

•
UNISYS BTOS

Graphics

Programming
Reference Manual

Copyright © 1987, Unisys Corporation,
Detroit, Michigan 48232

Relative to
Release Level 1.3

Priced Item

March 1987
Distribution Code SA
Printed in US America
1182706

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any
product and related material disclosed herein are only furnished pursuant and
subject to the terms and conditions of a duly executed Program Product License
or Agreement to purchase or lease equipment. The only warranties made by
Unisys, if any, with respect to the products described in this document are set
forth in such License or Agreement. Unisys cannot accept any financial or other
responsibility that may be the result of your use of the information or software
material, including direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or
software material complies with the laws, and regulations of the jurisdictions
with respect to which it is used.

The information contained herein is subject to change without notice. Revisions
may be issued to advise of such changes and/or additions.

Correspondence regarding this publication should be forwarded, using the Product
Improvement Card at the back of this manual, or remarks may be addressed
directly to Unisys Corporation, Corporate Product Information East, Building C,
P.O. Box 500, Blue Bell, PA 19424 U.S.A.

The Graphics Support Package contains software routines that drive the
following hardware peripherals:

Burroughs AP 1311 .Multi Function Printer

Burroughs B 9253 dot-matrix printer

Burroughs AP 1351 (80-column mode and 132-column mode) multifunction printer

Burroughs AP 1351-1 (80-column mode and 132-column mode) multifunction
printer

Burroughs AP 1314 dot-matrix printer

Burroughs AP 1354 (80-column mode and 132-column mode) dot-matrix printer

Burroughs AP 9208 (poftrait mode and landscape mode) non-impact laser printer

These printers are supported by Burroughs Corporation.

The Business Graphics Package also contains software routines which drive the
following hardware peripherals. However, none of the following peripherals is
marketed by Burroughs Corporation. Burroughs does not warrant the suitability
of performance of these peripherals in customer applications.

Hewlett-Packard Model HP 7220C 8-pen plotter

Hewlett-Packard Model HP 7220T 8-pen plotter

Hewlett-Packard Model HP 7470A 2-pen plotter

Hewlett-Packard Model HP 7475A 6-pen plotter

Strobe Model 100 1-pen plotter

Printronix MVP dot-matrix printer

Envision 420 dot-matrix printer

Anadex 9620 dot-matrix printer

Okidata Microline 93 dot-matrix printer

Dataproducts 8010 dot-matrix printer

The particular device selected is the responsibility of the customer.

Contents
Title

Section 1: Overview
Graphics Manager
Graphics Library .. .
Graphics Manager and Graphics Library Features
Where to look Next

Section 2: Hardware and Software Requirements
Hardware Requirements
Graphics Workstation Features
Software Requirements

Section J: Installation
Installing Graphics .. .
Invoking Graphics
Invoking Graphics Automatically
B20GM1 File Contents

Section 4: Concepts
Drawing Attributes .. .
Line Type .. .
Drawing Mode .. .
Color
Mixing Graphics library and Graphics Manager Calls
Graphics Memory Access
Graphics Manager Procedures
80- or 132-Column Mode on B 27 Workstations
The Graphics Manager Coordinate System
Control Procedures for B 22 and B 27 Workstations
Vector and Arc Manipulation Procedures
Graphics Manager Restrictions
Graphics library .. .
80- or 132-Column Mode
User-Replaceable Procedures
Pictures and Objects
Picture File
Temporary Objects .. .
Text Attributes .. .
Graphics Library Coordinate Systems
Viewing Perspectives .. .

Section 5: Standards and Conventions
Numbers .. .
Memory Address
Variable Names
Prefixes
Roots
Suffixes
Examples of Variable Names

11827.0fl

v

Page

1-1
1-1
1-1
1-4
1-5

2-1
2-1
2-1
2-2

3-1
3-1
3-1
3-2
3-2

4-1
4-1
4-1
4-2
4-4
4-5
4-5
4-5
4-6
4-6
4-7
4-7
4-7
4-7
4-8
4-8
4-8

4-10
4-10
4-10
4-11
4-13

5-1
5-1
5-1
5-1
5-1
5-2
5-3
5-3

vi Contents

Title Page

Section 6: Memory Access . 6-1
MapGraphicsWindow . 6-1

Section 7: Graphics Manager Requests . 7-1
Control Procedures . 7-2
Multiple Graphics Pages . 7-2
ClearScreen . , 7-4
lnitAdditionalGraphicsScreen . 7-5
lnitScreenGraphics . 7-6
ReturnGraphicsScreen . 7-7
SetCommandScreen . 7-8
SetVisibleScreen . 7-9
TurnOffGraphics . 7-10
T urnOffGraphicsColor . 7-11
T urnOnGraphics . 7-12
T urnOnGraphicsColor . 7-13
Vector and Arc Manipulation Procedures . 7-14
ClearScreenRectangle . 7-15
ClearPixelScreenRectangle . 7-16
DrawScreenArc . 7-17
DrawScreenline . 7-19
DrawPixelScreenline . 7-20
FillScreenRectangle . 7-21
FillPixelScreenRectangle . 7-22
GetDrawAttrlnfo . 7-23
GetRasterlnfo . 7-24
GetVDIViewport . 7-26
LoadSoftPattern . · 7 -2 7
Specifying wPattern in LoadSoftPattern . 7-28
ReadPixelColor . 7-29
SetDrawDestinationPlane . 7-30
SetMonoOrColorDrawMode . 7-31
SetScreenColor . 7-32
SetScreenDrawingMode . 7-33
SetScreenline Type . 7-34
Color Procedures . 7-35
Load Color . 7-37
LoadColorMapper . 7-38
SetColorMapper . 7-39
Color Text . 7-39
Raster Procedures . 7-40
Destination Rectangles . 7-40
Source and Destination Bitmaps . 7-40
DoRasterOp . 7-46
DoRasterOp Text . 7-48
OuerylastRasterT ext . 7-50
SetRasterClipping . 7-51
SetRasterDestination . 7-52
SetRasterOestinationPlane . 7-54
SetRasterFont . 7-55

Contents vii

Title Page

SetRasterPattern . 7-56
SetRasterSource . 7-58
SetRasterSourcePlane . 7-60
SetRasterTextMode . 7-61
Raster Font Format . 7-62
Buffering Procedures . 7-66
DrawScreenBuffer . 7-67

Section 8: Graphics Library Procedures . 8-1
Introduction . 8-1
A Typical Graphics Library Sequence . 8-1
The Procedures . 8-2
Initialization Procedures . 8-2
ClearViewPort . 8-5
lnitGraphics . 8-6
SetColumnMode . 8-7
Setlimits . 8-8
SetOutputDevice . 8-9
SetOutputT ype . 8-10
SetPlotterDevice . 8-12
SetPlotterMaterial . 8-13
SetUserCoordinates . 8-14
SetUpGraphicsSpooling . 8-15
Picture Procedures . 8-16
AddPicture . 8-17
ClosePicture . 8-18
DisplayPicture . 8-19
GetNumberOfObjects . 8-21
OpenPicture . 8-22
WritePicture . 8-24
Object Procedures . 8-25
AddObject . 8-26
Clearlabels . 8-28
ClearVectors . 8-29
CloseObject . 8-30
Close T empObject . 8-31
DisplayCurrentObject . 8-32
Open T empObject . 8-33
RemoveCurrentObject . 8-34
SetFirstObject . • 8-35
SetNextObject . 8-36
Attribute Procedures . 8-37
GetPictureColors . 8-38
SetColor . 8-39
SetCurrentPalette . 8-40
SetDrawingMode . 8-41
Setline Type . 8-42
Drawing Procedures . 8-43
Draw . 8-44
DrawArc . 8-45

1182706

viii Contents

Title Page

DrawCircle . 8-47
Drawline . 8-48
DrawRelative . 8-49
FillRectangle . 8-50
Move .. , 8-51
MoveRelative . 8-52
Text Procedures .. 8-53
SetCharacterSize . 8-54
Setfont . 8-55
SetlabelOrigin . 8-56
Write TextString . 8-5 7
Font Procedures . 8-58
GetfontName . 8-60
GetfontNumber . 8-61
GetNumberOffonts . 8-62
GetUserfontName . 8-63
SetUserfont . 8-64
Label Procedures . 8-65
Addlabel . 8-66
DeleteCurrentlabel . 8-68
GetCurrentlabel . 8-69
GetlabelData . 8-70
Modifylabel . 8-71
SetFirstlabel . 8-73
SetNextlabel . 8-7 4
Transformation Procedures . 8-75
GetTransformation Data . 8-76
SetScale . 8-77
SetScale Relative . 8-78
SetTranslate . 8-79
SetTranslateRelative . 8-80
Viewing Procedures . 8-81
GetWindowData . 8-82
SetViewPort . 8-83
SetWindow . 8-84
Cursor Procedures . 8-85
GetCursorPosition . 8-86
SetNDCCursorPosition . 8-8 7
SetO bjectCursorPosition . 8-88
SetWorldCursorPosition . 8-89
TurnOffCursor . 8-90
TurnOnCursor . 8-91
User-Replaceable Procedures . 8-92
LoadPaper . 8-93
ReadlnterruptKey . 8-94
SetPen . 8-95

Contents ix

Title Page

Section 9: Configuring Application Programs for Graphics 9-1
Introduction 9-1
BASIC 9-1
COBOL 9-2
FORTRAN 9-3
Pascal .. . 9-4

Section 10: Printers and Plotters
Direct and Spooled Printing
Installing Printers and Plotters
Configuration File Contents
Queue.Index File .. .
Spl. Cnfg. Sys File

10-1

I
10-1
10-2
10-2
10-2
10-3

Appendix A: Sample Programs A-1

Appendix B: Drawing Modes and Fill Patterns B-1
Drawing Modes
Fill Patterns

B-1 I B-1

Appendix C: Graphics Manager Virtual and Physical
Pixel Resolution C-1

Appendix D: Graphics Library Aspect Ratios for World and
NOC Coordinates D-1

Appendix E: System Walkthrough: Graphics Library E-1

Appendix F: Label Structure F-1

Appendix G: Status Codes G-1

Appendix H: Glossary H-1

Index .. .

1182706-001

Illustrations and Tables xi

Figure Title Page

1-1 Map Created Using GEO/BASEMAP 1-2
1-2 BTOS Draw Screen . 1-3
1-3 Business Graphics Package (BGPI Screen 1-3
4-1 Line Types . 4-1
4-2 Drawing Modes . 4-3
4-3 Label Origin . 4-11
4-4 Window to Viewport Transmission 4-13
7-1 Determining Arc Length . 7-18
7-2 Drawing Directions (Angles in Radians) 7-18
7-3 Sample Pattern . 7-28
8-1 Fill Patterns . B-1
B-2 Drawing Modes . B-2

1-1 Comparison of Graphics Manager and Graphics Library 1-4
7 -1 The Default Color Palette . 7-36
8-1 Graphics Library Features by Function 8-3
8-2 Spool Configurations . 8-15
8-3 Graphics.Fonts File Names . 8-59
10-1 Printer and Plotter Switch Settings 10-3
C-2 BO-Column Mode Pixel Resolution C-1
C-2 132-Column Mode Pixel Resolution C-1
D-1 BO-Column Mode Coordinates . D-1
D-2 132-Column Mode Coordinates . D-1
F-1 Label Structure . F-1

1182706-001

Section 1

Overview

Graphics is a software interface to Burroughs graphics
hardware. With this product, you can create flexible.
high-speed graphics application systems, add graphics
illustrations to on-line applications, produce graphic
representations of data, or develop complex graphic
illustrations. Burroughs applications of BTOS graphics
include BTOS Systems Draw, Business Graphics Package,
and the Tektronix 4014 Emulator.

1-1

Figures 1-1. 1-2, and 1-3 illustrate graphics packages
created using BTOS graphics calls. Figure 1-1 is a map
created using GEO/BASEMAP, which contains calls from
BTOS graphics. GEO/BASEMAP is an automated system for
mapping and spatial analysis developed by GEOGROUP of
Berkeley, California. Figure 1-2 • drawn using BTOS Systems
Draw, illustrates a BTOS Systems Draw screen. Burroughs
applications programmers used Graphics Manager to create
this easy-to-use, menu-driven, general purpose drawing
system. Figure 1-3 illustrates a Business Graphics Package
screen. BGP, a Burroughs product created using Graphics
Library calls, translates Multiplan spreadsheets into bar. pie,
and line charts.

Graphics provides two levels of support:

Graphics Manager and Graphics Library. Graphics Library
contains calls to the Graphics Manager, a system service.

Graphics Manager
Graphics Manager is a system service that is incorporated
into your operating system during installation. Each BTOS
workstation has a customized Graphics Manager. Graphics
Manager is a fast. integer-based set of drawing and control
primitives that provides low-level graphics support. It
provides a quick display of temporary images, has a low
memory overhead, and allows high-speed graphics drawing.
Graphics Manager supports Pascal, BASIC, COBOL, and
FORTRAN. (COBOL is not supported on workstations with
less than 640K of memory.)

Graphics Library
Graphics Library is a set of system-level procedures that
are called from user-designed applications. It provides high-
1182706

1-2 Overview

Figure 1-1 Map Created Using GEO/basemap
(Courtesy of Paul Wilson, GEOgroup.)

MAXIMUM

EARTHQUAKE

INTENSITY

SAN FRANCISCO

BASIS BAY AREA SPATIAL
INFORMATION SYSTEM

level, device-interchangeable access to the graphics hard
ware. Graphics Library consists of object code that is linked
with your application programs. Graphics Library can be
used to draw vectors and arcs, and to print and plot your
graphic creations on a number of printers and plotters. You
can label graphic representations with a variety of fonts,
colors, and character sizes. You can use Graphics Library to
create complex graphic representations by merging differ
ent figures in the same display. You can save what you
have created with Graphics Library procedures on your

Overview 1-3

Figure 1-2 BTOS Systems Draw Screen

u OVE I [. I I I I ' I I I I ••• I • I • I I I 1 I I I • I I I I I I

COPY I:
jcAN CELI :_

I DELETE I :
I co !'.....,,,,.~~

X/Y

D~
SIZE :

D~
ANGLE ::
jo9o.o I: EB

•

I Scale jRotatejstretchl Fill ™Mirror I

Figure 1-3 Business Graphics Package (BGP) Screen

SALES BY REGION

1981 SAL.ES

Regions Compared

1182706

I Color ILnTyp~

--

1-4 Overview

floppy or hard disk for future use. You can use Pascal,
BASIC, and FORTRAN with Graphics Library. (COBOL is not
supported because COBOL's intermediate code file is too
large to be compiled.)

Once you have created a graphic representation using
Graphics Library, you can easily transform it to assume
different sizes, shapes, and positions on your screen. These
transformations are handled independently without altering
the code that you used to create the picture. You can magnify
small sections and change the size and shape of the display.

Graphics Manager and Graphics Library features
Table 1-1 presents some of the major differences between
Graphics Manager and Graphics Library. Many features are
not listed; this is simply a guide you can use to determine
which of the two is best suited to your particular program
ming needs.

Table 1-1 Comparison of Graphics Manager and Graphics library

Feature Graphics Manager Graphics library

COBOL With 640K Not Supported

Direct Access to Hardware Yes No

Execution Speed Faster than Slower than

Graphics library Graphics Manager

Interchangeable With Adjustments Automatically
between workstations
Memory Requirements 27K minimum 160K minimum

Printers/Plotters No Yes

Save Graphic Design No Yes

Scale Drawn Figures No Yes

Translations No Yes

Overview 1-5

Where to Look Next
Read Sections 2 and 3 for information about equipment
requirements and installation. Read Section 4, Concepts, for
more information about Graphics Manager, Graphics Library,
and the package in general. Read Section 5 if you are
unfamiliar with Burroughs variable name conventions.
Section 6 contains information about directly accessing
graphics memory; section 7 contains detailed information
about Graphics Manager procedures; section 8 contains
detailed information about Graphics Library procedures.
Read Section 9 for information about configuring
applications for graphics. Section 10 contains information
about printers and plotters. The appendixes contain sample
programs, system walkthroughs for Graphics Manager and
Graphics Library, status codes, tables of technical data, and
a glossary of relevant terms.

1182706

Section 2 2-1

Hardware and Software Requirements

Hardware Requirements
In order to run Graphics, you need one of the following systems:

o B 21 color standalone, master, or cluster with color monitor

o B 22 standalone, master, or cluster, with graphics board
and monochrome monitor

o B 26 standalone, master, or cluster, with graphics
module and either color or monochrome monitor

o B 27 standalone, master, or cluster with graphics module I
and either color or monochrome monitor

o B 28 standalone, master, or cluster, with graphics
modules and either color or monochrome monitor

o XE 520 master (with BTOS workstations)

/Uote: Graphics is not supported on BTOS dual floppy
standalone workstations or on B 2 7 Low Cost Cluster
workstations.

You need at least 51 2 kilobytes of random access memory
(512K) to run Pascal, BASIC, and FORTRAN, and 640K to
run COBOL. You cannot run COBOL on a B 21 because of
this memory requirement.

Graphics Workstation Features
B 21 Workstation: Burroughs workstation featuring an 80
character by 28 scan line video display screen, one cursor
on the screen, a 256 character set that cannot be modified
by software, and a screen split horizontally into multiple
frames. The graphics resolution of the B 21 is 432 by 319
pixels. The 64-color monitor is capable of displaying eight
colors simultaneously.

B 22 Workstation: Burroughs workstation featuring a 34 line
screen, a software-selectable 80- or 132- character line,
one cursor per line, a 256 character set that can be
dynamically modified by software, and a screen that can be
split horizontally and/or vertically into multiple overlapping
frames. The B 22 features a high-resolution monochrome
monitor with a graphics resolution of 656 by 510 pixels. To
run graphics with this workstation, you need a graphics board.

11Rnn11-nm

I

2-2 Hardware and Software Requirements

B 26 Workstation: Burroughs workstation featuring a video
screen display with a 29 scan line by 80 character screen,
one cursor per line, a 256 character set that can be
dynamically modified by software, and a screen split
horizontally and/or vertically into multiple overlapping
frames. The B 26 features either a monochrome monitor or
a 64-color monitor that can display eight colors
simultaneously, with a resolution of 718 by 348 pixels. To
run graphics with this workstation, you need a graphics
module.

B 27 Workstation: Burroughs workstation featuring a
software-selectable vertical and horizontal character
resolution of 30 (or 34) line by 80-or 132-characters, one
cursor per line, a 256 character set that can be dynamically
modified by software, and a screen that can be split
horizontally and/or vertically into multiple overlapping
frames. The B 27 features either a monochrome or color
monitor capable of displaying simultaneously eight of a
possible 256 colors, with a resolution of 720 (or 792) by
480 pixels. To run graphics with this workstation, you need
a graphics slice.

B 28 Workstation: Burroughs workstation featuring a video
screen display with a 29 scan line by 80 character screen,
one cursor per line, a 256 character set that can be
dynamically modified by software, and a screen split
horizontally and/or vertically into multiple overlapping
frames. The B 28 features either a monochrome monitor or
a 64-color monitor that can display eight colors
simultaneously, with a resolution of 718 by 348 pixels. To
run graphics with this workstation, you need a graphics
module.

Software Requirements
You will need the BTOS operating system, 7.0 or higher.

You can use any of the following BTOS 5.0 languages:

o Pascal

o BASIC Interpreter

o BASIC Compiler

D FORTRAN

D COBOL

Hardware and Software Requirements

/Vote: If you want to use COBOL, you need at least 640K of
memory. COBOL is not supported for Graphics Library
functions. It will work with Graphics Manager on BTOS
workstations with at least 640K of memory.

/Vote: To use Pascal on a B 28 workstation, first relink Pascal
on the B 28.

1182706

2-3

Section 3 3-1

Installation
Before you can use Graphics, the Tektronix 4014 Emulator,
Business Graphics Package, or BTOS Systems Draw, you
must install Graphics and invoke the Graphics Manager.

Installing Graphics
To install Graphics on your BTOS workstation (standalone,
cluster, master, or XE 520 master), use the following
procedure for both 8-inch and 51/.i inch floppy disks:

1 Insert the B20GM 1 floppy disk into disk drive fO.

2 Type Software Installation.

3 Press RETURN.

You will see these parameters:

[CMD FILE]
[FILES TO]
[Confirm?]
[Install file]

4 Enter the name of the appropriate command file after the
[CMD FILE] prompt if you do not want to use the default,
<Sys>Sys.Cmds, on the volume on which you are
installing the software.

5 Press GO.

6 Follow the instructions on the screen until the following
message appears:

END OF INSTALLATION OF GRAPHICS FOR BTOS SYSTEMS

I

7 Reboot your system to complete the Graphics installation. I
Graphics for BTOS is now installed on your system. Remove
the floppy diskette from drive FO and place it in a safe place.

Invoking Graphics
To invoke graphics, type the following from the Executive:

1. Type Install graphics manager or a unique abbreviation.

2 Press GO.

1182706-001

I

I
3-2 Installation

Invoking Graphics Automatically
If you want your system to automatically invoke Graphics
for BTOS Systems every time you logon or reboot your
system, you can use a JCL file to do this. To put graphics in
a JCL file, complete the following steps.

1 Type Edit; then press RETURN.

2 Type Syslnit.JCL; then press GO.

3 Add one of the following lines before the $END statement:

If you used default values and installed Graphics for
BTOS Systems on your master during software installa
tion, type:

$run [!Sysl<Sys>InstallGM.run

If you installed Graphics on your local hard disk, type:

$run [Sysl<Sys>InstallGM.run

4 Press FINISH.

5 Type Y and press GO.

The next time you reboot your system, Graphics Manager
will be installed automatically.

B20GM1 File Contents
<Sys> fileHeaders. sys
<Sys>mfd.sys
<Sys> log.sys
<Sys> syslmage .sys
<Sys>bootExt.sys *
<Sys>badBlk.sys
<Sys>crashDump.sys
<Sys>DiagTest. sys *
<Sys>FdSys. Version
<Sys> Install.sub
<Sys>Masterlnstall. sub

Installation

<Fonts>ComplexRoman. font
<Fonts> DuplexRoman. font
<Fonts>SimplexRoman.font
<Fonts> SimplexPlot. font
<Fonts> Gothic. font
<Unisys>GraphicsPrinterConfig.sys
<Unisys>Graphics.lib
<Unisys> MapGraphicsWindow .obj
<Unisys> lnstallGM. run

<Unisys>GM.run
<Unisys> LaserPrinterConfig. sys
<Unisys>gfxGPAMDum.obj
<Unisys>ReadVDM.lib
<Unisys> Request.Graphics.sys
<Unisys> HPPlotterConfig. sys
<Unisys>PlotterConfig.sys
<Unisys>StrobeConfig.sys
<Unisys>StrobePlotterConfig.sys
<Config>Sample>Sys.Printer
< Config >Sample> SplCnfg. Sys
<Config>Sample>Oueue.lndex

*These files are found only on 8-inch floppy disks and are
not on 51/.i inch floppy disks.

Notes:

The file ReadVDM.lib is for future use; its use is not
currently supported.

The file Graphics.fonts is created during installation.

1182706-001

3-3

Section 4 4-1

Concepts
This section contains general information about Graphics. It
contains explanations of terms and concepts that will help
you understand procedures described later in this manual.

Drawing Attributes
Attributes are variable characteristics connected with vectors,
arcs, and text. Drawing attributes are used with drawing
procedures to provide variety and contrast in graphic repre
sentations. The attributes that are used with drawing proce
dures are line type, drawing mode, and color.

Line Type

Graphics includes eight system-defined line types and up to
eight user-defined patterns. A solid line is the default, and
there are other patterns of dots and dashes. Figure 4-1
illustrates the eight line types provided with the Graphics
software. Note that only the eight system-defined line types
will operate with Graphics Library software.

Figure 4-1 Line Types

0-Solid Line

1-Line Dash Dash

2-Line Dash

3-Line Dot • • •

4-Line Blank

5-Line Blank Blank

6-Dashed Line

7-Dotted Line • • •• • • • • • • • • • • • •

1182706

4-2 Concepts

Drawing Mode
The drawing mode describes the method used to write a
vector or arc to the display screen. When the bits that form
the vector have been calculated according to the line type,
they are compared to the existing memory bits and written
to the display memory (screen) according to the drawing
mode. Four modes are supported by the library:

1 Set (OR)

2 Clear (Reset or set with matt color)

3 Complement (XOR)

4 Replace

Figure 4-2 shows examples of the same pattern written to
the display memory in each of the four modes.

Set Mode

Logically ORs the pattern of the line to be drawn with the
background bits already in the memory location. Thus, the
bits that are off in the line pattern have no effect on the bits
already in memory. Any bits that are on in the line pattern
or the background remain on when they are merged.

Clear Mode

causes the bits that are on in the line pattern to turn the
corresponding memory bits off.

Complement Mode

Causes the line pattern to take on the opposite characteristic
of the corresponding memory bits. The line pattern is
logically XORed with the background display memory.

Replace Mode

different from the other three modes in that no logical
operation is performed between the line pattern and the
existing memory. Whatever is in the line pattern replaces
the existing memory bits. the background has no bearing
on the line pattern.

Concepts 4-3

Figure 4-2 Drawing Modes

Background

~ '"""

Set

m lc1 ...

I ~ 1

1182706

4-4 Concepts

Appendix B illustrates how line drawing is affected by line
patterns, foreground, color and drawing modes.

Color

You can choose from a range of 64 colors on all BTOS
color graphics workstations. The color procedures allow for
the definition of 8-byte color palettes that have one byte for
each of eight colors. This set of colors is called the color
palette.

Two eight-color palettes can be defined at a time, and
individual colors in a palette can be replaced or modified.
Color palettes can be accessed by Graphics Library
procedures such as SetColor, but Graphics Manager
functions handle the specification of the colors that make up
a palette. The Graphics Manager procedures use the color
style RAM on the 8 21 graphics control board and the 8 26
graphics controller module.

The color palette is automatically saved with the
accompanying picture in the picture file in the Graphics
Library, thus enabling pictures to be redisplayed with the
same color specifications.

Color Graphics Attributes

Color alphanumeric attributes are supported on BTOS
graphics workstations. Refer to BTOS Reference Manual
Volumes 1 and 2 if you need this information.

Color P~inting and Plotting

You can print to a color plotter on any BTOS workstation,
even those with monochrome display screens. The color
parameters are used to specify the pen numbers of the
plotter. With these parameters, you can select a maximum
of eight colors, assigning a plotter pen number for each one.

Concepts

Foreground and Background Colors

The current drawing color is considered the foreground
drawing color. This color replaces pattern bits of 1 in the
set and replace mode.

4-5

The background color is palette entry 0. It is used by the
system during initialization and ClearScreen operations to
set the color of the screen.

Mixing Graphics Library
and Graphics Manager Calls

Use caution if you use both Graphics Library and Graphics
Manager calls in one program. Only Graphics Library calls
are saved in an object or picture file and reproduced when
you issue a DisplayPicture or a DisplayCurrentObject call. If
Graphics Manager calls are mixed in with Graphics Library
calls, the Graphics Manager calls will not be saved and will
not be displayed when a DisplayCurrentObject or a
DisplayPicture is issued. Mixing Graphics Library and
Graphics Manager calls is not recommended.

Graphics Memory Access

The Graphics Memory Access routine is available on all
workstations. It enables a graphics application to directly
access the graphics bitmap. This routine can be linked in
with your application in order to provide it with CPU
addressing to the graphics hardware.

Graphics Manager Procedures

Graphics Manager is a system service. Because Graphics
Manager procedures are executed entirely by the graphics
hardware, you must either modify your applications
according to specific workstations or write applications that
can be run interchangeably on different workstations by
using virtual coordinates and scaling drawn objects.

The requests provided by the Graphics Manager fall into
three functional categories: control functions, vector and
arc manipulation functions, and color functions. The color
procedures are available only on workstations that support
color.

1182706-001

4-6 Concepts

The routines contained in the Graphics Manager can be
accessed through either the standard BTOS request
interface or the procedural interfaces defined for these
routines. Request block formats and their respective
procedural interfaces are provided in Section 7.

I See Appendix E for a Graphics Library system walkthrough.

80- or 132-Column Mode on B 27 Workstations

If you have a B 27 monochrome workstation, you can
choose to have either 80- or 132-columns using the
Graphics Manager. Each mode uses its own aspect ratio to
calculate for a square pixel appearance. The application is
able to switch between modes at any time. The picture on
an 80 column mode screen will disappear and the memory
will clear when you switch column modes. Appendix C
contains the physical and virtual coordinate systems for
both the 80- and 132-column mode.

In order to switch modes in the Graphics Manager, you need
to issue requests to the video hardware. This will reset both
the character screen and the graphics screen to the mode
you request. Refer to BTOS Reference Manual Volumes 1 and
2 for further details.

Note: 132-column mode is not available on 8 2 7 color graphics
workstations.

The Graphics Manager Coordinate System

The Graphics Manager software uses both the real and
virtual coordinate systems. Workstations with non-square
pixels (B 26 and B 27) provide a virtual, square-pixel
interface. (See Appendix C for a table of both the virtual and
physical screen resolutions for both the 80- and 132-column
mode of BTOS workstations.) Raster procedures, described
later, use their own coordinate system.

Real Coordinate System

The real coordinate system is the horizontal and vertical
number of pixels on the screen. The lower left corner of the
screen is always (O,O). The 8 21 and 8 22 drawing procedures
accept only real coordinates.

Concepts 4-7

Virtual Coordinate System and Square Pixels

The virtual coordinate system is used to simulate square
pixels for Graphics Manager. If you used real coordinates
with non-square pixels, a horizontal line 20 pixels long
would not be the same size as a vertical line 20 pixels long.
Therefore, the Graphics Manager uses the virtual coordinate
system, and the B 26, B 27, and B 28 drawing procedures
accept virtual coordinates only. These procedures internally
translate the virtual coordinates into real coordinates. When
virtual coordinates are used, horizontal and vertical lines of
the same length will appear to be the same length on the
screen.

Control Procedures for B 22 and B 27 Workstations

Control routines are used to control the number of graphics
pages and the output to the video display screen. There are
two pages available on the B 22 and B 27 workstations;
however, only one of them can be displayed at any given
time. Only the B 22 and B 27 have multiple pages.

Vector and Arc Manipulation Procedures

Vectors and arcs are plotted by calculating lines between
endpoints. B 26 and B 27 drawing commands use the virtual
coordinates described in Appendix C to present the illusion
of square pixels. Additional drawing commands that use real
coordinates are provided. These commands also allow filling
and clearing of rectangular areas.

Graphics Manager Restrictions

The level of support provided by the Graphics Manager
depends on the capabilities of your workstation. Although
the Graphics Manager contains requests for color
procedures, they will not be supported on workstations that
are not equipped for color.

Graphics Library

Graphics Library consists of object code that is linked with
your application programs. The Graphics Library contains
calls to the Graphics Manager and the operating system.

1182706-001

4-8 Concepts

Graphics Library can be used to draw vectors and arcs, and
to print and plot your graphic creations on a number of
printers and plotters.

Appendix E contains a Graphics Library system walkthrough.

Note: To link with the Graphics Library (Graphics.lib), the file
<Sys>gfxGPAMDum.obj must be specified as one of the files
in the object modules field of the linker form. This file resolves
several entry points that are not defined in Graphics.lib. Failing
to include <Sys>gfxGPAMDum.obj in the linker form would
result in several "unresolved external" errors.

80- or 132-Column Mode
The Graphics Library supports 80- or 132-column mode

I switching on the monochrome 8 27. The picture is cleared
from the screen when a change occurs in column mode.
Issuing a DisplayPicture call will display the picture in the
new mode. 132 column mode is a higher resolution than the
80 column mode. The resolution is the only difference in the
picture on the screen.

Switching column modes will clear the character memory
and create one video frame (the entire screen) for character
use. There is no effect on text written with the text
procedures in the Graphics Library.

User-Replaceable Procedures

Graphics Library contains three user-replaceable procedures
that you can customize with your own code to expand the
capabilities of the software. The existing versions of these
procedures contain default values that you can replace. One
is used to interrupt the process of displaying a picture; the
others write messages to your screen during the operation
of your plotter.

Concepts 4-BA

Pictures and Objects

In Graphics Library, graphic representations are called
pictures. A picture consists of one or more objects. An
object is a set of graphics commands and labels that can be
edited and manipulated as an entity. Pictures and objects
are the structural components of graphic representations.
One bar chart on the screen, for example, is a picture with
one object. A pie chart, a line chart, and a bar chart together
on the screen is a picture with three objects. Objects can
also overlay each other in pictures. If you want to save
a graphic representation (not a temporary object) , you
must open a picture before you perform any drawing or
text labeling. Once a picture is open, non-temporary objects
can be created. This discussion refers to non-temporary
objects.

1182706-001

Concepts

Several objects can be created or edited at a time. As an
object is constructed, information about its structure is
accumulated. Each object has the following components:

o List of vector and text commands

o List of labels (text and attributes)

o List of transformation values

Vector List

4-9

The graphic portion of the data representation is collected
in a vector list that stores the commands used to create a
graphic representation. Drawing attributes, such as line
type, drawing mode, and color, are also saved. In addition,
text that is not to be modified is put in the vector list. You
cannot modify individual commands within the vector list,
but the entire list can be cleared and rebuilt to modify the
object.

Label List

Labels are notes that accompany the vector portion of the
object. The label list consists of the text and the attributes
of each label. The attributes include character size and label
origin. Individual labels within the label list for an object
can be added, deleted, or modified.

The alphanumeric labels and the vector list for an object
are mapped to display memory, logically ORed, and
displayed together. Because the text and vector commands
are stored in different lists, these two components of an
object are processed independently. Several types of modi
fications can be made to label text. You can change the
font, change the text itself, and move the label, for example,
without altering the vector portion of an object.

Transformation List

Once an object has been created, you can alter the object's
size, shape, and position within the picture. These alterations
translate and scale the object, and save the translation and
scalar units in a transformation list. Although you have
altered what appears on the screen, the code that created
the original image is not altered by scaling and translating
an object. The original object is unaffected in the label and
vector lists. Therefore, when you use the DisplayPicture
call, the original object will be displayed on the screen,
rather than the object as it appeared after you scaled and
translated it.
1182706

4-10 Concepts

Picture File

Multiple objects can be transformed and merged on the
display screen to create complex pictures. A completed
picture, whether simple or complex, is saved in a picture
file. Using the picture file eliminates the need to call all of
the procedures used to create an object each time the
picture is needed. The picture file can be opened repeat~dly
to change the way the picture is viewed and to modify or
transform the objects within it.

Temporary Objects

Objects can be defined as temporary. Temporary objects
are used when a picture is not open. For quick graphic
representations used in testing, demos, or initial system
development, this definition provides efficient processing.
The commands are performed to display the object, but no
information is accumulated in vector or label lists to be
saved in a picture file. Temporary objects also cannot be
transformed, and only the standard font attributes are
available.

Text Attributes

Attributes are used with text strings and labels to provide
variety and contrast. The attributes associated with text
strings are saved in the vector list for an object, and the
label attributes that are used with text strings and labels
are: character size, font, and label origin.

Character Size

The standard alphanumeric font uses a character cell with a
height of 36 pixels. The default character size is 1 for this
standard size, but characters can be enlarged or reduced
proportionally by specifying other values. Character size 2,
for example, produces characters that are twice as high
as the standard size, and .5 characters are half the standard
size. The character size attribute functions as a scaling factor
when an object is transformed. The characters maintain the
same proportions in relation to each other and to their
cells when an object is scaled to a smaller size.

Concepts 4-11

Font

The Graphics software includes five fonts: SimplexRoman,
ComplexRoman, DuplexRoman, SimplexPlot, and Gothic.
These font names are the internal names. The internal name
is the name that is used by the graphics software and saved
in pictures. User-friendly names such as Standard, Complex,
Bold, and Gothic can also be used for these fonts. The
default font is SimplexRoman. The names are defined in
the file Graphics.Fonts.

Label Origin

The label origin attribute indicates how text should be
oriented in relation to the current display position. Text can
be placed flush left, flush right, or centered at the current
position, and it can begin at the top, middle, or bottom of
the current position. Figure 4-3 illustrates the label origin
positions.

Graphics Library Coordinate Systems

Graphics Library coordinates, instead of the video screen's
physical coordinates, are used for mapping vector and text
positions. The three different coordinate systems used to
support output to workstation display screens and other
devices such as plotters are:

o World coordinate system

o User-defined coordinate systems

o Normalized device coordinate system

Figure 4-3 Label Origin

Left Center Right

2 5 8 Top

0 3 6 Bottom

1182706

4·12 Concepts

World Coordinate System

The world coordinate system is the primary system used
internally by device-independent Graphics Library proce·
dures. When an object is created, modified, or transformed,
its position in the world coordinate system is mapped to
display memory and saved in the vector, label, or transfor
mation list. The world coordinate system theoretically maps
objects to a 100-by-100 area. Position (0,0) is the lower left
corner of the area, and the upper right corner is position
(100, 100). Coordinate units are specified as real numbers
within this range.

The video display screen does not represent a square area.
Only the portion of the world coordinate system that
represents the aspect ratio-the ratio of height to width of
the physical screen-is generally used. The aspect ratio
coordinate positions that represent the world coordinate
values and the Normalized Device Coordinate values for
BTOS workstations are shown in Appendix D.

User-Defined Coordinate System

The device-independent Graphics Library procedures also
support user-defined coordinate systems. Once the user
defines the minimum X and Y coordinate units, the param
eters in subsequent procedures used to draw objects are
interpreted as user-defined coordinates. The graphics soft
ware automatically converts the user-defined coordinates to
the corresponding world coordinates.

Normalized Device Coordinate System

This system is used to reference the video display screen in
a relative way. The coordinate positions theoretically range
from (0.0, 0.0) at the lower left corner to (1.0, 1.0) at the
top right. Appendix D lists the Normalized Device
Coordinates for BTOS workstations. The coordinate units
describe positions in terms of their relation to the top,
bottom, right, and left sides of the display area. These
positions refer to the video display screen, not to a picture
you want to display. Currently, the only procedures that use
this coordinate system are the cursor control functions and
the viewport procedures. Appendix D gives the Normalized
Device Coordinates for BTOS workstations.

Concepts 4-13

Viewing Perspectives

The window is a portion of the world coordinate area that
defines what you want to display. The viewport is a portion
of the screen where you want the information in the window
to be displayed. Figure 4-4 illustrates the mapping between
the window and the viewport. Window/viewport transfor
mations enable you to view pictures from many different
perspectives. These viewing functions do not affect the
picture data. The vector, label, and transformation lists for
the objects within the picture are not altered.

You can alter the perspective for viewing a picture dynami
cally by adjusting the window and viewport sizes, shapes,
or positions. For example, you can scan a large picture
by keeping the size of the window constant but changing
its position within the world coordinate area. You can
magnify a small section of a picture by keeping the viewport
large and resetting the window to surround only the portion
of the picture that is to be enlarged. When the window and
viewport are the same shape, the picture is viewed as it
appears conceptually in the world coordinate area. When
the window and viewport have dissimilar aspect ratios, the
viewed picture is an oblique version of the original.

Figure 4-4 Window to Viewport Transformation

SetWindow Space !
coordinates used are I
Set User Coor din ates
(less than 100 by
1 00 units) -- /'1°d ' 7,

,/ '
/ I I

' ' '

/World Coordinate
/ System

(100 by 100 units)

H ~~--+-/, , /;'

: I OA-l---f---r-1L __ ___,

;

ex" i . _____ ~_11,•/-•!---s et View port Sp ace c -----' coordinates used

1182706

I< >I
Maximum Viewport

(1.0 units)

ore N DC units
(0 to 1.0 units)

4-14 Concepts

The maximum viewport is the entire screen area. However,
the viewport can be set and reset to define any rectangular
portion of the screen where a picture can be displayed.
Ordinarily, part of the screen area is reserved for messages
and forms (depending on the application task). Therefore,
the viewport is usually smaller than the area of the entire
screen.

A window cannot be larger than the portion of the world ·
coordinate area that corresponds to the aspect ratio of the
display screen. (See Appendix D.) You can set and reset the
window to define different portions of the entire world
coordinate area. To define the lower left quadrant of a B 27
display area as a window, for example, use the boundaries
(0,0) to (50,33.33). You will be able to see only the
coordinates outlined by the boundaries of the window,
regardless of the objects that have been mapped to
positions in the world coordinate area. All of the coordinate
positions outside the window will be clipped.

Section 5 5-1

Standards and Conventions

Numbers
Numbers are decimal except when suffixed with h for
hexadecimal orb for binary. For example, 10h = 0001 OOOOb
= 16, and OFFh = 1111 1111b = 255.

Memory Address
Memory address refers to the logical memory address.

Variable Names
Variables are named according to their characteristics.
Parameters used in procedure definitions, fields of request
blocks, and other data structures are named according to
this convention.

A variable name is composed of up to three parts: a prefix,
a root, and a suffix.

Prefixes

The prefix identifies the data type of the variable. Common
prefixes include the following:

b Byte (8-bit character or unsigned number)

c Count (unsigned number)

f Flag (TRUE= OFFh or FALSE = O)

Index (unsigned integer)

n Number (unsigned number) (same as c)

o Offset from the segment base address (16 bits)

p Logical memory address (pointer) (32 bits
consisting of the offset and the segment base
address)

q Quad (32-bit unsigned integer)

Four-byte short real number, 8087 (IEEE) format.

rg Array
1182706

5-2 Standards and Conventions

s Size in bytes (unsigned number)

sb Array of bytes where first byte is the size

w Word (16-bit)

Prefixes can be compounded. Common compound prefixes
are:

eb Count of bytes (the number of bytes in a string
of bytes)

pb Pointer to (logical memory address of) a string
of bytes

rgb Array of bytes

Roots

The root of a variable name can be unique to that variable,
selected from the following list, or it can be a compound of
the two. Common roots include:

deb Device Control Block

ere Status (error) Code

exeh Exchange

feb File Control Block

th File Handle

lfa Logical File Address

ph Partition Handle

qeh Queue Entry Handle

Standards and Conventions 5-3

rq Request Block

ucb User Control Block

Suffixes

The suffix identifies the use of the variable. Suffixes are:

Last The largest allowable index of an array.

Max The maximum length of an array or buffer (thus
one greater than the largest allowable index).

Ret Identifies a variable whose value is to be set by
the called process or procedure rather than
specified by the calling process.

Examples of Variable Names

cbFileSpec The count of bytes of a file specification.

ercRet The status code to be returned to the calling
process.

pbFilespec The memory address of a string of bytes
containing a file specification.

pDataRet The memory address of an area into which data
is to be returned to the calling process.

ppDataRet The memory address of a 4-byte memory area
into which the memory address of a data item is
to be returned to the calling process.

pRq The memory address of a request block.

psDataret The memory address of 2-byte memory area
into which the size of a data item is to be returned.

sData The size (in bytes) of a data area.

sDataMax The maximum size (in bytes) of a data area.

ssDataRet The size of the area into which the size of a data
item is to be returned.

1182706

Section 6 6-1

Memory Access
The memory access routine provides a way for applications
to make direct calls to the graphics memory board
regardless of the type of BUS the hardware uses (i.e., FBUS,
XBUS, MultiBus).

The one memory access routine is MapGraphicsWindow.

MapGraphicsWindow

MapGraphicsWindow.Obj may be linked with an application
in order to provide the application with CPU addressing to
the graphics memory board. MapGraphicsWindow.Obj is
located in the <SYS> directory on the volume on which you
initially installed the software.

Procedural Interface

MapGraphicsWindow(ppGraphicsBoardRet): Ere Type

pGraphicsBoard points to a doubleword that contains
the start address of the window of the
graphics memory.

ppGraphicsBoardRet is the memory address of a double
word where the start address of the
window of the graphics memory is
returned.

1182706

Section 7

Graphics Manager Requests
The Graphics Manager service requests are grouped by
function into the following five categories.

1 Control Procedures

ClearScreen
lnitAdditionalGraphicsScreen
lnitScreenGraphics
ReturnGraphicsScreen
SetCommandScreen
SetVisibleScreen
TurnOffGraph ics
T urnOffGraphicsColor
T urnOnGraphics
T urnOnGraphicsColor

2 Vector and Arc Manipulation Procedures

ClearScreenRectangle
ClearPixelScreenRectangle
DrawScreenArc
DrawScreenline
DrawPixelScreenline
FillScreenRectangle
FillPixelScreenRectangle
GetDraw A ttrlnfo
GetRasterlnfo
GetVDIViewport
LoadSoftPattern
ReadPixelColor
SetDrawDestinationPlane
SetMonoOrColorDrawMode
SetScreenColor
SetScreenDrawingMode
SetScreenline Type

3 Color Procedures

Load Color
LoadColorMapper
SetColorMapper

1182706

7-1

7-2

4 Raster Procedures

DoRasterOp
DoRasterOp Text
OuerylastRasterT ext
SetRasterClipping
SetRasterDestination
SetRasterDestinationPlane
SetRasterFont
SetRasterPattern
SetRasterSource
SetRasterSourcePlane
SetRasterTextMode

5 Buffering Procedures

DrawScreenBuffer

Control Procedures

Graphics Manager Requests

Control procedures handle the screen display control
functions. Two such functions are setting the visible screen
and the command screen. These procedures initialize
graphics pages and return them when completed. A
graphics page is the memory that contains the bitmap for
the graphics screen (See Glossary). Control procedures are
also used to display the visible screen and to clear the video
display screen.

Multiple Graphics Pages

Both the 8 27 and the 8 22 have two graphics pages. In the
8 27, each graphics page can be independently allocated.
Two different applications running concurrently in a
multi-partition environment can each control a graphics
page. A single application can also control both graphics
pages. Only one graphics page, in either case, can be
mapped to the screen. The graphics page that controls the
screen is the foreground page and the other graphics page
is the background page. To allocate a second graphics
page, use the function lnitAdditionalGraphicsScreen and
return the graphics page by using the function
ReturnGraphicsScreen.

The B 22 allocates both graphics pages together. Only one
application, therefore, can use both graphics pages at a
time. lnitScreenGraphics initializes both graphics pages.

Graphics Manager Requests 7-3

Graphics pages should be returned to the system when an
application is finished with them. Use ReturnGraphicsScreen
to return each page independently within an application.

When a task terminates, any graphics pages allocated to
the task are reclaimed by the system.

On the B 27, pages are allocated in sequential order (0, 1)
but may be returned in any order. The current command
screen is the page returned. When a page is returned, any
pages with higher index will have its index decremented,
and if the visible screen points to it, the pointer will be
changed to reflect the new ordering. If the current visible
screen is the current command screen, the visible screen
will be set to screen zero, and the display will be blanked
until you perform a TurnOnGraphics. If both pages are
returned, then the application ceases to be a graphics task
and another lnitScreenGraphics must be called to allow work
to continue. Page zero will become the new command screen.

There are ten control procedures:

o ClearScreen

o lnitAdditionalGraphicsScreen

o lnitScreenGraphics

o ReturnGraphicsScreen

o SetCommandScreen

o SetVisibleScreen

o TurnOffGraphics

o TurnOffGraphicsColor

o TurnOnGraphics

o TurnOnGraphicsColor

7-4 Graphics Manager Requests

ClearScreen

ClearScreen clears the current command screen to the
background color.

Procedural Interface

ClearScreen: ErcType

Ere Type:

No Error 0:
7601: Graphics not initialized

Request Block

Offset

0
1
2
3
4
6
8
10

Field

sCntlnfo
RtCode

·nReqPbCb
nRespPbCb
userNurn
exchResp
ercRet
rqCode

Size
(bytes)

1
1
1
1
2
2
2
2

Contents

0
0
0
0

OC075h

Graphics Manager Requests 7-5

lnitAdditionalGraphicsScreen
lnitAdditionalGraphicsScreen first tests if a graphics screen
is available. If the screen is available, it is allocated to the
requesting process, clears the display memory to the back
ground color, and sets the command screen to this memory
page. If both graphics pages are currently allocated, it will
return an error.

Pages are allocated in sequential order, i.e.,
lnitScreenGraphics allocates page zero, and the first call to
lnitAdditionalGraphicsScreen allocates page one.

Procedural Interface

lnitAdditionalGraphicsScreen: Ere Type

Ere Type:

0:
7607:
7601:
7802:

No Error
No Graphics Screens Left
Graphics Not Initialized
Function Not Available

Request Block

Size
Offset Field (bytes)

0 sCntlnfo l
l RtCode 1
2 nReqPbCb 1
3 nRespPbCb 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2

1182706

Contents

0
0
0
0

OC071h

7-6 Graphics Manager Requests

lnitScreenGraphics

lnitScreenGraphics clears the entire display memory to the
background color and resets the default values. If a page of
graphics has not already been allocated to this task,
lnitScreenGraphics allocates a page of graphics or returns an
error indicating there are no pages left.

Procedural Interface

lnitScreenGraphics: ErcType

Ere Type:

0:
7607:

No Error
No Graphics Screens left

Request Block
Size

Offset Field (bytes)

0 sCntlnfo 1
1 RtCode 1
2 nReqPbCb 1
3 nRespPbCb 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2

Contents

0
0
0
0

OC070h

Graphics Manager Requests 7-7

ReturnGraphicsScreen

ReturnGraphicsScreen returns the current command screen
to the Graphics Manager. If this screen was the only screen
allocated to the requesting task, graphics is deinitialized for
the task (i.e., an lnitScreenGraphics must be issued before
any other Graphics Manager call is made) and the graphics
display is turned off. Any page with index greater than the
index of the command screen will have its index
decremented. If the visible screen points to one of these
screens, its index will also be decremented.

Procedural Interface

ReturnGraphicsScreen: ErcType

Ere Type

0: No Error
7601 : Graphics Not Initialized
7802: Function Not Available on this workstation.

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode

1t82706

Size
(bytes)

1
1
1
1
2
2
2
2

Contents

0
0
0
0

OC072h

7-8 Graphics Manager Requests

SetCommandScreen
SetCommandScreen is used only in the graphics workstation
applications which allocate more than one graphics page. It
specifies which screen is to be the current command screen.
Subsequent operations, such as drawing commands, that
affect the display memory will use the screen specified.

Acceptable values for B 22 and B 27 workstations are 0 i'lnd 1.

Procedural Interface

SetCommandScreen (iCommandScreen): ErcType

iCommandScreen: Specifies which of the graphics pages is
to be used for the command screen.

Ere Type:

0:
7601:
7802:
7800:

No Error
Graphics Not Initialized
Function Not Available on this workstation.
Invalid Command Screen Number

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
B ercRet
10 rqCode
12 iCommandScreen

Size
(bytes)

1
1
1
1
2
2
2
2
2

Contents

2
0
0
0

OC076h

Graphics Manager Requests 7-9

SetVisibleScreen

SetVisibleScreen is used only in graphics workstation appli
cations that allocate more than one graphics page. It speci
fies which screen is to be the current visible screen. The
visible screen is the one that can be displayed by TurnOn
Graphics. The visible screen and the command screen are
independent of each other. One screen may be both the
visible and command screen simultaneously, depending on
the subsequent functions to be performed.

Acceptable values for B 22 and B 27 workstations are 0 and 1.

Procedural Interface

SetVisibleScreen (iVisib/eScreen): Ere Type

iVisibleScreen: Specifies which of the graphics pages is to
be used for the visible screen.

Ere Type:

0:
7601:
7802:
7801:

No Error
Graphics Not Initialized
Function Not Available on this workstation.
Invalid Visible Screen Number

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 iVisibleScreen

1182706

Size
(bytes)

1
1
1
1
2
2
2
2
2

Contents

2
0
0
0

OC077h

7-10 Graphics Manager Requests

TurnOffGraphics
TurnOffGraphics turns off the video display screen. Unlike
ClearScreen, it does not erase the visible screen from the
display memory.

Procedural Interface

TurnOffGraphics: Ere Type

Ere Type:

0: No Error
7601: Graphics Not lnitalized

Request Block

Size
Offset Field (bytes) Contents

0 sCntlnfo 1 0
1 RtCode 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 OC078h

Graphics Manager Requests 7-11

TumOffGraphicsColor

No action on monochrome system. Causes color system to
draw monochromatically. Reverses the effect of
TurnOnGraphicsColor.

Procedural Interface

TurnOffGraphicsColor:Erc Type

Ere Type:

No Error 0
7601 Graphics Not Initialized

Request Block

Offset

0
1
2
3
4
6
8
10

1182706

Field

sCntlnfo
RtCode
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode

Size
(bytes)

1
1
1
1
2
2
2
2

Contents

0
0
0
0

OC079h

7-12 Graphics Manager Requests

TurnOnGraphics

TurnOnGraphics displays the screen that has been set as
the visible screen. Reverses the effect of TurnOffGraphics.

Procedural Interface

TurnOnGraphics: Ere Type

Ere Type:

0:
7601:

No Error
Graphics Not Initialized

Request Block
Size

Offset Field (bytes)

0 sCntlnfo 1
1 RtCode 1
2 nReqPbCb 1
3 nRespPbCb 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2

Contents

0
0
0
0

OC07Ah

Graphics Manager Requests 7-13

TurnOnGraphicsColor

Has no effect on monochrome workstations. Reverses the
effect of TurnOffGraphicsColor.

Procedural Interface

TurnOnGraphicsColor:Erc Type

Ere Type:

No Error 0:
7601: Graphics Not Initialized

Request Block

Offset

0
1
2
3
4
6
8
10

1182706

Field

sCntlnfo
RtCode
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode

Size
(bytes)

1
1
1
1
2
2
2
2

Contents

0
0
0
0

OC07Bh

7-14 Graphics Manager Requests

Vector and Arc Manipulation Procedures
These procedures are used to draw vectors and arcs on the
current screen. Rectangular areas can also be filled and
cleared. The line types and drawing modes used in the high
level procedures can also be specified in the Graphics
Manager procedures. In addition, there is a procedure to
load a user-defined halftone pattern as an alternative line
type. .

For detailed information about line type and drawing mode
options, refer to the "Drawing Attributes" subsection.

Vectors and arcs are plotted by calculating a line between
the specified endpoints. The legal limits for drawing are
given in Appendix C.

There are seventeen vector and arc manipulation
procedures:

a ClearScreenRectangle

a ClearPixelScreenRectangle

a DrawScreenArc

a DrawScreenline

a DrawPixelScreenline

a FillScreenRectangle

a FillPixelScreenRectangle

a GetDraw A ttrlnfo

a GetRasterlnfo

a GetVDIViewpoint

a LoadSoftPattern

a ReadPixelColor

a SetDrawDestinationPlane

a SetMonoOrColorDrawMode

a SetScreenColor

a SetScreenDrawingMode

a SetScreenline Type

Graphics Manager Requests 7-15

ClearScreenRectangle

ClearScreenRectangle clears a rectangular area on the
current command screen. The coordinates for the lower left
corner of the rectangle are entered as 16-bit words using
virtual coordinates. The height and width of the rectangle
are also entered as words in relation to the virtual coordinate
system.

Procedural Interface

ClearScreenRectangle (wXStart, wYStart, wWidth, wHeight):
Ere Type

wXStart,
wYStart:

wWidth:

wHeight:

Ere Type:

0:
7601:
7810:

Specify the lower left corner of the rectangular
area.

Specifies the width of the rectangle.

Specifies the height of the rectangle

No Error
Graphics Not Initialized
Invalid Clear Parameters

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 wXStart
14 wYStart
16 wWidth
18 wHeight

1182706-001

Size
(bytes)

1
1
1
1
2
2
2
2
2
2
2
2

Contents

8
0
0
0

OC07Fh

I

7-16 Graphics Manager Requests

ClearPixelScreenRectangle

ClearPixelScreenRectangle clears a rectangular area on the
current command screen. The coordinates for the lower left
corner of the rectangle are entered as 1 6-bit words using
real (physical) coordinates. The height and width of the
rectangle are also entered as words in relation to the
coordinate system.

Procedural Interface I ClearPixelScreenRectangle (wXStart, wYStart, wWidth, wHeight):
Ere Type

wXStart, Specify the lower left corner of the rectangular
wYStart: area.

wWidth:

wHeight:

0:
7601:
7810:

Specifies the width of the rectangle.

Specifies the height of the rectangle

No Error
Graphics Not Initialized
Invalid Clear Parameters

Request Block

Offset Field

0 sCntlnfo
1 Rt Code
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 wXStart
14 wYStart
16 wWidth
18 wHeight

Size
(bytes)

1
1
1
1
2
2
2
2
2
2
2
2

Contents

8
0
0
0

OC09Eh

Graphics Manager Requests 7-17

DrawScreenArc

DrawScreenArc draws an arc on the current screen. Param
eters specify the start of curvature, the drawing direction,
the radius, and the sines for the endpoints.

Figure 7-1 illustrates the values that are used for the param
eters in DrawScreenArc.

The coordinate position for the start of the arc is given in
current virtual coordinates.

The maximum size arc that can be drawn by this operation
is an octant of a circle. To draw a longer arc, DrawScreenArc
must be called again until the intended size is reached.
Figure 7-2 illustrates the drawing directions.

On a 8 26, and 8 27 /8 28, DrawScreenArc draws arcs using
actual pixel coordinates rather than the adjusted screen
coordinates. For this reason, arcs are stretched vertically
because there are more pixels per inch horizontally than
vertically.

Procedural Interface

DrawScreenArc(wX, wY, wDir, wD, wD2, wDC, wDM):

Ere Type

wX,wY:

wDir:

wD:

wD2:

wDC:

wDM:

Ere Type:

0:
7601:
7811:

1182706

Specifies the coordinate position for the start of
the arc.

Specifies the drawing direction

Specifies the (radius-1), in bits

Specifies 2*(radius-1), in bits

Specifies radius * sin (phi), rounded up, where
phi = the angle between the axis and the far
end of the arc.
wDC< = (radius/sqrt(2)) 0 < phi < (pi/4)

Specifies radius * sin (theta), rounded down,
where theta = the angle between the axis and
the start of the arc. O<=wDM<=wDC 0 <theta
< (pi/4)

No Error
Graphics Not Initialized
Arc Parameters Invalid

7-18 Graphics Manager Requests

Figure 7-1 Determining Arc Length

DC

Figure 7-2 Drawing Directions (Angles in Radians)

•12

3o/4 •14

4

'*' o.

0 g 1

0
5•14

$
7o/4

:i.12

Request Block
Size

Offset Field (bytes) Contents

0 sCntlnfo 1 14
l RtCode 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 OC080h
12 wX 2
14 wY 2
16 wDir 2
18 wD 2
20 w02 2
22 woe 2
24 wDM 2

Graphics Manager Requests 7-19

DrawScreenline
DrawScreenline draws a vector on the current screen. The
coordinates entered as parameters are used for the
endpoints. The vector bits are calculated according to the
current line type.

Parameters are in virtual coordinates.

Procedural Interface

DrawScreenLine(wX7, wY1, wX2, wY2): ErcType

wX1,wY1: Specify the coordinate position of the beginning
of the vector

wX2,wY2:

Ere Type:

0:
7601:
7812:

Specify the coordinate position of the end of the
vector

No Error
Graphics Not Initialized
Invalid Line Parameters

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 wX1
14 wY1
16 wX2
18 wY2

1182706

Size
(bytes)

1
1
1
1
2
2
2
2
2
2
2
2

Contents

8
0
0
0

OC081h

7-20 Graphics Manager Requests

DrawPixelScreenline

DrawPixelScreenline draws a vector on the current screen.
The coordinates entered as parameters are used for the
endpoints. The vector bits are calculated according to the
current line type.

Parameters are in real (physical) coordinates.

Procedural Interface

DrawPixelScreenline(wX1, wY1, wX2, wY2): Ere Type
wX1, wY1: Specify the coordinate position of the beginning

of the vector
wX2, wY2: Specify the coordinate position of the end of

the vector

Ere Type:

0:
7601:
7812:

No Error
Graphics Not Initialized
Invalid Line Parameters

Request Block

Offset

0
1
2
3
4
6
8
10
12
14
16
18

Field

sCntlnfo
Rt Code
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode
wX1
wYl
wX2
wY2

Size
(bytes)

1
1
1
1
2
2
2
2
2
2
2
2

Contents

8
0
0
0

OC09Fh

Graphics Manager Requests 7-21

FillScreenRectangle

FillScreenRectangle fills a rectangle in the current command
screen with a pattern. The values for the coordinates that
define the rectangle are entered in virtual coordinates. The
pattern is also specified as a parameter. (See Appendix B
for an illustration of the fill patterns.)

For 8 22 workstations, you cannot clear a rectangle by
calling fill type '1' (clear pattern). You must use
ClearScreenRectangle instead.

Procedural Interface

FillScreenRectangle(wXT, wY1, wX2, wY2, wFil/type):
Ere Type

wX1,wY1: Specify the lower left corner of the rectangle

wX2,wY2: Specify the upper right corner of the rectangle

wfi//Type: Specifies the pattern that is to be used to fill the
rectangle.
0-5 = the fill patterns

Appendix 8 illustrates the various fill patterns available.

Ere Type:

0: No Error
7601: Graphics Not Initialized
7813: Invalid Fill Parameters

Request Block

Offset

0
1
2
3
4
6
8
10
12
14
16
18
20

1182706

field

sCntlnfo
RtCode
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode
wXl
wY1
wX2
wY2
wfillType

Size
(bytes)

1
1
1
1
2
2
2
2
2
2
2
2
2

Contents

10
0
0
0

OC082h

7-22 Graphics Manager Requests

FillPixelScreenRectangle

FillPixelScreenRectangle fills a rectangle in the current
command screen with a pattern. The values for the
coordinates that define the rectangle are entered in virtual
coordinates. The pattern is also specified as a parameter.
(See Appendix B for an illustration of the fill patterns.)

For B 22 workstations, you cannot clear a rectangle by
calling fill type · 1 · (clear pattern). You must use
ClearPixelScreenRectangle instead.

Procedural Interface

FillPixelScreenRectangle(wX1, wY1, wX2, wY2, wFilltype):
Ere Type

wX1,wY1:
wX2,wY2:
wFil/Type:

Specify the lower left corner of the rectangle
Specify the upper right corner of the rectangle
Specifies the pattern that is to be used to fill
the rectangle.
O?n5 = the fill patterns

Appendix B illustrates the various fill patterns available.

Ere Type:

0:
7601:
7813:

No Error
Graphics Not Initialized
Invalid Fill Parameters

Request Block
Size

Offset Field (bytes)

0 sCntlnfo 1
1 Rt Code 1
2 nReqPbCb 1
3 nRespPbCb 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2
12 wXl 2
14 wYl 2
16 wX2 2
18 wY2 2
20 wFillType 2

Contents

10
0
0
0

OCOAOh

Graphics Manager Requests

GetDrawAttrlnfo

GetDrawAttrlnfo returns the current color, line type and
drawing mode from the Graphics Control Block.

Procedural Interface

GetDrawAttrlnfo(pGCBAttr): Ere Type

7-23

pGCBAttr: Points to the memory address where the
drawing information is to be returned in the
following format:

bColor:

blineType:

Specifies the current color(1 byte)

bDrawingMode:

Specifies the current line type(1 byte)

Specifies the current drawing mode(1 byte)

Ere Type:

0:
7601:

No Error
Graphics Not Initialized

Request Block

Size
Offset Field (bytes)

0 sCntlnfo 1
1 RtCode 1
2 nReqPbCb 1
3 nRespPbCb 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2
12 reserved 6
18 pbGCBAttr 4
22 cbGCBAttr 2

1182706-001

Contents

6
0
0
1

OC088h

3

7-24 Graphics Manager Requests

GetRasterlnfo

GetRasterlnfo returns information about the raster of the
workstation. The length of the returned raster information
depends on the number (and types) of bitmap planes per
graphics page the system uses. The length of the return
raster information is 24 bytes, which will provide up to
three memory planes. If you need additional hardware
information, use the BTOS call QueryVidHdwr.

/IJote: Because all machines have different virtual pixel
resolutions, make your programs as device-independent as
possible; use GetRasterlnfo to determine virtual and physical
pixel resolutions.

See Appendix C, "Graphics Manager Virtual and Physical Pixel
Resolution,,, for information on each workstation's physical
resolutions.

Procedural Interface

GetRasterlnfo (pbRasterlnfo): ErcType

I pbRasterlnfo:

cntPlanes

wBytesPerline

wWidth

wHeight

wVirtualWidth

wVirtualHeight

pPlanei

ErcType:

Points to the memory address where
the raster information is to be returned
in the following format:

(2 bytes) number of memory planes for
this graphics system

(2 bytes) the number of bytes of data
per physical raster line

(2 bytes) the number of pixels across
the bitmap horizontally (in current 80-
or 132- mode)

(2 bytes) the number of pixels across
the bitmap vertically (in current 80- or
132- mode)

(2 Bytes) screen width in virtual pixels
(current 80- or 132- mode)

(2 Bytes) screen height in virtual pixels
(current 80- or 132- mode)

(4 bytes) pointer to plane i of the
bitmap (there are cntPlanes pointers
returned by this call)

0: No Error

Graphics Manager Requests 7-25

Request Block

Size
Offset Field (bytes) Contents

0 sCntlnfo 1 6
1 RtCode 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 OC08Ch
12 reserved 6
18 pbRasterlnfo 4
22 cbRasterlnfo 2 24

1182706-001

7-26 Graphics Manager Requests

GetVDIViewport

GetVDIViewport returns the x and y size in terms of the real
coordinate system where 1 equates to 32767.

Procedural Interface

GetVDIViewport (pXSize,p YSize): Ere Type

pXSize

pYSize

ErcType:
0:
7601:

Points to the memory address where the X size
is to be returned. The X size is always 32767 (1).

Points to the memory address where the Y size
is to be returned. The Y size is a fraction of the
X size determined by the real coordinate
system.

No Error
Graphics not initialized

Request Block

Offset Field

0 sCntlnfo
1 Rt Code
2 nReqPbCb
3 nRespPbCb
4 userNum
6 ex ch Resp
8 ercRet
10 rqCode
12 reserved
18 pXSize
24 pYSize

Size
(bytes)

1
1
1
1
2
2
2
2
6
4
4

Contents

2
0
0
0

OCOAlh

Graphics Manager Requests 7-27

LoadSoftPattern
LoadSoftPattern provides for the use of user-defined line
types. This procedure defines one single line type. Besides
a parameter to identify the line type, there is a word to hold
the 16-bit value itself. To use a line type that has been
defined with this procedure, the value for the line type
parameter in SetScreenlineType must be within the range
of 8 to 15. The parameter value minus the high-order '8' bit
is the index to the soft pattern.

On B 22 workstations, the only acceptable values are 0 to
15.

Procedural Interface

LoadSoftPattern (iPattern, wPattern): £retype

iPattern:

wPattern:

Ere Type:

0:
7601:
7814:

Specifies the line type. The acceptable values
are Oto 7

Specifies the 16-bit pattern

No Error
Graphics Not Initialized issued first
Invalid Pattern Index

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 iPattern
14 wPattern

1182706

Size
(bytes)

1
1
1
1
2
2
2
2
2
2

Contents

4
0
0
0

OC083h

7-28 Graphics Manager Requests

Specifying wPattern in LoadSoftPattern

Example

Ere = LoadSoftPattern (0, OEAEAh);

0 is the pattern number

OEAEAh is the pattern

The pattern (OEAEAh) is composed as follows:

Load position 15 14 13 12 11 10 9 8 7 6 5
Set(l)/Reset(O) 1 1 0 1 0 1 0 1 1 1

E A E

This pattern is shown in Figure 7-3.

Figure 7-3 Sample Pattern

• •

4 3 2 0
0 0 1 0

A

• •

Graphics Manager Requests 7-29

ReadPixelColor

Returns the color of a pixel or the current command screen.
On a monochrome system, the result will be either 0 (off) or
1 (on). B 26, and B 27 /B 28 use virtual coordinates for the
(x, y) point.

Procedural Interface

ReadPixelColor (wX, wY, pbColor):ErcType

wX,wY:
pbColor

Ere Type:

0:
7601:
7802:
7815:

Specify the pixel in virtual coordinates.
The address of a byte to return the color of the
specified pixel. If the pixel is out of range, the
result is undefined.

No Error
Graphics Not Initialized
Function Not Available on B 21
Invalid Pixel Address

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 wX
14 wY
16 reserved
18 pbColor
22 ch Color

1182706

Size
(bytes)

1
1
1
1
2
2
2
2
2
2
2
4
2

Contents

6
0
0
1

OC084h

7-30 Graphics Manager Requests

SetDrawDestinationPlane

SetDrawDestinationPlane selects the drawing planes. If the
parameter passed is an 8, then fMonoMode drawing occurs
as in normal operations. If the parameter is 1, 2, or 4 then
the plane selected is 0, 1, or 2 respectively. Subsequent
drawing only occurs on the selected plane.

This call does not affect monoplane machines (for example,
B 22, B 27 mono).

Procedural Interface

SetDrawDestinationPlane(wDestMask): Ere Type

wDestMask: Specifies the plane to be selected for
subsequent drawing commands.

Ere Type:

0:
7601:
7646:

No Error
Graphics Not Initialized
Bad Parameters

Request Block

Size
Offset Field (bytes)

0 sCntlnfo 1
1 Rt Code 1
2 nReqPbCb 1
3 nRespPbCb 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2
12 wDestMask 2

Contents

2
0
0
0

OCOA2h

Graphics Manager Requests 7-31

SetMonoOrColorDrawMode

SetMonoOrColorDrawMode selects drawing in ·mono' mode
or color mode by calling SetDrawDestinationPlane with
either 1 (for mono) and 8 (for color). Drawing in 'mono'
mode means drawing occurs only on plane 0, and drawing
in color mode means drawing occurs on all three planes.

This call does not affect monoplane machines (for example,
B 22, B 27 mono).

Procedural Interface

SetMonoOrColorDrawMode(fMono): Ere Type

!Mono:

Ere Type:

0:
7601:

Specifies whether to draw on one or three
planes. If fMono is False, then one plane;
otherwise, all three planes.

No Error
Graphics Not Initialized

Request Block

Offset Field

0 sCntlnfo
1 Rt Code
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 fMono

1182706

Size
(bytes)

1
1
1
1
2
2
2
2
2

Contents

2

0
0

OCOA3h

7-32 Graphics Manager Requests

SetScreenColor
SetScreenColor sets the foreground drawing color for vector,
rectangle, arc, and fill commands. The default screen draw
ing color is color 1. For a monochrome system, the only
acceptable values are 0 and 1.

Procedural Interface

. SetScreenColor(iScreenColor): Ere Type

iScreenColor: Specifies the color to be used in subse
quent commands, in the range 0 to n,
where n is the number of colors (gray
levels) this hardware supports. For
monochrome systems, there are only two
gray levels available, 0 or 1.

Ere Type:

O:
7601:
7816:

No Error
Graphics Not Initialized
Invalid Screen Color

Request Block

Offset

0
1
2
3
4
6
8
10
12

Field

sCntlnfo
RtCode
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode
iScreenColor

Size
(bytes)

1
1
1
1
2
2
2
2
2

Contents

2
0
0
0

OC085h

Graphics Manager Requests 7-33

SetScreenDrawingMode

SetScreenDrawingMode specifies the drawing mode that
will be used in subsequent vector and arc drawing oper
ations. There are four modes: set mode, clear mode,
complement mode, and replace mode. Refer to Section 4
for detailed information about drawing modes.

Procedural Interface

SetScreenDrawingMode(iDrawingMode): Ere Type

iDrawingMode: Specifies the drawing mode to be set.

O =set

Ere Type:

0:
7601:
7817:

No Error

1 = clear
2 = complement
3 = replace

Graphics Not Initialized
Invalid Drawing Mode

Request Block

Size
Offset Field (bytes)

0 sCntlnfo 1
1 RtCode 1
2 nReqPbCb 1
3 nRespPbCb 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2
12 iDrawingMode 2

1182706

Contents

2
0
0
0

OC016h

7-34 Graphics Manager Requests

SetScreenlineType
SetScreenLineType specifies the dot pattern to be used for
the line when vectors are drawn. There are eight line types.
A solid line is the default, and there are other combinations
of dots and dashes. This procedure may also be used in
conjunction with LoadSoftPattern to specify a user-defined
line type. Refer to the subsection "Drawing Attributes" for
detailed information about line types.

Procedural Interface

SetScreenlineType(iline Type): Ere Type

ilineType:

Ere Type:

0:
7601:
7818:

Specifies the line type
0 to 7 = the standard line types (see Figure 4-1)
8 to 15 = user defined line types (see
LoadSoftPattern)

No Error
Graphics Not Initialized
Invalid Line Type

Request Block

Offset Field

0 sCntlnfo
1 RtCode
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 ilineType

Size
(bytes)

1
1
1
1
2
2
2
2
2

Contents

2
0
0
0

OC087h

Graphics Manager Requests 7-35

Color Procedures
Color procedures are available only on the B 21 and B 25
Color Graphics workstations. The colors that appear on the
video displays for these workstations are defined by how
much red, green, and blue they contain. There are 64
different combinations of these primary colors, and any
eight of these 64 possibilities can be displayed on the screen
at one time.

An 8-byte memory workarea is used to specify the eight
colors and load the color mapper (on the B 21 graphics
control board or the B 25 graphics controller module). The
set of eight colors used by the graphics software is called
the color palette.

Each byte in the color palette specifies one color. The low
order six bits of each byte are used as 2-bit color settings
for red, green and blue, respectively. Each 2-bit entry defines
the intensity of the primary color it represents. The compo
sition of the color is derived from three 2-bit settings
combined together. The bit settings correspond to color
intensity as follows:

00 = none of this color is present
01 = a low intensity of this color is present
10 = a medium intensity of this color is present
11 = a high intensity of this color is present

Table 7-1 shows the position of the 2-bit color setting
within the color byte. It also lists the values for the default
color palette provided by the Graphics Library software.
Each byte is listed by its number, bit settings, hexadecimal
notation and color. The colors in the default palette are
composed of combinations of various intensities red, green,
and blue.

1182706-001

7-36 Graphics Manager Requests

Table 7-1 The Default Color Palette

Byte Bits Hex Color

1 0011 0000 30h red

2 0011 1100 3c yellow

3 0000 1100 Oc green

4 0000 0011 03h blue

5 0000 1111 Of cyan

6 0011 0011 33h magenta

7 0011 1111 3f white

8 0000 0000 OOh black

There are three color procedures:

o LoadColor

o LoadColorMapper

o SetColorMapper

Graphics Manager Requests 7-37

LoadColor
LoadColor is used to change one color in a previously
defined color palette. The position of the color byte within
the palette and the new value are specified, as well as the
color mapper where the modified palette is to be loaded.

Procedural Interface

LoadColor(1Mapper, iCo/or, bCo/or"J: ErcType

1Mapper:

iCo/or:

bColor:

Ere Type:

0:
7601:
7830:
7831:

Specifies the color mapper that is to be loaded:
0 = first mapper
1 = second mapper
Specifies which color in the palette is to be
modified. These values range from 1 through 8.
Specifies the new value of the color.

No Error.
Graphics Not Initialized.
Invalid Color Mapper.
Invalid Mapper Index.

Request Block
Size

Offset Field (bytes) Contents

0 sCntlnfo 1 6
1 RtCode 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 OC098h
12 iMapper 2
14 iColor 2
16 bColor 2

1182706

7-38 Graphics Manager Requests

loadColorMapper
LoadColorMapper specifies the address of the 8-byte
memory workarea used by the color mapper to create the
color palette. The parameter iMapper specifies which of the
color mappers on the graphics control board is to be loaded
with the 8 bytes. The eight bytes must be formatted with
the color specifications prior to calling LoadColorMapper.

Procedural Interface

LoadColorMapper(iMapper, pbColors): Ere Type

iMapper. Specifies the color mapper that is to be loaded:
0 = first mapper
1 = second mapper

pbCo/ors: Specifies the new palette to be loaded into the
specified color mapper. pbColors should contain
as many bytes as there are colors in the palette.

Ere Type:

0: No Error
7601: Graphics Not Initialized
7830: Invalid Color Mapper

Request Block

Offset

0
1
2
3
4
6
8
10
12
14
18
22

Field

sCntlnfo
RtCode
nReqPbCb
nRespPbCb
userNum
exchResp
ercRet
rqCode
iMapper
reserved
pbColors
ch Colors

Size
(bytes)

1
1
1
1
2
2
2
2
2
4
4
2

Contents

6
0
1
0

OC099h

8

Graphics Manager Requests 7-39

SetColorMapper
SetColorMapper specifies which of the color mappers on
the graphics control board is to be current. The Graphics
Library initialization procedure sets the first mapper as the
current one.

SetColorMapper can be used to switch to the other color
mapper to use another color palette for the current picture.

This routine has no effect on workstations which are either
monochrome or have only one color mapper

Procedural Interface

SetColorMapper(iMapper): Ere Type

iMapper: Specifies which color mapper is to be current:

Ere Type:

0:
7601:
7830:

O = first mapper
1 = second mapper

No Error
Graphics Not Initialized
Invalid Color Mapper

Request Block
Size

Offset Field (bytes)

0 sCntlnfo 1
1 RtCode 1
2 nReqPbCb 1
3 nRespPbCb 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2
12 iMapper 2

Color Text

Contents

2
0
0
0

OC09Ah

If you want to use color with the text attributes, refer to
PutFrameAttributes in BTOS Reference Manual Volumes 1
and 2.

1182706

7-40 Graphics Manager Requests

Raster Procedures
Bit manipulation procedures provide an alternative to vector
drawing. Rectangular areas of any size can be filled with
light, dark, or halftone patterns of bits. They can also be
copied from bitmap to bitmap or moved about within the
same bitmap. When display memory is used as the
destination bitmap, rectangles can be written, copied, and
moved around the screen very quickly to support such
functions as scrolling and animation.

Destination Rectangles
Bit manipulation procedures produce images on the screen
by modifying a rectangular area of display memory known
as the destination. A destination's contents is a function of
the following elements:

o Its previous contents

o The contents of another rectangle of equal size (the source)

o A 1 6 word area (the pattern)

The destination's bits can be combined with the bits in the
source (and/or the pattern) to produce a variety of effects.
The exact effect is determined by the source operation and
the destination operation (user-specified operations).

The source operation involves the source rectangle and the
pattern. The destination operation involves the result of the
source operation and the bits in the destination rectangle.
The result of both operations is a new set of the bits in the
destination rectangle.

As an option, the destination rectangle may be clipped to
the interior of a user-defined clipping box. When writing to
display memory, this feature could be used to restrict the
effects of raster operations to a particular portion of the screen.

Note: Raster procedures need not only be used to write to the
screen. Any area of memory may be written to (or read from)
using these procedures.

Source and Destination Bitmaps
The area from which the source rectangle is taken is the
source bitmap. The area to which the destination rectangle is
written is the destination bitmap.

Graphics Manager Requests

Raster procedures may be used to copy any rectangular
image as follows:

o From memory to screen

o From memory to memory

o From screen to memory

o From one portion of the screen to another

Note the following examples:

o The source and destination bitmaps could be the same,
and the source and destination rectangles could even
overlap.

o The source bitmap could be in main?cpu (non?display)
memory, and the destination bitmap could be in display
memory. For example, you could copy an icon from the
source bitmap (main memory) to the destination bitmap
(screen).

7-41

o The source bitmap could be in display memory, and the
destination bitmap could be in main?CPU memory. For
example, you could save a portion of the screen image for
later use.

/Vote: With respect to color systems, rectangles may be moved
from one plane of display memory to another (with restrictions
which will be noted later). The B 21 workstation is an
exception in that display memory is not accessible. Thus, raster
operations cannot be used to affect B 21 screens.

Text Manipulation

Raster text-manipulation procedures enable you to display
multiple user-defined, bit-mapped fonts. Characters within
any given font may be of any height and width. The
user-supplied font specification can be used to convert each
string of numeric character codes to its bitmap
representation.

Characters are painted in the current drawing mode: Each
character's bitmap representation is painted in its
corresponding portion of the destination bitmap. The format
in which these fonts must be created is described later.

1182706

7-42 Graphics Manager Requests

Bit-Addressable Pixel Coordinates

All raster operations use the same bit-addressable pixel
coordinate system that views the bitmap as a logical rectangle.

/Vote: Source and destination rectangles are specified in terms
of these coordinates.

Each rectangle is described in terms of the (x, y) location of
its upper left corner along with its width and height in bits.
The coordinates (0,0) map to the upper left corner of the
bitmap, while (max X, max Y) map to the lower right corner.

/Vote: Neither max X nor max Y may exceed 32767, because
the raster routines will exhibit unpredictable behavior.

x
012345 79

0 I
1 I
2 I

I
y I

I
. I

I
62 I
63 I

Bitmaps are defined by four parameters:

o Memory address

o Width

o GWS (graphics) flag

o Plane

Memory address, which must have an offset of zero, defines
the location of an area of memory that is reserved for the
bitmap.

Graphics Manager Requests

Width, which must be divisible by 2, gives the number of
bytes in one scan line of the map. Note that width of the
map is measured in pixels divided by 8.

7-43

The GWS flag has meaning only for a B 22 workstation; it
indicates whether or not the bitmap lies in graphics (GWS)
memory. This is important because on the B 22, the bitmap
addresses (used to address display memory through raster
operations) are not main-cpu addresses. Rather, they are the
addresses that the graphics-board cpu would use to address
the bitmap (see #Raster Usage Notes ff later on in this section).

A numeric value indicates the graphics plane of display
memory in which the bitmap lies:

0 Bitmap in non-display memory

1 Bitmap on first graphics plane

2 Bitmap on second graphics plane

4 Bitmap on third graphics plane

8 A plane value of 8 is a special indicator for raster text
routines. It indicates that the characters should be painted
on all planes of display memory. On the B 27 mono, B 21,
and 8 22, this plane value is ignored since planes are
meaningless on these machines.

As an example, examine a bitmap with the following
characteristics:

a Plane = 0

a On a B 22, the GWS flag = 0

a Dimensions: 80 bits wide by 64 bits high

A bitmap having the above characteristics does not lie in
display memory. Its width is 10 (80 bits divided by 8). To
determine how much memory is required to represent this
map, multiply width by height: 640 bytes. To obtain a
memory address having an offset of zero, call
AllocMemorySL. The address that it returns is
OD9A 7:0000h.

The logical view of this bitmap is presented below. Source,
destination, and clipping rectangles are specified in terms of
these coordinates.

1182706

7-44

y

0
1
2

62
63

Graphics Manager Requests

x
012345 79

While this is the view of the world that the raster routines
present, the bitmap is actually organized in memory as a
sequence of bytes using the following bit-to-coordinate
correspondence:

MSB LSB

(0,7) (0,6) (0,5) (0,4) (0,3) (0,2) (0,1) (O,O)

OD9A7:0000 l __ l __ l __ l __ l __ l __ l __ l __ I

(0,15)(0,14)(0,13)(0,12)(0,11)(0,10) (0,9) (0,8)

OD9A7 :0001 l __ l __ l __ l __ l __ l __ l __ l __ I

(0,23)(0,22)(0,21)(0,20)(0,19)(0,18)(0,17)(0,16)

OD9A7 :0002 l __ l __ l __ l __ l __ l __ l __ l __ I

(0,31)(0,30)(0,29)(0,28)(0,27)(0,26)(0,25)(0,24)

OD9A7 :0003 l __ l __ l __ l __ l __ l __ l __ l __ I

6 bytes (rest of line O)

(t,7) (1,6) (1,S) (1,4) (1,3) (1,2) (1,1) (0,0)

OD9A7 :OOOA l __ l __ l __ l __ l __ l __ l __ l __ I

The physical (as opposed to logical) layout of the bitmap
must be remembered if you wish to construct an image (for
example, an icon) in memory for later transfer to display
memory.

Caution: Raster procedures perform minimal error checking. Bad
parameters may cause fatal errors.

Graphics Manager Requests 7-45

There are eleven raster procedures, which are described in
the following pages.

o DoRasterOp

o DoRasterOp Text

o QuerylastRasterText

o SetRasterClipping

o SetRasterDestination

o SetRasterDestinationPlane

o SetRasterFont

o SetRasterPattern

o SetRasterSource

o SetRasterSourcePlane

o SetRasterTextMode

1182706

7-46 Graphics Manager Requests

DoRasterOp
DoRasterOp performs the actual manipulation of the
rectangles of bits. The parameters passed are the pixel
coordinates of the source rectangle in relation to the source
bitmap, the pixel coordinates of the destination rectangle in
relation to the destination bitmap, the height and width of
the rectangles, and indications of the source and destinati.on
operations. Other information, such as the clipping
parameters and the addresses of the bitmaps, must have
previously been recorded by SetRasterSource,
SetRasterDestination, SetRasterPattern, SetRasterClipping,
SetRasterDestinationPlane, and SetRasterSourcePlane.

If raster clipping is enabled, the destination rectangle is
clipped to the interior of the clipping box defined by a
previous call to SetRasterClipping.

On a B 22 workstation, if the pattern lies in graphics
memory, the source and destination bitmaps must also. If
this is not the case, DoRasterOp will not function correctly.
This restriction is a consequence of the fact that if all
operands are present in graphics memory, the raster
operation can be passed off to the graphics control board.
The inverse restriction also applies (i.e. if both source and
destination bitmaps lie in graphics memory, the pattern must
also).

Procedural Interface

DoRasterOp (wxSrc, wySrc, wxDst, wyDst. wdx, wdy, wopSrc,
wopDst): ErcType

wxSrc,
wySrc:

wxDst,
wyDst:

wdx, wdy:

Pixel coordinates of the upper left corner of the
source rectangle relative to the bitmap set by
SetRasterSource.

Pixel coordinates of the upper left corner of the
destination rectangle relative to the bitmap set
by SetRasterDestination.

Width and height of the destination in bits.

Graphics Manager Requests 7-47

wopSrc:

wopDst:

Ere Type:

0:
7601:

Specifies the function that is to be performed
on the source.
0 = = > source is source rectangle
1 = = > source is pattern
2 = = > source is pattern AND source rectangle
3 = = > source is pattern OR source rectangle
4 = = > source is pattern XOR source rectangle

Specifies the function that is to be performed
on the destination.
0 = = > dest <- source
1 = = > dest <- source AND dest rectangle
2 = = > dest <- source OR dest rectangle
3 = = > dest <- source XOR dest rectangle
4 = = > dest <- NOT source AND dest
rectangle

No Error
Graphics Not Initialized

Request Block
Size

Offset Field (bytes) Contents

0 sCntlnfo 1 16
1 Rt Code 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 OC08Bh
12 wxSrc 2
14 wySrc 2
16 wxDst 2
18 wyDst 2
20 wdx 2
22 wdy 2
24 wopSrc 2
26 wopDst

1182706

7-48 Graphics Manager Requests

DoRasterOp Text
DoRasterOpText converts an array of character codes to
their bitmap representations and paints them onto the
destination bitmap. This procedure uses the font supplied in
SetRasterFont. The arguments passed are: a pointer to the
list of character codes to be painted, the numbers of
characters to paint, the x and y coordinates where painting
should begin (relative to the destination bitmap), and an x
clipping limit. The bitmap representations of the characters
are then painted on the destination bitmap and plane (set by
SetRasterDestination), beginning at the point given. The
characters are painted in the current raster text mode (set
by SetRasterTextMode). If the destination plane is 8, then
the character is painted on all planes of display memory.

The x clipping limit passed in the DoRasterOpText call is
used as the right text boundary. Any character which would
cause painting to occur to the right of this limit is not displayed.

Otherwise, painting begins and continues until:

1 All characters have been painted.

2 The right x clipping limit is encountered.

When painting halts for either of the above reasons, a count
of characters successfully written is stored for possible
retrieval by QuerylastRasterText.

Note that it is the upper left corner of the first character
which is drawn at the indicated (x,y).

On the B 22, if both the font and the destination bitmap lie
in graphics memory, the painting operation will be passed to
the graphics control board. In this situation, painting will
occur in Set mode regardless of the current raster text
mode. Further, no count of characters written will be
recorded for OuerylastRasterText. Rather, the invalid value
(-1) will be recorded as an indicator that this situation has
arisen.

Graphics Manager Requests

Procedural Interface

DoRasterOpText(pbText, cbText, wXStart, wYStart, wXLim):
Ere Type;

pbText,
cbText:

Specify the memory address and length of
the array of characters to be converted.

7-49

wXStart,
wYStart:

Specify the position on the destination bitmap
where painting should begin.

wXLim:

Ere Type:

The absolute x-coordinate position where
painting must stop, even if there are more
characters to draw.

0: No Error
7601: Graphics Not Initialized

Request Block
Size

Offset Field (bytes)

0 sCntlnfo 1
1 Rt Code 1
2 nReqPbCb 1
3 nRespPbCb 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2
12 wXStart 2
14 wYStart 2
16 wXLim 2
18 pbText 4
20 ch Text 2

1182706

Contents

6
0
1
0

OC094h

7-50 Graphics Manager Requests

QuerylastRasterText
QuerylastRasterText allows a user to inquire how many
characters were painted by the last DoRasterOp Text call. If
no previous DoRasterOpText call has been made, the value
returned is unpredictable.

One argument is required, a pointer to a word where the
character count will be written.

Procedural Interface

QuerylastRasterText(pWord): Ere Type

pWord: Pointer to a word where the character count
will be written.

Ere Type:

0:
7601
zzzzz

No Error
Graphics Not Initialized

Request Block
Size

Offset Field (bytes)

0 sCntlnfo 1
1 Rt Code 1
2 nReqPbCb 1
3 nRespPbCb 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2
12 reserved 6
18 pWord 4
22 constant 2

Contents

6
0
0
1

OC093h

2

Graphics Manager Requests

SetRasterClipping
SetRasterClipping controls the clipping action taken by
DoRasterOp. Its arguments are a flag indicating whether
clipping is active and a description of a clipping box. If
clipping is in effect DoRasterOp clips all operations to the
interior of the clipping box.

7-51

Note: The edges of the clipping box are considered "interior".

Procedural Interface

SetRasterClipping(fOn, wX, wY, wDx, wDy): ErcType

fOn:

wX,wY:

Flag indicated whether raster clipping should be
performed.

The x and y coordinates of the upper left
corner of the clip box.

wDx,wDy: The width and height of the clip box.

ErcType:

0:
7601:

No Error
Graphics Not Initialized

Request Block
Size

Offset Field (bytes)

0 sCntlnfo 1
1 RtCode 1
2 nReqPbCb 1
3 nRespPbCb 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2
12 ton 2
14 wX 2
16 wY 2
18 wOx 2
20 wDy 2

1182706

Contents

10
0
0
0

OC092h

7-52 Graphics Manager Requests

SetRasterDestination
SetRasterDestination defines the location and dimension of
the destination bitmap. This procedure also defines, on a
8?22 only, whether the destination bitmap lies in GWS
(graphics) memory. Subsequent raster mode operations will
use the specified location for the destination.

This procedure requires three parameters: the bitmap
address, the width in bytes of the bitmap, and a flag
indicating whether the address is a GWS address. This flag
has meaning only on a 8-22 and is ignored on all other
machines.

The bitmap address should have a 0 as the offset portion,
or the raster routines may function improperly. Unexpected
results will occur on a 8-22 if the GWS flag is non-zero and
the bitmap address passed is in fact not GWS relative.
Similarly, the destination bitmap must be no larger than
64K, or the raster routines will not function correctly.

Procedural Interface

SetRasterDestination(pBmDest, cblineBm, fGWS): ErcType

pBmDest: Address of the destination bitmap.

cblineBm: Width of the bitmap in bytes.

fGWS: 8 22 only - flag set if destination in graphics
memory.

Ere Type:

0: No Error
7601: Graphics Not Initialized

Graphics Manager Requests 7-53

Request Block
Size

Offset Field (bytes) Contents

0 sCntlnfo 1 6
1 Rt Code 1 0
2 nReqPbCb 1 1
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 OC08Dh
12 fGWS 2
14 reserved 4
18 pBmDest 4
22 cblineBm 2

1182706

7-54 Graphics Manager Requests

SetRasterDestinationPlane
SetRasterDestinationPlane defines the plane of graphics
memory upon which the destination bitmap lies. Valid
planes values are: 0 - non-graphics memory, 1 - 1st plane,
2 - 2nd plane, 4 - 3rd plane, 8 - all planes.

A destination plane of 8 causes DoRasterOpText to paint
characters on all planes of graphics memory simultaneously.
DoRasterOp treats a desination plane of 8 as though it were
a 0.

Note that on the B 27 mono, B 21, and B 22 this call is
ignored, since planes have no meaning on these machines.

Procedural Interface

SetRasterDestinationPlane(wP/ane): Ere Type

wP!ane: Plane of graphics memory on which destination
bitmap lies.

Ere Type:

0: No Error
7601: Graphics Not Initialized
7646: Bad Parameters

Request Block
Size

Offset Field (bytes) Contents

0 sCntlnfo 1 6
1 Rt Code 1 0
2 nReqPbCb 1 0
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 OCOSEh
12 wPlane 2

Graphics Manager Requests 7-55

SetRasterfont

SetRasterFont specifies the location of the font to be used
in subsequent calls to DoRasterOpText. Two parameters are
passed, the address of the font, and a flag indicating
whether the font lies in graphics memory. This flag is
ignored on all machines except the B 22.

The address of the font should have 0 as its offset portion,
or the raster text routines may function improperly. No font
may be greater than 64K in size.

Procedural Interface

SetRasterfont(pFont, fGWS): ErcType

Pointer to the font. pFont:

fGWS: B 22 only - is font address GWS (graphics board)
relative.

Ere Type:

0: No Error
7601 : Graphics Not Initialized

Request Block
Size

Offset Field (bytes) Contents

0 sCntlnfo 1 6
1 RtCode 1 0
2 nReqPbCb 1 1
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 OC095h
12 reserved 6
18 pFont 4
22 wPlane 2 0

1182706

7-56 Graphics Manager Requests

SetRasterPattern
SetRasterPattern specifies the location of the 1 6-word
halftone pattern used by DoRasterOp, along with a flag
indicating whether the pattern resides in graphics memory.
The address of the pattern must be paragraph aligned (i.e. 0
MOD 1 6). The fGWS flag passed in the call is ignored on ail
machines except the B 22. If the fGWS flag is set on a
B 22, it is assumed that the source and destination bitmaps
also lie in GWS (graphics) memory, and all future RasterOps
will be passed off to the graphics control board to perform.
If this is in fact not the case, unexpected results will ensue.

The pattern is used to describe a pseudo-bitmap of infinite
dimension, where the row of the bitmap with y-coordinate Y
is the (Y MOD 16)th word of the pattern replicated infinitely.
The rectangle of the pseudo-bitmap which is ANDed, ORed,
etc., with the source rectangle is defined by the description
of the destination rectangle (upper left corner, dx, dy) as
applied to the pseudo-map.

For example, given the pattern below (actual representation
in memory), the corresponding logical bitmap is as shown.

Pattern at ODA7:0000h:

MSB LSB

Word at ODA7:0000 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 0
Word at ODA7:0002 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
Word at ODA7:0004 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

Word at ODA7:001 E 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Graphics Manager Requests

Corresponding logical bitmap:

x I
---- 10123456 .

y \I

0 101111100000110000111110000011000011111
1 100000001111111110000000111111111000000
2 100001111000000000000111100000000000011

I
I
I .

15 101010101010101010101010101010101010101
I
I
I

48 101111100000110000111110000011000011111
49 100000001111111110000000111111111000000
so 100001111000000000000111100000000000011

I
I
I

63 101010101010101010101010101010101010101
I
I
I

Procedural Interface

SetRasterPatternV:>RgwPat, fGWS): Ere Type

pRgwPat:

fGWS:

Ere Type:

Memory address of the pattern.

B 22 - flag set if pattern address is display
memory address.

0: No Error
7601: Graphics Not Initialized

Request Block
Size

Offset Field (bytes) Contents

0 sCntlnfo 1 6
1 Rt Code 1 0
2 nReqPbCb 1 1
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2 OC08Fh
12 reserved 6
18 pRgwPat 4
22 fGWS 2

1182706

7-57

7-58 Graphics Manager Requests

SetRasterSource
SetRasterSource defines the location and dimension of the
source bitmap. This procedure also defines. on a B 22 only,
whether the source bitmap address is a graphics board
address. Subsequent raster mode operations will use the
specified location for the source.

The procedure requires three parameters: the bitmap
address, the width in bytes of the bitmap, and a flag
indicating whether the source lies in GWS (graphics)
memory. This flag is ignored on all machines except the B 22.

The bitmap address should have 0 as its offset portion. or
the raster routines may function incorrectly. Further, the
width specified for the bitmap must be even.

Unexpected results will occur on the B 22 workstation if the
fGWS flag is set and the source bitmap address is in fact
not GWS relative.Similarly, the source bitmap must be no
larger than 64k, or the raster routines will not function correctly.

Procedural Interface

SetRasterSource(,oBmSrc, cblineBm, fGWS): ErcType
pBmSrc: Address of source bitmap.

cblineBm: Width of the bitmap in bytes.

fGWS:

Ere Type:

B 22 only - is the source bitmap address GWS
relative.

0: No Error
7601: Graphics Not Initialized

Graphics Manager Requests 7-59

Request Block
Size

Offset Field (bytes) Contents

0 sCntlnfo 1 6
1 Rt Code 1 0
2 nReqPbCb 1 1
3 nRespPbCb 1 0
4 userNum 2
6 exchResp 2
·a ercRet 2
10 rqCode 2 OC090h
12 fGWS 2
14 reserved 4
18 pBmSrc 4
22 cblineBm 2

1182706

7-60 Graphics Manager Requests

SetRasterSourcePlane
SetRasterSourcePlane defines the plane of graphics memory
on which the source bitmap lies. Valid plane values are: 0 -
non-graphics memory, 1 - 1 st plane of graphics memory, 2
- 2nd plane of graphics memory, and 4 - 3rd plane of
graphics memory.

On the B 27 mono, B 21, and B 22, this call is ignored,
since planes are meaningless on these systems.

Procedural Interface

SetRasterSourcePlane(wP/ane): Ere Type

wP/ane: Plane of graphics memory on which source
bitmap lies.

Ere Type:

0:
7601:
7646:

No Error
Graphics Not Initialized
Bad Parameters

Request Block
Size

Offset Field (bytes)

0 sCntlnfo 1
1 Rt Code 1
2 nReqPbCb 1
3 nRespPbCb 1
4 userNum 2
6 exchResp 2
8 ercRet 2
10 rqCode 2
12 wPlane 2

Contents

6
0
0
0

OC091h

Graphics Manager Requests

SetRasterTextMode

SetRasterTextMode defines the mode in which all future
raster text characters will be drawn. Valid modes are: 0 -
Set, 1 - Clear, and 2 - Complement.

7-61

In Set mode, the bitmap describing each character is ORed
with the destination bitmap. In Complement mode it is
XORed. In Clear mode the inverse of the character bitmap is
ANDed with the destination.

Procedural Interface

SetRasterTextMode(wMode): Ere Type

wMode: Mode in which future raster text will be
painted.

Ere Type:

0:
7601:
7646:

No Error
Graphics Not Initialized
Bad Parameters

Request Block
Size

Offset Field (bytes)

0 sCntlnfo 1
1 Rt Code 1
2 nReqPbCb 1
3 nRespPbCb 1
4 userNum 2
6 ex ch Resp 2
8 ercRet 2
10 rqCode 2
12 wMode 2

1182706

Contents

6
0
0
0

OC096h

7-62 Graphics Manager Requests

Raster Font Format

This section describes the raster font format and the
manner in which DoRasterOp Text uses it in detail.

The raster font format required by DoRasterOp Text contains
the following information for each character: the width of
the character in bits, the offset from the start of the font to
the character's description, and the description itself.

The description of the character begins with information
which tells how many bits to skip down and to the right
before beginning to paint the character. This allows for the
bitmap which defines the character to be left and top
justified-if the user wishes-to save space.

Following this information is the bitmap describing the
character. This format of this bitmap differs from the
"normal" bitmap format. Character bitmaps are organized as
a series of "widths," each describing a 16-bit wide slice of
the character.

Each width begins with two pieces of header information,
the number of unused bits on the right of the width, and the
height in bits of the width (cw). This RightZeros field should
be zero on all but the last width of the character, where it
should be (16 - width of char in bits MOD 16) MOD 16.
Note that this may be zero if the character is a mutliple of
16 bits wide. Any bits indicated as unused MUST be zeroed
in the bitmap.

Following this header is the bitmap describing the width.
This consists of cw words, describing the rows of the width
from the top row to the bottom.

An extra width is required at the end of the valid widths as
an end-of-character marker. This width consists of a
RightZeroBits,cw pair in which cw equals zero.

As an example, let us examine how the following character
would be represented.
zzzzz
(0,0) @@@@@@@@@@@@@@@@@@@@@@

@@@@@@@@@@@@@@@@@@@@@@

@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@

. = bit off
@=bit on

(21,5)

Graphics Manager Requests 7-63

The above character (an equals sign) is best represented as
both top and left justified as shown. We can add 7 bits on
the top and 5 on the left by using the skip information
stored in the font for the character. Thus, examined on a
word-by-word . basis the description of this character would
be as follows (all numbers hexadecimal):

0507 ;skip 5 down and 7 to right
0600 ;width is 6 bits high, 0 unused on right
FFFF
FFFF
0000 ;bitmap for this width
0000
FFFF
FFFF
0608 ;width is 6 bits high, 8 unused on right
OOFF
OOFF
0000 ;bitmap for this width
0000
OOFF
OOFF
0000 ;zero RightZeroBits,cw pair to end char

An exact enumeration of the fields of a font, their location,
and sizes follows. Fields marked "ignored" are not currently
used by the raster text painting routine.

Font Format

Header (occurs once):

Field Location Size

size WORD The total size of the font in bytes.
dyCell BYTE The height of the largest character in the

font. Ignored.
dyToBI BYTE Distance from the top of the character

bitmap cell to the baseline - dyCell minus
any descender. Ignored.

mpchrbFe (256) WORD An array that maps character codes to the
relative bytes of their font entry.

mpchdx (256) WORD An array that maps character codes to the
width (in bits) of the corresponding
character.

grpFe Font entries as described below.

1182706

7-64 Graphics Manager Requests

Font Entry (one per character in the font):

Field Location Size

dyfirst BYTE The number of raster scan lines to skip
before beginning to paint the character (the
bitmap is top-justified).

dxFirst BYTE The number of bits to skip in the x direction
before beginning to paint (the bitmap is
left-justifiild).

widths Width entries as described below.

Width entries (1 + one per 16-bit width of the character):

Field Location Size

rightZeroBits BYTE The number of unused bits on the right side
of this width (for store optimization).

cw BYTE The height (in bits) of this width of the
character.

rgwBm (cw) WORD The bitmap describing this width of the
character.

Note that a width entry in which cw equals 0 is used to
signal the end of the character.

Raster Usage Notes

This section describes on -a per-machine basis how to
obtain the parameters needed to use raster routines to
access the graphics display.

B 21 Raster operations may not be used to access display
memory.

B 22 Use address 8000:0000h to address the first page of
graphics memory, 9000:0000h to access the second page.
Do not use the address returned by GetRasterlnfo. Set
fGWS to TRUE. Each page of display memory is a bitmap
with the following format:

Graphics Manager Requests

512 lines

128 bytes
(1024 pixels)

82b/656p

510
1 ines

Visible
Display
Memory

'-----------------')- 1 !ne

18 bytes 2 bytes
(must be
zero)

2 bytes 24 bytes
(must be
zero)

The upper left corner of visible display memory lies at

7-65

(160, 1). 16 bits on both the right and left sides of the
visible portion of display memory MUST BE zero (i.e. don't
overwrite this area). The rest of the bitmap, including both
visible and nonvisible areas, may be accessed however.

One use for the nonvisible area might be to store the
pattern when both the source and destination bitmaps are in
graphics memory (as you recall, if both source and dest are
in graphics memory on the B 22, the pattern must be also).

B 26: Mono and Color Use GetRasterlnfo to obtain the pointer
to the appropriate plane. Specify the width of the bitmap as
the wBytesPerline value returned by GetRasterlnfo. fGWS is
irrelevant. Use SetRasterDestinationPlane and
SetRasterSourcePlane to select the source and destination
planes you wish.

The first 720 columns and 348 rows are visible display
memory. The last 16 rows of the bitmap are not visible,
however, and should not be accessed. Unpredictable results
will ensue if they are accessed.

1182706

7-66 Graphics Manager Requests

B 27: Mono and Color Use GetRasterlnfo to obtain the pointer
to the appropriate plane. Specify the width of the bitmap as
the wBytesPerline value returned by GetRasterlnfo. fGWS is
irrelevant. On a color system, use SetRasterSourcePlane and
SetRasterDestinationPlane to select the appropriate source
and destination planes.

In 80 column mode, the first 720 columns and 480 rows
are visible display memory. In 132 column mode, the first
792 columns and 480 rows are visible.

On the B 27, each plane of memory contains two pages of
graphics. Direct transfers between pages of memory are not
supported. The page of graphics memory which will be
affected by Raster operations is the current command page.

Buffering Procedures
The buffering procedure, DrawScreenBuffer, is designed to
enhance the speed of the Graphics Manager for those
applications requiring maximum performance levels. It
achieves this by eliminating the overhead associated with
the BTOS Request mechanism.

Normally, each call to a Graphics Manager routine generates
a BTOS Request() call (see the BTOS Operating System
manual for details on Request) to send the Manager a
request block, the contents of which the Manager uses in
determining what action needs to be performed. The
construction of this request block and its routing to and
decoding by the Manager entail a certain fixed overhead.

This overhead is usually acceptable. However, when a
program consists of many small requests to the Graphics
Manager, i.e. draw many small lines, this overhead becomes
larger as a percentage of overall processing time, and
throughput degrades somewhat.

Thus, for applications making such a sequence of requests,
along with those which require improved performance for
other reasons, a method of circumventing this overhead is
provided.

The method used is simple: instead of passing each
command via a request, a buffer of commands is passed to
the Manager. Passing this buffer requires only one Request,
as opposed to the number of commands in the buffer if
each command stored in the buffer were requested
individually.

Graphics Manager Requests 7-67

DrawScreenBuffer
DrawScreenBuffer accepts a buffer of Graphics Manager
commands, decodes the buffer, and performs the indicated
requests. By reducing to 1 the number of BTOS Request()
calls needed, this results in a faster execution time for the
sequence of commands.

The buffer format used is as follows. An individual
command is described by its request code, followed by the
arguments to the requested routine in the order they are
given in that routine's procedural interface. A buffer of
commands is simply a sequence of individual commands.

The address of this buffer is DrawScreenBuffer' s first
argument. The other two are the size of the buffer (in
bytes), and a pointer to a 4-byte error area. If an error is
detected during the execution of the commands in the
buffer, DrawScreenBuffer returns the error code from the
command which caused the error. Further, a pointer to the
part of the buffer which was being interpreted when the
error occurred is written to the error area. The word pointed
at by this pointer will be the request code of the failing
routine, unless the error is one of those internal to
DrawScreenBuffer.

The maximum size of a buffer is 64K. Further, the entire
buffer must be addressable using the segment portion of the
passed buffer address, or errors will result. A buffer address
with an offset portion of 0 is guaranteed to meet this
requirement.

/Vote: Any Graphics Manager request may be buffered
(including DrawScreenBuffer itself). The initial
lnitScreenGraphics() call, however, may not be buffered, since
the DrawScreenBuffer call will not be accepted unless graphics
is already initialized.

1182706-001

7-68 Graphics Manager Requests

Procedural Interface

I DrawScreenBuffer (pBuffer, cbBuffer,pError'J: Ere Type

pBuffer: Pointer to a buffer of commands.
cbBuffer: Size of the buffer in bytes.
pError: Pointer to 4-byte error address field.

Ere Type:

0: No Error
7601: Graphics Not Initialized
78 ·:5: Buffer Size Count Invalid
7846: Invalid Request Code in Buffer

Additionally, DrawScreenBuffer may return any of the error
codes which may be returned by any of the buffered GM
commands.

Request Block

Offset Field

0 sCntlnfo
1 Rt Code
2 nReqPbCb
3 nRespPbCb
4 userNum
6 exchResp
8 ercRet
10 rqCode
12 reserved
18 pBuffer
22 cbBuffer
24 pError
28 reserved

Size
(bytes)

1
1
1
1
2
2
2
2
6
4
2
4
2

Contents

6
0
1
1

OC07Dh

Section 8 8-1

Graphics Library Procedures

Introduction
This section contains detailed information about the Graphics
Library. It contains a typical Graphics Library sequence and
specific information about each Graphics Library procedure.
For a general information about Graphics Library, see
Section 1, the discussion of Graphics Library procedures
found in Section 4, and Appendix G. Appendix A contains a
sample Graphics Library program.

A Typical Graphics Library Sequence
The following steps are presented as a guideline to illustrate
typical usage of the Graphics Library procedures. In this
example, a picture is opened, an object is created, and the
picture is saved in a picture file. The procedures used to
accomplish each step are included in parentheses.

Allocate memory for the picture file work area
(AllocMemorySL).

2 Initialize the graphics system (lnitGraphics).

3 Set Column to 80 or 132 on B 27 workstations
(SetColumnMode).

4 Open a new picture in write mode (OpenPicture).

5 Begin a new object and specify the range of user coordi
nates to be used for drawing the object (AddObject).

6 If the drawing is to be limited to a subset of the world
coordinate system, specify the limits (Setlimits).

7 Use attribute, drawing, label, text, and font commands to
create an object (for example, SetColor, Drawline, Move,
WriteTextString, AddLabel).

8 Close the object (CloseObject).

11R?7n~

8-2 Graphics Library Procedures

9 Save the picture (ClosePicture).

Transformation procedures can be used whenever an object
is open. Viewing procedures can be used whenever the
picture is open.

The Procedures
The Graphics Library procedures are organized in this
section according to their general function. The order in
which you will want to use procedures from the different
groups depends on what you want your application to do.
The arrangement used in this guide follows a logical top
down graphics processing sequence. The groups of proce
dures are shown in Table 8-1.

This section contains a subsection for each group of Graphics
Library procedures. The procedures within each group are
ordered alphabetically. A brief description, the procedural
interface, and the parameter definitions are included for
each procedure. The conventions used for parameter names
in Graphics Library procedures are defined in Section 5.

A user-replaceable procedure can be called, for example,
from the graphics code that handles plotter output. An
application can include procedures that are called by the
graphics software to halt the plotter outputwhile pens are
changed or paper is loaded.

Graphics Library Procedures

Table 8-1 Graphics Library Procedures by Function

1 Initialization

ClearViewport
lnitGraphics
SetColumnMode
Setlimits
SetOutputDevice
SetOutputType
SetPlotterDevice
SetPlotterMaterial
SetU p Graph i csS pooling
SetUserCoordinates

2 Picture
Add Picture
Close Picture
DisplayPicture
GetNumberOfObjects
Open Picture
Write Picture

3 Object
AddObject
Clearlabels
ClearVectors
CloseObject
CloseTempObject
DisplayCurrentObject
OpenTempObject
RemoveCurrentObject
SetFirstObject
SetNextObject

4 Attribute

GetPictureColors
SetColor
SetCurrentPalette
SetDrawingMode
SetlineType

5 Drawing
Draw
Draw Arc
DrawCircle
Drawline
DrawRelative
FillRectangle
Move
MoveRelative

1182706

6Text
SetCharacterSize
SetFont
SetlabelOrigin
WriteTextString

7 Font
GetFontName
GetFontNumber
GetNumberOfFonts
GetUserFontName
SetUserFont

8 Label
Add Label
DeleteCurrentla bel
GetCurrentlabel
GetlabelData
Modifylabel
SetFirstlabel
SetNextlabel

9 Transformation
G etT ra nsfo rmatio n Data
SetScale
SetScaleRelative
SetTranslate
SetTranslateRelative

10Viewing
GetWindowData
SetViewport
SetWindow

11 Cursor
GetCursorPosition
SetNDCCursorPosition
SetObjectCursorPosition
SetWorld CursorPosition
TurnOffCursor
TurnOnCursor

12 User Replaceable Routines
Load Paper
ReadlnterruptKey
SetPen

8-3

8-4 Graphics Library Procedures

Initialization Procedures
The initialization procedures are used to set the values for
different variables used by the graphics software.

There are ten initialization procedures:

o ClearViewport

o lnitGraphics

o SetColumnMode

o Setlimits

o SetOutputDevice

o SetOutputType

o SetPlotterDevice

o SetPlotterMaterial

o SetUpGraphicsSpooling

o SetUserCoordinates

lnitGraphics is always the first graphics function performed
prior to using Graphics Library (high-level) procedures.
The other initialization procedures can be used to set their
respective variables at any point.

Graphics Library Procedures 8-5

ClearViewport

ClearViewport clears the viewport.

If you have assigned a plotter or printer as the output device,
this procedure has no effect.

Procedural Interface

ClearViewport: ErcType

ErcType:

0:
7601:

1182706

No Error
lnitGraphics must be the first call issued

8-6 Graphics Library Procedures

lnitGraphics
You MUST call lnitGraphics before you call any other
graphics procedure.

lnitGraphics initializes the variables used by Graphics Library.
The current command screen on the graphics hardware is
cleared, and the default line type and drawing mode values
are set. The window and viewport values are initialized by
this procedure. Their default values can be found in Appendix
D.

Procedural Interface

lnitGraphics: ErcType

Ere Type:

0:
7602:
7691:

No Error
An internal graphics error has occurred
Font file does not exist

Graphics Library Procedures

SetColumnMode

You will need to use this command only if you are using a
B 27 monochrome workstation. This procedure doesn't
work on a B 27 color workstation.

8-7

Sets the column mode to either 80 or 132 on the 8 27
workstation for both the graphics and character screen. If
you need to run an application on a 8 27 monochrome
workstation, you MUST issue this call after an lnitGraphics
call since there is no default value for the column mode on
the 8 27. If you do not use this call, the application will
assume the column mode used by the previous task, which
may give you unwanted results.

The viewport and window values will change to reflect the
new column mode setting.

The alpha video character map is reset using only one frame
if more than one frame is desired, issue the alpha video
commands (8TOS vol 2) with the appropriate parameters.

/Vote: You don't need to use this routine if changing column
modes in the alpha video routines prior to the
lnitScreenGraphics command. The alpha video routines will do
it for you.

Procedural Interface

SetColumnMode (iColumnMode): ErcType

iColumnMode: specifies the column mode desired.

ErcType:

On the 821, 822, 826, and 828
workstations, only 80 columns are valid.

On the 8 2 7 you can choose either 80 or
132 columns.

0: No error

7646: Incorrect parameter for iColumnMode

1182706

8-8 Graphics Library Procedures

Setlimits
SetLimits allows a portion of the world coordinate system
to be defined as the area of interest. Used in conjunction
with SetUserCoordinates, this procedure sets up a rectan
gular area, and SetUserCoordinates provides the range
of user-defined coordinate values that are mapped to the
rectangle.

This procedure could be used, for example, to define a box
around a bar chart. If SetUserCoordinates is used, the user
defined coordinates supplied when the bar chart is drawn
are mapped to the area defined by the box.

If Setlimits is not used, the default world coordinate area is
the portion with the same aspect ratio as the video display
screen. See Appendix D for the aspect ratios for world and
NOC coordinates for each workstation.

Procedural Interface

Setlimits (rXMin, rYMin, rXMax, rYMax): ErcType

rXMin:

rYMin:

rXMax:

rYMax:

Ere Type:

0:
7646:

Specifies the minimum X value in world
coordinates.

Specifies the minimum Y value in world
coordinates.

Specifies the maximum X value in world
coordinates.

Specifies the maximum Y value in world
coordinates.

No Error
Bad parameters specified

Graphics Library Procedures 8-9

SetOutputDevice

SetOutputDevice allows you to choose whether to send
your image to a dot matric printer, or a plotter, instead of
the video display screen, which is the default.

See the User-Replaceable Procedures subsection for infor
mation on application procedures that can be called by
Graphics Library procedures to extend the capabilities for
plotter output processing.

Note: If your output device is something other than the video
screen, it must be reset to the screen-via
SetOutputDevice-before ClosePicture is called.

Note: If you are not setting the ouput device as the screen,
you must call SetOutputType, SetP/otterDevice, and
SetP/otterMaterial before SetOutputDevice.

Procedural Interface

SetOutputDevice (iDevice): ErcType

iOevice:

ErcType:

0:
7602:
7690:

1182706-001

Specifies the output device.

0 = video display screen
1 = plotter
2 = dot matrix printer

No Error
Internal graphics error
Bad printer specification

8-10 Graphics Library Procedures

SetOutputType

SetOutputType specifies the code for the device that is to
be used when the output is directed to a plotter or a printer
or a file. This procedure must be called before SetOutput
Device is called.

For file output, iOutputType must contain one of the output
devices listed below since the file will be stored as if it was
going to that output device. This is used in conjunction
with SetPlotterDevice .

!Vote: To obtain circles and circular arcs in printer output, you
must use the ratio 1 9: 1 6. 5 (horizontal to vertical) for the
variables rXMax and rYMax in the procedures AddObject and
SetViewport (via the procedures DrawArc and DrawCircle.
See the AddObject procedure for additional information.

Procedural Interface

SetOutputType (iOutputType): ErcType

iOutputType: Specifies the code for the output device.

The following printers/plotters are available
through the Graphics Library and are supported
by Burroughs:

5 = AP1351 and AP1351-1
(132 column mode only)

6 = 89253
13=AP1311
14 = AP1314

= AP1354 (80 column mode only)
15 = AP1351 and AP1351-1

(80 column mode only)
16 = AP 1354 (132 column mode only)
1 7 = AP9208 (portrait mode)
18 = AP9208L (landscape mode)

Graphics Library Procedures

Ere Type:

0:
7693:

1182706-001

The following printers/plotters are available
through the Graphics Library, but are NOT
supported by Burroughs:

0 = HP7470A
1 = HP7220C
2 = Strobe 1 00
3 = Printronix MVP
4 = Anadex 9620
7 = Envision 420
8 = not used
9 = HP7475A

10 = HP7220T
11 = Okidata Microline 93
12 = Data Products 801 0

No Error
Output device specified is not valid

8-11

8-12 Graphics Library Procedures

SetPlotterDevice

SetPlotterDevice specifies one of the following for output
devices:

o Name of a disk file

o Configuration file

o Queue name

When using devices through the COMM port, either
[COMM]A or [COMM]8 must be specified (depending on
which port is used).

The following configurations are necessary for direct printing
or plotting.

HP747DA and HP7475A
[COMM]A&[Sys] <SYS>PlotterConfig. sys

[COMM]8&[Sys] <SYS> PlotterConfig .sys

AP1311, AP1351, AP1351-1,
AP1314, and AP1354
[LPT]&[Sys] <Sys>GraphicsPrinterConfig. sys

AP9208 and AP9208L
[PTR]8&LaserPrinterConfig. sys

89253
For spooled printing or plotting, the application queue name
is entered. For example, if the queue name for the 89253 is
892530, then enter [892530]. See Section 10 for
additional information on spooling to printers and plotters.

Note: Note: To obtain circles and circular arcs in printer output,
you must use the ratio 1 9: 1 6. 5 (horizontal to vertical) for the
variables rXMax and rYMax in the procedures AddObject and
SetViewport (via the procedures DrawArc and DrawCircle).
See the AddObject procedure for additional information.

Graphics Library Procedures

Procedural Interface

SetPlotterDevice (pbDevName,cbDevName): ErcType

pbDevName,
cbDevName:

Ere Type

0:

Describe the disk file name, queue name or
the configuration file for the device.

No Error

SetPlotterMaterial

SetPlotterMaterial specifies whether the output is to be
plotted on paper or on a transparency. This procedure
should be called before using SetOutputDevice. The
SetOutputDevice initialization routine reduces the plotter
speed when the output is going to be plotted on a
transparency.

Procedural Interface

SetPlotterMaterial (iMaterial): Ere Type

8-13

iMaterial: Specifies whether the output is to be on paper
or on a transparency.

0 = paper
1 = transparency

Ere Type:

0: No Error

1.182706

8-14 Graphics Library Procedures

SetUserCoordinates

SetUserCoordinates sets the user-defined coordinates used
in the drawing procedures. The units supplied in this proce
dure are mapped to the world coordinate system. When
user-defined coordinate positions are specified in subse
quent procedures, the graphics software automatically
translates the units to the world coordinate system.

Setlimits can be used in conjunction with this procedure to
define a portion of the world coordinate system to which
the user-defined coordinates are to be mapped.

Procedural Interface

SetUserCoordinates (rXMin, rYMin, rXMax, rYMax):Erctype

rXMin:

rYMin:

rXMax:

rYMax:

Ere Type:

0:
7601:
7602:
7620:
7646:

Specifies the minimum x value in user-defined
coordinates to be mapped to the minimum X
value in world coordinates.

Specifies the minimum Y value in user-defined
coordinates to be mapped to the minimum Y
value in world coordinates.

Specifies the maximum X value in user-defined
coordinates to be mapped to the maximum X
value in world coordinates.

Specifies the maximum Y value in user-defined
coordinates to be mapped to the maximum Y
value in world coordinates.

No Error
lnitGraphics must be the first call issued
An internal graphics error has occurred
Object is not open
Bad parameters were supplied

Graphics Library Procedures

SetUpGraphicsSpooling

This procedure sets a flag to spool the output to either a
printer, plotter or a file. See Table 8-2 for the proper
configurations.

Nate: You must set the flag fSpool before spooling the
output to a device or file.

Procedural Interface

SetUpGraphicsSpooling (fSpool, fSpoo/ToFile): ErcType

8-15

fSpool: Set to TRUE to spool all output. (Defaults
to FALSE, direct printing.)

fSpoo/ToFile: Set this flag to TRUE if the output is being
spooled to a file rather than a device.
(Defaults to FALSE; assumes printing to
device, not file.)

Ere Type:

0: No error

Table 8-2 Spool Configurations

Type of Output fSpool

Direct to Printer/Plotter FALSE
Spooled output to a printer TRUE
Spooled output to a plotter TRUE
Spooled output to a file TRUE

1182706

fSpooltoFile

FALSE
FALSE
FALSE
TRUE

8-16 Graphics Library Procedures

Picture Procedures
The picture procedures are used to manage picture files
and to manipulate pictures on the current command screen.
When a new graphic representation is being created, a
picture must be opened to save it. Likewise, when an object
in an existing picture is to be modified, the first step is to
open the picture. Once a picture is opened, the graphic
representations within the picture can be created, modified,
and transformed. When the current picture has been
completed, it should be written to a picture file and closed.
After the current picture is closed, another picture can be
processed.

There are six picture procedures:

o Addpicture

o ClosePicture

o DisplayPicture

o GetNumberOfObjects

o OpenPicture

o WritePictu re

OpenPicture MUST be performed before any of the other
picture procedures can be used.

Graphics Library Procedures 8-17

Add Picture

AddPicture adds the specified picture file to the current
picture. The added picture becomes part of the current
picture.

In color graphics workstation applications, the fOverwrite
Palette parameter is used to specify which color palette
should be used to draw the added Object. TRUE = yes,
overwrite with the palette from the added picture file. FALSE
= no, use the palette that has already been set for the
current picture.

Procedural Interface

AddPicture (pbPictureN ame, cbPictureName, fOverwritePalette): I
Ere Type

pbPictureName
cbPictureName:

Describes the picture file to be merged
into the current picture.

fOverwritePalette: Specifies whether the palette from the
added picture should overwrite the
palette in the current picture.

Ere Type:

0:
7602:
7610:
7620:
7628:
7642:
7649:

1182706-001

OFFh = TRUE, overwrite
OOh = FALSE, do not overwrite

No error
An internal graphics error has occurred
Picture was not open
Object not open
Tried to acess an object past the last objeot
Font file was removed-it does not exist
Insufficient memory

8-18 Graphics Library Procedures

ClosePicture

ClosePicture closes the current picture. If the parameter
fSave is set to TRUE, the picture is saved in the picture file
previously specified in the OpenPicture command before
it is closed. If the fSave parameter is set to FALSE the
picture is not saved.

Procedural Interface

ClosePicture (fSave): ErcType

fSave: Specifies whether the picture is to be written
before it is closed.

Ere Type:

0:
7601:
7610:

OFFh =TRUE
OOh = FALSE

No Error
lnitGraphics must be the first call issued
Picture not opened

Graphics Library Procedures 8-19

DisplayPicture

DisplayPicture displays the current picture. It is used after
OpenPicture to display a picture, and after a picture is
modified, to redisplay it. The screen is NOT erased before
the picture is displayed; the new information is merged and
can overlay parts of the existing picture. ClearViewport
must be used before DisplayPicture if the screen is to be
erased before displaying.

DisplayPicture calls the procedure ReadlnterruptKey to
determine whether the output to the screen, plotter, or
printer should be interrupted. The Graphics Library version
of ReadlnterruptKey returns a zero status code which
prompts DisplayPicture to continue writing the output
without an interruption. ReadlnterruptKey can be replaced by
a user-replaceable procedure with the same name to halt the
DisplayPicture Process. See User-Replaceable Procedures
for detailed information about the use of ReadlnterruptKey.

SetPen is another procedure that is called by DisplayPicture
and can be replaced by user written code. When the output
device is a plotter and DisplayPicture encounters a new pen
number, SetPen is called. The purpose of SetPen is to
enable the application to halt the plotter output and notify
the user. See User-Replaceable Procedures for detailed
information about the use of SetPen.

Note: If your output device is something other than the video
screen, you should reset it to the screen-via SetOutputDevice
(0)-after each DisplayPicture.

Procedural Interface

DisplayPicture (flnterruptOnKey): Ere Type

flnterruptOnKey: indicates whether or not ReadlnterruptKey
is to be called.

1182706

OFFh = TRUE, ReadlnterruptKey is called.
OOh = FALSE, it is not.

8-20

Ere Type:

0:
7642:
7649:
7610:

Graphics Library Procedures

No Error
Font name specified does not exist.
Insufficient memory
Picture must first be opened before calling this procedure.

Graphics Library Procedures 8-21

GetNumberOfObjects
GetNumberOfObjects returns the number of objects in the
current picture.

Procedural Interface

GetNumberOfObjects (pNObjectsRet): Ere Type

pNObjectsRet:

Ere Type:

Points to the memory address of a word
where the number of objects in the picture
is to be returned.

0: No Error

1182706

8-22 Graphics Library Procedures

OpenPicture
OpenPicture opens the specified picture. It is used to create
new pictures and to modify existing ones.

One of the three modes must be specified: read, write, or
modify.

Read mode is used to view an existing picture. The size of
the window or viewport can be changed, the objects within
the picture can be transformed, but the objects cannot be
modified.

Modify mode also requires an existing picture. This mode
is used when new objects are to be added to the picture
and when existing objects are to be modified.

Write mode is used to create a new picture. Objects can be
created for the new picture or existing pictures can be added
from other picture files to create a complex picture. Write
mode can also be used to overwrite existing pictures from
pictures files. When write mode is used with an existing
picture, the picture is deleted when the file is opened, and
the new version replaces the old.

A segment of memory must be large enough to contain the
whole picture. A simple picture requires approximately
16K, and a complex picture 48K.

Procedural Interface

OpenPicture (pbPictureName, cbPictureName, pbPassword,
cbPassword, mode, pMemory, cParasMemory): ErcType

pbPictureName
cbPictureName:

pbPassword,
cbPassword:

Describe a character string specifying the
name of a picture file.

Describe the standard volume, directory, or
file password that authorizes access to the
picture file.

Graphics Library Procedures 8-23

mode:

pMemory
cParasMemory:

Ere Type:

Is read (shared) or modify (exclusive) or
write (exclusive). The mode is indicated by
a 16-bit value representing the ASCII
constants mr (mode read), mm (mode
modify), or mw (mode write). In these ASCII
constants, the first character (m) is the
high-order byte and the second character
(r, m, or w respectively) is the low-order
byte. This is the reverse of the byte order
for strings in Burroughs programming
languages.

Specifies the segment of memory to be
used as a workarea for the picture. The
memory size indicates the number of 16-
byte sections allocated.

0: No Error
7601: lnitGraphics must be the first call issued
7602: An internal graphics error occurred
7611: Picture is already open
7613: Unauthorized password
7614: Picture file specified does not exist
7621: Object is currently open
7649: Insufficient memory

1182706

8-24 Graphics Library Procedures

WritePicture
WritePicture writes the current picture to the picture file
specified by pbPictureName, cbPictureName. If a picture file
with this name already exists, it is overwritten by the current
picture. When WritePicture is executed, the current picture
is not closed; it remains the current picture, and processing
can continue.

Procedural Interface

WritePicture (pbPictureName cbPictureName):ErcType

pbPictureName
cbPictureName:

Specifies the picture file to which the
current picture is to be written.

Ere Type:

0:
7610:

No Error
Picture not opened

Graphics Library Procedures 8-25

Object Procedures
The object procedures are used to add new objects to the
current picture, and to modify existing objects. When there
are multiple objects in a picture, only one can be processed
at a time. There are also object procedures which are used
to select the current object in a picture. When a current
object is designated, subsequent commands operate on
that object until another object is selected as the current
object.

There are ten object procedures:

o AddObject

o Clearlabels

o ClearVectors

o CloseObject

o CloseTempObject

o DisplayCurrentObject

o OpenTempObject

o RemoveCurrentObject

o SetFirstObject

o SetNextObject

Before any object procedures can be used, a picture must
be opened with OpenPicture, or the object must be declared
as a temporary object by OpenTempObject.

1182706-001

8-26 Graphics Library Procedures

Add Object

AddObject is used to begin a new object that is to be part
of the current picture. The object specified by
pbObjectName becomes the current object. All subsequent
vector commands and labels are stored in this object's
vector and label lists.

Minimum and maximum X and Y coordinates specify the
range of user coordinates that the new object will use.
User-defined coordinate values specified in a previous
AddObject or SetUserCoordinate procedure will be
overridden by this call.

A picture must be open in modify or write mode before
AddObject can be used. Only one object can be open at any
given time. To obtain a circle or circular arc on the screen,
use the aspect ratios in Appendix D.

To obtain circles and circular arcs on the screen as well as
in printer output, you must use the ratio 19: 16. 5 (horizontal
to vertical) for the variables rXMax and rYMax. This is
required in SetViewport as well as in AddObject (via the
procedures Draw Arc and DrawCircle).

Procedural Interface

AddObject (pbObjectName, cbObjectName, rXMin, rYMin,
rXMax, rYMax): ErcType

pbObjectName
cbObjectName:

rXMin:

rYMin:

rXMax:

rYMax:

Specifies the name of the object to be
added. The maximum length for an object
name is 12 characters.

Specifies the minimum X value of the
object.

Specifies the minimum Y value of the object.

Specifies the maximum X value of the
object.

Specifies the maximum Y value of the
object.

Graphics Library Procedures

Ere Type:

O:
7602:
7610:
7612:
7621:
7622:
7646:
7649:

1182706

No Error
An internal graphics error was encountered
Picture not open
Picture is Read Only
Object is already open
A bad object name was specified
A bad parameter was specified
Insufficient memory

8-27

8-28 Graphics Library Procedures

Clearlabels

ClearLabels clears the current object's label list. Since
individual labels can be modified by ModifyLabel, this
procedure is used only when ALL the labels are to be
replaced.

A picture must be open in write or modify mode before
ClearLabels can be used. An object must also have been
designated as the current object.

Procedural Interface

Clearlabels: ErcType

Ere Type:

0:
7610:
7612:
7620:

No Error
Picture is not open
Picture is Read Only
Object is not open

Graphics library Procedures

ClearVectors

Clears the current object's vector list. Because individual
vector commands cannot be modified, the whole list is
cleared when an individual vector is to be recomputed.
There is no change to the graphics screen.

8-29

A picture must be open in write or modify mode before
ClearVectors can be used. An object must also have been
designated as the current object.

Procedural Interface

ClearVectors: ErcType

Ere Type:

0:
7610:
7612:
7620:

1182706

No Error
Picture is not open
Picture is Read Only
Object is not open

8-30 Graphics library Procedures

CloseObject

CloseObject closes the current object. An object must be
closed before a new one can be selected as the current
object.

Both a picture and an object must be open to use Close
Object. The object cannot be temporary.

Procedural Interface

CloseObject: ErcType

Ere Type:

0:
7610:
7620:
7625:

No Error
Picture is not open
Object is not open
The object specified is a temporary one

Graphics Library Procedures 8-31

CloseTempObject

CloseTempObject closes a temporary object.

An error condition occurs if there is not a temporary object
open.

Procedural Interface

CloseTempObject: ErcType

Ere Type:

0:
7620:
7624:

1182706

No Error
Object is not open
Object specified is not temporary

8-32 Graphics library Procedures

DisplayCurrentObject

DisplayCurrentObject displays the current object on the
screen. The screen is not erased before the object is
displayed. The current object is merged with the current
contents of the screen.

A picture must be open before DisplayCurrentObject is
used, and an object must have been designated as the
current object.

Procedural Interface

DisplayCurrentObject: ErcType

Ere Type:

0:
7610:
7620:

No Error
Picture must first be open
Object must first be open.

Graphics Library Procedures 8-33

Open TempObiect

OpenTempObject opens a temporary object. When an object
is temporary, subsequent commands are NOT saved in a
picture file. If a picture has been opened, it must be closed
before a temporary object can be opened. Likewise, if a
current object has been designated, it must be closed before
OpenTempObject can be used.

Minimum and Maximum coordinates are specified to indicate
the range of user coordinates that will be used for this
object. User-defined coordinate values specified in a previous
AddObject or SetUserCoordinates procedure will be over
ridden by this call.

Procedural Interface

OpenTempObject (rXMin, rYMin, rXMax, rYMax):ErcType

rXMin:

rYMin:

rXMax:

rYMax:

Ere Type:

O:
7601:
7602:
7621:
7629:

7646:

1182706

Specifies the minimum X value of the object.

Specifies the minimum Y value of the object.

Specifies the maximum X value of the object.

Specifies the maximum Y value of the object.

No Error
lnitGraphics must be the first call issued
An internal graphics error occurred
Object is already open
Temporary objects cannot be opened when a picture is
open.
Bad parameters were specified

8-34 Graphics Library Procedures

RemoveCurrentObiect
RemoveCurrentObject removes the current object from the
current picture.

A picture must be open in write or modify mode, and an
object must have been designated as the current object
before RemoveCurrentObject can be used.

Procedural Interface

RemoveCurrentObject: Ere Type

Ere Type:

0:
7610:
7612:
7620:

No Error
Picture is not open
Picture is Read Only
Object is not open

Graphics Library Procedures 8-35

SetFirstObiect
SetFirstObject designates the first object in the picture as
the current object. Objects are stored in the order they were
created.

A picture must be open before SetFirstObject can be used.

Procedural Interface

SetfirstObject: ErcType

Ere Type:

0:
7620:
7628:

1182706

No Error
Object is not open
Tried to access an object past the last object

8-36 Graphics Library Procedures

SetNextObject
SetNextObject specifies a new current object. The object
that follows the current object becomes the new current
object. If a current object has not been designated when
this procedure is called, then the first object in the picture
becomes the current object. Objects are stored in the order
they were created. If the current object is the last object in
the picture when this procedure is called, an error code is
returned:

The picture procedure, GetNumberOfObjects, can be used
in conjunction with SetNextObject to keep track of how
many objects are in the picture.

A picture must be open before SetNextObject can be used.

Procedural Interface

SetNextObject: Ere Type

Ere Type:

0:
7628:
7620:

No Error
Tried to access an object past the last object
Object is not open

Graphics Library Procedures 8-37

Attribute Procedures
Attribute procedures are used to set the values for attributes
that are used in conjuction with drawing procedures. The
attributes are line type, drawing mode, and color. Detailed
information about these drawing attributes is included in
Section 4, Concepts.

Before an attribute procedure can be called, a picture must
be open in write or modify mode, and an object must be
designated as the current object or a temporary object must
be opened.

There are five attribute procedures:

o GetPictureColors

o SetColor

o SetCurrentPalette

o SetDrawing Mode

o SetlineType

1182706

8-38 Graphics Library Procedures

GetPictureColors
GetPictureColors returns 8 bytes that define the colors in
the current palette. The color bytes are copied to the memory
location specified by the parameter pRgbPaletteRet. See
Graphics Manager Requests for detailed information about
color palettes.

Procedural Interface

GetPictureColors (pRgbPaletteRet): Ere Type

pRgbPaletteRet: Specifies the memory address of the
buffer where the n bytes used to define
the current palette are to be returned.

Ere Type:

0:
7610:

No Error
Picture is not open

Graphics Library Procedures 8-39

SetColor
SetColor specifies the color that is to be current. Subsequent
drawing procedures will use the color designated by the
parameter iColor. This parameter specifies the color in the
current n-byte color palette. The acceptable values are 1
through 8. Multi-color output to a video display unit is
supported only on the color graphics workstations.

When a monochrome video screen is the output device, the
color attribute is ignored. When the output device is a
plotter, the color attribute is interpreted as the pen number
for the intended color. The user selects the colors and
assigns a number for each pen.

Detailed information about the color attribute can be found
in Section 4.

Procedural Interface

SetColor (iCo/or): ErcType

iColor:

Ere Type:

0:
7601:
7620:
7627:
7693:

1182706

Specifies the color to be used in subsequent
commands, in the range 1-8. The default is 1.

No Error
Graphics Not Initialized.
Object must first be open.
Object was not opened in write mode.
Device specified must either be the screen or a plotter,
not the printer.

8-40 Graphics Library Procedures

SetCurrentPalette

SetCurrentPalette is used in application systems designed
for color graphics workstations. It specifies the n bytes that
define a new palette. The palette that is selected remains
the current palette for subsequent drawing procedures until
SetCurrentPalette is called again. For detailed information
about the use of color palettes, see Section 4.

If SetCurrentPalette is not called, the default color palette is
used. The colors in the default palette are:

o red

o yellow

o green

o blue

o cyan

o magenta

o white

o black

Procedural Interface

SetCurrentPalette (pRgbPalette): Ere Type

pRgbPa/ette: Points to the memory address of the 8
bytes that define the colors in the palette.

Ere Type:

0: No Error

Graphics Library Procedures 8-41

SetDrawingMode
SetDrawingMode specifies the drawing mode that is to be
current. The choices are set mode, clear mode, complement
mode, and replace mode. Subsequent drawing procedures
will use the drawing mode designated by the parameter
iDrawingMode. Detailed information about the drawing
modes, including an illustration, can be found in the
subsection Drawing Attributes in Section 4.

The default is 0. (SetMode)

Procedural Interface

SetDrawingMode (iDrawingMode): ErcType

iDrawingMode: Specifies the drawing mode.

0 =Set Mode

Ere Type:

0:
7646:
7649:

1182706

1 = Clear Mode
2 = Complement Mode
3 = Replace Mode

No Error
Drawing mode specified is not valid
Insufficient memory

8-42 Graphics Library Procedures

Setline Type
SetlineType specifies the current line type. Subsequent
vector drawing procedures will use the line type designated
by the parameter ilineType. A solid line is the default, and
there are other patterns of dots and dashes. Detailed
information about the line type attribute, including an illus
tration of the available line types can be found in the Dravving
Attributes section.

Procedural Interface

SetlineType (ilineType): ErcType

ilineType:

Ere Type:

0:
7646:
7649:

Specifies the line type to be used in subsequent
drawing procedures.

0-7 =The standard line types. See Figure 4-1.

No Error
Line type specified is invalid
Insufficient memory

Graphics Library Procedures 8-43

Drawing Procedures
Drawing procedures are used to draw vectors, arcs, and
circles, and to fill rectangles. When these drawing procedures
are executed, the commands are saved in the vector list of
the current object.

User-Defined coordinate values are used in the X and Y
parameters. The graphics software automatically translates
the user-defined units to world coordinates. The limits of
the coordinate system MUST be previously defined by
SetUserCoordinates or AddObject before drawing proce
dures are used.

A picture must be open in write or modify mode (except
when the object is temporary), and an object selected as
the current object before a drawing procedure is used. You
must call drawing procedures prior to setting the output
device if it is to be a printer.

There are eight drawing procedures:

o Draw

o DrawArc

o DrawCircle

o Drawline

o DrawRelative

o FillRectangle

o Move

o MoveRelative

1182706

8-44 Graphics library Procedures

Draw
Draw draws a vector from the current position to (rX,rY).
The current color, line type and drawing mode are used.
After the vector is drawn, the current position is set to
(rX,rY). User-defined coordinate values are used in the
parameters.

This command is saved in the vector list of the current
object.

Procedural Interface

Draw (rX, rY): ErcType

rX:

rY:

Ere Type:

0:
7601:
7602:
7620:
7627:
7649:
7693:

Specifies the X coordinate to which the line is to
be drawn.

Specifies the Y coordinate to which the line is to
be drawn.

No Error
lnitGraphics must be the first call issued
An internal graphics error occurred
Object is not open
Object was not opened in Write Mode
Insufficient memory
Output device is not a valid one

Graphics Library Procedures 8-45

Draw Arc

DrawArc draws an arc by using the center position, radius,
and angles provided in the parameters. User-defined coor
dinate values are used for these parameters. The angles are
specified in radians from the center of the circle, and the
arc is drawn in a counterclockwise direction. Figure 7-2
illustrates the drawing angles.

The current color, line type, and drawing mode are used.
After the arc is drawn, the current position is set to the end
of the arc.

This command is saved in the vector list for the current
object.

Note: DrawArc will actually draw an elliptical curve instead
of a round one. If you need to create the appearance of a
round curve, set up the AddObject command using the
aspect ratio of the hardware system the application will run
on. See Appendix D to find the correct aspect ratio for
your workstation.

Procedural Interface

DrawArc (rXCenter, rYCenter, rsRadius, rAngl, rAng2):
ErcType

rXCenter
rYCenter:

rs Radius:

rAngl:

rAng2:

1182706

Specify the position from which the angles
are calculated to create the arc.

Specifies the radius from the center point.

Specifies the angle used to set the beginning
position of the arc.

Specifies the angle used to set the end
position of the arc.

8-46

Ere Type:

0:
7601:
7602:
7620:
7627:
7693:

Graphics Library Procedures

No Error
lnitGraphics must be thefirst call issued
An internal graphics error occurred
Object is not open.
Object was not opened inWrite Mode
Output device is not a valid one.

Graphics Library Procedures 8-47

DrawCircle
DrawCircle draws a circle with position rXCenter,rYCenter
as the center and rSRadius as the radius. User-defined
coordinate values are used for these parameters. After the
circle is drawn, the Zero-degree position on the circumfer
ence of the circle becomes the current position. The current
line type, drawing mode, and color attributes are used with
this procedure.

This command is saved in the vector list of the current
object.

Note: The DrawCircle command actually draws an elliptical
curve rather than a round curve. If you need to create the
appearance of rounded curves, set up the AddObject
command with the aspect ratio of the hardware system the
application will run on. See Appendix D to find the correct
aspect ratio for your workstation.

Procedural Interface

DrawCircle (rXCenter, rYCenter, rSRadius): ErcType

rXCenter
rYCenter:

rSRadius:

ErcType:

0:
7601:
7602:
7620:
7627:
7693:

1182706-001

Specify the center of the circle.

Specifies the radius of the circle.

No Error
lnitGraphics must be the first call issued
An internal graphics error occurred
Object is not open
Object was not opened inWrite Mode
Output device is not a valid one

I

8-48 Graphics Library Procedures

Drawline

Drawline draws a line by using the endpoints specified.
The current color, line type, and drawing mode are used.
After the line is drawn, the current position is set to (rX2,rY2).
User-defined coordinate values are used in the parameters.

This command is saved in the vector list of the current
object.

Procedural Interface

Drawline (rX1, rY1, rX2, rY2): ErcType

rX1:

rY1:

rX2:

rY2:

Ere Type:

0:
7601:
7602:
7620:
7649:

Specifies the X coordinate for the beginning of
the line.

Specifies the Y coordinate for the beginning of
the line.

Specifies the X coordinate for the end of the
line.

Specifies the Y coordinate for the end of the
line.

No Error
lnitGraphics must be the first call issued
An internal graphics error occurred
Object must first be opened
Insufficient memory

Graphics Library Procedures 8-49

DrawRelative

DrawRelative draws a vector from the current position to
the position offset by rDeltaX,rDeltaY. User-defined coordi
nate values are used in the parameters. The current color,
line type and drawing mode are used. After the vector is
drawn, the current position is set to
(rX + rDeltaX,rY + rDeltaY).

This command is saved in the vector list of the current
object.

Procedural Interface

DrawRelative (rDeltaX, rDelta Y): Ere Type

rDeltaX:

rDeltaY:

Ere Type:

0:
7601:
7602:
7620:
7627:
7649:
7693:

1182706

Specifies the change in the X direction to reach
the new position to which the line should be
drawn.

Specifies the change in the Y direction to reach
the new position to which the line should be
drawn.

No Error
lnitGraphics must be the first call issued
An internal graphics error occurred
Object must first be opened
Object was not opened in Write Mode
Insufficient memory
Output device is not a valid one

8-50 Graphics Library Procedures

Fill Rectangle
FillRectangle fills a rectangle with a pattern. There are six
different patterns. Appendix B contains an illustration of
these fill patterns.

Procedural Interface

FillRectangle (rXMin, rYMin, rXMax, rYMax, bFil/Type):
Ere Type

rXMin
rYMin
rXMax
rYMax:

bFil/Type:

Ere Type:

O:
7601:
7602:
7603:
7610:
7648:
7649:

Specify the lower left and upper right corners of
the rectangle.

Specifies the fill pattern
0-5 = the fill patterns.

Appendix B contains an illustration of the fill
patterns available.

No Error
lnitGraphics must be the first call issued
An internal graphics error occurred
RasterOps are not available
Picture must first be opened
Parameters outside the viewport were specified
Insufficient memory

Graphics Library Procedures 8-51

Move
Move sets the current position. Subsequent drawing proce
dures will begin at this position. User-defined coordinate
values are used in the parameters.

This command is saved in the vector list of the current
object.

Procedural Interface

Move (rX, rY): ErcType

rX: Specifies the X coordinate for the new current
position.

rY: Specifies the Y coordinate for the new current
position.

Ere Type:

0: No Error

7601: Graphics not initialized.

7620: Object must first be opened.

7627: Object was not opened in write mode.

7646: Parameters given are outside of specified viewport.

7693: An invalid device was specified

1182706

8-52 Graphics Library Procedures

MoveRelative
MoveRelative sets the new current position to the existing
current position with an offset of rDeltaX and rDeltaY.
Subsequent drawing procedures will begin at this position.
User-defined coordinate values are used in the parameters.

This command is saved in the vector list of the current
object.

Procedural Interface

MoveRelative (rDeltaX, rDeltaY): ErcType

rDeltaX:

rDeltaY:

Ere Type:

0:
7601:
7602:
7620:
7627:
7649:
7693:

Specifies the change in the X direction for the
new current position.

Specifies the change in the Y direction for the
new current position.

No Error
lnitGraphics must be the first call issued
An internal graphics error occurred
Object must first be opened
Object was not opened inWrite Mode
Insufficient memory

Graphics Library Procedures 8-53

Text Procedures
These procedures are used to create and modify text strings.
Unlike labels, which are saved in the label list and can be
modified, text strings are put in the vector list and cannot
be modified. Text strings are used typically for text, such as
units on axes and legends, that is not to be altered.

There are four text procedures:

o SetCharacterSize

o SetFont

o SetlabelOrigin

o WriteTextString

WriteTextString writes a text string in the current object,
and the other procedures in this subsection set the attributes
that are to be used when the text is drawn. A picture must
be open in write mode only, and a current object must have
been designated before any of the text procedures can be
used. The output device cannot be a printer. For detailed
information about the attributes used with text, see the
Text Attributes in this section.

1182706

8-54 Graphics Library Procedures

SetCharacterSize
SetCharacterSize specifies the relative character size that
will be used in subsequent WriteTextString procedures. See
Text Attributes for detailed information about the character
size attribute.

Procedural Interface

SetCharacterSize (rsChars): ErcType

rsChars:

Ere Type:

0:
7620:
7627:
7649:
7693:

Specifies the character size used in subsequent
calls to WriteTextString.
1 = Standard (the default)

No Error
Object must first be opened
Object was not opened inWrite Mode
Insufficient memory
Invalid Output Device.

Graphics Library Procedures 8-55

Setfont
SetFont specifies the font that will be used in subsequent
WriteTextString procedures. Graphics for BTOS Systems
contains five fonts:

o SimplexRoman (the default font),

o ComplexRoman,

o SimplexPlot

o DuplexRoman and

o Gothic.

See the Text Attributes for detailed information about the
font attribute. Procedures for selecting fonts and establishing
which fonts are available are found in the discussion of
Font Procedures.

Procedural Interface

SetFont (pbFontName, cbFontName): ErcType

pbFontName
cbFontName:

Ere Type:

0:
7642:
7649:

1182706

Specify the name of the font to be used in
subsequent calls to WriteTextString.

No Error
Invalid font name was given
Insufficient memory

8-56 Graphics Library Procedures

SetlabelOrigin

SetlabelOrigin specifies the current label origin to be used
in subsequent WriteTextString procedures. Figure 4-3
illustrates this concept. The label origin is used to indicate
how the text should be oriented in relation to the current
position. Text can be placed left flush, right flush, or centered.
These placements can be done at the top, middle, or bottom
of the current position. See Text Attributes in this section
for detailed information about the label origin attribute.

Procedural Interface

SetlabelOrigin (blorg): ErcType

blorg:

Ere Type:

0:
7620:
7627:
7643:
7649:
7693:

Specifies the label origin to be used in subse
quent calls to WriteTextString

0 = bottom left
1 = middle left
2 = top left
3 = bottom center
4 = middle center
5 = top center
6 = bottom right
7 = middle right
8 = top right

No Error
Object must first be opened
Object was not opened in Write Mode
Invalid Label Origin was given
Insufficient memory
Output device is not a valid one

Graphics library Procedures 8-57

WriteTextString
WriteTextString draws a text string in the current object. It
uses the current text attributes and the current position.
The current position can be set by Move or MoveRelative.
The attributes that must be set before WriteTextString is
executed are character size, label origin, and font. See the
Text Attributes subsection for detailed information After the
text string is written, the last position of the string becomes
the current position.

This command and the text attributes are saved in the
vector list of the current object.

Procedural Interface

WriteTextString (pbString, cbString): ErcType

pbString Describe the string to be drawn at the current
cbString: position.

Ere Type:

0:
7602:
7620:
7626:
7627:
7644:
7649:
7693:

1182706

No error
An internal graphics error occurred
Object must first be opened
Object is Read Only
Object was not opened in write mode
Character is out of bounds
Insufficient memory
Output device is not a valid one.

8-58 Graphics Library Procedures

Font Procedures
The graphics software contains five fonts. The name for
each font that is used internally by the graphics software is
called the internalname. Fonts can also have user-friendly
names assigned. In addition, the file specification for all but
SimplexRoman, which is the standard font, can be altered.
The information required to use multiple fonts is kept in a
file called Graphics.Fonts. This file allows applications to
specify which fonts are used, where they are located, and
what user-friendly names have been assigned to correspond
to the internal names.

The syntax for entries in Graphics.Fonts is

user-friendly name:internal name: file specification

user-friendly name: Is the string that identifies the font in

internal name:

file specification:

end-user transactions.

Is the string that identifies the font inter
nally in the graphics software. The inter
nal names for the five fonts that are
included with the graphics software are:

SimplexRoman
ComplexRoman
SimplexPlot
DuplexRoman
Gothic

Specifies the volume, directory, and file
name of the font.

There are five font procedures:

o GetFontName

o GetFontNumber

o GetNumberOfFonts

o GetUserFontName

o SetUserFont

Graphics Library Procedures 8-59

The font procedures are used in conjunction with text
procedures and label procedures to specify which font is to
be used for alphanumeric strings.

Table 8-3 shows the Graphics.Fonts entries supplied with
the graphics software.

Table 8-3 Graphics.Fonts File Names

Standard: SimplexRoman:

Complex:

Simplex:
Bold:

Gothic:

ComplexRoman:
[SYS]<SYS>ComplexRoman.font
[SYS]<SYS>SimplexPlot.font
OuplexRoman:
[SYS]<SYS>DuplexRoman.font
Gothic:
[SYS]<SYS>Gothic.font

Note: These are example file names. Your font files may
reside in different volumes and/or directories.

1182706-001

8-60 Graphics Library Procedures

GetfontName
GetFontName returns the memory address and length of
the internal name for a font. The requested font is specified
by its index in the font description file, Graphics.Fonts.

GetNumberOfFonts can be called before GetFontName to
determine the number of fonts in the file.

Procedural Interface

I GetFontName (iFont, ppbFontName, pcbFontName): ErcType

iFont: Specifies the number of the font in
Graphics.Fonts. The acceptable values are
0 through (nFonts-1) where nFonts = the
number of fonts in the file.

I ppbFontName: Points to the memory location where the
address of the internal font name is to be
returned

pcbFontName: Points to the memory location where the
count of bytes in the internal font name is
to be returned.

Ere Type:

0:
7691:

No Error
Number given for ifont is out of range of number of fonts in
file Graphics.Fonts

Graphics Library Procedures 8-61

GetfontNumber

GetFontNumber returns the index of the specified font in
the font description file, Graphics.Fonts. The font is specified
by its internal name.

Procedural Interface

GetFontNumber (pbFontName, cbFontName, piFontRet):
Ere Type

pbFontName
cbFontName:

Specify an internal font name.

piFontRet:

Ere Type:

0:
7642:

1182106

Points to the memory location where the font
number is to be returned.

No Error
Font name given does not exist

8-62 Graphics Library Procedures

GetNumberOfFonts
GetNumberOfFonts returns the number of font entries in
Graphics.Fonts to indicate how many fonts are available for
the application.

Procedural Interface

GetNumberOfFonts (pnFontsRet): ErcType

pnFontsRet: Points to the memory location of the word where the number
of fonts is returned.

Ere Type:

0: No Error

Graphics Library Procedures 8-63

GetUserFontName

GetUserFontName returns the memory address and length
of the user-friendly name for a font that is specified by its
index in the font description file, Graphics.Fonts.

GetNumberOfFonts can be called before GetUserFontName
to determine the number of fonts in the file.

Procedural Interface

GetUserFontName (iFont, ppbFontName, pcbFontName): ErcType I
iFont: Specifies the number of the font in

Graphics.Fonts. The acceptable values are 0
through (nFonts-1) where nFonts = the
number of fonts in the file.

ppbFontName: Points to the memory location where the
address of the user-friendly font name is to
be returned.

pcbFontName: Points to the memory location where the
count of bytes in the user-friendly name is
to be returned.

Ere Type:

0:
7691:

1182706-001

No Error
Font number does not exist

8-64 Graphics Library Procedures

SetUserFont
SetUserFont sets the current font by specifying the user
friendly name for the font. The user-friendly name is trans
lated to the corresponding internal name. The internal name
is then stored as the font attribute in the vector list during
subsequent WriteTextString Procedures.

Procedural Interface

SetUserFont (pbFontName, cbFontname): ErcType

pbFontName
cbFontName:

Ere Type:

0:
7620:
7627:
7642:
7649:
7693:

Specify the user-friendly name of the font.

No Error
Object is not open
Object was not open in write mode
Font name does not exist
Insufficient memory
Output device is not a valid one

Graphics Library Procedures 8-65

Label Procedures
The label procedures are used to create labels to accompany
the vector portion of an object. Once you create a label, it
is part of the picture, since it is created using the graphics
capablilities. Label procedures are also used to modify
existing labels in the current object's label list. Before a
label procedure can be used, a picture must be open in
write or modify mode and an object designated as the
current object.

Coordinate parameters in the label procedures MUST have
world coordinate values.

Graphics for BTOS Systems uses vector fonts to create
alphabetic letters and numerals. To use alphanumeric text,
instead of graphics labels, see BTOS Reference Manual
Volumes 1 and 2 for details.

The label structure is used when modifying an existing label.
The current label is moved into this workarea structure and
the modifications are made in the workarea. After all
modifications are completed, the workarea is then
automatically copied back into the object to replace the
current label. The coordinate positions, text, and attributes
of the label are saved in the label list.

Appendix H, Label Structures, shows the format of the label
structure.

There are seven label procedures:

o AddLabel

o DeleteCurrentLabel

o GetCurrentLabel

o GetLabelData

o ModifyLabel

o SetFirstLabel

o SetNextLabel

1182706-001

8-66 Graphics Library Procedures

Addlabel
Addlabel adds a new label to the current object at the
position specified. The parameter values for the coordinates
must be world coordinate system values. The label is added
to the label list of the current object.

There are three label attributes that are set by parameter
entries in this procedure: character size, label origin, and
font name. Character size specifies the scale of the characters
in the label. The label origin indicates how the label is to
be oriented in relation to the specified position in the world
coordinate system. (See Figure 4-3.) The label can be posi
tioned horizontally to the right, left, or center, and vertically
to the top, middle, or bottom. The font attribute indicates
the font that is to be used for the label text. Presently, there
are five fonts provided by the graphics software. A unique
identification is also provided for the label. In future modifi
cation processes, this identification can be used to select
the proper label from the label list.

Detailed information about all three text attributes can be
found in the subsection Text Attributes. Additional informa
tion about the fonts that are available and how they are
used can be found in the Fonts Procedures subsection
above.

If the label has a zero length an error condition occurs.
Also, an error condition occurs if a printer has been assigned
as the output device before this command is executed.

Procedural Interface

Addlabel (rX, rY, pbString, cbString, rsChars, blorg, bPen,
bUser/D, pbFontName, cbFontName): ErcType

rX
rY:

pbString
cbString:

1182706

Specifies the position of the label

Specifies the text of the label.

Graphics Library Procedures 8-67

rs Chars:

blorg:

bPen:

bUser/D:

pbFontName
cbFontName:

Ere Type:

Specifies the character size of the label

Specifies the label origin of the label

Speeifies the pen number for plotter output,
or in color graphics workstation applica
tions, the color number

Specifies the label identifier.

Specifies the internal name of the font to
be used for the label.

No Error 0:
7602:
7610:
7612:

An internal graphics error occurred
Picture must first be open

7620:
7642:
7644:
7645:
7649:
7693:

1182706

Picture is Read Only
Object must first be open
Font name given does not exist
Character is out of bounds
No characters were given for the label (cbString = 0)
Insufficient memory
Output device is not a valid one

8-68 Graphics library Procedures

DeleteCurrentlabel
DeleteCurrentlabel erases the current label from the display
screen and removes the label from the current object's
label list. A label must be designated as the current label
before DeleteCurrentlabel is used. The output cannot be a
printer when this command is executed.

Procedural Interface

DeleteCurrentlabel: Ere Type

Ere Type:

0:
7602:
7610:
7612:
7620:
7640:
7693:

No Error
An internal graphics error occurred
Picture is not open
Picture is Read Only
Object must first be opened
GetCurrentlabel must first be called
Output device is not a valid one

Graphics Library Procedures 8-69

GetCurrentlabel
GetCurrentlabel copies the current label from the current
object's label list into a workarea structure where it can
then be modified. In order to access the entire data structure,
66 bytes (plus the length of the label in bytes) of memory,
must be allocated for the workarea. See Appendix H, Label
Structures for more information about the label structure. A
label must be designated as the current label before
GetCurrentlabel is used.

Procedural Interface

GetCurrentlabel (plabe/Ret, slabe/Ret): ErcType

plabe/Ret: Points to a structure where the label is to be

slabe/Ret:

Ere Type:

O:
7602:
7610:
7612:
7620:
7640:
7649:

1182706

copied.

Specifies the maximum size of the structure.

No Error
An internal graphics error occurred
Picture must first be opened
Picture is Read Only
Object must first be opened
GetCurrentlabel must first be called
Insufficient memory

8-70 Graphics Library Procedures

GetlabelData

GetLabelData computes and fills in the boundaries of a
label located in a workarea structure. See the introduction
to this subsection, Label Procedures for information about
the label structure, including which parameters have values
returned by GetLabelData. Also see Appendix H, Label
Structures.

This procedure is used to determine if a new label will fit,
as is, in the world coordinate system. If it does not fit, an
ercCharOutOfBounds (error 7644) message is returned.

Procedural Interface

GetlabelData (plabe/Ret): Ere Type

plabe/Ret:

Ere Type:

0:
7602:
7642:
7644:
7649:

Points to the structure containing the label.

No Error
An internal graphics error occurred
Font name is not a valid one
Character is out of bounds
Insufficient memory

Graphics Library Procedures 8-71

Modifylabel
Modifylabel replaces the current label with the label speci
fied by the parameter pModifiedlabel. The current label in
the object's label list is replaced by a new label that is
located in a workarea structure. The structure contains the
label text and attributes. See the introduction of this
subsection, Label Procedures for information about the
label structure.

This procedure is used in conjunction with GetCurrentlabel,
SetFirstlabel, or SetNextlabel. A label must be designated
as the current label by one of these procedures before
Modifylabel can be used. These procedures copy an existing
label into a workarea. After the label is modified in the
workarea, it is written back into the current object's label
list by Modifylabel. The modified label is also displayed in
the picture. The output device cannot be a printer when
Modifylabel is executed.

If the bUserlD parameter in Add label was used to assign a
unique identification when the label was created, this
identification can be used in the modification process to
quickly locate the label that is to be modified.

Procedural Interface

Modifylabel (pModifiedlabel): Ere Type

pModifiedlabel: Points to the structure that contains the
modified label.

Ere Type:

0:
7602:
7610:
7612:
7620:
7640:
7642:

1182706

No Error
An internal graphics error occurred
Picture must first be open
Picture is Read Only
Object must first be open
GetCurrentlabel must first be called
Font name does not exist

8-72 Graphics Library Procedures

7644: Character is out of bounds
7645: No characters were given for the label (cbString = O)
7649: Insufficient memory
7693: Output device is not a valid one

Graphics Library Procedures 8-73

Setfirstlabel
SetFirstlabel selects the first label from the current object's
label list and makes it the current label. The label is moved
to a workarea where it can then be modified.

A segment of memory must be allocated as a workarea for
the label structure. See the introduction to this subsection,
Label Procedures, for information about the label structure.

Procedural Interface

SetFirstlabel (plabe!Ret, slabe/Ret): ErcType

plabe/Ret:

slabe/Ret:

Ere Type:

0:
7602:
7610:
7612:
7620:
7641:
7649:

1182706

Points to a structure where the label is to
be copied.

Specifies the maximum size of the structure.

No Error
An internal graphics error occurred
Picture must first be open
Picture is Read Only
Object must first be open
End of Label List was encountered
Insufficient memory

8-74 Graphics Library Procedures

SetNextlabel
SetNextlabel selects the next label from the current object's
label list and makes it the current label. If a label has not
been previously selected as the current label when this
procedure is used, then the first label becomes the current
label. If the current label is the last label in the label list, an
ercEndOflabellist error message is returned, since there
is no next label.

The selected label is copied into a workarea structure where
it can be modified. A segment of memory must be allocated
for the label structure. See the introduction to this subsec
tion, label Procedures, for information about the label
structure.

Procedural Interface

SetNextlabel (plabe/Ret, slabe/Ret): ErcType

plabe/Ret:

slabe/Ret:

Ere Type:

0:
7602:
7610:
7612:
7620:
7641:
7649:

Points to a structure where the label is to
be copied.

Specifies the maximum size of the structure.

No Error
An internal graphics error occurred
Picture must first be open
Picture is Read Only
Object must first be open
End of Label List was encountered
Insufficient memory

Graphics Library Procedures 8-75

Transformation Procedures
The transformation procedures are used to translate and
scale the current object so that its size, shape, or position is
altered on the display screen. The translation factors and
the scalar units are stored in the transformation list of the
current object. Thus, when a translated object is redrawn or
written to the display area from a picture file, the object is
drawn by first executing the vector list commands for the
full-size object. Then the object is transformed by using the
translation and scalar units in the transformation list. If the
object is translated or scaled again, the new units replace
the existing ones in the transformation list. Rotation is not
supported on this product.

An object must be designated as the current object before
the transformation procedures can be used.

There are five transformation procedures:

o GetTransformationData

o SetScale

o SetScaleRelative

o SetTranslate

o SetTranslateRelative

1182706

8-76 Graphics library Procedures

GetTransformationData

GetTransformationData returns the transformation values
for the current object. The values are returned in the follow
ing data structure of the variable pTransformRet:

Offset

0
3

7
11

Field

rXScale
rXTranslate
rYScale
rYTranslate

Procedural Interface

Size(bytes)

4
4
4
4

GetTransformationData (p TransformRet): Ere Type

p TransformRet: Points to the memory address where the
current object's transformation values
are to be returned.

Ere Type:

0:
7601:

No Error
lnitGraphics must be the first call issued

Graphics Library Procedures 8-77

SetScale
SetScale is used to change the size or shape of the current
object. It scales the current object from its full size by the
factors supplied in the parameters. If scaling causes any
part of the object to be moved outside the world coordinate
area, the error message ercBadTransformationParameter
will be returned.

The parameters, rXScale and rYScale, are real numbers
between 0 and 1. These units are saved in the transformation
list of the current object.

Procedural Interface

SetScale (rXScale, rYScale): ErcType

rXScale:

rYSca/e;

Ere Type:

0:
7601:
7602:
7620:
7647:

1182706

Specifies the scaling of the object in the X
direction.

Specifies the scaling of the object in the Y
direction.

No Error
lnitGraphics must be the first call issued
An internal graphics error
Object must first be open
Scale parameter too big

8-78 Graphics Library Procedures

SetScaleRelative
SetScaleRelative is used after SetScale to scale the object
further from its original size or shape. This procedure scales
the current object in the X direction by the current X scale
factor plus the relative X scale factor supplied in the param
eter. Likewise, the Y direction is scaled by the current Y
scale factor plus the relative Y scale factor supplied in the
parameter. If the scaling causes any part of the object to be
outside the world coordinate area, an ere
BadTransformationParameter error message is returned:

The scaling units are saved in the transformation list of the
current object.

Procedural Interface

SetScaleRelative (rXScaleRelative, rYScaleRelative):
Ere Type

rXScaleRelative: Specifies the scaling of the object relative
to the current scale in the X direction.

rYScaleRelative: Specifies the scaling of the object relative
to the current scale in the Y direction.

Ere Type:

O:
7601:
7602:
7620:
7647:

No Error
lnitGraphics must be the first call issued
An internal graphics error occurred
Object must first be open
Scale parameter too big

Graphics Library Procedures 8-79

SetTranslate

SetTranslate is used to move the current object to another
position in the current picture. This procedure translates the
current object from (0,0), the lower left corner of the world
coordinate area. The X and Y factors supplied in the param
eters are used to determine the new position. Objects
should be reduced by SetScale before they are translated. If
either of the translation factors causes part of the object to
be outside the world coordinate area, an
ercBadTransformationParameter error message is returned.

The X and Y unit parameters must be specified in world
coordinate system values. These translation units are saved
in the transformation list of the current object.

Procedural Interface

SetTranslate (rXTranslate, rYTranslate): ErcType

rXTranslate:

rYT rans/ate:

Ere Type:

0:
7601:
7602:
7647:
7620:

1182706

Specifies the translationin the X direction.

Specifies the translation in the Y direction.

No Error
lnitGraphics must be the first call issued
An internal graphics error occurred
Translate parameter is too big
Object must first be open

8-80 Graphics Library Procedures

SetTranslateRelative
SetTranslateRelative translates the current object from its
current position by the X and Y factors supplied in the
parameters. If either translation factor causes part of the
object to be outside the world coordinate area, an ercBad
TransformationParameter error message is returned:

The X and Y unit parameters must be specified in world
coordinate system values.

Procedural Interface

SetTranslateRelative (rXTranslateRe/ative,
rYTranslateRelative): ErcType

rXT ranslateRelative: Specifies the translation relative to
the current translation in the X
direction.

rYTranslateRelative: Specifies the translation relative to
the current translation in the Y
direction.

Ere Type:

0:
7601:
7602:
7620:
7647:

No Error
lnitGraphics must be the first call issued
An internal graphics error
Object must first be open
Translate parameter is too big

Graphics Library Procedures 8-81

Viewing Procedures
The viewing procedures alter the perspective from which
the current picture is viewed. By reducing the size of the
window and focusing on just a small part of the picture, for
example, the selected portion will be expanded to fit the
whole viewport. A large picture can be panned by moving a
small window from one position to another. The shape of
the window can also be changed to alter the aspect ratio.

The viewport can be modified to define a smaller portion of
the display area. The position or shape of the output display
can also be altered.

The viewing procedures operate on pictures, not objects,
and therefore, have no effect on the structure of the objects
within the picture. The vector list, label list and transforma
tion values for each object within the current pictures are
unchanged.

There are three viewing procedures:

o GetWindowData

o SetViewport

o SetWindow

1182706

8-82 Graphics Library Procedures

GetWindowData

GetWindowData returns the lower left and upper right
corners of current window. The values returned are world
coordinate units

Procedural Interface

GetWindowData (pWindowData): ErcType

pWindowData: Specifies the memory address where the
coordinate values for the current window
are returned. The format for the returned
values is:

Ere Type:

0:
7601:

rXMin,rYMin: The coordinates of the lower
left corner of the window
rXMax,rYMax: The coordinates of the upper
right corner of the window

No Error
lnitGraphics must be the first call issued

Graphics Library Procedures 8-83

SetViewPort

SetViewport defines the portion of the video display screen
that is to be used for the viewport. The default size is the
entire screen. Frequently some portion of the display screen
is needed for messages or forms. This is one instance when
the size of the viewport should be reduced to a smaller
portion of the screen.

Because the viewport defines the output device display
area, the coordinates supplied in the parameters are
normalized device coordinate values. See Appendix D.

Procedural Interface

SetViewPort (rXMin, rYMin, rXMax, rYMax): ErcType

rXMin:

rYMin:

rXMax:

rYMax:

Ere Type:

0:
7601:
7602:
7646:

1182706

Specifies the left edge of the viewport.

Specifies the bottom edge of the viewport.

Specifies the right edge of the viewport.

Specifies the top edge of the viewport.

No Error
lnitGraphics must be the first call issued.
An internal graphics error occurred
Parameters specified are not valid. They are not contained
within your workstation's defined viewport. Seei
Appendix D.

8-84 Graphics Library Procedures

SetWindow
SetWindow defines the portion of the picture that is to be
projected onto the viewport. The parameters define the
dimensions of the window, and they must be entered as
world coordinate system values. By changing the window,
it is possible to zoom in and out on a portion of the picture,
pan across the picture, and change the aspect ratio of the
picture in relation to the screen. See Appendix D.

Procedural Interface

SetWindow (rXMin, rYMin, rXMax, rYMax): ErcType

rXMin:

rYMin:

rXMax:

rYMax:

Ere Type:

0:
7602:
7646:

Specifies the left edge of the window.

Specifies the bottom edge of the window.

Specifies the right edge of the window.

Specifies the top edge of the window.

No Error
An internal graphics error occurred
An invalid parameter was given

Graphics Library Procedures 8-85

Cursor Procedures
The cursor procedures are used to position the cursor on
the display screen. The cursor can be set to refer to an
object, a picture, or the whole viewport. See Appendix D.

There are six cursor procedures:

o GetCursorPosition

o SetNDCCursorPosition

o SetObjectCursorPosition

o SetWorldCursorPosition

o TurnOffCursor

o TurnOnCursor

1182706

8-86 Graphics Library Procedures

GetCursorPosition
GetCursorPosition returns the position of the cursor. The
cursor's position is described in all the cursor positioning
units by normalized device units for the screen position and
by world coordinate units for the picture and object posi
tions. See Appendix D .

Procedural Interface

GetCursorPosition (pCursorStatusRet): Ere Type

pCursorStatusRet: Points to the memory address where the

Ere Type:

0:
7602:

current cursor position is returned in the
following format:

rXNDC (4 bytes)
rYNDC (4 bytes)
rXWorld (4 bytes)
rYWorld (4 bytes)
rXObject (4 bytes)
rYObject (4 bytes)

No Error
An internal graphics error occurred

Graphics Library Procedures 8-87

SetNDCCursorPosition
SetNDCCursorPosition is used to position the cursor
anywhere within the viewport. It moves the cursor to a
position defined by normalized device coordinates. The
cursor direction is also set. If the cursor is already visible
on the screen when this procedure is used, then the old
cursor is erased when the new one is drawn. See Appendix
D, World and NOC coordinates.

Procedural Interface

SetNOCCursorPosition (rX, rY, bDir): ErcType

rX: Specifies the X coordinate for the cursor position.

rY: Specifies the Y coordinate for the cursor position.

bDir: Specifies the direction of the cursor arrow.

Ere Type:

0:
7646:

1182706

O =up
1 = down
2 = right
3 = left

No Error
An invalid parameter was given

8-88 Graphics Library Procedures

SetObjectCursorPosition
SetObjectCursorPosition moves the cursor to a position
within the current object. The position is specified with
world coordinate system values and describes where the
cursor is to be in the full-size object. If the object is trans
formed, the cursor position is adjusted to remain in the
same relative position specified for the full-size object. The
direction of the cursor is also included.

Procedural Interface

SetObjectCursorPosition (rX, rY, bDir): ErcType

rX: Specifies the X coordinate for the cursor in the
current object.

rY: Specifies the Y coordinate for the cursor in the
current object.

bDir: Specifies the direction of the cursor arrow.

Ere Type:

0:
7602:

O =up
1 =down
2 = right
3 = left

No Error
An internal graphics error occurred

Graphics Library Procedures 8-89

SetWorldCursorPosition
SetWorldCursor moves the cursor to a position within the
current picture. The cursor is independent of any objects on
the screen and is, therefore, not moved when an object is
transformed. The position is specified with world coordinate
values, and the direction of the cursor is also included. See
Appendix D.

Procedural Interface

SetWorldCursorPosition (rX, rY, bDir): ErcType

rX: Specifies the X coordinate for the cursor in the
picture.

rY:

bDir:

Ere Type:

0:
7602:

1182706

Specifies the Y coordinate for the cursor in the
picture.

Specifies the direction of the cursor arrow.

0 =up
1 =down
2 = right
3 = left

No Error
An internal graphics error occurred

8-90

TurnOffCursor

TurnOffCursor turns off the cursor.

Procedural Interface

TurnOffCursor: Ere Type

Ere Type:

0: No error

Graphics Library Procedures

Graphics Library Procedures

TurnOnCursor

TurnOnCursor displays the cursor at its current location.

Procedural Interface

TurnOnCursor: Ere Type

Ere Type:

0: No error

1182706

8-91

8-92 Graphics Library Procedures

User-Replaceable Procedures
There are three User-Replaceable procedures contained
within the Graphics Library. These procedures are used
independently of one another to perform separate tasks.
They allow applicatioon programs to include special
processing capabilities within the Graphics Library.

Calls to these procedures are made from various Graphics
Library procedures which are discussed further in each of
the User-Replaceable procedures. The user can replace any
of these procedures with user written code to accomplish
a variety of functions. To replace the existing code with
your own code, you must remove the existing object code
from the Graphics.Lib file and add your own object code to
this file via the Librarian command. For instance, you may
want to write the message from the LoadPaper procedure
to a different location on your screen. If so, you could write
new code for LoadPaper to do this. The global variables
you need to manipulate these replaceable procerdures are
explained in detail under each procedure. There are three
Graphics Library procedures that can be replaced with user
replaceable versions:

o LoadPaper

o ReadlnterruptKey

o SetPen

Graphics Library Procedures 8-93

Load Paper

LoadPaper displays a message on the screen to tell the user
to load a piece of paper or transparency in the plotter.
This procedure is called by SetOutputDevice.

Procedural Interface

LoadPaper (fPaper) : ErcType

fPaper:

Ere Type:

0:

1182706

Indicates whether the output is to be paper or a
transparency.

OFFh = TRUE, the output is paper.

OOh = FALSE, the output is transparency.

No error

8-94 Graphics Library Procedures

ReadlnterruptKey

ReadlnterruptKey enables an application to interrupt the
process of displaying a picture. This procedure is called
from within DisplayPicture if the parameter flnterruptOnKey
is set to TRUE. After the interrupt occurs, processing
continues within the DiplayPicture procedure. The default
version of ReadlnterruptKey returns a status code of zero.

Procedural Interface

ReadlnterruptKey: ErcType

Ere Type:

O: No error

Graphics Library Procedures 8-95

SetPen
SetPen enables an application to halt the plotter output
while the user changes one of the pens. A message on the
video display screen instructs the users to switch pens. This
procedure is called from within the DisplayPicture procedure
when the plotter is the output device and a color attribute
is encountered. SetPen is called to compare the color with
the numbers of the pens that are loaded in the plotter. If
the correct pen is already loaded, SetPen sets a change pen
flag to FALSE. Processing continues without notifying the
user to change the pen. The DisplayPicture procedure knows
from the flag that the pen does not have to be changed.

If the specified pen is not loaded, the change pen flag is set
to TRUE, the plotter output halts, and the user is notified
to change the pen. The pen number should be set to 1 if
the new pen is in the left pen holder and 2, if the new pen
goes on the right. SetPen returns the pen that is to be
changed to its holder before the plotter output is interrupted.

SetPen, as described here, is the default version. Applica
tions designers can modify or replace the default SetPen
process with another version.

Procedural Interface

SetPen (piColor, pfChangePen) : Ere Type

piCo/or

pfChangePen

1182706

Points to the memory address of the pen
number.

Points to the memory address of the change
pen flag.

Section 9

Configuring Application Programs
for Graphics

Introduction

9-1

Before you can use your program with Graphics, you must
reconfigure the language in which it is written. The following
instructions, organized according to language, describe the
steps you must take to do this. Refer to the appropriate
language manuals if you need more detailed information
about this process.

Applications written for B 20 Systems Graphics are source
code compatible with BTOS Systems Graphics, but are not
object code compatible. If you wish to run previously
written applications on a B 27, you must use the procedure
SetColumnMode. For all workstations, you must recompile
and/or relink your source code with Graphics. Follow the
steps below.

BASIC
The language needs to be reconfigured before graphics
applications will work. This involves the following:

1 Edit the file <Sys>BasGen.Asm.

2 Remove the comment symbols that are next to the Table
Entries (calls) in the Graphics section(s) that are being
used in your application program(s).

3 Save the file when done.

4 Assemble the file <Sys>BasGen.Asm using the following
instructions:

If you are using Graphics Manager calls or Graphics
Library calls, always type Yes to following question:

Are you calling Graphics Manager?

Always type Yes after each of the following questions if
you are calling the Graphics Library:

Are you calling ConvertTo8087?
Are you calling Graphics Manager?
Are you calling Graphics Library?

For both Graphics Manager and Graphics Library, Type
Yes after all appropriate questions.

11R?7nFl-nn1

I

9-2 Configuring Application Programs for Graphics

5 Submit the file <Sys>LinkBasic.Sub (for BASIC Interpreter
only).

Note: If you are calling Graphics Library routines, the
following files must be specified in the linker form:

Field File
Object module<Sys>gfxGPAMDum.obj

<Sys> MapGraphicsWindow. obj
[Libraries] <Sys>Graphics.lib

Press GO after filling in the appropriate information.

You must recompile all application programs that will be
using graphics. Even if you are only using the Graphics
Manager routines, the programs must be recompiled.

6 (For BASIC Complier only) Recompile your program,
including in the [BasGen File] field of the compiler form,
<Sys>BasGen.obj.

To use the Basic Compiler, relink your programs after
successfully compiling them. If you are using calls to the
Graphics Library, be sure to include <SYS>Graphics.lib in the
[Libraries] field and<sys>gfxGPAMDum.obj in the Object
Module field of the Linker form. Go to Step 4 if you are
using the BASIC Interpreter.

Be sure to install Graphics Manager before you run a
compiled BASIC program or use the BASIC interpreter.

COBOL
You must reconfigure COBOL in order to run graphics
applications. Take the following steps:

Edit the file <Sys>CobolGen.Asm.

2 Remove the comment symbols that are next to the Table
Entries (calls) in the Graphics section(s) that are being
used in your application program(s).

3 Save the file when done.

4 Assemble the file <Sys>CobolGen.Asm using the
following instructions:

Answer YES to "Are you calling Graphics Manager?"
Always answer YES to this.

Answer YES to all other appropriate calls that your
application program(s) will be using.

I 5 Submit the file LinkCobol.sub.

Configuring Application Programs for Graphics

6 Press GO after filling in the appropriate information.

You must recompile all application programs that will be
using graphics. Even if you are only using the Graphics
Manager routines, the programs must be recompiled.

9-3

If the Graphics Manager has not been installed on your
system, invoke the Install Graphics Manager command and
press GO. You are now ready to use Graphics.

FORTRAN
The language needs to be reconfigured before graphics
applications will work. This involves the following:

Edit the file <Sys>ForGen.Asm.

2 Remove the comment symbols that are next to the Table
Entries (calls) in the Graphics section(s) that are being
used in your application program(s).

3 Save the file when done.

4 Assemble the file <Sys>ForGen.Asm using the following
instructions:

Answer YES to "Are you calling Graphics Manager?"
Never answer NO to this.

Answer YES to "Are you calling Graphics Library?" if
you are going to use these calls.

Answer YES to all other appropriate sections that your
application program(s) will be using.

You must recompile all application programs that will be
using graphics. Even if you are only using the Graphics
Manager routines, the programs must be recompiled.

Relink the programs after successfully compiling them.
Include the file <Sys>ForGen.obj in the "Object Modules"
field of the Linker form.

Note: If you are calling Graphics Library routines, the following
files must be specified in the linker form:

Field File
Object module <Sys> gfxGPAMDum .obj

<Sys>MapGraphicsWindow.obj
[Libraries] <Sys>Graphics.lib

If the Graphics Manager has not been installed on your
system, invoke the Install Graphics Manager command and
press GO. You are now ready to use Graphics.

I

9-4 Configuring Application Programs for Graphics

Pascal
You must recompile all application programs that will be
using graphics. Even if you are only using the Graphics
Manager routines, the programs must be recompiled.

Relink the programs after successfully compiling them.

/Vote: If you are calling Graphics Library routines, the following
files must be specified in the linker form:

Field File
Object module <Sys>gfxGPAMDum.obj
[Libraries] <Sys> Graphics.lib

If the Graphics Manager has not been installed on your
system, invoke the Install Graphics Manager command and
press GO. You are now ready to use Graphics for BTOS
Systems.

Section 10 10-1

Printers and Plotters
This section contains information on printer and plotter
configurations for all BTOS workstations. It explains how to
create and modify configuration files for both direct and
spooled printing and plotting. Read the section on printing in
the BTOS Standard Software Operations Guide for more
information on configuration files, direct printing and
plotting, and spooled printing and plotting.

The Graphics Library installation disks contain six
configuration files for printing and plotting, which are copied
to your [Sys]<Sys> directory during installation.

The two Burroughs supported printer configuration files are:

GraphicsPrinterConfig.sys
LaserPrinterConfig. sys

The four nonsupported plotter configuration files are:

PlotterConfig.sys Direct for Hewlett-Packard
HPPlotterConfig.sys Spooled for Hewlett-Packard
StrobeConfig.sys Direct for Strobe
StrobePlotterConfig.sys Spooled for Strobe

Sixteen peripherals are used by the Graphics Library.
Peripherals supported by Burroughs are:

Burroughs AP1311 Multi Function Printer
Burroughs AP 1351 Multi Function Printer
Burroughs AP 1351/1 Multi Function Printer
Burroughs AP 1 314 Dot Matrix Printer
Burroughs AP1354 Dot Matrix Printer
Burroughs AP9208 Non-Impact Laserc Printer (serial only)
Burroughs B9253 Dot Matrix Printer I
Peripherals not supported by Burroughs are:

Hewlett-Packard Model HP7220C 8-pen plotter
Hewlett-Packard Model HP7220T 8-pen plotter
Hewlett-Packard Model HP7470A 2-pen plotter
Hewlett-Packard Model HP7475A 6-pen plotter
Strobe Model 100 1-pen plotter
Printronix MVP dot-matrix printer
Envision 420 dot-matrix printer
Anadex 9620 dot-matrix printer
Okidata Microline 93 dot-matrix printer
Dataproducts 8010 dot-matrix printer

1182706-001

10-2 Printers and Plotters

Direct and Spooled Printing
In direct printing, a printer or plotter is physically attached to
one workstation and it cannot be shared by any other
workstations on the cluster. During direct printing, the
printer will not process requests unless it is in a Ready state
and no other requests can be processed until printing is
complete. In spooled printing, a printer or plotter is shared by
the other workstations on the cluster, regardless of where it
is physically attached. During spooled printing, print
requests are sent to a queue, which allows the processor to
continue with the next task. Spooled peripherals must be
recognized by the Queue Manager.

Installing Printers and Plotters
To install a printer/plotter on your system for spooling,
complete the following steps:

11/ote: If you are spooling to a AP9208 laser printer, and your
BTOS workstation is connected to an XE 520, do the
following:

° Connect the AP9208 laser printer to one of the RS 232
ports on your workstation.

0 Install the spooler at your workstation.

Verify that your printer/plotter switch settings match the
parameters in your configuration file.

2 Create/Modify the Queue.Index file.

3 Create/Modify a Spooler configuration file (SplCnfg.sys).

4 Reboot your system if you create or modify either the
Queue.Index or SplCnfg.sys files.

5 Install the Queue Manager.

6 Install the spooler.

Printers and Plotters 10-3

Configuration File Contents

The following printer and plotter configuration files, labeled
A through F, correspond to configuration files A through F in
Table 1 0-1 . Look up your printer or plotter configuration file
in Table 10-1 and use the corresponding configuration file
parameters to set your printer or plotter switches for
Graphics. See your printer or plotter operator's guide for
more information on setting switches.

A PlotterConfig.sys Hewlett-Packard (direct)

B HPPlotterConfig.sys Hewlett-Packard (spooled)

c StrobeConfig.sys Strobe (direct)

D StrobePlotterConfig.sys Strobe (spooled)

E GraphicsPrinterConfig. sys Printing (direct and spooled)

F LaserPrinterConfig. sys AP9208 (direct and spooled, serial only)

Table 10-1 Printer and Plotter Switch Settings

Configuration File Parameters Configuration Files

A B c
Data bits 7 7 8

Parity 0 0

Baud rate 2400 2400 2400

Stop bits 1 1 1

Transmit time out 60 60 5

Receive time out 60 5

CR/LF mapping mode binary binary

Newline mapping mode binary binary binary

Line control XonXoff XonXoff XonXoff

EOF byte 04 04

Tab expansion size 8

Number of characters per line 132

1182706-001

I

10-4 Printers and Plotters

Configuration File Parameters Configuration Files

D E F

Data bits 8 8

Baud rate 2400 9600

Stop bits 1 1

Transmit time out 60 60 20

Newline mapping mode binary binary binary

Line control XonXoff XonXoff

Tab expansion size 8 0 0

Number of characters per line 80 132 132

Additional ACK delay 0

/Vote: Blank spaces in the table indicate that the associated
parameter is not applicable.

Your release disk contains three Sample files to help you set
up the appropriate spooler, queue, and printer configurations
for your system. These files are:

Sample>Oueuelndex

Sample> SplCnfg. Sys

Sample> Sys. Printers

Do not overwrite your corresponding <Sys> files with any
of these samples. Instead:

1 Examine the contents of each sample file.

2 Identify the individual configuration lines appropriate for
your system.

3 Copy the appropriate lines from the sample file into your
existing configuration file.

Printers and Plotters 10-4A

Queue.Index File
The file Queue.Index resides on the master workstation.
You can modify this file to accept new queue names for
spooled output. If it does not exist on the master, you can
create this file.

To modify an existing Queue.Index file, enter the necessary
fields as follows:

Queue Name/ FtleSpec/ EntrySize/Queue Type

OueueName A user-defined name that is unique to the
installation and less than 50 characters in length with no
spaces. These names must not be the default system
device names.

FileSpec This is the queue entry file that stores queue
entries. Use the (Sys)<Spl> directory for this file.

EntrySize Specifies the size of an entry for the queue entry
file in 512-byte units. The standard entry size is 1.

OueueType Specifies the type of queue. This number must
be less than 255. Zero through 80 are reserved numbers.
For reference, 1 implies a printer/plotter spooler queue, 2
implies an RJE queue, and 3 implies a batch queue. An
example of a Queue.Index entry for plotters is:

PLOT/[SYS)<SPl>PLOT.Queue/1/1

1182706-001

Printers and Plotters

To create a Queue.Index file, define one queue entry for a
generic printer/plotter, a Control Queue for each specific
printer/plotter, and a Spoolerstatus Queue.

10-5

A Control Queue is the user-defined name, with Control
appended to it, that will be used by the application to
access a specific printer/plotter. A control name for each
specific printer/plotter is needed. An example of a Control
Queue is:

2PenPlotterCONTROL/[SYS]<SPl>2PenPlotterCONTROL.Queue/1/1

A Spoolerstatus Queue is a queue by the name of
Spoolerstatus.

An example of a new Queue.Index file is:

PLOT/[SYS]<spl>PLOT.Queue/1/1
2PenPlotterCONTROL/[SYS]<spl>2PenPlotterCONTROL.Queue/1/1
SPOOLERSTATUS/[SYS]<SPl>SPOOLERSTATUS.Queue/1/1

SplCnfg.Sys File

An entry in the [Sys]<Sys>SplCnfg.sys file must be made if
the peripheral is to be a spooled device. The format for this is:

Channel/Name/QueueName/ConfigurationFileSpec/Priority/Banner

Channel A single character code to designate the channel
(port) to be used by the printer/plotter. The codes are as
follows:

Code Channel

0 Parallel
A Serial A
B Serial B
c

Name Must be the same QueueName prefix from the
CONTROL name in the Queue.Index file (e.g., 2PenPlotter).

QueueName Must the same name as the generic
printer/plotter name in the Queue.Index file (e.g., PLOT).

ConfigurationF!leSpec The configuration file names (e.g.,
HPPlotterConfig .sys).

Priority Set to a value between 129 and 254.

118770R-On1

10-6 Printers and Plotters

Banner Determines if a banner page is printed at the
beginning of each file or not. Default is N (no).

An example of an entry into the [Sys]<Sys>SplCnfg.sys is:

B/2PenPlotter/PLOT/[SYS)<sys>HPPlotterConf ig.sys/130/N

Appendix A A-1

Sample Programs
This section contains five sample programs. There is one
Graphics Manager program for each language. Each program
creates the same abstract line design. The BTOS calls,
SetScreenVidAttr, and ResetFrame are included in the
sample programs for screen manipulation. For more details
about these two calls, refer to BTOS Reference Volumes I
and II. Following these four programs, there is a Pascal
program which uses Graphics Library calls to draw an
illustration of a smiling cat.

To make your programs work in BASIC, COBOL or FORTRAN,
you need to reconfigure the language so that the run file
for the specific language includes graphics object modules.
Complete the following steps where necessary. Refer to
the appropriate language manual if you need more help.
Also, these steps are explained in more detail in Section 9.

1 Make sure that the comment symbols are removed from
the appropriate Table Entries (under the Graphics section)
in the language.asm file. Only the calls used in the sample
programs need to be uncommented. This applies to
BASIC, COBOL and FORTRAN.

2 Assemble the appropriate "language".asm file. Type Yes
to the prompt GRAPHICS. This applies to BASIC, COBOL
and FORTRAN.

3 For BASIC and COBOL, recreate the run file for the
language by submitting the file "StartCOBOLLink.sub" or
"StartBASICLink.sub".

For FORTRAN, when you link the sample program, be
sure to include the file "<sys>ForGen.obj" in the object
module field of the Link form.

4 Run the program.

1182706

A-2 Sample Programs

COBOL Graphics Manager Program

**
COBOL Graphics Manager Program
Remember, you must have at least 640 K to run COBOL!
**

WORKING-STORAGE SECTION.
01 ERC PIC 9(4) 001-P VALUE ZEROES.
01 ERC-TEMP PIC 9(4).
01 ><Center PIC 9(4) COt-P.
01 yCenter PIC 9(4) COt-P.
01 WX2 PIC 9(4) COl-P VALUE O.
01 WY2 PIC 914) COllP VALUE O.
01 Zero-Value PIC 9(4l COl-P VALUE O.

***** Below Is the structure that Is returned from GetRasterlnfo.

*
*
*
*
*

*
*

*

01 Rlnfo.
05 cntplanes PIC 9(4) COW.
05 BytesPerLlne PIC 9(4) cow.
05 wWldth PIC 914) cow.
05 wHelght PIC 914) COW.
05 wVWldth PIC 914> COllP.
05 wVHelght PIC 9(4) COllP.
05 pPlene PIC 9(9) COllP OCCURS 3 Tllo£S.

PROCEDURE DIVISION.

lnltlallze Graphics.

CALL "&INITSCREENGRAPHICS" USING ERC.
IF ERC IS NOT EQUAL TO 0

GO TO Mistake.

The number of plxels varies on the different workstations.
A call to GetRasterlnfo ls used to make this program run
correctly on all workstations, regardless of the differences
In the number of plxels. In other words, this call allows
this device dependent program to run Independently of the
workstation hardware.

CALL "&GETRASTERINFO" USING ERC, Rlnfo.
IF ERC IS NOT EQUAL TO 0

GO TO Mistake.

These ConvertWord procedures must be called ln,order
to us~ the Information returned by GetRasterlnfo as
Integer values.

PERFORM Convert-Para.

Calculate the center X and Y coordinates of the screen
with the Information returned by GetRasterlnfo.

Sample Programs

*
*

*
*
*
*

DIVIDE wVWldth BY 2 GIVING XCenter.
DIVIDE wVHelght BY 2 GIVING yCenter.

Draw llnes from the center of the screen outwards using
the Information returned from GetR11sterlnfo 11s the end of
the X vector and then the end of the Y vector.

To produce the Moire pattern, one of the coordinates In
Dr11wScreenLlne must be 11 v11rl11ble AND must be either Increased
or decreased In "steps" greater than t. The "stepping factor"
needed to produce the pattern varies depending on the type
of workstation.

PERFORM Dr11w..P11r11 VARYING WX2 FROM 0 BY 5
UNTIL WX2 IS > wVWldth.

PERFORM Dr11w-P11r112 VARYING WY2 FR>M 0 BY 5
UNTIL WY2 IS > wVHelght.

STOP RUN.

Convert-Para.
Call "&OoNVERTWORD" USING wVWldth,
Cal I "&CONVERTWORD" USING wVHelght,

wVWldth.
wVHelght.

Draw-Para.

CALL "&DRAWSCREENLINE" USING ERC,
XCenter,yCenter,WX2,Zero-V11lue.

IF ERC IS NOT EQUAL TO 0
00 TO Mistake.

CALL "&DRAWSCREENLINE" USING ERC,
XCenter,yCenter,WX2,wVHelght.

IF ERC IS NOT EQUAL TO 0
00 TO Mistake.

**
Draw-Parll2.

CALL "&DRAWSCREENLINE" USING ERC,
XCenter,yCenter,Zero-V111ue,WY2.

IF ERC IS NOT EQUAL TO 0
00 TO Mistake.

CALL "&DRAWSCREENLINE" USING ERC,
XCenter,yCenter,wVWldth,WY2.

IF ERC IS NOT EQUAL TO 0
00 TO Mistake.

**
Mistake.

M:>VE ERC TO ERC-TEMP.
DI SPLAY ERC-TEMP UPON CRT.
STOP RUN.

**
End of O>BOL Graphics M11n11ger Program
**

1182706

A-3

A-4 Sample Programs

Pascal · Graphics Manager Program
(This Is en exemple of e program In Pesce!.)

PROGRAM Demo;

TYPE
POINTER • ADS OF WORD;
This Is the structure that Is returned from GetResterlnfo.>

ResterlnfoType • RECORD
cntPlenes
wBytesPerl lne
wWldth
wHelght
wVlrtuelWldth
wVlrtuelHelght
pPlene

END;

VAR.
ResterStuff
XCenter
yCenter
J
ere
DONE

: Word;
Word;

: Word;
Word;
Word;
Word;
Arrey !0 •• 21 of POINTER;

: ResterlnfoType;
: Word;
: Word;
: Word;
: Word;
: Booleen;

FUNCTION
FUNCTION
FUNCTION
FUNCTION

lnltScreenGrephlcs
GetResterlnfo <pbResterlnfo:POINTER>
DrewScreenLlne <wX1,wY1,wX2,wY2:WORD>
SetScreenV ldAttr(IAttr: INTEGER; fOn:Booleen>:

PROCEDURE ERROREXIT<erc:Wordl;

PROCEDURE Error(erc:Wordl;
BEGIN

If ere> 0 then ErrorExlt<ercl;
END;

BEGIN

DONE :• FALSE;

lnltlel lze Grephlcs.

Error(lnltscreenGrephlcs>;

WORD; EXTERN;
WORD; EXTERN;
WORD; EXTERN;
WORD; EXT~;

EXTERN;

This turns off the cherecter video refresh, so thet only
grephlcs lmeges ere dlspleyed.

Error(SetScreenVldAttr(1,FALSE>>;

The number of pixels verles on the different workstetlons.
A cell to GetResterlnfo Is used to meke this progrem run

Sample Programs

correctly on all workstations, regardless of the differences
In the number of plxels. In other words, this call allows
this device dependent program to run Independently of the
workstation hardware.

Error<GetRasterlnfo<ADS RasterStutt>>;

Calculate the center X and Y coordinates of the screen with
the Information returned by GetRasterlnfo.

XCenter :• RasterStuff.wVlrtualWldth DIV 2;
yCenter :• RasterStuft.wVlrtualHelght DIV 2;

Draw llnes from the center of the screen outwards
using the Information returned from GetRasterl nfo as
the end of the X vector and then the end of the Y vector.

To produce the Moire pattern, one of the coordinates In
DrawScreenLlne must be a variable AND must be either
Increased or decreased In "steps" greater than 1. The
"stepping factor" needed to produce the pattern varies
depending on the type of workstation.

:•0;

REPEAT

A-5

Error<DrawScreenLlne<XCenter, yCenter, J, O>l; ·
Error<DrawScreenLlne<XCenter, yCenter, J, RasterStuff,wVlrtualHelght>>;

J :• J + 5;

If J > RasterStuff,wVlrtualWldth THEN

DONE :• TRUE;

UNTIL DONE;

J :•0;

DONE :•FALSE;

REPEAT

Error<DrawScreenLlne<XCenter, yCenter, O,J>>;
Error<DrawScreenLlne<XCenter, yCenter, RasterStuff,wVlrtualWldth, J>>;

J :• J + 5;

If J > RasterStuff.wVlrtualHelght THEN

DONE :• TRUE;

UNTIL DONE;

END.

1182706

A-6 Sample Programs

BASIC · Graphics Manager Program

10 REM This ls an example of 11 Graphics Manager program In BASIC.
20 OPTION BASE 0
30 REM
40 REM
50 REM
60 REM
70
80 REM
90 REM
100 REM
110
120
130 REM
140 REM
150 REM
160 REM

Set up an array to hold the structure that ls
returned from the cal I GetRasterl nfo.

DIM RASTERINfOSl121

lnltlallze Graphics.

ERCS • IN ITSCREENGRAPH I CS 0
If ERCJ <> 0 THEN ERROREXIT<ERCS>

This turns off the character video refresh, so that
only graphics Images are displayed.

170 ERCS • SETSCREENVIDATTR<1,0>
180 If ERCS <> 0 THEN ERROREXIT<ERd>
190 REM
200 REM
210 REM
220 REM
230 REM
240 REM

The number of pixels varies on the different workstations.
A call to GetRasterlnfo Is used to make this program run
correctly on all workstations, regardless of the differences
In the number of pixels. In other words, this call allows
this device dependent program to run Independently of the

250 REM workstation hardware.
260 REM
270 ERCS • GETRASTERINfO(PTR<RASTERINfOSIOll)
280 If ERCS <> 0 THEN ERROREXIT<ERd>
290 REM
300 REM
310 REM
320 REM

Calculate the center X coordinate of the screen
with the Information returned by GetRasterl nfo.

330 XCENTERS • RASTERINfOSl41 I 2
340 REM
350 REM Calculate the center Y coordinate of the screen
360 REM with the Information returned by GetRasterlnfo.
370 REM
380 YCENTERS • RASTERINfOSl51 I 2
390 REM
400 REM
410 REM
420 REM
430 REM
435 REM
440 REM
450 REM
460 REM
470 REM
480 REM

Draw 11 nes from the center of the screen
outwards using the Information returned from
GetRasterlnfo as the end of the X vector and then
the end of the Y vector.

To produce the Moire pattern, one of the coordinates In
DrawScreenl.lne must be a variable AND must be either
Increased or decreased In "steps" greater than 1. The
"stepping factor" needed to produce the pattern varies
depending on the type of workstation.

Sample Programs A-7

490 REM
500 FOR J% • 0 TO RASTERINFO%l41 STEP 5
510 ERC% • DRAWSCREENLINE<XCENTER%,YCENTER%,J%,O>
520 IF ERC% <> 0 THEN ERROREXIT(ERC%>
530 ERC% • DRAWSCREENLINE(XCENTER%,YCENTER%,J%,RASTERINFO%l51l
540 IF ERC% <> 0 THEN ERROREXIT<ERC%>
550 NEXT J%
560 FOR J% • 0 TO RASTERINFO%l51 STEP 5
570 ERC% • DRAWSCREENLINE<XCENTER%,YCENTERJ,O,J%>
580 IF ERC% <> 0 THEN ERROREXIT<ERC%>
590 ERCJ • DRAWSCREENLINE(XCENTER%,YCENTER%,RASTERINF0%141,J%>
600 IF ERC% <> 0 THEN ERROREXIT<ERC%>
610 NEXT JS
999 END

1182706

A-8 Sample Programs

FORTRAN Graphics Manager Program

C This Is an example of a Graphics Manager program In FORTRAN

Subroutine ChkErc<lerc>
If Clerc.NE.Ol RETURN
Cal I tmerex< lercl

End

POOGRAM ID DElofJ

lmpl lclt Integer <g,x,t,y,vl
lmpl lclt lnteger*2 <rl
external grlsgr
external grdsln
external grraln
external tmerex
external vdstsa

C Set up an array to hold the structure that Is
C returned from the call GetRasterlnfo.

dimension Rlnfo(12l

C lnltlallze Graphics.

Cal I ChkErc(grlsgrO>

C This turns off the character video refresh, so only graphics
C Images are dlsplayed.

Call ChkErc(vdstsa<l,Oll

C The number of pixels varies on the different workstations.
CA call to GetRasterlnfo ls used to make this program run
C correctly on all workstations, regardless of the differences
C In the number of pixels. In other words, this call allows
C this device dependent program to run Independently of the
C workstation hardware.

Call ChkErc(grraln<Rlnfp{llll

C Calculate the center X and Y coordinates of the screen with
C the Information returned by GetRasterlnfo.

xCenter = Rlnfo(5l/2
yCenter = Rlnfo<6l/2

C Draw lines from the center of the screen outwards, using
C the Information returned from GetRasterlnfo as the end of the
C X vector and then the end of the Y vector.

Sample Programs

C To produce the Moire pattern, one of the coordinates In
C DrawScreenLlne must be a variable AND 111.1st be either
C Increased or decreased In "steps" greater than 1. The
C "stepping factor" needed to produce the pattern varies
C depending on the type of workstation.

do 10 j•O,Rlnfo(5l,5

Call ChkErc<grdsln<xCenter,yCenter,j,Oll

Call ChkErc<grdsln<xCenter,yCenter,j,Rlnfo<6lll

10 continue

do 20 J•O,Rlnfo<6l,5

Cal I ChkErc<grdsln<xCenter,yCenter,O,J ll

Call ChkErc(grdsln<xCenter,yCenter,Rlnfo(5l,jll

20 continue

stop
end

1182706

A-9

A-10 Sample Programs

Pascal • Graphics Library Program
(This Is an example of a Graphics Library program In Pascall
(Remember to Include the Graphics Library In the Link form.

PROGRAM Demo(INPUT ,OUTPUT);

TYPE
POINTER • ADS OF WORD;

VAA
GraphlcsMem
Ere
MSG

CONST
PlcMode=l6D77;

POINTER;
WORD;
LStrlngCSOl;

FUNCTION AddObject (pbObjectName:POINTER;cbObJectName:WORD;
rXMln,rYMln,rXMax,rYMMax:REALl

FUNCTION Al locMemorySL<cBytes:WORD;ppSegmentRet:POINTER)
FUNCTION CloseObject

: WORD; EX TERN ;
: WORD; EXTERN;
:WORD; EXTERN;

FUNCTION ClosePlcture(fSave:BOOLEANl :WORD; EXTERN;
FUNCTION DrawArcCrXCenter,rYCenter,rSRadlus,rAng1,rAng2:REALl:WORD; EXTERN;
FUNCTION DrawClrcleCrXCenter,rYCenter,rSRadlus:REALl :WORD; EXTERN;
FUNCTION DrawLlnetrX1,rY1,rX2,rY2:REALl :WORD; EXTERN;
FUNCTION FlllRectangletrXMln,rYMln,rXMax,rYMax:REAL;

bFI I IType:BYTEl : WORD; EXTERN;
FUNCTION lnltGraphlcs :WORD; EXTERN;
FUNCTION Move<rX,rY:REALl :WORD; EXTERN;
FUNCTION OpenPlctureCpbPlcName:POINTER;cbPlcName:WORD;

pbPassWord:POINTER;cbPassWord:WORD;Mode:WORD;
pMemory:POINTER;cParasMemory:WORDl :WORD; EXTERN;

FUNCTION ResetFrameCIFrame:WORDl :WORD; EXTERN;
FUNCTION SetCharacterSlze(rSChars:REALl
FUNCTION SetDrawtngMode(IMode:WORDl
FUNCTION SetLabelOrlgln(bLorg:BYTEl
FUNCTION WrlteTextStrlngCpbStrlng:POINTER;cbStrlng:WORDl

PROCEDURE ERROREXIT(erc:Wordl

PROCEDURE Error(erc:Wordl;
BEGIN

If ere> O then ErrorExltCercl;
END;

BEGIN

: WORD; EXTERN;
: WORD; EXTERN;
:WORD; EXTERN;
: WORD; EXTERN ;

EXTERN;

(Allocate short lived memory for the picture tile workarea.)

ErrorCAllocMemorySL<IFOOO, ADS GraphlcsMemll;

(Initialize graphics.)

Sample Programs A-11

Error<lnltGraphlcs>;

< Open a picture In write mode. >

Error(OpenPlcture<ADS 'DemoPlc',7,ADS ' ',O,PlcMode,GraphlcsMem,IOFOO>>;

< Add an object and set user coordinates. >

Error<Add:>bject(ADS 'Objec10ne' ,9,0,0, 100, IOO»;

Clear the screen so that only the graphics Images wlll appear.)

Error<ResetFrame<O>>;
Error(ResetFrame<I>>;
Error<ResetFrame(2)l;

Begin drawing the Image. This program uses the following drawing
functions; DrawClrcle, FlllRectangle, OrawArc, Move, and DrawLlne,)
SetCharacterSlze, SetlabelOrlgln and Move are used to set up the >
size and position of a message that wlll appear on the screen. >

Error<DrawClrcle(50,50,40ll;

Error<DrawClrcle(40,70,IO>>;

Error<DrawClrcle<60, 70, 10) >;

Error<DrawClrcle(46,70,2ll;

Error<DrawClrcle(54,70,2l>;

Error<Fll1Rectangle(45,40,55,50,5ll;

Error<DrawArc(50,35,20,3.14,6.28ll;

Error<SetCharacterSlze<0.5ll;

Error<Setlabel0rlgln(2ll;

Error<Move<30,05ll;

MSG:s•Press <RETURN> to exit program';

Error<WrlteTextStrlng<ADS MSGlll, WROCMSGIOll)l;

Error(Orawllne<45,42,20,36ll;

Error<DrawLlne(45,45,20,42ll;

Error<DrawLlne<45,50,20,56ll;

1182706

A-12

Error(Drawllne(55,42,80,36));

Error<DrawLlneC55,45,80,42));

Error<Drawllne(55,50,B0,56>>;

< Walt for Input from the keyboard.

Read In;

< Close the object and close the picture.

Error<CloseObject>;

Error(ClosePlctureCFALSEl>;

ENO.

Sample Programs

Appendix B B-1

Drawing Modes and Fill Patterns

Drawing Modes
The table below demonstrates the effect of the four drawing
modes on a three plane color system. The initial values for
the planes, the line type and modes are indicated. Drawing
is performed in color three. The background color on
Burroughs graphics workstations is 0. Drawing modes
cannot be printed or plotted; they can only be displayed.
See Figure B-2 for examples of the drawing modes.

Plane

0
1
2

Value

01010101
00110011
00001111

Set

01111101
01111011
00000110

Line Type: 01101001
iColor: 3
Background color:

Fill Patterns
Figure B-1 Fill Patterns

0

Clear

00010100
00010010
00000110

XOR

00111100
01011010
01101110

Replace

01101001
01101001
00000000

The current drawing mode and line type do not affect the
appearance of the vectors drawn in a fill pattern. For
example, a rectangle that is drawn in a solid fill pattern
remains solid, regardless of which drawing mode or line
type is current. However, any vectors drawn over that
rectangle will be drawn in the current drawing mode and line
type.

1182706-001

B-2 Drawing Modes and Fill Patterns

Figure B-2 Drawing Modes

Background

~ """"

Set

I ~ I C>rn

I ~ I Com .. rn•o<

I ~ 1 "'

Appendix C C-1

Graphics Manager Virtual
and Physical Pixel Resolution
Table C-1 BO-Column Mode Pixel Resolution

Workstation Screen Size Physical Virtual

B 21 (431),(318) (431). (318)
B 22 (655),(509) (655), (509)
B 25 (719).(347) (1439),(1043)
B 27 12-lnch Mono (719),(479) (1328). (959)
B 27 15-lnch Mono (719),(479) (1247). (959)
B 27 14-lnch Color (719).(479) (1247), (959)
B 28 (719),(347) (1439).(1043)

Table C-2 132-Column Mode Pixel Resolution

Workstation Screen Size Physical Virtual

B 22 (655),(509) (655), (509)
B 27 12-lnch Mono (791),(479) (1339). (959)
B 27 15-lnch Mono (791),(479) (1266), (959)

Note: Because the first coordinate in a display is (0, 0), not
(1, 1), the actual physical and virtual resolution of each
machine is one pixel higher than noted in the previous tables.
For example, the actual physical resolution for the B 25 in
BO-column mode is 720 by 348. The following illustration
indicates a screen display where (x,y) is a physical or virtual
coordinate from one of the previous tables.

+ -- + (x, y)

(0' 0) + -- +

Note: Because all machines have different virtual pixel
resolutions, make your programs as device-independent as
possible; use GetRasterlnfo (a Graphics Manager request, see
Section 7) to determine virtual and physical pixel resolutions.

1182706-001

Appendix D

Graphics Library Aspect Ratios
World and NOC Coordinates
Table D-1 BO-Column Mode Coordinates

Workstation

B 21
B 22
B 25
B 27
B 27
B 27
B 28

Table D-2

Workstation

B 22
B 27
B 27

Screen Size

12-lnch Mono
15-lnch Mono
14-lnch Color

World
Coordinate

(100.0),(73.78)
(100.0),(77.70)
(100.0),(72.50)
(100.0),(72.23)
(100.0),(76.92)
(100.0),(76.92)
(100.0),(72.50)

132-Column Mode Coordinates

World
Screen Size Coordinate

(100.0),(77.70)
12-lnch Mono (100.0),(71.64)
15-lnch Mono (100.0),(75. 76)

D-1

Normalized
Device Coordinate

(1.000),(0.7378)
(1.000),(0.7770)
(1.000),(0.7250)
(1.000),(0.7223)
(1.000),(0. 7692)
(1.000),(0. 7692)
(1.000),(0.7250)

Normalized
Device Coordinate

(1.000),(0.7770)
(1.000),(0.7164)
(1.000),(0.7576)

R/ote: The coordinates listed in the previous tables are based on
the first coordinate being (0,0). The following illustration
indicates a screen display where (x,y) is a coordinate from one
of the previous tables.

+ -- + (x, y)

(0 ,0) + -- +

1182706-001

Appendix E E-1

System Walkthrough: Graphics Library
Graphics Library (Graphics.lib) contains device-independent
routines that must be linked into the graphics application
program. The Graphics Manager contains the device
dependent requests. Graphics Library routines use these
requests for all screen drawing commands.

Your first call must always be to lnitGraphics. lnitGraphics
initializes variables and sets up the hardware for future use.

To use your application with a B 27 workstation, the next
call must be SetColumnMode. This procedure sets up the
current column mode. If you do not call SetColumnMode,
the application assumes the column mode used in the most
previous task; there is no default mode. If you never use a
B 27 workstation. you do not need to make this call.

After issuing lnitGraphics and SetColumnMode calls, your
application needs to issue the picture procedures, listed
below. These procedures perform such specific tasks as
open, write, save, or display the current picture. Your appli
cation can also get the number of objects contained within
the current picture. After opening a picture, you can then
manipulate the objects within that picture.

Attribute procedures set the specific line type, color, drawing
mode or current palette.

Drawing procedures draw lines and arcs.

Transformation procedures translate the current object's
size, shape or position on the display screen.

Label procedures define the position, attributes, and trans
formations of a label. To completely define a label, you
must also use the Text and Font procedures.

Text procedures create text strings associated with a label.

Font procedures specify which font is to be used for the
text string.

Viewing procedures set both viewports and windows. These
procedures are used to operate on pictures as a whole, not
on the individual objects within the picture.

Cursor procedures position the cursor on the display screen
and can be set to refer to an object, a picture, or the
viewport.

1182706-001

E-2 System Walkthrough: Graphics Library

Initialization procedures establish the type of output device,
such as a printer or plotter, and the type of material to be
used, such as transparencies or paper.

User-Replaceable procedures are currently used to interrupt
printer procedures, and to let the user know to load paper
and change pens. They can be replaced by the user to
include other actions by replacing these routines in the
Graphics.Lib library with the user's own procedures. Appli
cations need to link in their own routines in place of one
of the existing routines, and to use the Librarian command
to replace the modules existing in Graphics.Lib itself.

Replaceable modes are:

Grfldp:

GrfSpn:

GrfRik:

Replace this module with your own for messages
instructing you to load paper or transparencies.

Replace this module with your own for halting
the plotter while changing one of its pens.

Replace this module with your own for an inter
upt to the DisplayPicture procedure.

An explicit procedure for ending the graphics session does
not exist. The graphics session ends when the application
is complete.

Appendix F F-1

Label Structure
The label structure is used to modify an existing label. The
current label is moved into this workarea structure and the
modifications are made in the workarea. After all
modifications are completed, the workarea is then copied
back into the object to replace the current label. The
coordinate positions, text, and attributes of the label are
saved in the label list. Table F-1 shows the label structure
attributes

Table F-1 label Structure

ITEM

rXStart
rYStart
rXLowRet

rYLowRet

rXHighRet

rYHighRet

rsChars
blorg
bPen

bUserlD
fPositionSet

cbfontName

rgbfontName(12)
rgbReserved(20)
cblabel
rgblabel

1182706

SIZE CONTENTS

real the starting X position for the label
real the starting Y position for the label
real the leftmost X position of the label, computed by the

label procedures.
real the lowest Y position of the label, computed by the

label procedures.
real the rightmost X position of the label, computed by the

label procedures.
real the highest Y position of the label, computed by the

label procedures.
real the size of the label's characters.
real the label origin of the label.
byte the pen number for the label for plotter output, or in

Color graphics workstation applications, the color
number (1-8).

byte
byte

byte

byte
byte
byte
byte

the unique identifier of the label.
a value that can be set by the application to indicate
the label position has been set.
the number of bytes in the internal name of the font
for this label.
the string that describes the font for this label.
reserved
the number of bytes in the label text
the actual text of the label, which(cblabel) is chlabel
bytes long.

Appendix G

Status Codes
Decimal
Value

7600

7601
7602
7603
7604
7605

7606
7607
7608
7610

7611
7612

7613

7614

7620

7621

7622
7623

7624

7625

7626

7627

1182706

Meaning

During Graphics Manager initialization, indicates that graphics is not
available on this workstation. Applications requesting a graphics
page (through a request to either lnitScreenGraphics or
lnitAdditionalGraphicsScreen) receive this error when no graphics
pages are left to allocate.
A graphics operation was invoked without first initializing graphics.
An error occured internal to the Graphics Library.
Raster Operations are not available.
Invalid polygon fill algorithm.
Point, line, curve or rectangle coordinates outside of the user
defined viewport. This error is only returned if the entire object is
outside of the defined viewport (entire object clipped).
The Graphics Manager has already been installed as a system service.
There are currently no graphics screens available.
Invalid Task User. Attempted to run graphics application in Batch Mode.
A graphics operation that requires a picture to be open was invoked
before opening a picture.
An attempt was made to open a picture when one was already open.
An attempt was made to modify (vectors or labels) a picture that
was opened in read mode.
An OpenPicture operation failed because the picture specified does
not have a valid picture name.
An OpenPicture failed because the picture specified was not a
picture file.
A graphics operation that requires an open object was invoked
when there was no open object. ·
An attempt was made to open a picture or an object when an
object was still open.
The object specified to OpenObject was more than 12 characters.
A graphics operation that requires an object to be closed was
invoked when an object was still open.
Close T empObject was performed when the open object was not
temporary.
A graphics operation that requires a retained object was invoked
when the open object was temporary.
An attempt was made to modify (vectors and labels) the open
object when the picture was opened in read mode.
An attempt was made to write (vectors and labels) the open object
when the picture was opened in read or modify mode.

G-1

G-2 Status Codes

Decimal
Value Meaning

7628 SetNextObject was performed when the current object was the last
object in the picture.

7629 An OpenTempObject operation failed because either a picture or
another object was open.

7640 A label operation requiring an open label was· invoked when there
was no label.

7641 SetNextlabel was performed when the current label was the last
label in the object.

7642 A font name was specified that was longer than 12 characters.
7643 An invalid label origin was specified in a label operation.
7644 A text or label operation was performed in which the text string

extended outside the world coordinate system.
7645 A zero-length label was specified.
7646 A graphics operation was invoked with incorrect parameters.
7647 A graphics transformation operation (SetScale, SetTranslate) would,

if invoked, result in invalid transformation values.
7648 Parameters were specified which are not contained within the given

viewport boundaries.
7649 A graphics operation that was performed did not provide a large

enough workarea.
7690 A printer was specified incorrectly.
7691 A font was specified incorrectly.
7692 The standard font, SimplexRoman, was not specified in the

Graphics.Fonts file.
7693 An invalid device was specified.
7800 Invalid command screen number passed to SetCommandScreen.
7801 Invalid visible screen number passed to SetVisibleScreen.
7802 Requested function is not available on your workstation's hardware.
7810 Invalid parameters passed to ClearScreenRectangle.
7811 Invalid parameters passed to DrawScreenArc.
7812 Invalid parameters passed to DrawScreenline.
7813 Invalid parameters passed to FillScreenRectangle.
7814 Invalid soft pattern index passed to LoadSoftPattern.
7815 Invalid pixel address ..
7816 Invalid screen color passed to SetScreenColor.
7817 Invalid Drawing Mode requested.
7818 Invalid Line Type requested.
7830 Invalid Color Mapper requested.
7831 Invalid Color Mapper index.

Status Codes G-3

Deci•I
Value Meaning

7840 Attempt to change graphics width to an invalid width.
7845 A buffer size in a DrawScreanBuffer command cannot be correct,

given the commands in the buffer.
7846 DrawScraanBuffer encountered an invalid request code in a

command buffer.

1182706

Appendix H H-1

Glossary
Aspect Ratio The aspect ratio is the ratio of height to width of a pixel.

Background Color The color to which the screen is set during initialization
and clearscreen functions. In a polychromatic system, the zeroeth entry in the
palette. In a monochromatic system, the background is defined to be black
(pixels of display value zero). See Color Palette.

BTOS Burroughs Operating System.

BTOS Systems Generic term used to refer to all Burroughs workstations or
master systems running with the BTOS operating system.

Character Size Character size is a text attribute that specifies the relative size
of the characters in a text string.

Clipping Clipping describes the process of finding if a line (or polygon)
intersects a polygon. In Graphics for BTOS Systems, clipping takes place if a
line, curve, or polygon is drawn outside the defined viewport. The part of the
line, curve, or polygon which falls outside of the viewport is not drawn.

Color Palette The color palette is a set of colors (or gray levels) that can be
used for color (intensity) specification on a color (gray leveU graphics
workstation display or on a plotter or color printer output. Background and
Foreground are indices to entries in the color palette.

Command Screen (Command Pagel Graphics memory page where graphics
operations are performed. This can be differentthan the visible screen. Each
graphics task must have a command screen (specified by SetCommandScreenl
which is one of the display screens owned by the task. If a task has only one
graphics screen, the command and visible screen must be the same.

Device-Dependent procedures In Graphics for BTOS Systems, this term refers
to routines that directly access the Burroughs graphics hardware. See Graphics
Manager.

Device-Independent procedures Procedures that can run interchangeably
between workstations in a system. See Graphics Library.

Drawing Attributes Drawing attributes are variable characteristics of an
object, such as line type and color, that are stored with drawing commands in
the vector list of an object.

Drawing Mode The drawing mode is a drawing attribute that describes the
method by which a vector or arc is written to the current command screen.
Modes which are supported:

o Set (ORI
o Clear (Reset [set with background color])
o Complement (XOR)
o Replace

Font The font is a text attribute that specifies which font is used for the
character set when a label or text string is displayed. Both vector and raster
fonts can be defined. The names of all the vector font files available for use
must be in the file "Graphics.Fonts," which is located on the master hard disk or
your local hard disk, depending on where it was installed.

1182706

H-2 Glossary

Foreground Color The foreground is the color drawn for a solid line in set
mode, and is referred to as the current color. On a color workstation, the
foreground color is treated as an index into the color palette. See color palette.

Graphics Control Block (GCB) This is an area of the Video Control Block (VCBI
that contains all information about a task's graphics display, including the
current viewport, palette, line type, drawing mode, foreground colors, current
display and command pages, the total number of initialized graphics pages, etc.

Graphics Library (Graphics.Lib) The entire set of routines, data structures,
and support code which are referred to as the device-independent library.
These routines use Graphics Manager to perform their graphics memory (page)
allocation, drawing, and bitmap related requests. Graphics.Lib is linked into
application programs. These device-independent procedure are designed to
support object definition, picture storage and retrieval, translating and scaling,
and output to various hardware devices, routines which will work on all BTOS
graphics hardware. The device independent procedures support a user defined
coordinate system for drawing. They work by transforming the user's
coordinate space into the physical coordinate space provided by the user's
graphics hardware, and requesting drawing and other graphics operations from
the Graphics Manager. These procedures can be linked into any application
which requires them.

Graphics Manager This is the collection of routines that handle graphics
hardware in the system. The Graphics Manager responds to requests from the
operating system to inform it of task termination, foreground task change, and
changes in a task's 80- or 132- column display format, as well as service
graphics drawing requests from client tasks. The user accessible commands
use hardware based coordinates, operate with word parameters, and provide
no transformation, windowing, scaling or storage capabilities. These
procedures execute at higher speeds than the device independent procedures
due to these restrictions, but programs using them typically execute on only a
single type of graphics hardware.

Graphics Page The memory that contains the bitmap for the graphics screen
is called the graphics page. In a monochrome system, for every physical pixel
on the screen there is one bit that controls that pixel. Thus, the graphics page
contains one plane. In a color system, for every physical pixel on the screen,
there are three bits controlling that pixel (allowing eight colors to be displayed
simultaneously on the screen). Thus, the graphics page contains three planes.
Some systems can have more than one graphics page, but only one graphics
page controls the physical screen at a time.

Label List The label list is the component of an object where label text and
attributes are stored.

Label Origin The label origin is a text attribute that specifies how text is to be
oriented in relation to the current display position.

Line Type The line type is a drawing attribute that describes the pattern of
dots and dashes used when a line is drawn.

Glossary H-3

Normalized Device Coordinate System The normalized device coordinate
system is a Graphics Library coordinate system used to reference positions on
the video display screen in terms of their relation to the top, bottom and sides of
the display area.

Object An object is a structural component of a graphic representation. It is a
set of graphic commands and labels that can be edited and manipulated as an
entity. ·

Picture A picture is the main structural component of a graphic
representation. A picture is composed of one or more objects.

Picture File A picture file is a file that is used to save a picture so that it can
be displayed at a later time.

Pixels Stands for picture elements. The smallest dot which can be drawn on
the screen.

Process A process is the basic entity which competes for access to the
processor(s) and which the BTOS operating system schedules for execution.
Associated with a process is the address (CS:IP) of the next instruction to
execute on behalf of the processor, a copy of the data to be loaded into the
processor registers before control is returned to this process, a default
response exchange, and a stack.

Request Block A data structure which contains the specification and the
parameters of a desired system service.

System Service An operating system process that receives and responds to
requests from client processes. System services make use of request blocks to
transfer data between procedures, handle resource allocation and provide
services such as file system, video, graphics and queue management. They may
either be an integral part of the operating system (like the file system) or they
may be installed after system initialization (like the Graphics Manager).

Task A task consists of executable code, data, and one or more processes.
The code and data can be unique to the task or shared with other tasks. A task
can coexist with or replace other application tasks.

Temporary Object A temporary object is an object for which no vector and
label data are saved. Temporary objects can not be redisplayed or saved.

Text Attributes Text attributes are variable characteristics of an object, such
as font and charact~r size, that are used and stored with labels or text strings.

Transformation List The transformation list is the structural component of an
object where translation and scalar units are stored.

User-Defined Coordinate System A user-defined coordinate system is a
Graphics Library coordinate system where the coordinate unit ranges are
specified by the user and automatically mapped to the world coordinate system
by the graphics software.

User-Replaceable Procedures User-Replaceable procedures are Graphics
Library routines called by the graphics software that can be replaced by user
implemented versions.

Vector A line drawn between 2 given points.
1182706

H-4 Glossary

Vector List The vector list is the structural component of an object where
Graphics Library graphics commands, drawing attributes, and text strings are
stored.

Video Control Block (VCBI Contains information about a task's character
video and graphics display.

Viewport The viewport is the portion of the video display screen that defines
where any object may be displayed.

Virtual Coordinate System A system that simulates square pixels for the
Graphics Manager. The procedures that use this system internally translate the
virtual coordinates into real coordinates. When virtual coordinates are used,
horizontal and vertical lines of the same length will appear to be the same
length on the screen. If virtual coordinates were not used, a horizontal line 20
pixels long would not be the same size as a vertical line 20 pixels long.

Visible Screen Specifies which display memory page is to be seen. A tasks
visible screen may be independent of its command screen. Each graphics task
must own a visible screen (specified by GCB.rgbScreens(GCB.bVisibleScreen)).
If a task has only one graphics screen, the command and visible screen must be
the same.

Window The window is the portion of the world coordinate system that
defines what is to be displayed in the current viewport. Coordinate positions
outside the window are clipped.

World Coordinate System The world coordinate system is a Graphics Library
coordinate system used internally by the device-independent Graphics Library
software to map objects to the current command screen.

Index
Addlabel, 8-66
AddObject, 8-26
AddPicture, 8-17
Address, memory, 5-1
Arc length, determining, 7-18
Attribute procedures, 8-37

B20GM 1 file contents, 3-2
Bitmaps, source and destination, 7-40
BTOS Draw screen, 1-3
Buffering procedures, 7-66
Business Graphics Package (BGP) screen, 1-3

Clearlabels, 8-28
ClearPixelScreenRectangle, 7-16
ClearScreen, 7-4
ClearScreenRectangle, 7-15
ClearVectors, 8-29
ClearViewPort, 8-5
CloseObject, 8-30
ClosePicture, 8-18
CloseTempObject, 8-31
Color, 4-4

palette default, 7-36
procedures, 7-35

ColorText, 7-39
Column mode:

graphics library:
80-column, 4-8
132-column, 4-8

graphics manager:
80-column,4-6
132-column, 4-6

Concepts, 4-1
Configuration file, 10-2
Configuring application programs, 9-1
BA~C.~1 ·
COBOL, 9-2
FORTRAN, 9-3
Pascal, 9-4
creation, 10-2

Control procedures, 7-2
B 22, 4-7
B 27, 4-7

Coordinates, 0-1
Coordinate systems, graphics library, 4-11

1182706

2

Creating a configuration file, 10-2
Cursor procedures, 8-85

Defaults:
color palette, 7-36

DeleteCurrentlabel, 8-68
Destination:

bitmaps, 7-40
rectangles, 7-40

DisplayCurrentObject, 8-32
DisplayPicture, 8-19
DoRasterOp, 7-46
DoRasterOpText, 7-48
Draw, 8-44
DrawArc, 8-45
DrawCircle, 8-47
Drawing:

attributes, 4-1
directions (angles in radians), 7-18
fill patterns, B-1
mode, 4-2
modes, 4-2, 4-3, B-1, B-2
procedures, 8-43

Drawline, 8-48
DrawPixelScreenline, 7-20
DrawRelative, 8-49
DrawScreenArc, 7-17
DrawScreenBuffer, 7-67
DrawScreenline, 7-19

File:
configuration, 10-2
contents B20GM1, 3-2
names, Graphics.Fonts, 8-59
picture, 4-10
Queue.Index, 10-2

Fill patterns, B-1
FillPixelScreenRectangle, 7-22
FillRectangle, 8-50
FillScreenRectangle, 7-21
Font procedures, 8-58

GetCurrentlabel, 8-69
GetCursorPosition, 8-86
GetDrawAttrlnfo, 7-23
GetFontName, 8-60
GetFontNumber, 8-61

Index

Index

GetlabelData, 8-70
GetNumberOfFonts, 8-62
GetNumberOfObjects, 8-21
GetPictureColors, 8-38
GetRasterlnfo, 7-24
GetTransformation Data, 8-76
GetUserFontName, 8-63
GetVDIViewport, 7-26
GetWindowData, 8-82
Graphics:

comparison of manager and library, 1-4
library, 1-1, 4-7

aspect ratios for World and NDC, calls, D-1
coordinate system, 4-11
features by function, 8-3
procedures, 8-1
sequence example, 8-1

manager, 1-1
coordinate system, 4-6
procedures, 4-5
requests, 7-1
restrictions, 4-7
virtual and physical pixel resolution, C-1

memory access, 4-5
mixing calls (library and manager), 4-5
workstation features, 2-1
pages, multiple, 7-2

Graphics.Fonts file names, 8-59

Hardware requirements, 2-1

lnitAdditionalGraphicsScreen, 7-5
lnitGraphics, 8-6
Initialization procedures, 8-2
lnitScreenGraphics, 7-6
Installation, 3-1

Graphics for BTOS Systems, 3-1
printers and plotters, 10-2

Invoking graphics, 3-1
automatically, 3-2

Label:
origin, 4-4
procedures, 8-65
structure, H-1

Line types, 4-1
LoadColor, 7-37

1182706

3

4

LoadColorMapper, 7-38
Load Paper, 8-93
LoadSoftPattern, 7-27

Map created using GEO/BASEMAP, 1-2
MapGraphics Window, 6-1
Memory:

access, graphics, 4-5, 6-1
address, 5-1

Mixing graphics library and graphics manager calls, 4-5
Modes:

column: See Column mode.
drawing, 4-2, 4-3, B-1, B-2

Modifylabel, 8-71
Move, 8-51
MoveRelative, 8-52
Multiple graphics pages, 7-2

Names:
Graphics.Fonts file, 8-59
variable, 5-1

Numbers, 5-1

Object procedures, 8-25
Objects:

and pictures, 4-8
temporary, 4-10

OpenPicture, 8-22
OpenTempObject, 8-33

Picture:
file, 4-10
procedures, 8-16

Pictures and objects, 4-8
Prefixes, 5-1
Printers and plotters, 10-1
Procedures, 8-2

attribute, 8-37
buffering, 7-66
color, 7-35
control, 7-2

B 22, 4-7
B 27, 4-7

cursor, 8-85
drawing, 8-43
font, 8-58

Index

Index

graphics library, 8-1
graphics manager, 4-5
initialization, 8-2
label, 8-65
object, 8-25
picture, 8-16
raster, 7 -40
text, 8-53
transformation, 8-75
user-replaceable, 4-8, 8-92
vector and arc manipulation, 4-7, 7-14
viewing, 8-81

QuerylastRasterText, 7-50
Queue.Index File, 10-2

Raster:
font format, 7-62
procedures, 7-40

ReadlnterruptKey, 8-94
ReadPixelColor, 7-29
Rectangles:

destination , 7 -40
source, 7-40

RemoveCurrentObject, 8-34
Requirements:

hardware, 2-1
software, 2-2

ReturnGraphicsScreen, 7-7
Roots, 5-2

Samples:
pattern, 7-28
programs, A-1

Screens:
BTOS Draw, 1-3
Business Graphics Package (BGP), 1-3

SetCharacterSize, 8-54
SetColor, 8-39
SetColorMapper, 7-39
SetColumnMode, 8-7
SetCommandScreen, 7-8
SetCurrentPalette, 8-40
SetDrawDestinationPlane, 7 -30
SetDrawingMode, 8-41
SetFirstlabel, 8-73
SetFirstObject, 8-35

1182706

5

6

SetFont, 8-55
SetlabelOrigin, 8-56
Setlimits, 8-8
SetlineType, 8-42
SetMonoOrColorDrawMode, 7-31
SetNDCCursorPosition, 8-87
SetNextlabel, 8-7 4
SetNextObject, 8-36
SetObjectCursorPosition, 8-88
SetOutputDevice, 8-9
SetOutputT ype, 8-10
SetPen, 8-95
SetPlotterDevice, 8-12
SetPlotterMaterial, 8-13
SetRasterClipping, 7-51
SetRasterDestination, 7-52
SetRasterDestinationPlane, 7-54
SetRasterFont, 7-55
SetRasterPattern, 7-56
SetRasterSource, 7-58
SetRasterSourcePlane, 7-60
SetRasterT extMode, 7-61
SetScale, 8-77
SetScaleRelative, 8-78
SetScreenColor, 7-32
SetScreenDrawingMode, 7-33
SetScreenlineType, 7-34
SetTranslate, 8-79
SetTranslateRelative, 8-80
SetUpGraphicsSpooling, 8-1 5
SetUserCoordinates, 8-14
SetUserFont, 8-64
SetViewPort, 8-83
SetVisibleScreen, 7-9
SetWindow, 8-84
SetWorldCursorPosition, 8-89
Software requirements, 2-2
Source:

bitmaps, 7-40
rectangles, 7-40

Specifying wPattern in LoadSoftPattern, 7-28
Spool Configurations, 8-15
Standards and conventions, 5-1
Status codes, G-1
Suffixes, 5-3
System Walkthrough: Graphics Library, l;:-1

Index

Index

Temporary objects, 4-10
Text:

attributes, 4-10
procedures, 8-53

Transformation procedures, 8-75
Transformation, window-to-viewport, 4-13
TurnOffCursor, 8-90
TurnOffGraphics, 7-10
T urnOffGraphicsColor, 7 -11
TurnOnCursor, 8-91
TurnOnGraphics, 7-12
TurnOnGraphicsColor, 7-13

User-replaceable procedures, 4-8, 8-92

Variable names, 5-1
examples, 5-3

Vector and arc manipulation procedures, 4-7, 7-14
Viewing:

perspectives, 4-13
procedures, 8-81

Viewport, window-to, transformation, 4-13
Window-to-viewport transformation, 4-13
Workstation:

B 27 (80- or 132-column mode). See Column mode.
control procedures, 4-7

822:
control procedures, 4-7
features, 2-1

WritePicture, 8-24
WriteTextString, 8-57

1182706

7

Title: ----------------------------
Form Number: _____________ _ Date:

Burroughs Corporation is interested in your comments and suggestions regarding
this manual. We will use them to improve the quality of your Product Information.

Please check type of suggestion: D Addition D Deletion D Revision
D Error

Comments:

Name

Title ----------------------------
Company

Address
Street City State Zip

Telephone Number () ___________________ _
Area Code

Title: ------------------------------
Form Number: _____________ _ Date:

Burroughs Corporation is interested in your comments and suggestions regarding
this manual. We will use them to improve the quality of your Product Information.

Please check type of suggestion: D Addition D Deletion D Revision
D Error

Comments:

Name

Title --------------------------------
Company ____ _

Address ----------------------------street City State

Telephone Number () __________________ _
Area Code

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 817 DETROIT, Ml 48232

POSTAGE WILL BE PAID BY ADDRESSEE

Burroughs Corporation
Production Services - East
209 W. Lancaster Avenue
Paoli, Pa 19301 USA

ATTN: Corporate Product Information

1.1 .. 11 •• 1 ... 1.1 •• 11 •• • 1.11.1 •• 1.1 •• 1 ••• 1.1.1 111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 817 DETROIT, Ml 48232

POSTAGE WILL BE PAID BY ADDRESSEE

Burroughs Corporation
Production Services - East
209 W. Lancaster Avenue
Paoli, Pa 19301 USA

ATTN: Corporate Product Information

1.1 •• 11 •• 1 ••• 1.1 •• 11 ••• 1.11.1 •• 1.1 •• 1 ••• 1.1.1 •••• 111

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

