
\ ~.~ . . .

. Burroughs

\...e"e ((ou~
se ~u

'f(.e\e~ ,\9S"!J
... e \0 "9S~'

W\\,I © \
l'f(.e 'r\'f\\
, 00Q~(\'"

s\e(C\S

Priced Item
Printed in U S A • • A

ugust 1983 .

Burroughs

1162955

Burroqghs cannot accept any financial or other
responsibilities that may be the result of your use
of this information or software material,
including direct, indirect, special or consequential
damages. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this
software material and/or information complies with the
laws, rules, and regulations of the jurisdictions with
respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Correspondence regarding this publication should be forwarded using the
Remarks form at the back of the manual, or may be addressed directly to
Documentation East, Burroughs CorPoration, P.O. Box CB7, Malvern,
Pennsylvania, 19355. U.S. America.

LIST OF EFFECTIVE PAGES

Page Issue

iii Original
iv Blank
v thru xi Original
xii Blank
1-1 thru 1-4 Original
2-1 thru 2-10 Original
3-1 thru 3-5 Original
3-6 Blank
4-1 thru 4-15 Original
4-16 Blank
5-1 thru 5-14 Original
6-1 thru 6-38 Original
7-1 thru 7-12 Original
8-1 thru 8-13 Original
8-14 Blank
9-1 thru 9-16 Original
10-1 thru 10-18 Original
11-1 thru 11-27 Original
11-28 Blank
12-1 thru 12-22 Original
13-1 thru 13-14 Original
14-1 thru 14-12 Original
A-1 thru A-3 Original
A-4 Blank
B-1 thru B-6 Original
C-1 thru C-11 Original
C-12 Blank
0-1 thru 0-46 Original
E-1 thru E-3 Original
E-4 Blank
F-1 thru F-4 Original
G-1 thru G-3 Original
G-4 Blank
H-1 thru H-9 Original
H-10 Blank
1-1 thru 1-7 Original
1-8 Blank

iii

TABLE OF CONTENTS

Chapter Title Page

INTRODUCTION AND FEATURES 1-1
Overview ... 1-2
Pascal Levels .. 1-2

Standard Level 1-2
Extended Level 1-2
System Level .. 1-2

Pascal Features .. 1-2

2 LANGUAGE OVERVIEW 2-1
Pascal Notation .. 2-2
Metacommands .. 2-2
Identifiers and Constants 2-3
Data Types ... 2-4
Variables and Values 2-5
Expressions .. 2-5
Statements ... 2-6
Procedures and Functions 2-7
Compilands .. 2-8

3 PASCAL NOTATION 3-1
Components of Identifiers 3-2

Letters ... 3-2
Digits ... 3-2
The Underscore Character 3-2

Separators ... 3-3
Special Symbols 3-3

Punctuation .. 3-3
Operators .. 3-4
Reserved Words '3-5

Unused Characters 3-5

4 METACOMMANDS 4-1
Language Level Setting and Optimization 4-3
Debugging and Error Handling 4-4
Source File Control 4-9
Listing File Control 4-12

5 IDENTIFIERS AND CONSTANTS 5-1
Identifiers .. 5-2

The Scope of Identifiers 5-2
Predeclared Identifiers 5-2

Constants .. 5-4
Constant Identifiers '. 5-5
Numeric Constants 5-6

Real Constants 5-7
Integer, Word, and Integer4 Constants 5-7
Nondecimal Numbering 5-9

Character Strings 5-9
Structured Constants 5-10
Constant Expressions 5-12

v

TABLE OF CONTENTS (CONT.)

Chapter Title Page

6 DATA TyPES ... 6-1
Simple Data Types 6-4

Ordinal Types .. 6-4
Integer ... 6-4
Word ... 6-5
Char ... 6-5
Boolean .. 6-6
Enumerated Types 6-6
Subrange Types 6-7

Real .. 6-8
I nteger4 .. 6-9

Structured Data Types " .. 6-9
Arrays .. 6-10
Super Arrays .. 6-10

Strings .. 6-13
Lstrings ... 6-14
Using Strings and Lstrings 6-15

Records .. 6-17
Variant Records 6-18
Explicit Field Offsets 6-19

Sets .. 6-21
Files .. 6-22

The Buffer Variable " 6-23
File Structures 6-23
Binary Structure Files 6-24
ASCII Structure Files 6-24

File Access Modes 6-24
Terminal Mode Files 6-25
Segmented Mode Files 6-25
Direct Mode Files 6-25

The Predeclared Files 6-25
Extended Level I/O 6-26

Reference Types 6-28
Pointer Types 6-28
Address Types 6-30
Segment Parameters for Address Types 6-32
Using the Address Types 6-32

Packed Types .. 6-33
Procedural and Functional Types 6-35
Type Compatibility 6-35

Type Identity and Reference Parameters 6-35
Type Compatibility and Expressions 6-36
Assignment Compatibility ' 6-37

7 VARIABLES AND VALUES 7-1
Variable Declarations 7-2
The Value Section 7-3
Using Variables and Values 7-4

Components of Entire Variables and Values 7 .. 5

vi

TABLE OF CONTENTS (CO NT.)

Chapter Title Page

Indexed Variables and Values 7-5
Field Variables and Values 7-5
File Buffers and Fields•........... 7-6
Reference Variables ~ 7-6

Attributes .. 7-8
The Static Attribute 7-9
The Public and Extern Attributes 7-9
The Origin Attribute ' 7-10

The Readonly Attribute 7-11
Combining Attributes 7-12

8 EXPRESSIONS .. 8-1
Simple Expressions 8-2
Boolean Expressions 8-5
Set Expressions .. 8-7
Function Designators 8-8
Evaluating Expressions 8-9
Other Features of Expressions 8-12

The Eval Procedure 8-12
The Result Function 8-12
The Retype Function 8-13

9 STATEMENTS .. 9-1
Statement Syntax 9-2

Labels ... 9-2
Statements Separation 9-2
Begin/End .. 9-3

Simple Statements 9-3
Assignment Statements 9-4
Procedure Statements 9-5
The Goto Statement 9-6
The Break, Cycle, and Return Statements 9-7

Structured Statements ~ 9-8
Compound Statements 9-8
Conditional Statements 9-9

The If Statement 9-9
The Case Statement 9-10

Repetitive Statements 9-11
The While Statement 9-11
The Repeat Statement. 9-11
The For Statement. 9-12
The Break and Cycle Statements 9-1.4
The With Statement 9-14

Sequential Control. 9-15

10 PROCEDURES AND FUNCTIONS•.... 10-1
Procedures :•....................... 10-3
Functions ' 10-3
Attributes and Directives 10-5

vii

TABLE OF CONTENTS (CaNT.)

Chapter Title Page

The Forward Directive 10-7
The Extern Directive 10-7
The Public Attribute 10-8
The Origin Attribute 10-9
The Pure Attribute 10-9

Procedure and Function Parameters 10-10
Value Parameters 10-11
Reference Parameters 10-11

Super Array Parameters 10-13
Constant and Segment Parameters 10-13

Procedural and Functional Parameters 10-15

11 AVAILABLE PROCEDURES AND FUNCTIONS 11-1
Dynamic Allocation Procedures and Functions 11-5

Procedure DISPOSE (Short Form) 11-5
Procedure DISPOSE (Long Form) 11-5
Procedure NEW (Short Form) 11-5
Procedure NEW (Long Form) 11-6

Data Conversion Procedures and Function 11-7
Function CHR 11-7
Function FLOAT 11-7
Function FLOAT4 11-8
Function ODD 11-8
Function ORO 11-8
Procedure PACK 11-8
Function PRED 11-9
Function ROUND 11-9
Function ROUND4 11-9
Function SUCC 11-9
Function TRUNC 11-9
Function TRUNC4 11-10
Function UNPACK 11-10
Function WRD 11-10

Arithmetic Functions 11-11
REAL Functions 11-13

Extended Level Intrinsics 11-15
Procedure ABORT 11-15
Function BYLONG 11-16
Function BYWORD 11-16
Function DECODE 11-16
Function ENCODE 11-17
Procedure EVAL. 11-17
Function H I BYTE 11-17
Function H IWORD 11-17
Function LOBYTE 11-18
Function LOWE.R 11-18
Function LOWORD 11-18
Function RESULT 11-18
Function SIZEOF 11-18

viii Function UPPER 11-18

TABLE OF CONTENTS (CO NT.)

Chapter Title Page

System Level Intrinsics , 11-19
Procedure FILLSC 11-19
Procedure MOVEL 11-19
Procedure MOVER 11-20
Procedure MOVESL 11-20
Procedure MOVESR 11-20
Function RETyPE 11-21

String Intrinsics 11-22
Procedure CONCAT 11-22
Procedure COPYLST 11-22
Procedure COPYSTR 11-22
Procedure DELETE 11-22
Procedure INSERT 11-23
Function POSITN 11-23
Function SCAN EQ 11-23

Library Procedures and Functions 11-24
Initializational and Termination Routines 11-24
Heap Management. 11-25
No-overflow Routines 11-25

12 FILE-ORIENTED PROCEDURESAND FUNCTIONS ... 12-1
File System Primitive Procedures and Functions 12-2

EOF and EOLN 12-2
GET and PUT 12-3
RESET and REWRITE 12-4
PAGE ... 12-6
Lazy Evaluation 12-6

Text File Input and Output 12-8
READ and READLN 12-10
WRITE and WRITELN 12-14
WRITE Formats 12-15

Extended Level I/O 12-18
Extended Level Procedures 12-18

Procedure ASSIGN 12-18
Procedure CLOSE 12-19
Procedure DISCARD 12-19
Procedure READFN 12-19
Procedure READSET 12-20
Procedure SEEK 12-20

Temporary Files 12-22

13 COMPILANDS .. 13-1
Programs ... 13-3
Modules .. 13-5
Units .. 13-7

The Interface Division 13-10
The Implementation Division 13-12

14 COMPILING, LINKING, AND EXECUTING
PROGRAMS .. 14-1 ix

TABLE OF CONTENTS (CONT.)

Chapter Title Page

Invoking the Pascal Compiler from the Executive 14-2
Field Descriptions 14-2
Linking a Pascal Program 14-3
Running a Pascal Program 14-3
Runtime Size and Debugging 14-4
Compiling and Linking Large Programs 14-5

Avoiding Limits on Code Size 14-5
Avoiding Limits on Data Size 14-5
Working With Limits on Compile Time Memory 14-7
Identifiers ... 14-7
Complex Expressions 14-9

Listing File Format 14-10

A AN OVERVIEW OF THE FILE SySTEM A-1

B COMPILER STRUCTURE 8-1
The Front End ... 8-3
The 8ack End .. ' .. 8-4

Pass Two .. 8-4
Pass Three ... 8-6

C RUNTIME ARCHITECTURE C-1
Runtime Routines C-1
Memory Organization C-1
Initialization and Termination C-4

Machine Level Initialization C-5
Program Level Initialization C-6
Program Termination C-7

Error Handling ... C-8
Machine Error Context ~ C-1 0
Source Error Context C-1 0

D ERROR MESSAGES D-1
Compiler Front End Errors D-2
Compiler 8ack End Errors 0-35
Compiler Internal Errors ... ~ 0-35
Runtime Error Messages D-36
File System Errors (1000-1099) 0-36
Runtime File System (1100-1199) 0-38

File System Errors (1100-1199) 0-38
Other Runtime Errors (2000-2999) D-39

Memory Errors (2000-2049) D-40
Ordinal Arithmetic Errors (2050-2099) 0-41
Type REAL Arithmetic Errors (2100-2149) D-43
Structured Type Errors (2150-2199) D-45
INTEGER4 Errors (2200-2249) D-45
Other Errors (2400-2999) D-46

x

TABLE OF CONTENTS (CONT.)

Chapter Title Page

E SUMMARY OF RESERVED WORDS E-1

F SUMMARY OF AVAILABLE PROCEDURES AND
FUNCTIONS ... F-1

G SUMMARY OF METACOMMANDS G-1

H EXTENDED PASCAL FEATURES AND THE ISO
STANDARD .. H-1
Extended Pascal and the ISO Standard H-2
Summary of Extended Pascal Features H-5

Syntactic and Pragmatic Features H-.5
Data Types and Modes H-6
Operators and Intrinsics H-7
Control Flow and Structure Features H-8
Extended Level I/O and Files H-9
System Level I/O H-9

CONTROL OF THE VIDEO DiSPLAy 1-1
Error Conditions in Escape Sequences 1-2

Video Display Coordinates 1-3
Controlling Character Attributes 1-3
Controlling Screen Attributes 1-4
Controlling Cursor Position and Visibility 1-5
Filling a Rectangle 1-5
Controlling Line Scrolling 1-6
Directing Video Display Output 1-6
Controlling Pausing Between Full Frames 1-6
Controlling the Keyboard Led Indicators 1-7
Erasing to the End of the Line or Frame 1-7
Further Details .. 1-7

xi

CHAPTER 1

INTRODUCTION AND FEATURES

CONTENTS

OVERVIEW

PASCAL LEVELS

Standard level

Extended level

System level

PASCAL FEATURES

1-1

OVERVIEW
This document provides a complete description of a highly
extended version of Pascal, as implemented for use on the
BURROUGHS B 20. It is assumed that you have a working
familiarity with Pascal. The Pascal described in this manual is
highly portable and is consistent with the International Standard
Organization (ISO) standard.

Unlike many other compilers which produce intermediate p-code for
microcomputers, this Pascal Compiler generates native machine
code. Programs compiled to native code execute much faster than
those compiled to p-code. Thus, with this Pascal Compiler, you
get the programming advantages of a high-level language without
sacrificing execution speed. Because of many low-level escapes
to the machine level, programs written in this Pascal are often
comparable in speed to programs written in assembly language.

PASCAL LEVELS
This Pascal is organized into three "levels", Standard, Extended,
and System.

Standard Level

All Standard ISO Pascal programs are intended to compile and run
correctly using this compiler. All of the extensions to the
language are provided in Appendix H, of this manual.

Extended Level

Pascal intended for use on your system enhances ISO pascal and is
intended for structured and relatively safe extensions such as
OTHERWISE in the CASE statement and the construction of the BREAK
statement.

System Level

This level includes all features at the extended level as well as
unstructured, machine oriented extensions that are either useful
or necessary for system programming tasks. These additional
extensions include the address types and access to all File
Control Block fields.

In addition to the above language levels, the Pascal compiler
recognizes requests to specify the kind of error checking to be
generated. These are included in the Pascal "Metacommands".

PASCAL FEATURES
The following list includes just some of the features available

1-2

at the extended and system levels of this Pascal. These features
are described in more detail later in this manual.

1. Underscore in identifiers, which improves readability.

2. Nondecimal numbering (hexadecimal, octal, and binary), which
facilitates programming at the byte and bit level.

3. Structured constants, which may be declared in the declaration
section of a program or use in statements.

4. Variable length strings (type LSTRING), as well as special
predeclared procedures and functions for LSTRINGs, which overcome
standard Pascal's string handling capabilities.

5. Super arrays, a special variable length array whose
declaration permits passing arrays of different lengths to a
reference parameter, as well as dynamic allocation of arrays ~f
different lengths.

6. Predeclared unsigned BYTE (0-255) and WORD (0-65535) types,
which facilitate programming at the system level.

7. Address types (segmented and unsegmented) , which allow
manipulation of actual machine addresses at the system level.

8. String
READLN to
character.

reads, which allow the standard procedures READ and
read strings as structures rather than character by

9. Interface to assembly language, provided by PUBLIC and EXTERN
procedures, functions, and variables, which allows low-level
interfacing to assembly language and library routines.

10. VALUE section, where you may declare the initial constant
values of variables in a program.

11. Function return values of a structured type as well as of a
simple type.

12. Direct (random
procedure, which
capabilities.

access)
enhance

files,
standard

accessible
Pascal's

with
file

the SEEK
accessing

13. Lazy evaluation, a special internal mechanism for interactive
files that allows normal interactive input from terminals.

14. Structured BREAK and CYCLE statements, which allow structured
exits from a FOR, REPEAT, or WHILE loop; and the ~ETURN
statement, which allows a structured exit from a procedure or
function.

15. OTHERWISE in CASE statements, where by you avoid explicitly

specifying each CASE constant.

16. STATIC attribute for variables, which allows you to indicate
that a variable is to be allocated at a fixed location in memory
rather than on the stack.

17. ORIGIN attribute, which may be given to variables,
procedures, and functions to indicate their absolute location in
memory.

19. Separate compilation of portions of a program (units and
modules) •

20. Conditional compilation, using conditional metacommands in
your Pascal source file to switch on or off compilation of parts
of the source.

1-4

CHAPTER 2
LANGUAGE OVERVIEW

CONTENTS

PASCAL NOTATION

METACOMMANDS

IDENTIFIERS AND CONSTANTS

DATA TYPES

VARIABLES AND VALUES

EXPRESSIONS

STATEMENTS

PROCEDURES AND FUNCTIONS

COMPILANDS

2-1

The pascal language includes a large number of inter-related
components. To ease your understanding of the language, its
basic elements are discussed first. Each component is discussed
in relation to their next higher-level component.

PASCAL NOTATION
All Pascal programs consist of an irreducible set of symbols with
which the higher syntactic components of the language are
created. The underlying notation is the ASCII character set,
divided into the following syntactic groups:

1. Identifiers are the names given to individual instances
of components of the language.

2. Separators are characters that delimit adjacent numbers,
reserved words, and identifiers.

3. Special symbols include punctuation, operators, and
reserved words.

4. Some characters are unused but are available for use in
a comment or string literal.

METACOMMANDS
The metacommahds provide a control language for the Pascal
Compiler. The metacommands let you specify options that affect
the overall operation of a compilation. For example, you can
conditionally compile different source files, generate a listing
file, or enable or disable runtime error checking code.

Metacommands are inserted inside comment statements. All of the
metacommands begin with a dollar sign ($). Some may also be
given as switches when the compiler is invoked.

Although most implementations of Pascal have some type of
compiler control, the metacommands listed below are not part of
standard Pascal and hence are not portable.

The metacommands are listed below:

2-2

$BRAVE
$DEBUG
$ENTRY
$ERRORS
$GOTO
$INCLUDE
$INCONST

$PAGE
$PAGEIF
$PAGESIZE
$POP
$PUSH
$RANGECK
$REAL

$INDEXCK
$INITCK
$IF $THEN $ELSE $END
$INTEGER
$LINE
$LINESIZE
$LIST
$MATHCK
$MESSAGE
$NILCK
$OCODE
$OPTBUG

$ROM
$RUNTIME
$SIMPLE
$SIZE
$SKIP
$SPEED
$STACKCK
$SUBTITLE
$SYMTAB
$TITLE
$WARN

See Chapter 4, "Metacommands," for a complete discussion of
metacommands.

IDENTIFIERS AND CONSTANTS
Identifiers are names that denote the constants, variables, data
types, procedures, functions, and other elements of a pascal
program.

An identifier must begin with a letter (A through Z or a through
z). The initial letter may be followed by any number of letters,
digits (0 through 9), or underscore characters.

The compiler ignores the caseof letters; thus, "A" and "a" are
equivalent. The only restriction on identifiers is that you must
not choose a Pascal reserved word (see Chapter 3, Pascal Notation
for a discussion of reserved words or Appendix E," Summary of
Reserved Words," for a complete list).

A constant is a value that is not expected to change during the
course of a program. A constant may be:

1. a number, such as 1.234 and 100

2. a string enclosed in single quotation marks, such as
'Miracle' or 'A1207'

3. a constant identifier that,is a synonym for a numeric or
string constant

You can declare constant identifiers in the CONST section of a
compiland, procedure, or function

CONST REAL CONST
MAX VAL
TITLE

1.234;
100;
'Pascal' ;

You can declare constants anywhere in the declaration section of
a compilable part of a program, any number of times. Two

2-3

powerful extensions in Pascal are structured constants and
constant expressions.

1. VECTOR, in the following example, is an array constant:

CONST VECTOR = VECTORTYPE (1,2,3,4,5);

2. MAXVAL, in the following example, is a constant
expression (A, B, C, and D must also be constants) :

CONST MAXVAL = A * (B DIV C) + D - 5;

DATA TYPES
M~ch of Pascal's power and flexibility lies in its data typing
capability. The data types can be divided into three broad
categories: simple, structured, and reference types.

1. A simple data type represents a single value; a
structured type represents a collection of values. The
simple types include the following:

INTEGER
WORD
CHAR
BOOLEAN

enumerated
subrange
REAL
INTEGER4

2. The structured data types include the following:

ARRAY
RECORD
SET
FILE

3. Reference types allow recursive definition of types in
an extremely powerful manner.

All variables in Pascal must be assigned a data type. A type is
either predeclared (e.g., INTEGER and REAL) or defined in the
declaration section of a program. The following sample type
declaration creates a type that can store information about a
student:

2-4

TYPE

STUDENT
AGE

RECORD

SEX
GRADE
GRADE PT
SCHEDULE

END;

5 •• 18;
(MALE, FEMALE);
INTEGER;
REAL;
ARRAY [1 •• 10] OF CLASSES

VARIABLES AND VALUES

A variable is a value that is expected to change during the
course of a program. Every variable must be of a specific data
type.

After you declare a variable in the heading or declaration
section of a compiland, procedure, or function, it may be used in
any of the following ways:

1. You may initialize it, in the VALUE section of a
program.

2. You may assign it a value, with an assignment statement.

3. You may pass it as a parameter to a procedure or
function.

4. You may use it in an expression.

The VALUE section is a feature that appl ies only to statically
allocated variables (variables with a fixed address in memory).
You must first declare the variables, as shown in the following
example:

VAR I, J, K, L: INTEGER;

and then assign them initial values in the VALUE section:

VALUE I : = 1; J: = 2; K: = 3; L: = 4;

Later, in statements, the variables can be assigned to,and used
as operands in expressions:

I := J + K + L;
J := 1 + 2 + 3;
K := (J * K) + 9 + (L DIV J) ;

EXPRESSIONS
An expression is a formula for computing a value. It consists of
a sequence of operators (which indicate the action to be
performed) and operands (the value on which the operation is
performed) • Operands may contain function invocations,
variables, constants, or even other expressions. In the
following expression, plus (+) is an operaior, while A arid Bare
operands:

A + B

There are three basic kinds of expressions:

2-5

1. Arithmetic expressions perform arithmetic operations on
the operands in the expression.

2. Boolean expressions perform logical and comparison
operations with Boolean results.

3. Set expressions perform combining and comparison
operations on sets, with Boolean or set results.

Expressions always return values of a specific type. For
instance, if A, B, C, and D are all REAL var iables, then the
following expression evaluates to a REAL result:

A * B + (C / D) + 12.3

Expressions may also include function designators:

ADDREAL (2, 3) + (C / D)

ADDREAL is a function that has been previously declared in a
program. It has two REAL value parameters, which it adds
together to obtain a total. This total is the return value of
the function, which is then added to (C / D) •

Expressions
statements.
statement;
expression:

are
In

only

not
the
the

statements, but may be components of
following example, the entire line is a

portion after the equal sign is an

X := 2 / 3 + A * B

STATEMENTS
Statements perform actions, such as computing, assigning,
altering the flow of control, and reading and writing files.
Statements are found in the bodies of programs, procedures, and
functions and are executed as a program runs.

Statements in Pascal are as follows:

Statement

Assignment

BREAK

CASE

CYCLE

2-6

Purpose

Replaces the current value of a variable with a new
val ue.

Exits the currently executing loop.

Allows for the selection of one action from a choice
of many, based on the value of an expression.

Starts the next iteration of a loop.

FOR

GOTO

IF

Procedure
call

REPEAT

RETURN

WHILE

WITH

Executes a statement repeatedly while a progression
of values is assigned to a control variable.

Continues processing at another part of the program.

Together with THEN and ELSE, allows for conditional
execution of a statement.

Invokes a procedure with actual parameter values

Repeats a sequence of statements one or more times,
until a Boolean expression becomes true.

Exits the current procedure, function, program, or
implementation.

Repeats a statement zero or more times, until a
Boolean expression becomes false.

Opens the scope of a statement to include the fields
of one or more records, so that you can refer to the
fields directly.

PROCEDURESAND FUNCTIONS
Procedures arid functions act as subprograms that execute under
the supervision of a main program. However, unlike programs,
procedures and functions can be nested within each other and can
even' call themselves. Furthermore, they have sophisticated
parameter-passing capabilities that programs lack.

Procedures are invoked as statements; functions can be invoked in
expressions wherever val ues are called for. A procedure
declaration, like a program, has a heading, a declaration
section, and a body.

Example of a procedure declaration:

PROCEDURE COUNT_TO(NUM : INTEGER); {Heading}

VAR I INTEGER;

BEGIN
FOR I := I TO NUM DO
WRITELN (I)

END;
. "

{Declaration section}

{Body}

A function is ,a procedure. that returns a value of a particular
type; henc~, a fun6tion declaration must indicate the type of the
return value.

Example of a function declaration:

2-7

FUNCTION ADD (VALl, VAL2
BEGIN

ADD := VALl + VAL2
END;

INTEGER): INTEGER; {Heading}
{Body}

Procedures and functions look somewhat different from programs,
in that their parameters have types and other options. Like the
body of a program, the body of a procedure or a function is
enclosed by the reserved words BEGIN and END; however, a
semicolon rather than a period follows the word "END".

Declaring a procedure or function is entirely distinct from using
it in a program. The procedure and function declared above might
actually appear ina program as follows:

TARGET NUMBER := ADD (5, 6);
COUNT TO (TARGET_NUMBER);

{Function ADD}
{procedure COUNT_TO}

COMPILANDS
The Pascal Compiler processes programs, modules, and
implementations of units. Collectively, these compilable
programs and parts of programs are referred to as compilands.
You can compile modules and implementations of units separately
and then later link them to a program without having to recompile
the module or unit.

The fundamental unit of compilation is a program. A program has
three parts:

1. The program heading identifies the program and gives a
list of program parameters.

2. The declaration section follows the program heading and
contains declarations of labels, constants, types,
variables, functions, and procedures. Some of these
declarations are optional.

3. The body follows all decl arations. It is enclosed by
the reserved words BEGIN and END and is terminated by a
period. The period is the signal to the compiler that
it has reached the end of the source file.

The following program illustrates this three-part structure:

PROGRAM FRIDAY (INPUT,OUTPUT); {program header}

2-8

LABEL 1; {Declaration section}
CONST DAYS IN WEEK = 7;
TYPE KEYBOARD INPUT = CHAR;
VAR KEYIN: KEYBOARD_INPUT;

BEGIN {Program body}
WRITE('IS TODAY FRIDAY? I);

1: READLN(KEYIN);
CASE KEYIN OF

lyl, Iyl : WRITELN('It"s Friday.');
'N ' , I nl : WRITELN (I Itl I S not Friday. I);

OTHERWISE

END
END.

WRITELN('Enter Y or N. ');
WRITE('Please re-enter: I);
GOTO 1

This three-part structure (heading, declaration section, body) is
used throughout the Pascal language. procedures, functions,
modules, and units are all similar in structure to a program.

Modules are program-like units of compilation that contain the
declaration of variables, constants, types, procedures, and
functions, but no program statements. You can compile a module
separately and later link it to a program, but it cannot be
executed by itself.

Example of a module:

MODULE MODPART; {Module heading}

CONST PI = 3.14; {Declaration section}

PROCEDURE PARTA;
BEGIN

WRITELN (Iparta ')
END;

END.

A module, like a program, ends with a period. Unlike a program,
a module contains no program statements.

and an implementation.
compiled separately and

The interface contains
uni t to other uni ts,

A unit has two sections: an interface
Like a module, an implementation may be
later linked to the rest of the program.
the information that lets you connect a
modules, and programs.

2-9

Example of a unit:

INTERFACE; {Heading for interface}
UNIT MUSIC (SING, TOP);

VAR TOP: INTEGER; {Declarations for interface}
PROCEDURE SING;
BEGIN {Body of interface}
END;

IMPLEMENTATION OF MUSIC; {Heading for implementation}

PROCEDURE SING;

VAR I : INTEGER;

BEGIN
FOR I := 1 TO TOP DO
BEGIN

{Declaration for implementation}

WRITE ('FA I); WRITELN ('LA LA')
END

END;

BEGIN
TOP := 5

END.

{Body of implementation}

A unit, like a program or a module, ends with a period. Modules
and units let you develop large structured programs that can be
broken into parts. This can be advantageous in the following
situations:

2-10

1. If a program is large, breaking it into parts makes it
easier to develop, test, and maintain.

2. If a program is large and recompiling the entire source
file is time consuming, breaking the program into parts
saves compilation time.

3. If you intend to include certain routines in a number of
different programs, you can create a single object file
that contains these routines and then link it to each of
the programs in which the routines are used.

4. If certain routines have different implementations, you
might place them in a module to test the validity of an
algor i thm and later create and implement similar
routines in assembly language to increase the speed of
the algorithm.

CONTENTS

CHAPTER 3
PASCAL NOTATION

COMPONENTS OF IDENTIFIERS

Letters

Digits

The Underscore Character

SEPARATORS

SPECIAL SYMBOLS

Punctuation

Operators

Reserved Words

UNUSED CHARACTERS

3-1

All components of the Pascal language are constructed from the
standard ASCII character set. Characters make up lines, each of
which is separated by a character specific to the operating
system. Lines make up files. Within a line, individual
characters or groups of characters fall into one (or more) of
four broad categories:

1. components of identifiers

2. separators

3. special symbols

4. unused characters

COMPONENTS OF IDENTIFIERS
Identifiers are names that denote the constants, variables, data
types, procedures, functions, and other elements of a pascal
program. Identifiers must begin with a letter; subsequent
components may include letters, digits, and underscore
characters. Identifiers can be of any length, but must fit on a
line. Only the first 31 characters are significant.

Letters

In identifiers, only the uppercase letters A through Z are
significant. You may use lowe~case letters for identifiers in a
source program. However, the Pascal Compiler converts all
lowercase letters in identi fiers to the corresponding uppercase
letters.

Letters in comments or in string literals may be either uppercase
or lowercase; no mapping of lowercase to uppercase occurs in
either comments or string literals.

Digits

Dig its in Pascal are the numbers zero through nine. Dig i ts can
occur in identifiers such as AS129M, or in numeric constants such
as 1.23 and 456.

The Underscore Character

The underscore ()
in- identifiers.
readibility.

3-2

is the only nonalphanumeric character allowed
You can use it like a space to improve

SEPARATORS
Separators del imi t adj acent numbers, reserved words, and
identifiers. A separator can be any of the following:

1. the space character

2. the tab character

3. the form feed character

4. the new line marker

5. the comment

Comments in take one of these forms:

{This is a comment, enclosed in braces.}
(*This is an alternate form of comment.*)

You can also have comments that begin with an exclamation point:

The rest of this line is a comment.

For comments in this form, the new line character delimits the
comment. Nested comments are permitted, so long as each level
has different delimiters. Thus, when a comment is started, the
compiler ignores succeeding' text until it finds the matching end­
of-comment.

SPECIAL SYMBOLS
Special symbols can be divided into:

1. punctuation

2. operators

3. reserved words

Punctuation

Punctuation
following:

serves

Symbol Purpose

a variety of

Braces delimit comments.

purposes, incl ud ing the

Brackets delimit array indices, sets, and attributes.
They may also replace the reserved words BEGIN and END

3-3

:=

$

Operators

in a program.

Parentheses delimit expressions, parameter lists, and
program parameters.

Single quotation marks enclose string literals.

The colon-equals symbol assigns values to variables in
assignment statements and in VALUE sections.

The semicolon separates statements and declarations.

The colon separates variables from types and labels from
statements.

The equal sign separates identifiers and type clauses in
a TYPE section.

The comma separates the components of lists.

The double period denotes a subrange.

The period designates the end of a program, indicates
the fractional part of a real number, and also delimits
fields in a record.

The up arrow denotes the value pointed to by a reference
val ue.

The number sign denotes nondecimal numbers.

The dollar sign prefixes metacommands.

Operators are a form of punctuation that indicate some operation
to be performed. Some are alphabetic, others are one or two
nonalphanumeric characters. Operators that consist of more than
one character must not have a separator between characters. The
operators that consist only of nonalphabetic characters are the
following:

+ * / > < <> <= >=

Some operators (e.g., NOT and DIV) are reserved words instead of
nonalphabetic characters. (See Chapter 8, "Expressions," for a
complete list of of the nonalphabetic operators and a discussion
of the use of operators in expressions).

3-4

Reserved Words

Reserved words are a fixed part of the Pascal language. They
include, for example, statement names (e.g., BREAK) and words
like BEGIN and END that bracket the main body of a program. See
Appendix E, "Summary of Pascal Reserved Words," for a complete
list.

You cannot create an identifier that is the same as any reserved
word. You may, however, declare an identifier that contains
within it the letters of a reserved word (for example, the
identifier DOT containing the reserved word DO).

UNUSED CHARACTERS
A few printing characters are not used in Pascal:

% & "
You may, however, use them within comments or string literals. A
number of other nonprinting ASCII characters will generate error
messages if you use them in a source file other than in a comment
or string literal:

1. the characters from CRR (0) to CRR (31), except the tab
and form feed, CRR (9) and CRR (12), respectively

2. the characters from CRR (127) to CRR (255)

The tab character, CRR (9), is treated like a space and is passed
on to the listing file. A form feed, CRR (12), is treated like a
space and st~rts a new page in the listing file.

The ISO standard for ASCII reserves some character positions for
national usage to permit larger alphabets, diacritical marks, and
so on. Note that the number sign "#" is equivalent to the
"pound" sign ("L" with a bar through it), as ASCII #23; also the
currency symbol "$" is equivalent to the "scarab" sign (a :circle
with four spikes), as ASCII #24. The other 10 national symbols
either are unused (#5C, #60, #7C, #7E) or have substitutes
available (@ #40, [#5B,] #50, ... #5E, { #7B, } #70).

3-5

CONTENTS

CHAPTER 4
METACOMMANDS

LANGUAGE LEVEL SETTING AND OPTIMIZATION

DEBUGGING AND ERROR HANDLING

SOURCE FILE CONTROL

LISTING FILE CONTROL

4-1

Metacommands make up the compiler control language. Metacommands
are compiler directives that allow you to control such things as
the following:

1. language level

2. debugging and error handling

3. optimization level

4. use of the source file during compilation

5. listing file format

You can specify one or more metacommands at the start of a
comment; you should separate mul ti pIe metacommands wi th either
spaces or commas. Spaces, tabs, and line markers between the
elements of a metacommand are ignored. Thus, the following are
equivalent:

{$PAGE:12}
{$PAGE : 12}

To disable ~etac6mmands within comments, you place any character
that, 1's not a tab or space in front of the first dollar sign, as
shown:

{x$PAGE:12}

You may change compiler directives during the course of a
program. For example, most of a program might use $LIST-, with a
few sections using $LIST+ as needed. Some metacommands, such as
$LINESIZE, normally apply to an entire compilation.

If you are writing Pascal programs for use with other compilers,
keep in mind the fact that metacommands are always nonstandard
and rarely transportable.

Metacommands invoke or set the value of a metavariable.
Metavariables are classified as typeless, integer, on/off switch,
or string.

4-2

1. Typeless metavar iables are invoked when used, as in
$PUSH.

2. Integer metavariables can be set to a numeric value, as
in $PAGE:101.

3. On/off switches can be set to a numeric value so that a
value greater than zero turns the switch on and a value
equal or less than zero turns it off, as in $MATHCK:l.

4. String metavariables can be set to a character string
value, such as with $TITLE:'COM PROGRAM'.

The following notations are used in metacommand descriptions in
this chapter:

Notation

+ or -

:<n>

: '<text>'

Meaning

Metacommand is typeless.

Metacommand is an on/off switch. + sets value to 1
(on) • sets val ue to 0 (off). Defaul t is
indicated by + or - in heading.

Metacommand is an integer.

Metacommand is a string.

String values in the metalanguage may be either a literal string
or string constant identifier. Constant expressions are not
allowed for either numbers or strings, although you can achieve
the same effect by declaring a constant identifier equal to the
expression and using the identifier in the metacommand.

In metacommands only, Boolean and enumerated constants are
changed to their ORD values. Thus, a Boolean false value becomes
o and true becomes 1.

For a complete alphabetical listing of Pascal metacommands see
Appendix G, "Summary of Pascal Metacommands."

LANGUAGE LEVEL SETTING AND OPTIMIZAT'ION

The following metacommands allow you to control the level
(standard, extended, or system) at which the compiler processes
your program and the degree to which optimization is used:

Name Description

$ROM Gives a warning on static initialization.

$SIMPLE Disables global optimization.

$SIZE Minimizes size of code generated.

4-3

$SPEED Minimizes execution time of code.

The metacdmmands $INTEGER and $REAL set the length (i.e.,
precision) of the standard INTEGER and REAL data types. $INTEGER
can only be set to 2 (the default), for 16-bit integers.
However, you may set $REAL to either 4, or 8 (the default), to
make type REAL identical to REAL4 or REAL8, respectively.

The $SIMPLE turns off common sUbexpression optimization while
$SIZE and $SPEED turn it back on. If $ROM is set, the compiler
gives a warning that static data will not be initialized in
either of the following situations:

1. at a VALUE section

2. every place where static data initialization occurs due
to $INITCK (described under "Debugging and Error
Handl ing")

DEBUGGING AND ERROR HANDLING
The following metacommands are for debugging and error handling.
They also generate code to check for runtime errors:

4-4

Metacommand

$BRAVE+

$DEBUG-

$ENTRY-

$ERRORS:<n>

$GOTO-

$INDEXCK+

$INITCK­

$LINE-

Description

Sends error messages and warnings to the
terminal screen.

Turns on or off all the debug checking (CK
in metacommands below).

Generates procedure entry/exit calls for
debugger.

Sets number of errors allowed per page
(default is 25).

Flags GOTO
harmful."

statements as "considered

Checks for array index values in range,
including super array indices.

Checks for use of uninitialized values.

Generates
debugger.

line number calls for the

$MATHCK+

NILCK+

RANGECK+

RUNTIME-

STACKCK+

WARN+

Checks for mathematical errors such as
overflow and division by zero.

Checks for bad pointer values.

Checks for subrange validity.

Determines context of runtime errors.

Checks for stack overflow at procedure or
function entry.

Gives warning messages in listing file.

If any check is on when the compiler processes a statement, tests
relevant to the statement are done. A runtime error invokes a
call to the runtime support routine, EMSEQQ (synonymous with
ABORT). When EMSEQQ is called, the compiler passes the following
information to it:

1. an error message

2. a standard error code

3. an operating system return code error status value

EMSEQQ also has available:

1. the program counter at the location of the error

2. the stack pointer at the location of the error

3.

4.

5.

$BRAVE+

the frame po in ter at the location of the error

the current line number (if $LINE is on)

the current procedure or function name and the source
filename in which the procedure or function was compiled
(if $ENTRY is on)

Sends error messages and warnings to your terminal (in
addition to writing them to the listing file). If the
number of errors and warnings is more than will fit on
the screen, the earlier ones scroll off and you will have
to check the listing file to see them all.

4-5

$DEBUG-

$ENTRY-

Turns on or off all of the debug swi tches (i. e., those
that end wi th "CK"). You may find it useful to use
$DEBUG- at the beginning of a program to turn all
checking off and then selectively turn on only the debug
switches you want. Alternatively, you may use this
metacommand to turn all debugg ing on at the start and
then selectively turn off those you don't need as the
program progresses. By default, some error checks are on
and some off.

Generates procedure and function entry and exi t calls.
This lets a debugger or error handler determine the
procedure or function in which an error has occurred.
Since this switch generates a substantial amount of extra
code for each proced ure and function, you should use it
only when debugging. Note that $LINE+ requires $ENTRY+;
thus, $LINE+ turns on $ENTRY, and $ENTRY- turns off
$LINE.

$ERRORS:(n>

$GOTO-

$INDEXCK

$INITCK-

4-6

Sets an upper limit for the number of errors allowed per
page. Compilation aborts if that number is exceeded.
The default is 25 errors and/or warnings per page.

Flags GOTO statements with a warning
"considered harmful." This warning may
either of the following circumstances:

that
be

1. encourage structured prog r amm i ng
educational environment

they
useful

in

are
in

an

2. to flag all GOTO statements during the process
of debugging

Checks that a.rray index values, including super array
indices, are In range. Since array indexing occurs so
often, bounds checking is enabled separately from other
subrange checking.

$LINE-

Checks for the occurrence of uninitialized values, such
as the following:

1. uninitialized INTEGERs and 2-byte INTEGER
subranges with the hexadecimal value 16#8000

2. uninitialized I-byte INTEGER subranges with the
hexadecimal value 16#80

3. uninitialized pointers with the value 1 (if
$NILCK is also on)

4. uninitialized REALs with a special value

The $INITCK metacommand generates code to perform the
following actions:

1. set such values uninitialized when they are
allocated

2. set the value of INTEGER range FOR-loop control
variables uninitialized when the loop terminates
normally

3. set the value of a function that returns one of
these types uninitialized when the function is
entered

$INITCK never generates any initialization or checking
for WORD or address types. Statically allocated
va ria b 1 e s are load e d wit h the i r in i t i a 1 val ue s • Al so ,
$INITCK does not check values in an array or record when
the array or record itself is used.

Variables
assigned
does not
variables:

allocated on the stack or in the heap are
ini tial val ues wi th generated code. $INITCK
initialize any of the following classes of

1. variables mentioned in a VALUE section

2. variant fields in a record

3. components of a super array allocated with the
NEW procedure

Generates a call to a debugger or error handler for each
source line of executable code. This allows the debugger
to determine the number of the line in which an error has

4-7

occurred. Because this metacommand generates a
substantial amount of extra code for each line in a
program, you should turn it on only when debugging. Note
that $LINE+ requires $ENTRY+, so $LINE+ turns on $ENTRY,
and $ENTRY- turns off $LINE.

$MATHCK+

$NILCK+

Checks for mathematical errors, including INTEGER and
WORD overflow and division by zero. $MATHCK does not
check for an INTEGER result of exactly -MAXINT-l (i.e.,
#80(0); $INITCK does catch this value if it is assigned
and later used.

Turning $MATHCK off does not always disable overflow
checking. There are, however, library routines that
provide addition and multiplication functions that permit
overflow (LADDOK, LMULOK, SADDOK, SMULOK, UADDOK, and
UMULOK) • For a description of each of these functions
see chapter 11, Available Procedures and Functions.

Checks for the following conditions:

1. dereferenced pointers whose values are NIL

2. uninitialized pointers if $INITCK is also on

3. pointers that are out of range

4. pointers that point to a free block in the heap

$NILCK occurs whenever a pointer is dereferenced or
passed to the DISPOSE procedure. $NILCK does not check
operations on address types.

$RANGECK+

4-8

Checks subrange validity in the following circumstances:

1. assignment to subrange variables

2. CASE statements without an OTHERWISE clause

3. actual parameters for the CHR, SUCC, and PRED
functions

4. indices in PACK and UNPACK procedures

5. set and LSTRING assignments and value parameters

6. super array upper bounds passed to the NEW
procedure

$RUNTIME-

If the $RUNTIME switch is on when a procedure or function
is compiled, the "location of an error" is the place
where the procedure or function was called rather than
the loca t ion in the proced ure or func t ion i tsel f. Thi s
information is normally sent to your terminal, but you
could link in a custom version of EMSEQQ, the error
message routine, to do something different (such as
invoke the runtime debugger or reset a controller). For
more information on error handling, see Appendix C,
"Runtime Structure".

$STACKCK+

$ WARN +

Checks for stack overflow when enter ing a procedure or
function and when pushing parameters larger than four
bytes on the stack.

Sends warning messages to the listing file (this is the
defaul t) • If this swi tch is turned off, only fatal
errors are printed in the source listing.

SOURCE FILE CONTROL
The following metacommands provide some measure of control over
the use of the source file during compilation. These commands
are listed in Table 17.4 and described in more detail below.

Name

$IF constant
$THEN <textl>
$ELSE <text2>

$END

$INCLUDE: '<filename>'

$INCONST:<text>

Description

Allows conditional compilation
of <textl> source if <constant>
is greater than zero.

Switches compilation from cur­
rent source file to source
file named.

Allows interactive setting
of constant values at

4-9

$MESSAGE:'<text)'

$POP

$PUSH

compile time.

Allows the display of a message
the terminal screen to indicate
which version of a program is
compiling.

Restores saved value of all
metacommands.

Saves current value of all
metacommands.

Because the compiler keeps one look-ahead symbol, it actually
processes metacommands that follow a symbol before it processes
the symbol itself. This characteristic of the compiler can be a
factor in cases such as the following:

CONST Q.= 1;
{$IF Q $THEN} {Q is undefined in the $IF.}

CONST Q = 1; DUMMY = 0;
{$IF Q $THEN} {Now Q,is defined.}

X := p ;
{$NILCK+}

X : = p ;

{$NILCK-}

{NILCK applies to p here.}

{NILCK doesn't apply to P.}

$IF <constant) $THEN <text) $END

4-10

Allows for condi tional compilation of a source text. If
the value of the constant is greater than zero, then
source text following the $IF is processed; otherwise it
is not. An $IF $THEN $ELSE construction is also
available, as in the following example:

{$IF BTOS $THEN}
SECTOR = S12;
{$ELSE}
SECTOR = S128;
{$END}

To simulate an $IFNOT construction, use the following
form of the metacommand:

$IF <constant> $ELSE <text> $END

The constant may be a literal number or constant
identifier. The text between $THEN, $ELSE, and $END is
arbitrary; it can include line breaks, comments, other
metacommands (including nested $IFs), etc. Any
metacommands within skipped text are ignored, except, of
course, corresponding $ELSE or $END metacommands.

$ INCLUDE

Examples using the metaconditional:

{$IF FPCHIP $THEN}
CODEGEN (FADDCALL,Tl,LEFTP)

{$END}
{$IF COMPSYS $ELSE}

IF USERSYS THEN DOITTOIT
{$END}

Allows the compiler to switch processing from the current
source to the file named. When the end of the file that
was included is reached, the compiler switches back to
the original source and continues compilation.
Resumption of compilation in the original source file
begins with the line of source text that follows the line
in which the $INCLUDE occurred. Therefore, the $INCLUDE
metacommand should always be last on a line.

$INCONST

Allows you to enter the values of the constants (such as
those used in $ IFs) at compile time, rather than edi ting
the source. This is useful when you use metaconditionals
to compile a version of a source for a particular
environment, customer, etc. Compilation may be either
interactive or batch oriented. For example, the
metacommand $INCONST: YEAR produces the following prompt
for the constant YEAR:

Inconst: YEAR =

You need only give a response like:

Inconst: YEAR = 1983

The response is presumed to be of type WORD. The effect
is to declare a constant identifier named YEAR with the
value 1983. This interactive setting of the constant
YEAR is equivalent to the constant declaration:

4-11

$MESSAGE

CONST YEAR 1983;

Allows you to send messages to your terminal during
compilation. This is particularly useful if you use
metaconditionals extensively, for example, and ne8d to
know which version of a program is being compiled.

Example of the $MESSAGE metacommand:

{$MESSAGE:'Message on terminal screen!'}

$PUSH and $POP

Allow you to create a meta-environment you can store with
$PUSH and invoke with $POP. $PUSH and $POP are useful in
$INCLUDE files for saving and restoring the metacomrnands
in the main source file.

LISTING FILE CONTROL
The following metacommands allow you to format the listing file
as you wish:

4-12

Metacommand

$LINESIZE:<n>
131.

$LIST+

$OCODE+

$PAGE+

$PAGE:<n>

$PAGEIF:<n>

$PAGESIZE:<n>

Description

Sets width of 1 i sting. Defaul t is

Turns on or off source listing.
Errors are always listed.

Turns on disassembled object code
listing.

Skips to next page. Line number
is not reset.

Sets page number for next page
(does not skip to next page).

Skips to next page if less than n
lines left on current page.

Sets length of listing in lines.

Default is 55.

$SKIP:<n> Skips n lines or to end of page.

$SUBTITLE: '<text>' Sets page subtitle.

$SYMTAB+ Sends symbol table to listing
file.

$TITLE:'<text>' Sets page title.

$LINESIZE:<n>

$LIST+

$OCODE+

$PAGE+

Set s the m a x i m urn 1 eng tho f 1 in e sin th eli s t i ng f i 1 e •
This value normally defaults to 131.

Turns on the source listing~ Except for $LIST-,
metacommands themselves appear in the listing. The
format of the listing file is described in chapter 14,
Compiling, linking, and Executing programs.

Turns on the symbolic listing of the generated code to
the object listing file. Although the format varies with
the target code generator, it generally looks like an
assembly listing, with code addresses and operation
mnemonics. In many cases, the identifiers for procedure,
function, and static variables are truncated in the
object listing file.

Forces a new page in the source listing. The page number
of the listing file is automatically incremented.

$PAGE:<n>

Sets the page number of the
listing. $PAGE:<n> does not
listing file.

$PAGEIF:<n>

next page of the source
fo rce a new pag e in the

Conditionally performs $PAGE+, if the current line number

4-13

of the source file plus n is less than or equal to the
current page size.

$PAGESIZE:<n>

Sets the maximum size of a page in the source listing.
The default is 55 lines per page.

$SK-IP:<n>

Skips n lines or to the end of the p,age in the source
listing.

$SUBTITLE:'<subtitle>'

$SYMTAB+

4-14

Sets the name of a subtitle that appears beneath the
title at the top of each page of the source listing.

If on at the end of a procedure, function, or compiland,
sends information about its variables to the listing file
(for example, see lines 14 and 17 in the sample listing
file in chapter 14, Compiling, Linking, and Executing
programs). The left columns contain the following:

1. the offset to
po in t e r (for
functions)

the variable
variables in

from the frame
procedures and

2. the offset to the variable in the fixed memory
area (for main program and STATIC variables)

3. the length of the variable

A leading plus or minus sign indicates a frame offset.
Note that this offset is to the lowest address used by
the variable.

The first line of the $SYMTAB listing contains the offset
to the return address, from the top of the frame (zero
for the main program), and the length of the frame, from
the frame pointer to the end including front end
temporary variables. Code generator temporary variables
are not included.

For functions, the second line contains the offset,
length, and type of the value returned by the functions.
The remaining lines list the variables, including their

type and attribute keywords, as shown below:

Keyword Meaning

Public Has the PUBLIC attribute

Extern Has the EXTERN attribute

Origin Has the ORIGIN attribute

Static Has the STATIC attribute

Const Has the READONLY attribute

Value Occurs in a VALUE section

ValueP Is a value parameter

VarP Is a VAR or CONST parameter

VarsP Is a VARS or CONSTS parameter

ProcP Is a proced ural parameter

Segmen Uses segmented addressing

Regist Parameter passed in reg i ster

$TITLE:'<title>'

Sets the name of a title that appears at the top of each
page of the source listing.

For information on Listing File format see, Chapter 14,
Compiling, linking, and Executing Programs.

4-15

CHAPTER 5
IDENTIFIERS AND CONSTANTS

CONTENTS

IDENTIFIERS

The Scope of Identifiers

Predeclared Identifiers

CONSTANTS

CONSTANT IDENTIFIERS

NUMERIC CONSTANTS

REAL constants

INTEGER, WORD, AND INTEGER4 constants

Nondecimal Numbering

CHARACTER STRINGS

STRUCTURED CONSTANTS

CONSTANT EXPRESSIONS

5-1

IDENTIFIERS
An identifier consists of a single letter followed by additional
letters or digits~ or underscore (). Identifiers denote
constants, variables, procedures, fun~tions, programs and tag
fields in records. Some features also use identifiers, such as
super arrays, types, modules, units and statement labels.

Identifiers' can be of any length, but must fit on a line. Only
the first 31 characters are significant. An identifier longer
than the significant length causes the compiler to generate a
warning and not a fatal error.

The ide~tifiers used for a program, module, or u~it are,passed to
the linker, as well as identifiers with PUBLIC or EXTERN
attribute.

The disassembled object code listing and debugger symbol table
may truncate variable and procedural identifiers to 6 characters.
Using identifiers of 7 or fewer characters saves time during
compilation.

All external identifiers used internally by the runtime system
are 4 alphabetic characters follow.ed by "QQ~I. This, form should
be avoided when using new external names.

The Scope of Identifiers

An identifier is defined for the duration of the procedure,
function, program, module, implementation, or interface in which
you declare it. This holds true for any nested procedures or
functions. An identifier's association must be unique within
its scope; that is, it must not name mor,e than one thing at a
time.

A nested procedure or function can redefine an identifier only if
the identi fier has not already been used in it. However, the
compiler does not identify such redefinition as ,an error, but
will generally use the first definition until the second occurs.
A special exception for reference types is discussed in chapter
6, Data Types.

Predeclared Identifiers

This category includes the identi,fiers for, prede'clared types,
super array types, constants, fiie ~ariables, functions, and
procedures. You can use them -freely, without declaring them.
However, they differ from reserved words in that you may redefine
them whenever you wish. At the standard level, the following
identifiers are predeclared:

5-2

ABS FALSE OUTPUT ROUND
ARCTAN FLOAT PAGE SIN
BOOLEAN GET PACK SQR
CHAR INPUT PRED SQRT
CHR INTEGER PUT SUCC
COS LN READ TEXT
DISPOSE MAXINT READLN TRUE
EOF NEW REAL TRUNC
EOLN ODD RESET UNPACK
EXP ORD REWRITE WRITE

WRITELN

The following identifiers are available at the extended and'
system levels:

1 • S t ring in t r ins i c s

CONCAT
COPYLST
COPYSTR
DELETE

INSERT
POSITN
SCANEQ
SCANNE

2. Extended level intrinsics

ABORT
BYWORD
DECODE
ENCODE
EVAL

HIBYTE
LOBYTE
LOWER
RESULT
SIZEOF
UPPER

3. System level intrinsics

4.

5.

FILLC
FILLSC
MOVEL
MOVER

Extended level

ASSIGN
CLOSE
DIRECT
DISCARD
FCBFQQ
FILEMODES

INTEGER4 type

BYLONG

MOVESL
MOVESR
RETYPE

I/O

READFN
READSET
SEEK
SEQUENTIAL
TERMINAL

LOWORD

5-3

FLOATLONG MAXINT4
HIWORD ROUNDLONG
INTEGER4 TRUNCLONG

6. Super array type

LSTRING
NULL
STRING

7. WORD type

MAXWORD
WORD
WRD

8. Miscellaneous

ADRMEM INTEGER2
ADSMEM REAL4
BYTE REAL8
INTEGERl SINT

CONSTANTS
A constant is a value that is known before a program starts and
that will not change as the program progresses. Examples of
constants include the number of days in the week, your birthdate,
the name of your dog, or the phases of the moon.

A constant may be given an identifier, but you cannot alter the
value associated with that identifier during the execution of the
program. Each constant implicitly belongs to some category of
data:

1. Numer ic constants are one of the several number types:

2.

3.

REAL, INTEGER, WORD, or INTEGER4.

Character constants are strings of characters
in single quotation marks and are called
literals" in pascal.

Structured constants include constant arrays,
and typed sets.

enclosed
"str ing

"-­
record~

Constant expressions allow you to compute a constant based on the
values of previously declared constants in expressions. The
identifiers defined in an enumerated type are constants of that

5-4

type and cannot be used directly with numeric (or string)
constant expressions. These identifiers can be used with the
ORD, WRD, or CHR functions (e.g., ORD (BLUE)).

TRUE and FALSE are predeclared constants of type BOOLEAN and can
be redeclared. NIL is a constant of any pointer type; however,
because it is a reserved word, you may not redefine it. Also,
the null set is a constant of any set type.

Numeric statement labels have nothing to do with numeric
constants; you may not use a constant identifier or expression as
a label. Internally, all constants are limited in length to a
maximum of 255 bytes.

Constant Identifiers

A constant identifier introduces the identifier as a synonym for
the constant. You should put these declarations in the CONST
section of a compiland, procedure, or function.

The general form of a constant identifier declaration is the
identifier followed by an equal sign and the constant value. The
following program fragment includes three statements that
identify constants (beginning after the word "CONST"):

PROGRAM DEMO (INPUT, OUTPUT);
CONST DAYSINYEAR = 365;

DAYSINWEEK = 7; .
NAMEOFPLANET = 'EARTH';

In this example, the numbers 365 and 7 are numeric constants;
'EARTH' is a string literal constant and must be enclosed in
single quotation marks. ISO Pascal defines a strict order in
which to set out the declarations in the declaration section of a
program:

CONST MAX
TYPE NAME
VAR FIRST

10;
PACKED ~RRAY [l •• MAX] OF CHAR;
NAME;

The extended level of Pascal relaxes thi s order and, in fact,
allows more than one instance of each kind of declaration:

TYPE COMPLEX RECORD
R, I REAL;

END;
CONST

PII COMPLEX (3.1416, 00) ;
VAR

PIX COMPLEX;

5-5

TYPE
IVEC = ARRAY [1 •• 3] OF COMPLEX;

CONST
PIVEC = IVEC (PII, PII, COMPLEX (0.0, 1.0));

Numeric Constants

Numeric constants are irreducible numbers such as 45, 12.3, and
9E12. The notation of a numeric constant generally indicates its
type: REAL, INTEGER, WORD, or INTEGER4. Numbers can have a
leading plus sign (+) or minus sign (-), except when the numbers
are within expressions. Therefore:

ALPHA := +113 {Valid}

ALPHA + -113 {Invalid}

The compiler truncates any number that exceeds a certain maximum
number of characters and gives a warning when this occurs. The
max imum length of constan ts (31) is the same as the max imum
length of identifiers.

Ttle syntax for numeric constants applies not only to the actual
text of programs, but also to the content of textfiles read by a
program.

Examples of numeric constants:

123
+12.345
-1.7E-10

17E+3
-17E3

13.17
007

-26.0
26.0E12
lEI

Numeric constants can appear in any of the following:

1. CONST sections

2. expressions

3. type clauses

4. set constants

5. structured constants

6. CASE statement CASE constants

7. variant record tag values

5-6

REAL Constants

The type of a number is REAL if the number includes a decimal
point or exponent. This provides about seven digits of
precision, with a maximum value of about 1.701411E38. There is,
however, a distinction between REAL values and REAL constants.
The REAL constant range may be a subset of the REAL value range.
The REAL numeric constants must be greater than or equal to l.0E-
38 and less than l.0E+38.

The compiler issues a warning if there is not at least one digit
on each side of a decimal point. A REAL number starting or
ending with a decimal point may be misleading. For example,
because left parenthesis-period sUbstitutes for left square
bracket, and right parenthesis-period for right square bracket,
the following:

(.1+2.)

is interpreted as:

[1+2]

scientific notation in
supported. The decimal
an exponent is given.
He" are allowed in REAL
indicate an exponent.
languages.

REAL numbers (as in l.23E-6 or 4E7) is
point and exponent sign are optional when
Both the uppercase "E" and the lowercase
numbers. "0" and "d" are also allowed to

This provides compatibility with other

All real constants are stored in REAL8 (double precision) format.
If you require a single precision REAL4 constant, declare a REAL4
variable and give it your real constant value in a VALUE section.

INTEGER, WORD, and INTEGER4 Constants

The type of a non-REAL numeric constant is INTEGER,
WORD, or INTEGER4. The constants of each of these types can
assume the following range of values:

Type

INTEGER

WORD

Range of Values
(minimum/maximum)

-MAXINT to MAXINT

o to MAXWORD

Predeclared
Constant

MAXINT=32767

MAXWORD=65535

5-7

INTEGER4 -MAXINT4 to MAXINT4 MAXINT4=2147483647

MAXINT, MAXWORD, and MAXINT4 are all predeclared constant
identifiers. One of three things happens when you declare a
numeric constant identifier:

1. A constant identifier from -MAXI NT to MAXINT becomes an
INTEGER.

2. A constant identifier from MAXINT+l to MAXWORD becomes a
WORD.

3. A constant identifier from -MAXINT4 to -MAXINT-l or
MAXWORD+l to MAXINT4 becomes an INTEGER4.

However, any INTEGER type constant (including constant
expressions and values from -32767 to -1) automatically changes
to type WORD if necessary; if the INTEGER value is negative,
65536 is added to it and the underlying l6-bit value is not
changed.

For example, you can declare a subrange of type WORD as
WRD (0) •• 127; the upper bound of 127 is automatically given the
type WORD. The reverse is not true; constants of type WORD are
not automatically changed to type INTEGER.

The ORD and WRD func tions al so change the type of an ord inal
constant to INTEGER or WORD. Also, any INTEGER or WORD constant
automatically changes to type INTEGER4 if necessary, but the
reverse is not true.

The following are examples of constant conversions:

Constant

-32768

32768

0 •• 20000

0 •• 50000

0 •• 80000

-1 •• 50000

5-8

Assumed Type

INTEGER could become WORD or INTEGER4

INTEGER4 only

WORD could become INTEGER4

INTEGER subrange

WORD subrange

Invalid: no INTEGER4 subranges

Invalid: becomes 65535 •• 50000
(i.e., -1 is treated as 65536)

Nondecimal Numbering

Pascal supports not only decimal number notation, but also
numbers in hexadecimal, octal, binary, or other base numbering
(where the base can range from 2 to 36). The number sign (#)
acts as a radix separator.

Examples of numbers in nondecimal notation:

16#FF02
10#987

8#776
2#111100

Leading zeros are recognized in the radix, so a number like
008#147 is permitted. In hexadecimal notation, upper or
lowercase letters A through F are permitted. A nondecimal
constant without the radix (such as #44) is assumed to be
hexadecimal. Nondecimal notation does not imply a WORD constant
and may be used for INTEGER, WORD, or INTEGER4 constants. You
must not use nondecimal notation for REAL constants or numeric
statement labels.

Character Strings

In pascal sequences of characters enclosed in single quotation
marks are called "string literals" to distinguish them from
string constants, which may be expressions, or values of the
STRING type.

A string constant contains from. 1 to 255 characters. A string
constant longer than one character is of type PACKED ARRAY [l •• n]
OF CHAR, also known as the type STRING (n). A string constant
that contains just one character is of type CHAR. However, the
type changes from CHAR to PACKED ARRAY [1 •• 1] OF CHAR (e.g.,
STRING (1» if necessary. For example, a constant ('A') of type
CHAR could be assigned to a variable of type STRING (1).

A literal apostrophe (single quotation mark) is represented by
two adjacent single quotation marks (e.g., 'DON"T GO'). The
null string (") is not permitted. A string literal must fit on
a line. The compiler recognizes string literals enclosed in
double quotations marks (") or accent marks ('), instead of
single quotation marks, but issues a warning message when it
encounters th~m.

You can have string constants made up of concatenations of other
string constants, including string constant identifiers, the CHR

5-9

() function, and structured constants of type STRING. This is
useful for representing str ing constants that are longer than a
line or that contain nonprinting characters. For example:

'THIS IS UNDERLINED' * CHR(13) * STRING (DO 18 OF ' ')

The LSTRING feature adds the super array type LSTRING. LSTRING
is similar to PACKED ARRAY [0 •• n] OF CHAR, except that element 0
contains the length of the string, which can vary from 0 to a
maximum of 255. Note that, if necessary, a constant of type
STRING (n) or CHAR changes automatically to type LSTRING. See
chapter 6, Data Types for a discussion of LSTRINGs.

NULL is a predeclared constant for the null LSTRING, with the
element 0 (the only element) equal to CHR (0). NULL cannot be
concatenated, since it is not of type STRING. It is the only
constant of type LSTRING.

Examples of string literal declarations:

NAME = 'John Jacob';
LETTER = 'Z';
QUOTED QUOTE = III ';

NULL STRING = NULL;
NULL-STRING = II;

DOUBLE = "OK";

{a valid string literal}
{LETTER is of type CHAR}
{Quotes quote}
{Invalid} .
{Invalid}
{generates a warning}

Structured Constants

ISO Pascal permits only the numeric and string constants already
mentioned, the pointer constant value NIL, and untyped constant
sets. Wi th this Pascal, you may use constant arrays, records,
and typed sets. Structured constants can be used anywhere a
structured value is allowed, in expressions as well as in CONST
and VALUE sections.

5-10

1. An array constant consists of a type identifier followed
by a list of constant values in parentheses separated by
commas.

Example of an array constant:

TYPE
CONST
VAR
VALUE

VECT TYPE = ARRAY [-2 •• 2] OF INTEGER;
VECT-= VECT TYPE (5, 4, 3, 2, 1);
A : VECT TYPE;
A := VECT;

2. A record constant consists of a type identifier followed
by a list of constant values in parentheses separated by
commas.

Example of a record constant:

TYPE REC TYPE = RECORD
A-; B: BYTE;
C, D: CHAR;

END;
CONST RECR = REC TYPE (#20, 0, 'A', CHR (20));
VAR FOO: REC TYPE;
VALUE FOO := RECR;

3. A set constant consists of an optional set type
identifier followed by set constant elements in square
brackets. Set constant elements are separated by
commas. A set constant element is ei ther an ordinal
constant, or two ordinal constants separated by two dots
to indicate a range of constant values.

Example of a set constant:

TYPE COLOR_TYPE = S,ET OF (RED, BLUE, WHITE, GRAY,

CONST
VAR
VALUE

GOLD);
SETC = COLOR TYPE [RED, WHITE •• GOLD];
RAINBOW : COLOR TYPE;
RAINBOW := SETC;

A constant within a structured array or record constant must have
a type that can be assigned to the corresponding component type.
For records with variants, the value of a constant element
corresponding to a tag field selects a variant, even if the tag
field is empty. The number of constant elements must equal the
number of components in the structure, except for super array
type structured constants. Nested structured constants are
permitted.

An array or record constant nested wi thin another structured
constant must still have the preceding type identifier. For this
reason, a super array constant can have only one dimension (see
chapter 6, Data Types, for a discussion of super arrays). The
size of the representation of a structured constant must be from
I to 255 bytes. If this 255-byte limit is a problem, declare a
structured variable with the READONLY attribute, and initialize
its components in a VALUE section.

Example of a complex structured constant:

TYPE R3 = ARRAY [1 •• 3] OF REAL;
TYPE SAMPLE = RECORD I: INTEGER;

A: R3;

5-11

CASE BOOLEAN OF
TRUE: (S: SET OF 'A' •• 'Z';

P: ,. SAMPLE);
FALSE: (X: INTEGER);

END;
CaNST SAMP CONST= SAMPLE (27, R3 (1.4, 1.4, 1.4),

- TR U E , [. A' , • E' , • I'], NIL);

Constant elements can be repeated with the phrase DO <n> OF
<constant>, so the previous example could have included "DO 3 OF
1.4" instead of "1.4,1.4,1.4".

pascal does not support set constant expressions, such as [' 'J +
LETTERS, or file constant expressions. The constant 'ABC' of
type STRING (3) is equivalent to the structured constant STRING
('A', 'B', 'C'). LSTRING structured constants are not permitted;
use the corresponding STRING constants instead.

Structured constants (and other structured
variables and values returned from functions)
reference using CaNST parameters. For more
chapter 10, Procedures and Functions.

values, such as
can be passed by
information, see

There are two kinds of set constants: one with an explicit type,
as in CHARSET [' A' •• ' Z'], and one wi th an unknown type, as in
[20 •• 40]. You may use either in an expression or to define the
value of a constant identifier. Set constants with an explicit
type may also be passed as a reference (CaNST) parameter. Sets
of unknown type are unpacked, but the type changes to PACKED if
necessary.

Constant Expressions

Constant expressions allow you to compute constants based on the
values of previously declared constants in expressions. Constant
expressions can also occur within program statements.

Example of a constant expression declaration:

CaNST HEIGHT OF LADDER = 6;
HEIGHT-OF-MAN = 6;
REACH -= HEIGHT OF LADDER +, HEIGHT_OF_MAN;

Because a constant expression may contain only constants that you
have declared earlier, the following is invalid:

CaNST MAX
A
B

A + B;
10 ;
20;

Certain functions may be used within constant expressions. For
example:

5-12

CONST A
B

LOBYTE (-23) DIV 23;
HIBYTE (-A);

Listed below are functions and operators that may be used with
REAL, INTEGER, WORD, and other ordinal constants, such as
enumerated and subrange constants.

Type of Operand

REAL, INTEGER

INTEGER, WORD

Ordinal types

Boolean

ARRAY

Any type

Functions and Operators

Unary plus (+)
Unary minus (-)

+

*

<
>

AND

DIV
MOD
AND

<=
>=
<>

LOWER ()

SIZEOF ()

OR
NOT
XOR

CHR ()
ORD ()
WRD ()

NOT

HIBYTE ()
LOBYTE ()
BYWORD ()

LOWER ()
UPPER ()

OR

UPPER ()

RETYPE ()

Examples of constant expressions:

CaNST Faa = (100 + ORD('X')) * 8#100 + ORD('Y');
MAXSIZE = 80;
x = (MAXSIZE > 80) OR (IN TYPE = PAPERTAPE)i
{x is a BOOLEAN constant}-

In addition to the operators shown above for numeric constants,
you may use the string concatena"tion operator (*) with string
constants, as follows:

CaNST A = 'abcdef'i
M = CHR (109)i {CHR is allowed}
ATOM = A * 'ghijkl' * Mi{ATOM 'abcdefghijklm'}

These constants can span more than one line, but are still
limited to the 255 character maximum. These string constant
expressions are allowed wherever a string literal is allowed,
except in metacommands.

5-13

CONTENTS

CHAPTER 6
DATA TYPES

SIMPLE DATA TYPES

ORDINAL TYPES

Integer

Word

Char

Boolean

Enumerated Types

Subrange Types

REAL

INTEGER4

STRUCTURED DATA TYPES

ARRAYS

SUPER ARRAYS

strings

Lstrings

Using Strings and Lstrings

RECORDS

variant Records

Explicit Field Offsets

SETS

FILES

The Buffer Variable

File Structures

6-1

6-2

BINARY Structure Files

ASCII Structure Files

File Access Modes

Terminal Mode Files

Segmented Mode Files

Direct Mode Files

The Predeclared Files

Extended Level I/O

REFERENCE TYPES

Pointer Types

Address Types

Segment Parameters .for Address Types

Using the Address Types

PACKED TYPES

PROCEDURAL AND FUNCTIONAL TYPES

TYPE COMPATIBILITY

Type Identity and Reference Parameters

Type Compatibility and Expressions

Assignment Compatibility

A type is the set of values that a variable or value can have
within a program. Types are either predeclared or declared
explicitly. Types in Pascal fall into three broad categories:
simple, structured, and reference types.

Simple
Types

structured
Types

Reference
Types

procedural
and
Functional
Types

Ordinal types
INTEGER
WORD
CHAR
BOOLEAN
enumerated types
subrange types

REAL4, REALS
INTEGER4

ARRAY OF type
General (OF any type)
SUPER ARRAY (OF type)

STRING (n)
LSTRING (n)

RECORD
SET OF type
FILE OF

general (binary) files

-MAXINT .• MAXINT
0 •• MAXWORD
CHR(0) •. CHR(255)
(FALSE,TRUE)
e.g., (RED,BLUE)
e.g., 100 .. 5000

-MAXINT4 •. MAXINT4

[1 •. n] 0 f CHAR
[0 •• n] 0 f CHAR

TEXT Like FILE OF CHAR

Pointer Types
ADR OF type
ADS OF type

e.g., TREETIP
Relative address
Segmented address

Only as parameter
type

The type declaration associates an identifier with a type of
value. You declare types in the TYPE section of a program,
procedure, function, module, interface, or implementation (not in
the heading of a procedure or function). A type declaration
consists of an identifier followed by an equal sign and a type
clause.

Examples of type definitions:

TYPE LINE = STRING (80);
PAGE = RECORD

PAGENUM 1 •• 499;
LINES: ARRAY [1 •• 60] OF LINE;

6-3

FACE : (LEFT, RIGHT);
NEXTPAGE : ~PAGE;

END;

After declaring the types, you can declare variables of the types
just defined in the VAR section of a program, procedure,
function, module, or interface, or in the heading of a procedure
or function. The following sample VAR section declares variables
of the types in the preceding sample TYPE section:

VAR PARAGRAPH : LINE;
BOOK : PAGE;

SIMPLE DATA TYPES
The simple data types are organized as follows:

1. ordinal types

2. REAL

3. INTEGER4

Ordinal Type f3
Ordinal types are all fini te and countaple.
following simple types:

INTEGER
WORD
CHAR
BOOLEAN
enumerated types
subrange types

They incl ude the

INTEGER4, though finite and countable, is not an ordinal type.

INTEGER

INTEGER values are a subset of the whole numbers and range from -
MAXINT through 0 to MAXINT. MAXINT is the predeclared constant
32767 (i.e., 2~15 - 1). The value -32768 is not a valid INTEGER;
the compiler uses it to check for uninitialized INTEGER and
INTEGER subrange variables.

INTEGER is not a subrange of INTEGER4. If it were, signed
expressions would have to be calculated using the INTEGER4 type
and the result converted to INTEGER.

6-4

Expressions are always calculated using a base type, not a
subrange type. INTEGER type constants may be changed internally
to WORD type if necessary, but INTEGER variables are not.
INTEGER values change to REAL or INTEGER4 in an expression, if
necessary, but not to REAL. The ORD function converts a value of
any ordinal type to an INTEGER type.

The predeclared type INTEGER2 is identical to INTEGER.

WORD

The WORD and INTEGER types are similar, differing chiefly in
their range of values. Both are ordinal types. You can think of
WORD values as either a group of 16 bits or as a subset of the
whole numbers from 0 to MAXWORD (65535, i.e., 2"16 - 1). The
WORD type is is useful in several ways:

1. to express values in the range from 32768 to 65535

2. to operate on machine addresses

3. to perform primitive machine operations, such as word
ANDing and word shifting, without using the INTEGER type
and running into the -32768 value

Unlike INTEGERs, all WORDs are nonnegative values. The WRD
function changes any ordinal type value to WORD type. Like
INTEGER values, WORD values in an expression are converted to the
INTEGER4 type, if necessary. Having both an INTEGER and a WORD
type permits mapping of 16-bit quantities in either of two ways:

1. as a signed value ranging from -32767 to +32767

2. as a positive value ranging from 0 to 65535.

WORD and INTEGER values not assignment compatible. However, you
must not mix WORD and INTEGER values in an expression (although
doing so generates a warning rather than an error message) •

CHAR

CHAR values are 8-bit ASCII values. CHAR is an ordinal type.
All 256-byte values are included in the type CHAR. In addition,
SET OF CHAR is supported. Relational comparisons use the ASCII
collating sequence.

The CHR function changes any ordinal type value to CHAR type, as
long as ORD of the value is in the range from 0 to 255. See
Appendix I, "ASCII Character Codes," for a complete listing of
the ASCII character set.

6-5

BOOLEAN

BOOLEAN is an ordinal type with only two (predeclared) values:
FALSE and TRUE. The BOOLEAN type is a special case of an
enumerated type, where ORD (FALSE) is 0 and ORD (TRUE) is 1.
This means that FALSE < TRUE.

You may redefine the identifiers BOOLEAN, FALSE, and TRUE, but
the compiler implicitly uses the former type in Boolean
expressions and in IF, REPEAT, and WHILE statements.

There is no function that changes ordinal type values to the
BOOLEAN type. However, you can achieve this effect with the ODD
function for INTEGER and WORD values, or the expression:

ORD (value) <> 0

Enumerated Types

An enumerated type defines an ordered set of values. These
values are constants and are enumerated by the identifiers that
denote them.

Examples of enumerated type declarations:

FLAGCOLOR = (RED, WHITE, BLUE)
SUITS = (CLUB, DIAMOND, HEART, SPADE)
DOGS = (MAUDE, EMILY, BRENDAN)

Every enumerated type is also an ordinal type.
all enumerated type constants must be unique
declaration level.

Identifiers for
within their

The ORO function, can be used to change
INTEGER values; the WRD function changes
WORD values.

enumerated val ues into
enumerated values into

The RETYPE function, can be used to change INTEGER or WORD values
to an enumerated type. For example:

IF RETYPE (COLOR, I) = BLUE THEN WRITELN ('TRUE BLUE')

The values obtained by applying the ORD function to the constants
of an enumerated type always begin with zero. Thus, the values
obtained for the type FLAGCOLOR, from the example above, are as
follows:

ORD (RED) 0
ORO (WHITE) I
ORO (BLUE) 2

6-6

Since enumerated types are ordered, comparisons like RED < GREEN
can be useful. At times, access to the lowest and highest values
of the enumerated type is useful with the LOWER and UPPER
functions, as in the following example:

VAR TINT: COLOR;
FOR TINT := LOWER (TINT) TO UPPER (TINT)

DO PAINT (TINT)

Subrange Types

A subrange type is a subset of an ordinal type. The type from
which the subset is taken is called the "host" type. Therefore,
all subrange types are also ordinal types.

You can define a subrange type by giving the lower and upper
bound of the subrange (in that order). The lower bound must not
be greater than the upper bound, but the bounds may be equal.
The subrange type is frequently used as the index type of an
array bound or as the base type of a set.

Examples of subranges along with their host ordinal type:

INTEGER
WORD
CHAR
enumerated type

100 •• 200
WRD (1) •• 9
I A I •• I Z I

RED •• YELLOW

Three subrange types are predeclared:

1. BYTE = WRD(0) •• 255; {8-bit WORD subrange}

2. SINT = -127 •• 127; {8-bit INTEGER subrange}

3. INTEGERl = SINT

The BYTE type is particularly useful in machine-oriented
applications. For example, the ADRMEM and ADSMEM types normally
treat memory as an array of bytes. However, since the BYTE type
is really a subrange of the WORD type, expressions wi th BYTE
val ues are calculated using l6-bi t instead of 8-bi t ar i thmetic,
if necessary.

In some cases (for example, an assignment of a BYTE expression to
a BYTE variable when the $MATHCK switch is off), the compiler
can optimize 16-bit arithmetic to 8-bit arithmetic. In general,
using BYTE instead of WORD saves memory at the expense of BYTE­
to-WORD conversions in expression calculations.

6-7

Real

REAL values are nonordinal values of a given range and precision.
The Real formats have a 24-bit mantissa and an 8-bit exponent,
giving about seven digits of precision and a maximum value of
1.701411E38.

Pascal includes expanded numeric data types for processing higher
precision real (and integer) numbers. For reals, this includes
support for single and double precision real numbers according to
the IEEE floating-point standard.

Pascal provides three real types: REAL, REAL4, and REAL8.
However, the type REAL is always identical to either REAL4 or
REAL8. The choice is made with a metacommand, $REAL:n, where n
is either 4 or 8. {$REAL:8} has the same effect as TYPE REAL =
REAL8. The default type for REAL is normally REAL4, but may be
changed.

The REAL4 type is in 32-bit IEEE format, and the REAL8 type is in
64-bit IEEE format. The IEEE standard format is as follows:

REAL4

REAL8

Sign bi t, 8-bi t binary exponen t wi th bias of 127,
23-bit mantissa

Sign bit, II-bit binary exponent with bias of 1023,
52-bit mantissa

In both cases the mantissa has a "hidden" most significant bit
(always one) and represents a number greater than or equal to 1.0
but less than 2.0. An exponent of zero means a value of zero,
and the maximum exponent means a value called NaN (not a number).
Bytes are in "reverse" order; the lowest addressed byte is the
least significant mantissa byte.

The REAL4 numeric range is barely seven significant digits (24
bits), with an exponent range of E-38 to E+38. The REAL8 numeric
range includes over fifteen significant digits (53 bits), with an
exponent range of E-306 to E+306 (a very large number!)

REAL literals are converted first to REAL8 format and then to
REAL4 as necessary (for example, to be passed as a CONST
parameter or to initialize a variable in a VALUE section). If
you need actual REAL4 constants, you must declare them as REAL4
variables (by adding the READONLY attribute) and assign them a
constant in a VALUE section.

Both REAL4 and REAL8 values are passed to intrinsic functions as
reference (CONSTS) parameters, rather than as value parameters.
The compiler accepts REAL expressions as CONSTS parameters; it
will evaluate the expression, assign the result to a stack

6-8

temporary, and pass the address of the temporary, which is
usually more efficient than passing the value itself (especially
in the REAL8 case).

Integer4

Like INTEGER and WORD values, INTEGER4 values are a subset of the
whole numbers. INTEGER4 values range from -MAXLONG to MAXLONG.
MAXLONG is a predeclared constant with the value of 2,147,483,647
(i.e., 2"31 - 1). The value -2,147,487,648 (i.e., -2"31) is not
a valid INTEGER4.

Unlike INTEGER and WORD, the INTEGER4 type is not considered an
ordinal type. There are no INTEGER4 subranges and INTEGER4
cannot be an array index or the base type of a set. Also,
INTEGER4 values cannot be used to control FOR and CASE
statements.

Values of type INTEGER or WORD in an expression change
automatically to INTEGER4 if the expression requires an
intermediate value that is out of the range of either INTEGER or
WORD. Val ues of type INTEGER4 do not change to REAL in an
expression; you must explicitly use the FLOATLONG function to
make the conversion.

STRUCTURED DATA TYPES
A structured type is composed of other types. The components of
structured types are either simple types or other structured
types. A structured type is characterized by the types of its
components and by its structuring method. A structured type can
occupy up to 65534 bytes of memory. The structured types in
pascal are the following:

ARRAY range OF type

SUPER ARRAY range OF type

STRING (n)

LSTRING (n)

RECORD

SET OF <base-type>

FILE OF <type>

Because components of structures can be structured types
themselves, you may have, for example, an array of arrays, a file
of records containing sets, or a record containing a file and

6-9

another record.

Arrays

An array type is a structure that consists of a fixed number of
components. All of the components are of the same type (called
the "component type").

The elements of the array are designated by indices, which are
values of the "index type" of the array. The index type must be
an ordinal type: BOOLEAN, CHAR, INTEGER, WORD, subrange, or
enumerated.

Arrays in Pascal are one dimensional, but since the component
type can also be an array, n-dimensional arrays are supported as
well.

Examples of type declarations for arrays:

TYPE
ARRAY [1 •• 10] OF INTEGER; INT ARRAY

ARRAY 2D
MORAL-RAY

ARRAY [0 •• 7] OF ARRAY [0 •• 8] OF 0 •• 9;
ARRAY [PEOPLE] OF (GOOD, EVIL)

In the last declaration, PEOPLE is a subrange type, while GOOD
and EVIL are enumerated constants. A short-hand notation
available for n-dimensional arrays makes the following statement
the same as the second example in the preceding paragraph:

ARRAY 2D: ARRAY [0 •• 7, 0 •• 8] OF 0 •• 9;

After declar ing these arrays, you could assign to components of
the arrays with statements such as these:

INT ARRAY [10] := 1234;
ARRAY 2D [O,99] := 999;
MORAL=RAY [Machiavelli] := EVIL;

All of an n-dimensional PACKED array is packed; therefore these
statements are equivalent:

PACKED ARRAY [1 •• 2, 3 •• 4] OF REAL

PACKED ARRAY [1 •• 2] OF PACKED ARRAY [3 •• 4] OF REAL

Super Arrays

A super array is an example of II super type."
like a set of types or like a function that
Super types in general, and super arrays in

6-10

A super type is
returns a type.
particular, are

features of this extended
several important uses.
following purposes:

1. To process str ings.

Pascal.
You may

The super array type
use them for any of

has
the

Both STRING and LSTRING are predeclared super array
types. The LSTRING type handles variable length
strings. STRING handles fixed-length strings and
strings more than 255 characters long.

2. To dynamically allocate arrays of varying sizes.

Otherwise such arrays would need a maximum possible size
allocation.

3. As the formal parameter type in a procedure or function.
Such a declaration makes the procedure or function
usable for a set or class of types, rather than for just
a single fixed-length type.

A super type identifier specifies the set of types represented by
the super type. A later type declaration may declare a normal
type identifier as a type "derived" from that class of types.
This derived type is like any other type.

A super array type declaration is an a.rray type declaration
prefixed with the keyword SUPER. Every array upper bound is
replaced with an asterisk, as follows:

TYPE VECTOR = SUPER ARRAY [1 •• *] OF REAL;

Following the preceding type declaration, you could declare the
following variables:

VAR ROW: VECTOR (10);
COL: VECTOR (30);
ROWP: "VECTOR;

In this example, VECTOR is a super array type identifier. VECTOR
(10) and VECTOR (30) are type designators denoting "derived
types." ROWand COL are variables of types derived from VECTOR.
ROWP is a pointer to the super array type VECTOR.

Super types allow only an array type with parametric upper
bounds. A super type is a class of types and not a specific
type. Thus, ln the VAR section of a prog ram, procedure, or
function, you cannot declare the variables to be of a super type;
you must declare them as var iables of a type der ived from the
super type.

6-11

However, a formal reference parameter in a procedure or function
can be given a super type; this allows the routine to operate on
any of the possible derived types.

A pointer referent type can also be given a super type. This
allows a pointer to refer to any of the possible derived types.
A pointer referent to a super type allows "dynamic arrays."
These arrays are allocated on the heap by passing their upper
bound to the procedure NEW. See Chapter 11, "Available
Procedures and Functions," for a description of the procedure
NEW.

Example using the NEW procedure for dynamic allocation:

VAR STR PNT: ASUPER PACKED ARRAY [1 •• *] OF CHAR;
VEC-PNT: ASUPER ARRAY [0 •• *, 0 •• *] OF REAL;

NEW (STR PNT, 12);
NEW (VEC=PNT, 9, 99);

An actual parameter in a procedure or function can be of a super
type rather than a derived type, but only if the parameter is a
reference parameter or pointer referent. (These are the only
kinds of variables that can be of a super rather than a derived
type.)

Example of super arrays:

TYPE VECTOR SUPER ARRAY [1 •• *] OF REAL;

VAR X: VECTOR (12); Y: VECTOR (24); Z: VECTOR (36);

FUNCTION SUM (VAR V: VECTOR): REAL;

VAR S: REAL; I: INTEGER;
BEGIN

S : = 0;
FOR I := 1 TO UPPER (V) DO S := S + V [I];
SUM := S;

END;

BEGIN

TOTAL := SUM (X) + SUM (Y) + SUM (Z);

END

The normal type rules for components of a super array type and
for type designators that use a super array type allow components

6-12

to be assigned, compared, and passed as parameters.

The UPPER function returns the actual upper bound of a super
array parameter or referent. The maximum upper bound of a type
derived from a super array type is limited to the maximum value
of the ind ex type impl i ed by the lowe r bo und (e .g ., MAXI NT,
MAXWORD). Two super array types are predeclared, STRING and
LSTRING. The compiler directly supports STRING and LSTRING types
in the following ways:

1. STRING and STRING assignment

2. STRING and STRING comparison

3. LSTRING and STRING READs

4. access to the length of a STRING with the UPPER function

5. access to max imum length of an LSTRING wi th the UPPER
function

6. access to LSTRING length with STR.LEN and STR[0]

Strings

STRINGs are predeclared super arrays of characters:

TYPE STRING = SUPER PACKED ARRAY [1 •• *] OF CHAR;

A string literal such as 'abcdefg' automatically has the type
STRING (n). The size of the array 'abcdefg' is 7; thus, the
constant is of the STRING derived type, STRING (7).

Standard Pascal calls any packed array of characters with a lower
bound of one a "string" and permits a few special operations on
this type (such as comparison and writing) that you cannot do
with other arrays.

The super array notation STRING (n) is identical to PACKED ARRAY
[1 •• n] OF CHAR (n may range from 1 to MAXINT). There is no
default for n, since STRING means the super array type itself and
not a string with a default length.

The identifier STRING is for a super array, so you can only use
it as a formal reference parameter type or pointer referent type.
You cannot compare such a parameter or dereferenced po inter or
assign it as a whole.

Any variable (or constant) with the super array type STRING, or
one of the types CHAR or STRING (n) or PACKED ARRAY [1 •• n] OF
CHAR, can be passed to a formal reference parameter of super

6-13

array type STRING. Furthermore, a variable of type LSTRING or
LSTRING (n) can also be passed to a formal reference parameter of
type STRING.

The standard level supports the assigning, comparing, and writing
of STRINGs. The extended level permits reading STRINGs,
including the super array type STRING and a derived type STRING
(n) • Reading a STRING causes input of characters until the end
of a line or the end of the STRING is reached. If the end of the
line is reached first, the rest of the STRING is filled with
blanks. Writing a string writes all of its characters.

Any two variables or constants with the type PACKED ARRAY [l •• n]
OF CHAR or the type STRING (n) can be compared or assigned if the
lengths are equal. However, since the length of a STRING super
array type may vary, comparisons and assignments are not allowed.

For example:

PROCEDURE CANNOT DO (VAR S
VAR STR : STRING-(l0);
BEGIN

STRING);

R := S {This assignment is illegal because the}
{length of S may vary}

END;

The PACKED prefix in the declaration PACKED ARRAY [l •• n] OF CHAR,
as defined in the ISO standard, normally implies that a component
cannot be passed as a reference parameter. At the extended
level, this restriction does not apply.

The index type of a string is officially INTEGER, but WORD type
values can also be used to index a STRING. A number of intrinsic
procedures and functions for strings are discussed in Chapter 11,
"Available Procedures and Functions." Many of the procedures and
functions described work on STRINGs; some apply only to LSTRINGs.

Lstrings

The LSTRING feature allows variable-length strings.
is predeclared as:

TYPE LSTRING = SUPER PACKED ARRAY [0 •• *] OF CHAR

LSTRING (n)

However, a variable with the explicit type PACKED ARRAY [0 •• n] OF
CHAR is not "identical" to the type LSTRING (n) even though they
are structurally the same. There is no default for n; the range
of n is from zero to 255. Characters in an LSTRING can be
accessed with the usual array notation.

Internally, LSTRINGs contain a length (L), followed by a string
of characters. The length is contained in element zero of the
LSTRING and can vary from 0 to the upper bound. The length of an

6-14

LSTRING variable T can be accessed as T[0] with type CHAR, or as
T.LEN with type BYTE. String constants of type CHAR or STRING
(n) are changed automatically to type LSTRING.

The predeclared constant NULL is the empty string, LSTRING (0).
NULL is the only constant with type LSTRING; there is no way to
define other LSTRING constants. As with STRINGs, a CHAR
component of an LSTRING can be passed as a reference parameter,
and WORD and INTEGER values can be used to index an LSTRING.

Several operations work differently on LSTRINGs than on STRINGs.
Any LSTRING can be assigned to any other LSTRING, so long as the
current length of the right side is not greater than the maximum
length of the left side. Similarly, an LSTRING can be passed as
a value parameter to a procedure or function, so long as the
current length of the actual parameter is not greater than the
maximum length specified by the formal parameter.

If the $RANGECK is on, the compiler checks the assignment of
LSTRINGs and the passing of LSTRING (n) parameters. The actual
number of bytes assigned or passed is the minimum of the upper
bounds of the LSTRINGs. Neither side in an LSTRING assignment
can be a parameter of the super array type LSTRING; both must be
types derived from it.

Examples of LSTRING assignments:

VAH A
B
C

A :=
B :=
C :=
A :=

C :=

'19
'14

LSTRING (19);
LSTRING (14);
LSTRING (6);

{Declaring the variables}

character string';
characters';

'shorty' ;
B· , {This is leg aI, since the length of B

is less than the maximum 1 ength of A. }

A· , {This is illegal, since length of A
is greater than the maximum length of C. }

You may compare any two LSTRINGs, including super arraytype
LSTRINGs (the only super array type comparison allowed). Reading
an LSTRING variable causes input of characters, until the end of
the current line or the end of the LSTRING, and sets the length
to the number of characters read. Writing from an LSTRING writes
the current length string.

Using Strings and Lstrings

This section describes the STRING and LSTRING operations directly
supported by the compiler. See also Chapter 11, "Available
Procedures and Functions," for descriptions of the following

6-15

string procedures and functions:

CONCAT
COPYLST
COPYSTR
DELETE

INSERT
POSITN
SCANEQ
SCANNE

The procedures FILLC, FILLSC, MOVEL, MOVESL, MOVER, and MOVESR
also operate on strings. The compiler supports STRINGs and
LSTRINGs directly in the following ways:

1. Assignment

You may assign any LSTRING value to any LSTRING variable, as long
as the maximum length of the target variable is greater than or
equal to the current length of the source value and neither is
the super array type LSTRING. If the maximum length of the
target is less than the current length of the source, only the
target length is assigned, and a runtime error occurs if the
range checking switch is on. You may assign a STRING value to a
STRING variable, as long as the length of both sides is the same
and neither side is the super "array type STRING. passing either
STRING or LSTRING as a value parameter is much like making an
assignment.

2. Comparison

The LSTRING operators < <= > >= <> = use the length byte for
string comparisons; the operands may be of different lengths.
Two strings must be the same length to be considered equal. If
two strings of different lengths are equal up to the length of
the shorter one, the shorter is considered less than the longer
one. The operands can be of the super array type LSTRING. For
STRINGs, the same relational operators are available, but the
lengths must be the same and operands of the super array type
STRINGs are not allowed.

3. READs and WRITEs

READ LSTRING reads until the LSTRING is filled or until the end-
of-line is found. The current length is set to the number of
characters read. WRITE LSTRING uses the current length. See
also READSET (described in Chapter 12, "File-Oriented procedures
and Functions"), which reads into an LSTRING as long as input
characters are in a given SET OF CHAR. READ STRING pads wi th
spaces if the 1 ine is sho rter than the STRING. WRITE STRING
wr i tes all the characters in the str ing. Both READ and WRITE
permit the super array types STRING and LSTRING, as well as their
derived types.

6-16

4. Length access

You can access the current length of an LSTRING variable T with
T.LEN, which n is of type BYTE, or with T[0], which is of type
CHAR. This notation can assign a new length, as well as
determine the current length. The UPPER function will find the
maximum length of an LSTRING or the length of a STRING. This is
especially useful for finding the upper bound of a super array
reference parameter or pointer referent.

You cannot assign or compare mixed STRINGs and LSTRINGs, unless
the STRING is cons tan t. You can assign STRINGs to LSTRINGs, or
vice versa, with one of the move routines or with the COPYSTR and
COPYLST procedures. Since constants of type STRING or CHAR
change automatically to type LSTRING if necessary, LSTRING
constants are considered normal STRING constants. NULL (the zero
length LSTRING) is the only explicit LSTRING constant.

A "special transformation" lets you pass an actual LSTRING
parameter to a formal reference parameter of type STRING. The
length of the formal STRING is the actual length of the LSTRING.
Therefore, if LSTR (in the following example) is of type LSTRING
(n) or LSTRING, it can be passed to a procedure or function with
a formal reference parameter of type STRING For example:

VAR LSTR :. LSTRING (10);

PROCEDURE TIE STRING (VAR STR STRING);

TIE STRING (LSTR);

In this case, UPPER (STR) is equivalent to LSTR.LEN. Procedures
and functions with reference parameters of super type STRING can
operate equally well on STRINGs and LSTRINGs. The only reason to
declare a parameter of type LSTRING is when the length must be
changed. Normally, an LSTRING is either a VAR or a VARS
parameter in a procedure or function, since a CONST or CONSTS
parameter of type LSTRING cannot be changed.

Records

The record type is a structure consisting of a fixed number of
components, usually of different types. Each component of a
record type is called a field. The defini tion of a record type
specifies the type and an identifier for each field within the
record. The field values associated with field identifiers are
accessible with a field designator or with the WITH statement.

6-17

For example, you could declare the following record type:

TYPE LP RECORD
TITLE: LSTRING (100);
ARTIST: LSTRING (100);
PLASTIC : ARRAY

[1 •• SONG_NUMBER] 01" SONG TI'I'LE
END

You could then declare a variable of the type LP, as follows:

VAR BEATLES 1 LP;

A component of the record could be accessed either with the field
designator or the WITH statement

BEATLES 1.TITLE := 'Meet The Beatles';
WITH BEATLES 1 DO

PLASTIC[l] := 'I Wanna Hold Your Hand'

variant Records

A record may have several "variants," in which case a certain
field called the "tag field" indicates which variant to use. The
tag field mayor may not have an identifier and storage in the
record. Some operations, such as the NEW and DISPOSE procedures
and the SIZEOF function, can specify a tag value even if the tag
is not stored as part of the record.

Examples of variant records:

TYPE OBJECT = RECORD
X, Y: REAL;
CASE S: SHAPE OF

SQUARE: (SIZE, ANGLE: REAL);
CIRCLE: (DIAMETER: REAL)

END;

FOO = RECORD
CASE BOOLEAN OF

TRUE: (I, J:

END;

FALSE: (CASE
BLUE:
RED:

INTEGER) ;
COLOR OF
(X: REAL);
(Y: INTEGER4));

Only one variant part per record is allowed; it must be the last
field of the record. However, this variant part can also have a
variant (and so on, to any level). All field identifiers in a
given record type must be unique, even in different variants.
For example, after declaring the record types above, you could

6-18

create and then assign to the variables as shown in the following
example:

VAR 0, P
F, G

BEGIN

OBJECT;
FOO;

O.DIAMETER := 12.34;
P.SIZE := 1.2;
F.I := 1; F.J := 2;
G.X := 123.45;
G.Y := 678999

END;

{CASE of CIRCLE}
{CASE of SQUARE}
{CASE of TRUE}
{CASE of FALSE and BLUE}
{CASE of FALSE and RED; }
{this over writes G.X.}

Var iant records interact wi th extended Pasc~l' s features in two
ways:

1. Declaring a variant that contains a file is not safe;
any change to the file's data using a field in another
variant may lead to I/O errors, even if the file is
closed. In the following example, any use of R will
lead to errors in F:

RECORD CASE BOOLEAN OF
TRUE : (F: FILE OF REAL);
FALSE: (R:ARRAY [1 •• 100] OF REAL);
END;

2. Giving initial data to several overlapping variants in a
variable in a VALUE section could have unpredictable
results. In the following example, the initial value of
LAP is uncertain:

VAR LAP : RECORD CASE BOOLEAN OF
TRUE : (I: INTEGER4);
FALSE: (R: REAL);
END;

VALUE LAP.I := 10; LAP.R := 1.5;

Explicit Field Offsets

You can assign explicit byte offsets to the fields in a record.
This system level feature can be useful for interfacing to
software in other languages, since control block formats may not
conform to the usual field allocation method. However, because

6-19

it also permits unsafe operations, such as overlapping fields and
word values at odd byte boundaries, it is not recommended unless
the interface is necessary. The offset is enclosed in brackets;
the number is the byte offset to the start of the field.

Example showing assignment of expl ic i t byte offsets:

TYPE CPM = RECORD
NDRIVE [00] : BYTE;
FILENM [01] : STRING (8) ;
FILEXT [09] : STRING (3) ;
EXTENT [12] : BYTE;
CPMRES [13] : STRING {20} ;

. RECNUM [33] : WORD;
RECOVF [35] : BYTE;

END;

OVERLAP = RECORD
BYTEAR [00]: ARRAY [0 •• 7] OF BYTE;
WORDAR [00]: ARRAY [0 •• 3] OF WORD;
BITSAR [00]: SET OF 0 •• 63;

END;

If you give any field an offset, give offsets to all fields. For
any offset that you omit, the compiler picks an arbitrary value.
Although the compiler will process a declaration that includes
both offsets and variant fields, you should use only one or the
other in a given program.

Al though
offsets,
DISPOSE,
records,
variants

you can completely control field overlap with explicit
variants provide the long forms of the procedures NEW,
and SIZEOF. If you want to allocate different length
use the RETYPE and GETHQQ procedures, instead of

and the long form of NEW. For example:

CPMPV := RETYPE (CPMP, GETHQQ (36)};

The compiler does support structured constants for record types
with explicit offsets. Internally, odd length fields greater
than one are rounded to the next even length. For example:

ODDR RECORD
Fl[00]
F2[03]

END;

STRING (3);
CHAR

In this example, field Fl is four bytes long, so an assignment to
Fl over writes F2. In such a record, all odd length fields must
be assigned first.

6-20

Sets

A set type defines the range of values that a set may assume.
This range of assumable values is the "power set" of the base
type you specify in the type definition. The power set is the
set of all possible sets that could be composed from an ordinal
base type. The null set, [], is a member of every set.

Suppose you declare the following set types:

TYPE HUES = SET OF COLOR;
CAPS = SET OF 'A' •• '2';
MATTER = SET OF (ANIMAL, VEGETABLE, MINERAL);

Then you declare variables like the following:

VAR FLAG : HUES;
VOWELS : CAPS;
LIVE : MATTER;

Finally, you could assign these set variables:

FLAG := [RED, WHITE, BLUE];
VOWELS : = [' A', 'E', 'I', '0', 'U'];
LIVE := [ANIMAL, VEGETABLE];

The set elements must be enclosed in brackets. The ORD value of
the base type can range from 0 to 255. Thus, SET OF CHAR is
legal, but SET OF 1942 •• 1984 is not allowed. If the range
checking switch is on, passing a set as a value parameter invokes
a runtime compatibility check, unless the formal and actual sets
have the same type. Sets provide a clear and efficient way of
giving several qualities or attributes to an object. For
example:

QUALITIES = SET OF (READY, GETSET, ACTIVE, DONE);

You could then assign the qualities with X := [GETSET, ACTIVE]
and test them with the following operations:

IN
+

tests a bit
sets a bit
clears a bit

For example, an appropriate construction might be:

IF ACTIVE IN X THEN WRITELN ('GO FISH')

You can also use SET OF 0 •• 15 to test and set the bits in a WORD.
using WORDs both as a set of bits and as the WORD type requires
giving two types to the word, with a variant record, the RETYPE
function, or an address type.

6-21

Files

A file is a structure that consists of a sequence of components,
all of the same type. You must declare a file variable in order
to use it. However, the number of components in a file is not
fixed by declaring a FILE type.

Examples of FILE declarations:

TYPE Fl
F2
F3

FILE OF COLOR;
FILE OF CHAR;
TEXT;

In pascal, a file is conceptually another data type, like an
array, but with no bounds and with only one component accessible
at a time. However, a file usually corresponds to one of the
following:

1. disk files

2. terminals

3. printers

4. other input and output devices

This implies the following restriction in Pascal: a FILE OF FILE
is invalid, directly or indirectly. Other structures, such as a
FILE OF ARRAYs or an ARRAY OF FILEs, are permitted.

Pascal supports normal statically allocated files, files as local
variables (allocated on the stack), and files as pointer
referents (allocated on the heap). Except for files in super
arrays, the compiler generates code to initialize a file when it
is allocated and to CLOSE a file when it is deallocated.

Except for standard files INPUT and OUTPUT, files in a program
header must be given an operating system filename when you run
your program. You may use the ASSIGN and READFN procedures to
give explicit operating system filenames to files not included in
the program header.

Files in record variants or super array types are not
recommended; if you use them, the compiler issues a warning. A
file variable cannot be assigned, compared, or passed by value:
it can only be declared and passed as a reference parameter.

You can also indicate a file's access method or other
characteristics by specifying the mode of the file. The mode is
a value of the predeclared enumerated type FILEMODES. The modes
include the three base modes, SEQUENTIAL, TERMINAL, and DIRECT.
All files, except INPUT and OUTPUT, are given SEQUENTIAL mode by

6-22

default. INPUT and OUTPUT are given the default mode TERMINAL.

The Buffer Variable

Every file F has an associated buffer variable FA. The
procedures GET and PUT use this buffer variable to READ from and
WRITE to files. GET copies the current component of the file to
the buffer variable. PUT does the opposite; that is, PUT copies
the value of the buffer variable to the current component. A
buffer variable and its associated file might look like this:

+---+---+---+---+---+---+
lalblcldlel I File F
+---+---+---+---+---+---+

A

I Pointer to current component

+---+
I e I
+---+

Buffer variable

The buffer variable can be referenced (i.e., its value fetched or
stored) like any other variable. This allows execution of
assignments like the following:

FA := I z I

C := FA

A file buffer variable can be passed as a reference parameter to
a procedure or function or used as a record in a WITH statement.
However, the file buffer variable may not be updated correctly if
the file position changes within the procedure, function, or WITH
statement.

For example, the following use of a file buffer variable would
generate a warning at compile time:

VAR A: TEXT;
PROCEDURE CHAR_PROC (VAR X : CHAR);

.
CHARPROC (AA); {Warning issued here}

File structures

Files have two basic structures: BINARY and ASCII. These two
structures correspond to raw data files and human-readable
textfiles, respectively.

6-23

BINARY Structure Files

The data type FILE OF type corresponds to BINARY structure
files. These, in turn, correspond to unformatted operating
system files. Every record is one component of the file type
(not to be confused with the Pascal record type). Primitive
procedures such as GET and PUT operate on a record basis.

ASCII Structure Files

The data type TEXT corresponds to ASCII structure files. These,
in turn, correspond to textual operating system files (called
"textfiles"). The Pascal TEXT type is like a FILE OF CHAR,
except that groups of characters are organized into "lines" and,
to a lesser extent, "pages." primitive file procedures, such as
GET and PUT, always operate on a character basis.

Textfiles (files of type TEXT) are divided into lines with a
"1 ine marker," conceptually a character not of the type CHAR.
Although a text file can in theory contain any value of type
CHAR, writing a particular character (say, CHR (13), carriage
return, or CHR (10), line feed) may terminate the current line
(record). This character value is the line marker in this case
and, when read, always looks like a blank.

A declaration for a text file may include an optional line
length. Setting the line length, which sets record length, is
only needed for DIRECT mode textfiles. You may specify line
length for other modes as well, but doing so has no effect. You
must specify the line length of a text file as a constant in
parentheses after the word TEXT:

TYPE NAMEADDR
DEFAULTX
SMALLBUF

File Access Modes

TEXT (128);
TEXT;
TEXT (2);

The file modes in are SEQUENTIAL, TERMINAL, and DIRECT.
SEQUENTIAL and TERMINAL mode ASCII structure files can have
variable length records (lines); DIRECT mode files must have
fixed length records or lines.

The declaration of a file in implies its structure, but not its
mode. For example, FILE OF STRING (80) indicates BINARY
structure; TEXT indicates ASCII structure. An assignment like
F. MODE : = DIRECT se ts the mode; and is needed only to set the
DIRECT mode.

6-24

TERMINAL Mode Files

TERMINAL mode files always correspond to an interactive terminal
or printer. TERMINAL mode files, like SEQUENTIAL mode files, are
opened at the beginning of the file for either reading or
writing. Records are accessed one after the other until the end
of the file is reached.

Operation of TERMINAL mode input for terminals depends on the
file structure (ASCII or BINARY). For ASCII structure (type
TEXT), entire lines are read at one time. This permits the usual
operating system intraline editing, including backspace, advance
cursor, and cancel. Characters are echoed to the terminal screen
while the line is being typed.

For BINARY structure TERMINAL mode (usually type FILE OF CHAR),
you can read characters as you type them. No intraline editing
or echoing is done. This method permits screen editing, menu
selection, and other interactive programming on a keystroke
rather than line basis.

TERMINAL mode files use lazy evaluation to properly handle normal
interactive reading of the terminal keyboard. (See "Lazy
Evaluation," under chapter 12, File Oriented Procedures and
Functions for details.)

SEQUENTIAL Mode Files

SEQUENTIAL mode files are generally disk files or other
sequential access dev ices. Li ke TERMINAL mode files, SEQUENTIAL
mode files are opened at the beginning of the file for either
reading or wri ting, and records are accessed one after another
until the end of the file.

DIRECT Mode Files

DIRECT mode files are generally disk files or other random access
devices. DIRECT mode ASCII structure files, as well as all
BINARY structure files, have fixed-length records, where a record
is either a line or file component. (Here the term "record"
refers not to the normal Pascal record type, but to a disk
structuring unit.) DIRECT files are always opened for both
read ing and wr i ting, and records can be accessed randomly by
record number. There is no record number zero; records beg in
with record number one.

The Predeclared Files INPUT and OUTPUT

The INPUT and OUTPUT files, are predeclared in every Pascal
program. These files get special treatment as program parameters
and are normally required as parameters in the program heading:

6-25

PROGRAM ACTION (INPUT, OUTPUT);

If there are no program parameters and the program does not use
the files INPUT and OUTPUT, the heading can look like this:

PROGRAM ACTION;

However, you should include INPUT and OUTPUT as program
parameters if you use them, either explicitly or implicitly, in
the program itself:

WRITE (OUTPUT, 'prompt: ')
WRITE ('prompt: ')

{Explicit use}
{Implicit use}

These examples would generate a warning if OUTPUT was not
declared in the program heading. The only effect of INPUT and
OUTPUT as program parameters is to suppress this warning.
Al though you may redefine the identi fiers INPUT and OUTPUT, the
file assumed by text file input and output procedures and
functions (e.g., READ, EOLN) is the predeclared definition.

The procedures RESET (INPUT) and REWRITE (OUTPUT) are generated
automatically, whether or not INPUT and OUTPUT are present as
program parameters (you may also use these procedures
explicitly). INPUT and OUTPUT have ASCII structure and TERMINAL
mode. They are initially connected to your terminal and opened
automatically.

Extended I/O Feature

A file variable is really a record, of type FCBFQQ, called a file
control block. At the extended level, a few standard fields in
this record help you handle file modes and error trapping.
Additional fields and the record type FCBFQQ itself can be used
at the system level, described under "System I/O Feature." Along
wi th access to certain FCB fields, extended I/O Feature also
includes the following procedures:

ASSIGN
CLOSE
DISCARD

READFN
READSET
SEEK

You should use the normal record field syntax to access FCB
fields. For a file F, the fields are named F.MODE, F.TRAP, and
F.ERRS. You may change or examine these fields at any time.

6-26

1. F.MODE: FILEMODES

This field contains the mode of the file: SEQUENTIAL, TERMINAL,
or DIRECT. These values are constants of the predeclared
enumerated type FILEMODES. The file system uses the MODE field
only during RESET and REWRITE. Thus, changing the MODE field of
an open file has no effect and is, in fact, discouraged. Except
for INPUT and OUTPUT, which have TERMINAL mode, a file's mode is
SEQUENTIAL by default.

2. F.TRAP: BOOLEAN

If this field is TRUE, error trapping for file F is turned on.
Then, if an input/output error occurs, the program does not abort
and the error code can be examined. Initially, F.TRAP is set
FALSE. If FALSE and an I/O error occurs, the program aborts.
Closing the file sets the trap to false. Note that reset and
rewrite close the file

3. F.ERRS: WRD(O) •• 15

This field contains the error code for file F. An error code of
zero means no error; values fro~ 1 to 15 imply an error
condition. If you attempt a file operation other than CLOSE or
DISCARD and F.ERRS is not zero, the program immediately aborts if
F.TRAP is FALSE. However, if F.TRAP is TRUE, the attempted file
operation is ignored and the program continues.

CLOSE and DISCARD do not examine the initial value of F.ERRS, so
they are never ignored and do not cause an immediate abort. If
CLOSE or DISCARD themselves generate an error condition, F.TRAP
is used to determine whether to trap the error or to abort.

An operation ignored because of an error condition does not
change the file itself, but may change the buffer variable or
READ procedure input variables. See Appendix D, "Error
Messages," for a complete listing of error messages and warnings.

The Extended I/O Feature, allows to you set the line length for a
text file, as follows:

TYPE SMALLBUF = TEXT (16);
VAR RANDOMTEXT: TEXT (132);

Declaring line length applies only to DIRECT mode ASCII structure
files, where the line length is the record length used for
reading and writing. Setting the line length has no effect on
other ASCII files.

System Level I/O

6-27

The System I/O Feature allows you to call procedures and
functions that have a formal reference parameter of type FCBFQQ
with an actual parameter of the type FILE OF type or TEXT, or the
identical FCBFQQ type.

The FCBFQQ type is the underlying record type used to implement
the file type. The interface for the target file system FCBFQQ
type (and any other types needed) is usually part of the internal
file system. Thus, procedures and functions that reference
FCBFQQ parameters can be called with any file type, including
predeclared procedures and functions like CLOSE and READ.

Reference Types

A reference to a variable or constant is an indirect way to
access it. The pointer type is an abstract type for creating,
using, and destroying variables allocated from an area called the
heap. The heap is a dynamically growing and shrinking region of
memory allocated for pointer variables.

Pascal also provides two machine-oriented address types: one for
addresses that can be represented in 16 bits, the other for
addresses that require 32 bits.

Pointers are generally used for
processing. Use of pointers is
relatively safe.

trees, graphs, and list
portable, structured, and

Address types provide an interface to the hardware and operating
system; their use is frequently unstructured, low level, and
unsafe.

pointer Types

A pointer type is a set of values that point to variables of a
given type. The type of the variables pointed to is called the
"reference type." Reference variables are all dynamically
allocated from the heap with the NEW procedure. Pascal variables
are normally allocated on the stack or at fixed locations.

You can perform only the following actions on pointers:

6-28

1. assign them

2. test them for equality and inequality with the two
operators = and <>

3. pass them as value or reference parameters

4. dereference them with the up arrow (~)

Every pointer type includes the pointer value NIL. Pointers are
frequently used to create list structures of records, as shown in
the following example:

TYPE
TREETIP = ~ TREE;
TREE = RECORD

VAL: INTEGER;
{Value of TREE cell.}

LEFT, RIGHT: TREETIP

END;

{pointers to other TREETIP cells.}
{Note recursive definition.}

Unlike most type declarations, a pointer type can refer to a type
of which it is itself a component. The declaration can also
refer to a type declared later in the same TYPE section, as in
TREE and TREETIP in the previous example.

Such a declaration is called a forward pointer declaration and
permits recursive and mutually recursive structures. Because
pointers are so often used in list structures, forward pointer
declarations occur frequently.

The compiler checks for one ambiguous pointer declaration.
Suppose the previous example was in a procedure nested in another
procedure that also declared a type TREE. Then the reference
type of TREETIP could be either the outer definition or the one
following in the same TYPE section. The compi I er assumes the
TREE type intended is the one later in the same TYPE section and
gives the warning:

Pointer Type Assumed Forward

A pointer can have a super array type as a referent type. The
actual upper bounds of the array are passed to the NEW procedure
to create a heap variable of the correct size. Forward pointer
declarations of the super array type are not allowed.

You cannot declare two pointers with different types and then
assign or compare them, even if they happen to point to the same
underlying type. For example:

VAR PRA: REALi
PRE : ~ REAL;

BEGIN PRA := PRE END; {This is illegal!}

Programs usually contain only one type declaration for a pointer
to a given type. In the TREETIP example, the type of LEFT .and
RIGHT could be TREE instead of TREETIP, but then you couldn It

6-29

assign variables of type TREETIP to these fields. However, it is
sometimes useful to make sure that two classes of pointers are
not used together, even if they point to the same type.

For example, suppose you have a type RESOURCE kept in a list and
declare two types, OWNER and USER, of type ARESOURCE. The
compiler would catch assignment of OWNER values to USER variables
and vice versa and issue a warning message.

If the $INITCK is on, a newly created pointer has an
uninitialized value. If the NIL checking switch is on, pointer
values are tested for various invalid values. Invalid values
include NIL, uninitialized values, reference to a heap item that
has been DISPOSEd, or a value that is not valid as a heap
reference.

Address Types

The keywords ADR and ADS refer to the relative address type and
the segmented address type respectively. As the following
example shows you can use the keywords both as type clause
prefixes and as prefix operators:

VAR INT VAR
REAL VAR
A INT

INTEGER;
REAL;
ADR OF INTEGER; {Declaration of ADR variable}

AS REAL

BEGIN

ADS OF REAL; {Declaration of ADS variable}

:= 1; {Integer variable}
:= 3.1415; {Real variable}
:= ADR INT VAR; {ADR used as operator}
:= ADS REAL VAR;{ADS used as operator}

INT VAR
REAL VAR
A INT
AS REAL
WRITELN (A INTA,AS REALA) {Up arrow used to dereference

- - the address types.}
END.

You may declare a variable that is an address:

VAR X ADR OF BYTE;

Then, with the following record notation, you can assign numeric
values to the actual variable:

X.R := 16#FFFF

You may specify the assigned value in hexadecimal notation. You
may also assign to a segment field with the ADS type, using the
field notation .5 (segment address). Thus, you may declare a
variable of an ADS type and then assign values to its two fields:

6-30

VAR Y ADS OF WORD;

Y.S := 16#0001
Y.R := 16#FFFF

As shown above, any 16-bit value can be directly assigned to
address type variables, using the .R and .S fields. The ADR and
ADS operators obtain these addresses directly. The example below
assigns addresses this way to the variables X and Y:

VAR X
Y
W
B

ADR OF BYTE;
ADS OF WORD;
WORD;
BYTE;

X := ADR B;
Y := ADS W;

pascal supports the followin"g predeclared address types:

ADRMEM
ADSMEM

ADR OF ARRAY [0 •• 32766] OF BYTE;
ADS OF ARRAY [0 •• 32766] OF BYTE;

Since the type referred to by the address is an array of bytes,
byte indexing is possible. For example, if A is of type ADRMEM,
then A~[15] is the byte at the address A.R + 15, where .R
specifies an actual 16-bit address.

You can use the address types for a constant address (a form of
structured constant); you may also take the address of a constant
or expression. For example:

TYPE ADRWORD
ADSWORD

VAR W: WORD;
R: ADRWORD;

ADR OF WORD;
ADS OF WORD;

CONST CONADR = ADRWORD (1234) ;

{Get
{Get
{Get
{Get
{Get

BEGIN
W :=
W :=
W :=
R :=
R :=

END;

CONADR~;

ADSWORD (0,
(ADS W) • S;
ADR '123';
ADR (W DIV

32) ~;

2 + 1);

word at address 1234}
word at address 0:32}
value of DS segment register}
address of a constant value}
address of expression value}

However, constants or expressions that yield addresses cannot be
used as the target of an assignment (or as a reference parameter
or WITH record), as shown:

6-31

CONST ADSCON = ADSWORD (256, 64);
FUNCTION SOME ADDRESS: ADSWORD;
BEGIN

ADSWORD (0, 32)'" := W; {Invalid}
ADSCON'" := 12; {Invalid}
SOME ADDRESS'" := 1"0; {Invalid}

END;

{Valid}
{Valid}

Segment Parameters for the Address Types

Two keywords, VARS and CONSTS, are available as parameter
prefixes, like VAR and CONST, to pass the segmented address of a
variable. If P is of type ADS FOO, then p'" can be passed to a
VARS formal parameter, such as VARS X: FOO, but cannot be passed
to a VAR formal parameter.

In the B 20 env i ronmen t, a de fa ul t da ta segmen tis assumed, in
which case a VAR parameter is passed as the default data segment
offset of a variable. A VARS parameter is passed as both the
segment value and the offset value. Both VARS parameters and ADS
variables have the offset (.R) value in the WORD with the lower
address and the segment (.S) value in the address plus two.

In pointer type declarations, the up arrow ("') prefixes the type
pointed to; in program statements, it dereferences a pointer so
that the value pointed to can be assigned or operated on. The up

·arrow also dereferences ADR and ADS types in program statements.

Component selection with the up arrow ("') is performed before the
unary operators ADR or ADS. Because the up arrow ("') selector
can appear after any address variable to produce a new variable,
it can occur, for example, in the target of an assignment, a
reference parameter, as well as in expressions. Since ADS and
ADR are prefix operators, they are used only in expressions,
where they apply only to a variable or constant or expression.

Using the Address Types

The following example illustrates the rules that you must follow
to combine and intermingle the two address types:

VAR
P:
Q:
X:

BEGIN
P :=

X :=

6-32

ADS OF
ADR OF
DATA;

ADS X;

P"';

DATA;
DATA;

{p is segmented address of type DATA.}
{Q is relative address of type DATA.}
{X is some variable of type DATA.}

{Assign the address of X to P.}

{Assign to X the value pointed to by P.}

P := ADS P";

Q : = ADR Xi

{Assign to P the address of the value
whose address is pointed to by P.
P is unchanged by this assignment.}

{Assign the relative address of X to Q.}

Q.R := (ADR X) .R; {Assign the relative address of X to Q,
using the WORD type.}

P := ADS Q";

Q : = ADR P";

P.R := 16#8000;

P.S := 16;

Q.R := P.R + 4;

END;

{Assign address of variable at Q to P.}

{Invalid; you cannot apply ADR to ADS
" . }

{Assign 32768 to piS offset tield.}

{Assign 16 to piS segment field.}

{Assign piS offset plus 4 to be the
value of Q.}

The address type and pointer type should be treated as two
in theory, is just an
another variable. The

However, the address type

distinct types. The pointer typ~,
undefined mapping from a variable to
method of implementation is undefined.
deals with actual machine addresses.

The following special facilities that use pointer variables are
not allowed with address variables.

1. The NEW and DISPOSE procedures are only permitted with
pointers. NIL does not apply to the address type.
There are no special address values for empty,
uninitialized, or invalid addresses.

2. The type "address of super array type" is not supported
in the same way as "pointer to super array type."
Getting the address of a super array variable is still
permitted with ADR and ADS. For example, if a procedure
or function formal parameter is declared as VAR S:
STRING, then within the procedure or function, the
expression ADS S is fine. Unlike a pointer, the address
does not contain any upper bounds.

Packed Types

Any of the structured types can be PACKED.
storage at the possible expense of access

This could economize
time or access code

6-33

space. However, the following limitations apply on the use of
PACKED structures:

1. The prefix PACKED is always ignored, except for type
checking, in sets, files, and arrays of characters, and
has no actual effect on the representation of records
and other arrays. Furthermore, PACKED can only precede
one of the structure names ARRAY, RECORD, SET, or FILE;
it cannot precede a type identifier. For example, if
COLORMAP is the identifier for an unpacked array type,
"PACKED COLORMAP" is not accepted.

2. A component of a PACKED structure cannot be passed as a
reference parameter or used as the record of a WITH
statement, unless the structure is of a string type.
Also, obtaining the address of a PACKED component with
ADR or ADS is not permitted.

3. A PACKED prefix only applies to the structure being
defined: any components of that structure that are also
structures are not packed unless you explicitly include
the reserved word PACKED in their definition.

Note that the operators ADS and ADR do not apply to procedures.
However, the address of a procedure can be computed as follows.
Suppose a Pascal program contains a public procedure Proc
declared, for example as:

PROCEDURE Proc (w: WORD) [PUBLIC];

To compute the ADS of this procedure,
function GetProc, whose only parameter is
same arguments as Proc. For example:

declare an external
a procedure wi th the

TYPE
pProcType = ADS of WORD;

FUNCTION GetProc (PROCEDURE proc(w: WORD)): pprocType;
Extern;

Then link into the program a Pascal module containing:

6-34

TYPE
pprocType = ADS of WORD;
opProcType = ADR of pProcType;

FUNCTION GetProc (opProc: opProcType; wJunk: WORD):
pProcType;

BEGIN
GetProc := opProc?;

END;

Procedural and Functional Types

Procedural and functional types are different from other types.
(Whe r ever the te rm II proc ed ur al" is used from he re on, bo th
procedural and functional is implied.) You may not declare an
identifier for a procedural type in a TYPE section; nor may you
declare a variable of a procedural type. However, you may use
procedural types to declare the type of a procedural parameter,
and in this sense they conform to the Pascal idea of a type.

A procedural type defines a procedure or function heading and
gives any parameters. For a function, it also defines the result
type. The syntax of a procedural type is the same as a procedure
or function heading, including any attributes.

Example of a procedural type declaration:

PROCEDURE ZERO (FUNCTION FUN (X, Y: REAL): REAL)

Type Compatibility

The type compatibility is
additional rules added for
constant coercions (i.e.,
cons tan t) • Type trans fer
rules, are available in some

the same as ISO Pascal with some
super array types, LSTRINGs, and

forced changes in the type of a
functions, to override the typing
cases like ORD and RETYPE.

Two types can be "identical," "compatible," or "incompatible." An
expression mayor may not be "assignment compatible" with a
variable, value parameter, or array index.

Type Identity and Reference Parameters

Two types are identical if they have the identical identifier or
if the identifiers are declared equivalent with a type definition
like the following:

TYPE Tl = T2;

There is no difference between types Tl and T2 in the example
above. Type identity is based on the name of the types, and not
on the way they are declared or structured. Thus, for example,
Tl and T2 are not identical in the following declarations:

TYPE Tl
T2

ARRAY [1 •• 10] OF CHAR;
ARRAY [1 •• 10] OF CHAR;

6-35

Actual and formal reference parameters must be of identical
types. Or, if a formal reference parameter is of a super array
type, the actual parameter must be of the same super array type
or a type derived from it. Two record or array types must be
identical for assignment.

The only exception is for strings. Here, actual parameters of
type CHAR, STRING, STRING (n), LSTRING, and LSTRING (n) are
compatible with a formal parameter of super array type STRING.
Also, the type of a str ing constant will change to any LSTRING
type wi th a large enough bound. For example, the type of 'ABC'
will change to LSTRING (5) if necessary.

Furthermore, an actual parameter of any FILE type may be passed
to . a formal parameter of of a special record type FCBFQQ.
Similarly, an actual parameter of type FCBFQQ may be passed to a
formal parameter of any file type.

STRING (n) is a shorthand notation for:

PACKED ARRAY [l •• n] OF CHAR

The two types are identical. However, because variables with the
type LSTRING are treated specially in assignments, comparisons,
READs, and WRITEs, LSTRING (n) is not a shorthand notation for
PACKED ARRAY [0 •• n] OF CHAR. The two types are not identical,
compatible, or assignment compatible.

Type Compatibility and Expressions

Two simple or reference types are compatible if:

1. They are identical.

2. They are both ADR types.

3. They are both ADS types.

4. One is a subrange of the other.

5. They are subranges of compatible types.

Two structured types are compatible if:

1. They are identical.

2. They are SET types with compatible base types.

3. They are STRING derived types of equal length.

4. They are LSTRING derived types.

6-36

However, two structured types are incompatible if:

1. Either type is a FILE or contains a FILE.

2. Either type is a super array type.

3. One type is PACKED and the other is not.

Two values must be of compatible types when combined with an
operator in an expression. (Most operators have additional
limitations on the type of their operands. See Chapter 8,
"Expressions," for details.) A CASE index expression type must be
compatible with all CASE constant values. Note that two sets are
never compatible if one is PACKED and the other is not.

Assignment Compatibility

Some types are implicitly compatible.
across type boundaries. For instance,
following variables:

VAR DESTINATION
SOURCE

T DEST;
T=SOURCE;

This permits assignment
assume you declare the

SOURCE is
DESTINATION
true:

assignment compatible
:= SOURCE is permitted)

with DESTINATION (i.e.,
i f 0 n e 0 f the follow i ng i s

1. T SOURCE and T_DEST are identical types.

2. T SOURCE and T DEST are compa t i ble and SOURCE has a
value in the range of subrange type T_DEST.

3. T DEST is of type REAL and T_SOURCE is compatible with
type INTEGER or INTEGER4.

4. T DEST is of type INTEGER4 and T SOURCE is compatible
wTth type INTEGER or WORD.

Also, if T DEST and T SOURCE are compatible structured types,
then SOURCE- is assignment compatible with DESTINATION if one of
the following is true:

1. For SETs, every member of SOURCE is in the base type of
T DEST.

2. For LSTRINGs, UPPER (DESTINATION))= SOURCE. LEN.

6-37

Other than in
compatibility is
assignment:

the assignment statement
required in the following

1. passing value parameter

2. READ and READLN procedures

i tsel f , assignment
cases of implicit

3. control variable and limits in a FOR statement

4. super array type array bounds, and array indices

Assignment compatibility is usually known at compile time, and an
assignment generates simple instructions. However, some
subrange, set, and LSTRING assignments depend on the value of the
expression to be assigned and thus cannot be checked until
runtime. If the $RANGECK is on, assignment compatibility is
checked at runtime; otherwise, no checking is done.

6-38

CHAPTER 7
VARIABLES AND VALUES

CONTENTS

VARIABLE DECLARATIONS

THE VALUE SECTION

USING VARIABLES AND VALUES

Components of Entire Variables and Values

Indexed Variables and Values

Field Variables and Values

File Buffers and Fields

ATTRIBUTES

The STATIC Attribute

The PUBLIC and EXTERN Attributes

The ORIGIN Attribute

The READONLY Attribute

Combining Attributes

7-1

A variable is a value that is expected to change during the
course of a program. Every variable must be of a specific data
type. A variable may have an identifier. If A is a variable of
type INTEGER, then the use of A in a program actually refers to
the data denoted by A.

For example:

VAR A: INTEGER;
BEGIN

A : = 1;
A := A + 1;

END;

These statements would first assign a value of 1 to the data
denoted by A, and subsequently assign it a value of 2.

Variables are manipulated by using some sort of notation to
denote the variable, such as a variable identifier. In other
cases, variables may be denoted by array indices or record fields
or the dereferencing of point~r or address variables. The
compiler itself may sometimes create "hidden" variables,
allocated on the stack, in circumstances like the following:

1. When you call a function that will return a structured
result, the compiler allocates a variable in the caller
for the result.

2. When you need the address of' an expression (e.g., to
pass it as a reference parameter or to use it as a WITH
statement record or with ADR or ADS), the compiler
allocates a variable for the value of the expression.

3. The initial and final values of a FOR loop may require
allocating a variable.

4. When the compiler evaluates an expression, it may
allocate a variable to store intermediate results.

5. Every WITH statement requires a variable to be allocated
for the address of the WITH's record.

VARIABLE DECLARATIONS
A variable declaration consists of the identifier for the new
variable, followed by a colon and a type. You may declare
variables of the same type by giving a list of the variable
identifiers, followed by their common type. For example:

VAR XCOORD, YCOORD: REAL

7-2

You may declare a variable in any of the following locations:

1. VAR section of a program, procedure, function, module,
interface, or implementation

2. formal parameter list of a procedure, function, or
procedural parameter

In a VAR section, you may declare a variable to be of any valid
type; in a formal parameter list, you may include only a type
identi fier (i. e., you cannot declare a type in the heading of a
procedure or function). For example:

PROCEDURE NAME (GEORGE: ARRAY [1 •• 10] OF COLOR)
{Invalid; GEORGE is of a new type.}

VAR VECTOR A: VECTOR (10)
{Valid; VECTOR (10) is a type
derived from a super type.}

Each declaration of a file variable F of type FILE OF T implies
the declaration of a buffer variable of type T, denoted by FA. A
file declaration also implies the declaration of a record
variable of type FCBFQQ, whose fields are denoted as F.TRAP,
F.ERRS, F.MODE, and so on. See chapter 12, File Oriented
Procedures and Functions for further information on buffer
variables and FCBFQQ fields.

THE VALUE SECTION
The VALUE section allows you to give initial values to variables
in a program, module, procedure, or function. You may also
initialize the variable in an implementation, but not in an
interface.

The VALUE section may include only statically allocated
variables, that is, any variable declared at the program, module,
or implementation level, or a variable with the STATIC or PUBLIC
attribute. Variables with the EXTERN or ORIGIN attribute cannot
occur in a VALUE section, since they are not allocated by the
compiler.

The VALUE section may contain assignments of constants to entire
variables or to components of variables. For example:

VAR ALPHA
ID

REAL;
STRING (7);

7-3

VALUE

I INTEGER;

ALPHA := 2.23;
ID[l] := 'J';
I : = 1;

USING VARIABLES AND VALUES
A denotation of a variable may designate one of three things:

1. an entire variable

2. a component of a variable

3. a variable referenced by a pointer

A value may be any of the following:

1. a variable

2. a constant

3. a function designator

4. a component of a value

s. a variable referenced by a reference value

A function can also return an array, record, or set. The same
syntax used for variables may be used to denote components of the
structures these functions return.

This feature also allows you to dereference a reference type that
is returned by a function. However, you can only use the
function designator as a value, not as a variable. For example,
the following is invalid:

F (X, y)" := 42;

You may declare constants of a structured type. Components of a
structured constant use the same syntax as variables of the same
type.

Examples of structured constant components:

TYPE REAL3 ARRAY [1 •• 3] OF REAL; {an array type}
CONST PIES = REAL3 (3.14, 6.28, 9.42); {an array constant}

X := PIES [1] * PIES [3]; {i.e., 3.14 * 9.42}

7-4

Y : = REAL 3 (1. 1, 2. 2, 3. 3) [2] ; {i.e., 2.2}

Components of Entire Variables ·and Values

A variable identifier denotes an entire variable. A variable,
function designator, or constant denotes an entire value. A
c om po n e n t 0 f a va ria b 1 e 0 r val ue i s den 0 ted by the ide n t i fie r
followed by a selector that specifies the component. The form of
a selector depends on the type of structure (array, record, file,
or reference).

Indexed Variables and Values

A component of an array is denoted by the array variable or
value, followed by an index expression. The index expression
must be assignment compatible with the index type in the array
type declaration. An index type must always be an ordinal type.
The index itself must be enclosed in brackets following the array
identifier.

Examples of indexed variables and values:

ARRAY_OF_CHAR ['C'] {Denotes the Cth element.}

'STRING CONSTANT' [6] := 'G'

ARRAY FUNCTION (A, B)

{Assigns the 6th element, the letter
'G' • }

[C, D]
{Denotes a component of a two­
dimensional array returned by
ARRAY FUNCTION (A, B). A and Bare
actual parameters.}

You may specify the current length of an LSTRING variable, LSTR,
in either of two ways:

1. with the notation LSTR [0], to access the length as a
CHAR component

2. with the notation LSTR.LEN, to access the length as a
BYTE value

Field Variables and Values

A component of a record is denoted by the record var iabl e or
value followed by the field identifier for the component. Fields
are separated by the per iod (.). In a WITH statement, you give
the record variable or value only once. Within the WITH
statement, you may use the field identifier of a record variable

7-5

directly.

Examples of field variables and values:

PERSON.NAME := 'PETE'

PEOPLE. DRIVERS. NAME := 'JOAN'

WITH PEOPLE. DRIVERS DO
NAME := 'GERI'

RECURSING FUNC ('XYZ') .BETA
{Selects BETA field of record
returned by the function named
RECURSIVE_FUNC.}

COMPLEX_TYPE (1.2, 3.14) • REAL_PART

Record field notation also applies to files for FCBFQQ fields, to
address type values for numeric representations, and to LSTRINGs
for the current length.

File Buffers and Fields

At any time, only one component of a file is accessible. The
accessible component is determined by the current file position
and represented by the buffer variable. Depending on the status
of the buffer variable, fetching its value may first read the
value from the file. (This is called "lazy evaluation"; see
Chapter12, File oriented procedures and Functions for more
info rmation) •

If a file buffer variable is passed as a reference parameter or
used as a record of a WITH statement, the compiler issues a
warning to alert you to the fact that the value of the buffer
var iable may not be correct after the posi tion of the file is
changed with a GET or PUT procedure.

Examples of file reference variables:

INPUT
ACCOUNTS PAYABLE. FILE""

Reference Variables

Reference variables or values denote data that refers to some
data type. There are three kinds of reference variables and
values:

7-6

1. pointer variables and values

2. ADR variables and values

3. ADS variables and values

In g ener aI, a re fer ence var iabl e 0 r val ue II po in ts"
object. Thus, the value of a reference variable or
refe rence to tha t da ta obj ec t. To obta in the ac tual
pointed to, you must "dereference" the reference
appending an up arrow ("') to the variable or value.

to a data
val ue is a

data object
variable by

Example using pointer values:

VAR P, Q : "'INTEGER;

NEW (P); NEW (Q);

P : = Q;

p'" := 123;

{p and Q are pointers to integers.}

{p and Q are assigned reference
values to regions in memory
corresponding to data objects of
type INTEGER.}

{p and Q now point to the same
region in memory.}

{Assigns the value 123 to the
INTEGER value pointed to by P.
Since Q points to this location as
well, Q'" is also assigned 123.}

Using NIL'" is an error (since a NIL pointer does not reference
anything) • You may also append an up arrow ("') to a function
designator for a function that returns a pointer or address type.
In this case, the up arrow denotes the value referenced by the
return value. This variable cannot be assigned to or passed as a
reference parameter.

Examples of functions returning ref2rence values:

DATAl := FUNKI (I, J)'" {FUNKI returns a reference value.
The up arrow dereferences the
reference value returned, assigning
the referenced data to DATAl.}

DATA2 := FUNK2 (K, L)"'.FOO [2]
{FUNK2 returns a reference value.
The up arrow dereferences the
reference value returned. In this
case, the dereferenced value is a
record. The array component FOO [2]
of that record is assigned to the
variable DATA2.}

7-7

If P is of type ADR OF some type, then P.R denotes the address
value of type WORD. If P is of type ADS OF some type, then P.R
denotes the offset portion of the address and P. S denotes the
segment portion of the address. Both portions are of type WORD.

Examples of address variables:

BUFF ADR.R
DATA-AREA.S

ATTRIBUTES

A variable declaration or the heading of a procedure or function
may include one or more attributes. A variable attribute gives
special information about the variable to the compiler.

The following attributes are provided for variables:

Attribute

STATIC

PUBLIC

EXTERN

ORIGIN

READONLY

Variable

Allocated at a fixed location, not on the stack.

Accessible by other modules with EXTERN, implies
STATIC.

Declared PUBLIC in another module, implies
STATIC.

Located at specified address, implies STATIC.

Cannot be altered or written to.

The EXTERN attribute is also a procedure and function directive;
PUBLIC and ORIGIN are also procedure and function attributes.
See Chapter 10, Procedures and Functions for a discussion of
procedure and function attributes and directives.

You may only give attributes for variables in a VAR section.
Specifying variable attributes in a TYPE section or a procedure
or function parameter list is not permitted.

You can give one or more attributes in the variable declaration,
enclosed in brackets and separated by commas (if specifying more
than one attribute).

The brackets may occur in either of two places:

7-8

1. An attribute in brackets after a variable identifier in
VAR section applies to that variable only.

2. An attribute in brackets after the reserved word VAR
applies to all of the variables in the section.

Examples that specify variable attributes:

VAR A, B, C [EXTERN] : INTEGER; {Applies to Conly.}

VAR [PUBLIC] A, B, C : INTEGER; {Applies to A, B, and C.}

VAR [PUBLIC] A, B, C [ORIGIN 16#1000] : INTEGER;
{A, B, and C are all PUBLIC. ORIGIN
of C is the absolute hexadecimal
address 1000.

The STATIC Attribute

The STATIC attribute gives a variable a unique, fixed location in
memory. This is in contrast to a procedure or function variable
that is allocated on the stack or one that is dynamically
allocated on the heap. Use of STATIC variables can save time and
code space, but increases data space.

All variables at the program, module, or unit level are
automatically assigned a fixed memory location and given the
STATIC attribute. Functions and procedures that use STATIC
variables can execute recursively, but STATIC variables must be
used only for data common to all invocations.

Files declared in a procedure or function with the STATIC
attribute are initialized when the routine is entered; they are
closed when the routine terminates like other files. However,
other STATIC variables are only initialized before program
execution. This means that, except for open FILE variables,
STATIC variables can be used to retain values between invocations
of a procedure or function.

Examples of STATIC variable declarations:

VAR VECTOR [STATIC]: ARRAY [0 •• MAXVEC] OF INTEGER;
VAR [STATIC] I, J, K: 0 •• MAXVEC;

The STATIC attribute does not apply to procedures or functions,
as some other attributes do.

The PUBLIC and EXTERN Attributes

The PUBLIC attribute indicates a variable that may be accessed by
other loaded modules; the EXTERN attribute identifies a variable
that resides in some other loaded module. Variables given the
PUBLIC or EXTERN attribute are implicitly STATIC.

7-9

Examples of PUBLIC and EXTERN variable declarations:

VAR [EXTERN] GLOBEl, GLOBE2: INTEGER;
{EXTERN, meaning that they must be
declared PUBLIC in some other loaded
module. }

VAR BASE PAGE [PUBLIC, ORIGIN #l2FE]: BYTE;
{The variable BASE PAGE is located
at 12FE, hexadecimal. Because it is
also PUBLIC, it can be accessed from
other loaded modules that declare
BASE PAGE with the EXTERN
attribute.}

PUBLIC variables are usually allocated by the compiler, unless
you also give them an ORIGIN. Giving a variable both the PUBLIC
and ORIGIN attributes tells the loader that a global name has an
absolute address.

If both PUBLIC and ORIGIN are present, the compiler does not need
the loader to resolve the address. However, the identifier is
still passed to the linker for use by other modules.

EXTERN variables are not allocated by the compiler. Nor do they
have an ORIGIN, since giving both EXTERN and ORIGIN implies two
different ways to access the variable. The reserved word
EXTERNAL is synonymous with EXTERN.

Variables in the interface of a unit are automatically given
either the PUBLIC or EXTERN attribute. If a program, module, or
unit USES an interface, its variables are made EXTERN; if you
compile the IMPLEMENTATION of the interface, its variables are
made PUBLIC.

The ORIGIN Attribute

The ORIGIN attribute directs the compiler to locate a variable at
a given memory address. The address must be a constant of any
ordinal type. I/O ports, interrupt vectors, operating system
data, and other related data can be accessed with the ORIGIN
variable.

Example of ORIGIN and STATIC variable declarations:

VAR INTRVECT [ORIGIN 8#200]: WORD;

Var iables wi th ORIGIN attr ibute are impl ic i tl y STATIC. Also,

7-10

they inhibit common sUbexpression optimization. For example, if
GATE has the ORIGIN attribute, the two statements X := GATE;
Y := GATE access GATE twice in the order given, instead of using
the first value for both assignments. This ensures correct
operation if GATE is a memory-mapped input port. However, if
GATE is passed as a reference parameter, references to the
parameter may be optimized away.

ORIGIN- variables are never allocated or initialized by the
compiler. The associated address only indicates where the
variable is found. ORIGIN always implies a memory address.

Giving the ORIGIN attribute in brackets immediately following the
VAR keyword is ambiguous and generates an error during
compilation. (It would be unclear to the compiler whether all
variables following should be at the same address or whether
addresses should be assigned sequentially.)

VAR [ORIGIN 0] FIRST, SECOND: BYTEi {Invalid}

ORIGIN permits a segmented address using "segment
notation.

offset"

VAR SEGVECT [ORIGIN 16#000l:l6#FFFE]: WORD;

A variable with a segmented ORIGIN cannot be used as the control
variable in a FOR statement.

The READON LV Attribute

The READONLY attribute prevents assignments to a variable. It
also prevents the variable being passed as a VAR or VARS
parameter. Also, a READONLY variable cannot be read with a READ
statement or used as a FOR control variable. You may use
READONLY with any of the other attributes.

Example of READONLY variable declaration:

VAR [READONLY] I, J [PUBLIC], K [EXTERN]: INTEGER;
{I, J, and K are all READONLY; J is
also PUBLICi K is also EXTERN.}

CONST and CONSTS parameters, as well as FOR
variables (while in the body of the loop), are
given the READONLY attribute. READONLY is the
attribute that does not imply STATIC allocation.

loop control
automatically

only variable

A variable that is both READONLY and either PUBLIC or EXTERN in
one source file is not necessarily READONLY when used in another
source file. The READONLY attribute does not apply to procedures
and functions.

7-11

Combining Attributes

You may give a variable multiple attributes.
attributes with commas and enclose the list in
shown:

Separate the
br ac kets, as

VAR [STATIC]
X, Y, Z [ORIGIN #FFFE, READONLY]: INTEGER;

In the above example, Z is a STATIC, READONLY var iable wi th an
ORIGIN at hexadecimal FFFE. The following rules apply when you
combine attributes:

7-12

1. If you give a variable the EXTERN attribute, you should
not give it the ORIGIN, or PUBLIC attributes in the
current compiland.

2. If you give a variable the ORIGIN attribute, you should
not give it the EXTERN attribute. However, you may
combine ORIGIN with PUBLIC.

3. If you give a variable the PUBLIC attribute, you should
not give it the EXTERN attribute. However, you may
combine PUBLIC with ORIGIN.

4. You can use STATIC and READONLY wi th any other
attributes.

CONTENTS

CHAPTER 8
EXPRESSIONS

SIMPLE EXPRESSIONS

BOOLEAN EXPRESSIONS

SET EXPRESSIONS

FUNCTION DESIGNATORS

EVALUATING EXPRESSIONS

OTHER FEATURES OF EXPRESSIONS

The EVAL Procedure

The RESULT Function

The RETYPE Function

8-1

Expressions are constructions that evaluate to values. For
example, the following are all expressions:

A + 2

(A + 2)

(A + 2) * (B - 3)

The operands in an expression may be a 'value or. any other
expression. When any operator is applied to an expression, that
expression is called an operand. Wi th parentheses for grouping
and operators that use other expressions, you can construct
expressions as long and complicated as desired.

operations follow the rules of operator precedence.
four precedence laws in the following order:

1. Unary

NOT [ADR ADS]

2. Multiplying

* / DIV MOD AND.

3. Adding

+ - OR (XOR)

4. Relational

= <> <=)= < > IN

There are

An expression is ei ther a val ue or the resul t of applying an
operator to one or two values. Although a value can be of almost
any type, most operators only apply to the following types:

INTEGER
WORD
REAL

INTEGER4
BOOLEAN
SET

The relational operators also apply for the CHAR, enumerated,
string, and reference types. For all.,operators (except the set
operator IN), operands must have compatible types~

SIMPLE EXPRESSIONS
As a rule, the operands and the value resulting from an operation
are all ~f the same type. Occasionally, however, the type of an
operand'ls changed to th~~type required bY,an operator~

8-2

This conversion occurs on two levels: one for constant operands
only, and one for all operands. INTEGER to WORD conversion
occurs for constant operands only; conversion from INTEGER to
REAL and from INTEGER or WORD to INTEGER4 occurs for all
operands.

If necessary in constant expressions, INTEGER val ues change to
WORD type. You should be cautious when mixing INTEGER and WORD
constants in expressions. For example, if CBASE is the constant
16#C0"" and DELTA is the constant -1, the following expression
gives a WORD overflow:

WRD (CBASE) + DELTA

The overflow occurs because DELTA is converted to the WORD value
16#FFFF, and 16#C000 plus 16#FFFF is greater than MAXWORD.
However, the following would work:

WRD (ORD (CBASE) + DELTA)

This expression gives the INTEGER value -16385, which changes to
WORD l6#BFFF. If conversion is needed by an operator or for an
assignment, the compiler makes the following conversions:

1. from INTEGER to REAL or INTEGER4

2. from WORD to INTEGER4

The following rules determine the type of the result of an
expression involving these simple types:

1. + *
These operators operate on INTEGERs, REALs, WORDs, and
INTEGER4s, as shown in the following examples:

+123
A + 123
-23.4
A - 8
A * B * 3

Mixtures of REALs wi th INTEGERs and of INTEGER4s wi th
INTEGERs or WORDS are allowed. Where both operands are
of the same type, the resul t type is the type of the
operands. If either operand is REAL, the result type is
REAL; otherwise, if either operand is INTEGER4, the
result type is INTEGER4.

Unary plus (+) and minus (-) are supported, along with
the binary forms. Unary minus on a WORD type is 2' s
complement (NOT is lis complement); since there are no
negative WORD values, this always generates a warning.

8-3

8-4

Because unary minus has the same precedence level as the
adding operators:

(X * -1) {Invalid}

(-256 AND X) {IS interpreted as -(256 AND X)}

2. /

This is a "true" division operator. The result is
always REAL. Operands may be INTEGER or REAL (not WORD
or INTEGER4).

3. DIV MOD

Examples of division:

34 / 26.4 =
18 / 6

1.28787 •••
3.00000 •••

These are the operators for integer divide quotient and
remainder, respectively. The left operand (dividend) is
divided by the right operand (divisor).

Examples of integer division:

123 MOD 5 3
-123 MOD 5 -3 {Sign of result is}

{sign of dividend }
123 MOD -5 3
1.3 MOD 5 {Invalid with REAL operands}
123 DIV 5 = 24
1.3 DIV 5 {Invalid with REAL operands}

Both operands must be of the same type: INTEGER, WORD,
or INTEGER4 (not REAL). The sign of the remainder (MOD)
is always the sign of the dividend.

The semantics for DIV and MOD with negative operands,
are different from ISO Pascal but the resulting code is
more efficient. programs intended to be portable should
not use DIV and MOD unless both operands are .positive.

4. AND OR XOR NOT

These operators are bitwise logical functions. Operands
must be INTEGER or WORD or INTEGER4 (never a mixture),
and cannot be REAL. The resul t has the type of the
operands.

NOT is a bitwise one's complement operation on the

single operand. If an INTEGER variable V has the value
MAXINT, NOT V gives the invalid INTEGER value -32768.
This generates an error if the $INITCK is on and the
value is used later in a program.

Given the following initial INTEGER values,

x = 2#1111000011110000
Y = 2#1111111100000000

AND, OR, XOR, and NOT perform the following functions:

X AND Y

X OR Y

X XOR Y

NOT X

1111000011110000
1111111100000000

1111000000000000

1111000011110000
1111111100000000

1111111111110000

1111000011110000
1111111100000000

0000111111110000

1111000011110000

0000111100001111

BOOLEAN EXPRESSIONS
The Boolean operators available in pascal are:

NOT
XOR
>
>=

AND

<>

OR
<
<=

You may also use P <> Q as an exclusive OR function. Since FALSE
< TRUE, P <= Q denotes the Boolean operation IIp implies Q."
Furthermore, the Boolean operators AND and OR are not the same as
the WORD and INTEGER operators of the same name that are bitwise
logical functions. The Boolean AND and OR operators may or may
not evaluate their operations. Consider the following:

WHILE (I <= MAX) AND (V [I] <> T) DO I := I + 1;

If array V has an upper bound MAX, then the evaluation of V [I]

8-5

for I > MAX is a runtime error. This evaluation mayor may not
take place. Sometimes both operands are evaluated during
optimization, and sometimes the evaluation of one may cause the
evaluation of the other to be skipped. In the latter case,
either operand may be evaluated first.

Alternatively you can use the following construction:

WHILE I <= MAX DO
IF V [I] <> T THEN I := I + I ELSE BREAK;

The relational operators produce a Boolean result. The types of
the operands of a relational operator (except for IN) must be
compatible. If they are not compatible, one must be REAL and the
other compatible with INTEGER.

Reference types can only be compared with = and <>. To compare
an address type with one of the other relational operators, you
must use address field notation, as follows:

IF (A.R < B.R) THEN <statement>;

Except for the string types STRING and LSTRING, you cannot
compare files, arrays, and records as wholes. Two STRING types
must have the same upper bound to be compared; two LSTRINGs may
have different upper bounds.

In LSTRING comparison, characters past the current length are
ignored. If the current length of one LSTRING is less than the
length of the other and all characters up to the length of the
shorter are equal, the compiler assumes the shorter one is "less
than" the longer one. However, two LSTRINGs are not considered
equal unless all current characters are equal and their current
lengths are equal.

The inclusion of special "not-a-number" (NaN) values means that a
comparison between two real numbers can have a result other than
less-than, equal, or greater-than. The numbers can "be unordered,
meaning one or both are NaNs. An unordered result is the same as
"not equal, not less than, and not greater than."

For example, if variables A or B are NaN val ues:

1. A < B is false.

2. A <= B is false.

3. A > B. is fal se •

4. A >= B is fal se.

8-6

5. A = B is false.

6. A <> B is, however, true.

REAL compa r i sons do no t fo llow the same rul es as 0 the r
comparisons in many ways. A < B is not always the same as NOT (B
<= A); this prevents some optimizations otherwise done by the
compiler. If A is a NaN, then A <> A is true; in fact, this i~ a
good way to check for a NaN value.

SET EXPRESSIONS
Pascal uses several operators in a different way when applied to
sets, as follows:

Operator

+

*
<>
<= and >=
< and >
IN

Meaning in Set Operations

Set union
Set difference
Set intersection
Test set equality
Test set inequality
Test subset and superset
Test proper subset and superset
Test set membership

Any operand whose type is SET OF S, where S is a subrange of T,
is treated as if it were SET OF T. (T is restricted to the range
from 0 to 255 or the equivalent ORO values.) Either both operands
must be PACKED or neither must be PACKED, unless one operand is a
constant or constructed set.

With the IN operator, the left operand (an ordinal) must be
compatible with the base type of the right operand (a set). The
expression X IN B is TRUE if X is a member of the set B, and
FALSE otherwise. X can be outside of the range of the base type
of B legally. For example, X IN B is always false if the
following statements are true:

X
B

I
SET OF 2 •• 9

{I is compatible, but not assignment
compatible, with 2 •• 9.}

n<n and n>n are extended operators, since ISO Pascal does not
support them for sets. They test that a set is a proper subset
or superset of another set. Proper subsetting does not permit a
set as a subset if the two sets are equal.

Expressions involving sets may use the "set constructor ," which
gives the elements in a set enclosed in square brackets. Each
element can be an expression whose type is in the base type of
the set or the lower and upper bounds of a range of elements in

8-7

the base type. Elements cannot be sets themselves.

Examples of sets involving set constructors:

SET_COLOR := [RED, BLUE •. PURPLE] - (YELLOW]

SET NUMBER :==
[12, J+K, TRUNC (EXP (X)) •. TRUNC (EXP (X+l))]

Set constructor syntax is similar to CASE constant syntax~ If X
> Y then [X •. Y] denotes the empty set. Empty brackets also
denote the empty set and are compatible with all sets. Also, if
all elements are constant, a set constructor is the same as a set
constant.

Like other structured constants,
constant set can be included in a
[RED •. BLUE]. This does not mean
variable elements can be given
NUMBERSET [I •• J] is invalid if I or

the type identifier for a
set constant, as in COLORSET
that a set constructor with
a type in an expression:

J is a variable.

A set constructor such as [I, J, •• K] or an untyped set such as
[1, 5 •• 7], is compatible with either a PACKED or an unpacked set.
A typed set constant, such as DIGITS [1, 5 •• 7], is only
compatible with sets that are PACKED or unpacked, respectively,
in the same way as the explicit type of the constant.

FUNCTION DESIGNATORS
A function designator specifies the activation of a function. It
consists of the function identifier, followed by a list of
"actual parameters" in parentheses:

FUNCTION ADD (A, B: INTEGER): INTEGER; {Declaration of the
function ADD.}

X := ADD (7, X* 4) + 123; {ADD is function
designator.}

These actual parameters substi tute, posi tion for posi tion, for
their corresponding "formal parameters," defined in the function
declaration.

Parameters
functions.
be omi tted.
Functions.

can be variables, expressions, procedures, or
If the parameter list is empty, the parentheses must

(For more information see chapter 10, procedures and

The order of evaluation and binding of the actual parameters
varies, depending on the optimizations used. If the $SIMPLE
metacommand is on, the order is left to right.

8·8

Functions have two different uses:

1. In the mathematical sense, they take one or more values
from a domain to produce a resulting value in a range.
In this case, if the function never does anything else
(such as assign to a global variable or do
input/output), it is called a "pure" function.

2. The second type of function may have side effects, such
as changing a static variable or a file. Functions of
this second kind are said to be "impure."

In ISO Pascal, a function may return ei ther a simple type or a
pointer. A pointer returned by a function can only be compared,
assigned, or passed as a value parameter. At the extend level, a
function can return any assignable type (i.e., any type except a
file or super array). The usual selection syntax for reference
types, arrays, and records is allowed, following the function
designator.

Examples of function designators:

SIN (X+Y)

NEXTREC (17) ~ {Here the function return type is a pointer,
and the returned pointer value is
dereferenced.}

It is more efficient to return a component of a structure than
to return a structure and then use only one component of it. The
compiler treats a function that returns a structure like a
procedure, with an extra VAR parameter representing the result of
the function. The function's caller allocates an unseen variable
(on the stack) to receive the return value, but this "variable"
is only allocated during execution of the statement that contains
the function invocation.

EVALUATING EXPRESSIONS
An operator at a higher level is appl ied before one at a lower
level. For instance, the following expression evaluates to 7 and
not to 9:

1 + 2 * 3

You can use parentheses to change operator precedence. Thus, the
following evaluates to 9 rather than 7:

(1 + 2) * 3

8·9

If the $SIMPLE is on, sequences of operators of the same
precedence are executed from left to right. If the swi tch is
off, the compiler may rearrange expressions and evaluate common
subexpressions only once, in order to generate optimized code.

x * 3 + 12

is an optimization of:

3 * (6 + (X - 2»

These optimizations may occasionally give you unexpected overflow
errors. For example,

(I - 100) + (J - 100)

will be optimized into the following:

(I + J) - 200

This may result in ~an overflow error, although the original
expression did not (e.g., if "I" and "J" were each 16400).

An expression in your source file mayor may not actually be
evaluated when the program runs. For example, the expression F(X
+ Y) *0 is always zero, so the sUbexpression (X + Y) and the
function call need not be executed.

The compiler does not optimize real expressions as much as, for
example, integer expressions, to make sure that the result of a
real expression is always what a simple evaluation of the
expression, as given, would be. For example, the integer
expression

«1 + I) - 1) * J

is optimized to:

I * J

but the same expression with real variables is not optimized
since the results may be different due to precision loss. Common
subexpressions, such as 2 * X in SIN (2 * X) * COS (2 * X), may
still be calculated just once and reloaded as necessary, but they
are saved in a special 80-bit intermediate precision.

The order of evaluation may be fixed by parentheses:

(A + B) + C

is evaluated by adding A and B first, but

8-10

A + B + C

may be evaluated by adding A and B, Band C, or even A and C
first.

Any expression can be passed as a CaNST or CONSTS parameter or
have its "address" found. The expression is calculated and
sto red in a tempo rary var iabl e on the stac k, and the add ress 0 f
this temporary variable can be used as a reference parameter or
in some other address context.

To avoid ambiguities, enclose such an expression with operators
or function calls in parentheses. For example, to invoke a
procedure Faa (CaNST x, Y: INTEGER), Faa {I, (J+14)) must be used
instead of Faa (I, J+14). This implies a subtle distinction in
the case of functions. For example:

FUNCTION SUM (CaNST A, B: INTEGER): INTEGER;
BEGIN

SUM := A;
IF B <> 0 THEN

SUM := SUM {SUM, {SUM (B, 0) - 1)) + 1;
END;

In this example, SUM is called recursively subtracting one from B
until B is zero.

The use of a function identifier in a WITH statement follows a
similar rule. For example, given a parameterless function,
COMPLEX, which returns a record, "WITH COMPLEX" means "WITH the
current val ue of the function." This can only occur inside the
COMPLEX function itself. However, "WITH (COMPLEX)" causes the
function to be called and the resul t assigned to a temporary
local variable.

Another way to describe this is to distinguish between "address"
and "value" phrases. The left-hand side of an assignment, a
reference parameter, the ADR and ADS operators, and the WITH
statement all need an address. The right hand side of an
assignment and a value parameter all need a value.

If an address is needed but only a value is available, the value
must be put into memory so it has an address. For constants, the
value goes in static memory; for expressions, the value goes in
stack (local) memory. A function identifier refers to the
current value of the function as an address, but causes the
function to be called as a value.

In the scope of a function, the intrinsic procedure RESULT
permits a reference to the current value of a function instead of
invoking it recursively. For a function F, this means ADR F and
ADR RESULT (F) are the same: the address of the current value of
F. RESULT fo rces use of the cur ren t val ue in the same way tha t
putting the function in parentheses, as in (F{X)), forces

8-11

evaluation of the function.

OTHER FEATURES OF EXPRESSIONS
EVAL and RESULT are two procedures available for use with
expressions. EVAL obtains the effect of a procedure from a
function; RESULT yields the current value of a function within a
function or nested procedure or function. The function RETYPE
allows you to change the type of a value.

The EVAL Procedure

EVAL evaluates its parameters without actually calling anything.
Generally, you use EVAL to obtain the effect of " a procedure from
a function. In such cases, the values returned by functions are
of no interest, so EVAL is only useful for functions with side
effects. For example, a function that advances to the next item
and also returns the item might be called in EVAL just to advance
to the next item, since there is no need to obta in a function
return value.

Examples of the EVAL procedure:

EVAL (NEXTLABEL (TRUE»
EVAL (SIDEFUNC (X, Y), INDEX (4), COUNT)

The RESULT Function

Within the scope of a function, the intrinsic procedure RESULT
permits a reference to the current value of a function instead of
invoking it recursively. For a function F, this means ADR F and
ADR RESULT (F) are the same; that is, the address of the current
value of F. RESULT forces use of the current value in the same
way that putting the function in parentheses as in (F (X» forces
evaluation of the function.

Examples of the RESULT function:

8-12

FUNCTION FACTORIAL (I: INTEGER): INTEGER;
BEGIN

FACTORIAL := 1;
WHILE I > 1 DO
BEGIN

FACTORIAL := I * RESULT (FACTORIAL);
I := I - 1;

END;
END;

FUNCTION ABSVAL (I: INTEGER): INTEGER;
BEGIN

ABSVAL := I;

IF I < 0 THEN ABSVAL := -RESULT (ABSVAL);
END;

The RETYPE Function

You can change the type of a value by using the RETYPE function.
If the new type is a structure, RETYPE can be followed by the

. usual selection syntax. You must be cautious in using RETYPE
since it works on the memory byte level and ignores whether the
low order byte of a two-byte number comes fi rst or second in
memory.

Examples of the RETYPE function:

RETYPE (COLOR, 3)
RETYPE (STRING2, I*J+K) [2]

{inverse of ORD}
{effect may vary}

8-13

CONTENTS

CHAPTER 9

STATEMENTS

STATEMENT SYNTAX

Labels

Statements Separation

Begin/End

SIMPLE STATEMENTS

Assignment Statements

Procedure Statements

The GOTO Statement

The BREAK, CYCLE, and RETURN Statements

STRUCTURED STATEMENTS

Compound Statements

Conditional Statements

The IF Statement

The CASE Statement

Repetitive Statements

The WHILE Statement

The REPEAT Statement

The FOR Statement

The BREAK and CYCLE Statements

The WITH Statement

Sequential Control

9-1

The body of a program, procedure, or function contains
statements. Statements denote "actions that the program can
execute. There are two types of statements, simple and
structured. A simple statement has no parts that are themselves
other statements; a structured statement consists of two or more
other statements.

STATEMENT SYNTAX
Pascal statements are separated by a semicolon (;) and enclosed
by reserved words such as BEGIN and END. A statement beg ins,
optionally, with a label. Each of these three elements of
statement syntax are discussed below:

Labels

Any statement referred to by a GOTO statement must have a label.
In standard Pascal a label consists of one or more digits;
leading zeros are ignored. Constant identifiers, expressions,
and nondecimal notation cannot serve as labels. In this extended
Pascal a label can also be an identifier. All labels must be
declared in a LABEL section.

Example using labels and GOTO statements:

PROGRAM LOOPS(INPUT,OUTPUT);
LABEL I, HAWAII, MAINLAND;

BEGIN
MAINLAND: GOTO 1;
HAWAII: WRITELN ('Here I am in Hawaii');
1: GOTO HAWAII

END.

A loop label is any label immediately preceding a looping
statement; WHILE, REPEAT, FOR, BREAK or CYCLE statement all refer
to a loop label.

Both a CASE constant list and a GOTO label may precede a
statement, in which case the CASE constants come first and then
the GOTO 1 abel. In the following exampl e, 321 is a CASE val ue,
123 is label:

321: 123: IF LOOP THEN GOTO 123

Statements Separation

Semicolons separate statements. Semicolons do not terminate
statements. For example, the following statements are separated
by semicolons:

9-2

BEGIN

END

10: WRITELN;
A := 2 + 3;
GOTO 10

A common error is to terminate the THEN clause in an IF/THEN/ELSE
statement with a semicolon. Thus, the following example
generates a warning message:

IF A
ELSE
IF A

2 THEN WRITELN;

3

Another common error is to put a semicolon after the DO in a
WHILE or FOR statement:

FOR I := 1 TO 10 DO;
BEGIN

A[I] := I;
B[I] := 10 - I;

END;

The above example will "execute" an empty ten times, then
execute the array assignments once. Since there are occasional
legitimate uses for repeating an empty statement, no warning is
given when this occurs. The semicolon also follows the reserved
word END at the close of a block of program statements.

Begin/End

Whenever you want a program to execute a group of statements, you
may enclose the block with the reserved words BEGIN and END. For
example, the following group of statements between BEGIN and END
will all be executed if the condition in the IF statement is
TRUE:

IF (MAX> 10) THEN
BEGIN

MAX = 10;
MIN = 0;
WRITELN (MAX,MIN)

END;
WRITELN (. done')

You can also substitute a pair of square brackets for the pair of
keywords BEGIN and END.

SIMPLE STATEMENTS
A simple statement is one in which no part constitutes another
statement. Simple statements are as follows:

9-3

1. the assignment statement

2. the procedure statement

3. the GOTO statement

4. the empty statement

5. the BREAK, CYCLE and RETURN statements.

The empty statement contains no symbols and denotes no action.
It is included in the definition of the language primarily to
permit you to use a semicolon after the last in a group of
statements enclosed between BEGIN and END.

Assignment Statements

The assignment statement replaces the current value of a variable
with a new value, which you specify as an expression. Assignment
is denoted by an adjacent colon and equal sign characters (:=).

Examples of assignment statements:

A := B

A[I] := 12 * 4 + (B * C)

A : = ADD (I, 1)

The value of the expression must be assignment compatible with
the type of the variable. Selection of the variable may involve
indexing an array or dereferencing a pointer or address. If it
does, the compiler may, depending on the optimizations performed,
mix these actions with the evaluation of the expression. If the
$SIMPLE metacommand is on, the expression is evaluated first.

Within the block of a function, an assignment to the identifier
of the function sets the value returned by the function. The
assignment to a function identifier may occur, either within the
actual body of the function or in the body of a procedure or
function nested within it.

If the $RANGECK is on, an assignment to a set, subrange, or
LSTRING var iable may imply a runtime call to the error checking
code.

The optimizer allows each section of code without a label or
other point that could receive control to be eligible for
rearrangement and common sUbexpression elimination. Naturally,
the order of execution is retained when necessary.

Given these statements,

9-4

X := A + C + B· ,
Y := A + B· ,
Z := A

the compiler might generate code to perform the following
operations:

1. Get the value of A and save it.

2. Add the value of B and save the result.

3. Add the val ue of C and assign it to X.

4. Assign the saved A + B value to Y.

5. Assign the saved A value to z.

This optimization occurs only if assignment to X and Y and
getting the value of A, B, or C are all independent. If C is a
function without the PURE attribute and A is a global variable,
evaluating C might change A. Then since the order of evaluation
within an expression in this case is not fixed, the value of A in
the first assignment could be the old value or the new one.

However, since the order of evaluation among statements is fixed,
the val ue of A in the second and thi rd assignments is the new
value. The following actions may limit" the ability of the
optimizer to find common subexpressions:

1. assignment to a nonlocal variable

2. assignment to a reference parameter

3. assignment to the referent of a po inter

4. assignment to the referent of an address variable

5. calling a proced ure

6. calling a function without the PURE attribute

The optimizer does allow a single variable" with two identifiers,
perhaps one as a global variable and one as a reference
parameter.

Procedure Statements

A procedure statement
procedure identifier.

PROCEDURE DO_IT;
BEGIN

executes the
For example:

procedure denoted by the

9-5

WRITELN('Did it')
END;

DO IT is now a statement that can be executed simply by invoking
its name:

DO IT

If you declare the procedure wi th a formal parameter list, the
procedure statement must include the actual parameters.
Predeclared procedures are also available. One of the
predeclared procedures is ASSIGN. You need not declare in order
to use it. For more information sec Chapter 11, Available
Procedures and Functions.

ASSIGN (INFILE, 'MYFILE')

Note that the ASSIGN procedure contains a parameter list. These
parameters are the actual parameters that are bound to the formal
parameters in the procedure declaration.

The GOTO Statement

A GOTO statement indicates that further processing continues at
another part of the program text, namely at the place of the
label. You must declare a LABEL in a LABEL declaration section,
before using it in a GOTO statement. The following restrictions
apply to the use of GOTO statements:

1. A GOTO must not jump to a more deeply nested statement,
that is, into an IF, CASE, WHILE, REPEAT, FOR, or WITH
statement. GOTOs from one branch of an IF or CASE
statement to another are permitted.

2. A GOTO from one procedure or function to a label in the
main program or in a higher level procedure or function
1S permitted. A GOTO may jump out of one of these
statements, so long as the statement is directly within
the body of the procedure or function. However, such a
jump generates extra code both at the location of the
GOTO and at the location of the label. The GOTO and
label must be in the same compiland, since labels,
unlike variables, cannot be given the PUBLIC attribute.

If the $GOTO metacommand is on, every GOTO statement is flagged
with a warning that reminds you that "GOTOs are considered
harmful." This may be useful either in an educational environment
or for finding all GOTOs in a program in order to locate a bug.
The J (jumps) column of the listing file contains the following:

9-6

1. A plus (+) or an asterisk (*) flags a GOTO to a label
later in the listing.

2. A minus sign (-) or an asterisk (*) marks a GOTO to a
label already encountered in the listing.

The BREAK, CYCLE, and RETURN Statements

The BREAK, CYCLE, and RETURN statements are allowed
to the simpl e sta temen ts al ready desc r i bed. These
perform the following functions:

1. BREAK exits the currently executing loop.

in addi tion
statements

2. CYCLE exits the current iteration of a loop and starts
the next iteration.

3. RETURN exits the current procedure, function, program,
or implementation.

All three statements are functionally equivalent to a GOTO
statement.

1. A BREAK statement is a GOTO to the first statement after
a repetitive statement.

2. A CYCLE statement is a GOTO to an implied empty
statement after the body of a repetitive statement.
This jump starts the next iteration of a loop. In
either a WHILE or REPEAT statement, CYCLE performs the
Boolean test in the WHILE or UNTIL clause before
executing the statement again; in a FOR statement, CYCLE
goes to the next value of the control variable.

3. A RETURN statement is a
statement after the last
procedure or function or
implementation.

GOTO to an implied empty
statement in the current

the body of a program or

The J (jump) column in the listing file contains a plus sign (+)
or an asterisk (*) for a BREAK statement, a minus sign (-) or an
asterisk (*) for a CYCLE statement, and an asterisk (*) for a
RETURN statement. For more information see the Listing File
Format under Chapter 14, Compiling, linking, and Executing
Programs.

BREAK and CYCLE have two forms, one wi th a loop label and one
without. If you give a loop label, the label identifies the loop
to exit or restart. If you don't give a label, the innermost
loop is assumed, as shown in the following example:

OUTER: FOR I := 1 TO Nl DO
INNER: FOR J := 1 TO N2 DO

9·7

IF A [I, J] = TARGET THEN BREAK OUTER;

STRUCTURED STATEMENTS
Structured statements are themselves composed of other
statements. There are four kinds of structured statements:

1. compound statements

2. conditional statements

3. repetitive statements

4. WITH statement

The control level is shown in the the C (control) column of the
listing file. The value in the C column is incremented each time
control passes to a nested sta temen t; conver sel y, thi s val ue is
decremented each time control passes back to the nesting
statement. This helps you search for a missing or extra END in a
program.

Compound Statements

The' compound statement is a sequence of simple statements,
enclosed by the reserved words BEGIN and END. The components of
a compound statement execute in the same sequence as they appear
in the source file.

Examples of compound statements:

BEGIN

END

TEMP := A [I];
A[I] := A [J];
A [J] := TEMP

BEGIN
OPEN DOOR;
LET EM IN;
CLOSE DOOR;

END -

All conditional and repetitive control structures (except REPEAT)
operate on a single statement, not on multiple statements with
ending delimiters. You may substitute a pair of square brackets
for the BEGIN and END pair of reserved words. Note that a right
bracket (]) matches only a left bracket ([) (not a BEGIN, CASE,
or RECORD). In other words, right bracket is not a synonym for
END.

9-8

Brackets may not be used as synonyms for BEGIN and END to enclose
the body of a program, implementation, procedure, or function;
only BEGIN and END can be used for this purpose.

Examples of brackets replacing BEGIN and END:

IF FLAG THEN
[X : = 1; Y : = -1]

ELSE
[X:= -Ii Y := 0];

WHILE P.N <> NIL DO
[Q := Pi P:= P.N; DISPOSE (Q)];

Conditional Statements

A conditional statement selects for execution only one of its
component statements. The condi tional statements are the IF and
CASE statements. You should use the IF statement for one or two
conditions, the CASE statement for multiple conditions.

The IF Statement

The IF statement allows for conditional execution of a statement.
If the Boolean expression following the IF is true, the statement
following the THEN is executed. If the Boolean expression
following the IF is false, the statement following the ELSE, if
present, is executed.

Examples of IF statements:

IF I > 0 THEN
I := I - 1

ELSE I := I + 1

IF (I <= TOP) AND (ARRI [I] <> TARGET) THEN
I := I + 1

IF I <= TOP THEN
IF ARRI [I] <> TARGET THEN

I := I + 1

IF I = 1 THEN
IF J = 1 THEN

WRITELN(II equals JI)
ELSE

WRITELN(IDONE only if I = 1 and J <> 11)
{This ELSE is paired with the most deeply
nested IF. Thus, the second WRITELN is
executed only if I = 1 and J <> I.}

IF I 1 THEN BEGIN

9-9

IF J = 1 THEN WRITELN('I equals J')
END

ELSE
WRITELN('DONE only if I <> I')

{Now the ELSE is paired with the first IF,
since the second IF statement is
bracketed by the BEGIN/END pair. Thus,
the second WRITELN is executed if I <> I.}

A semicolon (;)
compiler skips
message.

preceding
it during

an ELSE is
compi I a tion

always incorrect. The
and issues a warning

The CASE Statement

The CASE statement consists of an expression (called the CASE
index) and a list of statements. Each statement is preceded by a
constant list, called a CASE constant list. The one statement
executed is the one whose CASE constant list contains the current
value of the CASE index. The CASE index and all constants must
be of compatible, ordinal types.

Examples of CASE statements:

CASE OPERATOR OF
PLUS: X:= X + Yj
MINUS: X := X - Yi
TIMES: X := X * Y

END

CASE NEXTCH OF
'A' •• 'Z', "
'+', '-', '*' , /'
OTHERWISE

{OPERATOR is the CASE index. PLUS,
MINUS, and TIMES are CASE constants.}

IDENTIFIER;
OPERATOR;

WRITE ('Unknown Character')
END

The CASE constant syntax is the same as for RECORD variant
declarations. In standard Pascal, a CASE constant is one or more
constants separated by commas. With this extended Pascal you can
substitute a range of constants, such as 'A' •• 'Z', for a
constant. No constant value can apply to more than one
statement.

The CASE statement can also be ended wi th an OTHERWISE clause.
The OTHERWISE clause contains additional statements to be
executed in the event that the CASE index value is not in the
given set of CASE constant values. Note that OTHERWISE cannot be
used with RECORD declarations. If the CASE index value is not in
the set and no OTHERWISE clause is present one of the of two
things happen:

9-10

1. If the $RANGECK is on, a runtime error is generated.

2. If the $RANGECK is off, the result is undefined.

Depending on optimization, the code generated by the compiler for
a CASE statement may be either a "jump table" or series of
comparisons (or both). If it is a jump table, a jump to an
arbitrary location in memory can occur if the control variable is
out of range and the range checking switch is off.

Repetitive Statements

Repetitive statements specify repeated execution of a statement.
These statements are functionally equivalent to a GOTO but easier
to use.

The WHILE Statement

The WHILE statement repeats a statement zero or more times, until
a Boolean expression becomes false.

Examples of WHILE statements:

WHILE P <> NIL DO P := NEXT (P)

WHILE NOT MICKEY DO
BEGIN

NEXTMOUSEi
MICE := MICE + 1

END

The WHILE statement should be used when no iterations of the loop
are desired. The REPEAT statement should be used to execute
loops where at least one iteration of the the loop is desired.

The REPEAT Statement

The REPEAT statement repeats a sequence of statements
one or more times, until a Boolean expression becomes
true.

Examples of REPEAT statements:

REPEAT
READ (LINEBUFF);
COUNT := COUNT + 1

UNTIL EOF;

REPEAT GAME UNTIL TIRED;

9-11

You should use the REPEAT statement to execute statements, one or
more times until a condition becomes true. This differs from the
WHILE statement in which a single statement may not be executed
at all.

The FOR Statement

The FOR statement indicates to the compiler to execute a
statement repeatedly while a progression of values is assigned to
a variable, called the control variable of the FOR statement.
The val ues assigned start wi th a val ue called the ini tial val ue
and end with one called the final value.

The FOR statement has two forms, one where the control var iable
increases in value and one where the control variable decreases
in value:

FOR I := 1 TO 10 DO {I is the control variable.}
SUM := SUM + VICTORVECTOR [I];

FOR CH := 'z' DOWNTO 'A' bo
WR I TE. (CH) ;

{CH is the control variable.}

You can also use a FOR statement to step through the values of a
set, as follows:

FOR TINT := LOWER (SHADES) TO UPPER (SHADES) DO
IF TINT IN SHADES
THEN PAINT_AREA (TINT);

The following are explicit rules defined within ISO pascal
regarding the control variables in FOR statements:

9-12

1. It must be of an ordinal type.

2. It must also be an entire variable, not a component of a
structure.

3. It must be local to the immediately enclosing program,
procedure, or function and cannot be a reference
parameter of the procedure or function.

However, in this extended Pascal, the control var iable
may also be any STATIC variable, such as a variable
declared at the program level, unless the variable has a
segmented ORIGIN attribute.

4. No assignments to the control variable are allowed in
the repeated statement. This error is caught by making
the control variable READONLY within the FOR statement;
it is not caught when a procedure or function invoked by

the repeated statement alters the control variable. The
control variable cannot be passed as a VAR (or VARS)
parameter to a procedure or function.

5. The initial and final values of the control variable
must be compatible with the type of the control
variable. If the statement is executed, both the
initial and final values must also be assignment
compatible with the control variable. The initial value
is always evaluated first, and then the final value.
Both are evaluated only once before the statement
executes.

The statement following the DO is not executed at all if:

1. The initial value is greater than the final value in the
TO case.

2. The initial value is less than the final value in the
DOWNTO case.

The sequence of values given the control variable starts with the
initial value. This sequence is defined with the SUCC function
for the TO case or the PRED function for the DOWNTO case until
the last execution of the statement, when the control variable
has its final value.

The value of the control variable, after a FOR statement
terminates naturally (whether or not the body executes), is
undefined. It may vary due to optimization and, if $INITCK is
on, may be set to an uninitialized value. However, the value of
the control variable after leaving a FOR statement with GOTO or
BREAK is defined as the value it had at the time of exit.

At the standard level, the body of a FOR statement mayor may not
be executed, so a test is necessary to see whether the body
should be executed at all. However, if the control variable is
of type WORD (or a subrange) and its initial value is a constant
zero, the body must be executed no matter what the final val ue.
In this case, no extra test need be executed and no code is
generated to perform such a test.

You may use temporary control variables:

FOR VAR control-variable

The prefix VAR causes the control variable to be declared local
to the FOR sta tement (i. e., at a lower scope) and need not be
declared in a VAR section. Such a control variable is not
available outside the FOR statement, and any other variable with
the same identifier is not available within the FOR statement
itself. Other synonymous variables are, however, available to
procedures or functions called within the FOR statement.

9-13

Examples of temporary control variables:

FOR VAR I := 1 TO 100 DO
SUM := SUM + VICTOR [I]

FOR VAR COUNTDOWN := 10 DOWNTO LIFT OFF DO
MONITOR ROCKET

The BREAK and CYCLE Statements

In theory, a program using the BREAK and CYCLE statements does
not need to use any GOTO statements. Each of these two
statements has two forms, one with a loop label and one without.
A loop label is a normal GOTO label prefixed to a FOR, WHILE, or
REPEAT statement. You should use integers for labels referenced
by GOTOs and identifiers for loop labels.

Examples of CYCLE and BREAK statements:

LABEL SEARCH, CLIMB;

SEARCH: WHILE I <= I TOP DO
IF PILE [I] TARG~T THEN BREAK SEARCH
E LS E I : = I + 1;

FOR I := 1 TO N DO
IF NEXT [I] NIL THEN BREAK;

CLIMB: WHILE NOT ITEM~.LEAF DO
BEGIN

IF ITEM~.LEFT <> NIL
THEN [ITEM := ITEM~.LEFT; CYCLE CLIMB];

IF ITEM~.RIGHT <> NIL
THEN [ITEM := ITEM~.RIGHT; CYCLE CLIMB];

WRITELN ('Very strange node');
BREAK CLIMB

END;

The WITH Statement

The WITH statement opens the scope of a statement to include the
fields of one or more records, so you can refer to the fields
directly. For example, the following statements are equivalent:

WITH PERSON DO WRITE (NAME, ADDRESS, PHONE)
WRITE (PERSON.NAME, PERSON.ADDRESS, PERSON. PHONE)

The record given may be a variable, constant identifier,

9-14

structured constant, or function identi fier; it may not be a
component of a PACKED structure. If you use a function
identifier, it refers to the function's local result variable.
If the record given in a WITH statement is a file buffer
variable, the compiler issues a warning, since changing the
position in the WITH statement may cause an error.

The record given can also be any expression in parentheses, in
which case the expression is evaluated and the result assigned to
a temporary (hidden) variable. If you want to evaluate a
function designator, you must enclose it in parentheses.

You can give a list of records after the WITH, separated by
commas. Each record must be of a different type from all the
others, since the field identifiers refer only to the last
instance of the record wi th the type. These statements are
equivalent:

WITH PMODE, QMODE DO statement
WITH PMODE DO WITH QMODE DO statement

Any record var iable of a WITH sta temen t tha t is a componen t of
another variable is selected before the statement is executed.
Active WITH variables should not be passed as VAR or VARS
parameters, nor can their pointers be passed to the DISPOSE
procedure. However, these errors are not caught by the compiler.
Assignments to any of the record variables in the WITH list or
components of these var iables are allowed, as long as the WITH
record is a variable.

Every WITH statement allocates an address variable that holds the
address of the record. If the record variable is on the heap,
the pointer to it should not be DISPOSEd withih the WITH
statement. If the record variable is a file buffer, no I/O
should be done to the file within the WITH statement.

Sequential Control

To increase execution speed or to ensure correct evaluation, it
is often useful in IF, WHILE, and REPEAT statements to treat the
Boolean exprsssion as a series of tests. If one test fails, the
remaining tests are not executed. The sequential control
operators provide for the following tests:

1. AND THEN

X AND THEN Y is false if X is false; Y is only evaluated
if X is true.

2. OR ELSE

OR ELSE Y is true if X is true; Y is only evaluated if
X is false.

9-15

If you use several sequential control operators, the compiler
evaluates them strictly from left to right. You may only include
these operators in the Boolean expression of an IF, WHILE, or
UNTIL clause; they may not be used in other Boolean expressions.
Furthermore, they may not occur in parentheses and are evaluated
after all other operators.

Examples of sequential control operators:

9-16

IF SYM <> NIL AND THEN SYM~.VAL < 0 THEN
NEXT SYMBOL

WHILE I <= MAX AND THEN VECT [I] <> KEY DO
I := I + 1;

REPEAT GEN (VAL)
UNTIL VAL = 0 OR ELSE (QU DIV VAL) = 0;

WHILE POOR AND THEN GETTING POORER
OR ELSE BROKE AND THEN BANKRUPT DO

GET RICH

CHAPTER 10

PROCEDURES AND FUNCTIONS
CONTENTS

PROCEDURES

FUNCTIONS

ATTRIBUTES AND

The FORWARD

The EXTERN

The PUBLIC

DIRECTIVES

Directive

Directive

Attribute

The ORIGIN Attribute

The PURE Attribute

PROCEDURE AND FUNCTION PARAMETERS

Value Parameters

Reference Parameters

Super Array Parameters

Constant and Segment Parameters

Procedural and Functional Parameters

10-1

procedures and functions act as subprograms that execute under
the supervision of a main program. Unlike programs, however,
procedures and functions can be nested within each other and can
even call themselves. Furthermore, they have sophisticated
parameter passing capabilities that programs lack.

Procedures are invoked as program statements; functions can be
invoked in program statements wherever a value is called for.
The general format for procedures and functions is similar to the
format for programs. The format includes a heading,
declarations, and a body.

Example of a procedure declaration:

PROCEDURE MODEL (I: INTEGER; R: REAL); {Heading}

LABEL 123; {Beginning of declaration section}
CONST ATOP = 199;
TYPE INDEX = 0 •• ATOP;
VAR ARAY: ARRAY [INDEX] OF REAL;

J: INDEX;

FUNCTION FONE (RX: REAL): REAL;
BEGIN

FONE := RX * I
END;

PROCEDURE FOUT (RY: REAL);
BEGIN

WRITE ('Output is " RY)
END;

{Function declaration}

{Procedure declaration}

BEGIN {Body of procedure MODEL}
FOR J := 0 TO ATOP DO

IF GLOBALVAR THEN
FOUT (FONE (R + ARAY [J])){Activation of procedure

FOUT with value return­
by function FONE

ELSE
GOTO 123;

123: WRITELN ('Done');
END;

The declaration of a procedure or function associates an
identifier with a portion of a program. Later, you can activate
that portion of the program with the appropriate procedure
statement or function designator.

10-2

PROCEDURES
The above example illustrates the general format of a procedure
declaration. The heading is followed by:

1. declarations for labels, constants, types, variables,
and values

2. local procedures and functions

3. the body, which is enclosed by the reserved words BEGIN
and END

When the body of a procedure finishes execution, control returns
to the program element that called it. At the standard level,
the order of declarations must be as follows:

1. LABEL

2. CONST

3. TYPE

4. VAR

5. procedures and functions

At the extended level, you can have any number of LABEL, CONST,
TYPE, VAR, and VALUE sections, as well as procedure and function
declarations, in any order. However, putting variable
declarations after procedure and function declarations guarantees
that these variables will not be used by any of the procedures or
functions.

In general, the initial values of variables are not defined. The
VALUE section, which should follow the VAR section, lets you
explicitly initialize program, module, implementation, STATIC,
and PUBLIC variables. If the initialization switch ($INITCK) is
on, all INTEGER, INTEGER subrange, REAL, and pointer variables
are set to an uninitialized value. File variables are always
initialized, regardless of the setting of the initialization
switch.

FUNCTIONS
Functions are the same as procedures, except that they are
invoked in an expression instead of a statement and they return a
val ue.

Function declarations define the parts of a program that compute
a value. Functions are activated when a function designator,
which is part of an expression, is evaluated.

10-3

A function declaration has the same format as a procedure
declaration, except that the heading also gives the type of value
returned by the function.

Example of a function heading:

FUNCTION MAXIMUM (I, J: INTEGER): INTEGER;

Within the block of a function, either in the body itself or in a
procedure or function nested within the block, at least one
assignment to the function identifier must be executed to set the
return value. The compiler doesn't check for this assignment at
runtime, unless the initialization switch is on and the returned
type is INTEGER, REAL, or a pointer. However, if there is no
assignment at all to the function identifier, the compiler issues
an error message.

At the standard level, functions can return any simple type
(ordinal, REAL, or INTEGER4) or a pointer.- At the extended
level, functions can return any simple, structured, or reference
type. However, they cannot return any type that cannot be
assigned (i.e., a super array type or a structure containing a
file, although a super array derived type is permitted).

A function
recursively,
function.

identifier in
rather than

an expression invokes the
giving the current value

function
of the

To obtain the current val ue, you must use the function RESULT,
which is available at the extended level. This function takes
the function identi fier as a parameter. The following is an
example of RESULT function used to obtain the current value of a
function within an expression:

FUNCTION FACT (F: REAL): REAL;
BEGIN

FACT := 1;
WHILE F > 1 DO

BEGIN

END

FACT := RESULT (FACT) * F;
F := F-l

END

Using the RESULT function is more efficient than using a separate
local variable for the value of the function and then assigning
this local variable to the function identifier before returning.
If the function has a structured value, the usual component
selection syntax can follow the RESULT function.

A function identifier on the left side of an assignment refers to
the function's local variable, which contains its current value,
instead of invoking the function recursively. Other places where
using the function identifier refers to this local variable are

10-4

the following:

1. a reference parameter

2. the record of a WITH statement

3. the operand of an ADR or ADS operator

All of these uses involve getting the address (not the value) of
a variable.

Instead of using the function I s local var iable, you may want to
invoke the function and use the return value. Getting the
address of an expression involves evaluating the expression,
putting the resulting value into a temporary (hidden) variable,
and using the address of this variable. To do this for a
function, you must force evaluation by putting the function
designator in parentheses, as follows:

TYPE IREC RECORD
I: INTEGER;

END;

FUNCTION SUM (A, B: INTEGER): IREC; {Return sum of A and B.}

BEGIN
IF TUESDAY THEN
BEGIN

IF B = 0 THEN BEGIN SUM :=
WITH (SUM (A,B-I))

DO SUM.I := I + I
END
ELSE

WITH SUM
DO I := A + B;

END;

ATTRIBUTES AND DIRECTIVES

{On Tuesdays, we recurse.}

A; RETURN END;
{Call SUM recursively.}
{I is result of call.}

{I is local variable.}

An attr ibute gives add i tional info rmation about a procedure or
function. Attributes are available at the extended level of
pascal. They are placed after the heading, enclosed in brackets
and separated by commas. Available attributes include ORIGIN,
PUBLIC, and PURE.

A directive gives information about a procedure or function, but
it also indicates that only the heading of the procedure or
function occurs, by replacing the block (declarations and body)
normally included after the heading.

EXTERN and FORWARD are the only directives available. EXTERN can
only be used with procedures or functions directly nested in a

10-5

program, module, implementation, or interface. This restriction
prevents access to nonlocal stack variables. The following
atttributes and directives apply to procedures and functions:

Name Purpose

FORWARD A directive. Lets you call a procedure or
function before you give its block in the source
file.

EXTERN A directive. Indicates that a procedure or
function resides in another loaded module.

PUBLIC An attribute. Indicates that a procedure or
function may be accessed by other loaded modules.

ORIGIN An attribute. Tells the compiler where the code
for an EXTERN procedure or function resides.

PURE An attribute. Signifies that the function does
not modify any global variables.

The following rules apply when you combine attr ibutes in the
declaration of procedures and functions:

1. Any function may be given the PURE attribute.

2. Procedures and functions with attributes must be nasted
directly within a program, module, or unit. The only
exception to this rule is the PURE attribute.

3. PUBLIC and EXTERN are mutually exclusive, as are PUBLIC
and ORIGIN.

The EXTERN or FORWARD directive is given automatically to all
constituents of the interface of a unit; in the implementation,
PUBLIC is given automatically to all constituents that are not
EXTERN.

Since you declare the constituents of a unit only in the
interface (not in the implementation), the interface is where you
give the attributes. You may give the EXTERN directive in an
implementation by declar ing all EXTERN procedures and functions
first; you may not use ORIGIN in either the interface or
implementation of a unit.

In a module, you may give a group of attributes in the heading to
apply to all directly nested procedures and functions. The only
exception to this rule is the ORIGIN attribute, which may apply
only to a single procedure or function.

If the PUBLIC attribute is one of a group of attributes in the
heading of a module, an EXTERN attribute given to a procedure or
function within the module explicitly overrides the global PUBLIC

10-6

attribute. If the module heading has no attribute clause, the
PUBLIC attribute is assumed for all directly nested procedures
and functions.

The PUBLIC attribute allows a procedure or function to be called
by other loaded code, and cannot be used with the EXTERN
directive. The EXTERN directive permits a call to some other
loaded code, using either the ORIGIN address or the linker.
PUBLIC, EXTERN, and ORIGIN provide a low level way to link Pascal
routines with other routines in Pascal or other languages.

A procedure or function declaration with the EXTERN or FORWARD
directive consists only of the heading, without an enclosed
block. EXTERN routines have an implied block outside of the
program. FORWARD routines are fully declared (have a block)
later in the same compiland. Both directives are available at
the standard level. The keyword EXTERNAL is a synonym for
EXTERN. The PURE attribute applies only to functions, not to
procedures.

The FORWARD Directive

A FORWARD declaration allows you to call a procedure or function
before you fully declare it in the source text. This permits
indirect recursion, where A calls Band B calls A. You can make
a FORWARD declaration by specifying a procedure or function
heading, followed by the directive FORWARD. Later, you can
actually declare the procedure or function, without repeating the
formal parameter list or any attributes or the return type a
function.

Example of a FORWARD declaration:

FUNCTION ALPHA (Q, R: REAL): REAL [PUBLIC]; FORWARD;

PROCEDURE BETA (VAR S, T: REAL);
BEGIN

T := ALPHA (S, 3.14)
END;

{Call for ALPHA}

FUNCTION ALPHA; {Actual declaration of ALPHA,
BEGIN without parameter list}

ALPHA := (Q + R);
IF R < 0.0 THEN BETA (3.14,ALPHA);

END;

The EXTERN Directive

The EXTERN directive identifies
resides in another loaded module.

a procedure or function that
You give only the heading of

10-7

the procedure or function, followed by the word EXTERN. The
actual implementation of the procedure or function is presumed to
exist in some other module.

EXTERN is an attribute when used with a variable, but a directive
when used with a procedure or function. The EXTERN directive for
a particular procedure or function within a module overrides the
PUBLIC attribute gtven for the entire module. The EXTERN
directive is also permitted in an implementation of a unit for a
constituent procedure or function.

All such external constituents must be declared at the beginning
of the implementation, before all other procedures and functions.
Any procedure or function with the EXTERN directive must be
directly nested within a program.

Examples of
directive:

procedure and function headings with

FUNCTION POWER (X, Y: REAL): REAL; EXTERN;

PROCEDURE ACCESS (KEY: KTYP) [ORIGIN SYSB+4];
EXTERN;

EXTERN

In the above examples, the function POWER is declared EXTERN, as
is the procedure ACCESS. Both are implemented in external
compilands. ACCESS also has the ORIGIN attribute. Note that
when a procedure or a function is declared EXTERN, it cannot have
been already declared forward.

The PUBLIC Attribute

The PUBLIC attribute indicates a procedure or function that you
can access from other loaded modules. In general, you access
PUBLIC procedures and functions from other loaded modules by
declaring them EXTERN in the modules that call them. Thus, you
can declare a procedure PUBLIC and define it in one module, and
use it in another simply by declar ing it EXTERN in the other
module.

As with variables, the identifier of the procedure or function is
passed to the 1 inker, where it may be tr unca ted if the 1 inker
requires it. PUBLIC and ORIGIN are mutually exclusive; PUBLIC
routines need a following block, and ORIGIN routines must be
EXTERN.

Any procedure or function with the PUBLIC attribute
directly nested within a program or implementation.
between Pascal routines can be done wi th separately
units, discussed in Chapter 13, Compilands.

Examples of procedures and functions declared PUBLIC:

10-8

must be
Linkage

compiled

FUNCTION POWER (X, Y: REAL): REAL [PUBLIC];{PUBLIC indicates
BEGIN that function

POWER is availab­
le to other modu-

END; les.}

PROCEDURE ACCESS (KEY: KTYP) [ORIGIN SYSB+4, PUBLIC];
BEGIN

{Invalid since ORIGIN must also be EXTERN.}

END;

The ORIGI N Attribute

The ORIGIN attribute must be used with the EXTERN directive;
ORIGIN indicates to the compiler the location of the procedure or
function, so that the linker does not require a corresponding
PUBLIC identifier. For example:

FUNCTION A TO_D (C: SINT): SINT [ORIGIN #100]; EXTERN;

In the above example, the function A TO D takes a SINT value as a
parameter (SINT is the predeclared Integer subrange from -127 to
+127). The function is located at the hexadecimal address 100.

ORIGIN always implies EXTERN. Thus, procedures or functions that
have previously been declared FORWARD cannot be declared with the
ORIGIN attribute. This also means that ORIGIN cannot be given as
an attribute after the module heading.

The ORIGIN attribute cannot be used with a constituent of a unit,
either in an interface or in an implementation. As with
variables, the origin can be a segmented address. A nonsegmented
procedural orIgIn assumes the current code segment with the
offset given with the attribute.

The PURE Attribute

The PURE attribute applies only to functions, not to procedures
or variables. PURE indicates to the compiler's optimizer that
the function does not modify any global variables either directly
or by calling some other procedure or function.

Example of a PURE declaration:

FUNCTION AVERAGE (CONST TABLE: RVECTOR): REAL [PURE];

As an illustration, examine these statements:

A
B
C

:=
:=
:=

VEC [I * 10 + 7];
FOO;
VEC [I * 10 + 9]

10-9

If the function Faa is given the PURE attribute, the optimizer
only generates code to compute 1*10 once. However, Faa, if it is
not declared PURE, may modify I so that 1*10 must be recomputed
after the call to Faa.

Functions are not considered PURE unless given the attribute
explicitly. A PURE function cannot do the following:

1. assign to a nonlocal variable

2. use the value of a global variable

3. have any VAR or VARS parameters (CaNST and CONSTS
parameters are permitted)

4. modify the referents of references passed by value
(e.g., pointer or address type referents)

5. call any functions that are not PURE

6. do input or output

Since the result of a PURE function with the same parameters must
always be the same, the entire function call may be optimized
away. For example, if in the following statements DSIN is PURE,
the compiler only calls DSIN once:

HX := A * DSIN (P[I, J] * 2);
HY : = B * DS IN (P [I, J] * 2);

PROCEDURE AND FUNCTION PARAMETERS
Procedures and functions may take three different type of
parameters:

1. value parameters

2. reference parameters

3. procedural and functional parameters

A formal parameter is the parameter given when the procedure or
function is declared, with an identifier in the heading. When
the function or procedure is called, an actual parameter
substitutes for the formal parameter given earlier; here the
parameter takes the form of a variable or value or expression.

The following parameter features are available at the extended
level:

10·10

1. A super array type can be passed as a reference
parameter.

2. A reference parameter can be declared READONLY.

3. Explicit segmented reference parameters can be declared.

Value Parameters

When a value parameter is passed, the actual parameter is an
expression. That expression is evaluated in the scope of the
calling procedure or function and assigned to the formal
parameter. The formal parameter is a var iable local to the
procedure or function called. Thus, formal value parameters are
always local to ,a procedure or function.

Example of value parameters:

FUNCTION ADD (A, B, C : REAL): REAL; {A, B, and Care
formal parameters

X : = ADD (Y, ~D (1 • Ill, 2. 222, 3. 333), (Z * 4))

In the above function invocation, Y,ADD(1.111,2.222,3.333), and
(Z * 4) are the expressions that make up the actual parameters.
These expressions must all evaluate to the type REAL. The actual
parameter expression must be assignment compatible with the type
of the formal parameter.

passing structured types by value is legal; however, it is
inefficient, since the entire structure must be copied. A value
parameter of a SET, LSTRING, or subrange type may also require a
runtime error check if the $RANGECK is on. In addition, SET and
LSTRING value parameters may require extra generated code for
size adjustment.

A file variable or super array variable cannot be passed as a
value parameter, since it cannot be assigned. However, a
variable with a type derived from a super array or file buffer
variable can be passed. passing a file buffer variable as a
value parameter implies normal evaluation of the buffer variable.

Reference Parameters

At the standard level, the keyword VAR precedes the formal
parameter. Furthermore, the actual parameter must be a variable,
not an expression. The formal parameter denotes this actual
variable during the execution of the procedure. Any operation on
the formal parameter is performed immediately on the actual
parameter, by passing the machine address of the actual variable

10-11

to the procedure.
data segment.

This address is an offset into the default

Example of variable parameters:

PROCEDURE CHANGE VARS (VAR A, B, C INTEGER);{A, B, and Care
formal reference
parameters.}

CHANGE_VARS (X, Y, Z);

In the above example, X, Y, and Z must be variables, not
expressions. Also, the variables X, Y, and Z are altered
whenever the formal pCilrameters A, B, and C are altered in the
declared procedure. This differs from the handling of value
parameters, which can affect only the copies of values of
variables.

If the selection of the variable involves indexing an array or
dereferencing a pointer or address, these actions are executed
before the procedure itself. The type of the actual parameter
must be identical to the type of the formal parameter.

passing a nonlocal variable as a VAR parameter puts a slash (/)
or percent sign (%) in the G (global) column of the listing file.
(See Chapter 14, Compiling, Linking, and Executing Programs, for
information about significance of these characters in the G
column of the listing). The following cannot be passed as VAR
parameters:

1. a component of a PACKED structure (except CHAR of a
STRING or LSTRING)

2. any variable with a READONLY attribute (includes CONST
and CONSTS parameters and the FOR control variable)

Passing a file buffer variable by reference generates a warning
message, because it bypasses the normal file system call
generated by the use of any buffer variable. These calls are not
generated when a file variable is passed by reference.

A VAR parameter passes an address that is really an offset into a
~efault data segment., In some cases, access to objects residing
1n other segments 1S required. To pass these objects by
reference, you must indicate to the compiler to use a segmented
address containing both segment register and offset values. The
extended level includes the parameter prefix VARS instead of VAR:

PROCEDURE CONCATS (VARS T, S: STRING);

Note that
procedures

10-12

a VARS can only be
and functions, not

used as a data parameter
in the declaration section

in
of

programs, procedures, and functions.

Super Array Parameters

Super array parameters may appear as formal reference parameters.
This allows a procedure or function to operate on an array with a
particular super array type (also a component type and index
type), but without any fixed upper bounds. The formal parameter
is a reference parameter of the super array type itself.

type must be a type derived
super array type itself

The actual parameter
array type or the
reference parameter
comparing LSTRINGs,
assigned or compared

from the super
(i.e., another

Except for
cannot be

or dereferenced pointer).
super array type parameters

as a whole.

The actual upper and lower bounds of the array are available with
the UPPER and LOWER functions; this permi ts routines that can
operate on arrays of any size. An LSTRING actual parameter can
be passed to a reference parameter of the super array type
STRING. Therefore, the super array parameter STRING can be used
for procedures and functions that operate on str ings of both
STRING and LSTRING types.

Example of super array parameters:

TYPE REALS = ARRAY [0 •• *] OF REAL;

PROCEDURE SUMRS (VAR X: REALS; CONST X: REALS);
BEGIN

END;

Constant and Segment Parameters

At the extended level, a formal parameter preceded by the
reserved word CONST implies that the actual parameter is a
READONLY reference parameter. This is especially useful for
parameters of structured types, which may be constants, since it
eliminates the need for a time-consuming value parameter copy.
The actual parameter can be a variable, function result, or
constant value.

No assignments can be made to the CONST parameter or any of its
components. CONST super array types are permitted. A CONST
parameter in one procedure cannot be passed as a VAR parameter to
another procedure. However, it is permissible to pass a VAR
parameter in one procedure as a CONST parameter in another.

Example of a CONST parameter:

10-13

PROCEDURE ERROR (CONST ERRMSG: STRING);

A CONST parameter passes an address that is really an offset into
a de fa ul t da ta segmen t. In some cases, access to obj ec ts
residing in other segments is required. To pass these objects by
reference, you must indicate to the compiler to use a segmented
address that contains both segment register and offset values.
The extended level includes the parameter prefix CONSTS, instead
of CONST. Use of CONSTS parameters parallels use of VARS for
formal reference parameters.

Example of a CONSTS parameter:

PROCEDURE CAT (VARS T: STRING; CONSTS S: STRING);

Note that a CONSTS parameter can only be used as a data parameter
in procedures and functions, not in the declaration section of
programs, procedures, and functions.

You can also pass the value of an expression as a CONST or CONSTS
parameter. The expression is evaluated and assigned to a
temporary (hidden) variable in the frame of the calling procedure
or function. You should enclose such an expression in
parentheses to force its evaluation.

A function identifier can be passed by reference as a VAR, VARS,
CONST, or CONSTS parameter. The function's local variable is
passed, so the call must occur in the function's body or in a
procedure or function declared with the function.

The value returned by a function designator can also be passed,
like any expression, as a CONST or CONSTS parameter. Like any
expression passed by reference, the function designator should be
enclosed in parentheses, as follows:

1 0-14

PROCEDURE WRITE ANSWER (CONSTS A: INTEGER);
BEGIN

WRITELN ('THE ANSWER IS " A)
END;

FUNCTION ANSWER: INTEGER;
BEGIN

ANSWER := 42;
WRITE ANSWER (ANSWER);{pass reference to local variable.}

END;

PROCEDURE HITCH_HIKE;
BEGIN

WRITE ANSWER ((ANSWER»{Call ANSWER, assign to temporary
variable, pass reference to
temporary variable.}

END;

Procedural and Functional Parameters

When a procedural or functional parameter is passed, the actual
identifier is that for a procedure or function. The formal
parameter is a procedure or function heading, including any
attributes, preceded by the reserved word PROCEDURE or FUNCTION.

For example, examine these declarations:

TYPE DOOR = (FRONT, BARN, CELL, DOG HOUSE);
SPEED = (FAST, SLOW, NORMAL); -
DIRECTION = (OPEN, SHUT);

PROCEDURE OPEN DOOR WIDE
(VAR A : DOOR; B: SPEED; C

PROCEDURE SLAM DOOR
(VAR DR : DOOR; SP

PROCEDURE LEAVE AJAR

SPEED; DIR

DIRECTION);

DIRECTION);

(VAR DD : DOOR; SS : SPEED; DD : DIRECTION);

All of the procedures in the example have parameter lists of
equal length. The types of the parameters are not only
compatible, but also identical. The formal parameters need not
be identically named.

A procedural or functional parameter can accept one of these
procedures if the procedure or function is set up correctly, as
shown:

FUNCTION DOOR STATUS (PROCEDURE MOVE DOOR
(VAR X: DOOR; Y: SPEED; Z: DIRECTION);

VAR XX: DOOR; YY: SPEED; ZZ: DIRECTION) : INTEGER;
{"PROCEDURE MOVE DOOR" is the formal procedural}
{parameter; next-two lines are other formal}
{parameters.}

BEGIN {door status}
DOOR STATUS := 0;
MOVE-DOOR (XX, YY, ZZ);
{One-of the three procedures declared}
{previously is executed here.}

IF XX = BARN AND ZZ = SHUT
THEN DOOR_STATUS := 1;

IF XX = CELL AND ZZ = OPEN
THEN DOOR STATUS := 2

10-15

IF XX = DOG HOUSE AND ZZ
THEN DOOR STATUS := 3

END;

SHUT

Use of the procedural parameter MOVEDOOR might occur in program
statements as follows:

IF DOOR STATUS
(SLAM DOOR, CELL, FAST, SHUT) 0

THEN -
SOCIETY := SAFE;

IF DOOR STATUS
(OPEN DOOR WIDE, BARN, SLOW, OPEN) 0

THEN - -
COWS ARE OUT := TRUE;

IF DOOR-STATUS
(LEAVE AJAR, DOG_HOUSE, SLOW, OPEN) 0

THEN -
DOG_CAN_GET_IN := TRUE;

In each case above, the actual procedure list is compatible with
the fo rmal 1 i st, both in number and in type of parameters. If
the parameter passed were a functional parameter, then the
function return value would also have to be of an identical type.

In addition, the set of attributes for both the formal and actual
procedural type must be the same, except that the PUBLIC and
ORIGIN attributes and EXTERN directive are ignored.

A PUBLIC or EXTERN procedure, or any local procedure at any
nesting level, can be passed to the same type of formal
parameter. However, the PURE attr ibute and any call ing sequence
attributes must match. Also, in systems wi th segmented code
addresses, a procedure or function passed as a parameter to an
EXTERN procedure or function must itself be PUBLIC or EXTERN.

You cannot pass predeclared procedures and functions compiled as
inline code; you can only pass them in called subroutines. Also,
the READ, WRITE, ENCODE, and DECODE families are translated into
other calls by the compiler, based on the argument types, and so
cannot be passed. Corresponding routines in the file unit or
encode/decode uni t can be passed, however. For example, a READ
of an INTEGER becomes a call to RTIFQQ and this procedure can be
passed as a parameter.

The following intrinsic procedures and functions cannot be passed
as procedure or function parameters:

10-16

1. at the standard level

ABS
ARCTAN
CHR
COS

EOLN
EXP
LN
NEW

PACK
PAGE
PRED
READ

SQR
SQRT
SUCC
UNPACK

DISPOSE ODD READLN WRITE
EOF ORD SIN WRITELN

2. at the extended and system levels:

BYLONG FLOAT4 READFN SIZEOF
BYWORD HIBYTE READSET TRUNC
DECODE HIWORD RESULT TRUNC4
ENCODE LOBYTE RETYPE UPPER
EVAL LOWER ROUND WRD
FLOAT LOWORD ROUND4

When a procedure or function passed as a parameter is finally.
activated, any nonlocal variables accessed are those in effect at
the time the procedure or function is passed as a parameter,
rather than those in effect when it is activated. Internally,
both the address of the routine and the address of the upper
frame (in the stack) are passed.

Example of formal procedure use:

PROCEDURE ALPHA;
VAR I: INTEGER;

PROCEDURE DELTA;
BEGIN

WRITELN('Delta done')
END; .

PROCEDURE BETA (PROCEDURE XPR);
VAR GLOB: INTEGER;

PROCEDURE GAMMA;
BEGIN GLOB := GLOB + 1 END;

BEGIN {Start BETA}
GLOB : = (3;

IF I (3

END;

THEN BEGIN
I := 1; XPR; BETA (GAMMA)
END

ELSE BEGIN
GLOB := GLOB + 1; XPR
END

BEGIN {Start ALPHA}
I : = (3;

BETA (DELTA)
END;

The following list describes the events that take place in the
above example:

10-17

10-18

1. ALPHA is called.

2. BETA is called, passing the procedure DELTA.

3. This latter call creates an instance of GLOB on the
stack (call it GLOBI).

4. BETA first clears GLOBI by setting it to zero. Then,
since I is 0, the THEN clause is executed, which sets I
to one and executes XPR, which is bound to DELTA.

5. Therefore, 'Delta done' is written to OUTPUT.

6. Now BETA is callecA recursively. BETA is passed GAMMA,
and, at this time, the access path to any nonlocal
variables used by GAMMA (i.e., GLOBI) is passed as well.

7. The second call to BETA creates another instance of GLOB
(GLOB2) • When GLOB2 is cleared this time, I is I, so
GLOB2 is incremented.

8. Then XPR is called, which is bound to GAMMA, so GAMMA is
executed and increments the instance of GLOB active when
GAMMA was passed to BETA, GLOBI.

9. GAMMA returns, the second BETA call returns, the first
BETA call returns, and finally, ALPHA returns.

CHAPTER 11
AVAILABLE PROCEDURES AND FUNCTIONS

CONTENTS

DYNAMIC ALLOCATION PROCEDURES AND FUNCTIONS

Procedure DISPOSE (Short Form)

Procedure DISPOSE (Long Form)

Procedure NEW (Short Form)

Procedure NEW (Long Form)

DATA CONVERSION PROCEDURES AND FUNCTION

Function CRR

Function FLOAT

Function FLOAT4

Function ODD

Function ORD

Procedure PACK

Function PRED

Function ROUND

Function ROUND4

Function SUCC

Function TRUNC

Function TRUNC4

Function UNPACK

Function WRD

ARITHMETIC FUNCTIONS

REAL Functions

EXTENDED LEVEL INTRINSICS

11-1

11-2

Procedure ABORT

Function BYLONG

Function BYWORD

Function DECODE

Function ENCODE

Procedure EVAL

Function HIBYTE

Function HIWORD

Function. LOBYTE

Function LOWER

Function LOWORD

Function RESULT

Function SIZEOF

Function UPPER

SYSTEM LEVEL INTRINSICS

Procedure FILLSC

Procedure MOVEL

Procedure MOVER

Procedure MOVESL

Procedure MOVESR

Function RETYPE

STRING INTRINSICS

Procedure CONCAT

Procedure COPYLST

Procedure COPYSTR

Procedure DELETE

Procedure INSERT

Function POSITN

Function SCANEQ

LIBRARY PROCEDURES AND FUNCTIONS

Initializational and Termination Routines

Heap Management

No-overflow Routines

11-3

Standard procedures and functions are "predeclared" in Pascal.
This means that they do not have to be declared in a program and
that they can be redefined. Pascal provides additional
predeclared procedures and functions that are only available at
the extended and system levels. They should be avoided if
portability is necessary. Pascal also includes some useful
library procedures and functions that you must declare EXTERN in
order to use.

Pascal implements three kinds of procedures and functions:

1. Those that are predeclared, and the compiler translates
them into other calls or special generated code (these
you cannot pass as parameters).

2. Those that are predeclared but you call them normally
(except for a name change).

3. Those that are not predeclared but available as part of
the Pascal runtime library (these you must declare
explicitly) •

Procedures and functions are grouped according to implementation
levels and functions. These groups are listed below:

Category

File system

Dynamic
al1:ocation

Data
conversion

Arithmetic

Extended level
intrinsics

System level
intrinsics

String
intrinsics

Library

11-4

Purpose

Operate on files of different modes and
structures

Dynamically allocate deallocate data
structures on the heap at runtime

Convert data from one type to another

Perform common transcendental
and other numeric functions

Provide additional procedures and
functions at the extended level of
Pascal

provide additional procedures and
functions at the system level of Pascal

Operate on STRING and LSTRING type data

Available in the Pascal runtime library:
they are not predeclared; you must
declare them with the EXTERN directive

The File System procedures and functions are discussed separately
in Chapter 12, File Oriented Procedures and Functions.

DYNAMIC ALLOCATION PROCEDURES

The procedures, NEW and DISPOSE, allow dynamic allocation and
deallocation of data structures at runtime. NEW allocates a
variable in the heap, and DISPOSE releases it.

Procedure DISPOSE (VARS P: POINTER); {Short Form}

This procedure releases the memory used for the variable
pointed to by P. P must be a valid pointer; it may not
beN I L , un in i t i ali zed, 0 r po in t i ng a t a he a pit em th at
already has been DISPOSEd. These are checked if the NIL
checking switch is on.

P should not be a reference parameter or a WITH
statement record pointer, but these errors are not
caught. A DISPOSE of a WITH statement record can be
done at the end of the WITH statement without problem.

If the variable is a super array type or a record with
variants, you may safely use the short form of DISPOSE
to release the variable, regardless of whether it was
allocated with the long or short form of NEW. Using the
short form of DISPOSE on a heap variable allocated with
the long form of NEW is an ISO-defined error not caught
in this pascal.

Procedure DISPOSE (VARS P: POINTER; T1, T2, ... TN; TAGS); {Long Form}

This procedure works the same way as the short form.
However, the long form checks the size of the variable
against the size implied by the tag field or array upper
bound values Tl, T2, ••• Tn. These tag values should be
the same as defined in the corresponding NEW procedure.
See also the SIZEOF function, which uses the same array
upper bounds or tag value parameters to return the
number of bytes in a variable.

Procedure NEW (VARS P: POINTER); {Short Form}

This procedure allocates a new variable V on -the heap
and at the same time assigns a po inter to V to the
pointer variable P (a VARS parameter). The type of V is
determined by the pointer declaration of P. If V is a
super array type, you should use the long form of the
procedure. If V is a record type with variants, the

11-5

variants glvlng the largest possible size are assumed,
permitting any variant to be assigned to pA.

Procedure NEW (VARS P: POINTER; T1, T2, ... TN: TAGS); {Long Form}

11-6

This procedure allocates a variable with the variant
specified by the tag field values Tl through Tn. The
tag field values are listed in the order in which they
are declared. Any trailing tag fields can be omitted.

If all tag field values are constant, Pascal allocates
only the amount of space required on the heap, rounded
up to a word boundary. The value of any omitted tag
fields is assumed to be such that the maximum possible
size is allocated.

If some tag fields are not constant values, the compiler
uses one of two strategies:

1. It assumes that th.e first nonconstant tag field and
all following tag s have unknown val ues, and
allocates the maximum size necessary.

2. It generates a special runtime call to a function
that calculates the record size from the variable
tag values available. This depends on the
implementation. A similar procedure applies to
DISPOSE and SIZEOF.

You should set all tag fields to their proper values
after the call to NEW and never change them. The
compiler does not do· any of the following:

1. assign tag values

2. check that they are initialized correctly

3. check that their value is not changed during
execution

In ISO pascal, a variable created with the long form of
NEW cannot be any of the following:

1. used as an expression operand

2. passed as a parameter

3. assigned a value

This Pascal does not catch these errors. Fields within
the record can be used normally.

Assigning a larger record to a smaller one allocated
wi th the long form of NEW would wipe out part of the
heap. This condition is difficult to detect at compile
time. Therefore, any assignment to a record in the heap
that has variants uses the actual length of the record
in the heap, rather than the maximum length.

However, an assignment to a field in an invalid variant
may destroy part of another heap variable or the heap
structure itself. This error is not caught, unless all
tag values are explicit, the tag values are correct.

The extended level allows pointers to supe~ arrays. The
long form of NEW is used as described above, except that
array upper bound values are given instead' of tag
values. All upper bounds must be given. Bounds can be
constan ts or expressions; in any case, onl y the si ze
required is allocated.

The entire array referenced by such a pointer cannot be
assigned or compared, except that LSTRINGs can always be
compared. The entire array can be passed as a reference
parameter if the formal parameter is of the same super
array type. Components of the array can be used
normally.

DATA CONVERSION PROCEDURES AND FUNCTIONS

You should use the following procedures and functions to convert
data from one type to another:

Function CHR (X: ORDINAL): CHAR;

This function converts any ordinal type to CHAR. The
ASCII code for the result is ORO (X). This is an
extension to the ISO Pascal, which requires X to be of
type INTEGER. An error occurs if ORO (X) > 255 or ORO
(X) < 0. However, the error is caught only if the range
checking switch is on.

Function FLOAT (X: INTEGER): REAL;

This function converts an INTEGER value to a REAL value.
You normally don't need this function, since INTEGER-to­
REAL is usually done automatically. However, because
FLOAT is needed by the runtime package, it is included
at the standard level.

11-7

Function FLOAT4 (X: INTEGER4): REAL;
This function converts an INTEGER4 value to a REAL
value. This type conversion is also done automatically;
however, it is possible that you might lose precision.

Function ODD (X: ORDINAL): INTEGER;

This function tests the ordinal value X to see whether
it is odd. ODD is TRUE only if ORD (X) is odd;
otherwise it is FALSE.

Function ORO (X: VALUE): INTEGER;

This function converts to INTEGER any value of one of
the types shown below:

Type of X

INTEGER

WORD <= MAXINT

WORD > MAXI NT

CHAR

Enumerated

INTEGER4

Po inter

Return value

X

X

X - 2 * (MAXINT + 1) (i.e., same 16
bits as at start!)

ASCII code for X

position of X in the type
definition, starting with 0

Lower 16 bits (i.e., same as
ORD(LOWORD(INTEGER4))

Integer value of pointer

Procedure PACK (CONST A: UNPACKED; I: INDEX; VAR Z: PACKED);

11-8

This procedure moves elements of an unpacked array to a
packed array. If A is an ARRAY [M •• N] OF T and Z is a
PACKED ARRAY [U •• V] OF T, then PACK (A, I, Z) is the
same as:

FOR J := U TO V DO Z [J] := A [J - U + I]

In both PACK and UNPACK, the parameter I is the initial
index within A. The bounds of the arrays and the value
of I must be reasonable; i.e., the number of components
in the unpacked array A from I to M must be at least as
great as the number of components in the packed array Z.
The range checking switch controls checking of the
bounds.

Function PRED (X: ORDINAL): ORDINAL;

This function determines the ordinal "predecessor" to X.
The ORD of the result returned is equal to ORD (X) - 1.
An error occurs if the predecessor is out of range or
overflow occurs. These errors are caught if appropriate
debug switches are on.

Function ROUND (X: REAL): INTEGER;

This function rounds X away from zero. X is of type
REAL4 or REAL8; the return value is of type INTEGER.

Examples:

ROUND (1.6) is 2
ROUND (-1.6) is -2

An error occurs if ABS (X + 0.5))= MAXINT.

Function ROUND4 (X: REAL): INTEGER4;

This function rounds real X away from zero.
type REAL4 or REAL8; the return value is
INTEGER4.

Examples:

ROUND4 (1.6) is 2
ROUND4 (-1.6) is-2

An error occurs if ABS (X + 0.5))= MAXINT4.

Function SUCC (X: ORDI NAL): ORDI NAL;

X is of
of type

This function determines the ordinal "successor" to X.
The ORD of the returned result is equal to ORD (X) + 1.
An error occurs if the successor is out of range or
overflow occurs. These errors are caught if appropriate
debug switches are on.

Function TRUNC (X: REAL): INTEGER;

This function truncates X toward zero. X is of type
REAL4 or REAL8, and the return value is of type INTEGER.

EX,amples:

TRUNe (1.6) is 1

11-9

TRUNC (-1.6) is -1

An error occurs if ASS (X - 1.0) >= MAXINT.

Function TRUNC4 (X: REAL): INTEGER4;

This function truncates real X towards zero. X is of
type REAL4 or REAL8, and the return val ue is of type
INTEGER4.

Examples:

TRUNC4 (1.6) is 1 TRUNC4 (-1.6) is-l

An error occurs if ASS (X - 1.0) >= MAXINT4.

Procedure UNPACK (CONSTS Z: PACKED; VARS A: UNPACKED; I: INDEX);

This procedure moves elements from packed array to an
unpacked array. If A is an ARRAY [M •• N] OF T, and Z is
a PACKED ARRAY [U •• V] OF T then the above call is the
same as:

FOR J : = U TO V DO A [J - U + I] : = Z [J]

In both PACK and UNPACK, the parameter I is the initial
index within A. The bounds of the arrays and the value
of I must be reasonable; i.e., the number of components
in the unpacked array A from I to M must beat least as
great as the number of components in the packed array Z.
The range checking switch controls checking of the
bounds.

See also PROCEDURE PACK.

Function WRD (X: VALUE): WORD;

11-10

This function converts to WORD any of the types shown
below:

Type of X Return Value

WORD X

INTEGER >= 0 X

INTEGER < 0 X + MAXWORD + 1 (i.e., same 16 bits
as at start!)

CHAR ASCII code for X

Enumerated

INTEGER4

Po in ter

position of X in the type definition,
starting wi th 0

Lower 16 bits (i.e., same as
LOWORD (INTEGER4)

Word value of pointer

~RITHMETIC FUNCTIONS
All arithmetic functions take a CONSTS parameter of type REAL4 or
REAL8, or a type compatible with INTEGER (labeled "numeric").
ABS and SQR also take WORD and INTEGER4 values.

All functions on REAL
(uninitialized) value.
conditions and generate
condition is found.

data types check for an inval id
They also check for particular error
a runtime error message if an error

If the math checking swi tch is on, errors
functions ABS and SQR on INTEGER, WORD,
generate a runtime error message. If the
result of an error is undefined.

in the use of the
and INTEGER4 data

swi tch is off, the

FUNCTION ABS (X: NUMERIC): NUMERIC;

This function returns the absolute value of X. Both. X
and the return value are of the same numeric type:
REAL4, REAL8, INTEGER, WORD, 0 r INTEGER4. Si nc e WORD
values are unsigned, ABS (X) always returns X if X isof
type WORD.

FUNCTION ARCTAN (X: REAL): REAL;

This function returns the arc tangent of X in radians.
Both X and the return value are of type REAL. To force
a particular precision, you must declare ATSRQQ (CONSTS
REAL4) and/or ATDRQQ (CONSTS REAL8) and use them
instead.

FUNCTION ATSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION ATDRQQ (CONSTS A: REAL8): REAL8;

FUNCTION COS (X: NUMERIC): REAL;
This function returns the cosine
X and the return val ue are of
particular preclslon, you must
REAL4) and/or CNDRQQ (CONSTS
instead.

of X in radians. Both
type REAL. To force a
declare CNSRQQ (CONSTS
REAL8) and use them

11-11

FUNCTION CNSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION CNDRQQ (CONSTS A: REAL8): REAL8;

FUNCTION EXP (X: NUMERIC): REAL;

This function returns the exponential value of X (i.e.,
e to the X). Both X and the return value are of type
REAL. To force a particular precision, you must declare
EXSRQQ (CONSTS REAL4) and/or EXDRQQ (CONSTS REAL8) and
use them instead.

FUNCTION EXSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION EXDRQQ (CONSTS A: REAL8): REAt8;

FUNCTION LN (X: REAL): REAL;

This function returns the logarithm, base e, of X. Both
X and the return val ue are of type REAL. To fo rce a
particular precision, you must declare LNSRQQ (CONSTS
REAL4) and/or LNDRQQ (CONSTS REAL8) and use them
instead. An error occurs if X is less than or equal to
zero.

FUNCTION LNSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION LNDRQQ (CONSTS A: REAL8): REAL8;

FUNCTION SIN (X: NUMERIC): REAL;

This function returns the sine of X in radians. Both X
and the return value are of type REAL. To force a
particular preclslon, you must declare SNSRQQ (CONSTS
REAL4) and/or SNDRQQ (CONSTS REAL8) and use them
instead.

FUNCTION SNSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION SNDRQQ (CONSTS A:· REAL8): REAL8;

FUNCTION SQR (X: NUMERIC): NUMERIC;

This function returns the square of X, where X is of
type REAL, INTEGER, WORD, or INTEGER4.

FUNCTION SQRT (X): REAL;

11-12

This function returns the square root of X, where X is
of type REAL. To force a particular precision, you must
declare SRSRQQ (CONSTS REAL4) and/or SRDRQQ (CONSTS
REAL8) and use them instead. An error occurs if X is
less than 0.

FUNCTION SRSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION SRDRQQ (CONSTS A: REALB): REALB;

REAL Functions

The Pascal runtime library provides several additional REAL4 and
REALB functions. If you use them, all variable parameters must
be passed as VARS and the functions must be declared with the
EXTERN directive.

FUNCTION ACSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION ACDRQQ (CONSTS A: REALB): REAL8;

These functions return the arc cosine of A. Both A and
the return value are of type REAL4 or REALB.

FUNCTION AISRQQ (CONSTS A: REAL4): REAL4;
FUNCTION AIDRQQ (CONSTS A: REAL8): REAL8;

These functions return the integral part of A, truncated
toward zero. Both A and the return value are of type
REAL4 or REALB.

FUNCTION ANSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION ANDRQQ (CONSTS A: REALB): REALB;

Like AISRQQ and AIDRQQ, these functions return the
truncated integral part of A, but round away from zero.
Both A and the return value are of type REAL4 or REALB.

FUNCTION ASSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION ASDRQQ (CONSTS A: REAL8): REAL8;

These functions return the arc sine of A. Both A and
the return value are of type REAL4 or REALB.

FUNCTION A2SRQQ (A, B: REAL4): REAL4;
FUNCTION A2DRQQ (A, B: REAL8): REAL8;

These functions return the arc tangent of (A/B). Both A
and B, as well as the return value, are of type REAL4 or
REAL8.

FUNCTION CHSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION CHDRQQ (CONSTS A: REAL8): REAL8;

11-13

These functions return the hyperbolic cosine of A. Both
A and the return value are of type REAL4 or REAL8.

FUNCTION LDSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION LDDRQQ (CONSTS A: REAL8): REAL8;

These functions return the logarithm, base 10, of A.
Both A and the return value are of type REAL4 or REAL8.

FUNCTION MDSRQQ (CONSTS A, B: REAL4): REAL4;
FUNCTION MDDRQQ (CONSTS A, B: REAL8): REAL8;

A modulo B, defined as:

MDSRQQ (A, B)

MDDRQQ (A, B)

A - AISRQQ (A/B) * B

A - AIDRQQ (A/B) * B

Both A and B are of type REAL4 or REAL8.

FUNCTION MNSRQQ (CONSTS A, B: REAL4): REAL4;
FUNCTION MNDRQQ (CONSTS A, B: REAL8): REAL8;

These functions return the value of A or B, whichever is
smaller. Both A and B are of type REAL4 or REAL8.

FUNCTION MXSRQQ (CONSTS A, B: REAL4): REAL4;
FUNCTION MXDRQQ (CONSTS A, B: REALS): REAL8;

These functions return the value of A or B, whichever is
larger. Both A and B are of type REAL4 or REAL8.

FUNCTION PIDRQQ (CONSTS A: REAL8; CONSTS B: INTEGER4): REAL8;
FUNCTION PISRQQ (CONSTS A: REAL4; CONSTS B: INTEGER4): REAL4;

These functions return the value is A**B (A to the
INTEGER power of B). A is of type REAL4 or REAL8.

FUNCTION PRSRQQ (A, B: REAL4): REAL4;
FUNCTION PRDRQQ (A, B: REALS): REAL8;

These functions return the value A**B (A to the REAL
power of B}. Both A and B are of type REAL4 or REAL8.

FUNCTION SBSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION SHDRQQ (CONSTS A: REAL8): REAL8;

11-14

These functions return the hyperbolic sine of A. A is
of type REAL4 or REAL8.

FUNCTION THSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION THDRQQ (CONSTS A: REAL8): REAL8;

These functions return the hyperbolic tangent of A.
Both A and the return value are of type REAL4 or REAL8.

FUNCTION TNSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION TNDRQQ (CONSTS A: REAL8): REAL8;

These functions return the tangent of A. Both A and the
return value are of type REAL4 or REAL8.

Some common mathematical functions are not standard in pascal,
but are relatively simple to accomplish with program statements
or to define as functions in a program. Some typical definitions
are as follows:

SIGN (X) is
POWER (X, Y) is

ORO (X > 0) - ORO (X < 0)
E XP (Y * LN (X))

You could also wri te your' own functions to do the same thing.
For example:

FUNCTION POWER (A, B: REAL): REAL [PURE];
BEGIN

IF A <= 0
THEN

ABORT ('Nonplus real to power', 24, 0);
POWER := EXP (B * LN (A));

END;

EXTENDED 'LEVEL INTRINSICS
The following intrinsic procedures and functions are available at
the extended level:

Procedure ABORT (CONST STRING, WORD, WORD);

This procedure halts program execution in the same way
as an internal runtime error. ' The STRING (or LSTRING)
is an error message. The string parameter is a CONST,
not a CONSTS parameter. The first WORD is an error code
(see Appendix 0, "Error Messages," for error cod~
allocations); the second WORD can be anything. The
second WORD is sometimes used to return a file error

11-15

status code from the operating system.

The parameters, as well as any information about the
machine state (program counter, frame pointer, stack
pointer) and the source position of the ABORT call (if
the $LINE and/or $ENTRY debugging switches are on), are
given to you in a termination message or are available
to the debugging package.

If the $RUNTIME switch is on, then error messages give
the location of the procedure or function that has
called the routine in which ABORT was called. If
$RUNTIME is on, $LINE and $ENTRY should be off, and
routines in a source file should only call other
$RUNTIME routines.

Function BYLONG (INTEGER-WORD, INTEGER-WORD): INTEGER4;

This function converts WORDS or INTEGERs (or the LOWORDs
of INTEGER4s) to an INTEGER4 value. BYLONG concatenates
its operands:

BYLONG (A, B) =

ORD (LOWORD (A)) * 65535 + WRD (HIWORD (B))

If the first value is of type WORD, its most significant
bit becomes the sign of the result.

Function BYWORD (ONE-BYTE, ONE-BYTE): WORD;

This function converts bytes (or the LOBYTEs of INTEGERs
or WORDs) to a WORD value. It takes two parameters of
any ordinal type. BYWORD returns a WORD with the first
byte in the most significant part and the second byte in
the least significant part:

BYWORD (A, B) = LOBYTE(A) * 256 + LOBYTE(B)

If the first value is of type WORD, its most significant
bit becomes the sign of the result.

Function DECODE (CONST LSTR: LSTRING X: M: N): BOOLEAN;

11-16

This function converts the character string in the
LSTRING to its internal representation and assigns this
to X. If the character string is not a valid external
ASCII representation of a value whose type is assignment
compatible with X, DECODE returns FALSE and the value of
X is undefined. When X is a subrange, DECODE returns
FALSE if the value is out of range (regardless of the

setting of the range checking switch). Leading and
trailing spaces and tabs in the LSTRING are ignored.
All other characters in the LSTRING must be part of the
representation.

X must be one of the types INTEGER, WORD, enumerated,
one of their subranges, BOOLEAN, REAL4, REAL8, INTEGER4,
ora po in t e r (ad d res s t yp e s nee d th e • R 0 r • S s u f fix) •
The LSTR parameter must reside in the default data
segment.

Function ENCODE (VAR LSTR: LSTRING, X: M: N): BOOLEAN;

This function converts the expression X to its external
ASCII representation and puts this character string into
LSTR. Returns TRUE, unless the LSTRING is too small to
hold the string generated. In this case, ENCODE returns
FALSE and the value of the LSTR is undefined. ENCODE
works exactly the same as the WRITE procedure, including
the use of M and N parameters (see Chapter 12, File
Oriented Procedures and Functions for a discussion of
these parameters).

X must be one of the types INTEGER, WORD, enumerated,
one of their subranges, BOOLEAN, REAL4, REAL8, INTEGER4,
or a pointer (address types need the .R or .S suffix).
The LSTR parameter must reside in the default data
segment.

Procedure EVAL (EXPRESSION, EXPRESSION, ...);

This procedure evaluates expression parameters only, but
accepts any number of parameters of any type. EVAL is
used to evaluate an expression as a statement; it is
commonly used to evaluate a function for its side
effects only, without using the function return value.

Function HIBYTE (INTEGER-WORD): BYTE;

This function returns the most significant byte of an
INTEGER or WORD. The most significant byte may be the
first or the second addressed byte of the word.

Function HIWORD (lNTEGER4): WORD;

This function returns the high-order word of the four
bytes of the INTEGER4. The sign bit of the INTEGER4
becomes the most significant bit of the WORD.

11-17

Function LOBYTE (INTEGER-WORD): BYTE;

This function returns the least significant byte of an
INTEGER or WORD. The least significant byte may be the
first or the second addressed byte of the word.

Function LOWER (EXPRESSION): VALUE;

This function takes a single parameter of one of the
following types: array, set, enumerated, or subrange.
The value returned by LOWER is one of the following:

1. the lower bound of an array

2. the first allowable element of a set

3. the first value of an enumerated type

4. the lower bound of a subrange

LOWER uses the type, not the val ue, of the expression.
The value returned by LOWER is always a constant.

Function LOWORD (lNTEGER4): WORD;

This function returns the low-order WORD of the four
bytes of the INTEGER4.

Function RESULT (FUNCTION-IDENTIFIER): VALUE;

This function is used to access the current value of a
function. It can only be used within the body of the
function itself or in a procedure or function nested
within it.

Function SIZEOF (VARIABLE): WORD;
Function SIZEOF (VARIABLE, TAG1 , TAG2, ... TAGN): WORD;

This function returns the si ze of a var iable in bytes.
Tag values or array upper bounds are set as in the NEW
and DISPOSE functions. If the variable is a record with
variants, and the first form is used, the maximum size
possible is returned. If the v~riable is a supei ~rray,
the second form, which gives upper bounds, must "be used.

Function UPPER (EXPRESSION): VALUE;

This function takes a single parameter of one of the

11-18

following types: array, set, enumerated, or subrange.
The value returned by UPPER is one of the following:

1. the upper bound of an array

2. the last allowable element of a set

3. the last value of an enumerated type

4. the upper bound of a subrange

The value returned by UPPER is always a constant, unless
the expression is of a super array type. In this case,
the actual upper bound of the super array ~ype is
returned. Note that the type and not the value o'f the
expression is used for UPPER.

SYSTEM LEVEL INTRINSICS
The system intr insic feature prov ides the following procedures
and functions:

Procedure FILLC (D: ADRMEM; N: WORD; C: CHAR);

This procedure fills D with N copies of the CHAR C. No
bounds checking is done. The MOVE and FILL procedures
take value parameters of type ADRMEM and ADSMEM, but
since all ADR (or ADS) types are compatible, the ADR (or
ADS) of any variable or constant can be used as the
actual parameter. These are dangerous but sometimes
useful procedures.

Procedure FILL8C (D: AD8MEM; N: WORD; C: CHAR);

This procedure fills D with N copies of the CHAR C. No
bounds checking is done. The MOVE and FILL procedures
take value parameters of type ADRMEM and ADSMEM, but
since all ADR (or ADS) types are compatible, the ADR (or
ADS) of any var iable or constant can be used as the
actual param~ter. These are dangerous but sometimes
useful procedures.

Procedure MOVEL (8, D: ADRMEM; N: WORD);

This procedure moves N characters (bytes) starting at SA
to DA, beginning with the lowest addressed byte of each
array. Regardless of the value of the range and index
checking switches, there is no bounds checking.

Example:

11-19

MOVEL (ADR 'New String Value', ADR V, 16)

You must use MOVEL and MOVESL to shi ft bytes left or
when the address ranges do not overlap. The MOVE and
FILL procedures take value parameters of type ADRMEM and
ADSMEM, but since all ADR (or ADS) types are compatible,
the ADR (or ADS) of any variable or constant can be used
as the actual parameter. These are dangerous but
sometimes useful procedures.

Procedure MOVER (S, D: ADRMEM; N: WORD);

This procedure is 'like MOVEL, but starts at the highest
addressed byte of each array. Use MOVER and MOVESR to
shift bytes right. As with MOVEL, there is no bounds
checking.

Example:

MOVER (ADR V[0], ADR V[4], 12)

The MOVEs and FILLs take value parameters of
and ADSMEM, but since all ADR (or ADS)
compatible, the ADR (or ADS) of any variable
can be used as the 3ctual parameter.
dangerous but sometimes useful procedures.

type ADRMEM '
types are

or constant
These are

Procedure MOVESL (S, D: ADSMEM; N: WORD);

This moves N characters (bytes) starting at S.... to D ,
beginning with the lowest addressed byte of each array.
Regardless of the value of the range and index checking
switches, there is no bounds checking.

Example:

MOVESL (ADS 'New String Value', ADS V, 16)

You must use MOVEL and MOVESL to shi ft bytes left or
when the address ranges do not overlap. The MOVE and
FILL procedures. take value parameters of type ADRMEM and
ADSMEM, but since all ADR (or ADS) types a~e compatible,
the ADR (or ADS) of any variable or constant can be used
as the actual parameter. These are dangerous but
sometimes useful procedures.

Procedure MOVESR (S, D: ADSMEM; N: WORD);

11-20

This procedure is like MOVESL; but starts at the highest
addressed byte of each array. Use MOVER and MOVESR to

shift bytes right. As with MOVESL, there is no bounds
checking.

Example:

MOVER (ADR V[0], ADR V[4], 12)

The MOVE and FILL procedures take value parameters of
type ADRMEM and ADSMEM, but since all ADR (or ADS) types
are compatible, the ADR (or ADS) of any variable or
constant can be used as the actual parameter. These are
dangerous but sometimes useful procedures.

Function RETYPE (TYPE-IDENT, EXPRESSION): TVPE-IDENT;

This function prov ides a gener ic type escape, returns
the value of the given expression as if it had the type
named by the type identifier. The types implied by the
type identifier and the expression should usually have
the same length, but this is not required~ RETYPE for a
structure can be followed by component selectors (array
index, fields, reference, etc.). RETYPE is a
"dangerous" type escape and may not work as intended.

Example:

TYPE COLOR = (RED, BLUE, GREEN);
S2 = STRING (2);

VAR C :#CHAR;
I, J :#INTEGER;
R :#REAL4; TINT:#COLOR;

R := RETYPE (REAL4, 'abcd');

{{Here, a 4-byte string literal is converted into a
real number note that REAL4 numbers also require 4
bytes.}

TINT := RETYPE (COLOR, 2)

{ {Here, 2 is converted into a color which in this
case is GREEN. This, is a relatively "safe" use of
the RETYPE function.}

C : = RETYPE (S2, I) [J]

{Here, I is retyped into a two character string.
Then J selects a single character of the string
which is assigned to C.}

11-21

There are two other ways to change type in Pascal:

1. First, you can declare a record with one variant of
each type needed, assign an expression to one
variant, and then get the value back from another
variant. (This is an error not caught at the
standard level.)

2. Second, you can declare an address variable of the
type wanted and assign to it the address of any
other variable (using ADR).

Each of these methods has its own subtle differences
and quirks and should be avoided whenever possible.

STRING INTRINSICS
The string intrinsics feature provides a set of procedures and
functions, some of which operate on STRINGs and LSTRINGs, and
some on LSTRINGs only.

Procedure CONCAT (VARS D: LSTRING; CONSTS S: STRING);

This procedure concatenates S to the end of D. The
length of D increases by the length of S. An error
occurs if D is too small, i.e., if UPPER (D) < D.LEN +
UPPER (S).

Procedure COPYLST (CONSTS S: STRIN:G; VARS 0: LSTRING);

This procedure copies S to LSTRING D. The length of D
is set to UPPER (S). An error occurs if the length of S
is greater than the maximum length of D, i.e., if UPPER
(S) > UPPER (D).

Procedure COPYSTR (CONSTS S: STRING; VAR D: STRING);

This procedure copies S to STRING D. The remainder of D
is set to blanks if UPPER (S) < UPPER (D). An error
occurs if the length of S is greater than the maximum
length of D, i.e., if UPPER (S) > UPPER (D).

Procedure DELETE (VARS 0: LSTRING; I, N: INTEGER);

11·22

This procedure deletes N characters from D, starting
with D [I]. An error occurs if an attempt is made to
delete more characters starting at I than it is possible
to delete, i.e., if D.LEN < (I + N - 1).

Procedure INSERT (CONSTS S: STRING; VARS D: LSTRING; I: INTEGER):

This procedure inserts S starting just before D [I]. An
error occurs if D is too small, i.e., if

UPPER (D) < UPPER (S) + D.LEN + 1

or if:

D.LEN < I

Procedure POSITN (CONSTS PAT: STRING; CONSTS S:
STRING; I: INTEGER): INTEGER

This function returns the integer position of the
pattern PAT in S, starting the search at S [I]. If PAT
is not found or if I > upper (S), the return value is 0.
If PAT is the null string, the return value is 1. There
are no error conditions.

Function SCANEQ (LEN: INTEGER; PAT: CHAR; CONST S:
STRING; I: INTEGER): INTEGER;

This function scans, starting at S [I], and returns the
number of characters skipped. SCANEQ stops scanning
when a cha r ac ter equal to pa t tern PAT is fo und 0 r LEN
characters have been skipped. If LEN < 0, SCANEQ scans
backwards and returns a negative number. SCANEQ returns
the LEN parameter if it finds no characters equal to
pattern PAT found or if I > UPPER (S). There are no
error conditions.

Function SCANNE (LEN: INTEGER; PAT: CHAR; CONST S:
STRING; I: INTEGER): INTEGER;

This function is like SCANEQ~ but stops scanning when a
character not equal to pattern PAT is found. Scans,
starting at S [I], and returns the number of characters
skipped. SCANEQ stops scanning when a character not
equal to pattern PAT is found or LEN characters have
been ski pped. If LEN < 0, SCANEQ scans backwards and
returns a negative number. SCANEQ returns LEN parameter
if it finds all chara~ters equal to pattern PAT found or
if I > UPPER (S). There are no error conditions.

11-23

LIBRARY PROCEDURES AND FUNCTIONS

The following routines are not predeclared, but are available to
you in the Pascal runtime library. You must declare them, with
the EXTERN directive, before using them in a program.

Initialization and Termination Routines

PROCEDURE BEGOQQ;

This procedure is called during initialization, and the
default version does nothing. However, you may write
your own version of BEGOQQ, if you want, to invoke a
debugger or to write customized messages, such as the
time of execution, to to a terminal screen.

PROCEDURE BEGXQQ;

After your program is linked and loaded, BEGXQQ is the
defined entry point for the load module. As the overall
initialization routine, BEGXQQ performs the following
actions:

1. It resets the stack and the heap.

2. It initializes the file system.

3 • It call s BEG 0 QQ.

4. It calls the program body.

Invoking this procedure to restart a program does not
take care of closing any files that may have previously
been opened. Similarly, it does not re-initialize
variables originally set in a VALUE section or with the
initialization switch on.

PROCEDURE ENDOQQ;

11-24

This procedure is called during termination and the
default version does nothing. However, you may write
your own version of ENDOQQ, if you want, to invoke a
debugger or to write customized messages, such as the
time of execution, to a terminal screen. Since ENDOQQ
is called after errors are processed, if ENDOQQ itself
invokes an error, the result is an infinite termination
loop.

PROCEDURE ENDXQQi

This procedure is the overall termination routine and
performs the following actions:

1. It calls ENDOQQ.

2. It terminates the file system (closing any open
files) •

3. It returns to the operating system (or whatever
called BEGXQQ).

ENDXQQ may be useful for ending program execution
from inside a procedure or function, without calling
ABORT.

Heap Management

FUNCTION PreAllocHeap (VARS cbAlloc: WORD)i ErcTypei

This function allows the user to specify how much space
they would like dedicated to the pascal heap. The heap
will grow to this amount and then stop. The user can
use short lived memory without worrying about
overlapping memory with the heap. CbAlloc is the count
of bytes to allocate for the heap. If cbAlloc is #0FFFF
then the maximum storage will be allocated for the heap.
ErcType is a BTOS error code. If the function is
successful, the BTOS status will be 0, otherwise an
operating system error was detected.

NO-overflow Arith metic Fu nctions

These functions implement l6-bi t and 32-bi t modulo ar i thmetic.
Overflow or carry is returned, instead of invoking a runtime
error.

FUNCTION LADDOK (A, B: INTEGER4i VAR C: INTEGER4): BOOLEAN;

This function sets C equal to A plus B. It is one of
two functions that do 32-bi t signed ar i thmetic wi thout
causing a runtime error, even if the arithmetic
debugging switch is on. Both LADDOK and LMULOK return
TRUE if there is no overflow, and FALSE if there is.
These routines are useful for extended-precision
arithmetic, or modulo 2~32 arithmetic, or arithmetic
based on user input data.

11-25

FUNCTION LMULOK (A, B: INTEGER4; VAR C: INTEGER4): BOOLEAN;

This function sets C equal to A times B. It is one of
two functions that do 32-bi t signed ar i thmetic wi thout
causing a runtime error on overflow. Normal arithmetic
may cause a runtime error even if the arithmetic
debugging switch is off. Both LMULOK and LADDOK return
TRUE if there is no overflow, and FALSE if there is.
These routines are useful for extended-precision
arithmetic, or modulo 2 A 32 arithmetic, or arithmetic
based on user input data.

FUNCTION SADDOK (A, B: INTEGER; VAR C: INTEGER): BOOLEAN;

This function sets C equal to A plus B. It is one of
two functions that do 16-bit signed arithmetic without
causing a runtime error on overflow. Normal arithmetic
may cause a runtime error even if the arithmetic
debugging switch is off. Both SADDOK and SMULOK return
TRUE if there is no overflow, and FALSE if there is.
These routines can be useful for extended-precision
arithmetic, or modulo 2 A l6 arithmetic, or arithmetic
based on user input data.

FUNCTION SMULOK (A, B: INTEGER; VAR C: INTEGER): BOOLEAN;

This function sets C equal to A times B. It is one of
two functions that do 16-bit signed arithmetic without
causing a runtime error on overflow. Normal arithmetic
may cause a runtime error, even if the arithmetic
debugging switch is off. Each routine returns TRUE if
there is no over flow, and FALSE if there is. These
routines can be useful for extended-precision
arithmetic, or modulo 2 A 16 arithmetic, or arithmetic
based on user input data.

FUNCTION UADDOK (A, B: WORD; VAR C: WORD): BOOLEAN;

11-26

This function sets C equal to A plus B. It is one of
two functions that do 16-bit unsigned arithmetic without
causing a runtime error on overflow. Normal arithmetic
may cause a runtime error even if the arithmetic
debugg ing swi tch is off. The following is the binary
carry resulting from this addition of A and B:

WRD (NOT UADDOK (A, B, C»)

Both UADDOK and UMULOK return TRUE if there is no
overflow and FALSE if there is. These routines are
useful for extended-precision arithmetic, or modulo 2 A 16
arithmetic, or arithmetic based on user input data.

FUNCTION UMULOK (A, B: WORD; VAR C: WORD): BOOLEAN;

This function sets C equal to A times B. It is one of
two functions that do l6-bit unsigned arithmetic without
causing a runtime error on overflow. Normal arithmetic
may cause a runtime error even if the arithmetic
debugging switch is off. Each routine returns TRUE if
there is no overflow and FALSE if there is. These
routines are useful for extended-precision arithmetic,
or modulo 2"16 arithmetic, or arithmetic based on user
input data.

11-27

CHAPTER 12
FILE-ORIENTED PROCEDURES AND FUNCTIONS

CONTENTS

FILE SYSTEM PRIMITIVE PROCEDURES AND FUNCTIONS

EOF and EOLN

GET and PUT

RESET and REWRITE

PAGE

Lazy Evaluation

TEXT FILE INPUT AND OUTPUT

READ and READLN

WRITE and WRITELN

WRITE Formats

EXTENDED LEVEL I/O

EXTENDED LEVEL PROCEDURES

PROCEDURE ASSIGN

PROCEDURE CLOSE

PROCEDURE DISCARD

PROCEDURE READFN

PROCEDURE READSET

PROCEDURE SEEK

TEMPORARY FILES

12-1

Chapter 11, IIAvailable Procedures and Functions,1I described eight
categories of procedures and functions that are available to you
either because they are predeclared or because they are part of
the Pascal runtime library. All except those that relate to file
input and output were discussed in detail.

This Chapter discusses all of the file I/O procedures and
functions, as well as lazy evaluation which is a special feature
that facilitates your use of files.

The Pascal file system supports a variety of procedures and
functions that operate on files of different modes and
structures. These procedures and functions can be categorized as
follows:

Category Procedures Functions

Primitive GET EOF
PAGE EOLN
PUT
RESET
REWRITE

Textfile I/O READ
READLN
WRITE
WRITELN

Extended ASSIGN
Level I/O CLOSE

DISCARD
READSET
READFN
SEEK

FILE SYSTEM PRIMITIVE PROCEDURES AND FUNCTIONS
This section describes the seven primitive file system procedures
and functions, which perform file I/O at the most basic level.
Later descriptions of READ and WRITE procedures are defined in
terms of the primitives GET and PUT. In all descriptions which
follow, F is a file parameter (files are always reference
parameters), and FA is the buffer variable.

All file variables operated on by these procedures must reside in
the default data segment. This restriction increases the
efficiency of file system calls.

12-2

EOF and EOLN

The functions EOF and EOLN check for end-of-file and end~of-line
conditions, respectively. They return a BOOLEAN result. In
general, these values indicate when to stop reading a line or a
file. .

FUNCTION EOF: BOOLEAN;
FUNCTION EOF (VAR F): BOOLEAN;

This function indicates whether the buffer variable F
is posi tioned at the end of the file F for SEQUENTIAL
and TERMINAL file modes. Therefore, if EOF (F) is TRUE,
either the file is being written or the last GET has
reached the end of the file.

With the DIRECT file mode, if EOF (F) is TRUE, either
the last operation was a WRITE (the file mayor may not
be positioned at the end in this case) or the last GET
reached the end of the file.

EOF without a parameter is equivalent to EOF (INPUT).
EOF (INPUT) is generally never TRUE, except when INPUT
is reassigned to another file. Calling the EOF (F)
function accesses the buffer variable F

FUNCTION EOLN: BOOLEAN;
FUNCTION EOLN (VAR F): BOOLEAN;
This function indicates whether the current position of the file
is at the end of a line in the textfile F after a GET (F). The
file must have ASCII structure.

According to the ISO standard, calling EOLN (F) when EOF (F) is
TRUE is an error. In this Pascal, this error is caught in most

,cases. The file F must be a file of type TEXT.

If EOLN (F) is TRUE, the value of F is a space, but the file is
positioned at a line marker. EOLN wi thout a pa·~ameter is
equivalent to EOLN . (INPUT). Calling the EOLN (F) function
acc~sses the buffer variable F

GET and PUT

The primitive procedures GET and PUT are used to read to and
write from the buffer variable, F..... GET assigns the next
component of a file to the buffer variable. PUT performs the
inverse operation and writes the value of the buffer variable to
the next component of the file F.

12-3

PROCEDURE GET (VAR F);
If there is a next component in the file F, then: ,
1. The current file position is advanced to the next

component.

2. The value of this component is assigned to the
buffer variable FA.

3. EOF (F) becomes FALSE.

Advancing and assigning may be deferred internally,
depending on the !':lode of the file. If no next component
exists, then EOF (F) becomes TRUE and the value of FA
becomes undefined. EOF (F) must be FALSE before GET
(F), since reading past the end of file produces a
runtime error.

However, if F has mode DIRECT, EOF (F) can be TRUE or
FALSE, since DIRECT mode permits repeated GET operations
at the end of the file. If FA is a record with
variants, the compiler reads the variant with the
maximum size.

PROCEDURE PUT (VAR F);

This procedure writes the value of the file buffer
variable FA at the current file position and then
advances the position to the next component.

1. For SEQUENTIAL and TERMINAL mode files, PUT is
permitted if the previous operation on F was a
REWRITE, PUT, or other WRITE procedure, and if it
was not a RESET, GET, or other READ procedure.

2. For DIRECT mode files, PUT may occur mmediately
after a RESET or GET. Exceptions to these rules
cause errors to be generated. The value of FA
always becomes undefined after a PUT.

EOF (F) must be TRUE before PUT (F), unless F is a
DIRECT mode file. EOF (F) is always TRUE after PUT (F).
If FA is a record with variants, the variant with the
maximum size is written.

RESET and REWRITE

12-4

The procedures RESET and REWRITE are used to set the
current posi tion of a file to its beg inning. RESET is
used to prepare for later GET and READ operations.

REWRITE is used to prepare for later PUT and WRITE
operations.

PROCEDURE RESET (VAR F);

This procedure resets the current file position to its
beginning and does a GET (F). If the file is not empty,
the first component of F is assigned to the buffer
variable FA, and EOF (F) becomes false. If the file is
empty, the value of FA is undefined and EOF (F) becomes
true. RESET initializes a file F prior to its being
read. For DIRECT files, writing can be done after RESET
as well.

A RESET closes the file and then opens it in a way that
is dependent on the operating system. An error occurs
if the filename has not been set (as a program parameter
or with ASSIGN or READFN) or if the file cannot be found
by the operating system. If an error occurs during
RESET, the file is closed, even if the file was opened
correctly and the error came with the initial GET.

RESET (INPUT) is done automatically when a
initialized, but is also allowed explicitly.
file with mode DIRECT allows either reading
but the file is not created automatically.
ini tial GET reads record number .one on a
file.

program is
RESET on a

or wr i ting ,
Also, the

DIRECT mode

Note that an explicit GET (F) immediately following a
RESET (F) assigns the second component of the file to
the buffer variable. However, a READ (F, X) following a
RESET (F) sets X to the first component of F, since READ
(F, X) is "X := FA; GET (F) ".

PROCEDURE REWRITE (VAR F);

This procedure positions the current file to its
beginning. The value of FA is undefined and EOF (F)
becomes TRUE. This is needed to initialize a file F
before writing (for DIRECT files, reading can be done
after REWRITE too).

A REWRITE closes the fi Ie and then opens it in a way
that is dependent on the operating system. If the file
does not exist in the operating system, it is created.
If it does exist, its old value is lost (unless it has
mode DIRECT).' 'The filename must have been set (as a
program parameter or with ASSIGN or READFN).

If an error occurs during REWRITE, the file is closed.
An existing file with the same name is not affected when

12-5

PAGE

a REWRITE error occurs.

REWRITE (OUTPUT) is done automatically when a program is
initialized, but can also be done explicitly if desired.
REWRITE on a DIRECT mode file allows both reading and
wr i ting. REWRITE does not do an ini tial PUT the way
RESET does an initial GET.

The procedure PAGE helps in formatting textfiles. It is not a
"necessary" procedure in the same sense as GET and PUT.

PROCEDURE PAGE;
PROCEDURE PAGE (VAR F);

This procedure causes skipping to the top of a new page
when the textfile F is printed. Since PAGE writes to
the file, the initial conditions described for PUT must
be TRUE. The file must have ASCII structure. PAGE
without a parameter is equivalent to PAGE (OUTPUT).

If F is not positioned at the start of a line, PAGE (F)
first writes a line marker to F. If F has mode
SEQUENTIAL or DIRECT, then PAGE (F) writes a form feed,
CHR (12). If F has mode TERMINAL, the effect is defined
by the operating system interface, which will usually
also write a form feed.

Lazy Evaluation

Lazy evaluation is designed to solve a recurring problem in
pascal, specifically, reading from a terminal in a natural way.
The underlying problem is that the ISO standard defines the
procedure RESET with an initial GET.

Although acceptable in Pascal's original batch processing,
sequential file environment, this kind of read-ahead doesn't work
for interactive I/O. Lazy evaluation provides for deferring
actual physical input (textfiles only) when a buffer var iable is
evaluated.

Fo r example, if a no rmal fi Ie is RESET and then READ, the RESET
procedure calls the GET procedure, which sets the buffer variable
to the first component of the file. However, if the file is a
terminal,this first component does not yet exist!

Therefore, at a terminal, you must fi rst type a character to
accommodate the GET procedure. Only then would you be prompted
for any input. Lazy evaluation eliminates this problem for
textfiles by giving the file's buffer variable a special status

12-6

value that is either "full" or "empty."

The normal condition after a GET (F) is empty. The status is
full after a buffer var iable has been assigned to or assigned
from. Full implies that the buffer variable value is equal to
the currently pointed-to component. Empty implies just the
opposite, that the buffer variable value does not equal the value
of the currently pointed to component and input to the buffer
variable has been deferred.

These rules are summarized as follows:

Statement Status Action
at call

GET (F) Full Point to next file com­
ponent. Becomes EMPTY
since value pointed to is
not in buffer variable.

GET (F) Empty Load buffer variable with
current file component,
then point to next file
component. Becomes EMPTY
since value pointed to is
not in buffer variable.

Reference Full No action required.
to FA

Reference Empty Load buffer variable with
to FA current file component.

Status
on exit

Empty

Empty

Full

Full

Note that RESET (F) first sets the status full and then calls
GET, which sets the status to empty without any physical input.

Example of lazy evaluation with automatic REWRITE call:

{INPUT is automatically a textfile.}
{RESET (INPUT); done automatically.}
WRITE (OUTPUT, "En ter number: ");
READLN (INPUT, Faa);

The automatic ini tial call to the RESET procedure calls a GET
pro~edure, which changes the buffer variable status from full to
empty. The first physical action to the terminal is the prompt
output from the WRITE. READLN does a ser ies of the following
operations:

12-7

temp := INPUT ;
GET (INPUT)

Physical input occurs when each INPUT..... is fetched and the GET
procedure sets the status back to empty.

READLN ends with the sequence:

WHILE NOT EOLN DO GET (INPUT);
GET (INPUT)

This operation skips trailing characters and the line marker.
The EOLN function invokes the physical input. Entering the
carriage return sets the EOLN status. Both the GET procedure in
the WHILE loop and the trailing GET set the status back to empty.
The last physical input in the sequence above is reading the
carriage return.

TEXT FILE INPUT AND OUTPUT
Human-readable input and output in standard Pascal are done with
textfiles. Textfiles are files of type TEXT and always have
ASCII structure. Normally, the standard textfiles INPUT and
OUTPUT are given as program parameters in the PROGRAM heading:

PROGRAM IN_AND_OUT (INPUT,OUTPUT);

Other textfiles usually represent some input or output device
such as a terminal, a card reader, a line printer, or an
opera ting system disk file. The extended level permits using
additional files not given as program parameters. In order to
facilitate the handling of textfiles, the four standard
proced ures READ, READLN, WRITE, and WRITELN are provided in
addition to the procedures GET and PUT.

These procedures are more flexible in the syntax for their
parameter lists, allowing, among other things, for a variable
number of parameters. Moreover, the parameters need not
necessarily be of type CHAR, but can also be of certain other
types, in which case the data transfer is accompanied by an
implicit data conversion operation. In some cases, parameters
can include additional formatting values that affect the data
conversions used.

If the first variable is a file variable, then it is the file to
be read or written. Otherwise, the standard files INPUT and
OUTPUT are automatically assumed as default values in the cases
of reading and writing, respectively.

These two files have TERMINAL mode and ASCII structure and are
predeclared as:

VAR INPUT, OUTPUT: TEXT;

12-8

The files INPUT and OUTPUT are treated like other textfiles.
They can be used wi th ASSIGN, CLOSE, RESET, REWRITE, and the
other procedures and functions. However, even if present as
program parameters, they are not initialized with a filename.
Instead, they are assigned to the user's terminal. RESET of
INPUT and REWRITE of OUTPUT are done automatically, whether or
not they are present as program parameters.

Textfiles represent a special case among file types insofar as
the y are s t r u c t u red in to 1 i n e s by" 1 in e mar k e r s" • If, u po n
reading a textfile F, the file position is advanced to a line
marker (i.e., past the last character of a line), then the value
of the buffer var iable F.... becomes a blank, and the standard
function EOLN (F) yields the value true. For example:

+---+---+---+---+---+---+---+---+---+---+---+
I'L'I'I'I'N'I'E'I'O'I'F'I'T'I'E'I'x'I'T'1 I
+---+---+---+---+---+---+---+---+---+---+---+

{EOLN TRUE} {F I }

Advancing the file position once more caus~s one of three things
to happen:

1. If the end of the ffle is reached, then EOF (F) becomes
TRUE.

2. If the next line is empty, a blank is assigned to F and
EOLN (F) remains TRUE.

3. Otherwise, the first character of the next line is
assigned to F and EOLN (F) is set to FALSE.

Since line markers are not elements of type CHAR in standard
Pascal, they can, in theory, only be generated by the procedure
WRITELN". However, in this Pascal, an actual character may be
used for the line marker. It may therefore be possible to WRITE
a line marker, but not to READ one.

When a textfile being written is closed, a final line marker is
automatically appended to the last line of any nonempty file in
which the last character is not already a line marker •.

When a textfile being read reaches the end of a nonempty file, a
line marker for the last line is returned even if one was not"
present in the file. Therefore, lines in a textfile always end
with a line marker.

12-9

Any list of data written by a WRITELN is usually readable with
the same list in a READLN (unless an LSTRING occurs that is not
on the end of the list.)

Interactive prompt and response is very easy in Pascal. To have
input on the same line as the response, use WRITE for the prompt.
READLN must always be used for the response. For example:

WRITE ('Enter command: ');
READLN (response);

If no file is given, most of the textfile procedures and
functions assume either the INPUT file or the OUTPUT file. For
example, if I is of type INTEGER, then READ (I) is the same as
READ (INPUT, I).

READ and READLN

PROCEDURE READ
PROCEDURE READLN

READ and READLN read data from textfiles. Both are defined in
terms of the more primitive operation, GET. That is, if P is of
type CHAR, then READ (F, P) is equivalent to:

BEGIN
P : = F ;
GET (F)

END

{Assign buffer variable F to P.}
{Assign next compone~t of file to F }

READ can take more than a single parameter, as in READ (F, PI,
P2, ••• Pn). This is equivalent to the following:

BEGIN
READ (F, PI);
READ (F , P 2) ;

READ (F, pn)
END

The procedure READLN is very much like READ, except that it reads
up to and including the end-of-line. At the primitive GET level,
without parameters, READLN is equivalent to the following:

BEGIN

END

WHILE NOT EOLN (F) DO GET (F);
GET (F)

A READLN with parameters, as in READLN (F, PI, P2, ••• Pn), is
equivalent to the following:

12-10

BEGIN

END

READ (F, PI, P2, pn);
READLN (F)

READLN is often used to skip to the beg inning of the next line.
It can only be used with textfiles (ASCII mode).

If no other file is specified, both READ and READLN read from the
standard INPUT file. Therefore, the name INPUT need not be
designated explicitly. For example, these two READ statements
perform identical actions:

READ (PI, P2, P3)
READ (INPUT, PI, P2, P3) {Reads INPUT by default}

At the standard level, parameters PI, P2, and P3 above must be of
one of the following types:

CHAR
INTEGER
REAL

The extended level also allows READ var iables of the following
types:

WORD
an enumerated type
BOOLEAN
INTEGER4
a pointer type
STRING
LSTRING

When the compiler reads a variable of a subrange type, the value
read must be in range. Otherwise, an error occurs, regardless of
the setting of the range checking switch.

The procedure READ can also read from a file that is not a
textfile (e.g., has BINARY IIl()de). The form READ (F, PI, P2, •••
Pn) can be used on a BIlU3R~ file. However, this READ will not
work as expected after a SEEK on a DIRECT mode file. For BINARY
files, READ (F, X) is equivalent to:

BEGIN
X : = FA;
GET (F)

END

12-11

READ Formats

The READ process for formatted types (everything except CHAR,
STRING, and LSTRING) first reads characters into an internal
LSTRING and then decodes the string to get the value.

Two important points apply to formatted reads:

1. Leading spaces, tabs, form feeds, and line markers are
skipped. For example, when doing READLN (I, J, K) where
I, J, and K are integers, the numbers can all be on the
same line or spread over several lines.

2. Characters are read as long as they are in the set of
characters valid for the type wanted. For example, "-1-
2-3" is read as the string of characters for a single
INTEGER, but gives an error when the string is decoded.
This means that items should be separated by spaces,
tabs, 1 ine markers, or characters not permi tted in the
format reads.

Most of the formatting rules below apply to the function DECODE,
as well.

12-12

1. INTEGER and WORD types

If P is of type INTEGER, WORD, or a subrange thereof,
then READ (F, P) implies reading a sequence of
characters from F which form a number according to the
normal Pascal syntax, and then assigning the number to
P. Nondecimal notation (16#C007, 8#74, 10#19, 2#101,
#Face) is accepted for both INTEGER and WORD, wi th a
radix of 2 through 36. If P is of an INTEGER type, a
leading plus (+) or minus (-) sign is accepted. If P is
of a WORD type, then numbers up to MAXWORD are accepted
(32768 •• 65535).

2. REAL and INTEGER4 types

If P is of type REAL, or at the extended level type
INTEGER4, READ (F, P) implies reading a sequence of
characters from F that form a number of the appropriate
type and assigning the number to P. Nondecimal notation
is not accepted for REAL numbers, but is accepted for
INTEGER4 numbers. When reading a REAL value, a number
wit hal e ad i ng 0 r t r a iIi ng dec i m a I po in tis a c c e pt ed,
even though this form gives a warning if used as a
constant in a program.

3. Enumerated and Boolean types

At the extended level, if P is an enumerated type or
BOOLEAN, a number is read as a WORD subrange and a value
assigned to P such that the number is the ORD of the
enumerated type's value. In addition, if P is type
BOOLEAN, reading one of the character sequences 'TRUE'
or 'FALSE' cause true and false, respectively, to be
assigned to P. The number read must be in the range of
the ORD values of the variable.

4. Reference types

At the extended level, if P is a pointer type, a number
is read as a WORD and assigned to P, in a way that
depends on your implementation, so that writing a
pointer and later reading it yields the same pointer
v.alue. The address types should be read as WORDs using
.R or .S notation.

5. String types

At the extended level, if P is a STRING (n), then the
next "n" characters are read sequentially into P.
preceding line markers, spaces, tabs, or form feeds are
not skipped. If the line marker is encountered before n
characters have been read, the remaining characters in P
are set to blanks and the file position remains at the
line marker.

If the STRING is filled with n characters before the
line marker is encountered, the file position remains at
the next character. In a few implementations there may
be a limit of 255 characters on the length of a STRING
read. P can be the super ar ray type STRING (e.g., a
reference parameter or pointer referent variable).

At the extended level, if P is an LSTRING (n), then the
next "n" characters are read sequentially into P, and
the length of the LSTRING is set to "n~" preceding line
markers, spaces, tabs, or form feeds are not skipped.
If the line marker is encountered before "n" characters
have been read, the length of the LSTRING is set to the
number of characters read and the file position remains
at the line marker.

If the LSTRING is filled with "n" characters before the
line marker is encountered, the file position remains at
the next character. P can be the super array type
LSTRING (e.g., a reference parameter or pointer referent
variable). READ (LSTRING) is handy when reading entire
lines from a textfile, especially when the length of the
line is needed. For example, the easiest way to copy a
textfile is by using READLN and WRITELN with an LSTRING
variable.

12-13

WRITE and WRITELN

PROCEDURE WRITE
PROCEDURE WRITELN

12-14

These procedures write data to textfiles. WRITE and
WRITELN are defined in terms of the more primitive
operation, PUT; that is, if P is an expression of type
CHAR and F is a file of type TEXT, then WRITE (F, P) is
equivalent to:

BEGIN
FA := P; {Assign P to buffer variable FA}

PUT (~) {Assign FA to next component of file}
END

WRITE can take more than one parameter, as in WRITE (F,
PI, P2, ••• Pn). This is equivalent to the following:

BEGIN
WRITE (F, PI) ;
WRITE (F, P2);

~'lRITE (F, Pn)
END

The procedure WRITELN writes a line marker to the end of
a line. In all other respects, WRITELN is analogous to
WRITE. Thus, WRITELN (F, PI, P2; ••• pn) is equivalent
to:

BEGIN
WRITE (PI, P2, ••• Pn);
WRITELN (F)

END

If ei ther WRITE or WRITELN has no file parameter, the
default file parameter is OUTPUT. Therefore, the first
statement in each of the following pairs is equivalent
to the second:

WRITE (PI, P2, ••• Pn)
WRITE (OUTPUT, PI, P2, Pn)

WRITELN (PI, P2, Pn)
WRITELN (OUTPUT, PI, P2, ••• Pn)

At the standard level, parameters in a WRITE can be
expressions of any of the following types:

CHAR
INTEGER
REAL

BOOLEAN
STRING

At the extended level, expressions can also be of the
following types:

WORD
INTEGER4
LSTRING

an enumerated type
a po in ter type

The parameters may take optional M and N values.
Although the procedure WRITE can also write to a BINARY
file (i.e., not a textfile), this is not recommended for
DIRECT files after a SEEK operation, because the
complementary READ form does not work as you might
expect. For BINARY files, WRITE (F, X) is equivalent
to:

BEGIN
F : = Xi
PUT (F)

END

The form WRITE (F, PI, P2, ••• Pn) is also acceptable.
BINARY wr i tes do not accept M and. N val ues.

WRITE Formats

In textfiles, data parameters to WRITE and WRITELN may take one
of the following forms:

P P:M P:M:N P: : N

The M and N values can be considered value parameters of type
INTEGER and are used for formatting in various ways. The
extended level permi ts M and N val ues for WRITEs, and permi ts
giving N without M, as in:

P: : N

Using them in a nonstandard way is an error not caught at the
standard level. In some cases only M, or N, or nei ther, is
actually used; unused M and N values are ignored.

omitting M or N is the same as using the value MAXINT. For
example, WRITE (12:f1AXINT) uses the default M value (8 in this
case). M and N values are not accepted for BINARY files. In
WRITE, the M value is the field width used as the number of
characters to write. In ISO-Pascal, M must be greater than zero,

12-15

and if the expression being written requires less than M
characters, then it is padded on the left with spaces.

At the extended level, M can also be negative or zero. If it is
negative, the absolute value of M is used, but padding of spaces
occurs on the right instead of the left. If it is zero, no
characters are written. These are ISO standard errors not caught
in this Pascal.

If the rep res e n tat ion 0 f the ex pre s s ion can not fit in AB S (M)
character positions, then extra positions are used as needed for
numeric types, or the value is truncated on the right for string
types. If M is omitted or equal to MAXINT, a default value is
used.

The N value signifies:

1. the number of decimal places if P is of type REAL

2. the output radix if P is of type INTEGER, WORD,
INTEGER4, or pointer

3. the numeric or identifier value if P is of an enumerated
type

Most of the following formatting rules apply to the function
ENCODE as well.

12-16

1. INTEGER and WORD types

If P is of type INTEGER, WORD, or a subrange thereof,
then the decimal representation of P is wri tten on the
file. If P is a negative INTEGER, a leading minus sign
is always written. WORD values are never negative. For
INTEGER and WORD values, the default M value is 8.

If ABS (M) is smaller than the representation of the
number, additional character positions are used as
needed. N is used to write in hexadecimal, decimal,
octal, binary, or other base numbering using N equal to
a number from 2 to 36; this is an extension to the ISO
standard. If N is not 10 (or omitted or MAXINT), then
padding on the left is with zeros and not spaces.
Omitting N or setting N to MAXINT or 10 implies a
decimal radix.

WORD decimal numbers from 32768 to 65535 are written
normally and not in their negative integer equivalents.
All values written should be separated by spaces or some
other character not valid in numbers, so that values are
read as separate numbers.

2. REAL and INTEGER4 types

If P is of type REAL, a decimal representation of the
number P, rounded to the specified number of decimal
places, is written on the file. If the N is missing or
equal to MAXINT, a floating-point representation of P is
written to the file, consisting of a coefficient and a
scale factor. If N is included, a rounded fixed point
representation of P is written to the file, with N
dig its aft e r the dec i mal po in t • I f N i s z e r 0 , pis
written as a rounded integer, with a decimal point. The
default value of M for REAL values is 14.

The following are examples of WRITE operations on REAL
values:

Statement

WRITE (123.456)
WRITE (123.456:20)
WRITE (123.456::3)
WR IT E (1 2 3 • 4 5 6 : 2 : 3)
WRITE (123.456:-20:3)

Output

, 1.2345600E+02'
, 1.2345600000000E+02'

123.456'
, 123.456'
'123.456

At the extended level, if P is of type INTEGER4, the
decimal representation of P is written on the file. The
N value is used to set the radix, as in type INTEGER.
The default M value is 14.

3. Enumerated and Boolean types

At the extended level, if P is an enumerated type and N
is omitted or equal to MAXINT then ORD (P) is written on
the file, as if it were a WORD. If N is given with the
value 1, the enumerated type's constant identifier for
the value of P is written on the file, as if it were a
STRING. Note that using this N notation causes memory
to be allocated for the enumerated type's constant
identifiers.

At the standard level, if P is of type BOOLEAN, then one
of the strings 'TRUE' or 'FALSE' is written to the file
as a STRING. The ORD value is never written for BOOLEAN
types as it is for enumerated types (although you can
use WRI'rE (ORD (P» instead).

4. Reference types

At the extended level, if P is a pointer type, then P is
written as a WORD. This is done in an implementation
defined way such that writing a pointer and later
reading it produces the same pointer value. The address
types should be written as WORD values using .R or .5
notation.

12-17

5. String types

If P is of type STRING (n), then the value of P is
written on the file. The default value of M is the
length of the STRING, "n." If ABS (M) is less than the
length of the string, then only the first ABS (M)
characters are written. If M is zero, nothing is
written. The right portion of the STRING is always
truncated, even if M is negative. In a few
implementations, there may be a limit of 255 characters
on the length of a STRING write.

At the extended level, if P is of type LSTRING (n), then
the value of P is written on the file. The default
value of M is the current length of the string, P.LEN.
If ABS (M) is less than the current length, then only
the first ABS (M) charact€rs are written. If M is zero,
then nothing is written. The right portion of the
LSTRING is always truncated, even if M is negative. If
ABS (M) is greater than the current length, spaces, not
characters, fill the remaining positions past the length
in the LSTRING. Note that a string of M blanks can be
written with NULL:M.

EXTENDED LEVEL I/O
The following additional I/O features are available at the
extended level:

1. You can access three FCB fields: F. MODE, F. TRAP, and
F.ERRS.

2. A number of additional procedures are predeclared.

3. Temporary files are available.

"Extended Level I/O," in chapter 6, Data Types discusses FCB
fields in the context of files. The additional procedures and
temporary files are described below.

EXTENDED LEVEL PROCEDURES

Procedure ASSIGN (VAR F; CONST N: STRING);

12-18

This procedure assigns an operating system filename in a
STRING (or LSTRING) to a file F. As a rule, ASSIGN
truncates any trailing blanks. ASSIGN overrides any
filename set previously. A filename must be set before
the first RESET or REWRITE on a file. ASSIGN on an open

file (after RESET or REWRITE but before CLOSE) produces
an error. ASSIGN to INPUT or OUTPUT is allowed, but
since these two files are opened automatically, they
must be closed before being assigned to.

Procedure CLOSE (VAR F);

This procedure performs an operating system close on a
file, ensuring that the file access is terminated
correctly. This is especially important for file
variables allocated on the stack or the heap. Since
these files must be closed before a RETURN or DISPOSE
loses the file control block, they are closed
automatically when a RETURN or DISPOSE releases stack or
heap file variables.

File variables with the STATIC attribute in procedures
and functions are also closed automatically when the
procedure or function returns. Files allocated
statically at the program, module, or implementation
level are automatically closed when the entire program
terminates.

If necessary, when a CLOSE is executed, a file being
written to has its operating system buffers flushed.
However the buffer variable is not PUT. If a file of
type TEXT is being written and the last nonempty line
does not end with a line marker, 9ne is added to the end
of the last line. If the file has the mode SEQUENTIAL
and is being written, an end-of-file is written.

Note that some runtime errors may remove control from
the Pascal runtime system. In these cases, files being
written may not be closed, and the information in them
may be lost. A CLOSE on a file that is already closed
or never opened (no RESET or REWRITE) is permitted.
CLOSE is not ignored if error trapping is on and there
was a previous error. CLOSE turns off error trapping
for the file, and clears the error status if no errors
were found.

Procedure DISCARD (VAR F);

This procedure closes and deletes an open file. DISCARD
is much like CLOSE except that the file is deleted.

Procedure READFN (VAR F: P1, P2 ... PN);

This procedure is the same as READ (not READLN) with two
exceptions:

12-19

1. File parameter F should be present (INPUT is
assumed, but a warning is given if F is omitted).

2. If a parameter P is of type FILE, a sequence of
characters forming a valid filename is read from F
and assigned to P in the same manner as ASSIGN.

Parameters of other types are read in the same way as
the READ procedure.

Note that READFN is like READ, not like READLN, and does
not read the trailing line marker. If the first
parameter in a READFN call is a file of any type, it is
assumed to be the textfile from which characters are
read. It is not assumed that the file's name should be
read using INPUT as the default source.

READFN is used internally to read a program's
parameters. It is useful when reading a filename and
assigning the filename to some file in one operation.

Procedure READSET (VAR F; VAR L: LSTRING, CONST S: SETOFCHAR);

This procedure reads characters and puts them into L, as
long as the characters are in the set S and there is
room in L. If no file parameter is given, INPUT is
assumed, as in READ and WRITE. Leading spaces, tabs,
form feeds, and line markers are always skipped.
Reading ceases at the first line marker, which is never
in the type CHAR.

READSET, along with ENCODE, is used by the runtime
system to do the formatted READ procedures, as well as
to read filenames with READFN. It is handy when reading
and parsing input lines for simple command scanners.
The Land S parameters must reside in the default data
segment.

Procedure SEEK (VAR F; N: INTEGER4);

12-20

In contrast to normal sequential files, DIRECT files are
random access structures. SEEK is used to randomly
access components of such files. To use a DIRECT file,
the MODE field must be set to DIRECT before the file is
opened with RESET or REWRITE; the file, F, must be a
DIRECT mode file. If the file is actually read or
written sequentially, the usual READ and WRITE
procedures can be used.

SEEK modifies a field in file F so that the next GET or
PUT applies to record number N. The record number
parameter N can be of type INTEGER or WORD, as well as

of type INTEGER4. For textfiles (ASCII structure),
records are lines; for other files (BINARY structure),
records are components. Record numbers start at one
(not zero). If F is an ASCII file, SEEK sets the lazy
evaluation status "empty." If F is a BINARY file, SEEK
waits for I/O to finish and sets the concurrent I/O
status "ready.1I

SEEK is best illustrated by some examples. Assume for
instance, that a BINARY structured, DIRECT mode file
contains the following CHAR contents:

N

+---+---+---+---+---+---+---+---+
I'A'I'B'I'C'I'D'I'E'I'F'I'G'I I
+---+---+---+---+---+---+---+---+

1 2 3 4 5 6 7 8

An implicit SEEK 1 is done after a REWRITE or a RESET.
Thus, with DIRECT mode files, the following sequences of
commands might be given:

RESET (F); {Initial SEEK 1, followed by GET; FA
now holds 'A'}

SEEK (F, 5); {File position set to 5; FA still
holds 'A'}

C := FA {C is now equal to 'A'; C does not
equal lEI}

Note that the fifth component is not assigned to C, as
you might expect. To obtain this value, the following
sequences of commands should be executed:

RESET (F); {Initial SEEK 1, followed by GET; FA
now holds 'A'.}

SEEK (F, 5); {File positioned at 5.}

GET (F);

C := FA

{File buffer variable is loaded with
I E I .}

{c gets value lEI.}

The rule to follow is to always follow a SEEK (F, N)
with a GET to assure that the nth component is contained
in the buffer variable.

GET and PUT operate normally on DIRECT mode files with

12-21

BINARY structured files. However, READ and WRITE work
only with ASCII files, i.e., textfiles. READ, in
particular, will not work with DIRECT mode BINARY files,
because it assigns the buffer variable's value before it
performs a GET. On the other hand,' GET and PUT are not
normally used wi th ASCII structured DIRECT mode files.
Lazy eval uation makes READ and WRITE more appropr iate.
Care should always be taken when mixing normal
sequential operations with DIRECT mode SEEK operations.

TEMPORARY FILES
Sometimes a program needs a "scratch" file for temporary,
intermediate data. If this is the case,' you may create a
temporary file that is independent of the operating system. To
do so, without having to give the' file a name in a specific
format, ASSIGN a zero character as the name of the file. For
example:

ASSIGN (F, CHR (0»

The file system creates a unique name for the file when it sees
that the zero character has been assigned as a name. In
environments where several running jobs are sharing a file
directory, the job number is usually part of the name. Temporary
files are deleted when they are closed, either explicitly or when
the file gets deallocated. RESET and REWRITE do not delete the
file.

12-22

CONTENTS

PROGRAMS

MODULES

UNITS

CHAPTER 13

COMPILANDS

The Interface Division

The Implementation Division

13-1

A Compiland is a source file capable of being compiled by the
compiler. Pascal permi ts three kinds of compilands: programs,
modules, and implementations of units. Use of modules and
implementations of units allows you to create separately compiled
routines that can be linked to a program without re-compilation.

Example of a compilable program:

PROGRAM MAIN (INPUT, OUTPUT);
BEGIN

WRITELN('Main program')
END. {Main}

Example of a compilabl~ module:

MODULE MOD_DEMO; {No parameter list in heading}

PROCEDURE MOD_PROC;
BEGIN

WRITELN ('Output from MOD PROC in MOD_DEMO.')
END;

END. {Mod_Demo}

Example of a compilable unit:

INTERFACE;
UNIT UNIT DEMO (UNIT_PROC); {UNIT PROC is the only

exported identifier}
PROCEDURE UNIT PROC;

END; -
IMPLEMENTATION OF UNIT_DEMO;

PROCEDURE UNIT PROC;
BEGIN -

WRITELN ('Output from UNIT PROC in UNIT_DEMO.')
END;

END. {Unit_Demo}

If you compile MODULE MOD DEMO and UNIT UNIT DEMO separately, you
can later incorporate them into the main program as shown below:

13-2

INTERFACE; {INTERFACE required at the start of any}
{source that implements or uses a unit.}

UNIT UNIT DEMO (UNIT PROC);
PROCEDURE-UNIT_PROC;-

END;

PROGRAM MAIN (INPUT, OUTPUT);

USES UNIT_DEMO; {USES clause below needed to connect}
{implementation and program.}

PROCEDURE MOD_PROC; EXTERN; {EXTERN declaration needed to

connect modulels procedure.}
BEGIN

WRITELN(IOutput from Main program. I);
MOD PROC;
UNIT PROC;

END. - {End of main program.}

When the program MAIN is compiled, the output consists of the
following:

1. output from Main Program

2. output from MOD PROC declared in MOD DEMO

3. output from UNIT PROC declared in UNIT DEMO

The rules governing the construction and use of programs,
modules, and units are discussed in the following sections:

PROGRAMS
Except for its heading and the addition of a period at the end, a
Pascal program has the same format as a procedure declaration.
The statements between the keywords BEGIN and END are called the
body of the program.

Example of a program:

{Program heading}
PROGRAM ALPHA (INPUT, OUTPUT, A_FILE, PARAMETER);

{Declaration section}
VAR A_FILE: TEXT; PARAMETER: STRING (10),;

{program body}
BEGIN

REWRITE (A FILE);
WRITELN (A-FILE, PARAMETER);

END. -
{Ends with period (.)}

The word "ALPHA" following the reserved word "PROGRAM" is the
program identifier. The program identifier becomes the
identifier for a parameterless PUBLIC procedure, at a scope above
all other identifiers in the program. This procedure also has
the PUBLIC identifier ENTGQQ, which is called during
initialization to start program execution.

You could call the program body as a PUBLIC procedure from

13-3

another program, or from a module or unit, using the program
identifier or ENTGQQ as the procedure name (but doing so is not
recommended) • This means that you can redeclare the program
identifier within a program, and the usual scoping rules apply.
The program identifier is at the same level as the predeclared
identifiers, so giving a program an identifier like INTEGER or
READ generates an error message.

The program parameters denote variables that are set from outside
the program. The program communicates with its environment
through these variables.

At the standard level, all variables of any FILE type should be
present as program parameters, since there is no other way to
give an operatfng system filename to the file. However, at the
extended level, you may use the ASSIGN and READFN procedures to
assign filenames, so file variables need not appear as program
parameters.

Program parameters differ entirely from procedure parameters;
they are not passed as parameters to the procedure that is the
body of the program. All program parameters must be declared in
the variable declaration part of the block constituting the
program. If there are no program parameters and the files INPUT
and ourrpUT are not referenced, you could use the following form
instead:

PROGRAM identifier;

The two standard files INPUT and OUTPUT receive special treatment
as program parameters. Their values are not set like other
prog ram parameters and should not be declared, since they are
already predeclared. Each should be present as a program
parameter if used either explicitly or implicitly in the program:

WRITE (OUTPUT, I Prompt: I);
READLN (INPUT, P)i

WRITE (I Prompt: I)
READLN (P);

{Explicit use}

{Implicit use}

The compiler gives a warning if you use them in the program but
omit them as program parameters. The only effect of INPUT and
OUTPUT as program parameters is to suppress this warning.

You may redefine the identifiers INPUT and OUTPUT. However, all
textfile input and output procedures and functions (READ, EOLN,
etc.) still use the original definition. RESET (INPUT) and
REWRITE (OUTPUT) are generated automatically, whether or not they
are present as program parameters; you may also generate them
explicitly.

Program initialization gives a value to every program parameter
variable, except INPUT and OUTPUT. Each parameter must be either

13-4

of a simple type or of a STRING, LSTRING, or FILE type (i.e., any
type accepted by the READFN procedure). Program parameters must
be entire variables: no component selection is permitted.

Internally, each program parameter uses the file INPUT and
generates READFN calls. Before each parameter is read, a special
call is made to the internal routine PPMFQQ. PPMFQQ gets
characters returned from an operating system interface routine
called PPMUQQ, which gets them from the command line. . PPMFQQ
then effectively puts those characters at the start of the file
INPUT. The identifier of the parameter is passed to both
routines (PPMFQQ and PPMUQQ).

MODULES
Modules provide a simple, straightforward method for combining
several compilable segments into one prog ram. Uni ts prov ide a
more powerful and structured method for achieving the same end.

Basically, a module is a program without a body. The identifier
in the module heading has the same scope as a program identifier.
The heading can also include attributes that apply to all
procedures and functions in the module. There are no module
parameters; nor is there a module body. A module ends with the
reserved word END and a period.

Example of a module:

MODULE BETA [PUBLIC]; {Optional attributes}

PROCEDURE GAMMA;
BEGIN WRITELN ('Gamma') END;

FUNCTION DELTA: WORD;
BEGIN DELTA := 123 END;

END. {No body before END}

After the module identifier, you may give one or more ~ttributes
(in brackets) to apply to all of the procedures and functions
nested· directly in the· module. Depending on which, if any,
attributes you specify, the following assumptions or restrictions
apply:

1. If there is no attribute list at all, the PUBLIC
attribute is assumed. However, if a list is present but
empty, PUBLIC is not assumed.

2. The EXTERN directive used with a particular procedure or
function overrides the PUBLIC attribute given (or
assumed) for the entire module.

13-5

3. EXTERN and ORIGIN cannot be given as attributes for an
entire module, although you may specify them for
individual procedures and functions.

4. If PURE is used, the module must contain only functions
for PURE.

5. PUBLIC is the default attribute for all procedures and
functions. However, in some cases, a PUBLIC procedure
call has more overhead than a purely local one. In
other cases, the identifier of a· local procedure may
conflict with a global identifier passed to the linker.
To avoid these problems, use PUBLIC with selected
individual procedures and functions and empty brackets
for the entire module (e.g., MODULE BETA [];).

Although a module contains no body, only declarations, you may
use it as a parameterless procedure; that is, you may declare
the module identi fier as a procedure and call it from other
programs, modules, or units. This module procedure (unlike a
similar procedure for programs or units) is never called
automatically, since there is no way for the compiler to know
whether a module has been loaded and thus whether to generate a
call to it.

However, in some cases, the compiler generates module
initialization code that should be executed by calling the module
as an EXTERN procedure. If such code is necessary, the compiler
gives the warning:

Initialize Module

If you see this message, declare the module as a parameterless
EXTERN procedure and call the procedure once before anything in
the module is accessed. (You will need to do this if module
declares any FILE variables.)

Given a module M that declares its own file variables, a program
that uses M should look like this:

13-6

PROGRAM P (INPUT, OUTPUT)

PROCEDURE M; EXTERN;
BEGIN

M-,

END.

{Runtime call initializes}
{file variables.}

If the module USES any interfaces that require initialization,
the compiler generates a warning that you should declare the
module EXTERN and call it as described in the previous paragraph.

If module M does not contain any of its own file variables or use
any initialized units, there is no need to invoke M as a
procedure in the body of the program or to declare it as an
EXTERN procedure.

Variables within modules are not automatically given any
attributes. Except for the initialization of FILE variables
mentioned above, variables within modules are the same as program
variables.

UNITS
Units provide a structured way to access separately compiled
modules. A unit has two parts:

1. an interface

2. an implementation

The interface appears at the front of an implementation of a unit
and at the front of any program, module, interface, or
implementation that uses a unit.

A unit contains constants, types, super types, variables,
procedures, and functions, all of which are declared in the
interface of the unit. Any program, module, or implementation or
another interface may use an interface. An implementation
contains the bodies of the procedures and functions in a unit, as
well as optional initialization for the unit.

When you are using units, their interfaces go before everything
else in a source file, ei ther in an IMPLEMENTATION or in the
program, module, or other unit that uses it. By separating the
interface from the implementation, you can write and compile a
program before or while writing the implementation. Or, you may
load a program with one of sevetal implementations (for example,
one in Pascal or one in assembly language).

A large Pascal program is often better organized as a main
program and a number of units. However, only a program, module,
interface, or implementation can USE a unit, not an individual
procedure or functi~n.

A program, module, implementation, or interface that uses an
interface must start with the source file for that interface.
Generally, the interface source file is a separate file, and an
$INCLUDE metacommand at the start of the source file brings in
the interface source itself at compile time. Because there is
then only one master copy of the interface, this is easier and

13-7

more reliable than physically inserting the interface everywhere
it is used (and running the risk of ending up with several
different versions).

In some applications, you may wish to have several versions of
the same interface. For example, there is a separate version of
the file control block interface for. every target file system;
the $INCLUDEd file is copied from the desired interface version
before the program using it is compiled. Naturally, every
version must declare the common identifiers; each might also
have some constan t val ues fo r use in $ IF metacommands fo r the
version-specific portions of the interface.

A source file of any kind contains zero or more un~t interfaces,
separated by semicolons, and followed by a program,a module, or
an implementation, which is followed by a period. Each of these
entities is called a IIdivision. 1I See liThe Interface Division,1I
and liThe Implementation Division," in this chapter for details
about divisions.

A unit consists of the unit identifier, followed by a list of
identifiers in parentheses. These identifiers are called the
constituents of the unit and are the ones provided by a unit or
required by a program, module, or other unit. The unit is
preceded by the keyword UNIT for a provided unit or USES for a
required one.

All unit identifiers in a source file must be unique. The
identifiers in parentheses, however, may differ in the providing
and requiring divisions. Correspondence between identifiers
provided and required is by position in the list (similar to
formal and actual parameters in procedures).

The identifier list in a USES clause is optional; if not given,
the identifiers in the UNIT list are used by default. Giving
different identifiers in a USES clause allows you to change the
identifiers in case several different interfaces have identifier
conflicts. Multiple USES clauses can be combined; thus, the
following statements are equivalent:

USES A; USES B; USES C;
USES A, B, C;

Note also that a unit may introduce optional initialization code.
Such code is implied by the words BEGIN and END at the end of an
interface and is provided in an optional body in an
IMPLEMENTATION.

Example of a unit that introduces initialization code:

The program file, PLOTBOX:

{$INCLUDE:'GRAPHI'}
PROGRAM PLOTBOX (INPUT, OUTPUT);

13-8

USES GRAPHICS (MOVE, PLOT);
{MOVE and PLOT are USEd identifiers.}
BEGIN

MOVE (0, 0);
PLOT (10, "); PLOT (10, 10);
PLOT (0, 10); PLOT (0, 0);

END.

The interface file, GRAPHI:

INTERFACE;
UNIT GRAPHICS (BJUMP, WJUMP);
{Exported identifiers are BJUMP and WJUMP.}
{In the above PROGRAM, MOVE and PLOT}
{are aliases for these identifiers.}
PROCEDURE BJUMP (X, Y: INTEGER);
PROCEDURE WJUMP (X, Y: INTEGER);
{Procedure headings only above.}

BEGIN
{BEGIN implies initialization code.}
END;

The implementation file:

{$INCLUDE:'GRAPHI ' }
{$INCLUDE:'BASEPL ' }
{The following implementation USES}
{the UNIT BASEPL. Thus, the interface}
{is included above and the unit}
{used below.}
IMPLEMENTATION OF GRAPHICS;
{Implementation is invisible to user.}

USES BASEPLOT;
{procedures BJUMP and WJUMP are}
{implemented below.}
{Note that only the identifiers}
{are given in the heading.}
{The parameter lists are given}
{in the interface.}

PROCEDURE BJUMP;
BEGIN DRAWLINE (BLACK, X, Y) END;

PROCEDURE WJUMP;
BEGIN DRAWLINE (WHITE, X, Y) END;

BEGIN
{Begin initialization.}

DRAWLINE (BLACK, 0, 0)
END.

The interface file, BASEPL:

INTERFACE;
UNIT BASEPLOT (BLACK, WHITE, DRAWLINE)i

{Other identifiers besides procedure}
{identifiers can be exported.}

13-9

{Note that BLACK and WHITE are}
{exported constant identifiers.}

TYPE RAINBOW = (BLACK, WHITE, RED, BLUE, GREEN);
PROCEDURE DRAWLINE (C: RAINBOW; H, V: INTEGER);

{No BEGIN; therefore, not an initialized unit.}
END;

A USES clause may occur only directly after a program, module,
interface, or implementation heading. When the compiler
encounters a USES clause, it enters each consti tuent identi fier
(from the UNIT clause or USES clause itself) in the symbol table.
Identifiers for variables, procedures, and functions are
associated with the corresponding identifiers in the interface,
which then become external references for the linker.

If the sample program above were compiled, every ~eference to the
procedure PLOT would generate an external reference to WJUMP.
However, references to DRAWLINE would use the same identifier for
the external reference.

Constants and types (including any super array types) in the
interface are simply entered in the program's symbol table (along
wi th the new ident if i e r, if any). Thus, a type in an inter face
is identical to the corresponding type in the USES clause.

Record field identifiers are the same in the program, interface,
and implementation. Enumerated type constant identifiers must be
given explicitly, if needed; they are not automatically implied
by the enumerated type identifier. Labels cannot be provided by
an interface, since the target label of a GOTO must occur in the
same division as the GOTO.

The Interface Division

The structure of an interface is as follows:

13-10

1. An interface section
INTERFACE, an optional
and a semicolon.

starts with the reserved word
version number in parentheses,

2. Next comes the keyword UNIT, the unit identifier, the
parenthesized list of exported constituent) identifiers,
and another semicolon.

3. Any other units required by this interface come next, in
USES clauses.

4. The last section is the actual declarations for all
identifiers given in the interface list, using the usual
CONST, TYPE, and VAR sections and procedure and function
headings, in any order. 110 LABEL or VALUE sections are
permitted.

5. The interface
initialization,
initialization.

ends with BEGIN END if it has
or just wi th END if it has no

Except for ORIGIN, which cannot currently be used in interfaces,
most available attributes can be given to variables, procedures,
and func tions. Because the PUBLIC 0 r EXTERN at tr ibute 0 r EXTERN
directive is given automatically, you must not specify attributes
that may conflict (e.g., PUBLIC and EXTERN).

Usually the only identifiers you can declare are the
constituents, but other identifiers are permitted. If the
interface needs a call to initialize the unit, the keyword BEGIN
generates the call. The interface ends with the reserved word
END and a semicolon.

Example of an interface division:

INTERFACE (3) i
UNIT KEYFILE (FINDKEY, INSKEY, DELKEY, KEYREC)i

USES KEYPRIM (KFCB, KEYREC);

PROCEDURE FINDKEY (CONST NAME: LSTRING;
VAR KEY: KEYRECi
VAR REC: LSTRING);

PROCEDURE INS KEY (CONST REC: LSTRINGi
VAR KEY: KEYREC)i

PROCEDURE DELKEY (CONST KEY: KEYREC)i
PROCEDURE NEWKEY (~ONST KEY: KEYREC) i

BEGIN
{Signifies initialized unit.}
END;

In this example, KEYREC is part of the unit KEYPRIM, but is
exported as part of the unit KEYFILE. KFCB is also part of the
KEYPRIM unit, but is not exported by the KEYFILE unit. NEWKEY
is defined in the interface, but not exported by the KEYFILE
unit. This is permitted, but is pointless, since NEWKEY is
unknown even in the the implementation of the unit.

Memory available at compile time limits the number of identifiers
the compiler can process. This limit can be a problem if you
have many interfaces, especially interfaces that use other
interfaces. The symptom is the following error message:

Compiler Out Of Memory

The message
module, or
reduce the
interfaces.
only types
interfaces,

occurs before the final USES clause in the program,
implementation you are compiling. The cure is to
number of identifiers in interfaces USEd by other

For example, make a single interface that contains
(and type-related constants) shared by your other

and only USE this interface in the others.

13-11

If you include any file variables in the interface, the unit must
be initialized. The compiler does not give the usual warning,

Initialize Variable

when you declare a file in an interface. If your interface
contains files, be sure to end it with BEGIN END so that it will
be initialized.

The Implementation Division

You can compile an implementation of a unit separately from other
programs, modules, or units, but you must compile it along with
its interface.

The structure of an implementation is as follows:

1. An implementation of an interface starts with the
reserved words IMPLEMENTATION OF, followed by the uni t
identifier and a semicolon.

2. Next comes a USES clause for units it needs only for its
own use.

3. Then comes the us ual LABEL, CONSTANT, TYPE,
VALUE sections and all procedures and
mentioned as consti tuents (which must be in
block) or used internally, in any order.

VAR, and
functions
the outer

VALUE and LABEL sections may appear in the {mplementation, but
not in the interface.

Example of an implementation:

IMPLEMENTATION OF KEYFILEi
USES KEYPRIM (KEYBLOCK, KEYREC);

VAR KEYTEMP: KEYRECi

PROCEDURE FINDKEYi
BEGIN .

{Code for FINDKEY}

END;

PROCEDURE INKEY~
BEGIN .

{Code for INKEY}

13-12

END;

PROCEDURE DELKEY;
.BEGIN .

{Code for DELKEY}

END;

BEGIN .
{Any initialization code goes here.}

END.

Constants, variables, and types declared in the interface are not
redeclared in the implementation. However, you may declare other
"private" ones. Procedures and functions that are constituents
of the unit do not include their parameter list (it is implied by
the interface) or any attributes. (The PUBLIC attribute is
implied, unless the EXTERN directive is given explicitly.)

All procedures and functions in the INTERFACE must be defined in
the IMPLEMENTATION. However, they can be given the EXTERN
directive so that several IMPLEMENTATIONs (or an IMPLEMENTATION
and assembly code). can implement a single INTERFACE. All
procedures and functions with the EXTERN directive must appear
first; the compiler checks for this and issues an error message
if the EXTERN directive is ~issing or misplaced.

You may implement a unit in assembly language, in which case all
variables, procedures, and functions should generate public
definitions for the loader. If the interface is not implemented
in Pascal, it must give the proper call ing sequence attr ibute
(and of course you must be familiar with calling sequences and
internal representation of parameters).

Several Pascal runtime units are implemented partially ,in Pascal
and partially in assembly language. As mentioned, any
IMPLEMENTATION section that does not implement all interface
procedures and functions must, at' the start' 6f the
IMPLEMENTATION, declare such procedures and function~ to be
EXTERN.

An implementation, like a program, may have a body. 'The body is
executed when the program that uses the uni t is invoked, so any
initialization needed by the unit can be done. This. :includes
internal initialization, such as file variable initialization, as
well as user initialization code. If the source file· contains
several units, each implementation body is called in,' the order
its USES clause appears found in the source file.. However,
initialization code for a unit is executed only oncej no matter

13-13

how many clauses refer to it.

The body, as in a program, is a list of statements enclosed with
the reserved words BEGIN and END. At ini tiali zation time, the
version number of the interface with which the implementation was
compiled is compared against the version number of the interface
with which the program was compiled. These must be the same.
This checking prevents you from trying to run a program with
obsolete implementations. If no version number is given, zero is
assumed.

The keyword BEGIN before the final END indicates a uni t wi th
initialization. If the word BEGIN is omitted, the implementation
must not have a body and no initialization takes place.
Uninitialized units lack the following:

1. user initialization code

2. a guarantee of only one initialization

3. a version number check

The format for an initialized implementation of a unit is similar
to a program:

IMPLEMENTATION OF unit-identifier
declarations
BEGIN

body
END.

{Initialization code}

The format for an uninitialized implementation of a unit is
similar to a module:

IMPLEMENTATION OF unit-identifier
declarations

{No initialization code}
END.

If the implementation for an uninitialized unit declares any
files or USES any interfaces that require initialization, the
compiler warns you to initialize the implementation.
Initialization is done automatically if you add the keyword BEGIN
to both the interface and the implementation. As with a module,
you can declare an uninitialized unit to be a procedure with the
EXTERN attribute and then initialize it by calling it from the
program.

13-14

CHAPTER 14
COMPILING, LINKING, AND EXECUTING PROGRAMS

CONTENTS

INVOKING THE PASCAL COMPILER FROM THE EXECUTIVE

FIELD DESCRIPTIONS

LINKING A PASCAL PROGRAM

RUNNING A PASCAL PROGRAM

RUNTIME SIZE AND DEBUGGING

COMPILING AND LINKING LARGE PROGRAMS

Avoiding Limits on Code Size

Avoiding Limits on Data Size

Working With Limits on Compile Time Memory

Identifiers

Complex Expressions

LISTING FILE FORMAT

14-1

INVOKING THE PASCAL COMPILER FROM THE EXECUTIVE

Invoke the Pascal compiler with the Executive's Pascal
command. The following form appears:

Pascal
Source File
[Object file]
[List file]
[Object list file]

Filling in a form is described in the B 20 System Software
Operation Guide.

FIELD DESCRIPTIONS

14-2

Source file

is the name of the Pascal source file to be compiled.

[Object file]

is the name of the destination file for the object code
that results from the compilation. If no file is spec­
ified, a default object file is chosen as follows.
Pascal treats the source name as a character string,
strips off any suffix beginning with the character
period (.), and adds the characters ".Obj". The result
is the name of the file. For example, if the source
file is:

[Devj<Jones>Main

then the default object file is:

[Dev]<Jones>Main.Obj

If the source file is:

Prog.Pas

then the default object is:

Prog.Obj

[List file]

is the name of the file to which to write a listing of
the compilation. If no file is specified, the default
list file is chosen in a manner similar to the default
object file,' except that the string added is II .Lst"
instead of ".Obj". To list portions of the list file,
see the $LIST metacommand.

[Object list file]

is the name of the file to which to write the listing of
the generated object code. If no file is specified,
the default is to suppress the generation of the object
list file. To list portions of the object list file,
see the $OCODE metacommand.

LINKING A PASCAL PROGRAM

Invoke the Linker as described in the Linker/Librarian
Manual. The following special features of the Linker as applied
to Pascal are important:

[Libraries]

When linking a Pascal program, the Linker automatically
searches the library (SYS)<Sys>Pascal.Lib (if it exists)
for any unresolved external symbols.

[DS allocation?]

When linking a Pascal program, the Linker automatically
assumes "Yes" for this field. Most Pascal applications
require (DS allocations?) to be "Yes." To link an
application involving a Pascal module without (DS allo­
cation?), "No" must be explicitly specified for this
field.

RUNNING A PASCAL PROGRAM
Once a run file has been obtained through use of the Linker,

a Pascal program can be run either by using the Executive's Run
command, or by creating a customized command using the
Executive's New Command command and invoking it. The latter
approach allows fields in the command form for the customized
command to be passed to Pascal program parameters declared in the
Pascal program header. For example, when the following program
is used in conjunction with an Executive command having two
fields, the video display shows the contents of these fields:

Program ReadParam(OUTPUT, fieldl, field2);

VAR

BEGIN

END.

fieldl, field2

WriteLn(fieldl);
WriteLn(field2);

LSTRING (255);

14-3

RUNTIME SIZE AND DEBUGGING

The Pascal runtime occupies approximately 67K bytes: 10K of data
(including the stack) and 57K of code (which implements the
Pascal files system, heap, error handling, encode/decode, and
includes SAM and DAM from Btos.lib). (included in the 57K is
memory for Reals, Sets, and LStrings, which occupy 7. 5K, 2. 5K,
and 2K, respectively.) If you do not use these facilities, you
may suppress their inclusion in your program by explicitly
linking in the module Pasmin.obj--you will then have to do all
memory management, input-output, etc. by calls to BTOS
facilities. If you do link in PasMin.obj, you may set [DS
Allocation?] to either Yes or No.

All Pascal static data, including the 10K of system static data
mentioned above, is 1 imi ted to 64K. Therefore you can have
at most 54K of user static data and heap. You can dynamically
allocate data above this limit by calling the BTOS memory
allocation primitives directly and addressing the memory so­
allocated with ADS pointers. Since the Pascal heap is
allocated dynamically in short-lived storage and must be
contiguous, once you allocate short-lived memory the heap
cannot grow larger. The function PreAllocHeap allows the user
the ability to pre-allocate the heap. Although you can allocate
and address storage with no limit other than total physical
memory, no single Pascal object can exceed 64K bytes (which is
the space required for an array of 16K real numbers).

Suppose you start a task that has a Pascal main program using
CODE-GO so as to get control in the Debugger. Find your rna in
program by attaching the ".sym" file created when you linked (the
main program starts at ENTGQQ). If symbols are not available,
you may also examine the instruction at CS:77H (if linking with
the standard Pascal runtime) or at CS:1BH (if linking with the
minimal Pascal runtime-- Pasmin.obj), which is a call to the main
program.

14-4

COMPILING AND LINKING LARGE PROGRAMS

Occasionally, you may find that a large program exceeds one or
more physical limits on the size of program the compiler, the
linker, or your machine can handle. This section describes some
ways to avoid or work within such limits.

Avoiding Limits on Code Size

The upper limit on the size of code that can be generated at once
by the Pascal Compiler is 64K bytes. However, since you can
compile any number of compilands separately and link them
together later, the real program size limit is not 64K but the
amount of memory available.

For example, you can separately compile six different compilands
of 50K bytes each. Linking them together produces a program with
a total of 300K bytes of code.

In practice, a source file large enough to generate 64K bytes of
code would be thousands of lines long, and unwieldy both to edit
and to maintain. A better practice is to break a large program
into modules and units to better structure the development and
maintenance process. As always, there is a tradeoff between size
and speed. Procedure and function calls within a module to
routines without the PUBLIC attribute are somewhat faster, since
intrasegment calls, which run faster, are generated rather than
intersegment calls.

Avoiding Limits on Data Size

Data includes your main variables, the stack, and the heap.
Pascal operates with data in two regions of memory:

1. the default data segment

2. the segmented data space

The upper limit on the amount of data that can reside in the
default data segment is also 64K bytes. You can go beyond this
limit by taking advantage of the ability to place certain kinds
of data outside the default data segment, using ADS variables,
VARS and CONSTS parameters, and segmented ORIGIN variables.

The default data segment normally holds the following:

1. all statically allocated variables

2. constants that reside in memory

14-5

3. heap variables

4. the stack, which holds parameters, return
addresses, stack variables, etc.

Al though operations wi th data in the defaul t data segment are
more efficient (i.e., generate less code and run faster) than
those with data that may be in any segment, almost all operations
work equally well on data outside the default data segment.

The segmented data space includes the entire B 20 address space,
including the default data segment. Data outside the default
data segment can be referenced using ADS (segmented address)
variables, VARS and CONSTS parameters, and segmented ORIGIN
variables. See the appropriate chapters in this Manual for a
discussion of these Pascal features.

Only in the following cases must data reside in the default data
segment:

1. file variables

2. the LSTRING parameters to ENCODE and DECODE

3. all parameters to READSET

To allocate data outside the default
outside the Pascal system itself.
address of free blocks of memory on
these addresses in a segmented ORIGIN
an ADS variable.

data segment, you must go
If you already know the

your computer, you can use
attribute or assign them to

Many applications use a large block of memory for primary data,
as well as various other variables to control access and
processing of this data. For example, a text editor will have a
work area; a data base system will have a data area (or index
area); and so on. This large block can be managed outside the
default data segment with ADS variables.

In the default data segment, the heap and the stack grow toward
each other. Heap allocation will attempt to use existing
disposed blocks in the heap itself, before growing into memory
shared with the stack.

As a part of this process, adjacent disposed blocks are merged,
and free blocks at the end of the heap become available to the
stack.

However, only heap allocation (i.e., NEW or GETHQQ) releases free
heap blocks to the stack. Therefore, if you are running out of
stack after a number of DISPOSE operations, make the following
call:

14-6

EVAL (GETHQQ (65534»;

Working With Limits on Compile Time Memory

During compilation, large programs are most often limited in the
number of identifiers in anyone source file. They are
occasionally limited by the complexity of the program itself. If
one of these limits is reached, you will see the following error
message:

Compiler Out Of Memory

There is no particular limit on number of bytes in a source file.
The number, of 1 ines is 1 imi ted to 32767, but in practice, any
source file this big will run into other limits first.

Identifiers

Pass one of the compiler can handle a maximum of about a thousand
identifiers visible at anyone time. This assumes a 64K default
data segment (i.e., about 160K of memory total); it also assumes
that most of your identifiers are seven characters or shorter and
are not PUBLIC or EXTERN.

Once a procedure or function is compiled, its local identi fiers
can be released to provide room for new ones. Several methods of
reducing the number of identifiers in a program are described
below.

1. Break your program into modules or units

The best way to reduce the number of identi fiers is to
break up your program into modules or units. When
dividing your application into pieces, one guiding
pr inci pIe is to minimi ze the number of shared (i. e. ,
PUBLIC and EXTERN) identifiers. This not only is good
programming practice, it makes compilation easier.

Breaking up a program may force you to choose between a
shared variable and a shared procedure or function.
Usually a shared procedure or function is "cleaner"; it
is easier to trace the use of a procedure than the use
of a variable, for example. However, a shared variable
is usually more efficient in terms of memory required
and number of identifiers used.

2. Simplify your identifiers

14-7

Although it reduces the readability of a program (since
naming something is a more readable way of referring to
it than giving an arbitrary number), you may simplify
your identifiers by replacing names with numbers. If
necessary, any of the following may help:

a. Change enumerated types into WORD types and use
numbers instead of identifiers.

b. Use constant
identifiers.

literals instead of constant

c. Combine related procedures and functions into
single ones, with a parameter indicating the type of
call.

d. Combine variables into an array and refer to the
variables using constant array indices.

3. Remove unneeded identifiers from PASKEY

It is also possible to remove identifiers of predeclared
procedures and functions you don't need from PASKEY, at
least those in the final section (the one that looks
like an interface). An identifier i~ this section must
be removed three times: once from the UNIT list, once
from the interface (the declaration itself), and once
from the USES list. However, the type FCBFQQ must not
be removed.

You can also remove identifiers of intrinsic procedures
and functions, a llSt near tne start of PASKEY from
READLN to RESULT. Any identifiers removed must be
replaced with an asterisk (*). However, the procedure
READFN must not be removed if you have program
parameters.

Finally, the following declarations can be removed:

ADAPQQ
ADRMEM
ADSMEM
BYTE
INTEGERl

INTEGER2
MAXINT
MAXINT4
MAXWORD
BYTE

Removing any other identifiers from PASKEY will generate
the following error:

144 Compiler Internal Error

A special caution is required regarding interfaces. When an
interface USES another interface, it must import all identifiers

14-8

in the other interface. To do this, the other interface must
have been declared, so now its identifiers occur twice. If a
third interface USES both of the first two, the first interface's
identifiers occur three times and the second interface's
identifiers occur twice, and so on. This is an easy way to run
out of identifiers!

The only reason an interface needs to USE another interface is to
import identifiers for types; an interface has no use for
variables, procedures, and functions. You can declare a single
interface with global types; this is the only interface used by
other interfaces. Once compilation gets past the USES clausein
the PROGRAM, MODULE, or IMPLEMENTATION, many of these "extra"
identifiers are removed.

Complex Expressions

It is also possible to run out of memory in pass one with any of
the following:

1. a very complex statement or expression (i.e., one that
is very deeply nested)

2. a large number of error messages

3. a large number of structured constants, including string
constants

You may be able to change literal strings and other structured
constants into EXTERN READONLY variables which get initialized
(as PUBLIC variables) in another module.

Usually, if a program gets through pass one without running out
of memory, it will get through pass two. The major exception
occurs with complex basic blocks, as in either of the following:

1. sequences of statements with no labels or other breaks

2. sequences of statements containing very long expressions
or parameter lists (especially a WRITE or WRITELN procedure
call with many expressions)

If pass two runs out of memory, it displays the following
message:

Compiler Out Of Memory

The error message will give a line number reference. If there is
a particularly long expression or parameter list near this line,
break it up by assigning parts of the expression to local
variables (or using multiple WRITE calls). If this does not
work, add labels to statements to break the basic block.

14-9

LISTING FILE FORMAT
The following discussion of listing file format is keyed to this
sample listing:

Use
User

JG IC
00
10

20
20
20

+ 21

= 21

/ 21
21

* 21
% 21

21
10

Symtab

10
11
00

Symtab

Title
subtitle

PAGE 1

Line#
1
2
2
3
4
5
6
6
7
8
9

10
11
12
13
14
14

14

Pascal 3.0
PROGRAM foo; {$symtab+}
VAR i:integer; k:ARRAY [:9 •• 0] OF integer!
--------------------Warnlng 156,Assumed
FUNCTION bar (VAR j: integer): integer;

VAR k: ARRAY [0 .• 9] OF integer;
BEGIN
GOTO 1; {jump forward}

-------AWarning 281 Label Assumed Declared
i := bar (j); {.assign to global}
1: {label}
j := bar (i); {global to VAR parm}
GOTO 1; {jump backward}
RETURN; GOTO l;{other jumps}
i := bar (i); {other global reference}
j:= bar (j); {no global references}

END;
----A306 Function Assignment Not Found

Offset
2
2

+ 4
22

Length Variable - BAR
24 Return offset, Frame length

2 (func'n return) :Integer
2 J :Integer VarP

20 K :Array

15 BEGIN
16 i:= bar (i);
17 END.

17 Offset Length Variable
o 24 Return offset, Frame length
2 2 I : Integer
4 20 K :Array

Errors Warns In Pass One
1 2

Every page has a heading that includes such information as your
title and subtitle, set with the metacommands $TITLE and
$SUBTITLE, respectively. If these metacommands appear on the

14-10

first source line, they take effect on the first page. The page
number appears in the right side of the first line of the
heading. You can set the page number with $PAGE:<n> or start a
new page with $PAGE+.

The fourth line of the listing contains the column labels. The
contents of the first three columns are as follows:

1. The JG column

The JG column contains flag characters generated for
your information. Jump flags, which appear under the J,
may contain one of the following characters:

+ forward jump (BREAK or GOTO a label not yet
encountered)

backward jump (CYCLE 0 r GOTO a label al ready
encountered)

* other jumps (RETURN or a mixture of jumps)

Codes for global variables (not local to the current
procedure or function) appear in the column under G:

assignment to a nonlocal variable

/ passing a nonlocal variable as a reference
parameter

% a combination of the two

2. The IC column

The IC column contains information about the current
nesting levels. The digit under the I refers to the
identifier (scope) level, which changes with procedure
and function declarations, as well as with record
declarations and WITH stat~ments. The digit in the C
column refers to the control statement level; this
number changes with BEGIN and END pairs, as well as
with CASE and END and REPEAT and UNTIL pairs. The
number in this column is useful for finding missing END
keywords.

If a line is not actively used by the compiler, all
these columns are blank. Thus you can locate a portion
of the source accidentally commented out or skipped due

14-11

to an $IF and $END pair.

3. The Line column

The Line column shows the line number of the line in the
source file. An $INCLUDEd file gets its own sequence of
line numbers. If $LINE is on, this line number and the
source file name identify runtime errors.

Two kinds of compiler messages appear in the listing: errors and
warnings. A compilation with any errors cannot generate code. A
compilation with warnings only can generate code, but the result
may not execute correctly. Warnings start with the word
"Warning" and a number (see, for example, line 2 in the sample
listing). Errors start with an error number (see line 14 in the
sample listing). See Appendix D, "Error Messages," for a
complete listing of all warning and error messages.

You can suppress warning messages wi th the metacommand $WARN-,
but this is not generally recommended. The metacommand $BRAVE+
sends error and warning messages to your terminal (as well as to
the listing file). However, if ·there are more than will fit on a
single screen, the first ones will scroll off. The location of
the error is indicated in the listing file with an up arrow (").
The message itself may appear to the left or right of the arrow
and is preceded with a dashed line.

Sometimes, the compiler does not detect an error until after the
listing of the following line. In this case, the error message
line number is not in sequence.. Tabs are allowed in the source
and are passed on to the listing unchanged. If the tab spacing
is every eight columns, the error pointer (") is generally
correct. However, an error pointer near the end of a line may be
displaced if the following line has tabs. If the compiler
encounters an error from which it cannot recover, it gives the
message "Compiler Cannot Continue!". This message appears if any
of the following occurs:

1. The keyword PROGRAM (or IMPLEMENTATION, INTERFACE,
or MODULE) is not found, or the program, module, or unit
identifier is missing.

2. The compiler encounters an unexpected end-of-file.

3. The compiler finds too many errors;
number of errors per page is set with
metacommand (the default is 25).

the
the

maximum
$ERRORS

4. The identifier scope becomes too deeply nested.

When the compiler is unable to continue, for whatever reason, it
simply writes the rest of the program to the listing file with
very little error checking.

14-12

APPENDIX A
AN OVERVIEW OF THE FILE SYSTEM

A-1

This extended Pascal is designed to be easily interfaced to the
operating system. The standard interface has two parts:

1. a file control block (FCB) declaration

2. a set of procedures and functions, called Unit U, that
are called from Pascal at runtime to perform input and
output

This interface supports
SEQUENTIAL, and DIRECT.

three access methods: TERMINAL,

Each file has an associated FCB (file control block). The FCB
record type begins with a number of standard fields that are
independent of the operating system. Following these standard
fields are fields such as channel numbers, buffers, and other
data, that are dependent on the operating system.

The advanced Pascal user can access FCB fields directly, as
explained under Files in Chapter 6, "Data Types," of this Manual.

Pascal has two special file control blocks that correspond to the
keyboard and the screen of you~ terminal. These two file control
blocks are always available. they are the predeclared files
INPUT and OUTPUT (which you can reassign and generally treat like
any other files).

For files, each FCB ends with the buffer variable that contains
the current file component. This means that the length of an FCB
is the lenqth of its fixed portion plus the length of the buffer
variable. -

File control blocks always reside in the default data segment, so
they can be referenced with the offset (ADR) addresses instead of
the segmented (ADS) addresses.

File variables can occur:

1. in static memory

2. on the stack as local variables

3. or in the heap as heap variables

The generated code initializes file control blocks when they are
allocated and CLOSEs them when they are deallocated. For
example, a fixed number of file "slots" may be available, or the
routines for heap allocation may be used. A FCB can be created
or destroyed, but never moved or copied.

The Compiler must know enough about a FCB to allocate one. Thus,
it needs to know the length of a FCB less the length of its

A-2

buffer variable. This information is read by the compiler during
initialization from a special file called PASKEY.

Unit U refers to the operating system interface routines. The
file routines are called Unit F. Code generated by the compiler
contains calls to Unit F which in turn calls Unit U routines.

The file system uses the following naming convention for public
linker names:

1. All linker globals are six alphabetic characters, ending
with QQ. (This helps to avoid conflicts with program
global names.)

2. The fourth letter indicates a general class, where:

a. xxxFQQ is part of the generic Pascal file unit.

b. xxxUQQ is part of the operating system interface
unit.

File system error conditions may be detected at the lower Unit U
level, or at the higher Uni t F, or undetected. When a Uni t U
routine detects an error, it sets an appropriate flag in the FCB
and returns to the calling unit F routine. When unit F detects
an error or discovers Unit U has detected one, it takes one of
two possible actions:

1. An immediate runtime error message is generated and the
program aborts.

2. Unit F returns to the calling program if error trapping
has been set with the TRAP flag.

Unit F will not pass a file with an error condition to a Unit U
routine. For some access methods, certain file operations may
lead to an undetected error, such as reading past the end of a
record (this condition has undefined results). Runtime errors
that cause a program abort use the standard error-handling
system, which gives the context of the error and provides entry
to the debugging system.

The distributed implementation of the Pascal Compiler includes
the following three source files:

1. FINU contains procedure and function headers for all Unit
U routines.

2. FINK contains the common FCB declarations for all Pascal
systems, along with the declaration of the FILEMODES
type.

3. FINKXM contains the FCB declarations as extended for use
in the BTOS environment.

A-3

APPENDIX B
COMPILER STRUCTURE

CONTENTS

THE FRONT END

THE BACK END

Pass Two

Pass Three

8-1

The compiler is divided into three phases, or passes, each of
which performs a specific part of the compilation process. Pass
one, which normally corresponds to a file named PascalFe.Run,
constitutes the front end of the compiler and performs the
following actions:

1. reads the source program

2. compiles the source into an intermediate form

3. writes the source listing file

4. writes the symbol table file

5. writes the intermediate code file

Passes two and three (pascalOpt.Run and pascalLst.Run) together
make up the back end, which does the following:

1. optimizes the intermediate code

2. generates target code from intermediate code

3. writes and reads the intermediate binary file

4. writes the object (link text) file

5. writes the object listing file

Both the front and back end of the compiler are written in
pascal, in a source format that can be transformed into either
relatively standard Pascal or into system level pascal.

All intermediate files contain Pascal records. The front and
back ends include a common constant and type definition file
called PASCOM, which defines the intermediate code and symbol
table types. The back ends use a similar file for the
intermediate binary file definition. Formatted dump programs for
all intermediate files and object files are available for special
purpose debugging.

The symbol table record is relatively complex, with a variant for
every kind of identifier (assorted data types, variables,
procedures and functions). The intermediate code (or Icode)
record contains an Icode number, opcode, and up to four
arguments; an argument can be the Icode number of another Icode
to represent expressions in tree form, or something else (such as
a symbol table reference, constant, or length). The intermediate
binary code record contains several variants for absolute code or
data bytes, public or external references, label references and
definitions, etc.

B-2

THE FRONT END
The front end can be divided into following parts:

1. the scanner

2. low-level utilities

3. intermediate-level utilities for identifiers, symbols,
Icodes, memory allocation, and type compatibility

4. high-level routines for processing procedure and
and function calls, expressions, statements,

declarations

The front end is driven by recursive descent syntax analysis,
using a set of procedures such as EXPR (for expressions), STATEMT
(for statements), and TYPEDEC (for type declarations).

The front end maintains a "current" symbol and a "look ahead"
symbol. While not necessary for parsing correct programs, these
symbols are useful for error recovery. Syntax errors are
processed by a procedure that forces the current symbol to one of
a set of symbols legal at a given point. If the current symbol
is wrong, but the following one is correct, the current symbol is
deleted. In all cases the correct symbol is inserted if
possible. However, common substitution mistakes, such as
confusing (=) and (:=), cause only a warning message to be given
during compilation.

The scanner is relatively large, since it must process
metalanguage and produce a listing with error messages, data
about variables, and other information for the user.

Intermediate code is written to the Icode file on disk as soon as
it is generated: there is no reason to keep it in memory. The
symbol table is built as a binary tree of identifiers with
pointers to semantic records. At the end of each block, all new
semantic records are written to the symbol table file. When an
error is detected, all writing to intermediate files stops, since
the code may not be acceptable to the back end. Detecting a
warning, rather than an error, does not invalidate the
intermediate files.

The front end reads a file called PASKEY
predeclared identifiers such as INTEGER, READ,
PASKEY can be divided into four sections.

to initialize
and MAXINT.

1. The first contains the number of bytes in a file control
block and the primitive type identifiers.

2. The second section lists all the intrinsic procedure and
function identifiers (those that are transformed by the

8-3

3.

front end in special ways).

The third section
external procedures
syntax.

contains constants, types, and
and functions using normal Pascal

4. The fourth contains one or more INTERFACE and USES
clauses for predeclared procedures and functions.

THE BACK END
Of the separate passes that make up the back end of the compiler,
pass two is required while pass three is optional. Pass two
produces the object file, while pass three produces the object
1 i sting.

Pass Two

The optimizer reads the interpass files in the following order:
first the symbol table for a block is read; then the intermediate
code for the block. Optimization is performed on each "basic
block, " that is, each block of intermediate code up to the first
internal or user label or up to a fixed maximum number of Icodes,
whichever comes first.

Within this block, the optimizer can reorder and condense
expressions so long as the intent of the program(mer) is
preserved. For instance, in the following program fragment, the
array address A [J, K] need be calculated only once.

A [J, K] : =. A [J, K] + 1;
{J := J - I;}
IF A [J, K] = MAX THEN PUNT;

However, if the preceding program fragment is rewritten to
include the assignment to J, shown in the fragment as a comment,
the array address in the IF statement must be partially
recalculated.

This optimization is called common sUbexpression elimination.
The optimizer also reorders expressions so that the most
complicated parts are done first, when more registers for
temporary values are available. It also does several other
optimizations, such as:

8-4

1. constant folding not done by the front end

2. strength reduction (changing multiplications and
divisions into shifts when possible)

3. peephole optimization (removing additions of zero,
mUltiplications by one, and changing A := A + 1 to an
internal increment memory Icode)

The optimizer works by building a tree out of the intermediate
codes for each statement and then transforming the list of
statement trees.

There are seven internal passes per basic block:

1. statement tree construction from the Icode stream

2. preliminary transformations to set address/value flags

3. length checks and type coercions

4. constant and address folding, and expression reordering

5. peephole optimization and strength reduction

6. machine-dependent transformations

7. common sUbexpression elimination

Finally, the optimizer calls the code generator to translate the
basic block from tree form to machine code. The code generator
must translate these trees into actual machine code. It uses a
series of templates to generate more efficient code for special
cases. For example, there is a series of templates for the
addition operator. The first template checks for an addition of
the constant one. If this addi tion is found, the template
generates an increment instruction.

If the template does not find an addition of one, then it gives
up, and the next template gets control and checks for an addition
of any constant. If this is found, the second template generates
an add immediate instruction.

The final template in the series must handle the general case.
It moves the operands into registers (by recursively calling the
code generator i tsel f) , then generates an add reg ister
instruction. There is a series of templates for every operation.
The code generator must also keep track of register contents, and
several memory segment addresses (code, static variables,
constant data, etc.). The code generator must also allocate any
needed temporary variables.

The code generator writes a file of binary intermediate code
(BINCOD) , which contains actual byte values for machine
instructions, symbolic references to external routines and
variables, and other kinds of data. A final internal pass reads
the BINCOD file and writes the object code file.

8-5

Pass Three

This short pass reads both the BINCOD file, described in the
previous section, and a version of the symbol table file as
updated by the optimizer and code generator. ~sing the data in
these files, it writes the generated code in an assembler-like
format.

8-6

APPENDIX C
RUNTIME ARCHITECTURE

CONTENTS

RUNTIME ROUTINES

MEMORY ORGANIZATION

INITIALIZATION AND TERMINATION

Machine Level Initialization

program Level Initialization

Program Termination

ERROR HANDLING

Machine Error Context

Source Error Context

C-1

A successful Pascal compilation produces an "object" file that
can be linked with other files to produce an executable file.
Object files can come from any of the following:

1. Pascal programs, modules or units

2. User code in other high level languages

3. Assembly language

4. Routines in standard runtime modules
facilities such as error handling,
allocation, or input/output

RUNTIME ROUTINES

that
heap

support
variable

Pascal runtime entry points and variables conform to the naming
convention: all names are six characters, and the last three are
a unit identification letter followed by the letters "QQ". The
following show the unit identifie~ suffixes:

C-2

Suffix

AQQ
BQQ
CQQ
DQQ
EQQ
FQQ
GQQ
HQQ
IQQ
JQQ
KQQ
LQQ
MQQ
NQQ
OQQ
PQQ
QQQ
RQQ
SQQ
TQQ
UQQ
WQQ
XQQ
YQQ
ZQQ

Unit Function

Complex real
Compile time utilities
Encode, decode
Double precision real
Error handling
Pascal file system
Generated code helpers
Heap allocator
Generated code helpers
Generated code helpers
FCB definition
STRING, LSTRING
Reserved
Long integer
Other miscellaneous routines
Reserved
Reserved
Real (single precision)
Set operations
Reserved
Operating system file system
Reserved
Initialize/terminate
Special utilities
Reserved

MEMORY ORGANIZ'ATION
The memory in the B 20 is divided into segments, each containing
up to 64K bytes. The relocatable object format and linker also
put segments into classes and groups. All segments with the same
class name are loaded next to each other. All segments with the
Same group name must reside in one area up to 64K long; that is,
all segments in a g roup can be accessed wi th one B 20 segment
register.

Pascal defiries a single group, named DGROUP, which is addressed
using the DS or SS segment register. Normally, DS and SS contain
the same val ue, al tho ugh DS may be chang ed tempo r a r i I Y to some
other segment and changed back again. SS is never changed; its
segment registers always contain abstract "segment values" and
the contents are never examined or operated on. Long addresses,
such as ADS variables use the ES segment register for addressing.

Memory is allocated within DGROUP for all static variables,
constants which reside in memory, the stack, and the heap.
Memory in DGROUP is allocated from the top down; that is, the
highest addressed byte has DGROUP offset 65535, and the lowest
allocated byte has some positive offset. This allocation means
offset zero in DGROUP may address a byte in the code portion of
memory, in the opera ting system below the code, or even below
absolute memory address zero (in the latter case the values in DS
and SS are "negative").

DGROUP has two parts:

1. a variable length lower portion containing the heap and
the stack

2. a fixed length upper portion containing static variables
and constants.

After your program is loaded, during initialization (in ENTX6L),
the fixed upper portion is moved upward as much as possible to
make room for the lower portion. If there is enough memory,
DGROUP is expanded to the full 64K bytes; if there is not enough
for this, it is expanded as much as possible.

1. 0000:0000

The beg inning of memory on the
interrupt vectors, which are
Usually the first 32 to 64
operating system. Following
resident portion of BTOS.

B 20 system conta ins
segmented addresses.

are reserved for the
these vectors is the

BTOS provi?es for loading additional code above it,
which remalns resident and is considered part of the
operating system as well. Examples of resident
additional code are for a print spooler, queue manager,
etc.

C-3

2 • BAS E : ~HH'J"

3.

Here, BASE means the starting location for loaded
programs, sometimes called the transient program area.
When you invoke a Pascal prog ram, loading beg ins here.
The beginning of your program contains the code portion,
with one or more code segments. These code segments are
in the same order as the object modules given to the
linker, followed by object modules loaded from
libraries.

DGROUP:LO

Next comes the DGROUP data area, containing the
following:

Segment Class Description

HEAP MEMORY Pointer variables, some files
MEMORY MEMORY (not used)
STACK STACK Frame variables and data
DATA DATA Static variables
CONST CONST Constant data

The stack and the heap grow·toward each other, the stack
downward and the heap upward.

4. DGROUP:TOP

Here TOP means
DG R 0 UP: """" (i. e • ,

5. HIMEM:""""

64K bytes (4K paragraphs)
just past the end of DGROUP).

above

The segment named HIMEM (class HIMEM) gives the highest
used location in the program. The segment itself
contains no data, but its address is used during
initialization. Available memory starts here and can be
accessed with ADS variables.

INITIALIZATION AND TERMINATION
Every executable file contains one, and only one, starting
address. As a rule, when Pascal object modules are involved,
this starting address is at the entry point BEGXQQ in the module
PASSMAX. A Pascal program (as opposed to· a module or
implementation) has a starting address at the entry point ENTGQQ.
BEGXQQ calls ENTGQQ.

C-4

The following discussion assumes that an Pascal main program
along with other object modules is loaded and executed. However,
you can also link a main program in assembly or some other
language with other object modules in Pascal. In this case, some
of the initialization and termination done by the ENTX module may
need to be done elsewhere.

When a program is linked with the runtime library and execution
begins, several levels of initialization are required. The
levels, in the order in which they occur, are the following:

1. machine-oriented initialization

2. runtime initialization

3. program and unit initialization

Machine Level Initialization

The entry point of a Pascal load module is the routine BEGXQQ, in
the module PASSMAX. BEGXQQ does the following:

1. It moves constant and static variables upward, creating
a gap for the stack and the heap. It sets the stack
pointer to the top of this area. The initial stack
pointer is put into PUBLIC variable STKBQQ and is used
to restore the stack pointer after an interprocedure
GOTO to the main program.

2. It sets the frame pointer to zero.

3. It initializes a number of PUBLIC variables to zero or
NIL. These include:

RESEQQ, machine error context
CSXEQQ, source error context list header
PNUXQQ, initialized unit list header
HDRFQQ, Pascal open file list header

4. It sets machine-dependent reg isters, flags, and other
values.

5. It sets the heap control var iables. BEGHQQ and CURHQQ
are set to the lowest address for the heap: the word at
this address is set to a heap block header for a free
block the length of the initial heap. ENDHQQ is set to
the address of the first word after the heap. The stack
and the heap g row together, and the PUBLIC var i able
STKHQQ is set to the lowest legal stack address (ENDHQQ,
plus a safety gap) •

C-5

7. It calls INIUQQ, the file unit initializer. If the file
uni t is not used and you don't want it loaded, a dummy
INIUQQ routine that just returns must be loaded.

8. It calls BEGOQQ, the escape initializer. In a normal
load module, an empty BEGOQQ that only returns is
incl uded. However, this call provides an escape
mechanism for any other initialization. For example, it
could initialize tables for an interrupt driven profiler
or a runtime debugger.

9. It calls ENTGQQ, the entry point of your Pascal program.

Program Level Initialization

Your main program continues the initialization process and INIFQQ
which is a parameterless procedure is called first. If the main
program is in Pascal, and FORTRAN file routines will be used, you
must call INIVQQ to initialize the FORTRAN file system.

Pascal main programs automatically call INIFQQ. To avoid loading
the file system, you must provide an empty procedure to satisfy
one or both of these calls.

After file initialization, ENTEQQ is called to set the source
error context (but only if $ENTRY is on during compilation).
Next, each file at the program level gets an initialization call
to NEWFQQ.

After static data initialization comes unit initialization.
Everv USES clause in the source, including those in INTERFACEs,
generates a call to the initialization code for the unit.

Units mayor may not contain initialization code. If the
interface contains a trailing pair of BEGIN and END statements,
then initialization code in the implementation is presumed.
Units are initialized in the order that the USES clauses are
encountered.

Finally, any program parameters are read or otherwise
initialized, and your program begins. In general, except for
INPUT and OUTPUT, PPMFQQ is called for each parameter to set the
parameter's string value as the next line in the file INPUT.
Then one of the READFN routines "reads" and decodes the val ue,
assigning it to the parameter. The parameter's identifier is
passed to PPMFQQ for use as a prompt. PPMFQQ first calls PPMUQQ
to get the text of any command line parameter or other
parameters. If PPMUQQ returns an error, then PPMFQQ does the
prompting and reads the response directly.

User unit initialization is much like user program
initialization. The following actions occur:

e-6

1. error context initialization if $ENTRY metacommand was
on during compilation

2. variable (file) initialization

3. unit initialization for USES clause

4. user's unit initialization

Calls to initialize a unit may come from more than one unit. The
unit interface has a version number, and each initialization call
must check that the version number in effect when the uni twas
used in another compilation is the same as the version number in
effect when the unit implementation itself was compiled. Except
for this, unit initialization calls after the first one should
have no effect; i.e., a unit's initialization code should be
executed only once. Both version-number checking and single,
initial-code execution are handled with code automatically
generated at the start of the body of the uni t. This has the
effect of:

IF INUXQQ (useversion, ownversion, initrec, unitid) THEN
RETURN

The interface version number used by the compiland using the
interface is always passed as a value parameter to the
implementation initialization code. This is passed as
"useversion" to INUXQQ. The interface version number in the
implementation itself is passed as "ownversion" to INUXQQ.
INUXQQ generates an error if the two are unequal.

INUXQQ also maintains a list of initialized units. INUXQQ returns
true if the unit is found in the list, or else puts the unit in
the list and returns false. The list header is PNUXQQ. A list
entry passed to INUXQQ as "initrec" is initialized to the address
of the unit's identifier (unitid), plus a pointer to the next
entry.

User modules (and uninitialized implementations of units) may
have initialization code, much like a program and unit
implementation's initialization code, but without user
initialization code or INUXQQ calls.

The initialization call for a module or uninitialized unit cannot
be issued automatically. When the module is compiled, a warning
is given if an initialization call will be required (i.e., if
there are any files declared or USES clauses). To initialize a
module, declare the module name as an external procedure and call
it at the beginning of the program.

Program Termination

Program termination occurs in one of three ways:

C-7

1. The program may terminate normally, in which case the
main program returns to BEGXQQ, at the location named
ENDXQQ.

2. The program may abort because of an error
either with a user call to ABORT or a runtime
error handling routine. In either case,
message, error code, and error status are
EMSEQQ, which does whatever error handling
calls ENDXQQ.

condition,
call to an

an error
passed to

it can and

3. ENDXQQ can be declared in an external procedure and
called directly.

ENDXQQ first calls ENDOQQ, the escape terminator, which normally
just returns to ENDXQQ. Then ENDXQQ calls ENDYQQ, the generic
file system terminator. ENDYQQ closes all open Pascal files,
using the file list headers HDRFQQ and HDRVQQ. ENDXQQ calls
ENDUQQ, the file unit terminator. Finally, ENDXQQ calls ENDX87
to terminate the real number processor (emulator). As with
INIUQQ, INIFQQ, if your program requires no file handling, you
will need to declare empty parameterless procedures for ENDYQQ
and ENDUQQ. The main initialization and termination routines are
in module ENTX. Procedures for BEGOQQ and ENDOQQ are in modules
MISOALTI and MISOALT2. ENDYQQ is in module MISY.

ERROR HANDLING

Runtime errors are detected in one of four ways:

1. The user program calls EMSEQQ (i.e., ABORT).

2. A runtime routine calls EMSEQQ.

3. An error checking routine in the error module calls
EMSEQQ.

4. An internal helper routine calls an error message
routine in the error unit that, in turn, calls EMSEQQ.

Handling an error detected at runtime usually involves
identifying the type and location of the error and then
terminating the program. The error type has three components:

1. a message

2. an error number

3. an error status

C-8

The error message describes the error, and the number can be used
to look up for more information (see Appendix 0, "Error
Messages," of this Manual). The error status value is undefined,
al though for file system errors it may be an operating system
return code. However, the error status value may also be used
for other special purposes.

The following is a classification ,of the error codes:

Range

1- 999
1000-1099
1100-1199
1300-1999
2000-2049
2050-2099
2100-2149
2150-2199
2200-2499
2450-2499
2500-2999

Classification

Reserved for user ABORT calls
unit U file system errors
unit F file system errors
Reserved
Heap, stack, memory
Ordinal and long integer arithmetic
Real and double real arithmetic
Structures, sets and strings
Reserved
Other internal errors
Reserved

An error location has two parts:

1. the machine error context

2. the source program context

The machine error context is the program counter, stack pointer,
and frame pointer at the point of the error. The program counter
is always the address following a call to a rqntime routine
(e.g., a return address). The source program context is
optional; it is controlled by metacommands. If the $ENTRY
metacommand is on, the program context consists of:

1. the source filename of the compiland containing the
error

2. the name of the routine in which the error occurred
(program, unit, module; procedure, or function)

3. the line number of the routine in the listing file

4. the page number of the routine in the listing file

If the $LINE metacommand is also on, the line number of the
statement containing the error is also given. Setting $LINE also
sets $ENTRY.

e-g

Machine Error Context

Runtime routines are compiled by default with the $RUNTIME
metacommand set. This causes special calls to be generated at
the entry and exi t points of each runtime routine. The entry
call saves the context at the point where a runtime routine is
called by the user program. This context consists of the frame
pointer, stack pointer, and program counter. As a consequence of
this saving of context, if an error occurs in a runtime routine,
the error location is always in the user program. This is true
even if runtime routines call other runtime routines. The exit
call that is generated restores the context. The runtime entry
helper, BRTEQQ, uses the runtime values as shown below.

Value

RESEQQ
REFEQQ
REPEQQ
RECEQQ

Description

Stack pointer
Frame pointer
Program counter offset
Program counter segment

The first thing that BRTEQQ does is examine RESEQQ. If this
value is not zero, the current runtime routine was called from
another runtime routine and the error context has already been
set, so it just returns. If RESEQQ is zero, however, the error
context must be saved. The caller's stack pointer is determined
from the current frame pointer and stored in RESEQQ. The address
of the caller's saved frame pointer and return address (program
counter) in the frame is determined. Then the caller's frame
pointer is saved in REFEQQ. The caller's program counter (i.e.,
BRTEQQ;s caller;s return address) is saved: the offset in REPEQQ
and the segment (if any) in RECEQQ.

The runtime exit helper, ERTEQQ, has no parameters. It
determines the caller's stack pointer (again, from the frame
pointer) and compares it against RESEQQ. If these values are
equal, the original runtime routine called by your program is
returning, so RESEQQ is set back to zero.

EMSEQQ uses RESEQQ, REFEQQ, REPEQQ, and RECEQQ to display the
machine error context.

Source Error Context

Giving the source error context involves extra overhead, since
source location data must be included in the object code in some
form. This is done with calls which set the current source
context as it occurs. These calls can also be used to break
program execution as part of the debug process. The overhead of
source location data, especially line number calls, can be
significant. Routine entry and exit calls, while requiring more
overhead, are much less frequent, so the overhead is less.

C-10

The procedure entry call to ENTEQQ passes two VAR parameters: the
first is an LSTRING containing the source filename; the second is
a record that contains the following:

1. the line number of the procedure (a WORD)

2. the page number of the procedure (a WORD)

3. the procedure or function identifier (an LSTRING)

The filename is that of the compiland source (e.g., the main
source filename, not the names of any $INCLUDE files). The
procedure identifier is the full identifier used in the source,
not the 1 inker name. I f one name is given in an INTERFACE and
another in a USES clause, the USES identifier is used. The line
and page are those designated by the procedure header.

Entry and exit calls are also generated for the main program,
unit initialization, and module initialization, in which case the
identifier is the program, unit, or module.

The procedure exit call to EXTEQQ does not pass any parameters.
It pops the current source routine context off a stack maintained
in the heap.

The line number call to LNTEQQ passes a line number as a value
parameter. The current line number is kept in the PUBLIC
variable CLNEQQ. Since the current routine is always available
(because $LINE implies $ENTRY), the compiland source filename and
routine containing the line are available along with the line
number. Line number calls are generated just before the code in
the first statement on a source line. The statement can, of
course, be part of a larger statement. The $LINE+ metacommand
should be placed at least a couple of symbols before the start of
the first statement intended for a line number call ($LINE- also
takes effect "early").

Most of the error handling routines are in modules ERREALT and
PASE. The source error context entry points ENTEQQ, EXTEQQ, and
LNTEQQ are in the debug module, DEBE.

C-11

APPENDIX D
ERROR MESSAGES

CONTENTS

COMPILER FRONT END ERRORS

COMPILER BACK END ERRORS

COMPILER INTERNAL ERRORS

RUNTIME ERROR MESSAGES

FILE SYSTEM ERRORS (1000-1099)

RUNTIME FILE SYSTEM (1100-1199)

File System Errors (1100-1199)

OTHER RUNTIME ERRORS (2000-2999)

Memory Errors (2000-2049)

Ordinal Arithmetic Errors (2050-2099)

Type REAL Arithmetic Errors (2100-2149)

Structured Type Errors (2150-2199)

INTEGER4 Errors (2200-2249)

Other Errors (2400-2999)

0-1

This appendix lists all of the error numbers and messages you are
likely to encounter while using the Pascal Compiler and runtime
system. These error conditions fall into the following
categories:

1. compile time warnings

2. compile time errors caught

3. compiler internal errors

4. errors (both compile time and runtime) defined by the
ISO standard not caught in this extended Pascal

5. runtime file system errors

6. runtime nonfile system errors caught only if the
appropriate switch is on

7. runtime nonfile system errors always caught

Error conditions may:

1. go undetected

2. be detected by the compiler

3. be detected by the runtime system

An error is "caught" if the compiler or runtime system detects
the error and gives you a message. A "warning" is an error that
is caught by the compiler but fixed so that the compiled source
might run correctly. Substitution mistakes (e.g., using a colon
(:) instead of an equal sign (=)) and some other syntax errors
(e.g., using a semicolon (i) before an ELSE) are common errors
that generate only a warning message and are fixed by the
compiler. You should, however, go back into the source file and
make corrections, or you will keep getting the same warning
message eveiy time you compile.

Compile time errors include all of the conditions described in
this manual as "invalid," "illegal," "not permitted," and so on.
The ISO standard defines a number of error conditions that are
described as "errors not caught" in this Pascal. Generally,
these are. infrequent or very hard to detect conditions,and not
caught as errors in this Pascal. .

COMPILER FRONT END ERRORS
Front end .error and warning messages consist of a number and a
message. Most messages appear with a row of dashes and an arrow
that points to the location of the errori three (messages 128,

0-2

129, and 130) appear only after the body of the routine in which
they occur. The word "Warning" identifies warnings as such; all
other messages report errors in the program.

The front end recovers from most errors; that is, it corrects the
condition and continues the compilation. There are, however, a
few front end errors ("panic" errors) from which the compiler
cannot recover. In these cases, you see the message:

Compiler Cannot Continue!

The compiler then does little else except list the rest of the
program. These errors occur under the following circumstances:

1. There are more errors than the number n set by the
$ERRORS metacommand.

2. An end of file occurs when not expected.

3. Identifier scopes are nested too deeply.

4. The compiler cannot find the keyword PROGRAM, MODULE, or
IMPLEMENTATION.

5. The compiler cannot find the PROGRAM, MODULE, or
IMPLEMENTATION identifier.

6. A file system error occurs. The message will include
the filename and one of the following phrases:

HARD DATA
DISK FULL
FILE ACCESS
FILE SYSTEM

(check sum error)
(disk is full)
(file not found)
(other or internal error)

The front end may also get one of two compiler runtime errors:

1. Error: Compiler out Of Memory

This usually occurs when too many identifiers
declared. See "Compiling and Linking Large
under Chapter 14, "Compiling, Linking,
programs", of this Manual for suggestions
handle this situation.

2. Error: Compiler Internal Error

have been
programs"
Executing

on how to

No matter what source program is compiled, this message
should not appear. If it does, please report the
condition to Burroughs Corporation.

0-3

If the word "Warning" appears before a message, the intermediate
code files produced by the front end is correct. The condition
that produced it is not severe, but is considered unsafe.
Messages that indicate true errors halt any writing to
intermediate files, which are discarded when the front end is
finished.

The error message "Compiler" signifies the failure of an internal
consistency check. No matter what source program is compiled,
this message should not appear. If it does, please report the
condition to Burroughs Corporation.

The following list of compiler front end
error number and message, with a brief
condition that generates the message.

errors includes
explanation of

the
the

Code

101

102

103

104

105

106

0-4

Message

Invalid Line Number

There are two many lines in the source file (limit is
32767) •

Line Too Long Truncated

There are too many characters in the line (current
limit is 142 characters).

Identifier Too Long Truncated

An identifier is longer than the maximum length
permitted and has been truncated.

Number Too Long Truncated

A numer ic constant is too long and has been
truncated. Numeric constants are limited to the same
maximum length as identifiers.

End Of String Not Found

The line ended before the closing quotation mark was
found.

Assumed String

107

108

109

110

III

112

113

114

The compiler encountered double quotation marks (")
or back-quotes (') and assumed that they enclose a
string. Use single quotation marks instead.

Unexpected End Of File

While scanning, the compiler found an unexpected end­
of-file in a number, metacommand, or other illegal
location.

Metacommand Expected Command Ignored

The compiler found a dollar sign ($) at the start of
a comment, but not a metacommand identifier.

Unknown Metacommand Ignored

The compiler found a metacommand identifier that it
didn't recognize or that is invalid.

Constant Identifier Unknown Or Invalid Assumed Zero

The constant identifier following a metacommand is
unknown (as in $DEBUG: A) or not a constant of the
right type. The compiler has replaced the unknown or
incorrect value with zero.

[Unassigned]

Invalid Numeric Constant Assumed Zero

The constant following a metacommand was a numer ic
constant (e.g., $DEBUG: 123456) that has the wrong
format or is out of range. The compiler has replaced
the incorrect value with zero.

Invalid Meta Value Assumed Zero

The value 'following a metacommand
constant nor an identifier. The
replaced the incorrect value with zero.

Invalid Metacommand

is neither a
compiler has

The compiler expected but did not find one of the
following after a metacommand: +, -, or • • The
metacommand has been ignored by the compiler.

0-5

115

116

117

118

119

120

121

122

0-6

Wrong Type Value For Metacommand Skipped

The value following the metacommand was an integer,
but should have been a str ing (0 r v ice ver sa) • The
metacommand has been ignored by the compiler.

Meta Value Out Of Range Skipped

The integer value given for the $LINESIZE metacommand
was below 16 or above 160. Or, Un" is neither 4 nor
8 for $REAL:n, nor 2 for $INTEGER. In any of these
cases, the compiler ignores the metacommand.

File Identifier Too Long Skipped

The string value given for the filename in a $INCLUDE
metacommand was too long. The metacommand has been
ignored. The maximum is 96 characters.

Too Many File Levels

There are too many nested levels of files brought in
by the $INCLUDE metacommand. The $INCLUDE metacommand
is ignored.

Invalid Initialize Metacommand

A $POP metacommand has no corresponding $PUSH
metacommand.

CONST Identifier Expected

The compiler didn't find an identifier following an
$ INCONST me tacommand. The $ INCONST me tacommand is
ignored.

Invalid INPUT Number Assumed Zero

The user input invoked by $INCONST was invalid in
some way and is assumed to be zero.

Invalid Metacommand Skipped

The compiler found an
subsequent $THEN or $ELSE.

$IF metacommand but no
The $IF command has been

123

124

126

127

128

129

130

131

132

ignored.

Unexpected Metacommand Skipped

The compiler found a $THEN metacommand unrelated to
any $IF metacommand. The $THEN command is ignored.

Unexpected Metacommand

The compiler found a metacommand not enclosed in
comment delimiters, but processed it anyway.

Invalid Real Constant

The compiler found a type REAL constant with a
leading or a trailing decimal point. The constant's
value is accepted anyway.

Invalid Character Skipped

The compiler found a character in the source file
that is not acceptable in program text.

Forward Proc Missing: <procedure>

The compiler found a procedure or function declared
FORWARD but couldn't find the procedure or function
itself. This message appears in the symbol table
area of the listing file.

Label Not Encountered: <label>

The compiler couldn't find any use of a label you
declared in a LABEL section. This message occurs in
the symbol table area of the listing file.

Program Parameter Bad: <parameter>

The compiler encountered this program parameter,
which was never declared or has an unacceptable type.
This message occurs in the symbol table area of the
1 i s t i ng f i 1 e •

[Unassigned]

[Unassigned]

0-7

133

134

135

136

137

138

139

140

141

0-8

Type Size Overflow

The data type declared impl ies a structure bigger
than the maximum of 65534 bytes.

Constant Memory Overflow

Constant memory allocation has exceeded the maximum (
of 65534 bytes.

Static Memory Overflow

Static memory allocation has exceeded the maximum of
65534 bytes.

Stack Memory Overflow

Stack frame memory allocation has exceeded the
maximum of 65534 bytes.

Integer Constant Overflow

The val ue of a type INTEGER,
expression is out of range.

Word Constant Overflow

signed constant

The value of a type WORD or other unsigned constant
expression is out of range.

Value Not In Range For Record

In a structured constant, long
DISPOSE, or SIZEOF procedure, or
the record tag value is not in
variant.

Too Many Compiler Labels

form of the NEW,
other application,
the range of the

The compiler needs internal labels, and the program
is too big. You must break your program into smaller
pieces.

Compiler

142

143

144

145

146

147

148

149

150

Too Many Identifier Levels

The identifier scope level exceeds 15.
panic error!

Compiler

Compiler

This is a

This error may occur if the PASKEY file format is
incorrect.

Identifier Already Declared

The compiler found an identifier declared more than
once in a given scope level.

Unexpected End Of File

While
where
etc.

parsing, the
it shouldn't

: Assumed =

compiler
be in a

found an
statement,

end-of-file
declaration

The compiler found a colon where there should have
been an equal sign and proceeded as if the correct
symbol were present.

= Assumed :

The compiler found an equal sign where it expected a
colon and proceeded as if the co r r ect symbol were
present.

:= Assumed

The compiler found a colon followed by an equal sign
where it expected an equal sign only and proceeded as
if the correct symbol were present.

= Assumed :=

The compiler found an equal sign where it expected a
colon following by an equal sign and proceeded as if

0-9

151

152

153

154

155

156

157 •• 161

162

0-10

the correct symbol were present.

[Assumed (

The compiler found a left bracket where it expected a
left parenthesis and proceeded as if the correct
symbol were present.

(Assumed [

The compiler found a left
expected a left bracket and
correct symbol were present.

) Assumed]

The compiler found a right
expected a right bracket and
correct symbol were present.

] Assumed)

parenthesis where
proceeded as if

it
the

parenthesis where it
proceeded as if the

The compiler found a right bracket where it expected
a right parenthesis and proceeded as if the correct
symbol were present.

Assumed ,

The compiler found a semicolon where it expected a
comma and proceeded as if the correct symbol were
present.

, Assumed ;

The compiler found a comma where it expected a
semicolon and proceeded as if the correct symbol were
present.

[Unassigned]

Insert Symbol

The compiler didn't find a symbol it expected, but
proceeded as if it were present. This message should
not occur; it is a minor compiler error. If it does,
please report it to Burroughs Corporation.

163

164

165

166

167

168

169

170

171

Insert ,

The compiler didn't find a comma where it expected
one, but proceeded as if it were present.

Insert i

The compiler didn't find a semicolon where it
expected one, but proceeded as if it were present.

Insert =

The compiler didn't find an equal sign where it
expected one, but proceeded as if it were present.

Insert :=

The compiler didn't find a colon followed by an equal
sign where it expected one, but proceeded as if it
were present.

Insert OF

The compiler didn't find an OF where it expected one,
but proceeded as if it were present.

Insert]

The compiler didn't find a right bracket where it
expected one, but proceeded as if it were present.

Insert)

The compiler didn't find a right parenthesis where it
expected one, but proceeded as if it were present.

Insert [

The compiler didn't find a left bracket where it
expected one, but proceeded as if it were present.

Insert (

D-11

172

173

174

175

176

177

178

179

180 •• 114

0-12

The compiler didn't find a left parenthesis where it
expected one, but proceeded as if it were present.

Insert DO

The compiler didn't find a DO where it expected one,
but proceeded as if it were present.

Insert :

The compiler didn't find a colon where it expected
one, but proceeded as if it were present.

Insert •

The compiler didn't find a period where it expected
one, but proceeded as if it were present.

Insert ••

The compiler didn't find a double period where it
expected one, but proceeded as if it were present.

Insert END

The compiler didn't find an END where it expected
one, but proceeded as if it were present.

Insert TO

The compiler didn't find a TO where it expected one,
but proceeded as if it were present.

Insert THEN

The compiler didn't find a THEN where it expected
one, but proceeded as if it were present.

Insert *

The compiler didn't find an asterisK where it
expected one, but proceeded as if it were present.

[Unassigned]

185

186

187

188

189

190

191

192 •• 194

Invalid Symbol Begin Skip

The compi I er fo und a symbol it "expected, but onl y
after some other invalid symbols. The invalid
symbols were skipped, beginning at the point where
message 185 appears and ending where message 186
appears.

End Skip

The compi I e r fo und a symbol it ex pec ted, but onl y
after some other invalid symbols. The invalid
symbols were skipped, beg inning at the point where
message 185 appears and ending where message 186
appears.

End Skip

This message marks the end of skipped source text for
any message, except message 185, that ended with the
phrase "Begin Skip".

Section Or Expression Too Long

The compiler has reached its limit.
the program or breaking up an
assignments to intermediate values.

Invalid Set Operator Or Function

Try rearrang ing
expression wi th

Your source file includes an incorrect use of a set
operator or function (for example, MOD operator or
ODD function wi~h sets).

Invalid Real Operator Or Function

Your source file includes an incorrect use of an
. operator or function on a REAL value (for example,

MOD operator or ODD function with reals).

Invalid Value Type For Operator Or Function

For example, MOD operator or ODD function with
enumerated type.

[Unassigned]

0-13

195

196

197

198

199

200

201

202

203

0-14

Compiler

Zero Size Value

Your source file includes the empty record "RECORD
END" as if it had a size.

Compiler

Constant Expression Value Out Of Range

The value of a constant expression is out of range in
an array index, subrange assignment, or other
subrange.

Integer Type Not Compatible With Word Type

An expression tries to mix INTEGER and WORD type
values. This common error indicates confusing signed
and unsigned ar i thmetic; ei ther change the posi tive
signed value to unsigned with WRD () or change the
unsigned value « MAXINT) to signed with ORD ().

[Unassigned]

Types Not Assignment Compatible

You have attempted to use incompatible types in an
assignment statement or value parameter. See "Type
Compatibility," under Chapter 6, Data Types, for type
compatibility rules.

Types Not Compatible In Expression

You have attempted to mix incompatible types in an
expression. See "Type Compatibility," under Chapter
6, Data Types for type compatibility rules.

Not Array Begin Skip

A variable followed by a left bracket (or
parenthesis) is not array. The compiler has skipped
from here to where message 187 appears.

204

205

206

207

208

209

210

211

Invalid Ordinal Expression Assumed Integer Zero

The expression has the wrong type or a type that is
not ordinal. The compiler assumes the value of the
expression to be zero.

Invalid Use Of PACKED Components

A component of a PACKED structure has no address (it
may not be on a byte boundary) and cannot be passed
by reference.

Not Record Field Ignored

A variable
address, or
compiler.

followed
file,

Invalid Field

by a per iod is not a
and has been ignored

record,
by the

A valid field name does not follow a record variable
and a period, and has been ignored by the compiler.

File Dereference Considered Harmful

When the compiler calculates the address of a file
buffer variable, it cannot do the special actions
normally done with buffer variables (i.e., lazy
evaluation, for textfiles). Since the buffer
var iable at this address may not be val id, such a
practice is considered harmful.

Cannot Dereference value

The variable followed by an arrow is not a pointer,
address, or file; therefore the compiler cannot
dereference the value pointed to.

Invalid Segment Address

A variable resides at segmented
default segment address is needed.
make a local copy of the variable.

address, but a
You may need to

Ordinal Expression Invalid Or Not Constant

0-15

212 •• 213

214

215

216

217

218

219

220

221

0-16

The compiler found
expression where it
expression.

[Unassigned]

an inval id
expected a

Out Of Range For Set 255 Assumed

or nonconstant
constant ordinal

The compiler found an element of a set constant whose
ordinal value exceeded 255 and assumed a value of
255.

Type Too-Long Or Contains File Begin Skip

The compiler found a structured constant that
exceeded 255 bytes or either is or contains a FILE or
LSTRING type.

Extra Array Components Ignored

The compiler found an array constant that had too
many components for the array type. The excess
components were ignored.

Extra Record Components Ignored

The compiler found a record constant that had too
many components for the record type. The excess
components were ignored.

Constant Value Expected Zero Assumed

The compiler found a nonconstant value in a
structured constant and assumed its value was zero.

[Unassigned]

Compiler

Components Expected For Type

The compiler found too few components for the type of
a structured constant.

222

223

224

225

226

227

228

229

230

Overflow 255 Components In String Constant

The compiler found a string constant that exceeded
255 bytes.

Use NULL

Use the predeclared constant NULL instead of two
quotation marks.

Cannot Assign With Supertype Lstring

A super array LSTRING cannot be the source or the
target of an assignment.

String Expression Not Constant

String concatenation with the asterisk applies only
to constants.

String Expected Character 255 Assumed

The compiler found a string
characters, perhaps the result
assumed the value CHR(255).

Invalid Address Of Function

constant wi th
of using NULL,

no
and

An assignment
function value
function. Or,
the function.

or other address reference to the
is not within the scope of the

RESULT is used outside the scope of

Cannot Assign To Variable

Assignment to READONLY, CONST, or FOR control
variable is not permitted.

[Unassigned]

Unknown Identifier Assumed Integer Begin Skip

The compiler found an unknown identifier, for which
it requi res an add ress, and has ski pped to a comma,
semicolon, or right parenthesis.

0-17

231

232

233

234

0-18

VAR Parameter Or WITH Record Assumed Integer Beg in
Skip

The compiler found an invalid symbol where it
requi res an add ress, and has sk i pped to a comma,
semicolon, or right parenthesis.

Cannot Assign To Type

The target of an assignment is a file or cannot be
assigned for some other reason.

Invalid Procedure Or Function Parameter Begin Skip

The compiler found an incorrect use of an intr insic
procedure or function. The error could be one of the
following:

1. The first parameter of NEW or DISPOSE is not a
pointer variable.

2. The record tag value of a NEW, DISPOSE, or
SIZEOF procedure couldn't be found.

3. The super array in a NEW, DISPOSE, or SIZEOF
procedure had too many bounds.

4. The super array in a NEW, DISPOSE, or SIZEOF
procedure had too few bounds.

5. The super array for a NEW or SIZEOF procedure
has been given no bounds.

6. You attempted to use a WRD or ORD function on a
value not of an ordinal type.

7. You attempted to use the LOWER or UPPER
functions on an invalid value or type.

8. PACK or. UNPACK on super array or file, or an
array that is or is not packed as expected.

9. The first parameter for a RETYPE is not a type
identifier.

10. The parameter for a RESULT function is not a
function identifier.

11. You attempted to use an intrinsic procedure or
function that was not available.

12. The ORD or WRD of an INTEGER4 value is out of
range.

13. The parameter given for HIWORD or LOWORD is not
an ordinal or INTEGER4.

Type Invalid Assumed Integer

The parameter given to READ, WRITE, ENCODE, or DECODE
is not of type INTEGER, WORD, INTEGER4, REAL,
BOOLEAN, enumerated, a pointer; or, the parameter
given for a READ or. WRITE is not of type CHAR,
STRING, LSTRING; or, the parameter for a READFN is

235

236

237

238

239

240

242

243

not of one of these types or type FILE. The compiler
has assumed it to be of type INTEGER. This error
also occurs if a program parameter does not have a
readable type, in which case the error occurs at the
keyword BEGIN for the main program.

Assumed File INPUT

Because the first parameter for a READFN is not a
file, INPUT is assumed.

Invalid Segment For File

File parameters must always reside in the default
segment.

Assumed INPUT

INPUT was not given as a program parameter and has
been assumed.

Assumed OUTPUT

OUTPUT was not given as a program parameter and has
been assumed.

Not Lstring Or Invalid Segment

The target of a READSET, ENCODE, or DECODE must be an
LSTRING in the default segment. One or both of these
conditions is missing.

[Unass igned]

File Parameter Expected Begin Skip

The READSET procedure expects, but cannot find, a
textfile parameter. The compiler has ignored the
procedure and resumed where message 187 appears.

Character Set Expected

The READSET procedure expects, but cannot find, a SET
OF CHAR parameter.

0-19

244

245

246 •• 247

248

249

250

251

252

253

0-20

Unexpected Parameter Begin Skip

The compiler found more than one parameter given for
an EOF, EOLN, or PAGE, and has ignored the extra.

Not Text File

You attempted to use an EOLN, PAGE, READLN, or
WRITELN on some file other than a textfile.

[Unassigned]

Size Not Identical

The RETYPE function may not work as intended, since
the parameters given are of unequal length.

Procedural Type Parameter List Not Compatible

The parameter lists for formal and actual procedural
parameters are not compatible. That is, the number
of parameters, the function result type, a parameter
type, or attributes are different.

Cannot Use Procedure With Attribute

You attempted to call a procedure with an
attribute

Unexpected Parameter Begin Skip

: _.- -, .: ~
.LUVQ.l..LU

The compiler found a left parenthesis, indicating a
procedure or function, but no parameters, and has
skipped to where message 187 appears.

Cannot Use Procedure Or Function As Parameter

You attempted to pass this intrinsic procedure or
function as a parameter, which is not permitted.

Parameter Not Procedure Or Function Begin Skip

The compiler expected, but cannot find, a procedural
parameter here, and has skipped to where message 187
appears.

254

255

256

257

258

259

260

261

262

Supertype Array Parameter Not Compatible

The actual parameter given is not of the same type or
is not derived from the same super type as the formal
parameter.

Compiler

VAR Or CONST Parameter Types Not Identical

The actual and formal reference parameter types are
not identical, as they must be.

Parameter List Size Wrong Begin Skip

The compiler found too many or too few parameters in
a list. If too many, the excess has been skipped.

Invalid Procedural Parameter To EXTERN

A procedure or function that is neither PUBLIC nor
EXTERN is being passed as a parameter to a procedure
or function declared EXTERN. (The compiler invokes
the actual procedure or function with intrasegment
calls, and so cannot pass them to an external code
segment.)

Invalid Set Constant For Type

The set is not constant, base types are not
identical, or the constant is too big.

Unknown Identifier In Expression Assumed Zero

The identifier in an expression is undefined or
possibly misspelled.

Identifier Wrong In Expression Assumed Zero

The identifier in an expression is incorrect (e.g.,
file type identifier) and has been assumed to be
zero.

Assumed Parameter Index Or Field Begin Skip

0-21

262 •• 264

265

267

268

269

270

271

272

273 •• 274

0-22

After error 260 or 261, anything in parentheses or
square brackets, or a dot followed by an identifier,
is skipped.

[Unassigned]

Invalid Numeric Constant Assumed Zero

There is a decode error in
INTEGER4 literal constant;
has invalid characters, etc.
has been assumed to be zero.

Invalid Real Numeric Constant

an assumed INTEGER or
the number is too big,

The incorrect constant

There is a decode error in an assumed type REAL
literal constant; the number is too big, has invalid
characters, etc.

Cannot Begin Expression Skipped

A symbol tha t cannot start an expression has been
deleted.

Cannot Begin Expression Assumed Zero

A symbol that cannot start an expression has been
prefixed with a zero.

Constant Overflow

The divisor in a DIV or MOD function is the constant
zero (INTEGER or WORD), which is not permitted.

[Unassigned]

Word Constant Overflow

A WORD constant minus a WORD constant has given a
negative result.

[Unassigned]

275

276

277

279

280

281

282

283

284

285

Invalid Range

The lower bound of a subrange is greater than the
upper bound (e.g. 2 •• 1).

CASE Constant Expected

The compiler expects, but cannot find, a constant
value for a CASE statement or record variant.

Value Already In Use

In a CASE statement or record variant, the value has
already been assigned (as in CASE 1 •• 3: XXXi 2: YYYi
END) •

Label Expec ted

The compiler expects, but cannot find, a label.

Invalid Integer Label

A label uses nondecimal notation (e.g. 8#77), which
is not allowed.

Label Assumed Declared

The compiler found a label that did not appear in the
LABEL section.

[Unassigned]

Expression Not Boolean Type

The expression following an IF, WHILE, or UNTIL
statement must be BOOLEAN.

Skip To End Of Statement

The compiler found, and has skipped, an unexpected
ELSE or UNTIL clause.

Compiler

0-23

286

287

288

289

290

291

292

293

0-24

; Ignored

The compiler found, and has ignored, a semicolon
before an ELSE statement. (The semicolon is not
required in this case.)

[Unassigned]

: Skipped

The compiler found, and has ignored, a colon after an
OTHERWISE statement. (The colon is not required in
this case.)

Variable Expected For FOR Statement Begin Skip

The compiler expects, but cannot find, a variable
identifier after a FOR statement and has skipped to
where message 187 appears.

[Unassigned]

FOR Variable Not Ordinal Or Static Or Declared In
Procedure

The compiler has found an incorrect control variable
in a FOR statement. Specifically, the control
variable is, but should not-be, one of the following:

1. type REAL, INTEGER4, or another non-ordinal type
2. the component of an array, record, or file type
3. the referent of a pointer type or address type
4~ in the stack or heap, unless locally declared
5. nonlocally declared, unless in static memory
6. a reference parameter (VAR or VARS parameter)
7. a variable with a segmented ORIGIN attribute

Skip To :=

The compiler expects, but cannot find, an assignment
in a FOR statement, and has skipped to the next :=.

GOTO Invalid

,The GOTO or label here involves an invalid GOTO
statement.

294

296

297

298

299

300

301

302

303

304

GOTO Considered Harmful

As directed, if the $GOTO metacommand is on, the
compiler has found a GOTO statement.

Label Not Loop Label

The label after a BREAK or CYCLE statement is not a
loop label (i.e., does not label a FOR, WHILE, or
REPEAT statement).

Not In Loop

The compiler has found a BREAK or CYCLE statement
outside a FOR, WHILE, or REPEAT statement.

Record Expected Begin Skip

The compiler expects, but cannot find, a record
variable in a WITH statement and has skipped to where
message 187 appears.

[Unassigned]

Label Already In Use Previous Use Ignored

The compiler found a label that has already appeared
in front of a statement and has ignored the previous
use.

Invalid Use Of Procedure Or Function Parameter

The compiler has found a procedure parameter used as
a function or a function parameter used as a
procedure.

[Unassigned]

Unknown Identifier Skip Statement

The compiler has found an undefined (or possibly
misspelled) identi fier at the beg inning of a
statement and has ignored the entire statement.

Invalid Identifier Skip Statement

0·25

305

306

307

308

309

310

311

312

0-26

The compiler has found an incorrect identifier at the
beginning of a statement (e.g., file type identifier)
and has ignored the entire statement.

Statement Not Expected

The compiler has found a MODULE or uninitialized
IMPLEMENTATION with a body enclosed with the reserved
words BEGIN and END.

Function Assignment Not Found

The compiler expects, but cannot find, an assignment
of the value of a function somewhere in its body.

Unexpected END Skipped

The compiler found, and ignored, an END without a
matching BEGIN, CASE, or RECORD.

Compiler

Attribute Invalid

The compiler found an attribute valid only for
procedures and functions given to a variable, an
attribute valid only for a variable given to a
procedure or function, or an invalid mix of
attributes (e.g., PUBLIC and EXTERN).

Attribute Expected

The compiler expects, but cannot find, a valid
attribute, following the left bracket.

Skip To Identifier

The compiler skipped an invalid (i.e., unexpected)
symbol to get to the identifier that follows.

Identifier Expected

The compiler found something not an identifier where
it expected a list of identifiers.

313

314

315

316

317

318

319

320

321

322

[Unassigned]

Identifier Expected Skip To ;

The compiler expects, but
declaration of a new identifier
the next semicolon.

cannot find, the
and has skipped to

Type Unknown Or Invalid Assumed Integer Begin Skip

The return type for a parameter or function is
incorrect; that is, it is not an identifier or is
undeclared, or the value parameter or function value
is a file or super array. The compiler has assumed
the type is INTEGER and skipped to where message 187
appears.

Identifier Expected

The compiler expects, but cannot find, an identifier
after the word PROCEDURE or FUNCTION in parameter
list.

[Unassigned]

Compiler

Compiler

Previous Forward Skip parameter List

The compiler found a definition of a FORWARD (or
INTERFACE) procedure or function that unnecessarily
repeats the parameter list and function return type.

Not EXTERN

The compiler found a procedure or function with the
ORIGIN attribute but lacking the EXTERN attribute as
well.

Invalid Attribute With Function Or Parameter

The compiler found an invalid attribute

0-27

323

324

325

326

327

328

329

330

331

0-28

Invalid Attribute In Procedure Or Function

The compiler has found a nested procedure or function
that has attributes or is declared EXTERN. Neither
of these conditions is permitted.

Compiler

Already Forward

You attempted to use FORWARD twice for the same
procedure or function.

Identifier Expected For Procedure Or Function

The compiler expects, but cannot find, an identifier
following the keywords PROCEDURE or FUNCTION.

Invalid Symbol Skipped

The compiler found, and ignored, a FORWARD or EXTERN
directive in an interface.

EXTERN Invalid With Attribute

The compiler found an EXTERN procedure
PUBLIC. This is not permitted.

also
_, __ , ____ .3

U~\';.1.d1.t:U

Ordinal Type Identifier Expected Integer Assumed
Begin Skip

The compiler expects, but cannot find, an ordinal
type identifier for a record tag type. It has
skipped what is given in the source file and assumed
type INTEGER.

Contains File Cannot Initialize

You have used a file in a record variant. This is
allowed, but considered unsafe, and is not
initialized automatically with the usual NEWFQQ call.

Type Identifier Expected Assumed Character

332

333

334

335

336

337

338

339

The compiler expects, but cannot find, an ordinal
type identifier. It assumes that what it does find
is of type CHAR.

[Unassigned]

Not Supertype Assumed String

The compiler has found what looks like a super array
type designator. However, the type identifier is not
for a super array type, so the compiler assumes it to
b~ of the super array type STRING.

Type Expected Integer Assumed

The compiler expects, but cannot find, a type clause
or type identifier and has assumed the expected type
to be type INTEGER~

out Of Range 255 For Lstring

The compiler has found an LSTRING designator whose
upper bound exceeds 255.

Cannot Use Super type Use Designator

A super array type can only be used as a reference
parameter or a pointer referent. Other variables
cannot be given a super array type. Use a super
array designator.

Supertype Designator Not Found

The compiler expects, but cannot find, a super array
. designator that gives the upper bounds of the super
array.

Contains File Cannot Initialize

~he compiler has found a super array of a file type.
,While allowed ,this is considered unsafe 'and is not
initialized autcimaticallywith the usualNEWFQQ call.

Supertype Not Array Skip To; Assumed Integer

0-29

340

341

342

343

345

346

347

0-30

The compiler expects, but cannot find, the keyword
ARRAY following SUPER in a type clause. It has
assumed tha t the type is INTEGER and ski pped to the
next semicolon.

Invalid Set Range Integer Zero To 255 Assumed

The compiler has found an invalid range for the base
type of a set and assumed it to be of type INTEGER
with a range from zero to 255.

File Contains File

The compiler has found, but does not permi t, a file
type that contains a file type, ei ther directly or
i nd i r ec tl y •

PACKED Identifier Invalid Ignored

The compiler expects, but cannot find, one of words
ARRAY, RECORD, SET, or FILE following the reserved
word PACKED. Any type identifier following PACKED is
not permitted.

Unexpected PACKED

The compiler found the keyword PACKED appli~tl to one
of the nonstructured types.

Skip To ;

The compiler expects, but cann"ot find, a semicolon at
the end of a declaration (which is not at the end of
the line). It has assumed the next semicolon is the
end of the declaration.

Insert ;

The compiler expects, but cannot find, a semicolon at
end of the declaration (which coincides with the end
of a line). It has inserted a semicolon where it
expected to find one.

cannot Use Value Section With ROM Memory

If the $ROM metacommand is on, you may not also have

348

349

350

351

352

353

354

355

356

a VALUE section.

UNIT procedure Or Function Invalid EXTERN

A required EXTERN declaration occurs later than it
should in an IMPLEMENTATION. (Any interface
procedures and functions not implemented must be
declared EXTERN at the beginning.)

[Unassigned]

Not Array Begin Skip

The variable followed by a left bracket, in a VALUE
section, is not an array.

Not Record Begin Skip

The variable followed by a period, in VALUE section,
is not a record type.

Invalid Field

Within a VALUE section, the identifier assumed to be
a field is not in the record.

Constant Value Expected

Wi thin a VALUE section, a var iable has been
initialized to something other than a constant.

Not Assignment Operator Skip To ; .

Wi thin a VALUE section, the assignment opera tor is
missing.

Cannot Initialize Identifier Skip To

Within a VALUE section, there is a symbol that is not
a variable declared at this level in fixed (STATIC)
memory. Or, it has an illegal ORIGIN or EXTERN
attribute.

Cannot Use Value Section

0-31

357

358

359

360

361

362

0-32

A VALUE section has been incorrectly included in the
INTERFACE, rather than in the IMPLEMENTATION.

Unknown Forward Pointer Type Assumed Integer

The identifier for the referent of a reference type
declared earlier in this TYPE (or VAR) section was
never declared itself.

Pointer Type Assumed Forward

The TYPE section includes a pointer or address type
for which the referent type was already declared in
an enclosing scope. Since the identifier for the
referent type was declared again later in the same
TYPE section, the compiler used the second
definition. In the following example the forward
type, REAL, is used:

PROGRAM OUTSIDE;
TYPE A = WORD;
PROCEDURE B;
TYPE C= "'A;
A = REAL;

Cannot Use Label Section

The compiler found a LABEL
included in an INTERFACE,
IMPLEMENTATION.

Forward Pointer To Supertype

section incorrectly
rather than in an

The referent of a reference type declared in this
TYPE section is a super array type. The declaration
the super array type doesn't occur until after the
reference.

Constant Expression Expected Zero Assumed

An expression in a CONST section is not constant.

Attribute Invalid

A VAR section mixes incorrectly the PUBLIC or ORIGIN
attribute with EXTERN. Or, ORIGIN appears in
attribute brackets after the keyword VAR.

363

364

365

366

367

368

369

37-0

371

[Unassigned]

Contains File Initialize Module

The compiler found an uninitialized file variable in
a mod ule. You must call the mod ule as a
parameterless procedure to initialize the files.

Origin Variable Contains File Cannot Initialize

The compiler found an uninitialized file variable
with the ORIGIN attribute. Since ORIGIN variables
are never initialized, you must initialize this file
yourself.

UNIT Identifier Expected Skip To i

The compiler expects, but cannot find, an identifier
after the keyword USES.

Initialize Module To Initialize UNIT

You must call the module as a procedure in order to
initialize it (a USES clause triggers a unit
initialization call).

Identifier List Too Long Extra Assumed Integer

In a USES clause with a list of identifiers, the
compiler found more identifiers in the list than are
constituents of the interface. The extra ones are
assumed to be type identifiers identical to INTEGER.

End Of UNIT Identifier List Ignored

In a USES clause with a list of identifiers, the
compiler found fewer identifiers in the list than are
constituents of the interface. The remaining
interface constituents are not provided as part of
the USES clause.

[Unassigned]

UNIT Identifier Expected

0-33

372

373

374

375

376

377

378

0-34

An identifier is missing after the phrase "INTERFACE;
UNIT".

Compiler

Compiler expects, but cannot find, the keyword UNIT
in an INTERFACE.

Identifier In UNIT List Not Declared

One of the identifiers in the interface UNIT list was
not declared in the body of the interface.

Program Identifier Expected

An identifier is missing after the keyword PROGRAM or
MODULE. This is a panic error!

UNIT Identifier Expected

The unit identifier
"IMPLEMENTATION OF".

Program Not Found

is missing after the
This is a panic error!

phrase

The compiler expects, but cannot find, one of the
reserved words PROGRAM, MODULE, or IMPLEMENTATION OF.
This is a panic error! (This error can occur if the
source file is not a compiland.)

File End Expected Skip To End

The compiler found addition source text after what
appeared to be the end and ignored everything after
what it thought was the end.

Program Not Found

The compiler expects, but cannot find, the main body
of a compiland or the final END.

COMPILER BACK END ERRORS
The main source of back end errors is user error from either
the optimi zer or the code genera tor. There are, in fact,
very few of these errors. All are concerned with
limitations that cannot be detected by the front end.

Back end errors cause
number and approx ima te
screen.

an immed i a te
lis t i ng line

abort,
number

while an error
appear on your

The back end errors are listed below:

Code

I

2

3

4

5

Message

Attempt to divide by zero.

For example, A DIV 0.

Overflow during integer constant folding.

For example, MAXINT + A + MAXINT.

Expression too complex/Too many internal labels.

Try breaking up expression with intermediate
value assigns.

Too many procedures and/or functions.

Try breaking up compiland into modules or units.

Range error (number too large to fit into
target) •

COMPILER INTERNAL ERRORS
All errors labeled "Compiler" in Section "Compiler Front End
Errors," are compiler internal errors that should never
occur. In the event that one does occur, please report it
to Burroughs Corporation immediately.

The back end of the compi I er al so makes a large number of
in ternal consi stency chec ks. These chec ks should al ways be
correct and never give an internal error.

When they do occur, back end internal error messages have
the following format:

0-35

0-36

*** Internal Error NNN

NNN is the internal error number, which ranges from 1 to
999. There is little you can do when an internal error
occurs, except report it and perhaps modify your program
near the line where the error occurred.

RUNTIME ERROR MESSAGES
Errors detected at runtime are either file system errors or
other program exceptions. File system errors are described
first.

FILE SYSTEM ERRORS (1000-1099)
File system error codes range from 1000 to 1099. Error
codes go into the ERRC field of the file control block.
File system errors are reported in the following format:

? Error: <error type) e~ror in file <filename>
Error Code <error code), System status <status code)
PC = <program counter), FP = <frame pointer), SP = <stack

pointer>

If <error code> is in the range 1000 - 1099, then the error
was detected by the BTOS Operating System and <status code)
is a BTOS status code. See Appendix A of the B 20 Operat~ng
System (BTOS) Reference Manual.

File system errors all have the format,

<error type> error in file <filename>

followed by the error code. The <error type> field is based
on the ERRS field of the file control block, as follows:

Code

1

2

Message

No error

Hard Data

Hard data error (parity, CRC, check sum, etc.).

Device Name

Invalid
number.

unit/device/volume name format or

3

4

5

6

7

8

9

10

11

12

Operation

Invalid operation: GET if EOF, RESET a printer,
etc.

File System

File system internal error, ERRS> 15, etc.

Device Offline

Unit/device/volume no longer available.

Lost File

File itself no longer available.

File Name

Invalid syntax, name too long, no temporary
names, etc.

Device Full

Disk or directory full.

Unknown Device

Unit/device/volume r.ot found.

File Not Found

File itself not found.

protected File

Duplicate filename; write-protected.

File In Use

File in use, concurrency lock, already open.

0-37

D-38

13 File Not Open

File closed, I/O to unopen FeB.

14 Data Format

Data format error, decode error, range error.

15 Line Too Long

Buffer overflow, line too long.

Runtime File System (11 00-1199)
If <error code> is in the range of 1100 - 1999, then the
error was detected by the Pascal file system. These errors
are explained below.

File System Errors (1100-1199)

Code

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

Message

ASSIGN or READFN of filename to open file

This error is only caught for textfiles~

Reference to buffer variable of closed textfile

Textfile READ or WRITE call to closed file

READ when EOF is true (SEQUENTIAL mode)

READ to REWRITE file, or WRITE to RESET file
(SEQUENTIAL mode)

EOF call to closed file

GET call to closed file

GET call when EOF is true (SEQUENTIAL mode)

GET call to REWRITE file (SEQUENTIAL mode)

PUT call to closed file

PUT call to RESET file (SEQUENTIAL mode)

l~ll

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Line too long in DIRECT textfile

Decode error in textfile READ BOOLEAN

Value out of range in textfile READ CHAR

Decode error in textfile READ INTEGER

Decode error in textfile READ SINT (integer
subrange)

Decode error in textfile READ REAL

LSTRING target not big enough in READSET

Decode error in textfile READ WORD

Decode error in textfile READ BYTE (word
sub.range)

SEEK call to closed file

SEEK call to file not in DIRECT mode

Encode error (field width > 255) in textfile
WRITE BOOLEAN

Encode error (field width > 255) in textfile
WRITE INTEGER

Encode error (field width > 255) in textfile
WRITE REAL

Encode error (field width > 255) in textfile
WRITE WORD

Decod~ error (field width> 255)in textfile READ
INTEGER4

Encode error (field width > 255)in textfile
WRITE INTEGER4

OTHER RUNTIME ERRORS (2000-2999)
Nonfile system error codes range from 2000 to 2999. In some
cases, metacommands control whether or not the compiler
checks for the error. In other cases, the compiler always
checks. The list below indicates which, if any, metacommand
controls the error checking.

D-39

0-40

Memory Errors (2000-2999)

Since the stack and the heap grow toward each other, all
memory errors are related; for example, a stack overflow can
cause a "Heap Is Invalid" error if $STACKCK is off and the
stack overflows.

Code

2000

2001

2002

2003

2004

2031

Message

Stack Overflow

The stack (frame) ran out of memory while
calling a procedure or function. This condition
is checked if the $STACKCK metacommand is on,
and may be checked in some other cases.

No Room In Heap

The heap ran out of room for a new variable
during the NEW (GETHQQ) procedure. This error
is always caught.

Heap Is Invalid

During the NEW (GETHQQ) procedure,
allocation algorithm discovered the
structure is wrong. This error is
caught.

Heap Allocator Interrupted

the
heap

always

An interrupt procedure interrupted NEW (GETHQQ)
and did a NEW call itself. The heap allocator
modifies the heap, so it is a critical section.
This error is not caught in all versions.

Allocation Internal Error

There was an unexpected error return when GETHQQ
was requesting addi tional heap space from the
operating system. Please report occurrences of
this error to Burroughs Corporation.

NIL Pointer Reference

2032

2033

2034

2035

DISPOSE or $NILCK+ found a pointer with a NIL
(i.e., 0) value.

Uninitia1ized Pointer

DISPOSE or $NILCK+ found an uninitia1ized (value
1) pointer. This only occurs if the metacommand
$INITCK is on.

Invalid Pointer Range

DISPOSE or $NILCK+ found a pointer that does not
point into the heap or is otherwise invalid.
(It may have pointed to a disposed block that
was removed from the heap and given back to the
system.)

Pointer To Disposed Var

DISPOSE or $NILCK+ found a pointer to a heap
block that has been disposed. Calling DISPOSE
twice for the same variable is invalid.

Long DISPOSE Sizes Unequal

In a long form of DISPOSE, the actual length of
the variable did not equal the length based on
the tag values given.

Ordinal Arithmetic Errors (2050-2099)

Code

2050

2051

Message

No CASE Value Matches Selector

In a CASE statement without an OTHERWISE clause,
none of the branch statements had a CASE
constant value equal to the selector expression
value. This error is only checked if the
$RANGECK metacommand is on.

Unsigned Divide By Zero

A WORD value was divided by zero. This error is
checked only if the $MATHCK metacommand is on.

0-41

2052

2053

2054

2055

2056

2057

2058

0-42

Signed Divide By Zero

An INTEGER value was divided by zero. This
error is checked only if the $MATHCK metacommand
is on.

Unsigned Math Overflow

A WORD result is outside the range zero to
MAXWORD. This error is checked only if the
$MATHCK metacommand is on.

Signed Math Overflow

An INTEGER resul t is outside the range from -
MAXINT to +MAXINT. This error is checked only
if the $MATHCK metacommand is on.

Unsigned Value Out Of Range

The source value for assignment or value
parameter is out of range for the target value.
The target may be a subrange of WORD (including
BYTE), or CHAR, or an enumerated type. This
error can also occur in SUCC and PRED functions
and when the length of an LSTRING is assigned.
All of these conditions are checked if the
$RANGECK metacommand is on.

The error also occurs when an array index is out
of bounds and the array has an unsigned index
type. This condition is checked when the
$INDEXCK metacommand is on.

Signed Value Out Of Range

This error is similar to message 2055, but
applies to the INTEGER type and its subranges.

Uninitialized 16 Bit Integer Used

Either an INTEGER or 16-bit INTEGER subrange
variable is used without being assigned first,
or such a variable has the invalid value of -
32768. This condition is checked if the $INITCK
metacommand is on.

Uninitialized 8 Bit Integer Used

Either a SINT or 8-bit INTEGER subrange variable
is used without being assigned first, or such a
variable has the invalid value of -128. This
condition is checked if the $INITCK metacommand
is on.

Type REAL Arithmetic Errors (2100-2149)

Code

2100

2101

2104

2105

2106

2131

2132

Message

REAL Divide By Zero

A REAL value is divided by zero. This error is
al ways caught.

REAL Math Overflow

A REAL value is too large for representation.
This error is always caught.

SQRT of Negative Argument

The parameter for a square root function is less
than zero. This error is always caught.

LN of Non-Positive Argument

The parameter of a natural log function is less
than or equal to zero. This error is always
caught.

TRUNC/ROUND Argument Range

The REAL parameter of a TRUNC, TRUNC4, ROUND, or
ROUND4 function is outside the range of
INTEGERs. This error is always caught.

Tangent Argument Too Small

The parameter for a TANRQQ function is so small
that the result is invalid. This error is
always caught.

Arcsin or Arccos of REAL> 1.0

0-43

2133

2134

2135

2136

2138

2139

2140

0-44

The parameter of an ASNRQQ or ACSRQQ function is
greater than one. This error is always caught.

Negative Real To Real Power

The first argument of
function is less than
al ways caught.

an PRDRQQ or PRSRQQ
zero. This error is

Real Zero To Negative Power

There was an attempt to raise zero to a negative
power in one of the functions PISRQQ, PIDRQQ,
PRDRQQ, or PRSRQQ.

REAL Math Underflow

The significance of a REAL expression has been
reduced to zero.

REAL Indefini te
Er ror)

The REAL value
encountered. This
metacommand is on
value is used, or

(Uninitia1ized Or Previous

called "infinity" was
may occur if the $INITCK

and an uninitialized REAL
if a previous error set a

variable to indefinite as part of its masked
error response.

REAL IEEE Denormal Detected

A very small real number was generated and may
no longer be valid due to loss of significance.

Reserved

REAL Arithmetic Processor Instruction Illegal Or
Not Emulated

An attempt was made to execute an illegal
arithmetic coprocessor instruction, or the
floating point emulator cannot emulate a legal
coprocessor instruction.

Structured Type Errors (2150-2199)

Code

2150

2151

2180

2181

Message

String Too Long in COPYSTR

The source string for a
function is too large for
This error is always caught.

COPYSTR intrinsic
the target str ing.

Lstring Too Long In Intrinsic Procedure

The ta rg et LSTRING is too sma 11 in an INS ERT,
DELETE, CONCAT, or COPYLST intrinsic procedure.
This error is always caught.

Set Element Greater Than 255

The val ue in
maximum of 255.

a constructed set exceeds the
This error is always caught.

Set Element Out Of Range

The value in a set assignment or set value
parameter is too large for the target set. This
error is caught only if the $RANGECK metacommand
is on.

INTEGER4 Errors (2200-2249)

Code

2200

2201

2234

Message

Long Integer Divide By Zero

An INTEGER4 value is divided by zero.
error is always caught.

Long Integer Math Overflow

This

An INTEGER4 value is too large for
representation. This error is always caught.

Reserved

0-45

0-46

Other Errors (2400-2999)

Code

2400

2450

Message

Reserved

Unit Version Number Mismatch

During unit initialization, the user (one with
the USES clause) and implementation of an
interface were discovered to have been compiled
wi th unequal in terface version numbers. Thi s
error is always caught.

APPENDIX E

SUMMARY OF RESERVED WORDS

E-1

E-2

Reserved words at the standard level:

AND
ARRAY
BEGIN
CASE
CONST
DIV
DO
DOWNTO
ELSE
END
FILE
FOR
FUNCTION
GOTO
IF
IN
LABEL
MOD

NIL
NOT
OF
OR
PACKED
PROCEDURE
PROGRAM
RECORD
REPEAT
SET
THEN
TO
TYPE
UNTIL
VAR
WHILE
WITH

Additional reserved words at the extended level:

BREAK
CONSTS
CYCLE
IMPLEMENTATION
INTERFACE
MODULE

OTHERWISE
RETURN
UNIT
USES
VALUE
VARS
XOR

Additional reserved words at the system level:

ADR
ADS

Names of attributes

EXTERN
EXTERNAL
ORIGIN
PUBLIC

Names of directives:

EXTERN
EXTERNAL
FORWARD

PURE
READONLY
STATIC

Logically, directives are reserved words. Since additional
directives are allowed in ISO Pascal, all are included at
the standard level. Note that EXTERN is both a directive
and an attribute; EXTERNAL is a synonym for EXTERN in both
cases.

E-3

APPENDIX F

SUMMARY OF AVAILABLE PROCEDURES AND FUNCTIONS

F-1

F-2

This appendix provides a summary listing of all available
functions and procedures, along with the name of the group
in which they are presented in Chapter 11, Available
Procedures and Functions."

Name

ABORT
ABS
ACDRQQ
ACSRQQ
AIDRQQ
AISRQQ
ANDRQQ
ANSRQQ
ARCTAN
ASDRQQ
ASSRQQ
ASSIGN
ATDRQQ
ATSRQQ
A2DRQQ
A2SRQQ
BEGOQQ
BEGXQQ
BYLONG
BYWORD
CHDRQQ
CHR
CHSRQQ
CLOSE
CNDRQQ
CNSRQQ
CONCAT
COPYLST
COPYSTR
COS
DECODE
DELETE
DISCARD
DISPOSE
ENCODE
ENDOQQ
ENDXQQ
EOF
EOLN
EVAL
EXDRQQ
EXP
EXSRQQ
FILLC
FILLSC
FLOAT

Description

Terminate program
Absolute value function
REAL8 arc cosine function
REAL4 arc cosine function
REAL8 truncate function
REAL4 truncate function
REAL8 round toward zero
REAL4 rtiund toward zero
Arc tangent function
REAL8 arc sine function
REAL4 arc sine function
Assign filename
REAL8 arc tangent ~unction
REAL4 arc tangent (A/B)
REAL8 arc tangent (A/B)
REAL4 arc tangent function
Initialize user
Overall initialization
WORD or INTEGER to INTEGER4
Put bytes in word
REAL8 hyperbolic cosine
Get ASCII char of value
REAL4 hyperbolic cosine
Close file
REAL4 cosine function
REAL4 cosine function
Concatenate LSTRING
Copy to LSTRING
Copy to STRING
Cosine function
Decode LSTRING to variable
Remove portion of LSTRING
Close and delete file
Dispose of heap item
Encode expression to LSTRING
User termination
Program termination
Boolean end-of-file
Boolean end-of-line
Evaluate functions
REAL8 exponential function
Exponential function
REAL4 exponential function
Fill area with C, relative
Fill area with C, segmented
Convert INTEGER to REAL

Category

Extended level
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Arithmetic
File system
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Library
Lihrary
Extended level
Extended level
Arithmetic
Data conversion
Arithmetic
File system
Arithmetic
Arithmetic
String
String
Str ing
Arithmetic
Extended level
String
File system
Dynamic allocation
Extended level
Library
Library
File system
File system
Extended level
Arithmetic
Arithmetic
Arithmetic
System level
System level
Data conversion

FLOAT4
GET
HIBYTE
HIWORD
INSERT
LADDOK
LDDRQQ
LDSRQQ
LMULOK
LN
LNDRQQ
LNSRQQ
LOBYTE
LOWER
LOWORD
MDDRQQ
MDSRQQ
MNDRQQ
MNSRQQ
MOVEL
MOVER
MOVESL
MOVESR
MXDRQQ
MXSRQQ
NEW
ODD
ORD
PACK
PAGE
PIDRQQ
PISRQQ
POSITN
PRED
PRDRQQ
PRSRQQ
PUT
READ
READFN
READLN
READSET
RESET
RESULT
RETYPE
REWRITE
ROUND
ROUND4
SADDOK
SCANEQ
SCANNE
SEEK
SHDRQQ
SHSRQQ
SIN

Convert INTEGER4 to REAL
Get next file component
Get high BYTE
Get high WORD
Insert string
32-bit signed addition check
REAL8 log base ten function
REAL4 log base ten function
32-bit signed multiply check
Natural log function
REAL8 natural log
REAL4 natural log
Get low BYTE
Get lower bound
Get low WORD
REAL8 modulo function
REAL4 modulo function
REAL8 minimum function
REAL4 minimum function
Move bytes left, relative
Move bytes right, relative
Move bytes left, segmented
Move bytes right, segmented
REAL8 maximum function
REAL4 maximum function
Allocate new heap item
Boolean odd function
Get ordinal value
Pack CHAR array
Write new page
REAL8 to INTEGER power
REAL4 to INTEGER power
Find position of substring
Predecessor function
REAL8 to REAL8 power
REAL4 to REAL4 power
Put value to file
Read file
Read filename
Read file to end of line
Read set
Ready file for read
Return result of function
Force expression to type
Ready file for write
Round REAL
Round INTEGER4
16-bit signed addition check
Scan until char found
Scan until char not found
position at direct file record
REAL8 hyperbolic sine
REAL4 hyperbolic sine
Sine function

Data conversion
File system
Extended level
Extended level
String
Library
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Extended level
Extended level
Extended level
Arithmetic
Arithmetic
Arithmetic
Arithmetic
System level
System level
System level
System level
Arithmetic
Arithmetic
Dynamic allocation
Data conversion
Data conversion
Data conversion
File System
Arithmetic
Arithmetic
String
Data conversion
Arithmetic
Arithmetic
File system
File system
File system
File system
File system
File system
Extended level
System level
File system
Data conversion
Data conversion
Library
String
String
File system
Arithmetic
Arithmetic
Arithmetic

F-3

F-4

SIZEOF
SMULOK
SNDRQQ
SNSRQQ
SQR
SQRT
SRDRQQ
SRSRQQ
SUCC
THDRQQ
THSRQQ
TNDRQQ
TNSRQQ
TRUNC
TRUNC4
UADDOK
UMULOK
UNPACK
UPPER
WRD
WRITE
WRITELN

Get size of structure
l6-bit signed multiply check
REAL8 sine function
REAL4 sine function
Square function
Square root function
REAL8 square root
REAL8 square root
Successor function
REAL8 hyperbolic tangent
REAL4 hyperbolic tangent
REAL8 tangent function
REAL4 tangent function
Truncate REAL
Truncate INTEGER4
Unsigned addition check
Unsigned multiply check
Unpack STRING to array
Get upper bound
Convert to WORD value
Write file
Write line to file

Extended level
Library
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Data conversion
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Data conversion
Data conversion
Library
Library
Data conversion
Extended level
Data conversion
File system
File system

APPENDIX G

SUMMARY OF METACOMMANDS

G-1

G-2

This appendix provides a single alphabetical list of all of
the metacommands described in Chapter 4, "Metacommands."
Defaults, if any, are shown following the metacommand.

Metacoinmand

$BRAVE+

$DEBUG-

$ENTRY-

$ERRORS:25

$GOTO-

$IF <constant>
$THEN <textl>
$ELSE <text2>

$END

$INCLUDE:'<file>'

$INCONST

$INDEXCK+

$INITCK­

$INTEGER

$LINE-

$LINESIZE:79

$LIST+

$MATHCK+

$MESSAGE

$NILCK+

$OCODE+

$PAGE+

$PAGE: <n>

Action

Sends messages to the terminal screen.

Turns on or off all error checking
(CK) •

Generates procedure entry and exi t
calls for debugger.

Sets number of errors allowed per page.

Flags GOTOs as "considered harmful."

Allows conditional compilation of
<textl> source if <constant> is greater
than zero.

Switches compilation to file named.

Allows interactive setting of constant
values at compile time.

Checks for array index values in range.

Checks for use of uninitialized values.

Sets the length of the INTEGER type.

Generates
debugger.

line number calls

Sets width of source listing.

Turns on or off source listing.

Checks for mathematical errors.

for

Displays a message on terminal screen.

Checks for bad pointer values.

Turns on or off object code listing.

Skips to next page.

Sets page number for next page.

$PAGEIF:<n>

$PAGESIZE:55

$POP

$PUSH

$RANGECK+

$REAL

$ROM

$RUNTIME-

$SIMPLE

$SIZE

$SKIP:<n>

$SPEED

$STACKCK+

$SUBTITLE:'<subt>'

$SYMTAB+

$TITLE:'<title)'

$WARN+

Skips to next page if less than <n>
lines left.

Sets page length of source listing.

Restores saved value of all
metacommands.

Saves current value of all
metacommands.

Checks for subrange validity.

Sets the length of the REAL type.

Warns on static initialization.

Determines context of runtime errors.

Disables global optimizations.

Minimizes size of code generated.

Skips <n> lines or to end of page.

Minimizes execution time of code.

Checks for stack overflow at entry.

Sets page subtitle.

Sends symbol table to source listing.

Gives page title for source listing.

Gives warning
listing.

messages in source

G-3

APPENDIX H
EXTENDED PASCAL FEATURES AND THE ISO STANDARD

CONTENTS

EXTENDED PASCAL AND THE ISO STANDARD

SUMMARY OF EXTENDED PASCAL FEATURES

Syntactic and pragmatic Features

Data Types and Modes

Operators and Intrinsics

Control Flow and Structure Features

Extended Level I/O and Files

System Level I/O

H-1

H-2

ENTENDED PASCAL AND THE ISO STANDARD
The ISO standard defines a large number of error conditions,
but allows a particular implementation to handle an error by
documenting the fact that the error is not caught. These
"errors not caught," and other differences between this
extended Pascal and the ISO standard, are described below.

Extended Pascal allows the following minor extensions to the
current ISO/ANSI/IEEE standard:

1. a question mark (?) and a at-sign
substitutes for the up arrow (A)

2. the underscore () in identifiers

(@) are

Due to the way the compiler binds identifiers, the new
reserved words added at the extended and system levels
cannot be used as identifiers at the standard level. A new
directive, EXTERN, and new predeclared functions are
standard in this extended Pascal.

The differences between the standard level of this pascal
and the current ISO/ANSI/IEEE standard are summarized as
follows:

1. The ISO standard requires a separator between numbers
and identifiers or keywords.

In some cases, this extended Pascal doesn't require a
separator between a number and an identifier or
keyword, e.g., "100mod" is accepted as "100 mod"
without error.

2. The ISO standard does not allow passing a component of
a PACKED structure as a reference parameter.

This extended Pascal specifically permits passing a
CHAR element of a PACKED ARRAY [1 •• n] OF CHAR as a
reference parameter. passing a tag field as a
reference is an error not caught. passing other packed
components gives the usual error.

3. The ISO standard- does not include the textfile line­
marker character in the set of CHAR values.

This extended Pascal permi ts all 256 8-bi t val ues as
CHAR values.

4. The ISO standard requires a variant to be given for all
possible tag values.

This extended Pascal permits a variant record

declaration in which not all tag values are given.

5. The ISO standard requires that an identifier have only
one meaning in any scope.

In this extended pascal, using an identifier and then
redeclaring it in the same scope is an error not
caught. For example, the following,

CONST X=Y; VAR Y: CHAR;

has two meanings for Y in the same scope. This Pascal
generally uses the latest definition for an identifier.
There is one ambiguous case: If you declare type FOO in
one scope and in an inner scope TYPE P = A FOO; F00 =
type; then FOO has two meanings and intent is
ambiguous. In this case, the compiler uses the later
definition of FOO and issues a warning.

6. The ISO standard requires field width "M" to be greater
than zero in WRITE and WRITELN procedures.

This extended Pascal treats M < 0 as if M = ABS(M), but
field expansion takes place from the right rather than
the left. M can also be zero, to WRITE nothing.
Textfile WRITE(LN) parameters can take both M and N
parameters (ignored if not needed). The form "V::N" is
allowed. When writing an INTEGER, the N parameter sets
the output radix; when writing an enumerated type, the
N parameter sets the ordinal number or constant
identifier option.

7. The ISO standard does not allow a variable created with
the long form of NEW to be assigned, used in an
expression, or passed as a parameter. However, this is
difficult to check for at compile time and expensive to
check at runtime.

This extended pascal allows assignments to
variables using the actual length of the
variable. The ISO standard error is not caught.

these
target

8. The ISO standard does not allow the short form of
DISPOSE to be used on a structure allocated wi th the
long form of NEW. The ISO standard only permi ts a
variable allocated with the long form of NEW to be
released wi th the long form of DISPOSE, and all tag
fields should never change between the calls.

This extended Pascal allows the short form of DISPOSE

H-3

H-4

to be used on a structure allocated with the long form
of NEW, and does not check for changes in tag values.

9. The ISO standard declares that when a "change of
variant" occurs (such as when a new tag value is
assigned), all the variant fields become undefined.

This extended Pascal does
unini tial ized when a new tag
not catch use of a variant
val ue.

not set the fields
is assigned and so does
field with an undefined

10. The ISO standard does not allow a variable with an
active reference (i. e., the records of an executing
WITH statement or an actual reference parameter) to be
disposed (if a heap variable) or changed by a GET or
PUT (if a file buffer variable).

This Pascal does not catch these as errors.

11. The ISO standard currently defines I MOD J as an error
if J < 0 and the result of MOD is positive, even if I
is negative.

This extended Pascal does not currently use the new
draft standard semantics for the MOD operator. Programs
intended to be portable should not use MOD unless both
operands are positive.

12. The ISO standard at Level 1 defines conformant array.

This extended Pascal does not implement the conformant
array concept in Level 1 of the ISO standard. Super
arrays provide much the same functionality in a more
flexible way.

13. The ISO standard requires the control variable of a FOR
loop to be local to the immediate block. Any
assignment to this control variable is an error.

This extended Pascal allows nonlocal var iable to be
used if it is STATIC, so either a local variable or one
at the PROGRAM level can be a FOR statement control
variable. This Pascal also does not detect an
assignment to the control variable as an error if
assignment occurs in a procedure or function called
within the FOR statement.

14. The ISO standard requires the CHR argument to be
INTEGER.

This extended Pascal allows CHR to take any ordinal
type.

SUMMARY OF EXTENDED PASCAL FEATURES
The following summarizes this Pascal's extensions to the ISO
standard. Unless otherwise noted, all are at the extended
level.

Syntactic and Pragmatic Features

1. the metalanguage (standard level)

$BRAVE
$DEBUG
$ENTRY
$ERRORS
$GOTO
$INCLUDE
$INCONST
$INDEXCK
$INTICK
$IF $THEN $ELSE $END
$INTEGER
$LINE
$LINESIZE
$LIST
$MATHCK
$MESSAGE
$NILCK
$OCODE
$OPTBUG

$PAGE
$PAGEIF
$PAGESIZE
$POP
$PUSH
$RANGECK
$REAL
$ROM
$RUNTIME
$SIZE
$SKIP
$SPEED
$STACKCK
$SUBTITLE
$SYMTAB
$TITLE
$WARN

2. extra listing (standard level)

a. flags for jumps, globals, identifier level,
control level, header, trailer

b. textual error and warning messages

3. syntactic additions

a. as comment to end of line

b. square brackets equivalent to BEGIN/END

H-5

H-6

4. nondecimal number notation

a. numer ic constants wi th # or nn# (where nn
2 •• 36)

b. DECODE/READ takes # notation

c. ENCODE/WRITE with N of 2, 8, 10, 16

5. extended CASE range

a. for CASE statements and record variants

b. OTHERWISE for all other values except records

c. A •• B for range of values

Data Types and Modes

1. WORD type, WRD function, MAXWORD constant

2. REAL4 and REAL8 types

3. INTEGER4 type, MAXINT4 consti

4. FLOAT4, ROUND4, and TRUNC4 functions

5. Address types (system level)

a. ADR and ADS types and operators

b. VARS and CONSTS parameters

6. SUPER array types

a. conformant parameters

b. dynamic length heap variables

c. multidimensional super arrays

d. STRING and LSTRING super types

7. LSTRING type, NULL constant, .LEN field

8. Explicit byte offsets in records (system level)

9. CONST and CONSTS reference parameters for constants
and expressions

10. Structured (array, record, and set) constants

11. Extended functions returning any assignable type

12. Variable selection
functions

13. Attributes

EXTERN
EXTERNAL
ORIGIN
PUBLIC

Operators and Intrinsics

on values

PURE
READONLY
STATIC

1. extended level operators:

a. bitwise logical: AND OR NOT XOR

b. set operators: < >

2. constant expressions:

returned from

a. string constant concatenation with * operator

b. numer ic, 0 rd inal, Boolean express ions in type
clauses

c. other constant functions:

CHR UPPER
DIV WRD
HIBYTE *
HIWORD +
LOBYTE
LOWER <
LOWORD <=
MOD <>
ORD
RETYPE >
SIZEOF >=

3. additional intrinsic functions at extended level:

ABORT
BYLONG
BYWORD
DECODE

LOWORD
RESULT
SIZEOF
UPPER

H-7

H-8

ENCODE
EVAL
HIBYTE

HIWORD
LOBYTE
LOWER

4. additional intrinsic functions at system level:

FILLC
FILLSC
MOVEL
MOVER

MOVESL
MOVESR
RETYPE

5. intrinsic functions that operate on strings:

a. for STRING or LSTRING: COPYSTR POSITN SCANEQ SCANNE

b. for LSTRING only: CONCAT INSERT DELETE COPYLST

6. "REAL library functions (standard level)

7. Pascal library functions (standard ~evel):

BEGOQQ
BEGXQQ
ENDOQQ
ENDXQQ
LADDOK

LMULOK
SADDOK
SMULOK
UADDOK
UMULOK

Control Flow and Structure Features

1. control flow statements: BREAK, CYCLE, and RETURN

2. sequential control operators: AND THEN and OR ELSE
in IF, WHILE, REPEAT

3. extended FOR loop: FOR VAR variable

4. VALUE section to initialize static variables

5. mixed order LABEL, CONST, TYPE, VAR, VALUE sections

6. compilable MODULES, with global attributes

7. UNIT INTERFACE and IMPLEMENTATION:

a. interface version numbers, version checking

b. optional rename of constituents

c. guaranteed unique unit initialization

d. optional unit initialization

Extended Level I/O and Flies

1. textfile line length declaration, TEXT (nnn)

2. READ enumerated, Boolean, pointer, STRING, LSTRING

3. WRITE enumerated, pointer, LSTRING

4. negative M value to justify left instead of right

5. temporary files

6. DIRECT mode files, SEEK procedure

7. ASSIGN, CLOSE, DISCARD, READSET, READFN procedures

8. FILEMODES type and constants, F.MODE access

9. error trapping, F.TRAP and F.ERRS access

System Level I/O

This Pascal's extensions to the ISO standard offers full
FCBFQQ type equivalent to FILE types

H-9

APPENDIX I
CONTROL OF THE VIDEO DISPLAY

CONTENTS

ERROR CONDITIONS IN ESCAPE SEQUENCES

Video Display Coordinates

CONTROLLING CHARACTER ATTRIBUTES

CONTROLLING SCREEN ATTRIBUTES

CONTROLLING CURSOR POSITION AND VISIBILITY

FILLING A RECTANGLE

CONTROLLING LINE SCROLLING

DIRECTING VIDEO DISPLAY OUTPUT

CONTROLLING PAUSING BETWEEN FULL FRAMES

CONTROLLING THE KEYBOARD LED INDICATORS

ERASING TO THE END OF THE LINE OR FRAME

FURTHER DETAILS

1-1

A Pascal program can control the video display by writing a
mul tibyte escape sequence to the video display. In this way, a
program can:

o control character attributes (blinking, reverse video,
underscoring, half bright),

o control screen attributes (reverse video, half bright),

o control cursor positioning and visibility,

o fill a rectangle with a single character,

o control scrolling of lines,

o direct video display output to any frame,

o control pausing between full frames of data,

o control the keyboard LED indicators, and

o erase to the end of the current line or frame.

A mul tibyte escape seguence consists of the video display
escape character, a command character, and parameters. The
video display escape character is CHR(255). To print an escape
character, precede it with another escape character.

ERROR CONDITIONS IN ESCAPE SEQUENCES

An escape character sequence is in error if the command
characters or parameters are unrecognized or the parameters are
inconsistent.

The following program turns on the cursor, writes the message
"This is a test", and waits for input:

1-2

PROGRAM Test (INPUT, OUTPUT);
VAR

Is LSTRING (128);

BEGIN
Is := CHR(255) * 'vn';
Write (Is, 'This is a test');
Readln;

END.

Video Display Coordinates

Pascal interprets some parameters as x and y coordinates on
the video display.

A value of 255 for x or y specifies, respectively, the last
column or line of the frame.

If the value of x or y is less than 255 and greater than the
last column or line, then the escape sequence is in error.

The concatenation operator
constant string expressions.
be incorrect:

"*" can only be used to create
Therefore the following code would

VAR i : INTEGER; str : STRING(4);
str .= CHR(255) * 'c' * CHR(O) * CHR(i)

The above code is incorrect because CHR(i) is not constant, but
rather varies with i. To create variable string expressions with
concatenation, you may use the LSTRING intrinsic "CONCAT".

CONTROLLING CHARACTER ATTRIBUTES: THE 'A' COMMAND
Format 1:

Format 2:

Purpose:

CHR (255) * 'A<parameter>,

where <parameter> is a character in the range
A to P.

CHR(255) * 'AZ'

Format 1 is used to enable or disable charact­
er attributes for characters following the
escape sequence. The table below shows the
attributes enabled or disabled for each escape
sequence using the 'A' command.

An x in the table below indicates that the
attribute is enabled; otherwise, it is dis­
abled. The character attributes are: blink­
ing (B), reverse video (R), underlining (U),
and half bright (H).

1-3

B R U H
CHR(255) * 'AA'
CHR(255) * 'AB' x
CHR(255) * 'AC' x
CHR(255) * 'AD' x x
CHR(255) * 'AE' x
CHR(255) * 'AF' x x
CHR(255) * 'AG' x x
CHR(255) * 'AH' x x x
CHR(255) * 'AI' x
CHR(255) * 'AJ' x x
CHR(255) * 'AK' x x
CHR(255) * 'AL' x x x
CHR(255) * 'AM' x x
CHR(255) * 'AN' x x x
CHR(255) * 'AD' x x x
CHR(255) * 'AP' x x x x

Format 2 is used to enable a mode whereby
writing a character into a character position
does not change the character attributes of
that character position.

CONTROLLING SCREEN ATTRIBUTES: THE 'H'
AND 'R' COMMANDS
Format 1:

Format 2:

Purpose:

1-4

CHR(255) * 'H <parameter> '

where <parameter> is N or F.

CHR(255) * 'R <parameter> '

where <parameter> is N or F.

Format 1 is used to turn the half bright attri­
bute on if the <parameter> is N. It is used
to turn the half bright attribute off if the
<parameter> is F.

Format 2 is used to turn the reverse video
attribute on if the <parameter> is N. It is
used to turn the reverse video attribute off
if the <parameter> is F.

CONTROLLING CURSOR POSITION AND
VISIBILITY: THE 'C' AND 'V' COMMANDS
Format 1:

Format 2:

Purpose

CHR(255) * 'c'
* CHR«Xposition» * CHR«Yposition»
where <Xposition> and <Yposition> are integer exp­
ressions.

CHR(255) *'V<parameter>'

where <parameter> is N or F.

Format 1 is used to position the cursor at coord­
inates «Xposition>, <Yposition».

Format 2 is used to make the cursor visible if the
<parameter> is N. It is used to make the cur­
sor invisible if the <parameter> is F.

FILLING A RECTANGLE: THE 'F' COMMAND

Format:

Purpose:

CHR(255) * 'F' * character
* CHR«Xposition» * CHR«Yposition»
* CHR«width» * CHR«height»

where <character> is
<Yposition>, <width>,
expressions.

any character; <Xposition>,
and <length> are integer

The 'F' command is used to fill a rectangle on the
video display with <character>. The currently
enabled character attributes are given to each
character in the rectangle. A <character> always
specifies a character in the standard character
set.

The coordinates «Xposition>, <Yposition» specify
the upper left corner of the rectangle. A value
of 255 for <width> and <height> specifies, respec­
tively, the remaining width or height of the frame.

1-5

CONTROLLING LINE SCROLLING: THE'S' COMMAND
Format:

Purpose:

CHR(255) * IS'
* CHR«firstline» * CHR«lastline»
* CHR«co,unt» * '<direction>'

where <direction> is D or U.

If the <direction> is D, the'S' command is used
to scroll down a portion of the frame
beginning at line firstline and extending
to (but not including) <lastline>. The
<count> lines are scrolled and the top
<count> lines of the frame portion are filled
with blanks.

If the <direction> is U, the'S' command is
used to scroll up a port ion of the frame
beginning at line <lastline> and extending to
(but not including) <firstline>. The <count>
lines are scrolled and the bottom <count>
lines of the frame portion are filled with
blanks.

DIRECTING VIDEO DISPLAY OUTPUT: THE 'X' COMMAND
Format:

Purpose:

CHR(255) * 'X' * CHR«frame»

The 'X' command is used to direct video output
to the <frame> 'th frame of the video display.

If the <frame> is 1, the 'X' command is used
to direct video output to the Status Frame at
the top of the video display.

CONTROLLING PAUSING BETWEEN FULL
FRAMES: THE 'P' COMMAND
Format:

Purpose:

1-6

CHR(255) * 'P<parameter>'

where <parameter> is N or F.

If the <parameter> is N, the 'pi command is
used to enable the pause facility. When the
pause facility is enabled and further output
to the frame would cause data to be scrolled
off the top of the frame, the message:

Press NEXT PAGE to continue

is displayed on the last, line of the frame.

If the <parameter> is F, the 'pi command is
used to disable the pause facility.

CONTROLLING THE KEYBOARD LED
INDICATORS: THE 'I' COMMAND

Format:

Purpose:

CHR(255) * 'I<parameter> N'
CHR(255) * 'I<parameter>F'

or

where <parameter> is 1, 2, 3, 8, 9, 0, or T.
'I<parameter>N' turns ON the led.
'I<parameter>F' turns OFF the led.

The 'I' command is used to turn on an LED
indicator on the keyboard according to the
table below.

parameter

1
2
3
8
9
o
T

Key

F1
F2
F3
F8
F9
FlO
OVERTYPE

ERASING TO THE END OF THE LINE OR FRAME:
THE 'E' COMMAND
Format:

Purpose:

CHR(255) * 'E<parameter>'

where <parameter> is L or F.

If the <parameter> is L, the 'E' command is
used to erase to the end of the line.

I f the <parameter> is F, the 'E' command is
used to erase to the end of the frame.

Erases sets characters to spaces and turns off
all character attributes.

FURTHER DETAILS
For a more detailed, language-independent explanation of video

escape sequences, consult "Video Byte Streams" in the "Sequential.
Access Method" section of the B 20 Operating System Manual.

1-7

Documentation Evaluation Form

Title: _--=B::.....;2:.;O::::-S::::.yL:s~t::.:em:..:.:.::;.s ...:...Pa::.:s:.,:c.:;al:.....!R..:..:e:.:,f.:.er:..::;e:.:..:n:,:::c:::,.e _____ _ Form No: 1162955
Manual Date: August, 1983

Burroughs Corporation is interested in receiving your comments
and suggestions regarding this manual. Comments will be util­
ized in ensuing revisions to improve this manual.

Please check type of Suggestion:

o Addition o Deletion o Revision o Error

Comments:

From:
Name __ __

Title
Company ___ ___

Address

Phone Number ________________________ _

Remove form and mail to:

Documentation Dept •• East
Burroughs Corporation

BoxCB7
Malvern. PA 19355

Date ______________ __

i

I

