
I

Burroughs

)/strlbutlon C ode SA

____ B_u_r-=r.o _ughs

Progra
G

. mmer's
.ulde

Pr/~ed Item
Printed In U.S.A
May 1985 •

1180098

Burroughs cannot accept any financial or other re
sponsibilities that may be the result of your use of
this information or software material, including di
rect, indirect, special or consequential damages.
There are no warranties extended or granted by this
document or software material.

You should be very careful to ensure that the use of
this software material and/ or information complies
with the laws, rules, and regulations of the jurisdic
tions with respect to which it is used. '

The information contained herein is subject to
change without notice. Revisions may be issued
from time to time to advise of such changesand/ or
additions.

The Graphics Support Package contains software routines that
drive the following hardware peripherals supported by Burroughs
Corporation:

Burroughs AP1351 Multi Function Printer

Burroughs B9253 dot matrix printer

The Graphics Support Package also contains software routines
which drive the following hardware peripherals:

Hewlett-Packard Model HP7220C 8 pen plotter

Hewlett-Packard Model HP7220T 8 pen plotter

Hewlett-Packard Model HP7470A 2 pen plotter

Hewlett-Packard Model HP7475A 6 pen plotter

Strobe Model 100 1 pen plotter

Printronix MVP dot matrix printer

Envision 420 dot matrix printer

Anadex 9620 dot matrix printer

Okidata Microline 93 dot matrix printer

Dataproducts 8010 dot matrix printer

The particular device selected is the responsibility of the
customer.

Correspondence regarding this public~tion should be forwarded, using the
Documentation Evaluation Form at the back of the manual, or remarks may
be addressed directly to Burroughs Corporation, Corporate Product Informa
tion East, 209 W. Lancaster Ave., Paoli, PA 19301, U.S.A.

LIST OF EFFECTIVE PAGES

Page Issue

iii Original
iv Blank
v thru ix Original
x Blank
1-1 thru1-3 Original
1-4 Blank
2-1 thru 2-12 Original
3-1 thru 3-63 Original
3-64 Blank
4-1 thru 4-18 Original
5-1 thru 5-15 Original
5-16 Blank
A-1 thru A-3 Original·
A-4 Blank
B-1 thru B-6 Original
C-1 thru C-5 Original
C-6 Blank
D-1 Original
D-2 Blank
E-1, E-2 Original
F-1 Original
F-2 Blank
1 thru 4 Original

iii

Section

2

3

TABLE OF CONTENTS

Title

OVERVIEW ..••..•......••
B20GS4•••••.

Highlights •...•..•.•....••.
Installation Procedures •.•
File Contents •.•••....••..

CONCEPTS ••••••••••••••••••••••••••
Graphics Library ..•...••.•.•.••...••...••••.

Device-Independent Procedures ..
Pictures and Objects ••.
Drawing Attributes.
Text Attributes ••..
Picture File ..••...
Temporary Objects ..
Device-Independent Coordinate Systems.
Viewing Perspectives .•..•••..
Dev i ce-Dependen t P roced u res •.•.••....••••.
Control Procedures ••.•.•••••••..••••.•..•.
Vector and Arc Manipulation Procedures •.•.
Color Procedures •••••••••.••••••.•••.••••.
Alphanumeric Attribute Procedures •••.••.

Output Devices .•...•.•.•..•••••.•••.••••••

DEVICE-INDEPENDENT PROCEDURES .••.•.••••
Initialization Procedures ••.

ClearViewport ••
InitGraphics •...•
SetLimi ts .••••...
SetOutputDevice ••
SetOutputType •..•••
SetPlotterDevice ..•••••
SetPlotterMaterial ••••
SetUserCoordinates ••••.

Picture Procedures •••
AddPicture ••••••.
CloseP icture ••.•••••
DisplayPicture ••..•••
GetNumberOfObjects ••
OpenPicture ..••••..••
WritePicture ••••••••

Object Procedures ••
AddObject .••.•••••
ClearLabels...... • ••••.
ClearVectors..... • ..•.•.••••••••
CloseObject ••.••••••••.••••...
CloseTempObject........ • •••••••
DisplayCurrentObject... • •••••••••••••
OpenTempObj ect • • . • . • . •.• . •••••••.•••
RemoveCurrentObject •••••••••••••••••••••.•••••••

Page

1-1
1-2
1-2
1-2
1-3

2-1
2-1
2-2
2-2
2-3
2-6
2-7
2-7
2-7
2-9

2-10
2-10
2-10
2-11
2-11
2-11

3-1
3-4
3-5
3-5
3-6
3-7
3-8
3-9
3-9

3-10
3-11
3-12
3-12
3-13
3-14
3-14
3-16
3-16
3-17
3-18
3-18
3-18
3-19
3-19
3-20
3-20

v

vi

Section

3
(cont.)

TABLE OF CONTENTS (Cont.)

Title

SetFirstObject.....
SetN ex tObj ect

Attribute Procedures.
GetPictureColors ..••..
SetColor.
SetCurrentPalette... . ••.•.•.••••
SetDrawingMode ..•••.••••••.•••
SetLineType ••..•.•..•...••

Drawing Procedures •••••.••.•
Dr a w ••••••.•.•••••••••••••
DrawArc•.•••.
DrawCircle .•..
DrawLine ••..••.
DrawRelative ••.
FillRectangle •.
Move •••••••••••••
MoveRelative .•.•••

Text Procedures ••...
SetCharacterSize•.
SetFont •••..•.••.
SetLabelOrigin .••
WriteTextString ..

Font Procedures •..•
GetFontName .••...•..•..........•••.••••
GetFontNumber •••••..••.•..••••••••••...
GetNumberOfFonts .•....•.•
GetUserFontName •••
SetUserFont ..••..•.•..•

Label Procedures ••.
AddLabel •••.••.•.•.•
DeleteCurrentLabel .•••••••••.••
GetCurrentLabel •.•
GetLabelData ••.•••.•••..•...•••
ModifyLabel .•.
SetFirstLabel •••...•.••••..•
SetNextLabel •.•.••..........•..

Transformation Procedures .••••••••••••
GetTransformationData ••••••.•••.•.••
SetScale •.•.•••••.•
SetScaleRelative .••.••.
SetTranslate ••••.••••••••••••
SetTranslateRelative.. . •••••

Viewing Procedures ••••.•••.•.•••
GetWindowData .••••••.•.•.•..•••
SetViewport •••••••.••••••.••••••
SetWindow •..••.••••.••••

Cursor Procedures •••••.••.•.•.••••••••••••••••
GetCursorPosition.... • ••••••.•..•••••••
SetNDCCursorPosition •••••.•••••••••••.•.•••••.••

Page

3-21
3-21
3-22
3-22
3-23
3-24
3-25
3-25
3-26
3-27
3-28
3-29
3-29
3-30
3-30
3-31
3-32
3-33
3-33
3-34
3-35
3-36
3"""37
3-39
3-40
3-40
3-41
3-41
3-42
3-45
3-46
3-47
3-47
3-48
3-49
3-49
3-50
3-50
3-51
3-52
3-53
3-54
3-55
3-55
3-56
3-56
3-57
3-57
3-58

Section

3
(cont.)

4

5

TABLE OF CONTENTS (Cant.)

Title

SetObjectCursorPosition •••..•••
SetWorldCursorPosition ••••
TurnOffCursor ••••••••.•
TurnOnCursor •.•••••••••

User-Written Procedures ••
LoadP aper .•••••••
ReadInterruptKey ••••••.••
SetPen ••••••••••••••••••••••••

DEVICE-DEPENDENT PROCEDURES •••
Control Procedures •••••

ClearScreen .•.•..••••.•..•••
InitScreenGraphics •.•••.•••••••••••••••••
SetCommandScreen ••••••••••
SetVisibleScreen ••••••
TurnOff Graphics .••••••
TurnOffGraphicsColor •••••••••••••••
TurnOnGraphics •••.•••.•...••••••...
TurnOnGraphicsColor ••••••.•.•••••.•••••••••

Vector and Arc Manipulation Procedures •.•••••
ClearScreenRectangle •..••••••••••.•
DrawScreenArc........ • ••••••
DrawScreenLine •.•••••
FiIIScreenRectangle.. • •.•••
LoadSoftPattern ••.•••••••••••
SetScreenDrawingMode... . ..•.•.
SetScreenLineType... • •••.•••

Color Procedures......... • •••.••
LoadColor. • • • • • • • • • • • ••••••
LoadColorMapper •..•••..•••••..••••••.•••..••••••
SetColorMapper ••••••••••••••••••

Alphanumeric Attribute Procedures.
LoadColorStyleRam •••••••••••••
SetStyleRamEntry ••
SetSty leRam .•••.••..•••

ACCESSING BUSINESS GRAPHICS •••
Overview ••••••••••••••••••••••••••

Picture File ••••••• ~ ••••.•••••.••••
Format File ••••
Data File ••
Title
Labels ..•••....•.•.••••••...
Palette File ••••••.••••••••.•

Drawing a Bar Chart •••
Data File Format .•
Parameters ••••••••••••••

Drawing a Pie Chart •••••••••
Data File Format ••••••••••••••••
Parameters•..........................

Page

3-59
3-60
3-61
3-61
3-61
3-62
3-62
3-63

4-1
4-2
4-2
4-3
4-3
4-4
4-4
4-4
4-5
4-5
4-5
4-6
4-7
4-9

4-10
4-11
4-11
4-12
4-13
4-15
4-15
4-16
4-16
4-17
4-17
4-18

5-1
5-1
5-2
5-2
5-2
5-2
5-2
5-3
5-3
5-3
5-4
5-7
5-7
5-8

vii

Section

5
(cant.)

A

B

C

D

E

F

viii

TABLE OF CONTENTS (Cant.)

Title

Drawing a Line Chart •••••••.•.•...••••..••..•.•.••
Data File Format - Numeric Line Chart •.••...••••
Data File Format - Alphanumeric Line Chart ..•••.
Parameters •.•••.•••••••••••.••.••••.•..•.••...••

An Alternative to the Data File ..•...•.••••...•••.
A Sample BASIC Program •••••••.•.•.•....•.••••.•.••

STATUS CODES •.•••.•.•.•.•.•••.•••...•.••.••...•••.

PLOTTERS AND PRINTERS •••••••.•.••.•.•.•••••.•.•.••
Supported Peripherals ••••••.•.•.•.•..•••.••...•.••
Unsupported Peripherals ••••.•••••.•••.••.••.•.•.•.
Peripheral Configuration •••.•...•...•.•.••.•..•.•.
Spooled Peripheral Support .••.•••...•.••••••..•.••
Connections .•.•.•••.•.•.•.••••.••..••.•••.•.....••

SAMPLE GRAPHICS APPLICATION PROGRAM .•.••.•.•.•••..

MINIMUM MEMORY REQUIREMENTS ••.•.•.•••••.•••••.•.••
Picture •.•••..•.•••.•••....••.•••..••.•••..•....••
Obj ect ••••..•.••••••..•••••.•.....•••••.••.••.••••
Printer •..•...••.••••.•.•••••••••...•..••••••.•.••

GLOSSARY ••........•••.•.••..•.......•.•.•••.....•.

KNOWN LIMITATIONS .••........••...........•......••

INDEX •••..••...•..••..•.••.•••••••.••••••..•••••••

Page

5-9
5-10
5-11
5-12
5-13
5-13

A-1

B-1
B-1
B-1
B-2
B-4
B-5

C-1

D-1
D-1
D-1
D-1

E-1

F-1

Figure

2-1
2-2
2-3
3-1
3-2
4-1
4-2
4-3
5-1
5-2
5-3
B-1

Table

3-1

3-2
3-3
4-1
4-2
5-1
5-2
5-3
5-4

LIST OF ILLUSTRATIONS

Title

Line Types •••.•....•.•..•...••••••••.•••••.••••
Drawing Modes ••.•.....•.••......••••.•.•••••.••
Label Origin ••..•.•.•.. " .•.•.••.•••.•...•••.••••
Angles in Radians ••••.•.•.•••..•.••..•••.••••••
Fill Types
Determining Arc Length ••....•••..•••.••••••••••
Drawing Directions (Angles in Radians) •••••.•••
Fill Types •......•..•...•••••.•.•....•••.••••••
Business Graphics Bar Chart •.••••••....•••.•.•.
Business Graphics Pie Chart ••••.••.•.••..•.•••.
Business Graphics Line Chart ••.•.•...••..••..••
Crossed Cable for RS-232-C Communications ••..••

LIST OF TABLES

Title

Device-Independent Procedures by Function
(2 Pages) .•......•••......••..••..•...••••...••
Graphics.Font Entries .•••...•••.•..•..••••••.••
Label Structure •••..•.•.•.•..•.•.......•.••...•
Device-Dependent Procedures by Function ..•.....
The Color Pal et te •..•....•.•.....•.•...•.....••
Bar Chart Data Fi le ••.•.•.•.••••.•.•.•.••••..••
Pie Chart Data File •..•.•...•.••..••..•.••.•.••
Line Chart Data File •••...•.•••••..•..•••••..••
Alphan umer i cLine Char t D at a F i 1 e •......••••.••

Page

2-4
2-5
2-7

3-28
3-31

4-8
4-8

4-10
5-3
5-7
5-9
B-6

Page

3-1
3-38
3-43

4-1
4-14
5-4
5-7

5-10
5-11

ix

SECTION 1

OVERVIEW
Burroughs graphics software products support a wide range of
graphics functions. Using a modular architecture that
distributes the processing between the host CPU and the graphics
control board, the graphics software provides two levels of
support:

o Business Graphics, a high-level, menu-driven graphics
application system that can be accessed from user
designed applications.

o the graphics library, a set of system-level procedures that
can be called from user-designed applications to use all
the capabilities of the graphics software.

This guide focuses on the second level of graphics
support, the graphics library (Graphics.Lib). Using the
procedures in this library, system designers can access the
full range of graphics functions to develop high-performance,
flexible application systems. The graphics library procedures
are used to draw vectors and arcs and, on the B 22, to
manipulate rectangles of bits. A variety of colors, line
types, drawing modes, and fill patterns are available. Text
labels and annotations can be written with variable attributes
for font, color, character size, and label origin. Once a
graphic representation has been created, it can easily be
scaled and translated to assume different sizes, shapes, and
positions on the display. These transformations are handled
independently and do not alter the original definition of
the figure.

Graphic representations can also be viewed in a variety of
ways. Small sections can be magnified, and the size and shape
of the display can be changed dynamically. Complex graphic
representations can be built by merging different figures in the
same display. Graphic representations created with graphics
library procedures can also be filed for future use. In
addition, they can be plotted on publication-quality pages or
on transparencies and printed on dot matrix printers.

1-1

Business Graphics is a Burroughs application system that uses
graphics library procedures to perform graphics functions for
business applications. Business Graphics must be used in
conjunction with an application system that extracts statistical
data or figures from a data base and arranges this data in a
tabular format. Business Graphics is invoked to convert the
tabular data into graphic representations such as line charts,
bar charts, and pie charts. Business Graphics can be accessed
through Multiplan or another Burroughs software product, or
system developers can create their own applications to interface
with Business Graphics. Detailed information about the features
of Business Graphics is found in the Business Graphics Reference
Manual. In addition, Section 5 of this guide explains how
application systems can be modified to pass data to Business
Graphics for the generation of graphic representations.

820GS4

Highlights

B20GS4 is the package for the Burroughs 4.0 Graphics Support
Package. It can be installed on the XE520 as well as B 20 and
B 26 workstations.* The package is created on one floppy disk
for both the 8 inch and 5-1/4 inch medias.

Installation Procedures

To install B20GS4 on the XE520, do the following:

1. Insure that all cluster workstations are powered off.

2. Use either the XE520 BTOS User's Guide (form 1166295)
or the XE520 Sy~AdffiInistrator~ndbook (form
1166311~determine installation procedures. These
procedures involve booting a clustered workstation.

3. Follow steps 1 and 2 on the next page.

* Note that while the software is installed on the XE520, it
actually runs on the attached B 20 series workstation.
Therefore, when this manual refers to B 20 series
workstations, such references include B 20 workstations that
are attached to the XE520.

1-2

To install B20GS4 on any workstation, other than a B 26 Dual
Floppy Standalone, the procedure is the same for both the 8 inch
and 5-1/4 inch medias:

1. Insert the B20GS4 floppy disk into the appropriate disk
drive, FO;

2. type in the command Software Installation and press GO.

At this point, you receive these prompts:

INSTALLATION OF BURROUGHS GRAPHICS PACKAGE

PRESS GO WHEN READY

After the apropriate response, FdSys.Version is appended to
Sys.Version. All the files in directory [FO]<Burroughs> are then
copied to directory <SYS> on the system disk.

Next you see the following message:

INSTALLATION OF BURROUGHS GRAPHICS PACKAGE IS NOW COMPLETE

You can then use the newly installed software to write programs
that invoke graphics calls.

File Contents

The file contents for B20GS4 are the same for the floppy disk in
both the 8 inch and 5-1/4 inch medias, with two exceptions as
noted. These files are listed as follows:

<Sys>fileHeaders.sys
<Sys>mfd.sys
<Sys>log.sys
<Sys>sysImage.sys
<Sys>bootExt.sys **
<Sys>badBlk.sys
<Sys>crashDump.sys
<Sys>DiagTest.Sys **
<Sys>FdSys.Version
<Sys>Grfx-5.0-Update.Sub
<Sys>Install.Sub

<Burroughs>Graphics.Fonts
<Burroughs>Graphics.Lib
<Burroughs>ComplexRoman.font
<Burroughs>DuplexRoman.font
<Burroughs>Gothic.font
<Burroughs>SimplexPlot.font
<Burroughs>SimplexRoman.font
<Burroughs>HPPlotterConfig.sys
<Burroughs>PlotterConfig.sys
<Burroughs>StrobeConfig.sys.
<Burroughs>StrobePlotterConfig.sys
<Burroughs>GraphicsPrinterConfig.sys

** - These files are found only on 8 inch floppy disks and are
not on 5-1/4 inch floppy disks.

1-3

GRAPHICS LIBRARY

SECTION 2

CONCEPTS

The graphics library contains two different types of procedures.
The main portion of the library is a set of device-independent
procedures. Programs calling these procedures can be executed on
any B 20 Graphics workstation. Many of the features described in
the "Overview" section, such as saving graphic representations in
files, translating and scaling figures on the screen, and viewing
graphic representations from different perspectives, are
supported only by the device-independent procedures. Detailed
descriptions of the functions supported appear in the "Device
Independent Procedures" subsection that follows. The actual
procedural interfaces for these commands are included in Section
3, "Device-Independent Procedures."

The graphics library also contains device-independent procedures
that are called by the graphics software. These called
procedures can be replaced by user-written routines to expand the
capabilities of the software. They are used primarily to provide
the end user with messages or instructions about operating the
output devices. These user-written procedures are also included
in Section 3, "Device-Independent Procedures."

The other procedures found in this library are device-dependent.
The use of these procedures is restricted to the following
workstations:

* B 21 (color)
* B 22 (monochrome)
* B 26 (color and monochrome)

Detailed descriptions of these low-level procedures appear in the
"Device-Dependent Procedures" (the following subsection). The
actual procedural interfaces for these commands are included in
Section 4, "Device-Dependent Procedures."

The device-dependent procedures are executed on the graphics
control board. These procedures include bit manipulation
functions that are mapped directly to the video display screen
and are, therefore, only available at this level. The device
dependent procedures execute faster than the device-independent
procedures. They are particularly useful for applications that
use animation or require custom-designed fonts. Using device
dependent commands does, however, preclude the use of some of the
features of the device-independent commands. Graphic
representations do not include text labels, and they cannot be
transformed, saved, or viewed from different perspectives.

2-1

Applications designed for the B 22 Graphics workstation can use
device-dependent procedures that support user-defined fonts.
These bit-mapped fonts can be used to create character
representations not available in the standard 10-by-15 pixel
alphanumeric font.

Both the B 21 graphics control board and the B 26 graphics
controller module contain color mappers. Color mappers enable
multicolor graphic representations to be displayed on the video
screen. The device-dependent color procedures allow the use of
up to eight colors at a time.

In addition, there are device-dependent procedures that use the
color style RAM on the B 21 graphics control board as well as the
B 26 graphics controller module. These procedures combine color
selection with display attributes for alphanumeric data. Eight
different combinations of color and attributes can be used on the
screen at one time.

Device-I ndependent Procedures

There are two main concepts that are important in understanding
the use of the device-independent procedures. First, there are
the structural components of the graphic representations. These
components are called pictures and objects. The other key
concept is the use of device-independent coordinate systems
rather than the coordinates of the physical device on which the
graphic images are displayed. These two concepts are discussed
below.

Pictures and Objects

In device-independent procedures graphic representations are
called pictures. A picture is composed of one or more objects.
One bar ch~rt on the screen, for example, is a picture with one
object. A pie chart, a line chart, and a bar chart all together
on the screen is a picture with three objects. Objects can also
overlay each other in pictures. If the graphic representation is
to be saved, a picture must be opened before any drawing or text
labeling can be performed. Once a picture is open, objects can
be created.

An object is a set of graphics commands and labels that can be
edited and manipulated as an entity. Although several objects
can be present in the same picture, only one object can be
created or edited at a time. As an object is constructed,
information about its structure is accumulated. Each object has
the following components:

o a list of vector and text commands

o a list of labels (text and attributes)

o a list of transformation values

2-2

Vector List. The graphic's portion of the data
representation is collected here. The vector list includes
commands such as Move, Draw, FillRectangle, and SetColor, which
are used to create a graphic representation. Drawing attributes
such as line type, drawing mode, and color are also saved.
In addition, text that is not to be modified is put in the
vector list. Individual commands within the vector list
cannot be modified, but the entire list can be cleared and
rebuilt to modify the object.

Label List. Labels are textual explanatory notes that accompany
the vector portion of the object. The label list consists of
the text and the attributes for each label. The attributes
are characteristics of the label such as font name, character
size, and label origin. Individual labels within the label
list for an object can be added, deleted, or modified.

The alphanumeric labels and the vector list for an object are
mapped to display memory, logically ORed, and displayed
together. Because the text and vector commands are stored in
different lists, these two components of an object are
processed independently of each other. There are several
different types of modifications that can be made to label text.
Changing the font, changing the actual text, and moving the
label, for example, can all be accomplished without
altering the vector portion of an object.

Transformation List. Once an object has been created,
transformation procedures can be used to alter the object's
size, shape, and position within the picture. The
transformation procedures translate and scale the object and
save the translation and scalar units in a transformation
list. The original specifications for the object, which are kept
in the vector and label lists, are unchanged.

Drawing Attributes

Attributes are variable characteristics of an object.
Drawing attributes are used with drawing procedures to provide
more variety and contrast in graphic representations. These
attributes are saved with drawing commands in the vector
list. The attributes that are used with drawing procedures are
line type, drawing mode, and color.

Line Type. The graphics software includes
solid line is the default, and there are
dots and dashes. Figure 2-1 illustrates
types provided with the graphics software.

eight line types. A
other patterns of
the eight line

2-3

Drawing Mode. The drawing mode describes the method by which
a vector or arc is written to display memory. When the bits
that form the vector have been calculated according to the
line type, they are compared to the existing memory bits and
written to display memory according to the drawing mode.
There are four drawing modes: set, clear, complement, and
replace. Figure 2-2 shows examples of the same pattern written
to the display memory in each of the four modes.

O-Solid Line

1-Llne Dash Dash

2-Line Dash

3-Llne Dot

4-Llne Blank

5-Llne Blank Blank

6-Dashed Line

7-Dotted Line
Figure 2-1. Line Types

Set mode logically DRs the pattern of the line to be drawn with
the backgound bits already in the memory location. Thus, the
bits that are "off" in the line pattern have no effect on
the bits already in memory. Any bits that are "on" in the line
pattern or the background remain on .when they are merged.

Clear mode causes the bits that are on in the line pattern to
turn the corresponding memory bits off.

Complement mode causes the line pattern to take on the opposite
characteristic of the corresponding memory bits. The line
pattern is logically XDRed with the background display memory.

Replace mode is different from the other three modes in that
no logical operation is performed between the line pattern and
the eXisting memory. Whatever is in the line pattern
replaces the existing memory bits. The background has no
bearing on the line pattern.

2-4

Background

~ Pattern

Set

W I Clear

I _ I Complemenl

I ~ I Replace

Figure 2-2. Drawing Modes

2-5

Color. The use of multiple colors is supported in both video
display and plotter output on the following Color Graphics
workstations:

* B 21 (color)
* B 26 (color)

On these display screens, 64 colors are available, any eight of
which can be displayed at a time. The set of eight colors is
called the color palette. Color selection is supported in the
device-independent procedures by selecting a color from the
current palette. Refer to the "Device-Dependent Procedures"
subsection following for information specifying color palettes.
If the output device is a plotter, the color parameters are used
to specify pen numbers. The user can select a maximum of eight
colors and assign a pen number for each one.

Text Attributes

Attributes are also used with text strings and labels to provide
variety and contrast. The attributes associated w1th text
strings are saved in the vector list for an object, and the label
attributes are saved in the label list. The attributes that are
used with text strings and labels are character size, font, and
label origin.

Character Size. The standard alphanumeric font uses a character
cell with a height of 36 pixels. The default character size is 1
for this standard size, but characters can be enlarged or reduced
proportionally by specifying other values. Character size 2, for
example, produces characters that are twice as high as the
standard size, and .5 characters are half the size. The
character size attribute functions as a scaling factor when an
object is transformed. The characters maintain the same
proportions in relation to each other and to their celas when an
object is scaled to a smaller size.

Font. The graphics software includes four fonts: SimplexRoman,
ComplexRoman, DuplexRoman, and Gothic. These font names are the
internal names. The internal name is the name that is used by
the graphics software and saved in pictures. User-friendly names
such as Standard, Complex, Bold, and Gothic can also be defined
for these fonts. With the exception of the standard default
font, SimplexRoman, the file specifications for each font can be
modified.

Label Origin. The label origin attribute indicates how text
should be oriented in relation to the current display position.
Text can be placed left flush, right flush, or centered at the
current position, and it can begin at the top, middle, or bottom
of the current position. Figure 2-3 illustrates the label origin
positions.

2-6

Left Center Right

2 5 8 Top

'OR I·G I N 7 Middle

o 3 6 Bottom

Figure 2-3. Label Origin

Picture File

Multiple objects can be transformed and merged on the display
screen to create complex pictures. A completed picture, whether
simple or complex, is saved in a picture file. Using the
picture file eliminates the need to call all of the procedures
used to create an object each time the picture is needed. The
picture file can be opened repeatedly to change the way the
picture is viewed and to modify or transform the objects within
it.

Temporary Objects

Objects can also be defined as temporary. Temporary objects
are used only when a picture is not open. For quick graphic
representations used in testing, demos, or initial system
development, this definition provides more efficient processing.
The commands are performed to display the object, but no
information is accumulated in vector or label lists to be
saved in a picture file. Temporary objects also cannot be
transformed, and only t~e standard font is available.

Device-I ndependent Coord i nate Systems

To insure that applications that are written using device
independent procedures can run on any B 20 Graphics
workstation, device-independent coordinates are used for
mapping vector and text positions. The three different
coordinate systems used to support output to workstation
display screens and other devices such as plotters are:

2-7

o world coordinate system

o user-defined coordinate systems

o normalized device coordinate system

World Coordinate System. The world coordinate system is the
primary system used internally by device-independent graphics
library procedures. When an object is created, modified, or
transformed, its position in the world coordinate system is
mapped to display memory and saved in the vector list, label
list, or transformation list. The world coordinate" system
theoretically maps objects to a 100-by-100 area. Position (0,0)
is the lower left corner of the area, and the upper right
corner is position (100,100). Coordinate units are specified as
real numbers within this range.

Because the video display screens are not square, only the
portion of the world coordinate system that represents the
aspect ratio, or the ratio of height to width for the screen, is
generally used. The coordinate positions that represent the
aspect ratio of the B 22 screen are (0,0) to (100,77.74). The
range for the B 21 series screen is (0,0) to (100,73.84). The
range for the B 26 series screen is (0,0) to (100,74). Because
the B 22, B 21, and B 26 series Graphics workstations have
different aspect ratios, applications that are designed to run
on both types of workstations must use the smaller range of
(0,0) to (100,73.84) that is required for the B 21 series Color
Graphics workstation.

User-Defined Coordinate Systems. The device-independent
graphics library procedures also support user-defined coordinate
systems. Once the user defines the minimum and maximum X
and Y coordinate units, the parameters in subsequent
procedures used to draw objects are interpreted as user-defined
coordinates. The graphics software automatically converts the
user-defined coordinates to the corresponding world coordinates.

Normalized Device Coordinate System. This system is used to
reference the display area in a relative way. The
coordinate positions range from (0,0) at the lower left corner to
(1,1) at the top right. Once again, to maintain the aspect
ratio of the screen, positions (0,0) to (1,.7774) for the
B 22, (0,0) to (1,.7384) for the B 21 series, and (0,0) to
(1,.74) for the B 26 series are the default ranges for the
graphics workstations. The coordinate units actually describe
positions in terms of their relation to the top, bottom and
left sides of the display area. They are used to reference
the video display screen, not a picture that is to be displayed.
Currently, the only procedures that use this coordinate
system are the cursor control functions and the viewport
procedures. The coordinates used to place the cursor in the
middle of the B 22 video display area, for example, are
(0.5,0.39).

2-8

Viewing Perspectives

Pictures can be viewed dynamically from a wide range of
perspectives. These viewing capabilities are invoked by
adjusting the size of the world coordinate system window and
the screen display area viewport. The window is a portion of .
the world coordinate area It defines what is to be displayed.
The viewport is a portion of the screen. It defines where the
information in the window is to be viewed. The information
is displayed by scalingthe world coordinate values within the
window to fill the viewport. The window/viewport
transformations enable pictures to be viewed from many different
perspectives. These viewing functions do not affect the picture
data. The vector, label, and transformation lists for the
objects within the picture are not altered.

The maximum size for the window is ordinarily the portion of
the world coordinate area that corresponds to the aspect
ratio of the display screen. Coordinate positions (0,0) to
(100,77.74) for the B 22 Graphics workstation, positions (0,0)
to (100,73.84) for the B 21 series Color Graphics
workstation, and positions (0,0) to (100,74) for the B 26 series
Graphics workstation are the ranges that represent the aspect
ratios of the two different screens. The window can be set
and reset to define different portions of the entire world
coordinate area. For a window that defines the lower left
quadrant of the B 22 display area, for example, the the
boundaries are (0,0) to (50,38.87). No matter what objects have
been mapped to positions in the world coordinate area, only
the coordinates surrounded by the window are viewed. All of
the coordinate positions outside the window are clipped.

The maximum viewport is the entire screen area. However, the
viewport can be set and reset to define any rectangular
portion of the screen where a picture is to be displayed.
Ordinarily, part of the screen area is reserved for messages
and forms. Therefore, the viewport is usually less than the
whole screen area.

The perspective for viewing a picture can be altered
dynamically as often as needed by adjusting the window and
viewport sizes, shapes, or positions. A large picture can be
scanned, for example, by keeping the size of. the window
constant but changing its position within the world
coordinate area. A small section of a picture can be
magnified by keeping the viewport large and resetting the
window to surround only the portion of the picture that is to
be enlarged. When the window and viewport are the same shape,
the picture is viewed as it appears conceptually in the world
coordinate area. When the window and viewport have dissimilar
aspect ratios, the viewed picture is an oblique version of the
original.

2-9

Device-Dependent Procedures

Device-dependent procedures support high-speed graphics
functions. Device-dependent procedures can be used to draw
vectors and arcs. These functions are device-dependent because
they are executed entirely by the graphics control board
firmware. Graphic representations are drawn using coordinates on
display screens within the following workstations:

* B 21 (color)
* B 22 (monochrome)
* B 26 (color and monochrome)

Device-dependent procedures should, therefore, be used only when
the code does not need to be transportable. The advantages of
using these procedures are that they execute faster and provide
color selection that is not available with the device-independent
procedures.

The device-dependent graphics library procedures fall into four
main functional categories: control functions, vector and arc
manipulation functions, color functions, and alphanumeric
attributes functions. The color procedures and alphanumeric
attributes procedures can be used only on the following Color
Graphics workstations:

* B 21 (color)
* B 26 (color)

Control Procedures

These procedures are used to control the output to the video
display screen. For the B 22 Graphics workstation, there are
procedures to control the two 64k bit-mapped planes. Only one
plane can be displayed at a time. The displayed plane is called
the visible plane. Either the visible plane or the invisible one
can be defined as the current plane. The current plane is the
destination for the operations creating a graphic representation.

Vector and Arc Manipulation Procedures

Vectors and arcs are plotted by calculating lines between
endpoints. On the B 22 video display the current display plane
is mapped using coordinate positions for a screen resolution of
656-by-510 pixels. Coordinate position (0,0) is the lower left
corner of the screen, and coordinate position (655,509) is the
top right corner. The B 21-series display memory has a screen
resolution of 432-by-319 pixels. Coordinate position (0,0) is
the lower left corner and (431 ,318) is the top right.

The B 26 series display memory has a screen resolution of 718-by-
348 pixels. However, coordinate position (4,0) is the lower left
corner (1435,1043) and is the top .right. There are two
coordinate positions per pixel horizontally and three coordinate
positions per pixel vertically on a B 26.

2-10

Different line types, drawing modes, and colors can be set.

Refer to the "Drawing Attributes" subsection above for detailed
information about the line type, drawing mode, and color options.

,Color Procedures

The B 21 and the B 26 Color Graphics workstations support the use
of 64 different colors, any eight of which can be displayed
simultaneously in a picture. The color procedures allow for the
definition of 8-byte color palettes that have one byte for each
of eight colors. The bit settings in each color byte are
interpreted by the color mapper and then displayed by the color
monitor (on either the B 21 graphics control board or the B 26
graphics controller module).

Two 8-color palettes can be defined at a time, and individual
colors in a palette can be replaced or modified. 'Color palettes
can be accessed by device-independent procedures such as
SetColor, but the specification of the colors that make up a
palette is handled only by low-level functions. The color
palette is saved with a picture in the picture file enabling
pictures to be redisplayed with the same color specifications.

Alphanumeric Attribute Procedures

These procedures can be used only on the B 21 or the B 26 Color
Graphics workstations. Text can be displayed in color
independently or in conjunction with graphic representations.
The alphanumeric attribute procedures allow the standard
alphanumeric style RAM to be overridden by a color style RAM (on
either the B 21 graphics control board or the B 26 graphics
controller module). Eight different colors can be defined at one
time along with different combinations of the reverse video and
underlining attributes.

OUTPUT DEVICES

In addition to the workstation display screen, th~ graphics
software also enables output to plotters and dot matrix printers.
The plotters that can be interfaced with graphics for output are
the Hewlett-Packard models 7470A, 7475A, 7220C, and 7220T, and
the Strobe 100. Output can be plotted on paper or
transparencies, and it can be written to a disk file. User
written procedures can be combined with device-independent
graphics library procedures to provide messages and instructions
on the screen for end users to load paper or change pens. Refer
to Appendix B, "Using a Plotter" for detailed information on
connecting and operating a plotter.

The only dot matrix printers that are supported for use with
graphics are the Burroughs models AP1351 and B9253.

2-11

The dot matrix printers that can be interfaced with graphics are
the Printronix MVP, the Envision 420, the Anadex 9620, the
Okidata Microline 93, and the Data Products SPG-8010 and SPG-8050
printers. Like the plotter output, printer output can also be
written to a disk file. When a printer is the output device,
all of the data that represents a picture is accumulated in
a buffer before the picture is actually printed. To
accommodate the printer buffer, much more memory must be
allocated for the picture file work area than when other
output devices are used. In addition, since the' actual printing
does not begin until the picture is complete and the buffer
is released, DisplayPicture, an operation that writes the
entire picture, must be used. Other procedures that draw and
display one vector or one text string, for example, instead
of the whole picture will return an error code when the printer
is the current output device.

2-12

SECTION 3

DEVICE-INDEPENDENT PROCEDURES

The device-independent procedures in the graphics library are
used in application systems designed to run on any B 20 Graphics
workstation. They permit output to hardcopy devices (such as
plotters and dot matrix printers) as well as video display
screens within B 21, B 22 and B 26 series.

The device-independent procedures are organized in this section
by general function. The order in which procedures from the
different groups are used in an application is very flexible and
depends on the functional requirements of the application. The
arrangement used in this guide follows a logical top-down
graphics processing sequence. The 11 groups of procedures are
shown in Table 3-1.

Tab1e 3-1. Device-Independent Procedures by Function
(Page 1 of 2)

Initia1ization

ClearViewport
InitGraphics
SetLimits
SetOutputDevice
SetOutputType
SetPl6tterDevice
SetPlotterMaterial
SetUserCoordinates

Picture

AddPicture
ClosePicture
DisplayPicture
GetNumberOfObjects
OpenPicture
WritePicture

Object

AddObject
ClearLabels
ClearVectors
CloseObject
CloseTempObject
DisplayCurrentObject
OpenTempObject
RemoveCurrentObject
SetFirstObject
SetNextObject

Attribute

SetColor
SetCurrentPalette
SetDrawingMode
SetLineType
SetPictureColors

3-1

3-2

Table 3-1. Device-Independent Procedures by Function
(Page 2 of 2)

Drawing Transformation

Draw
DrawArc
DrawCircle
DrawLine
DrawRelative
FillRectangle
Move
MoveRelative

Text

SetCharacterSize
SetFont
SetLabelOrigin
WriteTextString

Font

GetFontName
GetFontNumber
GetNumberFonts
GetUserFontName
SetUserFont

Label

AddLabel
DeleteCurrentLabel
GetCurrentLabel
GetLabelData
ModifyLabel
SetFirstLabel
SetNextLabel

GetTransformationData
SetScale
SetScaleRelative
SetTranslate
SetTranslateRelative

Viewing

GetWindowData
SetViewport
SetWindow

Cursor

GetCursorPosition
SetNDCCursorPosition
SetObjectCursorPos.
SetWorldCursorPosition
TurnCursorOff
TurnCursorOn

The following steps are presented as a guideline to illustrate
typical use of the' device-independent procedures. In this
example, a picture is opened, an object is created, and the
picture is saved in a picture file. The procedures, or
examples of possible procedures, used to accomplish each step
are included in parentheses.

1. Allocate memory for the picture file workarea
(AllocMemorySL).

2. Initialize the graphics system (InitGraphics).

3. Open a new picture in write mode (OpenPicture).

4. Begin a new object and specify the range of user coordinates
to be used for drawing the object (AddObject).

5. If the drawing is to be limited to a subset of the world
coordinate system, specify the limits (SetLimits).

6. Use attribute, drawing, label, text, and font commands to
create an object (for example, SetColor, DrawLine, Move,
WriteTextString, AddLabel).

1. Close the object (CloseObject).

8. Sav~ the picture (ClosePicture).

Transformation procedures can
open. Viewing procedures can
open.

be used whenever an object is
be used any time the picture is

This section contains a subsection for each group of
device-independent procedures. The procedures within each
group are ordered alphabetically. A brief description, the
procedural interface, and the parameter definitions are included
for each procedure. The conventions used for parameter names in
graphics library procedures are defined in the B 20
Operating System Reference Manual. Besides the data type
prefixes defined there, the graphics software introduces two
new types: "r" and "w."

o r 4-byte short real number

o w word (16 bits)

In addition to describing the device-independent graphics library
procedures, this section also includes a subsection on user
written procedures that can be called from the graphics software
to provide extended capabilities for an application. A user
written procedure can be called, for example, from the graphics
code that handles plotter output. An application can include
procedures that are called by the graphics software to halt
the plotter output while pens are changed or paper is loaded.
User interaction through messages and replies on the video
display unit can also be provided by user-written procedures.

3-3

INITIALIZATION PROCEDURES

The initialization procedures are used to set the values for
di'ferent variables used by the graphics software.

There are eight initialization procedures:

0 ClearViewport

0 InitGraphics

0 SetLimits

0 SetOutputDevice

0 SetOutputType

0 SetPlotterDevice

0 SetPlotterMaterial

0 SetUserCoordinates

InitGraphics is always the first graphics function performed
prlor to using device-independent (high level) procedures.
The other initialization procedures can be used to set their
respective variables at any point.

3-4

ClearViewport

Description

ClearViewport clears the viewport. The video display screen is
erased.

If a plotter or printer has been assigned as the output device,
this procedure has no effect.

Procedural Interface

ClearViewport: ErcType

InitGraphics

Description

InitGraphics initializes the variables used by the graphics
software. The display memory on the graphics control board is
cleared, and the default line type and drawing mode values
are set. The B 22 window defaults to the range (0,0) through
(100,77.74), and the viewport is set to (0,0) through (1,.7744).
On the B 21 series the range is (0,0) through (100,73.84),
with the viewport set to (0,0) through (1.7384). The B 26
window defaults to the range (0,0) through (100,74), and the
viewpoint is set to (0,0) through (1,.74).

InitGraphics mu~t be the first graphics procedure called.

Procedural Interface

InitGraphics: ErcType

3-5

SetLimits

Description

SetLimits allows a portion of the world coordinate system to
be defined as the area of interest. Used in conjunction with
SetUserCoordinates, this procedure sets up a rectangular
area, and SetUserCoordinates provides the range of user-defined
coordinate values that are mapped to the rectangle.

This procedure could be used, for example, to define a box
around a bar chart. If SetUserCoordinates is used, the
user-defined coordinates supplied when the bar chart is drawn are
mapped to the area defined by the box.

If SetLimits is not used, the default 'world coordinate area
is the portion with the same aspect ratio as the video display
screen; (0,0) to (100,77.74) for B 22, (0,0) to (100,73.84) for
the B 21, and (0,0) to (100,74) for the B 26 series systems.

The order in which the SetLimits command is used is important.
If called before an object is opened, it must be followed by an
AddObject command or an OpenTempObject command. If used after an
object is opened, it must be followed by a SetUserCoordinates
command. If these conventions are not followed, the invocation
of SetLimits will have no effect on subsequent drawing commands.

Procedural Interface

SetLimits (rXMin, rYMin, rXMax, rYMax): Erctype

where

rXMin specifies the minimum X value in world
coordinates.

rYMin spec tfies the minimum Y value in world
coordinates.

rXMax specifies the maximum X value in world
coordinates.

rYMax specifies the maximum Y value in world
coordinates.

3-6

SetOutputDevice

Description

SetOutput Device allows the output device to be reassigned. The
default output device is the video display screen.

This procedure is used to assign a plotter or a dot matrix
printer as the output device. Refer to the "User-Written
Procedures" subsection below for information on application
procedures that can be called by graphics library procedures
to extend the capabilities for plotter output processing.
Refer also to the descriptions of the following procedures:
SetOutputType, SetPlotterDevice, and SetPlotterMaterial. These
procedures should be called, if needed, before SetOutputDevice.

Procedural Interface

SetOutputDevice (iDevice): Erctype

where

iDevice specifies the output device.

o = video display screen

= plotter

2 = dot matrix printer

3-7

SetOutputType

Description

SetOutputType specifies the code for the device that is to be
used when the output is directed to a plotter or a printer. This
procedure must be called before SetOutputDevice is called.

Procedural Interface

SetOutputType (iOutputType): ErcType

where

iOutputType

3-8

specifies the code for the output device.

o HP7470A

HP7220C

2 = Strobe 100

3 = Printronix MVP

4 = Anadex 9620

5 = AP1351

6 = B9253

7 = Envision 420

8 not used

9 HP7475A

10 HP7220T

11 = Okidata Microline 93

12 = Data Products 8010

SetPlotterDevice

Description

SetPlotterDevice specifies either the name of the disk file
where the output is to be written or, if the output is to be
written directly to the output device, the configuration file
for the device. If the output is not going to disk, the
following type of configuration information is used:

[COMM]A
HP7470A - [COMM]B&[sys]<sys>PlotterConfig.sys
HP7220C

[COMM]A
Strobe - [COMM]B&[sys]<sys>StrobeConfig.sys

Anadex - [LPT]
Printronix

In order to plot to a spooler or disk file, applications must
declare an external byte variable called FSpool and assign it the
value 255 (OFF hex) before calling SetPlotterDevice.

Procedural Interface

SetPlotterDevice (pbDevName, cbDevName): ErcType

where

pbDevName
cbDevName
configuration

SetPlotterMaterial

Description

describe the disk file name or
file for the device.

SetPlotterMaterial specifies whether the output is to be plotted
on paper or on a transparency. This procedure should be
called before using SetOutputDevice. The SetOutputDevice
initialization routine reduces the plotter speed when the
output is going to be plotted on a transparency.

Procedural Interface

SetPlotterMaterial (iMaterial): ErcType

where

iMaterial
paper or

specifies whether the output is to be on
on a transparency.

o = paper

= transparency

3-9

SetUserCoordinates

Description

SetUserCoordinates sets the user-defined coordinates used in the
drawing procedures. The units supplied in this procedure are
mapped to the world coordinate system. When user-defined
coordinate positions are specified in subsequent procedures, the
graphics software automatically translates the units to the
world coordinate system.

SetLimits can be used in conjunction with this procedure to
define a portion of the world coordinate system to which
the user-defined coordinates are to be mapped.

Procedural Interface

SetUserCoordinates (rXMin, rYMin, rXMax, rYMax): Erctype

where

rXMin

rYMin

rXMax

rYMax

3-10

specifies the mlnlmum x value in user
defined coordinates to be mapped to the
minimum X value in world coordinates.

specifies the minimum Y value in user
defined coordinates to be mapped to the
minimum Y value in world coordinates.

specifies the maximum X value in user
defined coordinates to be mapped to the
maximum X value in world coordinates.

specifies the maximum Y value in user
defined coordinates to be mapped to the
maximum Y value in world coordinates.

PICTURE PROCEDURES

The picture procedures are used to manage picture files and
to manipulate pictures in display memory. When a new graphic
representation is being created a picture is opened to save
it. Likewise, when an object in an existing picture is to be
modified, the first step is to open the picture. Once a picture
is opened, the graphic representations within the picture can
be be created, modified, and transformed. When the current
picture has been fully processed, it is written to a picture
file and closed. After the current picture is closed,
another picture can be processed.

There are six picture procedures:

0 AddPicture

0 ClosePicture

0 DisplayPicture

0 GetNumberOfObjects

0 OpenPicture

0 WritePicture

OpenPicture must be performed before any of the other picture
procedures can be used.

3-11

AddPicture

Description

AddPicture adds the specified picture file to the current
picture. The added picture becomes part of the current picture.
In B 21 and B 26 Color Graphics workstation applications, the
fOverwritePalette parameter is used to specify which color
palette should be used to draw the added object. TRUE = yes,
overwrite with the palette from the added picture file. FALSE =
no, use the palette that has already been set for the current
picture.

Procedural Interface

AddPicture (pbPictureName, cbPictureName
fOverwritePalette): ErcType

where

pbPictureName
cbPictureName

fOverwritePalette

ClosePicture

Description

describes the picture file to be merged into
the current picture.

specifies whether the palette from the
added picture should overwrite the palette
in the current picture.

OFFh = TRUE, overwrite

OOh = FALSE, do not overwrite

ClosePicture closes the current picture. If the parameter fSave
is set to TRUE, the picture is written before it is closed. It
is saved in the picture file previously specified in the
OpenPicture command. The fSave parameter is set to FALSE when
the picture has already been saved by a previous WritePicture
command.

Procedural Interface

ClosePicture (fSave): ErcType

where

fSave

3-12

specifies whether the picture is to be
written before it is closed.

OFFh = TRUE, write.

OOh = FALSE, do not write.

DisplayPicture

Description

DisplayPicture displays the current picture. It is used after
OpenPicture to display a picture, and after a picture is
modified, to redisplay it. The screen is not erased before the
picture is displayed; the new information is merged or overlays
parts of the existing picture. ClearViewport must be used before
DisplayPicture if the screen is to be erased before displaying.

DisplayPicture calls the procedure, ReadInterruptKey to
determine whether the output to the screen, plotter, or printer
should be interrupted. The graphics library version of
ReadInterruptKey returns a "0" status code which prompts
DisplayPicture to continue writing the output without an

.interruption.

ReadInterruptKey can be replaced by a user-written procedure
with the same name to halt the DisplayPicture process. Refer to
the "User-Written Procedures" subsection for detailed
information about the use of ReadInterruptKey.

SetPen is another procedure that is called by DisplayPicture
and can be replaced by user-written code. When the output
device is a plotter and DisplayPicture encounters a new pen
number, SetPen is called. The purpose of SetPen is to enable the
application to halt the plotter output and notify the user that
the pen should be changed. Refer to the "User-Written
Procedures" subsection for detailed information about the use of
SetPen.

Procedural Interface

DisplayPicture (fInterruptOnKey): ErcType

where

fInterruptOnKey indicates whether or not
ReadInterruptKey is to be called.

OFFh = TRUE, ReadInterruptKey
is called.

OOh = FALSE, it is not.

3-13

GetN umberOfObjects

Description

GetNumberOfObjects returns the number of objects in the current
picture. The number is placed in a 4-byte memory location.

Procedural Interface

GetNumberOfObjects (pNObjectsRet): ErcType

where

pNObjectsRet

Open Picture

Description

points to the memory address where the
number of objects in the picture is to be
returned.

OpenPicture opens the specified picture. It is used to create
new pictures and to modify existing ones.

One of three modes must be specified: read, write, or modify.

Read mode is used to view an existing picture. The size of the
window or viewport can be changed, the objects within the picture
can be transformed, but the objects cannot be modified.

Modify mode also requires an existing picture. This mode is used
when new,objects are to be added to the picture and when existing
objects are to be modified.

Write mode is used to create a new picture. Objects can be
created for the new picture or existing pictures can be added
from picture files to create a complex picture. Write mode can
also be used to open existing pictures from picture files. When
write mode is used with an existing picture, the picture is
deleted when the file is opened, and the new version replaces the
old.

A segment of memory must be allocated before OpenPicture is
executed. The memory area is used as a workarea and must be
large enough to contain the whole picture. Refer to Appendix D
for information about the memory requirements for pictures and
objects.

OpenPicture must be called before SetOutputDevice when printing a
picture and after SetOutputDevice when plotting a picture.

3-14

Procedural Interface

OpenPicture

where

pbPicturelJame
cbPictureName

pbPassword
cbPassword

mode

pMemory
cParasHemory

(pbPicturelJame, cbPictureName, pbPassword,
cbPassword, mode, pMemory, cParasMemory):
Erctype

describe a character string specifying the
name of a picture file.

describe the standard volume, directory, or
file password that authorizes access to the
picture file.

is read (shared) or modify and write
(exclusive). The mode is indicated by a 16-
bit value representing the ASCII constants
"mr" (mode read), "mm" (mode modify), or "mw"
(mode write). In these ASCII constants, the
first character (m) is the high-order byte
and the second character (r, m, or w
respectively) is the low-order byte. This
is the reverse of the byte order for strings
in B 20 programming languages.

specifies the segment of memory to be used as
a work area for the picture. The memory size
is specified as the number of 16-byte
paragraphs allocated.

3-15

WritePicture

Description

WritePicture writes the current picture to the picture file
specified by pbPictureName, cbPictureName. If a picture file
with this name already exists, it is overwritten by the current
picture •. When WritePicture is executed, the current picture is
not closed; it remains the current picture, and processing can
continue.

Procedural Interface

WritePicture (pbPictureName cbPictureName):

where

pbPictureName
cbPictureName

ErcType

specifies the picture file to which the
current picture is to be written.

OBJECT PROCEDURES
The object procedures are used to add new objects to the current
picture, and to modify eXisting objects. When there are multiple
obj ects in a picture, only one can be processed at a time.. There
are also object procedures that are used to move through the
objects in a picture to select the current object. When a
current object is designated, subsequent commands operate on that
object until another object is selected as the current object.

There are ten object procedures:

0 AddObject

ClearLabels .--0

0 ClearVectors

0 CloseObject

0 CloseTempObject

0 DisplayCurrentObject

0 OpenTempObject

0 RemoveCurrentObject

0 SetFirstObject

0 SetNextObject

Before any object procedures can be used, a picture must be
opened with OpenPicture, or the object must be declared as a
temporary object by OpenTempObject.

3-16

AddObject

Description

AddObject is used to begin a new object that is to be part of the
current picture. The object specified by pbObjectName,
cbObjectName becomes the current object. All subsequent vector
commands and labels are stored in this object's vector and label
lists.

Minimum and maximum X and Y coordinates specify the range of user
coordinates that the new object will use. User-defined
coordinate values specified in a previous AddObject or
SetUserCoordinate procedure will be overridden by this call.

A picture must be open in modify or write mode before AddObject
can be used, and no other object may be open.

Procedural Interface

AddObject (pbObjectName, cbObjectName, rXMin,
rYMin, rXMax, rYMax): ErcType

where

pbObjectName
cbObjectName specifies the name of theobject

The maximum length for an object
characters.

rXMin specifies the minimum X value of

rYMin specifies the minimum Y value of

rXMax specifies the maximum X value of

rYMax specifies the maximum Y value of

to be added.
name is 12

the object.

the object.

the object.

the object.

3-17

ClearLabels

Description

ClearLabels clears the current object's label list. Since
individual labels can be modified by ModifyLabel, this procedure
is used only when all the labels are to be replaced.

A picture must be open in write or modify mode before ClearLabels
can be used. An object must also have been designated as the
current object.

Procedural Interface

ClearLabels: ErcType

ClearVectors

Description

ClearVectors clears the current object's vector list. Because
individual vector commands cannot be modified, the whole list is
cleared when an individual vector is to be recomputed.

A picture must be open in write or modify mode before
ClearVectors can be used. An object must also have been
designated as the current object.

Procedural Interface

ClearVectors: ErcType

CloseObject

Description

CloseObject closes the current object. An object must be closed
before a new one can be selected as the current object.

Both a picture and an object must be open to use CloseObject.
The object cannot be temporary •

. Procedural Interface

CloseObject: ErcType

3-18

CloseTempObject

Description

CloseTempObject closes a temporary object.

An error condition occurs if there is not a temporary object
open.

Procedural Interface

CloseTempObject: ErcType

DisplayCurrentObject

Description

DisplayCurrentObject displays the current object on the screen.
The screen is not erased before the object is displayed. The
current object is merged with the current contents of the screen.

A picture must be open before DisplayCurrentObject is used, and
an object must have been designated as the current object.

Procedural Interface

DisplayCurrentObject: ErcType

3-19

OpenTempObject

Description

OpenTempObject opens a temporary object. When an object is
temporary, subsequent commands are not saved in a picture file.
If a picture has been opened, it must be closed before a
temporary object can be opened. Likewise, if a current object
has been designated, it must be closed before OpenTempObject can
be used.

Minimum and maximum coordinates are specified to indicate the
range of user coordinates that will be used for this object.User
defined coordinate values specified in a previous AddObject or
SetUserCoordinates procedure will be overridden by this call.

Procedural Interface

OpenTempObject (rXMin, rYMin, rXMax, rYMax):
ErcType

where

rXMin specifies the minimum X value of the object.

rYMin specifies the minimum Y value of the object.

rXMax specifies the maximum X value of the object.

rYMax specifies the maximum Y value of the object.

RemoveCurrentObject

Description

RemoveCurrentObject removes the current object from the current
picture.

A picture must be open in write or modify mode, and an object
must have been designated as the current object before
RemoveCurrentObject can be used.

Procedural Interface

RemoveCurrentObject: ErcType

3-20

SetFirstObject

Description

SetFirstObject designates the first object in the picture as the
current object. Objects are stored in the order they were
created.

A picture must be open before SetFirstObject can be used.

Procedural Interface

SetFirstObject: ErcType

SetNextObject

Description

SetNextObject specifies a new current object. The object that
follows the current object becomes the new current object. If a
current object has not been designated when this procedure is
called, then the first object in the picture becomes the current
object. Objects are stored in the order they were created. If
the current object is the last object in the picture when this
procedure is called, the following error code is returned:

ercEndOfObjects = 7628

The picture procedure, GetNumberOfObjects can be used in
conjunction with SetNextObject to keep track of how many objects
there are in the picture.

A picture must be open before SetNextObject can be used.

Procedural Interface

SetNextObject: ErcType

3-21

ATTRIBUTE PROCEDURES

Attribute procedures are used to set the values for attributes
that are used in conjunction with drawing procedures. The
attributes are line type, drawing mode, and color. Detailed
information about these attributes is included in the "Drawing
Attributes" subsection of Section 2, "Concepts."

Before an attribute procedure can be called, either a picture
must be open in write or modify mode, and an object must be
designated as the current object, or a temporary object must be
open. The attribute procedures cannot be used if a printer has
been assigned as the output device.

There are five attribute procedures:

o GetPictureColors

o Set Color

o SetCurrentPalette

o Set Drawing Mode

o SetLineType

GetPictureColors

Description

GetPictureColors returns the eight bytes that define the colors
in the current palette. The color bytes are copied to the memory
location specified by the parameter pRgbPaletteRet. Refer to
Section 4, "Device-Dependent Procedures" for detailed information
about color palettes.

Procedural Interface

GetPictureColors (pRgbPaletteRet): ErcType

where

pRgbPaletteRet

3-22

specifies the memory address of the buffer
where the eight bytes used to define the
current palette are to be returned.

SetColor

Description

SetColor specifies the color that is to be current. Subsequent
drawing procedures will use the color designated by the parameter
iColor. This parameter specifies the color in the current 8-byte
color palette. The acceptable values are 1 through 8. Multi
color output to a video display unit is supported only on the
B 21 and B 26 Color Graphics workstations.

When a B 22 video screen is the output device, the color
attribute is ignored. When the output device is a plotter, the
color attribute is interpreted as the pen number for the intended
color. The-user selects the colors and assigns a number for each
pen.

Detailed information about the color attribute can be found in
the "Drawing Attributes" subsection of Section 2, "Concepts" and
in Section 4, "Device-Dependent Procedures."

Procedural Interface

SetColor (iColor): ErcType

where

iColor specifies the color to be used in subsequent commands, in
the range 1 - 8. The default is 1.

3-23

SetCurrentPalette

Description

SetCurrentPalette is used in application systems designed for the
B 21 and B 26 Color Graphics workstations. It specifies the
eight bytes that define a new palette. The palette that is
selected remains the current palette for subsequent procedures
until SetCurrentPalette is called again. For detailed
information about the use of color palettes, refer to the
"Drawing Attributes" subsection of Section 2, "Concepts" and
Section 4, "Device-Dependent Procedures."

If SetCurrentPalette is not called, the default color palette is
used. The colors in the default palette are:

0 red

0 yellow

0 green

0 blue

0 cyan

0 magenta

0 white

0 black

Procedural Interface

SetCurrentPalette (pRgbPalette): ErcType

where

pRgbPalette

3-24

points to the memory address of the eight
bytes that define the colors in the palette.

SetDrawingMode

Description

SetDrawingMode specifies the drawing mode that is to be current.
The choices are set mode, clear mode, complement mode, and
replace mode. Subsequent drawing procedures will use the drawing
mode designated by the parameter iMode. Detailed information
about the drawing modes, including an illustration, can be found
in the "Drawing Attributes" subsection of Section 2, "Concepts."

The default is set mode.

Procedural Interface

SetDrawingMode (iMode): ErcType

where

iMode specifies the drawing mode.

o = Set Mode

= Clear Mode

2 = Complement Mode

3 = Replace Mode

SetLineType

Description

SetLineType specifies the line type that is to be current.
Subsequent vector drawing procedures will use the line type
designated by the parameter iLineType. A solid line is the
default, and there are other patterns of dots and dashes.
Detailed information about the line type attribute, including an
illustration of the available line types can be found in the
"Drawing Attributes" subsection of Section 2, "Concepts."

Procedural Interface

SetLineType (iLineType): ErcType

where

iLineType specifies the line type to be used in
subsequent drawing procedures.

o - 7 = the standard line types.

3-25

DRAWING PROCEDURES

Drawing procedures are used to draw vectors, arcs, and circles,
and to fill rectangles. When these drawing procedures are
executed, the commands are saved in the vector list of the
current object.

User-defined coordinate values are used in the X and Y
parameters. The graphics software automatically translates the
user-defined units to world coordinates. The limits of the
coordinate system must be previously defined by
SetUserCoordinates or AddObject before drawing procedures are
used.

A picture must be open in write or modify mode (except when the
object is temporary), and an object selected as the current
object before a drawing procedure is used. An error message is
returned if these procedures are used when the output device is a
printer.

The Fill Rectangle procedure cannot be used with temporary
objects.

There are eight drawing procedures:

0 Draw

0 DrawArc

0 DrawCircle

0 DrawLine

0 DrawRelative

0 FillRectangle

0 Move

0 MoveRelative

3-26

Draw

Description

Draw draws a vector from the current position to (rX,rY). The
current color, line type and drawing mode are used. After the
vector is drawn, the current position is set to (rX,rY). User
defined coordinate values are used in the parameters.

This command is saved in the vector list of the current object.

Procedural Interface

Draw (rX, rY): ErcType

where

rX specifies the X coordinate to which the line is to be drawn.

rY specifies the Y coordinate to which the line is to be drawn.

3-27

DrawArc

Description

DrawArc draws an arc by using the center position, radius, and
angles provided in the parameters. User-defined coordinate
values are used for these parameters. The angles are specified
in radians from the center of the circle, and the arc is drawn in
a counterclockwise direction. Figure 3-1 illustrates the drawing
angles.

The current color, line type, and drawing mode are used. After
the arc is drawn, the current position is set to the end of the
arc.

This command is saved in the vector list for the current object.

Tl'/2

Tl'/4

TI' o

5T1'/4 7T1'/4

3T1'/2

Figure 3-1. Angles in Radians

Procedural Interface

DrawArc (rXCenter, rYCenter, rsRadius, rAng1,
rAng2): ErcType

where

rXCenter
rYCenter

rsRadius

rAng1

rAng2

3-28

specify the position from which the angles
are calculated to create the arc.

specifies the radius from the center point.

specifies the angle used to set the beginning
position of the arc.

specifies the angle used to set the end
position of the arc.

DrawCircle

Description

DrawCircle draws a circle with position rXCenter,rYCenter as the
center and rSRadius as the radius. User-defined coordinate
values are used for these parameters. After the circle is drawn,
the zero-degree position on the circumference of the circle
becomes the current position. The current line type, drawing
mode, and color attributes are used with this procedure.

This command is saved in the vector list of the current object.

Procedural Interface

DrawCircle (rXCenter, rYCenter, rSRadius):

where

rXCenter
rYCenter

rSRadius

DrawLine

Description

ErcType

specify the center of the circle.

specifies the radius of the circle.

DrawLine draws a line by using the endpoints specified. The
current color, line type, and drawing mode are used. After the
line is drawn, the current position is set to (rX2,rY2). User
defined coordinate values are used in the parameters.

This command is saved in the vector list of the current object.

Procedural Interface

DrawLine (rX1, rY1, rX2, rY2): ErcType

where

rX1

rY1

rX2

rY2

specifies the X coordinate for the beginning
of the line.

specifies the Y coordinate for the beginning
of the line.

specifies the X coordinate for the end of the
line.

specifies the Y coordinate for the end of the
line.

3-29

DrawRelative

Description

DrawRelative draws a vector from the current position to the
position offset by rDeltaX,rDeltaY.User-defined coordinate values
are used in the parameters. The current color, line type and
drawing mode are used. After the vector is drawn, the current
position is set to (rX+rDeltaX,rY+rDeltaY).

This command is saved in the vector list of the current object.

Procedural Interface

DrawRelative (rDeltaX, rDeltaY): ErcType

where

rDeltaX

rDeltaY

FiliRectangle

Description

specifies the change in the X direction to
reach the new position to which the line
should be drawn.

specifies the change in the Y direction to
reach the new position to which the line
should be drawn.

FillRectangle fills a rectangle with a pattern. There are six
different patterns. Figure 3-2 illustrates the available
patterns.

Procedural Interface

FillRectangle (rXMin, rYMin, rXMax, rYMax, bFiIIType): ErcType

where

rXMin
rYMin
rXMax
rYMax

bFillType

3-30

specify the lower left and upper right
corners of the rectangle.

specifies the fill pattern

o - 5 = the fill patterns.

o 2 3 4 5

Figure 3-2. Fill Types

Move

Description

Move sets the current position. Subsequent drawing procedures
will begin at this position. User-defined coordinate values are
used in the parameters.

This command is saved in the vector list of the current object.

Procedural Interface

Move (rX, rY): ErcType

where

rX

rY

specifies the X coordinate for the new
current position.

specifies the Y coordinate for the new
current position.

3-31

MoveRelative

Description

. MoveRelative sets the current position. The new current position
is offset from the existing current position by rDeltaX and
rDeltaY. Subsequent drawing procedures will begin at this
position. User-defined coordinate values are used in the
parameters.

This command is saved in the vector list of the current object.

Procedural Interface

MoveRelative (rDeltaX, rDeltaY): ErcType

where

rDeltaX

rDeltaY

3-32

specifies the change in the X direction for
the new current position.

specifies the change in the Y direction for
the new current position.

TEXT PROCEDURES

These procedures are used to create and modify text strings.
Unlike labels, which are saved in the label list and can be
modified, text strings are put in the vector list and cannot be
modified. Text strings are used typically for text, such as
units on axes and legends, that is not to be altered.

There are four text procedures:

o SetCharacterSize

o SetFont

o SetLabelOrigin

o WriteTextString

WriteTextString writes a text string in the current object, and
the other procedures in this subsection set the attributes that
are to be used when the text is drawn. A picture must be open in
write mode, and a current object must have been designated before
any of the text procedures can be used. The output device cannot
be a printer. For detailed information about the attributes used
with text, refer to the "Text Attributes" subsection of Section
2, "Concepts."

SetCharacterSize

Description

SetCharacterSize specifies the relative character size that will
be used in subsequent WriteTextString procedures. Refer to the
"Text Attributes" subsection in Section 2, "Concepts" for
detailed information about the character size attribute.

Procedural Interface

SetCharacterSize (rSChars): ErcType

where

rSChars specifies the character size used in
subsequent calls to WriteTextString.

1 = standard (the default)

3-33

SetFont

Description

SetFont specifies the font that will be used in subsequent
WriteTextString procedures. The graphics softwa~e contains four
fonts: the default font, SimplexRoman, and three alternate fonts,
ComplexRoman, DuplexRoman, and Gothic. Refer to the "Text
Attributes" subsection in Section 2, "Concepts" for detailed
information about the font attribute. Procedures for selecting
fonts and establishing which fonts are available are found in the
"Font Procedures" subsection of this section.

Procedural Interface

SetFont (pbFontName, cbFontName): ErcType

where

pbFontName
cbFontName

3-34

specify the name of the font to be used in
subsequent calls to WriteTextString.

SetLabelOrigin

Description

SetLabelOrigin specifies the current label origin to be used in
subsequent WriteTextString procedures. The label origin is used
to indicate how the text should be oriented in relation to the
current position. Text can be placed left flush, right flush, or
centered. These placements can be done at the top, middle, or
bottom of the current position. Refer to the "Text Attributes"
subsection of Section 2, "Concepts" for detailed information
about the label origin attribute.

Procedural Interface

SetLabelOrigin (bLorg): ErcType

where

bLorg specifies the label orlgl.n to be used in
subsequent calls to WriteTextString.

0 = bottom left

= middle left

2 = top left

3 = bottom center

4 = middle center

5 = top center

6 = bottom right

7 = middle right

8 = top right

3-35

WriteTextString

Description

WriteTextString draws a text string in the current object. It
uses the current text attributes and the current position. The
current position can be set by Move or MoveRelative. The
attributes that must be set before WriteTextString is executed
are character size, label origin, and font. Refer to the "Text
Attributes" subsection of section 2, "Concepts" for detailed
information about text attributes. After the text string is
written, the last position of the string becomes the current
position.

This command and the text attributes are saved in the vector list
of the current object.

Procedural Interface

WriteTextString (pbString, cbString): ErcType

where

pbString
cbString

3-36

describe the string to be drawn at the
current position.

.i

FONT PROCEDURES

The graphics software contains four fonts. The name for each
font that is used internally by the graphics software is called
the internal name. Fonts can also have user-friendly names
assigned. In addition, the file specification for all but
SimplexRoman, which is the standard font, can be altered. The
information required to use multiple fonts is kept in a file
called Graphics. Fonts. This file 'allows applications to specify
which fonts are used, where they are located, and what user
friendly names have been assigned to correspond to the internal
names.

The syntax for entries in Graphics.Fonts is:

"user-friendly name":"internal name": file specification

where

"user-friendly name"

"internal name"

file specification

is the string that identifies the
font in end-user transactions.

is the string that identifies the
font internally in the graphics
software. The internal names for
the four fonts that are included
with the graphics software are:

SimplexRoman

ComplexRoman

DuplexRoman

Gothic

specifies the location of the font.

3-37

Table 3-2 shows the Graphics.Font entries supplied with the
graphics software.

Table 3-2.

Standard:

Complex:

Bold:

Gothic:

Graphics.Font Entries

SimplexRoman:

ComplexRoman:
[SYS] <SYS>ComplexRoman.font

DuplexRoman:
[SYS] <SYS>DuplexRoman.font

Gothic:
[SYS]<SYS>Gothic.font

There are five font procedures:

o GetFontName

o GetFontNumber

o· GetNumberOfFonts

o GetUserFontName

o SetUserFont

The font procedures are used in conjunction with text procedures
and label procedures to specify which font is to be used for
alphanumeric strings.

3-38

GetFontName

Description

GetFontName returns the memory address and length of the internal
name for a font. The requested font is specified by its index in
the font description file, Graphics.Fonts.

GetNumberOfFonts can be called before GetFontName to determine
the number of fonts in the file.

Procedural Interface

GetFontName (iFont, pPbFontName, pCbFontName):

where

iFont

pPbFontName

pCbFontName

ErcType

specifies the number of the font in
Graphics.Fonts. The acceptable values are 0
through (nFonts-1) where nFonts = the number
of fonts in the file.

points to the memory location where the
address of the internal font name is to be
returned.

points to the memory location where the count
of bytes in the internal font name is to be
returned.

3-39

GetFontNumber

Description

GetFontNumber returns the index of the specified font in the font
description file, Graphics.Fonts. The font is specified by its
internal name.

Procedural Interface

GetFontNumber (pbFontName, cbFontName,
piFontRet): ErcType

where

pbFontName
cbFontName

piFontRet

GetNumberOfFonts

Description

specify an internal font name.

points to the memory location where the font
number is to be returned.

GetNumberOfFonts returns the number of font entries in
Graphics.Fonts to indicate how many fonts are available for the
application.

Procedural Interface

GetNumberOfFonts (pnFontsRet): ErcType

where

pnFontsRet

3-40

points to the memory location of the word
where the number of fonts is returned.

GetUserFontName

Description

GetUserFontName returns the memory address and length of the
user-friendly name for a font that is specified by its index in
the font description file, Graphics.Fonts.

GetNumberOfFonts can be called before GetUserFontName to
determine the number of fonts in the file.

Procedural Interface

GetUserFontName (iFont, pPbFontName,
pCbFontName): ErcType

where

iFont

pPbFontName

pCbFontName

SetUserFont

Description

specifies the number of the font in
Graphics.Fonts. The acceptable values are 0
through (nFonts-1) where nFonts = the number
of fonts in the file.

points to the memory location where the
address of the user-friendly font name is to
be returned.

points to the memory location where the count
of bytes in the user-friendly name is to be
returned.

SetUserFont sets the current font by specifying the user-friendly
name for the font. The user-friendly name is translated to the
corresponding internal name. The internal name is then stored as
the font attribute in the vector list during subsequent
WriteTextString procedures.

Procedural Interface

SetUserFont (pbFontName, cbFontName,): ErcType

where

pbFontName
cbFontName specify the user-friendly name of the font.

3-41

LABEL PROCEDURES

The label procedures are used to create labels to accompany the
vector portion of an object. Label procedures are also used to
modify existing labels in the current object's label list.
Before a label procedure can be used, a picture must be open in
write or modify mode and an object designated as the current
object.

Coordinate parameters in the label procedures must have world
coordinate values.

When an existing label is selected to be modified, it is copied
into a workarea structure. After the modifications are made in
the workarea, the new label is written back into the object to
replace the current label. The coordinate positions, text, and
attributes of the label are saved in the label list.

Table 3-3 shows the format of the label structure.

There are seven label procedures:

0 AddLabel

0 DeleteCurrentLabel

0 GetCurrentLabel

0 GetLabelData

0 ModifyLabel

0 SetFirstLabel

0 SetNextLabel

3-42

Table 3-3. Label Structure

ITEM SIZE CONTENTS

rXStart real the starting X
position for
the label

rYStart real the starting Y
position for
the label

rXLowRet real the leftmost X
position of th~
label, computed by
the label
procedures

rYLowRet real the lowest Y
position of the
label, computed by
the label
procedures

rXHighRet real the rightmost X
position of the
label, computed by
the label
procedures

rYHighRet real the highest Y
position of the
label, computed by
the label
procedures

rsChars real the size of the
label's characters

bLorg byte the label origin
of the label

3-43

3-44

Table 3-3. Label Structure (Cont.)

ITEM SIZE

bPen byte

bUserID byte

fPositionSet byte

cbFontName byte

rgbFontName(12)byte

rgbReserved(20)byte

cbLabel byte

rgbLabel(cbLabel)
byte

CONTENTS

the pen number for
the label for
plotter output, or
in B 21 series
Color Graphics
workstation
applications, 'the
color number (1-8)

the unique
identifier of the
label

a value that can
be set by the
application to
indicate the label
position has been
set

the number of
bytes in the
internal name of
the font for this
label

the string that
describes the
font for this
label

reserved

the number of
bytes in the label
text

the actual text of
the label, which is
cbLabel bytes long

AddLabel

Description

AddLabel adds a new label to the current object at the position
specified. The parameter values for the coordinates must be
world coordinate system values. The label is added to -the label
list of the current object.

There are three label attributes that are set by parameter
entries in this procedure: character size, label origin, and font
name. Character size specifies the scale of the characters in
the label. The label origin indicates how the label is to be
oriented in relation to the current position in the world
coordinate system. The label can be positioned horizontally to
the right, left, or center, and vertically to the top, middle, or
bottom. The font attribute indicates the font that is to be used
for the label text. Presently, there are four fonts provided by
the graphics software. A unique identification is also provided
for the label. In future modification processes, this
identification can be used to select the proper label from the
label list.

Detailed information about all three text attributes can be found
in the "Text Attributes" subsection of Section 2, "Concepts."
Additional information about the fonts that are available and how
they are used can be found in the "Fonts Procedures" subsection
above.

If the label has a zero length, an error condition occurs.
Also, an error condition occurs if a printer has been assigned as
the output device when this command is executed.

3-45

Procedural Interface

Add Label CrX, rY, pbString, cbString, rSChars,
bLorg, bPen, bUserID, pbFontName,
cbFontName): ErcType

where

rX
rY

pbString
cbString

rSChars

bLorg

bPen

bUserID

pbFontName
cbFontName

DeleteCurrentLabel

Description

specify the position of the
label.

specify the text of the label.

specifies the character size of the label.

specifies the label origin of the label.

specifies the pen number for plotter output,
or in B 21 series Color Graphics workstation
applications, the color number.

specifies the label identifier.

specify the internal name of the font to be
used for the label.

DeleteCurrentLabel erases the current label from the display
screen and removes the label from the current object's label
list. A label must be designated as the current label before
DeleteCurrentObject is used. The output cannot be a printer when
this command is executed.

Procedural Interface

DeleteCurrentLabel: ErcType

3-46

GetCurrentLabel

Description

GetCurrentLabel copies the current label from the current
object's label list into a workarea structure where it can then
be modified. A segment of memory must be allocated for the
workarea. Refer to the introduction of this subsection, "Label
Procedures", for information about the label structure. A label
must be designated as the current label before GetCurrentLabel is
used.

Procedural Interface

GetCurrentLabel (pLabelRet, sLabelRet): ErcType

where

pLabelRet

sLabelRet

GetLabelData

Description

points to a structure where the label is to
be copied.

specifies the maximum size of the structure.

GetLabelData computes and fills in the boundaries of a label
located in a workarea structure. Refer to the introduction to
this subsection, "Label Procedures" for information about the
label structure, including which parameters have values returned
by GetLabelData.

This procedure is used to determine if a new label will fit, as
is, in the world coordinate system. If it does not fit, the
following error message is returned:

ercCharOutOfBounds: 7644

Procedural Interface

GetLabelData (pLabelRet): ErcType

where

pLabelRet points to the structure containing the
label.

3-47

ModifyLabel

Description

ModifyLabel replaces the current label with the label specified
by the parameter pModifiedLabel. The current label in the
object's label list is replaced by a new label that is located in
a workarea structure. The structure contains the label text and
attributes. Refer to the introduction of this subsection,
"Label Procedures" for information about the label structure.

This procedure is used in conjunction with GetCurrentLabel,
SetFirstLabel, or SetNextLabel. A label must be designated as
the current label by one of these procedures before ModifyLabel
can be used. These procedures copy an existing label into a
workarea. After the label is modified in the workarea, it is
written back into the current object's label list by ModifyLabel.
The modified label is also displayed in the picture. The output
device cannot be a printer when ModifyLabel is executed.

If the bUserID parameter in AddLabel was used to assign a unique
identification when the label was created, this identification
can be used in the modification process to quickly locate the
label that is to be modified.

Procedural Interface

ModifyLabel (pModifiedLabel): ErcType

where

pModifiedLabel

3-48

points to the structure that contains the
modified label.

SetFirstLabel

Description

SetFirstLabel selects the first label from the current object's
label list and makes it the current label. The label is moved to
a workarea where it can then be modified.

A segment of memory must be allocated as a work area for the label
structure. Refer to the introduction to this subsection, "Label
Procedures", for information about the label structure.

Procedural Interface

SetFirstLabel (pLabelRet, sLabelRet): ErcType

where

pLabelRet

sLabelRet

SetNextLabel

Description

points to a structure where the label is to
be copied.

specifies the maximum size of the structure.

SetNextLabel selects the next label from the current object's
label list and makes it the current label. If a label has not
been previously selected as the current label when this procedure
is used, then the first label becomes the current label. If the
current label is the last label in the label list, the following
error message is returned, because there is no "next" label:

ercEndOfLabelList = 7641

The selected label is copied into a workarea structure where it
can be modified. A segment of memory must be allocated for the
label structure. Refer to the introduction to this subsection,
"Label Procedures", for information about the label structure.

Procedural Interface

SetNextLabel (pLabelRet, sLabelRet): ErcType

where

pLabelRet

sLabelRet

points to a structure where the label is to
be copied.

specifies the maximum size of the structure.

3-49

TRANSFORMATION PROCEDURES

The transformation procedures are used to translate and scale the
current object so that its size, shape, or position is altered on
the display screen. The translation factors and the scalar units
are stored in the transformation list of the current object.
When the transformation procedures are performed, the original
commands and labels remain, unmodified, in the vector and label
lists for the object. Thus, when a translated object is redrawn
or written to the display area from a picture file, the object is
drawn by first executing the vector list commands for the full
size object. Then, the object is transformed by using the
translation and scalar units in the transformation list. If the
object is translated or scaled again, the new units replace the
~xisting ones in the transformation list.

An object must be designated as the current object before the
transformation procedures can be used.

There are five transformation procedures:

o GetTransformationData

o SetScale

o SetScaleRelative

o SetTranslate

o SetTranslateRelative

GetTra nsformation Data

Description

GetTransformationData returns the transformation values for the
current object. The values are returned in the following format:

rXScale
rXTranslate
rYScale
rYTranslate

(4 bytes)
(4 bytes)
(4 bytes)
(4 bytes)

Procedural Interface

GetTransformationData (pTransformRet): ErcType

where

pTransformRet

3-50

points to the memory address where the
current object's transformation values are to
be returned.

SetScale

Description

SetScale is used to change the size or shape of the current
object. It scales the current object from its full size by the
factors supplied in the parameters. If the scaling causes any
part of the object to be outside the world coordinate area, the
following error message is returned:

ercBadTransformationParameter = 7647

The parameters, rXScale and rYScale, are real numbers between 0
and 1. These units are saved in the transformation list of the
current object.

Procedural Interface

SetScale (rXScale, rYScale): ErcType

where

rXScale

rYScale

specifies the scaling of the object in the X
direction.

specifies the scaling of the object in the Y
direction.

3-51

SetScaleRelative

Description

SetScaleRelative is used after SetScale to scale the object
farther from its original size or shape. This procedure scales
the current object in the X direction by the current X scale
factor plus the relative X scale factor supplied in the
parameter. Likewise, the Y direction is scaled by the current Y
scale factor plus the relative Y scale factor supplied in the
parameter. If the scaling causes any part of the object to be
outside the world coordinate area, the following error message is
returned:

ercBadTransformationParameter = 7647

The scaling units are saved in the transformation list of the
current object.

Procedural Interface

SetScaleRelative (rXScaleRelative,
rYScaleRelative): ErcType

where

rXScaleRelative

rYScaleRelative

3-52

specifies the scaling of the object relative
to the current scale in the X direction.

specifies the scaling of the object relative
to the current scale in the Y direction.

SetTranslate

Description

SetTranslate is used to move the current object to another
position in the current picture. This procedure translates the
current object from (O,O~, the lower left corner of the world
coordinate area. The X and Y factors supplied in the parameters
are used to determine the new position. Objects should be
reduced by SetScale before they are translated. If either of the
translation factors causes part of the object to be outside the
world coordinate area, the following error message is returned.

ercBadTransformationParameter = 7647

The X and Y unit parameters must be specified in world coordinate
system values. These translation units are saved in the
transformation list of the current object.

Procedural Interface

SetTranslate (rXTranslate, rYTranslate): ErcType

where

rXTranslate specifies the translation in the X direction.

rYTranslate specifies the translation in the Y direction.

3-53

SetTranslateRelative

Description

SetTranslateRelative translates the current object from its
current position by the X and Y factors supplied in the
parameters. If either of the translation factors cause part of
the object to be outside the world coordinate area, the following
error message is returned:

ercBadTransformationParameter = 7647

The X and Y unit parameters must be specified in world coordinate
system values.

Procedural Interface

SetTranslateRelative (rXTranslateRelative, rYTranslateRelative):

where

rXTranslateRelative

rYTranslateRelative

3-54

ErcType

specifies the translation relative to the
current translation in the X direction.

specifies the translation relative to the
current translation in the Y direction.

VIEWING PROCEDURES

The viewing procedures alter the perspective from which the
current picture is viewed. By reducing the size of the window
and focusing on just a small part of the picture, for example,
the selected portion will be expanded to fit the whole viewport.
A large picture can be panned by moving a small window from one
position to another. The shape of the window can also be changed
to alter the aspect ratio.

The viewport can be modified to define a smaller portion of the
display area. The position or shape of the output display can
also be altered.

The viewing procedures operate on pictures, not objects, and
therefore, have no effect on the structure of the objects within
the picture. The vector list, label list and transformation
values for each object within the current picture are unchanged.

There are three viewing procedures:

o GetWindowData

o SetViewport

o SetWindow

GetWindowData

Description

GetWindowData returns the lower left and upper right corners of
current window. The values returned are world coordinate units.

Procedural Interface

GetWindowData (pWindowData): ErcType

where

pWindowData specifies the memory address where the
coordinate values for the current window are
returned. The format for the returned values
is:

rXMin
rYMin

rXMax
rYMax

the coordinates of the lower left
corner of the window.

the coordinates of the upper right
corner of the window.

3-55

SetViewport

Description

SetViewport defines the portion of the video display screen that
is to be used for the viewport. The default size is the entire
screen. Frequently some portion of the display screen is needed
for messages or forms. This is one instance when the size of the
viewport should be reduced to a smaller portion of the screen.

Because the viewport defines the output device display area, the
coordinates supplied in the parameters are normalized device
coordinate values.

Procedural Interface

SetViewport (rXMin, rYMin, rXMax, rYMax):
ErcType

where

rXMin specifies the left edge of the viewport.

rYmin specifies the bottom edge of the viewport.

rXMax specifies the right edge of the viewport.

rYMax specifies the top edge of the viewport.

SetWindow

Description

SetWindow defines the portion of the picture that is to be
projected onto the viewport. The parameters define the
dimensions of the window, and they must be entered as world
coordinate system values. By changing the window, it is possible
to zoom in and out on a portion of the picture, pan across the
picture, and change the aspect ratio of the picture in relation
to the screen.

Procedural Interface

SetWindow (rXMin, rYMin, rXMax, rYMax): ErcType

where

rXMin specifies the left edge of the window.

rYMin specifies the bottom edge of the window.

rXMax specifies the right edge of the window.

rYMax specifies the top edge of the window.

3-56

CURSOR PROCEDURES

The cursor procedures are used to position the cursor on the
display screen. The cursor can be set to refer to an object, a
picture, or the whole viewport.

There are six cursor procedures:

0 GetCursorPosition

0 SetNDCCursorPosition

0 SetObjectCursorPosition

0 SetWorldCursorPosition

0 TurnOff Cursor

0 TurnOnCursor

GetCursorPosition

Description

GetCursorPosition returns the position of the cursor. The
cursor's position is described in all the cursor positioning
units, that is, by normalized device units for the screen
position and by world coordinate units for the picture and object
positions.

Procedural Interface

GetCursorPosition (pCursorStatusRet): ErcType

where

pCursorStatusRet points to the memory address where the
current cursor position is returned in the
following format:

rXNDC (4 bytes)

rYNDC (4 bytes)

rXWorld (4 bytes)

rYWorld (4 bytes)

rXObject (4 bytes)

rYObject (4 bytes)

3-57

SetNDCCursorPosition

Description

SetNDCCursorPosition is used to position the cursor anywhere
within the viewport. It moves the cursor to a position defined
by normalized device coordinates. The cursor direction is also
set. If the cursor is already visible on the screen when this
procedure is used, then the old cursor is erased when the new one
is drawn.

Procedural Interface

SetNDCCursorPosition (rX, rY, bDir): ErcType

where

rX

rY

bDir

3-58

specifies the X coordinate for the cursor
position.

specifies the Y coordinte for the cursor
position.

specifies the direction of the cursor arrow.

o = up

= down

2 = right

3 = left

SetObjectCursorPosition

Description

SetObjectCursorPosition moves the cursor to a position within the
current object. The position is specified with world coordinate
system values and describes where the cursor is to be in the
full-size object. If the object is transformed, the cursor
position is adjusted to remain in the same relative position
specified for the full-size object. The direction of the cursor
is also included.

Procedural Interface

SetObjectCursorPosition (rX, rY, bDir): ErcType

where

rX

rY

bDir

specifies the X coordinate for the cursor in
the current object.

specifies the Y coordinate for the cursor in
the current object.

specifies the direction of the cursor arrow.

o = up

= down

2 = right

3 = left

3-59

SetWorldCursorPosition

Description

SetWorldCursorPosition moves the cursor to a position within the
current picture. The cursor is independent of any objects on the
screen and is, therefore, not moved when an object is
transformed. The position is specified with world coordinate
values, and the direction of the cursor is also included.

Procedural Interface

SetWorldCursorPosition (rX, rY, bDir): ErcType

where

rX

rY

bDir

3-60

specifies the X coordinate for the cursor in
the picture.

specifies the Y coordinate for the cursor in
the picture.

specifies the direction of the cursor arrow.

o = up

= down

2 = right

3 = left

TurnOff Cursor

Description

TurnOff Cursor turns off the cursor.

Procedural Interface

TurnOff Cursor: ErcType

TurnOnCursor

Description

TurnOnCursor displays the cursor at its current location.

Procedural Interface

TurnOnCursor: ErcType

USER-WRITTEN PROCEDURES

In addition to the device-independent procedures discussed above,
the graphics library also contains procedures that are called
from within the graphics software. The graphics library versions
of these procedures are defaults and can be replaced by user
written code. These called procedures are provided to allow
application programs to include special processing capabilites
within the device-independent procedures.

Calls to user-written procedures are made from within
DisplayPicture, for example, to allow applications to interrupt
the plotter output and change pens or load paper. There are
three graphics library procedures that can be replaced with user
written versions:

o LoadPaper

o ReadInterruptKey

o SetPen

3-61

LoadPaper

Description

LoadPaper enables an application program to display a message on
the screen to tell the user to load a piece of paper in the
plotter. The default LoadPaper procedure returns without
displaying a message.

This procedure is called after the plotter has been initialized
by SetOutputDevice.

Procedural Interface

LoadP aper (fP aper) : ErcType

where

fPaper

Read I nterru ptKey

Description

indicates whether the output is to be paper
or a transparency.

OFFh = TRUE, the output is paper.

DOh = FALSE, the output is transparency.

ReadlnterruptKey enables an application to interrupt the process
of displaying a picture. This procedure is called from within
DisplayPicture if the parameter fInterruptOnKey supplied to
DisplayPicture is set to TRUE. The default version of
ReadlnterruptKey returns a status code of zero. DisplayPicture
then continues to display the output. To cause an interrupt,
any nonzero code can be returned.

Procedural Interface

ReadlnterruptKey: ErcType

SetPen

Description

SetPen enables an application to halt the plotter output while
the user changes one of the pens. Messages on the video display
to instruct the end user can be included. This procedure is
called from within the DisplayPicture procedure when the plotter
is the output device and a color attribute is encountered.
SetPen is called to compare the color with the numbers of the
pens that are loaded in the plotter. If the correct pen is
already loaded, SetPen sets a "change pen" flag to FALSE.
Processing continues without notifying the user to change the
pen. The DisplayPicture procedure knows from the flag that the
pen does not have to be changed.

If the specified pen is not loaded, the change pen flag is set to
TRUE, the plotter output halted, and the user notified to change
the pen. The pen number should be set to 1 if the new pen is in
the left pen holder and 2, if the new pen goes on the right.
Another internal procedure, SelectPen, is called for this
purpose. SelectPen returns the pen that is to be changed to its
holder. SelectPen is called with one parameter set to zero
before the plotter output is interrupted.

SetPen, as described here, is the default version. Applications
designefs can modify or replace the default SetPen process with
another version.

Procedural Interface

SetPen (piColor, pfChangePen): ErcType

where

piColor

pfChangePen

points to the memory address of the pen
number.

points to the memory address of the change
pen flag.

3-63

SECTION 4

DEVICE-DEPEN DENT PROCEDURES

For applications where transportability is not an issue, the
device-dependent procedures can be used for high-speed graphics.
The device-dependent procedures in the graphics library can be
used only on graphics workstations containing the appropriate
graphics control board. The graphics control board display
memory is mapped using the coordinate positions of display
screens within the following workstations:

* B 21 (color)
* B 22 (monochrome)
* B 26 (color and monochrome)

Most of the device-dependent procedures can be used in B 21 ,
B 22, and B 26 applications; however, running an application
system that uses these procedures limits you to the type of
workstation for which it was designed. The procedures supported
on these Graphics workstations are discussed first. Then, the
procedures which are dependent upon the B 21 and B 26 color
workstations are discussed.

The device-dependent procedures are grouped by function into four
categories. Table 4-1 shows the four groups, with the procedures
listed alphabetically.

Table 4-1. Device-Dependent Procedures by Function

Control Vector and Arc Manipulation

ClearScreen
InitScreenGraphics
SetCommandScreen
SetVisibleScreen
TurnOff Graphics
TurnOffGraphicsColor
TurnOnGraphics
TurnOnGraphicsColor

Color

LoadColor
LoadColorMapper
SetColorMapper

ClearScreenRectangle
DrawScreenArc
DrawScreenLine
FillScreenRectan~le
LoadSoftPattern
SetScreenDrawingMode
SetScreenLineType

Alphanumeric Attribute

LoadColorStyleRam
SetStyleRamEntry
SetStyleRam

4-1

CONTROL PROCEDURES
These procedures handle the screen display control functions.
Two such functions are setting the visible display memory plane
and the curr~nt plane. Control procedures are also used to
display the visible screen and to clear the video display screen.

There are eight control procedures:

0 ClearScreen

0 InitScreenGraphics

0 SetCommandScreen

'0 SetVisibleScreen

0 TurnOff Graphics

0 TurnOffGraphicsColor

0 TurnOnGraphics

0 TurnOnGraphicsColor

ClearScreen

Description

ClearScreen clears the current screen and the display plane.

Procedural Interface

ClearScreen: ErcType

4-2

InitScreenGraphics

Description

InitScreenGraphics clears the display memory and resets the
default values for the line type, drawing mode, visible screen
and command screen. This procedure also sets a flag that
indicates to the B 20 Executive, when it is reloaded, that the
initial command screen must be redisplayed.

Procedural Interface

InitScreenGraphics: ErcType

SetCommandScreen

Description

SetCommandScreen is used only in B 22 Graphics workstation
applications. It specifies which screen, or display memory
plane, is to be current. Subsequent operations, such as drawing
commands, that affect the display memory will use the screen
specified.

Procedural Interface

SetCommandScreen (iScreen): ErcType

where

iScreen specifies which of the two display memory
planes is to be used for the current screen •

. 0 = the first plane

= the second plane

4-3

SetVisibleScreen

Description

SetVisible Screen is used only in B 22 Graphics workstation
applications. It specifies which screen, or display memory
plane, is to be the visible screen. The visible screen is the
one that can be displayed by TurnOnGraphics. The visible screen
and the current screen are independent of each other. One
display memory plane may be both visible and current
simultaneously, or not, depending on the subsequent functions to
be performed.

Procedural Interface

SetVisibleScreen (iScreen): ErcType

where

iScreen

TurnOff Graphics

Description

specifies which of the two display memory
planes is to be used for the visible screen.

a = the first plane

= the second plane

TurnOff Graphics turns off the video display screen. Unlike
ClearScreen, it does not erase the visible screen in display
memory.

Procedural Interface

TurnOff Graphics: ErcType

Tu rnOffG raph icsColor

Description

TurnOffGraphicsColor sets a color display to monochrome,
regardless of any selected pens or color mapper settings.

Procedural Interface

TurnOffGraphicsColor: ErcType

4-4

TurnOnGraphics

Description

TurnOnGraphics displays the screen that has been set as the
visible screen.

Procedural Interface

TurnOnGraphics: ErcType

TurnOnGraphicsColor

Description

TurnOnGraphicsColor restores colors on the display and returns
a color workstation to color graphics.

Procedural Interface

TurnOffGraphicsColor: ErcType

VECTOR AND ARC MANIPULATION PROCEDURES

These procedures are used to draw vectors and arcs on the current
screen. Rectangular areas can also be filled and cleared. The
line types and drawing modes used in the high-level procedures
can also be specified in the device-dependent procedures. In
addition, there is a procedure to load a user-defined halftone
pattern as an alternative line type.

For detailed information about line type and drawing mode
options, refer to the "Drawing Attributes" subsection of Section
2, "Concepts".

4-5

Vectors and arcs are plotted by calculating a line between the
specified endpoints. In B 22 Graphics workstation applications,
the display memory is mapped using coordinate positions for a
screen resolution of 656-by-510 pixels. Coordinate position
(0,0) is the lower left corner of the screen, and coordinate
position (655,509) is the upper right corner. In B 21 Color
Graphics workstation applications, the coordinate positions range
from (0,0) in the lower left corner to (431,318) at the upper
right.

The B 26 display memory has a screen resolution of 718-bY-348
pixels. However, coordinate position (4,0) is the lower left
corner (1435,1043) and is the top right. There are two
coordinate positions per pixel horizontally and three coordinate
positions per pixel vertically on a B 26.

There are seven vector and arc manipulation procedures:

0 ClearScreenRectangle

0 DrawScreenArc

0 DrawScreenLine

0 FillScreenRectangle

0 LoadSoftPattern

0 SetScreenDrawingMode

0 SetScreenLineType

ClearScreenRectangle

Description

ClearScreenRectangle clears a rectangular area of display memory.
The coordinates for the lower left corner of the rectangle are
entered as 16-bit words. The height and width of the rectangle
are also entered as words.

Procedural Interface

ClearScreenRectangle (wXStart, wYStart, wWidth, wHeight):

where

wXStart
wYStart

wWidth

wHeight

4-6

ErcType

specify the lower left corner of the
rectangular area.

specifies the width of the rectangle.

specifies the height of the rectangle.

DrawScreenArc

Description

DrawScreenArc draws an arc on the current screen. There are
parameters to specify the start of curvature, the drawing
direction, the radius, and the sines for the endpoints.

Figure 4-1 illustrates the values that are used for the
parameters in DrawScreenArc.

The coordinate position for the start is the actual screen
position. The X and Y values are specified as 16-bit words.

The maximum size arc that can be drawn by this operation is an
octant of a circle. To draw a larger arc, DrawScreenArc must be
called again until the intended size is reached. Figure 4-2
illustrates the drawing directions.

On a B 26, DrawScreenArc draws arcs using actual pixel
coordinates rather than the adjusted screen coordinates. For
this reason, arcs are stretched vertically, since there are more
pixels per inch horizontally than vertically.

Procedural Interface

DrawScreenArc (wX, wY, wDir, wD, wD2, wDC, wDM): ErcType

where

wX
wY

wDir

wD

wD2

wDC

wDM

specify the coordinate position for the start
of the arc.

specifies the drawing direction.

specifies the radius - 1, in pixels.

specifies ~ * (radius - 1), in pixels.

specifies radius * sine(phi), rounded up,
where the phi = the angle between the axis
and the far end of the arc:

radius
wDC< J2 O<phi<= rr/4

specifies radius * sine(theta), rounded down,
where theta = the angle between the axis and
the start of the arc: O<wDM<wDC
O<=theta< 11'/4

4-7

1
1

OM

!

DC

j

Figure 4-1. Determining Arc Length

,,/2

317/4 6 "/4

4 3

5
2

3 4

0"

0 7 6

7 0

517/4 5 2
717/4

317/2

Figure 4-2. Drawing Directions (Angles in Radians)

4-8

DrawScreenLine

Description

DrawScreenLine draws a vector on the current screen. The
coordinates entered as parameters are used for the endpoints.
The vector bits are calculated according to the current line
type. The bits in the line are then compared to the existing
display memory bits and written according to the drawing mode.

The coordinates specify the actual screen positions for the
endpoints, and they are entered as 16-bit words.

Procedural Interface

DrawScreenLine (wX1, wY1, wX2, wY2): ErcType

where

wX1
wY1 specify the coordinate position of the

beginning of the vector.

wX2
wY2 specify the coordinate position of the end of

the vector.

4-9

Fi IIScreen Recta n9 Ie

Description

FillScreenRectangle fills a rectangle in display memory with a
pattern. The values for the coordinates that define the
rectangle are entered as 16-bit words. The pattern is also
specified as a parameter.

Procedural Interface

FillScreenRectangle (wX1, wY1, wX2, wY2, bFillType): ErcType

where

wX1
wY1

wX2
wY2

bFillType

o

4-10

specify the lower left corner of the
rectangle.

specify the upper right corner of the
rectangle.

specifies the pattern that is to be used to
fill the rectangle.

Figure 4-3 illustrates the patterns.

2 3 4 5

Figure 4-3. Fill Types

LoadSoftPattern

Description

LoadSoftPattern provides for the use of user-defined line type.
This procedure defines one single line type. Besides a parameter
to identify the line type, there is a word to hold the 16~bit
pattern itself. To use a line type that has been defined with
this procedure, the value for the line type parameter in
SetScreenType must be within the range of 8 to 15. The parameter
value minus the high-order 8 bit is the index to the soft
pattern.

Procedural Interface

LoadSoftPattern (iPattern, wPattern)': ErcType

where

iPattern

wPattern

specifies the line type. The acceptable
values are 0-7.

specifies the 16-bit pattern.

SetScreenDrawing Mode

Description

SetScreenDrawingMode specifies the drawing mode that will be used
in subsequent vector and arc drawing operations. There are four
modes: set mode, clear mode, complement mode, and replace mode.
Refer to the "Drawing Attributes" subsection in Section 2,
"Concepts" for detailed information about drawing modes.

Procedural Interface

SetScreenDrawingMode (iMode): ErcType

where

iMode specifies the drawing mode to be set.

o = set

= clear

2 = complement

3 = replace

4-11

SetScreen Li neType

Description

SetScreenType specifies the dot pattern to be used for the line
when vectors are drawn. There are eight line types. A solid
line is the default, and there are other combinations of dots and
dashes. This procedure may also be used in conjunction with
LoadSoftPattern to specify a user-defined line type. Refer to
the "Drawing Attributes" subsection in Section 2, "Concepts" for
detailed information about line types.

Procedural Interface

SetScreenLineType (iLineType): ErcType

where

iLineType

4-12

specifies the line type.

o - 7 = the standard line types
(see figure 2-1)

8 - 15 = reserved for user-defined line
types (see Lo~dSoftPattern)

COLOR PROCEDURES

The color procedures are available only on the B 21 and B 26
Color Graphics workstations. The colors that appear on the video
displays for these workstations are defined by how much red,
green, and blue they contain. There are 64 different
combinations of these three primary colors, and any eight of
these 64 possibilities can be displayed on the screen at one
time.

An 8-byte memory work area is used to specify the eight colors
and load the color mapper (on the B 21 graphics control board or
the B 26 graphics controller module). The set of eight colors
used by the graphics software is called the color palette.

Each byte in the color palette specifies 'one color. The low
order six bits of each byte are used as 2-bit color settings for
red, green, and blue, respectively. Each 2-bit entry defines the
intensity of the primary color it represents. The composition of
the color is derived from the three 2-bit settings combined
together. The bit settings correspond to color intensity as
follows:

00 = none of this color is present

01 = a low intensity of this color is present

10 = a medium intensity of this color is present

11 = a high intensity of this color is present

Table 4-2 shows the position of the 2-bit color settings within
the color byte. It also lists the values for the default color
palette provided by the graphics library software. Each byte is
listed by its number, bit settings, hexidecimal notation and
color. The colors in the default palette are composed of
combinations of high-intensity red, green, and blue.

There are three color procedures:

o Load Color

o LoadColorMapper

o SetColorMapper

4-13

Table 4-2. The Color Palette

Color Byte Bit ,Positions

8 4 2 1 8 4 2 1
RED GREEN BLUE

Byte Bits Hex Color

00 11 0000 30h red

2 00 11 1100 3Ch yellow

3 0000 1100 OCh green

4 0000 0011 03h blue

5 0000 1111 OFh cyan

6 0011 00 11 33h magenta

7 00 11 1111 3Fh white

8 0000 0000 OOh black

4-14

LoadColor

Description

Loadcolor is used to change one color in a previously defined
color palette. The position of the color byte within the palette
and the new value are specified, as well as the color mapper
where the modified palette is to be loaded.

Procedural Interface

LoadColor (iMapper, iColor, bColor): ErcType

where

iMapper

iColor

bColor

LoadColorMapper

Description

specifies the color mapper that is to be
loaded.

o = first mapper

second mapper

specifies the position within the 8-byte
color palette of the color byte that is being
modified. 1-8 are the valid values.

specifies the byte setting for the new color.

LoadColorMapper specifies the address of the 8-byte memory
workarea used by the color mapper to create the color palette.
The parameter iMapper specifies which of the two color mappers is
to be loaded with the 8 bytes. The eight bytes must be formatted
with the color specifications prior to calling LoadColorMapper.

Procedural Interface

LoadColorMapper (iMapper, pColors): ErcType

where

iMapper

pColors

specifies which of the two color mappers is
to be loaded.

o first mapper

second mapper

points to the memory address of the 8-byte
color palette.

4-15

SetColorMapper

Description

SetColorMapper specifies which of the two color mappers is to be
current. The graphics library initialization procedure sets the
first mapper as the current one.

SetColorMapper can be used to switch to the other color mapper to
use another color palette for the current picture.

Procedural Interface

SetColorMapper (iMapper): ErcType

where

iMapper specifies which color mapper is to be
current.

o = first mapper

= second mapper

ALPHANUMERIC ATTRIBUTE PROCEDURES

The alphanumeric attribute procedures are available only on the
B 21 and B 26 Color Graphics workstations. Character attributes
such as blinking, half-bright, reverse video, and underlining are
ordinarily under hardware control through the alphanumeric style
RAM. The B 21 graphics control board and the B 26 graphics
controller module each have an alternate style RAM that enables
eight different attribute combinations to be used on a screen.
The graphics style RAM includes color and intensity specification
with reverse video and underlining. Blinking cannot be specified
with this style RAM. An 8-byte memory workarea is allocated to
specify the entries that are passed to the graphics style RAM.
Each byte uses the low-order six bits for the color specification
and the two high-order bits for reverse video and underlining
respectively. Refer to the "Video Access Method" and "Video
Display Management" sUbsections of the B 20 Operating System
Reference Manual for information about using the graphics control
board style RAM to access the video display.

There are three alphanumeric attribute procedures:

o LoadColorStyleRam

o SetStyleRamEntry

o SetStyleRam

4·16

LoadColorStyleRam

Description

LoadColorStyleRam specifies the eight bytes that are passed to
the color graphics style RAM. These attribute settings are used
to display different combinations of color, reverse video, and
underlining on different sections of the video screen. The low
order six bits of each byte specify the color and intensity, and
the high-order two bits are used for reverse-video and
underlining respectively.

Procedural Interface

LoadColorStyleRam (pAttrs): ErcType

where

pAttrs

SetStyleRamEntry

Description

points to the memory address of the 8-byte
set of attributes.

SetStyleRamEntry is used to modify a single 1-byte entry in the
graphics style RAM. The position of the 1-byte entry within the
set of attributes must be specified as well as the value for the
byte that will be modified. This function is identical to the
3.0 function LoadStyleRamEntry. LoadStyleRamEntry can still be
called with 4.0 graphics; however, it will take slightly longer
to execute than SetStyleRamEntry.

Procedural Interface

SetStyleRamEntry (iEntry, bVal): ErcType

where

iEntry

bVal

specifies which one of the eight bytes is to
be replaced. 0-7 are the valid values.

specifies the new value for the selected
entry.

4-17

SetStyleRam

Description

SetStyleRam sets a flag that indicates which style RAM is to be
used; the graphics style RAM or the standard alphanumeric style
RAM. The default is the standard alphanumeric style RAM.

Procedural Interface

SetStyleRam (fGraphics): ErcType

~here

fGraphics indicates which style RAM is to be used.

OFFh = TRUE, use the graphics style RAM

OOh = FALSE, use the alphanumeric style RAM

4·18

SECTION 5

ACCESSING BUSINESS GRAPHICS

OVERVIEW

Application systems that generate tabular data can use Business
Graphics to present the data graphically. Business Graphics
plots three different types of graphic representations: bar
charts, pie charts, and line charts. Before an application can
access Business Graphics to draw a chart, two processes must be
completed. All of the information needed to create the chart
must be provided in parameters that are passed to Business
Graphics. In addition, part of this information, the data values
used by Business Graphics to plot the chart, must be arranged in
a specific format.

The parameters that pass the required information to Business
Graphics are set by using standard BTOS parameter procedures. A
variable length parameter block (VLPB) is created in long-lived
memory. The following procedures are used:

o RgParamInit

o RgParamSetEltNext

o RgParamSetListStart

o RgParamSetSimple

For detailed information about the use of these procedures, see
the "Parameter Management" section in the B 20 Operating System
Reference Manual. The information provided in the parameters
includes the following items:

0 a picture file

0 a format file

0 a data file

0 a title

0 labels

0 a palette file

5-1

Picture FUe

The parameter value is actually the name of the picture file.
Business Graphics opens a picture file with the specified name.
After the chart is drawn, it is saved in this picture file for
future use. The picture file is opened in mode write. If a
picture file already exists with this name, it is overwritten.

Format File

The parameter value is the name of the format file. The format
file is a skeleton. It contains the format of the chart without
the data. A format file for each of the three types of charts is
$upplied as part of the Bu~iness Graphics software. Format files
are used so that new charts can be created without extensive
editing.

Data File

The parameter value is the name of the data file. The data file
provides the absolute values used to draw the chart. These
values are entered as standard short real numbers. FORTRAN and
Pascal application programs can enter these values directly into
the data file. In BASIC applications, however, the values must
be converted to standard short reals. The procedure used to
convert the values is:

rNew = ConvertT08087 (rOld)

The data file format varies depending on the type of chart that
is to be drawn. Each format includes both an entry to identify
the type of chart and a reserved area. After this common header,
the data files differ. Detailed information about the
requirements for each type of data file is found below in the
descriptions of the bar chart, pie chart, and line chart
procedures.

Title

The title is the label that appears above the chart. If the
title parameter is not set, a default title is taken from the
format file.

Labels

The type and number of label parameters vary depending on the
type of chart that is to be drawn. The pie chart, for example,
has labels only for its segments, while the bar and line charts
can have labels for the axes and legends.

5-2

Palette File

The parameters value is the name of the color palette. If the
palette file parameter is not set, the default color palette is
used.

Once the data has been placed in the data file, and the parameter
block has been set up, the application program can access
Business Graphics. Detailed information on setting up a run file
and chaining from the current application can be found in the
"Task Management" section of the B 20 Operating System Reference
Manual.

DRAWING A BAR CHART

Figure 5-1 is an annotated illustration of a bar chart drawn by
Business Graphics.

Regions Compared

50

45

40

35

30

25

20

15

10

5

o

to-

to-

Eastern'
I I

~
~
~
~
~
~
I

~
/

1978

Midwest Northern Western Southern

WVA ~ eM

'7 ~
- ~ ~

~ ~ ~
~ ~ ~ ~

~ ~ ~
~ / ~ jI

~ I ~ jI

~ ~ ~
~ ~ ~
~ ~ I

jI

~ I ~
~ ~ ~ jI

I I I

1979 1980 1981

Figure 5-1. Business Graphics Bar Chart

Data File Format

The format for the bar chart data file includes an array for all
of the values that are plotted for each of the legends. The
complete format for the bar chart data file is described in Table
5-1 .

5-3

Item

ChartType,

reserved

nValuesPer
Legend

nLegends

rgValues**

Table 5-1. Bar Chart Data File

Size

word

16 bytes

word

word

4 bytes

Contents

o

OFFh

the number of values in each
legend on the chart (maximum
of 12)

the number of legends on the
chart (maximum of 5)

the absolute value for the
data item, specified as a
short real number

**The number of rgValues entries equals nValuesPerLegend
multiplied by nLegends. The rgValues entries must be placed in
the data file in the following manner:

All of the values for the first data group followed by all
of the values for the next data group until all 'of the data
groups are completed.

Parameters

The parameters for building the parameter block when the chart is
a bar chart are:

BGP

picture file

5-4

the name of the picture file
that is to be used by
Business Graphics to save the
chart, use RgParamSetSimple
(parameter = 1)

format file

data file

title

X axis label

Y axis label

legend labels

X axis group labels

override format

the name of the format file
that is to be used by
Business Graphics to build
the chart, the standard name
is [sysJ<sys)bar.fm for the
B 22 or [sys]<sys)ColorBar.fm
for the B 21 series, use the
RgParamSetSimple (parameter =
2)

the name of the data file
containing the values that
are to be plotted, use
RgParamSetSimple (parameter =
3)

the label that appears above
the chart, use
RgParamSetSimple (parameter =
4)

the label that appears below
the X axis, use
RgParamSetSimple (parameter =
5)

the label that appears above
the chart, left-justified to
the Y axis use
RgParamSetSimple (parameter =
6)

the labels that appear above
the chart to describe the
legends, use
RgParamSetListStart .
(parameter = 7) and then
RgParamSetEltNext for each
label

the labels that appear below
each cluster of bars to
describe the bar groups, use
RgParamSetListStart followed
by RgParamSetEltNext
(parameter = 8)

a flag that indicates whether
the title .and labels in the
format file should be
overridden, the default is
"YES", enter "NO" to prevent
overriding, user
RgParamSetSimple (parameter =
9)

5-5

palette the name of the color
palette, user
RgParamSetSimple (parameter =
10)

The title and label parameters are optional. For any that are
not entered, labels from the format file are used instead. The
palette file parameter is also optional. If a color palette is
not specified, the default is used.

5-6

DRAWING A PIE CHART

Figure 5-2 is an annotated illustration of a pie chart drawn by
Business Graphics.

REGIONAL SALES

1981

Western 21.8%

Southern 19.6%

Northern 20.9%-'~1~

Eastern 18.2%

Figure 5-2. Business Graphics Pie Chart

Data File Format

The format for the pie chart data file includes an array for all
of the values that are used to create segments. Using the
absolute values, Business Graphics calculates the relative
percentages to divide the whole circle into proportional
segments. The complete format for a pie chart data file is
described in Table 5-2.

Item

ChartType

reserved

nSegments

rgValues**

Table 5-2. Pie Chart Data File

Size

word

16 bytes

word

4 bytes

Contents

OFFh

the number of segments in the
pie chart (maximum of 8)

the absolute value for a
segment, specified as a short
real number

** The number of rgValues entries equals nSegments.

5-7

Parameters

The parameters for building the VLPB when the chart is a pie
chart are:

picture file

format file

data file

title

segment labels

override format

palette file

the name of the picture file that is to be
used by Business Graphics to save the chart,
use RgParamSetSimple (parameter = 1)

the name of the format file that is to be
used by Business Graphics to build the chart,
the standard name is syspie.fm for the
B 22 and sysColorPie.fm for the B 21
series, use RgParamSetSimple (parameter = 2)

the name of the data file containing the
values that are to be plotted, use
RgParamSetSimple (parameter = 3)

the label that appears above the chart, use
RgParamSetSimple (parameter = 4)

the labels that describe the segments on the
chart, use RgParamSetListStart (parameter =
5) and then RgParamSetEltNext for each label

a flag that indicates whether or not the
title and labels are to override the format
file, the default is "YES", enter "NO" to
prevent overriding use RgParamSetSimple
(parameter = 9)

the name of the color palette, use
RgParamSetSimple (parameter = 10)

The title and label parameters are optional. If either one is not
entered, a label from the format file is used instead. The
palette file parameter is also optional. If it is not entered,
the default color palette is used.

5-8

DRAWING A LINE CHART

Figure 5-3 is an annotated illustration of a line chart drawn by
Business Graphics. There are two different line chart formats. A
line chart can be drawn with numeric values on the X axis, or
alphanumeric strings can be used instead. The second type of line
chart is particularly useful for describing yearly trends by
months. The data file formats for both types of line charts are
included below.

salesbyregion
Eastern Northern Southern

50 (Sales $M)

45

40

35

30

25

20

15

.. ~ -::::.:. --.
~ .. '" --- ::::;..-'

V -------b---'"'

~

10

5

o
1978

~

....,.. .. P-------

--~

1979.

--'
~-----~ - --------

1980 1981

Figure 5-3. Business Graphics Line Chart

5-9

Data File Format· Numeric Line Chart

The format for the line chart data file includes an array for all
of the values that are used to plot each line on the chart. The
complete format for a numeric line chart data file is described
in Table 5-3.

Table 5-3. Line Chart Data File

Item Size Contents

ChartType word 2

reserved 16 bytes OFFh

nLegends word the number of legends (and
lines) on the chart (maximum
of 5)

nCoordinates word the number of X,Y pairs for
the legend (and line)

xValues** word the X values for the legend
(and line), specified as short
real numbers

yValues** word the Y values for the legend
(and 1 ine) , specified as short
real numbers

** The number of xValues and yValues entries equals
nCoordinates, and the number of sets of nCoordinates, xValues,
yValues entries equals nLegends.

5-10

Data File Format· Alphanumeric Line Chart

Table 5-4 describes the data file format for alphanumeric line
charts.

Table 5-4. Alphanumeric Line Chart Data File

Item Size

Chart Type word

reserved 16 bytes

nLegends word

nCoordinates word

yValues** nCoordinates*4

xValues** variable

Contents

3

OFFh

the number of legends (and
lines) on the chart (maximum
of 5)

the number of X,Y pairs for
the legend (and line)

the Y values for the legend
(and line), specified as short
real numbers

the X values specified as
alphanumeric strings

** Each legend must have the same number of yValue entries.
Because the number of Y values is fixed, nCoordinates does not
have to be repeated for each legend. After all the Y values are
specified, a single set of X values is entered. Each X string
within the set is entered according to the following format:

o a word containing the length, in bytes, of the string

o the actual string

5-11

o if the string length is not even, a trailer byte set to zero
to give the entry an even length.

The string "JANUARY", for example, would be 10 bytes long and
would be entered as follows:

0,7,JANUARY,0

The strings are entered sequentially with no spaces or separators
between each string.

Parameters

The parameters for building the VLPB when the chart is a line
chart are:

picture file

format file

data file

title

X axis label

Y axis label

legend labels

override format

palette file

5-12

the name of the picture file that is to be
used by Business Graphics to save the chart,
use RgParamSetSimple (parameter = 1)

the name of the format file that is to be
used by Business Graphics to build the chart,
the standard name is [sysJ<sys)line.fm for
the B 22, and [sysJ<sys)ColorLine.fm for the
B 21 series, use RgParamSetSimple (parameter
= 2)

the name of the data file that contains the
values that are to be plotted, use
RgParamSetSimple (parameter = 3)

the label that appears above the chart, use
RgParamSetSimple (parameter = 4)

the label that appears below the X axis, use
RgParamSetSimple (parameter = 5)

the label that appears above the chart, left
justified to the Y axis, use RgParamSetSimple
(parameter = 6)

the labels that appear above the chart to
describe the legends, use RgParamSetListStart
(parameter = 7) and then RgParamSetEltNext
for each label

a flag that indicates whether or not the
title and labels are to override the labels
in the format file, the default is "YES",
enter "NO" to prevent overriding use
RgParamSetSimple (parameter = 9)

the name of the color palette, use
RgParamSetSimple (parameter = 10)

The title and label parameters are optional. If either one is
not entered, a label from the format file is used instead. The
palette file parameter is also optional. If this parameter is not
entered, the default color palette is used.

AN ALTERNATIVE TO THE DATA FILE

Instead of creating a data file, an application program can
allocate a portion of long-lived memory to store the data values.
The data file parameter in the VLPB is set up differently to
indicate that the data values are in memory. Instead of the data
filename, this parameter holds a pointer to the memory address
and the size of the area used. The format for these two
parameters is as follows:

o a string beginning with the character n@n followed by a 4-byte
pointer to the memory area.

The low-order two bytes are the relative address, or
offset.

The high-order two bytes are the segment address.

o a binary word specifying the size of the data area.

RgParamSetSimple is ordinarily used to set this parameter. In
this case, however, RgParamSetListStart must be called, followed
by two calls to RgParamSetEltNext.

A SAMPLE BASIC PROGRAM

The following BASIC compiler program is a simple routine that
accesses Business Graphics to create a pie chart. The input is
entered through prompts on the display screen. To run this
program, a version of BASIC must be configured to support calls
to non-BASIC procedures. Use BasGen.Asm to create-a look-up
table that is used by Basic to access the non-BASIC procedures.
Then, ~reate a run file that contains the BASIC interpreter, the
look-up table, and the non-BASIC procedures (including
Graphics.Lib) all in object module format. For detailed
information, refer to "Appendix B: Calling Non-Basic Procedures"
in the Basic Compiler Reference Manual.

5-13

10 DIM SD%[2]
20 PMEMORY! = 0
30 NSEGMENTS% = 0
40 PIEVAL! = 0
50 ERC% = 0
60 1% = 0
70 W% = 0
BO ON ERROR GOTO 550
90 REM
100 REM create variable length parameter block
110 ERC% = ALLOCMEMORYLL(204B,PTR(PMEMORY!»: IF ERC%<>O THEN
ERROR 99
120 ERC% = RGPARAMINIT(PMEMORY!,204B,7): IF ERC%<>O THEN ERROR ~9
130 REM
140 REM store parameteFs
150 A$ = "BASICDATA": 1%=1: GOSUB 450
160 A$ = "[SYS]<SYS>PIE.FM": 1%=2: GOSUB 450
170 A$ = "BASICDATA": 1%=3: GOSUB 450
1BO INPUT "TITLE OF PIE CHART ";A$: 1%=4: GOSUB 450

190 REM
200 REM create data file header
210 OPEN "0", #1,"BASICDATA"
220 WIDTH 255
230 PRINT #1, MKI$(1);
240 FOR 1% = 0 TO 7
250 PRINT #1, MKI$(&HFFFF);
260 NEXT 1%
270 REM
2BO REM get data values and store in data file
290 INPUT "NUMBER OF PIE SEGMENTS";NSEGMENTS%
292 IF NSEGMENTS%<1 OR NSEGMENTS%>B THEN PRINT "PLEASE ENTER
NUMBER BETWEEN 1 AND B": GOTO 290
300 PRINT #1, MKI$(NSEGMENTS%);
310 ERC% = RGPARAMSETLISTSTART(5): IF ERC%<>O THEN ERROR 99
320 FOR 1% = 0 TO (NSEGMENTS% - 1)
330 PRINT "VALUE FOR SEGMENT ";1%+1;
340 INPUT PIEVAL!
350 PIEVAL! = CONVERTTOBOB7(PIEVAL!)
360 PRINT #1, MKS$(PIEVAL!);
370 PRINT "LEGENDS FOR SEGMENT ";1%+1;
3BO INPUT A$: GOSUB 490
390 ERC% = RGPARAMSETELTNEXT(PTR(SD%[O]»: IF ERC%<>O THEN
ERROR 99
400 NEXT 1%
410 CLOSE #1
420 ERC% = OSCHAIN("[SYS]<SYS>BGP.RUN","",129,0,0): IF ERC%<>O
THEN ERROR 99
430 END
440 REM
450 REM - store A$ as parameter 1%
460 GOSUB 490
470 ERC% = RGPARAMSETSIMPLE(I%,PTR(SD%[O]»: IF ERC%<>O THEN
ERROR 99

5-14

480 RETURN
490 REM
500 REM create a pointer and length for A$
510 SD%[O] = GETRA(PTR(A$))
520 SD%[1] = GETSA(PTR(A$))
530 SD%[2] = LEN(A$)
540 RETURN
550 REM
560 REM error handler
570 IF ERR=99 THEN PRINT "ERC ";ERC%;: GOTO 590
580 PRINT "ERROR ";ERR;
590 PRINT" IN LINE ";ERL
600 STOP
610 END

5-15

Decimal
Value

7600

7601

7602

7610

7611

7612

7613

7614

7620

7621

7622

APPENDIX A

STATUS CODES

Meaning

Graphics is not available on
this workstation.

A graphics operation was
invoked without first
initializing graphics.

An error occurred internal to
the graphics library.

A graphics operation that
requires a picture to be open
was invoked before opening a
picture.

An attempt was made to open a
picture when one was already
open.

An attempt was made to modify
(vectors or labels) a picture
that was opened in read mode.

An OpenPicture operation
failed because the picture
specified does not have a
valid picture name.

An OpenPicture failed because
the picture specified was not
a picture file.

A graphics operation that
requires an open object was
invoked when there was no open
object.

An attempt was made to open a
picture or an object when an
object was still open.

The object specified to
OpenObject was more than 12
characters.

A-1

Decimal
Value

7623

7624

7625

7626

7627

7628

7629

7640

7641

7642

7643

A-2

Meaning

A graphics operation that
requires an object to be
closed was invoked when an
object was still open.

CloseTempObject was performed
when the open object was not
temporary.

A graphics operation that
requires a retained object was
invoked when the open object
was temporary.

An attempt was made to modify
(vectors and labels) the open
object when the picture was
opened in read mode.

An attempt was made to modify
(vectors and labels) the open
object when the picture was
opened in read mode.

SetNextObject was performed
when the current object was
the last object in the
picture.

An OpenTempObject operation
failed because either a
picture or another object was
open.

A label operation requiring an
open label was invoked when
there was no label.

SetNextLabel was performed
when the current label was the
last label in the object.

A font name was specified that
was longer than 12 characters.

An invalid label origin was
specified in a label
operation.

Decimal
Value

7644

7645

7646

7647

7649

7690

7691

7692

7693

Meaning

A text or label operation was
performed in which the text
string extended outside the
world coordinate system.

A zero-length label was
specified.

A graphics operation was
invoked with incorrect
parameters.

A graphics transformation
operation (SetScale,
SetTranslate) would, if
invoked, result in invalid
transformation values.

A graphics operation that was
performed did not provide a
large enough workarea.

A printer was specified
incorrectly.

A font was specified
incorrectly.

The standard font,
SimplexRoman, was not
specified in the
Graphics.fonts file.

An invalid output device was
specified.

A-3

APPENDIX B

PLOTTERS AND PRINTERS

SUPPORTED PERIPHERALS

The Graphics Support Package contains software routines that
drive the following hardware peripherals:

* Burroughs AP1351 Multi Function Printer
* Burroughs B9253 Dot Matrix Printer

Burroughs Corporation supports these printers.

UNSUPPORTED PERIPHERALS

The Graphics Support Package also contains software routines
which drive the following hardware peripherals:

Hewlett-Packard Hodel HP7220C 8 pen

Hewlett-Packard Model HP7220T 8 pen

Hewlett-Packard Model HP7470A 2 pen

Hewlett-Packard Model HP7475A 6 pen

Strobe Model 100 1 pen plotter

Printronix MVP dot matrix printer

Envision 420 dot matrix printer

Anadex 9620 dot matrix printer

plotter

plotter

plotter

plotter

Okidata Microline 93 dot matrix printer

Dataproducts 8010 dot matrix printer

None of these peripherals is marketed by Burroughs Corporation.
Burroughs does not warrant the suitability or performance of
these peripherals in customer applications.

The particular device selected is the responsibility of the
customer.

8-1

PERIPHERAL CONFIGURATION

There are five configuration files found in the Graphics Support
Package. Four of these configuration files are used to enable
the unsupported plotters to interface with the graphics package.
Each configuration-file enables either direct or spooled plotting
for either the Hewlett-Packard plotters or for the Strobe
plotter. The files are:

A) PlotterConfig.Sys

B) HPPlotterConfig.Sys

C) StrobeConfig.Sys

D) StrobePlotterConfig.Sys

Direct for Hewlett-Packard

Spooled for Hewlett-Packard

Direct for Strobe

Spooled for Strobe

The printers use the following file for direct and spooled
printing.

E) GraphicsPrinterConfig.Sys Direct and Spooled Printing

The configuration file information is needed to set peripheral
switch settings. It is as follows:

Configuration files A) B) C)

Data bits 7 7 8
Parity 0 0 none
Baud rate 2400 2400 2400
Stop bits 1 1 1
Transmit time out 60 60 5
Receive time out 60 60 5
CR/LF mapping mode binary binary
Newline mapping mode binary binary binary
Line control XonXoff XonXoff XonXoff
EOF byte 04 04
Tab expansion size 8
Number of characters per line 80
Translation file none

Note: If your plotter is connected to an XE520, the following
changes must be made to the configure files:

* set the data bits to 8
* change the parity to none

8-2

Configuration files

Data bits
Parity
Baud rate
Stop bits
Transmit time out
Newline mapping mode
Line control
Tab expansion size
Number of characters per line
Additional ACK delay
Translation file

D)

8
none
2400
1
60
binary
XonXoff
8
80

none

E)

60
binary

o
132
o
none

Blank sections do not apply to that type of configuration file.

For each peripheral used an entry must be made in the
Sys.Printers file, and for spooled printing in the Queue.Index
file. The Sys.printers entries are of the format:

name 1:
name 2:

spec 1 [, spec 1a]:
spec 2 [, spec 2a]:

text type:
text type:

graphics type
graphics type

Name field is a nickname or alias for the printer. This can be
any character or string such as Spool or PrinterA, etc. This
field is used by an application program when specifying a printer
or plotter.

The specification is a device specification. If the device is to
be connected directly (rather than spooled locally or through a
master workstation) the specification is a configuration file
(i.e., [COMM]B&[Sys]<Sys)PlotterConfig.sys). If the device is a
spooled device, then the specification will be a queue name such
as [SPL]. Either or both kinds of specifications may be defined
for each printer or plotter. The application program determines
whether the output device is installed as a spooled device (and
if so, spool to it) or other (and if so, print or plot directly
to it).

Text type is used to determine the type of text printer; that is,
to differentiate a printer used to produce draft copy (such as a
parallel) from one used to proQuce real formatted output (such as
serial). For a plotter that has no text capabilities, this field
must be blank to indicate that this device is unsuitable for
printing.

Graphics type is used to determine the type of graphics
formatting that must be sent to the output device. For a serial
printer this field is blank.

8-3

The possible entries for graphics type are as follows:

Prism for the AP 1351 MultiFunction Printer and for the
Dataproducts 8050 dot matrix printer
Oki for the Okidata Microline 93 dot matrix printer
Anadex for the Anadex 9620 dot matrix printer
Printronix for the Printronix MVP dot matrix printer
8010 for the Dataproducts 8010 dot matrix printer
HP7470A for the HP7470A 2 pen plotter
HP7220C for the HP7220C -8 pen plotter
Strobe for the Strobe Model 100 1 pen plotter
HP7475A for the HP7475A 6 pen plotter
HP7220T for the HP7220T 8 pen plotter

For example, if you are using the HP7470A plotter and are
connecting directly to Channel B of your system witout using the
spooler, the plotter information must be added into the
Sys.printers file. The following example illustrates a
customized Sys.Printers file.

DIRECTSER:
DIRECTPAR:
SERIAL:
PARALLEL:
DSer:
Direct:
DPar:
Ser:
Par:
HP7470A:

[PTR]B&[sys]<sys>PtrBConfig.sys:
[Lpt]&[sys]<sys>LptConfig.sys:
[SpIB]:
[Spl]:
[Ptr]B&[sys]<sys>PtrConfig.sys:
[Lpt]&[sys]<sys>LptConfig.sys:
[Lpt]&[sys]<sys>LptConfig.sys:
[SpIB]:
[Spl]:
[Comm]B&[sys]<sys>PlotterConfig.sys:

Diablo630
Draft
Diablo630
Draft
Diablo630
Draft
Draft
Diablo630
Draft
:HP7470A

This add~ an entry for a plotter whose nickname is HP7470A, uses
the configuration file PlotterConfig.sys, is connected through
Channel B, and is of type HP7470A.

r

See the B 20 Software Operation Guide for more information.

SPOOLED PERIPHERAL SUPPORT

If you want to use the same environment as described above but
with spooling, the following entry must be added to Sys.printers
instead of the one described above:

HP7 470A: [COMM] B& [Sys] <Sys>P lotterConfig. sys, [HP7 470A]: : HP74 70A

8-4

This entry is the same as the previous one except that the queue
name HP7470A has been added. In this case, when specifying
HP7470A, it sees if the spooler is installed. If it is not, the
output is sent directly through Channel Busing
[SysJ<Sys)PlotterConfig.sys. If the spooler is installed ~nd
that queue is installed, the output is sent directly through
Channel Busing [SysJ<Sys)PlotterConfig.sys. If the spooler is
used for spooling to plotters, then the spooler must be installed
with a spooler configuration file other than the default. This
configuration file must specify the queue name to be used for the
plotter, its matching printer configuration file, and its
channel. In addition, the queue. index file must be modified to
include this new queue, and the system must be rebooted.

The spooler configuration file which must be specified for the
above example should have an entry for Channel B as follows:

B/HP7470A/HP7470A[SysJ<Sys)HPPlotterConfig.sys/64/n

where: B specifies the channel;
HP7470A is the printer name;
HP7470A is the queue name; and
[SysJ<Sys)HPPlotterConfig.sys is

the printer configuration file. •

The following lines would also be added to the queue. index file:

HP7470A/[SysJ<Sys)HP7470A.Queue/1/1
HP7470AControl/[SysJ<Sys)HP7470AControl.Queue/1/1

When spooling to printers the standard parallel port line printer
configuration and spooler file are to be used.

CONNECTIONS

All five of the referenced plotters require a crossed cable for
RS-232-C communications. Figure B-1 illustrates the cross cable
assembly.

8-5

Pinouts:

Assignments

Protective Ground
(shield)
Transmit Data
Receive Data
Request to Send
Clear to ~Send
Signal Ground
Data Set Ready
Carrier Detect

A
Workstation

1
2
3
4
5
7
6
8

Data Terminal Ready 20

B

B
DTE

1
2
3
4
5
7
6
8

20

DTE

Assignments

Protective Ground
(shield)
Transmit Data
Receive Data
Request to Send
Clear to Send
Signal Ground
Data Set Ready
Carrier Detect
Data Terminal Ready

Figure B-1. Crossed Cable for RS-232-C Communications

8-6

APPENDIX C

SAMPLE GRAPHICS APPLICATION PROGRAM

This sample Pascal program opens a picture, adds an object, and
draws a frame, a pattern, and a label. It also scales the object,
moves it on the screen, zooms in on part of it, and changes the
window to zoom in on the label.

When the program is running, depress the space bar after each
picture is displayed to continue with the next picture.

PROGRAM Example (INPUT,OUTPUT);

CONST

TYPE

PW = ' ';
cbPW = 0;
ModeRead = RETYPE (WORD,'mr');
ModeWrite = RETYPE (WORD,'mw');
ModeModify = RETYPE (WORD,'mm');
sMemory = /lAOOO;
sMemoryG = /lAOO;
cbLabelEntry = 106;

ErcType = WORD;
POINTER = ADS OF WORD;
QUAD = ADS OF WORD;
BUFFER = ARRAY [0 •. 129] OF BYTE;
NameType = LSTRING (255);

FUNCTION AllocMemorySL (cBytes: WORD; ppSegmentRet:
POINTER):ErcType;
EXTERN;

FUNCTION ErrorExit (erc : WORD):ErcType;
EXTERN;

FUNCTION ReadKbd (pCharRet: POINTER):ErcType;
EXTERN;

FUNCTION SetScreenVidAttr (iAttr: WORD; fOn: BOOLEAN):ErcType;
EXTERN;

(*

(*

GRAPHICS EXTERNALS

Initialization *)

FUNCTION InitGraphics:ErcType;
EXTERN;

FUNCTION ClearViewPort:ErcType;
EXTERN;

*)

C-1

(* ___ Picture Operations ___ *)

FUNCTION OpenPicture (pbPictureName: POINTER; cbPictureName:
WORD; pbPassword: POINTER; cbPassword, Mode: WORD;
pMemory: POINTER; sMemory: WORD):ErcType; EXTERN;

FUNCTION ClosePicture (fSave: BOOLEAN):ErcType;
EXTERN;

FUNCTION DisplayPicture (fInterrupt: BOOLEAN):ErcType;
EXTERN;

(* ___ Object Operations ___ *)

FUNCTION AddObject (pbObjectName: POINTER; cbObjectName: WORD;
rXMin, rYMin, rXMax, rYMax: REAL):ErcType;
EXTERN;

FUNCTION CloseObject:ErcType;
EXTERN;

(* Drawing Operations *)

FUNCTION Draw (rX, rY: REAL):ErcType;
EXTERN;

FUNCTION Move (rX, rY: REAL):ErcType;
EXTERN;

(* Viewing OPerations *)

FUNCTION SetWindow (rXMin, rYMin, rXMax, rYMax: REAL):ErcType;
EXTERN;

(* Transformation Operations *)

FUNCTION SetTranslate (rXTranslate, rYTranslate: REAL):ErcType;
EXTERN;

FUNCTION SetTranslateRelative (rXTranslateRelative,
rYTranslateRelative: REAL):ErcType;
EXTERN;

FUNCTION SetScale (rXScale, rYScale: REAL):ErcType;
EXTERN;

FUNCTION SetScaleRelative (rXScaleRelative, rYScaleRelative:

(*

C-2

REAL):ErcType;
EXTERN;

Label Operations *)

FUNCTION AddLabel (rX, rY: REAL; pbString: POINTER; cbString:
WORD; rSChars: REAL; bLorg, bPen, bUserID: WORD;
pbFontName: POINTER; cbFontName: WORD):ErcType;
EXTERN;

PROCEDURE TestErc (erc: ErcType);
BEGIN

IF ere <> ° THEN ere := ErrorExit(erc);
END;

PROCEDURE ClearScreen;

BEGIN
TestErc(SetScreenVidAttr (1, FALSE»;

END;

VAR [PUBLIC]

BEGIN

Ere: ErcType;
pMemory: POINTER;
PicName: NameType;
pbPicName: POINTER;
cbPicName: WORD;
ObjName: NameType;
pbObjName: POINTER;
cbObjName: WORD;
TextString: NameType;
pbTextString: POINTER;
cbTextString: WORD;
FontName: NameType;
pbFontName: POINTER;
cbFontName: WORD;
bChar: BYTE;

ClearScreen;

(* allocate memory for the picture file *)

TestErc(AllocMemorySL (sMemory, ADS pMemory»;

TestErc(InitGraphics);

(* Open a picture to write into *)

pbPicName := ADS PicName[l];
PicName := 'Example.Pic';
cbPicName := WRD (PicName[O]);
TestErc(OpenPicture (pbPicName,cbPicName,ADS
PW,cbPW,ModeWrite,pMemory,sMemoryG»;

(* Add object and draw into it *)
(* Coordinate range will be from (0, 0) to (50, 400) *)

C-3

pbObjName := ADS ObjName[1];
ObjName := 'Example';
cbObjName := WRD (ObjName[O]);
TestErc(AddObject (pbObjName,cbObjName, 0, '0, 50,
400»;

(* Draw a frame border *)

TestErc(Move (0, 0»;
TestErc(Draw (50, 0»;
TestErc(Draw (50, 400»;
TestErc(Draw (0, 400»;
TestErc(Draw (0, 0»;

(* Draw a pattern in the lower left corner *)

TestErc(Move (5, 40»;
TestErc(Draw (25, 40»;
TestErc(Draw (25, 150»;
TestErc(Draw (5, 150»;
TestErc(Draw (5, 40»;
TestErc(Draw (25, 150»;
TestErc(Move (5, 150»;
TestErc(Draw (25, 40»;
TestErc(Move (5, 95»;
TestErc(Draw (25, 95»;

(* Draw a label in the upper right *)

pbTextString := ADS TextString[1];
TextString := 'This is a label';
cbTextString := WRD (TextString[O]);
pbFontName := ADS FontName[1];
FontName := 'SimplexRoman';
cbFontName := WRD (FontName[O]);

TestErc(AddLabel (75, 60, pbTextString, cbTextString,
1, 6, 1, 1, pbFontName, cbFontName»;

(* Pause for keyboard input *)

TestErc(ReadKbd (ADS bChar»;

(* Scale down the object and redraw the picture *)

TestErc(ClearViewport);
TestErc(SetScale (0.5, 0.5»;
TestErc(DisplayPicture (FALSE»;

(* Pause for keyboard input *)

TestErc(ReadKbd (ADS bChar»;

(* Scale the X axis independently of the Y axis *)

C-4

TestErc(ClearViewport);
TestErc(SetScaleRelative (0.3, 0»;
TestErc(DisplayPicture (FALSE»;

(* Pause for keyboard input *)

TestErc(ReadKbd (ADS bChar»j

(* Move the object up in the picture *)

TestErc(ClearViewport);
TestErc(SetTranslate (0, 35»;
TestErc(DisplayPicture (FALSE»;

(* Pause for keyboard input *)

TestErc(ReadKbd (ADS bChar»;

(* Make the object full size, then zoom in on part of
it *)

TestErc(ClearViewport);
TestErc(SetTranslate (0, 0»;
TestErc(SetScale (1, 1»;
TestErc(SetWindow (0, 0, 60, 50»;
TestErc(DisplayPicture (FALSE»;

(* Pause for keyboard input *)

TestErc(ReadKbd (ADS bChar»;

(* Move the window to zoom in on the label *)

TestErc(ClearViewport) ;

TestErc(SetWindow(40, 45, 80, 75»;
TestErc(DisplayPicture (FALSE»;

(* Pause for keyboard input *)

TestErc(ReadKbd (ADS bChar»;

(* Close the object and the picture *)

TestErc(CloseObject);
TestErc(ClosePicture (FALSE»;

END.

C-5

APPENDIX D

MINIMUM MEMORY REQUIREMENTS

This appendix describes the minimum memory requirements for
pictures and objects.

PICTURE

The minimum memory required to create a picture is 4096 bytes.

OBJECT

Each object requires 256 bytes for the header.

The requirements for the vector list vary, depending on the
number and complexity of the commands that are saved. Simple
commands such as SetColor require two words. FillRectangle, on
the other hand, needs ten words. WriteTextString requires a
minimum of ten words and needs more for long text strings.

Labels require an average of 100 bytes each. The actual amount
can be more or less, depending on the length of the label text.

PRINTER

When a dot matrix printer is used for the output device, a
substantial amount of memory must be allocated. Opening a picture
requires approximately 30,000 bytes.

D-1

APPENDIX E

GLOSSARY

Aspect Ratio. The aspect ratio is the ratio of height to width
for the video display area.

Business Graphics. Business Graphics is a high-level, menu-driven
graphics application system that can be accessed from user
designed applications.

Character Size. Character size is a text attribute that specifies
the relative size of the characters in a text string.

Color Palette. The color palette is a set of eight colors that
can be used for color specification on the B 21 series Color
Graphics workstation display or on plotter output.

Device-Dependent Procedures. Device-dependent procedures are
graphics library procedures that can be used exclusively in
either B 22 Graphics workstation applications or B 21 series
Color Graphics workstation applications.

Device-Independent Procedures. Device-independent procedures are
graphics library procedures that can be used in applications
designed to run on any B 20 Graphics workstation.

Drawing Attributes. Drawing attributes are variable
characteristics of an object, such as line type and color, that
are stored with drawing commands in the vector list of an object.

Drawing Mode. The drawing mode is a drawing attribute that
describes the method by which a vector or arc is written to
display memory.

Font. The font is a text attribute that specifies which font is
used for the character set when a label or text string is
displayed.

Graphics Library (Graphics.Lib). The graphics library is a set of
system-level procedures that can be called from user-designed
applications to use all the capabilities of the graphics
software. .

Label List. The label list is the component of an object where
label text and attributes are stored.

Label Origin. The label origin is a text attribute that specifies
how text is to be oriented in relation to the current display
position.

Line Type. The line type is a drawing attribute that describes
the pattern of dots and dashes used when a vector is drawn.

E-1

Normalized Device Coordinate System. The normalized device
coordinate system is a device-independent coordinate system used
to reference the video display screen. The coordinate units
describe positions in terms of their relation to the top, bottom
and sides of the display area.

Object. An object is a structural component of a graphic
representation. It is a set of graphic commands and labels that
can be edited and manipulated as an entity.

Picture. A picture is the main structural component of a graphic
representation. A picture is composed of one or more objects.

Picture File. A picture file is a file that is used to save a
picture so that it can be redisplayed.

Raster mode. Raster mode is a method of writing graphic
representations. Patterns of bits are copied onto rectangular
areas of display memory.

Temporary Object. A temporary object is an object for which no
vector and label data are saved. Temporary objects can not be
redisplayed.

Text Attributes. Text attributes are variable .characteristics of
an object, such as font and character size, that are used and
stored with labels or text strings.

Transformation List. The transformation list is the structural
component of an object where translation and scalar units are
stored.

User-Defined Coordinate System. A user-defined coordinate system
is a device-independent coordinate system where the coordinate
unit ranges are specified by the user and automatically mapped to
the world coordinate system by the graphics software.

User-Written Procedures. User-written procedures are device
independent routines called by the graphics software that can be
replaced by user-designed versions.

Vector List. The vector list is the structural component of an
object where commands, drawing attributes, and text strings are
stored.

Viewport. The viewport is the portion of the video display screen
that defines where a graphic representation is to be displayed.

Window. The window is the portion of the world coordinate system
that defines what is to be displayed on the video screen.
Coordinate positions outside the window are clipped.

World Coordinate System. The world coordinate system is a device
independent coordinate system used internally by the device
independent graphics library software to map objects-to display
memory_

E-2

1 •

2.

4.

5.

APPENDIX F

KNOWN LIMITATIONS

When graphics is used on a B 26 (with release level 4.0 or
earlier Standard Software) and configured with one megabyte
of memory, the system hangs (it does not respond to keyboard
entries).

To set a B 22 to 132 column mode with Graphics, the system
must first have an InitGraphics done at 80 column mode.
Either mode can then be set.

Grfx-5.0-Update.Sub must be submitted in order for 4.0
Graphics to work with 5.0 BTas. Before submitting, copy
Grfx-5.0-Update.Sub into the directory containing
Graphics.Lib. This creates a 'special' release of
Graphics.Lib. Use this with 5.0 eTaS.Lib to relink 4.0
graphics applications. This allows you to create runfiles
that work on 5.0 BTas.

The two leftmost columns of pixels do not display on a B 26.
Use SetViewPort to adjust the viewing display.

The default descri~tions for LoadPaper and SetPen (user
written procedures) are not implemented in this release.
Users can still replace these procedures.

F-l

AddLabel procedure, 3-45
AddObject procedure, 3-17
AddPicture procedure, 3-12
Alphanumeric attribute

procedures, 2-11, 4-16
Alphanumeric style RAM, see

Color style RAM
Anadex 9620 printer, see Dot

matrix printers
Aspect ratio,

screen, 2-8
world coordinate system,
2-8

Attribute procedures, 3-22

BASIC, sample program, 5-13
Business Graphics

features of, 1-1
accessing, 5-1·
bar chart, 5-3
pie chart, 5-7
line chart 5-10

Character size, 2-6
in SetCharacterSize, 3-33
in AddLabel, 3-45, also see
Text attributes

ClearLabels procedure, 3-18
Clear mode, 2-4, also see

Drawing mode
ClearScreen procedure, 4-2
ClearScreenRectangle

procedure, 4-6
ClearVectors procedure, 3-18
ClearViewport procedure, 3-5
CloseObject procedure, 3-18
ClosePicture procedure, 3-12
CloseTempObject procedure,

3-19
Color, 2-6, 2-11,

in attribute procedures,
3-22
in color procedures, 4-13

Color mapper, 2-2, 2-11
in color procedures, 4-13
in LoadColorMapper, 4-15
in SetColorMapper, 4-16

Color monitor, 2-2, 2-11
Color palette, 2-6, 2-11

in AddPicture, 3-12
in SetColor, 3-23
in SetCurrentPalette, 3-24

INDEX

in GetPictureColors, 3-22
in color procedures, 4-13
in LoadColor, 4-15
in SetColorMapper, 4-16

Color procedures, 2-11, 4-13
Color style RAM, 2-2, 2-11

in alphanumeric attribute
procedures, 4-16

Complement mode, 2-4, also s~e
Drawing mode

ComplexRoman font, 2-6, also
see Font

Control procedures, 2-10, 4-2
Current object

in object procedures, 3-16
in AddObject, 3-17
in CloseObject, 3-18
in SetNextObject, 3-21

Current plane, 2-10
in SetCommandScreen, 4-3

Cursor procedures, 3-57

Data Products SPG-8010 printer,
see Dot matrix printers

Data Products SPG-8050 printer,
see Dot matrix printers

Data file, 5-2
alternative to, 5-13

DeleteCurrentLabel, 3-46
Device-dependent procedures,

2-1, 4-1
Device-independent coordinate

systems, 2-7
Device-independent procedures,

2-2, 3-1
typical usage of, 3-3

Disk file
as output, 2-11
in SetPlotterDevice, 3-9

DisplayCurrentObject
procedure, 3-19

Display memory
mapping to, 4-6

DisplayPicture procedure, 3-13
with ReadInterruptKey, 3-62

Display screen, 2-7
Dot matrix printers, 2-11
Draw procedure, 3-27
DrawArc procedure, 3-28
DrawCircle procedure, 3-29
Drawing attributes, 2-3

in attribute procedures, 3-22

2

INDEX (Cont.)

in vector and arc manipu
lation procedures, 4-5

Drawing mode, 2-4
in SetDrawingMode, 3-25
in SetScreenDrawingMode,
4-11

Drawing procedures, 3-26
DrawLine procedure, 3-29
DrawRelative procedure, 3-30
DrawScreenArc procedure, 4-7
DrawScreenLine procedure, 4-9
DuplexRoman font, 2-6, also

see Font .

File specification
for fonts, 2-6, also see

Font
Fill patterns

in FillRectangle, 3-30
in FillScreenRectangle, 4-10

FillRectangle procedure, 3-30
FillScreenRectangle procedure,

4-10
Font, 2-6

in SetFont, 3-34
in font procedures, 3-37
in AddLabel, 3-45,
also see text attributes

Font procedures, 3-37
with SetFont, 3-34

Format file, 5-2

GetCurrentLabel procedure,
3-47
with ModifyLabel, 3-48

GetCursorPosition procedure,
3-57

GetFontName procedure, 3-39
GetFontNumber procedure, 3-40
GetLabelData procedure, 3-47
GetNumberOfFonts procedure,

3-40
GetNumberOfObjects procedure,

3-14
GetPictureColors procedure,

3-22
GetTransformationData

procedure, 3-50
GetUserFontName procedure,

3-41
GetWindowData procedure, 3-55
Gothic font, see Font

Gould DS10 plotter, see Plotters
Graphics control board

in device-dependent
procedures, 4-1

Graphics.Font file, 3-37, also
see Font

Graphics library, 1-1,2-1
Graphics.Lib, see Graphics

library

HP7220C plotter, see Plotters
HP7220T plotter, see Plotters
HP74708 plotter, see Plotters
HP7475A plotter, see Plotters

InitGraphics procedure, 3-5
Initialization procedures, 3-4
Installation procedures, 1-2
Internal name (font), 2-6

in font procedures, 3-37
in GetFontName, 3-39, also
see Font

Label list, 2-3
in label procedures, 3-42
in AddLabel, 3-45

Label origin, 2-6
in SetLabelOrigin, 3-35
in AddLabel, 3-45
also see Text attributes

Label procedures, 3-42
Label structure, 3-42
Line type, 2-3

in attribute procedures,
3-22
in SetLineType, 3-25
in SetScreenLineType, 4-12

LoadColor procedure, 4-15
LoadColorMapper procedure,

4-15
LoadColorStyleRam procedure,

4-17
LoadPaper procedure, 3-62
LoadSoftPattern procedure,

4-11

Memory allocation, D-1
in OpenPicture, 3-14
for labels, 3-47

ModifyLabel procedure,
Modify mode, 3-15

in OpenPicture, 3-14
in AddObject, 3-17

3-48 ,

INDEX (Cont.)

Move procedure, 3-31
MoveRelative procedure, 3-32
Multi-color graphics

representations, see Color
Multiplan, 1-2

Normalized device coordinate
system, 2-8
in SetNDCCursorPosition,
3-58

Object, 2-2
Object procedures, 3-16
Okidata Microline 93 printer, see

Dot matrix printers
OpenPicture procedure, 3-14
OpenTempObject procedure, 3-20
Output devices, 2-11

Palette file, 5-3
Parameter naming conventions,
3-3
Pascal, sample program, C-1

pen number, 2-6
in SetColor, 3-23
in SetPen, 3-63

Plotters, 2-11
in LoadPaper, 3-62

Plotter configuration, B-1
in SetPlotterDevice, 3-9

Picture, 2-2, 2-7, 3-11
Picture file, 2-7

in Business Graphics, 5-1
Picture procedures, 3-11
Printers, see Dot matrix

printers
Printronix MVP, see Dot matrix

printers

ReadlnterruptKey procedure,
3-62

Read mode, 3-15
RemoveCurrentObject procedure,

3-20
Replace mode, 2-4, also see

Drawing mode

SetCharacterSize procedure,
3-33

Set Color procedure, 3-23
SetColorMapper procedure, 4-16
SetCommandScreen procedure, 4-3

SetCurrentPalette procedure,
3-24

SetDrawingMode procedure, 3-25
SetFirstLabel procedure, 3-49

with ModifyLabel, 3-48
SetFirstObject procedure, 3-21
SetFont procedure, 3-34
SetLabelOrigin procedure, 3-35
SetLimits procedure, 3-6

with SetUserCoordinates,
3-10

SetLineType procedure, 3-25
Set mode, 2-4 also see Drawing

mode
SetNDCCursorPosition

procedure, 3-58
SetNextLabel procedure, 3-49

with ModifyLabel, 3-48
SetNextObject procedure, 3-21
SetObjectCursorPosition

procedure, 3-59
SetOutputDevice procedure, 3-7
SetOutputType procedure, 3-8
SetPen procedure, 3-63

with DisplayPicture, 3-13
SetPlotterDevice procedure,

3-9
SetPlotterMaterial procedure,

3-10
SetScale procedure, 3-51
SetScaleRelative procedure,

3-52
SetScreenDrawingMode

procedure, 4-11
SetScreenLineType procedure,

4-12
SetStyleRam procedure, 4-17
SetTranslate procedure, 3-53
SetTranslateRelative

procedure~ 3-54
SetUserCoordinates procedure,

3-10
SetUserFont procedure, 3-41
SetViewport procedure, 3-56
SetVisibleScreen procedure,

4-4
SetWindow procedure, 3-56
SetWorldCursorPosition, 3-60
SimplexRoman font, see Font

Temporary object, 2-7
in CloseTempObject, 3-19
in OpenTempObject, 3-20

3

INDEX (Cont.)

Text, 2-3
in text procedures, 3-33
in WriteTextString, 3-36

Text attributes, 2-3, 2-6
in text procedures, 3-33
in label procedures, 3-42
in AddLabel, 3-45

Text procedures, 3-33
Transformation list, 2-3

in transformation
procedures, 3-50

Transformation procedures,
3-50

TurnOff Cursor procedure, 3-61
TurnOff Graphics procedure, 4-4
TurnOnCursor procedure, 3-61
TurnOnGraphics procedure, 4-5
TurnOnGraphicsColor procedure, 4-5

User-defined coordinate
systems, 2-8

4

in drawing procedures, 3-26
User-defined fonts, 2-2
User-defined line types

in LoadSoftPattern, 4-11
User-friendly name (font),

in font procedures, 3-37
in GetUserFontName, 3-41
in SetUserFont, 3-41 also
see Font

User-written procedures, 2-1,
2-11, 3-3, 3-61
with DisplayPicture, 3-13

Variable Length Parameter
Block (VLPB) 5~1

Vector and arc manipulation
procedures, 2-10, 4-5

Vector list, 2-3
in drawing procedures, 3-26

Viewing perspectives, 2-9
Viewing procedures, 3-55
Viewport, 2-9

in viewing procedures, 3-55
in SetViewport, 3-56

Visible plane, 2-10
in SetVisibleScreen, 4-4

Window, 2-9
in viewing procedures, 3-55
in GetWindowData, 3-55
in SetWindow, 3-56

Window/viewport
transformations, see
Viewing perspectives

World coordinate system, 2-8
in SetObjectCursorPosition,
3-59
in SetWorldCursorPosition,
3-60

Write mode, 3-15,
WritePicture procedure, 3-16
WriteTextString procedure,

3-36

NOTES

NOTES

Documentation Evaluation Form

Title: B 20 Systems Graphics Programmer's Guide Form No: _____ 11_8_0_09_8 __________ _

(Release Level 4.0) Date: ______ ~M=ay~,-=1~9...:..8,;:,..5 ________ __

Burroughs Corporation is interested in receiving your comments
and suggestions regarding this manual. Comments will be utilized
in ensuing revisions to improve this manual.

Please check type of Comment/ Suggestion:

o Addition o Deletion o Revision o Error

Comments:

From:

o Other

Name __ __

Title

Company
Address __ __

Phone Number
___________________________________ Date ____________________ __

Remove form and mail t9:

Burroughs Corporation
Corporate Product
Information East

209 W. Lancaster Ave.
Paoli, P A 19301 U.S.A.

