

_ Burroughs

Reference
Manual

Priced Item
Printed in U.S.A June 1982 . 1148681

Burroughs cannot accept any financial or other
responsibilities that may be the result of your use of .
this information or software material, including
direct, indirect, special or consequential damages.
There are no warranties extended or granted by this
document or software material.

You should be very careful to ensure that the use of
this software material and/ or information complies
with the laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to
change without· notice. Revisions may be issued
from time to time to advise of such changes and/ or
additions.

This edition also includes the infonnation released under the following:

peN 1148681-001 (January, 1983)
peN 1148681-002 (August, 1983)
peN 1148681-003 (April, 1984)

Correspondence regarding this publication should be forwarded, using the
Documentation Evaluation Form at the back of the manual, or remarks may
be addressed directly to Burroughs Corporation, Corporate Documentation
Planning, East, 209 W. Lancaster Ave., Paoli, PA 19301, U.S.A.

LIST OF EFFECTIVE PAGES

Page Issue

iii peN-003
iv peN-003
v thru vii Original
viii Blank
I-I thru 1-4 Original
1-5 peN-002
1-6 thru 1-10 Original
1-11 peN-003
1-1 2 thru 1-1 5 Original
1-16 Blank
2-1 thru 2-6 Original
A-I Original
A-2 Blank
1 thru 3 Original
4 Blank

1148681 iii

TABLE OF CONTENTS

Section Title Page

INTRODUCTION vii

LINKER. 1-1
Introduction 1-1
Two-Pass Linker 1-1

Invoking the Linker 1-2
Field Descriptions 1-3

Object Modules . 1-3
Virtual Code Segment Management 1-4

Run File 1-5
List File 1-5
Publics? . 1-6
Line Numbers 1-7
Stack Size. 1-8
Max Memory Array Size 1-8
Min Memory Array Size 1-8
System Build? 1-10
Version. 1-10
Libraries 1-10
DS Allocation? 1-11
Symbol File 1-11

Limits . 1-12
Error Messages 1-12
Arranging Memory 1-13

Units of Relocation and Linkage 1-13
Segment Elements . 1-13
Linker Segments 1-13
Class Names 1-14
Groups 1-14

Naming. 1-14
Alignment and Combination. 1-15

2 LIBRARIAN 2-1
Introduction 2-1
Invoking the Librarian 2-2
Field Descriptions 2-3

Library File 2-3
Files to Add 2-3
Modules to Delete . 2-4
Modules to Extract 2-4
Cross-Reference File 2-5
Suppress Confirmation? 2-5

Sample Listing 2-6

A GLOSSARY A-I

1148681 v

LIST OF ILLUSTRATIONS

Figure Title Page

1-1 Sample List File 1-6
1-2 Sample Symbol Table Listing. . . 1-7
1-3 Sample List File with Line NumberS 1-7
1-4 Normal Memory Configuration . . 1-9
1-5 Memory Configuration with Memory Array Size

Specified. . . \ 1-9
2-1 Sample Listing 2-6

vi

1148681

INTRODUCTION

This manual provides descriptive and operational
information for the Linker/Librarian utility
used in program development applications for the
B 20 Micro-Computer Systems. The information is
presented in two sections: Section 1 for the
Li nker utili ty, a nd Section 2 for the Librarian
utility. A glossary of terms is provided in
Appendi x A.

The followi ng technical manuals are referred to
for addi tional information:

B 20 System Executive Reference Manual, form
1144474

B 20 Operating System Reference Manual, form
1148657

B 20 System Programmers Guide, Part 1, form
1148699

B 20 System Programmers Guide, Part 2, form
1144466

B 20 Systems Debugger Reference Manual, form
1148665

B 20 Systems Forms Reference Manual, form
1148715

vii

INTRODUCTION

Two-Pass Linker

1148681

SECTION 1
LINKER

The Linker is a program development utility. It
combines object modules (files produced by com­
pilers and assemblers) into run files. Run files
are memory images of tasks (in ready-to-run form)
linked into the standard format required by the
Operating System loader.

The Linker has these features:

o It resolves references from one object module
to variables and entry points of other object
modules.

0 It builds a run file that can be efficiently
loaded. The run file that is constructed
consists of a memory image plus some
directory and relocation data. It is
organized so that the Operating System can,
in most cases, load it with a single disk
access and data transfer.

o It does not require specification of the
eventual memory address of the task. In­
stead, the Linker computes and places into
the run file information that the Operating
System loader uses to relocate the task, when
loaded, to any desired memory location. In
this way, a single run file can be used with
various memory configurations or as one of
the tasks of a multitask application system.

o It can search through libraries of object
modules and select exactly those modules
required by a particular application.

o It can construct run files containing over­
lays for use wi th the virtual code segment
management facility.

This is a two-pass linker. On the first pass,
the Linker reads all object modules, extracting
external and public symbol information, and
builds a symbol table. It looks at this symbol
table to see if there are unresolved external
references. If there are, it repeatedly searches
the list of libraries, specified when the Linker
is invoked, for object modules whose public
symbols resolve the external references.

1-1

On the second pass, the Linker assigns relative
addresses, relocating as necessary, to all data
in all object modules, and links the object mod­
ules, constructing a run file ready for the Oper­
ating System loader.

INVOKING THE LINKER

1-2

To invoke the Linker from the Executive, type
"Link" in the command field of the command form.
(See the B 20 System Executive Reference Manual,
form 1144474.) Then press the RETURN key. The
form illustrated below then appears.

Link
Object modules
Run file
[List file]
[Publics?]
[Line numbers?]
[Stack size]
[Max memory array size]
[Min memory array size]
(System build?)
[Version]
[Libraries]
[OS allocation?]
[Symbol file]

Fill in the various fields. You are normally
concerned with only a few fields: "Object
modules", "Run file", and "[List file]". All
fields after the second ("Run file") are
optional. You can default optional fields by
leaving them blank. You will usually default all
fields after the third.

FIELD DESCRIPTIONS

Object Modules

1148681

Fill in the "Object modules" field with a list of
the names of one or more object module or library
files. Separate the names with spaces, not
commas. The Linker combines these object files
to form a run file.

Example

To build a run file from the three object mod­
ules A.obj, B.obj, and C.obj, fill in the
"Object modules" field of the Linker form this
way:

Object modules A.obj B.obj C.obj

The Linker combines the three modules to form a
run file.

You can mix the specification of ordinary object
module files and object modules to be explicitly
extracted from libraries. Specify library ex­
traction with this form:

LibraryName (modulel module2

where modulel, module2, etc.,
object modules to be extracted.
module names are separated
commas. }

Example

...)
are the names of

(Note that these
by spaces, not

Assume that Z.lib contains the object modules
V, W, and X. To build a run file consisting of
object modules A, B, W, X, and C, fill in the
"Object modules" field of the Linker form this
way:

Object modules A.obj B.obj Z.lib(W X) C.obj

The run file is the same that results if the
original W.obj and X.obj are specified in the
"Object modules" field as:

Object modules A.obj B.obj W.obj X.obj C.obj

1-3

Virtual Code Segment Management

1-4

You can construct a task containing code that is
not permanently memory-resident. The virtual
code segment management facil i ty allows you to
divide your task into resident and nonresident
portions. (See the B 20 Operating System
Reference Manual, form 1148657.) The resident
portion includes data and code segments; the
nonresident portion includes only code segments.
When Ii nki ng, you ca n speci fy one or more
overlays. An overlay is a code segment, made up
of the code from one or more object modules. An
overlay is loaded into memory as a unit.

To construct
"/0" to the
overlay.

a run file using overlays, append
name of the. fir st module in each

Example

To build a run file consisting of a resident
portion with the code from A, and a nonresident
portion, consisting of two overlays, one with
the code from B, W, and X, and a second wi th
the code from 0, fill in the "Object modules"
field of the Linker form this way:

Object modules A.obj B.obj/O Z.lib(W X) D.obj/O

Run File

[List File]

1148681-002

Fill in the "Run file" field with the name of the
run file to be built.

Fill in the "[List file]" field with the name of
the list file.

The default is to derive the name of the list
file from the name of the run file. If you do
not specify a list file, a default list file is
chosen as follows: the run file name is treated
as a character string, any final suffix beginning
with the character period (.) is removed, and the
characters ... map" added. The result is the name I
of the list file. For example, if the run file
is:

prog.run

then the default list file is:

Prog.map I
If the run file is:

[Dev]<Jones>Main

then the default list file is:

[Dev] <Jones>Main .map I
If you default the remaining ten fields of the
Linker command form, the Linker generates a short
list file that contains an entry for each module
or segment and shows the relati ve address and
length of the module or segment in the memory
image.

Figure 1-1 shows a sample list file. The
starting addresses are offsets, not absolute
addresses. The offsets are rela ti ve to the base
memory address, determi ned at run time, at which
the Operating System loads the run file.

1-5

[Publics?]

1-6

Start Stop Length Name Class
OOOOOh 00639h 063Ah BNDTRN CODE CODE
0063Ah OOC8Bh 0652h BNDTPl CODE CODE
OOCBCh Ol890h OC05h BNDMAP CODE CODE
Ol892h OlCD6h 0445h BNDSYM CODE CODE
OlCD8h 02565h 088Eh BNDTP? CODE CODE
02566h 0299Fh 043Ah BNDOUT CODE CODE
029AOh 02EODh 046Eh BNDUTL CODE CODE
02EOEh 034BDh 06BOh BNDPRI CODE CODE
034BEh 03930h 0473h BNDPAR CODE CODE
03932h 04l36h 0805h CONST CONST
04l38h 04572h 043Bh DATA DATA
04574h 04ElCh 08A9h STACK STACK
04ElEh 04ElEh OOOOh MEMORY MEMORY

,._--"---

Figure 1-1. Sample List File

Fill in the "[Publics?]" field with YES to in­
clude the values of all public symbols in the
listing, sorted first alphabetically, and then
numerically by value.

The default is NO; that is, responding with NO
and entering no response both produce no listing
of public symbols.

Figure 1-2 is an excerpt from such a list file,
with the values of all public symbols sorted
first alphabetically, and then numerically.

The Address column contains the notation
XXXX: YYYYh, where h means hexadecimal; this is
the standard processor segment-pI us-offset
addressi ng structure. For more details about
this, see the processor.

The Over lay column contains "Res" if the symbol
is in the resident portion of your task, an inte­
ger en) if it is in the nth overlay, and "Abs" if
it is-absolute. An absolute symbol is one with a
specified place in memory (for example, an
address within the Operating System).

[Line Numbers?]

1148681

Publics by name Address Overlay

BSRUNFILE 076B:3630h Res
BSVIDCLEARMARK 0593:0682h Res
BpVIDEO 076B:36CCh Res
BSVIDMARK 0593:0604h Res
BSVIDTURNOFFCURSOR 0593:06E5h Res
BSVIDTURNONCURSOR 0593:06A4h Res
CBREC 076B:376Ch Res

Publics by value Address Overlay

BSVIDMARK 0593:0604h Res
BSVIDCLEARMARK 0593:0682h Res
BSVIDTURNONCURSOR 0593:06A4h Res
BSVIDTURNOFFCURSOR 0593:06E5h Res
BSRUNFILE 076B:3630h Res
BSVIDEO 076B:36CCh Res
CBREC 076B:376Ch Res

Figure 1-2. Sample Symbol Table Listing

Fill in the" [Line numbers?]" field with YES to
include in the list file a list of line numbers
and addresses of all- source statements in your
task. This list of line numbers comes after the
listing of public symbols. Not all compilers
produce object modules containing line number
information.

The default is NO: that is, responding with NO
and entering no response both produce no list of
line numbers and addresses in the list file.

Figure 1-3 is an excerpt from a Ii st file wi th
Ii ne numbers.

105 OOOO:OOOOh
108 0000:OOB2h
III OOOO:OOEBh
114 0000:0114h

106 0000:0003h
109 0000:0092h
112 OOOO:OOEDh
115 OOOO:OllEh

107 0000:0023h
110 OOOO:OOAFh
113 0000:00F2h
116 0000:0123h

Figure 1-3. Sample List File with Line Numbers

1-7

{Stack Size]

Fill in the "[Stack size]" field to change the
stack size from the compiler's estimate.

7\" ____ .;, ______ ..::1 •• __ ':_.f!.-. ___ .L.': __ .: _ _ \....~ __ ___ ...:I
l"1.l..l. vVIUP.L.l.I::L;:) PLVUUvl:: .LI1LVLIIIQ\...LVII .1.11 VlJ.JI::V\" IIIVU-

ules from which the Linker can compute the size
of the required stack segment. This information
is usually conservative (that is, it calls for a
stack that is typically larger than the actual
requirements). However, in rare cases, the
compiler can supply information that causes the
Linker to undercompute the required stack size.
An example is a task with many recursive
procedures.

The default is the compiler's estimate of the
correct stack size.

[Max Memory Array Size]
[Min Memory Array Size]

1-8

Fill in the "[Max memory array si ze)" and "[Min
memory array size]" fields to leave data space
above the highest memory address of the task.
The specifications must be in decimal notation.

The defaults are 0 for both of these fields.

If you specify too large a minimum (that is, if
you don't leave enough room for the task), then
an error code and error message are output when
the Operating System fails to load the task. If
you want the task to always load low, that is,
wi th maximum data space above the task, set the
minimum to 0 and the maximum to 1000000.

Figure 1-4 shows the normal memory configuration
when a run file is loaded.

Figure 1-5 shows the memory configuration when a
run file is loaded and the memory array size was
specified.

1148681

Memory Address
Low 0 ,

,
High FFFFFh

Operating
System

unused

task

Figure 1-4. 'Normal Memory Configuration

Memory Address
Low 0
A

y
High PPFFPh

Operating
System

unused

task

memory
array

Figure 1-5. Memory Configuration with Memory Array Size Specified

1-9

[System Build?]

[Version]

[Libraries]

1-10

Fill in the " [System build?] " field wi th YES
only to build special versions of the Burroughs
Operating System. Do this only by carefully
following the system build procedure described
in the B 20 System Programmers and Assembler
Reference Manual (Part 1), form 1148699.

The default is NO; that is, responding with NO
and enter ing no response both produce no system
build.

Fill in the "[Version]" field to add a version
specification (in the form of an alphanumeric
string) to the header of the run file. (As usual
in command forms, if this parameter has embedded
spaces, then the parameter must be surrounded
with single quote characters.) The string,
preceded by the characters "VER " (the letters V,
E, R, and a space), is placed in the first sector
of the run file. Also, the public variable
sbVerRun is automatically defined in the run
file: it consists of the string preceded by a
single byte containing the length of that string.

The default is none; that is, entering no
response produces no version specification.

For example, if the string is 1.0, then the run
file header sector contains the text "VER 1.0"
and the variable sbVerRun is defined as the fol­
lowing four bytes: the number 3, and the ASCII
characters "1", ".", and "0".

Fill in the "[Libraries 1" field with a list of
library files. Separate the names with spaces,
not commas. The library files must have been
created by the Librarian utility.

The Linker searches, and automatically selects
object modules from, a list of library files to
satisfy unresolved external references. The
Linker then treats the selected object modules as
if they had been specified in the "Object
modules" field, that is, they are linked with the
resident portion of a task that uses overlays.
To link object modules obtained from librar ies
into overlays, the explicit library extraction

[OS Allocation?]

[Symbol File]

1148681-003

facility discussed above in "Object modules" must
be used.

The Linker always searches
[SysJ<Sys>CTOS.LIB, if it exists, for
external references.

the file
unresolved

Fill in the "[DS allocation?J" field with YES
(the default) to offset all references to group I
DGroup to minimize the run-time value of DS (the
data segment register). This field is meaningful
only with tasks that use a single value in DS
during their entire execution, and include the
group DGroup with DS equal to DGroup.

Responding with NO produces no offsetting of I
DGroup references.

(Object module procedures and tasks produced by
the Pascal compiler use a single value in DS
during their entire execution, and include the
group DGroup with DS equal to DGroup; indeed,
this feature must be used for linking Pascal
tasks that make-u3e of the Pascal heap.) If a
task using this feature is loaded at the high end
of memory, the space below the task can be
conveniently used as a dynamically allocatable
area containing data referenced relative to DS.

Fill in the "[Symbol fileJ" field with the name
of a file to which the Linker writes a symbol
table of the run file. (See the B 20 Systems
Debugger Reference Manual, form 1148665, for an
explanation of the use of this file.)

The default is to derive the name of the symbol
file from the name of the run file. That is, if
you do not specify a symbol file, a default
symbol file is chosen as follows: the run file
name is treated as a character string, any final
suffix beginning with the character period (.) is
removed, and the characters ".sym" added. The
result is the name of the symbol file. For
example, if the run file is:

1-11

LIMITS

Prog.run

then the default symbol file is:

Drl"'\.rt Cl'lTYY'I
~ , VO •,J III

If the run file is:

[Dev]<Jones)Main

then the default symbol file is:

[Dev]<Jones)Main.sym

To avoid creating a symbol file, fill in this
field with [NUL].

There may be at most 1024 public symbols and 256
segments in a run file, and 256 PUBLICs and 256
EXTERNs in a module.

ERROR MESSAGES

1-12

At the end of the list file, the Linker issues
error messages. An unresolved external reference
is a public symbol that is used by some object
module, but not defined by any of the modules
being linked. If unresolved extirnal references
still exist after linking, the Linker issues the
nonfatal error message, "Unresolved externals:",
and lists them in this format:

nnn in [Sys]<Sys)Module.obj

where nnn is the name of the unresolved
external reference.

ARRANGING MEMORY
An object module may contai n any (or all) of the
following: code, constants, variable data. The
Linker arranges the contents of a set of object
modules into a memory image, typically with all
code together, all constants together, and all
variable data together. (This arrangement makes
optimal use of the addressing structures of the
processor.) Al though the Li nker produces such
arrangements automatically, the programmer will
occasionally want to exercise explicit control.
Thi s secti on explai ns the concept i nvol ved and
the facilities used to arrange memory.

Units of Relocation and Linkage

Segment Elements

Linker Segments

1148681

The fundamen tal un i ts of relocation and linkage
are segment elements, linker segments, class
names, and groups.

An object module'~\ is a sequence of segment
elements. Each segment element has a segment
name. An object module might consist of segment
elements whose names are B, C, and o.

The Linker combines all segment elements with the
same segment name from all object modules into a
single entity called a TInker segment. A linker
segment forms a contiguous block of memory in the
run-time memory image of the task. For example,
you might use the Linker to link these two object
modules:

object module I
containing segment elements B, C, 0

object module 2
containing segment elements C, 0, E

Linkage produces these four linker segments:

linker segment B consisting of element Bl
linker segment C consisting of elements Cl, C2
linker segment D consisting of elements 01, 02
linker segment E consisting of element E2

(In each of these cases, xi denotes the segment
element x in module i..)

1-13

Class Names

Groups

Naming

1-14

The order ing of the var ious linker segments is
determined by class names. (A class name is an
arbitrary symbol used to designate a class.) All
the linker segments with a common class name and
segment name go together in memory. For example,
if Bl, 01, and E2 have class names "Red," while
Cl has a class name "B~Ue,~ then the ordering of
linker segments in memory is:

B, 0, E, C

I f you look inside the linker segments, you see
that the segment elements are arranged in this
order:

Bl, Dl, 02, E2, Cl, C2

(If two segment elements have different class
names, then they are considered unrelated for
purposes of these algor i thms, even though they
have the same segment name.)

As you can see from this, segment names and class
names together determine the ordering of segment
elements in the final memory image.

The next step for the Linker is to establish how
hardware segment registers address these segment
elements at run time.

A group is a named collection of linker segments
that is addressed at run time with a common hard­
ware segment register. To make the addressing
work, all the bytes within a group must be within
64K of each other.

Several linker segments may be combined into a
group. For example, if Band C were combined
into a group, then a single hardware segment
register could be used to address segment ele­
ments Bl, Cl, and C2.

Segment, class, and group names may be assigned
explicitly in assembler modules using appropriate
assembler directives -(as -described in the B 20
System Programmers and Assembler Reference
Manual (Part 2), form 1144466). Most compiled
languages assign these names automatically.
(See the individual language manuals for
details.)

Alignment and Combination

1148681

Segments have alignment and combination
at tr ibu tes • In as sembly lang uage programs,
these attributes are assigned explici tly ustng
appropriate assembler directive~. (See the B 20
System Programmers and Assembler Reference
Manual (Part 2), form 1144466 for details.)
Most compiled languages assign these attributes
automatically. (See the individual language
manuals for details.) A segment can have one of
several alignment attributes. These are:

o byte (a segment that can be located at any
address),

o word (a segment that can be located at an
address that is a multiple of two), and

o paragraph (a segment that can only be located
at an address that is a multiple of 16).

The Linker packs segments containing data and
code end-to-end. Alignment character i st ics can
cause a gap between the segments. The Linker
adjusts the relative addresses in the segments
accordingly.

Segments with the combine type STACK are a spe­
cial case. When stack segments are combined,
they are overlaid (with high addresses super­
imposed), but their lengths are added together.
When the Linker has combined all stack segments,
it forces the total length of the aggregate stack
segment to a multiple of 16 bytes.

Segments wi th the combine type COMMON are also
special. When COMMON segments are combined, they
are overlaid (wi th low addresses super imposed) ,
and the length is that of the largest element.

Compilers construct stack segments
automatically. However, if your entire program
is written in assembly language, you have to
define an explicit stack segment. See the B 20
System Programmers and Assembler Reference
Manual (Part 2), form 1144466 for details.

1-15

INTRODUCTION

1148681

SECTION 2
LIBRARIAN

The Librarian is a program development utility
that creates and maintains librar ies of object
modules. A library has these uses:

o

o

o

A library can be a parameter in the
"[Libraries]" field of the Linker command
form, to specify that the Linker should
search the library for object modules that
satisfy unresolved external references. (See
the Linker section of this Manual for
details.)

A library is a convenient uni t in wh ich to
collect several object modules and distribute
them as a single file, so that the extraction
facility described below, and also available
in the Linker, can be used to extract specif­
ic modules from the unit.

A library is a convenient uni tin which to
collect several forms created with the Forms
Editor. (See the B 20 Systems Forms
Reference Manual, form 1148715.)

In the first use, above, of the Librarian, you do
not have to know the names of the object modules
composing a library, since the Linker's library
search algor i thm automatically selects from the
Ii br ar y exactly the requi red modules. In the
second and third uses, above, the desired object
module or form name must be specified to extract
it from the library.

The Librarian builds or manipulates libraries in
these ways:

o

o

The Librarian builds a new library, when
given the name of a new library file and the
object modules that are to compose it.

The Librarian modifies an existing library,
when given the names of object modules to be
added to or deleted from it. (Th is includes
the case in which a module in a library is to
be replaced by a new module wi th the same
name.)

2-1

o The Librarian extracts from a library one or
more object modules, when given the names of
the desired object module {iles.

c The Librarian produces a sorted cross­
reference listing of the object modules and
public symbols in the library.

INVOKING THE LIBRARIAN

2-2

To invoke the Librarian from the Executive, type
"Librarian" (or as many letters as are required
from the word "Librarian" to make the command
unique; see the B 20 System Executive Reference
Manual, form 1144474) in the command field of
the command form Press RETURN. The form
illustrated below then appears.

Librarian
Library file
[Files to add]
[Modules to delete]
[Modules to extract]
[Cross-reference file]
[Suppress confirmation?]

Fill in the var ious fields. You can default
optional fields, those listed above in square
brackets, by leaving them blank. All fields
after the first are optional.

FIELD DESCRIPTIONS

Library File

[Files to Add]

1148681

Fill in the "Library file" field with the file
name of the object module library (typically of
the form LibraryName.lib) •

If the specified file already exists, it is the
starting point for any library to be built. The
contents of the file are preserved intact in a
file whose name is the original name plus the
suffix "-old". However, if a cross-reference
listing is requested but no modifications are
made, then the input library is not modified and
no "-old" file is generated. If modifications
are requested, then the updated library is named
as specified by "Library file".

If the specified file does not exist, you are
prompted to confirm the creation of a new library
file. You may suppress this request for confir­
mation by filling in YES in the field "[Suppress
confirmation?]".

Fill in the "[Files to add]" field with a list of
files containing object modules to be added to
the library. Separate the names with spaces, not
commas.

The default is none; that is, entering no re­
sponse produces no adding of files.

You are prompted for confirmation if an object
module that is to be added has the same name as
an object module already in the library. If you
confirm the replacement, the file containing the
module wi th the same name replaces the existing
obj ect module. Since the Linker must sometimes
search a library for a module defining a given
public symbol, it is unusual to create a library
in which two object modules define the same pub­
lic symbol. (This kind of duplicate defini tion
might reasonably occur in a library intended just
as a convenient unit in which to collect object
modules and not for automatic search.)

The name of the added module within the library
is der i ved from the name of the added object
file. All leading volume, directory, and sub­
directory specifications are dropped. Any final

2-3

[Modules to Delete]

[Modules to Extract]

2-4

extension beginning with a period is dropped.
For example, if the file name is [Sys]<Jones>­
Sort.obj, then the module name is Sort, and, if
the file name is <Jones>Working>Sort, then the
module name is Sort.

You are also prompted for confirmation if a pub­
lic symbol declared in a module that is to be
added conflicts wi th a public symbol already in
the library. If you confirm the duplication, the
module containing the duplicate definition is
added, but the public symbols (both old and new)
are removed from the index of symbols searched by
the Linker. You may suppress these requests for
confirmation by filling in YES in the field
"[Suppress confirmation?] ".

Fill in the "[Modules to delete]" field with a
list of modules to be deleted from the library.
Separate the names with spaces, not commas.

The default is none; that is, entering no re­
sponse produces no deleting of modules.

Fill in the "[Modules to extract]" field wi th a
specification of the object modules of an exist­
ing library that are to be extracted to form
individual object module files. Separate the
names with spaces, not commas. The specification
is a list of entries of either the form:

ModuleName

or:

FileName (ModuleName)

If the first form is used, files containing the
specified object modules are created wi th names
of the form ModuleName. obj . I f the second form
is used, the file name may be specified explicit­
ly.

When the Librarian is used to modify a library,
which is the most common occurrence, the
"[Modules to extract]" field is not used.

The default is none; that is, entering no re­
sponse produces no extraction of modules.

[Cross-Reference File]

Fill in the " Cross-reference file " field wi th
the name of a file to which the Librar ian is to
write a cross-reference listing of public symbols
and object module names. A cross-reference list­
ing has two parts:

o The first part lists public symbols in alpha­
betical order and, for each public symbol,
the name of the module that defines it.

o The second part lists module names in alpha­
betical order and, for each module, the names
of the public symbols it defines.

The default is none; that is, entering no re­
sponse produces no cross-reference listing.

[Suppress Confirmation 1]

1148681

Fill in the " Suppress confirmation? " field with
YES if you do not wish prompts for confirmation
when creating new library files (wi th the
"Library file" field) or replacing existing ob­
ject modules (with the" Files to add" field).

The default is NO; that is, responding with NO
and entering no response both cause the Librarian
to issue the prompts for confirmation.

2-5

SAMPLE LISTING

2-6

Figure 2-1 shows a sample listing produced using
the "[Cross-reference file]" option.

Burroughs Librarian, Version 2.0

COMPACTDATETIME ••••••••••••• CMPDT
FILLFRAME ••••••••••••••••••.•. VAM
PUTFRAMEATTRS •••...•••••.••••• VAM
QUERYFRAMECHAR •••••••••••.•••• VAM
SCROLLFRAM •••••••••••••••••••• VAM

CMPDT (Length 0177h bytes)

COMPACTDATETIME

EXPDT (Length 014Ch bytes)

EXPANDDATETIME

VAM (Length 09B8h bytes)

FILLFRAME
PUTFRAMECHARS
SCROLLFRAM

POSFRAMECURSOR
QUERYFRAMECHAR

EXPANDDATETIME •••••.•• EXPDT
POSFRAMECURSOR .••••.•• VAM
PUTFRAMECHARS ••••••.•• VAM
RESETFRAM ••••••••••••• VAM

PUTFRAMEATTRS
RESETFRAM

Figure 2-1. Sample Listing

1148681

APPENDIX A
GLOSSARY

Absolute. An absolute symbol is a symbol that
has a specified place in memory (as, for example,
an address within the Operating System).

Class Name. A class name is an arbitrary symbol
used to designate a class.

Group. A group is a named collection of linker
segments that is addressed at run time wi th a
common hardware segment register. To make the
addressing work, all the bytes within a group
must be within 64K of each other.

Librarian. The Librarian is a program develop­
ment utility that creates and maintains libraries
of object modules. The Linker c~n search auto­
matically in such libraries to select just t~ose
object modules referred to by a program.

Linker. The Linker is a program development
utility that combines object modules (files pro­
duced by compilers and assemblers) into run
files.

Linker Segment. A linker segment is a single
entity consisting of all segment elements with
the same segment name.

Object Module. An object module. is the result of
a single compilation· or assembly. A single ob­
ject module is contained in an object module file
(. obj), wh ile many obj ect modules can be con­
tained in a library file (.lib).

Overlay. An overlay is a code segment, made up
of the code from one or more object modules. An
over lay is loaded into memory as a uni t and is
not permanently memory-resident.

Run File. A run file is a memory image of a task
(in ready-to-run form) linked into the standard
format required by the Operating System loader.

Segment Element. A segment element is a section
of an object module. Each segment element has a
segment name.

Unresolved External Reference. An unresolved
external reference is a public symbol that is
used by some module, but not defined by any of
the modules being linked.

A-I

Absolute symbol
definition of, 1-6, A-1

Address
of source statements, 1-7
structure of addressing, 1-6

Addressing structure, 1-6

Alignment and combination
attributes, 1-15

Attributes
alignment and combination, 1-15
byte, 1-15
paragraph, 1-15
word, 1-15

Byte (attribute), 1-15

Class name
definition of, 1-14, A-1

Code
in memory, 1-13
in segments, 1-15, 1-4

Code segment, 1-4

Constants
in memory, 1-13

Default (Librarian)
of [Cross-reference file] , 2-5
of [Files to add] , 2-3
of [Modules to delete], 2-4
of [Modules to extract] , 2-4
of [Suppress confirmation], 2-5

Default (Linker)
of [Libraries], 1-11
of [DS Allocation?] , 1-11
of [Line numbers?], 1-7
of [List file], 1-5
of [Max memory array size], 1-8
of [Min memory array size], 1-8
of [Publics?] , 1-6
of [Symbol file], 1-11
of [System build?] , 1-10
of [Stack size], 1-8
of [Version], 1-10

DGroup, 1-11

DS

1148681

INDEX

DS
definition of, 1-11
for linking Pascal tasks, 1-11

Elements
linker, 1-13
segment, 1-13

External references
definition of unresolved, 1-12, A-1
resolution of, 1-1
unresolved, 1-10, 1-11

Fields (Librarian)
filling in, 2-2
"Library file", 2-3
[Cross-reference file], 2-5, 2-6
[Files to all] , 2-3
[Modules to delete] , 2-4
[Modules to extract], 2-4
[Suppress confirmation?] , 2-5

Fields (Linker)
defaulting of, 1-2
filling in, 1-2, 1-3, 1-4
object modules, 1-3, 1-4
[DS allocation?] , 1-11
[Libraries], 1-10, 2-1
[Line numbers?], 1-7
[Publics?], 1-6, 1-7
[Max memory array size] , 1-8, 1-9
[Min memory array size] , 1-8, 1-9
[Symbol file] , 1-11
[System build?] , 1-10
[Stack size] , 1-8
[Version]; 1-10

File(s)
cross-reference option, 2-:-5, 2-6

Group
definition of 1-14, A-1

Hardware segment registers, 1-14

Librarian
definition of, 2-1, A-1
to invoke, 2-2
to modify a library, 2-4

Library
fields, 2-3 thru 2-5
file, 2-3
modification of, 2-4
uses of, 2-1

Library extraction
specification of, 1-3

Library files, 1-3
creation of new, 2-3, 2-6
cross-reference listing, 2-5
.c:~1...J 0 '.)
.L.lc:l.lU, ~-u

in the Librarian, 2-1
list for [Libraries] field, 1-10
modification of, 2-3
name of, 2-3, 2-4

Limits
in module, 1-12
in run file, 1-12
of PUBLICS, 1-12
of symbols and segments, 1-12

Link
command, 1-2
fields of, 1-2 thru 1-11

Linkage
units of, 1-13

Linker
combining of stack segments, 1-15
definition of, 1-1, A-1
invoking of, 1-2
segment, 1-13
'segments, 1-14

List file
chosing of default, 1-5
definition of, 1-5
error messages in, 1-12
filling in of field, 1-5
sample of, 1-6, 1-7

Loader, 1-2

Memory
address, 1-1
arranging of, 1-13
configurations, 1-1, 1-8, 1-9
displaying of image, 1-5
location, 1-1
non-permanent, 1-4
resident, 1-4

Modules
filling in, 1-3
in a library, 2-1
limits of, 1-12

2

INDEX (CONT.)

object, 1-1
reading of, 1-1

Ordering,
of segment elements, 1-14

Object modules
adding to library, 2-3, 2-4
assigning of relative addresses to, 1-2
collection of in library, 2-1
contents of, 1-13
cross-reference listing, 2-2, 2-5
definition of, 1-1, A-I
extraction from library, 2-1, 2-2, 2-4
filling in fields of, 1-3, 1-4
linking of, 1-1, 1-3, 1-10, 1-13
name of in libran', 2-3, 2-4
replacing iIllibrary, 2-5

Overlay
column, 1-6
definition of, 1-4, A-1
forming of, 1-10

Paragraph (attribute), 1-15

Publics
field, 1-6
limits of, 1-12
symbol, 1-6
table of, 1-7

Public symbol
conflict in library, 2-4
cross-reference listing, 2-2, 2-5
extraction of, 1-1
limits of, 1-12

Relative addresses
assigning of, 1-2
offsets of, 1-5

Run file
comparing to default list file, 1-5
construction of, 1-1, 1-2, 1-3
definition of, 1-1, A-1
filling in of field, 1-5
limits of, 1-12
loading of, 1-5
symbol file defaulting from, 1-11, 1-12
using overlays, 1-4

Segments
alignment attributes, 1-15
combination attributes, 1-15
COMMON, 1-15
definition of Linker, A-1
stack, 1-15

Segment element
definition of, 1-13, A-1
ordering of, 1-14

Stack size
computation of, 1-18

Suppress confirmation, 2-5

Symbol file, 1-11

Symbol tables
building of, 1-1

1148681

INDEX (CONT.)

Two-pass linker, 1-1

Units
of relocation and linkage, 1-13

Unresolved external references
definition of, 1-12, A-1
in symbol table, 1-1
Linker file search for, 1-11
satisfaction of, 1-10

Version field, 1-10

Virtual code segment management facility
non-resident portion, 1-4
resident portion, 1-4
use of, 1-4

Word (attribute), 1-15

3

Title:

Documentation Evaluation Form

B 20 Systems Linker/Librarian Form No: 1148681

Reference Manual Date: June, 1982

Burroughs Corporation is interested in receiving your comments
and suggestions regarding this manual. Comments will be utilized
in ensuing revisions to improve this manual.

Please check type of Comment/ Suggestion:

o Addition o Deletion o Revision o Error o Other

Comments:

From:

Name __ ~ __ __

Title
Company __ ___

Address

Phone Number _____________________________ Date --------------__

Remove form and mail to:

Burroughs Corporation
Corporate Documentation

Planning, East
209 W. Lancaster Ave.

Paoli, PA 19301, U.S.A.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	A-01
	A-02
	I-01
	I-02
	I-03
	replyA

