

B ____ u_r-r~o.ughs

Reference
Manual

Priced Item
Printed in USA S ..

eptember 1983

1163037

Burroughs cannot accept any financial or other
responsibilities that may be the result of your use
of this information or software material,
including direct, indirect, special or consequential
damages. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this
software material and/or information complies with the
laws, rules, and regulations of the jurisdictions with
respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions ..

Correspondence regarding this publication should be forwarded using the
Remarks form at the back of the manual, or may be addressed directly to
Documentation East, Burroughs Corporation, P.O. Box CB7, Malvern,
Pennsylvania, 19355, U.S. America.

LIST OF EFFECTIVE PAGES

Page

iii
iv
v thru viii
1-1 and 1-2
2-1 and 2-2
3-1 thru 3-4
4-1 thru 4-4
5-1 and 5-2
6-1 thru 6-9
6-10
7-1
7-2
8-1 thru 8-7
8-8
9-1 thru 9-3
9-4
10-1 thru 10-13
10-14
11-1 thru 11-15
11-16
12-1 thru 12-7
12-8
13-1 thru 13-13
13-14
14-1 thru 14-5
14-6
A-I thru A-14
B-1 and B-2
C-1 thru C-10
D-1 thru D-4
E-1 thru E-5
E-6

iii

Issue

Qiginal
Blank
Original
Original
Original
Original
Original
Original
Original
Blank
Original
Blank
Original
Blank
Original
Blank
Original
Blank
Original
Blank
Original
Blank
Original
Blank
Original
Blank
Original
Qiginal
Original
Original
Original
Blank

TABLE OF CONTENTS

SECTION 1:
Overview

Notational Conventions

SECTION 2:
Using Burroughs FORTRA N 77

Compiling, Linking, and Executing a FORTRAN Program
Compiling
Linking
Executing

SECTION 3:
BASIC Program Structure

Character Set
Lines
Columns
Blanks
Comment Lines
Labels, Initial Lines, Continuation Lines, and Statements

Labels
Initial Lines
Continuation Lines
Statements

Program Units
Main Program and Subprogram
Statement Ordering

SECTION 4:
Data Types

Integer
Real

Logical
Character

SECTION 5:
FORTRAN Names

Scope of FORTRAN Names
Undeclared FORTRAN Names

v

1-1
1-2

2-1
2-1
2-1
2-2
2-2

3-1
3-1
3-1
3-1
3-2
3-2
3-2
3-2
3-3
3-3
3-3
3-3
3-3
3-4

4-1
4-1
4-1

4-3
4-3

5-1
5-1
5-2

TABLE OF CONTENTS (CONT.)

SECTION 6:
Specification Statements

IMPLICIT Statement
DIMENSION Statement

Dimension Declarators
Array Element Name

Type Statement
COMMON Statement
EXTERN AL Statement
INTRINSIC Statement
SA VE Statement
EQUIVALENCE Statement

Restrictions on EQUIVALENCE Statements

SECTION 7:
Data Statement

SECTION 8:
Expressions

Arithmetic Expressions
Integer Division
Type Conversions and Result Types of Arithmetic Operators

Character Expressions
Relational Expressions
Logical Expressions
Precedence of Operators
Evaluation Rules and Restrictions for Expression

SECTION 9:
Assignment Statement

Computational Assignment Statement
Label Assignment Statement

SECTION 10:
Control Statements

Unconditional GOTO
Computer GOTO
Assigned GOTO
Arithmetic IF
Logical IF
Block IF then else

Block IF
ELSEIF
ELSE
ENDIF
DO

CONTINUE
STOP
PAUSE

'END

vi

6-1
6-1
6-3
6-3
6-4
6-4
6-6
6-7
6-7
6-8
6-8
6-9

7-1

8-1
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-7

9-1
9-1
9-3

10-1
10-1
10-2
10-2
10-3
10-4
10-4
10-7
10-7
10-8
10-8
10-9
10-11
10-12
10-12
10-13

TABLE OF CONTENTS (CONT.)

SECTION 11:
I/O System

Overview
Records
Files
File Properties
Internal Files
Units

Concepts and Limitations
* Files
Explicitly Opened External, Sequential, Formated Files

Example
Less Com monly Used File Operations
Limitations

I/O Statements
Elements of I/O Statements
OPEN Statement
CLOSE Statement
READ Statement
WRITE Statement
BACKSPACE Statement
ENDFILE Statement
REWIN D Statement
Carriage Control

SECTION 12:
Formatted I/O and the Format Statement

Format Specifications and the FORMA.T Statement
Interaction Between Format Specification and Input List (iolist)
Edit Descriptors

N onrepeatable
Repeatable

SECTION 13:
Programs, Subroutines, and Functions

Main Program
Subroutines

SUBROUTINE Statement
CALL Statement

Functions
External Functions
Intrinsic Functions
Statement Functions

RETURN Statement
Parameters

vii

11-1
11-1
11-1
11-2
11-2
11-3
11-3
11-5
11-5
11-5
11-5
11-6
11-7
11-7
11-7
11-10
11-11
11-12
11-13
11-13
11-14
11-14
11-14

12-1
12-1
12-3
12-4
12-4
12-6

13-1
13-1
13-1
13-2
13-2
13-3
13-4
13-5
13-11
13-12
13-12

SECTION 14:
Compiler Directives

Overview
DEBUG Directive
D066 Directive

TABLE OF CONTENTS (CONT.)

DYN AMIC Directive
INCLUDE Directive
LIN ESIZE Directive
NODEBUG Directive
PAGE Directive
PAGESIZE Directive
STORAGE Directive
TITLE Directive

APPENDIX A:
Error Messages

APPENDIX B:
Differences Between Burroughs FORTRAN 77 and ANSI Standard

Subset FORTRAN 77

APPENDIX C:
Calling NON-FORTRAN Procedures

APPENDIX D:
Additional Built-in Functions

APPENDIX E:
Guide to Technical Documentation

Figure 3-1

Table 6-1
Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 9-1

Table II-I
Table 13-1

LIST OF ILLUSTRATIONS

Order of Statements within Program Units

LIST OF TABLES

Memory Requirements of FORTRAN Data Types
Arithmetic Operators
Data Type Ranks
Relational Operators
Logical Operators
Relative Precedence of Operator Classes
Type Conversion for Arithmetic Assignment
Statements
Carriage Control Characters
Intrinsic Functions

viii

14-1
14-1
14-1
14-1
14-2
14-2
14-3
14-3
14-3
14-4
14-4
14-5

A-l

B-l

C-l

D-l

E-l

3-4

6-2
8-1
8-3
8-5
8-6
8-7

9-2
ll-14
13-6

SECTION 1
OVERVIEW

This is a reference manual for the Burroughs FORTRAN 77 language system. The
Burroughs FORTRAN software product conforms to the Standard ANSI X3.9-1978 at
the subset level. It also includes features from the full level of X3.9-1978.

The Burroughs FORTRAN system has also been enhanced to ease the conversion of
existing FORTRAN 66 programs. For example, Hollerith constants are included and
FORTRAN 66 semantics for DO loops are a compiler option.

Calls from Burroughs FORTRAN provide access to all B 20 Operating System
services, such as direct (random) access to disk files, interrupt handling, and process
creation, thereby supporting various kinds of system programming. Calls also extend
the range of services needed by the commercial applications programmer: ISAM,
Sort/Merge, and the Forms Run-Time. The Burroughs Linker allows you to combine
FORTRAN object modules with those of other languages, for example, the Assembler,
to facilitate writing applications that need different languages for different parts.

You should have some prior knowledge of some dialect of FORTRAN. This Manual
is not a tutorial; rather, each section fully explains one part of the FORTRA N language
system.

The manual is organized as follows: Section 1, 2, and 3 are general and describe
the manual and basics necessary to successfully use the FORTRA N system.

Sections 4, 5, and 6 describe the data types available in the language and how a
program specifies a particular data type as the type of an identifier or constant.

Section 7 deals with the DATA statement, used for initialization of memory.

Sections 8, 9, 10, and 11 define the executable parts of programs and the meanings
associated with the various executable constructs. Although Section II describes the
I/O statements, the FORMAT statement and formatted I/O are described in Section 12.

Section 13 describes the subroutine structure of a FORTRAN compilation,
including parameter passing and intrinsic (system-provided) functions.

1-1

NOTATIONAL CONVENTIONS

The notational conventions used in this manual are described below.

Uppercase letters and special characters: are to be written as shown in programs.

Lowercase letters and words: indicate entities for which there is a sUbstitution in
actual statements as described in the text. Once a lowercase entity is defined, it
retains its meaning for the entire context of the discussion.

Example of upper- and lowercase: the format that describes editing of integers is
denoted I~, where ~ is a nonzero, unsigned integer constant. Thus, in an actual
statement, a program might contain 13 or 144. The format that describes editing of
reals is F~ .g" where g, is an unsigned integer constant. In an actual statement, F7.4 or
F22.0 are valid. Notice that the period, as a special character, is taken literally.

Brackets: indicate optional items. For example, A [w] indicates that either A
or Al2 is valid (as a means of specifying a character format):-

Ellipsis(•••): indicates that the optional item preceding the ellipsis may appear one
or more times. For example, the computed GOTO statement is described by:

GOTO (~ [,~] •••) [,] i

indicating that the syntactic items denoted by ! may be repeated any number of
times with commas separating them.

Blanks: normally have no significance in the description of FORTRAN statements.
The general rules for blanks, covered in Section 3, govern the interpretation of blanks in
all contexts.

1-2

SECTION 2
USING BURROUGHS FORTRAN 77

COMPILING, LINKING, AND EXECUTING A FORTRAN PROGRAM

This Section assumes that you are familiar with the basic operation of the
Burroughs Executive and Linker. (See the manuals of the same names.) The mechanics
of compiling, linking, and executing a FORTRAN program are outlined here.

The Burroughs FORTRAN system consists of the FORTRAN compiler and a library
of object modules that make up the FORTRAN run-time library. The first step in
creating an executable FORTRAN program is compiling its (one or more) source
modules. The object modules that result are then linked with the FORTRAN run-time
library, producing a run file that can be invoked from the Executive.

The object modules and libraries to be linked can include the output of the
Assembler or Pascal compiler, as well as the output of the FORTRAN compiler.

If Burroughs Operating System interfaces, access methods, or optional Burroughs
software products such as Sort/Merge or ISAM, are called directly from FORTRAN, a
special "mediator" object module, ForGen.Obj, must also be included. (See Appendix C
for details about ForGen.Obj.)

Compiling

Invoke the FORTRAN compiler with the Executive's FORTRAN command. The
following form appears.

FORTRAN
Source file

[Object file]
[List file]
[Object list file]

For information on filling in a form, see the section of that name in the Executive
Manual.

Source file

is the name of the FORTRAN source file to be compiled.

2-1

[Object file]

is the name of the file to which to write the object code that results from the
compilation. If no file is named, a default object file is chosen as follows:
treat the source name as a character string, strip off any final suffix
beginning with a period ".", and add the characters ".Obj". The result is the
name of the file. For example, if the source file is:

[Dev] (Jones) Main

then the default object file is:

[Dev] < Jones) Main.Obj

If the source file is:

Prog.Fortran

then the default object file is:

Prog.Obj

[List file]

is the name of the file to which to write a listing of the compilation. If no
file is named, a default list file is chosen, in the same manner the default
object file is created except that the string added is ".Lst" instead of ".Obj".

[Object list file]

is the name of the file to which to write the listing of the generated object
code. If no file is named, the default is no generation of the object list file.

To suppress the generation of an object or list file, specify" [Nul] Linking

Linking

Invoke the Linker with the Executive's Link command, as described in the
Linker/Librarian Manual. Note the following special requirements:

• [Libraries] must include the library < Sys)Fortran.Lib, and

• [DS allocation?] must be Yes.

Executing

A compiled, linked FORTRAN program is executed in the same manner as any .
other user program; that is, it is run from the Executive or chained to by an already
executing program. See the Run File command in the Executive Manual and the Chain
operation in the "Task Management" section of the B 20 Operating System Manual for
details.

2-2

SECTION 3
BASIC PROGRAM STRUCTURE

In the most basic sense, a FORTRAN program is a sequence of characters that,
when submitted to the compiler, are interpreted in various contexts as characters,
identifiers, labels, constants, lines, statements, and so on. This Section defines these
entities.

CHARACTER SET

A FORTRAN source program is a sequence of characters consisting of: (1) letters
- the 52 upper- and lowercase letters A through Z and a through z, (2) digits - 0, 1, 2, 3,
4, 5, 6, 7, 8, and 9, and/or (3) special characters - the remaining printable characters of
the ASCII character set.

The letters and digits, treated as 8. single group, are called the alphanumeric
characters. FORTRAN interprets lowercase letters as uppercase letters in all contexts
except in character constants and Hollerith fields. Thus, the following user-defined
names are all indistinguishable to the FORTRAN system.

ABCDE abcde AbCdE aBcDe

The collating sequence for the FORTRAN character set is the ASCII sequence.

LINES

A FORTRAN source program can also be considered a se uence of lines, ending
with the character code OAh (produced by pressing the ETURN key while in the
Editor). Only the first 72 characters in a line are treated as significant by the
compiler. Any trailing characters in a line are ignored. Note that lines with fewer
than 72 characters are possible and, if a line is shorter than 72 characters, the compiler
treats its length as significant (for an illustration of this, see "Character" in Section 4,
which describes character constants).

COLUMNS

The characters in a given line fall into columns, with the first character being in
column I, the second in column 2, and so on. The column in which a character
resides is significant in FORTRAN. Columns 1 through 5 are reserved for
statement labels and column 6 for continuation indicators.

3-1

BLANKS

The blank character, with the exceptions noted below, has no significance in a
FORTRAN source program and may be used for improving the readability of FORTRAN
programs. The exceptions are:

1. blanks within string constants are significant,

2. blanks within Hollerith fields are significant, and

3. a blank in column 6 distinguishes initial lines from continuation lines.

COMMENT LINES

A line is treated as a comment if anyone of the following conditions is met: (1) a
"c" (or "c") in column 1, (2) an "*" in column 1, or (3) the line contains all blanks.

Comment lines do not affect the execution of the FORTRAN program in any way.
Comment lines must be followed immediately by an initial line or another comment
line. They must not be followed by a continuation line. Note that extra blank lines at
the end of a FORTRAN program result in a compile-time error since the system
interprets them as comment lines but they are not followed by an initial line.

LABELS, INITIAL LINES, CONTINUATION LINES, AND STATEMENTS

This subsection defines a FORTRAN "statement" in terms of the input character
stream. The compiler recognizes certain groups of input characters as complete
statements according to the rules specified here. The remainder of this Manual further
defines the specific statements and their properties. When it is necessary to refer to
specific kinds of statements here, they are simple referred to by name.

Labels

A stateinent label is a sequence of from one to five digits. At least one digit must
be nonzero. A label may be placed anywhere in columns 1 through 5 of an initial line.
Blanks and leading zeros are not significant.

3-2

Initial Lines

An initial line is any line that is not a comment line or a compiler directive line
and that contains a blank or a 0 in column 6. The first five columns of the line must
either be all blank or contain a label. With the exception of the statement following a
logical IF, FORTRAN statements begin with an initial line.

Continuation Lines

A continuation line is any line that is not a comment line or a compiler directive
line and that contains any character in column 6 other than a blank or a O. The first
five columns of a continuation line must be blanks. A continuation line increases the
amount of room to write a statement. If it will not fit on a single initial line, it may be
extended to include up to nine continuation lines.

Statements

A FORTRAN statement consists of an initial line, followed by up to nine
continuation lines. The characters of the statement are the up to 660 characters found
in columns 7 through 72 of these lines. The END statement. must be wholly written on
an initial line and no other statement may have an initial line that appears to be an
END statement.

PROGRAM UNITS

The FORTRAN language enforces a certain ordering among statements and lines
that make up a FORTRAN compilation. In general, a compilation consists of, at most,
one main program and none or some subprograms (see Section 13 for more information
on compilation units and subroutines). The various rules for ordering statements appear
below.

Main Program and SUbprogram

A subprogram begins with either a SUBROUTINE or a FUNCTION statement and
ends with an END statement. A main program begins with a PROGRAM statement, or
any statement other than a SUBROUTINE or FUNCTION statement, and ends with an
END statement. A subprogram or the main program is referred to as a program unit.

3-3

Statement Ordering

Within a program unit, whether a main program or a subprogram, statements must
appear in an order consistent with the following rules.

1. A SUBROUTINE or FUNCTION statement, or PROGRAM statement if
present, must appear as the first statement of the program unit.

2. FORMAT statements may appear anywhere after the SUBROUTINE or
FUNCTION statement, or PROGRAM statement if present.

3. All specification statements must precede all DATA statements, statement
function statements, and executable statements.

4. All DATA statements must appear after the specification statements and
precede all statement function statements and executable statements.

5. All statement function statements must precede all executable statements.

6. Within the specification statements, the IMPLICIT statement must precede all
other specification statements.

These rules are' illustrated in Figure 3-1 below.

PROGRAM, FUNCTION, or SUBROUTINE Statement

IMPLICIT Statements

Other Specification
Statements

Comment FORMAT DATA statements
Lines Statements

Statement Function
Statements

Executable Statements

END Statement
Figure 3-1. Order of Statements within Program Units.

Figure 3-1 is interpreted as follows.

• classes of lines or statements above or below other classes must appear in the
designated order.

• classes of lines or statements may be interspersed with other classes that
appear across from one another.

3-4

SECTION 4
DATA TYPES

There are five basic data types in Burroughs FORTRAN: integer, real, logical, and character.
This Section describes the properties of, the range of values for, and the fonn of constants for
each type.

INTEGER

The integer data type consists of a subset of the integers. An integer value is an exact repre­
sentation of the corresponding integer. An integer variable occupies two or four bytes of memory.
A 2-byte integer can contain any value in the range -32768 to 32767. Integer constants consist of
a sequence of one or more decimal digits preceded by an optional arithmetic sign, + or -, and must
be in range. A decimal point is not allowed in an integer constant. The following are examples of
integer constants.

123
00000123

+123
32767

-123 o
-32768

An integer can be specified in Burroughs FORTRA N as INTEGER *2, INTEGER *4,
or INTEGER.

REAL

The real data type consists of a subset of the single-precision real numbers. A
single-precision real value is normally an approximation of the desired real number. A
single-precision real value occupies four bytes of memory. The range of
single-precision real values is approximately:

3.0E-39 to 1.7E+38 (positive range)
-1.7E+38 to -3.0E-39 (negative range)

The precision is greater than six decimal digits.

A basic real constant consists of an optional sign followed by an integer part, a
decimal point, and a fraction part. The integer and fraction parts consist of

4-1

one or more decimal digits, and the decimal point is a period, ".". Either the
integer part or the fraction part may be omitted, but not both. Some sample basic real
constants follow.

-123.456
-123.

-.456

+123.456
+123.

+.456

123.456
123.

.456

An exponent part consists of the letter "E" followed by an optionally signed integer
constant. An exponent indicates that the value preceding it is to be multiplied by 10 to
the value of the exponent part's integer. Some sample exponent parts follow.

EI2 E-12 E+12 EO

A real constant is either a basic real constant, a basic real constant followed by an
exponent part, or an integer constant followed by an exponent part. For example.

+1.000E-2
+0.01

I.E-2
100.0E-4

IE-2
.000IE+2

All represent the same real number - one one-hundreth.

4-2

LOGICAL

The logical data type consists of the two logical values .TRUE. and .FALSE. A
logical variable occupies two or four bytes of memory.

NOTE
Whether two or four is controlled by the STORAGE·
directive, with a default of four bytes. The
significance of a logical variable is unaffected by the
STORAGE directive, which is present primarily to
allow compatibility with the ANSI requirement that
logical, single-precision real, and integer variables are
all the same size.

There are only two logical constants, .TRUE. and .FALSE., representing the two
corresponding logical values. The internal representation of .F ALSE. is a word of all
a's, and the representation of .TRUE. is a word of alia's with a 1 in the least Significant
bit. If a logical variable contains any other bit values, its logical meaning is undefined.

CHARACTER

The character data type consists of a sequence of ASCII characters. The length of
a character value is equal to the number of characters in the sequence. The length of a
particular constant or variable is fixed, and must be between I and 255 characters. A
character variable occupies one byte of memory for each character in the sequence.

The blank character is. permitted in a character value and is significant.

4-3

A character constant consists of a sequence of one or more characters enclosed by
a pair of apostrophes. Blank characters are permitted in character constants, and count
as one character each. An apostrophe within a character constant is represented by
two consecutive apostrophes with no blanks between. The length of a character
constant is equal to the number of characters between the apostrophes, with doubled
apostrophes counting as a single apostrophe character. Some sample character
constants are:

'A' 'Help!'
'A very long CHARACTER constant' '" ,

The last example, ' , , " represents a single apostrophe, '.

FORTRAN permits source lines of up to 72 columns. Shorter lines are not padded·
to 72 columns, but left, as input. When a character constant extends across a line
boundary, its value is as if the portion of the continuation line beginning with column 7
is juxtaposed immediately after the last character on the initial line. Thus, the
FORTRAN source:

200 CH = 'ABC
XDEF'

(where. there are no further characters on the line after the 'ABC) is equivalent to:

200 CH = 'ABC DEF'

with the single space between the C and D being the equivalent to the space in
column 7 or the continuation line. Very long character constants can be
represented in this manner.

4-4

SECTION 5
FORTRAN NAMES

A FORTRAN name, or identifier, consists of an initial alphabetic character
followed by a sequence of up to five alphanumeric characters. Blanks may appear
within a FORTRAN name, but have no significance. A name is used to denote a user­
or system-defined variable, array, function, subroutine, and so on. Any valid sequence
of characters can be used for any FORTRAN name. There are no reserved names as in
other languages. Sequences of alphabetic characters used as keywords are not to be
confused with FORTRAN names. The compiler recognizes keywords by their context
and in no way restricts the use of user-defined names. Thus, a program can have, for
example, an array named IF, READ, or GOTO, with no error (as long as it conforms to
the rules that all arrays must obey).

SCOPE OF FORTRAN NAMES

The scope of a name is the range of statements in which that name is known, or
can be referenced, within a FORTRA N program. In general, the scope of a name is
either global or local, although there are several exceptions. A name can only be used
in accordance with a single definition within its scope. The same name, however, can
have different definitions in distinct scopes.

A name with global scope can be used in more than one program unit (a subroutine,
function, or the main program) and still refer to the same entity. Names with global
scope can only be used in a single, consistent manner within the same program. All
subroutine, function subprogram, and common names, as well as the program name,
have global scope. Therefore, there cannot be a function subprogram that has the same
name as a subroutine subprogram or a common data area. Similarly, no two function
subprograms in the same program can have the same name.

A name with local scope is only visible (known) within a single program unit. A
name with local scope can be used in another program unit with a different meaning, or
with a similar meaning, but is not required to have similar meanings in a different
scope. The names of variables, arrays, parameters, and statement functions all have
local scope.

One exception to the scoping rules is the name given to common data blocks. It is
possible to refer to a common name with a global scope in the same program unit that
an identical name with a local scope appears. This is permitted because common names
are always enclosed in slashes, such as /NAME/, and are therefore always
distinguishable from ordinary names by the compiler.

. Another exception to the scoping rules is made for parameters to statement
functions. The scope of statement function parameters is limited to the single
statement forming that statement function. Any other use of those names within that
statement function is not permitted, and any other use outside that statement function
is permitted.

5-1

UNDECLARED FORTRAN NAMES

When a user name that has not appeared before is encountered in an executable
statement, the compiler infers from the context of its use how to classify that name. If
the name is used in the context of a variable, the compiler creates an entry into the
symbol table for a variable of that name. Its type is inferred from the first letter of its
name. Normally, variables beginning with the letters I, J, K, L, M or N are considered
integers, while all others are considered reals, although these defaults can be
overridden by an IMPLICIT statement (see Section 6).

If an undeclared name is used in the context of a function call, a symbol table
entry is created for a function of that name, with its type being inferred in the same
manner as that of a variable.

Similarly, a subroutine entry is created for a newly encountered name that is the
target of a CALL statement. If an entry for such a subroutine or function name exists
in the global symbol table, its attributes are coordinated with those of the newly
created symbol table entry. If any inconsistencies are detected, such as a previously
defined subroutine name being used as a function name, an error message is issued.

5-2

SECTION 6
SPECIFICATION STATEMENTS

Specification statements in Burroughs FORTRAN 77 are nonexecutable. They
define the attributes of user-defined variable, array, and function names. There are
eight kinds of specification statements.

1. IMPLICIT
2. DIMENSION
3. Type
4. COMMON
5. EXTERNAL
6. INTRINSIC
7. SAVE
8. EQUIVALENCE

Specification statements must precede all executable statements in a program unit
and may appear, except IMPLICIT, in any order within their own group. IMPLICIT
statements must precede all other specification statements in a program unit.

IMPLICIT STATEMENT

An IMPLICIT statement defines the default type for user-declared names. The
form of an IMPLICIT statement is as follows.

IMPLICIT ~ (!! [,!!] • •.) ,~ (!! [,!!J ...)

where:

~ is one of the types shown in Table 6-1 below.

!! is either a single letter or a range of letters. A range of letters is
indicated by the first and last letters in the range, separated by a
minus sign. For a range, the letters must be in alphabetical order.

6-1

An IMPLICIT statement defines the type and size for all user-c1efined names that
begin with the letter or letters that appear in the specification. An IMPLICIT
statement applies only to the program unit in which it appears. IMPLICIT statements
do not change the type of a'ny intrinsic functions.

Table 6-1 Memory Requirements of FORTRAN
Data Types.

~ Memory (bytes)

LOGICAL 2 or 41
LOGICAL*2 2
LOGICAL*4 4
INTEGER 2' or 41
INTEGER*2 2

CHARACTER2 1
CHARACTER *n2 n3
REAL4 4
REAL*44 4

1. Either 2 or 4 bytes are used. The default is 4, but may be set explicitly
to either 2 or 4 with the STORAGE directive.

2. CHARACTER and CHARACTER*1 are synonyms.

3. If !!. is odd, then.!! + 1 bytes of memory are used.

4. REAL and REAL*4 are synonyms.

INTEGER and INTEGER * 2 are synonyms.

IMPLICIT types can be overridden or confirmed for any specific user name by the
appearance of that name in a subsequent type statement. An explicit type in a
FUNCTION statement also takes priority over an IMPLICIT statement. If the type in
question is a character type, the length of the user name is also overridden by a later
type definition.

6-2

A program unit can hav~ more than one IMPLICIT statement, but all IMPLICIT
statements must precede all other specification statements in that program unit. The
same letter cannot be defined more than once in an IMPLICIT statement in the same
program unit.

C EXAMPLE OF IMPLICIT STATEMENT
IMPLICIT REAL*4 (C-M)
IMPLICIT INTEGER (A, B)
IMPLICIT CHARACTER*IO (N)
AGE = 10
NAME = 'PAUL'
COUNT = 1/2

DIMENSION STATEMENT

A DIMENSION statement specifies that a user name is an array. The form of a
DIMENSION statement is as follows.

DIMENSION var(dim) [,var(dimO

where:

var(dim) is an array declarator.

An array declarator is of the form:

~ (sl ~slJ •.•)

where:

name is the user-defined name of the array.

d is a dimension declarator.

Dimension Declarators

The number of dimensions in the array is the number of dimension declarators in
the array declarator. The maximum number of dimensions is three. A dimension
dec lara tor can be:

1. an unsigned integer constant,

2. a user name corresponding to a nonarray integer formal argument, or

3. an asterisk.

A dimension declarator specifies the upper bound of the dimension. The lower
bound is always one.

6-3

If a dimension declarator is an integer constant, then the array has the
corresponding number of elements in that dimension. An array has a constant size if all
of its dimensions are specified by integer constants.

If a dimension declarator is an integer argument, then that dimension is defined to
be of a size equal to the initial value of the integer argument upon entry to the
subprogram unit at execution time. In such a case, the array is. called an
adjustable-sized array.

If the dimension declarator is an asterisk, the array is an assumed-sized array and
the upper bound of that dimension is not specified.

All adjustable- and assumed-sized arrays must also be formal arguments to the
program unit in which they appear. Also, an assumed-size dimension declarator may
only appear as the last dimension in an array declarator.

The order of array elements in memory is column-major order, that is, the leftmost
subscript changes most rapidly in Ii memory sequential reference to all array elements.

Array Element Name

The form of an array element name is:

where:

!!!!. is the name of an array.

sub is a subscript expression.

A subscript expression is an integer expression used in selecting a specific element
of an array. The number of subcript expressions must match the number of dimensions
in the array declarator. The value of a subscript expression must be between 1 and the
upper bound for the dimension it represents.

C EXAMPLE OF DIMENSION STATEMENT
DIMENSION ARRAY(IO)

C DEFINE CHARACTER STRING
CHARACTER*IO NAME

C DEFINE ARRAY OF CHARACTER STRINGS
DIMENSION N AME(24)

TYPE STATEMENT

A type statement specifies the type of user-defined names. A type statement can
confirm or override the implicit type of a name. A type statement can also specify
dimension information.

6-4

A user name for a variable, array, external function, or statement function may
appear in a type statement. Such an appearance defines the type of that name for the
entire program unit. Within a program unit, a name can have its type explicitly
specified by a type statement only once. A type statement may confirm the type of an
intrinsic function, but it is not required. The name of a subroutine or main program
cannot appear in a type statement.

The type declaration statement has the following form.

where:

~ is one of the data-type specifiers.

:!. is the symbolic name of a variable, array, statement function,
function subprogram, or an array declarator.

The following rules apply to a type declaration statement.

• A type declaration statement must precede all executable statements.

• The data type of symbolic name can be declared only once.

• A type declaration statement cannot be labeled.

• A type declaration statement can be used to declare an array by appending an
array declarator to an array name.

A symbolic name can be followed by a data-type length specifier of the form *§
where ! is one of the acceptable lengths for the data type being declared. Such a
specification overrides the length attribute that the statement implies, and assigns a
new length to the specified item. If both a data-type length specifier and an array
declarator are specified, the data-type length specifier goes last. Examples of type
declaration statements are:

INTEGER COUNT, MATRIX(4,4), SUM
REAL MAN, lABS
LOGICAL SWITCH

INTEGER *2 Q, M 12*4, IVEC(lO)*4
REAL*4 WXl, WX3*4, WX5, WX6*S

C EXAMPLE OF TYPE STATEMENT
CHARACTER NAME*IO, CITY*SO, CH

6-5

COMMON STATEMENT

A COMMON statement provides a method of sharing memory between two or more
program units. Such program units can share the same data without passing it as
arguments. The form of the COMMON statement is:

where:

is a common block name. If a cname is omitted, then the blank
common block is specified. ---

is a comma-separated list of variable names, array names, and array
declarators. Formal argument names and function names cannot
appear in a COMMON statement.

In each COMMON statement, all variables and arrays appearing in: each nlist
following a common block name cname are declared to be in that common block. If the
first cname is omitted, all elements appearing in the first nlist are specified to be in'
the blank common block. --

Any common block name can appear more than once in COMMON statements in
the same program unit. All elements in all nlists for the same common block are
allocated in that common memory area in the order they appear in the COMMON
statement.

All elements in a single common area must be either all or none of type character.
Furthermore, if two program units refer to the same named common block containing
character data, the association of character variables of different length is not
permitted. Two variables are said to be associated if they refer to the same actual
memory.

The size of a common block is equal to the number of bytes of memory required to
hold all elements in that common block. If the same named common block is referred
to by several distinct program units, the common blocks must be of the same length and
the blocks are juxtaposed a t their lowest address. Blank common blocks, however, can
have different lengths in different program units. The maximum length may occur in
any program unit.

C EXAMPLE OF BLANK AND NAMED COMMONS
PROGRAM MYPROG
COMMON I, J, X, K(IO)
COMMON /MYCOM/ A(3)

END
SUBROUTINE
COMMON I, J, X, K(IO)
COMMON/MYCOM/A~)

6-6

EXTERNAL STATEMENT

An EXTERN AL statement identifies a user-defined name as an external subroutine
or function. The form of an EXTERN AL statement is:

EXTERNAL ~ [,name J .. ·
where:

name is the name of an external subroutine or function.

Appearance of a name in an EXTERN AL statement declares that name to be an
external procedure. Statement function names cannot appear in an EXTERNAL
statement. If an intrinsic function name appears in an EXTERN AL statement, then
that name becomes the name of an external procedure, and the corresponding intrinsic
function can no longer be called from that program unit. A user name can only appear
once in an EXTERN AL statement in a given program unit.

In assembly language and Pascal, the term EXTERN AL (or EXTRN) declares that
an object is defined outside the current unit of compilation or assembly. This is not
necessary in FORTRAN since, in accord with the standard FORTRAN practice, any
object referred to but not defined in a compilation unit is assumed to be defined
externally. Therefore, in FORTRAN, EXTERN AL specifies that a particular
user-defined subroutine or function is to be used as a procedural parameter.

C EXAMPLE OF EXTERNAL STATEMENT
EXTERN AL MYFUNC, MYSUB

C MYFUNC AND MYSUB ARE PARAMETERS TO CALC
CALL CALC (MYFUNC, MYSUru

INTRINSIC STATEMENT

An INTRINSIC statement declares that a user name is an intrinsic function. The
form of an INTRINSIC statement is:

INTRINSIC~ [,~J ...
where:

name is an intrinsic function name.

Each user name may only appea'r once in an INTRINSIC statement. If a name
appears in an INTRINSIC statement, it cannot appear in an EXTERN AL statement. All
names used in an INTRINSIC statement must be system-defined INTRINSIC functions.
For a list of these functions, see Section 13.

C EXAMPLE OF INTRINSIC STATEMENT
INTRINSIC SIN, COSIN

C SIN AND COSIN ARE PARAMETERS TO CALC2
X = CALC2 (SIN, COSIN)

6-7

SAVE STATEMENT

A SAVE statement retains the definition of a common block after the return from
a procedure that defines that common block. Within a subroutine or function, a
common block that was specified in a SAVE statement does not become undefined upon
exit from the subroutine or function. The form of a SAVE statement is:

SAVE /name/ [,/name/ J ...
where:

is the name of a common block.

Note that since all common blocks are statically allocated, the SAVE statement
has no effect.

C EXAMPLE OF SA VE STATEMENT
SA VE /MYCOM/

EQUWALENCESTATEMENT

An EQUIVALENCE statement specifies that two or more variables or arrays are to
share the same memory. If the shared variables are of different types, the
EQUIVALENCE does not cause any kind of automatic type conversion. The form of an
EQUIVALENCE statement is:

EQUIVALENCE (nlist) , (nlist)

where:

nlist is a list of at least two variable names, array names, or array
element names. Argument names may not appear in an
EQUIVALENCE statement. Subscripts must be integer constants
and must be within the bounds of the array they index.

An EQUIVALENCE statement specifies that the memory sequences of the
elements that appear in the list nlist have the same first memory location. Two or
more variables are said to be associated if they refer to the same actual memory.
Thus, an EQUIVALENCE statement causes its list of variables to become associated.
An element of type character can only be associated with another element of type
character with the same length. If an array name appears in an EQUIVALENCE
statement, it refers to the first element of the array.

6-8

Restrictions on Equivalence Statements

An EQUIVALEN CE statement cannot specify that the same memory location is to
appear more than once, such as:

REAL R,S(IO)
EQUIVALEN CE (R,S(I», (R,S(5»

which forces the variable R to appear in two distinct memory locations.
Furthermore, an EQUIVALENCE statement cannot specify that consecutive array
elements are not stored in sequential order. For example.

REAL R(IO), s(10)
EQUIVALEN CE (R(I),S(I », (R(5),S(6»

is not permitted.

When 'EQUIVALENCE statements and COMMON statements are used together,
several further restrictions apply. An EQUIVALENCE statement cannot cause memory
in two different common blocks to become equivalenced. An EQUIVALENCE
statement can extend a common block by adding memory element following the
common block, but not preceding the common block. Note that extending a named
common block by an EQUIVALENCE statement must not cause its length to be
different from the length of the named common'in other program units. For example.

COMMON / ABCDE/ R(10)
REAL S(10)
EQUIVALENCE (R(1), S(10»

is not permitted because it extends the common block by adding memory
preceding the start of the block.

C EXAMPLE OF EQUIVALENCE STATEMENT
CHARACTER NAME, FIRST, MIDDLE, LAST
DIMENSION N AME(60), FIRST(20),
1 MIDDLE(20), LAST(2)
EQUIVALENCE (NAME(l), FIRST(1»,
1 (NAME(2I), MIDDLE(1»,
2 (NAME(4I), LAST(1»,

6-9

SECTION 7
DATA STATEMENT

The DATA statement assigns initial values to variables. A DATA statement is a
nonexecutable statement. If present, it must appear after all specification statements
and prior to any statement function statements or executable statements. The form of
a DATA statement is:

DATA nUst I clist 1[[,] nlist I clist I] •••

where:

nlist is a list of variable, array element, or array names.

clist is a list of constants, or constants preceded by an integer constant
repeat factor and an asterisk, such as:

5*3.14159 3*Help 100*0

A repeat factor followed by a constant is the equivalent of a list of
all constants of that constant's value repeated a number of times
equal to the repeat constant.

There must be the same number of values in each clist as there are variables or
array elements in the corresponding nUst. The appearance of an array in an nlist is the
equivalent to a list of all elements~that array in memory sequence order. Array
elements must be indexed only by constant subscripts.

The type of each noncharacter element in a clist must be the same as the type of
the corresponding variable or array element inthe accompanying nUst. Each character
element in a clist must correspond to a character variable or array element in the nlist,
and must have a length that is less than or equal to the length of that variable or array
element. If the length of the constant is shorter, it is extended to the length of the
variable by adding blank characters to the right. Note that a single character constant
cannot be used to define more than one variable or even more than one array element.

Only local variables and array elements can appear in a DATA statement. Formal
arguments, variables in common, and function names cannot be assigned initial values
with a DATA statement.

7-1

SECTION 8
EXPRESSIONS

FORTRAN has four classes of expressions.

1. arithmetic
2. character
3. relational
4. logical

ARITHMETIC EXPRESSIONS

An arithmetic expression produces a value that is either of type integer or real.
The simplest forms of arithmetic expressions are:

1. unsigned integer or real constant

2. integer or real variable reference

3. integer or real array element reference

4. integer or real function reference

The value of a variable reference or array element reference must be defined for it
to appear in an arithmetic expression. Moreover, the value of an integer variable must
be defined with an arithmetic value, rather than a statement label value previously set
in an ASSIG N statement.

Other arithmetic expressions are built up from the above simple forms using
parentheses an'd the arithmetic operators of Table 8-1 below.

Table 8-1. Arithmetic Operators.

OQerator ReQresenting OQeration Precedence

** Exponentia tion Highest

/ Division Intermediate

* M ultiplica tion Intermediate

Subtraction or Negation Lowest

+ Addition or Identity Lowest

8-1

All of the operators are binary operators, appearing between their arithmetic
expression operands. The + and - may also be unary, preceding the operand.

Operations of equal precedence are left-associative, except exponentiation, which
is right-associative. Thus,

A/B*C

is the same as

(A/B)*C

and:

A**B**C

is the same as:

A**(B**C).

Arithmetic expressions can be formed in the usual mathematical sense, as in most
programming languages, except that FORTRAN prohibits two operators from appearing
consecutively. Thus,

A**-B

is prohibited, although:

A**(-B)

is permissible. Note that unary minus is also of lowest precedence so that:

-A*B

is interpreted as

-(A*B)

Parentheses may be used in a program to control the associativity and the order of
operator evaluation in an expression.

Integer Division

The division of two integers results in a value that is the mathematical quotient of
the two values, truncated toward O. Thus, 7/3 evaluates to 2, (-7)/3 evaluates to -2,
9/10 evaluates to 0 and 9/(-10) evaluates to O.

8-2

Type Conversions and Result Types of Arithmetic Operators

When all operands of an arithmetic expression are of the same type, the value
produced by the expression is also of that type. When the operands are of different
data types, the value produced by the expression is of a data type determined by the
rank shown in Table 8-2 below.

Table 8-2. Data Type Ranks.

Data Type Rank

INTEGER*2 1 (Lowest)

REAL 3 (Highest)

When an operation has two arithmetic operands of different data types, the value
of the data type produced is the data type of the highest-ranked operand. For example,
an operation on an integer and a real element produces a value of data type real.

The data type of an expression is the data type of the result of the last operation
performed in evaluating the expression.

The data types of operations are classified as either INTEGER, or REAL.

Integer operations are performed on integer operands only. A fraction resulting
from division is truncated in integer arithmetic, not rounded. Thus,

1/4 + 1/4 + 1/4 + 1/4

evaluates to 0, not 1.

Note that memory for the type INTEGER is dependent on the usage of the STORAGE
directive. See Section 14 for details. -

8-3

Real operations are performed on real operands or combinations of real and integer
operands only. Any integer operands are first converted to real data type by giving
each a fractional part equal to O. Real arithmetic is then used to evaluate the
expression. But in this statement:

Y = (I/J)*X

integer division is performed on I and J, and a real multiplication on the result and X.

CHARACTER EXPRESmONS

A character expression produces a value that is of" type character. The forms of
character expressions are: .

1. character constant

2. character variable reference

3. character array element reference

4. any character expression enclosed in parentheses

There are no operators that result in character expressions.

8-4

RELATIONAL EXPRESSIONS

Relational expressions compare the values of two arithmetic or two character
expressions. An arithmetic value may not be compared with a character value. The
result of a relational expression is of type logical.

Relational expressions can use any of the operators in Table 8-3 below to compare
values.

Table 8-3. Relational Operators.

Operator ReEresenting: 0Eeration

.LT. Less than

.LE • Less than or equal to

• EQ. Equal to

.NE. Not equal to

.GT. Greather than

.GE. Greater than or equal to

All of the operators are binary operators, appearing between their operands. There
is no relative precedence or associativity among the relational operands since an
expression of the form:

A .LT. B .NE. C

violates the type rules for operands. Relational expressions may only appear within
logical expressions.

Relational expressions with arithmetic operands may have one operand of type
integer and one of type real. In this case, the integer operand is converted to type real
before the relational expression is evaluated.

Relational expressions with character operands compare the position of their
operands in the ASCII collating sequence. An operand is less than another if it appears
earlier in the collating sequence and so on. If operands of unequal length are compared,
the shorter operand is considered as if it were extended to the length of the longer
operand by the addition of spaces.

8-5

LOGICAL EXPRESSIONS

A logical expression produces a value that is of type logical. The simplest forms of
logical expressions are:

1. logical constant

2. logical variable reference

3. logical array element reference

4. logical function reference

5. relational expression.

Other logical expressions are built up from the above simple forms using
parentheses and the logical operators of Table 8-4 below.

Table 8-4. Logical Operators.

Operator

.NOT.

.AND •

• OR.

Representing Operation

Negation

Conjunction

Inclusive disjunction

Precedence

Highest

Intermediate

Lowest

The .AND. and .OR. operators are binary operators, appearing between their
logical expression operands. The .NOT. operator is unary, preceding its operand.
Operations of equal precedence are left-associative so, for example,

A .AND. B .AND. C

is equivalent to:

(A .AND. B) .AND. C.

As an example of the precedence rules:

.NOT. A .OR. B .AND. C

is interpreted the same as:

(.NOT. A) .OR. (B .AND. C).

8-6

Two .NOT. operators cannot be adjacent to each other, although:

A •• AND •• NOT. B

is an example of an allowable iexpression with two adjacent operators.

The meaning of the logical operators is their standard mathematical semantics,
with .OR. being "nonexclusive," that is,

.TRUE •• OR •• TRUE.

evaluates to the value:

.TRUE.

PRECEDENCE OF OPERATORS

When arithmetic, relational, and logical operators appear in the same expression,
their relative precedence is as shown in Table 8-5 below.

Table 8-5. Relative Precedence of Operator Classes.

Operator Precedence

Arithmetic Highest

Relational Intermediate

Logical Lowest

EVALUATION RULES AND RESTRICTIONS FOR EXPRESSIONS

Any variable, array element, or function referenced in an expression must be
defined at the time of the reference. Integer variables must be defined with an
arithmetic value, rather than a statement label value as set by an ASSIGN statement.

Certain arithmetic operations are prohibited, if not mathematically meaningful,
such as dividing by O. Other prohibited operations are raising a O-valued operand to a 0
or negative power and raising a negative-valued operand to a power of type real.

8-7

SECTION 9
ASSIGNMENT STATEMENT

An assignment statement assigns a value to a variable or an array element. There
are two kinds of assignment statements: computational and label.

COMPUTATIONAL ASffiGNMENTSTATEMENT

The form of a computational assignment statement is:

where:

:!!!: is a variable or array element name.

expr is an expression.

Execution of a computational assignment statement evaluates the expression and
assigns the resulting value to the variable or array element appearing on the left. The
type of the variable or array element and the expression must be compatible. They
must both be either numeric, logical, or character, in which case the assignment
statement is called an arithmetic, logical, or character assignment statement.

If the types of the elements of an arithmetic assignment statement are not
identical, automatic conversion of the value of the expression to the type of the
variable is done. The cnversion rules are given in Table 9-1 below. In this table, the
most significant portion is the high order and the least significant is the low order.

9-1

Table 9-1. Type Conversion for Arithmetic Assignment Statements.

Variable
or Array
Element (V)

Integer

Real

Integer
Expression (E)

Assign E
to V

Append fraction
(.0) to E and
assign to V

Real
Expression (E)

Truncate E to
integer and
assign to V

Assign E to V

Double­
Precision
Expression (E)

Trunca te E to
integer and
assign to V

Assign most
significant
portion of E
to V; least
significant
portion of E
is rounded

If the length of the expression does not match the size of the variable in a
character assignment statement, it is adjusted to match. If the expression is shorter, it
is padded with enough blanks on the right to make the sizes equal before the assignment
takes place. If the expression is longer, characters on the right are truncated to make
the sizes the same.

Logical expressions of any size can be assigned to logical variables of any size without effect
on the value of the expression. However, integer and real expressions may not be assigned to
logical variables, no! may logical expressions be assigned to integer or real variables.

9-2

LABELAS@GNMENTSTATEMENT

The label assignment statement assigns the value of a format or statement label to
an integer variable. The format of the statement is:

ASSIG N label TO y!!!:.

where:

is a format label or statement label.

is an integer variable.

Execution of an ASSIGN statement sets the integer variable to the value of the
label. The label can be either a format or a statement label, and it must appear in the
same program unit as the ASSIG N statement. When used in an assigned GOTO
statement, a variable must currently have the value of a statement label. When used as
a format specifier in an input/output statement, a variable must have the value of a
format statement label. The ASSIGN statement is the only way to assign the value of a
label to a variable.

Note that the "value" of a label is not the same as the label number. For example,
the value of: -

LABEL 400

is not necessarily 400.

Also note that this makes the variable undefined as an integer and it cannot be
used in an arithmetic expression until it has been redefined (by an ASSIGNMENT or
READ statement) as such.

9-3

SECTION 10
CONTROL STATEMENT

Control statements control the order of execution of statements in FORTRAN.
This Section describes the following control statements.

1. unconditional GOTO
2. computed GOTO
3. assigned GOTO
4. arithmetic IF
5. logical IF
6. block if then else

a. block IF
b. ELSEIF
c. ELSE ,
d. ENDIF

7. DO
8. CONTINUE
9. STOP

10. PAUSE
11. END

Two remaining statements, CALL and RETURN, control the order of execution of
statements. Both are described in Section 13.

UNCONDITIONAL GOTO

The syntax for an unconditional GOTO statement is:

GOTOs

where:

is a statement label of an executable statement found in the same
program unit as the GOTO statement.

The GOTO statement causes the next statement executed to be the statement
labeled §.. Jumping into a DO, IF, ELSEIF, or ELSE block from outside the block is not
permitted. The sections that follow explain the different kinds of blocks. (A special
feature, extended range DO loops, permits jumping into a DO block. See Section 14 for
more information.)

C EXAMPLE OF UNCONDITIONAL GOTO
GOTO 4022

4022 CONTINUE

10-1

COMPUTER GOTO

The syntax for a computed GOTO statement is:

GOTO (~ [, ~] •••) [,J 1

where:

is a statement label of an executable statement found in the same
program unit as the computed GOTO statement.

is an integer expression.

The same statement label may appear repeatedly in the list of labels.

The effect of the computed GOTO statement is as follows. Suppose there are n
labels in a list of labels. If i 1 or i n, then the computed GOTO statement acts as
if it were a CONTINUE statement;-otherwise the next statement executed is the one
labeled by the ith label in the list of labels. Jumping into a DO, IF, ELSEIF, or ELSE
block from outSide the block is not permitted. The sections that follow explain the
kinds of blocks. (A special feature, extended range DO loops, permits jumping into a
DO block. See Section 14 for more information.)

C EXAMPLE OF COMPUTED GOTO
1= 1
GOTO (IO, 20) I

10 CONTINUE
20 CONTINUE

ASSIGNED GOTO

The syntax for an assigned GOTO statement is:

GOTO 1[[, J (~ [, ~ 1 ...)]
where:

i is an integer variable name.

is a statement label of an executable statement found in the same
program unit as the assigned GOTO statement.

The same statement label may appear repeatedly in the list of labels. When the
assigned GOTO statement is executed, 1 must have been assigned the label of an
executable statement found in the same program unit as the assigned GOTO statement.

10-2

The assigned GOTO statement causes the next statement executed to be the
statement labeled by the label last assigned to i. If the optional list of labels is present,
a run-time error is generated if the label last assigned to.!. is not among those listed.
Jumping into a DO, IF, ELSEIF, or ELSE block from outside the block is not permitted.
The sections that follow explain the various kinds of blocks. (A special feature,
extended range DO loops, permits jumping into a DO block. See Section 14 for more
inf or rna tion.)

C EXAMPLE OF ASSIG N ED GOTO
ASSIGN 10 TO I
GOTO I

10 CONTINUE

ARITHMETIC IF

The syntax for an arithmetic IF statement is:

where:

is an integer or real e~pression.

are statement labels of executable statements found in the same
program unit as the arithmetic IF statement.

The same statement label may appear more than once among the three labels.

The arithmetic IF statement causes evaluation of the expression and selection of a
label based on the value of the expression. Label sl is selected if the value of e is less
than 0, s2 if the value of e equals 0, and s3 ift'he value of e exceeds O. The next
statement executed is the statement labeled by the selected labe"i. Jumping into a DO,
IF, ELSEIF, or ELSE block from outside the block is not permitted. The sections that
follow explain the various kinds of blocks. (A special feature, extended range DO loops,
permits jumping into a DO block. See Section 14 for more information.)

C EXAMPLE OF ARITHMETIC IF
1=0
IF (I) 10, 20, 30

10 CONTINUE
20 CONTINUE
30 CONTINUE

10-3

LOGICAL IF

The syntax for a logical IF statement is:

IF (~) st

where:

is a logical expression.

st is any executable statement except a DO, block IF, ELSEIF,
ELSE, ENDIF, END, or another logical IF statement.

The logical IF statement causes the logical expression to be evaluated and, if the
value of that expression is true, then the st statement is executed. If the expression
evaluates to false, the st statement is not executed and the execution sequence
continues as if a CONTINUE statement were encountered.

C EXAMPLE OF LOGICAL IF
IF (I .EQ. 0) J = 2
IF (X .GT. 2.3) GOTO 100

100 CONTINUE

BLOCK IF THEN ELSE

The subsections on Block IF, ELSEIF, ELSE, and ENDIF below describe the block IF
statement and the various statements associated with it. These statements are new to
FORTRAN 77 and improve the readability of FORTRAN programs. As an overview of
these subsections, the following three code skeletons illustrate the basic concepts.

Skeleton I - Simple Block IF that skips a group of statements if the expression is
false:

IF(I.LT.IO) THEN

• Some .statements executed only if I.LT.IO

ENDIF

10-4

Skeleton 2 - Block IF with a series of ELSEIF statements:

IF(J.GT.IOOO)THEN

• Some statements executed only if J.GT.IOOO

· ELSEIF(J.GT.IOO)THEN

• Some statements executed only if J.G.TIOO
• and J.LE.IOOO

ELSEIF(J.GT.IO)THEN

ELSE

ENDIF

• Some statements executed only if J.GT.IO
• and J.LE.IOOO and J.LE.IOO

• Some statements executed only if none of
• above conditions are true

Skeleton 3 - Illustrates that the constructs can be nested and that an ELSE
statement can follow a block IF without intervening ELSEIF statements
(indentation solely to enhance readability):

10-5

IF(I.LT.IOO)THE N

ELSE

ENDIF

• Some statements executed only if I.LT.IOO

IF(J.LT.IO)THEN

ENDIF

• Some statements executed only if
• I.LT.IOO and J.LT.IO

• Some statements executed only if I.LT.IOO

• Some statements executed only if I.GE.IOO

IF(J.LT.IO)THEN

ENDIF

• Some statements executed only if
• I.GE.IOO and J.LT.IO

• Some statements executed only if I.GE.IOO

To understand in detail the block IF and associated statements, the concept of an
IF-level is introduced. For any statement, its IF-level is:

where:

nl is the number of block IF statements from the beginning of the
program unit that the statement is in - up to and including that
statement.

n2 is the number of ENDIF statements from the beginning of the
program unit up to, but not including, that statement.

The IF-level of every statement must be greater than or equal to 0 and the IF-level
of every block IF, ELSEIF, ELSE, and EN DIF must be greater than O.

Finally, the IF-level of every END statement must be O. The IF-level defines the
nesting rules for the block IF and associated statements and defines the extent of IF,
ELSEIF, and ELSE blocks.

10-6

Block IF

The syntax for a block IF statement is:

IF (~THEN

where:

is a logical expression.

The IF block associated with this block IF statement consists of all the executable
statements (there may be none) that appear following this statement up to, but not
including, the next ELSEIF, ELSE, or ENDIF statement that has the same IF-level as
this block IF statement (the IF-level defines the notion of "matching" ELSEIF, ELSE, or
ENDIF).

The block IF statement causes the expression to be evaluated. If the expression
evaluates to true and there is at least one statement in the IF block, the next statement
executed is the first statement of the IF block. Following the execution of the last
statement in the IF block, the next statement to be executed is the next ENDIF
statement at the same IF-level as this block IF statement. If the expression in this
block IF statement evaluates to true and the IF block has no executable statements, the
next statement executed is the next ENDIF statement at the same IF-level as the block
IF statement. If theJexpression evaluates ,to false, the next statement executed is the
next ELSEIF, ELSE, or ENDIF statement that has the same IF-level as the block IF
statement.

Transfer of control into an IF block from outside that block is not permitted.

ELSEIF

The syntax of an ELSEIF statement is:

ELSEIF (~THEN

where:

is a logical expression.

The ELSEIF block associated with an ELSEIF statement consists of all the
executable statements (there may be none) that follow the ELSEIF statement up to, but
not including, the next ELSEIF, ELSE, or ENDIF statement that has the same IF-level

, as this ELSEIF statement.

10-7

The ELSEIF statement causes the evaluation of the expression. If its value is true
and there is at least one statement in the ELSEIF block, the next statement executed is
the first statement of the ELSEIF block. Following the execution of the last statement
in the ELSEIF block, the next statement to be executed is the next ENDIF statement at
the same IF-level as this ELSEIF statement. If the expression in this ELSEIF statement
evaluates to true and the ELSEIF block has no executable statements, the next
statement executed is the next ENDIF statement at the same IF-level as the ELSEIF
statement. If the expression evaluates to false, the next statement executed is the
next ELSEIF, ELSE, or ENDIF statement that has the same IF-level as the block IF
statement.

Transfer of control into an IF block from outside that block is not permitted.
I

ELSE

The syntax of an ELSE statement is:

ELSE

The ELSE block associated with an ELSE statement consists of all of the
executable statements (there may be none) that follow the ELSE statement up to, but
not including, the next ENDIF statement that has the same IF-level as this ELSE
statement. The "matching" ENDIF statement must appear before any intervening ELSE
or ELSEIF statements of the same IF-level. .

The execution of an ELSE statement has no effect.

Transfer of control into an ELSE block from outside that block is not permitted.

ENDIF

The syntax of an ENDIF statement is:

ENDIF

An ENDIF statement is required to "match" every block IF statement in a program
unit in .order to specify which statements are in a particular block IF statement.

The execution of an ENDIF statement has no effect.

10-8

DO

The syntax of a DO statement is:

DO ! [,J l=~, e2 [, e3]

where:

is a statement label of an executable statement.

1 is an integer variable.

are integer expressions.

The label must follow this DO statement and be contained in the same program
unit. The statement labeled by s is called the terminal statement of the DO loop. It
must not be an unconditional GOTO, assigned GOTO, arithmetic IF, block IF, ELSEIF,
ELSE, ENDIF, RETURN, STOP, END, or DO statement. If the terminal statement is a
logical IF, it may contain any executable statement except those not permitted inside a
logical IF statement.

A DO loop has a "range," beginning with the statement that follows the DO
statement and ending with (and including) the terminal statement of the DO loop •.

If a DO statement appears in the range of another DO loop, its range must be
entirely contained within the range of the enclosing DO Loop, although the loops may
share a terminal statement.

If a DO statement appears within an IF, ELSEIF, or ELSE block, the range of the
associated DO loop must be entirely contained in the particular block.

If a block IF statement appears within the range of a DO loop, its associated
ENDIF statement must also appear within the range of that DO loop.

The DO variable,.1 may not be assigned to the statements within the range of the
DO loop associated with it. Jumping into the range of a DO loop from outside its range
is not permitted. (However, there is a special feature, added for compatibility with
earlier versions of FORTRAN, that permits "extended range" DO loops. See Section 14
for more information.)

The execution of a DO statement causes the following steps.

I. The expressions el, e2, and e3 are evaluated. If e3 is not present, it is as if e3
evaluated to I (e3 mUSt not evaluate to 0).

10-9

2. The DO variable,.1 is set to the value of e 1.

NOTE

Note that the prohibition on assigning INTEGER *4
values to INTEGER*2 variables applies here.
Therefore if i is INTEGER*2, el, e2, and e3 (if it
exists) must alSo be expressions oTtype INTEGER *2.

3. The iteration count for the loop is:

MAX 0«(e2-e 1 +e3)/ e3),0)

which may be 0 if either:

~ > e2 and e3 > 0

or:

~ < e2 and e3 < 0

(However if the D066 directive is in effect, the iteration count is at least
1. See Section 14 for more information.)

4. The iteration count is tested, and if it exceeds 0, the statements in the
range of the DO loop are executed.

Following the execution' of the terminal statement of a DO loop, the following
steps occur.

1. The value of the DO variable,.1 is incremented by the value of e3 that was
computed when the DO statement was executed.

2. The iteration count is decremented by 1.

10-10

3. The iteration count is tested, and if it exceed 0, the statements in the range of
the DO loop are executed again.

The value of the DO variable is well-defined regardless of whether the DO loop
exits because the iteration count become 0 or because of a transfer of control out of
the DO loop or RETURN statement.

The following is an example of the final value of a DO variable.

C This program fragment displays the numbers
C 1 to lion the screen

DO 2001=1,10
200 WRITE(*,'CI5)')1

WRITE(*, '(15)')1

C EXAMPLE OF DO STATEMENT
C INITIALIZE A 20-ELEMENT REAL ARRAY

DIMENSION ARRAY(20)
DO 1 I = 1, 20

1 ARRA y(I) = 0.0
C PERFORM A FUNCTION 11 TIMES

DO 2, I = -30, -60, -3
J = 1/3
J = -9 - J
ARRAY(J) = MYFUNC(I)

2 CONTINUE

CONTINUE

The syntax of a CONTINUE statement is:

CONTINUE

The primary use for the CONTINUE statement is a convenient statement to label,
particularly as the terminal statement in a DO loop.

The execution of a CONTINUE statement has no effect.

C EXAMPLE OF CONTINUE STATEMENT
DO 10, 1= 1, 10
IARRA y{I) = 0

10 CONTINUE

10-11

STOP

The syntax of a STOP statement is:

STOP [n]

where:

n is either a character constants or a string of not more than fiv~
digits.

The STOP statement causes. the program to terminate. The argument, n, if
present, is displayed on the screen upon termination.

PAUSE

C EXAMPLE OF STOP STATEMENT
IF (IERROR .EQ. 0) GOTO 200
STOP 'ERROR DETECTED'

200 CONTINUE

The syntax of a P A USE statement is:

PAUSE [n]

where:

!! is either a character constant or a string of not more than five
digits.

The PAUSE statement causes the program to be suspended pending an indication
from the keyboard that it is to continue. The argument, !!.' if present, is displayed on
the screen as part of the prompt requesting input from the keyboard. To continue
execution of the program, press the space bar or RETURN key. Execution resumes as
if a CONTINUE statement were executed.

C EXAMPLE OF PAUSE STATEMENT
IF (IW ARN .EQ. 0) GOTO 300
PAUSE 'WARNING: IWARN IS NONZERO'

300 CONTINUE

10-12

END

The syntax of an END statement is:

END

Unlike other statements, an END statement must wholly appear on an initial line
and contain no continuation lines. No other FORTRAN statement, such as the ENDIF
statement, may have an initial line that appears to be an END statement.

The END statement in a subprogram has the same effect as a RETURN
statement. In the main program, it terminates execution of the program. The END
statement must appear as the last statement in every program unit.

C EXAMPLE OF END STATEMENT
C END STATEMENT MUST BE LAST STATEMENT
C IN A PROGRAM

PROGRAM MYPROG
WRITE(*, 10H HI WORLD!)
END

10-13

SECTION 11
I/O SYSTEM

Sections 11 and 12 describe the FORTRAN I/O system. Section 11 describes the
basic FORTRAN I/O concepts and statements and Section 12 the FORMAT statement.
The major subsections of this section are:

• Overview - Provides an overview of the FORTRAN file system. Defines the
basic concepts of I/O records, I/O units, and the various kinds of file access
available.

• Concepts and Limitations - Relates the definitions made in the Overview to
accomplishing various tasks using he most common forms of files and I/O
statements. This Section also gives a complete program illustrating these
operations. There is also a general discussion of I/O system limitations.

• Statements - Presents the I/O system statements, except FORMAT.

OVERVIEW

You need to be familiar with the terms and concepts related to the structure of the
FORTRAN I/O system to understand the I/O statements. However, most I/O tasks can
be accomplished without a complete understanding of this material; you can skip to
"Concepts and Limitations" below on first reading and use this SUbsection for reference.

Records

The building block of the FORTRAN file system is the record. A record is a
sequence of characters or values. There are three kinds of records: formatted,
unformatted, and endfile.

A .formatted record is a sequence of characters terminated by the character value
of the RETURN key (hexadecimal value OAh). Formatted records are interpreted on
input consistently with the way the Operating System and the Editor interpret
characters.

An unformatted record is a sequence of values, with no system alteration or
interpretation; no physical representation exists for the end of record.

11-1

The FORTRAN file system simulates a virtual endfile record after the last record
in a file, although there is no corresponding real record.

Files

A file is a sequence of records. Files are either external or internal.

An external file is a file on a device or a device itself. An internal file is a
character variable that serves as the source or destination of some I/O action. From
this point on, both internal FORTRAN files and the files known to the Operating
System are referred to simply as files, with context determining meaning. (The OPEN
statement provides the linkage between the two notions of files and, in most cases,
when the two notions coincide, the ambiguity disappears after opening.a file.

File Properties

A FORTRAN file has these properties: name, position, formatted or unformatted,
and sequential or direct access.

File Name. A file can have a name. If present, a name is a character string
identical to the name by which it is known to the B 20 Operating System services file
management system. (File naming conventions are described in the Executive Manual.)

File Position. The position property of a file is usually set by the previous I/O
operation. A file has an initial point, terminal point, current record, pr~ceding record,
and next record.

It is possible to be between records in a file, in which case the next record is the
successor to the previous record and there is no current record.

Opening a sequential file for writing positions the file at its beginning and discards
all .2!2 2!!!! in the file. The file position after a sequential write is at the end of the
fqe, but not beyond the endfile record. Executing the ENDFILE statement positions
the file beyond the endfile record, as does a READ statement executed at the end of
the file (but not beyond the endfile record). Reading an endfile record can be trapped
by the user using the END= option in a READ statement.

Formatted and Unformatted Files. An external file is opened as either formatted
or unformatted. All internal files are formatted. Formatted files consist entirely of
formatted records and unformatted files consist entirely of unformatted records.

11-2

Sequential and Direct Access Properties. An external file is opened as either
sequential or direct. Files contain records with order determined by the order in which
the records were written (the normal sequential order). These files must not be read or
written using the REC= option which specifies a: position for direct access I/O. The
Operating System attempts to extend sequential access files if a record is written
beyond the old terminating file boundary; the success of this operation depends on
available space on the physical device.

Direct access files can be read or written in any order (they are random access
files). Recores are numbered sequentially, with the first record numbered I. All
records have the same length, specified when the file is opened, and each record has a
unique record number, specified when the record is written.

It is possible to write records out of order, including, for example, writing record 9,
5, and II in that order without the records in between. It is not possible to delete a
record once written but a record can be overwritten with a new value. An error occurs
when a record is read from a direct access file that has not been written. Direct access
files must reside on disk. The Operating System attempts to extend direct access files
if a record is written beyond the old terminating file boundary; the success of this
depends on available space on the physical device.

Internal Files

Internal files provide a mechanism for using the formatting capabilities of the I/O
system to convert values to and from their external character representations, within
the FORTRAN internal memory structures. That is, reading a character variable
converts the character values into numeric, logical, or character values and writing a
character variable allows values to be converted into their (external) character
representa tion.

Special Properties. An internal file is a character variable or character array
element. The file has exactly one record, which has the same length as the character
variable or character array element. If less than the entire record is written, the
remaining portion of the record is filled with blanks. The file position is always at the
beginning of the file prior to I/O statement execution~ Only formatted, sequential I/O
is permitted to internal files and only the I/O statements READ and WRITE may specify
an internal file.

Units

A unit is a means of referring to a file. A unit specified in an I/O statement is
either an external unit or an internal file specifier.

II-3

An external unit specifier is either an integer expression, which evaluates to a
nonnegative value, or the character *, which stands for the screen (for writing) and the
keyboard (for reading). In most cases, an external unit specifier value is bound to a
physical device (or files resident on that device) by name using the OPEN statement.
Once this binding of value to system file name occurs, FORTRAN I/O statements
specify the unit number as a means of referring to the appropriate external entity.
Once opened, the external unit specifier value is uniquely associated with a particular
external entity until an explicit CLOSE occurs or until the program terminates. The
only exception to these binding rules is that the unit value 0 is initially associated with
the keyboard for reading and the screen for writing and no explicit OPEN is necessary.
The character * is interpreted by the FORTRAN file system as specifying unit O.

An internal file specifier is a character variable or character array element. that
directly specifies an internal file.

11-4

CONCEPTS AND LIMITATIONS

FORTRAN provides a rich combination of possible file structures. However, two
kinds of files suffice for most applications: * files, and explicitly opened external,
sequential, formatted files.

* Files

* represents the keyboard and screen, a sequential, formatted file, also known as
unit o. This particular unit has the special properties that an entire line, terminated by
the RETURN key, must be entered when reading from it, and the BACKSPACE and
DELETE keys familiar to the system user serve their normal functions. Note that
reading from any other unit does not have these properties, even though that unit is
bound to the keyboard by an explicit OPEN statement.

Explicitly Opened External, Sequential, Formatted Files

These files are bound to a system file by name in an OPEN statement.

Example

This example program uses the two kinds of files discussed above for reading
and writing. The I/O statements are explained in detail in the following
subsection.

C Copy a file with three columns of integers,
C each 7 column wide, from a file whose name
C is input by the user to another file named
C OUT.TEXT, reversing the positions of the
C first and second columns.

PROGRAM COLSWP
CHARACTER*64 FNAME, MSGI
DATA MSGI/'Done'/

C Prompt to the screen by writing to *.
WRITE(*,900)

900 FORMAT('INPUT FILE NAME-'/)
C Read the file name from the keyboard by
C reading from *.

READ(*,910) FNAME
910 FORMAT(A)
C use unit 3 for input; any unit number except
C 0 will do.

OPEN (3,FILE=FN AME)
C Use unit 4 for output; any unit number except
C 0 and 3 will do.

OPEN (4,FILE='OUT.TEXT',STATUS='N EW')

11-5

C Read and write until end of file.
100 READ(3,920,END=200)I,J,K

WRITE(4,920)J,~K
920 FORMA T(317)

GOTO 100
200 WRITE(* ,91O)MSG 1

END

Less Commonly Used File Operations

The less commonly used file structures are appropriate for certain classes of
applications. A very general indication of the intended usages for them follows.

If the I/O is to be random access, such as in maintaining a data base, direct access
files are probably necessary, If the data is to be written by FORTRAN and reread by
FORTRAN, unformatted files are more efficient in I/O overhead. The combination of
direct and unformatted is ideal for a data base to be created, maintained, and accessed
exclusively by FORTRAN.

If the data must be transferred without any system interpretation, especially if all
256 possible bytes are to be transferred, unformatted I/O is necessary. An example of a
usage of unformatted I/O would be in the control of a device that has a single-byte,
binary interface. Formatted I/O would, in this example, interpret certain characters,
such as the ASCII representation for RETURN, and fail to pass them through to the
program unaltered.

Internal files are not I/O in the conventional sense but rather provide certain
character string operations and conversions within a standard mechanism.

A file opened in FORTRAN is either "old" or "new," but there is no concept of
"opened for reading" as distinguished from "opened for writing." Therefore, you can
open "old" (existing) files and write to them, with the effect of overwriting them.
Similarly, you can alternately write and read to the same file (providing that you avoid
reading beyond the end of the file, or reading unwritten records in a direct file).

A write to a sequential file effectively deletes any records that existed beyond the
newly written record. Normally, when a device (such as the keyboard or printer) is
opened as a file, it makes no difference whether it is opened as "old" or "new." With
disk files, however, opening "new" creates a new file. If that file is closed or if the
program terminates without doing a CLOSE on that file, a permanent file is created
with the name given when the file was opened. If a previous file existed with the same
name, it is overwritten ..

1I-6

Limitations

Direct Files/Direct Device Association. There are two kinds of devices: sequential
and direct. The files associated with sequential devices are streams of characters, with
no explicit motion allowed except reading and/or writing. The keyboard, screen, and
printer are examples of sequential devices. Direct devices, such as disks, have the
additional operation of seeking a specific location. They can be accessed either
sequentially or randomly, and thus can support direct files. The FORTRAN I/O system
does not allow direct files on sequential devices.

BACKSPACE/Sequential Device Association. The FORTRAN I/O system disallows
backspacing a file on a sequential device (see below).

BACKSPACE/Unformatted Sequential File Association. There is no indication in
an unformatted sequential file of record boundaries, therefore BACKSPACE on such
files is defined as backing up by one byte. Direct files contain records of fixed,
specified length, so it is possible to backspace by records on direct unformatted files.

Side Effects of Functions Called in I/O Statements. During execution of any I/O
statement, .evaluation of an expression may cause a function to be called. That
function call must not cause any I/O statement to be executed.

I/O STATEMENTS

This SUbsection describes seven I/O statements: OPEN, CLOSE, READ, WRITE,
BACKSPACE, ENDFILE, and REWIND.

In addition, an I/O intrinsic function, EOF (see Section 13), returns a logical value
indicating whether the file associated with the unit specifier passed to it is at the end
of the file. A familiarity with the FORTRAN file system is assumed.

Elements of I/O Statements

The various I/O statements take certain parameters and arguments that specify
sources and destinations of data transfer, as well as other facets of the I/O operation.
The abbreviations used in this subsection are the unit specifier (u), format specifier (f),
and input/output list (jolist), defined below. - -

The unit specifier, ,!!, can take one of the following forms in an I/O statement.

* - refers to the keyboard or screen.

integer expression - refers to an external file with a unit number equal to the value
of the expression (* is unit number 0).

11-7

name of a character variable or character array element - refers to the internal
file specified by the value of the variable or array element.

The format specifier, f, can take one of the following forms in an I/O statement.

statement label - refers to the FORMAT statement labeled by that label.

Integer variable name - refers to the FORTRAN label assigned to that integer
variable using the ASSIG N statement.

character expression - the format specified is the current value of the character
expression provided as the format specifier.

The input/output list (jolist) specifies the entities whose values are transferred by
READ and WRITE statements. An iolist, a possibly empty list separated by commas,
consists of input or output entities and Implied DO lists.

Input Entities and Output Entities. An input entitl can be specified in the iolist of
a READ statement and an output entity in the iolist 0 a WRITE statement. The entity
is either a variable name, an array element name, or an array name. An array name is
a means of specifying all of the elements of the array in memory sequence order.

11-8

An output entity can also be any other expression not beginning with the character
11(11, to distinguish implied DO lists from expressions.

Note that the expression:

(A +B)*(C+D)

can be written as:

+(A+B)*(C+D)

to distinguish it from an implied DO list.

Implied DO Lists. Implied DO lists can be specified as items in the I/O list of
READ and WRITE statements and have the form:

(iolist, 1 = ~,e2 [, e3]

where:

iolist is as above (including nested implied DO lists).

are as defined for the DO statement. That is, i is an integer
variable, ~ e2, and e3 are integer expressiOns and, if 1 is
INTEGER*2, then el, e2, and e3 must be INTEGER*2.

In a READ statement, the DO variable i (or an associated entity) must not appear
as an input list item in the embedded iolist, but may have been read in the same READ
statement outside of the implied DO list. The embedded iolist is effectively repeated
for each iteration of 1 with appropriate sUbstitution of values for the DO variable 1.

In the case of nested implied DO loops, the innermost (most deeply nested) loop is
always executed fastest.

11-9

OPEN Statement

OPEN(!!,FILE=fname,STATUS=!!,ACCESS=!!£,
FORM=fm,RECL=r 1)

where:

is a unit specifier (see "Elements of I/O Statements" above). It is
required, and must appear as the first argument. It must not be
an internal unit specifier.

is a character expression. This is a required parameter and must
appear as the second argument.

All arguments after fname are optional and can appear in any order. The options
are character constants with optional trailing blanks (except RECL=).

st is 'OLD' (the default) or 'New'. 'OLD' is for reading or writing
existing files. 'NEW' is for writing new files.

NOTE

For sequential files, STATUS='OLD' and
STATUS='NEW' correspond to the B 20 Operating
System services file modes mode read and mode write;
for direct files, the open mode is always mode modify
and STATUS has no effect.

!£ is 'SEQUENTIAL' (the default) or 'DIRECT'.

fm is 'FORMATTED' (the default) or 'UNFORMATTED'.

!l is the record length, an integer expression. This argument to
OPEN is for DIRECT access files only, for which it is required.

The OPEN statement binds a unit number with an external device or file on an
external device by specifying its file name. Binding unit 0 to a file has no effect; unit 0
is permanently connected to the keyboard and screen. If the file is to be direct, the
RECL=r I option spec,ifies the length of the records in that file.

11-10

Example program fragment 1:

CHARACTER *26 MSG2
DATA MSG2/'Specify output File name - 'I

C Prompt user for a file name.
WRITE(*,' (A)')MSG2

C Presume that FN AME is specified to be
C CHARACTER*64. Read the file name from the keyboard.

READ(*,'(A)') FN AME
C Open the file as formatted sequential as unit 7. Note that the
C ACCESS specified need not have appeared since it is the
C default.

OPEN(7,FILE=FNAME,ACCESS='SEQUENTIAL',STATUS='NEW')';

Example program fragment 2:

C Open an existing file created by the Editor
C called DATA3.TEXT as unit 3.

OPEN(3,FILE='DATA3.TEXT')

CLOSE Statement

CLOSE(,!!,ST ATUS=st)

where:

st

is a unit specifier (see "Elements of I/O Statements" above). It is
required, and must appear as the first argument. It must not be
an internal unit specifier.

is 'KEEP' or 'DELETE', an optional argument that applies only to
files opened NEW. The default is 'KEEP'. This option is a
character constant.

CLOSE disconnects the unit specified and prevents subsequent I/O from being
directed to that unit (unless the same unit number is reopened, possibly bound to a
different file or device). Files opened NEW are temporary files and are discarded if
STATUS='DELETE' is specified. Normal termination of a FORTRAN program
automatically closes all open files as if CLOSE with STATUS='KEEP' was specified.
CLOSE for unit 0 has no effect, since the CLOSE operation is not meaningful for
keyboard and screen.

Example program fragment:

C Close the file opened in OPEN example,
C discarding the file.

CLOSE(7,STATUS='DELETE')

11-11

READ Statement

where:

f

is a unit specifier (see "Elements of I/O Statements" above). It is
required, and must appear as the first argument.

is required for formatted read as the second argument, and must not
I,lppear for unformatted read.

is specified for direct access only, otherwise an error results. It is a
positive integer expression. It positions to record number.!:!!. If
REC=.!:!! is omitted for a direct access file, reading continues from
the current position in the file.

is an optional statement label. If not present, reading the end of the
file results in a run-time error. If present, encountering an end of
file condition results in the transfer to the executable statement
labeled sl, which must be in the same program unit as the READ
statement.

is an optional statement label. If it is not present, I/O errors result
in run-time errors. If it is present, I/O errors cause control to
transfer to the executable statement labeled §..

The READ statement sets the items in iolist (assuming that no end of file or error
condition occurs). If the read is internal, the specified character variable or character
array element is the source of the input. Otherwise, the external unit is the source.

Example program fragment:

C Need a two dimensional array for the example.
DIMENSION IA(IO,20)

C Read in the bounds for the array. These
C bounds should be less than 10 and 20
C respectively. Then read in the array in
C nested implied DO lists with input format of
C 8 columns of width 5 each.

READ(3,9 90)I,J ,«IA(I,J),J=1 ,J),I=1 ,1,1)
990 FORMAT(~I5/,(8I5»

ll-I2

WRITE Statement

W RITE(!!,bERR=~,REC=.!:!!)iolist

where:

u

f

rn

is a unit specifier (see "Elements of I/O Statements" above). It is
required, and must appear as the first argument.

is required for formatted write as the second argument, and must
not appear for unformatted write. .

is an optional statement label. If it is not present, I/O errors
result in run-time errors. If it is present, I/O errors cause control
to transfer to the executable statement labeled~. .

is specified for direct access only, otherwise an error results. It
is a positive integer expression. It positions to record number rn
for this WRITE. If REC=rn is omitted for a direct access file,
writing continues from the current position in the file.

The WRITE Statement tranfers the ioUst items to the unit specified. If the write is
internal, the character variable or character array element specified is the destination
of the output, otherwise the external unit is the destination.

Example program fragment:

C Display message: "One = 1, Two = 2,
C Three = 3" on the screen, not doing things in
C the simplest way!

WRITE(*,980) 'One=',l,l+l, 'ee=',+(I+l+I)
980 FORMAT(A,Il',Two=',lX,Il,',Thr',A,Il)

BACKSPACE Statement

BACKSPACE u

where

u is an internal unit specifier.

See the "Limitations" sUbsection above for more information.

BACKSPACE causes the file connected to the specified unit to be positioned
before the preceding record. If there is not preceding record, the file position is not
changed. Note that if the preceding record is the endfile record, the file becomes
psoitioned before the end file record. If the file position is in the middle of the record,
BACKSP ACE positions to the start of that record.

11-13

ENDFILE Statement

ENDFILE u

where

u is an internal unit specifier •.

ENDFILE "writes" an end of file record as the next record of the file connected to
the specified unit. The file is then psoitioned after the end of the file record, so further
sequential data transfer is prohibited until either a BACKSPACE or REWIND is executed.
An ENDFILE on a direct access file makes all records written beyond the position of the
new end of file disappear.

REWIND Statement

REWIND u

where:

is an internal unit specifier.

Execution of a REWIN D statement causes the file associated with the specified
unit to be positioned at its initial point.

Carriage Control

The first character of every record transferred to an external device, such as the
video or a printer, is not printed. Instead, it is interpreted as a carriage control
character. The FORTRAN I/O system recognizes certain characters as carriage
control characters. Table 11-1 below lists these characters and their effects.

Table 11-1. Carriage Control Characters.

Character Effect

space Advances one line.

o Advances two lines.

Advances to top of next page.

+ (plus) Does not advance (allows overprinting).

11-14

Any character than those listed in Table 11-1 is treated as a space and is deleted
from the print line.

NOTE

NOTE: Note that if you accidentally omit the
carriage control character, the first character of the
record is not printed.

11-15

SECTION 12
FORMATTED 1/0 AND THE FORMAT STATEMENT

FORMAT SPECIFICATIONS AND THE FORMAT STATEMENT

If a READ or WRITE statement specifies a format, it is considered a formatted,
rather than an unformatted, I/O statement. Such a format can be specified in one of
three ways, as explained in Section 11. Two ways refer to FORMAT statements and one
is an immediate format in the form of a character expression containing the format
itself. The following are all valid and equivalent means of specifying a format.

WRITE (*,990) I,J,K
990 FORMAT(2I5,13)

ASSIGN 990 to IFMT
990 FORMAT(215,13)

WRITE(*,IFMT) I,J,K

WRITE(*,'(2I5,13)') I,J,K

CHARACTER*8FMTCH
FMTCH = '(215,13)
WRITE(*,FMTCH) I,J,K

The format specification itself must begin with "(II, possibly following initial blank
characters, and ending with a matching ")". Characters beyond the matching "),, are
ignored.

FORMAT statements must be labeled, and like all nonexecutable statements, may
not be the target of a branching operation.

Between the initial "(,, and terminating "),, is a list of items, separated by commas,
each of whiCh is one of:

ned

[r.Jfs

where:

repeatable edit descriptors.

nonrepeatable edit descriptors.

a nested format specification. At most three levels of nested
parentheses are permitted within the outermost level.

[r.J is an optionally present, nonzero, unsigned, integer constant
called a repeat specification.

12-1

The comma separating two list items may be omitted if the resulting format
specification is still unambiguous, such as after a P edit descriptor or before or after
the / edit descriptor.

The repeatable edit descriptors, described below, are:

Iw
P-w.d
Ew.d
Ew.dEe Lw- -
A-
Aw

where:

I, F, E, L, A

d

indicate the manner of editing.

are nonzero, unsigned, integer constants.

is an unsigned integer constant.

The nonrepeatable edit descriptors, described below, are:

'xxxx'

/

\

kP

BN

BZ

where:

character constants of any length (see special rules below).

another means of specifying character constants (see rules
below).

writes n spaces.

end of data transfer on the current record.

inhibits automatic end of record if this is the'last
edit descriptor encountered by the "format controller".

Sets the scale factor for F and E edit descriptors.

Causes blanks to be ignored in subsequent input fields.

Causes blanks to be identical to zeros. but does not
include leading blanks.

" H, X, /, \ , P, BN, BZ

k

indicate the manner of editing.

is any ASCII character.

is a nonzero, unsigned, integer constant.

is an optionally signed integer constant.

12-2

INTERACTION BETWEEN FORMAT SPECIFICATION AND INPUT/OUTPUT LIST
Ciolist)

If an iolist contains at least one item, at least one repeatable edit descriptor must
exist in the format specification. In particular, the empty edit specification, (), can be
used only if no items are specified in the iolist (in which case the only action caused by
the I/O statement is the implicit record-skipping action associated with formats). Each
item in the iolist is associated with a repeatable edit descriptor during the I/O
statement execution in turn. In contrast, the remaining format control items interact
directly with the record and do not become associated with items in the iolist~

The items in a format specification are interpreted from left to right. Repeatable
edit descriptors act as if they were present.!:. times (if omitted, !. is treated as a repeat
factor of 1). Similarly, a nested format specification is treated as if its items appeared
!. times.

The formatted I/O process proceeds as follows. The "format controller" scans the
format items in the order indicated above. When a repeatable edit descriptor is
encountered either:

• a corresponding item appears in the iolist, in which case the item and the edit
descriptor are associated, and I/O of that item proceeds under format control
of the edit descriptor, or

• no corresponding item appears in the iolist, in which case the "format
controller" terminates I/O.

12-3

If the format controller encounters the matching final ")"of the format
specification and there are no further items in theiolist, the "format controller"
terminates I/O. If, however, there are further items in the i~pst, the file is positioned
at the beginning of the next record and the "format controller continues by rescanning
the format starting at the beginning of the format specification terminated by the last
preceding right parenthesis.

If there is no such preceding right parenthesis, the "format controller" rescans the
format from the beginning. Within the portion of the format rescanned, there must be
at least one repeatable edit descriptor.

If the rescan of the format specification begins with a repeated nested format
specification, the repeat factor indicates the number of times to repeat that nested
format specification. The rescan does not change the previously set scale factor or BN
or BZ' blank control in effect. When the "format controller" terminates, the remaining
characters or an input record are skipped or an end of record is written on output,
except as noted under the edit descriptor below.

EDIT DESCRIPTORS

N onrepea table

IXXXXI (Apostrophe Editing). The apostrophe edit descriptor has the form of a
character constant. Embedded blanks are significant and double I I are interpreted as a
single I. Apostrophe editing cannot be used for input (READ) as it causes the character
constant to be transmitted to the output unit. For an example, see "H (Hollerith
Editing)" below.

H (Hollerith Editing). The!lH edit descriptor causes the following !l characters,
with blanks counted as significant, to be transmitted to the output unit. Hollerith
editing cannot be used for input (READ).

Examples of Apostrophe and Hollerith editing:

C Each write outputs characters between the
C slashes: / ABC'DEF/

WRITE (*,970)
970 FORMAT ('ABC' 'DEF')

WRITE (*,'("ABC" "DEF")')
WRITE (*,'(7HABC' 'DEF)')
WRITE (*,960)

960 FORMAT (7HABC'DEF)

X (Positional Editing). On input (READ), the !lY edit descriptor causes the file
position to advance !l characters thus the next !l characters are skipped. On output
(WRITE), the !lX edit descriptor causes !l blanks to be written, providing that further
writing to the record occurs; otherwise, the !lX descriptor results in no operation.

12-4

I (Slash Editing). The slash indicates the end of data transfer on the current
record. On input, the file is positioned to the beginning of the next record. On output,
an end of record is written and the file is positioned to write on the beginning of the
next record.

\ (Backslash Editing). Normally when the "format controller" terminates, the end
of data transmission on the current record occurs. If the last edit descriptor
encountered by the "format controller" is \ , this automatic end of record is
inhibited. This allows subsequent I/O statements to continue reading (or writing) out of
(or into) the same record. The most common use for this mechanism is to prompt to the
screen and read a response off the same line as in:

WRITE (*,'(A \)') 'Input an integer
READ (*,'(BN,16)') I

The \ edit descriptor does not inhibit the automatic end of record generated when
reading from the * unit. Input from the keyboard must always be terminated by the
RETURN key. This permits the backspace character and the DELETE key to function
properly.

P (Scale Factor Editing). The kP edit descriptor sets the scale factor for
subsequent F and E edit descriptors until another ~P edit descriptor is encountered. At
the start of each I/O statement, the scale factor is initialized to O. The scale factor
affects format editing in the following ways.

• On input, with F and E editing, providing that no explicit exponent exists in
the field, and F output editing, the externally represented number equals the
internally represented number multiplied by IO**~.

• On input, with F and E editing, the scale factor has no effect if there is an
explicit exponent in the input field.

• On output, with E editing, the real part of the quantity is output multiplied by
10**~ and the exponent is reduced by ~ (effectively altering the column
position of the decimal point but not the value output).

BN and BZ (Blank Interpretation). These edit descriptors specify the interpretation
of blanks in numeric input fields. The default, BZ, is set at the start of each I/O
statement. This makes blanks, other than leading blanks, identical to zeros. If a BN
edit descriptor is processed by the "format controller," blanks in subsequent input fields
are ,ignored unless, and until, a BZ edit descriptor is processed. The effect of ignoring
blanks is to take all the nonblank characters .in the input field, and treat them as if they
were right-justified in the field with the number of leading blanks equal to the number
of ignored blanks. For instance, the following READ statement accepts the characters
shown between the slashes as the value 123 (where If indicates pressing the
RETURN key).

READ(*,IOO) I
100 FORMAT,(BN,16)

/123 (If) I,
/123 456 (If) I,
I 123 (If) I.

12-5

The BN edit descriptor, in conjunction with the infinite blank padding at the end of
formatted records, makes interactive input very convenient.

Repeatable

I, F, and E (Numeric Editing). The I, F, and E edit descriptors are used for I/O of
integer and real data. The following general rules apply to all three of them.

• On input, leading blanks are not significant. Other blanks are interpreted
differently depending on the BN or BZ flag in effect, but all blank fields
always become the value O. Plus signs are optional.

• On input, with F and E editing, an explicit decimal point appearing in the input
field overrides the edit descriptor specification of the decimal point position.

• On output, the characters generated are right-justified in the field with
padding by leading blanks if necessary.

• On output, if the number of characters produced exceeds the fields width or
the exponent exceeds its specified width, the entire field is filled with
asterisks.

I (Integer Editing). The edit descriptor Iw must be associated with iolist item of
type integer. The field is ~ characters wide. On input, an optional sign may appear in
the field.

F (Real Editing). The edit descriptor F~.£. must be associated with an ioUst item
of type real. The field is ~ characters wide, with a fractional part £. digits wide. The
input field begins with an optional sign followed by a string of digits optionally
containing a decimal point. If the decimal point is present, it overrides the £. specified
in the edit descriptor; otherwise the rightmost d digits of the string are interpreted as
following the decimal point (with leading blanks converted to zeros if necessary).
Following this is an optional exponent which is either:

• . + (plus) or - (minus) followed by an integer, or

• E or D followed by zero or more blanks followed by an optional sign followed
by an integer. .

The output fields occupies ~ digits, £. of which fall beyond the decimal point and
the value output is controlled both by the iolist item and the current scale factor. The
output value is rounded rather than truncated.

12-6

E (Real Editing). An E edit descriptor takes either the form E~ • .2 or E~ • .2E~. In
either case the field is w characters wide. The e has no effect on input. The input field
for an E edit descriptor is identical to that described by an F edit descriptor with the
same wand d. The form of the output field depends on the scale factor (set by the P
edit descriptor) in effect. For a scale factor of 0, the output field is a minus sign (if
necessary), followed by a decimal point, followed by a string of digits, followed by an
exponent field for exponent, exp, of one of the following forms.

-99< = exp< = 99

-999< = ~< = 999

E followed by plus or minus followed
by the two-digit exponent.

Plus or minus followed by the
three-digit exponent.

E followed by plus or minus
followed by e digits which
are the exponent with possible
leading zeros.

The form Ew.d must not be used if the absolute value of the exponent to be printed
exceeds 999. - -

The scale factor controls the decimal normalization of the printed E field. If the
scale factor, !s., is in the range -£ <!s.. < = 0, then the output field contains exactly -!s.
leading zeros after the decimal point and .2 + ~ significant digits after this. If 0 < ~ <
'.2 + 2, then the output fields contains exactly !s. significant digits to the left of the
decimal point and £ - !s. - I places after the decimal point. Other values of ~ are errors.

L (Logical Editing). The edit descriptor is L~, indicating that the field is ~
characters wide. The iolist element associated with an L edit descriptor must be of
type logical. On input, the field consists of optional blanks, followed by an optional
decimal point, followed by T (for .TRUE.) or F (for .FALSE.). Any further characters in
the field are ignored, but accepted on input, so that .TRUE. and .FALSE. are valid
inputs. On output, ~ - I blanks are followed by either T or F as appropriate.

A (Character Editing). The forms of the edit descriptor ~re A or Aw, in which the
former acquires an implied field width, w, from the number of characters in the iolist
item with which it is associated. The iolist item must be of type character if it is to be
associated with an A or A~ edit descriptor. On input, if ~ exceeds or equals the
number of characters in the iolist element, the rightmost characters of the input field
are used as the input characters; otherwise the input characters are left-justified in the
input iolist item and trailing blanks are provided. On output, if w exceeds the
characters produced by the iolist item, leading blanks are provided; otherwise, the
leftmost ~ characters of the ioUst item are output.

12-7

SECTION 13
PROGRAMS, SUBROUTINES, AND FUNCTIONS

This Section describes the format of program units. A program unit is either a
main program, a subroutine, or a function program unit. Procedure refers to either a
function or a subroutine. This Section also describes the CALL and RETURN
statements, and function calls.

MAIN PROGRAM

A main program is any program unit that does not have a FUNCTION or
SUBROUTINE statement as its first statement. In addition, it may have a PROGRAM
statement as its first statement. The execution of a program always begins with the
first executable statement in the main program. Consequently, there must be precisely
one main program in every executable program.

The form of a PROGRAM statement is:

PROGRAM pname

where:

is a user-defined name that is the name of the main program.

pname is a global name. Therefore, it cannot be the same as that of another
external procedure or common block. (It is also a local name to the main program, and
must not conflict with any local name in the main program.) The PROGRAM statement
may only appear as the first statement of a main program.

SUBROUTINES

A subroutine is a program unit that can be called from other program units by a
CALL statement. When invoked, it performs the set of actions defined by its
executable statements, and then returns control to the statement immediately
following the statement that called it. A subroutine does not directly return a value,
although values can be passed back to the calling program unit via parameters or
common variables.

13-1

SUBROUTINE Statement

A subroutine begins with a SUBROUTINE statement and ends with the first
following END statement. It can contain any kind of statement other than a
PROGRAM statement, SUBROUTINE statement, or a FUNCTION statement.

The form of a SUBROUTINE statement is:

SUBROUTINE ~ [([farg [, fargJ •••]) J
where:

is the user-defined name of the subroutine.

is the user-defined name of a formal argument.

~ is a global name (and it is also local to the subroutine it names). The list of
argument names defines the number and, with any subsequent IMPLICIT, type, or
DIMENSION statements, the type of arguments to that subroutine. Argument names
cannot appear in COMMON, DATA, EQUIVALENCE, or INTRINSIC statements.

CALL Statement

A subroutine is executed by executing a CALL statement in another program unit
that references that subroutine.

The form of a CALL statement is:

CALL~ [([m:g [,~J ...])]
where:

is the user-defined name of a subroutine.

is an actual argument.

An actual argument may be either an expression or the name of an array. The
actual arguments in the CALL statement must agree in type and number with the
corresponding formal arguments specified in the SUBROUTINE statement of the
referenced subroutine. If there are no arguments in the SUBROUTINE statement, then
a CALL statement referencing that subroutine must not have

any actual arguments, but may optionally have a pair of parentheses following the
name of the subroutine. Note that a formal argument can be used as an actual
argument in another subprogram call.

13-2

Execution of a CALL statement proceeds as follows. All arguments that are
expressions are evaluated. All actual arguments are associated with .their
corresponding formal arguments, and the body of the specified subroutine is executed.
Upon exiting the subroutine, control is returned to the statement following the CALL
statement by executing either a RETURN statement or an END statement in that
subroutine.

. A subroutine can be called from any program unit. Recursive subroutine calls,
however, are not normally permitted in FORTRAN.' That is, a subroutine cannot call
itself directly, nor can it call another subroutine that results in that subroutine being
called again before it returns control to its caller. However, the DYN AMIC directive
of Burroughs FORTRAN gives you the optional capability of writing recursive
subroutines. See Section 14 for details.

C EXAMPLE OF CALL STATEMENT
C CALL ERROR TO REPORT AN ERROR

IF (IERR .NE. 0) CALL ERROR(IERR)
END

C
SUBROUTINE ERROR(IERRNO)
WRITE (*, 200) IERRNO

200 FORMAT(IX, 'ERROR', 15, 'DETECTED')
END

FUNCTIONS

A function is referred to in an expression and returns a value that is used in the
computation of that expression. There are three kinds of functions: external, intrinisic,
and statement.

A function reference may appear in an arithmetic expression. Execution of a
function reference causes the function to be evaluated, and the resulting value is used
as an operand in the containing expression. The form of a function reference is:

where:

fname is the user-defined name of an external, intrinsic, or statement
function.

is an actual argument.

An actual argument can be an arithmetic expression or an array. The number of
actual arguments must be the same as in the definition of the function, and the
corresponding types must agree.

13-3

External Functions

An external function is specified by a function program unit. It begins with a
FUNCTION statement and ends with an END statement. It may contain any kind of
statement other than a PROGRAM statement, FUNCTION statement, or a
SUBROUTIN E statement.

The form of a FUNCTION statement is:

[~] FUNCTION fname ([farg [, farg] ••• J)
where:

is INTEGER, REAL, or LOGICAL.

is the user-defined name of the function.

is a formal argument name.

fname is a global name, and it is also local to the function it names. If no type is
present in the FUNCTION statement, the function's type is determined by default and
by any subsequent IMPLICIT or type statements that determine the type of an ordinary
variable. If a type is present, then the function name cannot appear in any additional
type statements.

In any event, an external function cannot be of type CHARACTER., The list of
argument names defines the number and, with any subsequent IMPLICIT, type, or
DIMENSION statements, the type of arguments to that subroutine. Neither argument
names nor fname can appear in COMMON, DATA, EQUIVALENCE, or INTRINSIC
statements.---

The function name must appear a,s a variable in the program unit defining the
function. Every execution of that function must assign a value to that variable. The
final value of 'this variable, upon execution of a RETURN or an END statement, defines
the value of the function. After being defined, the value of this variable can be
referenced in an expression, exactly as any other variable. An external function may
return values in addition to the value of the function by assignment to one or more of
its formal arguments.

13-4

A function can be called from any program unit. Recursive function calls,
however, are not normally permitted in FORTRAN. That is, a function cannot call
itself directly, nor can it call another function that results in that function being called
again before it returns control to its caller. However, the DYNAMIC directive of
Burroughs FORTRAN gives you the optional capability of writing recursive functions.
See Section 14 for details.

C EXAMPLE OF A FUNCTION REFERENCE
C GETCH IS A FUNCTION THAT READS A
C CHARACTER FROM A FILE

C

1=2
IF (GETCH(I) .EQ. 'Y') GOTO 10
GOTO 100
END

CHARACTER GETCH(UNITNO)
CHARACTER CH
READ(UNITNO, (AI)') CH
GETCH = CH
RETURN
END

Intrinsic Functions

An intrinsic function is predefined by the FORTRAN compiler and available for use
in a FORTRAN program. Table 13-1 below gives the name, definition, number of
parameters, and type of the intrinsic functions available in Burroughs FORTRAN 77.
An IMPLICIT statement does not alter the type of an intrinsic function. For those
intrinsic functions that allow several types of arguments, all arguments in a single
reference must be of the same type.

Only those intrinsic functions listed in Table 13-1 can appear in an INTRINSIC
statement. An intrinsic function name also can appear in a type statement, but only if
the type is the same as the standard type of that intrinsic function.

Arguments to certain intrinsic functions are limited by the definition of the
function being computed. For example, the logarithm of a negative number is
mathematically undefined, and therefore not permitted.

In Table 13-1 all angles are expressed in radians. All arguments in an intrinsic
function reference must be of the same type. X and Y are rea~ I and J integer, and C,
Cl, and C2 character values.

Appendix D contains additional intrinsic functions. The functions in this appendix
are altered by an IMPLICIT statement.

13-5

Table 13-1. Intrinsic Functions. (Page 1 of 4)

Type of Type of
Name Definition A!E:ument Function

Type Conversion
INT(X) Conversion to integer l Real Integer
IFIX(X) Conversion to inte~erl Real Integer
REAL(X) Conversion to real Integer Real
FLOAT(I) Conversion to rea12 Integer Real
ICHAR(C) Conversion to integer3 Character Integer
CHAR(X) Conversion to character Integer Character

Truncation
AINT(X) Truncation to real 1 Real Real

Nearest Whole
'Number
ANINT(X) Rounding to real l Real Real

Nearest Integer
NINT(X) Rounding to integer Real Integer

Absolute Value
IABS(I) Integer absolute Integer Integer
ABS(X) Real absolute Real Real

Remaindering
MOD(I,J) Integer remainder l Integer Integer
AMOD(X,Y) Real remainder l Real Real

Transfer of
Integer Sign
ISIGN(I,J) Integer transfer Integer Integer
SIGN(X,Y) Real transfer Real Real

X and Yare real, I and J integer, and C, Cl, and C2 character values.

13-6

Table 13-1. Intrinsic Functions. (Page 2 of 4)

Type of Type of
Name Definition Argument Function

Positive
Di fference4
IDIM(I,J) Integer difference Integer Integer
DIM(X,Y) Real difference Real Real

Choosing
Largest Value
MAXO(I,J, •••) Integer maximum Integer Integer
AMAXI(X, Y, •••) Real maximum Real Real
AMAXO(I,J, •••) Real maximum Integer Real
MAX I(x, Y , •••) Integer maximum Real Integer

Choosing
Smallest Value
MIN O'(I,J, •••) Integer minimum Integer Integer
AMINI(X,y, •••) Real minimum Real Real
AMIN o (I,J, •••) Real minimum Integer Real
MINI(X,Y, •••) Integer minim,:,m Real Integer

Square Root
SQRT Square Root Real Real

Exponential
EXP(X) Real! raised to power Real Real

Natural
Logarithm
ALOG(X) N a turallogarithm of

real argument Real Real

X and Yare real, I and J integer, and C, Cl, and C2 character values.

13-7

Table 13-1. Intrinsic Functions. (Page 3 of 4)

Type of Type of
Name Definition A!Xument Function

Common Logarithm
ALOGIO(x) Common logarithm of

real argument Real Real

Sine
SIN(X) Real sine Real Real

Cosine
COS (X) Real cosine Real Real

Tangent
TAN(X) Real Tangent Real Real

Arc Sine
ASIN(X) Real arc sine Real Real

Arc Cosine
ACOS(X) Real arc cosine Real Real

Arc Tangent
ATAN(X) Real arc tangent Real Real

ATAN2(X/Y) Real arc tangent of X/Y Real Real

Hyperbolic Sine
SINH(X) Real hyperbolic sine Real Real

X and Yare real, I and J integer, and C, Cl, and C2 character values.
13-8

Table 13-1. Intrinsic Functions. (Page 4 of 4)

Type of Type of
Name Definition Argument Function

Hyperbolic Cosine
COSH(X) Real hyperbolic cosine Real Real

Hyperbolic
Tangent
TANH(X) Real hyperbolic tangent Real Real

Lexically
Greater Than
or Equal
LGE(Cl,C2) First argument greater

than or equal to second5 Character Logical

Lexically
Greater Than
LGT(Cl,C2) First argument greater

than second5 Character Logical

Lexically.
Less Than
or Equal
LLE(Cl,C2) First argument less

than or equal to second5• Character Logical

Lexically
Less Than
LLT(Cl, C2) First argument less than

second5 Character Logical

End of File
EOF(X) Integer and of file6 Integer Logical

X and Yare real, I and J integer, and C, Cl, and C2 character values.

13-9

1. For X of type real, if X > = 0, then INT(X) is the largest integer not greater
than -X, and if X < 0, "then INT(X) is the most negative integer not less than
~. IFTX(~) is the same as INT(~):-

2. For X of type integer, REAL(X) is as much precision of the significant part of
~ ase. real value can contain. FLOAT(~) is the same as REAL(~).

3. ICHAR converts a character value into an integer value. The integer value of
a character is the ASCII internal representation of that character, and is in
the range 0 to 255. For any two characters, £1 and c2, (£1 .LE. cI) is true if
and only if (ICHAR(cI) .LE. ICHAR(c2» is true.

4. Positive difference is defined as the .actual difference if that number is
positive and 0 otherwise.

5. LGE(X, Y) returns true if X = Y or if ~ follows Y in the ASCII collating
sequence; otherwise it returns false.

LGT(X, y) returns true if X follows Y in the ASCII collating sequence;
otherwise it returns false. -

LLE(X, y) returns true if X = Y or if X precedes ! in the ASCII collating
sequence; otherwise it returns faiSe.

LLT(X,Y) returns true if X precedes Y in the ASCII collating sequence;
otherwise it returns false. - -

The operands of LGE, LOT, LLE, and LLT must be of the same length.

6. EOF(!!) returns the value true if the unit specified by its argument is at or past
the end of file record; otherwise it returns false. The value of a must
correspond to an open file, or to 0 which indicates the screen or keyboard
device.

13-10

Statement Functions

A statement function is defined by a single statement. It is similar in form to an
assignment statement. A statement function statement can only appear after the
specification statements and before any executable statements in the program unit in
which it appears.

A statement function is not an executable statement, since it is not executed in
order as the first statement in its particular program unit. Rather, the body of a
statement function serves to define the meaning of the state'11ent function. It is
executed, as any other function, by the execution of a function reference.

The form of a statement function is:

where:

fname is the user-defined name of the statement function.

is a formal argument name.

is an expression.

The type of the expr must be assignment compatible with the type of the
statement function name. The list of formal argument names serves to define the
number and type of arguments to the statement function. The scope of formal
argument names is the statement function. Therefore, formal argument names can be
used as other user-defined names in the rest of the program unit enclosing the
statement function definition.

The name of the statement function, however, is local to the enclosing program
unit, and must not be used otherwise (except as the name of a common block, or as the
name of a formal argument to another statement function). The type of all such uses,
however, must be the same. If a formal argument name is the same as another local
name, then a reference to that name within the statement function defining it always
refers to the formal argument, never to the other usage.

Within the. expression expr, references to variables, formal arguments, other
functions, array elements, and constants are permitted. Statement function references,
however, must refer to statement functions defined prior to the statement function in
which they appear. Statement functions cannot be called recursively, either directly or
indirectly.

13-11

A statement function can only be referenced in the program unit in which it is
defined. The name of a statement function cannot appear in any specification
statement, except in a type statement which may not define that name as an array, imd
in a COMMON statement as the name of a common block. A statement function
cannot be of type character.

C EXAMPLE OF STATEMENT FUNCTION STATEMENT
DIMENSION X(IO)

C
ADD(A,B) = A + B

DO 1,1=1, 10
x(I) = ADD(Y, z)
CONTINUE

RETURN STATEMENT

A RETURN statement causes return of control to the calling program unit. t can
only appear in a function or subroutine.

The form of a RETURN statement is:

RETURN

Execution of a RETURN statement terminates the execution of the enclosing
subroutine or function. If the RETURN statement is in a function, then the value of
that function is equal to the current value of the variable with the same name as the
function. Execution of an EN Dstatement in a function or subroutine is equivalent to
execution of a RETURN statement.

C EXAMPLE OF RETURN STATEMENT
C THIS SUBROUTINE LOOPS UNTIL THE USER
C TYPES 'Y' TO THE KEYBOARD

C

SUBROUTINE LOOP
CHARACTER IN

10 READ(*, '(A})') IN
IF (IN .EQ. 'Y') RETURN
GOTO 10
RETURN
END

PARAMETERS

This subsection discusses the relationship between formal and actual arguments in
a function or subroutine call. A formal argument is the name by which the argument is
known within the function or subroutine, and an actual argument is the specific
variable, expression, array, etc., passed to the procedure in question at any specific
calling location.

13-12

Arguments pass values into and out of procedures. The number of actual
arguments must be the same as formal arguments, and the corresponding types must
agree.

Upon entry to a subroutine or function, the actual arguments are associated with
the formal arguments, much as an EQUIVALENCE statement associates two or more
arrays or variables, and COMMON statements in two or more program units associate
lists of variables. This association remains in effect until execution of the subroutine
or function is terminated.

Thus, assigning a value to a formal argument during execution of a subroutine or
function may alter the value of the corresponding actual argument. If an actual
argument is a constant, function reference, or an expression other than a simple
variable, assigning a value to the corresponding formal argument is not permitted, and
can have some strange side effects. In particular, assigning a value to a formal
argument of type character, when the actual argument is a literal, can produce
anomalous behavior.

If an actual argument is an expression, it is evaluated immediately prior to the
association of formal and actual arguments. If an actual argument is an array element,
its subscript expression is evaluated just prior to the association, and remains constant
throughout the execution of the procedure, even if it contains variables that are
redefined during the execution of the procedure.

A formal argument that is a variable can be associated with an actual argument
that is a varible, an array element, or an expression. .

A formal argument that is an array can be associated with an actual argument that
is an array or an array element. The number and size of dimensions in a formal
argument may be different than those of the actual argument, but any reference to the
formal array must be within the limits of the memory sequence in the actual array.
While a reference to an element outside these bounds is not detected as an error in a
running FORTRAN program, the results are unpredictable.

A formal argument can also be the name of an external procedure, function, or
intrinsic function. the actual argument must appear in an EXTERNAL or INTRINSIC
statement in the program unit in which the procedure or function reference is made.

13-13

OVERVIEW

SECTION 14
COMPILER DIRECTIVES

This Section describes how compiler directives direct the FORTRAN compiler to
process FORTRAN source text in particular ways. Compiler Directives may be
intermixed with FORTRAN source text within a FORTRAN source program; however,
they are not part of the FORTRAN language. Any line of input to the FORTRAN
compiler that begins with a $ in column I is interpreted as a compiler directive and
must conform to one of the formats below. A compiler directive must fit on a single
source line; continuation lines are not permitted. Also, blanks are not permitted in
directive lines.

DEBUG DIRECTIVE

The DEBUG directive directs that all subsequent arithmetic operations are tested
for overflow and division by O. A run-time error is generated if such a condition is
detected. Also, range checking is performed on array indexes to assure valid index
values.

It has the format:

$DEBUG

The directive can appear anywhere in a program.

The default value of the DEBUG/NODEBUG pair of directives is NODEBUG.

D066 DIRECTIVE

The D066 directive directs that DO statements have FORTRAN 66 semantics. It
has the format:

$D066

D066 must precede the first declaration or executable statement of the source file
in which it occurs.

The FORTRAN 66 semantics are as follows. First, all DO statements are executed
at least once. Second, extended range is permitted; that is, control may transfer in and
out of the syntactic body of a DO statement. The range of the DO statement is thereby
extended to logically include any statement that

14-1

may be executed between a DO statement and its terminal statement. However,
the transfer of control into the range of a DO statement prior to the execution of the
DO statement or following the final execution of its terminal statement is invalid.

If a program contains no D066 directive, the default is to FORTRAN 77 semantics,
as follows. First, DO statements may be executed 0 times, if the initial control
variable value exceeds the final control variable value (or the corresponding condition
for a DO statement with negative increment). Second, extended range is invalid, that
is, control may not transfer in and out of the syntactic body of a DO statement.

DYN AMIC DIRECTIVE

The DYN AMIC directive directs that local variables of functions and subroutines
are allocated on the stack. The values of these variables are therefore not retained
from one invocation of the containing function or subprogram to the next. However, it
is valid for functions and subprograms under the control of DYNAMIC to be called
recursively. Typically, DYN AMIC reduces the amount of memory required by a
program.

It has the format:

$DYNAMIC

DYN AMIC must precede the first declaration or executable statement of the
source file in which it occurs.

If a program contains no DYNAMIC directive, the default directs that local
variables of functions and subroutines are allocated in static memory, not on the stack.
The values of these variables are therefore retained from one invocation of the
containing function or subprogram to the next. However, it is invalid for functions and
subprograms under the control of this default condition to be called recursively.

INCLUDE DIRECTIVE

The INCLUDE directive directs the compiler to proceed as though the specified
file were textually inserted at the point of INCLUDE. At the end of the included file,
the compiler resumes processing the original source file at the line following INCLUDE.

It has the format:

$INCLUDE: 'filespec'

where:

filespec is a valid Burroughs file specification, as described in the
Executive Manual.

14-2

INCLUDE directives can be nested up to eight levels. INCLUDE directives are
particuarly useful in guaranteeing that several modules use the same declaration for a
COMMON block.

LINESIZE DIRECTIVE

The LINESIZE directive directs subsequent pages of the listing to be formatted !!
pages wide.

It has the format:

$LINESIZE: !!

where:

is any positive integer.

If a program contains no LINESIZE directive, a default line size of 132 characters
is assumed.

NODEBUG DIRECTIVE

The NODEBUG directive turns off DEBUG checks for array indexes and arithmetic
operations.

It has the format:

$NODEBUG

The directive can appear anywhere in a program.

The default value of the DEBUG/NODEBUG pair of directives is NODEBUG.

P AGE DIRECTIVE

The PAGE directive directs a new page of the listing to be started. If the first
character of a line of source text is the ASCII form feed character (hexadecimal code
OCh), this is treated as equivalent to the occurrence of a PAGE directive at that point.

It has the forma t:

$PAGE

14-3

PAGESIZE DIRECTIVE

The PAGESIZE directive directs subsequent pages of the listing to be formatted !!
lines high.

It has the format:

$PAGESIZE: !!

where:

is any positive integer.

If a program contains no PAGESIZE directive, a default page size of 66 lines is
assumed.

STORAGE DIRECTIVE

The STORAGE directive directs that all variables declared in the source file as
INTEGER or LOGICAL are allocated!! bytes of memory. STORAG does not affect
the allocation of memory for variables declared with an explicit length specification,
for example, as INTEGER*n or LOGICAL*n. If several files of a source program are
compiled separately and linked together, you should be particularly careful that they
are consistent in their allocation of memory for variables (such as actual and formal
parameters) referred to in more than one module.

It has the format:

$STORAGE: !!

where:

is either 2 or 4.

This directive must precede the first declaration or executable statement of the
source file in which it occurs.

If a program contains no STORAGE directive, a default allocation of 4 bytes is
used. Note that this default results in INTEGER, LOGICAL, and single precision REAL
variables being allocated the same amount of memory, as specified by the FORTRAN
standard, ANSI X3.9-1978.

14-4

TITLE DIRECTIVE

The TITLE directive directs subsequent pages of the listing to be headed with the
specified title, until overridden by another TITLE directive.

It has the format:

$TITLE: 'title'

where:

title 'is any valid character constant.

If a program contains no TITLE directive, the null string is used as a title.

14-5

APPENDIX A
ERROR MESSAGES

Compile-Time Error Messages: Pass 1

The FORTRAN Compiler is a two-pass compiler. These error messages occur
during the first pass of of the FORTRAN Compiler (FORTRAN, RUN).

Decimal
Value

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33

34
35
36

Meaning

Fatal error reading source block
Nonnumeric characters in label field
Too many continuation lines
F a tal end of file encountered
Labeled continuation line
Missing field on $ compiler directive line
Unable to open listing file specified on $ compiler directive line
Unrecognizable $ compiler directive
Input source file not valid textfile format
Maximum depth of include file nesting exceeded
Integer constant overflow
Error in real constant
Too many digits in constant
Identifier too long
Character constant extends to end of line
Zero length character constant
Illegal character in input
Integer constant expected
Label expected
Error in label
Type name expected (INTEGER, REAL, LOGICAL,
or CHARACTER).
Integer constant expected
Extra characters at end of statement
"(,, expected
Letter IMPLICITed more than once
"),, expected
Letter expected
Identifier expected
Dimension(s) required in DIMENSION statement
Array dimensioned more than once
Maximum of three dimensions in an array
Incompatible arguments to EQUIVALENCE
Variable appears more than once in a type specification
statement
This identifier has already been declared
This intrinsic function cannot be passed as an argument
Identifier must be a variable

A-I

Decimal
Value

37
38
39
40
41

42

43
44

45

46

47
48

49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65

66

67

Meaning

Identifier must be a variHble or the current FUNCTION
"/" expected
Named COMMON block already saved
Variable already appears in a COMMON block
Variables in two different COMMON blocks cannot be
equivalenced
Number of subscripts in EQUIVALENCE statement does not
agree with variable declaration
EQUIVALENCE subscript out of range
Two distinct cells EQUIVALENCEd to the same location in a
com mon block
EQUIVALENCE statement extends a COMMON block in the
negative direction
EQUIVALENCE statement forces a variable to two distinct
locations, not in a COMMON block
Statement number expected
Mixed CHARACTER and numeric items not allowed in same
COMMON block
CHARACTER items cannot be EQUIVALENCEd with
noncharacter items
Illegal symbol in expression
Can't use SUBROUTINE name in an expression
Type of argument must be INTEGER or REAL
Type of argument must be INTEGER, REAL, or CHARACTER
Types of comparisons must be compatible
Type of expression must be LOGICAL
Too many subscripts
Too few subscripts
Variable expected
"=" expected
Size of EQUIVALENCEd CHARACTER items must be the same
Illegal assignment - types do not match
Can only call SUBROUTINES
Dum my parameters cannot appear in COMMON statements
Dummy parameters cannot appear in EQUIVALENCE
statements
Assumed-size array declarations can only be used for dummy
arrays
Adjustable-size array declarations can only be used for dummy
arrays
Assumed-size array dimension specifier must be last dimension

A-2

Decimal
Value

68

69
70
71

72
73
74

75
76
77
78
79

80
81
82

83
84
85
87
88

89
90
91
93

94

95

96
98

100
101

Meaning

Adjustable bound must be either parameter or in COMMON
prior to appearance
Adjustable bound must be simple integer variable
Cannot have more than one main program
The size of a named COMMON must be the same in all
procedures
Dummy arguments cannot appear in DATA statements
COMMON variables cannot appear in DATA statements
SUBROUTINE names, FUNCTION names, INTRINSIC names,
etc. cannot appear in DATA statements
Subscript out of range in DATA statement
Repeat count must be =1
Constant expected
Type conflict in DATA statement
Number of variables does not match number of values in
DATA statement list
Statement cannot have label
No such INTRINSIC function
Type declaration for INTRINSIC function does not match
actual type of INTRINSIC function
Letter expected
Type of FUNCTION does not agree with a previous call
This procedure has already appeared in this compilation
Error in type of argument to an INTRINSIC FUNCTION
SUBROUTINE/FUNCTION was previously used as a
FUNCTION/SUBROUTINE
Unrecognizable statement
Functions cannot be of type CHARACTER
Missing END statement
Fewer actual arguments than formal arguments in
FUNCTION/SUBROUTINE call
More actual arguments than formal arguments in
FUNCTION/SUBROUTINE call
Type of actual argument does not agree with type of format
argument
The following procedures were called but not defined:
Maximum size of type CHARACTER is 255, minimum is 1
Statement out of order
Unrecognizable statement

A-3

Decimal
Value

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
131
132
133
134
135
136
137
138
139
140
141
142
143
144

Meaning

Illegal jump into block
Label already used for FORMAT
Label already defined
Can't jump to format label
DO statement forbidden in this context
DO label must follow DO statement
ENDIF forbidden in this context
No matching IF for this ENDIF
Improperly nested DO block in IF block
ELSEIF forbidden in this context
No matching IF for ELSEIF
Improperly nested DO or ELSE block
"(II expected
"),, expected
THEN expected
Logical expression expected
ELSE statement forbidden in this context
No matching IF for ELSE
Unconditional GOTO forbidden in this context
Assigned GOTO forbidden in this context
Block IF statement forbidden in this context
Logical IF statement forbidden in this context
Arithmetic IF statement forbidden in this context
, expected
Expression of wrong type
RETURN forbidden in this context
STOP forbidden in this context
END forbidden in this context
Label referenced but not defined
DO or IF block not term inated
FORMAT statement not permitted in this context
FORMAT label already referenced
FORMAT must be labeled
Identifier expected
Integer variable expected
TO expected
Integer expression expected
Assigned GO TO but no ASSIGN statements
Unrecognizable character constant as option
Character constant expected as option
Integer expression expected for unit designation
STATUS option expected after "," in CLOSE statement

A-4

Decimal
Value

145
146
147
148

149
150
151
152

153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
203
406
407
408
409
410
411
412
420
421

500
501
502
503
504
1274
1275

Meaning

Character expression as file name in OPEN
FILE= option must be present in OPEN statement
RECL= option specified twice in OPEN statement
Integer expression expected for RECL= option in OPEN
statement
Unrecognizable option in OPEN statement
Direct access files must specify RECL= in OPEN statement
Adjustable arrays not allowed as I/O list elements
End of statement encountered in implied DO, expressions
beginning with "(,, not allowed as I/O list elements
Variable required as control for implied DO
Expressions not allowed in I/O list for READ statement
REC= option appears twice in statement
REC= expects integer expression
END= option only allowed in READ statement
END= option appears twice in statement
Unrecognizable I/O unit
Unrecognizable format in I/O statement
Options expected after "," in I/O statement
Unrecognizable I/O list element
Label used as format ,but not defined in format statment
Integer variable used as assigned format but no ASSIG N
statements
Label of an executable statement used as a format
Integer vari'able expected for assigned format
Label defined more than once as format
FUNCTIONS cannot return values of type CHARACTER
Cannot open unit 0 as DIRECT or UNFORMATTED file.
"Err=" clause appears twice in a statement.
Too many labels for arithmetic IF.
Byte length incompatible with type.
Keyword PRECISION expected.
Incompatible integer type.
Incompatible logical type.
illegal function call
illegal intrinsic function used as procedural parameter. (See
section on Intrinsic functions in this release notice.)
Real number constant overflow.
Incorrect syntax for compiler directive.
Blanks not allowed in compiler directive.
Incorrect placement of compiler directive.
Duplicate definition of compiler directice.
Il~egal Integer*4 constant on input.
Integer*4 error on output.

A-5

COMPILER-TIME ERROR MESSAGES: PASS 2

Compiler Errors - Optimizer and Code Generator

The optimizer and code generators perform a large amount of internal consistency
checking, in order to verify that icode (intermediate code) trees are of a form that is
expected or can be handled; that register allocation and usage is correct; etc. When one
of these checks encounters an unexpected condition, the result is an internal error
generated by the module where the inconsistency was discovere.d.

Such errors should generally not occur. When they do occur, we request that they be
reported promptly to Burroughs. Since it may be quite difficult to analyze such reports
unless they include the complete source code involved, please include the complete source
code in a machine readable form.

All optimizer/code generator internal errors are numbered according to the module in
which they occur. This error number is then passed to a single internal error routine
(PROCEDURE OPT=ERR in module SUBR) which will print the error number, and the last
source line number encountered by the optimizer on both the object code output listing (if
any) and the terminal screen. The optimizer is then exited via a call to the PASCAL
run-time routine EMSEQQ.

The internal error numbering is as follows:

0- 99
100 - 199
299 - 299
300 - 399
400 - 499
500 - 599
600 - 699
700 - 799

OPTIM
GEN6
SUBR
FOLD
CHKLEN
CTL6
DUMP86
DUMP

The format of an optimizer error message is as shown below:

*** Internal Error(error number)
N ear Line (source line number)
Contact Technical Support

where (error number)is one of the optimizer error numbers listed below, and(source line
number) is the last source line number seen by the optimizer. The error may not have
occurred exactly at this line (due to the way the optimizer gets line numbers) but it is
likely to be within a few lines following this line. The(source line number)corresponds to
the line numbers on the listing generated by the front end.

Errors are listed by module, with the following format for each error messages:

(err num): Error explanation (routine in which errror occurs)

A-6

Value

o
1
2

3

4
5
6
7
8
9
10
11
12
13

14
15

16
17
18
19
20
21
22
23
24

100
101
102
103
104
105'

106
107
108
109
110
III

112
113
114
115
116
117
118

Meaning

Garbage in Icode stream (READICODE).
Bad Icode file format (PRSDECIO).
Bad Symbols file format, can't find function return variable
(READ SYMTAB).
Multiple symbol file entries for symbol which is not procedure
or function (READ SYMTAB).
Forward reference-to an Icode number (XLATE).
Icode reference to a missing symbol (XLATE SYM).
Duplicate Icode numbers in same block (ENT-ER XLATE).
Illegal or unexpected operand for ADDR Icode (PHASE 1).
Illegal addressing mode for ADDr Icode (PHASE!).
Illegal or unexpected operand for DRRR Icode (PHASE!).
Illegal or unexpected operand for DRFR Icode (PHASE!).
Illegal symbol type for UPPR Icode (PHASE!).
Illegal addressing mode for ASMS/ ASVS (PHASEI).
Bad tree format, assignment target tree does not have a
SYMR node as its leftmost leaf (DEL TARGET).
Unknown Icode value (SUBEX). -
Bad statement list returned from SPLITTREE (OPTIM - main
program).
Bad statement list returned from PHASEI (OPTIM).
Bad statement list ret,urned from CHECK LENGTH (OPTIM).
Bad statement list returned from PHASE2(OPTIM).
Bad statement list rturned from PHASE3 (OPTIM).
Bad statement list returned from MD XFORM (OPTIM).
Bad statement list returned from SUBEX (OPTIM).
Unexpected operand for OFSR icode (PHASE!).
Subexpression lists not cleared (SUBEX).
Subexpression lists not cleared (SUBEX).

Static nesting level 0 (NESTLEV).
Illegal or unexpected oeprand for OFFR Icode (MD XFORM).
Illegal flag values for CONR (MD XFORM). -
Illegal or unexpected operand for -UPPR Icode (MD XFORM).
Illegal symbol type for UPPR operand (MD XFORM).
Too many levels of indirection for UPPR operand (MD
XFORM). -
Illegal addressing mode for VALP Icode (MD XFORM).
Illegal or unexpected oprand for LV AP Icode-(MD XFORM).
Multiple definition of an internallabeI(GENDONE).
Can't load long constant value with a length)4 (CASELONR).
Illegal offset value for OFSR Icode (CASEOFSR).
Register table entry or use count for OFSR Icode is bad
(CASEOFSR).
Illegal nesting for procedure/function call (CALLPF).
Illegal function return length (CASECALP). ,
Bad use count for SFRT Icode operands (CASESFRT).
Symbol type is illegal, must be a variable (CLASS).
Operand use count is already zero (COUNTUSE).
User label must begin a basic block (DEF ULAB).
Duplicate definition of user label (DEF _ ULAB).

A-7

Value

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

140
141
142

143
144
145
146
147
148

149
150
151
152
153
154
155
156
157
158
159
160
161

163
164

Meaning

Address flag missing for LONR Icode (EMITIMM).
Address flag missing for SYMR Icode (EMITIMM).
Variable must be static (EMITIMM).
Symbol type must be variable (EMITIMM).
megal Icode type (EMITIMM).
Can't save a multi-byte value (EMPTYREG).
Illegal register contents (EMPTYREG).
Symbol type must be variable (GENREF).
Missing address flag for long constant reference (GENREF).
illegal Icode type (GENREF).
Value must be in an index register (GEN REF).
Value must be in an index register (GENREFI).
No registers available for allocation (GETREG).
Register BX already in use (IN BXES).
Register must be SI or DI (INDREF).
Symbol must be variable (IN DREF).
missing address bit for long constant reference (LOADR).
Symbol must be a variable (LOADR).
megal Icode type (LOA-DR).
Symbol type must be a label (LONGGOTO).
Register residence flags do not match register table contents
(MOVER).
Value must be in some register (REGN).
illegal operand register specified by template (REGSPEC).
Operands register residence flag does not match the specified
register (REGSPEC).
Operand must be in a register (X_BINOP).
Unexpected opcode value (X BIN OP).
Contents of BX do not match operand (X CHKBXES).
ilh~gal Icode oerator (X COMPI). -
megal Icode operand (X-CMPI).
illegal variable kind (must be static) or address bit missing (X
CMP!).
megal Icode operator, must have 2 operands (X)COMOPR).
Desired register already in use (XCOMP).
Desired register already in use (X DO N E).
Index must already be in a register (X_DONEA).
Illegal register contents (X DONEA).
Symbol must be a variable (X DONEA).
Illegal Icode operand (X DO N-EA). .
illegal condition code for IF template (X IFCOND).
megal condition code for IFOPR template (X IFOCOND).
Register BX contents are wrong (X INREGS):-
Source register is empty (X MOVREG).
Register residence flag for operand is bad (X MOVREG).
megal register designated, can't access high half of register
(X-SELF H).
Illegal Icode for assignment target (X STOR). .
Illegal Icode operator, must have two oeprands (X_REVOPR).

A-8

Value

165
166
167

168

169

170

171
172

173
174
175
176
177

178
179

180

181

182
183
184
185
186

Module SUBR

200

201
202
203

204
205
206

Module FOLD

300
301

Meaning

Illegal opcode value (X UN lOP).
Illegal register specification (X XCHG).
Can't exchange registers containing part of a multi-register
value (X XCHG).
Register-residence flag does not match register table contents
(X XCHG).
Register residence flag does not match register table contents
(X CHG).
Register table contents do not match their associated register
residence flags (INTERPRET).
Operand must be a CONR node (INTERPRET).
No match for this operand class in the templates for this Icode
(SCANCLASS).
Register BX is already in use (INTERPRET).
Use count was not decremented properly O:NTERPRET~
Use count was not decremented properly (INTERPRET).
Error in template processing (INTERPRET).
Illegal register specificatin, can't access high/low half of the
register (I NTERPRET).
Illegal or unexpected template operator (INTERPRET).
Illegal length for OFFR Icode, must be length 1, 2, or 4 (GEN
SUBTREE).
Symbol table entry for RTPP Icode does not match the current
procedure/function (GEN SUBTREE).
Symbol table entry for-RTPP Icode must be procedure or
function (GEN SUBTREE).
Illegal or unexpected Icode value (GEN SUBTREE).
Long value parameter length must be even (GENSUBTREE).
Operand must be in a register (XBlNOPM).
Unexpected opcode value (XBlNOPM).
Incorrect value for CONR node (GENSUBTREE).

Value too large to convert to WORD type, BOOT compiler only
(WRDTOINT).
Missing address bit for assignment target (TARGCHECK).
Illegal Icode for assignment target (TARGCHECK).
Unexpected opcode value, BOOT compiler only (GET
OPCFLAGS).
Illegal opcode flag value (GETTYP).
Illegal opcode flag value (GETTYP).
Unexpected ocode sequence (TARGCHECK).

Illegal operand count, must have two operands (FOLD CONS).
illegal constant values for operands to the NOTB Icode
(FOLD-CONS).

A-9

Value

Module CHKLEN

400
401

402
403
404
405
406
407
408

409
410

Module CTL6

500

501
502
503

504

505

506

507

508

509

510

Meaning

Operand length cannot be zero (CHECKLEN).
Length of operands must match if both are greater than zero
(CHECKLEN).
Operand length must be -1, 1, or 2 (CHECKLEN).
Operand length must be -1, 1, or 2 (MUSTIOR2).
New length must be 1 or 2 (COERCE).
Assignment target must be variable or function (TARG LEN).
illegal Icode for assignment target (TARG LEN). -
lllegal symbol type for SYMR Icode (CHECK LENGTH).
Assignment target length must be 4 for AS4B (CHECK
LENGTH).
Illegal addressing fo VAXP operand (CHECK LENGTH).
Unexpected Icode value (CHECK_LENGTH).-

Code Generator computed code size does not match the code
size computed during link text emission (FIN BIN).
Illegal class override, CS DTYP record (BIN PS2).
Illegal symbol type, CS SYM record (BIN PS2).
Internal label reference to an undefined label, CS CJMP
record (BIN PS2).
Internal label reference to an undefined label, CS ILAB record
(BIN PS2). -
Internal label location does not match current location
counter, CS DILB record (BIN PS2).
User label reference to an undefined label, CS ULAB record
(BINPS2). -
User label location does not match current location counter,
CS DULB record (BIN PS2).
P-code procedure/function entry address does not match
current location counter, CS PFBEG/CS PROB record
(BINPS2). --
Procedure/functin entry address does nto match current
location counter, CS PFBEG/CS PROB record (BIN PS2).
Unknown Binary Inter-pass File record type (BINPS2).

A-IO

Value

Module DUBMP86 - 8086 Machine Code

600
601
602
603
604
605
606
607
608
609
610
611

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628

Module DUMP

700
701
702
703
704
705

Unexpected interpass record type (GETBYTE).
Unexpected end of data (GETDATA).
Illegal data size (GETDATA).
Illegal data size (GETDATA).
Unexpected end of data (GETDISP).
Unexpected interpass record type (GETDISP).
Unexpected end of data (GETLABEL).
Illegal label type, must be short lable (GETLABEL).
Unexpected interpass record type (GETLABEL).
Illegal opcode (WRITEOP).
Illegal opcode, no PUSH CS opcode exists (PUSHPOPSEG).
Can;'t do sign extension on operands for logical operators
AND,OR,XOR(mNARYOP~.
megal mode value (LOADPTR).
Illegal mode value (SHIFTOPS).
Unused opcode (GROUPC).
Unused opcode (DUMP86).
Unused opcode (DUMP86).
Unused opcode (DUMP86).
Unused opcode (DUMP 86).
Unused opcode (DUMP86).
Unused opcode (DUMP86).
Unused opcode (DUMP86).
Unused opcode (DUMP86).
Unused opcode (DUMP86).
Unused opcode (DUMP86).
Unused opcode (DUMP86).
Unused opcode (DUMP86).
Illegal data size (GETDATA).
Expected csalof record (INLINEDATA).

megal opcode value (OPN AME).
Unknown varkind value (DMPlID).
Unexpected symbol type (DMPlID).
Illegal operator mode value (WRIMOD).
Unexpected Icode value (DMPNOD).
Unexpected interpass record type (D MPBREC).

A-II

Run_Time Error Messages

If a run-time error occurs with a code not listed below, it may be a B 20 Operating
System services status code. See Appendix A of the B 20 Operating System Manual.

1000-1100

Decimal
Value

1200
1201
1202
1203
1204

·1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219 .
1220
1221
1222
1223
1224
1225
1226

These status codes are always issued in conjunction with a B 20
Operating System services status code.

Meaning

Format missing final ")"
Sign not expected in input
Sign not followed by digit in input
Digit expected in input
Missing N or Z after B in format
Unexpected character in format
Zero repetition factor in format not allowed
Integer expected for w field in format
Positive integer required for w field in format
"." expected in format -
Integer expected for d field in format
Integer expected for e field in format
Positive integer requIred for e field in format
Positive integer required for w field in A format
Hollerith field in format mustnot appear for reading
Hollerith field in format requires repetition factor
X field in format requires repetition factor
P field in format requires repetition factor
Integer appears before + or - in format
Integer expected after + or - in format
P format expected after signed repetition factor in format
Maximum nesting level for formats exceeded
")" has repetition factor in format
Integer followed by"," illegal in format
"." is illegal format control character
Character constant must not appear in format for reading
Character constant in format must not be repeated

A-12

Decimal
Value

1227
1228
1229
1230
1231
1232
1233
.1234
1235
1236
1237
1239
1240
1241
1242
1243
1244
1245
1246
1247
1251
1252
1253
1255
1256

1257
1260
1264
1265
1266

1267
1268
1269

Meaning

"/" in format must not be repeated
" "in format must not be repeated
BN or BZ format control must not be repeated
Attempt to perform I/O on unknown unit number
Formatted I/O attempted on file opened as unformatted
Format fails to begin with "(,,
I format expected for integer read
F or E format expected for real read
Two "." characters in formatted real read
Digit expected in formatted real read
L format expected for logical read
T or F expected in logical read
A format expected for character read
I format expected for integer write
w field in F format not greater than d field + 1
Scale factor out of range of d field iDE format
E or F format expected for real write
L format expected for logical write
A format expected for character write
Attempt to do unformatted I/O to a unit opened as formatted
Integer. overflow on input
Too many bytes read from input record
Too many bytes written to direct access unit record
Attempt to do external I/O on a unit beyond end of file record
A ttempt to position 'a unit for direct access on a nonpositive
record number
Attempt to do direct access to a unit opened as sequential
A ttempt to backspace unit connected to unblocked device
Attempt to do unformatted I/O to internal unit
A ttempt to put more than one record into internal unit
Attempt to write more characters to internal unit than its
length
EOF called on unknown unit
Dynamic file allocation limit exceeded
File name too long

A-13

Decimal
Value

1270

1271
1272

1273

1297
1298
1299

Meaning

Video I/O error encountered while attempting to write If
to video display
EOF function called on terminal device
File operation attempted after error encountered on previous
operation
Keyboard buffer overflow: too many bytes written to
keyboard input record (must be less than 132)
Integer variable not currently assigned a format label
End of file encountered on read with no END= option
Integer variable not ASSIGNed a label used in assigned GO TO

A-14

APPENDIX B

DI FFERENCES BETWEEN BURROUGHS FORTRAN 77
AND ANSI STANDARD SUBSET FORTRAN 77

This Appendix describes how Burroughs FORTRAN 77 differs from the standard
subset language. The standard defines two levels, full FORTRA N and subset
FORTRAN. Burroughs FORTRAN is a superset of the latter. The differences
between Burroughs FORTRAN and the standard subset FORTRAN fall into two
general categories: full-language features, and extensions to standard.

Full-Language Features

Several features from the full language are included in this implementation. In all
cases, a program written to comply with the subset restrictions compiles and
executes properly, since the full language properly includes the subset constructs.

Subscript Expressions

The subset does not allow function calls or array element references in subscript
expressions, but the full language and this implementation do.

DO Variable Expressions

The subset restricts expressions that define the limits of a DO statement, but the full
language does not. Burroughs FORTRAN also allows full integer expressions in DO
statement limit computations. Similarly, arbitrary integer expressions are allowed in
implied DO loops associated with READ and WRITE statements.

Unit I/O Number

Burroughs FORTRAN allows an I/O unit to be specified by an integer expression, as
does the full language.

Expressions in Input/Output List (iolist)

The subset does not allow expressions to appear in an I/O list whereas the full
language does allow expressions in the I/O list of WRITE statements. Burroughs
FORTRAN allows expressions in the I/O list of a WRITE statement providing that
they do not begin with an initial left parenthesis.

NOTE: The expression (A+B)*(C+D) can be specified in an output list as
+(A+B)*(C+D). Doing so does not generate any extra code to evaluate the leading +.

Expression in Computer GOTO

Burroughs FORTRAN allows an expression for the value of a computed GOTO,
consistent with the full, rather than the subset, language.

B-1

Generalized I/O

Burroughs FORTRAN allows both sequential and direct access files to be either
formatted or unformatted. The subset language restricts direct access files to be
unformatted and sequential to be formatted. Burroughs FORTRAN also contains an
augmented OPEN statement that takes additional parameters not included in the
subset. There is also a form of the CLOSE STATEMENT, WHICH IS NOT INCLUDED
IN THE SUBSET. I/O is described in more detail in Section 11 and 12. The READ
and WRITE statements allow the optional ERR parameter.

Extensions to Standard

The implemented language has several minor extensions to the full-language
standard. These' are described below.

Compiler Directives

Compiler directives were added to allow the programmer to communicate certain
information to the compiler. An additional kind of line, called a compiler directive
line, has been added. It is characterized by a dollar sign, $, appearing in column 1. A
compiler directive line is used to convey certain compiler-time information to the
FORTRAN system about the nature of the current compilation. A compiler directive
line may appear any place that a comment line can appear, although certain
directives are restricted to appear in certain places. The set of directives is
described in Section 14 above.

Backslash Edit Control

The edit control character can be used in formats to inhibit the normal
advancement to the next record associated with the completion of a READ or a
WRITE statement. This is particularly useful when prompting to an interactive
device, such as the screen, so that a response can be on the same line as the prompt.

End of File Intrinsic Function

An intrinsic function, EOF, is provided. The function accepts a unit specifier as an
argument and returns a logical value that indicates whether the specified unit is at
its end of file.

Lowercase Input

Upper- and lowercase source input is allowed. In most contexts, lowercase
characters are treated as indistinguishable from their uppercase counterparts.
Lowercase is significant in character constants and Hollerith fields.

B-2

APPENDIXC
CALLING NON-FORTRAN PROCEDURES

Burroughs FORTRAN can call non-FORTRAN procedures that were compiled or
assembled into standard object module format. Hence, you can access procedures
written in Pascal or assembly language. Using this facility, you can call the B 20
Operating System, Burroughs software products such as Forms, ISAM, and
Sort/Merge, and your own non-FORTRAN procedures.

Calls to non-FORTRAN procedures are mediated by the FORTRAN run-time
system. The mediator converts parameter addresses on the stack into the form
expected by the called procedure.

You call a non-FORTRAN procedure by its procedure name synonym, a FORTRAN
name associated with the procedure. Synonyms permit FORTRAN to call procedures'
that do not have valid FORTRAN names (for example, names longer than six
characters). Synonyms are defined outside of FORTRAN in an assembly language
module name ForGen.Asm.

To invoke a procedure that does not return a value, use the CALL statement. To
invoke a procedure that does return a value (a function) use the procedure name
synonym in any arithmetic expression. See Chapter 12 for a description of invocation
syntax.

To call non-FORTRAN procedures, you must link your application to ForGen.Obj, an
assembly language module that defines the non-FORTRAN procedures. Creating
ForGen.Obj is described in "Configuring FORTRAN" below.

C-I

SAMPLE CALLS TO NON-FORTRAN PROCEDURES

The following FORTRAN statements demonstrate calls to non-FORTRAN
procedures. The first example calls Initialize and passes the value of i. It then calls
N oOp, passing no parameters. The synonym Init is used. -

CALL Init(i)
CALL NoO-p

The second example calls the B 20 Operating System CloseFile operation, passing the
value of iFh. The synonym FMCLOS is used. The returned status code is stored in
iErc.

iErc = FMCLOS(iFh)

In the third example, shown below, a call is made to the B 20 Operating System
services OpenFile operation, and the returned status code is stored in iErc. The
synonym FMOPEN is used.

The OpenFile operation stores a file handle into the first parameter, which is passed
by reference.

The second parameter, passed by reference, is a string of bytes naming the file to be
opened. The third parameter, passed by value, is the length of the previous string.

The next two parameters describe a password and are identical in format to the
previous two.

The final parameter, passed by value, is two bytes describing the file mode.

CHARACTER *8 filnam
CHARACTER*5 paswrd
CHARCTER *2 mode

DATA filnam/'testfile'/
DAT A paswrd/'xyzzy'/
DATA mode/'mmY

iErc = FMOPEN(iFh, filnam, 8, paswrd, 5, mode)

C-2

PARAMETER PASSING

Burroughs FORTRAN passes parameters either by reference or value, depending on
the interface of the called non-FORTRAN procedure. (Parameters are passed on the
stack. To pass a parameter by reference means to put a pointer to the parameter
value on the stack; to pass by value means to put the value itself on the stack.) Only
bytes, words, and double words can be passed by value. Note that in
FORTRAN -to-FORTRAN calls, parameters are passed only by reference.

When FORTRAN calls a non-FORTRAN procedure using a synonym, control passes to
a part of the FORTRAN run-time called the mediator. The mediator converts
parameter addresses on the stack into the form expected by the interface of the
called procedure. The mediator then passes control to the procedure associated with
the synonym.

The FORTRAN mediator gets information about procedure interfaces from a module
named ForGen.Obj. Creating ForGen.Obj is described in "Configuring FORTRAN"
below.

Word-Aligned Data

Some non-FORTRAN procedures, such as OpenRsFile, require word alignment for
buffers. Burroughs FORTRAN guarantees word alignment of data items, hence
parameters passed by references are always word aligned.

C-3

CONFIGURING FORTRAN

NOTE

The procedures discussed in this section require
certain files released only with the B 20
CUSTOMIZER. The B 20 FORTRAN compiler does
not include these files.

To configure a FORTRAN in which non-FORTRAN procedures can be called, create
a run file (FORTRAN .Run) that contains the application, the module defining the
non-FORTRAN procedures (ForGen.Obj), and the actual non-FORTRAN procedures.
This process is described below.

1. If you are simply configuring Burroughs software into your FORTRAN, skip this
step.

If you are configuring your own non-FORTRAN procedures into FORTRAN,
invoke the Editor to modify ForGen.Asm, the assembly language module that
defines rgProcedures, the lookup table of mediated procedures.

Add an entry to ForGen.Asm for each of your non-FORTRAN procedures.
Comments within ForGen.Asm explain how to add an entry.

2. Assembly ForGen.Asm to produce ForGEm.Obj (see the Assembly Language
Manual for details on invoking the assembler). During assembly, the assembler
asks questions of this type.

Are you calling Forms (y or n)?

Are you calling Sort/Merge (y or n)?

Are you calling ISAM (y or n)?

PresslRETURN jafter each response. If you answer y (for yes) to a question, the
assembler creates an entry in rgProcedures for each procedure in the
corresponding Burroughs package. This enables FORTRAN to call
non-FORTRAN procedures.

3. Link ForGen.Obj, the FORTRAN application object modules, and the object
modules for all non-FORTAN procedures to produce a run file. (See the
Linker/Librarian Manual for details on invoking the Linker.)

Your FORTRAN application can now call non-FORTRAN procedures.

C-4

MEDIATED AND UNMEDIATED CALLS

Unmediated Calls to Non-FORTRAN Procedures

You can call non-FORTRAN procedures directly without invoking the run-time
mediator. However, the called procedure must meet the following requirements.

1. The name of the procedure must be a valid FORTRAN name.

2. Parameters of the procedure must be addresses only.

Mediated Calls to FORTRAN Procedures

When you use the FORTRAN CALL facility to call a FORTRAN procedure, the
run-time mediator is not invoked. However, it is occasionally desirable to mediate
FORTRAN-to-FORTRAN calls.

For example, suppose you want to allocate the largest possible short-lived memory
segment (using the B 20 Operating System services AllocAllMemorySL operation; see
the B 20 Operating System Manual) and pass it to a FORTRAN procedure. Because
the memory segment is not named by a FORTRAN variable, FORTRAN cannot pass
it as a parameter. However, you can make this work with the mediator.

Make an entry in ForGen.Asm for the called FORTRAN procedure. Specify that the
parameter is an address, passed by value. Within the calling procedure, invoke
AllocateAllMemorySL to allocate the memory segment and store its address in a
FORTRAN variable. Then invoke the target procedure (with its synonym), passing
the FORTRAN variable containing the address of the work area. The mediator adjust
the stack, replacing the address of the FORTRAN variable with its value, the address
of the memory segment. The mediator then passes control to the target procedure.

Consider the example below.

INTEGER cPar
CHARACTER *4 pPar
iErc = MMAASL(cPar,pPar)
CALL Target(pPar)

C-5

where:

pPar is a 4-byte variable containing the address of the allocated memory
segment.

MMAASL is the synonym of AllocateAllMemorySL.

Target is the synonym of the called FORTRAN procedure.

In calling Target, the mediator adjusts the stack, replacing the address of pPar with
the value of pPar. Hence the allocated memory segment is passed to the called
procedure.

C-6

STANDARD PROCEDURE NAME SYNONYMS

The list below defines FORTRAN procedure name synonyms for portions of the B 20
Operating System, and for DAM, Forms, ISAM, RSAM, SAM, and Sort/Merge.
ForGen.Asm also defines these synonyms. These procedures must be declared
INTEGER*2.

The first two letters of a synonym designate the software package containing the
procedure. For example, all synonyms for Sort/Merge procedures begin with the
letters SM.

Operation Name

B 20 Operating System File Management - FM

ChangeFileLength
CheckReadAsync
CheckWriteAsync
ClearPath
CloseAllFiles
CloseAllFilesLL
CreateDir
CreateFile
DeleteDir
DeleteFile
GetFhLongevity
GetFileStatus
GetUCB
QueryWsNum
QuietIO
Read
ReadAsync
ReadDirSector
RenameFile
SetFhLongevity
SetFileStatus
SetPath
SetPrefix
Write
WriteAsync

C-7

Synonym

FMCGFL
FMCKRA
FMCKWA
FMCLRP
FMCLAF
FMCLAL
FMCRTD
FMCRTF
FMDELD
FMDELF
FMGTFL
FMGTFS
FMGTCB
FMQYWS
FMQTIO
FMREAD
FMRDAS
FMRDDS
FMRNMF
FMSTFL
FMSTFS
FMSTPA
FMSTPX
FMWRIT
FMWRAS

Operation

B 20 Operating System Keyboard Management - KM

Beep
CheckpointSysln
DisableActionFinish
QueryKbdLeds
QueryKbdState
ReadActionCode
ReadKbd
ReadK bdDirect
SetKbdLed
SetKbdUnencode,dMode
SetSyslnMode

B 20 Operating System Memory Management - MM

AllocAllMemorySL
AllocMemoryLL
Alloc M em orySL
DeallocMem'oryLL
DeallocMemorySL
ResetMemoryLL
QueryMemAvail

B 20 Operating System OpenFile/CloseFile - F M

CloseFile
OpenFile

B 20 Operating System Task Management - TM

Chain
ErrorExit
Exit
LoadTask

B 20 Operating System Timer Management - CM

CloseRTClock
CompactDateTime
Delay
ExpandDa teTi me
GetDateTime
OpenR TClock
ResetTimerlnt
SetDateTime
SetTimerlnt

C-8

Synonym

KMBEEP
KMCHKP
KMDSAF
KMQYKL
KMQYKS
KMRDAC
KMRDKB
KMRDKD
KMSTKL
KMSTUM
KMSYSI

MMAASL
MMAMLL
MMAMSL
MMDMLL
MMDMSL
MMRSLL
MMQYMA

FMCLOS
FMOPEN

TMCHAI
TMEREX
TMEXIT
TMLTSK

CMCLOS
CMCPDT
CMDLAY
CMEXDT
CMGTDT
CMOPEN
CMRSTI
CMSTDT
CMSTTI

Operation

B 20 Operating System Video Access Method - VA

PosFrameCursor
PutFrameAttrs
Pu tFram eChars
QueryFrameChar
ResetFrame
ScrollFrame

B 20 Operating System Video Display Manager - VD

InitCharMap
InitVidFrame
LoadCursor Ram
LoadFontRam
LoadStyleRam
QueryVidHdw
ResetVideo
SetScreen VidA ttr

Direct Access Method - DA

CloseDaFile
DeleteDaRecord
OpenDaFile
QueryDaLastRecord
Query DaR ecordSta tus
ReadDaFragment
ReadDaRecord
SetDaBufferMode
TruncateDaFile
WriteDaFragment
WriteDaRecord

Forms - FO

DefaultField
DefaultForm
DisplayForm
GetFieldInfo
LockKbd
OpenForm
ReadField
SetFieldA ttrs
UndisplayForm
UserFillField
WriteField

C-9

Synonym

VAPSFC
VAPTFA
VAPTFC
VAQYFC
VARSTF
VASCRL

VDINCH
VDINVF
VDLDCR
VDLDFR
VDLDSR
VDQYVH
VDRSTV
VDSTSA

DACLOS
DADLRC
DAOPEN
DAQYLR
DAQYST
DARDRF
DARDRC
DASTMD
DATRNC
DAWRRF
DAWRRC

FODFFD
FODFFO
FODISP
FOGTFI
FOLKKB
FOOPEN
FORDFD
FOSTFA
FOUNDS
FOUFFD
FOWRFD

Operation

Indexed Sequential Access Method - IS

CloseISAM
CreateISAM
DeleteISAM
DeleteISAMRecord
GetlSAMRecords
InstalllSAM
LockISAM
ModifyISAMRecord
OpenTSAM
ReadISAMRecordByUri
ReadN extISAMRecord
ReadUniqueISAMRecord
RenameISAM
SetlSAMProtection
SetupISAMlterationK ey
SetupISAMIterationPrefix
SetupISAMIterationRange
StoreISAMRecord
UnLockISAM

Record Sequential Access Method - RS

CheckpointFile
CloseRsFile
GetRsLfa
GetST AM FileH eader
OpenRsFile
ReadRsRecord
ReleaseRsFile
ScanToGoodRsRecord
WriteRsRecord

Sequential Access Method - BS

CheckpointBs
CloseByteStream
GetBsLfa
InitCom mLine
InitCommOptions
OpenByteStream
PutBackByte
QueryVidBs
R eadBsR ecord
ReadByte
ReadBytes
ReleaseByteStream
SetBsLfa
WriteBsRecord
WriteByte

C-IO

Synonym

ISCLOS
ISCRTF
ISDELF
ISDLRC
ISGTRS
ISNSTL
ISLOCK
ISMDRC
ISOPEN
ISRDUR
ISRDNX
ISRDUQ
ISRENM
ISSTPR
ISSTKY
ISSTPX
ISSTRG
ISSRRC
ISULCK

RSCHKP
RSCLOS
RSGTFA
STGTHD
RSOPEN
RSRDRC
RSRELS
RSSCAN
RSWRRC

BSCHKP
BSCLOS
BSGTFA
BSINCL
BSINCO
BSOPEN
BSPBBT
BSQVID
BSRDRC
BSRDBT
BSRDBS
BSRELS
BSSTFA
BSWRRC
BSWRBT

APPENDIX D
ADDITIONAL BUILT-IN FEATURES

The procedures below are contained in the FORTRAN library. Note that the
functions beginning with the letter I are Integer*2 functions. Therefore the identifier
must be explicitly declared an Integer*2.

1. BLDPTR

Syntax:
BLDPTR(iSa, iRa)

where

Action:

iSa is an Integer*2 expression
iRa is an Integer*2 expression

BLDPTR returns the memory address whose segment address is iSa and relative
address is iRa.

Example:

To build a pointer to the element of the System Common Address Table that
contains a pointer to the Video Control Block (VCB):

real ppVCB

ppVCB = BLDPTR(O,580)

2. GETPTR

Syntax:
GETPTR(arg)

where
arg is any FORTRAN variable

Action:

GETPTR returns the memory addresses of arg.

Example:

To get the memory address of i:

real p
integer i

p = GETPTR(i)

D-l

3. ICLRER

Syntax:
ICLRER(u)

where
u is any Integer*2 expression

Action:

ICLRER clears the error flags associated with the external file connected to unit
u. This function allows further I/O to a file that has previously encountered an error.
Note, however, that some runtime errors leave the file in an undefined state.
Therefore the results of subsequent I/O to a file that has encountered an error may be
indeterminate.

Example:

To clear all the error flags associated with the file connected to unit 10:

Integer*2 ICLRER
CALL ICLRER(IO)

4. IGETER

Syntax
IGETER(u)

where
u is any Integer*2 expression

Action:
IGETER returns the error code associated with the external file connected to unit

u.

Example:

To get the error code for file connected to unit 10:

Integer*2 IGETER, iError

iError = IGETER(IO)

D-2

5. IGETRA

Syntax:
IGETRA(p)

where
p is any expression that evaluates to a memory address

Action:

IGETRA returns the relative address portion of p.

Example:

To get the relative address of i:

Integer*2 IGETRA, i , iRa

iRa - IGETRA(GETPTR(i»

6. IGETSA

Syntax:
IGETSA(p)

where
p is any expression that evaluates to a memory address

Action:

IGETSA returns the segment address portion of p.

Example:

To get the segment address of i:

integer*2 IGETSA, i, iSa

iSa + IGETSA(GETPTR(i»

D-3

7. IPEEKB and IPEEKW

Syntax:
IPEEKB(p)

IPEEKW(p)

where
p is any expression that evaluates to a memory address

Action:

IPEEKB and IPEEKW return, respectively, the byte or word at memory address p.

Example:

To get the first byte and word of x:

real x
integer*2 IPEEKB, IPEEKW, iByte, iWord

iByte = IPEEKB(GETPTR(x»
iWord = IPEEKW(GETPTR(x»

8. POKEB and POKEW

Syntax:
POKEB(p, bData)

POKEW(p, wData)

where
p is any expression that evaluates to a memory address
bData is any integer expression
wData is any integer expression

Action:
POKEB and POKEW store, respectively, a byte or word at memory address p. In

the case of POKEB, the value (bData MOD 256) is stored.

Example:

To store 0 into ch using a pointer:

character ch
real p

p = GETPTR(ch)

call POKEB(p, 0)

To store 0 into the word at memory address q:

call POKEW(q, 0)

D-4

APPENDIX E
GUIDE TO TECHNICAL DOCUMENTATION

This Manual is one of a set that documents the B 20 family of information
processing systems. The set can be grouped as follows:

Introductory and Planning

Burroughs B 20
Your B 20 Installation Planning Guide

Hardware Installation

B 20 Hardware Installation Instructions
AP 1300 Printer, Installation, Operation, and Maintenance Guide
B 9251-1 Printer, Installation, Operation, and Maintenance Guide
B 9252 Printer, Installation, Operation, and Maintenance Guide
B 20 Cluster Work-Station, Installation and Operations Guide
B 20 Mass-Storage Unit, Installation Instructions for Qualified

Service Personnel

Opera tions Training

B 20 Operations, Part 1 - Learning To Use the Hardware
B 20 Operations, Part 2 - Learning To Use the Systems Software
B 20 Operations, Quick Reference Guide

BASIC Language

B 20 BASIC Programming Language - An Overview
Introduction to B 20 BASIC Learning Guide
B 20 BASIC Language Reference Manual
B 20 BASIC Quick Reference Guide

Reference Manuals

B 20 System Software Operation Guide
B 20 COBOL II Reference Manual
B 20 Pascal Reference Manual
B 20 FORTRAN Reference Manual
B 20 English Version
B 20 Operating System Reference Manual
B 20 Debugger Reference Manual
B 20 Editor Reference Manual
B 20 Linker/Librarian Reference Manual
B 20 System Programmers Guide/Assembler
B 20 Font Reference Manual

E-l

Reference Manuals (continued)

B 20 Forms Reference Manual
B 20 ISAM Reference Manual
B 20 2780/3780 RJE Reference Manual
B 20 3270 Reference Manual
B 20 ATE Reference Manual
B 20 Sort/Merge Reference Manual
B 20 Batch Reference Manual

Following is a brief description of each B 20 manual:

INTRODUCTION AND PLAN NING

Burroughs B 20 provides a general description of the B 20 system.

Your B 20 Installation Planning Guide offers suggestions to the new B 20 system
owners about how to prepare for B 20 installation.

HARDWARE INSTALLATION

B 20 Hardware Installation Instructions provide step-by-step procedures on
unpacking and installing the B 20 system.

AP1300 Printer, Installation, Operation, and Maintenance Guide provides
mstructIons for unpackmg, assembhng, and usmg the B 20 APl300 Prmter.

B9251-l Printer, Installation, Operation, and Maintenance Guide provides
instructions for unpacking, assembling, and using the B 20 B925l-l Printer.

B9252 Printer, Installation, Operation, and Maintenance Guide provides instructions
for unpacking, assembling, and using the B 20 B9252 Printer.

B 20 Cluster Work Station, Installation and Operations Guide describes how to
install and operate the B 20 cluster workstation.

B 20 Mass Storage Unit, Installation Instructions for Qualified Service Personnel
prov~des complete instructions for unpacking and assembling the B 20 mass storage
unit.

E-2

OPERATIONS TRAINING

B 20 Operations, Part I - Learning To Use the Hardware provides comprehensive,
step-by-step guidance in learning to use the hardware.

B 20 Operations, Part 2 - Leaning To Use the Software provides comprehensive,
step-by-step guidance in learning to use the B 20 software.

B 20 Operations, Quick Reference Guide provides quick, easy reference to
questions that come up during B 20 operation.

BASIC LANGUAGE

B 20 BASIC Language - An Overview describes BASIC programming language and
its uses on the B 20 system.

Introduction ,to B 20 BASIC Learning Guide provides comprehensive, step-by-step
guidance in learning to use BASIC programming language on the B 20 system.

B 20 BASIC Language Reference Manual describes operating instructions for the
B 20's BASIC programming language as well as a description of the language, itself.

B 20 BASIC Quick Reference Guide provides a summary and examples of all BASIC
com mands and functions.

E-3

REFERENCE

The B 20 System Software Operation Guide describes the B 20 Executive, the
program that first interacts with the user when the system is turned on. It
specifies com mands for managing files and invoking other programs such as the
Editor, the programming language compilers, and communications interfaces.

The B 20 COBOL, FORTRAN, BASIC, and Pascal Language Reference Manuals
describe the system's programming languages. Each manual specifies both the
language itself and also operating instructions for that language.

The Pascal Manual is supplemented by a popular text, Pascal User Manual and
Report.

The B 20 Operating System Reference Manual describes the Operating System. It
specifies services for managing processes, messages, memory, exchanges, tasks,
video, disk, keyboard, printer, timer, communications, and files. In particular, it
specifies the standard file access methods: SAM, the Sequential Access Method;
RSAM, the Record Sequential Access Method; and DAM, the Direct Access Method.

The B 20 Debugger Reference Manual describes the Debugger, which is designed
for use at the symbolic instruction level. Together with appropriate interlistings,
it can be used for debugging FORTRAN, Pascal, and Assembly language programs.
(COBOL and BASIC, in contrast, are more conveniently debugged using special
facilities described in their respective manuals.)

The B 20 Editor Reference Manual describes the text editor.

The B 20 Linker/Librarian Reference Manual describes the Linker, which links
together separately compiled object files, and the Librarian, which builds and
manages libraries of object modules.

The B 20 System Programmer's Guide/Assembler addresses the needs of the system
programmer or system manager for detailed information on Operating system
structure and system operation. It describes (1) cluster architecture and operation,
(2) procedures for building a customized Operating System, and (3) diagnostics. It
also describes the Assembly programming language.

E-4

The B 20 Font Reference Manual describes the interactive utility for designing new
fonts (character sets) for the video display.

The B 20 Forms Reference Manual describes the Forms facility that includes (1)
the Forms Editor, which is used to interactively design and edit forms, and (2) the
Forms run time, which is called from an application program to display forms and
accept user input.

The B 20 ISAM Reference Manual describes the multikey Indexed Sequential Access
Method. It specifies the procedural interfaces and shows how these interfaces are
called from the various langauges.

The B 20 2780/3780 RJE Reference Manual describes the 2780/3780 emulator
package.

The B 20 3270 Reference Manual describes the 3270 emulator package.

The B 20 ATE Reference Manual describes the asynchronous terminal emulator.

The B 20 Sort/Merge Reference Manual describes (1) the Sort and Merge utilities
that run as a subsystem invoked at the Executive command level, and (2) the
Sort/Merge object modules that can be called from an application program.

The B 20 Batch Reference Manual describes the format of JCL files for invoking
programs via the B 20 Batch Manager.

E-5

Documentation Evaluation Form

Title: __ B;..,2=.;0~S .. ys"""t~em~s..:;.F...::O R~T.:...:..:R,....A~N~R~e:.:..:fe~r.:::.en'-!,;c"",,e,,-,M=an;:.!.u:o:.:a~l __

(Release Level 3.0)

Form No: ____ ~1~1~6~3~03~7~ ______ _

Date: ________ ~S~ep~t~e~m~b~e~r~1~9~8~3 ___

Burroughs Corporation is interested in receiving your comments
and suggestions regarding this manual. Comments will be util­
ized in ensuing revisions to improve this manual.

Please check type of Suggestion:

o Addition o Deletion o Revision o Error

Comments:

From:

Name

Title
Company __ ____

Address

Phone Number ________________________ __

Remove form and mail to:

Documentation Dept, • East
Burroughs Corporation

BoxCB7
Malvern, PA 19355

Date _______________ _

