
this Section.)

6. The maximum record size for a file is established at the time the file is
created and must not subsequently be changed.

7. The number of character positions on a disk required to store a logical record
in a file mayor may not be equal to the number of character positions defined
by the logical description of that record in the program.

8. The execution of the WRITE statement releases a logical record to the
operating system.

9. The ADVANCING phrase allows control of the vertical positioning of each line
on a representation of a printed page.

a. With ORGANIZATION SEQUENTIAL if the ADVANCING phrase is not
used, automatic advancing is provided when output is directed to a
list-device to act as if the user had specified AFTER ADVAN CING I
LINE. If the ADVANCING phrase is used, advancing is provided as
follows:

i. If integer is specified, the representation of the printed page is
advanced the number of lines equal to the value of integer.

ii. If the BEFORE phrase is used, the line is presented before the
representation of the printed page is advanced according to rule a
above.

iii. If the AFTER phrase is used, the line is presented after the
representation of the printed page is advanced according to rule a
above.

iv. If PAGE is specified, the record is presented on the logical page
before or after (depending on the phrase used) the device is
repositioned to the next logical page.

b. With ORGANIZATION LINE SEQUENTIAL, if the ADVANCING phrase is
not used, automatic advancing of one line is provided.

If the ADVANCING phrase is used, advancing is provided according to
rules 9aO) through 9aOv) above.

c. If the BEFORE phrase is used, the line is presented before the
representation of the printed page is advanced according to rule a above.

d. If the AFTER phrase is used, the line is presented after the representation
of the printed page is advanced according to rule a above.

5-25

e. If PAGE is specified, the record is presented on the logical page before or
after (depending on the phrase used) the device is repositioned to the next
logical page. If the record to be written is associated with a file whose
description entry contains a LIN AGE clause, the repositioning is to the
first line that can be written on the next logical page as specified in the
LINAGE clause. If the record to be written is associated with a file
whose file description entry does not contain a LINAGE clause, the
repositioning to the next logical page is accomplished in accordance with
an implementor-defined technique. If page has no meaning in conjunction
with a specific device, then advancing will be provided by the
implementor to act as if the user had specified BEFORE or AFTER
(depending on the phrase used) ADVANCING I LINE.

10. If the logical end of the representation of the printed page is reached during
the execution of a WRITE statement with the END-OF-PAGE phrase, the
imperative-statement specified in the END-OF-PAGE phrase is executed. The
logical end is specified in the LIN AGE clause associated with record-name.

II. An end-of-page condition is reached whenever the execution of a given WRITE
statement with the END-OF-PAGE phrase occurs when the execution of such
a WRITE statement causes the LINAGE-COUNTER to equal or exceed the
value specified by integer-2 or the data item referenced by data-name-2 of
the LINAGE clause, if specified. In this case, the WRITE statement is
executed and then the imperative statement in the END-OF-PAGE phrase is
executed.

An automatic page overflow condition is reached whenever the execution of a
given WRITE statement (with or without an END-OF-PAGE phrase) cannot be
fully accommodated within the current page body.

This occurs when a WRITE statement, if executed, would cause the
LINAGE-COUNTER to exceed the value specified by integer-lor the data
item referenced by data-name-l of the LIN AGE clause. In this case, the
record is presented on the logical page before or after (depending on the
phrase used) the device is repositioned to the first line that can be written on
the next logical page as specified in the LIN AGE clause. The imperative
statement in the END-OF-PAGE clause, if specified, is executed after the
record is written and the device has been repositioned.

If integer-2 or data-name-2 of the LIN AGE clause is not specified, no
end-of-page condition distinct from the page overflow condition is detected.
In this case, the end-of-page condition and page overflow condition occur
simultaneously.

If integer-2 or data-name-2 of the LIN AGE clause is specified, but the
execution of a given WRITE statement would cause LIN AGE-COUNTER to
simultaneously exceed the value of both integer-2 or the data item referenced
by data-name-2 and integer-lor the data item referenced by data-name-l,
then the operation proceeds as if integer-2 or data-name-2 had not been
specified.

5-26

12. When an attempt is made to write beyond the externally defined boundaries of
a sequential file, an exception condition exists and the contents of the record
area are unaffected. The following action takes place:

a. The value of the FILE STATUS data item, if any, of the associated file is
set to a value indicating a boundary violation. (See 1-0 STATUS in this
Section.)

b. If a USE AFTER STANDARD EXCEPTION declarative is explicitly or
implicitly specified for the file, that declarative procedure will then be
executed.

c. If a USE AFTER STANDARD EXCEPTIO N declarative is not explicitly or
implicitly specified for the file, the result is undefined.

5-27

SECTION 6

RELATIVE INPUT AND OUTPUT

INTRODUCTIO N TO THE RELATIVE 1-0 MODULE

, !he, Relative 1-0 module provides a capability to access records of a mass storage
~Ile I~ ,eIther a rB:ndom or sequential manner. Each record in a relative file is uniquely
IdentIfIed by an Integer value greater than zero which specifies the record's ordinal
position in the file.

LANGUAGE CONCEPTS

Organization

Relative file organization is permitted only on disk devices. A relative file
consists of records which are identified by relative record numbers. The file may be
thought of as composed of a serial string of areas, each capable of holding a logical
record. Each of these areas is denominated by a relative record number. Records are
stored and retrieved based on this number. For example, the tenth record area,
whether or not records have been written in the first through the ninth record areas.

Access Modes

In the sequential access mode, the sequence in which records are accessed is the
ascending order of the relative record numbers of all records which currently exist
within the file.

In the random access mode, the sequence in which records are accessed is
controlled by the programmer. The desired record is accessed by placing its relative
record number in a relative key data item.

In the dynamic access mode, the programmer may change at will from sequential
access to random access using appropriate forms of input-output statements.

Current Record Pointer

The current record pointer is a conceptual entity used in this document to
facilitate specification of the next record to be accessed within a given file. The
concept of the current pointer has no meaning for a file opened in the output mode.
The setting of the current record pointer is affected only by the OPEN, START and
READ statements.

1-0 Status

If the FILE STATUS clause is specified in a file control entry, a value is placed into
the specified two-character data item during the execution of an 0 PE N, CLOSE,
READ, WRITE, DELETE or START statement and before any applicable USE procedure
is executed, to indicate to the COBOL program the status of that input-output
operation.

6-1

Status Key I

The leftmost character position of the FILE STATUS data item is known as status
key I and is set to indicate one of the following conditions upon completion of the
input-output operation.

'0' - indicates Successful Completion
'1' - indicates At End
'2' - indicates Invalid Key
'3' - indicates Permanenet Error
'9' - indicates Run-Time Error Message

The meaning of the above indications are as follows:

'0' - Successful Completion. The input-output statement was successfully
executed.

'1' - At End. The Format I READ statement was unsuccessfully executed as a
result of an attempt to read a record when no next logical record exists in
the file.

'2' - Invalid Key. The input-output statement was unsuccessfully executed as a
result of one of the following:

*
*
*

Duplicate Key
No Record Found
Boundary Violation

'3' - Permanent Error. The input-output statement was unsuccessfully executed
as the result of an input-output error, such as data check, parity error or
transmission error.

'9' - Run-Time Error Message. The input-output statement was
unsuccessfully executed as the result of a condition that is specified by
the Run-Time System. This value is used only to indicate a condition
not indicated by other defined values of status key 1 t or by specified
com binations of the values of status key 1 and status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is known as status
key 2 and is used to further describe the results of the input-output operation. This
character contains a value as follows:

*

*

If no, further information is available concerning the input-output operation,
then status key 2 contains a value of '0.

When status key 1 contains a value of '2' indicating an INVALID KEY condition,
status key 2 is used to designate the cause of that condition by the following
values:

2 - Indicates a duplicate key value. An attempt has been made to write a
record that would create a duplicate key in a relative file.

6-2

3 - Indicates no record found. An attempt has been made to access a record,
identified by a key, and that record does not exist in the file.

4 - Indicates a boundary violation. An attempt has been made to write
beyond the externally-defined boundaries of a relative file. This is
normally treated as a fatal error by the Operating System.

* When status key 1 contains a value of '9', the value of status key 2 is the
Run-Time Error Message number. Appendix J contains some details
of the status-key-2 representation. Note that it is not possible to
extract .this number directly.

Status key 2 is a hexadecimal number which is displayed in ASCII. This
returned ASCII character must be converted back to its hexadecimal equivalent
by the user.

This ASCII character and its hexadecimal equivalent are located in Table
B-2 in Appendix B of the BIOS Reference Manual. Find this character in the

.table and then convert its corresponding character code (in hex) to decimal.
The decimal number will be the COBOL Run~Time error.

Valid Combinations of Status Keys land 2

The valid permissible combinations of the values of status key 1 and status key 2
are shown in the table. An 'X' at an intersection indicates a valid permissible
combination.

Status Key 1 Status Key 2

No Further DuplIcate No Record Boundary
Information Key Found Violation
(0) (2) (3) (4)

Successful
Completion (0) X

At End (1) X

Invalid Key (2) X X X

Permanent
Error (3) X

Implementor Run-Time System Error Message Number
Defined (9)

6-3

The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the execution of a START,
READ, WRITE, REWRITE or DELETE statement. For details of the causes of the
condition, see The START Statement, The READ Statement, The WRITE Statement,
The REWRITE Statement, and The DELETE Statement later in this Section.

When the INVALID KEY condition is recognized, the Operating System takes these
actions in the following order:

1. A value is placed into the FILE STATUS data item, if specified for this file, to
indicate an INVALID KEY condition. (See'I-O Status in this Section.)

2. If the INVALID KEY phrase is specified in the statement causing the
condition, control is transferred to the INVALID KEY imperative statement.
Any USE procedure specified for this file is not executed.

3. If the INVALID KEY phrase is not specified, but a USE procedure is specified,
either explicitly or implicitly, for this file, that procedure is executed.

When the INVALID KEY condition occurs, execution of the input-output statement
which recognized the condition is unsuccessful, and the file is not affected.

The AT END Condition

The AT END condition can occur as a result of the execution of a READ
statement. For details of the causes of the condition, see The READ Statement later in
this Section.

6-4

ENVIRONMENT DIVISION IN THE RELATIVE 1-0 MODULE

INPUT-OUTPUT SECTION

The File-Control Paragraph

Function

The FILE-CONTROL paragraph name each file and allows specifications of other
file-related information.

General Format

FILE CONTROL [!ile-control-entryJ •••

The File Control Entry

Function

The file control entry names a file and may specify other file-related information.

General Format

SELECT file-name

ASSIGN TO {external-file-name-literal}
file-identifier

[{
external-file-name-literal}]

' file-identifier

[
; RESERVE integer-l [AREA]]

AREAS

; ORGANIZATION IS RELATIVE

; ACCESS MODE IS

SEQUENTIAL

RANDOM
DYNAMIC

[; FILE STATUS IS data-name-2].

6-5

,RELA TIVE KEY IS data-name-l

, RELATIVE KEY IS data-name-l

Syntax Rules

1. The SELECT clause must be specified first in the file control entry. The
clauses which follow the SELECT clause may appear in any order.

2. Each file described in the Data Division must be named once and only once as
file-name in the FILE-CONTROL paragraph. Each file specified in the file
control entry must have a file description entry in the Data Division.

3. If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied.

4. Data-name-2 must be defined in the Data Division as a two-character data
item of the category alphanumeric and must not be defined in the File Section,
the Report Section, or the Communication Section.

5. Data-name-l and data-name-2 may be qualified.

6. If a relative file is to be referenced by a START statement, the RELATIVE
KEY phrase must be specified for that file.

7. Data-name-l must not be defined in a record description entry associated with
that file-name.

8. The data item referenced by data-name-l must be defined as an unsigned
integer.

General Rules

1. The ASSIGN clause specifies the association of a file referenced by the
SELECT clause to a real file on the system. The first assignment takes
place. Subsequent assignments within anyone ASSIGN clause are for
documentation purposes only.

2. The RESERVE clause allows the user to specify the number of input-output
areas allocated. If the RESERVE clause is specified, the number of
input-output areas allocated is equal to the value of integer-I. The RESERVE
clause is treated as for documentation purposes only.

3. The ORGANIZATION clause specifies the logical structure of a file. The file
organization is established at the time a file is created and cannot
subsequently be changed.

4. When the access mode is sequential, records in the file are accessed in the
sequence dictated by the file organization. This sequence is the order of
ascending relative record numbers of existing records in the file.

6-6

5. When the FILE STATUS clause is specified, a value will be moved by the
operating system into the data item specified by data-name-2 after the
execution of every statement that references that file either explicitly or
implicitly. This value indicates the status of execution of the statement. (See
1-0 Status in this Section.)

6. If the access mode is random, the value of the RELATIVE KEY data item
indicates the record to be accessed.

7. When the access mode is dynamic, records in the file may be accessed
sequentially and/or randomly. (See General Rules 4 and 6.)

8. All records stored in a relative file are uniquely identified by relative record
numbers. The relative record number of a given record specifies the record's
logical ordinal position in the file. The first logical record has a relative
record number of 1, and subsequent logical records have relative record
numbers of 2, 3, 4,

9. The data item specified by data-name-l is used to communicate a relative
record number between the user and the Operating System.

10. When the file-name is ASSIGNed to a file-identifier, and that file­
identifier is then declared in WORKING-STORAGE, B 20 COBOL expects
the file-identifier to be followed by (to terminate with) a space.

Example:
01 your-file PIC X(9) VALUE "IND.FILE"

The I-a-CONTROL Paragraph

Function

The I-O-CONTROL paragraph specifies the points at which rerun is to be
established and the memory area which is to be shared by different files.

General Format

I-a-CONTROL

[

)file-name-l t {integer-l RECORDS OF file-name-2}]
; RERUN ON limplementor-name f EVERY integ.e~-2 CLOCK-UNITS

condItion-name

[;SAME rRECORD] AREA FOR file-name-3 ~ file-name-4J •••]

Syntax Rules

1. The I-O-CONTROL paragraph is optional.

2. File-name-l must be a sequentially organized file.

6-7

3. When either the integer-l RECORDS clause or the integer-2 CLOCK-UNITS
clause is specified, implementor-name must be given in the RERUN clause.

4. More than one RER UN clause may be specified for a given file-name-2,
subject to the following restriction

When multiple integer-l RECORDS clauses are specified, no two of them
may specify the same file-name-2.

5. Only one RERUN clause containing the CLOCK-UNITS clause may be
specified.

6. The two forms of the SAME clause (SAME AREA, SAME RECORD AREA) are
considered separately in the following:

a. A file-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD AREA
clause.

c. If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all of the file-names in that SAME AREA clause
must appear in the SAME RECORD AREA clause. However, additional
file-names not appearing in that SAME AREA clause may also appear in
that SAME RECORD AREA clause. The rule that only one of the files
mentioned in a SAME AREA clause can be open at any given time takes
precedence over the rule that all files mentioned in a SAME RECORD
AREA clause can be open at any given time.

7. The files referenced in the SAME AREA or SAME RECORD AREA clauses
need not all have the same organization or access.

General Rules

1. The RERUN clause is treated as for documentation purposes only.

2. The SAME RECORD AREA clause specifies that two or more files are to use
the same memory area for processing of the current logical record. All of the
files may be open at the same time. A logical record in the SAME RECORD
AREA is considered as a logical record of each opened output file whose
file-name appears in this SAME RECORD AREA clause and of the most
recently read input file whose file-name appears in this SAME RECORD AREA
clause. This is equivalent to an implicit redefinition of the area i.e., records
are aligned on the leftmost character position.

6-8

DATA DIVISION IN THE RELATIVE 1-0 MODULE

FILE SECTIO N

In a COBOL program the file description entry (FD) represents the highest level or
organization in the File Section. The File Section header is followed by a file
description entry consisting of a level indicator (FD), a file-name and a series of
independent clauses. The FD clauses specify the size of the logical and physical
records, the presence or absence of label records, the value of implementor-defined
label items, and the names of the data records which comprise the file. The entry itself
is terminated by a period.

RECORD DESCRIPTION STRUCTURE

A record description consists of a set of data description entries which describe the
characteristics of a particular record. Each data description entry consists of a
level-number followed by a data-name if required, followed by a series of independent
clauses as required. A record description has a hierarchical structure and therefore the
clauses used with an entry may vary considerably, depending upon whether or not it is
followed by subordinate entries. The structure of a record description is defined in
CONCEPTS OF LEVELS in Section 2 while the elements alloweci in a record description
are shown in the DATA DESCRIPTION-COMPLETE ENTRY SKELETON in Section 3.

THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON

Function

The file description furnishes information concerning the physical structure,
identification, and record names pertaining to a given file.

6-9

General Format

FD file':"name

[; BLOCK CONTAINS [integer-l TO] integer-2

1
RECORDS !]
CHARACTERS

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

[; LABEL {RECORD IS ~ STANDARD}]
RECORDS AR ._M_I __

"

[
{

data-name-l }
; VALUE OF implementor-name-l IS literal-l

, implementor-name-2 IS 1 data-name-2!]]
literal-2 •••

[
; DATA {RECORD IS } data-name-3 [, data-name-4] J

RECORDS ARE ••••

Syntax Rules

1. The level indicator FD identifies the beginning of a file description and must
precede the file-name.

2. The clauses which follow the name of the file are optional in many cases, and
their order of appearance is immaterial.

3. One or more record description entries must follow the file description entry.

THE BLOCK CONTAINS CLAUSE

Function

The BLOCK CONTAINS clause specifies the size of a physical record.

General Format

BLOCK CONTAINS finteger-l TO] integer-2
{

RECORDS }
CHARACTERS

General Rule

This clause is required for documentation purposes only.

6-10

THE DATA RECORDS CLAUSE

Function

The DATA RECORDS clause serves only as documentation for the names of data
records with their associated file.

General Format

DATA

Syntax Rule

) RECORD IS l data-name-l l RECORDS ARE S [,data-name-2]

Data-name-l and data-name-2 are the names of data records and must have 01
level-number record descriptions, with the same names, associated with them.

General Rule

The DATA RECORDS clause is specified for documentation purposes only.

THE LABEL RECORDS CLAUSE

Function

The LABEL RECORDS clause specifies whether labels are present.

General Format

LABEL) RECORD IS } J STANDARD} l RECORDS ARE l OMITTED

Syntax Rule

This clause is optional in every file description entry.

General Rule

This clause is used for documentation purposes only.

6-11

THE RECORD CONTAINS CLAUSE

Function

The RECORD CONTAINS clause specifies the size of data records.

Format

RECORD CONTAINS integer-l [TO] integer-2 CHARACTERS

General Rule

The size of each data record is completely defined within the record description
entry, therefore, this clause is never required.

The RECORD CONTAINS clause is specified for documentlition purposes only.

6-12

THE VALUE OF CLAUSE

Function

The VALUE of clause specializes the description of an item in the label records
associated with a file.

General Format

VALUE OF data-name-l IS

[,data-name-3 IS

Syntax Rules

~ data-name-2 ~
~ literal-l ~

~ data-name-4!J'
~ literal-2

1. Data-names should be qualified when necessary, but cannot be subscripted or
indexed, nor can they be items described with the USAGE IS INDEX clause.

2. Data-name-2, data-name-4 etc., must be in the Working-Storage Section.

General Rules

1. This clause is for documentation purposes only.

The compiler checks that data-name-l matches in value data-name-2 or
literal-I, data-name-3 matches in value data-name-4 or literal-2, etc., for
input files. For output files, the value of data-name-2 or literal-l is
substituted for data-name-l, the value of data-name-4 or literal-2 is
substituted for data-name-3, etc.

2. A figurative constant may be substituted in the format above wherever a
literal is specified.

6-13

PROCEDURE DIVISION IN THE RELATIVE 1-0 MODULE

THE CLOSE STATEMENT

Function

The CLOSE statements terminates the processing of files. The LOCK is for
docum entary purposes only.

General Format

CLOSE file-name-l [WITH LOCK] [,file-name-2 [WITH LOCK]] •••

Syntax Rule

The files referenced in the CLOSE statement need not all have the same
organization or access.

General Rules

I. A CLOSE statement may only be executed for a file in an open mode.

2. The action taken if a file is in the open mode when a STOP RUN statement is
executed is to close the file. The action taken for a file that has been opened
in a called program and not closed in that program prior to the execution of a
CA N CEL statement for the program is to close the file.

3. If a CLOSE statement has been executed for a file, no other statement can be
executed that references that file, either explicitly or implicitly, unless an
intervening OPEN statement for that file is executed.

4. Following the successful execution of a CLOSE statement, the record area
associated with file-name is no longer available. The unsuccessful execution
of such a CLOSE statement leaves the availability of the record area
undefined.

6-14

THE DELETE STATEMENT

Function

The DELETE statement logically removes a record from a mass storage file.

General Format

DELETE file-name RECORD [;INVALID KEY imperative-stbtement]

Syntax Rules

1. The INVALID KEY phrase must not be specified for a DELETE statement
which references a file which is in sequential access mode.

2. The INVALID KEY phrase must be specified for a DELETE statement which
references a file which is not in sequential access mode and for which an
applicable USE procedure is not specified.

General Rules

1. The associated file must be open in the 1-0 mode at the time of the execution
of this statement. (See THE OPEN STATEMENT later in this Section).

2. For files in the sequential access mode, the last input-output statement must
have been a successfully executed READ statement. The Operating System
logically removes from the file the record that was accessed by that READ
statement.

3. For a file in random or dynamic access mode, the Operating System logically
removes from the file that record identified by the contents of the RELATIVE
KEY data item associated with file-name. If the file does not contain the
record specified by the key, an INVALID key condition exists. (See The
INVALID KEY Condition in this Section.)

4. After the successful execution of a DELETE statement, the identified record
has been logically removed from the file and can no longer be accessed.

5. The execution of a DELETE statement does not affect the contents of the
record area associated with file-name.

6. The current record pointer is not affected by the execution of a DELETE
statement.

7. The execution of the DELETE statement causes the value of the specified
FILE STATUS data item, if any, associated with the file-name to be updated.
(See 1-0 STATUS in this Section.)

6-15

THE OPEN STATEMENT

Function

The OPEN statement initiates the processing of files. It also performs checking
and/or writing of labels and other input-output operations.

General Format

Syntax Rule

! IN PUT file-name-l
OUTPUT file-name-3
I=Q file-name-5

[,file-name-2J···l
[, file-nam e-4]... • ••
[,file-name-6] .••

The files referenced in the OPEN statement need not all have the same
organization or access.

General Rules

1. The successful execution of an OPEN statement determines the availability of
the file and results in the file being in an open mode.

2. The successful execution of the OPEN statement makes the associated record
area available to the program.

3. Prior to the successful execution of an OPEN statement for a given file, no
statement can be executed that references that file, either explicitly or
implicitly.

4. An OPE N statement must be successfully executed prior to the execution of
any of the permissible input-output statements. In Table 6-1, 'X' at an
intersection indicates that the specified statement, used in the access mode
given for that row, may be used with the relative file organization and the
open mode given at the top of the column.

6-16

File Access
Mode

Sequential

Random

Dynamic

Table 6-1. Permissible Combinations of Statements and
Open Modes for Relative I/O.

Open Mode
Statement

nput Output Input/Output

READ X X

WRITE X

REWRITE X

START X X

DELETE X

READ X X

WRITE X X

REWRITE X

START

DELETE X

READ X X

WRITE X X

REWRITE X

START X X

DELETE X

5. A file may be opened with the INPUT, OUTPUT, AND 1-0 phrases in the same
program. Following the initial execution of an OPEN statement for a file,
each subsequent execution for that same file must be preceded by the
execution of a CLOSE statement for that file.

6. Execution of the OPEN statement does not obtain or release the first data
record.

7. The file description entry for file-name-l, file-name-2, file-name-5 or
file-name-6 must be equivalent to that used when this file was created.

6-17

8. For files being opened with the IN PUT or 1-0 phrase, the OPE N statement
sets the current record pointer to the first record currently existing within the
file. If no records exist in the file, the current record pointer is set such that
the next executed Format I READ statement for the file will result in an AT
END condition. If the file does not exist, OPEN INPUT will cause an error
status.

9. The 1-0 phrase permits the opening of a file for both input and output
operations. If the file does not exist, it will be created.

10. Upon successful execution of an OPEN statement with the OUTPUT phrase
specified, a file is created. At the time, the associated file contains no data
records. If a file of the same number exists it will be deleted. If write
protected, an error status occurs.

6-18

THE READ STATEMENT

Function

For sequential access, the READ statement makes available the next logical record
from a file. For random access, the READ statement makes available a specified
record from a disk file.

General Format

Format 1

READ file-name [NEXT] RECORD [INTO identifier]
[; AT END imperative-statement]

Format 2

READ file-name RECORD [INTO identifier] [;INVALID KEY imperative-statement]

Syntax Rules

1. The INTO phrase must not be used when the input file contains logical records
of various sizes as indicated by their record descriptions. The storage area
associated with identifier and the record area associated with file-name must
not be the same storage area.

2. Format 1 must be used for all files in sequential access mode.

3. The NEXT phrase must be specified for files in dynamic access mode, when
records are to be retrieved sequentially.

4. Format 2 is used for files in random access mode or for files in dynamic access
mode when records are to be retrieved randomly.

5. The INVALID KEY phrase or the AT END phrase must be specified if no
applicable USE procedure is specified for file-name.

General Rules

1. The associated files must be open in the IN PUT or 1-0 mode at the time this
statement is executed. (See THE OPEN STATEMENT in this Section.)

6-19

2. The record to be made available by a Format I READ statement is determined
as follows:

a. The record, pointed to by the current record pointer, is made available
provided that the current record pointer was positioned by the START or
OPEN statement and the record is still accessible through the path
indicated by the current record pointer; if the record is no longer
accessible, which may have been caused by the deletion of the record, the
current record pointer is updated to point to the next existing record in
the file and that record is then made available.

b. If the current record pointer was positioned by the execution of a previous
READ statement, the current record pointer is updated to point to the
next existing record in the file and then that record is made available.

3. The execution of the READ statement causes the value" of the FILE STATUS
data item, if any, associated with file-name to be updated. (See 1-0 Status in
this Section.)

4. Regardless of the method used to overlap access time with processing time,
the concept of the READ statement is unchanged in that a record is available
to the object program prior to the execution of any statement following the
READ statement.

5. When the logical records of a file are described with more than one record
description, these records automatically share the same storage area; this is
equivalent to an implicit redefinition of the area. The contents of any data
items which lie beyond the range of the current data record are undefined at
the completion of the execution of the READ statement.

6. If the INTO phrase is specified, the record being read is moved from the
record area to the area specified by identifier according to the rules specified
for the MOVE statement without the CORRESPONDING phrase. The implied
MOVE does not occur if the execution of the READ statement was
unsuccessful. Any subscripting or indexing associated with identifier is
evaluated after the record has been read and immediately before it is moved
to the data item.

7. When the INTO phrase is used, the record being read is available in both the
input record area and the data area associated with identifier.

8. If, at the time of execution of a Format I READ statement, the position of
current record pointer for that file is undefined, the execution of that READ
statement is unsuccessful.

9. If, at the time of execution of a Format I READ statement, no next logical
record exists in the file, the ATE N D condition occurs, and the execution of
the READ statement is considered unsuccessful. (See 1-0 Status in this
Section.)

6-20

10. When the AT END condition is recognized the following actions are taken in
the specified order:

a. A value is placed into the FILE STATUS data item, if specified for this
file, to indicate an AT END condition. (See 1-0 Status in this Section.)

b. If the AT END phrase is specified in the statement causing the condition,
control is transferred to the AT END imperative-statement. Any USE
procedure specified for this file is not executed. .

c. If the AT END phrase is not specified, then a USE procedure must be
specified, either explicitly or implicitly, for this file, and that procedure
is executed.

11. Following the unsuccessful execution of any READ statement, the contents of
the associated record area and the position of the current record pointer are
undefined.

12. When the AT END condition has been recognized, a Format 1 READ statement
for that file must not be executed without first executing one of the following:

a. A successful CLOSE statement followed by the e,..ecution of a successful
OPEN statement for that file.

b. A successful START statement for that file.

c. A successful Format 2 READ statement for that file.

13. For a file for which dynamic access mode is specified, a Format 1 READ
statement with the N EXT phrase specified causes the next logical record to be
retrieved from the file as described in General Rule 2.

14. If the RELATIVE KEY phrase is specified, the execution of a Format 1 READ
statement updates the contents of the RELATIVE KEY data item such that it
contains the relative record number of the record made available.

15. The execution of a Format 2 READ statement sets the current record pointer
to, and makes available, the record whose relative record number is contained
in the data item named in the RELATIVE KEY phrase for the file. If the file
does not contain such a record, the INVALID KEY condition exists and
execution of the READ statement is unsuccessful. (See The INVALID KEY
Condition in this Section).

6-21

THE REWRITE STATEMENT

Function

The REWRITE statement logically replaces a record existing in a disk file.

General Format

REWRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Syntax Rules

1. Record-name and identifier must not refer to the same storage area.

2. Record-name is the name of a logical record in the File Section of the Data
Division.

3. The INVALID KEY phrase must be specified in the REWRITE statement for
files in the random or dynamic access mode for which an appropriate USE
procedure is not specified.

General Rules

1. The file associated with record-name must be open in the 1-0 mode at the
time of execution of this statement. (See THE OPEN STATEMENT in this
Section).

2. For files in the sequential access mode, the last input-output statement
executed for the associated file prior to the execution of the REWRITE
statement must have been a successfully executed READ statement. The
Operating System logically replaces the record that was accessed by the
READ statement.

3. The number of character positions in the record referenced by record-name
must be equal to the number of character positions in the record being
replaced.

4. The logical record released by a successful execution of the REWRITE
statement is no longer available in the record area unless the associated file is
named in a SAME RECORD AREA clause, in which case the logical record is
avoidable to the program as a record of other files appearing in the same
SAME RECORD AREA clause as the associated 1-0 file, as well as to the file
associated with record-name.

6-22

5. The execution of a REWRITE statement with th~ FROM phrase is equivalent
to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the FROM
phrase. The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of the REWRITE statement.

6. The current record pointer is not affected by the execution of a REWRITE
statement.

7. The execution of the REWRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See 1-0
ST ATUS in this Section).

8. For a file accessed in either random or dynamic access mode, the Operating
System logically replaces the record specified by the contents of the
RELATIVE KEY data item associated with the file. If the file does not
contain the record specified by the key, the INVALID KEY condition exists.
(See THE INVALID KEY CO NDITIO N in this Section). The updating operation
does not take place and the data in the record area is unaffected.

THE START STATEMENT

Function

The START statement provides a basis for logical positioning within a relative file,
for subsequent sequential retrieval of records.

General Format

IS EQUAL TO
IS =

STARTfile~ame KEY
IS GREATER THAN
IS) data-name

IS NOT LESS THAN
IS NOT(--

[; INVALID KEY imperative-statement]

NOTE

The required relational characters')', and ,(, and '='
are not underlined to avoid confusion with other
symbols such as '), (greater than or equal to).

6-23

Syntax Rules

1. File-name must be the name of a file with sequential or dynamic access.

2. Data-name may be qualified.

3. The INVALID KEY phrase must be specified if no applicable USE procedure is
specified for file-name.

4. Data-name, if specified, must be the data item specified in the RELATIVE
KEY phrase of the associated file control entry.

General Rules

1. File-name must be open in the INPUT or 1-0 mode at the time that the
START statement is executed. (See THE OPEN STATEMENT in this Section).

2. If the KEY phrase is not specified, the relational operator 'IS EQUAL TO' is
implied.

3. The type of comparison specified by the relational operator in the KEY
phrase occurs between a key associated with a record in the file referenced
by file-name and a data item as specified in General Rule 5.

a. The current record pointer is positioned to the first logical record
currently existing in the file whose key satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, an INVALID
KEY condition exists, the execution of the START statement is
unsuccessful, and the position of the current record pointer is
undefined. (See The INVALID KEY Condition in this Section).

4. The execution of the START statement causes the value of the FILE STATUS
data item, if any, associated with file-name to be updated. (See 1-0 STATUS
in this Section).

5. The comparison described in General Rule 3 uses the data item referenced by
the RELATIVE KEY clause associated with file-name.

THE USE STATEMENT

Function

The USE statement specified procedures for input-output error handling that are in
addition to the standard procedures provided by the input-output control system.

6-24

General Format

USE AF TER STANDARD

Syntax Rules

EXCEPTION
PROCEDURE ON
ERROR I

file-narne-l [, file-name-2] ~ • • •
INl:lUT
OUTPUT
1-0

1. A USE statement, when present, must immediately follow a section header in
the declaratives section and must be followed by a period followed by a
space. The remainder of the section must consist of zero, one or more
procedural paragraphs that define the procedures to be used.

2. The USE statement itself is never executed; it merely defines the conditions
calling for the execution of the USE procedures.

3. The same file-name can appear in a different specific arrangement of the
format. Appearance of a file-name in a USE statement must not cause the
simultaneous request for execution of more than one USE procedure.

4. The words ERROR and EXCEPTION are synonymous and may be used
interchangably.

5. The files implicitly or explicitly referred in a USE statement need not all
have the same organization or access.

General Rules

1. If the INVALID KEY or AT END phrases have not been specified in the
input-output statement, the designated procedures are executed by the
input-output system after completing the standard input-output error routine,
upon recognition of the INVALID KEY or AT END conditions.

2. After execution of a USE procedure, control is returned to the invoking
routine.

3. Within a USE procedure, there must not be any reference to any
nondeclarative procedure·s. Conversely, in the non declarative portion there
must be no reference to procedure-names in the declarative portion, except
that PERFORM statements may refer to a USE statement or to the
procedures associated with such a USE statement.

4. Within a USE procedure, there must not be the execution of any statement
that would cause the execution of a USE procedure that had previously been
invoked and had not yet returned control to the invoking routine.

6-25

THE WRITE STATEMENT

Function

The WRITE statement releases a logical record for an output or input-output file.

General Format

WRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Syntax Rules

I. Record-name and identifier must not reference the same storage area.

2. The record-name is the name of a logical record in the File Section of the
Data Division.

3. The INVALID KEY phrase must be specified if an applicable USE procedure is
not specified for the associated file.

General Rules

I. The' associated file must be open in the OUTPUT or 1-0 mode at the time of
the execution of this statement. (See THE OPEN STATEMENT Section).

2. The logical record released by the execution of the WRITE statement is no
longer available in the record area unless the associated file is named in a
SAME RECORD AREA clause or the execution of the WRITE statem,ent is
unsuccessful due to an INVALID KEY condition.

G
he logical record is also available to the program as a record of other fil~e

referenced in the same SAME RECORD AREA clause as well as the file
associated with record-name:'

3. The results of the execution of the WRITE statement with the FROM phrase
is equivalent to the execution of

a. The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement, followed by:

6-26

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of this WRITE
statement.

After execution of the WRITE statement is complete, the information
in the area referenced by identifier is available, even though the
information in the area referenced by record-name may not be. (See
General Rule 2 above).

4. The current record pointer is unaffected by the execution of a WRITE
statement.

5. The execution of the WRITE statement causes the value of the FILE STATUS
data item, if any, associated with the file to be updated. (See 1-0 Status in
this Section).

6. The maximum record size for a file is established at the time the file is
created and must not subsequently be chang-ed.

7. The number of character positions on a mass storage device required to store
a logical record in a file mayor may not be equal to the number of character
positions defined by the logical description of that record in the program.

8. The execution of the WRITE statement releases a logical record to the
operating system.

9. When a file is opened in the output mode, records may be placed into the file
by one of the following-:

a. If the access mode is sequential, the WRITE statement will cause a
record to be released to the Operating System. The first record will
have a relative record number of one and subsequent records released
will have relative record numbers of 2, 3, 4, ••• If the RELATIVE KEY
data item has been specified in the file control entry for the associated
file, the relative record number of the record just released will be
placed into the RELATIVE KEY data item by the Operating System
during execution of the WRITE statement.

b. If the access mode. is random or dynamic, prior to the execution of the
WRITE statement, the value of the RELATIVE KEY data item must be
initialized in the program with the relative record number to be
associated with .the record in the record area. That record is then
released to the Operating System by execution of the WRITE statement.

6-27

10. When a file is opened in the 1-0 mode and the access mode is random or
dynamic, records are to be inserted in the associated file. The value of the
RELATIVE KEY data item must be initialized by the program with the
relative record number to be associated with the record in the record area.
Execution of a WRITE statement then causes the contents of the record area
to be released to the Operating System.

II. The INVALID KEy condition exists under the following circumstances:

a. When the access mode is random or dynamic, and the RELATIVE KEY
data item specifies a record which already exists in the file, or

b. When an attempt is made to write beyond the externally defined
boundaries of the file.

12. When the INVALID KEY condition is recognized, the execution of the WRITE
statement is unsuccessful, the contents of the record area are unaffected,
and the FILE STATUS data item, if any, of the associated file is set to a
value indicating the cause of the condition. Execution of the program
proceeds according to the rules stated in The INVALID KEY Condition in this
Section. (See also 1-0 Status in this Section).

6-28

SECTION 7

INDEXED INPUT AND OUTPUT

INTRODUCTION TO THE INDEXED 1-0 MODULE

The Indexed 1-0 module provides a capability to access records of a mass storage
file in either a random or sequential manner. Each record in an indexed file is uniquely
identified by the value of one or more keys within that record.

LANGUAGE CONCEPTS

Organization

A file whose organization is indexed is a mass storage file in which date records
may be accessed by the value of a key. A record description may include one or more
key data items, each of which is associated with an index. Each index provides a logical
path to the data records according to the contents of a data item within each record
which is the record key for that index.

The data item named in the RECORD KEY clause of the file control entry for a
file is the prime record key for that file. For purposes of inserting, updating and
deleting records in a file, each record is identified solely by the value of its prime
record key. This value must, therefore, be unique and must not be changed when
updating the record. Key lengths must not exceed 64 bytes.

A data item named in the ALTERNATE RECORD KEY clause of the file control
entry for a file is an alternative record key for that file. The value of an alternative
record key may be non-unique if the DUPLICATES phrase is specified for it. These
keys provide alternative access paths for retrieval of records from the file.

Access Modes

In the sequential access mode, the sequence in which records are accessed is the
ascending order of the record key values. The order of retrieval of records within a set
of records having duplicate record key values is the order in which the records were
written into the set.

In the random access mode, the sequence in which records are accessed is
controlled by the programmer. The desired record is accessed by placing the value of
its record key in the record key data item.

In the dynamic access mode, the programmer may change at will from sequential
access to random access using appropriate forms of input-output statements.

7-1

Current Record Pointer

The current record pointer is a conceptual entity used in this document to
facilitate specification of the next record to be accessed within a given file. The
concept of the current record pointer has no meaning for a file opened only in the
output mode. The setting of· the current record pointer is affected only by the OPEN,
START and READ statements.

1-0 Status

If the FILE STATUS clause is· specified in a file control entry, a value is placed into
the specified two-character data item during the execution of an OPE N, CLOSE,
READ, WRITE, REWRITE, DELETE or START statement and before any applicable USE
procedure is executed, to indicate to the COBOL program the status of that
input-output operation.

Status Key 1

The leftmost character position of the FILE STATUS data item is known as status
key 1 and is set to indicate one of the following conditions upon completion of the
input-output operation.

'0' - Successful Completion
'1' - At End
'2' - Invalid Key
'3' - Permanent Error
'9' - Run-Time Error Message

The meaning of the above indications are as follows:

'0' - Successful Completion. The input-output statement was successfully
executed.

'1' - At End. The Format 1 READ statement was unsuccessfully executed as a
result of an attempt to read a record when no next logical record exists in
the file.

'2' - Invalid Key. The input-output statement was unsuccessfully executed as a
result of one of the following:

Sequence Error
Duplicate Key
No Record Found
Boundary Violation

'3' - Permanent Error. The input-output statement was unsuccessful as the
result of an input-output error, such as data check, parity error, or
transm ission error.

'9' - Run-Time Error Message. The input-output statement was
unsuccessfully executed as the result of a condition that is specified by
the Run-Time System Error Message number. This value is used only to
indicate a condition not indicated by other defined values of status key
1, or by specified combinations of the value of status key 1 and status
key 2.

7-2

Status Key 2

The rightmost character position of the FILE STATUS data item is known as status
key 2 and is used to further describe the results of the input-output operation. This
character will contain a value as follows:

If no further information is available concerning the input-output operation,
then status key 2 contains a value of '0'.

When status key I contains a value of '0' indicating a successful completion,
status key 2 may contain a value of '2' indicating a duplicate key. This
condition indicates one of two possibilities:

1. For a READ statement, the key value for the current key of reference is equal
to the value of that same key in the next record within the current key of
reference.

2. For a WRITE or REWRITE statement, the record just written created a
duplicate key value for at least one alternate record key for which duplicates
are allowed.

3. When status key I contains a value of '2' indicating an INVALID KEY condition,
status key 2 contains values to designate the cause of that condition as follows:

Indicates a sequence error for a sequentially accessed indexed file. The
ascending sequence requirements of successive record key values have
been violated (see The WRITE Statement later in this Section), or the
prime record key value has been changed by the COBOL program between
the successful execution of a READ statement and the execution of the
next REWRITE statement for that file.

2 Indicates a duplicate key value. An attempt has been made to write or
rewrite a record that would create a duplicate key in an indexed file.

7-3

3 Indicates no record found. An attempt has been made to access a record,
identified by a key, and that record does not exist in the file.

4 Indicates a boundary violation. An attempt has been made to write
beyond the externally defined boundaries of an indexed file. This is
usually treated as a fatal error by operating system.

When status key I contains a value of '9,' the value of status key 2 is the run-time
system error message number. Appendix J contains sane details of the status­
key-2 representation. Note that it is not possible to extract this number directly.

Status key 2 is a hexadecimal number which is displayed in ASCII. This
returned ASCII character must be converted back to its hexadecimal equivalent
by the user.

This ASCII character and its hexadecimal equivalent are located in Table
B-2 in Appendix B of the BTOS Reference Manual. Find this character in the
table and then convert its corresponding character code (in hex) to decimal.
The decimal number will be the COBOL Run-Time error.

Valid Combinations of Status Keys I and 2

The valid permissible combinations of. the values of status key I and status key 2
are shown in the following table. An 'X' at an intersection indicates a valid permissible
combination.

Status Key I Status Key 2

No Further Sequence Duplicate No Record Boundary
Information Error Key Found Violation
(0) (I) (2) (3) (4)

Successful
Completion (0) X

At End (I) X

Invalid Key (2) X X X X

Permanent
Error (3) X

Implementor Run-Time System Error Message Number
Defined (9)

7-4

The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the execution of a START,
READ, WRITE, REWRITE or DELETE statement. For details of the causes of the
condition, see The START Statement, The READ Statement, The WRITE Statement,
and The DELETE Statement later in this section.

When the INVALID KEY condition is recognized, the operating system takes these
actions in the following order:

1. A value is placed into the FILE STATUS data item, if specified for this file, to
indicate an INVALID KEY condition. (See 1-0 Status).

2. If the INVALID KEY phrase is specified in the statement causing the
condition, control is transferred to the INVALID KEY imperative statement.
Any USE procedure specified for this file is not executed.

When the INVALID KEY condition occurs, execution of the input-output statement
which recognized the condition is unsuccessful and the file is not affected.

The AT END Condition

The AT END condition can occur as a result of the execution of a READ
statement. For details of the causes of the condition, see The READ Statement later in
this Section.

7-5

ENVIRONMENT DIVISION IN THE INDEXED 1-0 MODULE

IN PUT-OUTPUT SECTION

The File-Control Paragraph

Function

The FILE-CONTROL paragraph names each file and allows specification of other
file-related information.

General Format

FILE-CONTROL. [file-control-entry] •••

The File-Control Entry

Function

The file control entry names a file and may specify other file-related information.

General Format

SELECT file-name

ASSIG N TO iexternal-file-name-literal ~
file-identifier

[
, external-file-name-literal]

file-identifier

[; RESERVE integer-l [~~i~s]]
; ORGANIZATION IS INDEXED

[; ACCESS MODE IS l SEQUENTIAL l]
DYNAMIC
RANDOM

; RECORD KEY IS data-name-l

[; ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLCIATES1] •••

r; FILE STATUS IS data-name-3]

7-6

Syntax Rules

1. The SELECT clause must be specified first in the file control entry. The
clauses which follow the SELECT clause may appear in any order.

2. Each file described in the Da ta Division must be named once and only once as
file-name in the FILE-CONTROL paragraph. Each file specified in the file
control entry must have a file description entry in the Data Division.

3. If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied.

4. Data-name-3 must be defined in the Data Division as a two-character data
item of the category alphanumeric and must not be defined in the File Section.

5. Data-name-l and data-name-2 and data-name-3 may be qualified.

6. The data item referenced by data-name-l must be defined as a data item of
the category alphanumeric within a record description entry associated with
that file-name.

7. Data-name-l cannot describe an item whose size is variable. (See The
OCCURS Clause in Section 4).

8. Data-name-2 cannot reference an item whose leftmost character
position corresponds to the leftmost character position of an item
referenced by data-name-l or by any other data-name-2 associated
with this file.

General Rules

1. The ASSIG N clause specifies the association of the file referenced by
file-name to a storage medium.

(The first assignment takes effect. Subsequent assignments within anyone
ASSIG N clause are for documentation purposes only.)

2. The RESERVE clause allows the user to specify the number of input-output
areas allocated. If the RESERVE clause is specified, the number of
input-output areas allocated is equal to the value of integer-I.

3. The ORGANIZATION clauses specifies the logical structure of a file. The file
organization is established at the time a file is created and cannot
subsequently be changed.

4. When the access mode is sequential, records in the file are accessed in the
sequence dictated by the file organization. For indexed files this sequence is
the order of ascending record key values within a given key of reference.

5. When the FILE STATUS clause is specified, a value will be moved by the
operating system into the data item specified by data-name-3 after the
execution of every statement that references that file either explicitly or
implicitly. This value indicates the status of execution of the statement. (See
1-0 Status in this Section.)

7-7

6. If the access mode is random, the value of the record key data item indicates
the record to be accessed.

7. When the access mode is dynamic, records in the file may be accessed
sequentially and/or randomly. (See General Rules 4 and 6.)

8. The RECORD KEY clause specifies the record key that is the prime record
key for the file. The values of the prime record key must be unique among
records of the file. This prime record key provides an access path to records
in an indexed file.

COBOL only supports CHARACTER key types. If another key type is
desired, the file must not be created with or by COBOL.

9. An ALTERNATE RECORD KEY clause specifies a record key that is an
alternative record key for the file. This alternate record key provides an
alternate access path to record in an indexed file.

10. The data description of data-name-l and data-name-2 as well as relative
locations within a record must be the same as that used when the file was
created. The number of alternate keys for the file must also be the same as
that used when the file was created.

II. The DUPLICATES phrase specifies that the value of the associated alternate
record key may be duplicated within any of the records in the file. If the
DUPLICATES phrase is not specified, the value of the associated alternate
record key must not be duplicated among any of the records in the file.

12. When the file-name is ASSIGNed to a file-identifier, and that file­
identifier is then declared in WORKING-STORAGE, B 20 COBOL expects
the file-identifier to be followed by (to terminate with) a space.

Example:
01 your-file PIC X(9} VALUE "IND.FILE"

The I-O-CONTROL Paragraph

Function

The I-O-CONTROL paragraph specifies the points at which rerun is to be
established and the memory area which is to be shared by different files.

General Format

I-O-CONTROL

[
hile-name-l ~ integer-l RECORDS OF file-name-2

; RERUN ON ~implementor-name~ EVERY integer-2 CLOCK-UNITS
condition-name

[[;SAME [RECORD] AREA FOR file-name-3 ,[file-name-4] ••• J ...
7-8

]

Syntax Rules

1. The I-Q-CONTROL paragraph is optional. The whole paragraph is for
documentation purposes only when present.

2. File-name-l must be a sequentially organized file.

3. When either the integer-l RECORDS clause or the integer-2 CLOCK-UNITS
clause is specified, implementor-name must be given in the RERUN clause.

\

4. When multiple integer-l RECORDS clauses are specified, no two of them may
specify the same file-name-2.

5. Only one RERUN clause containing the CLOCK-UNITS clause may be
specified.

6. The two forms of the SAME clause (SAME AREA, SAME RECORD AREA) are
considered separately in the following:

More than one SAME clause may be included in a program, however:

a. A file-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD AREA
clause.

c. If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all of the file-names in the SAME AREA clause
must appear in the SAME RECORD AREA clause. However, additional
file-names not appearing in that SAME AREA clause may also appear in
that SAME RECORD AREA clause. The rule that only one of the files
mentioned in a SAME AREA clause can be open at any given time takes
precedence over the rule that all files mentioned in a SAME RECORD
AREA clause can be open at any given time.

7. The files referenced in the SAME AREA or SAME RECORD AREA clauses
need not all have the same organization or access.

General Rules

1. The RER UN clause is treated as for documentation purposes only.

2. The SAME AREA clause specifies that two or more files are to use the same
memory area during processing. The area shared includes all storage areas
assigned to the files specified; therefore, it is not valid to have more than one
of the files open at the same time. (See Syntax Rule 6c.)

3. The SAME RECORD AREA clause specifies that two or more files are to use
the same memory area for processing of the current logical reco'rd. All of the
files may be open at the same time. A logical record in the SAME RECORD
AREA is considered as a logical record of each opened output file whose
file-name appears in this SAME RECORD AREA clause and of the most
recently read input file whose file-name appears in this SAME RECORD AREA
clause. This is equivalent to an implicit redefinition of the area, i.e., records
are aligned on the leftmost character position.

7-9

DATA DIVISION IN THE INDEXED 1-0 MODULE

FILE SECTION

In a COBOL program the file description entry (FD) represents the highest level or
organization in the File Section. The File Section header is followed by a file
description entry consisting of a level indicator (FD), a file-name and a series of
independent clauses. The FD clauses specify the size of the logical and physical
records, the presence or absence of label records, the value of implementor-defined
label items, and the names of the data records which comprise the file. The entry itself
is terminated by a period.

RECORD DESCRIPTION STRUCTURE

A record description consists of a set of data description entries which describe the
characteristics of a particular record. Each data description entry consists of a
level-number followed by a data-name if required, followed by a series of independent
clauses as required. A record description has a hierarchical structure and therefore the
clauses used with an entry may vary considerably, depending upon whether or not it is
followed by subordinate entries. The structure of a record description is defined in
CONCEPTS OF LEVELS in Section 2 while the elements allowed in a record description
are shown in the DATA DESCRIPTION-COMPLETE ENTRY SKELETON in Section 3.

THE FILE DESCRIPTION- COMPLETE ENTRY SKELETON

Function

The file description furnishes information concerning the physical structure,
identification, and record names pertaining to a given file.

7-10

General Format

FD file-name

[; BLOCK CONTAINS integer-l [TO] integer-2 ~ RECORDS ~ J' i CHARACTERS ~

[; RECORD CONTAINS integer-3 [TO] integer-4 CHARACTERS]

LABEL ~ RECORD IS HSTANDARD~
~ RECORDS AREHOMITTED ~

[; VALUE OF im plementor-name-l IS l ~~~~~~~lme-l!
[

[, implementor-name-2 IS ~d.ata-name-2~J]
~ lIteral -2 ~ •••

[
; DATA l RECORD IS ! data-name-3 [,data-name-4] ••].

RECORDS ARE

Syntax Rules

1. The level indicator FD identifies the beginning of a file description and must
precede the file-name.

2. The clauses which follow the name of the file are optional in many cases, and
their order of appearance is immaterial.

3. One or more record description entries must follow the file description entry.

THE BLOCK CONTAINS CLAUSE

Function

The BLOCK CO NTAINS clause specifies the size of a physical record.

General format

BLOCK CONTAINS [integer-l TO] integer-2 l RECORDS !
CHARACTERS

General Rule

This clause is required for documentation purposes only.

7-11

THE DATA RECORDS CLAUSE

Function

The DATA RECORDS clause serves only as documentation for the names of data
records with their associated file.

General Format

DATA

Syntax Rule

1
RECORD IS ~
RECORDS ARE~

data-name-l [,data-name-2]

Data-name-l and data-name-2 are the names of data records and must have 01
level-number record descriptions, with the same names, associated with them.

General Rules

1. The presence of more than one data-name indicates that the file contains
more than one type of data record. These records may be of differing sizes,
different formats, etc. The order in which they are listed is not significant.

2. Conceptually, all data records within a file share the same area. This is in no
way altered by the presence of more than one type of data record within the
file.

THE LABEL RECORDS CLAUSE

Function

The LABEL RECORDS clause specifies whether labels are present.

General Format

LABEL

General Rule

lRECORD IS ~
RECORDS ARE~ l STANDARD~ OMITTED ~

This clause is used for documentation purposes only.

7-12

THE RECORD CONTAINS CLAUSE

Function

The RECORD CONTAINS clause specifies the size of data records.

General Format

RECORD CONTAINS [integer-l TO] integer-2 CHARACTERS

General Rule

The size of each data record is completely defined within the record description
entry, therefore, this clause is never required. The RECORD CONTAINS clause is
specified for documentation purposes only.

7-13

THE VALUE OF CLAUSE

Function

The VALUE of clause specializes the description of an item in the label records
associated with a file.

General Format

VALUE OF

Syntax Rules

data-name-l IS

,data-name-2 IS

data-name-2
literal-l

data-name-4
literal-2

1. Data-name-l, data-name-2, etc., should be qualified when necessary, but
cannot be subscripted or indexed, nor can they be items described with the
USAGE IS INDEX clause.

2. Data-name-l, data-name-2, etc., must be in the Working-Storage Section.

General Rules

1. For an input file, the appropriate label routine checks to see if the value of
implementor-name-l is equal to the value of literal-I, or of data-name-l,
whichever has been specified.

For an output file, at the appropriate time the value of implementor-name-l is
made equal to the value of literal-I, or of a data-name-l, whichever has been
specified.

2. A figurative constant may be substituted in the format above wherever a
literal is specified.

7-14

PROCEDURE DIVISIO N IN THE INDEXED 1-0 MODULE

THE CLOSE STATEMENT

Function

The CLOSE statements terminates the processing of files. The LOCK phrase is for
documentation purposes only.

General Format

CLOSE file-name-l [WITH LOCK] Gfile-name-2 [WITH LOCK]] •••

Syntax Rule

The files referenced in the CLOSE statement need not all have the same
organization or access.

General Rules

1. A CLOSE statement may only be executed for a file in an open mode.

2. The action taken if a file is in the open mode when a STOP RUN statement is
executed is to close the file. The action taken for a file that has been opened
in a called program and not closed in that program prior to the execution of a
CANCEL statement for the program is to close the file.

3. If a CLOSE statement has been executed for a file, no other statement can be
executed that references that file, either explicitly or implicitly, unless an
intervening OPE N statement for that file is executed.

4. Following the successful execution of a CLOSE statement, the record area
associated with file-name is no longer available. The unsuccessful execution
of such a CLOSE statement leaves the availability of the record area
undefined.

7-15

THE DELETE STATEMENT

Function

The DELETE statement logically removes a record from a mass storage file.

General Format

DELETE file-name RECORD [;INVALID KEY imperative-statement]

Syntax Rules

1. The INVALID KEY phrase must not be specified for a DELETE statement
which references a file which is in sequential access mode.

2. The INVALID KEY phrase must be specified for a DELETE statement which
references a file which is not in sequential access mode and for which an
applicable USE procedure is not specified.

General Rules

1. The associated file must be open in the 1-0 mode at the time of the execution
of this statement. (See The OPEN STATEMENT later in this Section).

2. For files in the sequential access mode, the last input-output statement
executed for file-name prior to the execution of the DELETE statement must
have been a successfully executed READ statement. The operating system
logically removes from the file the record that was accessed by that READ
statement.

3. For a file in random or dynamic access mode, the operating system logically
removes from the file that record identified by the contents of the prime
record key data item associated with file-name. If the file does not contain
the record specified by the key, an INVALID KEY condition exists. (See The
INVALID KEY CONDITION in this Section.)

4. After the successful execution of a DELETE statement, the identified record
has been logically removed from the file and can no longer be accessed.

5. The execution of a DELETE statement does not affect the contents of the
record area associated with file-name.

6. The current record pointer is not affected by the execution of a DELETE
statement.

7. The execution of the DELETE statement causes the value of the specified
FILE STATUS data item, if any, associated with file-name to be updated. (See
1-0 STATUS in this Section).

7-16

THE OPEN STATEMENT

Function

The OPEN statement initiates the processing of files. It also performs checking
and/or writing of labels and other input-output operations.

General Format

OPEN

Syntax Rule

lIN PUT file-name-l
O1JT1>UT file-nam e-3
1-0 file-nam e-5

[,file-name-2] ••• !
[,f~le-name-4] ••• • ••
[,flle-name-6] •••

The files referenced in the OPEN statement need not all have the same
organization or access.

General Rules

1. The successful execution of an OPEN statement determines the availability of
the file and results in the file being in an open mode.

2. The successful execution of the OPE N statement makes the associated record
area available to the program.

3. Prior to the successful execution of an OPE N statement for a given file, no
statement can be executed that references that file, either explicitly or
implicitly.

4. An OPEN statement must be successfully executed prior to the execution of
any of the permissible input-output statements. In Table 2, Permissible
Statements, 'X' at an intersection indicates that the specified statement, used
in the access mode given for that row, may be used with the indexed file
organization and the open mode given at the top of the column.

7-17

\
I

i

i

i

i

I

File Access
Mode

Sequential

Random

Dynamic

Table 7-1. Permissible Combinations of Statements and
Open Modes for Indexed I/O.

Open Mode
Statement

Input Output Input/Output

READ X X

WRITE X

REWRITE X

START X X

DELETE X

READ X X

WRITE I X X

REWRITE X

START

DELETE X

READ X X
I

I WRITE X X

\ REWRITE X X

START X X

DELETE \ X
I
!,

l

I
I

I

I

I
I

5. A file may be opened with the INPUT, OUTPUT, and 1-0 phrases in the same
program. Following the initial execution of an OPEN statement for a file,
each subsequent execution for that same file must be preceded by the
execution of a CLOSE statement for that file.

6. Execution of the OPEN statement does not obtain or release the first data
record.

7-18

7. The assigned name in the select statement for a file is processed as follows:

a. When the INPUT phrase is specified, the execution of the OPEN
statement causes the assigned name to be checked in accordance with
the operating system conventions for opening files for'input.

b. When the OUTPUT phrase is specified, the execution of the OPEN
statement causes the assigned name to be written in accordance with
the operating system conventions for opening files for output.

8. The file description entry for file-name-l, file-name-2, file-name-5 or
file-name-6 must be equivalent to that used when this file was created.

9. For files being opened with the INPUT or 1-0 phrase, the OPEN
statement sets the current record pointer to the first record currently
existing within the file. For indexed files, the prime record key is
established as the key of refer'ence and is used to determine the first
record to be accessed. If no records exist in the file, the current record
pointer is set such that the next executed Format 1 READ statement for
the file will result in an AT END condition. If the file does not exist,
OPEN INPUT will cause an error status.

10. The 1-0 phrase permits the opening of a file for both input and output
operations. If the file does not exist, it will be created.

II. Upon successful execution of an OPEN statement with the output phrase
specified, a file is created. At that time the associated file contains no data
records. If a file of the same number exists it will be deleted. If write
protected, an error status occurs.

7-19

THE READ STATEMENT

Function

For sequential access, the READ statement makes available the next logical record
from a file. For random access, the READ statement makes available a specified
re.cord from a mass storage file.

General Format

Format 1

READ file-name [NEXT] RECORD [INTO identifier]

[; AT END imperative-statement]

Format 2

READ file-name RECORD [INTO identifier]

[;KEY IS data-name]

[;INVALID KEY imperative-statement]

Syntax Rules

1. The INTO phrase must not be used when the input file contains logical records
of various sizes as indicated by their record descriptions. The storage area
associated with identifier and the storage area which is the record area
associated with file-name must not be the same storage area.

2. Data-name must be the name of a data item specified as a record key
associated with file-name.

3. Data-name may be qualified.

4. Format 1 must be used for all files in sequential access mode.

5. The NEXT phrase must be specified for files in dynamic access mode, when
records are to be retrieved sequentially.

6. Format 2 is used for files in random access mode or for files in dynamic access
mode when records are to be retrieved randomly.

7. The INVALID KEY phrase or the AT END phrase must be specified if no
applicable USE procedure is specified for file-name.

General Rules

1. The associated files must be open in the INPUT or 1-0 mode at the time this
statement is executed. (See The Open Statement in this Section).

7-20

2. The record to be made available by a Format 1 READ statement is determined
as follows:

a. The record, pointed to by the current record pointer, is made available
provided that the current record pointer was positioned by the START or
OPEN statement and the record is still accessible through the path
indicated by the current record pointer; if the record is no longer
accessible, which may have been caused by the deletion of the record or a
change in an ALTERNATE RECORD key. The current record pointer is
updated to point to the next existing record within the established key of
reference and that record is then made available.

b. If the current record pointer was positioned by the execution of a
previous READ statement, the current record pointer is updated to
point to the next existing record in the file within the established key
of reference and then that record is made available.

3. The execution of the READ statement causes the value of the FILE STATUS
data item, if any, associated with file-name to be updated. (See 1-0 STATUS
in this Section.)

4. Regardless of the method used to overlap access time with processing time,
the concept of the READ statement is unchanged in that a record is available
to the object program prior to the execution of any statement following the
READ statement.

5. When the logical records of a file are described with more than one record
description, these records automatically share the same storage area; this is
equivalent to an implicit redefinition of the area. The contents of any data
items which lie beyond the range of the current data record are undefined at
the completion of the execution of the READ statement.

6. If the INTO phrase is specified, the record being read is moved from the
record area to the area specified by identifier according to the rules specified
for the MOVE statement. The implied MOVE does not occur if the execution
of the READ statement was unsuccessful. Any subscripting or indexing
associated with identifier is evaluated after the record has been read and
immediately before it is moved to the data item.

7. When the INTO phrase is used, the record being read is available in both the
input record area and the data area associated with identifier.

8. If, at the time of execution of a Format 1 READ statement, the position of
current record pointer for that file is undefined, the execution of that READ
statement is unsuccessful.

9. If, at the time of execution of a Format 1 READ statement, no next logical
record exists in the file, the ATE N D condition occurs, and the execution of
the READ statement is considered unsuccessful. (See 1-0 STATUS in this
Section.)

7-21

10. When the AT END condition is recognized the following actions are taken in
the specified order:

a. A value is placed into the FILE STATUS data item, if specified for this
file, to indicate an AT END condition. (See 1-0 STATUS in this Section.)

b. If the AT END phrase is specified in the statement causing the condition,
control is transferred to the AT END imperative statement. Any USE
procedure specified for this file is not executed.

c. If the AT END phrase is not specified, then a USE procedure must be
specified, either explicitly or implicitly, for this file, and that procedure
is executed.

When the AT END condition occurs, execution. of the input-output
statement which caused the condition is unsuccessful.

II. Following the unsuccessful execution of any READ statement, the contents of
the associated record area and the position of the current record pointer are
undefined. For indexed files the key of reference is also undefined.

12. When the AT END condition has been recognized, a Format I READ statement
for that file must not be executed without first executing one of the following:

a. A successful CLOSE statement followed by the execution of a successful
OPEN statement for that file.

b. A successful START statement for that file.

c. A successful Format 2 READ statement for that file.

13. For a file for which dynamic access mode is specified, a Format I READ
statement with the NEXT phrase specified causes the next logical record to be
retrieved from that file as described in General Rule 2 above.

14. For an indexed file being sequentially accessed, records having the same
duplicate value in an alternate record key which is the key of reference
are made available in the same order in which they are released by
execution of WRITE statements, or by execution of REWRITE statements
which create such duplicate values.

15. If the KEY phrase is not specified in a Format 2 READ statement, the
prime record key is established as the key of reference for this retrieval.
If the dynamic access mode is specified, this key of reference is also used
for retrievals by any subsequent executions of Format 1 READ statement
for the file.

7-22

16. For an indexed file if the KEY phrase is specified in a Format 2 READ
statement, data-name is established as the key of reference for this retrieval.
If the dynamic access mode is specified, this key of reference is also used for
retrievals by any subsequent executions of Format 1 READ statements for the
file until a different key of reference is established for the file.

17. Execution of a Format 2 READ statement causes the value of the key of
reference to be compared with the value contained in the corresponding data
item of the stored records in the file, until the first record having an equal
value is found. The current record pointer is positioned to this record which is
then made available. If no record can be so identified, the INVALID KEY
condition exists and execution of the READ statement is unsuccessful. (See
The INVALID KEY CONDITION in this Section.)

7-23

THE REWRITE STATEMENT

Function

The REWRITE statement logically replaces a record existing in a mass storage file.

General Format

REWRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

Syntax Rules

I. Record-name and identifier must not refer to the same storage area.

2. Record-name is the name of a logical record in the File Section of the Data
Division.

3. The INVALID KEY phrase must be specified in the REWRITE statement
for files for which an appropriate USE procedure is not specified.

General Rules

1. The file associated with record-name must be open in the 1-0 mode at the
time of execution of this statement. (See The OPEN STATEMENT in this
Section).

2. For files in the sequential access mode, the last input-output statement
executed for the associated file prior to the execution of the REWRITE
statement must have been a successfully executed READ statement. The
operating system logically replaces the record that was accessed by the READ
statement.

3. The number of character positions in the record referenced by record-name
must be equal to the number of character positions in the record being
replaced.

4. The logical record released by a successful execution of the REWRITE
statement is no longer available in the record area unless the associated file is
named in a SAME RECORD AREA clause, in which case the logical record is
available to the program as a record of other files appearing in the same
SAME RECORD AREA clause as the associated 1-0 file, as well as to the file
associated with record-name.

5. The execution of a REWRITE statement with the FROM phrase is equivalent
to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the FROM
phrase. The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of the REWRITE statement.

7-24

6. The current record pointer is not affected by the execution of a REWRITE
statement.

7. The execution of the REWRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See 1-0
STATUS).

8. For a file accessed in the sequential access mode, the record to be replaced is
specified by the value contained in the prime record key. When the REWRITE
statement is executed, the value contained in the prime record key data item
of the record to be replaced must be equal to the value of the prime record
key of the last record read from this file.

9. For a file in the random or dynamic access mode, the record to be replaced is
specified by the prime record key data item.

10. The contents of alternative record key data items of the record being
rewritten may differ from those in the record being replaced. The operating
system utilizes the content of the record key data items during the execution
of the REW RITE statement in such a way that subsequent access of the record
may be made based upon any of those specified record keys.

11. The INVALID KEY condition exists when:

a. The access mode is sequential and the value contained in the prime record
key data item of the record to be replaced is not equal to the value of the
prime record key of the last record read from this file or,

b. The value contained in the prime record key data item does not equal that
of any record stored in the file, or

c. The value contained in an alternate record key data item for which a
DUPLICATES clause has not been specified is equal to that of a record
already stored in the file.

The updating operation does not take place and the data in the record
area is unaffected. (See The INVALID KEY CONDITION in this Section).

7-25

THE START STATEMENT

Function

The START statement provides a basis for logical positioning within a indexed file,
for subsequent sequential retrieval of records.

General Format

STAR T file-name KEY

IS EQUAL TO
IS =
IS GREATER THAN

~ ~OT LESS THAN
IS NOT-(-

[;INVALID KEY imperative-statement]

data-name

NOTE: The required relational characters')', and ,< ' and '=' are not underlined to
avoid confusion with other symbols such as ~ (greater than or equal to).

Syntax Rules

1. File-name must be the name of an indexed file.

2. File-name must be the name of a file with sequential or dynamic access.

3. Data-name may be qualified.

4. The INVALID KEY phrase must be specified if no applicable USE procedure is
specified for file-name.

5. If file-name is the name of an indexed file, and if the KEY phrase is specified,
data-name may reference a data item specified as a record key associated
with file-name, or it may reference any data item of category alphanumeric
subordinate to the data-name of a data item specified as a record key
associated with file-name whose leftmost character position corresponds to
the leftmost character position of that record key data item.

General Rules

1. File-name must be open in the INPUT or 1-0 mode at the time that the START
statement is executed. (See The OPEN STATEMENT in this Section).

2. If the KEY phrase is not specified the relational operator 'IS EQUAL TO' is
implied.

7-26

3. The type of comparison specified by the relational operator in the KEY phrase
occurs between a key associated with a record in the file referenced by
file-name and a data item as specified in General Rule 5. If file-name
references an indexed file and the operands are of unequal size, comparison
proceeds as though the longer one were truncated on the right such that its
length is equal to that of the shorter. All other nonnumeric comparison rules
apply except that the presence of the PROGRAM COLLATING SEQUENCE
clause will have no effect on the comparison. (See Comparison of Nonnumeric
Operands.)

a. The current record pointer is positioned to the first logical record
currently existing in the file whose key satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, an INVALID
KEY condition exists, the execution of the START statement is
unsuccessful, and the position of the current record pointer is undefined.
(See The INVALID KEY CONDITION in this Section.)

4. The execution of the START statement causes the value of the FILE STATUS
data item, if any, associated with file-name to be updated. (See 1-0 STATUS).

5. If the KEY phrase is specified, the comparison described in General Rule 3
uses the data item reference by data-name.

6. If the KEY phrase is not specified, the comparison described in General Rule 3
uses the data item referenced in the RECORD KEY clause associated with
file-name.

7. Upon completion of the successful execution of the START statement, a key
of reference is established and used in subsequent Format I READ statements
as follows: (See The READ STATEMENT in this Section).

a. If the KEY phrase is not specified, the prime record key specified for
file-name becomes the key of reference.

b. If the KEY phrase is specified, and data-name is specified as a record key
for file-name, that record key becomes the key of reference.

c. If the KEY phrase is specified, and data-name is not specified as a record
key for file-name, the record key whose leftmost character position
corresponds to the leftmost character position oJ the data item specified
by data-name becomes the key of reference.

8. If the execution of the START statement is not successful, the key of
reference is undefined.

7-27

THE USE STATEMENT

Function

The USE statement specifies procedures for input-output error handling that are in
addition to the standard procedures provided by the input-output control system.

General Format

{

file-name-l [,file-name-2] •••
EXCEPTION} INPUT

USE AFTER STANDARD ERROR PROCEDURE ON 'O'UT'PUT
1-0

Syntax Rules

1. A USE statement, when present, must immediately follow a section header in
the declaratives section and must be followed by a period followed by a space.
The remainder of the section must consist of zero, one or more procedural
paragraphs that define the procedures to be used.

2. The USE statement itself is never executed; it merely defines the conditions
calling for the execution of the USE procedures.

3. The same file-name can appear in a different specific arrangement of the
format. Appearance of a file-name in a USE statement must not cause the
simultaneous request for execution of more than one USE procedure.

4. The words ERROR and EXCEPTION are synonymous and may be used
interchangeably.

5. The files implicitly referenced in a USE statement need not all have the same
organization or access.

General Rules

1. If the INVALID KEY or the AT END phrases have not been specified in the
input-output statements, the designated procedures are executed by the
input-output system after completing the standard input-output routine upon
recognition of the INVALID KEY or AT END condition.

2. After execution of a USE procedure, control is returned to the invoking
routine.

3. Within a USE procedure, there must not be any reference to any
nondeclarative procedures. Conversely, in the nondeclarative portion there
must be no reference to procedure-names that appear in the declarative
portion, except that PERFORM statements may refer to a USE statement or
to the procedures associated with such a USE statement.

7-28

4. Within a USE procedure, there must not be the execution of any statement
that would cause the execution of a USE procedure that had previously been
invoked and had not yet returned control to the invoking routine.

THE WRITE STATEMENT

Function

The WRITE statement releases a logical record for an output or input-output file.

General Format

W RITE record-name [F ROM identifier] [; INVALID KEY imperative-statement]

1. Record-name and identifier must not reference the same storage area.

2. The record-name is the name of a logical record in the File Section of the
Data Division.

3. The INVALID KEY phrase must be specified if an applicable USE procedure is
not specified for the associated file.

General Rules

1. The associated file must be open in the OUTPUT or 1-0 mode at the time of
the execution of this statement. (See The OPEN STATEMENT in this Section).

2. The logical record released by the execution of the WRITE statement is no
longer available in the record area unless the associated file is named in a
SAME RECORD AREA clause or the execution of the WRITE statement is
unsuccessful due to an IN VALID KEY condition. The logical record is
available to the program from the file associated with record-name and from
other files referenced in the same SAME RECORD AREA clause as the
associated output file.

3. The results of the execution of the WRITE statement with the FROM phrase is
equivalent to the executiol) of:

a. The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement, followed by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of this WRITE
statement.

7-29

After execution of the WRITE statement is complete, the information in
the area referenced by identifier is available, even though the information
in the area referenced by record-name may not be. (See General Rule 2
above).

4. The current record pointer is unaffected by the execution of a WRITE
statement.

5. The execution of the WRITE statement causes the value of the FILE STATUS
data item, if any, associated with the file to be updated. (See 1-0 STATUS in
this Section).

6. The maximum record size for a file is established at the time the file is
created and must not subsequently be changed.

7. The number of character positions on a mass storage device required to store a
logical record in a file mayor may not be equal to the number of character
positions defined by the logical description of that record in the program.

8. The execution of the WRITE statement releases a logical record to the
operating system.

9. Execution of the WRITE statement causes the contents of the record area to
be released. The operating system utilizes the content of the record keys in
such a way that subsequent access of the record may be made based upon any
of those specified record keys.

10. The value of the prime record key must be unique within the records in the file.

11. The data item specified as the prime record key must be set by the program to
the desired value prior to the execution of the WRITE statement.

12. If sequential access mode is specified for the file, records must be released to
the operating system is ascending order of prime record key values.

13. If random or dynamic access mode is specified, records may be released to the
operating system in any program-specified order.

14. When the ALTERNATE RECORD KEY clause is specified in the file control
entry for an indexed file, the value of the alternative record key may be
non-unique only if the DUPLICATES phrase is specified for that data item. In
this case the operating system provides storage of records such that when
records are accessed sequentially, the order of retrieval of those records is the
order in which they are released to the operating system.

7-30

15. The INVALID KEY condition exists under the following circumstances:

a. When sequential access mode is specified for a file opened in the output
mode, and the value of the prime record key is not greater than the value
of the prime record key of the previous record, or

b. When the file is opened in the output or 1-0 mode, and the value of the
prime record key is equal to the value of a prime record key of a record
already existing in the file, or

c. When the file is opened in the output or 1-0 mode, and the value of an
alternate record key for which duplicates are not allowed equals the
corresponding data item of a record already existing in the file, or

d. When an attempt is made to write beyond the externally defined
boundaries of the file.

16. When the INVALID KEY condition is recognized the execution of the WRITE
statement is unsuccessful, the contents of the record area are unaffected and
the FILE STATUS data item, if any, associated with file-name of the
associated file is set of a value indicating the cause of the condition.
Execution of the program proceeds according to the rules stated under The
INVALID KEY CONDITION (See also 1-0 STATUS in this Section).

7-31

SECTION 8

SORT-MERGE

INTRODUCTIO N TO THE SORT-MERGE MODULE

The Sort-Merge module provides the capability to order one or more files of
records, or to combine two or more identically ordered files of records, according to a
set of user-specified keys contained within each record. Optionally, a user may apply
some special processing to each of the individual records by input or output procedures.
This special processing may be applied before and/or after the records are ordered by
the SOR T or after the records have been combined by the MERG E.

RELATIONSHIP WITH SEQUENTIAL 1-0 MODULE

The files specified in the USING and GIVING phrases of the SORT and MERGE
statements must be described implicitly or explicitly in the FILE-CO NTROL paragraph
as having sequential organization. No input-output statement may be executed for the
file names in the sort-merge file description.

ENVIRONMENT DIVISION IN THE SORT-MERGE MODULE

INPUT-OUTPUT SECTION

The FILE-CO NTROL Paragraph

Function

The FILE-CONTROL paragraph names each file and allows specification of other
file-related information.

General Format

. FILE-CO NTROL. [file-control-entry]

The File-Control Entry

Function

The file-control entry names a sort or merge file and specifies the association of
the file to a storage medium.

8-1

General Format

SELECT file-name

ASSIGN TO implementor-name-l [, implementor-name-2] ••••

Syntax Rules

1. Each sort or merge file described in the Data Division must be named once and
only once as file-name in the FILE-CONTROL paragraph. Each sort or merge
file specified in the file control entry must have a sort-merge file description
entry in the Data Division.

2. Since file-name represents a sort or merge file, only the ASSIG N clause is
permitted to follow file-name in the FILE-CONTROL paragraph.

General Rule

The ASSIGN clause specifies the association of the sOl;'t or merge file referenced
by file-name to a storage medium.

The I-O-CONTROL Paragraph

Function

The I-O-CONTROL paragraph specifies the memory area which is to be shared by
diff erent files.

General Format

I-O-CONTROL

[

RECORD J
SORT AREA FOR file-name-l
SORT-MERGE

l, file-name-2! •••]

Syntax Rules

1. The I-O-CONTROL paragraph is optional.

2. In the SAME AREA clause, SORT and SORT-MERGE are equivalent.

3. If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at
least one of the file-names must represent a sort or merge file. Files that do
not represent sort or merge files may also be named in the clause.

4. The three formats of the SAME clause (SAME RECORD AREA, SAME SORT
AREA, SAME SORT-MERGE AREA) are considered separately in the
following:

8-2

More than one SAME clause may be included in a program, however:

a. A file-name must not appear in more than one SAME RECORD AREA
clause.

b. A file-name that represents a sort or merge file must not appear in more
than one SAME SORT AREA or SAME SORT-MERGE AREA clause.

c. If a file-name that does not represent a sort or merge file appears in a
SAME AREA clause and one or more SAME SORT AREA or SAME
SORT-MERGE AREA clauses, all of the files named in that SAME AREA
clause must be named in that SAME SORT AREA or SAME SORT-MERGE
AREA clause(s).

5. The files referenced in the SAME SORT AREA, SAME SORT-MERGE AREA,
or SAME RECORD AREA clause need not all have the same organization or
access.

General Rules

1. The SAME RECORD AREA clause specifies that two or more files are to use
the same memory area for processing of the current logical record. All of the
files may be open at the same time. A logical record in the SAME RECORD
AREA is considered as a logical record of each opened output file whose
file-name appears in this SAME RECORD AREA clause and of 'the most
recently read input file whose file-name appears in this SAME RECORD AREA
clause. This is equivalent to implicit redefinition of the area, i.e., records are
aligned on the leftmost character position.

2. If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at
least one of the file-names must represent a sort or merge file. Files that do
not represent sort or merge files may also be named in the clause. This clause
specifies that storage is shared as follows:

a. The SAME SORT AREA or SAME SORT-MERGE AREA clause specifies a
memory area which will be made available for use in sorting or merging
each sort or merge file named. Thus any memory area allocated for the
sorting or merging of a sort or merge file is available for reuse in sorting
or merging any of the other sort or merge files.

b. In addition, storage areas assigned to files that do not represent sort or
merge files may be allocated as needed for sorting or merging the sort or
merge files names in the SAME SORT AREA or SAME SORT-MERGE
AREA clause. The extent of such allocation will be specified by the
implementor.

c. Files other than sort or merge files do not share the same storage area
with each other. If the user wishes these files to share the same storage
area with each other, he must also include in the, program SAME AREA or
SAME RECORD AREA clause naming these files.

d. During the execution of a SORT or MERGE statement that refers to a
sort or merge file named in this clause, any non sort-merge files named in
this clause must not be open.

8-3

DATA DIVISION IN THE SORT-MERGE MODULE

FILE SECTION

An SD file description gives "information about the size and the names of the data
records associated with the file to be sorted or merged. There are no label procedures
which the user can control, and the rules for blocking and internal storage are peculiar
to the SORT and MERGE statements.

THE SORT-MERGE FILE DESCRIPTION - COMPLETE ENTRY SKELETON

Function

The sort-merge file description furnishes information concerning the physical
structure, identification and record names of the file to be sorted or merged.

General Format

SD file-name

[; RECORD CONTAINS [integer-l TO] integer-2 CHARACTERS]

[.; DATA {
RECORD IS }
RECORDS ARE data-name-l [, data-name-2] ••• J ·

Syntax Rules

1. The level indicator SD identifies the beginning of the sort-merge file
description and must precede the file-name.

2. The clauses which follow the name of the file are optional and their order of
appearance is immaterial.

3. One or more record description entries must follow the sort-merge file
description entry, however, no input-output statements may be executed for
this file.

THE DATA RECORDS CLA USE

Function

The DATA RECORDS clauses serves only as documentation for the names of data
records with their associated file.

8-4

General Format

\

RECORD IS 1
RECORDS ARE data-name-l [, data-name-2] •••

Syntax Rule

Data-name-l and data-name-2 are the names of data records and must have 01
level-number record descriptions, with the same names, associated with them.

General Rules

1. The presence of more than one data-name indicates that the file contains
more than one type of data record. These records may be of differing sizes,
different formats, etc. The order in which they are listed is not significant.

2. Conceptually, all data records within a file share the same area. This is in no
way altered by the presence of more than one type of data record within the
file.

THE RECORD CONTAINS CLAUSE

Function

The RECORD CONTAINS clause specifies the size of data records.

General Format

RECORD CONTAINS [integer-l TO] integer-2 CHARACTERS

General Rule

The size of each data record is completely defined within the record description
entry, therefore, this clause is never required. When present, however, the following
notes apply:

a. Integer-2 may not be used by itelf unless an the data records in the file have
the same size. In this case, integer-2 represents the exact number of
characters in the data record. If integer-l and integer-2 are both shown, they
refer to the minimum number of characters in the smallest size data records
and the maximum number of characters in the largest size data records,
respectively.

b. The size is specified in terms of the number of character positions required to
store the logical record, regardless of the types of characters used to
represent the items within the logical record. The size of a record is
determined by the sum of the number of characters in all fixed length
elementary items plus the sum of the maximum number of characters in any
variable length item subordinate to the record. This sum may be different
from the actual size of the record; see SELECTION OF CHARACTER
REPRESENTATION AND RADIX in Section 2; and The SYNCHRONIZED
Clause and The USAGE Clause in Section 3.

8-5

PROCEDURE DIVISION IN THE SORT-MERGE MODULE

THE MERGE STATEMENT

Function

The MERGE statement combines two or more identically sequenced files on a set
of specified keys, and during the process makes records available, in merge order, to an
output procedure or to an output file.

General Format

lASCENDING l
MERGE file-name-l ON DESCENDING~ KEY data-name-l [, data-name-2] •••

[ONk~~~~~m~G~ KEY data-name-3 [, data-name-41 ..]

[COLLATING SEQUENCE IS alphabet-name]

USING file-name-2, file-name-3 [, file-name-4] •••

I ~T PROCEDURE IS section-name-{ l~UGH ~ section-name-~
~ GIVING file-name-5

Syntax Rules

1. File-name-l must be described in a sort-merge file description entry in the
Data Division.

2. Section-name-l represents the name of an output procedure.

3. File-name-2, file-name-3, file-name-4, and file-name-5 must be described in a
file description entry, not in a sort-merge file description entry, in the Data
Division. The actual size of the logical record(s) described for file-name-2,·
file-name-3, file-name-4, and file-name-5 must be equal to the actual size of
the logical record(s) described for file-name-l. If the data descriptions of the
elementary items that make up these records are not identical, it is the
programmer's responsibility to describe the corresponding records in such a
manner so as to cause an equal number of character positions to be allocated
for the corresponding records.

4. The words THRU and THROUGH are equivalent.

8-6

5. Data-name-l, data-name-2, data-name-3, and data-name-4 are KEY
data-names and are subject to the following rules:

a. The data items identified by KEY data-names must be described in
records associated with file-name-I.

b. KEY data-names may be qualified.

c. The data items identified by KEY data-names must not be variable length
items.

d. If file-name-l has more than one record description, then the data items
identified by KEY data-names need be described in only one of the record
descriptions.

e. None of the data items identified by KEY data-names can be described by
an entry which either contains an OCCURS clause or is subordinate to an
entry which contains an OCCURS clause.

6. No more than one file-name from a multiple file reel can appear in the
MERGE statement.

7. File-names must not be repeated within the MERGE statement.

8. MERGE statements may appear anywhere except in the declaratives portion of
the Procedure Division or in an input or output procedure associated with a
SORT or MERGE statement.

General Rules

I. The MERGE statement will merge all records contained on file-name-2,
file-name-3, and file-name-4. The files referenced in the MERGE statement
must not be open at the time the MERGE statement is executed. These files
are automatically opened and closed by the merge operation with all implicit
functions performed, such as the execution of any associated USE procedures.
The terminating function for all files is performed as if a CLOSE statement,
without optional phrases, had been executed for each file.

2. The data-names following the word KEY are listed from left to right in the
MERGE statement in order of decreasing significance without regard to how
they are divided into KEY phrases. In the format, data-name-l is the major
key, data-name-2 is the next most significant key, etc.

a. When the ASCENDING phrase is specified, the merged sequence will be
from the lowest value of the contents of the data items identified by the
KEY data-names to the highest value, according to the rules for
comparison of operands in a relation condition.

b. When the DESCENDING phrase is specified, the merged sequence will
be from the highest value of the contents of the data items identified
by the KEY data-names to the lowest value, according to the rule for
comparison of operands in a relation condition.

8-7

3. The collating sequence that applies to the comparison of the nonnumeric key
data items specified is determined in the following order of precedence:

a. First, the collating sequence established by the COLLATIN G SEQUEN CE
phrase, if specified, in that MERGE statement.

b. Second, the collating sequence established as the program collating
sequence.

4. The output procedure must consist of one or more sections that appear
contiguously in a source program and do not form part of any other procedure.
In order to make merged records available for processing, the output
procedure must include the execution of at least one RETURN statement.
Control must not be passed to the output procedure except when a related
SORT or MERGE statement is being executed. The output procedure may
consist of any procedures needed to select, modify, or copy the records that
are being returned one at a time in merge order, from file-name-l. The
restrictions on the procedural statements within the output procedure are as
follows:

a. The output procedure must not contain any transfers of control to points
outside the output procedure; ALTER, GO TO and PERFORM statements
in the output procedure are not permitted to refer to procedure-names
outside the output procedure. COBOL statements are allowed that will
cause an implied transfer of control to declaratives.

b. The output procedures must not contain any SORT or MERGE statements.

c. The remainder of the Procedure Division must not contain any transfers
of control to points inside the output procedures; ALTER, GO TO, and
PERFORM statements in the remainder of the Procedure Division are not
permitted to refer to procedure-names within the output procedures.

5. If an output procedure is specified, control passes to it during
execution of the MERGE statement. The compiler inserts a return
mechanism at the end of the last section in the output procedure.
When control passes to the last statement in the output procedure,
the return mechanism provides for termination of the merge, and then
passes control to the next executable procedure. The merge procedure
reaches a point at which it can select the next record in merged
order when requested. The RETURN statements in the output procedure
are the requests for the next record.

6. Segmentation, as defined in Section 9, can be applied to programs containing
the MERGE statement. However, the following restrictions apply:

8-8

a. If the MERGE statement appears in a section that is not in an independent
segment, then any output procedure referenced by that MERGE statement
must appear:

* Totally within .non-independent segments, or

* Wholly contained in a single independent segment

b. If a MERGE statement appears in an independent segment, then any
output procedure referenced by that MERGE statement must be contained:

* Totally within non-independent segments, or

* Wholly within the same independent segment as that MERGE statement

7. If the GIVIN G phrase is specified, all the merged records in file-name-l are
automatically written on file-name-5 as the implied output procedure for this
MERGE statement.

8. In the case of equal compare, according to the rules for comparison of
operands in a relation condition, on the contents of the data items identified
by all the KEY data-names between records from two or more input files
(file-name-2, file-name-3, file-name-4, •••), the records are written on
file-name-5 or returned to the output procedure, depending on the phrase
specified, in the order that the associated input files are specified in the
MERGE statement.

9. The results of the merge operation are predictable only when the records in
the files referenced by file-name-2, file-name-3, ••• , are ordered as described
in the ASCENDING or DESCENDING KEY clause associated with the MERGE
statement.

THE RELEASE STATEMENT

Function

The RELEASE statement transfers records to the initial phase of a SORT operation.

General Format

RELEASE record-name [FROM identifier]

Syntax Rules

1. A RELEASE statement may only be used within the range of an input
procedure associated with a SORT statement for a file whose sort-merge file
description entry contains record-name. (See The SORT Statement.)

8-9

2. Record-name must be the name of a logical record in the associated
sort-merge file description entry and may be qualified.

3. Record-name and identifier must not refer to the same storage area.

General Rules

1. The execution of a RELEASE statement causes the record named by
record-name to be released to the initial phase of a sort operation.

2. If the FROM phrase is used, the contents of the identifier data area are moved
to record-name, then the contents of record-name are released to the sort
file. Moving files takes place according to the rules specified for the MOVE
statement without the CORRESPONDING phrase. The information in the
record area is no longer available, but the information in the data area
associated with identifier is available.

3. After the execution of the RELEASE statement, the logical record is no longer
available in the record area unless the associated sort-merge file is named in a
SAME RECORD AREA clause. The logical record is also available to the
program as a record of other files referenced in the same SAME RECORD
AREA clause as the associated sort-merge file, as well as to the file
associated with record-name. When control passes from the input procedure,
the file consists of all those records which were placed in it by the execution
of RELEASE statements.

THE RETURN STATEMENT

Function

The RETURN statement obtains either sorted records from the final phase of a
SORT operation or merged records during a MERGE operation.

General Format

RETURN file-name RECORD [INTO identifier]
; AT END imperative-statement

Syntax Rules

1. File-name must be described by a sort-merge file description entry in the Data
Division.

2. A RETURN statement may only be used within the range of an ouput
procedure associated with a SORT or MERGE statement for file-name.

3. The INTO phrase must not be used when the input file contains logical records
of various sizes as indicated by their record descriptions. The storage area
associated with identifier and the record area associated with file-name must
not be the same storage area.

8-10

General Rules

1. When the logical records of a file are described with more than one record
description, these records automatically share the same storage area; this is
equivalent to an implicit redefinition of the area. The contents of any data
items which lie beyond the range of the current data record are undefined at
the completion of the execution of the RETUR N statement.

2. The execution of the RETUR N statement causes the next record, in the order
specified by the keys listed in the SORT or MERGE statement, to be made
available for processing in the record areas associated with the sort or merge
file.

3. If the INTO phrase is specified, the current record is moved from the input
area to the area specified by identifier according to the rules for the MOVE
statement without the CORRESPONDING phrase. The implied MOVE does
not occur if there is an ATE N D condition. Any subscripting or indexing
associated with identifier is evaluated after the record has been returned and
immediately before it is moved to the data item.

4. When the INTO phrase is used, the data is available in both the input record
area and the data area associated with identifier.

5. If no next logical record exists for the file at the time of the execution of a
RETURN statement, the AT END condition occurs. The contents of the
record areas associated with the file when the AT END condition occurs are
undefined. After the execution of the imperative-statement in the' AT END
phrase, no RETURN statement may be executed as part of the current output
procedure.

THE SORT STATEMENT

Function

The SORT statement creates a sort file by executing input procedures or by
transferring records from another file, sorts the records in the sort file on a set of
specified keys, and in the final phase of the sort operation, makes available each record
from the sort file, in sorted order to some output procedures or to an output file.

8-11

General Format

lASCENDING l
SORT file-name-l ON DESCENDING~ KEY data-name-l [, data-name-2] •••

I. ~ASCENDING l J La N ~ DESCENDING ~ KEY data-name-3 [, data-name-4] .j ...

[COLLATIN G SEQUE N CE IS alphabet-name]

INPUT PROCEDURE IS section-name-I [l:::~~gUGH\ section-name-2]

USING file-name-2 [, file-name-3] •••

\

OUTPUT PROCEDURE IS section-name-3[\THROUGHl

(~ ~
GIVING file-name-4

section-name-4] l
Syntax Rules

1. File-name-l must be described in a sort-merge file description entry in the
Data Division.

2. Section-name-l represents the name of an input procedure. Section-name-3
represents the name of an output procedure.

3. File-name-2, file-name-3 and file-name-4 must be described in a file
description entry, not in a sort-merge file description entry, in the Data
Division. The actual size of the logical record(s) described for file-name-2,
file-name-3 and file-name-4 must be equal to the actual size of the logical
record(s) described for file-name-l. If the data size of the elementary items
that make up these records are not identical, it is the programmer's
responsibility to describe the corresponding records in such a manner so as to
cause equal amounts of character positions to be. allocated for the
corresponding records.

4. Data-name-l, data-name-2, data-name-3, and data-name-4 are KEY
data-names and are subject to the following rules:

a. The data items identified by KEY data-names must be described in
records associated with file-name-l.

b. KEY data-names may be qualified.

c. The data items identified by KEY data-names must not be variable length
items.

8-12

d. If file-name-l has more than one record description, then the data items
identified by KEY data-names need be described in only one of the record
descriptions.

e. None of the data items identified by KEY data-names can be described by
an entry which either contains an OCCURS clause or its subordinate to an
entry which contains an OCCURS clause.

5. The words THRU and THROUGH are equivalent.

6. SORT statements may appear anywhere except in the declaratives portion of
the Procedure Division or in an input or output procedure associated with a
SORT or MERGE statement.

7. No more than one file-name from a multiple file reel can appear in the SORT
statement.

General Rules

1. The Procedure Division may contain more than one SORT statement appearing
anywhere except:

a. in the declaratives portion, or

b. in the input and output procedures associated with a SORTor MERGE
statement.

2. The data-names following the word KEY are listed from left to right in the
SORT statement in order of decreasing significance without regard to how
they are divided into KEY phrases. In the format, data-name-l is the major
key, data-name-2 is the next most significant key, etc.

a. When the ASCENDING phrase is specified, the sorted sequence will be
from the lowest value of the contents of the data items identified by the
KEY data-names to the highest value, according to the rules for
comparison of operands in a relation condition.

b. When the DESCENDING phrase is specified, the sorted sequence will be
from the highest value of the contents of the data items identified by the
KEY data-names to the lowest value, according to the rules for
comparison of operands in a relation condition.

3. The collating sequence that applies to the comparison of the nonnumeric key
data items specified is determined in the following order of precedence:

a. First, the collating sequence established by the COLLATING SEQUENCE
phrase, if specified, in the SORT statement.

b. Second, the collating- sequence established as the program collating
sequence.

8-13

4. The input procedure must consist of one or more sections that appear
contiguously in a source program and do not form a part of any output
procedure. In order to transfer records to the file referenced by file-name-l,
the input procedure must include the execution of at least one RELEASE
statement. Control must not be passed to the input procedure when a related
SORT statement is being executed. The input procedure can include any
procedures needed to select, create, or modify records. The restrictions on
the procedural statements within the input procedure are as follows:

a. The input procedure must not contain any SORT or MERGE statements.

b. The input procedure must not contain any explicit transfers of control to
points outside the input procedure; ALTER, GO TO, and PERFORM
statements in the input procedure are not permitted to refer to
procedure-names outide the input procedure. COBOL statements are
allowed that will cause an implied transfer of control to declaratives.

c. The remainder of the Procedure Division must not contain any transfers
of control to points inside the input procedure; ALTER, GO TO and
PERFORM statements in the remainder of the Procedure Division must
not refer to procedure-names within the input procedure.

5. If an input procedure is specified, control is passed to the input procedure
before file-name-l is sequenced by the SORT statement. The compiler inserts
a return mechanism at the end of the last section in the input procedure and
when control passes the last statement in the input procedure, the records that
have been released to file-name-l are sorted.

6. The output procedure must consist of one or more sections that appear
contiguously in a source program and do not form part of any input procedure.
In order to make sorted records available for processing, the output procedure
must include the execution of at least one RETURN statement. Control must
not be passed to the output procedure except whan a related SORT statement
is being executed. The output procedure may consist of any procedures needed
to select, mOdify or copy the records that are being returned, one at a time in
sorted order, from the sort file. The restrictions on the procedural statements
within the output procedure are as follows:

a. The output procedure must not coritain any SORT or MERGE statements.

b. The output procedure must not contain any explicit transfers of control to
points outside the output procedure; ALTER, GO TO, and PERFORM
statements in the output procedure are not permitted to refer to
procedure-names outside the output procedure. COBOL statements are
allowed that will cause an implied transfer of control to declaratives.

8-14

c. The remainder of the Procedure Division must not contain any transfers
of control to poi'nts inside the output procedure; ALTER, GO TO and
PERFORM statements in the remainder of the Procedure Division are not
permitted to refer to procedure-names within the output procedure.

7. If an output procedure is specified, control passes to it after file-name-l has
been sequenced by the SORT statement. The compiler inserts a return
mechanism at the end of the last section in the output procedure and when
control passes to the last statement in the output procedure, the return
mechanism provides for termination of the sort and then passes control to the
next executable statement after the SORT statement. Before entering the
output procedure, the sort procedure reaches a point at which it can select the
next record in sorted order when requested. The RETUR N statements in the
output procedure are the requests for the next record.

8. Segmentation as defined in Section 9 can be applied to programs containing
the SORT statement. However, the following restrictions apply:

a. If a SORT statement appears in a section that is not in an independent
segment, then any input procedures or output procedures referenced by
that SORT statement must appear:

* Totally within non-independent segments, or

* Wholly contained in a single independent segment

b. If a SORT statement appears in an independent segment, then any input
procedures or output procedures referenced by that SORT statement must
be contained:

* Totally within non-independent segments, or

* Wholly within the same independ~nt segment as that SORT statement

9. If the USIN G phrase is specified, all the records in file-name-2 and
file-name-3 are transferred automatically to file-name-l. At the time of
execution of the SORT statement, file-name-2 and file-name-3 must not be
open. The SORT statement automatically initiates the processing of, makes
available the logical records for, and terminates the processing of file-name-2
and file-name-3. These implicit functions are performed such that any
associated USE procedures are executed. The terminating function for all
files is performed as if a CLOSE statement, without optional phrases, had been
executed for each file. The SORT statement also automatically performs the
implicit functions of moving the records from the file area of file-name 2 and
file-name-3 to the file area for file-name-l and the release of records to the
initial phase of the sort operation.

8-15

10. If the GIVING phrase is specified, all the sorted records in file-name-l are
automatically written on file-name-4 as the implied output procedure for this
SORT statement. At the time of execution of the SORT statement
file-name-4 must not be open. The SORT statement automatically initiates
the processing of, releases the logical records to, and terminates the
processing of file-name-4. These implicit functions are performed such that
any associated USE procedures are executed. The terminating function is
performed as if a CLOSE statement, without optional phrases, had been
executed for the file. The SORT statement also automatically performs the
implicit functions of the return of the sorted records from the final phase of
the sort operation and the moving of the records from the file area for
file-name-l to the file area for file-name-4.

8-16

SECTION 9

SEGMENTATION

INTRODUCTION TO THE SEGMENTATION MODULE

The Segmentation module provides a capability to specify object program overlay
requirem en ts.

Segmentation provides a facility for specifying permanent and independent
segments. All sections with the same segment-number nust be contiguous in the source
program. All segments specified as permanent segments must be contiguous in the
source program.

GENERAL DESCRIPTION OF SEGMENTATION

COBOL segmentation is a facility that provides a means by which the user may
communicate with the compiler to specify object program overlay requirements.

COBOL segmentation deals only with segmentation of procedures. As such, only
the Procedure Division is considered in determining segmentation requirements for an
object program.

ORGANIZATION

Program Segments

Although it is not mandatory, the Procedure Division for a source program is
usually written as a consecutive group of sections, each of which is composed of a
series of closelyrel,ated operations that are designed to collectively perform a
particular function. [However, when segmentation is used, the entire Procedure
Division must be in sections.] In addition, each section must be classified as
belonging either to the fixed portion or to one of the independent segments of the
object program.

Fixed Portion

The fixed portion is defined as that part of the object program which is logically
treated as if it were always in memory. This portion of the program is composed of
fixed permanent segments.

A fixed permanent segment is a segment in the fixed portion which cannot be
overlaid by any other part of the .program.

9-1

Independent Segments

An independent segment is defined as part of the object program which can
overlay, and can be overlaid by another independent segment. An independent
segment is in its initial state whenever control is transferred (either implicitly or
explicitly) to that segment for the first time during the execution of a program.
On subsequent transfers of control to the segment, an independent segment is
also in its initial state when:

1. Control is transferred to that segment as a result of the implicit transfer of
control between consecutive statements from a segment with a different
segment-number.

2. Control is transferred explicitly to that segment from a segment with a
different segment-number (with the exception noted in paragraph 2 below.)

On subsequent transfer of control to the segment, an independent segment is in its
last-used state when:

1. Control is tranferred implicitly to that segment from a segment with a
different segment-number (except as noted in paragraph 1 above).

2. Control is transferred explicitly to that segment as the result of the execution
of an EXIT PROGRAM statement.

SEGMENTATION CLASSIFICATION

Sections which are to be segmented are classified, using a system of
segment-numbers and the following criteria:

1. Logic Requirements - Sections which must be available for reference at all
times, or which are referred to very frequently, are normally classified as
belonging to one of the permanent segments; sections which are used less
frequently are normally classified as belonging to one of the independent
segments, depending on logic requirements.

2. Frequency of Use - Generally, the more frequently a section is referred to, the
lower its segment-number, the less frequently it is referred to, the higher its
segment-number.

3. Relationship to Other Sections - Sections which frequently communicate with
one another should be given the same segment-numbers.

SEGMENTATION CONTROL

The logical sequence of the program is the same as the physical sequence except
for specific transfers of control. Control may be transferred within a source program
to any paragraph in a section; that is, it is not mandatory to transfer control to the
beginning of a section.

9-2

STRUCTURE OF PROGRAM SEGMENTS

SEGMENT-NUMBERS

Section classification is accomplished by means of a system of segment-numbers.
The segment-number is included in the section header.

General Format

section-name SECTION [segment-number]

Syntax Rules

I. The segment-number must be an integer ranging in value from 0 through 99.

2~ If the segment-number is omitted from the section header, the
segment-number is assumed to be O.

3. Sections in the declaratives must contain segment-numbers less than 50.

General Rules

I. All sections which have the same segment-number constitute a program
segment. All sections which have the same segment-number must be together
in the source program.

2. Segments with segment-number 0 through 49 belong to the fixed portion of the
object program.

3. Segments with segment-number 50 through 99 are independent segments.

9-3

RESTRICTIONS ON PROGRAM FLOW

When segmentation is used, the following restrictions are placed on the ALTER and
PERFORM statement.

THE ALTER STATEMENT

A GO TO statement in a section whose segment-number is greater than or equal to
50 must not be referred to by an ALTER statement in a section with a different
segment-number.

THE PERFORM STATEMENT

A PERFORM statement that appears in a section that is not in an independent
segment can have within its range, in addition, to any declarative sections whose
execution is caused within that range, only one of the following:

*

*

Sections and/or paragrahs wholly contained in one or more non-independent
segments.

Sections and/or paragraph wholly contained in a single independent segment.

A PERFORM statement that appears in an independent segment can have within its
range, in addition to any declarative sections whose execution is caused within that
range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more non-independent
segments.

b. Sections and/or paragraphs wholly contained in the same independent segment
as that PERFORM statement.

EXTRA INTERMEDIATE CODE FILES

When segmentation is used, extra intermediate code files are generated by the
compiler as follows:

filename.Inn - Intermediate code files one for each independent segment

filename.ISR - Inter-Segment Reference table one per segmented program

filename.Dnn - Dictionary files one for each independent segment except the last

9-4

where:

filename is the name without the extension of the principal intermediate
code file

nn is a segment number that identifies the particular segment

NOTE

The filename.Dnn files are written and used solely by
the compiler, and need not be retained after
compilation. The filename.Inn files and the
filename.ISR file must be retained as part of the
object program and must also be copied when the
program is copied.

9-5

SECTION 10

LIBRARY

INTRODUCTION TO THE LIBRARY MODULE

The Library module provides a capability for specifiying text that is to be copied
from a source user-library file. This is usually created using any suitable source text
editor.

The B 20 COBOL libraries consist of disk files that contain source to be made
available to the compiler. The effect of the interpretation of the COpy statement
is to insert text into the source program where it will be treated by the compiler as
part of the source program.

10-1

THE COPY STATEMENT

FUNCTION

The COpy statement incorporates text into B 20 COBOL source program.

GENERAL FORMAT

COPY "text-name" •

SYNTAX RULES

1. Text-name must be a unique standard operating system file name.

2. The COpy statement must be preceded by a space and terminated by the
separa tor period.

3. A COpy· statement may occur in the source program anywhere a
character-string or a separator may occur except that a COPY statement
must not occur within a COpy statement.

GENERAL RULES

1. The compilation of a source program containing COPY statement is logically
equivalent to processing all COPY statements prior to the processing of the
resulting source program.

2. The effect of processing a COPY statement is that the library text associated
with text-name is copied into the source program, logically replacing the
entire COpy statement, beginning with the reserved word COpy and ending
with the punctuation character period, inclusive.

3. The library text is copied unchanged.

4. If the unit identifier is not explicitly specified, default is to the drive from
which the compiler is loaded.

10-2

SECTION 11

DEBUG AND INTERACTIVE DEBUGGING

INTRODUCTION

Standard ANSI COBOL debugging provides a means by which the user can describe
the conditions under which procedures are to be monitored during the execution of the
object program.

The B 20 COBOL Run-Time Debug Package is an extension to ANSI COBOL
that provides break-point facilities in the user's program. Programs may be run
from the start until a specified break-point is reached, when control is passed
back to the user. At this point, data areas may be inspected or changed.

B 20 COBOL RUN-TIME DEB UG EXTENSION

The Run-Time Debug Package is entered as an option by the user and the user
program is then tested line by line, paragraph by paragraph, and so on, as required. The
commands to the package can reference procedure statements and data areas by means
of a 4-digit hexadecimal code output by the compiler against each line of the
compilation listing. Powerful macros of commands can be used to give very
sophisticated debugging facilities. The precise details for using the package are
contained in Appendix J.

STANDARD ANSI COBOL DEBUG

The'decisions of what to monitor and what information to display are explicitly
in the domain of the user. The COBOL Debug facility simply provides a
convenient access to pertinent information.

The features of the language that support the COBOL Debug module are:

* A compile time switch -- WITH DEBUGGIN G MODE

* An object time switch

* A USE FOR DEBUGGING statement

* A special register -- DEBUG-ITEM

* Debugging lines

The reserved word DEBUG-ITEM is the name for a special register generated
automatically by the compiler that supports the debugging facility. Only one
DEBUG-ITEM is allocated per program. The names of the subordinate data items in
DEBUG~ITEM are also reserved words.

ll-l

COMPILE-TIME SWITCH

The DEBUGGING MODE clause is written as part of the SOURCE-COMPUTER
paragraph in the Environment Division. It serves as a compile-time switch over
debugging statements written in the program.

When DEBUGGING MODE is not specified in a program, all the debugging lines are
compiled as if they were comment lines and their syntax is not checked.

COBOL DEBUG OBJECT TIME SWITCH

An object time switch dynamically activates· the debugging code inserted by the
compiler. This switch cannot be addressed in the program; it is controlled outside the
COBOL environment. If the switch is 'on', the effects of any USE FOR DEBUGGING
statements written in the source program are permitted. If the switch is 'off', all the
effects described in the USE FOR DEBUGGING Statement are inhibited.
Recompilation of the source program is not required to provide or take away this
facility. .

The object time switch has no effect on the execution of the object program if the
WITH DEBUGGING MODE clause was not specified in the source program at compile
time.

The switch is described in Appendix J.

ENVIRONMENT DIVISION IN COBOL DEBUG

The WITH DEBUGGIN G MODE Clause

Function

The WITH DEBUGGING MODE clause indicates that all debugging sections and all
debugging lines are to be compiled. If this clause is not specified, all debugging lines
and sections are compiled as if they were comment lines.

General Format

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE].

11-2

General Rules

1. If the WITH DEBUGGING MODE clause is specified in the
SOURCE-COMPUTER paragraph of the Configuration Section of a program,
all USE FOR DEBUGGING statements and all debugging lines are compiled.

2. If the WITH DEBUGGING MODE clause is not specified in the
SOURCE-COMPUTER paragraph of the Configuration Section of a program,
any USE FOR DEBUGGING statements and all associated debugging sections,
and any debugging lines are compiled as if they were comment lines.

11-3

PROCEDURE DIVISION IN COBOL DEBUG

The USE FOR DEBUGGING Statement

Function

The USE FOR DEBUGGING statement identifies the user items that are to be
monitored by the associated debugging section.

General Format

section-name SECTIO N [segmen

1
number J.

USE FOR DEBUGGING ON procedure-name-l I
- ALL PROCEDURES ~

[
procedure-name-2]
ALL PROCEDURES

Syntax Rules

1. Debugging sections, if specified, must appear together immediately after the
DECLARATIVES header.

2. Except in the USE FOR DEBUGGING statement itself, there must be no
reference to any non-declarative procedure within the debugging section.

3. Statemets appearing outside of the set of debugging sections must not
reference procedure-names defined within the set of debugging sections.

4. Except for the USE FOR DEBUGGING statement itself, statements appearing
within a given debugging section may reference procedure-names defined
within a different USE procedure only with a PERFORM statement.

5. Procedure-names defined wi thin debugging sections must not appear within
USE FOR DEBUGGING statements.

6. Any given procedure-name may appear in only one USE FOR DEBUGGING
statement and may appear only once in that statement.

7. The ALL PROCEDURES phrase can appear only once in a program.

8. When the ALL PROCEDURES phrase is specified, procedure-name-l,
procedure-name-2, ••• must not be specified in any USE FOR DEBUGGING
statement.

9. References to the special register DEBUG-ITEM are restricted to references
from within a debugging section.

11-4

General Rules

1. In the following general rules all references to procedure-name-l, apply
equally to procedure-name-2.

2. Automatic execution of a dubugging section is not caused by a statement
appearing in a debugging section.

3. When procedure-name-l is specified in a USE FOR DEBUGGING statement
that debugging section is executed:

a. Immediately before each execution of the named procedure;
b. Immediately after the execution of an ALTER statement which

references procedure-name-l.

4. The ALL PROCEDURES phrase causes the effects described in General Rule
3 to occur for every procedure-name in the program, except those appearing
within a debugging section.

5. The associated debugging section is not executed for a specific operand more
than once as a result of the execution of a single statement, regardless of the
number of times that operand is explicitly specified. In the case of a
PERFORM statement which caused iterative execution of a referenced
procedure, the associated debugging section is executed once for each
iteration.

Within an imperative statement, each individual occurrence of an imperative
verb identifies a separate statement for the purpose of debugging.

s. A reference to procedure-name-l as a qualifier does not consititute
reference to that item for the debugging described in the general rules above.

7. Associated with each execution of a debugging section is the special register
DEBUG-ITEM, which provides information about the conditions that caused
the execution of a debugging section. DEBUG-ITEM has the following
implicit description:

01 DEBUG-ITEM.
02 DEBUG-LINE PICTURE IS XeS).
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-NAME PICTURE IS X(30).
02 FILLER PICTURE is X VALUE SPACE.
02 DEBUG-SUB-l PICTURE IS S9999 SIGN IS LEADING SEPARATE

CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE

CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE

CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-CONTENTS PICTURE IS X(n).

11-5

8. Prior to execution of a debugging section, the contents of the data item
referenced by DEBUG-ITEM are space-filled. The contents of data items
subordinate to DEBUG-ITEM are then updated, according to the following
general rules, immediately before control is passed to that debugging
section. The contents of any data item not specified in the following
general rules remain spaces.

Updating is accomplished in accordance wit the rules for the MOVE statement,
the sole exception being the move to DEBUG-CONTENTS when the move is
treated exactly as if it was an alphanumeric to alphanumeric elementary move
with no conversion of data from one form of internal representation to another.

9. The contents of DEBUG-LINE is the relevant COBOL source line number.
This provides the means of identifying a particular source statement.

10. DEBUG-NAME contains the first 30 characters of the name that caused the
debugging section to be executed.

Subscripts/indices, if any, are not entered into DEBUG-N AME.

II. DEBUG-CONTENTS is a data item that is large enough to contain the data
required by the following general rules.

12. If the first execution of the first nondeclarative procedure in the program
causes the debugging section to be executed, the following conditions exist:

a. DEBUG-LINE Identifies the first statement of that procedure.
b. DEBUG-NAME contains the name of that procedure.
c. DEBUG-CONTENTS contains 'START PROGRAM.'

13. If a reference to procedure-name-I in an ALTER statement causes the
debugging section to be executed, the following conditions exist:

a. DEBUG-LINE identifies the ALTER statement that references
procedure-nam e-I.

b. DEBUG-N AME contains procedure-name-I.
c. DEBUG-CONTENTS contains the applicable procedure-name associated

with the TO Phrase of the ALTER statement.

14. If the transfer of control associated with the execution of a GO TO
statement causes the debugging section to be executed, the following
conditions exist:

a. DEBUG-LINE identifies the GO TO statement whose execution transfers
control to procedure-name-I.

b. DEBUG-NAME contains procedure-name-I.

11-6

15. If the transfer of control from the control mechanism associated with a
PERFORM statement caused the debugging section associated with
procedure-name-l to be executed, the following conditions exist:

a. DEBUG-LINE Identifies the PERFORM statement that references
procedure-na me-I.

b. DEBUG-NAME contains procedure-name-l.
c. DEBUG-CONTENTS contains 'PERFORM LOOP'.

16. If procedure-name-l is a USE procedure that is to be executed, the following
conditions exist:

a. DEBUG-LINE identifies the statement that causes execution of the USE
procedure.

b. DEBUG-NAME contains procedure-name-l.
c. DEBUG-CONTENTS contains 'USE PROCEDURE'.

17. If an implicit transfer of control from the previous sequential paragraph to
procedure-name-l causes the debugging section to be executed, the following
conditions exist:

a. DEBUG-LINE identifies the previous statement.
b. DEBUG-NAME contains procedure-name-l.
c. DEBUG-CONTENTS contains 'FALL THROUGH'.

DEBUGGING LINES

A debugging line is any line with a 'D' in the indicator area of the line. Any
debugging line that consists solely spaces from margin A to margin R is considered the
same as a blank line.

The contents of a debugging line must be such that a syntactically correct program
is formed with or without the debugging lines being considered as comment lines.

A debugging line will be considered to have all the characteristics of a comment
line, if the WITH DEBUGGING MODE clause is not specified in the
SOURCE-COMPUTER paragraph.

Successive debugging lines are allowed. Continuation of debugging lines is
permitted, except that each continuation line must contain a 'D' in the indicator area,
and character-strings may not be broken across two lines.

A debugging line is only permitted in the program after the OBJECT-COMPUTER
paragraph.

11-7

SECTION 12

INTERPROGRAM COMMUNICATIO N

INTRODUCTION TO THE INTER-PROGRAM COMMUNICATION MODULE

The Inter-Program Communication module provides a facility by which a program
can communicate with one or more programs. This provides a programmer with a
modular programming capability. Each module when CALLed is loaded dynamically by
the Run Time System. Communication is provided by:

*
*

The ability to transfer control from one program to another within a run unit

The ability for both programs to have access to the same data items.

DATA DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

LINKAGE SECTION

The Linkage Section in a program is meaningful if and only if the object program is
to function under the control of a CALL statement, and the CALL statement in the
calling program contains a USI N G phrase.

The Linkage Section is used for describing data that is available through the calling
program but is to be referred to in both the calling and the called program. No space is
allocated in the program for data items referenced by data-names in the linkage
Section of that program. Procedure Division references to these data items are
resolved at object time by equating the reference in the called program to the location
used in the calling program. In the case of index-names, no such correspondence is
established. Index-names in the called and calling program always refer to separate
indices.

Data items defined in the Linkage Section of the called program may be referenced
within the Procedure Division of the called program only if they are specified as
operands of the USING phrase of the Procedure Division header or are subordinate to
such operands, and the object program is under the control of a CALL statement that
specifies a USI N G phrase.

The structure of the Linkage Section is the same as that previously described for
the Working-Storage Section, beginning with a section header, followed by data
description entries for noncontiguous data items and/or record description entries.

Each Linkage Section record-name and noncontiguous item name must be unique
within the called program since it cannot be qualified. Data items defined in the
Linkage Section of the called program must not be associated with data items defined
in the Report Section of the calling program.

12-1

Of those items defined in the Linkage Section only data-name-l, data-name-2, •••
in the USING phrase of the Procedure Division header, data items subordinate to these
data-names, and condition-names and/or index-names associated with such data-names
and/or subordinate data items, may be referenced in the Procedure Division.

Noncontiguous Linkage Storage

Items in the Linkage Section that bear no hierarchic relationship to one another
need not be grouped into records and are classified and defined as noncontiguous
elementary items. Each of these data items is defined in a separate data description
entry which begins with the special level-number 77.

The following data clauses are required in each data description entry:

* Level-number 77
* Data-name
* The PICTURE clause or the USAGE IS INDEX clause

Other data description clauses are optional and can be used to complete the
description of the item, if necessary.

12-2

PROCEDURE DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

THE PROCEDURE DIVISION HEADER

The Procedure Division is identified by and must begin with the following header:

PROCED URE DIVISIO N [USING data-name-l [, data-name-2] •••]

The USIN G phrase is present if and only if the object program is to function under
the control of a CALL statement, and the CALL statement in the calling program
contains a USING phrase.

Each of the operands in the USING phrase of the Procedure Division header must
be defined as a data item in the Linkage Section of the program in which this header
occurs, and it must have a 01 or 77 level-number.

Within a called prog-ram, Linkage Section data items are processed according to
their data descriptions given in the called program.

When the USING Phrase is present, the object program operates as if data-name-l
of the Procedure Division header in the called program and data-name-l in the USING
phrase of the CALL statement in the calling program refer to a single set of data that
is equally available to both the called and calling programs. Their descriptions must
define an equal number of character positions; however they need not be the same
name. In like manner, there is an equivalent relationship between data-name-2, ••• , in
the USING phrase of the called program and data-name-2, ••• , in the USING phrase of
the CALL statement in the calling program. A data-name must not appear more than
once in the USING phrase in the Procedure Division header of the called program;
however, a given data-name may appear more than once in the same USIN G phrase of a
CALL statement.

12-3

THE CALL STATEMENT

Function

The CALL statement causes control to be transferred from one object program to
another within the run unit.

General Format

Format I

CALL ~ identifier-Ii [USING data-name-I ? literal-l ~

[ON OVERFLOW imperative-statement]

Format 2

CALL

Syntax Rules

~ literal-2 i
? identifier-2 ~

[USING data-name-3

I. Literal-l must be a nonnumeric literal.

[, data-name-2] •.•]

[, data-name-4] •.•]

2. Identifier-l must be defined as a category alphanumeric. usage is dis­
play data item.

3. The USING phrase is included in the CALL statement only if there is a USING
phrase in the Procedure Division header of the called program and the number
of operands in each USING phrase must be identical.

4. Each of the operands in the USING phrase must have been defined as a data
item in the File Section, Working-Storage Section, or Linkage Section, and
must have a level-number of 01 or 77.

5. Literal-2 must be defined as a nonnumeric literal.

6. Identifier-2 must be defined as an alphanumeric data item. (See Appendix J
for details.)

General Rules

1. The program whose name is specified by the value of literal-lor identifer-l is
a called intermediate code module, literal-2 is a called run time subroutine;
the program in which the CALL statement appears is the calling program.

2. The execution of a CALL statement causes control to pass to the called
program.

12-4

3. In format 1, a called intermediate code module is loaded from disk the first
time it is called within a run-unit and the first time it is called after a
CANCEL to the called program.

On all other entries into the called program, the state of the program remains
unchanged from its state when last executed. This includes all data fields, the
status and positioning of all files, and all alterable switch settings.

4. In format 2, a called run time subroutine is always in the state in which it last
existed.

5. If during the execution of a CALL statement, it is determined that the
available portion of run-time memory is incapable of accommodating the
program specified in the CALL statement, the next sequential instruction is
executed. If ON OVERFLOW has been specified, the associated imperative
statement is executed before the next instruction is executed.

6. Called programs may contain CALL statements. However, a called program
must not contain a call statement that directly or indirectly calls the calling
program.

7. The data-names, specified by the USING phrase of the CALL statement,
indicate those data items available to a calling program that may be referred
to in the called program. The order of appearance of the data-names in the
USIN G phrase of the CALL statement and the USIN G phrase in the Procedure
Division header is critical. Corresponding data-names refer to a single set of
data which is available to the called and calling program. The correspondence
is positional, not by name. In the case of index-names, no such correspondence
is established. Index-names in the called and calling program always refer to
separate indices.

8. The CALL statement may appear anywhere within a segmented program.
Therefore, when a CALL statement appears in a section with a
segment-number greater than or equal to 50, that segment is in its last used
state when the EXIT PROGRAM statement returns to the calling program.

12-5

THE CANCEL STATEMENT

Function

The CAN CEL statement releases the memory areas occupied by the referred to
program.

General Format

CANCEL

Syntax Rules

~ identifier-II
~ literal-l

identifier-2 1]
literal-2

1. Literal-I, literal-2, ••• , must each be a nonnumeric literal.

2. Identifier-I, identifier-2, ••• , must each be defined as an alphanumeric data
item such that its value can be a program name.

General Rules

1. Subsequent to the execution of a CANCEL statement, the program
referred to therein ceases to have any logical relationship to the run unit
in which the CANCEL statement appears. A subsequently executed CALL
statement naming the same program will result in that program being
initiated in its initial state. The memory areas associated with the
named programs are released so as to be made available for disposition by
the operating system.

2. A program named in the CAN CEL statement must not refer to any program
that has been called and has not yet executed an EXIT PROGRAM statement.

3. A logical relationship to a cancelled subprogram is established only by
execution of a subsequent call statement.

4. A called program is cancelled either by being referred to as the operand of a
CANCEL statement or by the termination of the run unit of which the
program is a member.

5. No action is taken when a CANCEL statement is executed naming a program
that has not been called in this run unit or has been called and is at present
cancelled. Control passes to the next statement.

12-6

THE EXIT PROGRAM STATEMENT

Function

The EXIT PROGRAM statement marks the logical end of a called program.

General Format

EXIT PROGRAM.

Syntax Rules

1. The EXIT PROGRAM statement must appear in a sentence by itself.

2. The EXIT PROGRAM sentence must be the only sentence in the paragraph.

General Rule

An execution of an EXIT PROGRAM statement in a called program causes control
to be passed to the calling program. Execution of an EXIT PROGRAM statement
in a program which is not called behaves as if the statement were an EXIT
statement. (See The EXIT STATEMENT in Section 3.)

12-7

SECTION 13

PROGRAMMING TECHNIQUES, USEFUL HINTS AND PROGRAM SIZING

PROGRAMMING TECHNIQUES

Although COBOL is written in an essentially free form, the user will nevertheless
reap many advantages from a few self-imposed disciplines. It is suggested that these
should include the following:

1. Use of the first 256 bytes of working-storage for variables which are
frequently referenced will produce more compact and efficient code.

2. Use subscripts as sparingly as possible because each subscript has a storage
requirement approximately equal to the size of a normal instruction.

3. For ACCEPT and DISPLAY, the compiler generates one instruction per
elementary item of the data-name being displayed/accepted. Therefore,
redefine a group of fields as a single field for DISPLAY whenever possible and
avoid unnecessary numbers of small fields in ACCEPT.

4. Use FILLER instead of a data-name for any elementary field not referenced
explicitly because the word FILLER is compacted to one character in the Data
Dictionary.

5. Keep the number of digits in numeric fields as small as possible.

6. Whenever possible move a group instead of several elementary moves.

USEF UL HINTS

When writing interactive programs the following facilities of L/II COBOL should be
remembered:

I. By use of the CURSOR IS facility and the ACCEPT statement it is easy to
program continually depending on the cursor position after a menu type of
prompt. The operator need then only move the cursor to the option required
to reply to the prompt, or just press RETUR N in the default case.

2. Remember always to end your B 20 COBOL program with a full stop
(period) • Invalid intermediate code can result if this final full stop is
missing.

3. If the STOP "literal" statement is used in a program, execution of the program
halts at this statement with the literal displayed on the CRT screen.
Execution continues on pressing the Carriage Return (CR) key. It should be
noted that if any string of characters terminated by a CR character has been
keyed and is waiting to be read, the program will appear not to halt. Examples
of this are if the CR key was inadvertently pressed twice at the last command
entered or if parameters to the CRUN ccmnand have not yet been read.

13-1

SIZING

GENERAL DESCRIPTION

There are three aspects to sizing a program; the source code, the Data Dictionary
and the compiled code.

The maximum number of source statements per program is limited, firstly by the
space available to load the generated program.

The Data Dictionary contains an entry for every user-defined name in the
program. Detailed information is containeq in the next section.

A guide for calculating the size of the generated program is as follows:

The sum of the Record size for each file in bytes
+ the Record size for each Working-Storage record in bytes
+ the number of characters in all Procedure Division literals
+ 60 bytes per File
+ 300 bytes control area
+ 6 bytes per COBOL instruction with the following qualifiers

for an ACCEPT /DISPLA Y statement, add 3 bytes per elementary item within the
Accepted/Displayed data-name.

for every subscript used in a statement, add 7 bytes

for a comparison, add 6 by'tes

for an implicitly generated comparison, e.g., PERFORM UNTIL, READ AT END -
add 6 bytes

DATA DICTION ARY

The Data Dictionary is constructed as the program is compiled. Each user-defined
name will have an entry in this dictionary. The number of bytes required for each entry
is given in Table 14-1.

13-2

Table 14-1. Data Dictionary Entry Sizing.

User-defined name

File-name
Record-name
Key-name
Status-name
Paragraph-name
Data-name Grop
Alphanumeric < 32 characters
Alphanumeric > 32 characters
Numeric integer
Numeric non integer
Numeric edited

Number of Bytes 1

18 + n
8 + n
8+n
8 + n
6+n
8+n
7+n
8+n
7+n
8+n
7+n+x

1 - n = number of characters in user-defined name.

For a FILLER, n = 1.

2
2
2
2
2

x = number of characters in PICture, after coalescing repetitions.

e.g. 9999.9
9(4).9
Z(2)9(4).9(3)

= 3 bytes
= 3 bytes
= 4 bytes

2. - Subtract 1 byte if item is in the first 256 bytes of Working-Storage.

Add 4 bytes if item has an OCCURS clause associated with it.

Add 2 bytes if item is subordinate to an item described with OCCURS.

13-3

APPENDIX A

RESERVED WORD LIST

RESERVED WORD LIST

This appendix contains a full list of COBOL and L/II COBOL reserved words. A
shaded reserved word is a L/II COBOL extension to AN SI COBOL.

This / symbol denotes that the text up to that point is a reserved word, as is the
whole word.

e.g., In INDEX/ED, INDEX and INDEXED are reserved words. In SPACE/S,
SPACE and SPACES are reserved words.

A-I

ACCEPT DATE-WRITTEN
ACCESS DATE/-COMPILED I-O/-CONTROL
ADD DAY IDENTIFICATION
ADVANCING DEBUG-CONTENTS IF
AFTER DEBUG-ITEM IN
ALL DEBUG-LINE INDEX/ED
ALPHABETIC DEBUG-NAME INITIAL
ALSO DEBUG-SUB-l INPUT/-OUTPUT
ALTER DEBUG-SUB-2 INSPECT
ALTERNATE DEBUG-SUB-3 INSTALLATION
AND DEBUGGING INTO
ARE DECIMAL-POINT INVALID
AREA/S DECLARATIVES IS
ASCENDING DELETE
ASSIGN DELIMITED JUST/IFIED
AT DELIMITER
AUTHOR DEPENDING KEY

DESCENDING
BEFORE DESTIN ATION LABEL
BLANK DISABLE LEADING
BLOCK DISPLAY LEFT
BY DIVIDE LESS

DIVISION LIMIT/S
CALL DOWN LIN AGE/-COUNTER
CANCEL DUPLICATES LINE/S
CD DYNAMIC LINKAGE
CHARACTER/S LOCK
CLOCK-UNITS ELSE LOW-VALUE/S
CLOSE ENABLE
COBOL END MEMORY
CODE/-SET ENTER MERGE
COLLATING ENVIRONMENT MESSAGE
COMMA EQUAL MODE
CO MMU NICA TIO N ERROR MODULES
COMP-M EVERY MOVE
COMP-N EXCEPTION MULTIPLE
COMP-3 EXIT MULTIPLY
COMP/UTATION AL/-3 EXTEND
COMPUTE NATIVE
CONFIGURATION FD NEGATIVE
CONSOLE FILE NEXT
CONTAINS FILE-CONTROL NOT
COPY FILLER NUMERIC
CORR/ESPONDING FIRST
COUNT FOR OBJECT-COMPUTER
CRT FROM OCCURS
CRT-UNDER OF
CURRENCY GIVING OFF
CURSOR GO OMITTED

GREATER ON
DATA OPEN

HIGH-VALUE/S OPTIONAL

A-2

OR SORT-MERGE • (period)
ORGANIZATION SOURCE/-COMPUTER (
OUTPUT SPACES
OVERFLOW SPECIAL-N AMES *

STANDARD/-l **
PAGE START
PERFORM STATUS ;
PIC/TURE STOP +
POINTER STRING /
POSITIVE SUB-QUEUE-l
PROCEED SUB-QUEUE-2
PROCEDURE/S SUB-QUEUE-3 =
PROGRAM/-ID SUBTRACT

SWITCH
QUEUE SYMBOLIC
QUOTE/S SY N C/HRONIZED

RANDOM TAB
RD TABLE
READ TALLYING
RECEIVE TAPE
RECORD/S TERMINAL
REDEFINES THAN
REEL THEN
RELATIVE THROUGH
RELEASE THRU
REMAINDER TIME/S
REMOVAL TO
RENAMES TOP
REPLACING ·TRAILING
RERUN TYPE
REWRITE
RIGHT UNIT
ROUNDED UNSTRING
RUN UNTIL

UP
SAME UPON
SD USAGE
SEARCH USE
SECTION USING
SECURITY
SEG ME NT/-LIMIT VALUE/S
SELECT VARYING
SEND
SENTENCE WHEN
SEPARATE WITH
SEQUENCE WORDS
SEQUENTIAL WORKING-STORAGE
SET WRITE
SIGN
SIZE ZERO/ES or S
SORT

A-3

APPENDIX B

CHARACTER SETS AND COLLATING SEQUENCE

ASCII HEX COBOL ASCII HEX COBOL ASCII HEX COBOL

NUL 00 X / 2F 5E X
SOH 01 X 0 30 5F X
STX 02 X 1 31 60 X
ETX 03 X 2 32 a 61
EOT 04 X 3 33 b 62
ENG 05 X 4 34 c 63
ACK 06 X 5 35 d 64
BEL 07 X 6 36 e 65
BS 08 X 7 37 f 66
HT 09 X 8 38 g 67
LF OA X 9 39 h 68
VT OB X 3A X i 69
FF OC X ; 3B j 6A
CR OD X < 3C k 6B
SO OE X = 3D 1 6C
SI OF X > 3E m 6D
DLE 10 X ? 3F X n 6E
DCI 11 X @ 40 X 0 6F
DC2 12 X A 41 P 70
DC3 13 X B 42 q 71
DC4 14 X C 43 r 72
NAK 15 X D 44 s 73
SYN 16 X E 45 t 74
ETB 17 X F 46 u 75
CAN 18 X G 47 v 76
EM 19 X H 48 w 77
SUB lA . X I 49 x 78
ESC IB X J 4A Y 79
FS lC X K 4B z 7A
GS ID X L 4C 7B X
RS IE X M 4D 7C X
US IF X N 4E 7D X
space 20 a 4F 7E X
! 21 X P 50 DEL 7F X

" 22 Q 51
23 X R 52
$ 24 S 53
% 25 X T 54
& 26 X U 55

27 X V 56
28 W 57
29 X 58

* 2A Y 59
+ 2B Z 5A

2C 5B X
2D 5C X
2E 5D X

B-1

APPENDIX C

GLOSSARY

INTRODUCTION

The terms in this Section are defined in accordance with their meaning as used in
this document describing L/II COBOL and may not have the same meaning for other
languages.

These definitions are also intended to be either reference material or introductory
material to be reviewed prior to reading the detailed language specifications that are
contained in this manual. For this reason, these definitions are, in most instances, brief
and do not include detailed syntactical rules.

DEFINITIO NS

Abbreviated Combined Relation Condition.

The combined condition that results from the explicit omIssIon of a common
subject or a common subject and common relational operator in a consecutive
sequence of relation conditions.

Access Mode.

The manner in which records are to be operated upon within a file.

Actual Decimal Point.

The physical representation, using either of the decimal point characters. (period)
or , (comma) of the decimal point position in a data item.

Alphabet-Name.

A user-defined word in the SPECIAL-NAMES paragraph of the Environment
Division that assigns a name to a specific character set and/or collating sequence.

Alphabetic Character.

A character that belongs to the following set of letters: A,B,C,D,E,F ,G,H,I,J,K,
L,M, N ,O,P,Q,R,S,T, U, V, W ,X, Y,Z and the space. Also a,b,c,d,e,f,g,h,i,j,k,
l,m,n,o,p,q,r,s,t,u,v,w,x,y and z which are converted to their upper case equivalents.

C-l

Alphanumeric Character.

Any character in the computer's character set.

Arithmetic Expression.

An arithmetic expression can be an identifier or a numeric elementary item, a
numeric literal, such identifiers and literals separated by arithmetic operators, two
arithmetic expressions separated by an arithmetic operator, or an arithmetic
expression enclosed in parentheses.

Arithmetic Operator.

A single character, or a fixed two-character combination, that belongs to the
following set:

Character
+

*
/
**

Meaning
Addition
Subtraction
Multiplication
Division
Exponentiation

Ascending Key.

A key upon the values of which data is ordered starting with the lowest value
of key up to the highest value of key in accordance with the rules for
comparison of the data items. .

Assumed Decimal Point.

A decimal point position which does not involve the existence of an actual
character in a data item. The assumed decimal point has logical meaning but no
physical representation.

At End Condition.

A condition caused in one of two circumstances:

Block.

1. During the execution of a READ statement for a sequentially accessed
file.

2. During the execution of a RETURN statement when no next logical
record exists for the associated sort or merge file.

A physical unit of data that is normally composed of one or more logical records.
For mass storage files, a block may contain a portion of a logical record. The size
of a block has no direct relationship to the size of the file within which the block is
contained or to the size of the logical record(s) that are either continued within the
block or that overlap the block. The term is synonymous with physical record.

C-2

Cd-Name.

A user-defined word that names an MCS interface area described in a
communication description entry within the Communication Section of the Data
Division.

Called Program.

A program which is the object of a CALL statement combined at run time with the
calling program to produce a run unit.

Calling Program.

A program which executes a CALL to another program.

Character.

The basic indivisible unit of the language.

Character Set (Lin COBOL).

The complete LIII COBOL character set consists of all characters listed below:

Character

0, 1, ••• , 9
A, B, ••• , Z
a, b, ... , z

+

*
I
=
$

(
)

>
<

Character Position.

Meaning

Numeric digit
Uppercase alphabetic
Lowercase alphabetic
Space (Blank)
Plus Sign
Minus Sign
Asterisk
Stroke (Virgule or Slash)
Equal Sign
Currency Sign
Comma
Semicolon
Period (Decimal Point, Fullstop)
Quotation Mark
Left Parenthesis
Right Parenthesis
Greater Than SymboI"
Less Than Symbol

A character position is the amount of physical storage required to store a single
standard data format character described as usage in DISPLAY. Further
characteristics of the physical storage are defined by the implementor.

C-3

Character-String.

A sequence of contiguous characters which form a L/II COBOL word, a literal, a
PICTURE character-string or a com ment-entry.

Class Condition.

The proposition, for which a truth value can be determined, that the content of an
item is wholly alphabetic or is wholly numeric.

Clause.

A clause is an ordered set of consecutive LIII COBOL character-strings whose
purpose is to specify an attribute of an entry.

COBOL Word.

(See Word)

Collating Seguence.

The sequence in which the characters that are acceptable in a computer are
ordered for purposes of sorting, merging and or comparing.

Column.

A character position within a print line. The columns are numbered from one, by
one, starting at the left-most character position of the print line and extending to
the right-most character position of the print line.

Combined Condition.

A condition that is the result of connecting two or more conditions with the 'AND'
or the 'OR' logical operator.

Comment Entry.

An entry in the Identification Division that may be any combination of characters
from the computer character set.

Comment Line.

A source program line represented by an asterisk in the indicator area of the line
and any characters from the computer's character set in area A and area B of that
line. The comment line serves only for documentation in a program. A special
form of comment line represented by a stroke (j) in the indicator area of the line
and any characters from the computer's character set in area A and area B of that
line causes page ejection before printing the comment.

Communication Description Entry.

An entry in the Communication Section of the Data Division that is composed of
the level indicator CD, followed by a cd-name, and then followed by a set of
clauses as required. It describes the interface between the Message Control
System (MCS) and the COBOL program.

C-4

Communication Device.

A mechanism (hard or hardware/software) capable of sending data to a queue
and/or receiving data from a queue. This mechanism may be a computer or a
peripheral device. One or more programs containing communication description
entries and residing within the same computer define one or more of these
mechanisms.

Communication Section.

The section of the Data Division that describes the interface areas between the
MCS and the program, composed of one or more CD description entries.

Compile Time.

The time at which an L/II COBOL source program is translated by the compiler to
an L/II COBOL Intermediate code program.

Compiler-Directing Statement.

A statement, beginning with a compiler-directing verb, that causes the compiler to
take a specific action during compilation.

Complex Condition.

A condition in which one or more logical operators act upon one or more
conditions. (See Negated Simple Condition, Combined Condition, Negated
Combined Condition).

Computer-Name.

A system-name that identifies the computer upon which the program is to be
compiled or run.

Condition.

A status of a program at execution time for which a truth value can be
determined. Where the term "condition" (condition-I, condition-2, •••) appears in
these language specifications in or in reference to "condition" (condition-I,
condition-2, •••) of a general format, it is a conditional expression consisting of
either a simple condition optionally parenthesized, or a negated simple condition.

Condition Name.

The user-defined word assigned to a status of an implementor-defined switch or
device.

Condition-Name Condition.

The proposition, for which a truth value can be determined, that the value of a
conditional variable is a member of the set of values attributed to a
condition-name associated with the conditional variable.

C-5

Conditional Expression.

A simple condition specified in an IF, or PERFORM. (See Simple Condition and
Complex Condition.)

Conditional Statement.

A conditional statement specifies that the truth value of a condition is to be
determined, and that the subsequent action of the run-time program is dependent
on this truth value.

Conditional Variable.

A data item one or more values of which has a condition-name assigned to it.

Configuration Section.

A section of the Environment Division that describes overall specifications of
source and run computers.

Connective.

A reserved word that is used to:

1. Associate a data-name, paragraph-name, condition-name, or text-name
with its qualifier.

2. Link two or more operands written in a series.
3. Form conditions (logical connectives). (See Logical Operator.)

Contiguous Item s.

Items that are described by consecutive entries in the Da ta Division, and that bear
a definite hierarchic relationship to one another.

Counter.

A data item used for storing numbers or number representations in a manner that
permits these numbers to be increased or decreased by the value of another
number, or to be changed or reset to zero or to an arbitrary positive or negative
value.

Currency Sign.

The character "$" (dollar sign) in the L/II COBOL character set.

Currency Symbol.

The character defined by the CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph. If no CURRENCY SIGN clause is present in an Lin COBOL source
program, the currency symbol is identical to the currency sign.

Current Record.

The record which is available in the record area associated with the file.

C-6

Current Record Pointer.

A conceptual entity that is used in the selection of the next record.

Cursor.

The indicator on'a CRT screen that marks the line and character position which the
input/output control is currently referencing.

Da ta Clause.

A clause that appears in a data description entry in the Data Division and provides
information describing a particular attribute of a data item.

Da ta Description Entry.

An entry in the Data Division that is composed of a level-number followed by a
data-name, if required, and then followed by a set of data clauses as required.

Data Dictionary.

A dictionary file of user defined names constructed by the Compiler containing the
number of bytes of each entry.

Data Item.

A character or set of contiguous characters (excluding, in either case, literals)
defined as a unit of data by the L/II COBOL program.

Data-name.

A user-defined word that names a data item described in a data description entry
in the Data Division. When used in the general formats, "data-name" represents a
word which can neither be subscripted, nor indexed unless specifically permitted by
the rules for that format.

Debugging Line.

A debugging line is any line with "D" in the indicator area of the line.

Debugging Section.

A debugging section is a section that contains a USE FOR DEBUGGING statement.

Declaratives.

A set of one or more special purpose sections written at the beginning of the
Procedure Division, the first of which is preceded by the key word DECLARATIVES
and the last of which is followed by the key words END DECLARATIVES. A
declarative is composed of a section header, followed by a USE compiler directing
sequence, followed by a set of associated paragraphs (0 or more).

C-7

Declarative-Sentence.

A compiler-directing- sentence consisting- of a sing-Ie USE statement terminated by
the separator period (.).

Default Disk.

The disk from which the compiler or run-time system is loaded.

Delimiter.

A character (or sequence of contiguous characters) that identifies the end of a
string of characters, and separates that string of characters from the following
string of characters. A delimiter is not part of the string of characters that it
delimits.

Descending Key.

A key upon the values of which data is ordered starting with the highest value of
key down to the lowest value of key, in accordance with the rules for comparing
data items.

Destination.

The symbolic identification of the receiver of a transmission from a queue.

Digit Position.

A digit position is the amount of physical storage required to store a single digit.
This amount varies depending- on the usage of the data item describing the digit
position. Further characteristics of the physical storage are defined by the
implementor.

Division.

A set of sections or paragraphs (0 or more) that are formed and combined in
accordance with a specific set of rules are called a division body. There are 4
divisions in an L/II COBOL program: Identification, Environment, Data and
Procedure.

Division Header.

A combination of words followed by a period and a space that indicate the
beginning of a division. The division headers are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION USING data-name-l data-name-2 ••••

C-8

Dynamic Access.

An access mode in which specific logical records can be obtained from or placed
into a disk file in a non-sequential manner (see Random Access) and obtained from
a file in a sequential manner (see Sequential Access) during the scope of the same
OPEN statement.

Editing Character.

A single character or a fixed two character combination belonging to the same set.

Character

B
o
+

CR
DB
Z

*
$

I

Elementary Item.

Meaning

Space
Zero
Plus
Minus
Credit
Debit
Zero Suppress
Check Protect
Currency Sign
Comma
Period (Decimal Point)
Stroke (Virgule, Slash)

A data item that is described as not being further logically subdivided.

End of Procedure Division.

The physical position in a LIII COBOL source program after which no further
procedures appear.

Entry.

Any descriptive set of consecutive clauses terminated by a period (.) and written in
the Identification Division, Environment Division or Data Division of an L/II
COBOL source program.

Environment Clause.

A clause that appears as part of an Environment Division entry.

Extend Mode.

With the EXTEND phrase specified, the state of a file after execution of an OPEN
statement, and before the execution of a CLOSE statement for the file.

Figurative Constant.

A compiler-generated value referenced through the use of certain reserved words.

C-9

File.

A collection of records.

File Clause.

A clause that appears as part of any of the following Data Division entries:

File Description (FD)
Sort-Merge File Description (SD)
Communication Description (CD)

FILE-CO N TRO L.

The name of an Environment Division paragraph in which the data files for a given
source program are declared.

File Description Entry.

An entry in the File Section of the Data Division that is composed of the level
indicator FD, followed by a file-name, and then followed by a set of file clauses as
required.

File-Name.

A user-defined word that names a file described in a file description entry or a
sort-merge file description entry within the File Section of the Data Division.

File Organization.

The permanent logical file structure established at the time that a file is created.

File Section.

The section of the Data Division that contains file description entries together
with their associated record descriptions.

Format.

A specific arrangement of a set of data.

Group Item.

A named contiguous set of elementary or group items.

High Order End.

The leftmost character of a string of characters.

C-IO

I-O-CONTROL.

The name of an Environment Division paragraph in which object program
requirements for specific input/output techniques, rerun points, sharing of same
areas by several data files, and multiple file storage on a single input/output device
are specified.

1-0 Mode.

The state of a file after execution of an OPE N statement, with the 1-0 phrase
specified, for that file and before the execution of a CLOSE statement for that file.

Identifier.

A data-name, followed as required, by the syntactically correct combination of
subscripts and indices necessary to make unique reference to a data item.

Imperative Statement.

A statement that begins with an imperative verb and specifies an unconditional
action to be taken. An imperative statement may consist of a sequence of
imperative statements.

Implementor-Name.

A system-name that refers to a particular feature available on the implementors
computing system.

Index.

A computer storage position or register, the contents of which represent the
identification of a particular element in a table.

Index Da ta Item.

A data item in which the value associated with an index-name can be stored in a
form specified by the implementor.

Index-Name.

A user-defined word that names an index associated with a specific table.

Indexed Data-Name.

An identifier that is composed of a data-name, followed by one or more
index-names enclosed in parentheses.

Indexed File.

A file with indexed organization.

C-ll

Indexed Organization.

The permanent logical file structure in which each record is identified by the value
of one or more keys within that record.

Indica tor Area.

The leftmost parameter position of a L/II COBOL source record that indicates the
use of the record.

Input File.

A file that is opened in the input mode.

Input Mode.

The state of a file after execution of an OPE N statement, with the IN PUT phrase
specified, for that file and before the execution of a CLOSE statement for that file.

Input-Output File.

A file that is opened in the 1-0 mode.

Input-Output Section.

The section of the Environment Division that names the files and the external
media by a program and which provides information required for transmission and
handling of data during execution of the run-time program.

Input Procedure.

A set of statements that is executed each time a record is released to the sort file.

Integer.

A numeric literal or a numeric data item that does not include any character
positions to the right of the assumed decimal point. Where the 'integer' appears in
general formats, integer must not be a numeric data item, and must not be signed,
nor zero unless explicitly allowed by the rules of that format.

Intermediate Code.

The code produced by the L/II COBOL compiler from the source code entered, and
which the Run Time System 'fast loads' for execution.

Invalid Key Condition.

A condition, at object time, caused when a specified value of the key associated
with an indexed or relative file is determined to be invalid.

C-12

Key.

A data item which identifies the location of a record, or a set of data items which
serve to identify the ordering of da tao

Key of Reference.

The key currently being used to access records within an indexed file.

Key Word.

A reserved word whose presence is required when the format in which the word
appears is used in a source program.

Language-Name.

A system-name that specifies a particular programming language.

Level Indicator.

Two alphabetic characters that identify a specific type of file or a position in
hierarchy.

Level-Number.

A user-defined word which indicates the position of a data item in the hierarchical
structure of a logical record or which indicates special properties of a data
description entry. A level-number is expressed as a one or two digit number.
Level-numbers in the range I through 49 indicate the position of a data item in the
hierarchical structure of a logical record.

Level-numbers in the range I through 9 may be written either as a single digit or as
a zero followed by a significant digit. Level-number 77 identifies special
properties of a data description entry.

Library-Name.

A user-defined word that names a L/II COBOL library intermediate file that is to
be used by the compiler for a given source program compilation.

Li brary-Text.

A sequence of character-string and/or separators in a COBOL Library.

Line Sequential File Organization.

A sequential file containing variable-length records separated by the new line
character.

Linkage Section.

The section in the Data Division of the called program that describes data items
available from the calling program. These data items may be referred to by both
the calling and called program.

C-13

Literal. ---
A character-string whose value is implied by the ordered set of chaacters
comprising the string.

Logical Operator.

The reserved word 'NOT'. It can be used for logical negation.

Logical Record.

The most inclusive data item. The level-number for a record is 01.

Low Order End.

The rightmost character of a string of characters.

MCS.

(See Message Control System).

Merge File.

A collection of records to be merged by a MEROE statement. The merge file is
created and can be used only by the merge function.

Message.

Data associated with an end of message indicator or an end of group indicator.
(See Message Indicators)

Message Control System (MCS).

A communication control system that supports the processing of messages.

Message Count.

The count of the number of complete messages that exist in the designated queue
of messages.

Message Indicators.

EOI (end of group indicator), EMI (end of message indicator), and ESI (end of
segment indicator) are conceptual indications that serve to notify the MCS that a
specific condition exists (end of group, end of message, end of segment).

Within the hierarchy of EOI, EMI, and ESI, an EOI is conceptually equivalent to an
ESI, EMI, and EOI. An EMI is conceptually equivalent to an ESI and EMI. Thus, a .
segment may be terminated by an ESI, EMI, or EOI. A message may be terminated
by an EMI or EOI.

C-14

Message Segment.

Data that forms a logical subdivision of a message normally associated with an end
of segment indicator. (See Message Indicators).

Mnemonic-N arne.

A user-defined word that is associated in the Environment Division with a specified
implementor-name.

Native Character Set.

The implementor-defined character set associated with the computer specified in
the OBJECT-COMPUTER paragraph.

Native Collating Sguence.

The implementor-defined collating sequence associated with the computer
specified in the OBJECT-COMPUTER paragraph.

Negated Combined Condition.

The 'NOT' logical operator immediately followed by a parenthesized combined
condition.

Negated Simple Condition.

The 'NOT' logical operator immediately followed by a simple condition.

N ext Executable Sentence.

The next sentence to which control will be transferred after execution of the
current statement is complete.

N ext Executable Statement.

The next statement to which control will be transferred after execution of the
correct statement is complete.

N ext Record.

The record which logically follOWS the current record of a file.

Noncontiguous Items.

Elementary data items, in the Working-Storage and Linkage Sections, which bear
no hierarchic relationship to other data items.

Nonnumeric Item.

A data item whose description permits its contents to be composed of any
combination of characters taken from the computer's character set. Certain
categories of nonnumeric items may be formed from more restricted character
sets.

C-15

Nonnumeric Literal.

A character-string bounded by quotation marks. The string of characters may
include any character in the computer's character set. To represent a single
quotation mark character within a nonnumeric literal, two contiguous quotation
marks must be used.

Numeric Character.

A character that belongs to the following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Numeric Item.

A data item whose description restricts its contents to a value represented by
characters chosen from the digits '0' through '9'; if signed, the item' may also
contain a '+', '-', or other representation of an operational sign.

Numeric Literal.

A literal composed of one or more numeric characters that also may contain either
a decimal point, or an algebraic sign, or both. The decimal point must not be the
rightmost character. The algebraic sign, if present, must be the leftmost
character.

OBJECT-COMPUTER.

The name of an Environment Division paragraph in which the computer
environment, within which the run-time program is executed, is described.

Open Mode.

The state of a file after execution of an OPEN statement for that file and before
the execution of a CLOSE statement for that file. The particular open mode is
specified in the OPEN statement as either INPUT, OUTPUT, 1-0 or EXTEND.

Operand.

Whereas the general definition of operand is 'that component which is operated
upon', for the purposes of this publication, any lowercase word (or words) that
appears in a statement or entry format may be considered to be an operand and, as
such, is an implied reference to the data indicated by the operand.

Operational Sign.

An algebraic sign, associated with a numeric data item or a numeric literal, to
indicate whether its value is positive or negative.

C-16

Optional Word.

A reserved word that is included in a specified format only to improve the
readability of the language and whose presence is optional to the user when the
format in which the word appears is used in a source program.

Output File.

A file that is opened in either the output mode or extend mode.

Output Mode.

The state of a file after execution of an OPEN statement, with the OUTPUT or
EXTEND phrase specified for that file and before the execution of a CLOSE
statement for that file.

Output Procedure.

A set of statements to which control is given during execution of a SORT
statement after the sort function is completed, or during execution of a MERGE
statement after the merge function has selected the next record in merged order.

Paragraph.

In the Procedure Division, a paragraph-name followed by a period and a space and
optionally by one, or more sentences. In the Identification and Environment
Divisions, a paragraph header followed by zero, one, or more entries.

Paragraph Header.

A reserved word, followed by a period and a space that indicates the beginning of a
paragraph in the Identification and Environment Divisions. The permissible
paragraph headers are:

In the Identification Division:

PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

In the Environment Division:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL- NAMES.
FILE-CO NTROL.
I-O-CO NTRO L.

C-17

Paragraph- Name.

A user-defined word that identifies and begins a paragraph in the Procedure
Division.

Phrase.

A phrase is an ordered set of one or more consecutive COBOL character-strings
that form a portion of a L/II COBOL procedural statement or of a COBOL clause.

Physical Record.

(See Block)

Prime Record Key.

A key whose contents uniquely identify a record within an indexed file.

Procedure.

A paragraph or group of logically successive paragraphs, or a section or group of
logically successive sections, within the Procedure Division.

Procedure- N am e.

A user-defined word which is used to name a paragraph or section in the Procedure
Division. It consists of a paragraph-name or a section-name.

Program-Name.

A user-defined word that identifies a COBOL source program.

Pseudo-Text.

A sequence of character-strings and/or separators bounded by, but not including,
pseudo-text delimiters.

Pseudo-Text Delimiter.

Two contiguous equal sign (=) characters used to delimit pseudo-text.

Punctuation Character.

A character that belongs to the following set:

Character

"

=

C-18

. Meaning

comma
semicolon
period
quotation mark
left parenthesis
right parenthesis
space
equal sign

Qualified Data-Name.

An identifier that is composed of a data-name followed by one or more sets of
either of the connectives OF and IN followed by a data-name qualifier.

Qualifier.

1. A data-name which is used in a reference together with another data name at
a lower level in the same hierarchy.

2. A section-name which is used in a reference together with a paragraph-name
specified in that section.

3. A library-name which is used in a reference together with a text-name
associated with that library.

Queue.

A logical collection of messages awaiting transmission or processing.

Queue Name.

A symbolic name that indicates to the MCS the logical path by which a message or
a portion of a completed message may be accessible in a queue.

Random Access.

An access mode in which the program-specified value of a key data item identifies
the logical record that is obtained from, deleted from or placed into a relative or
indexed file.

Record.

(see Logical Record)

Record Area.

A storage area allocated for the purpose of processing the record described in a
record description entry in the File Section.

Record Description.

(See Record Description Entry)

Record Description Entry.

The total set of data description entries associated with a particular record.

Record Key.

A key, either the prime record key or an alternate record key, whose contents
identify a record wi thin an indexed file.

C-19

Record-Name.

A user-defined word that names a record described in a record description entry in
the Data Division.

Reference-Format.

A format that provides a standard method for describing COBOL source programs.

Relation.

(See Relational Operator)

Relation Character.

A character that belongs to the following set:

Character

>
< =

Relation Condition.

Meaning

greater than
less than
equal to

The proposition, for which a truth value can be determined, that the value of an
arithmetic expression or data item has. a specified relationship to the value of
another arithmetic expression or data item. (See Relational Operator.)

Relational Operator.

A reserved word, a relation character, a group of consecutive reserved words, or a
group of consecutive reserved words and relation characters used in the
construction of a relation condition. The permissible operators and their meaning
are:

Relational Operator

IS NOT GREATER THA N
IS NOT>

IS NOT LESS THAN
IS NOT<

. IS NOT EQUAL TO
IS NOT =

Relative File.

A file with relative organization.

Relative Key.

Greater than or not greater than

Less than or not less than

Equal to or not equal to

A key whose contents identify a logical record in a relative file.

C-20

Relative Organization.

The permanent logical file structure in which each record is uniquely identified by
an integer value greater than zero, which specifies the record's logical ordinal
position in the file.

Reserved Word.

A COBOL word specified in the list of words which may be used in COBOL source
programs, but which must not appear in the programs as user-defined words or
system-names.

Routine-Name.

A user-defined word that identifies a procedure written in a language other than
COBOL.

Run-Time Debug.

An option available to L/II COBOL programmers entered as a user option enabling
break-point facilities in run-time programs.

Run-Time.

The time at which the intermediate code produced by the compiler is interpreted
by the Run-Time-System for execution.

Run-Time-System-(RTS).

The software that interprets the intermediate code produced by the L/II COBOL
compiler and enables it to be executed by providing interfaces to the operating
system and CRT.

Run Unit.

A set of one or more intermediate code programs which function, at run time, as a
unit to provide problem solutions.

Section.

A set of none, one, or more paragraphs or entries, called a section body, the first
of which is preceded by a section header. Each section consists of the section
header and the related section body.

Section Header.

A combination of words followed by a period and a space that indicates the
beginning of a section in the Environment, Data and Procedure Division.

In the Environment and Data Divisions, a section header is composed of reserved
words followed by a period and a space. The permissible section headers are:

C-21

In the Environment Division:

CONFIGURATION SECTION
INPUT-OUTPUT SECTION

In the Data Division:

FILE SECTION
WORKING-STORAGE SECTION
LINKAGE SECTION

In the Procedure Division, a section header is composed of a section-name,
followed by the reserved word SECTION, followed by a segment-number (optional),
followed by a period and a space.

Sectio n- N a me.

A user-defined word which names a section in the Procedure Division.

Segment- Number.

A user-defined word which classifies sections in the Procedure Division for
purposes of segmentation. Segment-numbers may contain only the characters 'a,
'1', ••• , '9'. A segment-number may be expressed either as a one or two digit
number, and is checked for syntax only.

Sentence.

A sequence of one or more statements, the last of which is terminated by a period
followed by a space.

Separator.

A punctuation character used to delimit character-strings.

Sequential Access.

An access mode in which logical records are obtained from or placed into a file in a
consecutive predecessor-to-successor logical record sequence determined by the
order of records in the file.

Sequential File.

A file with sequential organization.

Sequential Organization.

The permanent logical file structure in which a record is identified by a
predecessor-successor rela.tionship established when the record is placed into the
file. :

Sign Condition.

The proposition, for which a truth value can be determined, that the algebraic
value of a data item or an arithmetic expression is either less than, greater than,
or equal to zero.

C-22

Simple Condition.

Any single condition chose from the set:

Sort File.

relation condi tion
class condition
switch-status condition
sign condition
(sim pIe-condition)

A collection of records to be sorted by a SORT statement. The sort file is created
and can be used by the sort function only.

Sort-Merge File Description Entrv.

An entry in the File Section of the Data Division that is composed of the level
indicator SD, followed by a file-name, and then followed by a set of file clauses as
required.

Source.

The symbolic definition of the originator of a transmission to a queue.

SOURCE-COMPUTER.

The name of an Environment Division paragraph in which the computer
environment, within which the source program is compiled, is described.

Source Program.

Although it is recognized that a source program may be represented by other forms
and symbols, in this document it always refers to a syntactically correct set of
COBOL statements beginning with an Identification Division and ending with the
end of the Procedure Division. In contents where there is no danger of ambiguity,
the word 'program' alone may be used in place of the phrase 'source program'.

Special Character.

A character that belongs to the following set:

Character
+

*
/
=
$

"
(
)

>
< C-23

Meaning
plus sign
minus sign
asterisk
stroke (virgule or slash)
equal sign
currency sign
comma (decimal point)
semicolon
period (decimal point)
quotation mark
left parenthesis
right parenthesis
greater than symbol
less than symbol

Special-Character Word.

A reserved word which is an arithmetic operator or a relation character.

SPECIAL-NAMES.

The name of an Environment Division paragraph in which impleme'ntor-names are
related to user specified mnemonic-names.

Special Registers.

Compiler generated storage area whose primary use is to store information
produced in conjunction with the user of specified COBOL features.

Standard Data Format.

The concept used in describing the characteristics of data in a COBOL Data
Division under which the characteristics or properties of the data are expressed in
a form oriented to the appearance of the data on a printed page of infinite length
and breadth, rather than a form oriented to the manner in which the data is stored
internally in the computer, or on a particular external medium.

Statement.

A syntactically valid combination of words and symbols written in the Procedure
Division beginning with a verb.

Sub-Queue.

A logical hierarchical division of a queue.

Subject of Entry.

An operand or reserved word that appears immediately following the level
indicator or the level-number in a Data Division entry.

Subprogram.

(See Called Program)

Subscript.

An integer whose value identifies a particular element in a table.

Subscripted Data-Name.

An identifier that is composed of a data-name followed by one or more subscripts
enclosed in parentheses.

Switch-Status Condition.

The proposition, for which a truth value can be determined, that an
implementor-defined switch, capable of being set to an 'on' or 'off' status, has been
set to a specified status.

C-24

Symbol Function.

The use of specified characters in the PICTURE clause to represent data types.

System-Name.

A COBOL word which is used to communicate with the operating environment.

Syntax.

The order in which elements must be put together to form a program.

Table.

A set of logically consecutive items of data that are defined in the Data Divisiqn
by means of the OCCURS clause.

Table Element.

A data item that belongs to the set of repeated items comprising a table.

Terminal.

The originator of a transmission to a queue, or the receiver of a transmission from
a queue.

Text-Name.

A user-defined word which identifies library text.

Text-Word.

Any character-string or separator, except space, in a COBOL library or in
pseudo-text.

Truth Value.

The representation of the result of the evaluation of a condition in terms of one of
two values:

true
false

Unary Operator.

A plus (+) or a minus (-) sign, which precedes a variable or a left parenthesis in an
arithmetic expression and which has the effect of multiplying the expressing of +1
or -1 respectively.

User-Defined Word.

A COBOL word that must be supplied by the user to satisfy the format of a clause
or statement.

C-25

Variable.

A data item whose value may be changed by execution of the object program. A
variable used in an arithmetic expression must be a numeric elementary item.

Verb.

A word that expresses an action to be taken by a COBOL compiler or run-time
program.

Word.

A character-string of not more than 30 characters which forms a user-defined
word, a system-name, or a reserved word.

W orking-S torage Section.

The section of the Data Division that describes working storage data items,
composed either of noncontiguous items, or of working storage records, or of both.

77 Level-Description-Entry.

A data description entry that describes a noncontiguous data item with the
level-number 77.

C-26

APPENDIX D
COMPILE-TIME ERRORS

The error descriptions that correspond to error numbers as printed on listings produced
by the L/II COBOL compiler are listed below. In the case of alternative meanings,
relevancy is obvious from context.

ERROR

01
02
03
04
05
06

07
08
09
10

22
23
24
25
26
27
28
29
30
31
32
33

34
36
37

38
39
40
42
43
44
45
46
47
48
49

50
51
52
53
54

DESCRIPTIO N

Com piler Error
Illegal format: data-name
Illegal format: literal
Illegal format: character
Declaration violates uniqueness of qualification
Too many data and procedure names have been
declared
Obligatory reserved word missing
Nested COpy or unkown library text
'.' missing
The statement starts in the wrong area of the source
line, i.e., reference format violation
'DIVISIO N' missing
'SECTION'missing
'IDENTIFICATION missing
'PROGRAM-ID' missing
'A UTHOR' missing
'INSTALLATION'missing
'DATE-WRITTE N' missing
'SECURITY' missing
'ENVIRONMENT'missing
'CONFIGURATION'missing
'SOURCE-COMPUTER'missing
MEMORY SIZE/COLLATING
SEQUENCE/SPECIAL-N AMES clause in error
'OBJECT-COMPUTER'MISSING
'SPECIAL-NAMES'missing
SWITCH Clause in error or system-name/
mnemonic-name error
DECIMAL-POINT Clause in error
CONSOLE Clause in error
Illegal currency symbol
'DIVISIO N' missing
'SECTIO N' missing
'IN PUT-OUTPUT' missing
'FILE-CONTROL' missing
'ASSIG N' missing
'SEQUENTIAL' or 'INDEXED' or 'RELATIVE' missing
'ACCESS' missing on indexed/relative file
'SEQUENTIAL/DYN AMIC' missing or too many
alternate keys ()64) -
Illegal ORGANIZATION/ ACCESS/KEY combination
Unrecognized phrase in 'SELECT' clause
Syntax error in 'RERUN' clause
Syntax error in 'SAME AREA' clause
file-name 'missing or illegal

D-l

55
56

57
58

62
63
64
65
66
67
68
69

70
71
72
73

74

75
76

77

78
79
81
82
83
84
85
86
87
88
89

90

91
92

101
102
103
104
105
106
107
108

109
110
111
112

113

'DATA DIVISION' missing
'PROCEDURE DIVISIO N' missing or unknown
statement
'EXCLUSIVE', 'AUTOMATIC' or 'MANUAL' missing
Non-exclusive lock mode specified for
restricted file

'DIVISIO N' missing
'SECTION'missing
file-name not specified in SELECT statement
Record size integer missing
Illegal level number (01-49) or 01 level required
FD qualification contains syntax error
'WORKING-STORAGE' missing
'PROCEDURE DIVISIO N' missing or unknown
statement
Data Description Qualifier or '.' missing
Incompatible PICTURE Clause and qualifiers
'BLANK' is illegal with nonnumeric data-item
PICTURE clause too long (Numeric 18 Numeric
Edited 512 Alphanumeric 8192)
VALUE clause on non-elementary data-item, or
truncation, or wrong data type
'VALUE' in error or illegal for PICTURE type
FILLER/SYNCHRONIZED/JUSTIFIED/BLANK
non-elementary item
Preceding item at this level has more than 8192 bytes
or 0 bytes
REDEFINES of unequal fields or different levels
Data storage exceeds 64K bytes
Data Description Qualifier inappropriate or repeated
REDEFINES data-name not declared
USAGE must be COMP, DISPLAY or INDEX
SIGN must be LEADING or TRAILING
SYNCHRONIZED must be LEFT or RIGHT
JUSTIFIED must be RIGHT
BLANK must be ZERO
OCCURS must be numeric, non-zero and unsigned
VALUE must be a literal, numeric literal or
figurative constant
PICTURE string has illegal precedence or illegal
character
INDEXED data-name missing or already declared
numeric edited PICTURE string is too large
Unrecognized verb
'IF' ••• 'ELSE' mismatch
Wrong data-type or data-name not declared
Procedure name declared twice
Procedure name same as data-name
Name required
Wrong combination of data types
Conditional statement not allowed in this context;
must be an imperative statement
Malformed subscript
ACCEPT/DISPLAY wr.ong
illegal 1-0 Syntax
'LOCK' clause specified for file with lock mode
'EXCLUSIVE'
'KEPT' specified for uncommittable file

115
ll6
ll7

118
119
120
141
142
143
144
145
146
147
148
149
150

151
152
153
154
157

160

'KEPT' omitted for committable file
IF statements nested too deep
Incorrect structure of Procedure Division, e.g.,
Sections out of order
Reserved Word missing, or incorrectly used
Too many subscripts in one statement
Too many operands in one statement
Inter-segment procedure name duplication
'IF' ••• "ELSE' mismatch at end of Source Input
Wrong data-type or data-name not declared
Procedure name undeclared
INDEX data-name declared twice
Bad cursor control: AT clause incorrectly specified
KEY declaration missing
STA TUS declaration missing
Bad STATUS record
Undefined inter-segment reference, or error in
ALTERed paragraph
PROCEDURE DIVISION in error
USING parameter not declared in Linkage Section
USING parameter is not level 01 or 77
USING parameter used twice in parameter list
Incorrect structure of Procedure Division: e.g.,
Sections out of order

Too many operands in one statement

In addition to these numbered error messages, the following message can be
displayed with subsequest termination of the compilation:

FATAL 1-0 ERROR: filename

where filename is the erroneous file.

Any intermediate code file produced is not usable.

The following conditions will cause this error:

Disk overflow
File directory overflow
File full
Impossible 1-0 device usage

Other operating system dependent conditions can also cause this error.

NOTE

You will notice that the numbers of the numbered
error messages listed above are not continuous, i.e.,
there are gaps in the numbering. The compiler should
never have cause to generate an error message with a
number not listed above.

D-3

APPENDIX E

COBOL RUN-TIME ERRORS

If the COBOL run-time system detects an error condition while executing a
COBOL program, program execution is terminated and an error report is displayed.

If the error is due to filling in a command form incorrectly, one of the following
messages is displayed.

Improper Yes/No input in command form

Fill in fields that require Yes/No input with Y or N followed by RETURN. Not
responding to a field is the same as entering N.

Improper input in command form: use single parameter

Fill in fields that require a parameter with only one parameter. Parameter lists
are not accepted.

Missing name of source file

You must enter a filename in the first field of the COBOL command form.

If an error is detected while loading intermediate code, the message,

Error on loading file<filename)

is displayed.

Otherwise, the run-time system displays,

Error detected while executing XXX in segment YY at COBOL program
address ZZZZH

where

XXX is the. filename of the currently executing intermediate code.

YY is the current segment number or RT if the current segment is not
independent.

ZZZZ is a program address that corresponds to the locations address printed
along the right side of the COBOL program listing.

The run-time system next displays a message that describes the error that was
detected.

E-l

If an error is detected during a Sort/Merge or Indexed Sequential file operation, the
run-time system also displays

Detailed status: WWWW

where

WWWW is a status code. Status codes are described in the B 20 BTOS
Manual.

After displaying the error report, the run-time system displays a prompt message
and waits until a key is pressed before returning to the Executive.

After return to the Executive, the Executive may display an additional status
message that gives more information about the run-time error.

The error messages displayed by the COBOL run-time system are described below
in alphabetic order. The number in parentheses following the message is the run-time
system error number.

Attempt to open file failed: file not found (183)

Make sure that the input file exists and is in the correct directory.

File operation failed: check ORGANIZATION and ACCESS (168)

The attempted file access is not allowed according to the file's ORGANIZATION
and ACCESS attributes.

File operation failed: file not open for OUTPUT (156)

A file must be opened for OUTPUT or 1-0 before it can be written.

Illegal inter-segment reference (176)

An illegal flow of control between segments has been attempted. See the
Segmentation chapter of the COBOL Manual for details about restrictions on
program flow.

Illegal intermediate code (161)

The file containing the executing intermediate code has been corrupted or there is
an internal error in the COBOL run-time system.

Illegal literal operands (163)

An internal error has occurred in the COBOL run-time system.

Illegal variable length count (193)

An internal error has occurred in the COBOL run-time system.

E-2

Improper input in command form: check switches (I 55)

If you are setting more than one switch, enclose the switch parameters in single
quotes. For example, use '+1+2' to turn on switches 1 and 2.

Incompatible operation for indexed file lock mode (I73)

Access to the indexed file failed because of the lock mode of the file. See
Appendix J for details on using locks with indexed files.

Incompatible operation for indexed file open mode (172)

Access to the indexed file failed because of the open mode of the file. A file must
be opened in OUTPUT or I-a mode to be written ,and IN PUT or I-a mode to be read.

Incompatible releases of compiler and run-time system (I65)

To use the current release of the COBOL run-time system, you must recompile
your COBOL program with the current release of the COBOL compiler.

Internal error (199)

An internal error has occurred in the COBOL run-time system.

Invalid DELETE Operation for indexed file (170)

Access to the indexed file failed.

Invalid REWRITE Operation for indexed file (171)

Access to the indexed file failed.

Intermediate code file too large (157)

The intermediate code file cannot be loaded. The COBOL Program that generated
the large file must be split into two or more modules.

Malformed intermediate code file (1sI)

The intermediate code file has been corrupted. The program that generated this
file must be recompiled.

Module is already active (166)

An attempt to recursively CALL a COBOL module has failed. Recursive calls are
not allowed.

N on-COBOL procedure not found (I90)

Check the spelling of the non-COBOL procedure is the CALL statement. Check
that the version of Cobol.run on the sys directory has been linked with the

. target non-COBOL procedure. See Appendix J for details on configuring COBOL to
call non-COBOL procedures.

E-3

Not enough memory to continue (167)

Make more memory available or reduce the size of your COBOL program.

Random read attempted on a sequential file (151)

Only RELATIVE and INDEXED files can be accessed randomly.

REWRITE attempted on a file not open 1-0 (152)

A file must be opened in mode I-a to be rewritten.

REWRITE attempted on a line sequential file (158)

Line sequential files cannot be rewritten. Use a sequential file.

Return to Executive for a status message (182, 189)

The status message displayed after COBOL returns to the Executive identifies the
problem.

Subscript out of range (153)

A table index is beyond the range of the table.

Too few parameters to non-COBOL procedure (I92)

Check the interface of the non-COBOL procedure. Make sure you are passing the
required number of arguments. If the procedure returns a value, pass an extra
argument at the beginning of the parameter list to receive the returned value •

• 1

Too many parameters to non-COBOL procedure (191)

Check the interface of the non-COBOL procedure. Make sure you are passing the
required number of arguments.

Unable to load COBOL intermediate code file (164)

151

152

153

155

156

The intermediate code file does not exist or it is determined not to contain
intermediate code.

The error messages are repeated below in numeric order.

Random read attempted on a sequential file

REWRITE attempted on a file not open I-a

Subscript out of range

Improper input in command form: check switches

File operation failed: file not open for OUTPUT

E-4

157

158

161

163

164

165

166

167

168

170

171

172

173

176

181

182

183

189

190

191

192

193

199

Intermediate code file too large

REWRITE attempted on a line sequential file

Illegal intermediate code

Illegal literal operands

Unable to load COBOL intermediate code file

Incompatible releases of compiler and run-time system

Module is already active

Not enough memory to continue

File operation failed: check ORGANIZATION and ACCESS

Invalid DELETE operation for indexed file

Invalid REWRITE operation for indexed file

Incompatible operation for indexed file open mode

Incompatible operation for indexed file lock mode

Illegal inter-segment reference

Malformed intermediate code file

Return to Executive for a status message

Attempt to open file failed: file not found

Return to Executive for a status message

Non-COBOL procedure not found

Too many parameters to non-COBOL procedure

Too few parameters to non-COBOL procedure

Illegal variable length count

Internal error

E-5

\ ~

APPENDIX F

SYNTAX SUMMARY

All the syntax for Lin COBOL is summarized below. E denotes that the feature is
a L/II COBOL extension to ANSI COBOL. D denotes that the feature is documentary
only in L/II COBOL. .

GENERAL FORMAT FOR IDENTIFICATION DIVISION

[IDENTIFICATION DIVISION.]

[PROGRAM-ID. program name]

[A UTHOR. [comment entry] •••]

[INSTALLATION. [comment entry] •••]

[DATE-WRITTEN. [comment entry] .•.]

[DATE-COMPILED. [comment entry] •••]

[SECURITY. [comment entry] •••]

F-l

GENERAL FORMAT FOR ENVIRONMENT DIVISION

[ENVIRONMENT DIVISION.]

[CONFIGURATION SECTION.]

[SOURCE-COMPUTER. source-computer-entry [WITH DEBUGGING MODE].]

[OBJECT-COMPUTER. object-computer-entry

[
,MEMORY SIZE integer ~ ~~:~~CTERS l]

? MODULES ~

[,PROGRAM COLLATING SEQUENCE IS alphabet-name].

[SPECIAL-NAMES.

[,~ SYSIN ~ mnemonic-name-l]
?SYSOUT

[, TAB IS mnemonic-name-2]

o

[SWITCH [IS mnemonic-name] ON STATUS IS condition-name-l - -

7

[OFF STATUS IS condition-name-2]]

, alphabet-name IS

STANDARD-l
NATIVE
implementor-name]

[
{THROUGH} l

literal-l THR U literal-2
ALSO literal-3 [, ALSO literal-4] •••

~iteraI-5 [{~~~~UGH} literal-6 i]] L ALSO Iiteral-7 [, ALSO literal-B] j

[,CURRENCY SIGN IS literal-9]
[,DECIMAL-POINT iSCOMMA]
[,CURSOR IS data-name-I] E
[,CONSOLE IS CRT] E

F-2

[INPUT-OUTPUT SECTION.

FILE-CONTROL.

~ file-control-entry ~]

[I-O-CONTROL.

[

; RERUN [ON S~ile-name-l ~]
llmplementor-name 5 , l END OF {REEL}

UNIT
EVERY integer-l RECORDS.

integer-2 CLOCK-UNITS
condition-name

OF file-name-2]
[

;SAME [=RD] AREA FOR file-name-3 ,file-name-4 ...] ...
SORT-MERGE

[; MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-3J

[, fil e-na m e-6 [PO SIT 10 N in teger-4J J •• -] •••] •

F-3

D

GENERAL FORMAT FOR FILE-CONTROL ENTRY

Sequential SELECT:

SELECT file-name [OPTIO N AL] file-name

ASSIG N TO ~external-file-name-literal~
l file-identifier 5

[
; RESERVE integer-l [~AREA ~J.]

lAREAS 5

;ORGANIZATION IS[~SEQUENTIAL ~]
~ LINE SEQUENTIAL ~

[;ACCESS MODE IS SEQUENTIAL]

[;FILE STATUS IS data-name].

Relative Select:

SELECT file-name ----
ASSIG N TO S external-file-name-literal ~

l file-identifier 5

~ RESERVE integer-l [l~~~~s !]]
ORGANIZATION IS RELATIVE

rCCESS MODE IS l SEQUENTIAL
S RANDOM ~
l DYNAMIC 5

[;FILE STATUS IS data-name].

Indexed Select:

SELECT file-name

ASSIG N TO ~ external-file-name-literal ~
l file-identifier 5

[; RESERVE integer-l [l~~~~sm

F-4

[
, ~ external-file-name-literal t]

l file-identifier

D

E

[
, S external-file-name-literal ~]

~ file-identifier 5

D

,RELATIVE KEY IS data-name ~]
,RELATIVE KEY IS data-name ~

[
, ~external-file-name-literal ~J

~ file-identifier 5

D

;ORGANIZATION IS INDEXED

r[;ACCESS MODE IS ~ ~~~U;~~IAL l] l (DYNAMIC ~
;RECORD KEY IS data-name-l

[; ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]

[;FILE STATUS IS data-name-3]

F-5

[DATA DIVISION.]

[FILE SECTION.]

[FD file-name

f;BLOCK CONTAINS integeI'-l [TO] integeI'-2 }RECORDS 1]
L LCHARACTERSj

[;RECORD CONTAINS integeI'-3 [TO] integeI'-4 CHARACTERS]

; LABEL f RECORD IS 1
RECORDS AREj

~ STANDARDl
I OMITTED j

tVALUE OF implementor-name-l

timPlementor-name-2 IS

IS }data-name-ll
lliteI'al-l j

} data-name-21· ••]
lliteI'al-2 J

fRECORD IS 1
L RECORDS AREJ

data-name-3 [• data-name-4} • • .J

r; LINAGE IS f?ata-name-51 LINES L mtegeI'-4 j
r, WITH FOOTING AT r~ata-name-61]
l l.mtegeI'-6 J

[
, LINES AT BOTTOM r~ata-name-81J] r, LINES AT TOP r~ata-name-71J

L l mtegeI'-7 J
[;CODE-SET IS alphabet-name]

[I'ecoI'd-descI'iption-entI'Y] •••]

l
WORKING-STORAGE SECTION]

[
77-level-descriPtion-entry
record-description-entry ••.

[

LINKAGE SECTION]
77-level-descriPtion-entry]
record-description-entry •••

[

COMMUNICATION SECTION]

[
com m unication-description-entry
record-description-entry] •••] •••

F-6

t mtegeI'-8 j

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY

level-number
{
data-name t
FILLER f

[;REDEFINES data-name]

[;{~TURE}IS Picture-string]

[USAGE IS

[r; SIGN IS]

COMPUTATIONAL 1
COMP
C'O'MPUT ATIO N AL -3
COMP-3
DISPLAY

LEADING t [SEPARATE CHARACTER]]
{TRAILING f

[; OCCURS integer-l [TO integer-2] TIMES [DEPENDING ON data-name-I]

[
{ ASCENDING }]

DESCENDING KEY IS data-name-2 [,data-name-3] ••• • ••

[INDEXED BY index-name-l [, index-name-2] •••]]

[
; {SYNCHRONIZED t

SYNC f
LEFT t]

{RIGHT f

[; {~g~~IFIED } RIGHT]

[;BLANK WHEN ZERO]
[;VALUE IS literarr:-

66 data-name-l; REN AMES data-name-2 .[{ THROUGH t
THRU S

data-name-3]

88 condition-name;

[, literal-3

{~~tg~sI~RE }

[t THROUGHt
THRU S

literal-l

literaI-4 JJ

F-7

[{ THROUGH}
THRU

literal-2]

GENERAL FORMAT FOR COMMUNICATION DESCRIPTION ENTRY

FORMAT 1:

CD cd-name;

FOR [INTIAL] INPUT

FORMAT 2:

CD cd-name; FOR OUTPUT

[[; SYMBOLIC QUEUE IS data-name-1 11
[; SYMBOLIC SUB-QUEUE-1 IS data-name-2]

[; SYMBOLIC SUB-QUEUE-2 IS data-name-3]

[; SYMBOLIC SUB-QUEUE-3 IS data-name-4]

[; MESSAGE DATE IS data-name-5]

[; MESSAGE TIME IS data-name-6]

[; SYMBOLIC SOURCE IS data-name-7]

[; TEXT LENGTH IS data-name-8]

[; END KEY IS data-name-9]

[; STATUS KEY IS data-name-10]

[; MESSAGE COUNT IS data-name-1 1]

[data-name-1, data-name-2, ••• , data-name-1 11J

[; DESTINATION COUN!: IS data-name-1]

[; TEXT LENGTH IS data-name-2]

[; STATUS KEY IS data-name-3]

[[; DESTINATION TABLE OCCURS integer-2 TIMES

[; INDEXED BY index-name-1 [, index-nam e-2] ... J]
[; ERROR KEY IS data-name-4]

[; SYMBOLIC DESTINATION IS data-name-4]

F-8

GENERAL FORMAT FOR PROCEDURE DIVISION

Declarative format:

PROCEDURE DIVISION [USING data-name-l [, data-name-2] •••].

DECLARA TIVES.
{section-name SECTION [segment-number]. declarative-sentence

[paragraph-name. [sentence] •••] ••• } •••

END DECLARATIVES.
{section-name SECTION [segment-number] •

[paragraph-name [sentence] •••] ••• } •••

Non-declarative format:

PROCEDURE DIVISION [USING data-name-l [data-name-2] •••].
{ paragraph-name [sentence] ••• } ••••

F-9

GENERAL FORMAT FOR VERBS

ACCEPT data-name-l [AT j data-name-2}]
lliteral-l

ACCEPT identifier [FROM CONSOLE]

ACCEPT identifier FROM {g~~E}
TIME

ACCEPT cd-name MESSAGE COUNT

FROM CRT ----

ADD {identifier-I}
literal-l

j identifier-2 } •••
lliteral-2

TO identifier [ROUNDED]

[; 0 N SIZE ERROR imperative-statement]

ADD jidentifier-l}
lliteral-l

j identifier-2 t ;
lliteral-2 f

{ identifier-3
literal 3

GIVING identifier [ROUNDED]

[; 0 N SIZE ERROR imperative-statement]

ADD {CORRESPONDING} identifier-l
-- CORR

TO identifier-2 [ROUNDED]

ALTER {procedure-name-l [TO PROCEED TO] procedure-name-2 }

CALL j identifier-I}
lIiteral-1

USING data-name-l [, data-name-2] •••

CANCEL {identifier-I}
literal-l [

,identifier-2]
,literal-2

CLOSE file-name {REEL}
UNIT

[{

REEL}
UNIT

CLOSE file-name-l --
WITH

[

, file-name-2 [{ ~t~~ }
WITH

D D D

[WITH LOCK] [, file-name [WITH LOCK]]

[
WITH NO REWIND]]
FOR REMOVAL

{
NO REWIND}
LOCK

[~b~HR~~~~:tD]l]
) NO REWIND}
{LOCK

F-IO

CLOSE file-name-l [WITH LOCK] [, file-name-2

COMPUTE identifier-l [ROUNDED] [, identifier-2

[WITH LOCK]] •••

[ROUNDED]] •••

= arithmetic-expression [; 0 N SIZE ERROR imperative-statement]

DELETE file-name RECORD [; INVALID KEY imperative-statement] D

{
INPUT } [TERMINAL] {identifier-I}

DISABLE OUTPUT cd-name WITH KEY literal-l
D

DISPLA Y {identifier-I} { identifier-2 t [U PO N CO NSOLE]
literal-l literal-2 f

DISPLAY
{data-name-l} [AT{data-name-2tJ UPON {CRT
literal-3 literal-4 f CRT-U NDER

E

INTO identifier-2 [ROU NDED] DIVIDE { identifier-l t
literal-l f

[, identifier-3 [ROUNDED]] •••
[:ON SIZE ERROR imperative-statement]

DIVIDE { identifier-l t {INTO}{identifier-2} GIVING identifier-3
literal-l f BY literal-2

[ROUNDED]

REMAINDER identifier-4 [;0 N SIZE ERROR imperative-statement]

ENABLE
{

INPUT [TERMIN AL]} cd-name WITH KEY {identifier-l t
OUTPUT literal-l f

ENTER language-na m e [routine-nam e]. D

EXIT [PROGRAM].

GO TO procedure-name.

GO TO procedure-name-l { , proce.dure-name-2} •••

DEPENDING ON identifier

IF condition;
{

statement-l }
NEXT SENTENCE [

; ELSE statement-2]
: ELSE NEXT SENTENCE

F-II

D

INSPECT identifier-l TALLYING
S identifier-3 ~ l
~ literal-2 5 ~ identifier-2 FOR

SALL ~
~LEADING5
CHARACTERS

[SBEFORE~
~AFTER 5

INITIAL

INSPECT identifier-l REPLACING

S i?entifier-4 ";l ~ \
l hteral-3 .u ~

CHARACTERS BY
identifier-6
literal-4

\ ~ [,J tLL! I identifier-5 ! I identifier-6 !
~~:S~l:: ORE} I NIT:~:ral-4 { ide::ier-:

t

}e;al-

1
4 I

AFTER literal-5 ~

INSPECT identifier TALLYING tally-clause REPLACING replacing-clause

lASCENDING t
MERGE file-name-l ON DESCENDING~ KEY data-name-l [, data-name-2] •••

MOVE

MOVE

[ON l~~;~~~~~~G} KEY data-name-3 [, data-name-4J J ...
[COLLATING SEQUENCE IS alphabet-name]

USING file-name-2, file-name-3 [,file-name-4] •••

OUTPUT PROCEDURE IS section-name-I[THROUGHI section-name-2]
ll:THRU

GIVING file-name-5

1
identifier-II TO identifier-2 [,identifier-3]
literal-l

lCORRESPONDINGlidentifier-1 TO identifier-2
CORR

F-12

I

M U L TIPL Y ~ identifier-l ~ BY identifier-2 [ROUNDED]
, ~literal-l 5

[, identifier-3 [ROUNDED] • .• [; 0 N SIZE ERROR imperative-statement]

MULTIPLY ~ identifier-l ~
~ literal-l 5

BY ~ identifier-2 ~
~ literal-2 5

GIVING identifier-3 [ROUNDED]

[, identifier-4 [ROUNDED]

[, ON SIZE ERROR imperative-statement]

INPUT file-name-~~EVERSED l
~ITH NO REWIN12J

, file-name-2 IREVERSED l D
~ITH NO REWIN~J

OPEN OUTPUT file-name-3 [WITH NO REWIND] ,file-name-4 [WITH NO REWIND]] •••
1-0 file-name-5 [, file-name-6] ...
EXTEND file-name-7 [, file-name-8] •••

PERFORM procedure-name-l jTHROUGHl procedure-name-2
THRU {

. PERFORM perform-limits VARYING pdentifier-2 ~FROM
index-name-1 5

BY
~identifier-4 t
literal-2 UNTIL

[AFTER ~identifier-5 t FROM
index-name-4

BY
~identifier-7 ~
literal-4 UNTIL

[AFTER ~identifier-8 t FROM
index-name-5

identifier-3 '
index-name-2
literal-l

condition-l

identifier-6
index-na m e-4
literal-3

condition-2

identifier-9
index-name-6
literal-5

BY
Sidentifier ~
~literal-6 5 UNTILcondition-3 JJ

READ file-name [NEXT] RECORD [INTO identifier]

[;AT END imperative-statement]

READ file-name RECORD [INTO identifier] [;KEY IS data-name]

[;INVALID KEY imperative-statement]

F-13

RECEIVE cd-name IMESSAGEI INTO identifier-1
SEGMEN]

[;NO DATA imperative-statement]

RELEASE record-name [FRO M identifier]

RETURN file-name RECORD [INTO identifier]

REWRITE record-name [FROM identifier]

; AT END imperative-statement

[;INVALID KEY imperative-statement]

SEARCH identifier-1 [v AR YIN G I identifier-2 \
index-name-1

[; AT END imperative-statement-I]

I; WHEN condition-1 limperative-statement-2\ L NEXT SENTENCE

I imperative-statement-3\]
; WHEN condition-2 NEXT SENTENCE

SEARCH ALL identifier -1 [;AT END imperative-statement-I]

identifier-3 I
;WHEN data-name-1

condition-name-1

IS EQUAL TO
IS =

IS EQUAL TO
data-name-2 IS -

condition-name-2

imperative-statement-2
NEXT SENTENCE

SEND cd-name [FROM identifier- I]

litera1-1
arithmetic-expression-1

1

identifier-4 ~
literal-2
arithmetic-expression-2

SEND cd-name [FROM identifier-I]

~ ll
f ~dentifier-3l

I

WITH identifier-2 1
WITH ESI
WITH EMI
WITH EGI

lmteger ~
BEFORE ADVANCING

AFTER t~~~~oniC-name}

F-14

[LINE ~I LINEj

SET ~ identifier-2 ~
? index-name-l ~

~ [identifier-2] ~
l [index-name-2] ~ l identifier-3 I

index-name-3
integer-l

SORT file-name-l
~ASCENDING t

ON ?DESCENDING KEY data-name-l [, data-name-2] •••

[
~ ASCENDING ~

ON? DESCENDING5 KEY data-name-3 [, data-name-4] ••.

[COLLATING SEQUENCE IS alphabet-name]

IN PUT PROCEDURE IS section name-l

USING file-name-2 ,[file-name-3] •••

OUTPUT PROCEDURE IS section-name-3

GIVING file-name-4

,IS EQUAL =
IS =

START file-name KEY IS GREATER than
IS >

STOP

IS NOT LESS THAN
IS NOT<----

[;INVALID KEY imperative-statement]

~ RUN ~
? literal ~

[STHROUGH~
lTHRU ~

Is THROUGH~
~ THRU ~

section-name-~

section-namej l
data-name

~ identifier-l~[S identifier-l 0 ... DELIMITED BY
ST RI N G ? Ii teral-l ~ ,? Ii teral-2 5 l identifier-3l

literal-3
SIZE

[
Sidentifier-4~ [~ identifier-5 ~J ... DELIMITED BY
?literal-4 , ~ literal-5 ~ l identifier-6 l]

literal-6
SIZE

INTO identifier-7 [WITH POINTER identifier-B]

[, ON OVERFLOW imperative-statement

Sidentifie~l ~ 'r, sidentifier-2 0
SUBTRACT lliteral-l ~ L lIiteral-2 ~ ••• FROM identifier-3 [ROUNDED]

L identifier-n [HO UN DED]

[j 0 N SIZE ER RO R imperative-statement]

F-l5

r identifier-I?
SUBTRACT LliteraI-I j [

, identifier-2]
, literaI-2 ••• !:..!!..QM identifier-m

[ROUNDED]

[, identifier-n [ROUNDEDU [; ON ~. ERROR imperative statement]

U NSTRIN G identifier-I

~ identifier-2~ [~identifier-3 ~]
DELIMITED BY [ALL] ? literal-I ~ , OR [ALL] BiteraI-2 5 •••

INTO identifier-4 [, DELIMITER IN identifier-5] [, COUNT IN identifier-6]

[, identifier-7 [, DELIMITER IN identifier-B] [, COU NT IN identifier-9]]

[WITH POINTER identifier-IO] [TALLYING IN Identifier-Il]

[; ON OVERFLOW imperative-statement]

~EXCEPTION ~ PROCEDURE ON
USE AFTER STANDARD ?ERROR ~ -----

file-name \
INPUT
OUTPUT
1-0
EXTEND

\[1~nt~~iERENCES OF] identifier-l \
USE FOR DEBUGGING ON file-name-I
-- procedure-name-I

ALL PROCEDURES .- --

l·
cd-name-2
[ALL REFERENCES OF] identifier-2
fHe-name-2
procedure-nam e-2
ALL PROCEDURES

WRITE record-name [FROM identifier-I]

[~BEF~RE~ ADVANCING 1 in~~~:!~er-2} ~:~~d}]
~ AFTER ~ r mnemonic-name?

tPAGE J
[; AT r ~-OF-PAGE 1 imperative-statement]

WRITE record-name [FROM identifier] [;INVALID KEY imperative-statement]

F-16

GENERAL FORM FOR COPY STATEMENT

COpy "text-name".

GENERAL FORMAT FOR CONDITIONS

Relation condition:

identifier-l
literal-l
arithmetic-expression-l
index-name-l

Class Condition:

identifier IS [NOT]

Sign Condition:

'IS [NOT] GREATER THAN'
IS [NOT] LESS THAN
IS [N aT] EQtTAL to
IS [NOT]
IS [NOT]
IS [NOT] =

NUMBERIC ~ 1 ALPHABETIC \

arithmetic-expression IS [NOT]

~
POSITIVE ~
NEGATIVE

Condition-name Condition:

condition-name

Switch-status Condition:

condition-name

Negated Simple Condition:

NOT simple-condition

Combined Condition:

condition ~ ~~D\ condition l

ZERO

~e::::~:::d~t::binfd l7;a~i;: ::nd:::::tional-opera tor 1

F-17

j
identifier-2 \
literal-2 .
ari th metic-expression-2
index-name-2

Object~ '"

MISCELLANEOUS FORMATS

QUALIFICATIO N:

~ data-name-l ~ r~ IONF ~
1 condition-name ~ ~ ~

data-name-~ .••

paragraph-name 0 ?:\ section-name]

text-name 0 7: \ library-name]

SUBSCRIPTING:

ldata-name l
condition-name ~

subscript-l [subscript-2 , subscript-3

INDEXING: .

ldata~n.ame ~ (r i?deX-name-I[r~~~~s1literal-2J (
condItion-name ~ L hteral-l l. J 5

[
, Hndex-name-2[fPLUS lliteral-4l ~ [, S index-name-3[fPLUS 1literal-J~JJ

lUteral-3 LMINUSJ J ~ l literal-5 tMINUSJ J

IDENTIFIER: FORMAT 2

data-name-l ~7:~ data-name-2

l,[i?deX-name-21 [literal -4J L hteral-3 J

[i~dex-name-11 [r~~~~s1literal-21 hteral-l~' J

[
, fi?dex-name-31 [literal-s1];1
~hteral-5 J J ~

F-18

APPENDIX G

SUMMARY OF EXTENSIONS TO ANSI COBOL

L/II COBOL provides extensions for interactive working, program control of files,
text file handling, and rapid development and testing. These facilities are summarized
below.

SCREEN FORMATTING AND DATA ENTRY

THE ACCEPT STATEMENT

An additional format for the ACCEPT statement is provided as follows:

Format

ACCEPT dataname-l [AT

data-nam e-2

~ dataname-2 ~J
lliteral-l

FROM CRT ----

allows the start of screen to be changed dynamically. It refers to a PIC 9999 field
where the most significant 99 is a line count 1-34 and the least significant 99 is a
character position 1-80.

data-name-l

refers to a record, group or elementary item but may not be subscripted.

literal-l

is an alphanumeric literal

NOTE

See Section 3 for description. See also Appendix H for
Environment Division changes.

G-l

THE DISPLAY STATEMENT

An additional format for the DISPLAY statement is provided as follows:

Format

DISPLAY
~ data-name-l~ [
? literal-3 5 AT

literal-3

is an alphanumeric literal

dataname-l

~ dataname-2 ~J
? literal-l 5 UPON

~ CRT ~
~ CRT-UNDER ~

refers to a record, group or elementary item but may not be subscripted

dataname-2

defines the left-most position on the screen. It refers to a PIC 9999 field where
the most significant 99 is a line count 1-25 and the least significant 99 is a
character position 1-80.

NOTE

See Section 3 for description.

DISK FILES

Two extensions are offered by L/II COBOL file processing. These are as follows:

1. Line sequential files
2. Run time input of filenames

LINE SEQUENTIAL FILES

When LINE SEQUENTIAL ORGANIZATION is specified in the FILE CONTROL
paragraph ORGANIZATION IS entry, the file is treated as consisting of variable length
records separated by the line delimiter characters. Trailing spaces in output records
are replaced by a new line character.

G-2

RUN-TIME INPUT OF FILEN AMES

The ASSIG Ned name in the SELECT statement for a file is processed on OPENing
as follows:

When the INPUT or OUTPUT phrase is specified, execution of OPEN causes
checking of the files names in accordance with the Operating System connections
for opening on input or output file. The full Operating System features for file
reallocation and device control are therefore available to the Is 20 COBOL
program.

LOWERCASE CHARACTERS

The full alphabetic lowercase a to z is available in B 20 COBOL. Reserved
'and user word characters are read as their uppercase equivalents (A to Z).

HEXADECIMAL VALUES

Hexadecimal binary values can be attributed to non-numeric literals in B 20
COBOL by expressing them as X "xx", where x is a hexadecimal character in the
set 0-9, A-F; xx can be repeated up to 128 times, but the number of hexadecimal
digits must be even.

INTERACTIVE DEBUGGING

There is a Run-Time Debug Package to provide break-point facilities in the user's
program. Programs may be run from the start until a specified break-point is reached
when control is passed back to the user. At this point, data areas may be inspected or
changed.

The debug package is entered as an option by the user and the user program is then
tested line by line, paragraph by paragraph, and so on as required. The com mands to
the package can reference procedure statements and data areas by means of a 4 digit
hexadecimal code output by the compiler against each line of the compilation listing.
Powerful macros of commands can be used to give very sophisticated debugging
facilities. The precise details for using the package vary according to the host
Operating System and are described in Appendix J.

G-3

APPENDIX H

SYSTEM DEPENDENT LANGUAGE FEATURES

This Appendix summarizes those parts of a COBOL program that need to be
changed to run them as L/II COBOL programs and those parts that do not need changing
specifically but are ignored by the L/II COBOL compiler when generating the object
program.

MANDATORY CHANGES

ENVIRONMENT DIVISION

The only statements in the Environment Division that must be specialized for L/II
COBOL are shown below:

Configuration Section

SPECIAL-N AMES. special names entry

special names entry must include the following:

CURSOR IS data-name-l

The CURSOR IS data-name-l clause specifies the data-name which will contain the
CRT cursor address as used by ACCEPT statements. Data-name-l must be declared in
the Working-Storage section as a 4 character item. The interpretation, of the 4
characters is given in the ACCEPT statement description.

Input-Output Section

File-names must be as described in the "File Management" section of the BTOS
Operating System Manual.

STATEMENTS COMPILED AS DOCUMENTATION ONLY

COBOL programs not specifically written for compilation as L/II COBOL on
microcomputers can still be compiled. Statements using features that are not available
are treated as documentary only, and are not compiled. A summary of these features
follows:

H-l

ENVIRONMENT DIVISION

I-O-Control Paragraph

The clauses that refer to a real time clock and magnetic tape in this paragraph are
ignored by the compiler during compilation but do not cause compile time errors. These
clauses are as follows:

END OF {
REEL}
UNIT OF file-name-2 (no magnetic tape)

integer-2 CLOCK UNITS (no clock)

DATA DIVISION

File Description Paragraph

The following complete statements in the file description are ignored by the
compiler during compilation but do not cause compile time errors:

BLOCK CONTAINS integer-l TO integer-2

{
RECORDS }
CHARACTERS

CODE-SET IS alphabet-name

LABEL {
RECORD IS }{.STANDARD}
RECORDS ARE OMITTED

VALUE OF implementor-name-l IS literal-l
[,implementor-name-2 IS literal-2] •••

PROCEDURE DIVISION

CLOSE Statement

The following phrases in the CLOSE statement are ignored by the compiler during
compilation but do not cause compiler-time errors+

{
REEL}
UNIT

(No magnetic tape)

H-2

APPENDIX I

LANGUAGE S.t>ECIF ICATIONS

B 20 COBOL is ANSI COBOL as specified in "American National ~tandard
.Programming Cobol" (ANSI X3.23 1974). with extensions and restrictions. The
B 20 COBOL Implementation has been selected from both levels of ANSI COBOL.
The following modules are fully implemented at Levell:

o Segmentation
o Library
o Debug

In addition. the following mod ules are fully implemented at Level 2:

o Nucleus
o Table Handling
o Sequential Input and Output
o Relative Input and Output
o Indexed Input and Output
o Inter-Program Communication
o Sort/Merge

The full Level 2 syntax of the Communications module is accepted at this
release but the Run-time System does not yet include the capability to execute it.

The appendix specifies the implementation of B 20 COBOL. The implementation
of each of the ten (10) standard COB OL modules listed above is given under the
following headings as applicable:

Levell Implementation
Level 2 Implementation
B 20 COBOL Extensions

Appendix F in this manual is a B 20 COBOL syntax summary.

1-1

NUCLEUS

Level One Implementation

Fully im plemented to Level ONE.

Level Two Implementation

Fully implemented to Level Two.

Lin COBOL Extensions

1. Lower case letters a to z are read as upper case letters A to Z.

2. Hexadecimal binary values can be attributed to nonnumeric values by
expressing literals as X"nn".

3. Reserved word SPACE can be used to clear the whole CRT screen.

4. COMPUTATIONAL-3 or COMP-3 can be specified in the USAGE clause to
specify packed internal decimal storage, (BCD).

5. ACCEPT data-name-l [AT j data-name-2}]
1 literal-l

gives enhanced CRT input features.

FROM CRT

6. DISPLAY j data-name-l} [AT
lliteral-l tdata-name-2 l] UPON j CRT }

literal-2 1 CRT-UNDER

gives enhanced CRT ouput facilities.

7. 'CURSOR IS data-name' can be specified in SPECIAL-NAMES and 'data-name'
in WORKING-STORAGE section to specify CRT cursor address for ACCEPT
statements.

8. The function names SYSIN. SYSOUT and TAB can be assigned to user
specified mnemonic-names in the SPECIAL NAMES paragraph. SYSIN and
SYSOUT are equivalent to ACCE~T and DISPLAY from and to CONSOLE.
respectively. TAB is used with the WRITE statement to cause the
printer to throw a page. A directive is available in the compiler command
line to alter these function names if they are already used in your COBOL
program for other purposes.

1-2

In addition, the following extensions are incorporated.

1. Redefinition of data names need not be the same length - the compiler
reserves the largest area.

2. Level numbers need not be specified in sequence. Thus:
01 - - --
03 - - --
02 - - --
will be valid - with 03 being treated as if it were 02.

3. Introduction of FILLER group items.

SEQUENTIAL, RELATIVE AND INDEXED 1-0

Level One Implementation

Fully implemented to Level ONE.

Level Two Implementation

Fully implemented to Level Two.

L/II COBOL Extensions

1. Run Time allocation of file-names.

2. LINE SEQUENTIA~ is an additional file type.

3. All File Description (FD) clauses are optional.

4. Tabbing. is available, specified by TAB in the WRITE statement. (See item 8
under NUCLEUS L/II COBOL Extensions above.)

TABLE HANDLING

Level One Implementation

Fully implemented to Level One.

Level Two Implementation

Fully implemented to Level Two.
1-3

SEGMENTATION

Level One Implementation

Fully implemented to Level One.

LIBRARY

Level One Implementation

Fully implemented to Level One.

DEBUG

Level One Implementation

Fully implemented to Level I plus an additional Interactive Run-Time Debug
package.

LIn COBOL Extensions

A powerful Run-Time Debug package is available. (See Appendix J.)

INTER-PROGRAM COMMUNICATION

Level One Implementation

Fully implemented to Level One.

Level Two Implementation

Fully implemented to Level Two.

1-4

SORT-MERGE

Level One Implementation

Fully implemented to Level One.

Level Two Implementation

Fully implemented to Level Two.

1-5

APPENDIX J

USING COBOL

INSTALLING COBOL

Cobol level 4.0 (style ID B20CB4) is packaged so that it can be installed onto
a hard disk. It also contains the necessary files so that it can be used. on a Dual
Floppy Standalone system.

The package consists of two disks. Disk One enables you to run Cobol on a 4.0
Operating system (hard disk or Dual Floppy Standalone). Disk Two is for
customizing capabilities on a 4.0 or later Operating system (Hard disk).

CONTENTS OF THE B 20 COBOL DISKETTES

The following files are present on all 5-1/4" and 8" diskettes:

<Sys> CrashDum p.sys
<Sys> FileHeaders.sys
<Sys> Mfd.sys
<Sys> sysI m age.sys
<Sys> DiagTest.sys (only on 8" diskettes)
<Sys> Log.sys
<Sys> BootExt.sys (only on 8" diskettes)
<Sys> BadBlk.sys

The distribution diskettes contain the following files:

Language Disk 1, B 20 Cobol

<Sys> C ob 01. erR
<Sys> C obolF arm s. edf
<Sys> Gobol.I02
<Sys> fdsys.version
<Sys>Sys.cmds
<Sys> Cobol.I03
<Sys>Cobol.aDS
<Sys>Cobol.isR
<Sys> Cobol.I09
<Sys> Inst all. sub
<Sys> Cobol
<SyS>Cobol.dyn
<Sys> Cobol.dbg
<Sys> C obol.IO 1
<sys> Cobol.run
<sys> XEInstall.sub

J-l

Language Disk 2, B 20 Cobol

<Burroughs> Cobol.Res.run
<Burroughs> CobolLib. mod
<Burroughs> CobolG en. asm
<Burroughs> LinkCobol.sub
<Burroughs> CObol.fls
<Burroughs> CobolRes.fls
<Burroughs> Cobol.lib
<Burroughs> LinkCobolRes.sub

COBOL MEMORY RHQUmHMENTS

The B 20 Cobol Compiler distribution diskettes contain the swapping version of
the runtime. This version uses the Burroughs Virtual Code Management facility.
Selected runtime procedures remain on the disk as overlays until they are required.

The swapping version reduces the memory requirements of the runtime with the
cost of a small performance degradation.

The amount of memory required to run a Cobol program can be computed by
adding the bytes required as specified below:

Swapping runtim e
Cobol WORKING-STORAGE
LINE SEQUENTIAL file
SEQUENTIAL or RELATIVE file
Each Cobol source statement

63,624 Bytes
47,000 Bytes

1,154 Bytes
1,088 Bytes

10 Bytes

*

*The 47,000 bytes for working storage will vary depending on the configured
Cobol run-time. To calculate after linking, type Cobol.Map. Subtract the first
address for Data (located under Class heading) from the first address of Memory
(located under Class heading). Add 1,000 bytes of overhead to the computation.
Subtract from the 64K of data available. The result will be the available bytes for
working storage. The packaged version of Cobol will contain approximately 30,000
bytes.

Note that if indexed files· are used, additional memory is required to install
Burroughs Multiuser ISAM. On a cluster system, this additional memory is required
only at the master workstation.

Note that the combined data space of active Cobol modules is limited to 60K
bytes.

See the B 20 Systems ISAM Reference Manual, form 1148723, for details on
the me m ory require m ents of Multiuser ISA M.

COBOL IMPLEMENTATION SPECIFICATIONS

The Indexed Input and Output module is implemented using B 20 Multiuser
ISAM.

J-2

The Sort-Merge module is implemented using B 20 Sort/Merge.

COBOL LINE SEQUENTIAL files are implemented using the BTOS Sequential
Access Method (SAM). The Organization Line Sequential clause is required to Write
to files assigned to device II [Splb] II.

COBOL SEQUENTIAL and RELATIVE files are implemented using the BTOS
Direct Access Method (DAM).

HARD DISK INSTALLATION INSTRUCTIONS

Boot the system from the master or cluster where you want the installation of
COBOL Compiler. The software is installed in the system files of the system
directory.

o Insert the COBOL Compiler diskette in floppy drive [fO].

o Do not press the RESET button.

o Enter the SOFfWARE INSTALLATION com m and on the com m and line
and press GO.

o Follow the instructions displayed on the screen.

o When installation is complete, remove the distribution diskette and
store it in a saf e place.

XE520 INSTALLATION

Boot the cluster workstation you want to use for software installation from the
XE520.

o Power off all other cluster workstations.

o Log onto user ADMIN.

o Insert the COBOL Compiler diskette in floppy drive [fO].

Do not press the RESET button.

o Enter the SUBMIT Command on the command line and press
RETURN. The following parameter appears on the screen:

SUBMIT
File List [fO] <sys> XElnstall.sub

Press GO to invoke the SUBMIT com m and.

o Follow the instructions displayed on the screen.

o When installation is complete, remove the distribution diskette and
store it in a safe place.

J-3

DUAL FLOPPY srANDALONE INsrALLATION INsrRUCTIONS

COBOL 5.0 can be used on B 26 Dual Floppy Standalone systems. Before creating,
compiling, and running COBOL programs on the B 26 Dual Floppy, duplicate the
COBOL disk by using the following procedures.

1. Place the system disk of the 4.0 or later B 26 Dual Floppy into disk
drive [fO].

2. Execute the FLOPPY COpy command as follows:

FLOPPY COPY
[Num ber of copies]
[Overwrite OK?]
[Dual floppy?] _Y...;;e~s ____ _
[Suppress verify?]
[Device names(s)]
[Device passworo(s)]

3. Remove the system disk.

4. Place the COBOL compiler disk in [fO] and the COBOL source file
in [fl].

5. Press the GO key.

6. Execute the COBOL com m and as follows:

COBOL
Source file
[Interm ediate file]
[Iistfile]

[Animate?]

[fl] < YourDir> YourFile.Bas
[fl] < YourDir> YourFile.Int
[fl] <yourDir> Yourfile.Lst

This compilation creates a list file called YourFile.Lst and an intermediate file
called YourFile.int on the source disk. To change the destination or nam e of these
files, explicitly state the path and their name. When the compilation is complete,
the message

Please motmt a system volume in [sys] and press GO to cootinue

displays. Put the system disk of the 4.0 or later B 26 Dual Floppy disks into drive
[fO] and and press GO.

J-4

RUNNING A PROGRAM

Use the following procedure to run a program:

1. Place the COBOL compiler disk in [fO].

2. Place the source disk with YourFile.Int in disk drive [fl].

3. Execute the CRUN com m and as follows:

CRUN FILE
Intermediate file [fl] < YourDir> Your File.Run
[Parameters]
[Switches]
[Enable COBOL debugger?]
[Enable ANSI debug switch?]
[Prompt on return?]

When execution is complete, the message

Please m01Blt a system volume in [sysl and press GO to continue

displays. Put the system disk of the 4.0 B 26 Dual Floppy disks into drive [fO]
and press GO.

Helpful Hints For Dual Floppy Standalone Systems

You should have a second disk containing programs to compile and run.
Enter COBOL on the command line, then press the RETURN key. Fill in the name
of the source program on the first line, referencing [Fll and the directory
containing the program. On the second line the output file is listed. It always
ends with lI.intll and the prefix should be [fl] <directory>programname. If no name
is given the prefix will default to [Fl] <directory> first word of the program nam,e.
Press the GO key to compile the program. At the end of the compile the
following message will be displayed: IIPlease mount a system volume in [Sys] and
press GO to continueII. Remove Disk 1 from [FO], insert the 4.0 system disk; then
press GO. When the command line is displayed, remove the disk from [FO] and
insert Disk 1.

J-5

the program. On the second line the output file is listed. It always ends with
".int" and the prefix should be [Fl] <directory>programnam e. If no name is given
the prefix will default to [Fl]<directory>first word of the program nam e. Press the
GO key to compile the program. At the end of the compile the following message
will be displayed: "Please mount a system volume in [Sys] and press GO to
continue". Remove Disk 1 from [FO], insert the 4.0/IE system disk; then press GO.
When the command line is displayed, remove the disk from [FO] and insert Disk 1.

To work around this situation, copy the Exec.run file onto Disk 1 so that you
can retUIll to the system after the compile is finished and proceed normally.

When the program is compiled and ready for testing, enter CRON on the
command line; then press the RETURN key. On the first line fill in the *.int file
generated from the compile with the prefix [Fl] <directory>, then press the GO key.
Unless Exec.run was copied onto Disk 1, at the end of the program the "Mount a
system volume" message will be displayed, proceed as explained above.

To use a parallel printer the file Lptconfig.sys must be loaded on Disk 1. To
use a serial printer the file Ptrbconfig.sys must be loaded on Disk 1. Both files'
can be copied from B26SF4 4.0 System disk.

For ISAM programs an additional step is needed. Insert Disk 1 of B26IF4 ISAM
4.0, enter ISAM INSTALL, then press the GO key to install ISAM in the system.
Then proceed as stated above. For ISAM programs in which data sets are created,
they would normally default to [FO]. You should specify in the programs that the
data sets be written to [Fl]. Note that the ISAM parameters used depend on the
memory available and the program requirements.

COBOL CONFIGURATION

Cobol (Cobol.run) has been configured with the following BTOS interfaces. If
you want to configure Cobol with different or additional BTOS interfaces, refer to
CUSTOMIZING COBOL in this document.

Forms
Video Access Method (VAM)
Video Display Management (VDM)
Memory Management
Task Management
Openfile/Closefile
File Management
Keyboard Management
Timer Management
ISAM

J-6

USING A B9251 PARALLEL OR AP1300 SERIES SERIAL PRINTER WITH COBOL

The following procedure insures that a carriage return/form feed is inserted
whenever a form feed is encountered in the text to be printed. This will correct
previous problems when using these printers from Cobol.

1. Create an EDITOR file containing the following information:
DC = DD,DC

2. Invoke the com mand: MAKE TRANSLATION FILE.

Make Translation File
Source file nam e
Translation file name

"file-name from step I"
"any-name.txl" (Press GO)

3. Invoke the command CREATE CONFIGURATION FILE.

Create Configuration File
Configuration file nam e
Device type (com m. parallel, lpt, or serial ptr)

Type in the information appropriate for the printer(s) that will be used with
Cobol, such as "Splconfig.sys" for spooled parallel printing.

The last param eter ([Translation file (default=none)]) of the subform asks for
the translation file name. Enter the name of the translation file you created
with the MAKE TRANSLATION FILE command.

4. This procedure must be followed for every configuration file associated with the
AP13DD series and B9251 printers.

5. Reboot the system.

6. First Install Queue Manager and Install Spooler if [SPL] or [SPLB] is being used.

CUSTOMIZING COBOL ON HARD DISK SYSTEMS

The files located on the Cobol diskettes allow you to configure the Cobol
runtim e. This is accom plished when the Cobol.run file is· reconfigured with non­
Cobol procedures such as Forms, ISAM, Memory Management, etc. To create a
new Cobol.run file, perform the following steps:

To build a new Cobol.run to run on a 4.0 Operating system:

IIvlPORTANT - Customizing of the Dual Floppy Standalone system Cobol run
file is not supported.

J-7

Copy the files on Disk 2 in directory [FO] <Burroughs> to the desired
directory (for this example, Cobol is the directory).

Copy
File from
File to
[Overwrite OK?]
[Confirm each?]

Press GO

[FO] <Burroughs>*
[Sys] <Cobol>*
y

The directory Cobol now contains the files:

LinkCobolRes.sub
LinkCobol.sub
Cobol.fIs
CobolRes.fls
C obolLib. m ad
CobolGen.asm
Cobol.Lib
CobolRes.Run

Be sure that 4.0 Assembler.run, 4.0 Linker.run,· 4.0 etos.lib, 4.0 Forms.lib, 4.0
Isam.lib, and 4.0 SortMerge.lib have been copied to the SYS directory. If this has
not been done, copy Assembler.run, Linker.run, Forms.lib, Isam.lib, and SortMerge.lib
from the language development disks and. Ctos-lib from the editor disk (4.0
Operating system package) to the S YS directory.

Assemble Cobolgen.asm: Burroughs creates Cobol.run with certain capabilities.
You can create Cobol.run to contain more or less capabilities. This exam pIe
describes the procedures you would take to create the packaged 4.0 Swp Cobol.run.

Assemble
Source file < C OBO L> Co bolgen. as m

Press GO

The program will ask you to choose the capabilities which the Cobol.run will
contain. To answer Yes, type Y and then press RETURN. To answer No, press
RETURN.

To create the packaged Cobol.run, answer Yes to the following options:

Forms
Openfile/C lose file
Video Access Method
Video Display Management
Memory Management

Task Management
File Management
Keyboard Management
Timer Management
ISAM

J-8

The file CobolLib.mod has the following files:

< sys>Isam.lib
<sys> Forms.lib
< sys> SortM erge.lib

If you choose other options when assembling Cobolgen.asm, for example,
Graphics. lib , you should edit CobolLib. mod and add a file <sys> Graphics.lib.

Submit the file LinkCobol.sub

Submit
LinkC obol.sub

To create a swapping Cobol.run, press GO. To create a resident Cobol.run,
submit the file LinkCoboIRes.sub.

In general, the swapping version of the Cobol.run is preferable to the resident
version, because it requires less memory, with only a small performance
degradation.

After pressing GO, the following Link com mand will be displayed with the
following information filled in. Since the packaged version is a swapping one, the
example fields contain information necessary to build a swapping version of
Cobol.run. LinkCobolRes.sub creates a CoboIRes.Run.

Link
Object Module
Run file
[List file]
[Public?]
[Line numbers?]
[Stack Size]
[Max memory array size]
[Min memory array size]
[System build?]
[Version]
[Libraries]
[Disk allocation?]
[Symbol file]

Cobol.Lib(12)Cobol.Gen.O •••
Cobol.run
Cobol.map

47000
6000

'4.0 Swp'
[Sys] <Sys> Isam.lib •••••

Cobol.sym

The cursor will be positioned in the [symbol file] field. Remember that
these libraries should be taken from the 4.0 Operating System language development
disk. Ctos.lib is automatically called. Press GO.

The resident
<Sys> Cobol.run.
<sys> Cobol.Run.

version com piles
If you submit

without any errors. Copy Cobol.run to
LinkCoboIRes.sub, copy CobolRes.run to

J-9

USING SamGenAll WITH COBOL

The Cobol.run file is configured with the following byte streams:

Spooler
Video
Keyboard
Null
Parallel Printer

[SPL] and [SPLB]
[VID]
[KBD]
[NULL]
[LPT]

In order to use the Com munication [COMM] and Serial Line Printer [PTRB]
byte streams, Cobol must be configured as follows:

1. Login to [Sys]<Sys> and copy the following files from the language development
disk.

Sam Gen.asm Sam GenAll.asm

2. Assemble SamGenAll.asm

Com mand ASSEMBLE
Assemble

Source files
[Errors only?]
[GenOnly, NoGen, or Gen]
[Object file]
[List file]
[List on pass I?]

SamGen.mdf

Sam GenAll.asm

Sam Gen.obj (Press GO)

3. Invoke the Librarian to add to object module sam Gen.obj into CTOS.lib.

Command LIBRARIAN
Librarian

Library file
[Files to add]
[Modules to delete]
[Modules to extract]
[Cross-r~ference file]
[suppress confirmation?]

BTOS.lib
Sam Gen.obj (Press GO)

the message IISam Gen already exists. Replace? (Press GO to confirm, CANCEL
to deny)1I will be displayed. Press GO. Otherwise, go to step 4.

4. Now proceed with the normal configuration of Cobol for use with non-Cobol
procedures, beginning with Assembling CoboIGen.asm. Be sure to say yes to
the question IIAre you calling the Sequential Access Method (y or n)?11 if SAM
is to be accessed by way of CALLs.

J-I0

The following program will transmit a COMM byte stream out of the [COMM]B
port. Use a cluster communications cable between the [COMM]B ports on the two
B 20 systems.

Environm ent Division.
Input-Output Section.
File-Control.

Select Xmt-file Assign to "[Com m]B"
Organization Line Sequential.

File Section.
FD Xmt-file.
01 Tokens Pic X(14).
Procedure division.

Open Output xm t-file.
Move "12345678901234" to Tokens.
\Vrite Tokens.
Move "ABCDEFGHIJKLMN" to Tokens.
Write Tokens.
Close Xmt-file.
Stop run.

To test the new Cobol.run with the above source:

Create the configuration file "COMMBConfig.sys" using the default parameters
on the transmitting and receiving B 20 systems. A cluster com munications cable
should be used. Perform a COpy from [COMM]B to [VID] on the receiving B 20.
The receiving B 20 should display the characters shown in the program.

J-11

INVOKING THE COBOL COMPILER

To invoke the COBOL compiler from the Executive, type COBOL in the command
field of the command form. The form illustrated below then appears.

COBOL
Source file
[Intermediate file]
[List file]
[List errors only?]
[List COpy files?]
[Flagging level (Low, L-I, H-I, High, Ext)?]
[Suppress flagging?]
[Suppress intermediate code?]

. [Suppress listing?]
[Suppress location addresses?]
[Suppress page headers?]
[Suppress error echo?]
[Resequnce lines?]
[Lines per page?]
[Animate?]

Field Descriptions

Source file

is the name of a COBOL source file to be compiled.

[Intermediate file]

is the file in which the compiler writes intermediate code. The default is the file
,name constructed by replacing the extension (suffix beginning with".") of the
source file name with ".int".

[List file]

is the file in which the compiler writes the listing. The default is the file name
that is constructed by replacing the extension (suffix beginning with ".") of the
source file name with ".lst."

[List errors only?]

is Yes or No (the default). If Yes, the compiler lists only lines containing errors.
If no, the compiler produces a full listing.

[List COpy files?]

is Yes or No (the default). If Yes, the compiler lists files specified by the COBOL
COPY verb and includes the names of any COpy files that are open in and page
headers. If no, the compiler suppresses the listing of COpy files.

J-12

[Flagging level (Low, L-I, H-I, High, Ext)?]

is Low, L-I, H-I, High, Ext. Validation flag-s are extra lines in the listing that
indicate the level of a COBOL source statement.

Low produces validation flags for all features higher than the Low Level of
compiler certification of the General Services Administration (GSA).

L-I produces validation flags for all features higher than the Low-Intermediate
Level of compiler certification of GSA.

H-I produces validation flags for all features higher than the High-Intermediate
Level of compiler certification of GSA.

High produces validation flags for all features higher than the High Level of
compiler certification of GSA.

Ext produces validation flags for only the Level II COBOL extensions to standard
COBOL as it is specified in the ANSI COBOL Standard X 3.23 1974.

[Suppress flagging?]

is Yes or No (the default). If Yes, the compiler disregards any response that was
given in the previous field.

[Suppress intermediate code?]

is Yes or No (the default). If Yes, the compiler does not generate intermediate
code. The compiler, in effect, only checks syntax.

[Suppress listing?]

is Yes or No (the default). If Yes, the compiler does not produce a listing. Use
this for fast compilation of clean programs.

[Suppress location addresses?]

is Yes or No (the default). If Yes, the compiler does not include in the listing
4-digit location addresses for each source line. These location addresses are
needed if you use the Level II COBOL Debugger.

[Suppress page headers?]

is Yes or No (the default). If Yes, the compiler does not put form feeds and page
headers in the listing.

[Suppress error echo?]

is Yes or No (the default). If Yes, the compiler suppresses error line echoing on
the video display.

J-13

[Resequence lines?]

is Yes or No (the default). If Yes, the compiler includes new sequence numbers in
the listing, replacing those in the source. The compiler generates sequence
numbers in columns 1 - 6 in numerical order from 000010 in increments of 10.

You can resequence a COBOL source by answering Yes to [Reseqeunce lines?],
[Suppress location addresses?], and [Suppress page headers?]. You can use the
listing produced as COBOL source after you use the Editor to remove the
compilation statistics line from the end of the listing.

[Lines per page?]

is the number of lines on a listing page. The minimum is 5. The default is 60.

[Animate?]

is a COBOL-oriented debugger that allows you to debug . a program by
interacting directly with the COBOL source while the program is executing.

Compiler Error Messages

If an error is encountered during compilation, the compiler prints an error report
on the video display and in the listing. The format of this report is:

nnnnn(invalid statement)
mmm***************
** *<~rror message)

nnnnn is the sequence number of the erroneous line.

mmm is the error number.

< error message)is text describing the error.

The asterisks following mmm end at the location where the compiler detected the
error. Often, this location is one or two words beyond the true location of the error.

In the example below, the asterisks end at B, which is one work beyond the location
of the erroneous reserved word TOO.

031900 MOVE A TOO B.
118****************
** *Reserved word missing or incorrectly used

J-14

Compilation Statistics

At the end of compilation, the compiler prints compilation statistics on the video
display and in the listing file. The format of this line is:

Errors=n Da ta=n Code=n Dict-m:n/p GSA flags=n

• Errors is the number of errors detected.

o Data is the size (in bytes) of the program's data area.

o Code is the size (in bytes) of the program's intermediate code area.

o Dict is m:n/p where:

m is the number of bytes used in the data dictionary;

n is the number of bytes remaining in the data dictionary;

and p is the total number of bytes in the data dictionary.

• GSA flags is the number of validation flags or "off".

J-15

Examples

1. This example is a compilation of the COBOL source file Pi.cbl. The listing and
intermediate code files are Pi.lst and Pi.int. A full listing is produced.

Command COBOL RETURN
COBOL

Source file Pi.cbl GO
[Intermediate file]
[List file]
[List errors only?]
[List COPY files?]
[Flagging level (Low, L-I, H-I, High, Ext)?]
[Suppress flagging?]
[Suppress intermediate code?]
[Suppress listing?]
[Suppress location addresses?]
[Suppress page headers?]
[Suppress error echo?]
[Resequence lines?]
[Lines per page?]
[Animate?]

2. This example demonstrates how to generate new sequence numbers for Pi.cbl.
Intermediate code generation is suppressed. The new source file is named
NewPi.cbl.

Command COBOL RETURN
COBOL

Source file
[Intermediate file]
[List file]
[List errors only?]
[List COpy files?]
[Flagging level (Low, L-I, H~I, High, Ext)?]
[Suppress flagging?]
[Suppress intermediate code?]
[Suppress listing?]
[Suppress location addresses?]
[Suppress page headers?]
[Suppress error echo?]
[Resequence lines?]
[Lines per page?]
[Animate?]

J-16

Pi.cbl GO

New Pi.cbl

Y

Y
Y

Y GO

RUNNING A COBOL PROGRAM

After a COBOL program is compiled, invoke the COBOL run-time system to
execute the intermediate code produced by the compilation.

The run-time system is invoked either by using the CRun command or by using your
own custom command, created by the Executive's 'New Command' facility.

The CRun Command

To run your COBOL program, type CRun in the command field of the command
form. The form illustrated below then appears.

CRun
Intermediate file
[Parameters]
[Switches]
[Enable COBOL Debugger?]
[Enable ANSI debug switch?]
[Prompt on return?]

Field Descriptions

Intermediate file

is the name of the file that contains the intermediate code to be executed.

[Parameters]

are the invocation parameters to be passed to the COBOL Program. To read
parameters from a COBOL program, open [KBD] as a LINE SEQUENTIAL file and
read the first input record. You can also read param eters using the BTOS
Parameter Management routines. (See the BTOS Operating System Manual for
details.) Not responding causes no parameters to be passed.

[Switches]

are switches (up to 8) to turn on or off. With Level II COBOL, events can be
controlled at run-time depending on the setting of programmable switches. See the
SPECIAL N AMES paragraph in Section 3.

The first switch is +0, the second is + 1, and so on through +7. Preceding the switch
with a + (plus) sign turns the switch on; a - (minus) sign turns the switch off. The
sign is required. To specify more than one switch, type a single quote character at
the beginning and end of the sequence. Not responding causes no switches to be
turned on.

[Enable COBOL Debugger?]

is Yes or No (the default). If Yes, the interactive COBOL Debugger is enabled.
(See Section following entitled COBOL Debugger.)

J-17

[Enable ANSI debug switch?]

is Yes or No (the default). If Yes, the standard ANSI COBOL debug module is
invoked. (See Section 11- above.)

[Prompt on return?]

is Yes or No (the default). If Yes, a prompt message is printed on the video
display after the COBOL program terminates but before the Executive is
entered. You must respond to the prompt to continue. This option permits
you to view the video display before returning to the Executive.

Sample Invocations using the CRun Command

1. This example shows how to run Pi.int, the intermediate code generated by the
compilation of Pi.cbl.

Com mand CRun RETUR N
CRun

Intermediate file
[Parameters]
[Switches]
[Enable COBOL Debugger?]
[Enable ANSI debug switch?]
[Prompt on return?]

Pi.int GO

2. This example shows how to run TEst.int with switches 1 and 4 turned on.
Parameters are passed and the ANSI COBOL debug switch is enabled.

Command CRun RETURN
CRun

Intermediate file
[Parameters]
[Switches]
[Enable COBOL Debugger?]
[Enable ANSI debug switch?]
[Prompt on return?]

Test.int
test-IOO
'+1 +4'

Yes GO

3. This example shows how to run Pi.int using the COBOL Debugger.

Command CRun RETURN
CRun

Intermediate file
[Parameters]
[Switches]
[Enable COBOL Debugger?]
[Enable ANSI debug switch?]
[Prompt on return?]

pi.int

Y GO

J-18

Using a Custom Command to Run a COBOL Program

To use a custom command to run a COBOL program, first create the command
using the Executive's 'New Command' facility.

Fill inthe 'Command name' field with the name of the intermediate code file, minus
the '.int' extension.

Fill in the 'Run file' field with '[sys] <sys) COBOL.run', which is the file containing
the COBOL run-time system.

Fill in the 'Field names' field with field names of your choice. Data entered in
these fields can be read by a COBOL program using LINE SEQUENTIAL input from
[KBD]. This process is described in detail below.

After creating the command, move all intermediate code files that make up the
program in the [sys]<sys)directory. If the program uses segmentation, do not forget to
move the files containing independent segments and inter-segment reference
information. These files have extensions '.Ixx' and '.ISR', where xx represents a segment
number. If the program calls other COBOL modules, move these into [sys](sys>as well.

in the example below, a command named 'Update' is created with two fields, 'Your
name' and 'Update file'.

Command New Command
New Command

Command name
Run file
Field names
Description
[Overwrite ok?]

RETURN

'Update'
[sys]<sys)COBOL.run
'Your name' 'Update file' GO

After compiling Update.cbl and moving Update.int into the [sys] <sys) directory, the
program can be invoked as follows.

Command Update RETURN
Update

Your name Donna
Update file Current GO

Reading the Fields of a Custom Command Form

A COBOL Program reads the data entered in the fields of a custom command form
by reading sequential records of a file that is opened using filename [KBD], with LINE
SEQUENTIAL organi~ation, in INPUT mode.

The first record returned corresponds to the data entered in the first field. The
second record corresponds to the second field, and so on. If the field contains no data,
the corresponding record is empty, that is, it contains only spaces.

When all the fields have been read, subsequent read operations will take input from
the keyboard.

J-19

The following sample program is invoked with the Update form described above.
The program first reads the two fields of the form, then writes the data contained in
the 'Your name' field into the file named by the 'Update file' field.

* Program Update.cbl

select form
assign "[KBD]"
organization line sequential.

select update-file
assign update-name
organization line sequential.

rd form.
01 form-buffer pic X(SO).
fd update-file
01 update-buffer pic X(SO).

procedure division.

* Read the two fields of the Update command form

open input form.
read form.
move form-buffer to update-buffer.
read form.
move form-buffer to update-name.
close form.

* Write data to the update-file

open output update-file.
write update-buffer.
close update-file.
stop run.

Advanced Invocation Techniques for Debugging

A COBOL program that is designed to be run from a custom command form can
also be run using the CRun form. This is required to run such a program using the
COBOL Debugger.

If you are using the COBOL Debugger, follow these steps:

1. Run the program using the CRun form. Leave the [Parameters] field empty.
Fill in [Enable COBOL Debugger] with Y.

2. Once in the Debugger, use the G command to execute to a breakpoint in the
program beyond the section that reads the fields.

3. Type in the data for each field, termi.lating each line with a RETUR N.

4. When all the fields are entered, the breakpoint will be reached. Continue
debugging.

J-20

The sample invocation below shows how to run Update.int using the COBOL
Debugger. Address 004f corresponds to the statement 'open ouput update-file' in the
program shown above.

Com mand CRun RETUR N
CRun

Intermediate file
[Parameters]
[Switches]
[Enable COBOL Debugger?]
[Enable ANSI debug switch?]
[Prompt on return?]

COBOL Debugger 6.2
?G004F
Donna RETUR N
current RETURN
?

[sys]<sys)update.int

Y GO

FILES REQUIRED FOR COMPILING AND RUNNING A COBOL PROGRAM

COBOL.run

is the COBOL run-time system. It is needed for compiling and running a COBOL
program.

COBOL.ads

is needed for running a COBOL program that uses the extended ACCEPT or
DISPLA Y verbs.

COBOL.dbg

is needed for running a COBOL program with the COBOL Debugger enabled.

The following files constitute the COBOL compiler. They are needed only for
compiling a COBOL program.

COBOL COBOL.isr
COBOL.iOl COBOL.i02

COBOL.err
COBOL.i03 COBOL.i09

J-21

USING FILE- AND RECORD-LEVEL LOCKING WITH INDEXED FILES

COBOL allows access to Burroughs ISAM's powerful record- and file-level locking
capabilities.

Locking provides secure and independently controlled file access for each user in a
multi-user configuration. File and record locks permit exclusive access to file or a
record within a file by one user.

Semantics of File- and Record-Level Locking

A lock regulates concurrent access to a file or record, thereby maintaining data
integrity when more than one user accesses the same file. Locking protects a file or
record in use by one user from updating operations of a concurrent user.

A file-level lock restricts access for all the records in a file, while a record-level
lock only restricts access to a single record.

Whim a user holds a record lock for a record, other users cannot access the
record. When a user holds a file lock for a file, other users may only access the
file for reading if the holder is reading, otherwise concurrent users may not
access the file.

The level of locking for each file is determined by a statement in the. file control
entry as described below.

Locking Modes

Locking modes are specified in the SELECT clause of the FILE-CONTROL
paragraph. The three locking modes are:

EXCLUSIVE file-level locking

EXCLUSIVE locking mode prevents concurrent users from updating a locked file.
If the user holding this file-level lock has the file open for IN PUT, then other users
are also allowed to open the file for IN PUT. If, however, the user has the file open
for OUTPUT or 1-0, other users are not allowed to open the file at all.

A UTa M A TIC record-level locking

AUTO MATIC locking mode automatically acquires a record-level lock for each
record accessed by a user.

MANUAL record-level locking

MANUAL locking mode acquires a record-level lock for a record only if the
statement causing the access specifically locks the record.

J-22

Specifying the Locking Mode

The default locking mode is AUTOMATIC for files with Indexed organization,
whether in 1-0, IN PUT, or OUTPUT mode.

A record lock is thus acquired by the execution of the READ and START
statements referencing the file, which is only released on next access to the file, i.e.,
at the end of execution of the next I/O statement that references the file. A record
lock is also acquired by the execution of the WRITE, REWRITE, and DELETE
statements and is released at the end of the current I/O statements and is released at
the end of the current I/O statement.

To explicitly specify a locking mode for a file, use the LOCK MODE clause in the
FILE-CO NTROL paragraph as shown below. Note that extra syntax is not mandatory
to invoke locking. If the LOCK MODE IS clause is left out of the FILE-CONTROL
paragraph, then the default locking mode is AUTOMATIC.

FILE- CO NTROL.

SELECT file-name

ASSIG N TO S external-filename-literal ~
? file-identifier ~

r~, external-filename literal ~J
~ , file-identifier 5

;ORGANIZATION IS INDEXED

[

;ACCESS MODE IS ~ RANDOM IJ
DYNAMIC .

'. SEQUENTIAL

;RECORD KEY IS data-name-l

[

;LOCK MODE IS I AUTOMATIC ~]
EXCLUSIVE
MANUAL

[;ALTERN A TIVE RECORD KEY IS data-name-2 [WITH DUPLICATES] •••

[;FILE STATUS IS data-name-3]

The full specification of the File Control entry is contained in Section 7. The only
part of the File Control entry that is locking specific is the LOCK MODE clause.

When this clause is omitted, LOCK MODE IS AUTOMATIC is assumed.

When LOCK MODE IS EXCLUSIVE is specified, an exclusive file lock is acquired by
the user when the file is opened. While a user holds an exclusive file lock, record-level
locking does not occur within that file. If a file is opened in mode IN PUT, then
concurrent users may also open the file in mode IN PUT; otherwise, other users may not
open the file.

J-23

When LOCK MODE IS AUTOMATIC or LOCK MODE IS MANUAL is specified,
record-level locking may occur for the file when it is opened •.

If LOCK MODE IS AUTOMATIC is specified, and the file is open for 1-0, a
record-level lock is acquired by the execution of the READ, WRITE, REWRITE, START,
and DELETE statements referencing the file.

If LOCK MODE IS MANUAL is specified, a record-level lock is acquired by the
execution of a READ statement referencing the file only if the READ statement
includes the WITH LOCK phrase.

Using the READ Statement with MANUAL Locking

When MANUAL locking mode is specified for a file, record-level locks are only
acquired when a READ statement with a WITH LOCK phrase is executed.

When a lock is acquired, the record remains locked until the end of execution of
the next I/O statement which references the same file. The syntax for the READ
statement is shown below.

Format 1:

READ file-name [NEXT] RECORD [INTO identifier]

[;WITH LOCK]

[;AT END imperative-statement]

Format 2:

READ file-name RECORD [INTO identifier]

[;KEY IS data-name]

[;INVALID KEY imperative-statement]

The READ statement is the same as specified in the COBOL Manual for indexed
files, except for the WITH LOCK phrase. When the WITH LOCK phrase is included, a
record-level lock is acquired for files with MANUAL locking mode. For other details
about the semantics of the READ statement, see Section 7.

J-24

Acguiring Record-Level Locks

The following summarizes the statements which cause record-level locking to
occur:

Statement Lock Mode Opened Lock Acguired

READ WITH LOCK AUTOMATIC 1-0 YES
AUTOMATIC INPUT NO
MANUAL 1-0 YES
MANUAL INPUT NO

READ (without AUTOMATIC 1-0 YES
WITH LOCK) AUTOMATIC INPUT NO

MANUAL 1-0 NO
MANUAL INPUT NO

START, DELETE, AUTOMATIC/ 1-0 YES
WRITE, REWRITE MANUAL

START AUTOMATIC/ INPUT NO
MANUAL

WRITE AUTOMATIC/ OUTPUT NO
MANUAL

Error Conditions While Using Locks

Status Key

When the run-time system detects that a lock on a record has already been
acquired on behalf of a different user environment, it returns an A NSI error status key
1 value of '9' with 'D' in status key 2.

Current Record Pointer

If at any stage the record pointed to by a ,currently running program has been
deleted by another program, the current program's record pointer will be updated to
point to the next record on the file.

If, however, a lock is encountered on attempting to access a record (i.e., 'D' is
returned as error status key 2), the current record pointer is unchanged.

Da ta Record Contents

If a lock is encountered on attempting to READ a record (i.e., 'D' is returned as
error status key 2), the record contents will be undefined.

J-25

USING CALL IN A COBOL PROGRAM

COBOL provides a powerful CALL facility. Using the CALL verb, you can:

o CALL another COBOL module using ANSI standard Inter-Program
communication.

o CALL special built-in procedures (such as PEEKB and POKEB) and that are
provided by the COBOL run-time system.

o CALL non-COBOL procedures that have been linked into the COBOL
run-time system. You can directly CALL the BTOS Operating System and
Burroughs software products, such as Forms.

Using CALL for Inter-Program Communication

You can arrange a COBOL application into a number of separately compiled
programs that communicate and invoke each other with the COBOL CALL verb. Using
this facility, you can write large and complex COBOL applications whose total size is
not constrained by physical memory limitations.

The general format of the CALL verb is given in Section 12.

The COBOL Programs that constitute the application are known as the application
suite. All program other than the main one should have a Linkage Section in the Data
Division. The Linkage Section permits COBOL programs to communicate, that is, pass
parameters.

All programs in the application suite mllst be compiled prior to executing the
application. The COBOL program is run using the filename of the main program.

When the CALL verb is executed, the intermediate code of the called program is
loaded into memory, assuming there is sufficient space. The ON OVERFLOW verb
detects whether a CALL has failed due to lack of memory space. The CAN CEL verb
reclaims memory that was allocated to programs which are no longer in use.

Using CALL for Invoking Special Built-In Procedures

You can invoke several useful built-in procedures provided by the COBOL run-time
system using the CALL verb.

The general format of the CALL verb is given in Section 12.

J-26

When CALLing special built-in procedures, the object of the CALL must be literal
. or an alphnumberic data item whose value is one of the number below.

GETCH "259"
PUTCH "258"
PEEKB "261 "
PEEKW "276"
POKEB "262"
POKEW "277"
GETB "263"
GETW "278"
PUTB "264"
PUTW "279"
Define Escape "275"

Each of the special built-in procedures is described below.

GETCH and PUTCH

Syntax:

CALL GETCH USING IN-VALB
CALL PUTCH USING OUT-V ALB

where

GETCH IS PIC X(3) VALUE "259
PUTCH IS PIC X(3) VALUE "258"

OUT-V ALB IS PIC X containing a byte to display on the video display.

IN -VALB IS PIC X and gets the byte to be read from the keyboard.

Action:

PUTCH displays the byte value in OUT-VALB on the video display.

GETCH reads a byte from the keyboard into IN-VALB without echoing it on the
video display.

NOTE

Use GETCH to read data, such as passwords, that
should not be displayed.

J-27

PEEKB and PEEKW

Syntax:

CALL PEEKB USING SEGMENT, OFFSET, DAT-VALB.
CALL PEEKW USING SEGMENT, OFFSET, DAT-VALW.

where

PEEKB
PEEKW

SEGMENT
OFFSET
DAT-VALB
DAT-VALW

Action:

IS PIC X(3)
IS PIC X (3)

IS PIC 9(5)
IS PIC 9(5)
IS PIC X
IS PIC XX

VALUE "261"
VALUE "276"

containing the segment number
containing the offset in the segment
and gets the data byte
and gets the data word

PEEKB and PEEKW return, respectively, the byte or word at the memory location
specified by SEGMENT and OFFSET.

POKEB and POKEW

Syntax:

CALL POKEB USING SEGMENT, OFFSET, DAT-VALB.
CALL POKEW USIN G SEGMENT, OFFSET, DAT-VALW.

where

POKEB
POKEW

SEGMENT
OFFSET
DAT-VALB
DAT-VALW

Action:

IS PIC X(3)
IS PIC X(3)

IS PIC 9(5)
IS PIC 9(5)
IS PIC X
IS PIC XX

VALUE "262"
VALUE "277"

containing the segment number
containing the offset in the segment
containing the data byte to be stored
containing the data word to be stored

POKEB and POKEW store, respectively, a byte or word into the memory location
specified by SEGMENT and OFFSET.

J-28

GETB AND GETW

Syntax:

CALL GETB USING PORT, VALUEB.
CALL GETW USING PORT, VALUEW.

where

GETB
GETW

PORT
VALUEB
VALUEW

Action:

IS PIC X(3)
IS PIC X(3)

IS PIC 9(5)
IS PIC X
IS PIC XX

VALUE "263"
VALUE "278"

containing the port address
and receives the input data byte
and receives the input data word

GETB and GETW read, respectively, the byte or word from the 8U86 input
port specified by PORT.

PUTB and PUTW

Syntax:

CALL PUTB USING PORT, VALUEB.
CALL PUTW USING PORT, VALUEW.

where

PUTB
PUTW

PORT
VALUEB
VALUEW

Action:

IS PIC X(3)
IS PIC X(3)

IS PIC 9(5)
IS PIC X
IS PIC XX

VALUE "264"
VALUE "279"

containing the port address
and contains the data byte to output
and contains the data word to output

PUTB and PUTW write, respectively, the byte or word from the 8086 output
port specified by PORT.

DefineEscape

Syntax:

CALL DefineEscapte USING EscapeTable, EscapeKey

where

DefineEscape IS PIC X(3)

EscapeTable IS PIC X(n)
n is in the range 1 •• 256

Escape-Key IS PIC X

VALUE "275"

VALUE(escape keys)

J-29

Action:

DefineEscape defines a table of keys that serve as escape keys in the extended
ACCEPT statement. DefineEscape also defines an elementary data item to
receive the escape key that terminates an ACCEPT statement.

Up to 255 escape keys can be defined. The sequence of escape keys is terminated
by a space character.

Example:

NOTE

The GO key is always an escape key. The space key
cannot be defined as an escape key.

A program can change the escape keys by repeated
calls to DefineEscape.

Define fl and f2 to be escape keys.

01 DefineEscape PIC X(3)VALUE "275".
01 EscapeTable PIC X(3)VALUE X"151620".
01 EscapeKey PIC X.

CALL DefineEscape USING EscapeTable, EscapeKey.

J-30

Using CALL For Invoking Non-COBOL Procedures

COBOL can directly CALL non-COBOL procedures that are linked into the COBOL
run-time system. Using this facility, you can CALL the BTOS Operating System and
Burroughs software products, such as Forms.

The CONFIGURING COBOL section below explains how to link non-COBOL
procedures into the COBOL run-time system.

The general format of the CALL verb, including the syntax for passing parameters,
is given in Section 12.

When using the CALL verb to invoke non-COBOL procedures, the object of the
CALL is the nonnumeric literal that is the name of the procedure preceded by the
ampersand (&) character.

For example, to CALL the BTOS Exit procedure write:

CALL "&Exit".

You can write the name of the procedure in either uppercase or lowercase.

If the non-COBOL procedure does not return a value, pass the number of
parameters required by the procedure.

For example, the BTOS ErrorExit procedure requires one parameter, a status code,
and does not return a value. To call this procedure write

CALL "&ErrorExit" USI N G ercExit.

If the procedure returns a value, pass an extra parameter at the beginning of the
parameter list to receive the returned data.

For example, the BTOS GloseFile procedure requires one parameter, a file
handle, and returns a status code. To call this procedure write

CALL "&CloseFile" USING erc, fh.

When passing a parameter, COBOL passes either its address or its value, depending
upon the interface of the called procedure. The "Parameter Passing and Parameter
Data Types" section below explains the types of parameters that COBOL can pass.

The COBOL run-time system provides several checks to detect incorrect procedure
calls. These include calling an unknown procedure and calling a procedure with an
incorrect number of parameters.

J
The non-COBOL Procedures "CLOSEALLFILES" and "CLOSEALLFILESLL" only

work on a Resident generated COBOL.

J-31

Parameter Passing and Parameter Data Types

COBOL passes either parameter addresses or values, depending on the interface of
the called procedure.

The run-time system gets information about procedure interfaces from the
assembly language module CoboIGen.asm. CobolGen.asm is discussed further in
CONFIGURING COBOL below.

COBOL can pass bytes, byte strings, words, and double words (quads).

COBOL cannot correctly pass structures containing words and quads unless certain
type conversion statements are added to the COBOL program. The "Passing Structures
as Parameters" section below explains these conversion statements.

The data types that can be passed between a COBOL program and a non-COBOL
Procedure are described below •

• Byte

A byte is an 8-bit quantity, normally representing a character, an integer, or a
boolean value.

The COBOL PICTURE clauses that define a byte are

PICTURE 9(2) USAGE IS CaMP

and
PICTURE xO)

which defines a character.

When using bytes as boolean values, 0 means false and I means true.

The COBOL statements below show the definition and use of a byte parameter
as a character (b) and as a boolean value (fOn).

01 b PICTURE xO) VALUE "A".
01 fan PICTURE 9(2) USAGE IS CaMP VALUE O.

CALL "&WriteByte" USING erc, bswa, b.
CALL "&SetKbdUnencodedMode" USING erc, fan.

J-32

o Byte string

A byte string is a contiguous sequence of bytes or characters.

The COBOL PICTURE clause that defines a byte string is

PICTURE X(n)

where n is the length of the byte string.

The COBOL statements below show the definition and use of byte string
parameters (rgbFilename and rgbPassword).

01 rgbFilename
01 rgbPassword

PIC X(B)
PIC X(S)

VALUE "TestFile".
VALUE "xyzzy".

CALL "&OpenFile" USING erc, fh, rgbFilename,
cbFilename, rgbPassword, cbPassword, mode-IO.

o Word

A word is a 16-bit quantity, normally representing an integer.

The COBOL PICTURE clauses that define a word are

PICTURE 9(4) USAGE IS CaMP

which defines an integer and

PICTURE X(2)

which defines two contiguous bytes.

The COBOL statements below show the definition and use of word parameters (erc,
fh, cbFilename, cbPassword, mode-IO).

01 erc PIC 9(4) USAGE IS CaMP.
01 fh PIC 9(4) USAGE IS CaMP.
01 rgbFilename PIC X(B) VALUE "TestFile".
01 cbFilename PIC 9(4) USAGE IS CaMP VALUE B.
01 rgbP assword PIC X(S) VALUE "xyzzy".
01 cbPassword PIC 9(4) USAGE IS CaMP VALUE S.
01 mode-IO PIC X(2) VALUE "mm".

CALL "&OpenFile" USIN G erc, fh, rgbFilename,
cbFilename, rgbPassword, cbPassword, mode-IO.

o Quad

A quad is a 32-bit quantity, normally representing an 80B6 address (pointer) or
a logical file address (Ifa).

The COBOL PICTURE clause that defines a quad is

PICTURE 9(9) USAGE IS CaMP.
J-33

The COBOL statements below show the definition and use of a quad parameter
(pSegment).

01 pSegment PIC 9(9) USAGE IS COMPo
CALL "&AllocMemorySL" USING erc, cBytes, pSegment.

Passing Structures as Parameters

Some procedures require structures as parameters. The address of the structure is
actually passed.

A structure is a contiguous group of data items. The individual data items are
bytes, byte strings, words, and quads.

For example, the procedure RgParam. described in the Parameter Management
section of the BTOS Operating System Manual, takes a structure as a parameter. The
interface of RgParam is

RgParam (iParam ,1cParam, pSdRet) : ErcType.

The final parameter, pSdRet, is a structure composed of a quad (pointer) followed
by a word.

COBOL cannot correctly pass structures as parameters.

COBOL stores the bytes that make up words and quads in a different order
than is expected by non-COBOL procedures. The COBOL run-time automatically
reorders bytes for simple word and quad parameters. However, reordering
does not occur for structures.

Two built-in non-COBOL procedures, Convert Word and ConvertQuad, are provided
so that you can explicitly reorder the word and quad components of a structure
parameter.

The section Built-in non-COBOL Procedures below describes ConvertWord and
Convert Quad in detaIl.

If the word or quad contained in the structure is read by the non-COBOL
procedure, CALL ConvertWord or ConvertQuad BEFORE the CALL to the non-COBOL
procedure.

If the word or quad contained in the structure is written by the non-COBOL
procedure, CALL ConvertWord or ConverQuad AFTER the CALL to the non-COBOL
procedure.

J-34

In the case of RgParam, the sd structure is written by the procedures. The
following example demonstrates a CALL to RgParam.

01 erc PIC 9(4) CaMP.
01 iParam PIC 9(4) CaMP.
01 jParam PIC 9(4) COMPo
01 sd.

03 pb PIC 9(9) CaMP.
03 cb PIC 9(4) CaMP.

CALL "&'RgParam II USING erg, iParam ,j.Param, sd.
CALL "&. <";onvertQuad II USING pb, pb.
CALL I&ConvertWord" USING cb,cb.

Passing Parameters to the Forms Run-time

COBOL correctly passes parameters, including structures, to all procedures in the
Forms runtime if the parameter data definitions contained in the library file
CobolForms.edf are used.

CobolForms.edf is installed with the standard COBOL software.

Insert the following statement in the WORKING-STORAGE section of the COBOL
program that uses Forms.

COPY "CobolForms.edf".

The COpy statement causes the parameter data definitions in CobolForms.edf to
be included in your COBOL program. These definitions are listed below.

01 InitState.
02 init-ich
02 filler
02 filler

01 ExitState.
02 exit-ich
02 filler
02 exit-ch
02 filler
02 fAutoExit
02 filler
02 fModified
02 filler
02 fEmpty
02 filler
02 filler

PIC 9(2)
PIC 9(2)
PIC X(6).

PIC 9(2)
PIC 9(2)
PIC xU).
PIC x(I).
PIC 9(2)
PIC 9(2)
PIC 9(2)
PIC 9(2)
PIC 9(2)
PIC 9(2)
PIC X(6).

J-35

CaMP.
COMPo

COMPo
CaMP.

CaMP.
COMPo
CaMP.
CaMP.
CaMP.
CaMP.

01 cbFieldInfo PIC 9(4) CaMP VALUE 32.

01 fieldInfo.
02 info-iCol PIC 9(2) COMPo
02 filler PIC 9(2) CaMP.
02 info-iLine PIC 9(2) CaMP.
02 filler PIC 9(2) COMPo
02 info-cCol PIC 9(2) CaMP.
02 filler PIC 9(2) COMPo
02 inf o-fShow Default PIC 9(2) COMPo
02 filler PIC 9(2) COMPo
02 info-fAutoExit PIC 9(2) COMPo
02 filler PIC 9(2) COMPo
02 info-fRepeating PIC 9(2) CaMP.
02 filler PIC 9(2) COMPo
02 inf o-a ttrSel PIC 9(2) COMPo
02 filler PIC 9(2) COMPo
02 info-attrUnsel PIC 9(2) CaMP.
02 filler PIC 9(2) COMPo
02 info-indexFirst PIC 9(2) CaMP.
02 filler PIC 9(2) CaMP.
02 inf o-indexLast PIC 9(2) CaMP.
02 filler PIC 9(2) COMPo
02 filler PIC X(IO).
02 info-cchDefaul t PIC 9(2) COMPo
02 filler PIC 9(2) CaMP.

* 02 info-rgchDefault PIC X(?).

The parameter data definitions listed above are needed in the procedures
GetFieldInfo and UserFillField.

Use fieldInfo and cbFieldInfo as the last two parameters to GetFieldInfo. When
GetFieldInfo returns, field information is accessed by referencing the elementary data
items subordinate to fieldInfo.

Use InitState and ExitState as the last two parameters to UserFillField. Initialize
the init-ich field of InitState before the call to UserFillField. When UserFillField
returns, field state is accessed by referencing the elementary items subordinate to
ExitState.

J-36

Built-in non-COBOL procedures

The following non-COBOL procedures are built-in. You can call them without
configuring COBOL.

Convert Word

Syntax:

CALL "&ConvertWord" USING WORD-IN, WORD-OUT.

where

WORD-IN IS PIC 9(4)
WORD-OUT IS PIC 9(4)

Action:

USAGE IS CaMP.
USAGE IS CaMP.

Reorders the bytes that comprise WORD-IN and stores the results in WORD-OUT.
WORD-IN and WORD-OUT may be the same data item.

ConvertQuad

Syntax:

Call "&ConvertQuad" USING QUAD-IN, QUAD-OUT.

where

QUAD-IN
QUAD-OUT

Action:

IS PIC 9(9)
IS PIC 9(9)

USAGE IS COMPo
USAGE IS COMPo

Reorders the bytes that comprise QUAD-IN and stores the results in QUAD-OUT.
QUAD-IN and QUAD-OUT may be the same data item.

GetPointer

Syntax:

CALL "&GetPointer" USING POINTER, DATA-VAL.

where

POINTER IS PIC 9(9) USAGE IS CaMP.
DATA-VAL IS any picture clause.

Action:

The memory address of DATA-VAL is stored in POINTER.

J-37

MakePointer

Syntax:

CALL "&MakePointer" USING POINTER, SEGMENT-ADDR, RELATIVE-ADDR.

where

POINTER IS PIC 9(9)
SEGMENT-ADDR IS PIC 9(4)
RELATIVE-ADDR IS PIC 9(4)

Action:

USAGE IS COMP.
USAGE IS CaMP.
USAGE IS CaMP.

The pointer whose segment address is SEGMENT-ADDR and relative address is
REALTIVE-ADDR is stored into POINTER.

Un MakePointer

Syntax:

CALL "&UnMakePointer" USING POINTER, SEGMENT-ADDR, RElATIVE-ADDR.

where

POINTER IS PIC 9(9)
SEGMENT-ADDR IS PIC 9(4)
RELATIVE-ADDR IS PIC 9(4)

Action:

USAGE IS COMP.
USAGE IS COMP.
USAGE IS COMP.

The segment address portion of POINTER is stored in SEGMENT-ADDR. The
relative address portion is stored in RELATIVE-ADDR.

WordAligned

Syntax:

CALL "&WordAligned" USING FLAG, DATA-VAL.

where

FLAG IS PIC 9(2) USAGE IS COMP.
DATA-VAL IS any picture clause.

Action:

If DATA-VAL is word aligned, a nonzero value is stored into FLAG; otherwise, 0 is
stored into FLAG-VAL.

J-38

CONFIGURING COBOL

To configure a COBOL run-time system in which non-COBOL procedures can be
called, create a run file (Cobol.run) that contains the COBOL run-time system, a data
structure defining the non-COBOL procedures, and the actual non-COBOL procedures.
The process of creating a new Cobol.run is described below.

To create Cobol.run, follow the five steps below.

1. Copying the COBOL Generation Files

Login to a working directory of your choice. Copy the contents of the
CUSTOMIZER Distribution Diskettes into your directory. Several files,
including CoboIGen.asm, CoboLlib, StartCoboILink.sub, objCblSwp.fls,
objCbIRes.fls, and libCbl.fls, should be copied.

2. Editing CobolGen.asm (Optional)

If you are simply configuring in procedures that are already included in
CoboIGen.asm, skip this step.

Invoke the Editor to modify CoboIGen.asm, the assembly language module that
defines the interface of non-Cobol procedures.

Add an entry for each new non-COBOL procedure. Comments within
CobolGen.asm explain how to add an entry.

3. Assembling CobolGen.asm

Assemble Cobol Gen.asm to produce CoboIGen.obj. U:iee the B 20 Systems
Programmers Guide Part 2.)

Command Assemble RETURN
Assemble

·Source Files CobolGen.asm GO
[Errors only?]
[GenOnly, NoGen, or Gen]
[Object Filel
[List File]
[Error File]
[List on pass 1?]

During assembly, the assembler asks questions of this type:

Are you calling Forms (y or n)?

If you answer y (for yes) to a question, the assembler creates an entry for each
procedure in the corresponding Burroughs software package. To answer no to
a question, type n RETURN or just RETURN.

The procedures associated with each software package are described in the
documentation of that package. The procedure names and interfaces are also
part of the file CoboIGen.asm. These interfaces are consistent with the
.current releases of the various software packages. However, subsequent
releases of CTOS.lib, Forms.lib, etc., in which interfaces have been added or
changed, may required corresponding revision of CoboIGen.asm.

J-39

4. Linking Cobol.run

Link CoboIGen.obj, Cobol.lib (the COBOL run-time system in object module
format), and the object modules for all non-COBOL procedures to produce
Cobol.run.

Use the submit file StartCobolLink.sub and the Executive's submit command to
link Cobol.run.

StartCobolLink.sub allows an optional parameter to be typed into the
[Parameters] field of the Submit command form. Allowed parameter values
are:

Swp which causes a swapping version of Cobol.run to be created.
The [Object files] field of the Link command forms is filled in
using the contents of the file Cobol.fIs. This is also the default
case.

Res which causes a resident version of Cobol.run to be created. The
[Obj ect files] field of the Link com m and form is filled in using
the contents of the file CoboIRes.fIs.

In general, the swapping version of Cobol.run is preferable to the resident
version because it requres less memory, with only a small performance
degradation.

If you are adding new object modules to Cobol.run, edit either CobolRes.fIs
or Cobol.fIs to make the additions. Insert new object filenames after
C obolG en. obj.

If you are adding additional libraries, such as Forms.lib, edit CobolLib.mod
and add the new libraries to the end of the list.

NOTE

The Linker automatically searches CTOS.lib,
therefore, you do not need to include CTOS.lib in
CoboILib.mod.

The example below shows how to link a COBOL run-time system that can
CALL the Forms package. It is assumed that when you assembled
CoboIGen.asm, you answered yes to these questions:

Are you calling Forms (y or n)?
Are you calling CTOS OpenFile or CloseFile (y or n)?

J-40

In this example, it is assumed that libCbl.fls has been edited to include
Forms.lib at the end.

Command Submit RETURN
Submit

[Parameters]
[Force expansion?]
[Show expansion]

StartCobolLink.sub GO
Swp

LinkCobol.sub displays the Linker command form and fills in these fields.

Com mand Link RETUR N
Link

Object modules
Run file
[List file]
[Publics?]
[Line numbers?]
[Stack size]
[Max memory array size]
[Min memory array size]
[System build?]
[Version]
[Libraries]
[DS allocation?]
[Symbol file]

Cobol.lib (I 2) CobolGen.obj •••
Cobol.run

48400
6000

'4.0 Swp'
[sysl(sys) SortMerge.lib •••

When the form is filled in , the cursor is left at the end of the [Version] field.
Make any additions to the form that you require and press GO.

5. Updating the sysDirectory

Copy Cobol.run to [sys] (sys) Cobol.run. You can now call non-COBOL
procedures.

Linking with Nonstandard Segments

The COBOL run-.time system depends upon a particular ordering of segments
in memory for correct operation. (The Linker/Librarian Reference Manual
describes segment ordering.) If you are calling object modules that are supplied
by Burroughs or are created with the FORTRAN or PASCAL compilers, the
required segment order is guaranteed.

However, if you are calling object modules produced by the Assembler, the
required segment ordering is guaranteed only if you restrict segment class names to
'data,' 'stack,' or 'code'.

J-41

THE COBOL DEBUGGER

Using the interactive COBOL Debugger, you can control the execution of a COBOL
program, display and modify data defined in the Data Division, and create your own
command macros.

Enable the COBOL Debugger by filling in [Enable COBOL Debugger?] of the CRun
form with Yes. When enabled, the COBOL Debugger announces its presence as follows:

CO BO L De bugger 6.2
?

- title
- prompt

The? means that the Debugger is ready to accept Debugger commands, which are
described below.

Command Summary

A addr val

B addr

C val

D addr

D,
E addr val

G addr

L

M name

N

a
p

Q

S addr

T addr

X

$

/

• val

modify a byte of data

execute until data at addr changes

display ASCII character corresponding to val

display 16 bytes from specified address

display the next 16 bytes

execute until data at addr changes to val

goto (execute until) the specified address

output a line feed on the video display

start a Debugger macro definition with the specified name

set relative addressing base to start of user data area (relative mode)

set relative addressing base to the current 8086 segment (absolute mode)

display the current program counter (p-c)

return to the Executive

open an address for display or modification

trace paragraphs up to the specified breakpoint

execute one COBOL instruction

end a macro definition

display byte at the current open address

modify the byte at the current open address and open the next address

open the next address

start a comment line (all input up to the next RETURN is ignored)

J-42

Debugger command arguments are:

addr represents either an offset or an 8086 segmented address.

val

As an offset, addr is specified by exactly FOUR hexadecimal digits. If
the Debugger is in absolute mode, the offset is based from the currently
defined 8086 segment. Otherwise, the offset is relative to the beginning
of the current user area.

Relative offsets correspond to the location addresses found along the
right side of a COBOL listing.

As an 8086 segmented address, addr is specified by four hexadecimal
digits, a colon, and four more hexadecimal digits (e.g., 0123:4567). The
first set of digits specifies an 8086 segment; the last set specifies an
offset. When a full address is used, the Debugger enters absolute mode
and a new 8086 segment is defined.

is a two digit hexadecimal number or an ASCII character preceded by a
double quote. For example, an uppercase A is specified by either 41 or
"A".

name is a single ASCII character specifying a macro name.

General Information

The Debugger displays a question mark as a prompt.

All numbers in the interactive COBOL Debugger, both on input and output, are
hexadecimal. '

Input either upper- or lowercase letters. The Debugger is case insensitive.

You can put more than one Debugger command on the same line. Terminate a line
of input by pressing RETUR N.

The Debugger ignores spaces.

If you press RETURN before giving enough input (for example, only 2 rather than 4
digits of an address), the Debugger" waits for the remainder of the input. Type it in and
press RETURN again.

The Debugger responds to incorrect commands by displaying "-error."

J-43

The following examples reference the listing below.

000010
000020
000030
000040
000050
000060
000070
000080
000090
000100

DATA DIVISION.
WORKING-STORAGE SECTION.
01 FIELDS.

02 FIELD-I PIC XXX VALUE "ABC".
02 FIELD-2 PIC XXX VALUE "XYZ".
02 FIELD-3 PIC X(80) VALUE SPACE.

PROCEDURE DIVISIO N.
PARA-I.

MOVE FIELD-I TO FIELD-2.
GO TO PARA-I.

J-44

OllE
020E 00
020E 00
020E 00
0211 03
0214 06
0000
OOIC
OOID
0022

COBOL Debugger Commands

A Command

Syntax and Action:

A addr val

The A command modifies a byte of data in the Data Division. Specify the new data
using either two hexadecimal digits or an ASCII character preceded by a double
quote character.

Example:

To replace the first character of FIELD-l by "G" and to display the modified byte,
type:

? A 020E 47 RETURN
?D 020E RETURN
47-G 42-B 43-C 41-A 42-B 43-C 20- 20- •••••
?

The following syntax also works.

?A 020E "G RETURN
?

B Command

Syntax and Action:

B addr

The B command executes the COBOL program until the data value at addr
changes. When the value changes, the Debugger displays the current program
counter and the new data value.

Example:

Execute until the FIELD-2 is assigned data.

?B 0211
02241-A
?

J-45

D Command

Syntax and Action:

D addr

The D command displays 16 bytes of data beginning at addr. To display data items
in WORKING-STORAGE, use relative mode (the default); the program listing gives
the offsets of data items along the right side.

Bytes are displayed in hexadecimal and ASCII (if they can be printed).

Example:

To display the contents of FIELD-l and FIELD-2 before the MOVE statement is
executed, type:

?D 020E RETURN
4l-A 42-B 43-C 58-X 59-Y 5A-Z 20- 20- •••••

The first 3 bytes, "ABC", represent FIELD-I; the next 3, "XYZ", represent FIELD-2.

D Command

Syntax and Action:

D

The D command displays the next 16 bytes of data. The current addr is
incremented by 16 and bytes are displayed as in the D command.

E Command

Syntax and Action:

E addr val

The E command executes the COBOL program until the data value at addr is equal
to val. When the value changes, the Debugger displays the current program
counter and the new data value.

Example:

Execute until FIELD-2 has the value "A".

?E 0211 "A
0224l-A
?

J-46

G Command

Syntax and Action:

G addr

The G command executes the COBOL program until addr is reached. If addr is
never reached, the program continues and control never returns to the COBOL
Debugger.

Use the location addresses to the right of the program listing to determine the
address of a COBOL instruction.

Example:

To go to the statement "MOVE FIELD-I TO FIELD-2", type:

?G OOID RETURN
?

The second question mark above indicates that the statement has been reached.

To check on the current address at this point, use the P command as follows:

?P RETURN
OOID - returns p-c

?

N Command

Syntax and Action:

N

Set the addressing mode to relative. In subsequent Debugger commands, when the
offset form of addr is used, the offset is relative to the start of the user data area.

In relative mode, offsets correspond to the location addresses on the right side of
the program listing.

Relative mode is the default.

J-47

o Command

Syntax and Action:

o

Set the addressing mode to absolute. In subsequent Debugger command, when the
offset form of addr is used, the offset is based from the current 8086 segment.

The default 8086 segment is 0000. It is changed by using the segment: offset form
of addr in a Debugger com mand.

Absolute mode is entered automatically when the segment: offset form of addr is
used.

P Command

Syntax and Action:

P

The P command displays the current program counter (p-c), that is, the location
address of the next instruction.

Example:

At the start of a program the p-c is a 0000 as shown below.

?P RETURN
0000

?

-command
-current p-c

NOTE

The location address given by the P command is
relative to the start of the Procedure Division.

Q Command

Syntax and Action:

Q

The Q command exits the COBOL Debugger and returns to the Executive.

J-48

S and Related Commands

Syntax and Action:

S addr
/
• val

To facilitate the display and modification of data, the COBOL Debugger
provides com mands for opening an address for display or modification,
displaying or modifying a byte of data at the open address, and opening the
next byte for display or modification.

The S command opens an address for display or modification.

The / command displays the byte at the current open address.

The • val command modifies the byte at the current open address with the'
data specified and opens the next address.

The, command opens the next address.

Example:

To display the first byte of FIELD-I, type:

?S 020E RETUR N
?/ RETURN
020E 47-A

?

-opens address
-displays byte at open address

To change FIELD-I to "DEF" and display the modified bytes, type:

?S 020E RETUR N
?44.45.46 RETURN
?S 020E RETURN
? /,/,/ RETURN
020E 44-D
020F 45-E
0210 46-F

?

-opens address
-modifies 3 bytes
-reopens original address
-display of bytes

NOTE

In the last example, you must use the, command to
open the next address after you display a byte. This is
not necessary when you use the • command because
the next address is opened automatically.

J-49

T Command

Syntax and Action:

T addr

The G command executes the COBOL Program until addr is reached. If addr is
never reached, the program continues and control never returns to the COBOL
Debugger.

The T command is the same as the G command, except that the T command
provides a trace of paragraphs encountered.

X Command

Syntax and Action:

x

The X command executes a single COBOL instruction. After the instruction is
executed, the current p-c is displayed. Since a line of COBOL source can be
translated into several instructions, X may appear to halt in the middle of a line.

Example:

To execute th next instruction, which is MOVE FIELD-I TO FIELD-2, and to
redisplay the data, type:

?X RETURN - assuming the current p-c is OOID
0022

?D 020E RETURN
41-A 42-B 43-C 41-A 42-B 43-C 20- 20- •••••

NOTE

FIELD-2 has changed to "ABC", as expected.

J-5U

Macro Commands

You can define macros consisting of both basic Debugger commands and othe
macros. Macros are named by a single ASCII character.

If you make an error while typling a macro definition, end the current definition
and begin again.

The Debugger provides a limited amount of space for macro definitions. If space
runs out or if the maximum nesting of macros is exceeded, then the Debugger will
display the message "stack overflow". After a stack overflow occurs, the Debugger
will attempt to recover and return to command level.

C Command

Syntax and Action:

C val

The C command displays a single ASCII character on the video display.

Example:

To display the character "A" on the video display, type:

?C "A
A
?

L Command

Syntax and Action:

L

The L command displays a linefeed on the video display.

J-51

M Command

Syntax and Action:

M name

The M command introduces and names a macro. Type the macro name, a single
ASCII character, immediately after M.

Example:

To define a macro named "z" to execute up to OOID, display 16 bytes beginning at
020E, then single step and display again, type:

?MZ GOOlD D 020E LX D 020E $ RETURN
?

The Land $ commands appearing in this macro are described as follows. To
invoke this macro, type:

?Z RETURN
41-A 42-B 43-C 58-X 59-Y 5A-Z 20- 20- •••••
0022
41-1 42-B 43-C 41-A 42-B 43-C 20- 20-
?

$ Command

Syntax and Action:

$

The $ command ends a macro definition.

; Command

Syntax and Action:

; comment RETUR N

; begins a comment. All characters typed after; up to the next RETURN are
ignored by the COBOL Debugger.

Example:

The previous macro definition with a comment is:

?MZ GOOlD D 020E L X D 020E $; this is a comment RETURN
?

J-52

Saving Debugger Macros

You can save Debugger macros using the Burroughs Editor and the Executive's
Submit facility. First, use the Editor to create a submit file that invokes the CRun
form and fills in [Enable COBOL Debugger] with Yes and [Intermediate file] with the
appropriate file name. Use the remainder of the submit file for macro definitions.

When you run your program using the submit file, the macro definitions are entered
automatically.

The following example enables the Debugger and runs Test.int. The macro Z is
defined which prints 4 bytes of data beginning at 020E.

CRun RETURN
Test.int RETURN
RETURN
RETURN
Yes GO
1\1Z S 020E /,/,/,/$; print 4 bytes RETURN

J-53

HINT 1:
HINT 2:
HINT 3:
HINT 4:

APPENDIX K

PROGRAMMING HINTS

CALLING MEMORY MANAGEMENT AND RSAM FROM COBOL
ALTERNATIVES TO THE COBOL DISPLAY STATEMENT
ACCESSING THE SYSTEM DATE AND TIME USING COBOL
LIMITATIONS AND RHSTIDCTIONS

lllNT=--::1::..:.:---..;C::;.;;A;;;;;L;;;;;;LIN=~G~M..:;.:E::;.;;M;..;;.O=R;.;;;;Y......;;,.;M;,;;;.;AN=A.;;;..G;:;.;E=~;;..:;I.;;;;;E;;:..;N;.,,;;;;T-..,;;.;;AN=D;.....;;;.;RS=A;,;;..M~FR..;.;..;;;O_M--.,;;C~O~B_O.;;..L~

Certain BTUS system services require the calling program to pass word aligned
buffers. RSAM is one service which requires this type of buffer. Since Cobol does
not guarantee word alignment of data areas, BTOS memory management is called
to allocate word aligned. memory segments. This Hint will demonstrate these calls
using a Cobol program.

Since Cobol passes parameters by reference and value, some modifications must
be made to the lookup table called rgProcedures. This table is used by the run­
time system to obtain information about procedure interfaces. This table is stored
in the file called. CoboIGen.asm. The example table entry must be edited to allow
the OpenRSFile procedure access to the memory segment allocated. by a call to
memory management. Example:

%TableEntry(w,OPENRSFILE,8,r,r,w,r,w,w,q,w)

The parameter in bold (the q) must be changed from an "r" (pass by reference)
to a "q" (pass quad by value) as shown. This parameter must be changed since the
contents of its corresponding Cobol variable already contains the address of the
buffer area to be passed to RSAM. The next step is to assemble CoboIGen.asm.
Answer nyll to the following questions:

Are you calling the Record Sequential Access Method (y or n)?
Are you calling BTOS Memory Management (y or n)?

Cobol will now be configured to run the program included in this Hint.

Call Comment

II ij AllocateMemorySL" Allocate a 1024 byte word aligned buffer area.

"ij OpenRSFile" Create and open an RSAM file in write mode.

II ij WriteRSRecord ll Write an 80 byte record to the file.

"ij CheckpointRSFilell Write the partially full buffer before continuing any further.

II ij CloseRSFile ll Close the file.

K-1

Identification Division
Program-Ide RSAM Test.
Date-Compiled.
Environm ent Division.
Configuration Section.
Source-Computer. B 20.
Object-Computer. B 20.
Input-Output Section.
File-Control.
Data Division.
Working-Storage Section.
01 RSWA
01 RecordArea.

03 Rec-Num
03 Rec-Text

77 Segment-bytes
77 RecordSize
77 Bytes-Returned
77 FileSpec
77 FileSpec-bytes
77 PswdSpec
77 PswdSpec-bytes
77 Erc
77 Open-Mode
77 SL M emory Ptr
77 Error-AllocSL
77 Error-CreateRS
77 Error-WriteRS
77 Error-CkPoint
77 Error-Msg
Procedure Division.
Proc-Option-Main.

Pic X(150).

Pic X(3).
Pic X(77).
Pic 9(4) Comp Value 1024.
Pic 9(4) Comp Value 80.
Pic 9(4) Compo
Pic X(12) Value ''RSFILE.JERRY''.
Pic 9(4) Comp Value 12.
Pic X.
Pic 9(4)
Pic 9(4)
Pic X(2)
Pic 9(9)
Pic X(8)
Pic X(8)
Pic XeS)
Pic X(8)
Pic X(8).

Comp Value Zero.
Compo
Value "mw".
Compo
Value "ALLOCSL ".
Value "CREATERS".
Value "WRITERS ".
Value "CKPOINT ".

Perform AllocSL-Routine.
Perform CreateRS-Routine.
Perform WriteRS-Routine.
Perform CkPoint-Routine.
Call "6 CloseRSFile" using Ere,

RSWA.
Stop run.

AllocSL-Routine.
Call "6AllocMemorySL" using Erc,

Segm ent-bytes,
SLMemoryPtr.

K-2

If Erc not = Zeroes
Then

Move Error-AllocSL to Error-Msg
Perform Error-Routine

Else
Next Sentence.

GreateRS-Routine.
Call II ij OpenRSFile" using Erc,

RSWA,

If Erc not = Zeroes
Then

FileSpec, FileSpec-bytes,
PswdSpec, PswdSpec-bytes,
Open-Mode, "
SLMemoryPtr, Segment-bytes.

Move Error-GreateRS to Error-Msg
Perform Error-Routine.

Else
Next Sentence.

WriteRS-Routine.
Move "747" to Rec-Num.
Move "SGZEPURA" to Rec-Text.
Gall "ij WriteRsRecord" using Erc,

RSWA,
RecordArea, RecordSize.

If Erc not = Zeroes
Then

Else

GkPoint-Routine.

Move Error-WriteRS to Error-Msg
Perform Error-Routine

Next Sentence.

Gall II ij GheckpointRsFile" using Erc,
RSWA.

If Erc not = Zeroes
"Then

Else

Error-Routine.

Move Error-CkPoint to Error-Msg
Perform Error-Routine.

Next Sentence.

Display Error-Msg Erc upon Console.
Stop Run.

K-3

HINT 2: ALTERNATIVES TO THE COBOL DISPLAY SfATEMENT

The Cobol extended DISPLAY statement is normally used to select the location
of messages displayed on the video. This Hint describes two alternatives to the
use of the Cobol DISPLAY statement.

One method uses only Cobol native syntax, using the Sequential Access Method
(SAM) by SELECTing a file with the Organization is Line Sequential clause. Then,
a cursor positioning escape sequence is included in the first four bytes of the
record (01) level identifier in Working Storage. The message is sent to the video
using the Cobol WRITE statement. .

The second method uses the Video Access Method (VAM), which Calls the
PutFrameChars system common procedure. This procedure allows you to specify
the horizontal and vertical coordinates within a frame where the text string is to
be moved.

The following program demonstrates an alternative to using the extended
DISPLA Y statement. Only native Cobol syntax is employed. SAM is implied by
way of the SELECT statement.

Identification Division.
Program-Ide Video-l.
Environm ent Division.
Configuration Section.
Input-Output Section.
File-Control.

Select Vid-file
Assign to "[vidl"
Organiz ation is Line Sequential.

Data Division.
File Section.
FD Vid-File.
01 Rec-Desc Pic X(14).
Working-Storage Section.
01 Video-Record.

03 Filler Pic X(!) Value X"FF".
03 Filler Pic X(1) Value "C".
03 Col-position Pic 99 Compo
03 Line-position Pic 99 Compo
03 Message-vid Pic X(10).

Procedure Division.
Proe-Main.

Open output Vid-file.
Move "Video Test" to Message-vid.
Move 25 to Col-position.
Move 10 to Line-position.
Write Ree-desc from Video-Record.
Close Vid-file.
Stop run.

K-4

The following program demonstrates another alternative to using the DISPLAY
statement. This method uses a Call to the Video Access Method (VAM).

Identification Division.
Program-Ide Video-2.
Environm ent Division.
Configuration Section.
Data Division.
Working-Storage Section.
77 Frame-number Pic 9(4) Camp Value Zero.
77 Col-position Pic 9(4) Camp.
77 Line-position Pic 9(4) Camp.
77 Message-vid Pic X(10) Value liVid eo Test".
77 Message-length Pic 9(4) Camp Value 10.
77 ERC
Procedure Division.
Proc-Main.

Move 25 to Col-position.
Move 10 to Line-position.
Call 16PutFrameChars" using ERG,

Stop Run.

Fram e-num ber,
Col-position,
Line-position,
M essage-vid,
Iv! essage-Iength.

K-5

HINT 3: ACCESSING THE SYSTEM DATE AND TIME USING COBOL

Most applications occasionally need to include the current date and/or time in
their processing. There are several procedural calls available in BTaS to allow the
user to retrieve the date and tim e field from the system and expand it into a
readable day, date, and time.

With date and time manipulation in BTOS, there are basically two structures
involved. The date and time is kept internally in system memory as a three-word
field containing the count of 50 or 60 Hz clock ticks, the count of 100 ms periods
elapsed since the last second, the COWlt of seconds since midnight or noon, and the
count of 12-hour periods since March 1, 1952. (See the B 20 Operating system
(BTUS) reference Manual, the IITimer Management ll section.) The last two words
are returned to the program when the date/time is requested; the first word can be
examined when precise timings are needed. The expanded date and time format is
a four-word structure with the year, month, day of month, day of week, hour,
minute, and second imbedded in it.

The compact system format can be used to time-stamp records, for example,
while only occupying a four-byte field. The format of the compacted date also
makes it useful for date calculations. For example, the date of thirty days from
now can be obtained by adding 60 (12 hour periods) to the COWlt which specifies
days in the system format, then expand it from there. If two dates are
subtracted, the result divided by two is the number of days apart the two are.
The day-of-week field can also be examined in a program (it is returned initially as
a number O=Sun to 6=Sat) to perhaps look for the next business day after thirty
days from now.

The following calls are available in BTOS to access the system date/time
structure, and are documented in the BrOS Operating System manual.

CompactDateTime Converts the expanded date/time format to the
system format.

ExpandDateTime Expands the system format to the expanded
date/time format.

GetDateTime Returns the current date and time in the
system format.

SetDateTime Sets the data and time for the system.

Analyzing the expanded date/time format using these routines can be tricky in
high-level languages. The expanded date is returned to the program as a 64-bit
data type, for which few of the languages have a built-in structure. However,
facilities are available for the information to be extracted.

K-6

.l:!:xample:

In a Cobol program, the date and time can be obtained from the system using
the ACCEPT verb. The statement "ACCEPT iJate-Field FRO I.! DATE" returns a
six-digit value in the form YYMMDD to Date-Field. The statement "ACCEPT Day­
Field FH.OM DAY" returns a five-digit value to Day-Field in the form YY DDD
where DDD is the day number of the year. The statement "ACCEPT Time-Field
FROM TlivlE" returns an eight-digit value to Time-Field in the form HHMlvlSSUO.
Hefer to the discussion of the ACCEPT verb in the B 20 Systems Cobol Heference
Manual.

If "GetDateTime" and "ExpandDateTime" are to be used in a Cobol program, a
structure can be defined that breaks the expanded date and tim e down into the
individual fields. Then the reordering of bytes must be handled since Cobol expects
the bytes to be ordered in a different way than the non-Cobol procedures
"GetDateTime" and "ExpandDateTime". The result of calling "GetDateTime" is
returned in a 32-bit field, which is equivalent to a quad value in length. The
"ConvertQuad" routine should then be called to reorder the bytes of this field since
the Cobol run-til!le passes this parameter by reference. You should be aware that
this field does not follow the general rules for parameter conversion as described in
appendix J of the B 20 Systelils Cobol Reference Manual. That is, making two
calls to "ConvertWord" with the fields "Tim" and "Datil respectively will not
produce the correct conversion. The result of calling "ExpandDateTim e" is retunled
to a 64-bit structure consisting of a word field (the year), and six-byte field (the
month, day of month, day of week, hour, minute, and second). The "ConvertWord"
routine should then be called to reorder the bytes in the year field only. If
"CompactOateTime" is to be called, the fields should be converted back before
calling it.

The following program uses the ACCEfT verb to get the date/time.

IUENTIFIC ATION DIVISION.
PROGRAM-ID. AcceptDate.
ENVffiONMENT UMSION.
CONFIGURATION SECTION.
SOURCE-COMPUTEH. B 20.
OBJECT-COMPUTER. B :W.
SPECIAL-NAMES. CONSOLE IS CRT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TheDate.

03 Year PIC X(2).
03 Month PIC X(2).
03 UayOfMo PIC X(2).

01 JulianDate.
03 Year2 PIC X(2).
03 DayOfYr PIC X(3).

01 TheTime.
03 Hour PIC X(2).
03 Minute PIC X(2).
03 Second PIC X(2).
03 Hundrths PIC X(2).

PROCEDURE DIVISION.
GET-DATE.

K-7

ACCEPT TheDate FROM DATE.
ACCEPT JulianDate FROM DATE.
ACCEPT TheTime FROM TIME.

DISPLA Y-IT.
DISPLA Y TheDate AT 0105.
DISPLA Y JulianDate AT 0205.
DISPLA Y TheTime AT 0305.

PAUSE.
STOP "a"
STOP RUN.

The following program uses calls to get the date/time.

IDENTIFICATION DIVISION.
PROGRAM-ID. DateTime.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. B 20.
OBJECT-COMPUTER. B 20.
SPECIAL-NAMES. CONSOLE IS CRT.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 Erc PIC 9(4} COMP.
01 DatTimRet.

03 Tim
03 Dat

01 ExpDateTime.

PIC 9(4} COMP.
PIC 9(4} COMP.

03 Word! PIC 9(4} COMP.
03 Word2 PIC 9(4} COMP.
03 Word3 PIC 9(4} COMP.
03 Word4 PIC 9(4} COMP.

01 LongDate REFEFINES ExpDateTime.
03 The Date.

05 Year
05 Month
05 DayOfMo
05 DayOfWk

03 The Time.
05 Hour
05 Minute
05 Second

01 DaylnAscii.

PIC 9(4} COMP.
PIC 9(2} COMP.
PIC 9(2} COMP.
PIC 9(2} COMP.

PIC 9(2} COMP.
PIC 9(2} COMP.
PIC 9(2} COMP.

03 Labell PIC X(15} VALUE "DAY OF WEEK IS".
03 WeekDay PIC X(3}.

01 DatelnDec.
03 Label2
03 Mo
03 Slash
03 Dy
03 Label3
03 Yr

01 TimelnDec.
03 Label4
U3 Hr

PIC
PIC
PIC
PIC
PIC
PIC

X(9} VALUE II DATE IS ".
xx.
X VALUE "/".
XX.
X(13} VALUE II OF THE YEAR ".
X(4}.

PIC X(9} VALUE "TIME IS ".
PIC xx.

K-8

03 Colon1 PIC X VALUE ":".
03 Min PIC XX.
03 Colon2 PIC X VALUE ":".
03 See PIC XX.

01 OayName PIC X(3) OCCURS 7 TIMES.
01 One PIC 9(4) COM~ VALUE 1.
PROCEDURE DMSION.
!NIT.

MOVE "Sun" TO DayName(l).
MOVE "Mon" TO DayName(2).
MOVE "Tue" TO DayName(3).
MOVE "Wed" TO DayName(4).
MOVE "Thu" TO DayName(5).
MOVE "Frill '1'0 DayName(6).
MOVE "Sat" TO DayName(7).

GET-TIME.
CALL "ijGetDateTime" USING Ere. DatTimRet.
If Ere NOT EQUAL ZERO

THEN PERFORM ERROR-EXIT.
CALL II ij C onvert Quad" USING DatTimRet. DatTimRet.

EXPAND-TIME.
CALL lIijExpandDateTime" USING Ere. DatTimRet. ExpDateTime.
IF Ere NOT EQUAL ZERO.

THEN PERFORM ERROR-EXIT.
CALL lIijConvertWord" USING Word1. Word1.

MOVE-IT.
ADD One TO DayOfWk.
MOVE DayName(DayOfWk) TO WeekDay.
MOVE DayOfMo TO Dy.
Add One TO Month.
MOVE Year TO Yr.
MOVE Hour TO Hr.
MOVE Minute TO Min.
MOVE Seeond TO See.

DISPLA Y-IT.
DISPLA Y DayInAseii AT 0101.
DISPLAY DateInDee AT 0201.
DISPLAY TimeInDee AT 0301.

ERROR EXIT.
DISP LA Y Ere.
STOP IIi".
STOP HUN.

K-9

HINT 4: LIMITATIONS AND RESTRICTIONS

If START file-name KEY > relative-key-name clause is used on a file that
has ORGANIZATION IS RELATIVE, and the value of the relative-key-name is past
the end of the file, the system will hang. Use a READ clause instead of START
to determine the end of the file.

CLOSE filename WITH LOCK causes error9D on any program that uses that
file.

DISPLA Ying a null string, as in the statment DISPLAY Ill', causes a runtime
error.

An OPEN OUTPUT of a filename that already exists will not be deleted by
the system.

Runtime Error 215 occurs if an attempt is made to WRITE to device "[Splbl"
using the default ORGANIZATION. This spool file must be ORGANIZATION LINE
SEQUENTIAL.

A picture clause described as being Alpha will accept Numeric data.

A picture clause described as being -99 (or numeric) will accept Alphabetic
data.

The top margin of logical page printing does not work on the first page.

ADD CORRESPONDING with ON SIZE condition always uses the error path
(that is, always uses the ON SIZE condition whether it is true or not).

SUBSTRACT CORRESPONDING with ON SIZE condition always uses the error
path (that is, always uses the ON SIZE condition whether it is true or not).~

In a COMPUTE statement,the expression "data-name + - (data-name)" does not
work. Instead, use "data-name = -1 * data-name" or "data-name = 0 - (data­
name)".

The COBOL compiler displays a Run Time error when it encounters more than
two logical print files. To avoid this, introduce a variable equal to the linage­
counter of one of the files. For this file to always equal the value of the linage­
counter, you update the variable after each Write and Open operation.

STOP-RUN does not generate a compile time error.

Cobol error messages for an undefined data-name on an ASCENDING KEY
clause are not clear.

K-10

A £v'iOVE to an array (or subscripted data-name) from an array (or subscripted
data-name) gives the wrong values.

Using READ ••• AT END causes error 101 at the AT BND, when using RANDOM
or DYNAMIC access.

When in Sequential Access Mode, the OPEN com mand cannot be used with the
1-0 option on an Indexed file. To perform this function, either create two
statements (OPEN OUTPUT option and OPEN INPUT option) or use Dynamic Access
Mode. If you write two OPEN statements, you must create a line sequential file
which is used as an input file, and will be opened "lith the OPEN INPUT option.

When CALL •• ON OVERFLOW encounters an OVERFLOW condition the system
will hang.

ADD or SUBTRACT after DISPLAY gives erroneous results during run time.

WRITE works as a REWRITE after a REWRITE in RELATIVE ORGANIZATION.

ADDS to SIGNED LEADING SEPARATE FIELD are erroneous.

DISPLAY AT statement affects allocated short-lived memory.

Compilation statistics are incorrect.

Call to "READFIELD" for a form in user library wipes out memory in working
storage.

The Executive does not display message from Cobol run-file ERG 189 •

CLOSE FILE-NAME WITH LOCK in INDEXED MUDE gives ERG 5001 •

CALL COUl mand return crashes on EXIT statement with ERC 22 •

When a file name is declared in Working-Storage, Cobol expects the file name
to terminate with a space.

The Cobol data dictionary is restricted to 60K.

K-11

The CANCEL statement does not guarantee that a Cobol module is in its
initial state after a subsequent CALL is made to the same module.

SORTing of records with signed COMP or COMP-3 keys is not implemented
because Cobol supports only character keys. Use straight numeric bytes instead
(for example, PIC 9(2)).

When using the Editor to create a Cobol source file always press RETURN
after the last line of source code. Otherwise, the compiler will "lose" this line.

SORTing of numeric keys (DISPLAY) that have separate signs is not supported.
CObol only supports character keys.

The maximum ISAM primary key cannot be greater than 64 bytes.

Not all graphics calls are available due to Cobol memory limitations. Cobol
file I CObolgen.asm I on disk 2 contains all valid graphics modules for use with
Cobol.

, K-12

INDEX

Abbreviated combined relation conditions, 3-47, C-1
ACCEPT statement, 3-53
Access mode, C-1
Acquiring record-level locks, J-25
Actual decimal point, C-1
ADD statement, 3-58
Advanced invocation teclmiques for debugging, J-20
Algebraic signs, 2-14
Alphabetic character, C-1
Alphabetic data z:ules, 3-17
ALPHABETIC test, 3-44

.. Alphabet-name, C-1
Alphanumeric character, C-2
Alphanum eric data rules, 3-18
Alphanumeric edited data rules, 3-18
ALTER statement, 3-60, 9-4
ANSI COBOL

summary of extensions to, G-1
Arithmetic ~xpression

definition of an, 3-39, C-2
formation and evaluation rules for an, 3-39

Arithmetic operators, 3-39, C-2
binary, 3-39
unary, 3-39

Arithmetic statements, 3-51
multiple results in, 3-52

Ascending key, C-2
Assumed decimal point, C-2
At End condition, C-2
Attributes

explicit, 2-21
implicit, 2-21

AUTOMATIC record-level locking, J-22
Binary arithmetic operators, 3-39
Blank lines, 2-31
BLANK WHEN ZERO clause, 3-13
Block, C-2
BLOCK CONTAINS clause, 5-9, 6-10
Built-in non-COBOL procedures, J-37
Byte, J-32
Byte string, J-33
B 20 COBOL Run-Time Debug Package, 11-1
Called program, C-3
Calling program, C-3
CALL statement, 12-4

1

INDEX (CONT.)

CANCEL statement, 12-6
Cd-Name, C-3
Character, C-3
Character position, C-3
Character set (Lin COBOL), 2-1, C-3
Character sets and collating sequence, B-1
Character-string, 2-3, C-4
Class condition, 3-43, C-4
Classes of data

co~cepts of, 2-11
Clause, C-4

BLANK WHEN ZERO, 3-13
BLOCK CONTAINS, 5-9, 6-10
COMP(UTATIONAL) PICTURE, 2-12
COMPUTATION-3 PICTURE, 2-13
DATA NAME or FILLER, 3-14
DATA RECORDS, 5-9, 6-11, 7-12, 8-4
FILE STATUS, 5-1
JUSTIFIED, 3-15
LABEL RECORDS clause,. 6-11, 7-12
LINAGE, 5-10
acc lJRS, 4-1
PICTURE, 3-17, 3-21
RECORD CONTAINS, 5-14, 6-12, 7-13, 8-5
REDEFINES, 3-27
RENAl.vlES, 3-29
SIGN, 2-14, 3-31
SYNCHRONIZED, 3-33
USAGE, 3-35
VALUE, 3-36
VALUE OF, 5-14, 6-13, 7-14
WITH DEBUGGING MODE, 11-2

CLOSE statement, 5-15, 6-14, 7-15
COBOL

concepts, 2-1
configuration, J-6
configuring, J-39
customizing on hard disk systems, J-7
definition of, 1-1
divisions, 2-21 ~

implementation specifications, J-2
installing, J-l
memory requirements, J-2
using, J-l
using SamGenAll with, J-I0
words,2-3

2

INDEX (CONT.)

COBOL compiler
error messages, J-14
invoking the, J-12

COBOL Debug
Environment Division in, 11-2
Procedure Division, 11-4

C.OBOL debugger, J-42
commands, J-45

COBOL debug object time switch, 11-2
COBOL diskettes

contents of, J-1
CaBO L program

files required for compiling and rurming a, J-21
running a, J-17
using a custom command to run a, J-19
using CALL in a, J-26

Cobol.run
creating, J-39

Collating sequence, C-4
Column, C-4
Combined condition, C-4
Combined relation conditions (abbreviated), 3-47
Commands

COBOL debugger, J-45
debugger, J-42

Com m ent-entries, 2-9, C-4
Comment line, 2-33, C-4
Corn mon phrases, 3-50
Communication description entry, C-4

general format for, F-8
Communication device, C-5
Communication section, C-5
Com pilation statistics, J-15
Compiler-Directing statement, 2-28, C-5
Compiler error messages, J-14
Compile time, C-5
Compile-Time errors, D-1
Compile-time switch, 11-2
Complex conditions, 3-45, C-5
Computer independent data description, 2-9
Computer-Name, C-5
COMPUTE statement, 3-61
Concept

data classes, 2-11
of levels, 2-10

Condition, C-5
Conditional expression, 3-41, C-6
Conditional sentence, 2-28

3

INDEX (CONT.)

Conditional statement, 2-28, C-6
Conditional variable, C-6
Condition evaluation rules, 3-48
Condition name, 2-4, 2-1H, C-5
Condition-name condition, 3-44, C-5
Conditions

general format for, F-17
Conditions (complex), 3-45
Conditions (simple), 3-41

class, 3-43
condition-name, 3-44
relation, 3-41
sign, 3-45
switch-status, 3-44

Configuration
COBOL, J-6

Configuration Section, 2-23, C-6
Configuring COBOL, J-39
Connectives, 2-6, C-6
Contents of B 20 COBOL diskettes, J-1
Continuation of lines, 2-31
COpy statement, 10-2

general format for, F-17
CORRESPONDING phrase, 3-51

. Creating Cobol.run, J-39
CRun command, J-17
Currency symbol, C-6
Current reconl, C-6
Current record pointer, C-7
Cursor, C-7
Cursor repositioning keys, 3-56
Custom command form

reading the fields of a, J-19
Customizing COBOL on hanl disk systems, J-7
Data

incompatible, 3-52
Data categories

editing types for, 3-21
of the MOVE statement, 3-83

Data clause, C-7
Data description

complete entry skeleton, 3-10
entry, C-7
physical and logical aspects of, 2-24

Data Description entry
general format for, F-7

Data Dictionary, 13-2, C-7
entry sizing, 13-1

4

Data Division, 2-24
entries, 2-32
general format of the, 2-25
in the indexed 1-0 module, 7-10

INDEX (CONT.)

in the Inter-Program Communication module, 12-1
in the nucleus, 3-10
in the relative 1-0 module, 6-9
in the sequential 1-0 module, 5-7
in the Sort-Merge m"odule, 8-4
in the table handling module, 4-1
organization of the, 2-24
overall approach to the, 2-24

Data item, C-7
Data levels, classes and categories, 2-11
Data-name, C-7
DATA NAME OR FILLER clause, 3-14
DATA RECORDS clause, 5-9, 6-11, 7-12, 8-4
DATE-COMPILED paragraph, 3-3
Debug and interactive debugging

introduction to, 11-1
Debugger commands, J-42
Debugger macros

saving, J-53
Debugging

advanced invocation techniques for, J-20
lines, 11-7, C-7
section, C-7

Declaratives, 2-33, C-7
Declarative sections

of the Procedure Division, 2-26
Declarative-sentence, C-8
Default disk, C-8
Definition of an arithmetic expression, 3-39
DELETE statement, 6-15, 7-16
Delimiter, C-8
Descending key, C-8
Destination, C-8
Digit position, C-8
Direct" indexing, 2-17
DISPLAY statement, 3-62, G-2
Diskettes

contents of B 20 COBOL, J-1
Disk files, G-2
DMDE statement, 3-65
Division, C-8
Division header, 2-32, C-8
Divisions of the COBOL program, 2-21
Dual floppy standalone installation instructions, J-4

5

INDEX (CONT.)

Dynamic access, C-9
Editing

fixed insertion, 3-22
floating insertion, 3-23
rules in the PICTURE clause, 3-21
signs, 2-14
simple insertion, 3-22
special insertion, 3-22
symbols in PICTURE character-strings, 3-23
types for data categories, 3-21
zero suppression, 3-24

Editing character, C-9
Elementary items, 2-10, C-9

size of, 3-19
symbols used to describe, 3-19

Elements, 1-3
End of Procedure Division, C-9
ENTER statement, 3-68
Entries, C-9

data division, 2-32
Environment clause, C-9
Environment Division

general description of the, 2-2 3
general format for, F-2
in COBOL Debug, 11-2
in the indexed 1-0 module, 7-6
in the nucleus, 3-5
in the relative 1-0 module, 6-5
in the sequential 1-0 module, 5-3
in the Sort-Merge module, 8-1
organization of the, 2-23
structure of the, 2-23

Error conditions while using locks, J-25
Error messages

compiler, J-14
Errors

compile-time, D-1
run-time, E-1

Evaluation rules for arithmetic expressions, 3-39
EXCLUSIVE file-level locking, J-22
Execution of the Procedure Division, 2-27
EXIT PROGRAM statement, 12-7
EXIT statement, 3-69
Explicit

attributes, 2-21
procedure division references, 2-19
speCifications, 2-19
transfers of control, 2-19

6

INDEX (CONT.)

Extend mode, C-9
Extra immediate code files, 9-4
Figurative

constants, 2-6, 3-1, C-9
constants and their reserved words, 2-8
constants of the nucleus, 3-1
constant values, 2-7

File, C-10
File clause, C-10
File-Control entry

general format for, F-4
FILE-CONTROL paragraph, 5-3, 6-5, C-10
File description entry, C-10
File-name, C-10
Filenames

nm-time input of, G-3
File organization, C-10
File Section, 2-24, 5-7, C-10
Files required for compiling and running a COBOL program, J-21
FILE STATUS clause, 5-1
Fixed insertion editing, 3-2 2
Floating insertion editing, 3-23
Format, C-10
Formation rules for arithmetic expressions, 3-39
Formats

miscellaneous, F-18
Formats and rules, 1-2
Forms run-time

passing parameters to the, J-35
Function of the nucleus, 3-1
General format

for Communication Description entry, F-B
for conditions, F-17
for COpy statement. '9-17
for Data Description entry. F-7
for Environment Division. F-2
for File-Control entry. F-4
for Identification Division. F-1
for Procedure Division. F-9
for verbs, F-17

GETCH. J-27
GETP, J-29
GETW. J-29
GO TO statement. 3-70
Group item. C-10
Hard disk installation instructions, J-3
Headers. 2-32
Hexadecimal values. G-3

7

INDEX (CONT.)

High order end. C-10
Identification Division

general description of the. 2-21
general format for. F-1
in the nucleus. 3-2
organization of the. 2-22
structure of the. 2-22
syntax rules for the. 3-2

Identifier. 2-18, C-11
format for. 2-18

IF statement, 3-71
Imperative sentence, 2-29
Imperative statement. 2-29, C-11
Implementation specifications for COBOL, J-2
Implementor-Name, C-11
Implicit

attributes, 2-21
procedure division references. 2-19
specifications. 2-19
transfers of control, 2-19

Incompatible data. 3-52
Index, C-11
Index data item. C-11
Indexed Data-Name, C-11
Indexed file, C-11

using file- and record-level locking with an, J-22
Indexed 1-0 module

Data Division in the. 7-10
Environment Division in the, 7-6
introduction to the, 7-1
Procedure Division in the, 7-15

Indexed organization, C-12
Indexing, 2-17

dire c't , 2-17
relative, 2-17
restrictions on. 2-18

Index-Name. C-11
Indicator area. 1-4. C-12
Input file. C-12
Input mode. C-12
Input-Output file. C-12
Input-Output Section. 2-23. C-12
Input-Output status. 5-1
Input procedure. C-12
INSPECT statement, 3-73
Installation instructions

for dual floppy standalone, J-4
for hard disk, J-3

8

INDEX (CaNT.)

Installing COBOL, J-1
Instructions

for installing dual floppy standalone, J-4
for installing the hard disk, J-3

Integer, C-12
Interactive debugging and debug, G-3

introduction to, 11-1
Inter-program com m urtication

using CALL for, J-26
Intermediate code, C-12
Inter-Program Communication Module

Data Division in the, 12-1
introduction to the, 12-1
Procedure Division in the, 12-3

INVALID KEY condition, 6-4, C-12
Invoking special built-in procedures

using CALL for, J-26
Invoking the COBOL compiler, J-12
I-Q-CONTROL paragraph, 5-5, C-11
1-0 mode, C-11
1-0 status, 6-1
JUSTIFIED clause, 3-15
Key, C-13
Key of reference, C-13
Key words, 2-6, C-13
LABEL RECORDS clause, 6-11, 7-12
Language

concepts, 2-1
name, C-13
specifications, 1-1
structure, 2-1

Level
concepts, 2-10
indicator, 2-32, C-13
numbers, 2-10, 2-33, 3-16, C-13

Library module
introduction to the, 10-1

Library-Name, C-13
Library-Text, C-13
LINAGE clause, 5-10
LINAGE-COU NTER reserved word, 5-3
Line sequential files, G-2

organization of, C-13
Linkage Section, 2-24, C-13
Linking with nonstandard segments, J-41
Literal, C-14

nonnumeric, 2-6
numeric, 2-7

9

INDEX (CONT.)

Locking modes, J-22
specifying, J-23

Logical
operator, 3-45, C-14
record, C-14'

Lowercase characters, G-3
Low order end, C-14
MANUAL record-level locking, J-22
MCS, C-14
Memory requirements

for COBOL, J-2
Merge file, C-14
MERGE statement, 8-6
Message, C-14

control system (MCS), C-14
count, C-14
indicators, C-14
segment, C-15

Miscellaneous formats, F-18
Mnemonic-Name, 2-4, C-15
MOVE statement, 3-80

data categories of the, 3-83
Multiple results in arithmetic statements, 3-52
MU LTIPLY statement, 3-84
Name characteristics of the nucleus, 3-1
Native

character set, C-15
collating sequence, C-15

Negated
combined condition, C-15
simple condition, C-15 '

Next executable sentence, C-15
Next executable statement, C-15
Next record, C-15
N on-COBOL procedures

using CALL for invoking, J-31
Noncontiguous

items, C-15
working storage, 3-10

Nonnumeric
item, C-15
literal, C-16

Nonnumeric literals, 2-6
Nonstandard seg m ents

linking with, J-41
Nucleus, 3-1, 1-2

Data Division in the, 3-10
Environment Division in the, 3-5

10

INDEX (CONT.)

Nucleus (continued)
figurative constants of the, 3-1
function of the, 3-1
Identification Division in the, 3-2
name characteristics of the, 3-1
overall language of the, 3-1
Procedure Division in the, 3-39
reference format of the, 3-1

Numeric character, C-16
Numeric data rules, 3-18
Numeric data storage

for COMP(UTATIONAL) PICTURE clause, 2-12
for COMPUTATION-3 PICTURE clause, 2-13

Numeric edited data rules, 3-18
Numeric item, C-16
Numeric literals, 2-7, C-16
NU MERIC text, 3-44
OBJECT-COMPUTER paragraph, 3-5, C-16
OCCURS clause, 4-1
Open mode, C-16
OPEN statement, 5-16, 6-16, 7-17
Operands, C-16

overlapping, 3-52, 4-5
Operational signs, 2-14, C-16
Optional word, C-17
Organization

of sequential files, 5-1
of the Data Division, 2-24
of the Environment Division, 2-23
of the Identification Division, 2-22, 3-2
of the Relative 1-0 module, 6-1

Other user-defined nam es, 2-5
Output

file, C-17
mode, C-17
procedure, C-17

Overall language of the nucleus, 3-1
OVerlapping operands, 3-52, 4-5
Paragraph, 2-32, C-17
Paragraph

DATE-COMPILED, 3-3
FILE-CONTROL, 5-3, 6-5
I-O-CONTROL, 5-5
OBJECT-COMPUTER, 3-5
PROGRAM-ID, 3-3
SOURCE-COMPUTER, 3-5
SPECIAL-NAMES, 3-6

Paragraph header, 2-32, C-17

11

INDEX (CONT.)

Paragraph-Name, 2-5, 2-32, C-18
Parameter data types, J-32
Parameter passing, J-32
Parameters

passing structures as, J-34
Passing

parameters to the forms run-time, J-35
structures as parameters, J-34

PEEKB, J-28
PEEKW, J-28
PERFORM statement, 3-85, 9-4
Phrase, C-18

CORRESPONDING, 3-51
ROUNDED, 3-50
SIZE ERROR, 3-50

Phrases, 3-50
Physical record, C-18
PICTURE character

precedence chart, 3-25
precedence rules, 3-24

PICTURE-character-strings, 2-9
editing symbols in,3-23

PICTURE character precedence chart, 3-25
PICTURE clause, 3-17

editing rules in the, 3-21
Precedence rules, 3-24
Prime record key, C-18
Procedure, C-18
Procedure Division

declarative sections of the, 2-26
execution of the, 2-27
general description of the, 2-26
general format for, F-9
in COBOL Debug, 11-4
in the indexed 1-0 module, 7-15
in the Inter-Program Communication module, 12-3
in the nucleus, 3-39
in the relative 1-0 module, 6-14
in the sequential 1-0 module, 5-15
in the Sort-Merge module, 8-6
in the table handling module, 4-5
procedures of the, 2-26

Procedure Division references
explicit, 2-19
implicit, 2-19

Procedure-Name, C-18
Program flow

restrictions on, 9-4

12

PROGRAM-ID paragraph, 3-3
Program ming

hints, K-1
teclmiques, 13-1

Program-Name, C-18
Program seg m ents

structure of, 9-3
Program structure, 1-2, 2-21
Pseudo-Text, C-18
Pseudo-Text delimiter, C-18
Punctuation character, C-18
PUTB, J-29
PUTCH, J-27
PUTW, J-29
Quad, J-33
Qualification, 2-15
Qualified Data-Name, C-19
Qualifier, C-19
Queue, C-19
Queue Name, C-19
Random acce$, C-19

INDEX (CONT.)

Reading the fields of a custom com mand form, J-19
READ statement, 5-19, 6-19, 7-20
Record, C-19
Record area, C-19
HECORD CONTAINS clause, 5-14, 6-12, 7-13, 8-5
Record description, C-19
Record description entry, C-19
Record key, C-19
Record-level locks

acgwrmg, J-25
REDEFINES clause, 3-27
Reference

uniqueness of, 2-15
Reference format, 3-1, C-20

for a COBOL source line, 2-30
general description of, 2-30 .
of the nucleus, 3-1

Reference-Name, C-20
Relation, C-20
Relation character, C-20
Relational operators, 3-42, C-20
Relation condition, 3-41, C-20
Relation tests, 4-5
Relative file, C-20
Relative file organization, 6-1
Relative indexing, ~-17

13

INDEX (CONT.)

Relative 1-0 module
introduction to the, 6-1
Data Division in the, 6-9
Environment Division in the, 6-5
Procedure Division in the, 6-14

Relative key, C-20
Relative organization, C-21
RELEASE statement, 8-9
RENAMES clause, 3-29
Reserved word, c-:n

LINAGE-COUNTER, 5-3
Reserved word list, A-I
Reserved words, 2-5, 2-33
Restrictions on

indexing, 2-18
program flow, 9-4
subscripting, 2-18

RETURN statement, 8-10
REWRITE statement, 5-21, 6-22, 7-24
ROUNDED phrase, 3-50
Routine-Name, C-21
Rules

alphabetic data, 3-17
alphanumeric data, 3-18
alphanumeric edited data, 3-18
for condition evaluation, 3-48
numeric data, 3-18
num eric edited data, 3-18

Running a COBOL program, J-17
Run-Time debug, C-21
Run-Time errors, E-l
Run-Time input of filenames, G-3
Run-Time-System, C-21
Run unit, C-21
Sam GenAll

using with COBOL, J-I0
Saving debugger macros, J-53
SEARCH statement, 4-5
Section, C-21
Section header, 2-32, C-21
Section-name, 2-5, C-22
Segmentation

classification, 9-2
control, 9-2
general description of, 9-1

Segmentation module
introduction to the, 9-1

Segment numbers, 9-3, C-22

14

INDEX (CaNT.)

Selecting character representation and radix, 2-12
Semantics of file- and record-level locking, J-22
Sentences, 2-28, C-22

compiler directing, 2-28
imperative, 2-29

Separators, 2-1, C-22
Sequence numbers, 1-3, 2-31
Sequential access, C-22
Sequential files, C-22

organization of, 5-1
Sequential 1-0 module

Data Division in the, 5-7
Environmental Division of the, 5-3
introduction to the, 5-1
Procedure Division of the, 5-15

Sequential organization, C-22
SET statement, 4-10

valid operand combinations for the, 4-12
77 Level-Description-entry, C-26
SIGN clause, 2-14, 3-31
Sign condition, 3-45, C-22
Signs

algebraic, 2-14
editing, 2-14
operational signs, 2-14

Simple conditions, 3-41, C-23
Simple insertion editing, 3-22
SIZE ERROR phrase, 3-50
Size of elementary items, 3-19
Sizing a program

general description of, 13-2
Sort file, C-23
Sort-Merge file description entry, C-23
Sort-Merge module

Data Division in the, 8-4
Environment Division in the, 8-1
introduction to the, 8-1
Procedure Division in the, 8-6

SORT statement, 8-11
Source, C-23
SOURCE-COMPUTER paragraph, 3-5, C-23
Source format, 1-3
Source program, C-23
Special built-in procedures

using CALL for invoking, J-26
Special character, C-23
Special-Character word, C-24
Special insertion editing, 3-22

15

INDEX (CONT.)

SPECIAL-NAMES paragraph, 3-6, C-24
Special registers, C-24
Specifications

explicit, 2-19
implicit, 2-19

Specifying the locking mode, J-23
Standard ANSI COBOL Debug, 11-1
Standard data format, C-24
START statement, 6-23, 7-26
Statement, C-24

ADD, 3-58
ALTER, 3-60, 9-4
CALL, 12-4
CANCEL, 12-6
CLOSE, 5-15, 6-14, 7-15
COMPUTE, 3-61
COPY, 10-2
DELETE, 6-15, 7-16
DISPLA Y, 3-62, G-2
DIVIDE, 3-65
ENTER, 3-68
EXIT, 3-69
EXIT PROGRAM, 12-7
GO TO, 3-70
IF, 3-71
INSPECT, 3-73
MERGE, 8-6
MOVE, 3-80
MULTIPLY, 3-84
OPEN, 5-16, 6-16, 7-17
PERFORM, 3-85, 9-4
READ, 5-19, 6-19, 7-20
RELEASE, 8-9
RETURN, 8-10
REWRITE, 5-21, 6-22, 7-24
SEARCH, 4-5
SET, 4-10
SORT, 8-11
START, 6-23, 7-26
STOP, 3-96
STRING, 3-93
SUBTRACT, 3-97
UNSTRING, 3-99
USE, 5-22, 6-24, 7-28
USE FOR DEBUGGING, 11-4
WRITE, 5-23, 6-26, 7-29

16

INDEX (CONT.)

Statements, 2-27
arithmetic, 3-51
compiler directing, 2-28
conditional, 2-28
imperative, 2-29

Statistics after compilation, J-15
STOP statement, 3-96
STRING statement, 3-93
Structure

of COBOL program, 2-21
of program segments, 9-3
of the Environment Division, 2-23
of the Identification Division, 2-22, 3-2

Subject of entry, C-24
Subprogram, C-24
Sub-Queue, C-24
Subscript, C-24
Subscripted Data-Name, C-24
Subscripting, 2-16

restrictions on, 2-18
SUBTRACT statement, 3-97
Summary

of extensions to ANSI COBOL, G-1
of syntax, F-1

Switch-status condition, 3-44, C-24
Symbol function, C-25
Symbols

used in arithmetic expressions, 3-40
used to describe elementary items, 3-19

SYNCHRONIZED clause, 3-33
Syntax, C-25

summary of, F-1
Syste m-dependent language features, H-1
System-Name, C-25
System-names, 2-5
Table, C-25
Table element, C-25
Table handling module, 4-1

data division in the, 4-1
introduction to the, 4-1

Terminal, C-25
Tests

ALPHABETIC, 3-44
NUMERIC, 3-44

Text-Name, C-25
Text- Word, C-25

17

INDEX (CONT.)

Transf eIS of control
explicit, 2-19
implicit, 2-19

Truth value, C-25
Unary operator, C-25
Unary arithmetic operators, 3-39
Uniqueness of reference, 2-15
UNSTRING statement, 3-99
USAGE clause, 3-35, 4-4
USE FOR DEBUGGING statement, 11-4
Useful hints, 13-1
User-defined words, 2-3, C-25
USE statement, 5-22, 6-24, 7-28
Using

a custom command to run a COBOL program, J-19
B9251 parallel or AP1300 Series serial printer with COBOL, J-7
CALL for inter-program com m unic at ion, J-26
CALL for invoking Non-COBOL procedures, J-31
CALL in a COBOL program, J-26
COBOL, J-l
file- and record-level locking with indexed files, J-22
the HEAD statement with MANUAL locking, J-24

VALUE clause, 3-36
VALUE OF clause, 5-14, 6-13, 7-14
Variable, C-26
Verb, C-26
Verbs

general format for, F-10
WITH DEBUGGING MODE clause, 11-2
Word, J-33
Words, C-26

COBOL, 2-3
reserved, 2-5
user-defined, 2-3

Working storage records
initial values, 3-10

Working storage section, 2-24, 3-10, C-26
W RITE statement, 5-23, 6-26, 7-29
Zero suppression editing, 3-24

18

Title:

Documentation Evaluation Form

B 20 Systems COBOL II Reference Manual Form No: __ l_18_0_1_2_2 ____________ __
(Release Level 4.0) Date: ____ M_a....:.,..y....:..... _19_8_5 ______ _

Burroughs Corporation is interested in receiving your comments
and suggestions regarding this manual. Comments will be utilized
in ensuing revisions to improve this manual.

Please check type of Comment/ Suggestion:

o Addition o Deletion o Revision o Error o Other

Comments:

From:

Name __ ___

Title

Company

Address

Phone N urn ber ___________________________ Date -------------

Remove form and mail to:

. Burroughs Corporation
Corporate Product
Information East

209 W. Lancaster Ave.

