


Burrough 
. s 

Reference 
Manual 

Priced Item 
Printed in U S ., .. 'u 10.. • .A. 1168465 



Burroughs cannot accept any financial or other 
responsibilities that may be the result of your use 
of this information or software material, 
including direct, indirect, special or consequential 
damages. There are no warranties extended or 
granted by this document or software material. 

You should be very careful to ensure that the use of this 
software material and/or information complies with the 
laws, rules, and regulations of the jurisdictions with 
respect to which it is used. 

The information contained herein is subject to change 
without notice. Revisions may be issued to advise of 
such changes and/or additions. 

Correspondence regarding this publication should be forwarded using the 
Remarks form at the back of the manual, or may be addressed directly to 
Corporate Documentation-West, Burroughs Corporation, 1300 John Reed 
Court, City of Industry, California 91745, U.S.A. 



LIST OF EFFECTIVE PAGES 

Page Issue 

Title Original 
ii Original 
iii Original 
iv Blank 
v thru ix Original 
x Blank 
xi Original 
xii Blank 
I-I thru 1-2 Original 
2-1 thru 2-17 Original 
2-18 Blank 
3-1 thru 3-79 Original 
3-80 Blank 
4-1 thru 4-17 Original 
4-18 Blank 
5-1 thru 5-13 Original 
5-14 Blank 
6-1 thru 6-16 Original 
A-I thru A-IS Original 
A-16 Blank 
B-1 thru B-4 Original 
C-I thru C-2 Original 
D-l thru D-3 Original 
D-4 Blank 
E-I thru E-4 Original 
1 thru 5 Original 
6 Blank 

iii 





Section 

2 

3 

TABLE OF CONTENTS 

Title Page 

INTRODUCTION. . . . . • . . . • . . . . . . . . . • • . . . • . xi 

OVERVIEW.............................. 1-1 
FEATURES .......•...•.......•...•...... 1-1 
USING THIS MANUAL •..•.••.•.....••.•... 1-1 
EXAMPLES IN THIS MANUAL............... 1-2 

CONCEPTS •••••••••••••••••••••••••••••• 
FILE TyPES .....•.•..........•..•...•.. 
KEY TyPES .........••......•........... 
UNIQUE RECORD IDENTIFIER ...•.....••..• 
ISAM OPERATIONS .•.....•.•......•..•..• 

Storing ............................ . 
Reading ••.....•....•.••..•.....••..• 
Modifying .................•..••...•.. 
Deleting.,e ......................... . 

DATA SET ACCESS MODES ....•.•....••••.• 
TRANSACTIONS .••...•.•.•..•.•...•..••.• 

Locking a Record or Data Set .•...... 
Conflicts and Deadlocks ..••..••.•.•• 
Timeouts .....••..............••..•.. 

ISAM INSTALLATION ....•.•......•..•..•. 
Single-Partition BTOS .............•. 
Multipartition BTOS ....••.•...•..... 
ISAM Configuration File ........••... 

ISAM UTILITIES ••...•....••.•.....•.••. 
DATA SECURITy ........................ . 
DATA INTEGRITy .••.••.•••...•...•...••. 

ISAM OPERATIONS:PROCEDURES AND SERVICES 
OVERVIEW •••••••••••••••••••••••••••••• 
STATUS BLOCK .........•.•.......••..... 
DATA SET MANAGEMENT ...•••..•...••••••• 

Operations ......................... . 
Indexes and Keys ....••.•.......•••.. 
Key Types ...............••.....•.... 

Binary ........................... . 
Byte String ......••.......•...•..• 
Character String ...........•.••••. 
Decimal (Odd)/Decimal (Even) ....•• 
Display .......................... . 
Integer ........................•.• 
Long/Short/Extended IEEE ..••.•..•• 
Long/Short Real .........•.••••.••. 
Summar y ••••••••••••••••••••••••••• 

ISAM Description Block ..•••...•..... 

2-1 
2-1 
2-2 
2-3 
2-3 
2-3 
2-3 
2-4 
2-4 
2-5 
2-7 
2-7 

2-13 
2-15 
2-15 
2-15 
2-16 
2-16 
2-16 
2-16 
2-17 

3-1 
3-1 
3-2 
3-3 
3-3 
3-3 
3-5 
3-6 
3-6 
3-6 
3-6 
3-7 
3-7 
3-7 
3-7 
3-8 
3-8 

v 



Section 

vi 

TABLE OF CONTENTS (Cont) 

Title Page 

DATA SET ACCESS ......•...•............. 3-16 
Operations ••....•••••..•.....•.••.•. 3-16 
ISAM Handle ......•.•..•.•......•.••• 3-16 

RECORD MANAGEMENT AND ACCESS ••.••••.•. 3-16 
Record 'Management Operations ........ 3-16 
Single Record Access Operations ...•• 3-17 
Multiple Record Access (Iteration) 
Operations ••...•.••••••........••.•. 3-17 

LOCKING· .....•.......• ,., .....•........•. 3-18 
Operations •......••••.••.•••.••..... 3-18 

TRANSACTIONS. . . . • . . . • . . . . . . . . . . . . • . . .. 3-18 
Operations •......••.•.•....•••••.... 3-18 
Transaction-Related Constraints .•... 3-19 
Transaction Parameters Block •.••.... 3-19 

ISAM SERVICE ACCESS ••..............••. 3-21 
Operati,'ons ••..••••• , ••.•••••••••••• •• 3-21 

. Using Single-User ISAM ...•.......... 3-21 
Memory Usage •.•..••.•.•.•..•..•.•.•. 3-22 
Using Either Multiuser 
or Single-User ISAM ••.••••...••••.•. 3-22 

ASYNCHRONOUS REQUESTS................. 3-23 
Operations ••••• ',' •• '.' •••.•.•..•.••.. 3-23 
Asynchronous Requests Versus 
Procedural Interface .•••..•..•..•... 3-23 

PROCEDURE DEFINITIONS ...•............. 3-24 
BeginTransaction •.•.. ' .•••..•.••.•.•• 3-24 
CloseISAM ••.....•••......•...•.•..... 3-25 
CommitTransaction ••..........•...... 3-26 
CreateISAM ••••..••••..••........•... 3-27 
DeleteISAM ••..•••••.•..•......•..••• 3-30 
DeleteISAMRecord ••••................ 3-31 
DeleteISAMRecordByKey •••.••••••..•.. 3-33 
GetISAMRecords •.••••.•.............. 3-35 
GetISAMRecordsHold •...••.••••••.••.• 3-35 
HoldISAMDataSet ..••.••••.••.....•... 3-39 
Hold I SAMRecor d •.••• '. • • • • • • • . . • . • • • •. 3-41 
ISAMRequest .•.•.•••...• ." ••.•..•..••• 3-43 
LoadSingleUserISAM •.•.. ~ .•••..•••..• 3-44 
ModlfyISAMRecord •••. .' ..•.••....••... 3-46 
ModifyISAMRecordByKey ••.•••..••.•••• 3-48 
NormalizeISAMStatus ...••...••....••. 3-51 
OpenISAM •..•••••••••.•••.•••••...••. 3-52 
QueryTransa·ctionParams ..••.•......•• 3-54 
Read ISAMRecordByUri •...•...• '. . . . . . •• 3-55 
ReadISAMRecordByUriHold ......••.•... 3-55 
ReadNextISAMRecord ••••••.•••••••.••. 3-57 
ReadNextISAMRecordHold •..••.•.....•• 3-57 



Section 

4 

5 

TABLE OF CONTENTS (Cant) 

Title Page 

ReadUniqueISAMRecord •••.•.••.••.•••. 3-59 
ReadUniqueISAMRecordHold ••••.••••••. 3-59 
ReleaseISAMDataSet .••••.•.•.•.•.•.• 3-61 
ReleaseISAMRecord .••••.•••••••.••••• 3-63 
Rename ISAM. • • • • • • . . . . • • • • • • • . • . . . • •• 3-65 
RollBackTransaction ••••••••••••••••• 3-68 
SetISAMProtection ••...•••••••...•••• 3-69 
SetTransactionParams .•••••••••••••• i 3-71 
SetUpISAMIterationLimits ••••••.••••• 3-72 
SetUpISAMIterationPrefix ••••••••••.• 3-75 
StoreISAMRecord ..••.••••.•••.•••.••• 3-77 
VerifyMultiUserISAM •••••••••.••••••• 3-79 

ISAM UTILITIES ••...••••••.••.••..•.••. 
INTRODUCTION ••••••.•.•••••.•••••.••••• 

Invoking the Utilities .•....•..•...• 
Optional Fields •.••••••••••••••••• 
Fields Ending with a Question Mark 
Fields Requiring a Password •.••••• 

Default Index File Name .••••••.••••• 
I SAM COpy ••••••••••••••••••••••••••••• 

ISAM Copy Form ••••••••••.•••••• ~ .••• 
Example ..•.......................... 

ISAM CREATE ••••••••••••••••••••••••••• 
ISAM CREATE Form •••••••••••••••.••.• 
Example ........... I •••••••••••••••••• 

I SAM DELETE ••••••••••••••••••••••••••• 
ISAM Delete Form •••.••.•.••••••••.•• 
Example ...................•......... 

ISAM RENAME ••••••••••••••••••••••••••• 
ISAM Rename Form •••••••••.••••.••••• 
Example ............................ . 

ISAM SET PROTECTION ••••••.•••••.•••••• 
ISAM Set Protection Form •••.•••••••• 
Example ............................ . 

ISAM STATUS ••••••••••••••••••••••••••• 
ISAM Status Form •••••••••••.•.•••••• 
Example ...•......................... 

ISAM REORGANIZATION .••••••••••••.••••• 
INTRODUCTION ••••••••••••••.••••••••••• 

Invoking ISAM Reorganize •••••••••••• 
Optional Fields ••••••.•••.•••••••• 
Fields Ending with a Question Mark 
Fields Requiring a Password ••.•.•• 

4-1 
4-1 
4-1 
4-1 
4-1 
4-2 
4-2 
4-4 
4-4 
4-5 
4-6 
4-6 
4-9 

4-10 
4-10 
4-10 
4-11 
4-11 
4-12 
4-13 
4-13 
4-14 
4-15 
4-15 
4-16 

5-1 
5-1 
5-2 
5-2 
5-2 
5-2 

vii 



Section 

6 

viii 

TABLE OF CONTENTS (Cont) 

Title Page 

ISAM R~organize Form ..••...••....... 5-3 
Loading a Data Set .•••....••••..••.. 5-7 

Example. . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 
Changing Indexes and Other ISAM 
Create Parameters .......••••...•..•. 5-8 

Example. . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8 
Recovering Records, Reclaiming Space, 
and Merging Data •.•....•.•..•.•...•. 5-9 

Example .................•.....••••• 5-10 
Sorting Data Set Records .• ~ .....••.• 5-11 

Example ..••••...........•.....•... 5-12 

ISAM SERVER INSTALLATION .•..•.•••••.•• 
MULTIUSER INSTALLATION •.•...••..•....• 

Single-Partition BTOS •••.••••.....•• 
Multipartition BTOS •..•.•...•...•••. 

ISAM INSTALL ..•••.••.•.••..•••.••.•..• 
ISAM Install Form ......••.....•••... 
Memory Allocation .....•.•.•.••...••• 

Resident Code and Data ..•.•.•.•..• 
Swap Zone ••••••••••••••••••••••••• 
Heap ••••••••••••••• ~ •••••••••••••• 
Data Buffers •.•.••.•...••...••••.. 
Index Buffers ....•......•••.•..... 

ISAM CONFIGURE •.••......•...•••••.•••• 
ISAM Configure Form .•.••..•........• 
ISAM Configure Display .•.•....•....• 

Cursor Movement ..•.•.•..•••.•••... 
Video Di splay .................... . 

MEMORY ALLOCATION CALCULATION ...•....• 
BUFFER SIZE GUIDELINES .•..•...•••.•••• 

APPENDIXES 

APPENDIX A: STATUS CODES ••....•....••• 

APPENDIX B: UPWARD COMPATIBILITY 
SUPPORT ~ •.••........•.•• 

APPENDIX C: SOFTWARE REQUIREMENTS .•.•• 

APPENDIX D: ESTIMATING INDEX FILE 
SIZES .•..•....••...... •.• 

6-1 
6-3 
6-3 
6-3 
6-3 
6-3 
6-4 
6-4 
6-5 
6-5 
6-5 
6-6 
6-7 
6-9 
6-9 
6-9 

6-10 
6-11 
6-13 

A-1 

B-1 

C-1 

D-1 

GLOSSARY. • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• E-1 

INDEX •••••••••••••••••••.•••••••••••••• 



Figure 

2-1 
2-2 
3-1 
4-1 
6-1 
6-2 

6-3 

6-4 

Table 

2-1 
2-2 
3-1 
3-2 

3-3 

3-4 
3-5 
3-6 
3-7 
3-8 
3-9 

4-1 
6-1 

LIST OF ILLUSTRATIONS 

Title 

Series of Transactions ..•••...••.•••.• 
Examples of Deadlock .•••••.••.••••.••• 
Index for a Data Set •..•••..•.•••••••• 
Status Reports •..•••.••.•••••.•••••••• 
ISAM Configure Dis~lay •.•••..••••••••• 
Rows in the ISAM Configure Display 
Used to Determine the Heap Size •..•.•• 
Rows in the ISAM Configure Display 
Used to Determine the Size of the 
Data Buffers ......................... . 
Rows in the ISAM Configure Display 
Used to Determine the Size of the 
Index Buffers •....•...••••••..••..••• 

LIST OF TABLES 

Title 

Data Set Access Modes .••.•.••.••..•••• 
Operations and Transactions ••.•••••••• 
ISAM Operations by Function ••.•••••••• 
Status Block Format 
(pStatusBlockRet Parameter) •..••..•••. 
ISAM Key Types and Programming 
Language Represen tat ions •••••..•.••••. 
ISAM Description Block •.••••••••••..•. 
ISAM Index Specification Block ••.•.••• 
Type of Key Component •••••••..•••.•••• 
Transaction-Related Constraints ••••.•• 
Transaction Parameters Block Format ••• 
Buffer Structure for GetISAMRecords 
and GetISAMRecordsHold when Records 
are Read (46-Byte Record s) •••.••.•.•.• 

"ISAM Utilities •••••.•.•.••••..••.•.•.• 
Differences Between Multiuser 
and Single-User Access •.••.••.•••••••. 

Page 

2-8 
2-14 

3-4 
4-17 

6-8 

6-14 

6-15 

6-16 

Page 

2-6 
2-9 
3-2 

3-3 

3-9 
3-11 
3-13 
3-15 
3-20 
3-21 

3-37 
4-3 

6-2 

ix 





INTRODUCTION 

This manual provides descriptive and operational information for 
the Indexed Sequential Access Method (ISAM) data management 
facility that B 20 microcomputer systems use. ISAM provides 
efficient and flexible random access to data identified by 
multiple keys. The information is presented as follows: 

Section 1: 
Section 2: 
Section 3: 
Section 4: 
Section 5: 
Section 6: 
Appendix A: 
Appendix B: 
Appendix C: 
Appendix D: 
Appendix E: 

Overview 
Concepts 
ISAM Operations: Procedures and Services 
ISAM Utilities 
ISAM Reorganization 
ISAM Server Installation 
Status Codes 
Upward Compatibility Support 
Software Requirements 
Estimating Index Files Sizes 
Glossary 

An index follows the appendixes. 

The following manuals are referenced for additional information: 

B 20 Systems Operating System (BTOS) Reference Manual 

B 20 Systems System Programmer's Guide, Part 1 

B 20 Systems Linker/Librarian Reference Manual 

B 20 Systems Sort/Merge Reference Manual 

xi 





FEATURES 

SECTION 1 

OVERVIEW 

The Burr.oughs Indexed Sequential Access Method 
(ISAM) IS a software product that provides 
efficient, flexible random access to fixed-length 
records that are identified by keys contained in 
the records. You can use Assembler, BASIC, 
COBOL, FORTRAN, and PASCAL to write application 
systems that access ISAM. 

ISAM is supported on a standalone workstation, a 
cluster workstation, and a master workstation~ 

ISAM includes the following features: 

• random access to data identified by multiple 
keys 

• up to 100 keys per ISAM data set 

• key types to support many different 
representations of character and numeric data 

• shared or exclusive access to ,ISAM data sets, 
wi th transactions and record- or data set
level locking 

• an ISAM server installed in memory at the 
master workstation of a cluster or at a 
standalone workstation, or loaded as a task 
of a BTOS application system 

• utilities to perform maintenance and modifi
cations to data sets and to provide status 
reports for data sets 

USING THIS MANUAL 
This manual is intended for system designers and 
applications programmers writing ISAM 
appl ications to be used under BTOS on Burroughs 
B 20 workstations. 

Section 2 provides a high-level view of the 
features and functions of ISAM. Section 3 
describes the ISAM operations by functional 
categories and also presents all the operations 
in detail alphabetically. Sections 4 and 5 
document the ISAM uti 1 i ties for data set 
maintenance. Sect ion 6 explains how to install 
and configure the ISAM server. 

1-1 



Additional information such as status codes and 
software and hardware requirements is included in 
the appendixes. 

EXAMPLES IN THIS MANUAL 

1-2 

This manual uses Personnel data sets for examples 
and illustrations. This approach offers data 
elements that are familiar to most users and 
provides continuity as the different functional 
levels of ISAM are presented. 

The Personnel information is contained in three 
data sets: an Employee data set, a Department 
data set, and a Dependent data set. The fields 
included in each data set are: 

Employee data set, with one record per employee 

department number 

employee number 

employee name 

salary 

Department data set, with one record per employee 

department number 

department name 

employee number of department manager 

Dependent data set, with one record per dependent 

employee number 

number of dependents 

dependent n"ame 

dependent date of birth 



FILE TYPES 

SECTION 2 
CONCEPTS 

ISAM supports access. to fixed-length data records 
contained in ISAM data sets. Each ISAM data set 
hold s one type of dat a record. When you create 
an ISAM data set, you specify the record length 
and key fields. You access the records of a data 
set through fixed-length keys. You can define 
multiple key fields to support different access 
patterns. 

Each ISAM data set is stored as two physical 
files: a data store file and an index file. You 
can place these two files on different physical 
volumes. 

The data store file holds the data records. 
Because all the records in a data set have the 
same length, disk space management is simple and 
efficient. Whenever you delete a record, the 
system marks it as deleted and adds it to a list 
of free records to be reused later when you 
create a new record. The data store fi Ie is a 
Direct Access Method (DAM) file. 

The name of a data set is the name of its data 
store file. You must supply a file specification 
for the data store file to access or create a 
data set. 

The index file holds the indexes for all of a 
data set's keys. Indexes are implemented in ISAM 
by using a B-tree structure. (The use of B-trees 
is sometimes called block splitting.) The B-tree 
structure has several advantages: 

• direct support of both direct (by key) and 
sequential access 

• efficiency: 

always takes the same number of I/O 
operat1ons to reach a record 

never has to follow long overflow chains 

typically uses two or three reads to 
locate a record and one to actually read 
the record 

2-1 



KEY TYPES 

2-2 

• 'very fast sequential access: two or three 
reads to locate and read the first record and 
usually a single read to read each subsequent 
record 

• self-reorganization: 
accommodate new keys 

automatic expansion to 

• automatic compression when keys are removed 
to improve disk utilization and, efficiency 
of access 

The separation of data and indexes is structured 
to allow the use of Record Sequential Access 
Method (RSAM) and DAM for read-only access to 
ISAM data set files. (For further information on 
RSAM, see the B 20 Systems Operating System (BTOS) 
Reference Manual. ISAM maintains logical dependencies 
between the data store file and index file of a 
data set, so neither file can be opened for 
modification by any access method other than 
ISAM. ISAM includes a consistency check to 
detect whether an invalid access has occurred. 

The use of separate data store and index files 
also enables the File Maintainer utility to 
recover 'data from the data store file after 
hardware or softw~re failures. .' 

A record can have up to 100 keys. Each key is 
described by its position in the record, that is: 
the offset from the first byte of the record; the 
key length; and the key type. The ISAM key types 
support the various character and numeric 
representations used by the Burroughs program
ming languages and processors. Byte string and 
character string key types support character 
data. Numeric key types support integer, binary, 
packed decimal, display, and several forms of 
real numbers. 

To increase flexibility, 
following parameters for 
create an ISAM data set: 

you can specify 
each key when 

• whether duplicates are allowed 

the 
you 

• whether the index is to be kept in ascending 
or descending order 



• whether indexing of null value keys is to be 
suppressed to reduce the size of the index 

One index is used for record retrieval for each 
key. Records can be retrieved in key-order 
sequence by any key field, starting with any key 
value. The index is automatically updated when 
records are stored or modified. 

UNIQUE RECORD IDENTIFIER 
A 4-byte unsigned integer uniquely identifies 
each record in a data set. This integer is 
called the unique record identifier (URI}. Store 
and Read operations return the unique record 
identifiers of the records that have been stored 
or read. Modify and Delete operations use the 
unique record identifier to identify the record 
to be processed. 

Uni que record identi fi er s are val id onl y wh il e 
the data set is open. You cannot save them to 
identify records once you have closed and 
reopened the data set. 

ISAM OPERATIONS 

Storing 

Reading 

ISAM supports four main types of operations: 
storing, reading, modifying, and deleting. 

When an application system stores a new record, 
. ISAM inserts the record into the data set and 
then automatically indexes the record according 
to the values in all the record's key fields. 

When an application system reads an existing 
record, ISAM can retrieve any of the following: 

• a ,single record wi th a gi ven unique key or 
unique record identifier 

• all records wi th keys of a speci fic value 
(that is, an exact match) 

• all records with key values residing in a 
specified range (that is, a range match) 

2-3 



Modifying 

Deleting 

2-4 

• all records in which the beginning of a byte 
or character string key matches a particular 
value (that is, a prefix match) 

The retrieval result can be either the specified 
records or a sequence of 4-byte unique record 
identifiers. If unique record identifiers are 
retrieved, then the application program can later 
obtain the corresponding records by using a 
special form of the Read operation that does not 
reaccess the index. 

When an application system modifies an existing 
record, ISAM automatically removes it from each 
index for which the key field is being changed, 
and then indexes it under the new key. 

When an appl ic at ion program deletes an exi st i ng 
record, ISAM removes the record from the data set 
and from each index. 



DATA SET ACCESS MODES 
You can use one of three modes to open a data 
set in ISAM. You use administrator mode when you 
are doing data set-level activities such as 
deleting, renaming, and setting protection. You 
use batch mode to open a data set in applications 
that require exclusive use of the data set. 
Opening a data set in transaction mode allows 
other applications to access and modify the data 
set concurrently. 

Data sets opened in batch or transaction mode are 
opened for ei ther read or modi fy. Whether read 
or modify is used affects the extent to which th~ 
application systems can share the data set. 

A data set opened in batch read mode can be 
shared by other users who open it for read-only 
access. A request to open the data set in 
administrator, batch modify, or transaction 
modify mode is denied if any user opens the data 
set in batch read mode. A request to open the 
data set in batch read mode cannot be executed if 
the data set has already been opened in 
administrator, batch modify, or transaction 
modify mode. 

2-5 



2-6 

A data set opened in batch modify mode is opened 
exclusively. No other user can open it. A 
request to open the data set in batch modify mode 
cannot be executed if another user has already 
opened it in any mode. 

A data set opened in transaction read mode can be 
opened by other users in batch read, transaction 
read, or transaction modify modes. A request to 
open the data set in transaction read mode cannot 
be executed if another user has the data set open 
in administrator or batch modify mode. 

A data set opened in transaction modify mode can 
be opened by other users in ei ther transaction 
read or transaction modify mode. A request to 
open the data set in transaction modify mode 
cannot be executed if another user has the data 
set open in administrator, batch read, or batch 
modify mode. 

A data set opened in administrator mode is opened 
exclusi vely. A request to open the data set in 
administrator mode cannot be executed if another 
user has already opened it in any mode. 

These rules are summarized in table 2-1. 

Table 2-1. Data Set Access Modes 

Initial Mode Valid Modes for New Open 

Administrator None 

Batch read Batch read 
Transaction read 

Batch modify None 

Transaction read Batch read 
Transaction read 
Transaction modify 

Transaction modify Transaction read 
Transaction modify 



TRANSACTIONS 
An application system can open a data set in 
batch mode to read or modify records. In batch 
mode, an application system has exclusive access 
to the data set. Since other application systems 
do not have access to the data set at the same 
time, it is not possible for multiple updates to 
be made simultaneously. Modification of the 
records and data sets does not affect any other 
application system. In transaction mode, when 
data sets are open for shared access, however, 
many application systems can access the same 
records and data sets. Any modification- of a 
record or data set by one application system 
affects the other application systems. Errors 
can arise if simultaneous access to a data set is 
not coordinated. In ISAM, transactions are the 
coordination mechanism. 

In transaction mode, application systems designed 
to permit multiuser access to a data set divide 
their processing into a series of transactions. 
Each transaction is a unit of work, as shown in 
figure 2-1. Changes to a data set must be made 
within a transaction. Only after a transaction 
is completed can other application systems access 
the data that has been changed. 

The beginning of a transaction is the Begin
Transaction operation; the end of a transaction 
is either a CommitTransaction or a RollBack
Transaction operation. 

While some operations can be performed whether or 
not the application system is in a transaction, 
any operation that locks or modifies a record (or 
locks a data set) must be performed while the 
application system is in a transaction. See 
table 2-2. 

Locking a Record or Data Set 

During a transaction, an application system can 
make a number of changes to a data set. When an 
application system is in the midst of modifying 
data, the data set is not in a consistent state. 
Other application systems must be prevented from 
accessing the changed data. Application systems 
prevent other applications from accessing 
inconsistent data by using transaction modify 
mode and locking records and data sets. 

2-7 



2-8 

Open Data Set 

U 
Enter New Employee Data 

+ 
Read User Input 

I 
+ 

Store New Records I 
t 

Report New Employee Number 

{} 
Give a Raise 

~ 
Read User Input 

• Read Record 

Modify Record 

0 
Determine Department Employees 

~ 
Read Department Number 

t 
Read Records as Necessary 

t 
Print Names 

(No Modifications, No Transactions) 

U c=J Activities 

c=J Transaction 

Figure 2-1. Series of Transactions 



Table 2-2. Operations and Transactions 

Operations Allowed 
Only During a Transaction 

CommitTransaction 

DeleteISAMRecord 
DeleteISAMRecordByKey 

GetISAMRecordsHold 

HoldISAMDataSet 
HoldISAMRecord 

ModifyISAMRecord 
ModifyISAMRecordByKey 

ReadISAMRecordByUriHold 
ReadNextISAMRecordHold 
ReadUniqueISAMRecordHold 
ReleaseISAMDataSet 
ReleaseISAMRecord 

StoreISAMRecord 

Operations Allowed At 
Any Time 

Close ISAM 

Get ISAM,Records 
ISAMRequest 

NormalizeISAMStatus 

OpenISAM 

QueryTransactionParams 

ReadISAMRecordByUri 
ReadNextISAMRecord 
ReadUniqueISAMRecord 
RollBackTransaction 

SetTransactionParams 
SetUpISAMlterationLimits 
SetUpISAMlterationPrefix 

2-9 



2-10 

NOTE 

There are no transaction-related constraints for the 
following operations: CreateISAM, DeleteISAM, LoadSingle
UserISAM, RenameISAM, SetISAMProtection, and Verify
MultiuserISAM. 

BeginTransactionis not allowed during a transaction. 

To prevent concurrent modification by multiple
application systems, ISAM allows an application 
system to lock a record or data set, thereby 
giving that application system exclusive access 
to the record or data set. 

To illustrate the i~portance of transactions and 
locking, consider a bank account system that 
processes several financial transactions simulta
neously. Jill and John Kelly have a joint 
savings account wi th a balance of $1000. John 
Kelly withdraws $500 and Jill Kelly deposits 
$500. 

John Kelly's withdrawal is accomplished by: 

1. Looking up the balance in the ledger 

2. Subtracting $500 from the balance 

3. Writing the new balance to the account 

Jill Kelly's deposit is accomplished by: 

1. Looking up the balance in the ledger 

2. Adding $500 to the balance 

3. Writing the new balance to the account 



In manual banking systems, this method works well 
because the teller holds the passbook during an 
ent i re transaction. Onl y one tr ansaction can 
occur at a time. Jill Kelly can make a deposi t 
and then John Kelly can make a withdrawal; or 
John Kelly can make a wi thdrawal and then Jill 
Kelly can make a deposi t. In ei ther case, after 
both transactions are complete, the balance in 
their account remains the same as it was before 
the transactions. 

With an electronic 
parallel transactions 
could happen: 

John Kelly's 
Transaction 

banking system 
can occur, the 

Jill Kelly's 
Transaction 

1. Look up the balance: 
$1000. 

in which 
following 

2. Look up the balance; 
still $1000. 

3. Subtract $500 from 
the $1000 balance; 
new balance, $500. 

4. Add $500 to the $1000 
balance; new balance, 
$1500. 

John Kelly's 
Transaction 

5. Write the new 
balance, $500, to 
the account. 

Jill Kelly's 
Transaction 

6. Write the new balance, 
$1500, to the account; 
overwriting the $500 
balance written by 
John Kelly's trans
action. 

These procedures would be disastrous from the 
bank's point of view, because John Kelly was 
gi ven $500, but the debi t to his account was 
"forgotten." Some way must be found to avoid 
such a situation. 

2-11 



2-12 

In the manual banking system, the pair of 
transactions worked because the teller held the 
passbook (account record) during an entire trans
action. With only a single passbook, the paral
lel transactions could not occur. 

In an electronic 
transactions could 
follows: 

banking system, the two 
be safely processed as 

John Kelly's withdrawal is accomplished by: 

1. starting the transaction 

2. reading the account balance and locking the 
account record 

3. subtracting $500 from the balance 

4. writing the new balance to the account 

5. ending the transaction, thereby releasing the 
account record 

Jill Kelly's deposit is accomplished by: 

1. starting the transaction 

2. reading the account balance and locking the 
account record 

3. adding $500 to the balance 

4. writing the new balance to the account 

5. ending the transaction, thereby releasing the 
account record 



With this method, the error outlined previously 
cannot occur, because the account record is 
locked after it is read. John Kelly's transac
tion cannot read the account record from the time 
Jill Kelly's transaction first reads the record 
until her transaction ends. Similarly, Jill 
Kelly's transaction cannot read the account 
record from the time John Kelly's transaction 
first reads the record until his transaction 
ends. 

If an application system locks a record, only 
that application system has access to the record 
until it is released or unlocked. If an 
application system locks a data set, only that 
application system has access to the data set and 
all of its records until it is unlocked. 

Locking a record allows other application systems 
to access the remaining records of the data set. 
Locking a data set should be done only when 
necessary because other application systems are 
prevented from accessing any of the data set's 
records. 

Conflicts and Deadlocks 

Conflict arises when more than one application 
system attempts to lock the same record or data 
set. The first application system to request the 
record or data set obtains it, and requests from 
other application systems are placed in a queue 
while the record or data set is locked. 

A special case of conflict occurs when one appli
cation system has locked a record or data set and 
attempts to lock another one that is already 
locked by a second application system. A 
deadlock occurs if this second application system 
happens to be waiting for the record or data set 
locked by the first application system. Both 
application systems are queued for the record or 
data set locked by the other and can thus wai t 
forever. This basic form of deadlock can become 
qui te complicated when a number of application 
systems and requests are invol ved, as shown in 
fig u r e 2'- 2 • 

2-13 



2-14 

Lock 

Request to Lock 

Record 1 
Data Set 1 

Record 1 
Data Set 1 

Record 2 
Data Set 1 

Figure 2-2. 

Simple Deadlock 

Record 1 
Data Set 2 

Record 3 
Data Set 1 

Complex Deadlock 

Record 2 
Data Set 2 

Record 2 
Data Set 2 

Record 1 
Data Set 3 

Examples of Deadlock 



Timeouts 

A similar problem occurs when an application 
system with a locked record or data set is wait
i ng for an external event (for example, wai ti ng 
for an offline printer to come online or for a 
user to enter data), while a second application 
system is waiting for the locked record or data 
set. The second application system may have to 
wait a long time. 

To solve both problems, ISAM uses timeouts. 

Deadlock is avoided in ISAM by using timeouts 
when an appl ication system requests a record or 
data set that another user has already locked. 
The maximum time a request is queued i~ specified 
in a timeout value in the Transaction Parameters 
Block. (See table 3-8 in section 3.) The timeout 
value, wTicksWait, specifies the maximum time a 
request to lock a record or data set can be 
queued. If the time specified in wTicksWai t is 
exceeded, ISAM reports that the record or data 
set is not available. 

ISAM INSTALLATION 

You can use ISAM on a standalone workstation or 
in cluster configurations. ISAM supports both 
single-user and multiuser access. Single-user 
ISAM is loaded as a task by the application 
system, and multiuser ISAM IS installed as a 
system service. Multiuser ISAM can be installed 
in either a single-partition or multipartition 
BTOS. 

Single-Partition BTOS 

In a single-parti tion BTOS, ISAM is permanently 
installed in memory •. Once you install ISAM, you 
cannot remove the ISAM server, nor can you 
reallocate its memory unless you rebootstrap 
BTOS. 

2-15 



Multipartition BTOS 

In a multipartition BTOS, ISAM is installed in a 
secondary appl icat ion parti tion. (See the B 20 
Systems Operating System (BTOS) Reference Manual for fur
ther information about secondary application 
partitions.) 

ISAM Configuration File 

An ISAM configuration file specifies the sizes of 
the ISAM server's memory areas, based on the 
number of users. Default values are provided for 
this file. Additionally, there is a utility 
that modifies the file to improve performance or 
reduce the amount of memory. 

ISAM UTILITIES 
ISAM provides various utility commands that you 
can invoke from the Executive to maintain and 
modify ISAM data sets. The ISAM utilities are: 

• ISAM Copy 

• ISAM Create 

0 ISAM Delete 

• ISAM Rename 

• ISAM Reorganize 

• ISAM Set Protection 

• ISAM Status 

DATA SECURITY 

2-16 

Data securi ty is provided at each ISAM data set 
level through two associated passwords: a read 
password and a modi fy password. In addi tion, 
BTOS protects the files of an ISAM data set from 
unauthorized access. 



DATA INTEGRITY 

ISAM includes features for maintaining the 
integrity of data on disk files. ISAM maintains 
and monitors the integrity of data through: 

• Error logging. Errors discovered in the file 
structures that ISAM maintains are logged in 
the Log File [SysJ<Sys)Log.Sys. The PLog 
utility lists the contents of this Log File. 

• Internal consistency checking. Hardware or 
software errors can occasionally introduce 
anomalies into a data set. ISAM algorithms 
mlnlmlze these anomalies by detecting them 
where possible and preventing them from 
becoming worse. 

• Write-through cache. ISAM maintains a set of 
liD buffers that are used to bring segments 
of disk records into memory as needed. 
Whenever a record is stored or modified, ISAM 
wri tes the changed data in the buffers back 
to disk. ISAM always updates the disk before 
completing an operation that changes a data 
set. This policy makes the data less 
susceptible to damage from hardware or 
software failures, unless the failure occurs 
in the middle of a Modify, Store, or Delete 
operation. All files are completely updated; 
no partial modifications are held in memory 
without updating the disk. 

If hardware or software failures damage an ISAM 
data set, you can recover undamaged records by 
using the Maintain File utility. You can then 
use the ISAM Reorganize utility to reconstruct 
the data set. 

2-11 





OVERVIEW 

SECTION 3 
ISAM OPERATIONS: PROCEDURES AND SERVICES 

You use the ISAM procedures 
application systems to create, 
late, and manage data in data 
write ISAM application systems 
Burroughs programming languages. 

and services in 
access, manipu
sets. You can 
in any of the 

Table 3-1 categorizes procedures and services by 
function. The first part of this section contains 
brief descriptions of each functional category, 
including general information that applies to the 
use of the operations wi thin the category. The 
operations are then presented in alphabetic order 
with a brief description of the operation, the 
procedural interface, and the request block 
parameters, where applicable. 

Most of the ISAM services can be accessed either 
by a procedural interface or by the ISAMRequest 
and Wai t operations. You use the ISAMRequest 
operation to send requests to ISAM because 
mul tiuser ISAM uses the Request operat ion wh i Ie 
single-user ISAM uses the Send operation. 
ISAMRequest handles this difference. 

Using the procedural interface is easier because 
most of the necessary housekeeping is performed 
automatically. Using the ISAMRequest and Wait 
operations is more powerful because of the 
potential for a greater degree of overlap between 
computation and I/O .operations. Refer to 
Asynchronous Requests in this section for more 
information. 

Previous releases of ISAM contain operations that 
are no longer standard in Release 4.0. Programs 
written to use earlier versions of ISAM that call 
these superseded operations will still run with 
ISAM 4.0 and need not be changed. Appendix B 
lists the services that are no longer part of the 
standard ISAM set of operations. 

3-1 



STATUS BLOCK 

3-2 

Table 3-1. ISAM Operations by Function 

Data Set Management 

CreateISAM 
DeleteISAM 
RenameISAM 
SetISAMProtection 

Data Set Access 

CloseISAM 
OpenISAM 

Record Management 

DeleteISAMRecord 
DeleteISAMRecordByKey 
ModifyISAMRecord 
ModifyISAMRecordByKey 
StoreISAMRecord 

Single Record Access 

ReadISAMRecordByUri 
ReadISAMRecordByUriHold 
ReadUniqueISAMRecord 
ReadUniqueISAMRecordHold 

Multiple Record 
Access (Iteration) 

GetISAMRecords 
GetISAMRecordsHold 
Read~extISAMRecord 
ReadNextISAMRecordHold 
SetUpISAMIterationLimits 
SetUpISAMIterationPrefix 

Record Locking 

HoldISAMDataSet 
HoldISAMRecord 
ReleaseISAMDataSet 
ReleaseISAMRecord 

Transactions 

BeginTransaction 
CommitTransaction 
QueryTransactionParams 
RollBackTransaction 
SetTransactionParams 

ISAM Service Access 

LoadSingleUserISAM 
VerifyMultiuserISAM 

Asynchronous Requests 

ISAMRequest 
NormalizeISAMStatus 

All ISAM operations include the pStatusBlockRet 
parameter, which points to the memory address of 
a status block used to report errors to the 
application system. The 4-byte status block, 
shown in table 3-2, contains two status codes: 
erc and ercDetail. 



Offset 

0 

2 

Table 3-2. Status Block Format (pStatusBlockRet 
Parameter) 

Size 
(bytes) Field Description 

2 

2 

erc Status code (see appendix A) 

ercDetail Detail status code (see 
appendix A) 

erc is either 0 ("0K") or one of the ISAM status 
codes listed in appendix A. If erc is nonzero, 
ercDetail gives additional information about the 
error. For example, if a device error causes a 
sector of the index fi Ie to be unreadable, erc 
contains 3119 (Index file error) and ercDetail 
contains 301 (I/O error). 

DATA SET MANAGEMENT 

Operations 

Indexes and Keys 

Following are discussions of operations, indexes 
and keys, and key types. 

CreateISAM 

DeleteISAM 

RenameISAM 

defines the index structure of a 
data set and creates a new, empty 
data set with the specified 
structure. 

deletes the files of an open data 
set, thereby destroying the data 
set. 

changes the name of an existing 
data set; that is, the name of the 
data store and index files. 

SetISAMProtection 
changes the passwords used to gain 
access to an existing data set. 

An index is a structure designed to help you 
efficiently locate a particular record of a data 
set. An index is defined for a key field of a 
data set. 

3-3 



3-4 

Index keys are based on the key field values for 
the records contained in a data set. The index 
is sorted by key val ues in ascend ing or 
descending order. Figure 3-1 shows an index for 
a data set. 

An application system uses an index to read 
records in key order or to read a single record 
directly by a unique key. Using the Personnel 
data sets, an example of sequential access is 
reading the Employee records in order by employee 
number from employee number 100 to employee 
number 999. An example of direct access is 
reading the Employee record for employee number 
15. Both of these examples read the records by 
using an employee number index. To access 
records directly, as in the second example, the 
index must be composed of unique keys. Unique 
keys mean that only one record exists for each 
key value. Duplicate keys are not allowed. 

empNo Index Employee Data Set 

Emp. No. 

1242_ 
1413_ 
1561-
1785-
1794 

• 
• 
• · • 

Emp. No. Dept. No. Emp. Name Salary ---- --==--== 
1561 1000 Smyth $40,000 

- 1785 5000 Smith $30,000 - 1242 5000 Jones $40,000 ---- ..... 1794 5000 Kelly $29,000 
~ 

1413 1000 Adams $30,000 

· • · · · • · · • • · · · • • · • · • • 

Figure 3-1. Index for a Data Set 

Index keys can be simple or composite. A simple 
key is based on a single field. An index 
composed of simple keys is sorted in the natural 
order for the key type. This allows applications 
to sequentially access records in order by key 



Key Types 

value. A composite key is based on mUltiple 
fields. An index composed of compos i te keys is 
sorted by the. first field. Groups of records 
with duplicate values for the first field are 
sorted again by the second field, and so forth. 
If the entire key is duplicated, records with 
dupl icate values are accessed in random order. 
If a composite key is unique, such duplication is 
not allowed. 

In a composite key: 

• the total key length must not exceed 64 bytes 

• all of the fields must be character strings, 
or all of the fields must be byte strings 

• the sort order must be ascending for all of 
the fields, or descending for all of the 
fields 

• the fields must be adjacent in the records 
and appear in their order of significance 

For example, for a data set with the following 
structure: 

Byte Length Type Name 

0 4 Byte string deptNo 
4 5 Byte string empNo 

A compos i te key (deptNo, empNo) can be defined, 
but (empNo,deptNo) cannot. The order of the 
fields does not permit (empNo,deptNo) keys. 

A composite key is defined as a single key field. 
Using the example above, the composite key 
(deptNo,empNo) would be defined as a 9-byte byte 
string key located at offset O. 

ISAM supports many different types of keys. This 
wide variety of key types enables most of the 
different data representations that can be 
specified in each of the Burroughs programming 
languages to be used as keys. You can use 12 
different key types to specify an index. Each of 
the 12 types has a notation for non-COBOL 
applications (types 0 to 11) and a corresponding 
notation for COBOL applications (types 20 to 31). 

3-5 



Binary 

Byte String 

Character String 

A brief description of each key type follows. 
For more information on the relationships between 
key types and programming language 
representations refer to table 3-3. 

A binary key is an unsigned 1- to 8-byte integer. 
The high-address byte of a binary key is the most 
significant for determining sort order on the 
workstation processor. For COBOL CaMP fields, 
the low-address byte is the most significant. 

A byte string key is an un interpreted fixed
length string of 1 to 64 binary bytes. The low
address byte is the most significant for 
determining sort order, and a distinction is made 
between upper- and lowercase ASCI I characters. 
Byte strings have the same representation in all 
programming languages, including COBOL. 

A character string key is a fixed-length string 
of 1 to 64 binary bytes. Like a byte string, a 
character string is sorted with the low-address 
byte as the most significant. Unlike a byte 
string, however, character string keys are sorted 
with no distinction between upper- and lowercase 
ASCII characters. Character strings have the same 
represe~tation in all programming languages, 
including COBOL. 

Decimal (Odd/)/Decimal (Even) 

3-6 

A decimal key contains two decimal digits in each 
byte, except for the last (high-address) byte 
where the rightmost four bits are reserved for a 
sign. (This format is -the same as COBOL COMP-3.) 
Decimal (even) is used for values that have even 
numbers of digits, and decimal (odd) is for 
values with odd numbers of digits. The number of 
digi ts before the number is packed determines 
whether the (even) or (odd) decimal type is used. 
A decimal key can contain one to 18 decimal 
digits. 



Display 

Integer 

Decimal fields have the same representation in 
all programming languages, including COBOL. 

A display key is used in COBOL applications for 
USAGE is DISPLAY numeric fields. All of the 
COBOL sign options are supported. Display keys 
can be one to 19 bytes long, containing one to 18 
decimal digits. 

An integer key is a signed 1- to 8-byte integer. 
The high-address byte of an integer key is the 
most significant for determining sort order in a 
workstation application. For COBOL COMP fields, 
however, the low-address byte is the most 
significant. 

Long/Short/Extended IEEE 

Long/Short Real 

Long IEEE, short IEEE, and extended IEEE keys are 
used for real numbers in Pascal or FORTRAN 
applications on workstations. A long IEEE key is 
8 bytes long, a short IEEE is 4 bytes, and an 
extended IEEE is 10 bytes. 

Long real and short real keys are used in BASIC 
applications on workstations. A long real key is 
an 8-byte real number, and a short real key is a 
4-byte real number. 

3-7 



Summary 

Byte and character strings are represented in the 
same manner in all of the programming languages, 
including COBOL. Decimal and display key types 
are also the same. For all of the other numeric 
types, however, the representations are 
different. The workstation representation uses 
the low-address byte as the least significant. 

The general rule, therefore, is on workstations, 
for BASIC, FORTRAN, and PASCAL representat ions, 
use key types 0 to 11. 

ISAM Description Block 

When you create a data set wi th the CreateISAM operat ion, an 
ISAM Description Block supplies a description of the data set 
that includes the record size, key description, and sector 
allocation policies. The structure of this block is shown in 
table 3-4. 

3-8 



Table 3-3. ISAM Key Types and Programming 
Language Representations 

Index Spec. 
Language and Key Type cbIndexField wType 

BASIC Interpreter 

Integer (%) 2 7 

ShortReal (! ) 4 5 

LongReal (11) 8 4 

BASIC Compiler 

Integer (%) 2 7 

ShortReal (I) 4 5 

LongReal (11) 8 4 

COBOL 

USAGE is DISPLAY (n-byte) n 31 
(numeric types) 

USAGE is COMP (n-byte) n 27 
(signed) 

USAGE is COMP (n-byte) n 20 
(unsigned) 

USAGE is COMP-3 
(n even) 

(n-digit) (n+2)/2 26 

USAGE is COMP-3 (n-digit) (n+2)/2 23 

3-9 



Table 3-3. ISAM Key Types and Programming Language 
Representations (Cont) 

Language and Key Type 

FORTRAN (Microsoft) 

INTEGER*2 

INTEGER*4 

REAL*4 

REAL*8 

DOUBLE PRECISION 

FORTRAN-86 

(same as FORTRAN above) 

TEMPREAL 

Pascal (Microsoft) 

Byte 

3-10 

Integer 

Real 

SInt 

Word 

Index Spec. 
cbIndexField 

2 

4 

4 

8 

8 

10 

1 

2 

4 

1 

2 

wType 

7 

7 

9 

8 

8 

10 

o 
7 

9 

7 

o 



Table 3-4. ISAM Description Block 

Offset Field 

o 1faInitSizeIndexFile 

4 qbGrowIndexFile 

8 cSectorsNode 

Size 
(bytes) 

4 

4 

2 

10 1faInitSizeDataStoreFile 4 

Description 

Thi~ is the initial 
size of the index 
file of the data set. 
It must be a mUltiple 
of 512. The size de
faults to 15360 (30 
sectors) if 1faInit
SizeIndexFile is O. 

This is the number of 
bytes by which the 
index file grows when 
the existing memory 
is exhausted. The 
value must be a mul
tiple of 512. The 
index file grows by a 
default of 15360 (30 
sectors) if qbGrow
IndexFile is O. 

This is the size of 
the B-tree nodes, in 
sectors. 

cSectorsNode must not 
exceed the index buf
fer size specified in 
the configuration 
file used to install 
ISAM. It defaults to 
that buffer size. 

This is the initial 
size of the data 
store file of the 
data set. It must be 
a mUltiple of 512. 
The size defaults to 
15360 (30 sectors) if 
1faInitSizeDataStore
File is O. 

3-11 



Table 3-4. ISAM Description Block (Cont) 

Offset Field 

14 qbGrowDataStoreFile 

18 sRecord 

20 cIndexes 

22 rgIndexSpec 

3-12 

Size 
(bytes) 

4 

2 

2 

Description 

This is the number of 
bytes by which the 
data store file grows 
when the existing 
file space is exhaus
ted. The value must 
be a mUltiple of 512. 
The data store file 
grows by a default 
of 15360 (30 sectors) 
if qbGrowDataStore
File is O. 

This is the size in 
bytes of the records 
in the data set. 
Records must be at 
least four bytes long. 

This is the number of 
indexes for the data 
set. 

Indexes*20 This is the set of 
Index Specification 
Blocks for the data 
set. There is one 
ISAM Index Specifi-
,cation Block per in
dex. The structure 
of an ISAM Index 
Specification Block 
is shown in table 3-5. 



Table 3-5. ISAM Index Specification Block 

Offset Field 

o rblndexField 

2 cblndexField 

4 wType 

6 fAscending 

8 fNulllslndexed 

Size 
(bytes) 

2 

2 

2 

2 

2 

Description 

This is the offset of 
the key component in 
each record of the 
data set. 

This is the size of 
the key component in 
bytes. 

This is one of the 
values 0 to 11 (20 to 
30 for COBOL) used to 
represent a key type 
as shown in table 3-6. 

This is TRUE (OFFh) 
if keys for this 
index are in ascend
ing order, or FALSE 
(Oh) if the keys are 
in descending order. 

This is TRUE (OFFh) 
if null values 
(binary O's) are in
dexed, or FALSE (Oh) 
if null values are 
not indexed. 

3-13 



Table 3-5. ISAM Index Specification Block (Cont) 

Offset Field 
Size 

(bytes) Description 

3-14 

10 fDuplicatesAllowed 2 This is TRUE (OFFh) 
if duplicate values 
are valid for this 
index. It is FALSE 
(Oh) if ISAM is to 
prevent a record from 
being stored or modi
fied wh~n the key 
value duplicates the 
key of an existing 
record in the data 
set. 

12 pad 8 

When fDuplicatesAl
lowed is FALSE, the 
index can be used to 
directly access the 
records of the data 
set because each key 
is unique. 

Reserved 

The fields wType and cbIndexField together 
specify the type and size of the key component 
in each ISAM Index Specification Block. See 
table 3-6. 



Table 3-6. Type of Key Component 

Type 

o 

1 

2 

3 

4 

5 

6 

Name of Type 

Binary 

Byte 

Character 

Decimal (Odd) 

LongReal 

ShortReal 

Decimal (Even) 

7 Integer 

8 LongIEEE 

9 ShortIEEE 

10 ExtendedIEEE 

11 Display 

Description 

cblndexField contains the length of 
the key in bytes. 1 to 8 are valid 
values. 

cblndexField contains the length of 
the key in bytes. 1 to 64 are valid 
values. 

cblndexField contains the length of 
the key in bytes. 1 to 64 are valid 
values. 

cblndexField contains (d + 2)/2, 
where d is the number of decimal 
digits in the key (d ~ 18). 

cblndexField must contain 8. 

cblndexField must contain 4. 

See Decimal (Odd) above for the value 
of cblndexField. This type is used 
for keys with an even number of 
decimal digits. 

cblndexField contains the length of 
the key in bytes. 1 to 8 are valid 
values. 

cblndexField must contain 8. 

cblndexField must contain 4. 

cblndexField must contain 10. 

cblndexField contains the length of 
the key in bytes. 1 to 19 are valid 
values. 

COBOL applications use the values 20 to 31 for the 
corresponding key types listed in this table. 

3-15 



DATA SET ACCESS 

Operations 

ISAM Handle 

Information on data set access operations and 
ISAM handle follows. 

CloseISAM closes an open data set. 

OpenISAM opens an existing data set. 

An ISAM handle is a word used to identify an open 
data set. The OpenISAM operation returns the 
ISAM handle. In subsequent ISAM operations, you 
use it as the parameter ISAMhandle. An ISAM 
handle is valid until the data set is closed or 
deleted. 

RECORD MANAGEMENT AND ACCESS 
Information on record management and access oper
ations follows'. 

Record Management Operations 

3-16 

DeleteISAMRecord 
removes a record (identified by its 
unique record identifier) from a 
data set. 

DeleteISAMRecordByKey 
removes a record (identified by a 
unique key) from a data set. 

ModifyISAMRecord 
modifies an existing record 
(identified ~y its unique record 
identifier) 1n the data set and 
updates all indexes accordingly. 

ModifyISAMRecordByKey 
modifies an 
(identified by 
data set and 
accordingly. 

StoreISAMRecord 

existing record 
a unique key) in the 
updates all indexes 

creates a new record with specified 
data in a data set. 



Single Record Access Operations 

ReadISAMRecordByUri 
reads a record identified by its 
unique record identifier. 

ReadISAMRecordByUriHold 
reads and locks a record identified 
by its unique record identifier. 

ReadUniqueISAMRecord 
reads a record identified by a 
unique key. 

ReadUniqueISAMRecordHold 
reads and locks a record identified 
by a unique key. 

Multiple Record Access (Iteration) Operations 

GetISAMRecords 
reads several records or unique 
record identifiers in key order. 

GetISAMRecordsHold 
reads and locks several records or 
unique record identifiers in key 
order. 

ReadNextISAMRecord 
reads the next record in key order. 

ReadNextRecordHold 
reads and locks the next record in 
key order. 

SetUpISAMlterationLimits 
initializes a sequence of Read 
operations for records with a spe
cific key within a given range. 

SetUpISAMlterationPrefix 
initializes a sequence of Read 
operations for records with a spe
cific byte or character string key 
having a given prefix. 

3-17 



LOCKING 

Operations 

Information on Locking operations follows. 

HoldISAMDataSet 

HoldISAMRecord 

locks an ISAM data set. 

locks a record identified by its 
unique record identifier. 

ReleaseISAMDataSet 
unlocks a locked data set wi thout 
ending the current transaction. 

ReleaseISAMRecord 
unlocks a locked record without 
ending the current transaction. 

TRANSACTIONS 

Operations 

3-18 

Information on Transaction operatioqs follows. 

BeginTransaction 
marks the start of a transaction. 

CommitTransaction 
signifies the successful completion 
of a transact ion and unlocks all 
records and data sets locked by the 
application system. 

QueryTransactionParams 
accesses parameters associated with 
transactions for the application 
system. 

RollBackTransaction 
signifies the unsuccessful comple
tion of a transaction and unlocks 
all records locked by the appli
cation system. This operation does 
not undo any changes made to ISAM 
data sets. 

SetTransactionParams 
sets parameters 
transactions for 
system. 

associated with 
the application 



Transaction-Related Constraints 

The constraints associated with each ISAM 
operation used during transaction processing are 
shown in table 3-7. These constraints do not 
apply to operations on data sets open for batch 
access, that is, in administrator, batch modify, 
or batch read mode. 

Transaction Parameters Block 

The Transaction Parameters Block (see table 3-8) 
contains values that control the operation of 
transactions. The wTicksWait field specifies the 
maximum time an application system can wait to 
lock a record or data set. The other fields do 
not affect ISAM data set access. For further 
information about the use of· wTicksWait, see 
section 2. 

You can examine these fields with the Query
TransactionParams operation and change them with 
the SetTransactionParams operation. 

3-19 



Table 3-7. Transaction-Related Constraints 

Must Be in 
a Transaction 

CommitTransaction 

DeleteISAMRecord 
DeleteISAMRecordByKey 

GetISAMRecordsHold 
HoldISAMDataSet 
HoldISAMRecord 

ModifyISAMRecord 
ModifyISAMRecordByKey 

Must Not Be 
in a Transaction 

BeginTransaction 

ReadISAMRecordByUriHold 

ReadNextISAMRecordHold 

ReadUniqueISAMRecordHold 
ReleaseISAMDataSet 
ReleaseISAMRecord 

StoreISAMRecord 

No Transaction 
Constraints 

CloseISAM 

CreateISAM * 
DeleteISAM ** 

GetISAMRecords 

ISAMRequest 

NormalizeISAMStatus 
OpenISAM 
QueryTransactionParams 
ReadISAMRecordByUri 

ReadNextISAMRecord 

ReadUniqueISAMRecord 

RenameISAM ** 
RollBackTransaction 
SetISAMProtection ** 
SetTransactionParams 
SetUpISAMlteration-

Limits 
SetUpISAMlteration

Prefix 

* Not applicable. A data set is not open when you create it. 

**Not applicable. A data set must be open in administrator mode 
to use this operation 

3-20 



Table 3-8. Transaction Parameters Block Format 

Offset Length Field Description 

a 2 wTicksWait A word specifying the maximum number 
of O.l-second ticks a request to 
lock a record or data set is queued. 
The default value is 100. 

5 1 Reserved Padding returned as a (null). 

6 * Reserved The asterisk indicates that it is 
for expansion and not required at 
present. 

ISAM SERVICE ACCESS 

Operations 

Following is information on ISAM service access 
operations and using Single-user ISAM. 

LoadSingleUserISAM 
loads ISAM as a task and ini tial
izes communication with ISAM. 

VerifyMultiuserISAM 
establishes whether or not multi
user access to ISAM is available on 
the standalone or master work
station. 

Using Single-User IS AM 

An application system initializes single-user 
ISAM by calling the LoadSingleUserISAM operation. 
The single-user ISAM server does not inform BTOS 
that ISAM is serving requests. Instead, the 
application system builds request blocks and 
sends the requests directly to ISAM using the 
BTOS Send operation rather than the BTOS Request 
operation. 

3-21 



Memory Usage 

ISAM sends the requests back using the BTOS Send 
operation instead of the BTOS Respond operation. 

I f an appl ication system and data set are at a 
master or standalone workstation, the application 
system can use either multiuser or single-user 
ISAM to access the data set. I f an appl ication 
system and data set are located at a cluster 
workstation, the application system must use 
single-user ISAM to access the data set. 
(Multiuser ISAM cannot be installed on a cluster 
workstation.) If an application system at a 
cluster workstation wants to access a data set at 
the master workstation, multiuser ISAM, installed 
at the master workstation, must be used. 

Single-user ISAM requires the same amount of 
memory as multiuser ISAM installed for a single 
user. (See appendix C for more information.) 
When you invoke the LoadSingleUserISAM operation, 
this memory is allocated as short-lived memory 
from the pool of unallocated memory available to 
the application system. 

Using Either Multiuser or Single-User ISAM 

3-22 

An application system can be written to use 
either multiuser ISAM, if that is installed, or 
single-user ISAM. By incorporating calls to both 
multiuser and single-user ISAM, an application 
system is not dependent on multiuser ISAM server 
installation. 

The application system calls the VerifyMultiUser
ISAM operation to check whether multiuser ISAM is 
available. If it is, a status code of 0 (IIOKII) 
is returned, and the application system uses 
multiuser ISAM. If any other status code is 
returned, the application system calls the 
LoadSingleUserISAM operation to load single-user 
ISAM. 



ASYNCHRONOUS REQUESTS 

Operations 

Information on operations and asynchronous 
requests versus procedural requests follows. 

,ISAMRequest issues an ISAM request and returns 
without waiting for the request to 
be completed. 

NormalizeISAMStatus 
ensures the status block returned 
by an asynchronous ISAM operation 
is valid. 

Asynchronous Requests Versus Procedural Interface 

You can access ISAM system services indirectly, 
by a procedural interface, or di rectly, by the 
ISAMRequest, Wait, and NormalizeISAMStatus opera
tions. 

Using the procedural interface is easier because 
it automatically performs most of the necessary 
housekeeping and issues the ISAMRequest and Wait 
operations. 

Using the ISAMRequest, Wait, and Normalize
ISAMStatus operations enables applications to run 
more quickly and efficiently because there is a 
greater degree of overlap between processing by 
ISAM and computation by the application system. 

Only one ISAM operation should be outstanding at 
a time because the order in which the operations 
are performed is undefined. Overlapping certain 
operations (for example, doing a Commit
Transaction operation while a ModifyISAMRecord 
operation is pending) can cause problems. 

When using asynchronous requests, the Wai t 
operation must be followed by the NormalizeISAM
Status operation. Otherwise, the values in the 
status block may not be valid. 

3-23 



PROCEDURE DEFINITIONS 

BeginTransaction 

de~criptioD 

Information on procedures follows. 

The BeginTransaction procedure marks the start of 
a transaction for the application system. The 
transaction ends when the application system uses 
ei ther a Commi tTransaction or RollBack
Transaction operation. 

BeginTransaction cannot be called from within a 
transaction. 

procedural interface 

request block 

BeginTransaction (pStatusBlockRet): ErcType 

where 

pStatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

BeginTransaction is an object module procedure. 



CloselSAM 

description 

The CloseISAM procedure closes and releases all 
resources associated wi th an open data set. An 
ISAM handle for the closed data. set is not valid 
after this procedure is called. 

procedural interface 

request block 

CloseISAM (ISAMHandle, pStatusBlockRet): ErcType 

where 

ISAMHandle is the ISAM handle that identifies 
the open data set. 

pStatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

CloseISAM is an object module procedure. 

3-25 



CommitTransaction 

description 

The CommitTransaction procedure signifies the 
successful completion of a transaction and 
unlocks all records and data sets locked by the 
application system. 

You can use 
transaction. 

CommitTransaction only in a 

procedural interface 

request block 

3-26 

CommitTransaction (pStatusBlockRet): ErcType 

where 

pStatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

CommitTransaction is an object module procedure. 



Create ISAM 

description 

The CreateISAM service defines the index 
structure of a data set and creates a new empty 
data set with the specified structure. The 
parameters that are supplied enable the ap
pI ication program to locate the data store and 
index files on different volumes and to control 
the allocation of disk sectors for the two files 
independentlY, 

procedural interface 

CreateISAM (pbFileSpecDataStoreFile, 
cbFileSpecDataStoreFile, 
pbPasswordDataStoreFileCreate, 
cbPasswordDataStoreFileCreate, 
pbFileSpeclndexFile, 
cbFileSpecIndexFile, 
pbPasswordIndexFileCreate, 
cbPasswordlndexFileCreate, pISAMDesc, 
sISAMDesc, pStatusBlockRet): ErcType 

where 

pbFileSpecDataStoreFile 
cbFileSpecDataStoreFile 

describe a file specification for 
the data store file of the new data 
set. 

pbPasswordDataStoreFileCreate 
cbPasswordDataStoreFileCreate 

describe a password used to create 
the data store file of the new data 
set. 

pbFileSpecIndexFile 
cbFileSpecIndexFile 

describe a file specification for 
the index file of the new data set. 
If cbFileSpecIndexFile is 0, then 
the file specification for the 
index is derived from the file 
specification for the data store 
file. ISAM copies the file speci
fication defined by pbPasswordData
StoreFileCreate and cbPasswordData
StoreFileCreate, then replaces the 
suffix beginning with the period 

3-27 



3-28 

character with the 
.Ind. For example, 
specification for the 
file is 

characters 
if the file 
data store 

[vol]<dir>DataSet.lsam 

then the file specification for the 
index file is 

[vol]<dir>DataSet.Ind 

pbPasswordlndexFileCreate 
cbPasswordIndexFileCreate 

pISAMDesc 
sISAMDesc 

describe a password used to create 
the index file of the new data set. 
If the name of the index file is 
null, then these two parameters are 
ignored, and the password specified 
for the data store file is used to 
create the index file as well. 

describe a memory area containing 
an ISAM Description Block, which 
has the structure shown in 
table 3-4. 

pStatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 



request block 

Size 
Offset Field (bytes) Contents 

0 sCntlnfo 2 0 
2 nReqPbCb 1 5 
3 nRespPbCb 1 1 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 79 

12 pbFileSpecDataStore-
File 4 

16 cbFileSpecDataStore-
File 2 

18 pbPasswordDataStore-
FileCreate 4 

22 cbPasswordDataStore-
FileCreate 2 

24 pbFileSpeclndexFile 4 
28 cbFileSpeclndexFile 2 

30 pbPasswordlndexFile-
Create 4 

34 cbPasswordlndexFile-
Create 2 

36 pISAMDesc 4 
40 sISAMDesc 2 

42 pStatusBlockRet 4 
46 sStatusBlock 2 4 

3-29 



DeletelSAM 

description 

The DeleteISAM service deletes the files of a 
data set, thereby destroying all information in 
the data set. 

The data set must be open in adminstrator mode. 

procedural interface 

request block 

3-30 

DeleteISAM (ISAMHandle, pStatusBlockRet): ErcType 

where 

ISAMHandle is the ISAM handle that identifies 
the open data set. 

pStatusBlockRet 

Offset 

0 
2 
3 
4 
6 
8 

10 

12 

14 
18 

is the memory address of the status 
block into which the status codes 
from the operation are returned. 

Size 
Field (bytes) Contents 

sCntlnfo 2 2 
nReqPbCb 1 0 
nRespPbCb 1 1 
userNum 2 
exchResp 2 
ercRet 2 
rqCode 2 80 

ISAMHandle 2 

pStatusBlockRet 4 
sStatusBlock 2 4 



Delete ISAMRecord 

description 

The DeleteISAMRecord service removes a record 
from a data set. The data set must be open for 
modification. The disk space occupied by the 
record is made available for a subsequent 
StoreISAMRecord operation. All keys for the 
record are automatically removed from the indexes 
of the data set. All data in the record is 
destroyed. 

I f the data set is open in a transaction mode, 
then DeleteISAMRecord can be called only from 
wi th in a transact ion and when the record to be 
deleted is locked. 

procedural interface 

DeleteISAMRecord (ISAMHandle, uriRecord, 
pStatusBlockRet): ErcType 

where 

ISAMHandle 

uriRecord 

is the ISAM handle that identifies 
the open data set. 

is the unique 
the record 
ur iRecord is 
returned by 
operation. 

record identifier of 
to be deleted. 

usually the value 
a previous Read 

pStatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

3-31 



request block 

Size 
Offset Field (bytes) Contents 

0 sCntlnfo 2 6 
2 nReqPbCb 1 0 
3 nRespPbCb 1 1 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 81 

12 ISAMHandle 2 
14 uriRecord 4 

18 pStatusBlockRet 4 
22 sStatusBlock 2 4 

3-32 



DeletelSAMRecordByKey 

description 

The DeleteISAMRecordByKey 
record from a data set. 
open for modification. 
however, uses a unique key 
instead of a unique record 

service removes a 
The data set must be 

DeleteISAMRecordByKey, 
to identify the record 
identifier. 

The disk space occupied by the record is made 
available for a subsequent StoreISAMRecord 
operation. All keys for the record are 
automatically removed from the indexes of the 
data set. All data in the record is destroyed. 

If the data set is open in a transaction mode, 
DeleteISAMRecordByKey can be called only from 
wi thin a transact ion. The record to be deleted 
does not need to be locked. DeleteISAMRecord
ByKey locks the record before deleting it. 

procedural interface 

DeleteISAMRecordByKey (ISAMHandle, iIndex, pKey, 
sKey, pUriRecordRet, 
pStatusBlockRet): ErcType 

where 

ISAMHandle 

iIndex 

pKey 
sKey 

pUriRecordRet 

is the ISAM handle that identifies 
the open data set. 

identifies the index used. (The 
indexes are numbered from 0 in the 
order specified in CreateISAM.) 

describe the memory area containing 
the key that identifies the record 
to be deleted. sKey must be the 
correct length, in bytes, of the 
key for index iIndex. 

is the memory address of the 4-byte 
structure where the unique record' 
identifier for the record to be 
deleted is returned. 

3-33 



request block 

3-34 

pStatusBlockRet 

Offset 

0 
2 
3 
4 
6 
8 

10 

12 
14 

16 
20 

22 
26 

28 
32 

is the memory address of the status 
block into which the status codes 
from the operation are returned. 

Size 
Field (bytes) Contents 

sCntlnfo 2 4 
nReqPbCb 1 1 
nRespPbCb 1 2 
userNum 2 
exchResp 2 
ercRet 2 
rqCode 2 199 

ISAMHandle 2 
ilndex 2 

pKey 4 
sKey 2 

pUriRecordRet 4 
sUriRecord 2 4 

pStatusBlockRet 4 
sStatusBlock 2 4 



GetlSAMRecords 

GetlSAMRecordsHold 

description 

The GetISAMRecords service reads several records 
or unique record identifiers in key order from a 
data set, with a single call to ISAM. Records 
are returned in key order for the current 
iteration. If there are no more records for the 
iteration, the status code 3127 (No more records) 
is returned. 

The GetISAMRecordsHold service is identical to 
GetISAMRecords, except GetISAMRecordsHold also 
locks the records read (or those that have unique 
record identifiers returned). If records are 
read, then each one read is locked. I f unique 
record identifiers are returned, then the record 
identified by each unique record identifier is 
locked. Thus, if GetISAMRecordsHold is used, 
none of the accessed records can be accessed by 
other application systems until they are 
released, usually by a subsequent Commit
Transaction operation. 

The GetISAMRecords and GetISAMRecordsHold 
operations return as many records (or unique 
record identifiers) in sequence as possible, 
subject to the following constraints: 

• The buffer capacity will not be exceeded. 

• The range specified for the current i tera
tion will not be exceeded. 

• Records locked by other appl ication systems 
will not be read. 

For example, a particular GetISAMRecords opera
tion reads 4-byte unique record identifiers and 
40-byte records into a SOO-byte buffer. The 
buffer can contain up to 11 records and unique 
record identifiers (440 + 44). If the seventh 
record in the sequence is locked by another 
appl ication system, then the GetISAMRecords 
operation returns only the first six records and 
unique record identifiers. 

If GetISAMRecords is called to read only unique 
record identifiers, it returns unique record 
identifiers for locked records. Application 

3-35 



systems can thus "skip over" records locked by 
other application systems. 

If the data set is open in a transaction mode, 
the application system does not have to be in a 
transaction before calling GetISAMRecords, but it 
must be in a transaction before calling 
GetISAMRecordsHold. 

procedural interface 

3-36 

GetISAMRecords 
GetISAMRecordsHold (ISAMHandle, fReadRecords, 

pBuffer, sBuffer, 
pCRecordsReadRet, 
pStatusBlockRet): ErcType 

where 

ISAMHandle is the ISAM handle that identifies 
the open data set. 

fReadRecords specifies whether records, as well 
as unique record identifiers, are 
returned. fReadRecords is FALSE if 
only unique record identifiers are 
returned, and TRUE if records are 
returned also. 

pBuffer 
sBuffer describe the memory area into which 

the unique record identifiers and 
records are to be read. 

If only unique record identifiers 
are returned (fReadRecords is 
FALSE), then the record identifiers 
are packed into the buffer without 
padding. If both unique record 
identifiers and records are 
returned (fReadRecords is TRUE), 
then the unique record identifiers 
and records are packed together 
into the buffer without padding. 
Each record and its record 
identifier are packed as a pair 
with the record identifier 
preceding the record. 

For example, the buffer structure 
after three 46-byte records are 
read is shown in table 3-9. 



pCRecordsReadRet 
is the memory address of the word 
where the number of unique record 
identifiers and/or records read is 
returned. 

pstatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

Table 3-9. Buffer Structure for GetISAHRecords 
and GetISAHRecordsHold when Records 
are Read (46-Byte Records) 

Size 
Offset Description (bytes) 

0 Record identifier of record 4 
4 Record 1 46 

50 Record identifier of record 2 4 
54 Record 2 46 

100 Record identifier of record 3 4 
104 Record 3 46 

3-37 



request block 

Size 
Offset Field (bytes) Contents 

0 sCntlnfo 2 4 
2 nReqPbCb 1 0 
3 nRespPbCb 1 3 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 * 

12 ISAMHandle 2 
14 fReadRecords 1 
15 reserved 1 0 

16 pBuffer 4 
20 sBuffer 2 

22 pCRecordsReadRet 4 
26 sCRecordsRead 2 2 

28 pStatusBlockRet 4 
32 sStatusBlock 2 4 

*GetISAMRecords = 82; 
GetISAMRecordsHold = o. 

3-38 



HoldlSAMDataSet 

description 

The HoldISAMDataSet service locks an open data 
set. 

If the data set is open in a transaction mode, 
then HoldISAMDataSet can be called only from 
within a transaction. 

procedural interface 

HoldISAMDataSet (ISAMHandle, fLockRecords, 
pStatusBlockRet): ErcType 

where 

ISAMHandle is the ISAM handle that identifies 
the open data set. 

fLockRecords specifies whether a subsequent 
ReleaseISAMDataSet operation un
locks the data set's locked records 
as well as the data set i tsel f. 
fLockRecords is either TRUE or 
FALSE. 

If fLockRecords is TRUE, then if 
the data set is unlocked by a 
subsequent ReleaseISAMDataSet oper
ation, locked records in the data 
set will continue to be locked. 

If -fLockRecords is FALSE, then if 
the data set is unlocked by the 
ReleaseISAMDataSet operation, all 
records in the data set will be 
unlocked. 

For example, data set X has five 
records and the following events 
occur: 

1. Record 1 is locked (for exam
ple, with the HoldISAMRecord 
operation). 

2. Data set X is locked wi th the 
HoldISAMDataSet operation. 

3-39 



request block 

3-40 

3. Record 2 is locked (for exam
ple, with the ReadNextISAM
RecordHold operation). 

4. Data set X is unlocked with the 
ReleaseISAMDataSet operation. 

If fLockRecords is TRUE in step 2, 
then Record 1 and Record 2 remain 
locked after step 4. If fLock
Records is FALSE in step 2, then 
Record 1 and Record 2 are unlocked 
after step 4. 

pStatusBlockRet 

Offset 

0 
2 
3 
4 
6 
8 

10 

12 
14 
15 

16 
20 

is the memory address of the status 
block into which the status codes 
from the operation are returned. 

Size 
Field (bytes) Contents 

sCntInfo 2 4 
nReqPbCb 1 0 
nRespPbCb 1 1 
userNum 2 
exchResp 2 
ercRet 2 
rqCode 2 205 

ISAMHandle 2 
fLockRecords 1 
reserved 1 0 

pStatusBlockRet 4 
sStatusBlock 2 4 



HoldlSAMRecord 

description 

The HoldISAMRecord service locks a record 
identified by its unique record identifier. The 
record identifier is not checked for validity by 
HoldISAMRecord. 

If the data set is open 
then HoldISAMRecord can 
within a transaction. 

in a transaction mode, 
be called only from 

procedural interface 

HoldISAMRecord (ISAMHandle, uriRecord, 
pStatusBlockRet): ErcType 

where 

ISAMHandle 

uriRecord 

is the ISAM handle that identifies 
the open data set. 

is the unique record identifier of 
the record to be locked. uriRecord 
is usually the value returned by a 
previous Read operation. 

pStatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

3-41 



request block 

Size 
Offset Field (bytes) Contents 

0 sCntlnfo 2 6 
2 nReqPbCb I 0 
3 nRespPbCb 1 1 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 130 

12 ISAMHandle 2 
14 uriRecord 4 

18 pStatusBlockRet 4 
22 sStatusBlock 2 4 

3-42 



ISAMRequest 

description 

The ISAMRequest procedure issues an ISAM request 
and returns without waiting for the request to be 
completed. 

This operation is used to issue asynchronous ISAM 
requests in both multiuser and single-user ISAM. 
For multiuser ISAM, ISAMRequest uses the Request 
operation, but for single-user ISAM, ISAMRequest 
uses the Send operation. (See the B 20 Systems 
Operating System (BTOS) , Reference Manual for more in forma
tion.) ISAMRequest allows application systems to 
issue asynchronous requests without regard to 
whether multiuser or single-user ISAM is being 
used. 

procedural interface 

request block 

ISAMRequest (pRq): ErcType 

where 

pRq is the memory address of the 
request block specifying the ISAM. 

ISAMRequest is an object module procedure. 

3-43 



LoadSingleUserlSAM 

description 

The LoadSingleUserISAM procedure loads ISAM as a 
task and initializes communication with ISAM. 
The ISAM task is loaded into short-lived memory 
allocated from the pool of unallocated memory 
available to the application system. 

procedural interface 

3-44 

LoadSingleUserISAM (pbFileSpecRunFile, 
cbFileSpecRunFile, 
pbPwRunFile, cbPwRunFile, 
pbConfigFile, cbConfigFile, 
pbPwConfigFile, 
cbPwConfigFile, 
pStatusBlockRet): ercType 

where 

pbFileSpecRunFile 
cbFileSpecRunFile 

pbPwRunFile 
cbPwRunFile 

pbConfigFile 
cbConfigFile 

pbPwConfigFile 
cbPwConfigFile 

describe the memory area containing 
the name of the ISAM run file to be 
used. If cbFileSpecRunFile is 0, 
the run file name defaults to 
[Sys]<Sys>ISAMServer.Run. 

describe the memory area containing 
the password used to open the ISAM 
run file. 

describe the memory area containing 
the name of the ISAM configuration 
file to be used. If cbConfigFile 
is 0, the configuration file name 
defaults to [Sys]<Sys>ISAMConfig.
Sys. 

describe the memory area containing 
the password used to open the ISAM 
configuration file. 



request block 

pStatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

LoadSingleUserISAM is an object module proce
dure. 

3-45 



ModifylSAMRecord 

description 

The ModifyISAMRecord service modifies an existing 
record in a data set and updates all indexes 
accordingly. The record is identified by its 
unique record identifier. 

If any key is changed, then the record entry for 
the old value is removed from the index and the 
record is reindexed under the new value. If the 
new value of the key duplicates an existing key 
for the same index in another record and 
dupl icates are not allowed for that index, then 
the record is not modified, the index is not 
changed, and status code 3118 (Duplicate key) is 
returned. 

The data set must be open for modification. The 
record remains locked after modification. 

I f the data set is open in a transaction mode, 
then ModifyISAMRecord can be called only from 
within a transaction. 

procedural interface 

3-46 

ModifyISAMRecord (ISAMHandle, uriRecord, pRecord, 
sRecord, pStatusBlockRet): 

where 

ISAMHandle 

uriRecord 

pRecord 
sRecord 

ErcType 

is the ISAM handle that identifies 
the open data set. 

is the unique 
the record 
uriRecord is 
returned by 
operation. 

record identifier of 
to be modified. 
usually the value 
a previous Read 

describe the memory area containing 
the record to be written. sRecord 
must be equal to the record size 
for the data set. 



request Block 

pStatusBlockRet 

Offset 

0 
2 
3 
4 
6 
8 

10 

12 
14 

18 
22 

24 
28 

is the memory address of the status 
block into which the status codes 
from the operation are returned. 

Size 
Field (bytes) Contents 

sCntlnfo 2 6 
nReqPbCb 1 1 
nRespPbCb 1 I' 
userNum 2 
exchResp 2 
ercRet 2 
rqCode 2 84 

ISAMHandle 2 
uriRecord 4 

pRecord 4 
sRecord 2 

pStatusBlockRet 4 
sStatusBlock 2 4 

3-47 



ModifylSAMRecordByKey 

description 

3-48 

The ModifyISAMRecordByKey service modifies an 
existing record in a data set and updates all 
indexes accordingly. ModifyISAMRecordByKey, 
however, uses a unique key to identify the record 
instead of a record identifier. 

If any key is changed, then the record is removed 
from the index under the old value of the key and 
reindexed under the new value. If the new value 
of the key duplicates an existing key for the 
same index in another record, but duplicates are 
not allowed for that index, then the record is 
not modified, the index is not changed, and 
status code 3118 (Duplicate key) is returned. 

The parameters for this operation include the 
index and the new record contents, but not a 
separate key for the record. The key used to 
identify the record is taken from the record 
itself. 

For example, to change the salary of employee 150 
in the Employee data set from $34,000 to $37,500, 
iIndex is specified as O. (empNo is index 0, a 
unique key index.) ISAM extracts the empNo 
field, uses the· empNo index to determine which 
record is to be modified, and modifies the 
record. 

Note that this service cannot be used to change 
the key being used to identify the record. 

The data set must be open for modification. 

If the data set is open in a transaction mode, 
then ModifyISAMRecordByKey can be called only 
from within a transaction. The record to be 
modified need not be locked~ 
ModifyISAMRecordByKey locks the record before 
modifying it. 



procedural interface 

ModifyISAMRecordByKey (ISAMHandle, ilndex, 
pRecord, sRecord, 
pUriRecordRet, 
pStatusBlockRet): ErcType 

where 

ISAMHandle 

ilndex 

pRecord 
sRecord 

pUriRecordRet 

is the ISAM handle that identifies 
the open data set. 

identifies the index used. (The 
indexes are numbered from 0 in the 
order specified in CreateISAM.) 

describe the memory area containing 
the record to be modified. sRecord 
must be equal to the record size 
for the data set. 

is the memory address of the 4-byte 
structure where the unique record 
identifier of the modified record 
is returned. 

pStatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

3-49 



request block 

Size 
Offset Field (bytes) Contents 

0 sCntlnfo 2 4 
2 nReqPbCb 1 1 
3 nRespPbCb 1 2 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 198 

12 ISAMHandle 2 
14 ilndex 2 

16 pRecord 4 
20 sRecord 2 

22 pUriRecordRet 4 
26 sUriRecord' 2 2 

28 pStatusBlockRet 4 
32 sStatusBlock 2 4 

3-50 



NormalizelSAMStatus 

description 

The NormalizeISAMStatus procedure ensures that 
both the ercRet field of the request equals the 
erc field of the status block and the ercDetail 
field of the status block is valid. 

NormalizeISAMStatus must be called after 
asynchronous ISAM requests (issued by 
ISAMRequest) are completed. If it is not called, 
the status block that the ISAM operation returns 
has undefined contents. 

The status code that NormalizeISAMStatus returns 
diagnoses problems encountered while normalizing 
the status block. In general, the status code 
returned will differ from the ercRet field in the. 
request block. For example, if an asynchronous 
Read operation returns status code 3127 (no more 
records) and a detail status of 0 ("OK"), then 
NormalizeISAMStatus ensures that the ercRet field 
in the request block matches the status block erc 
field and returns 0 ("OK"). 

procedural interface 

request block 

NormalizeISAMStatus (pRq): ErcType 

where 

pRq is the memory address of the 
request block. 

NormalizeISAMStatus is an object module pro
cedure. 

3-51 



OpenlSAM 

description 

The OpenISAM procedure opens an existing data set 
and returns an ISAM handle for it. The ISAM 
handle is used to refer to the data set in 
subsequent operations. 

procedural interface 

3-52 

OpenISAM (pISAMHandleRet, pbDataSetName, 
cbDataSetName, pbPassword, cbPassword, 
mode, sRecord, pStatusBlockRet): 
ErcType 

where 

pISAMHandleRet 

pbDataSetName 
cbDataSetName 

pbPassword 
cbPassword 

is the memory address of the word 
into which the ISAM handle of the 
opened data set is returned. 

describe the memory area containing 
the character string representing 
the name of the data set. 

describe either the modify or read 
passvord for the opened data set, 
or a file system password that 
gives modify access to the data set 
files. If the mode is batch modify 
or transaction modify, then you 
must supply the modify password. 
If the mode is batch read or 
transaction read, then you can 
supply either password. If the 
mode is administrator, then you 
must supply a file system 
password. 



request block 

mode 

sRecord 

specifies the mode in which the 
data set is to be opened: 

Value 
(ASCII) 

ad 
bm 
br 
tm 
tr 

Mode 

administrator 
batch modify 
batch read 
transaction modify 
transaction read 

In these ASCII constants, the first 
character is the high-order byte, 
and the second character is the 
low-order byte. Th i sis the 
reverse of the byte order of 
strings in the Burroughs program
ming languages. 

For further information 
modes, refer to section 2. 

about 

is the fixed-length record size for 
the data set. 

pStatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

OpenISAM is an object module procedure. 

3-53 



QueryTransactionParams 

description 

The QueryTransactionParams procedure retrieves 
the application system's current transaction 
parameters. (See Transaction Parameters Block in 
this section for more information.) 

procedural interface 

request block 

3-54 

QueryTransactionParams (pParamsRet, sParamsMax, 
pSParamsRet, 
pStatusBlockRet): ErcType 

where 

pParamsRet 
sParamsMax 

pSParamsRet 

describe the memory area into which 
the transaction parameters are 
stored. The Transaction Parameters 
Block has the format shown in 
table 3-8. ' 

is the memory address of a word 
into which the number of bytes 
retrieved are stored. The value 
stored in this word cannot exceed 
sParamsMax. 

pStatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

QueryTransactionParams is an object module 
procedure. 



ReadlSAMRecordByU ri 

ReadlSAMRecordByUriHold 

description 

The ReadISAMRecordByUri service reads a record 
identified by its unique record identifier. 

The ReadISAMRecordByUriHold service is identical 
to ReadISAMRecordByUri, except ReadISAMRecordBy
UriHold also locks the record when it is read. 

If the data set is open in a transaction mode, 
then ReadISAMRecordByUriHold can be called only 
from within a transaction. 

procedural interface 

ReadISAMRecordByUri 
ReadISAMRecordByUriHold (ISAMHandle, uriRecord, 

pRecordRet, sRecord, 
pStatusBlockRet): 

where 

ISAMHandle 

uriRecord 

pRecordRet 
sRecord 

ErcType 

is the ISAM handle that identifies 
the open data set. 

is the unique record identifier of 
the record to be read. uriRecord 
is usually the value that a" 
previous Read operation returns. 

describe the memory area into which 
the record is read. sRecord must 
be equal to the record size for the 
data set. 

pStatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

3-55 



request block 

Size 
Offset Field (bytes) Contents 

0 sCntlnfo 2 6 
2 nReqPbCb 1 0 
3 nRespPbCb 1 2 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 * 
12 ISAMHandle 2 
14 uriRecord 4 

18 pRecordRet 4 
22 sRecord 2 

24 pStatusBlockRet 4 
28 sStatusBlock 2 4 

*ReadISAMRecordByUri = 86; 
ReadISAMRecordByUriHold = 131. 

3-56 



ReadNextlSAMRecord 

ReadNextlSAMRecordHold 

description 

The ReadNextISAMRecord service reads the next 
record in key order from a data set. The unique 
record identifier of the record is returned. 

The ReadNextISAMRecordHold service is identical 
to ReadNextISAMRecord, except ReadNextISAM
RecordHold also locks the record when it is read. 

If the data set is open in a transaction mode, 
then ReadNextISAMRecordHold can be called only 
from within a transaction. 

procedural interface 

ReadNextISAMRecord 
ReadNextISAMRecordHold (ISAMHandle, pRecordRet, 

sRecord, pUriRecordRet, 
pStatusBlockRet): ErcType 

where 

ISAMHandle 

pRecordRet 
sRecord 

pUriRecordRet 

is the ISAM handle that identifies 
the open data set. 

describe the memory area into which 
the record is read. sRecord must 
be equal to the record size for the 
data set. 

is the memory address of the 4-byte 
structure into which the unique 
record identifier of the record is 
returned. 

pStatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

3-57 



request block 

Size 
Offset Field (bytes) Contents 

0 sCntlnfo 2 2 
2 nReqPbCb 1 0 
3 nRespPbCb 1 3 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 * 

12 ISAMHandle 2 . 
14 pRecordRet 4 
18 sRecord 2 

20 pUriRecordRet 4 
24 sUriRecord 2 4 

26 pStatusBlockRet 4 
30 sStatusBlock 2 4 

*ReadNextISAMRecord = 87; 
ReadNextISAMRecordHold = 132. 

3-58 



ReadU niquelSAMRecord 

ReadUniquelSAMRecordHold 

description 

The ReadUniqueISAMRecord service reads a record 
uniquely identified by a given key from a data 
set. Dupl icates are not allowed for the index 
used, so that the key appears at most in one 
record of the data set. 

The ReadUniqueISAMRecordHold service is 
identical to ReadUniqueISAMRecord, except 
ReadUniqueISAMRecordHold also locks the record. 

I f the data set is open in a transaction mode, 
then ReadUniqueISAMRecordHold can be called only 
from within a transaction. 

procedural interface 

ReadUniqueISAMRecord 
ReadUniqueISAMRecordHold (ISAMHandle, ilndex, 

pKey, sKey, 
pRecordRet, sRecord, 
pUriRecordRet, 
pStatusBlockRet): 

where 

ISAMHandle 

ilndex 

pKey 
sKey 

pRecordRet 
sRecord 

ErcType 

is the ISAM handle that identifies 
the open data set. 

identifies the index used. (The 
indexes are numbered from 0 in the 
order specified in CreateISAM.) 

describe the memory area containing 
the unique key that identifies the 
record to be read. sKey must be 
the correct length, in bytes, of 
keys for the index, ilndex. 

describe the memory area into which 
the record is read. sRecord must 
be equal to the record size for the 
data set. 

3-59 



request block 

3-60 

pUriRecordRet 
is the memory address of the4-byte 
structure into which the unique 
record identifier of the record is 
returned. 

pStatusBlockRet 

Offset 

0 
2 
3 
4 
6 
8 

10 

12 
14 

16 
20 

22 
26 

28 
32 

34 
38 

is the memory address of the status 
block into which the status codes 
from the operation are returned. 

Size 
Field (bytes) Contents 

sCntlnfo 2 4 
nReqPbCb 1 1 
nRespPbCb 1 3 
userNum 2 
exchResp 2 
ercRet 2 
rqCode 2 * 

ISAMHandle 2 
ilndex 2 

pKey 4 
sKey 2 

pRecordRet 4 
sRecord 2 

pUriRecordRet 4 
sUriRecord 2 4 

pStatusBlockRet 4 
sStatusBlock 2 4 

*ReadUniqueISAMRecord = 88; 
ReadUniqueISAMRecordHold 133. 



ReleaselSAMDataSet 

description 

The ReleaseISAMDataSet service releases a locked 
data set without ending the current transaction. 

NOTE 

Use this operation with care, since other 
application systems can hold and even modify 
the released data set before the transaction 
is ended. 

If the data set is open in a transaction mode, 
then ReleaseISAMDataSet can be called only. from 
within a transaction. 

procedural interface 

ReleaseISAMDataSet (ISAMHandle, pStatusBlockRet): 

where 

ISAMHandle 

ErcType 

is the ISAM handle that identifies 
the open data set. 

pStatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

3-61 



request block 

Size 
Offset Field (bytes) Contents 

0 sCntlnfo 2 2 
2 nReqPbCb 1 0 
3 nRespPbCb 1 1 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 206 

12 ISAMHandle 2 

14 pStatusBlockRet 4 
18 sStatusBlock 2 4 

3-62 



ReleaselSAMRecord 

description 

The ReleaseISAMRecord service releases a locked 
record without ending the current transaction. 

NOTE 

Use this operation with care, since other 
application systems can hold and even modify 
the released record before the transaction is 
ended. 

I f the data set is open in a transaction mode, 
then ReleaseISAMRecord can be called only from 
within a transaction. 

procedural interface 

ReleaseISAMRecord (ISAMHandle, uriRecord, 
pStatusBlockRet): ErcType 

where 

ISAMHandle 

uriRecord 

is the ISAM handle that identifies 
the open data set. 

is the"unique 
the record 
uriRecord is 
returned by 
operation. 

record identifier for 
to be released. 
usually the value 
a previous Read 

pStatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

3-63 



request block 

Size 
Offset Field (bytes) Contents 

0 sCntlnfo 2 6 
2 nReqPbCb 1 0 
3 nRespPbCb 1 1 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 134 

12 ISAMHandle 2 
14 uriRecord 4 

18 pStatusBlockRet 4 
22 sStatusBlock 2 4 

3-64 



RenamelSAM 

description 

The RenameISAM service changes the name of an 
existing data set by changing the name of both 
the data store and index file for the data set. 
It is invalid to rename only one of the two 
files. 

RenameISAM is implemented by using two 
invocations of the BTOS RenameFile operation; one 
to change the name of the data store file and one 
to change the name of the index file of the data 
set. 

There are certain RenameFile operations, such as 
renaming a file from one volume to another, or 
renaming a file using an incorrect password, that 
are invalid. If a RenameISAM operation is 
attempted where one of the two required BTOS 
RenameFile operations is inval id, ISAM detects 
the error and renames the data set by using a 
val id name for both the data store and index 
file. One or both of the files, in this case, 
may retain the original name. 

You must open the data set in administrator mode. 

procedural interface 

RenameISAM (ISAMHandle, pbFileSpecDataStoreFile, 
cbFileSpecDataStoreFile, 
pbPa~swordDataStoreFileRename, 
cbPasswordDataStoreFileRename, 
pbFileSpecIndexFile, 
cbFileSpeclndexFile, 
pbPasswordIndexFileRename, 
cbPasswordlndexFileRename, 
pStatusBlockRet): ErcType 

where 

ISAMHandle is the ISAM handle that identifies 
the open data set. 

pbFileSpecDataStoreFile 
cbFileSpecDataStoreFile 

describe the file specification for 
the new name of the data store file 
for the data set. 

3-65 



3-66 

pbPasswordDataStoreFileRename 
cbPasswordDataStoreFileRename 

describe the password used when 
renaming the data store file for 
the data set. 

pbFileSpecIndexFile 
cbFileSpecIndexFile 

describe a file specification for 
the new name of the index file 'for 
the data set. If cbFileSpecIndex
File is 0, then the file specifi
cation for the index is derived 
from the file specification for the 
data store file. ISAM copies the 
file specification defined by 
pbPasswordDataStoreFile and cbPass
wordDataStoreFile. Then ISAM 
replaces the suffix (beginning with 
the period character) with the 
characters .Ind. For example, if 
the file specification for the data 
store file is 

[vol]<dir>DataSet.Isam 

then the file specification for the 
index file is 

[vol]<dir>DataSet.Ind 

pbPasswordIndexFileRename 
cbPasswordIndexFileRename 

describe the password used when 
renaming the index file of the data 
set. If the name of the index file 
is null, then these two parameters 
are ignored and the password 
specified for the data store file 
is also used to create the index 
file. 

pStatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are stored. 



request block 

. Size 
Offset Field (bytes) Contents 

0 sCntlnfo 2 2 
2 nReqPbCb 1 4 
3 nRespPbCb 1 1 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 89 

12 ISAMHandle 2 

14 pbFileSpecDataStore-
File 4 

18 cbFileSpecDataStore-
File 2 

20 pbPasswordDataStore-
FileRename 4 

24 cbPasswordDataStore-
FileRename 2 

26 pbFileSpeclndexFile 4 
30 cbFileSpeclndexFile 2 

32 pbPasswordlndexFile-
Rename 4 

36 cbPasswordlndexFile-
Rename 2 

38 pStatusBlockRet 4 
42 sStatusBlock 2 4 

3-67 



RoliBackTransaction 

description 

The RollBackTransaction procedure signifies the 
unsuccessful end of a transaction and unlocks all 
records and data sets locked by the application 
system. 

Although you can call RollBackTransaction, it is 
effective only when the calling application 
system is in a transaction. 

procedural interface 

request block 

3-68 

RollBackTransaction (pStatusBlockRet): ErcType 

where 

pStatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

RollBackTransaction is an object module proce
dure. 



SetlSAMProtection 

description 

The SetISAMProtection service changes the 
passwords that allow an application system to 
gain access to an open data set. 

SetISAMProtection does not change the file system 
passwords for the data set files. You use the 
Executive's Set Protection command to change 
these passwords. You must open the data set in 
administrator mode . 

. procedural interface 

SetISAMProtection (ISAMHandle, 
pbPasswordOpenRead, 
cbPasswordOpenRead, 
pbPasswordOpenModify, 
cbPasswordOpenModify, 
pStatusBlockRet): ErcType 

where 

ISAMHandle is the ISAM handle that identifies 
the open data set. 

pbPasswordOpenRead 
cbPasswordOpenRead 

describe the password that opens 
the data set for reading in either 
batch read or transaction read 
modes. The password cannot be 
longer than 12 bytes. 

pbPasswordOpenModify 
cbPasswordOpenModify 

describe the password that ope~s 
the data set for modification ln 
either batch modify or transaction 
modify modes. This password can 
also be used to open the data set 
for reading in batch read or 
transaction read modes. The 
password cannot be longer than 12 
bytes. 

pStatusB10ckRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

3-69 



request block 

Size 
Offset Field (bytes) Contents 

0 sCntlnfo 2 2 
2 nReqPbCb 1 2 
3 nRespPbCb 1 1 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 90 

12 ISAMHandle 2 

14 pbPasswordOpenRead 4 
18 cbPasswordOpenRead 2 

20 pbPasswordOpenModify 4 
24 cbPasswordOpenModify 2 

26 pStatusBlockRet 4 
30 sStatusBlock 2 4 

3-70 



SetTransactionParams 

description 

The SetTransactionParams procedure sets the 
app1 ication system I s current transaction param
eters. (See Transaction Parameters Block in this 
section for more information.) 

procedural interface 

request block 

SetTransactionParams (pParams, sParams, 
pStatusB1ockRet): ErcType 

where 

pParams 
sParams describe the memory area containing 

the transaction parameters to be 
set. The Transaction Parameters 
Block has the format shown in 
table 3-8. (If sParams is less 
than the length of the Transaction 
Parameters Block, then (1) the 
supp1 ied block must not include a 
partial field at the end, and (2) 
only parameters included in the 
block are changed. 

pStatusB10ckRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

SetTransactionParams is an object module proce
dure. 

3-71 



SetUplSAMlterationLimits 

description 

The SetUpISAMIterationLimits service initializes 
a sequence of Read operations for records that 
have keys for a specified index within a given 
range. Subsequent calls to GetISAMRecords(Hold) 
and ReadNextISAMRecord(Hold) operations read each 
record that has a key value wi thin the range. 
Records are read in key value order. 

If the index is not defined to include null 
values (binary O's), then records with null keys 
are not read. 

procedural interface 

3-72 

SetUpISAMlterationLimits (ISAMHandle, ilndex, 
matchKind, pKeyl, 
sKeyl, pKey2, sKey2 
pStatusBlockRet): 

where 

ISAMHandle 

ilndex 

matchKind 

ErcType 

is the ISAM handle that identifies 
the open data set. 

identifies the index used. (The 
indexes are numbered from 0 in the 
order specified in CreateISAM.) 

is a word specifying which records 
will be retrieved according to the 
following: 

o all records, regardless of 
their key values. keyl and 
key2 are both ignored; sKeyl 
and sKey2 should be O. 

1 all records containing a key 
less than keyl. key2 is 
ignored, and sKey2 should be O. 

2 all records containing 
less than or equal to 
key2 is ignored, and 
should be O. 

a key 
keyl. 
sKey2 



pKeyl 
sKeyl 

pKey2 
sKey2 

3 all records containing a key 
equal to keyl. key2 is 
ignored, and sKey2 should be O. 

4 all records containing a key 
greater than or equal to keyl. 
key2 is ignored, and sKey2 
should be O. 

5 all records containing a key 
greater than keyl. key2 is 
ignored, and sKey2 should be O. 

6 all records containing a key 
greater than keyl, but less 
than key2. 

7 all records containing a key 
greater than or equal to keyl, 
but less than key2. 

8 all records containing a key 
greater than or equal to keyl, 
but less than or equal to key2. 

9 all records containing a key 
greater than keyl, but less 
than or equal to key2. 

describe the memory area containing 
a key record. The key affects the 
set of records that subsequent read 
operations return (see matchKind). 

describe the memory area containing 
a key record. The key affects the 
set of records that subsequent read 
operations return (see matchKind). 

pStatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

3-73 



request block 

Size 
Offset Field (bytes) Contents 

0 sCntlnfo 2 6 
2 nReqPbCb 1 2 
3 nRespPbCb 1 1 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 210 

12 ISAMHandle 2 
14 ilndex 2 
16 matchKind 1 
17 reserved 1 0 

18 pKeyl 4 
22 sKeyl 2 

24 pKey2 4 
28 sKey2 2 

30 pStatusBlockRet 4 
34 sStatusBlock 2 4 

3-74 



SetUplSAMlterationPrefix 

description 

The SetUpISAMIterationPrefix service initializes 
a sequence of Read operations for records wi th 
keys for a specified index having a given prefix. 
Subsequent calls to GetISAMRecords(Hold) and 
ReadNext.ISAMRecord (Hold) operations read each 
record for which the given key is a prefix of the 
key stored in the record. 

The index must contain either byte string or 
character string keys. 

If the index is. not defined to include null 
values (binary O's), then records with null keys 
are not read. 

procedural interface 

SetUpISAMIterationPrefix (ISAMHandle, iIndex, 
pKey, sKey, 
pStatusBlockRet): 

where 

ISAMHandle 

iIndex 

pKey 
sKey 

ErcType 

is the ISAM handle that identifies 
the open data set. 

identifies the index used. (The 
indexes are numbered from 0 in the 
order specified in CreateISAM.) 

describe the memory area containing 
the key. sKey must be no larger 
than the length of the keys for 
index, iIndex. 

pStatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

3-75 



request block 

Size 
Offset Field (bytes) Contents 

0 sCntlnfo 2 4 
2 nReqPbCb 1 1 
3 nRespPbCb 1 1 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 92 

12 ISAMHandle 2 
14 ilndex 2 

16 pKey 4 
20 sKey 2 

22 pStatusBlockRet 4 
26 sStatusB10ck 2 4 

3-76 



StorelSAMRecord 

description 

The StoreISAMRecord service creates a new record 
in a data set. If necessary, 'the length of the 
data store file for the data set is increased to 
accommodate the new record. 

The indexes are updated as requi red to reflect 
the presence of the new record. If the value of 
the new key duplicates an existing key in the 
same index, and duplicates are not allowed for 
that index, then the record is not stored and the 
status code 3118 (duplicate key) is returned. 

The data set must be open for modification. 

If the data set is open in transaction mode, then 
StoreISAMRecord can be called only from within a 
transaction. The created record is locked after 
StoreISAMRecord is called. 

procedural interface 

StoreISAMRecord (ISAMHandle, pRecord, sRecord, 
pUriRecordRet,' pStatusBlockRet): 

where 

ISAMHandle 

pRecord 
sRecord 

pUriRecordRet 

ErcType 

is the ISAM handle that identifies 
the open data set. 

describe the memory area containing 
the record to be written. sRecord 
must be equal to the record size 
for the data set. 

is the memory address of the 4-byte 
structure where the unique record 
identifier of the record to be 
stored is returned. 

pStatusBlockRet 
is the memory address of the ISAM 
status block in which the status 
codes from the operation are 
returned. 

3-77 



request block 

Size 
Offset Field (bytes) Contents 

0 sCntlnfo 2 6 
2 nReqPbCb 1 2 
3 nRespPbCb 1 1 
4 userNum 2 
6 exchResp 2 
8 ercRet 2 

10 rqCode 2 94 

12 ISAMHandle 2 

14 pRe cord 4 
18 sRecord 2 

20 pUriRecordRet 4 
24 sUriRecord 2 4 

26 pStatusBlockRet 4 
30 sStatusBlock 2 4 

3-78 



VerifyMultiUserlSAM 

description 

The VerifyMultiUserISAM procedure sends a request 
to ISAM at ei ther the BNET (Burroughs Network) 
node where the application system is running or 
at another BNET node. If ISAM is installed, a 
status code of 0 ("OK") is returned. Any other 
status code indicates that multiuser ISAM is not 
available. 

procedural interface 

request block 

VerifyMultiUserISAM (pbNode, cbNode, 
pStatusBlockRet): ercType 

where 

pbNode 
cbNodedescribe the memory area containing the 

name of the BNET node. The default 
node is the master workstation for 
the cluster or the standalone 
workstation, where the application 
system is running. 

pStatusBlockRet 
is the memory address of the status 
block into which the status codes 
from the operation are returned. 

VerifyMul tiUserISAM is an object module proce
dure. 

3-7' 





SECTION 4 
ISAM UTILITIES 

INTRODUCTION 
ISAM provides utilities for data set maintenance. 
You invoke the ISAM utilities from the Executive. 
They require exclusive control of the data set 
you want them to maintain. Table 4-1 gives a 
brief description of each utility. 

This section describes the ISAM utilities used 
for data set maintenance. The ISAM Reorganize 
utility, which is used to recover lost data and 
to bui ld a data set from any s tanda rd acces s 
method file, is described in section 5. ISAM 
Install, a utility used to install the multiuser 
ISAM server, is described in section 6. 

Invoking the Utilities 

Optional Fields 

To invoke any of the utilities, you type the name 
(or as many letters from the name as required to 
make it unique) in the command field and press 
RETURN. You then fill in the various fields in 
the utility form and press GO. 

On the form, optional fields are enclosed in 
brackets. The default values are included with 
the field name. 

Fields Ending With a Question Mark 

Fields ending with a questiori mark require a 
response of Yes or No. The default value is 
always No. 

4-1 



Fields Requiring a Password 

You use file system passwords to open a data set 
in admini strator mode. All ISAM uti I i ties use 
these passwords. 

Whenever a password is required, the logged-in 
password is used unless you provide a password 
as part of a file specification. To type a 
password as part of a file specification, you 
type the file specification, a caret character 
("), and then the password. The combined file 
specification and password must not contain any 
embedded spaces. To maintain security, the 
characters of the password are echoed by the 
Executive as number signs (#). 

Default Index File Name 

4-2 

Several ISAM utilities include an optional field 
for an index file specification. If you do not 
enter a file specification, a default index file 
specification is derived from the data store file 
specification. ISAM copies the file 
specification for the data store and replaces the 
suffix after the period character with the suffix 
Ind. For example, if the file specification for 
the data store is 

[vol]<dir>DataSet.lsam 

then the file specification for the index file is 

[vol]<dir>DataSet.lnd 

If the data store file is 

DataSet 

then the index file is 

DataSet.lnd 



Utility 

ISAM Copy 

ISAM Create 

ISAM Delete 

ISAM Rename 

ISAM Set 
Protection 

ISAM Status 

Table 4-1. ISAM Utilities 

Description 

Copies the files of .a data set to produce a 
new data set. The passwords for the new 
data set remain the same as those used for 
the original data set. 

Creates an empty data set wi th the 
specified record size and index fields. 

Deletes both the data store and index files 
of the data set and destroys all the data 
in the data set. 

Renames the data store and index files to 
rename the data set. The passwords are 
unchanged. 

Changes the passwords used to gain access 
to an existing data set. 

Displays information about a data set. The 
information can be printed or written to a 
disk file, in addition to being displayed. 

4-3 



ISAM COpy 

ISAM Copy Form 

4-4 

The ISAM Copy utility creates a new data set by 
copying an exis.ting one. Both the data store 
file and the index file of the existing data set 
are copied. 

ISAM Copy 
ISAM data set from 
ISAM data-set to 
[Index file to] 
[Overwrite ok?] 

where 

ISAM data set from 
is the file specification for the 
data store file of the data set to 
be copied. The password suppl ied 
must be the file system password; 
that is, it must be the volume, 
directory, or file password for 
both of the data set files. 

ISAM data set to 
is the file specification for the 
data store file of the new data 
set. The password supplied must be 
the volume or directory password 
for the new data store file. 

[Index file to] 
is the file specification for the 
index file of the new data set. 
The default file specification, 
which is used if this field is not 
specified, is derived from the data 
store file specification as 
described in Default Index File 
Name in this section. The password 
specified must be the volume or 
directory password for the new 
index file-. 

[Overwrite ok?] 
is Yes or No (the default). 

If you specify Yes, the copy is 
performed. If existing files have 
the same names, they are 
overwritten without issuing a 
confirmation message. 



Example 

ISAM Copy 

If you specify No, or leave the 
field blank, and either of the 
files for the new data set exists, 
a prompt is issued to confirm over
wri ting the existing file. Over
writing an existing file destroys 
the data in it. You press GO to 
confirm the overwrite, CANCEL or 
FINISH to deny it. 

ISAM data set from Employee.ISAM 
ISAM file to EmployeeNew.ISAM 
[Index file to] 
[Overwrite ok? ----------------------------

This example copies a new data set from an 
existing one. Since you have not entered the 
index file specification, the default index 
specification, in this case EmployeeNew.Ind, is 
created. If a file called EmployeeNew.ISAM or 
EmployeeNew.Ind already exists, ISAM prompts for 
an overwrite confirmation by default. 

4-5 



ISAM CREATE 

ISAM Create Form 

4-6 

The ISAM Create utility creates an empty data set 
with the record size and index fields that you 
enter on the ISAM Create form. 

ISAM Create 
ISAM data set 
[Index file] 
Record size (e.g., 20 bytes) 
Index keys (e.g., Byte:10.8.ANU.w) 
[B-Tree node size 

(default 2 sectors)] 
[Growth increment for data store 

file (default 30 sectors)] 
[Growth increment for index file 

(default 30 sectors)] 
[Initial size of data store file 

(default 30 sectors)] 
[Initial size of index file 

(default 30 sectors)] 
[Overwrite ok?] 

where 

ISAM data set is the file specification for the 
data store file of the data set to 
be created. The password suppl ied 
must be the volume or directory 
password for the new data store 
file. 

[Index file] is the file specification for the 
index file of the new data set. 
[Index file] defaults as described 
in the Default Index File Name in 
this section. The password you 
supply must be the volume or 
directory password for the new 
index file. 

Record size (e.g., 20 bytes) 
is the size, in bytes, of the 
records in the new data set. 
Records must be at least 4 bytes 
long. Maximum record size is 
65,528 bytes. 

Index keys (e.g., Byte:iO.8.ANU.W)] 
is the parameter list that 
specifies the index fields of the 



data set. Each parameter in the 
list is specified in the following 
format (no embedded spaces): 

or 

t:l.o.anu.w 

t.o.anu.w 

where 

tis the type of the 
field. 

Binary 
Byte 
Character 
Decimal 
Display 
Integer 
LongIEEE 
ShortIEEE 
ExtendedIEEE 
LongReal 
ShortReal 

1 is the length of the field in 
bytes for byte or character 
strings, the number of digi ts 
for decimal, or the number of 
bytes for binary, display, and 
integer numbers. Binary fields 
default to two bytes if you 
omit this entry. Long, short, 
and extended IEEE index fields 
and long and short real index 
fields do not use this entry. 

o is the byte offset 
record for the index 
You specify it as a 
number. 

in the 
field. 

decimal 

a is A if you want the key order 
for this key to be ascending, 
or D if you want the key order 
to be descending. 

n is N if rou want null values 
(binary 0 s) indexed, and S if 
you want null values 
suppressed. 

4-7 



4-8 

u is U if you want the key to be 
unique, and D if you want 
duplicate keys permitted. 

w is W for non-COBOL application 
systems, and M for COBOL 
application systems. This field 
is optional; the default is W. 

[B-Tree node size (default 2 sectors)] 
is the number of sectors in the B
Tree nodes for the new data set. 
Maximum value is 12 sectors. 

[Growth increment for data store file 
(default 30 sectors)] 

[Growth increment for index file 
(default 30 sectors)] 

[Initial size of data store file 
(default 30 sectors)] 

[Initial size of index file 
(default 30 sectors)] 

are values used to avoid wasting 
disk space and to avoid disk 
fragmentation, which is caused by 
excessive numbers of disk extents. 

[Overwrite ok?] 
is Yes or No (the default). 

If you specify Yes, the data set is 
created. 

If you specify No, or leave the 
field blank, and either of the 
files for the new data set exists, 
a prompt is issued to confirm over
wri ting the existing file. Over
writing an existing file destroys 
the data in it. You press GO to 
ponfirm the overwrite, or press 
CANCEL or FINISH to deny the 
overwrite. 



Example 

ISAM Create 
ISAM data set Employee. ISAM 
[Index file] 
Record size (e.g., 20 bytes) 43 
Index keys (e.g., --------------

Byte:lO.8.ANU.W) @Employee.Keys 
[B-Tree node size 

(default 2 sectors)] 
[Growth increment for data store 

file (default 30 sectors)] 
[Growth increment for index file 

(default 30 sectors)] 
[Initial size of data store file 

(default 30 sectors)] 
[Initial size of index file 

(default 30 sectors)] 
[Overwrite ok?] 

This example creates the Employee data set of the 
Personnel example. The data set name is 
Employee. ISAM, and the index file is 
Employee. Ind, by default. The record size is 
def ined as 43 bytes. Employee. Keys is a text 
file containing the following index definitions: 

BYTE:S.4.ANU.W 
CHARACTER:30.9.AND.W 
BYTE:9.0.ANU.W 

The data store and index file sizes and growth 
increments use the default values. Both files 
are created with an initial size of 30 sectors. 
Each time either of the files is full, the length 
is extended by 30 sectors. 

By default, a prompt is 
overwriting if either 
Employee.Ind exists. 

issued to confirm 
Employee. ISAM or 

4-9 



ISAM DELETE 

ISAM Delete Form 

Example 

4-10 

The ISAM Delete utility deletes both the data 
store file and the index file of the data set. 
It destroys all the data in the data set. 

ISAM Delete 
ISAM data set 

where 

ISAM data set 

ISAM Delete 

is the file specification for the 
data store file of the data set you 
want to delete. The password you 
supply must be the file system 
password; that is, it must be the 
volume, directory, or file password 
for both files of the data set. 

ISAM data set _E_m~p~l~o~y~e~e~._I_S_A_M __________________ _ 

This example deletes the Employee data set of the 
Personnel example. All records in Employee. ISAM, 
including the index file Employee. Ind, are 
deleted. 



ISAM RENAME 

ISAM Rename Form 

The ISAM Rename ut iIi ty changes the name of an 
existing data set by changing the name of both 
the data store file and the index file of the 
data set. It is invalid to rename only one of 
the two files. 

You implement ISAM Rename by using two 
invocations of the BTOS RenameFile operation: one 
to change the name of the data store file and one 
to change the name of the index file of the data 
set. 

There are certain RenameFile operations, such as 
renaming a file from one volume to another, or 
renaming a file using an incorrect password, that 
are inval id . I f one of the two required BTOS 
RenameFile operations is invalid, ISAM Rename 
detects the error and renames the data set by 
using a val id name for both the data store and 
index files. One or both of the files, in this 
case, may retain the original name. 

ISAM Rename 
ISAM data set from 
ISAM data set to 
[Index file to] 
[Overwrite ok?] 

where 

ISAM data set from 
is the file specification for the 
data store file of the data set you 
are renaming. The password you 
supply must be the file system 
password, that is, it must be the 
volume, directory, or file password 
for both files of the data set. 

ISAM data set to 
is the file specification for the 
data store file of the renamed data 
set. The volume you specify in 
"ISAM data set to" must be the same 
volume specified in ISAM data set 
from. II The password you supply 
must be the volume or directory 
password for the renamed data store 
file. 

4-11 



Example 

4-12 

[Index file to] 
is the file specification for the 
index file of the renamed data.set. 
I f you' do not make an entry, the 
default index file specification is 
derived as described in Default 
Index File Name in this section. 
The volume specified in [Index file 
to] must be the same volume that 
the existing index file resides on. 
The password suppl ied must be the 
volume or directory password for 
the new index file. 

[Overwrite ok?] 

ISAM Rename 

is Yes or No (the default). 

If you specify Yes, the data set is 
renamed. 

If you specify No, or leave the 
field blank, and either of the 
files for the new data set exists, 
a prompt is issued to confirm over
writing the existing file. Over
writing an existing file destroys 
the data in it. You press GO to 
confirm the overwri te. You press 
CANCEL or FINISH to deny it. 

ISAM data set from 
ISAM data set to 
[Index file to] 
[Overwrite ok?] 

Employee. ISAM 
<NewDir>Employee.ISAM 

This example renames the Employee data set of the 
Personnel example. The new data store file name 
has the same name as the old data set, but the 
directory on the logged-in volume has been 
changed. The index file specification is derived 
from the data set file specification by default. 
The new index file name is <NewDir>Employee.lnd. 



ISAM SET PROTECTION 
The ISAM Set Protection utility enters or 
modifies the passwords that permit access to a 
data set. ISAM Set Protection does not change 
the file system passwords for the files of the 
data set. You can change the file system 
passwords using the Executive Set Protection 
command. All ISAM utilities require file system 
passwords. You use passwords to open data sets 
in administrator mode also. See section 2 for 
more information on the use of administrator 
mode. 

ISAM Set Protection Form 

ISAM Set Protection 
ISAM data set 
[Password for modification] 
[Password for reading] 

where 

ISAM data set 
is the file specification for the 
data store file of the data set. 
This is the data set for which you 
are modifying the access passwords. 
The password you supply must be the 
file system password; that is, it 
must be the volume, directory, or 
file password for both files of .the 
data set. 

[Password for modification] 
is the new password for modify 
access to the data set. I f you do 
not enter this password, any 
password permits modify access. 
Passwords have a maximum length of 
12 characters. 

[Password for reading] 
is the new password for read access 
to the data set. I f you do not 
enter this password, any password 
permits read access. Passwords 
have a maximum length of 12 
characters. 

4-1~ 



Example 

4-14 

ISAM Set Protection 
ISAM data set Employee. ISAM 
[Password for modification] _x~x~y ______________ _ 
[Password for reading] _x_x~z ______________ _ 

This example protects the Employee.ISAM data set 
for read and modify access. Batch and 
transaction read modes require either xxy or xxz 
as the password, and batch and transaction modify 
modes require xxy as the password. Administrator 
mode still requires the file system password. 



ISAM STATUS 

ISAM Status Form 

The ISAM Status utility produces a status report 
for a data set on the video screen. The status 
report can also be printed or written to a disk 
file. The information displayed includes the 
file names, sizes, growth increments, the record 
and B-tree node sizes, and a description of each 
index, including the depth of each B-tree. If 
you entered YES in response to [Details?], the 
following additional information is included: 

• the number of records (and deleted records) 
in the data set 

• the number of B-tree nodes for each index 
(and the number of deleted nodes) 

• the number of records indexed under each key 

• the average percentage of node space 
currently used for each node of each index 

Retrieving this additional information' involves 
scanning the files of the data set, so ISAM 
Status takes s igni ficantly longer to execute if 
the. details are requested. 

Figure 4-1 shows both forms of the ISAM Status 
report. 

ISAM Status 
ISAM data set 
[Log file] 
[Details?] 

where 

ISAM data set 

[Log file] 

is the file specification for the 
data store file of the data set for 
which you are generating the status 
report. The password you supply 
must be the file system password; 
that is, it must be the volume, 
directory, or file password for 
both files of the data set. 

is the file specification for the 
file you want the status report 
written to. If you do not specify 

4-15 



Example 

4-16 

[Details?] 

ISAM Status 

a log file, the report appears only 
on the video display. 

is Yes or No (the default). 

Yes displays the additional details 
described previously. 

If you specify No, or leave the 
field blank, the details described 
previously are not displayed. 

ISAM data set ~E~m~p~l~o~y~e~e~.~I~S~A~M~ ________________ __ 
[Log file] 
[Details?] ~Y~e~s ____________________________ _ 

This example produces a status report wi th de
tails as shown in the second part of figure 4-1. 



~ 
I 
~ 
"-oJ 

Data store file 
Index file 
Last accessed 
Last modi fied 
Record size (bytes) 
Node size (sectors) 
Size of Data store file (sectors) 
Size of Index file (sectors) 
Growth increment for Data store file (sectors) 
Growth increment for Index file (sectors) 
Number of records "(valid and deleted) 
Number of nodes (valid and deleted) 

Index 
Number 

o 
1 
2 

Index 
Specification 
Byte:5.4.ANU.W 
Character:30.9.AND.W 
Byte:9.0.ANU.W 

Data store file 
Index file 
Last accessed 
Last mod i fied 
Record size (bytes) 
Node size (sectors) 
Size of Data store file (sectors) 
Size of Index file (sectors) 

BTree 
Depth 

1 
1 
1 

Growth increment for Data store file (sectors) 
Growth increment for Index file (sectors) 
Number of records 
Number of deleted records 
Number of nodes 
Number of deleted nodes 

Index Index 
Number Specification 

0 Byte:5.4.ANU.W 
1 Cha~acter:30.9.AND.W 

2 Byte:9.0.ANU.W 

BTree Number 
Depth of nodes 

1 1 
1 1 
1 1 

[Win] <Personnel>Emp1oyee.ISAM 
[Win] <Personne1>Emp1oyee.Ind 
Thu Ju1 21, 1983 10:09 AM 
Thu Ju1 21, 1983 10:09 AM 
43 
2 
5 
10 
5 
5 
7 
3 

[Win] <Personne1>Emp1oyee.ISAM 
[Win] <personne1>Emp1oyee.Ind 
Thu Ju1 21, 1983 10:09 AM 
Thu Ju1 21, 1983 10:09 AM 
43 
2 
5 
10 
5 
5 
7 
o 
3 
o 

Number of Average 
records indexed Fullness (%) 

7 7 
7 24 
7 9 

Figure 4-1. Status Reports 





SECTION 5 
ISAM REORGANIZATION 

INTRODUCTION 
The ISAM Reorganize utility builds a data set 
from any Standard Access Method file of fixed
length records, including the data store file of 
a data set. 

You can use this utility by itself to: 

• initially load a data set from a Direct 
Access Method (DAM) file 

• change the definition of the indexes of an 
existing data set or add new indexes 

• change CreateISAM parameters, such as B-tree 
node sizes 

You can use this uti I i ty wi th the Maintain Fi Ie 
utility to: 

• recover records from a data set damaged by a 
software or hardware failure 

o reclaim space in a data set from which you 
deleted records 

• merge several data sets or DAM files into a 
new data set 

You can use this utility with the 
Sort utility (described in the 
Sort/Merge Reference Manual) to: 

interactive 
B 20 Systems 

o sort the physical records to organize the 
data set in order by key values 

• recover records, reclaim space, and merge 
data sets (as with the Maintain File utility) 

• modify records by changing, adding, deleting, 
or rearranging fields 

Sorting the records of a data set improves the 
performance of appl ication systems that access 
the records of the data set in the sort order. 
No other difference is visible at the application 
system level. 

5-1 



ISAM Reorganize performs an in-place reorganiza
tion. The DAM file or the data store file of the 
data set becomes the data store file of the 
reorganized data set. The index file of the data 
set is deleted and then rebuilt. 

At the end of this section, there are examples of 
how to use ISAM Reorganize alone or with Maintain 
File or Sort to perform the tasks described 
previously. 

Invoking ISAM Reorganize· 

Optional Fields 

To invoke ISAM Reorganize, you type ISAM 
Reorganize (or as many letters from the name as 
are required to make it unique) in the command 
field and press RETURN. You then fill in the 
various fields in the utility form and press GO. 

On the form, optional fields are enclosed in 
brackets. The default values are included with 
the field name. 

Fields Ending With a Question Mark 

Fields ending with a 
response of Yes or No. 

question mark require a 
The default value is No. 

Fields Requiring a Password 

5-2 

You use file system passwords to open a data set 
in administrator mode. All the ISAM utilities 
require these passwords~ 

Whenever a password is required, you use the 
logged-in password unless a password is provided 
as part of a file specification. To type a 
password as part of a file specification, you 
enter the file specification, a caret character 
( .... ), and then the password. The combined file 
specification and password must not contain any 
embedded spaces. To maintain security, the 
Executive echoes the characters of the password 
as number signs (#). 



ISAM Reorganize Form 

ISAM Reorganize 
ISAM data set or DAM file 
[Index file] 
[Work file 1] 
[Work file 2] 
[Use parameters from ISAM data set?] 
[Index keys (e.g., Byte:10.8.ANU.W)] 
[B-tree node size (2 sectors)] 
[Data store file growth increment 

(30 sectors)] 
[Index file growth increment 

(30 sectors)] 
[Minimum index file size 

(30 sectors)] 
[Maximum initial B-tree node 

fullness (80%)] 
[Overwrite ok?] 

where 

ISAM data set or DAM file 
is the file specification for an 
existing data set, or for a DAM 
file from which a data set is to be 
built. If you specify a DAM file, 
the DAM file becomes the data store 
file of the new data set. ISAM 
Reorganize can determine by the 
content of the data file or an ISAM 
data set whether the file is a DAM 
file or an ISAM data set. 

[Index file] is the file specification for the 
index file of the reorganized data 
set. 

If the file specified in ISAM data 
set or DAM file above is an 
existing data set, then the index 
fi Ie name defaul ts to the name of 
the existing index file for the 
data set. 

If [Index file] changes the name of 
the index file of an existing data 
set, then the old index file is 
deleted. 

5-3 



5-4 

[Work file 1] 
[Work file 2] 

If ISAM data set or DAM file above 
specifies the name of a DAM file, 
then the index fi Ie name defaul ts 
to the name of the DAM file with 
the suffix .Ind . 

are two work fi les, each approxi
mately cRecords*(sKeyMax + 8) + 512 
bytes long, where cRecords is the 
number of records in the data set 
and sKeyMax is the length of the 
longest key field in bytes. 

The work files default to 
[Sys]<$nnn>ISAMWork1tmp and 
[Sys]<$nnn>ISAMWork2tmp, where nnn 
is the workstation number. If the 
directory [Sys]<$nnn> does not 
exist, then the work files default 
to ISAMWorkltmp and ISAMWork2tmp in 
the logged-in directory (using the 
logged-in default file prefix); 

For optimal ISAM Reorganize perfor
mance, the work files should be on 
different Winchester disk drives. 

[Use parameters from ISAM data set?] 
is Yes or No (the default). 

Yes indicates that an existing data 
set is to be reorganized. I f you 
leave any of the fields in the form 
from [Index keys (e.g., Byte:lO.8.
ANU.W)] through [Index file growth 
increment (30 sectors)] blank, then 
the values you specified when you 
created or last reorganized the 
data set are used instead of the 
listed defaults. 

If you specify Yes for this field 
and the index file of the data set 
is deleted or unusable, then a 
status message appears on the video 
display and ISAM Reorganize ter
minates. 

If you specify No for this field, 
then you must fill in [Index keys 
(e.g., Byte:lO.8.ANU.W)]. If 



you do not fill in any of the 
fields [B-tree node size (2 
sectors)], [Data store file growth 
increment (30 sectors)], or [Index 
file growth increment (30 
sectors)], then the listed default 
is used. 

Index keys (e.g., Byte:lO.8.ANU.W)] 
is the parameter list that 
specifies the index fields of the 
data 'set. Each parameter in the 
list is specified in the following 
format (no embedded spaces): 

t:l.o.anu.w 

or 

t.o.anu.w 

where 

t is the type of the field: 

Binary 
Byte 
Character 
Decimal 
Display 
Integer 
LongIEEE 
ShortIEEE 
ExtendedIEEE 
LongReal 
ShortReal 

1 is the length of the field in 
bytes for byte strings or 
character strings, the number 
of digits for decimal, or the 
number of bytes for binary, 
display, and integer numbers. 
If you omit this entry, binary 
fields default to two bytes. 
Long, short, and extended IEEE 
index fields and long and short 
real index fields do not use 
this entry. 

o is the byte offset in the 
record for the index field. It 
is specified as a decimal 
number. 

5-5 



5-6 

a is A if the key order for this 
key is ascend ing, or D if the 
key order is descending. 

n is N if null values (binary 
O's) are to be indexed, and S 
if null values are suppressed. 

u is U if the key is to be unique 
(if duplicates are not 
allowed), and D if duplicate 
keys are to be permitted. 

w is W for non-COBOL application 
systems, and M for COBOL 
application systems. This 
field is optional; the default 
is W. 

[B-tree node size (2 sectors)] 
is the number of sectors in the B
tree nodes for the new data set. 
Maximum value is 12 sectors. 

[Data store file growth increment (30 sectors)] 
[Index file growth increment (30 sectors)] 
[Minimum index file size (30 sectors)] 

are values that you use 
wasting disk space and 
disk fragmentation, which 
by excessive numbers 
extents. 

to avoid 
to avoid 
is caused 
of disk 

[Maximum initial B-tree node fullness (80%)] 
is the percentage of allocated 
space that is the maximum capacity 
for each B-tree node. The minimum 
capacity for a B-tree node is 50%. 
If you specify a percentage less 
than 50%, in this entry, I SAM 
Reorganize ignores the entry and 
uses 50%. 

[Overwrite ok?] 
is Yes or No (the default). 

If -you specify Yes, then the 
reorganization is performed. 

If (1) you specify NO, and (2) the 
ISAM data set or DAM file entry 
specifies a DAM file, and (3) the 
index file exists, then ISAM 
Reorganize issues a prompt to 



Loading a Data Set 

Example 

confirm before overwriting the 
existing contents of the file. You 
press GO to confirm, and CANCEL or 
FINISH to deny. 

By using the Executive Copy command, you can load 
a data set from a DAM file. You simply copy the 
DAM file to the data store file of the data set. 
You then use ISAM Reorganize to build the indexes 
for the new data set and to initialize all of 
the file structures necessary for access to the 
data set by ISAM. 

If the DAM file, Employee.DAM, contains records 
to load into the Employee data set, 
Employee. ISAM, you first copy Employee.DAM to 
Employee.ISAM and then invoke ISAM Reorganize and 
fill in the forms as follows: 

Copy 
File from 
File to 
[Overwrite ok?] 
[Confirm each?] 

ISAM Reorganize 
ISAM data set or DAM file 
[Index file] 
[Work file 1] 
[Work file 2] 
[Use parameters from 

ISAM data set?] 
[Index keys 

(e.g., Byte:10.8.ANU.W)] 
[B-tree node size (2 sectors)] 
[Data store file growth 

increment (30 sectors)] 
[Index file growth increment 

(30 sectors)] 
[Minimum index file size 

(30 sectors)] 
[Maximum initial B-tree node 

fullness (80%)] 
[Overwrite ok?] 

Employee.DAM 
Employee. ISAM 

Employee. ISAM 

@Employee.Keys 

5-7 



Employee.Keys is a text file containing the 
following k~y specifications: 

BYTE:S.4.ANU.W 
CHARACTER:30.9.AND.W 
BYTE:9.0.ANU.W 

Changing Indexes and Other ISAM Create Parameters 

Example 

5-8 

You use ISAM Reorganize to change the index 
definitions of an existing data set, to add new 
indexes, or to change other ISAM Create 
parameters such as B-tree node sizes. 

In the Personnel data sets example, the records 
contained in Employee.ISAM have the following 
structure: 

Offset Length Field Type 

0 4 deptNo byte 
4 5 empNo byte 
9 30 empName character 

39 4 salary decimal 

empNo and empName are defined as keys, and there 
is also a composite key (deptNo,empNo). 

In this example, an index on the salary field is 
added. All four indexes now 1 ist records' in 
ascending order by key field(s), and all four now' 
support ~ndexing of null values. The empName and 
salary indexes allow dupl icates, and the empNo 
and (deptNo,empNo) keys uniquely identify 
records. 

When the ISAM Reorganize form displays, you enter 
the name of the data set in the ISAM data set or 
DAM fi Ie field and specify Yes for [Use 
parameters from ISAM data set?]. Then you fill 
in the parameters you want to change. 



ISAM Reorganize 
ISAM data set or DAM file Employee. ISAM 
[Index file] 
[Work file 1] 
[Work file 2] 
[Use parameters from 

ISAM data set?] Yes 
[Index keys ---------------

(e.g., Byte:10.8.ANU.W)] @Employee.Keys 
[B-tree node size (2 sectors)] 
[Data store file growth 

increment (30 sectors)] 
[Index file growth increment 

(30 sectors)] 
[Minimum index file size 

(30 sectors)] 
[Maximum initial B-tree node 

fullness (80%)] 
[Overwrite ok?] 

Employee.Keys is a text file containing the 
following key specifications: 

BYTE:S.4.ANU.W 
CHARACTER:30.9.AND.W 
BYTE:9.0.ANU.W 
DECIMAL:6.AND.W 

ISAM Reorganize extracts the old parameters from 
the data set, replaces any that have new values 
with the values specified (in this case, only the 
index keys), and rebuilds the indexes of the data 
set. 

Recovering Records~ Reclaiming Space, and Merging Data 

You use the Executive's Maintain File utility and 
ISAM Reorganize to: 

• recover records from a data set damaged by a 
software or hardware failure 

• reclaim space in a data set from which you 
deleted records 

• merge several data sets or DAM files into a 
new data set 

Maintain File performs each of these tasks and 
produces a single file. This file, along with 
ISAM Reorganize, builds the indexes. 

5-9 



xample 

5-10 

To recover data 
invoke Maintain 
follows: 

Maintain File 

from Employee. ISAM, you first 
File and fill in the form as 

Input files Employee. ISAM 
[Output file] _T_em~p_.D_A_M __________ __ 
[Log file] 
[Remove deleted records?] 
[Suppress confirmation?] ---------------------

Maintain File scans the data store file of the 
Employee data set, verifying the file structures, 
recovering data, and reclaiming the space the 
deleted records occupied. The records are then 
copied into Temp.DAM. 

Next, you use the Executive Copy or Rename 
command to replace the data store file of 
Employee.ISAM wi th the file that Maintain File 
produces, as follows: 

Rename 
Old file name =T~e_m~p_._D_A_M~~~ ________________ _ 
New file name ~E~m~p_l_o~y_e_e_._I_S_A_M ________________ __ 
[Overwrite ok?]Yes 
[Confirm each?]-------------------------------

Finally, you use ISAM Reorganize to build the 
indexes of the merged data set. The existing 
index file can supply the index keys, node sizes, 
etc. (If the index file of the old Employee.ISAM 
data set does not have the default name, 
Employee.Ind, then you must specify its name in 
[Index file].) 



ISAM Reorganize 
ISAM data set or DAM file Employee.ISAM 
[Index fileJ 
[Work file 1] 
[Work file 2J 
[Use parameters from 

ISAM data set?J Yes 
[Index keys ~-------------

(e.g., Byte:10.8.ANU.W)J 
[B-tree node size (2 sectors)J 
[Data store file growth 

increment (30 sectors)] 
[Index file growth increment 

(30 sectors)] 
[Minimum data store 

file size (30 sectors)] 
[Minimum index file size 

(30 sectors)J 
[Maximum initial B-tree node 

fullness (80%)] 
[Overwrite ok?] 

Sorting Data Set Records 

You use the Sort utility and ISAM Reorganize to: 

• sort the physical records to organize the 
data set in order by key values 

• recover records, reclaim space, and merge 
data sets (as with the Maintain File utility 
previously discussed) 

• modify records by changing, adding, deleting, 
or rearranging fields 

You modify records by using the "own code" 
feature in the Sort utility. After the data 
store file is sorted by Sort, ISAM Reorganize is 
used to build the indexes for the data set. See 
the B 20 Systems Sort/Merge Reference Manual for more 
information. 

5-11 



Example 

5-12 

In the Personnel data sets example, the Employee 
data set, Employee. ISAM, has the following 
fields: 

Offset 

o 
4 
9 

39 

Length 

4 
5 

30 
4 

Field 

deptNo 
empNo 
empName 
salary 

Type 

byte 
byte 
character 
decimal 

empNo and empName are defined as key fields, and 
there is also a composite key (deptNo,empNo). 

In this example, a major application system 
processes records in order by employee number, so 
it is advantageous to sort the data set by the 
empNo field. The first step is to invoke Sort 
and fill in the form as follows: 

Sort 
Input files 
Output files 
Keys 
[Stable sort?] 
[Work file 1] 
[Work file 2] 
[Log file] 
[Suppress confirmation?] 

Employee. ISAM 
Temp.DAM 
BYTE:5.4.A.W 

Next, you use the Executive COPY or RENAME 
command to replace the data store file of 
Employee.ISAM with the file produced by Sort, as 
follows: 

Rename 
Old file name Temp.DAM 
New file name Employee. ISAM 
[Overwrite ok?] Yes 
[Confirm each?]--------------------------------

Finally, you use ISAM Reorganize to bui ld the 
indexes of the sorted data set. The existing 
index file can supply the index keys, node sizes, 
etc. (If the index file of the old Employee.ISAM 
data set does not have the default name, 
Employee.Ind, then you must specify its name in 
[Index file].) 



ISAM Reorganize 
ISAM data set or DAM file Employee. ISAM 
[Index file] 
[Work file 1] 
[Work file 2] 
[Use parameters from 

ISAM data set?] Yes 
[Index keys ~~----------

(e.g., Byte:10.8.ANU.W)] 
[B-tree node size (2 sectors)] 
[Data store file growth 

increment (30 sectors)] 
[Index file growth increment 

(30 sectors)] 
[Minimum index file size 

(30 sectors)] 
[Maximum initial B-tree node 

fullness (80%)] 
[Overwrite ok?] 

5-13 





SECTION 6 
ISAM SERVER INSTALLATION 

ISAM supports both multiuser and single-user 
access to the ISAM server. Mul tiuser ISAM is 
installed in memory as a system service, while an 
application system· loads single-user ISAM as a 
task. If multiuser ISAM is installed, 
application systems can share access to data 
sets. An application system that opens a data 
set wi th single-user ISAM, however, has exclu
sive use of the data set; no other application 
system can access that data set. 

ISAM is designed to handle the differences 
between multiuser and single-user access 
internally. Once access to ISAM is established, 
application systems are independent of any 
differences and can run in ei ther environment. 
(See table 6-1 for more information.) For 
example, transaction-related constraints 
associated with multiuser access are also 
enforced in single-user ISAM. Using the same 
requirements regardless of access method enables 
an application system to be written and tested 
in a single-user environment before being used in 
a multiuser environment. 

Similarly, asynchronous requests from application 
systems to ISAM use the same procedure, 
ISAMRequest, in both mul tiuser and single-user 
environments. 

To support multiuser (shared) access to data 
sets, you must install the ISAM server in memory 
as a system service at a standalone or master 
workstation. You use the ISAM Install utili ty 
to install multiuser ISAM. A default 
configuration file is providea with the ISAM 
distribution diskettes. You can modify this 
configuratiop file to support the requirements of 
your installation. 

You can also load ISAM as a task of an appli
cation system by invoking the LoadSingleUserISAM 
operation. Loading the ISAM server from an 
application system allows single-user (exclusive) 
access to data sets located at the workstation 
where the application is running, without 
installing ISAM as a system service. 

You can install two different forms of the ISAM 
server: a resident server and a swapping server. 

6-1 



6-2 

Both forms are included on the distribution 
diskettes, and the type of system environment in 
which you are using ISAM determines which form to 
use. The resident server uses more memory than 
the swapping form, but the performance is better. 
Only the resident server can be used on systems 
equipped with floppy disk drives. 

Table 6-1. Differences Between Multiuser and 
Single-User Access 

Multiuser Access 

ISAM is installed 
as a system service at 
the master or stand
alone workstation. 

ISAM services re
quests from all appli
cation systems in the 
cluster. 

Both shared and 
exclusive access to 
a data set are sup
ported. 

ISAM uses Request 
and Respond opera
tions for asynchronous 
processing. 

Single-User Access 

ISAM is loaded as a 
task of the applica
tion system. 

ISAM services re
quests only from the 
application system 
that called it. 

Only exclusive access 
to a data set is 
supported; no other 
application system 
can access a data 
set that an applic
ation system opened. 

ISAM uses the Send 
operation for asyn
chronous processing. 



MULTIUSER INSTALLATION 
The following information pertains to multiuser 
installation in a single-partition BTOS, and in 
a multipartition BTOS. 

Single-Partition BTOS 

Multipartition BTOS 

ISAM INSTALL 

ISAM Install Form 

ISAM Install 

In a single-partition BTOS, ISAM is permanently 
installed in memory. 'Once you install it, you 
cannot remove it nor reallocate its memory unless 
you rebootstrap the operating system. 

In a multipartition BTOS, ISAM is installed in a 
secondary application partition. 

The ISAM Install command installs the ISAM server 
in memory at a standalone or master workstation. 
It uses the values contained in a configuration 
file to determine how memory is allocated. 

[Number of ISAM users (default from OS configuration)] 
[Configuration file (default [Sys]<Sys)ISAM.Config)] 

where 

[Number of ISAM users (default from OS 
configuration)] 
specifies the average number of 
users who will use ISAM. The 
default number is the total number 
of users specified in the system 
build configuration file that BTOS 
uses. ISAM determines memory 
requirements for the specified 
number of users according to the 
values specified in the configura
tion file for the data set. 

6-3 



Memory Allocation 

For example, if a cluster has five 
users, three of whom use ISAM 
extensively and two of whom use 
ISAM only occasionally, then you 
should specify four. Simul taneous 
use of ISAM by all five users is 
allowed, but the users may notice 
some performance degradation. 

[Configuration file (default 
[Sys]<Sys)ISAM.Config)] 
specifies the configuration file 
ISAM is to use to determine memory 
requirements. The default value is 
[Sys]<Sys)ISAM.Config, which is the 
configuration file provided with 
the distribution diskettes. 

ISAM server installation requires memory for: 

• resident code and data 

• a virtual code segment management buffer 
(swap zone) when the swapping server is used 

• a "heap" 

• data and index buffers 

Resident Code and Data 

6-4 

Following are the code and data requirements for 
the swapping and resident servers. You can 
specify the other memory areas, although default 
values are contained in the distribution 
configuration file: 

Resident code and data 
(swapping system service): 37.5K 

Resident code and data 
(resident system service): 76.5K 



Swap Zone 

Heap 

Data Buffers 

For the resident ISAM server, the swap zone size 
is always o. For the swapping form, the size of 
the ,swap zone can vary. In general, the more 
memory allocated for the virtual code segment, 
the less swapping is per formed and the better 
ISAM performs. For the swapping form of the 
ISAM server, the size of the swap zone (virtual 
code segment management buffer) must be at least 
8K of memory; the maximum amount is 48K of 
memory. 

Control blocks for open data sets, indexes, and 
record locks are allocated from the heap, an area 
of memory containing internal ISAM data 
structures. If you need a large number of 
control blocks, you should increase the heap 
size. However, the size of the heap can not 
exceed 40K of memory. Further information on 
determining heap size is provided in this 
section. 

Data buffers are fixed-length liD buffers into 
which portions of data files are read. Data 
buffers are allocated as 512-byte sectors. A 
data buffer must be at least two sectors (1K) and 
not more than 127 sec tor s (63. 5K) • The buffer 
size should be kept small unless the records in 
the data set are large. The total memory area 
allocated for the data buffers is determined by 
mul tiplying the number of sectors needed for a 
buffer by the number of buffer:s needed. The 
number of buffers needed depends on the number of 
users. Refer to ISAM Configure in this section 
for information on determining how many buffers 
are needed. Memory Allocation Calculation in 
this section provides a more detailed explanation 
of how the data buffer size is determined. 

6-5 



Index Buffers 

6-6 

Index buffers are fixed-length 1/0 buffers into 
which portions of index files are read. Index 
buffers are allocated as 512-byte sectors. An 
index buffer must be at least one sector (512 
bytes) and no more than 12 sec tor s (6K). You 
cannot access a data set if the largest B-tree 
node in the index file does not fit in the index 
buffer. Nodes, like index buffers, are allocated 
in full sectors, so the index buffer must be no 
smaller than the largest B-tree node. The total 
memory area allocated for the index buffers is 
determined by mul tiplying the number of sectors 
needed for a buffer by the number of buffers 
needed. The number of buffers needed depends on 
the number of users. Refer to ISAM Configure in 
this section for information on determining how 
many buffers are needed. 



ISAM CONFIGURE 
An ISAM configuration file specifies the sizes of 
the ISAM server's memory areas, according to the 
number of users for which the server is 
installed.' The configuration file provided on 
the distribution diskette has reasonable default 
values for these memory areas. However, changing 
the values with the ISAM Configure utility may 
improve performance, depending on the typical 
patterns of access in a particular installation. 

The ISAM Configure utility creates or changes the 
configuration file that the ISAM Install command 
uses to determine memory allocation. (See ISAM 
Install discussed previously.) ISAM Configure 
displays the values contained in the specified 
configuration file and allows the user to change 
the values. (See figure 6-1 for more 
information) . 

If the specified configuration file does not 
exist, ISAM Configure creates a new configuration 
file with the specified name, and inserts default 
values. The following message is displayed 
before ISAM Configure creates the configuration 
file (file is the specified configuration file): 

File file does not exist. Create? 
(Press GO to confirm, CANCEL to stop command) 

If the specified configuration file exists but is 
not an ISAM configuration file, ISAM Configure 
overwrites the contents of the configuration file 
with default configuration values. The following 
message is displayed before ISAM Configure 
overwrites the contents of the specified 
configuration file: 

File is not an ISAM configuration file. 
Overwrite? 
(Press GO to confirm, CANCEL to stop command) 

By changing the values in the displayed form, 
you can modify the configuration file values. 
Detailed information on calculating the size 
of the memory areas is provided in the Memory 
Allocation Calculation in this section. 

6-7 



0'\ 
I 

00 

Executive X.XX (OS XXX-X.XX) 
Path: [SysJ<Sys> 

User Name: Allen 
Fri July 22, 1983 1:47 PM 

(!) ;;~~=~~~;~~~;:;~~~=~;~i~;;=;:;;==================================================== 
~ Buffer Sizes (number of 512-byte sectors) 

Data Buffers 2 
Index Buffers '2 

1 2 
CD Number of ISAM Users 

3 4 567 

o Heap Size 5 8 9 
(K bytes) 

o Data Buffers 2 8 10 
(number) 

o Index Buffers 3 8 10 
(number) 

o Swap Zone Si ze (K bytes) 10 

o Press GO to confirm changes, or CANCEL to stop command 

8 

Figure 6-1& ISAH Configure Display 

9 10 



ISAM Configure Form 

ISAM Configure 
[Configuration file (default [Sys]<Sys)ISAM.Config)] -----

where 

[Configuration file (default 
[Sys]<Sys)ISAM.Config)] 
specifies the configuration file to 
be created or changed. The default 
value is [Sys]<Sys)ISAM.Config, 
which is the configuration file 
provided with the distribution 
diskettes. 

ISAM Configure Display 

Cursor Movement 

The ISAM Configure display is generated when you 
invoke ISAM Configure. The values from the 
configuration file specified in ISAM Configure 
are displayed as part of the form. 

By changing the entries in the form, you can 
change the configuration files. 

When the ISAM Configure form is first displayed, 
the cursor is in the first field. Pressing the 
NEXT, RETURN, or TAB key moves the cursor from 
field to field. When the last field is reached, 
pressing the NEXT or RETURN key brings the cursor 
to the first field. 

The cursor-control keys move the cursor verti
cally or horizontally. The .- and -.. keys 
move the cursor within a field. 
SHIFT- ~ moves the cursor to the previous 
field, and SHIFT- --.. moves the cursor to the 
next field (the same as the NEXT and RETURN 
keys) . The + ' SHIFT- + ,+ , and SHIFT- + keys 
move the cursor vertically. CODE- + moves the 
cursor to the first field. CODE- + moves it to 
the last field. 

The DELETE key deletes one character at a time in 
a fi.eld. The CODE-DELETE key deletes all the 
characters in a field. 

6-9 



Video Display 

6-10 

The following items describe the parts of the 
ISAM Configure display. They are keyed to the 
circled numbers in figure 6-1. 

1. ISAM Configuration Utility X.XX signifies 
this form is the ISAM Configuration utility 
display. X.XX is the version. 

2. Buffer Sizes (number of 512-byte sectors) 
specifies the number of 512-byte sectors to 
be allocated for each data and index buffer. 
The maximum number of sectors for data 
buffers is 127, and for index buffer s the 
maximum is 12. The default value for both 
data and index buffers is 2. 

3. Number of ISAM Users specifies the range of 
numbers to be used as column headings for the 
tabular portion of the form. Each entry is 
the number of users for which that column 
provides configuration information. Up to 
10 numbers can be specified; the default 
values are 1 through 10 consecuti vely. You 
can change the range of numbers as long as 
the numbers ascend from left to right. 

4. Heap Size (K bytes) specifies the number of 
bytes to be allocated for the heap, based on 
the number of users. The default values are 
5 for one user, 8 for four users, and 9 for 
fi ve users. The minimum si ze is 1. For 
further information, see Memory Allocation 
Calculation in this section. 

There must be at least one entry in this row. 

5. Data Buffers (number) specifies the number of 
data buffers to be allocated, based on the 
number of users. The defaul t values are 2 
for one user, 8 for four users, and 10 for 
five users. The minimum number is 2. For 
further information, see Memory Allocation 
Calculation in this section. 

There must be at least one entry in this row. 



6. Index Buffers (number) specifies the number 
of index buffers to be allocated, based on 
the number of users. The defaul t values are 
3 for one user, 8 for four users, and 10 for 
fi ve user s. The min imum number is 3. For 
further information, see Memory Allocation 
Calculation in this section. 

There must be at least one entry in this row. 

7. Swap Zone Size (K bytes) specifies the number 
of bytes to be allocated for virtual code 
segment management. The defaul t is 10k; the 
minimum is 8k. The resident server ignores 
this entry. 

8. Message line. Error messages replace thi s 
line if any errors occur. 

MEMORY ALLOCATION CALCULATION 
Before installing ISAM, ISAM Install 
allocates memory by calculating the 
memory requirements for resident code 
and data, a swap zone (if the swapping 
server is used), a heap, and data and 
index buffers. Memory allocation for 
resident code and data is predetermined; 
see ISAM Install in this section for 
further information. Memory allocation 
for the swap zone is specified in the 
configuration file. ISAM Install uses 
the configuration file values listed in 
the ISAM Configure display (see figure 
6-1) to calculate memory allocation for 
the heap and the data and index buffers, 
based on the number of users for which 
ISAM is being installed. 

ISAM Install calculates the heap size by 
selecting the Heap Size entry for the 
appropriate number of users. I f the 
specified number of users is a column 
entry, ISAM Install then reads the 
specified heap size from that column in 
the Heap Si ze row. (See figure 6-2.) 
If ISAM Install does not find that 
number of users, or if the corresponding 
column in the Heap Size row is blank, 
ISAM Install calculates the heap size 
by ei ther interpolating between or 
extrapolating from the existing entries. 

6-11 



6-12 

ISAM Install calculates the memory area 
needed for the data buffers from two 
entries in the configuration file. (See 
figure 6-3.) First, ISAM Install 
determines the actual number of data 
buffers to use in the same way it 
determines heap si ze ,. using the Data 
Buffers (number) entr ies in the tabular 
section of the form. ISAM Install then 
multiplies this number by the Buffer 
Sizes entry for data buffers. The 
product is the size of the memory area 
allocated for all the data buffers. 
Refer to Buffer Size Guidelines in this 
section for information on calculating 
the size of the data buffers. 

ISAM Install calculates the memory area 
the index buffers need in the same way 
it calculates the area the data buffers 
need; it uses the Index Buffers entries. 
(See figure 6-4.) 

For example, the defaul t configuration 
file contains the heap size and the 
number of data and index buffers for 
one, four, and five users. If four 
users are specified during installation 
(see ISAM Install Command previously 
discussed) , then ISAM Install will 
allocate 8K bytes of memory for the 
heap, eight 1024-byte data buffers, and 
eight 1024-byte index buffers. 

If three users had been specified in the 
previous example, ISAM Install would 
have interpolated values for the heap 
size and the number of data and index 
buffers, then calculated their memory 
allocation. If seven users had been 
specified, ISAM Install would have 
extrapolated the values for the heap 
size and the number of data and index 
buffers, then calculated their memory 
allocation. 



BUFFER SIZE GUIDELINES 
Whenever a record or B-tree node is read 
into memory, the entire record or node 
is read in. Therefore, buffers must be 
large enough to accommodate the largest 
record or B-tree node. Data buffers 
must be large enough to hold the largest 
record in the data set. This require
ment is complicated by the fact that 
records can overlap sector boundaries, 
but liD operations always access whole 
sectors. If a record overlaps two 
sectors, both of the sectors must be 
read into the data buffer. 

The rule for allocating data buffers is: 

buffer si ze (bytes) = record si ze 
(bytes) + overhead (8 bytes) + 
overlap sector (511 bytes), rounded 
up to full sectors. 

If the record size + 8-byte overhead 
is a power of 2, then the records 
will align on sector boundaries and 
the extra 511 bytes for sector 
overlap is not needed in the 
calculation. 

The number of buffers allocated depends 
on the number of users. The minimum is 
two data buffers. Performance improves 
with more buffers because this increases 
the probability that a record will still 
be in memory when it is needed a second 
time. 

6-13 



0\ 
I -~ 

Executive X.XX (OS XXX-X. XX) 
Path: [Sys] <Sys> 

ISAM Configuration utility X.XX 

Buffer Sizes (number of 512-byte sectors) 
Data Buffers 2 
Index Buffers '2 

Number of ISAM Users 
1 2 3 456 7 

Heap Size 5 8 9 
("K""byt e s) 

Data Buffers 2 8 10 
(number) 

Index Buffers 3 8 10 
(number) 

Swap Zone Size (K bytes) 10 

Press GO to confirm changes, or CANCEL to stop command 

User Name: Allen 
Fri July 22, 1983 1:47 PM 

8 9 10 

Fip,:ure 6-2. Rows in the ISAM Configure Display Used to Determine 



0\ 
I 

IJl 

Executive x.xx (OS xxx-x. XX) 
Path: [Sys] {Sys> 

ISAM Configuration utility x.xx 
Buffer Sizes (number of 512-byte sectors) 

Data Buffers 2 
Index Buffers '2 

Number of ISAM Users 
1 2 3 456 7 

Heap Size 5 8 9 
(K bytes) 

Data Buffers 2 8 10 
(number) 

Index Buffers 3 8 10 
(number) 

Swap Zone Size (K bytes) 10 

Press GO to confirm changes, or CANCEL to stop command 

User Name: Allen 
Fri July 22, 1983 1:47 PM 

8 9 10 

Figure 6-3. Rows in the ISAM Configure Display Used to Determine 
the Size of the Data Buffers 



'" I 

'" 

Executive x.xx (OS XXX-X.XX) 
Path: [Sys] <Sys> 

User Name: Allen 
Fri July 22, 1983 1:47 PM 

;;~=~~~~~=~;:~~~~=~~~~~~;=;:;;==================================================== 

Buffer Sizes (number of 512-byte sectors) 
Data Buffers 2 
Index Buffers '2 

Number of ISAM users 
1 2 3 456 7 

Heap Size 5 8 9 
(K bytes) 

Data Buffers 2 8 Hl 
(number) 

Index Buffers 3 8 U 
(number) 

Swap Zone Size (K bytes) 10 

Press GO to confirm changes, or CANCEL to stop command 

8 9 10 

Figure 6-4. Rows in the ISAM Configure Display Used to Determine 



ISAM STATUS CODES (3100 

Decimal 
Value 

3100 

3101 

3102 

3103 

3104 

APPENDIX A 
STATUS CODES 

tQ 3199) 

Hexa-
decimal 
Value 

OC1C 

OC1D 

OC1E 

OC1F 

OC20 

Meaning 

No such index exists. 

An operation that 
key was invoked, 
specified index 
exist. 

Prefix is not valid. 

includes a 
but the 

does not 

SetUpISAMlterationPrefix was 
invoked for an index that is 
nei ther a byte nor character 
string. 

Bad key length. 

The length of a key is 
inconsistent with the index 
type. 

Bad ISAM or data base handle. 

The ISAM hgndle does not 
identify an open ISAM data 
set. 

Bad ISAM header size. 

The ISAM data set cannot be 
opened by the OP:nISAM 
operation due to an Incon
sistency in the header of one 
of the files of the data set. 

A-I 



ISAM STATUS CODES (3100 to 3199)(Cont) 

A-2 

Decimal 
Value 

3105 

3106 

3107 

3108 

3109 

3110 

3111 

3112 

3113 

3114 

3115 

Hexa
decimal 
Value Meaning 

OC21 

OC22 

OC23 

OC24 

OC25 

OC26 

OC27 

OC28 

OC29 

OC2A 

OC2B 

Bad ISAM header. See 3104 

Internal error. 

ISAM is already installed. 

This code is generated by the 
InstallISAM operation or the 
ISAM Install uti 1 i ty if ISAM 
is already installed. 

Internal error. 

Internal error. 

Internal error. 

No free ISAM handles. 

The ISAM data set cannot be 
opened because the maximum 
number of ISAM data sets that 
can be simultaneously opened 
by all users combined (256) 
has been reached. 

Internal error. 

Buffers are too large. 

The amount of RAM required by 
either the data store or index 
cache buffers exceeds a 
megabyte. 

Internal error. 

ISAM terminated abnormally. 

Following detection of an 
internal error, all subsequent 
ISAM operations and services 
generate this status code. 



ISAM STATUS CODES (3100 to 3199)(Cont) 

Decimal 
Value 

3116 

3117 

3118 

3119 

3120 

3121 

Hexa
decimal 
Value Meaning 

OC2C Internal error. 

OC2D Bad unique record identifier 
or bad tuple identifier. 

OC2E 

OC2F 

OC30 

OC31 

An incorrect unique record 
identifier parameter was 
passed to ISAM. 

Duplicate key. 

An attempt to store or modify 
a record would dupl icate the 
key stored in another record 
for the same index, but the 
index does not allow 
duplicates. 

Index file error. 

This status code is returned 
as the status code of an ISAM 
operation. The detai I status 
code refers to a problem with 
the index file of the ISAM 
data set. 

Attempted privacy breach. 

An attempt was made to modify 
a data set that is open in 
batch/read or transaction read 
mode. 

Bad request. 

Either the request block is 
invalid, or the parameters of 
an operation are inconsistent 
or have invalid values. 

A-3 



ISAM STATUS CODES (3100 to 3199)(Cont) 

A-4 

Decimal 
Value 

3122 

3123 

3124 

3125 

3126 

Hexa
decimal 
Value Meaning 

OC32 Data store file error. 

OC33 

OC34 

OC35 

OC36 

This is returned as the status 
code of an ISAM operation. 
The detail status code refers 
to a problem with the data 
store file of the ISAM data 
set. 

Index to data error. 

An inconsistency has arisen 
between the index and data 
store files of the ISAM data 
set. 

Record size incorrect. 

The specified 
incorrect for 
set. 

record size is 
the ISAM data 

Duplicates allowed. 

An operation specified a 
unique key parameter (that is, 
duplicates are not allowed), 
but the index allows 
duplicates. 

No such 
exists. 

record or tuple 

A unique key was used to 
identify a record, but no 
record is stored in the ISAM 
data set with that key. 



ISAM STATUS CODES (3100 to 3199)(Cont) 

Decimal 
Value 

3127 

3128 

3129 

Hexa
decimal 
Value Meaning 

OC37 No more records or tuples. 

OC38 

OC39 

A ReadNextISAMRecord (Hold) or 
GetISAMRecords(Hold) operation 
has read all the records 
within the range specified for 
the current iteration. No 
record is read when th i s 
status code is generated. 

Bad. key. 

Either (1) a key field is 
longer than 64 bytes or is 
defined to occupy bytes past 
the end of the record, or (2) 
a supplied key is invalid. 
For example, a DECIMAL key 
with a digit that is not 
between 0 and 9 is invalid. 

Bad index. 

The specified key field does 
not exist, that is, the iIndex 
parameter of an ISAM operation 
is greater than or equal to 
the number of indexes in the 
ISAM data set. 

A-5 



ISAM STATUS CODES (3100 to 3199)(Cont) 

A-6 

Decimal 
Value 

3130 

3131 

3132 

3133 

3134 

3135 

3136 

Hexa
decimal 
Value Meaning 

OC3A Bad ISAM mode. 

OC3B 

OC3C 

OC3D 

OC3E 

OC3F 

OC40 

The mode parameter of the 
OpenISAM operation is invalid. 

Cannot open ISAM. 

This is returned as the status 
code of an OpenISAM operation. 
The detail status code gives 
the reason for the failure. 

Bad ISAM password. 

Either the password does not 
give the access desired by the 
OpenISAM operation, or the 
password is larger than the 12 
bytes accepted by the 
SetISAMProtection operation. 

Wrong record size. 

The OpenISAM operation detects 
the wrong size record. 

Incompatible ISAM mode~ 

An attempt was made to open a 
data set when the data set is 
already open in an 
incompatible. mode. 

Internal error. 

Not administrator. 

An operation for which the 
data set must be open in 
administrator mode is at
tempted with the data set open 
in some other mode. 



ISAM STATUS CODES (3100 to 3199)(Cont) 

Decimal 
Value 

3137 

3138 

3139 

3140 

Hexa
decimal 
Value Meaning 

OC41 Cannot create ISAM. 

OC42 

OC43 

OC44 

This is returned as the status 
code of the CreateISAM 
operation. The detail status 
code gives the reason for the 
failure. 

ISAM buffer is too small. 

The data set being opened or 
created requires buffers 
larger than those installed. 

Internal error. 

Small ISAM record. 

An attempt was made to create 
an ISAM data set with records 
shorter than four bytes. 

A-7 



ISAM STATUS CODES (3100 to 3199)(Cont) 

A-8 

Decimal 
Value 

3141 

3142 

3143 

3144 

3145 

Hexa
decimal 
Value Meaning 

OC45 Not in transaction. 

OC46 

OC47 

OC48 

OC49 

An operation that can be 
invoked only when the 
application' system is in a 
transaction was invoked while 
the application system was not 
in a transaction. 

Data set or relation is not 
available. 

An attempt to read or hold a 
record or to hold a data set 
failed because the data set 
was held by another user. 

Record or 
available. 

tuple is not 

An attempt to read or hold a 
record failed because the 
record was held by another 
user. 

Record or tuple is not locked. 

An operation for which 
record (or its data set) 
be he ld was invoked 
neither the record nor 
data set was held. 

the 
must 
when 
its 

Too many records or tuples are 
locked. 

An attempt was made to hold a 
record when the maximum 

- allowable number of records 
was already held. 



Decimal 
Value 

3146 

3147 

3148 

3149 

3150 

3151 

3152 

3153 

Hexa
decimal 
Value Meaning 

OC4A In transaction. 

OC4B 

OC4C 

OC4D 

OC4E 

OC4F 

OC50 

OC51 

BeginTransaction was invoked 
during a transaction. 

Internal error. 

Transaction purged. 

The application system 
finished a transaction while 
the request was queued. (This 
status code is generated only 
if the application system has 
a request pending when invok
ing RollBackTransaction or 
CommitTransaction.) 

Internal error. 

Internal error. 

Data set or relation is not 
locked. 

An operation for which the 
data set must be held was 
called when the data set was 
not held. 

ISAM heap is full. 

The operation failed 
there is not enough 
the ISAM server's 
store data structures 
by the operation. 

Internal error. 

because 
room in 

heap to 
required 

A-9 



ISAM STATUS CODES (3100 to 3199)(Cont) 

A-l0 

Decimal 
Value 

3154 

3155 

3156 

3157 

Hexa
decimal 
Value Meaning 

I OC52 

OC53 

OC54 

OC55 

Files are 
workstation. 

not on same 

An attempt was made to either 
create or rename a data set so 
that the data store and index 
files would be on different 
workstations or to open a data 
set (in other than 
administrator mode) that is on 
a different workstation from 
the one where the ISAM server 
is running. 

Bad match kind. 

A SetUplSAMIterationLimits 
operation contained an invalid 
matchKind argument. 

Internal error. 

Transaction barrier after 
modification. 

An ISAM transaction barrier 
operation was called after a 
modification to the data set 
or data base in the current 
transaction, but the SetTrans
actionParams operation was 
previously invoked with 
fBarrierAfterModify set to 
FALSE (0). 



ISAM STATUS CODES (3100 to 3199)(Cont) 

Decimal 
Value 

3158 

3159 

3160 

3161 

Hexa
decimal 
Value Meaning 

oe56 Key· is locked. 

oe57 

oe58 

oe59 

This code is returned as the 
detail status code when the 
primary status code is 3143 
(Record or tuple not avail
able) . It indicates that the 
record or tuple was not 
available because of key 
locking constraints. 

Record is held or tuple is 
locked. 

This code is returned as the 
detail status code when the 
primary status code is 3143 
(Record or tuple not avail
able). It indicates that the 
record or tuple was not 
available because another user 
had locked it. 

Transaction has been rolled 
back. 

The appl ication system' s cur
rent transaction has been 
rolled back. This status code 
is returned for every opera
tion by an application system 
after a lock has been broken, 
until the application system 
invokes the RollBackTrans
action operation. 

Journal file error. 

An· error has occurred during 
access to a journal file. See 
the detail error for more 
information. 

A-ll 



ISAM STATUS CODES (3100 to 3199)(Cont) 

A-12 

Decimal 
Value 

3162 

3163 

3164 

3165 

3166-
3199 

Hexa
decimal 
Value Meaning 

OC5A Journal open error. 

OC5B 

OC5C 

OC5D 

OC5E
OC7F 

An error has occurred while 
opening the journal file. See 
the detail error for more in
formation. 

Journal close error. 

An error has occurred while 
closing the journal file. See 
the detail error for more in
formation. 

Journal write error. 

An error has occurred while 
writing to the journal file. 
See the detail error for more 
information. 

Internal error. 
.'1 

Journal record illega1. 

An error has occurred while 
reading the journal file 
during an attempt to roll back 
a transaction. A record in 
the journal file has an 
incorrect format. 

Internal errors. 



ISAM STATUS CODES (3200 to 3399) 

Decimal 
Value 

3200 

3201 

3202 

3203-
3299 

3300 

3301 

3302 

Hexa
decimal 
Value Meaning 

OC80 Ba? key type. 

OC81 

OC82 

OC83-
OCE3 

OCE4 

OCES 

OCE6 

The type field of a key speci
fication for Sort/Merge or 
ISAM is invalid. 

Incorrect key length. 

The cbKey field of a key 
specification for a Sort/Merge 
or ISAM operation does not 
correspond to the type field 
of the key specification. 
(For example, for binary keys, 
cbKey must be 2.) 

Bad key. 

A key contained in a record 
for Sort/Merge or ISAM, or a 
key described by a parameter 
of an ISAM operation is not of 
the correct type. (For 
example, each digit of a BCD 
key must be between 0 and 9.) 

Internal errors. 

Not a STAM file. 

The operation failed because 
the file did not contain the 
proper signature. 

STAM header bad checksum. 

The operation failed because 
the checksum computed on the 
file header did not match the 
checksum computed when the 
file was created. 

Record does not exist. 

The operation failed because 
the specified record does not 
exist. 

A-13 



ISAM STATUS CODES (3200 to 3399) 

A-14 

Decimal 
Value 

3303 

3304 

3305 

3306 

3307 

3308-
3399 

Hexa
decimal 
Value Meaning 

OCE7 Malformed record. 

OCE8 

OCE9 

OCEA 

OCEB 

OCEC
OD47 

The operation failed because 
data read from the disk 
contained an inconsistency in 
the record header and trailer. 

Not fixed-length record. 

The operation 
the access 
reference 
records. 

Bad file type. 

fai led because 
method cannot 
variable-length 

The operation failed because 
the file cannot be accessed 
with the specified access 
method. 

Bad buffer size. 

The operation failed because 
the buffer size was too small 
or not a mUltiple of 512. 

Buffer is not word-aligned. 

The operation failed because 
the buffer was not word
aligned. 

Internal errors. 



ISAM STATUS CODES (3900 to 3999) 

Decimal 
Value 

3900 

3901 

3902 

3903-
3999 

Hexa
decimal 
Value Meaning 

OF3C Cannot auto-restart. 

OF3D 

OF3E 

OF3F
OF9F 

Because of a problem with the 
journal file; auto-restart 
recovery cannot be used to 
recover a data base (or one or 
more ISAM data sets). Use DB 
Recover to recover the data 
base. Recover ISAM data sets 
by another mechanism such as 
restoring archived copies. 

Bad ISAM configuration file 

An attempt was made to use a 
file as an ISAM configuration 
file, but the file has been 
damaged, or it was not 
generated by ISAM Configure. 

Bad ISAM configuration version 

An attempt was made to use an 
ISAM configuration file that 
was generated by an incom
patible version of ISAM 
Configure. Regenerate the 
file by using a compatible 
version. 

Internal errors. 

A-15 





APPENDIX B: 
UPWARD COMPATIBILITY SUPPORT 

ISAM 4.0 supports the use of application systems 
written for previous releases of ISAM, even when 
these application systems use procedures and 
services that are no longer included in the set 
of ISAM operations. 

SUPERSEDED PROCEDURES 
The following eight operations are no longer part 
of the standard set of ISAM operations: 

• EndISAMTransaction 

• LockISAM 

• PurgeISAMTransaction 

• SetupISAMlteration 

• SetupISAMlterationKey 

• SetupISAMlterationRange 

• StartISAMTransaction 

• UnlockISAM 

All eight operations are supported as object 
modules only. The request blocks are no longer 
used. ISAM 4.0 handles each of these operations 
"as follows. See section 3, for descriptions of 
the current ISAM operations that are mentioned 
here. 

EndlSAMTransaction 

LocklSAM 

EndISAMTransaction is equivalent to Commit
Transaction. 

LockISAM is implemented by BeginTransaction 
followed by a series of HoldISAMDataSet opera
tions. 

B-1 



PurgelSAMTransaction 

PurgeISAMTransaction is equivalent to RollBack-' 
Transaction. 

SetuplSAMlteration 
SetuplSAMlterationKey 
SetuplSAMlterationRange 

These operations are implemented by equivalent 
calls to SetupISAMIterationLimits. 

StartlSAMTransaction 

UnlocklSAM 

StartISAMTransaction 
Transaction followed 
DataSet operations. 

is implemented by Begin
by a series of HoldISAM-

If the application system uses UnlockISAM in a 
transaction, then this operation is equivalent to 
Commi tTransact ion; otherwi se, UnlockISAM has no 
effect. 

InstailiSAM SUPPORT 

B-2 

Previous releases of ISAM· used two libraries: 
ISAMSingle.Lib for single-user application 
systems, and ISAMMulti.Lib for multiuser applica
tion systems. ISAMSingle. Lib included the ISAM 
proce~ural interfaces and all the implementing 
modules. The linked run file included all of 
ISAM. ISAMMulti.Lib included the ISAM procedural 
interfaces as request interfaces. Requests were 
sent to the multiuser ISAM service, which is in
stalled at the master workstation or a standalone 
workstation. 

InstallISAM was provided in previous ISAM 
releases primarily to initialize single-user 
ISAM. The ISAMMulti.Lib version was provided for 
compatibility; that is, to enable you to link an 
application system as either a multiuser or 
single-user application system. The multiuser 
version determined whether or not the multiuser 
server was installed, and returned an error 
status if it was not installed. 



In ISAM 4.0, there is only one library: ISAM.Lib. 
Single-user application systems now call 
LoadSingleUserISAM to load the ISAM service as a 
task. Multiuser applications can call 
VerifyMultiuserISAM to determine whether or not 
the multiuser ISAM service is installed. 

To provide compatibility for application systems 
that use InstallISAM,there are two versions of 
InstallISAM in ISAM.Lib. The module named IsaMin 
is the multiuser version; it calls Verify
MultiuserISAM. The sfngle-user version, the 
module IsaSin, calls LoadSingleUserISAM. When an 
application system that uses InstallISAM is 
linked, you must specify the appropriate version 
of InstallISAM in the object modules line of the 
Link command form. For single-user application 
systems use: 

Command Link 
Link 

object module.s ... ISAM.Lib{IsaSin) ... 

For multiuser application systems use 

Command Link 
Link 

object modules ... ISAM.Lib{IsaMin) ... 

B-TREE NODE SIZES 
In ISAM 4.0, the memory requirements for the ISAM 
server are significantly reduced without de
grading performance in most cases. In previous 
releases, the default B-tree node size was six 
sectors in ISAM Create, ISAMReorganize, and the 
index buffers in ISAM Install. The defaul t B
tree node size in ISAM 4.0 is two sectors. 

For existing data sets where the B-tree node 
sizes were not explicitly set to one or two 
sectors, you must do one of the following: 

• Use ISAM Reorganize to rebuild the index file" 
with 2-sector B-tree nodes or 

• Reconfigure ISAM with the ISAM Configure com
mand to use larger index buffers (six 
sectors). 

B-3 



CONFLICTS AND TIMEOUTS 

B-4 

In previous releases of ISAM, the first request 
in a transaction to hold a data set or record was 
queued until the resource became available. 
Subsequent requests to hold a resource failed 
wi th a "data set not available" or "record not 
available" status message if another user held 
the resource. 

In ISAM 4.0, any request to lock a resource 
queues only for the amount of time specified in 
the transaction parameters block. (See 
section 3 for more information.) The defaul t 
time is 10 seconds. Either the "data set not 
available" or "record not available" status 
message is returned if the resource does not 
become available within the specified time frame. 

In application systems written for previous 
releases of ISAM, the following rules apply under 
ISAM 4.0: 

• The first request in a transaction to hold a 
data set or record can fail with a "data set 
not available" or "record not available" 
status message. 

• Subsequent lock requests are queued. 

• Requests cannot queue any longer than the 
amount of time specified in the transaction 
parameter block. 



MEMORY 

BTOS 

APPENDIX C 
SOFTWARE REQUIREMENTS 

Software requirements are discussed below. 

In a cluster environment, ISAM is permanently in
stalled at the master workstation. ISAM requires 
a minimum RAM memory of 50 kb plus 5 kb for each 
user. 

In a standalone workstation, ISAM requires a 
minimum RAM memory of 58 bytes. 

For configuration requirements, see section 6. 

ISAM requires Release 4.0 or later of BTOS. 

DATA SET LOCATION 
In a cluster environment, the files comprIsIng a 
data set must be located at the master work
station. 

ISAM UTILITIES 
You can run the ISAM utilities with or without 
the ISAM server installed. 

In a cluster environment, you can run all ISAM 
utilities at the master workstation or from a 
cluster workstation. For best performance, 
however, you should run the ISAM Reorganize, ISAM 
Copy, and ISAM Status utilities on the master. 

C-l 



ISAM SERVER 

C-2 

When using ISAM from a cluster workstation, you 
must install the ISAM server at the master 
workstation. The data files must also be at the 
master workstation. 

The swapping version of the ISAM server cannot be 
used on standalone workstations that have only 
floppy disk drives. 



APPENDIX D 
ESTIMATING INDEX FILE SIZES 

INSERTING AND DELETING NODES 
B-tree nodes are allowed to fluctuate between 50 
percent and 100 percent full. Adding a key to a 
full node causes the node to spl it into two 50 
percent full nodes. A key is a I so added to the 
B-tree node above the full node that has just 
split. When the full node is the root node, the 
current root node splits into two 50 percent full 
nodes, and a new root node with two nodes below 
it is created. Thus, a new level is introduced 
in the B-tree. 

Removing a key from a 50 percent full node causes 
the node to be absorbed by its neighbors. Either 
one or two nodes are used to eliminate the node 
that is now less than 50 percent full. How the 
keys are distributed depends on the current size 
of the neighbor nodes. The result is that one or 
two nodes become at least two-thirds full. 

Whenever a node is eliminated, a key is deleted 
from the node one level up in the B-tree. If 
eliminating a node causes the root node to have 
only one node below it at the next level, the 
root node is deleted. The next lowest level 
becomes the root node, and the B-tree has one 
less level. 

D-l 



INDEX FILE SIZES 
The exact size of an index 
only immediately after the 
After a series of updates 
cations, deletions), the 
estimated. 

The estimate is based on: 

file can be computed 
indexes are rebuilt. 

(additions, modifi
size can only be 

• the n~mber of tuples in the relation, g 

• the definition of the indexes 

• the average load factor, i, which is the 
fraction of each B-tree node that is in use 

Whenever the indexes for a relation are rebuilt, 
the loading factor for the B-tree nodes is BO 
percent full. (Rebuilding is done by DB Backup 
and DB Restore with reorganization, by DB 
Initialize when using existing data, and by DB 
Load.) As tuples are stored, modified, and 
deleted, the portion of the node that is filled 
varies between 50 percent and 100 percent. The 
node never falls below 50 percent full, and it is 
likely to remain near BOpercent full most of the 
time. 

Example and Calcu lations 

D-2 

This example uses a relation with: 

• 50,000 tuples 

• a "iO-byte key 

• a 4-byte key 

• 6-sector nodes 

I f the load factor, f, is BO percent, then the 
index file size is calculated as follows: 

1. the average number of keys per node: 

10-byte "key: b = O.B * 6*512 - 16 174.6 10 + 4 

4-byte key: b O.B * 6*512 - 16 305.6 4 + 4 



2. the index sizes: 

10-byte key: 6*50000*(1/174.6 + 2/174.62) 
= 1738 sectors 

4-byte key: 6*50000*(1/305.6 + 2/305.62) 
989 sectors 

total size = 2727 sectors 

Simi lar computations for f = 50 percent and f 
100 percent yield the following: 

1. for 50 percent: 

10-byte key: b = 109 
index size 

4-byte key: 

total size 

b = 191 
index size 

2. for 100 percent: 

10-byte key: b = 218 
index size 

4-byte key: 

total size 

b = 382 
index size 

2803 sectors 

1587 sectors 

4390 sectors 

1389 sectors 

789 sectors 

2178 sectors 

D-3 





APPENDIX E 
GLOSSARY OF TERMS 

Access Mode 
An access mode is the method of opening a data 
set to read or modify records. The access mode 
affects the extent to which other appl ication 
systems can share the data set. 

Administrator Mode 
Administrator mode is an access mode you use to 
perform data set-level activities such as 
deleting, renaming, and setting protection. 

Application System 
An application system is a task a user invokes to 
access a data set for a particular application. 

Asynchronous Request 
An asynchronous request is a method of accessing 
ISAM system services directly so that data set 
access and internal computations are overlapped. 
Asynchronous requests allow application systems 
to execute more efficiently and rapidly than when 
a procedural interface is used. 

B-Tree 
A B-tree is the type of structure used to contain 
ISAM indexes. A B-tree is usually pictured as an 
upside down tree, much like a family tree, with a 
"root" node at the top and "leaf" nodes below the 
root. 

Configuration File 
A configuration file specifies the sizes of the 
ISAM server's memory areas according to the 
number of users for which the server is 
installed. 

Conflict 
Conflict arises when more than one user attempts 
to lock the same record or data set. 

DAM 
See Direct Access Method. 

Data Buffer 
A data buffer is an I/O buffer into which 
portions of data files are read. 

E-l 



E-2 

Data Set 
A data 
records 
keys. 

set contains one 
that are accessed 

Data Store File 

type of 
through 

fixed-length 
fixed-length 

A data store file is the physical file that holds 
the records of a data set. 

Deadlock 
Deadlock, a special case of conflict, occurs when 
two or more transactions request records or data 
sets that are already locked by the other 
transaction. Also see Conflict. 

Direct Access Method 
The Direct Access Method (DAM) provides random 
access to disk file records identified by record 
number. 

Exclusive Access 
Exclusive access limits the accessibility of a 
data set or record to a single user. Compare 
with Shared Access. 

File 
A file is a set of related records (on a disk) 
treated as a unit. 

Heap 
A heap is an area of memory containing internal 
ISAM data structures. 

Index 
An index is a structure used to locate particular 
records within a data set. One index is defined 
for each key field of a data set. Also see Key 
and Record. 

Index Buffer 
An index buffer is an I/O buffer into which B
tree nodes a~e read. Also see B-Tree and Node. 

Index File 
An index file holds the indexes for all of the 
data set's keys. 



Indexed Sequential Access Method (ISAH) 
The Indexed Sequential Access Method provides 
random access to fixed-length records identified 
by multiple keys stored in disk files. Compare 
wi th Direct Access Method and Record Sequential 
Access Method. 

ISAH Handle 
A data base handle is a word used in ISAM 
operations to identify an open data set. 

Key 
Keys are used to access data set records. A key 
is defined by its position in the record, its 
length, and type. 

Key Type 
Key types support the various character and 
numeric representations used by the Burroughs 
programming languages and processors. 

Locking 
Locking is the process of obtaining Exclusive 
Access to a record or data set in multiuser ISAM. 

Node 
A node is a portion of a B-tree. It stores index 
keys. 

Password 
A password is a text string used to validate an 
application system or user's access to the data 
set. 

Record 
A record is a group of related data fields 
treated as a unit. 

Record Sequential Access Method 
The Record Sequential Access Method provides 
sequential read-only access to the records of a 
data set. 

Reorganization 
Reorganization is the process of freeing up space 
in a data set by removing deleted records and 
rebuilding the indexes for the data set. 

RSAM 
See Record Sequential Access Method. 

E-3 



E-4 

Shared Access 
Shared access enables mUltiple users to 
simultaneously access the same data set. Compare 
with Exclusive Access. 

Status Block 
A status block is a 4-byte memory area that is 
used to report status codes to an appl ication 
system. 

Swap Zone 
A swap zone is a virtual code segment management 
buffer. 

Timeout 
Timeouts are used to prevent deadlock. A timeout 
value specifies the maximum time a request to 
lock a data set or record can be queued. Also 
see Deadlock. 

Transaction 
A transaction is a uni t of work. Transactions 
permit shared access to a data set. 

Unique Record Identifier (URI) 
A Unique Record Identifier is a 4-byte unsigned 
integer used to uniquely identify a record in a 
data set. 

Write-Through Cache 
The write-through cache is a set of I/O buffers 
that are used to bring segments of disk records 
into memory as needed. 



Access method, 2-1 
Direct Access Method (DAM), 2-1 
Record Sequential~Access Method 

(RSAM) , 2-2 
Access modes, 2-5, 2-6 

administrator mode, 2-5, 2-6 
and Open ISAM, 3-53 
batch mode, 2-5 
transaction mode, 2-5 

Administrator mode, 2-5, 2-6 
and Delete ISAM, 3-30 

Asynchronous requests, 3-23, 6-1 
and ISAMRequest, 3-43 
and NormalizeISAMStatus, 3-51 
versus procedural requests, 3-23 

B-tree, 2-1, 6-13 
BASIC compiler, 3-14 
BASIC interpreter, 3-14 
Batch mode, 2-5, 2-7 

batch modify mode, 2-6 
batch read mode, 2-5, 2-6 

BeginTransaction, 2-7, 3-24 
Binary key, 3-6 
BNET Node, 3-79 
Burroughs Programming languages, 3-1 
Byte string, 2-2 
Byte string key, 2-2, 3-6, 3-8, 4-7 

and SetUpISAMIterationPrefix, 
3-75 

Character string, 2-2, 3-8, 4-7 
Character string key, 2-2, 3-6, 

and SetUpISAMIterationPrefix, 
3-75 

CloseISAM, 3-16, 3-25 
COBOL, 3-6, 3-7, 3-13, 3-15 

CaMP, 3-6, 3-7 
COMP-3, 3-6 
key types, 3-6 
USAGE IS DISPLAY, 3-7 

CornmitTransaction, 2-9, 3-26 
and BeginTransaction, 3-24 
and GetISAMRecords, 3-35 

Composite key, 3-5 

INDEX 

Configuration file, 6-7 
Conflict, 2-13 ~ 

deadlock, 2-13, 2-15 
Copy utility; 5-10 
CreateISAM, 3-8, 3-27 

Data buffers, .6,-5 
Data integrity~ 2-1J 

error logging, 2~17 
internal consist~ncy;checking, 

2-17 . : 
write-through cache ,'~' 2-17 

Data security, 2-16 f 
modify password, 2-1'6 
read password, 2-16 ' 

Data set, 2-1 
Data set access, 3-16 

ISAM handle, 3-16 
Data set management, 3-3 to 3-8 

indexes and keys, 3-3 
ISAM description block, 3-8 
ISAM index specification block, 

3-12 
operations, 3-3 

Data set, 2-1 
access, 3-16 
key field, 3-3 
keys, 2-1 
locking, 2-7 
management, 3-3 to 3-8 
sharing, 2-5 

Data store file, 2-1 
and CreateISAM, 3-27 
and ISAM Rename, 4-12 
and ISAM R~organize, 5-3 
and Rename ISAM, 3-65 
and StoreISAMRecord, 3-77 

Deadlock, 2-13 
Decimal (even) key, 3-6 
Decimal (odd) key, 3-6 
DeleteISAM, 3-30 
DeleteISAMRecord, 3-31 
DeleteISAMRecordByKey, 3-33 

1 



Direct Access Method (DAM), 2-1 
example, 3-4 

Display key, 3-7 

erc, 3-2 
ercDetail, 3-2 
Error logging, 2-15 
Estimating index file sizes, D-1 to 

D-3 
Exact match, 2-3 
Examples, see Programming Examples 
Extended IEEE key, 3-7, 4-7, 5-5 

File Maintainer utility, 2-2 
File types, 2-1, 2~2 

data store file, 2-1 
index file, 2-1 

Get ISAMRecords, 3-35 
and SetUpISAMIterationLimits, 

3-72 
and SetUpISAMIterationPrefix, 

3-75 
buffer structure, 3-37 
constraints, 3-35 
example, 3-35 

GetISAMRecordsHold, 3-35 
Heap, 6-5 
Hold ISAMDataSet , 3-39 

example, 3-39 
Hold ISAMRecord, 3-41 

Index, 2-3, 3-3 
and CreateISAM, 3-27 
and DeleteISAMRecord, 3-31 
and DeleteISAMRecordByKey, 3-33 
and ModifyISAMRecord, 3-46 
and ModifyISAMRecordByKey, 3-48 
and StoreISAMRecord, 3-77 
key types, 3-5 
keys, 3-4 

Index buffers, 6-6 
Index file, 2-1 

2 

and ISAM Reorganize, 5-3 
and CreateISAM, 3-27 

and ISAM Rename, ~-12 
and RenameISAM, 3-65 
estimating sizes, D-1 

Index keys, 4-7, 5-7 
InstallISAM support, B-2 
Integer key, 3-7 
Internal consistency checking, 2-15 
ISAM Configure utility, 6-7 

buffer sizes, 6-10 
configuration file, 6-7 
data buffers, 6-10 
display, 6-7 
form, 6-7 
heap size, 6-10 
index buffers, 6-11 
number of ISAM users, 6-10 
swap zone size, 6-11 

ISAM Copy utility, 4-4 to 4-5 
example, 4-5 
form, 4-4 

ISAM Create utility, 4-6 to 4-10 
example, 4-9 
form, 4-8 
index field types, 4-7 

ISAM Delete utility, 4-10 
example, 4-10 
form, 4-10 

ISAM description block, 3-8 
and CreateISAM, 3-8 
structure, 3-8 

ISAM handle, 3-16, 3-25 
and Open ISAM , 3-52 

ISAM index specification block, 3-12 
cbIndexField, 3-13 
wType, 3-13 

ISAM Install utility, 6-1, 6-3 
configuration file, 6-4 
form, 6-3 
memory allocation, 6-4 

ISAM installation, 2-15 
single-partition BTOS, 2-15 
cluster configuration, 2-15 
multipartition BTOS, 2-16 
multiuser, 2-15 
single-user, 2-15 
standalone workstation, 2-15 

ISAM operations, 2-3, 2-4, 3-1 to 
3-79 

and transactions, 2-9 
asynchronous requests, 3-23 



ISAM operations (cont) 
BeginTransaction, 3-24 
by function, 3-2 
CloseISAM, 3-25 
CornmitTransactioni 3-26 
CreateISAM, 3-8 
data set access, 3-16 
data set management, 3-3 
DeleteISAM, 3-30 
DeleteISAMRecord, 3-31 
deleting, 2-4 
GetISAMRecords, 3-35 
GetISAMRecordsHold, 3-35 
HoldISAMDataSet, 3-39 
HoldISAMRecord, 3-41 
ISAMRequest, 3-1, 3-43 
ISAM service access, 3-21 
LoadSingleUserISAM, 3-44 
locking, 3-18 
modifying, 2-4 
ModifyISAMRecord, 3-46 
ModifyISAMRecordByKey, 3-48 
multiple record access, 3-17 
NormalizeISAMStatus, 3-51 
OpenISAM, 3-52 
procedural interface, 3-1 
QueryTransactionParams, 3-5~. 
reading, 2-3 
ReadISAMRecordByUri, 3-55 
ReadISAMRecordByUriHold, 3-55 
ReadNextISAMRecord, 3-57 
ReadNextISAMRecordHold, 3-57 
ReadUniqueISAMRecord, 3-59 
ReadUniqueISAMRecordHold, 3-59 
Record management and access, 

3-16 to 3-17 
ReleaseISAMDataSet, 3-61 
ReleaseISAMRecord, 3-63 
RenameISAM, 3-65 
RollBackTransaction, 3-68 
SetISAMProtection, 3-69 
SetTransactionParams, 3-71 
SetUpISAMlterationLimits, 3-72 
SetUpISAMlterationPrefix, 3-75 
single record access, 3-17 
StoreISAMRecord, 3-77 
storing, 2-3 
superseded operations, 3-1 
transactions, 3-18 
VerifyMulti User ISAM, 3-79 
Wait, 3-1 

ISAM Rename utility, 4-11, 4-12 
example, 4-12 
form, 4-11 

ISAM Reorganization, 5-1 to 5-13 
ISAM Reorganize examples, 5-10, 

5-11, 5-12 to 5-13 
changing indexes and other ISAM 

Create parameters, 5-8 
loading a data set, 5-7 
recovering records, reclaiming 

space, and merging data, 
5-9 

sorting data set records, 5-11 
ISAM Reorganize utility, 2-15, 

5-1 to 5-7 
form, 5-3 
index field types, 5-5 
invoking, 5-2 

ISAMRequest, 3-1, 3-23, 3-43 
ISAM server installation, 6-1 

buffer size guidelines, 6-13 
memory allocation, 6-4 
memory allocation calculation, 

6-11 
resident server, 6-1 
swapping server, 6-1 

ISAM service access, 3-21 
memory usage, 3-22 

ISAM Set Protection utility, 4-13, 
4-14 
example, 4-14 
form, 4-13 

ISAM Status utility, 4-15 to 4-17 
details, 4-16 
example, 4-16 
form, 4-15 

ISAM utilities, 2-16 
ISAM Copy, 4-4, 4-5 
ISAM Create, 4-6 to 4-9 
ISAM Delete, 4-10 
ISAM Rename, 4~11, 4-12 
ISAM Reorganize, 2-17, 5-1 to 5-7 
ISAM Set Protection, 4-13, 4-14 
ISAM Status, 4-15 to 4-17 

Key, 2-2, 3-4 
and ModifyISAMRecord, 3-46 
and ModifyISAMRecordByKey, 3-48 
and ReadUniqueISAMRecord, 3-59 
ascending and descending, 2-2 
composite, 3-5 
duplicate, 2-2 
field, 2-3, 3-4 
types, 2-2, 3-5, 3-13, 5-3 
null values, 2-3 

3 



Key (cont) 
simple, 3-4 
unique, 3-4 

Key types, 2-2, 3-5, 3-13 
and programming ~anguages, 3-13 
byte string, 2-2' 
cbIndexField, 3-13 
character string, 2-2 
COBOL, 3-8 . 
COBOL types, 3-6 
numeric key types, 2-2 
workstation, 3-8 

LoadSingleUserISAM, 3-21, 3-22, 
3-44, 6-1 

Locking, 2-7, 2-10, 3-18 
and DeleteISAMRecordByKey, 3-33 
and GetISAMRecords, 3-35 
and HoldISAMDataSet, 3-39 
and HoldISAMRecord, 3-41 
and ReadISAMRecordByUri, 3-55 
and ReadNextISAMRecord, 3-57 
and ReadUniqueISAMRecord, 3-59 
and ReleaseISAMDataSet, 3-61 
and ReleaseISAMRecord, 3-63 
conflict, 2-13 
data sets, 2-13 
records, 2-13 
timeouts, 2-15 

Long IEEE key, 3-7, 4-7, 5-4 
Long real key, 3-7, 4-7, 5-4 

Maintain File utility, 2-17, 5-1, 
5-10 

Modify password, 2-16 
Mod ifyISAMRecord, 3-46 
ModifyISAMRecordByKey, 3-48 
Multipartition BTOS, 2-16, 6-3 
Multiple record access, 3-17 
Multiuser access, 2-15, 6-1 

cluster workstation, 3-22 
differences between multiuser 

and single-user, 6-2 
master workstation, 3-22 
.VerifyMultiuserISAM, 3-22 

NormalizeISAMStatus, 3-22, 3-51 
Numeric key types, 2-2 

4 

OpenISAM, 3-52 
Operations, ISAM, see ISAM 

operations 

Pascal, 3-8 
Personnel data sets, 1-3 

examples, 3-1 
Prefix match, 2-4 

QueryTransactionParams, 3-54 

Range match, 2-3 
Read password, 2-16 
Reading, 2-3 

by unique key, 2-3 
exact match, 2-3 
prefix match, 2-4 
range match, 2-3 

Read ISAMRecordByUri, 3-55 
Read ISAMRecordByUriHold, 3-55 
ReadNextISAMRecord, 3-57 

and SetUpISAMIterationLimits, 
3-72 

and SetUpISAMIterationPrefix, 
3-75 

ReadNextISAMRecordHold, 3-57 
ReadUniqueISAMRecord, 3-59 
Read UniqueISAMRecord Hold , 3-59 
Record, 2-3 

and GetISAMRecords, 3-35 
buffer size, 6-13 
locking, 2-7 
Uriique Record Identifier (URI), 

2-3, 2-4 

Record management and access, 
3-16 to 3-17 

Record Sequential Access Method, 2-2 
ReleaseISAMDataSet, 3-61 
ReleaseISAMRecord, 3-63 
Rename utility, 5-1~ 
RenameISAM, 3-65 
Resident code and data, 6-4 
Resident server, 6-1 
RollBackTransaction, 2-7, 3-68 

and BeginTransaction, 3-24 



Sequential access, 3-4 
SetISAMProtection, 3-69 
SetTransactionParams, 3-71 
SetUpISAMIterationLimits, 3-72 
SetUpISAMIterationPrefix, 3-75 
Shared access, 6-1 
Short IEEE key, 3-7, 4-7, 5-4 
Short real key, 3-7, 4-7, 5-4 
Simple key, 3-4 
Single record access, 3-17 
Single-partition BTOS, 2-13, 6-3 
Single-user access, 2-15, 6-1 

differences between multiuser 
and single-user, 6-2 

LoadSingleUserISAM, 3-21, 3-44, 
3-45 

standalone workstation, 3-22 
Single-user ISAM, 3-43 
Software requirements, C-1 
Sort utility, 5-1, 5-11 
Status block, 3-2 
Status codes, A-1 to A-16 
Store ISAMRecord, 3-77 

and DeleteISAMRecord, 3-31 
and Delete ISAMRecordByKey, 3-33 

Superseded procedures, 3-1, B-1 
Swap zone, 6-5 
Swapping server, 6-1 

Timeouts, 2-15 
Transaction Parameters Block, 

2-15, 3-19 
wTicksWait, 2-15 

Transaction, 2-7 to 2-13, 3-18 to 
3-19, 3-26 

and ReleaseISAMDataSet, 3-61 
and ReleaseISAMRecord, 3-63 
and RollBackTransaction, 3-68 
BeginTransaction, 2-7, 2-10 
CornmitTransaction, 2-7 
constraints, 3-19, 3-20 
locking, 2-7 ~ 

RollBackTransaction, 2-7' 
~Transaction mode, 2-5 

transaction modify mode, 2-5, 2-6 
transaction read mode, 2-6 

Transaction parameters block, 3-19 
and QueryTransactionParams, 3-54 
and SetTransactionParams, 3-71 
format, 3-21 

Unique key, 2-3, 3-4 
and Delete ISAMRecordByKey, 3-33 
and Mod ifyISAMRecordByKey, 3-48 

Unique Record Identifier (URI), 2-3, 
2-4 

and Get ISAMRecords, 3-35 
and HoldISAMRecord, 3-41 
and ModifyISAMRecord, 3-46 
and ReadISAMRecordByUri, 3-55 
and ReadNextISAMRecord, 3-57 

Upward compatibility support, B-1 to 
B-4 

Utilities, 2-16, 4-1 
Copy, 5-10 
data set maintenance, 4-1 
default index file name, 4-2 
description, 4-3 
fields ending with a question 

mark, 4-1 
fields requiring a password, 4-2 
File Maintainer, 2-2 
invoking, 4-1 
ISAM Configure, 6-7 
ISAM Copy, 4-4 
ISAM Create, 4-6 
ISAM Delete, 4-10 
ISAM Install, 6-1 
ISAM Install, 6-3 
ISAM Rename, 4-11 
ISAM Reorganize, 2-17, 5-1 
ISAM Set Protection, 4-13 
ISAM Status, 4-15 
Maintain File, 2-17, 5-1, 5-10 
optional fields, 4-1 
PLog, 2-17 
Rename, 5-12 
Sort, 5-1, 5-12 

VerifyMultiuserISAM, 3-22, 3-79 

Wait, 3-1, 3-23 
Write-through cache, 2-17 

5 





Documentation Evaluation Form 

Title: B 20 Systems Indexed Sequential Access Method 

(lSAM) Reference Manual 

Form No: .....;;.,;11:..;:6;.,;;8;...,;4..;;;6,;;.,5 _____ _ 

Date: _' __ J_u.....;ly_I_98_4 _____ _ 

Burroughs Corporation is interested in receiving your comments 
and suggestions, regarding this manual. Comments will be util
ized in ensuing revisions to improve this manual. 

Please check type of Suggestion: 

o Addition o Deletion o Revision o Error 

Comments: 

From: 

Name 

Title 
Company __________________________________ __ 

Address 

Phone Number ______________ _ 

Remove form and mail to: 

Burroughs Corporation 
Corporate Documentation - West 

1300 J olm Reed Court 
City of Industry, CA 91745 

U.S.A. 

Da te _________ _ 




